Vakil, Ashkan
2011-01-01
Using numerical simulations, here we demonstrate that a single sheet of graphene with properly designed inhomogeneous, nonuniform conductivity distributions can act as a convex lens for focusing and collimating the transverse-magnetic (TM) surface Plasmon polariton (SPP) surface wave propagating along the graphene. Consequently, we show that the graphene can act as a platform capable of obtaining spatial Fourier transform of infra-red (IR) SPP signals. This may lead to rebirth of the field of Fourier Optics on a one-atom-thick structure.
Energy Technology Data Exchange (ETDEWEB)
Palacios, D. [Universidad Simon Bolivar, P.O. 89000, Caracas, (Venezuela); Palacios, F. [Universidad de Oriente, Santiago de Cuba (Cuba); Viloria, T. [Universidad del Zulia, Maracaibo, (Venezuela)]. e-mail: palacios@usb.ve
2006-07-01
The proposed method to count and differentiate nuclear tracks in Solid State Detectors is based on digital simulation and analysis of the Fraunhofer diffraction pattern, formed when coherent light passes through tracks in an etched detector. Analytical and numerical models were developed using, as transformation element, an optical system and a digital procedure of the Fourier Transform, respectively. Different components of developed software are described, and depending on the kind of detector used, variants of optical microscopy are suggested. The proposed method allows to calculate real track density and to differentiate tracks by their diameters. (Author)
International Nuclear Information System (INIS)
The 1988 progress report, of the Applied Optics laboratory, of the (Polytechnic School, France), is presented. The optical fiber activities are focused on the development of an optical gyrometer, containing a resonance cavity. The following domains are included, in the research program: the infrared laser physics, the laser sources, the semiconductor physics, the multiple-photon ionization and the nonlinear optics. Investigations on the biomedical, the biological and biophysical domains are carried out. The published papers and the congress communications are listed
Fourier-transform optical microsystems
Collins, S. D.; Smith, R. L.; Gonzalez, C.; Stewart, K. P.; Hagopian, J. G.; Sirota, J. M.
1999-01-01
The design, fabrication, and initial characterization of a miniature single-pass Fourier-transform spectrometer (FTS) that has an optical bench that measures 1 cm x 5 cm x 10 cm is presented. The FTS is predicated on the classic Michelson interferometer design with a moving mirror. Precision translation of the mirror is accomplished by microfabrication of dovetailed bearing surfaces along single-crystal planes in silicon. Although it is miniaturized, the FTS maintains a relatively high spectral resolution, 0.1 cm-1, with adequate optical throughput.
Optical fourier transform image processor
International Nuclear Information System (INIS)
The primary objective of this project is to improve the signal to noise ratio of the X-ray shadow graphs and tomographs of human body using optical spatial filtering techniques. Helium Neon laser of 4 milli Watt has been used for the purpose. Spatial filtering of the beam has been done in the first step to eliminate the coherent noise produced by various laser modes. Conventional method of spatial filtering has been used to process simple achieved using conventional filters. Edge enhancement and improvement of signal to noise ratio of the X-ray shadow graphs has been done using lens and lens-less Fourier transform holographic filters and VanderLugt filters. VanderLugt filter has given the best edge-enhancement for the chest X-ray shadow graph. (author)
Fourier phase in Fourier-domain optical coherence tomography
Uttam, Shikhar; Liu, Yang
2015-01-01
Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying...
Teaching Fourier optics through ray matrices
International Nuclear Information System (INIS)
In this work we examine the use of ray-transfer matrices for teaching and for deriving some topics in a Fourier optics course, exploiting the mathematical simplicity of ray matrices compared to diffraction integrals. A simple analysis of the physical meaning of the elements of the ray matrix provides a fast derivation of the conditions to obtain the optical Fourier transform. We extend this derivation to fractional Fourier transform optical systems, and derive the order of the transform from the ray matrix. Some examples are provided to stress this point of view, both with classical and with graded index lenses. This formulation cannot replace the complete explanation of Fourier optics provided by the wave theory, but it is a complementary tool useful to simplify many aspects of Fourier optics and to relate them to geometrical optics
Fourier optics treatment of classical relativistic electrodynamics
International Nuclear Information System (INIS)
In this paper we couple Synchrotron Radiation (SR) theory with a branch of physical optics, namely laser beam optics. We show that the theory of laser beams is successful in characterizing radiation fields associated with any SR source. Both radiation beam generated by an ultra-relativistic electron in a magnetic device and laser beam are solutions of the wave equation based on paraxial approximation. It follows that they are similar in all aspects. In the space-frequency domain SR beams appear as laser beams whose transverse extents are large compared with the wavelength. In practical solutions (e.g. undulator, bending magnet sources), radiation beams exhibit a virtual ''waist'' where the wavefront is often plane. Remarkably, the field distribution of a SR beam across the waist turns out to be strictly related with the inverse Fourier transform of the far-field angle distribution. Then, we take advantage of standard Fourier Optics techniques and apply the Fresnel propagation formula to characterize the SR beam. Altogether, we show that it is possible to reconstruct the near-field distribution of the SR beam outside the magnetic setup from the knowledge of the far-field pattern. The general theory of SR in the near-zone developed in this paper is illustrated for the special cases of undulator radiation, edge radiation and transition undulator radiation. Using known analytical formulas for the far-field pattern and its inverse Fourier transform we find analytical expressions for near-field distributions in terms of far-field distributions. Finally, we compare these expressions with incorrect or incomplete literature. (orig.)
Optical scatter imaging using digital Fourier microscopy
International Nuclear Information System (INIS)
An approach reported recently by Alexandrov et al (2005 Int. J. Imag. Syst. Technol. 14 253-8) on optical scatter imaging, termed digital Fourier microscopy (DFM), represents an adaptation of digital Fourier holography to selective imaging of biological matter. The holographic mode of the recording of the sample optical scatter enables reconstruction of the sample image. The form-factor of the sample constituents provides a basis for discrimination of these constituents implemented via flexible digital Fourier filtering at the post-processing stage. As in dark-field microscopy, the DFM image contrast appears to improve due to the suppressed optical scatter from extended sample structures. In this paper, we present the theoretical and experimental study of DFM using a biological phantom that contains polymorphic scatterers
Electro-optic imaging Fourier transform spectrometer
Chao, Tien-Hsin (Inventor); Znod, Hanying (Inventor)
2009-01-01
An Electro-Optic Imaging Fourier Transform Spectrometer (EOIFTS) for Hyperspectral Imaging is described. The EOIFTS includes an input polarizer, an output polarizer, and a plurality of birefringent phase elements. The relative orientations of the polarizers and birefringent phase elements can be changed mechanically or via a controller, using ferroelectric liquid crystals, to substantially measure the spectral Fourier components of light propagating through the EIOFTS. When achromatic switches are used as an integral part of the birefringent phase elements, the EIOFTS becomes suitable for broadband applications, with over 1 micron infrared bandwidth.
Fourier optics and near-field superlens
Sheng, Yunlong; Tremblay, Guillaume; Gravel, Yann
2011-10-01
Fundamental Fourier optics is applied to metallic near-field superlens, whose transfer function is computed with the transfer matrix, the Surface Plasmon Polariton (SPP) resonance and the SPP waveguide theory. However, when the object nano-structure consists of feature nano-slits and nano-holes etc, which are as the basic object elements to scatter the light, especially when the objects are metal, the electrical dipoles are induced at the nano-slits and nano-holes by the illuminating light, the space invariance condition can be not respected within the dimension of the nano-meter scale objects, so that the point spread function becomes approximate and the superlens is usually characterized by the image of a two nano-slit pattern. The superlens is designed and optimized based on the transfer function. Improvement in the transfer function can improve significantly the image quality. The real image of the near-field superlens can be computed with numerical simulation using the FDTD method.
The New Physical Optics Notebook Tutorials in Fourier Optics
Reynolds, George O; Parrent, George B; Thompson, Brian J
1989-01-01
Approaches the topic of physical optics with examples drawn from the physical processes described. Includes chapters on Fourier transforms, image formation, optical coherence, diffraction, interference, holography, interferometry, analog optical computing, synthetic aperture imaging, and others. Contains more than 600 photographs and line drawings and more than 650 references.
Optical correction using fourier transform heterodyne
Laubscher, Bryan E.; Nemzek, Robert J.; Cooke, Bradly J.; Olivas, Nicholas L.; Jorgensen, Anders M.; Smith, J. A.; Weisse-Bernstein, Nina R.
2005-08-01
In this paper we briefly present the theory of Fourier Transform Heterodyne (FTH), describe past verification experiments carried out, and discuss the experiment designed to use this new imaging technology to perform optical correction. FTH uses the scalar projection of a reference laser beam and a test laser beam onto a single element detector. The complex current in the detector yields the coefficient of the scalar projection. By projecting a complete orthonormal basis set of reference beams onto the test beam, the amplitude and phase of the test beam can be measured, allowing the reconstruction of the phasefront of the image. Experiments to determine this technique's applicability to optical correction and optical self-correction are continuing. Applications of this technique beyond optical correction include adaptive optics; interferometry; and active, high background, low signal imaging.
Applying Quaternion Fourier Transforms for Enhancing Color Images
Directory of Open Access Journals (Sweden)
M.I. Khalil
2012-03-01
Full Text Available The Fourier transforms play a critical role in a broad range of image processing applications, including enhancement, analysis, restoration, and compression. Until recently, it was common to use the conventional methods to deal with colored images. These methods are based on RGB decomposition of the colored image by separating it into three separate scalar images and computing the Fourier transforms of these images separately. The computing of the Hypercomplex 2D Fourier transform of a color image as a whole unit has only recently been realized. This paper is concerned with frequency domain noise reduction of color images using quaternion Fourier transforms. The approach is based on obtaining quaternion Fourier transform of the color image and applying the Gaussian filter to it in the frequency domain. The filtered image is then obtained by calculating the inverse quaternion Fourier transforms.
Z. Jamil (Z.); G.J. Tearney (Guillermo); N. Bruining (Nico); K. Sihan (Kenji); G. van Soest (Gijs); J.M.R. Ligthart (Jürgen); R.T. van Domburg (Ron); B.E. Bouma (Brett); E.S. Regar (Eveline)
2013-01-01
textabstractRecently, Fourier domain OCT (FD-OCT) has been introduced for clinical use. This approach allows in vivo, high resolution (15 micron) imaging with very fast data acquisition, however, it requires brief flushing of the lumen during imaging. The reproducibility of such fast data acquisitio
Optical image encryption based on multifractional Fourier transforms.
Zhu, B; Liu, S; Ran, Q
2000-08-15
We propose a new image encryption algorithm based on a generalized fractional Fourier transform, to which we refer as a multifractional Fourier transform. We encrypt the input image simply by performing the multifractional Fourier transform with two keys. Numerical simulation results are given to verify the algorithm, and an optical implementation setup is also suggested. PMID:18066153
Spectral/Fourier Domain Optical Coherence Tomography
de Boer, Johannes F.
Optical coherence tomography is a low-coherence interferometric method for imaging of biological tissue [1, 2]. For more than a decade after its inception between 1988 and 1991, the dominant implementation has been time domain OCT (TD-OCT), in which the length of a reference arm is rapidly scanned. The first spectral or Fourier domain OCT (SD/FD-OCT) implementation was reported in 1995 [3]. In SD-OCT the reference arm is kept stationary, and the depth information is obtained by a Fourier transform of the spectrally resolved interference fringes in the detection arm of a Michelson interferometer. This approach has provided a significant advantage in signal-to-noise ratio (SNR), which despite reports as early as 1997 [4, 5] has taken about half a decade to be recognized fully by the OCT community in 2003 [6-8]. The first demonstration of SD-OCT for in vivo retinal imaging in 2002 [9] was followed by a full realization of the sensitivity advantage by video rate in vivo retinal imaging [10], including high-speed 3-D volumetric imaging [11], ultrahigh-resolution video rate imaging [12, 13], and Doppler blood flow determination in the human retina [14, 15]. The superior sensitivity of SD-OCT, combined with the lack of need for a fast mechanical scanning mechanism, has opened up the possibility of much faster scanning without loss of image quality and provided a paradigm shift from point sampling to volumetric mapping of biological tissue in vivo. The technology has been particularly promising for ophthalmology [16, 17]. In this chapter, the principles and system design considerations of SD-OCT will be discussed in more detail.
α-bandlimited diffuser in fractional Fourier optics
Patiño-Vanegas, Alberto; Durand, Pierre-Emmanuel; Torres, Rafael; Pellat-Finet, Pierre
2016-04-01
We propose a method for calculating appropriate α-band limited diffusers using the fractional Fourier transform. In order to do this, we implement a method for performing a numerical interpolation in the fractional Fourier domain. Such diffusers with compact support in the Fresnel regime may be used in fractional Fourier optical systems where the use of diffusers produce speckles, e.g. digital holography or optical encryption. Numerical simulations are presented.
Fiber Optic Fourier Transform White-Light Interferometry
Institute of Scientific and Technical Information of China (English)
Yi Jiang; Cai-Jie Tang
2008-01-01
Fiber optic Fourier transform white-light inter-fereometry is presented to interrogate the absolute optical path difference of an Mach-Zehnder inter-ferometer. The phase change of the interferometer caused by scanning wavelength can be calculated by a Fourier transform-based phase demodulation technique. A linear output is achieved.
Fourier information optics for the ultrafast time domain.
Weiner, Andrew M
2008-02-01
Ultrafast photonic signal processing based on Fourier optics principles offers exciting possibilities to go beyond the processing speeds of electronics technologies for applications in high-speed fiber communications and ultrawideband wireless. I review our recent work on processing of ultrafast optical signals via conversion between time, space, and optical frequency (Fourier) domains. Specific topics include optical arbitrary waveform generation, application of optical pulse shaping technologies for wavelength-parallel compensation of fiber transmission impairments and for experimental studies of optical code-division multiple-access communications, and application of photonic methods for precompensation of dispersion effects in wireless transmission of radio-frequency signals over ultrawideband antenna links. PMID:18239704
Electro-Optic Imaging Fourier Transform Spectral Polarimeter Project
National Aeronautics and Space Administration — Boulder Nonlinear Systems, Inc. (BNS) proposes to develop an Electro-Optic Imaging Fourier Transform Spectral Polarimeter (E-O IFTSP). The polarimetric system is...
Applied optics and optical design
Conrady, A E
2011-01-01
""For the optical engineer it is an indispensable work."" - Journal, Optical Society of America""As a practical guide this book has no rival."" - Transactions, Optical Society""A noteworthy contribution,"" - Nature (London)Part I covers all ordinary ray-tracing methods, together with the complete theory of primary aberrations and as much of higher aberration as is needed for the design of telescopes, low-power microscopes and simple optical systems. Chapters: Fundamental Equations, Spherical Aberration, Physical Aspect of Optical Images, Chromatic Aberration, Design of Achromatic Object-Glass
Fourier relationship between angular position and optical orbital angular momentum
Yao, E.; Franke-Arnold, S.; Courtial, J.; Barnett, S.; Padgett, M. J.
2006-01-01
We demonstrate the Fourier relationship between angular position and angular momentum for a light mode. In particular we measure the distribution of orbital angular momentum states of light that has passed through an aperture and verify that the orbital angular momentum distribution is given by the complex Fourier-transform of the aperture function. We use spatial light modulators, configured as diffractive optical components, to define the initial orbital angular momentum state of the beam, ...
Applied optics and optical engineering v.9
Shannon, Robert
1983-01-01
Applied Optics and Optical Engineering, Volume IX covers the theories and applications of optics and optical engineering. The book discusses the basic algorithms for optical engineering; diffraction gratings, ruled and holographic; and recording and reading of information on optical disks. The text also describes the perfect point spread function; the multiple aperture telescope diffraction images; and the displays and simulators. Ophthalmic optics, as well as the canonical and real-space coordinates used in the theory of image formation are also encompassed. Optical engineers and students tak
Fourier holographic display for augmented reality using holographic optical element
Li, Gang; Lee, Dukho; Jeong, Youngmo; Lee, Byoungho
2016-03-01
A method for realizing a three-dimensional see-through augmented reality in Fourier holographic display is proposed. A holographic optical element (HOE) with the function of Fourier lens is adopted in the system. The Fourier hologram configuration causes the real scene located behind the lens to be distorted. In the proposed method, since the HOE is transparent and it functions as the lens just for Bragg matched condition, there is not any distortion when people observe the real scene through the lens HOE (LHOE). Furthermore, two optical characteristics of the recording material are measured for confirming the feasibility of using LHOE in the proposed see-through augmented reality holographic display. The results are verified experimentally.
Adaptive optics assisted Fourier domain OCT with balanced detection
Meadway, A.; Bradu, A.; Hathaway, M.; Van der Jeught, S.; Rosen, R. B.; Podoleanu, A. Gh.
2011-03-01
Two factors are of importance to optical coherence tomography (OCT), resolution and sensitivity. Adaptive optics improves the resolution of a system by correcting for aberrations causing distortions in the wave-front. Balanced detection has been used in time domain OCT systems by removing excess photon noise, however it has not been used in Fourier domain systems, as the cameras used in the spectrometers saturated before excess photon noise becomes a problem. Advances in camera technology mean that this is no longer the case and balanced detection can now be used to improve the signal to noise ratio in a Fourier domain (FD) OCT system. An FD-OCT system, enhanced with adaptive optics, is presented and is used to show the improvement that balanced detection can provide. The signal to noise ratios of single camera detection and balanced detection are assessed and in-vivo retinal images are acquired to demonstrate better image quality when using balance detection.
Spatial Fourier-decomposition optical fluorescen tomography-theoretical investigation
Institute of Scientific and Technical Information of China (English)
Cheng Liu; Dug Young Kim; Jianqiang Zhu
2008-01-01
A new three-dimensional (3D) optical fluorescent tomographic imaging scheme is proposed with structured illumination and spatial Fourierdomain decomposition methods for the first time. In this spatial Fourier-decomposition optical fluorescence tomography (SF-OFT), the intensity of focused excitation light from an objective lens is modulated to be a cosine function along the optical axis of the system. For a given position in a two-dimensional (2D) raster scanning process, the spatial frequency of the cosine function along the optical axis sweeps in a proper range while a series of fluorescence intensity are detected accordingly. By making an inverse discrete cosine transformation of these recorded intensity profiles, the distribution of fluorescent markers along the optical axis of a focused laser beam is obtained. A 3D optical fluorescent tomography can be achieved with this proposed SF-OFT technique with a simple 2D raster scanning process.
Optical polarimeter based on Fourier analysis and electronic control
International Nuclear Information System (INIS)
In this paper, we show the design and implementation of an optical polarimeter using electronic control and the Fourier analysis. The polarimeter prototype will be used as a main tool for the students of the Universidad Popular del Cesar that belong to the following university programs: Electronics engineering (optoelectronics area), Math and Physics degree and the Master in Physics Sciences, in order to learning the theory and experimental aspects of the state of optical polarization via the Stokes vector measurement. Using the electronic polarimeter proposed in this paper, the students will be able to observe (in an optical bench) and understand the different interactions of the states of optical polarization when the optical waves pass through to the polarizers and retarder waves plates. The electronic polarimeter has a software that captures the optical intensity measurement and evaluates the Stokes vector. (Author)
Microcomputers simulation of a Fourier approach to optical wave propagation
Upton, John G.
1992-01-01
Approved for public release; distribution is unlimited This thesis uses spatial impulse response theory adapted from continuous-wave Fourier diffraction theory as the basis for a microcomputer program to model transient optical wave propagation. Programs to generate uniform circular and uniform square excitation functions are included, along with examples of the spatial impulse response for each. Additionally, two new excitation functions with circular Gaussian and circular Bessel spatia...
Quantum Optical Squeezing Transform for Generalizing Fractional Fourier Transform'
Institute of Scientific and Technical Information of China (English)
HU Li-Yun; FAN Hong-Yi
2008-01-01
By establishing the relation between the optical scaled fractional Fourier transform (FFT) and quantum mechanical squeezing-rotating operator transform, we employ the bipartite entangled state representation of two-mode squeezing operator to extend the scaled FFT to more general cases, such as scaled complex FFT and entangled scaled FFT. The additivity and eigenmodes are presented in quantum version. The relation between the scaled FFT and squeezing-rotating Wigner operator is studied.
Measured Quantum Fourier Transform of 1024 Qubits on Fiber Optics
Tomita, Akihisa; Nakamura, Kazuo
2004-01-01
Quantum Fourier transform (QFT) is a key function to realize quantum computers. A QFT followed by measurement was demonstrated on a simple circuit based on fiber-optics. The QFT was shown to be robust against imperfections in the rotation gate. Error probability was estimated to be 0.01 per qubit, which corresponded to error-free operation on 100 qubits. The error probability can be further reduced by taking the majority of the accumulated results. The reduction of error probability resulted ...
Fine functional organization of auditory cortex revealed by Fourier optical imaging
Kalatsky, Valery A.; Polley, Daniel B.; Merzenich, Michael M.; Schreiner, Christoph E.; Stryker, Michael P.
2005-01-01
We provide an overall view of the functional tonotopic organization of the auditory cortex in the rat. We apply a recently developed technique for acquiring intrinsic signal optical maps, Fourier imaging, in the rat auditory cortex. These highly detailed maps, derived in a several-minute-long recording procedure, delineate multiple auditory cortical areas and demonstrate their shapes, sizes, and tonotopic order. Beyond the primary auditory cortex, there are at least three distinct areas with ...
Universal discrete Fourier optics RF photonic integrated circuit architecture.
Hall, Trevor J; Hasan, Mehedi
2016-04-01
This paper describes a coherent electro-optic circuit architecture that generates a frequency comb consisting of N spatially separated orders using a generalised Mach-Zenhder interferometer (MZI) with its N × 1 combiner replaced by an optical N × N Discrete Fourier Transform (DFT). Advantage may be taken of the tight optical path-length control, component and circuit symmetries and emerging trimming algorithms offered by photonic integration in any platform that offers linear electro-optic phase modulation such as LiNbO3, silicon, III-V or hybrid technology. The circuit architecture subsumes all MZI-based RF photonic circuit architectures in the prior art given an appropriate choice of output port(s) and dimension N although the principal application envisaged is phase correlated subcarrier generation for all optical orthogonal frequency division multiplexing. A transfer matrix approach is used to model the operation of the architecture. The predictions of the model are validated by simulations performed using an industry standard software tool. Implementation is found to be practical. PMID:27137048
Analogue computer using fourier series for optical spectrometry
International Nuclear Information System (INIS)
The object of the present report is to describe an electronic unit designed for the automatic calculation of optical spectra, a calculation carried out, by a Fourier transformation of an interferogram recorded on magnetic tape. With this, apparatus it is possible to calculate 20 points simultaneously and its theoretical resolving power is only limited by the duration of the interferogram. The practical limit due to the technique adopted is 5 x 106. Its general characteristics are the following: - Signal analysis for frequencies of between 3 and 10 Kc/s - No automatic progression of the analysis frequency 0.01 c/s - Simultaneous calculation of 5 spectra and of 4 circuits per spectrum - Compensation of the changes in the unrolling speed of the spectrum magnetic band for differences of between ± 10 per cent (response time 200 μs max.) - Choice of the origin frequency with an accuracy of 0.01 c/s This description is preceded by a description of the spectrometric method using a Fourier transformation. (authors)
Investigation of murine vasodynamics by Fourier domain optical coherence tomography
Meißner, Sven; Müller, Gregor; Walther, Julia; Krüger, Alexander; Cuevas, Maximiliano; Eichhorn, Birgit; Ravens, Ursula; Morawietz, Henning; Koch, Edmund
2007-07-01
In vivo imaging of blood vessels obtain useful insights in characterizing the dynamics of vasoconstriction and vasodilation. Fourier domain optical Coherence Tomography (FD-OCT) imaging technique permits in vivo investigation of blood vessels in their anatomical context without preparation traumata by temporal resolved image stacks. OCT is an optical, contact less imaging technique based on Michelson interferometry of short coherent near infrared light. Particularly by the possibility of a contact-less measurement and the high axial resolution up to 10 microns OCT is superior to an investigation by ultra sound measurement. Furthermore we obtain a high time resolution of vessel dynamic measurements with the used Fourier domain OCT-system by a high A-scan rate [1,22kHz]. In this study the model of saphenous artery was chosen for analyzing function and dynamics. The arteria saphena in the mouse is a suitable blood vessel due to the small inner diameter, a sensitive response to vasoactive stimuli and an advantageous anatomically position. Male wild type mice (C57BL/6) at the age of 8 weeks were fed control or high-fat diet for 10 weeks before analyzing the vasodynamics. The blood vessel was stimulated by dermal application of potassium to induce vasoconstriction or Sodium-Nitroprusside (SNP) to induce vasodilation. The morphology of the a. saphena and vein was determined by 3D image stacks. Time series (72 seconds, 300x512 pixel per frame) of cross-sectional images were analysed using semi automatic image processing software. Time course of dynamic parameters of the vessel was measured.
Determination of glucose concentration using Fourier domain optical coherence tomogram
El-Sharkawy, Yasser H.
2009-02-01
In order to enhance cell culture growth in biosensors such as those for glucose detection must be developed that are capable of monitoring cell culture processes continuously and accurate. Fourier domain optical coherence tomography (FD-OCT) is used to obtain cell images with nanometer level resolution by analyzing the interference pattern by the mixing of reference and objective light to determine glucose concentration in doped double distilled water and create a glucose signature spectrum in salt-sugar solution. We demonstrate ultrahigh-resolution optical coherence tomography (OCT) imaging of in vitro biological cells and an improved deflection angle measurements formal and back projection method is used to reconstruct the two-dimensional glucose concentration performs refractive index distribution. Slopes of OCT signals decreased substantially and almost linearly with the increase of glucose concentration from 2.5 to 15 mg/dl. Phantom studies demonstrated 1% accuracy of scattering- coefficient measurement. Our theoretical and experimental studies suggest that glucose concentration can potentially be measured non-invasively with high sensitivity and accuracy with OCT systems.
Experimental display of Fourier analysis through the optical physics and its didatical utilization
International Nuclear Information System (INIS)
The properties of Fourier analysis through physical optics are displayed experimentally. Within physical optics topics that illustrate didactically Fourier analysis, a subject usually considered purely mathematical are selected. The most important properties of Fourier transform and their utilization in cleaning up images through spatial filtering are presented, in this way the properties of convolution to analyse image formation and characterize some diffraction patterns are also used. (Author)
Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.
2010-09-07
This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.
Brief Introduction to Chinese Optics and Applied Optics Abstracts
Institute of Scientific and Technical Information of China (English)
2004-01-01
The Chinese Optics and Applied Optics Abstracts, sponsored by the Documentation and Information Center of the Chinese Academy of Sciences, the Optical Information Network of the Chinese Academy of Sciences and the Changchun Institute of Optics,Fine Mechanics and Physics of the Chinese Academy of Sciences,is one of the series of science and technology indexing periodicals published by the Chinese Academy of Sciences. The Chinese Optics and Applied Optics Abstracts started a quarterly publication in 1985, with the name of Chinese Science and Technology Document Catalogues: Optics and Applied Optics. It changed into a bimonthly publication with the name of Chinese Optics and Applied
Keratometric index obtained by Fourier-domain optical coherence tomography.
Directory of Open Access Journals (Sweden)
Yanjun Hua
Full Text Available To determine the keratometric indices calculated based on parameters obtained by Fourier-domain optical coherence tomography (FD-OCT.The ratio of anterior corneal curvature to posterior corneal curvature (Ratio and keratometric index (N were calculated within central 3 mm zone with the RTVue FD-OCT (RTVue, Optovue, Inc. in 186 untreated eyes, 60 post-LASIK/PRK eyes, and 39 keratoconus eyes. The total corneal powers were calculated using different keratometric indices: Kcal based on the mean calculated keratometric index, K1.3315 calculated by the keratometric index of 1.3315, and K1.3375 calculated by the keratometric index of 1.3375. In addition, the total corneal powers based on Gaussian optics formula (Kactual were calculated.The means for Ratio in untreated controls, post-LASIK/PRK group and keratoconus group were 1.176 ± 0.022 (95% confidence interval (CI, 1.172-1.179, 1.314 ± 0.042 (95%CI, 1.303-1.325 and 1.229 ± 0.118 (95%CI, 1.191-1.267, respectively. And the mean calculated keratometric index in untreated controls, post-LASIK/PRK group and keratoconus group were 1.3299 ± 0.00085 (95%CI, 1.3272-1.3308, 1.3242 ± 0.00171 (95%CI, 1.3238-1.3246 and 1.3277 ± 0.0046 (95%CI, 1.3263-1.3292, respectively. All the parameters were normally distributed. The differences between Kcal and Kactual, K1.3315 and Kactual, and K1.3375 and Kactual were 0.00 ± 0.11 D, 0.21 ± 0.11 D and 0.99 ± 0.12 D, respectively, in untreated controls; -0.01 ± 0.20 D, 0.85 ± 0.18 D and 1.56 ± 0.16 D, respectively, in post-LASIK/PRK group; and 0.03 ± 0.67 D, 0.56 ± 0.70 D and 1.40 ± 0.76 D, respectively, in keratoconus group.The calculated keratometric index is negatively related to the ratio of anterior corneal curvature to posterior corneal curvature in untreated, post-LASIK/PRK, and keratoconus eyes, respectively. Using the calculated keratometric index may improve the prediction accuracies of total corneal powers in untreated controls, but not in post
DEFF Research Database (Denmark)
Guan, Pengyu; Mulvad, Hans Christian Hansen; Tomiyama, Yutaro;
2011-01-01
developed an ultrafast timedomain optical Fourier transformation technique in a round-trip configuration. By applying this technique to subpicosecond pulses, transmission impairments were greatly reduced, and BER performance below FEC limit was obtained with increased system margin. Copyright © 2011 The...
Brief Introduction to Chinese Optics and Applied Optics Abstracts
Institute of Scientific and Technical Information of China (English)
2003-01-01
The Chinese Optics and Applied Optics Abstracts,sponsored by the Documentation andInformation Center of the Chinese Academy of Sciences,the Optical Information Networkof the Chinese Academy of Sciences and the Changchun Institute of Optics,Fine Mechanicsand Physics of the Chinese Academy of Sciences,is one of the series of science andtechnology indexing periodicals published by the Chinese Academy ofSciences.The Chinese Optics and Applied Optics Abstracts started a quarterly publication in 1985,
Brief Introduction to Chinese Optics and Applied Optics Abstracts
Institute of Scientific and Technical Information of China (English)
2005-01-01
The Chinese Optics and Applied Optics Abstracts,sponsored by the Documentation and Information Center of the Chinese Academy of Sciences,the Optical Information Network of the Chinese Academy of Sciences and the Changchun Institute of Optics,Fine Mechanics and Physics of the Chinese Academy of Sciences,is one of the series of science and technology indexing periodicals published by the Chinese Academy of Sciences． The Chinese Optics and Applied Optics Abstracts started a quarterly publication in 1985,
Brief Introduction to Chinese Optics and Applied Optics Abstracts
Institute of Scientific and Technical Information of China (English)
2003-01-01
The Chinese Optics and Applied Optics Abstracts,sponsored by the Documentation andInformation Center of the Chinese Academy of Sciences,the Optical Information Networkof the Chinese Academy of Sciences and the Changchun Institute of Optics,Fine Mechanicsand Physics of the Chinese Academy of Sciences,is one of the series of science andtechnology indexing periodicals published by the Chinese Academy of Sciences.The Chinese Optics and Applied Optics Abstracts started a quarterly publication in 1985,
Wigner distribution and fractional Fourier transform for two-dimensional symmetric optical beams.
Alieva, T; Bastiaans, M J
2000-12-01
A useful relationship between the fractional Fourier transform power spectra of a two-dimensional symmetric optical beam, on the one hand, and its Wigner distribution, on the other, is established. This relationship allows a significant simplification of the standard procedure for the reconstruction of the Wigner distribution from the field intensity distributions in the fractional Fourier domains. The Wigner distribution of a symmetric optical beam is analyzed, both in the coherent and in the partially coherent case. PMID:11140492
Brief Introduction to Chinese Optics and Applied Optics Abstracts
Institute of Scientific and Technical Information of China (English)
2003-01-01
The Chinese Optics and Applied Optics Abstracts , sponsored by the Documentation andInformation Center of the Chinese Academy of Sciences, the Optical Information Networkof the Chinese Academy of Sciences and the Changchun Institute of Optics, Fine Mechanicsand Physics of the Chinese Academy of Sciences, is one of the series of science andtechnology indexing periodicals published by the Chinese Academy of Sciences.The Chinese Optics and Applied Optics Abstracts started a quarterly publication in 1985,with the name of Chinese Science and Technology Document Catalogues: Optics andApplied Optics. It changed into a bimonthly publication with the name of Chinese Opticsand Applied Optics Abstracts in 1987. In combination with the Chinese Optics
Brief Introduction to Chinese Optics and Applied Optics Abstracts
Institute of Scientific and Technical Information of China (English)
2003-01-01
The Chinese Optics and Applied Optics Abstracts , sponsored by the Documentation andInformation Center of the Chinese Academy of Sciences, the Optical Information Networkof the Chinese Academy of Sciences and the Changchun Institute of Optics, Fine Mechanicsand Physics of the Chinese Academy of Sciences, is one of the series of science andtechnology indexing periodicals published by the Chinese Academy of Sciences.The Chinese Optics and Applied Optics Abstracts started a quarterly publication in 1985,with the name of Chinese Science and Technology Document Catalogues: Optics andApplied Optics. It changed into a bimonthly publication with the name of Chinese Opticsand Applied Optics Abstracts in 1987. In combination with the Chinese Optics Documen-
Brief Introduction to Chinese Optics and Applied Optics Abstracts
Institute of Scientific and Technical Information of China (English)
2005-01-01
The Chinese Optics and Applied Optics Abstracts, sponsored by the Documentation and Information Center of the Chinese Academy of Sciences, the Optical Information Network of the Chinese Academy of Sciences and the Changchun Institute of Optics,Fine Mechanics and Physics of the Chinese Academy of Sciences, is one of the series of science and technology in-
Brief Introduction to Chinese Optics and Applied Optics Abstracts
Institute of Scientific and Technical Information of China (English)
2008-01-01
The Chinese Optics and Applied Optics Abstracts,sponsored by the Documentation and Information Center of the Chinese Academy of Sciences,the Optical Information Network of the Chinese Academy of Sciences and the Changchun Institute of Optics,Fine Mechanics and Physics of the Chinese Academy of Sciences
Brief Introduction to Chinese Optics and Applied Optics Abstracts
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The Chinese Optics and Applied Optics Abstracts,sponsored by the Documentation and Information Center of the Chinese Academy of Sciences,the Optical Information Network of the Chinese Academy of Sciences and the Changchun Institute of Optics,Fine Mechanics and Physics of the Chinese Academy of Sciences,
Institute of Scientific and Technical Information of China (English)
CHEN Lin-Fei; ZHAO Dao-Mu
2006-01-01
@@ We propose a new method to add different images together by optical implementation that is realized by the multi-exposure based on fractional Fourier transform hologram. Partial image fusion is proposed and realized by this method. Multiple images encryption can also be implemented by the multi-exposure of the hologram based on fractional Fourier transform. Computer simulations prove that this method is valid.
Fast Fourier and Wavelet Transforms for Wavefront Reconstruction in Adaptive Optics
Energy Technology Data Exchange (ETDEWEB)
Dowla, F U; Brase, J M; Olivier, S S
2000-07-28
Wavefront reconstruction techniques using the least-squares estimators are computationally quite expensive. We compare wavelet and Fourier transforms techniques in addressing the computation issues of wavefront reconstruction in adaptive optics. It is shown that because the Fourier approach is not simply a numerical approximation technique unlike the wavelet method, the Fourier approach might have advantages in terms of numerical accuracy. However, strictly from a numerical computations viewpoint, the wavelet approximation method might have advantage in terms of speed. To optimize the wavelet method, a statistical study might be necessary to use the best basis functions or ''approximation tree.''
Development of applied optical techniques
International Nuclear Information System (INIS)
The objective of this project is to improve laser application techniques in nuclear industry. A small,light and portable laser induced fluorometer was developed. It was designed to compensate inner filter and quenching effects by on-line data processing during analysis of uranium in aqueous solution. Computer interface improves the accuracy and data processing capabilities of the instrument. Its detection limit is as low as 0.1 ppb of uranium. It is ready to use in routine chemical analysis. The feasible applications such as for uranium level monitoring in discards from reconversion plant or fuel fabrication plant were seriously considered with minor modification of the instrument. It will be used to study trace analysis of rare-earth elements. The IRMPD of CHF3 was carried out and the effects of buffer gases such as Ar,N2 and SF6 were investigated. The IRMPD rate was increased with increasing pressure of the reactant and buffer gases. The pressure effect of the reactant CHF3 below 0.1 Torr showed opposite results. It was considered that the competition between quenching effect and rotational hole-filling effect during intermolecular collisions plays a great role in this low pressure region. The applications of holography in nuclear fuel cycle facilities were surveyed and analyzed. Also, experimental apparatuses such as an Ar ion laser, various kinds of holographic films and several optical components were prepared. (Author)
Energy Technology Data Exchange (ETDEWEB)
Jouy, P.; Mougel, J.F. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1964-07-01
The object of the present report is to describe an electronic unit designed for the automatic calculation of optical spectra, a calculation carried out, by a Fourier transformation of an interferogram recorded on magnetic tape. With this, apparatus it is possible to calculate 20 points simultaneously and its theoretical resolving power is only limited by the duration of the interferogram. The practical limit due to the technique adopted is 5 x 10{sup 6}. Its general characteristics are the following: - Signal analysis for frequencies of between 3 and 10 Kc/s - No automatic progression of the analysis frequency 0.01 c/s - Simultaneous calculation of 5 spectra and of 4 circuits per spectrum - Compensation of the changes in the unrolling speed of the spectrum magnetic band for differences of between {+-} 10 per cent (response time 200 {mu}s max.) - Choice of the origin frequency with an accuracy of 0.01 c/s This description is preceded by a description of the spectrometric method using a Fourier transformation. (authors) [French] L'objet du present rapport est la description d'un ensemble electronique destine au calcul automatique des spectres optiques, calcul realise par transformation de Fourier d'un interferogramme enregistre sur bande magnetique. Cet appareil permet le calcul simultane de 20 points, et son pouvoir de resolution theorique n'est limite que par la duree de l'interferogramme. La limitation pratique due a la technique adoptee est de 5.10{sup 6}. Ses caracteristiques generales sont les suivantes: - Analyse de signaux dont les frequences sont comprises entre 3 et 10 Kc/s - Pas de progression automatique de la frequence d'analyse 0,01 c/s - Calcul simultane de 5 spectres et de 4 circuits par spectre - Compensation des variations de vitesse de defilement de la bande magnetique pour des ecarts compris entre {+-} 10 pour cent (temps de reponse 200 {mu}s max.) - Choix de la frequence origine a 0,01 c/s pres Cette description est
A Fourier Optical Model for the Laser Doppler Velocimeter
DEFF Research Database (Denmark)
Lading, Lars
1972-01-01
are heterodyned on the detector. The purpose of the pinhole, namely to filter the measuring volume out from the rest of space, is shown to depend on the aperture size. The diameter of the pinhole should never be smaller than the real image- found by geometrical optics- of the measuring volume...
Brief Introduction to Chinese Optics and Applied Optics Abstracts
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The Chinese Optics and Applied Optics Abstracts, sponsored by the Documentation and Information Center of the Chinese Academy of Sciences, the Optical Information Network of the Chinese Academy of Sciences and the Changchun Institute of Optics,Fine Mechanics and Physics of the Chinese Academy of Sciences,is one of the series of science and technology indexing periodicals published by the Chinese Academy of Sciences.
Brief Introduction to Chinese Optics and Applied Optics Abstracts
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The Chinese Optics and Applied Optics Abstracts, sponsored by the Documentation and Information Center of the Chinese Academy of Sciences,the Optical Information Network of the Chinese Academy of Sciences and the Changchun Institute of Optics,Fine Mechanics and Physics of the Chinese Academy of Sciences,is one of the series of science and technology indexing periodicals published by the Chinese Academy of Sciences.
Brief Introduction to Chinese Optics and Applied Optics Abstracts
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The Chinese Optics and Applied Optics Abstracts,sponsored by the Documentation and Information Center of the Chinese Academy of Sciences,the Optical Information Network of the Chinese Academy of Sciences and the Changchun Institute of Optics,Fine Mechanics and Physics of the Chinese Academy of Sciences,is one of the series of science and technology indexing periodicals published by the Chinese Academy of Sciences.
Optical modes in a rectangular resonator with properties of both Gaussian and Fourier modes
Gronenborn, S; Schwarz, T; Pekarski, P.; Miller, M; Moench, H.; Loosen, Peter
2013-01-01
We present the optical modes of a resonator with a large Fresnel number in one direction and a small Fresnel number in the other direction. The modes show properties of both the well-known Gaussian modesand the modes of the Fourier type which have been observed in laserswith a large Fresnel number.
Rugged optical mirrors for the operation of Fourier-Transform Spectrometers in rough environments
Feist, Dietrich G.
2014-05-01
The Total Carbon Column Observing Network (TCCON) and the Network for the Detection of Atmospheric Composition Change (NDACC) operate a growing number of Fourier-Transform Spectrometers (FTS) that measure the total column of several atmospheric trace gases. For these measurements, the sun is used as a light source. This is typically achieved by a solar tracker that uses a pair of optical mirrors to guide the sunlight into the instrument. There is a growing demand to operate these instruments in remote locations that fill the gaps in the global observation network. Besides the logistical challenges of running a remote site, the environment at these locations can be very harsh compared to the sheltered environment of the instruments' home institutions. While the FTS itself is usually well protected inside a building or container, the solar tracker and especially its mirrors are exposed to the environment. There they may suffer from - temperature fluctuations - high humidity - sea salt corrosion at coastal sites - dirt and dust - air pollution from anthropogenic sources - deposition from plants or animals The Max Planck Institute for Biogeochemistry (MPI-BGC) operates a TCCON station on Ascension Island, about 200 m from the sea. Under the rough conditions at this site, typical optical mirrors that are made for laboratory conditions are destroyed by sea salt spray within a few weeks. Besides, typical gold-coated mirrors cannot be cleaned as their soft surface is easily scratched or damaged. To overcome these problems, the MPI-BGC has developed optical mirrors that - offer good reflectivity in the near and mid infrared - are highly resistant to salt and chlorine - have a hard surface so that they can be cleaned often and easily - are not affected by organic solvents - last for months in very harsh environments - can be reused after polishing These mirrors could be applied to most TCCON and NDACC sites. This way, the network could be expanded to regions where operation
Relative-coordinate determination for visual double stars by applying Fourier transforms
Directory of Open Access Journals (Sweden)
Radović Viktor
2013-01-01
Full Text Available We discuss the software developed for the purpose of determining the relative coordinates (position angle θ and separation ρ for visual double or multiple stars. It is based on application of Fourier transforms in treating CCD frames of these systems. The objective was to determine the relative coordinates automatically to an extent as large as possible. In this way the time needed for the reduction of many CCD frames becomes shorter. The capabilities and limitations of the software are examined. Besides, the possibility of improving is also considered. The software has been tested and checked on a sample consisting of CCD frames of 165 double or multiple stars obtained with the 2m telescope at NAO Rozhen in Bulgaria in October 2011. The results have been compared with the corresponding results obtained by applying different software and the agreement is found to be very good.
The 1989 progress report: applied optics
International Nuclear Information System (INIS)
The 1989 progress report of the laboratory of Applied Optics of the Polytechnic School (France) is presented. The research programs are carried out in the following fields: Ultrafast Physics, including the development of femtoseconds laser sources and their utilization in Physics, Biology and Physical Chemistry; physics of infrared lasers and their applications in space and industries; Guided Optics, including investigations and construction of fiber optics couplers; biomedical studies on muscle mechanics and laser applications. The published papers, the conferences and the Laboratory staff are listed
Sun, Zhiwei; Zhi, Ya'nan; Liu, Liren; Sun, Jianfeng; Zhou, Yu; Hou, Peipei
2013-09-01
The synthetic aperture imaging ladar (SAIL) systems typically generate large amounts of data difficult to compress with digital method. This paper presents an optical SAIL processor based on compensation of quadratic phase of echo in azimuth direction and two dimensional Fourier transform. The optical processor mainly consists of one phase-only liquid crystal spatial modulator(LCSLM) to load the phase data of target echo and one cylindrical lens to compensate the quadratic phase and one spherical lens to fulfill the task of two dimensional Fourier transform. We show the imaging processing result of practical target echo obtained by a synthetic aperture imaging ladar demonstrator. The optical processor is compact and lightweight and could provide inherent parallel and the speed-of-light computing capability, it has a promising application future especially in onboard and satellite borne SAIL systems.
Rivet, Sylvain; Marques, Manuel J.; Bradu, Adrian; Podoleanu, Adrian
2016-06-01
This article presents a theoretical study on an optical module (OM) that can be inserted between an object under investigation and a Fourier-domain optical coherence tomography system, transforming the latter into a polarisation-sensitive optical coherence tomography optical coherence tomography (OCT) system. The module consists of two electro-optic modulators, a Faraday rotator, a linear polariser and a quarter-wave plate. A detailed description on how the module can be used to extract both the net retardance and the fast axis orientation of a linear birefringent sample is presented. This is achieved by taking two sequential measurements for different values of retardance produced by the electro-optic modulator. The module keeps measurements free from undesired polarimetric effects due to birefringence in the single-mode optical fibre and diattenuation in fibre-based couplers within OCT systems. Simulations have been carried out in order to evaluate the effects of chromatic behaviour of the components within the OM.
Lü, X.; Schrottke, L.; Grahn, H. T.
2016-06-01
We present scattering rates for electrons at longitudinal optical phonons within a model completely formulated in the Fourier domain. The total intersubband scattering rates are obtained by averaging over the intrasubband electron distributions. The rates consist of the Fourier components of the electron wave functions and a contribution depending only on the intersubband energies and the intrasubband carrier distributions. The energy-dependent part can be reproduced by a rational function, which allows for the separation of the scattering rates into a dipole-like contribution, an overlap-like contribution, and a contribution which can be neglected for low and intermediate carrier densities of the initial subband. For a balance between accuracy and computation time, the number of Fourier components can be adjusted. This approach facilitates an efficient design of complex heterostructures with realistic, temperature- and carrier density-dependent rates.
Ricardo J. Cumba; Sunita Radhakrishnan; Nicholas P. Bell; Kundandeep S. Nagi; Alice Z. Chuang; Lin, Shan C.; Mankiewicz, Kimberly A.; Feldman, Robert M.
2012-01-01
Purpose. To evaluate intraobserver and interobserver agreement in locating the scleral spur landmark (SSL) and anterior chamber angle measurements obtained using Fourier Domain Anterior Segment Optical Coherence Tomography (ASOCT) images. Methods. Two independent, masked observers (SR and AZC) identified SSLs on ASOCT images from 31 eyes with open and nonopen angles. A third independent reader, NPB, adjudicated SSL placement if identifications differed by more than 80 μ m. Nine months later,...
Optical fiber-applied radiation detection system
International Nuclear Information System (INIS)
A technique to measure radiation by using plastic scintillation fibers doped radiation fluorescent (scintillator) to plastic optical fiber for a radiation sensor, was developed. The technique contains some superiority such as high flexibility due to using fibers, relatively easy large area due to detecting portion of whole of fibers, and no electromagnetic noise effect due to optical radiation detection and signal transmission. Measurable to wide range of and continuous radiation distribution along optical fiber cable at a testing portion using scintillation fiber and flight time method, the optical fiber-applied radiation sensing system can effectively monitor space radiation dose or apparatus operation condition monitoring. And, a portable type scintillation optical fiber body surface pollution monitor can measure pollution concentration of radioactive materials attached onto body surface by arranging scintillation fiber processed to a plate with small size and flexibility around a man to be tested. Here were described on outline and fundamental properties of various application products using these plastic scintillation fiber. (G.K.)
Processing of medical images using real-time optical Fourier processing
International Nuclear Information System (INIS)
Optical image processing techniques are inherently fast in view of parallel processing. A self-adaptive optical Fourier processing system using photoinduced dichroism in a bacteriorhodopsin film was experimentally demonstrated for medical image processing. Application of this powerful analog all-optical interactive technique for cancer diagnostics is illustrated with two mammograms and a Pap smear. Microcalcification clusters buried in surrounding tissue showed up clearly in the processed image. By playing with one knob, which rotates the analyzer in the optical system, either the microcalcification clusters or the surrounding dense tissue can be selectively displayed. Bacteriorhodopsin films are stable up to 140 deg. C and environmentally friendly. As no interference is involved in the experiments, vibration isolation and even a coherent light source are not required. It may be possible to develop a low-cost rugged battery operated portable signal-enhancing magnifier
Real-time Fourier transformation of lightwave spectra and application in optical reflectometry.
Malacarne, Antonio; Park, Yongwoo; Li, Ming; LaRochelle, Sophie; Azaña, José
2015-12-14
We propose and experimentally demonstrate a fiber-optics scheme for real-time analog Fourier transform (FT) of a lightwave energy spectrum, such that the output signal maps the FT of the spectrum of interest along the time axis. This scheme avoids the need for analog-to-digital conversion and subsequent digital signal post-processing of the photo-detected spectrum, thus being capable of providing the desired FT processing directly in the optical domain at megahertz update rates. The proposed concept is particularly attractive for applications requiring FT analysis of optical spectra, such as in many optical Fourier-domain reflectrometry (OFDR), interferometry, spectroscopy and sensing systems. Examples are reported to illustrate the use of the method for real-time OFDR, where the target axial-line profile is directly observed in a single-shot oscilloscope trace, similarly to a time-of-flight measurement, but with a resolution and depth of range dictated by the underlying interferometry scheme. PMID:26699041
Optical Fourier and Holographic Techniques for Medical Image Processing with Bacteriorhodopsin
Yelleswarapu, Chandra
2008-03-01
The biological photochrome bacteriorhodopsin (bR) shows many intrinsic optical and physical properties. The active chromophore in bR is a retinal group which absorbs light and goes through a photocycle. The unique feature of the system is its flexibility -- the photocycle can be optically controllable since the process of photoisomerization can go in both directions depending on wavelength, intensity and polarization of the incident light, opening a variety of possibilities for manipulating amplitude, phase, polarization and index of refraction of the incident light. Over the years we studied the basic nonlinear optics and successfully exploited the unique properties for several optical spatial filtering techniques with applications in medical image processing. For nonlinear Fourier filtering, the photo-controlled light modulating characteristics of bR films are exploited. At the Fourier plane, the spatial frequency information carried by a blue probe beam at 442 nm is selectively manipulated in the bR film by changing the position and intensity of a yellow control beam at 568 nm. In transient Fourier holography, photoisomerizative gratings are recorded and reconstructed in bR films. Desired spatial frequencies are obtained by matching the reference beam intensity to that of the particular frequency band in object beam. A novel feature of the technique is the ability to transient display of selected spatial frequencies in the reconstructing process which enables radiologists to study the features of interest in time scale. The results offer useful information to radiologists for early detection of breast cancer. Some of the highlights will be presented.
Molodtsov, D. Y.; Cheremkhin, P. A.; Krasnov, V. V.; Rodin, V. G.
2016-04-01
In this paper, the optical quality of micromirror DMD spatial light modulator (SLM) is evaluated and its applicability as an output device for holographic filters in dispersive correlators is analyzed. The possibility of using of DMD SLM extracted from consumer DLP-projector was experimentally evaluated by displaying of Fourier holograms. Software for displaying of holograms was developed. Experiments on holograms reconstruction was conducted with a different number of holograms pixels (and different placement on SLM). Reduction of number of pixels of output hologram (i.e. size of minimum resolvable element) led to improvement of reconstructed image quality. The evaluation shows that not every DMD-chip has acceptable optical quality for its application as display device for Fourier holograms. It was determined that major factor of reconstructed image quality degradation is a curvature of surface of SLM or its safety glass. Ranging hologram size allowed to estimate approximate size of sufficiently flat area of SLM matrix. For tested SLM it was about 1.5 mm. Further hologram size increase led to significant reconstructed image quality degradation. Developed and applied a technique allows to quickly estimate maximum size of holograms that can be displayed with specific SLM without significant degradation of reconstructed image. Additionally it allows to identify areas on the SLM with increased curvature of the surface.
Fourier and Schur-Weyl transforms applied to XXX Heisenberg magnet
International Nuclear Information System (INIS)
Similarities and differences between Fourier and Schur-Weyl transforms have been discussed in the context of a one-dimensional Heisenberg magnetic ring with N nodes. We demonstrate that main difference between them correspond to another partitioning of the Hilbert space of the magnet. In particular, we point out that application of the quantum Fourier transform corresponds to splitting of the Hilbert space of the model into subspaces associated with the orbits of the cyclic group, whereas, the Schur-Weyl transform corresponds to splitting into subspaces associated with orbits of the symmetric group.
Bhardwaj, Anupam; Singh, Harinder P; Macri, Lucas M; Ngeow, Chow-Choong
2014-01-01
We present a light curve analysis of fundamental-mode Galactic and Large Magellanic Cloud (LMC) Cepheids based on the Fourier decomposition technique. We have compiled light curve data for Galactic and LMC Cepheids in optical ({\\it VI}), near-infrared ({\\it JHK}$_s$) and mid-infrared (3.6 $\\&$ 4.5-$\\mu$m) bands from the literature and determined the variation of their Fourier parameters as a function of period and wavelength. We observed a decrease in Fourier amplitude parameters and an increase in Fourier phase parameters with increasing wavelengths at a given period. We also found a decrease in the skewness and acuteness parameters as a function of wavelength at a fixed period. We applied a binning method to analyze the progression of the mean Fourier parameters with period and wavelength. We found that for periods longer than about 20 days, the values of the Fourier amplitude parameters increase sharply for shorter wavelengths as compared to wavelengths longer than the $J$-band. We observed the variati...
Programmable multiple true-time-delay elements based on a Fourier-domain optical processor.
Yi, Xiaoke; Li, Liwei; Huang, Thomas X H; Minasian, Robert A
2012-02-15
A new technique to realize an array of multiple true-time-delay elements, which can be independently and continuously tuned, is reported. It is based on a WDM parallel signal processing approach in conjunction with a diffraction-based Fourier-domain optical signal processor. Programmable linear optical phase transfer functions are realized to obtain different electrical true-time delays. The technique can scale to a large number of wideband true-time-delay lines, with continuously tunable programmable delay. Results demonstrate multiple true-time-delay elements with independent tuning control and verify the concept by tuning the free spectral range of a microwave photonic notch filter. To our best knowledge, this is the first demonstration of multiple independently controllable true-time-delay lines for microwave photonic systems. PMID:22344122
Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060 nm
DEFF Research Database (Denmark)
Marschall, Sebastian; Klein, Thomas; Wieser, Wolfgang;
2012-01-01
Optical coherence tomography (OCT) in the 1060nm range is interesting for in vivo imaging of the human posterior eye segment (retina, choroid, sclera) due to low absorption in water and deep penetration into the tissue. Rapidly tunable light sources, such as Fourier domain mode-locked (FDML) lasers......, enable acquisition of densely sampled three-dimensional datasets covering a wide field of view. However, semiconductor optical amplifiers (SOAs)-the typical laser gain media for swept sources-for the 1060nm band could until recently only provide relatively low output power and bandwidth. We have...... implemented an FDML laser using a new SOA featuring broad gain bandwidth and high output power. The output spectrum coincides with the wavelength range of minimal water absorption, making the light source ideal for OCT imaging of the posterior eye segment. With a moderate SOA current (270 mA) we achieve up...
Xie, Weilin; Zhou, Qian; Bretenaker, Fabien; Xia, Zongyang; Shi, Hongxiao; Qin, Jie; Dong, Yi; Hu, Weisheng
2016-07-01
We report on a versatile optical frequency-modulated continuous-wave interferometry technique that exploits wideband phase locking for generating highly coherent linear laser frequency chirps. This technique is based on an ultra-short delay-unbalanced interferometer, which leads to a large bandwidth, short lock time, and robust operation even in the absence of any isolation from environmental perturbations. In combination with a digital delay-matched phase error compensation, this permits the achievement of a range window about 60 times larger than the intrinsic laser coherence length with a 1.25 mm Fourier transform-limited spatial resolution. The demonstrated configuration can be easily applied to virtually any semiconductor laser. PMID:27367076
Radial Hilbert Transform in terms of the Fourier Transform applied to Image Encryption
International Nuclear Information System (INIS)
In the present investigation, a mathematical algorithm under Matlab platform using Radial Hilbert Transform and Random Phase Mask for encrypting digital images is implemented. The algorithm is based on the use of the conventional Fourier transform and two random phase masks, which provide security and robustness to the system implemented. Random phase masks used during encryption and decryption are the keys to improve security and make the system immune to attacks by program generation phase masks
DEFF Research Database (Denmark)
Guan, Pengyu; Røge, Kasper Meldgaard; Mulvad, Hans Christian Hansen;
2014-01-01
We propose a DWDM-to-Nyquist channel conversion scheme based on complete Optical Fourier Transformation and optical Nyquist filtering. We demonstrate conversion from 50-GHz-grid 16×10 Gbit/s DPSK DWDM to a 160-Gbit/s Nyquist channel (0.9 symbol/s/Hz spectral efficiency) with 1.4 dB power penalty....
Rugged optical mirrors for Fourier transform spectrometers operated in harsh environments
Feist, Dietrich G.; Arnold, Sabrina G.; Hase, Frank; Ponge, Dirk
2016-05-01
The Total Carbon Column Observing Network (TCCON) and the Network for the Detection of Atmospheric Composition Change (NDACC) operate a number of Fourier transform spectrometers (FTSs) that measure trace gases in the atmosphere by observing solar spectra. To guide the sunlight into the FTS, a solar tracker has to be placed outside. This device needs high-quality optical mirrors with good reflectance in the near and mid-infrared.More and more FTS stations are operated in remote locations with harsh environments. Optical mirrors are usually made for laboratory conditions and might not last very long there. At the TCCON site on Ascension Island which is operated by the Max Planck Institute for Biogeochemistry (MPI-BGC), several mirrors from different optical manufacturers were destroyed within weeks.To continue operation, the MPI-BGC had to develop rugged mirrors that could sustain the harsh conditions for months or even years. While commercially available mirrors are typically made from a substrate covered with a thin reflective coating, these rugged mirrors were made from stainless steel with no additional coating. Except for their lower reflectance (which can easily be compensated for), their optical properties are comparable to existing mirrors. However, their rugged design makes them mostly immune to corrosion and scratching. Unlike most coated mirrors, they can also be cleaned easily.
Kamalian, Morteza; Prilepsky, Jaroslaw E; Le, Son Thai; Turitsyn, Sergei K
2016-08-01
In this work, we introduce the periodic nonlinear Fourier transform (PNFT) method as an alternative and efficacious tool for compensation of the nonlinear transmission effects in optical fiber links. In the Part I, we introduce the algorithmic platform of the technique, describing in details the direct and inverse PNFT operations, also known as the inverse scattering transform for periodic (in time variable) nonlinear Schrödinger equation (NLSE). We pay a special attention to explaining the potential advantages of the PNFT-based processing over the previously studied nonlinear Fourier transform (NFT) based methods. Further, we elucidate the issue of the numerical PNFT computation: we compare the performance of four known numerical methods applicable for the calculation of nonlinear spectral data (the direct PNFT), in particular, taking the main spectrum (utilized further in Part II for the modulation and transmission) associated with some simple example waveforms as the quality indicator for each method. We show that the Ablowitz-Ladik discretization approach for the direct PNFT provides the best performance in terms of the accuracy and computational time consumption. PMID:27505799
Kamalian, Morteza; Prilepsky, Jaroslaw E; Le, Son Thai; Turitsyn, Sergei K
2016-08-01
In this paper we propose the design of communication systems based on using periodic nonlinear Fourier transform (PNFT), following the introduction of the method in the Part I. We show that the famous "eigenvalue communication" idea [A. Hasegawa and T. Nyu, J. Lightwave Technol. 11, 395 (1993)] can also be generalized for the PNFT application: In this case, the main spectrum attributed to the PNFT signal decomposition remains constant with the propagation down the optical fiber link. Therefore, the main PNFT spectrum can be encoded with data in the same way as soliton eigenvalues in the original proposal. The results are presented in terms of the bit-error rate (BER) values for different modulation techniques and different constellation sizes vs. the propagation distance, showing a good potential of the technique. PMID:27505800
DEFF Research Database (Denmark)
Mulvad, Hans Christian Hansen; Palushani, Evarist; Hu, Hao;
2011-01-01
We demonstrate conversion from 64 × 10 Gbit/s optical timedivision multiplexed (OTDM) data to dense wavelength division multiplexed (DWDM) data with 25 GHz spacing. The conversion is achieved by time-domain optical Fourier transformation (OFT) based on four-wave mixing (FWM) in a 3.6 mm long sili...
Meissner, Sven; Müller, Gregor; Walther, Julia; Morawietz, Henning; Koch, Edmund
2009-05-01
In-vivo imaging of the vascular system can provide novel insight into the dynamics of vasoconstriction and vasodilation. Fourier domain optical coherence tomography (FD-OCT) is an optical, noncontact imaging technique based on interferometry of short-coherent near-infrared light with axial resolution of less than 10 μm. In this study, we apply FD-OCT as an in-vivo imaging technique to investigate blood vessels in their anatomical context using temporally resolved image stacks. Our chosen model system is the murine saphenous artery and vein, due to their small inner vessel diameters, sensitive response to vasoactive stimuli, and advantageous anatomical position. The vascular function of male wild-type mice (C57BL/6) is determined at the ages of 6 and 20 weeks. Vasoconstriction is analyzed in response to dermal application of potassium (K+), and vasodilation in response to sodium nitroprusside (SNP). Vasodynamics are quantified from time series (75 sec, 4 frames per sec, 330×512 pixels per frame) of cross sectional images that are analyzed by semiautomated image processing software. The morphology of the saphenous artery and vein is determined by 3-D image stacks of 512×512×512 pixels. Using the FD-OCT technique, we are able to demonstrate age-dependent differences in vascular function and vasodynamics.
Zhang, Kang
2011-12-01
In this dissertation, real-time Fourier domain optical coherence tomography (FD-OCT) capable of multi-dimensional micrometer-resolution imaging targeted specifically for microsurgical intervention applications was developed and studied. As a part of this work several ultra-high speed real-time FD-OCT imaging and sensing systems were proposed and developed. A real-time 4D (3D+time) OCT system platform using the graphics processing unit (GPU) to accelerate OCT signal processing, the imaging reconstruction, visualization, and volume rendering was developed. Several GPU based algorithms such as non-uniform fast Fourier transform (NUFFT), numerical dispersion compensation, and multi-GPU implementation were developed to improve the impulse response, SNR roll-off and stability of the system. Full-range complex-conjugate-free FD-OCT was also implemented on the GPU architecture to achieve doubled image range and improved SNR. These technologies overcome the imaging reconstruction and visualization bottlenecks widely exist in current ultra-high speed FD-OCT systems and open the way to interventional OCT imaging for applications in guided microsurgery. A hand-held common-path optical coherence tomography (CP-OCT) distance-sensor based microsurgical tool was developed and validated. Through real-time signal processing, edge detection and feed-back control, the tool was shown to be capable of track target surface and compensate motion. The micro-incision test using a phantom was performed using a CP-OCT-sensor integrated hand-held tool, which showed an incision error less than +/-5 microns, comparing to >100 microns error by free-hand incision. The CP-OCT distance sensor has also been utilized to enhance the accuracy and safety of optical nerve stimulation. Finally, several experiments were conducted to validate the system for surgical applications. One of them involved 4D OCT guided micro-manipulation using a phantom. Multiple volume renderings of one 3D data set were
DEFF Research Database (Denmark)
Hu, Hao; Kong, Deming; Palushani, Evarist;
2013-01-01
320 Gb/s Nyquist-OTDM is generated by rectangular filtering with a bandwidth of 320 GHz and received by polarization-insensitive time-domain optical Fourier transformation (TD-OFT) followed by passive filtering. After the time-to-frequency mapping in the TD-OFT, the Nyquist-OTDM is converted into a...
Yao, Guang-tao; Zhang, Xiao-hui; Ge, Wei-long
2012-01-01
The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve
Optical fiber applied to radiation detection
International Nuclear Information System (INIS)
In the last years, the production of optical fibers cables has make possible the development of a range of spectroscopic probes for in situ analysis performing beyond nondestructive tests, environmental monitoring, security investigation, application in radiotherapy for dose monitoring, verification and validation. In this work, a system using an optical fiber cable to light signal transmission from a NaI(Tl) radiation detector is presented. The innovative device takes advantage mainly of the optical fibers small signal attenuation and immunity to electromagnetic interference to application for radiation detection systems. The main aim was to simplify the detection system making it to reach areas where the conventional device cannot access due to its lack of mobility and external dimensions. Some tests with this innovative system are presented and the results stimulate the continuity of the researches. (author)
Institute of Scientific and Technical Information of China (English)
FANG Yuan; PAN Ying-zi; LI Mei; QIAO Rong-hua; CAI Yu
2010-01-01
Background Optical coherence tomography (OCT) is a high resolution noncontact imaging modality which can quantitatively detect the optic disc and retinal structure.This study was designed to evaluate the diagnostic capability of parameters of the optic disc, retinal nerve fiber layer thickness, and ganglion cell complex (GCC) using a new technology called Fourier-domain OCT (FD-OCT) for early primary open angle glaucoma (POAG) patients.Methods Two groups of patients, early perimetric damage POAG and normal subjects were included in this observational cross-sectional study.All patients underwent FD-OCT and visual field examination in addition to full ophthalmic examinations.Receiver operating characteristic curves (ROC) were studied for all parameters.The sensitivity and specificity for distinguishing between normal and early glaucomatous eyes, the areas under the receiver operating characteristic curves (AROC) and positive, negative likelihood ratios were evaluated for all the single parameters and selected combined parameters using arbitrary cutoffs.Results Thirty-four eyes of 34 early POAG patients and 42 eyes of 42 normal subjects were analyzed.Cup/disc (C/D)vertical ratio presented the best sensitivity and positive likelihood ratio for selected specificities (95% and 85%) which were 79.4% and 88.2%, 33.4 and 7.4, respectively.Among all single parameters, the C/D vertical ratio demonstrated the highest AROC which was at 0.930.The average thickness of circumpapillary RNFL on 3.45 mm showed the highest AROC among all of the peripapillary RNFL parameters.The sensitivity at selected specificity and AROC of GCC were not as high as C/D vertical ratio and RNFL AT on 3.45 mm.When the C/D vertical ratio, RNFL AT on 3.45 mm, and rim area were combined using a logistical diagnostic model, the AROC was raised to 0.949 but not significantly different from the top single parameter, C/D vertical ratio.Conclusions The key parameters obtained by FD-OCT were able to show the
Nonlinear optical frequency conversion of an amplified Fourier Domain Mode Locked (FDML) laser.
Leonhardt, Rainer; Biedermann, Benjamin R; Wieser, Wolfgang; Huber, Robert
2009-09-14
We report on the highly efficient non-linear optical frequency conversion of the wavelength swept output from a Fourier Domain Mode Locked (FDML) laser. Different concepts for power scaling of FDML lasers by post-amplification with active fibers are presented. A two-stage post-amplification of an FDML laser with an amplification factor of 300 up to a peak power of 1.5 W is used to supply sufficient power levels for non-linear conversion. Using a single-mode dispersion shifted fiber (DSF), we convert this amplified output that covers the region between 1541 nm and 1545 nm to a wavelength range from 1572 nm to 1663 nm via modulation instability (MI). For this four wave mixing process we observe an efficiency of approximately 40%. The anti-Stokes signal between 1435 nm and 1516 nm was observed with lower conversion efficiency. In addition to shifting the wavelength, the effect of MI also enables a substantial increase in the wavelength sweep rate of the FDML laser by a factor of approximately 50 to 0.55 nm/ns. PMID:19770897
Directory of Open Access Journals (Sweden)
Matthew R. Bald
2013-01-01
Full Text Available Purpose. To evaluate Fourier-domain optical coherence tomography (FD-OCT as an adjunct to traditional slit lamp examination of donor corneas with suspected Anterior Stromal Opacities. Methods. Seven corneas suspected of having anterior stromal opacities by slit lamp examination were evaluated with FD-OCT. Each cornea was evaluated to confirm the presence of opacity and, if present, the depth of opacity was measured. Results. The opacity depth ranged from 82 μm to 624 μm. The initial slit lamp impressions of five of the seven corneas were confirmed by OCT. In two corneas, the OCT findings were different from the initial slit lamp impressions. Slit lamp examination of the first cornea gave the impression of anterior stromal scarring, but OCT showed that the opacity was limited to the epithelium. Slit lamp examination of the second cornea suggested opacity limited to the epithelium, but OCT identified significant sub-Bowman's scarring. In all cases, the Eye Bank Technicians reported that the location and depth of corneal opacity were more sharply defined by OCT than by slit lamp. Conclusion. The high resolution of OCT makes it easier to determine the location of corneal opacities compared to slit lamp examinations. This enhanced visualization can improve decisions regarding transplant suitability of donor corneas.
de Almeida, F. S.; Santana, C. A.; Lima, D. M. V.; Andrade, L. H. C.; Súarez, Y. R.; Lima, S. M.
2016-05-01
Astyanax altiparanae fish species is considered very generalist and opportunist, occupying different types and sizes of environments. This characteristic turns it very appropriate as bioindicator or biomarked. Therefore, in this work, A. altiparanae fish species was used to identify populations by using the Fourier transform infrared spectroscopy directly in its scales. The discriminant analysis applied in the infrared spectra demonstrated a significant differentiation among the analyzed populations, with the first and second canonical roots explain together 100% of the data variation. The obtained results were correlated with environmental descriptors and diet of fishes, and a better agreement was obtained when spectroscopic data were compared with the composition of food present in the fish stomachs. However, this study indicates that the combination of infrared absorption spectroscopy with discriminant analysis is a very appropriate methodology to be used in fish scales as bioindicator for intraspecific study.
Optical correlator techniques applied to robotic vision
Hine, Butler P., III; Reid, Max B.; Downie, John D.
1991-01-01
Vision processing is one of the most computationally intensive tasks required of an autonomous robot. The data flow from a single typical imaging sensor is roughly 60 Mbits/sec, which can easily overload current on-board processors. Optical correlator-based processing can be used to perform many of the functions required of a general robotic vision system, such as object recognition, tracking, and orientation determination, and can perform these functions fast enough to keep pace with the incoming sensor data. We describe a hybrid digital electronic/analog optical robotic vision processing system developed at Ames Research Center to test concepts and algorithms for autonomous construction, inspection, and maintenance of space-based habitats. We discuss the system architecture design and implementation, its performance characteristics, and our future plans. In particular, we compare the performance of the system to a more conventional all digital electronic system developed concurrently. The hybrid system consistently outperforms the digital electronic one in both speed and robustness.
Directory of Open Access Journals (Sweden)
Yong Huang
Full Text Available To demonstrate the feasibility of a miniature handheld optical coherence tomography (OCT imager for real time intraoperative vascular patency evaluation in the setting of super-microsurgical vessel anastomosis.A novel handheld imager Fourier domain Doppler optical coherence tomography based on a 1.3-µm central wavelength swept source for extravascular imaging was developed. The imager was minimized through the adoption of a 2.4-mm diameter microelectromechanical systems (MEMS scanning mirror, additionally a 12.7-mm diameter lens system was designed and combined with the MEMS mirror to achieve a small form factor that optimize functionality as a handheld extravascular OCT imager. To evaluate in-vivo applicability, super-microsurgical vessel anastomosis was performed in a mouse femoral vessel cut and repair model employing conventional interrupted suture technique as well as a novel non-suture cuff technique. Vascular anastomosis patency after clinically successful repair was evaluated using the novel handheld OCT imager.With an adjustable lateral image field of view up to 1.5 mm by 1.5 mm, high-resolution simultaneous structural and flow imaging of the blood vessels were successfully acquired for BALB/C mouse after orthotopic hind limb transplantation using a non-suture cuff technique and BALB/C mouse after femoral artery anastomosis using a suture technique. We experimentally quantify the axial and lateral resolution of the OCT to be 12.6 µm in air and 17.5 µm respectively. The OCT has a sensitivity of 84 dB and sensitivity roll-off of 5.7 dB/mm over an imaging range of 5 mm. Imaging with a frame rate of 36 Hz for an image size of 1000(lateral×512(axial pixels using a 50,000 A-lines per second swept source was achieved. Quantitative vessel lumen patency, lumen narrowing and thrombosis analysis were performed based on acquired structure and Doppler images.A miniature handheld OCT imager that can be used for intraoperative evaluation of
Fernández-Vigo, José Ignacio; García-Feijóo, Julián; Martínez-de-la-Casa, José María; García-Bella, Javier; Arriola-Villalobos, Pedro; Fernández-Pérez, Cristina; Fernández-Vigo, José Ángel
2016-01-01
Background Recently, novel anatomic parameters that can be measured by optical coherence tomography (OCT), have been identified as a more objective and accurate method of defining the iridocorneal angle. The aim of the present study is to measure the iridocorneal angle by Fourier domain (FD) OCT and to identify correlations between angle measurements and subject factors in a large healthy Caucasian population. Methods A cross sectional study was performed in 989 left eyes of 989 healthy subje...
Applied photometry, radiometry, and measurements of optical losses
Bukshtab, Michael
2012-01-01
Applied Photometry, Radiometry, and Measurements of Optical Losses reviews and analyzes physical concepts of radiation transfer, providing quantitative foundation for the means of measurements of optical losses, which affect propagation and distribution of light waves in various media and in diverse optical systems and components. The comprehensive analysis of advanced methodologies for low-loss detection is outlined in comparison with the classic photometric and radiometric observations, having a broad range of techniques examined and summarized: from interferometric and calorimetric, resonator and polarization, phase-shift and ring-down decay, wavelength and frequency modulation to pulse separation and resonant, acousto-optic and emissive - subsequently compared to direct and balancing methods for studying free-space and polarization optics, fibers and waveguides. The material is focused on applying optical methods and procedures for evaluation of transparent, reflecting, scattering, absorbing, and aggregat...
Optical movie encryption based on a discrete multiple-parameter fractional Fourier transform
International Nuclear Information System (INIS)
A movie encryption scheme is proposed using a discrete multiple-parameter fractional Fourier transform and theta modulation. After being modulated by sinusoidal amplitude grating, each frame of the movie is transformed by a filtering procedure and then multiplexed into a complex signal. The complex signal is multiplied by a pixel scrambling operation and random phase mask, and then encrypted by a discrete multiple-parameter fractional Fourier transform. The movie can be retrieved by using the correct keys, such as a random phase mask, a pixel scrambling operation, the parameters in a discrete multiple-parameter fractional Fourier transform and a time sequence. Numerical simulations have been performed to demonstrate the validity and the security of the proposed method. (paper)
Directory of Open Access Journals (Sweden)
Tatsuo Yamaguchi
2011-03-01
Full Text Available Yoshiyuki Kitaguchi1, Shunji Kusaka1, Tatsuo Yamaguchi2, Toshifumi Mihashi2, Takashi Fujikado11Department of Applied Visual Science, Osaka University Graduate School of Medicine, Osaka, Japan; 2Topcon Research Institute, Itabashi, JapanPurpose: To investigate the structural changes in the photoreceptors by adaptive optics (AO fundus imaging and Fourier-domain optical coherence tomography (FD-OCT in eyes with occult macular dystrophy (OMD.Design: Observational case reports.Methods: Eight eyes of four patients who were diagnosed with OMD were examined. All eyes had a complete ophthalmological examination. Multifocal electroretinograms (mfERGs were recorded from all eyes. AO and FD-OCT images of foveal photoreceptors were obtained.Results: The best-corrected visual acuity (BCVA of these eyes ranged from 20/20 to 20/200, and the ocular fundus was normal by conventional ocular examination in all eyes. The amplitudes of the mfERGs were decreased in the foveal area. The inner and outer segment (IS/OS junction of the photoreceptors in the foveal area was disrupted. The IS/OS junction was intact in one eye with a BCVA of 20/20, and the outer segment layer between the IS/OS junction and retinal pigment epithelium of the FD-OCT images was identified only in the center of the fovea. The AO images showed patchy dark areas in all eyes, which indicated a disruption of the mosaic of bright spots in the fovea.Conclusion: Structural changes of photoreceptors in OMD patients were detected tangentially by FD-OCT and en face by AO.Keywords: Photoreceptors, OMD, images, retinal imaging
Motion analysis of optically trapped particles and cells using 2D Fourier analysis
DEFF Research Database (Denmark)
Kristensen, Martin Verner; Ahrendt, Peter; Lindballe, Thue Bjerring;
2012-01-01
trap is determined in three dimensions. The Fourier transform method is simple to implement and applicable in cases where the trapped object changes shape or where the lighting conditions change. This is illustrated by tracking a fluorescent particle and a myoblast cell, with subsequent determination...... of diffusion coefficients and the trapping forces....
Mulvad, Hans Christian Hansen; Palushani, Evarist; Hu, Hao; Ji, Hua; Lillieholm, Mads; Galili, Michael; Clausen, Anders; Pu, Minhao; Yvind, Kresten; Hvam, Jørn Märcher; Jeppesen, Palle; Oxenløwe, Leif Katsuo
2011-01-01
We demonstrate conversion from 64 × 10 Gbit/s optical timedivision multiplexed (OTDM) data to dense wavelength division multiplexed (DWDM) data with 25 GHz spacing. The conversion is achieved by time-domain optical Fourier transformation (OFT) based on four-wave mixing (FWM) in a 3.6 mm long silicon nanowire. A total of 40 out of 64 tributaries of a 64 × 10 Gbit/s OTDM-DPSK data signal are simultaneously converted with a bit-error rate (BER) performance below the 2 × 10−3 FEC limit. Using a 5...
Jonathan, Enock
2008-06-01
While human sweat secretion is accepted as a mechanism by which the body cools off, excessive sweating (hyperhidrosis) is now appreciated as a medical condition and the primary site for diagnosis is the palm of the hand. We propose sweat film layer thickness as a potential clinical diagnostic parameter when screening for excessive sweating. In this preliminary study we demonstrate the usefulness of Fourier-domain optical coherence tomography (FD-OCT) for measurement of sweat film thickness in vivo with micron-scale resolution on the hand of a human volunteer. FD-OCT has a superior image acquisition time and identification of active sweat glands, ducts and pores is also possible.
Bonesi, Marco; Sattmann, Harald; Torzicky, Teresa; Zotter, Stefan; Baumann, Bernhard; Pircher, Michael; Götzinger, Erich; Eigenwillig, Christoph; Wieser, Wolfgang; Huber, Robert; Hitzenberger, Christoph K.
2012-01-01
We report on a new swept source polarization sensitive optical coherence tomography scan engine that is based on polarization maintaining (PM) fiber technology. The light source is a Fourier domain mode locked laser with a PM cavity that operates in the 1300 nm wavelength regime. It is equipped with a PM buffer stage that doubles the fundamental sweep frequency of 54.5 kHz. The fiberization allows coupling of the scan engine to different delivery probes. In a first demonstration, we use the s...
International Nuclear Information System (INIS)
This study approached theoretical and experimental aspects related with the development of a polarization sensitive, Fourier domain, optical coherence tomography system (PS-FD-OCT) and its utilization on the Mueller Matrix determination. This work began with a bibliographic revision, which describes since the early studies to the actual state of the art of the technique. The mathematical formalism of Fourier domain low coherence interferometry and light polarization was performed as well. Studies based on numerical simulations, of three different algorithm types, responsible to recover the scattering profile, were done. The implemented algorithms were: Direct Fourier Transform, Interpolation and zero-filling. By the end of the simulation study, was possible to conclude that the algorithm zero-filling 2N presented better characteristics when compared with the others. In the experimental part, firstly different OCT setups were assembled and measurements were done in order to verify aspects related with the theory. Then, using a polymeric sample, birefringence images were performed, which allowed determining the sample birefringence quantitatively. Finally, images taken of different polarization states were collected, and through then images related with the Mueller Matrix elements were calculated, which were analyzed individually. (author)
Klein, Thomas; Wieser, Wolfgang; Biedermann, Benjamin R; Eigenwillig, Christoph M; Palte, Gesa; Huber, Robert
2008-12-01
We demonstrate a Raman-pumped Fourier-domain mode-locked (FDML) fiber laser and optical coherence tomography imaging with this source. The wavelength sweep range of only 30 nm centered around 1550 nm results in limited axial resolution, hence a nonbiological sample is imaged. An output power of 1.9 mW was achieved at a sweep rate of 66 kHz and a maximum ranging depth of ~2.5 cm. Roll-off characteristics are found to be similar to FDML lasers with semiconductor optical amplifiers as gain media. The application of Raman gain also enables unperturbed cavity ring-down experiments in FDML lasers for the first time, providing direct access to the photon lifetime in the laser cavity. Good agreement with nonswept cw operation is proof of the stationary operation of FDML lasers. PMID:19037436
Krueger, Alexander; Knels, Lilla; Meissner, Sven; Wendel, Martina; Heller, Axel R.; Lambeck, Thomas; Koch, Thea; Koch, Edmund
2007-07-01
Fourier domain optical coherence tomography (FD-OCT) was used to acquire three-dimensional image stacks of isolated and perfused rabbit lungs (n = 4) at different constant pulmonary airway pressures (CPAP) and during vascular fixation. After despeckling and applying a threshold, the images were segmented into air and tissue, and registered to each other to compensate for movement between CPAP steps. The air-filled cross-sectional areas were quantified using a semi-automatic algorithm. The cross-sectional area of alveolar structures taken at all three perpendicular planes increased with increasing CPAP. Between the minimal CPAP of 3 mbar and the maximum of 25 mbar the areas increased to about 140% of their initial value. There was no systematic dependency of inflation rate on initial size of the alveolar structure. During the perfusion fixation of the lungs with glutaraldehyde morphometric changes of the alveolar geometry measured with FD-OCT were negligible.
Applied study of optical interconnection link in computer cluster
Zhou, Ge; Tian, Jindong; Zhang, Nan; Jing, Wencai; Li, Haifeng
2000-10-01
In this paper, some study results to apply fiber link to a computer cluster are presented. The research is based on a ring network topology for a cluster system, which is connected by gigabit/s virtual parallel optical fiber link (VPOFLink) and its driver is for Linux Operating System, the transmission protocol of VPOFLink is compliant with Ethernet standard. We have studied the effect of different types of motherboard on transmission rate of the VPOFLink, and have analyzed the influence of optical interconnection network topology and computer networks protocol on the performance of this optical interconnection computer cluster. The round-trip transmission bandwidth of the VPOFLink have been tested, and the factors that limit transmission bandwidth, such as modes of forwarding data packets in the optical interconnection ring networks, and the size of the link buffer etc., are investigated.
Analyzing Fourier Transforms for NASA DFRC's Fiber Optic Strain Sensing System
Fiechtner, Kaitlyn Leann
2010-01-01
This document provides a basic overview of the fiber optic technology used for sensing stress, strain, and temperature. Also, the document summarizes the research concerning speed and accuracy of the possible mathematical algorithms that can be used for NASA DFRC's Fiber Optic Strain Sensing (FOSS) system.
Łukasz Lechowicz; Wioletta Adamus-Białek; Wiesław Kaca
2013-01-01
Fimbriae are an important pathogenic factor of Escherichia coli during development of urinary tract infections. Here, we describe a new method for identification of Escherichia coli papG+ from papG- strains using the attenuated total reflectance Fourier transform infrared Spectroscopy (ATR FT-IR). We applied artificial neural networks to the analysis of the ATR FT-IR results. These methods allowed to discriminate E. coli papG+ from papG- strains with accuracy of 99%.
Takasago, K; Takekawa, M; Shirakawa, A; Kannari, F
2000-05-10
A new, to our knowledge, space-variant optical interconnection system based on a spatial-phase code-division multiple-access technique with multiplexed Fourier holography is described. In this technique a signal beam is spread over wide spatial frequencies by an M-sequence pseudorandom phase code. At a receiver side a selected signal beam is properly decoded, and at the same time its spatial pattern is shaped with a Fourier hologram, which is recorded by light that is encoded with the same M-sequence phase mask as the desired signal beam and by light whose spatial beam pattern is shaped to a signal routing pattern. Using the multiplexed holography, we can simultaneously route multisignal flows into individually specified receiver elements. The routing pattern can also be varied by means of switching the encoding phase code or replacing the hologram. We demonstrated a proof-of-principle experiment with a doubly multiplexed hologram that enables simultaneous routing of two signal beams. Using a numerical model, we showed that the proposed scheme can manage more than 250 routing patterns for one signal flow with one multiplexed hologram at a signal-to-noise ratio of ~5. PMID:18345134
80 GHz waveform generated by the optical Fourier synthesis of four spectral sidebands
Fatome, Julien; Hammani, Kamal; Kibler, Bertrand; Finot, Christophe
2016-01-01
Using the linear phase shaping of a simple four-line optical frequency comb, we experimentally demonstrate the generation of various optical waveforms such as parabolic, triangular or flat-top pulse trains at a repetition rate of 80 GHz. The initial 80 GHz comb is obtained through the nonlinear spectral broadening of a 40 GHz carrier-suppressed sinusoidal beating in a highly nonlinear fiber. Proof-of-principle experiments are reported for two distinct configurations of the waveform generated: continuous trains and bunches of shaped pulses.
Narayanamurthy, C. S.
2009-01-01
Fringes formed in a Michelson interferometer never localize in any plane, in the detector plane and in the localization plane. Instead, the fringes are assumed to localize at infinity. Except for some explanation in "Principles of Optics" by Born and Wolf (1964 (New York: Macmillan)), the fringe localization phenomena of Michelson's interferometer…
Czech Academy of Sciences Publication Activity Database
Poruba, Aleš; Holovský, Jakub; Purkrt, Adam; Vaněček, Milan
2008-01-01
Roč. 354, 19-25 (2008), s. 2421-2425. ISSN 0022-3093 R&D Projects: GA MŽP(CZ) SN/3/172/05 Keywords : silicon * solar cells * photovoltaics * band structure * plasma deposition * defects * Monte Carlo simulations * absorption * optical spectroscopy * FTIR Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.449, year: 2008
Fourier transform infrared (FTIR) fiber optic monitoring of composites during cure in an autoclave
Druy, Mark A.; Elandjian, Lucy; Stevenson, William A.; Driver, Richard D.; Leskowitz, Garett M.
1990-01-01
Real-time in situ monitoring of the chemical states of epoxy resins was investigated during cure in an autoclave using infrared evanescent spectroscopy. Fiber evanescent sensors were developed which may be sandwiched between the plies of the prepreg sample. A short length of sapphire fiber was used as the sensor cell portion of the fiber probe. Heavy metal fluoride glass optical fiber cables were designed for connecting the FTIR spectrometer to the sensor fiber within the autoclave. The sapphire fibers have outstanding mechanical thermal properties which should permit their use as an embedded link in all thermoset composites. The system is capable of operation at a temperature of 250 C for periods up to 8 hours without major changes to the fiber transmission. A discussion of the selection of suitable sensor fibers, the construction of a fiber-optic interface, and the interpretation of in situ infrared spectra of the curing process is presented.
Quantitative Fourier Domain Optical Coherence Tomography Imaging of the Ocular Anterior Segment
McNabb, Ryan Palmer
Clinical imaging within ophthalmology has had transformative effects on ocular health over the last century. Imaging has guided clinicians in their pharmaceutical and surgical treatments of macular degeneration, glaucoma, cataracts and numerous other pathologies. Many of the imaging techniques currently used are photography based and are limited to imaging the surface of ocular structures. This limitation forces clinicians to make assumptions about the underlying tissue which may reduce the efficacy of their diagnoses. Optical coherence tomography (OCT) is a non-invasive, non-ionizing imaging modality that has been widely adopted within the field of ophthalmology in the last 15 years. As an optical imaging technique, OCT utilizes low-coherence interferometry to produce micron-scale three-dimensional datasets of a tissue's structure. Much of the human body consists of tissues that significantly scatter and attenuate optical signals limiting the imaging depth of OCT in those tissues to only 1-2mm. However, the ocular anterior segment is unique among human tissue in that it is primarily transparent or translucent. This allows for relatively deep imaging of tissue structure with OCT and is no longer limited by the optical scattering properties of the tissue. This goal of this work is to develop methods utilizing OCT that offer the potential to reduce the assumptions made by clinicians in their evaluations of their patients' ocular anterior segments. We achieved this by first developing a method to reduce the effects of patient motion during OCT volume acquisitions allowing for accurate, three dimensional measurements of corneal shape. Having accurate corneal shape measurements then allowed us to determine corneal spherical and astigmatic refractive contribution in a given individual. This was then validated in a clinical study that showed OCT better measured refractive change due to surgery than other clinical devices. Additionally, a method was developed to combine
DEFF Research Database (Denmark)
Guan, Pengyu; Røge, Kasper Meldgaard; Mulvad, Hans Christian Hansen;
2016-01-01
single-polarization 8-subcarrier 640 Gb/s differential phase-shift keying OFDM super-channel with a spectral efficiency (SE) of 0.8 symbol/s/Hz is generated. The OFDM super-channel is then converted to eight 80-Gb/s Nyquist-WDM channels by complete OFT. The complete OFT is based on two quadratic phase...... higher symbol-rate OFDM signal. In the receiver, the converted Nyquist-WDM super-channel is WDM demultiplexed into individual Nyquist-WDM channels using a rectangular optical bandpass filter, followed by optical sampling at the intersymbol-interference free point. In the experimental demonstration, a...
Real-time all-optical OFDM transmission system based on time-domain optical fourier transformation
DEFF Research Database (Denmark)
Guan, Pengyu; Kong, Deming; Røge, Kasper Meldgaard;
2014-01-01
We propose a novel simple all-optical OFDM transmission system based on time-domain OFT using time-lenses. A real-time 160 Gbit/s DPSK OFDM transmission with 16 decorrelated data subcarriers is successfully demonstrated over 100 km.......We propose a novel simple all-optical OFDM transmission system based on time-domain OFT using time-lenses. A real-time 160 Gbit/s DPSK OFDM transmission with 16 decorrelated data subcarriers is successfully demonstrated over 100 km....
Principles of Fourier analysis
Howell, Kenneth B
2001-01-01
Fourier analysis is one of the most useful and widely employed sets of tools for the engineer, the scientist, and the applied mathematician. As such, students and practitioners in these disciplines need a practical and mathematically solid introduction to its principles. They need straightforward verifications of its results and formulas, and they need clear indications of the limitations of those results and formulas.Principles of Fourier Analysis furnishes all this and more. It provides a comprehensive overview of the mathematical theory of Fourier analysis, including the development of Fourier series, "classical" Fourier transforms, generalized Fourier transforms and analysis, and the discrete theory. Much of the author''s development is strikingly different from typical presentations. His approach to defining the classical Fourier transform results in a much cleaner, more coherent theory that leads naturally to a starting point for the generalized theory. He also introduces a new generalized theory based ...
MIMA, a miniaturized Fourier spectrometer for Mars ground exploration: Part II. Optical design
Fonti, S.; Marzo, G. A.; Politi, R.; Bellucci, G.; Saggin, B.
2007-10-01
The Mars Infrared MApper (MIMA) is a FT-IR miniaturised spectrometer which is being developed for ESA ExoMars Pasteur mission. MIMA will be mounted on the rover mast and so it must be compact and light-weight. The scientific goals and its thermo-mechanical design are presented in two companion papers [1] and [2]. In this work the optical design will be reviewed and the results of the tests performed on some optical components will be presented. The design has faced challenging constraints mainly linked to the requirement of keeping the performances good enough to fulfil the scientific objectives of the mission, while, at the same time, it was imperative to keep the overall size and weigh within the allocated resources. In addition the instrument must be able to operate in the very harsh environment of the Martian surface and to withstand, without permanent damage, even harsher conditions as well as the severe dynamic loads expected at landing on Mars. The chosen solution is a single channel double pendulum interferometer, covering the spectral range between 2 and 25 micron, crucial for the scientific interpretation of the recorded spectra, with a resolution variable between 10 and 5 cm-1. Since the spectral range is too wide to be covered by a single detector, it has been decided to use two different detectors, mounted side by side, in a customised case. Such innovative solution has obviously pros and cons and the optical design has been driven by the need to reduce the inconveniences, while maintaining the advantages.
Czech Academy of Sciences Publication Activity Database
Poruba, Aleš; Holovský, Jakub; Purkrt, Adam; Vaněček, Milan
2008-01-01
Roč. 354, 19-25 (2008), s. 2421-2425. ISSN 0022-3093 R&D Projects: GA MŽP(CZ) SN/3/172/05 EU Projects: European Commission(XE) 19670 - ATHLET; European Commission(XE) 38885 - SE-POWERFOIL; European Commission(XE) 509178 - LPAMS Institutional research plan: CEZ:AV0Z10100521 Keywords : silicon * solar cells * photovoltaics * band structure * plasma deposition * defects * Monte Carlo simulations * absorption * optical spectroscopy * FTIR Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.449, year: 2008
Werkmeister, René M.; Palkovits, Stefan; Told, Reinhard; Gröschl, Martin; Leitgeb, Rainer A.; Garhöfer, Gerhard; Schmetterer, Leopold
2012-01-01
Purpose There is a long-standing interest in the study of retinal blood flow in humans. In the recent years techniques have been established to measure retinal perfusion based on optical coherence tomography (OCT). In the present study we used a technique called dual-beam bidirectional Doppler Fourier-domain optical coherence tomography (FD-OCT) to characterize the effects of 100% oxygen breathing on retinal blood flow. These data were compared to data obtained with a laser Doppler velocimete...
Optical Trapping Techniques Applied to the Study of Cell Membranes
Morss, Andrew J.
Optical tweezers allow for manipulating micron-sized objects using pN level optical forces. In this work, we use an optical trapping setup to aid in three separate experiments, all related to the physics of the cellular membrane. In the first experiment, in conjunction with Brian Henslee, we use optical tweezers to allow for precise positioning and control of cells in suspension to evaluate the cell size dependence of electroporation. Theory predicts that all cells porate at a transmembrane potential VTMof roughly 1 V. The Schwann equation predicts that the transmembrane potential depends linearly on the cell radius r, thus predicting that cells should porate at threshold electric fields that go as 1/r. The threshold field required to induce poration is determined by applying a low voltage pulse to the cell and then applying additional pulses of greater and greater magnitude, checking for poration at each step using propidium iodide dye. We find that, contrary to expectations, cells do not porate at a constant value of the transmembrane potential but at a constant value of the electric field which we find to be 692 V/cm for K562 cells. Delivering precise dosages of nanoparticles into cells is of importance for assessing toxicity of nanoparticles or for genetic research. In the second experiment, we conduct nano-electroporation—a novel method of applying precise doses of transfection agents to cells—by using optical tweezers in conjunction with a confocal microscope to manipulate cells into contact with 100 nm wide nanochannels. This work was done in collaboration with Pouyan Boukany of Dr. Lee's group. The small cross sectional area of these nano channels means that the electric field within them is extremely large, 60 MV/m, which allows them to electrophoretically drive transfection agents into the cell. We find that nano electroporation results in excellent dose control (to within 10% in our experiments) compared to bulk electroporation. We also find that
Real-time 3D Fourier-domain optical coherence tomography guided microvascular anastomosis
Huang, Yong; Ibrahim, Zuhaib; Lee, W. P. A.; Brandacher, Gerald; Kang, Jin U.
2013-03-01
Vascular and microvascular anastomosis is considered to be the foundation of plastic and reconstructive surgery, hand surgery, transplant surgery, vascular surgery and cardiac surgery. In the last two decades innovative techniques, such as vascular coupling devices, thermo-reversible poloxamers and suture-less cuff have been introduced. Intra-operative surgical guidance using a surgical imaging modality that provides in-depth view and 3D imaging can improve outcome following both conventional and innovative anastomosis techniques. Optical coherence tomography (OCT) is a noninvasive high-resolution (micron level), high-speed, 3D imaging modality that has been adopted widely in biomedical and clinical applications. In this work we performed a proof-of-concept evaluation study of OCT as an assisted intraoperative and post-operative imaging modality for microvascular anastomosis of rodent femoral vessels. The OCT imaging modality provided lateral resolution of 12 μm and 3.0 μm axial resolution in air and 0.27 volume/s imaging speed, which could provide the surgeon with clearly visualized vessel lumen wall and suture needle position relative to the vessel during intraoperative imaging. Graphics processing unit (GPU) accelerated phase-resolved Doppler OCT (PRDOCT) imaging of the surgical site was performed as a post-operative evaluation of the anastomosed vessels and to visualize the blood flow and thrombus formation. This information could help surgeons improve surgical precision in this highly challenging anastomosis of rodent vessels with diameter less than 0.5 mm. Our imaging modality could not only detect accidental suture through the back wall of lumen but also promptly diagnose and predict thrombosis immediately after reperfusion. Hence, real-time OCT can assist in decision-making process intra-operatively and avoid post-operative complications.
Tolstov, Georgi P
1962-01-01
Richard A. Silverman's series of translations of outstanding Russian textbooks and monographs is well-known to people in the fields of mathematics, physics, and engineering. The present book is another excellent text from this series, a valuable addition to the English-language literature on Fourier series.This edition is organized into nine well-defined chapters: Trigonometric Fourier Series, Orthogonal Systems, Convergence of Trigonometric Fourier Series, Trigonometric Series with Decreasing Coefficients, Operations on Fourier Series, Summation of Trigonometric Fourier Series, Double Fourie
Directory of Open Access Journals (Sweden)
Guilherme Pavan de Moraes
Full Text Available Despite the recent advances on fine taxonomic discrimination in microorganisms, namely using molecular biology tools, some groups remain particularly problematic. Fine taxonomy of green algae, a widely distributed group in freshwater ecosystems, remains a challenge, especially for coccoid forms. In this paper, we propose the use of the Fourier Transform Infrared (FTIR spectroscopy as part of a polyphasic approach to identify and classify coccoid green microalgae (mainly order Sphaeropleales, using triplicated axenic cultures. The attenuated total reflectance (ATR technique was tested to reproducibility of IR spectra of the biological material, a primary requirement to achieve good discrimination of microalgal strains. Spectral window selection was also tested, in conjunction with the first derivative treatment of spectra, to determine which regions of the spectrum provided better separation and clustering of strains. The non-metric multidimensional scaling (NMDS, analysis of similarities (ANOSIM and hierarchical clusters (HCA, demonstrated a correct discrimination and classification of closely related strains of chlorophycean coccoid microalgae, with respect to currently accepted classifications. FTIR-ATR was highly reproducible, and provided an excellent discrimination at the strain level. The best separation was achieved by analyzing the spectral windows of 1500-1200 cm(-1 and 900-675 cm(-1, which differs from those used in previously studies for the discrimination of broad algal groups, and excluding spectral regions related to storage compounds, which were found to give poor discrimination. Furthermore, hierarchical cluster analyses have positioned the strains tested into clades correctly, reproducing their taxonomic orders and families. This study demonstrates that FTIR-ATR has great potential to complement classical approaches for fine taxonomy of coccoid green microalgae, though a careful spectrum region selection is needed.
de Moraes, Guilherme Pavan; Vieira, Armando Augusto Henriques
2014-01-01
Despite the recent advances on fine taxonomic discrimination in microorganisms, namely using molecular biology tools, some groups remain particularly problematic. Fine taxonomy of green algae, a widely distributed group in freshwater ecosystems, remains a challenge, especially for coccoid forms. In this paper, we propose the use of the Fourier Transform Infrared (FTIR) spectroscopy as part of a polyphasic approach to identify and classify coccoid green microalgae (mainly order Sphaeropleales), using triplicated axenic cultures. The attenuated total reflectance (ATR) technique was tested to reproducibility of IR spectra of the biological material, a primary requirement to achieve good discrimination of microalgal strains. Spectral window selection was also tested, in conjunction with the first derivative treatment of spectra, to determine which regions of the spectrum provided better separation and clustering of strains. The non-metric multidimensional scaling (NMDS), analysis of similarities (ANOSIM) and hierarchical clusters (HCA), demonstrated a correct discrimination and classification of closely related strains of chlorophycean coccoid microalgae, with respect to currently accepted classifications. FTIR-ATR was highly reproducible, and provided an excellent discrimination at the strain level. The best separation was achieved by analyzing the spectral windows of 1500–1200 cm−1 and 900–675 cm−1, which differs from those used in previously studies for the discrimination of broad algal groups, and excluding spectral regions related to storage compounds, which were found to give poor discrimination. Furthermore, hierarchical cluster analyses have positioned the strains tested into clades correctly, reproducing their taxonomic orders and families. This study demonstrates that FTIR-ATR has great potential to complement classical approaches for fine taxonomy of coccoid green microalgae, though a careful spectrum region selection is needed. PMID:25541701
Tsai, M.-T.; Chang, F.-Y.
2012-04-01
In this study, a swept-source optical coherence tomography (SS-OCT) system with a Fourier domain mode locking (FDML) laser is proposed for a dermatology study. The homemade FDML laser is one kind of frequency-sweeping light source, which can provide output power of >20 mW and an output spectrum of 65 nm in bandwidth centered at 1300 nm, enabling imaging with an axial resolution of 12 μm in the OCT system. To eliminate the forward scans from the laser output and insert the delayed backward scans, a Mach-Zehnder configuration is implemented. Compared with conventional frequency-sweeping light sources, the FDML laser can achieve much higher scan rates, as high as ˜240 kHz, which can provide a three-dimensional imaging rate of 4 volumes/s. Furthermore, the proposed high-speed SS-OCT system can provide three-dimensional (3D) images with reduced motion artifacts. Finally, a high-speed SS-OCT system is used to visualize hair follicles, demonstrating the potential of this technology as a tool for noninvasive diagnosis of alopecia.
Directory of Open Access Journals (Sweden)
Tong Lin
2015-01-01
Full Text Available Dry eye is highly prevalent and has a significant impact on quality of life. Acupuncture was found to be effective to treat dry eye. However, little was known about the effect of acupuncture on different subtypes of dry eye. The objective of this study was to investigate the applicability of tear meniscus assessment by Fourier-domain optical coherence tomography in the evaluation of acupuncture treatment response in dry eye patients and to explore the effect of acupuncture on different subtypes of dry eye compared with artificial tear treatment. A total of 108 dry eye patients were randomized into acupuncture or artificial tear group. Each group was divided into three subgroups including lipid tear deficiency (LTD, Sjögren syndrome dry eye (SSDE, and non-Sjögren syndrome dry eye (Non-SSDE for data analysis. After 4-week treatment, the low tear meniscus parameters including tear meniscus height (TMH, tear meniscus depth (TMD, and tear meniscus area (TMA in the acupuncture group increased significantly for the LTD and Non-SSDE subgroups compared with both the baseline and the control groups (all P values < 0.05, but not for the SSDE. Acupuncture provided a measurable improvement of the tear meniscus dimensions for the Non-SSDE and LTD patients, but not for the SSDE patients.
Directory of Open Access Journals (Sweden)
S. Catalan
2016-01-01
Full Text Available Purpose. To compare the characteristics of asymmetric keratoconic eyes and normal eyes by Fourier domain optical coherence tomography (OCT corneal mapping. Methods. Retrospective corneal and epithelial thickness OCT data for 74 patients were compared in three groups of eyes: keratoconic (n=22 and normal fellow eyes (n=22 in patients with asymmetric keratoconus and normal eyes (n=104 in healthy subjects. Areas under the curve (AUC of receiver operator characteristic (ROC curves for each variable were compared across groups to indicate their discrimination capacity. Results. Three variables were found to differ significantly between fellow eyes and normal eyes (all p<0.05: minimum corneal thickness, thinnest corneal point, and central corneal thickness. These variables combined showed a high discrimination power to differentiate fellow eyes from normal eyes indicated by an AUC of 0.840 (95% CI: 0.762–0.918. Conclusions. Our findings indicate that topographically normal fellow eyes in patients with very asymmetric keratoconus differ from the eyes of healthy individuals in terms of their corneal epithelial and pachymetry maps. This type of information could be useful for an early diagnosis of keratoconus in topographically normal eyes.
Guiding glaucoma laser surgery using Fourier-domain optical coherence tomography at 1.3 μm
Bayleyegn, Masreshaw D.; Makhlouf, Houssine; Crotti, Caroline; Plamann, Karsten; Dubois, Arnaud
2012-06-01
Glaucoma is a disease of the optic nerve that is usually associated with an increased internal pressure of the eye and can lead to a decreased vision and eventually blindness. It is the second leading cause of blindness worldwide with more than 80 million people affected and approximately 6 million blind. The standard clinical treatment for glaucoma, after unsuccessful administration of eyedrops and other treatments, is performing incisional surgery. However, due to post-surgical complications like scarring and wound healing, this conventional method has a global success rate of only about 60%. In comparison, as femtosecond laser surgery may be performed in volume and is a priori less invasive and less susceptible of causing scarring, glaucoma laser surgery could be a novel technique to supplement the conventional glaucoma surgery. We have been working on the development of a new tool for glaucoma treatment that uses an optimized femtosecond laser source centered at 1.65 μm wavelength for making the surgery and an imaging system based on optical coherence tomography (OCT) for guiding the laser surgery. In this proceeding, we present the results obtained so far on the development and utilization of Fourier-domain OCT imaging system working at 1.3 μm center wavelength for guiding the laser incision. Cross-sectional OCT image of pathological human cornea showing the Schlemm's canal, where the surgery is intended to be done, is presented. By coupling OCT imaging system with the laser incision system, we also demonstrate real-time imaging of femtosecond laser incision of cornea.
Institute of Scientific and Technical Information of China (English)
Ting-Chung Poon; Changhe Zhou; Toyohiko Yatagai; Byoungho Lee; Hongchen Zhai
2011-01-01
This feature issue is the fifth installment on digital holography since its inception four years ago.The last four issues have been published after the conclusion of each Topical Meeting "Digital Holography and 3D imaging (DH)." However,this feature issue includes a new key feature-Joint Applied Optics and Chinese Optics Letters Feature Issue.The DH Topical Meeting is the world's premier forum for disseminating the science and technology geared towards digital holography and 3D information processing.Since the meeting's inception in 2007,it has steadily and healthily grown to 130 presentations this year,held in Tokyo,Japan,May 2011.
Physics and agriculture: applied optics to plant fertilization and breeding
Diomandé, K.; Soro, P. A.; Zoro, G. H.; Krou, V. A.
2011-08-01
The economy of Côte d'Ivoire rests on the agriculture. In order to contribute to the development of this agriculture, we have oriented our research field on applied optics to agriculture. Then, our research concerns mainly the Laser Induced chlorophyll fluorescence in plants. A simple laser-induced fluorescence set up has been designed and built at the Laboratory of Crystallography and Molecular Physics (LaCPM) at the University of Cocody (Abidjan, COTE D'IVOIRE). With this home set up we first have studied the fluorescence spectra of the "chlorophyll" to characterize the potassium deficiency in oil palm (Elaeis guineensis Jacq,). However, we found that the results differed for samples along terraced plots. The study of this phenomenon called "border effect", has enabled us to realize that sampling should be done after two rows of safety in each plot. We also applied the Laser Induced chlorophyll fluorescence technique to improve the plant breeding. For this, we have characterized the rubber tree seedlings in nurseries. And so we have highlighted those sensible to drought and resistant ones.
Hossein-Javaheri, Nima; Molday, Laurie L.; Xu, Jing; Molday, Robert S.; Sarunic, Marinko V.
2009-02-01
Visualization of the internal structures of the retina is critical for clinical diagnosis and monitoring of pathology as well as for medical research investigating the root causes of retinal degeneration. Optical Coherence Tomography (OCT) is emerging as the preferred technique for non-contact sub-surface depth-resolved imaging of the retina. The high resolution cross sectional images acquired in vivo by OCT can be compared to histology to visually delineate the retinal layers. The recent demonstration of the significant sensitivity increase obtained through use of Fourier domain (FD) detection with OCT has been used to facilitate high speed scanning for volumetric reconstruction of the retina in software. The images acquired by OCT are purely structural, relying on refractive index differences in the tissue for contrast, and do not provide information on the molecular content of the sample. We have constructed a FDOCT prototype and combined it with a fluorescent Scanning Laser Ophthalmoscope (fSLO) to permit real time alignment of the field of view on the retina. The alignment of the FDOCT system to the specimen is crucial for the registration of measurements taken throughout longitudinal studies. In addition, fluorescence detection has been integrated with the SLO to enable the en face localization of a molecular contrast signal, which is important for retinal angiography, and also for detection of autofluorescence associated with some forms of retinal degeneration, for example autofluorescence lipofuscin accumulations are associated with Stargardt's Macular Dystrophy. The integrated FD OCT/fSLO system was investigated for imaging the retina of the mice in vivo.
Doblhoff-Dier, Veronika; Schmetterer, Leopold; Vilser, Walthard; Garhöfer, Gerhard; Gröschl, Martin; Rainer A. Leitgeb; René M. Werkmeister
2014-01-01
We present a system capable of measuring the total retinal blood flow using a combination of dual beam Fourier-domain Doppler optical coherence tomography with orthogonal detection planes and a fundus camera-based retinal vessel analyzer. Our results show a high degree of conformity of venous and arterial flows, which corroborates the validity of the measurements. In accordance with Murray’s law, the log-log regression coefficient between vessel diameter and blood flow was found to be ~3. The...
Tátrai, Erika; Ranganathan, Sudarshan; Ferencz, Mária; Debuc, Delia Cabrera; Somfai, Gábor Márk
2011-05-01
Purpose: To compare thickness measurements between Fourier-domain optical coherence tomography (FD-OCT) and time-domain OCT images analyzed with a custom-built OCT retinal image analysis software (OCTRIMA). Methods: Macular mapping (MM) by StratusOCT and MM5 and MM6 scanning protocols by an RTVue-100 FD-OCT device are performed on 11 subjects with no retinal pathology. Retinal thickness (RT) and the thickness of the ganglion cell complex (GCC) obtained with the MM6 protocol are compared for each early treatment diabetic retinopathy study (ETDRS)-like region with corresponding results obtained with OCTRIMA. RT results are compared by analysis of variance with Dunnett post hoc test, while GCC results are compared by paired t-test. Results: A high correlation is obtained for the RT between OCTRIMA and MM5 and MM6 protocols. In all regions, the StratusOCT provide the lowest RT values (mean difference 43 +/- 8 μm compared to OCTRIMA, and 42 +/- 14 μm compared to RTVue MM6). All RTVue GCC measurements were significantly thicker (mean difference between 6 and 12 μm) than the GCC measurements of OCTRIMA. Conclusion: High correspondence of RT measurements is obtained not only for RT but also for the segmentation of intraretinal layers between FD-OCT and StratusOCT-derived OCTRIMA analysis. However, a correction factor is required to compensate for OCT-specific differences to make measurements more comparable to any available OCT device.
Annual report of the Applied Optics Laboratory, 1985
International Nuclear Information System (INIS)
Research on optical fiber coupling by evanescent fields; fiber optics resonators; infrared lasers; remote measurement by laser; dephasing time in GaAs; heat transfer in thin silicon films; quantum wells; a picosecond electron source; modeling of III-V semiconductors; nonlinear optics properties of materials; femtosecond spectroscopy of the internal dynamics of proteins; computer simulation of protein dynamics; electron solvation; reactions of radicals in micella phase; sarcoma; and medical applications of pulsed lasers is presented
Annual report of the Applied Optics Laboratory, 1986
International Nuclear Information System (INIS)
Research on optical fiber coupling by evanescent fields; fiber optics resonators; infrared lasers; remote measurement by laser; dephasing time in GaAs; heat transfer in thin silicon films; quantum wells; a picosecond electron source; modeling of III-V semiconductors; nonlinear optics properties of materials; femtosecond spectroscopy of the internal dynamics of proteins; computer simulation of protein dynamics; electron solvation; reactions of radicals in micella phase; sarcoma; and medical applications of pulsed lasers is presented
Pilli, S; Lim, P; Zawadzki, R J; Choi, S S; Werner, J S; Park, S S
2011-01-01
Purpose The purpose of this study is to evaluate the macular morphological changes associated with idiopathic epiretinal membrane (iERM) using high-resolution Fourier-domain optical coherence tomography (FD-OCT), as they correlate with visual acuity and microperimetry (MP-1). Methods In all, 24 eyes (19 subjects) with iERM were imaged prospectively using FD-OCT with axial resolution of 4.5 μm and transverse resolution of 10 to 15 μm. MP-1 and Stratus OCT were carried out in a subset of eyes. Results The mean log of the minimum angle of resolution best-corrected visual acuity (BCVA) was 0.18±0.16 (range: −0.08 to 0.48, Snellen equivalent 20/15−1 to 20/60). ERM was visualized in all 24 eyes with FD-OCT and in 17 eyes (85%) of 20 eyes imaged with Stratus OCT. Although BCVA correlated with macular thickening in the central 1 mm sub-field of the Stratus ETDRS (P=0.0005) and macular volume (central 3 mm area) on FD-OCT (P<0.0001), macular thickening on thickness map and volume correlated poorly with decrease in macular sensitivity on MP-1 (P=0.16). On FD-OCT, foveal morphological changes correlated best with decrease in BCVA, the strongest being central foveal thickness (P<0.0001). Other significant changes included blurring of the foveal inner segment–outer segment (IS–OS) junction and/or Verhoeff's membrane, vitreal displacement of foveal outer nuclear layer and foveal detachment (P<0.05). Foveal IS–OS junction disruption was seen in 25% of eyes on Stratus OCT but in none of the eyes on FD-OCT. Conclusion FD-OCT allowed improved visualization of ERM and associated foveal morphological changes that correlated best with BCVA. Macular thickening correlated weakly with decreased macular function as assessed by MP-1. PMID:21436847
Fast frequency hopping codes applied to SAC optical CDMA network
Tseng, Shin-Pin
2015-06-01
This study designed a fast frequency hopping (FFH) code family suitable for application in spectral-amplitude-coding (SAC) optical code-division multiple-access (CDMA) networks. The FFH code family can effectively suppress the effects of multiuser interference and had its origin in the frequency hopping code family. Additional codes were developed as secure codewords for enhancing the security of the network. In considering the system cost and flexibility, simple optical encoders/decoders using fiber Bragg gratings (FBGs) and a set of optical securers using two arrayed-waveguide grating (AWG) demultiplexers (DeMUXs) were also constructed. Based on a Gaussian approximation, expressions for evaluating the bit error rate (BER) and spectral efficiency (SE) of SAC optical CDMA networks are presented. The results indicated that the proposed SAC optical CDMA network exhibited favorable performance.
Spectrophotometry with optical fibers applied to nuclear product processing
International Nuclear Information System (INIS)
Absorption spectrophotometry is widely used in laboratories for composition analysis and quality control of chemical processes. Using optical fibers for transmitting the light between the instrument and the process line allows to improve the safety and productivity of chemical processes, thanks to real time measurements. Such applications have been developed since 1975 in CEA for the monitoring of nuclear products. This has led to the development of fibers, measurement cells, and optical feedthrough sustaining high radiation doses, of fiber/spectrophotometer couplers, and finally of a photodiode array spectrophotometer optimized for being used together with optical fibers
Quantitative phase imaging via Fourier ptychographic microscopy
Ou, Xiaoze; Horstmeyer, Roarke; Yang, Changhuei; Zheng, Guoan
2013-01-01
Fourier ptychographic microscopy (FPM) is a recently developed imaging modality that uses angularly varying illumination to extend a system performance beyond the limit defined by its optical elements. The FPM technique applies a novel phase retrieval procedure to achieve both resolution enhancement and complex image recovery. In this letter, we compare FPM data to both theoretical prediction and phase-shifting digital holography measurement to show that its acquired phase maps are quantitati...
Analysis of modulated optical reflectance applied to magnetoelectric nanomaterials
International Nuclear Information System (INIS)
Structural and defectoscopic photothermal analysis of high spatial resolution is performed to sample ferromagnetic LSMO films. The modulated optical reflectance of the surface of the film in the laser focus is indicative of its magnetoelectric properties and is found to be proportional to the thermal variations of free carrier density. (authors)
International Nuclear Information System (INIS)
In this study, we have developed a phase-sensitive Fourier-domain optical coherence tomography system to simultaneously measure the in vivo inner ear vibrations in the hook area and second turn of the mouse cochlea. This technical development will enable measurement of intra-cochlear distortion products at ideal locations such as the distortion product generation site and reflection site. This information is necessary to un-mix the complex mixture of intra-cochlear waves comprising the DPOAE and thus leads to the non-invasive identification of the local region of cochlear damage
Ramamoorthy, Sripriya; Zhang, Yuan; Petrie, Tracy; Jacques, Steven; Wang, Ruikang; Nuttall, Alfred L.
2015-12-01
In this study, we have developed a phase-sensitive Fourier-domain optical coherence tomography system to simultaneously measure the in vivo inner ear vibrations in the hook area and second turn of the mouse cochlea. This technical development will enable measurement of intra-cochlear distortion products at ideal locations such as the distortion product generation site and reflection site. This information is necessary to un-mix the complex mixture of intra-cochlear waves comprising the DPOAE and thus leads to the non-invasive identification of the local region of cochlear damage.
Energy Technology Data Exchange (ETDEWEB)
Ramamoorthy, Sripriya [Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon (United States); Zhang, Yuan; Jacques, Steven [Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon (United States); Petrie, Tracy; Wang, Ruikang [Department of Bioengineering, University of Washington, Seattle, Washington (United States); Nuttall, Alfred L. [Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon (United States); Kresge Hearing Research Institute, The University of Michigan, Ann Arbor, Michigan (United States)
2015-12-31
In this study, we have developed a phase-sensitive Fourier-domain optical coherence tomography system to simultaneously measure the in vivo inner ear vibrations in the hook area and second turn of the mouse cochlea. This technical development will enable measurement of intra-cochlear distortion products at ideal locations such as the distortion product generation site and reflection site. This information is necessary to un-mix the complex mixture of intra-cochlear waves comprising the DPOAE and thus leads to the non-invasive identification of the local region of cochlear damage.
Gerth, C.; Zawadzki, RJ; Werner, JS; Heon, E
2007-01-01
Retinal dystrophy in Bardet–Biedl Syndrome (BBS) is caused by defective genes that are expressed within ciliated cells such as photoreceptors. The purpose of this study was to characterize and compare the retinal structure and lamination of two groups of patients, carrying mutations in BBS1 or BBS10. Eight patients with BBS (ages 11.9–28.5 years) and mutations in BBS1 (4/8) or BBS10 (4/8) were tested. A high-resolution hand-held probe Fourier-domain optical coherence tomography system (Fd-OCT...
Applied research of quantum information based on linear optics
International Nuclear Information System (INIS)
This thesis reports on outstanding work in two main subfields of quantum information science: one involves the quantum measurement problem, and the other concerns quantum simulation. The thesis proposes using a polarization-based displaced Sagnac-type interferometer to achieve partial collapse measurement and its reversal, and presents the first experimental verification of the nonlocality of the partial collapse measurement and its reversal. All of the experiments are carried out in the linear optical system, one of the earliest experimental systems to employ quantum communication and quantum information processing. The thesis argues that quantum measurement can yield quantum entanglement recovery, which is demonstrated by using the frequency freedom to simulate the environment. Based on the weak measurement theory, the author proposes that white light can be used to precisely estimate phase, and effectively demonstrates that the imaginary part of the weak value can be introduced by means of weak measurement evolution. Lastly, a nine-order polarization-based displaced Sagnac-type interferometer employing bulk optics is constructed to perform quantum simulation of the Landau-Zener evolution, and by tuning the system Hamiltonian, the first experiment to research the Kibble-Zurek mechanism in non-equilibrium kinetics processes is carried out in the linear optical system.
Applying fiber optical methods for toxicological testing in vitro
Maerz, Holger K.; Buchholz, Rainer; Emmrich, Frank; Fink, Frank; Geddes, Clive L.; Pfeifer, Lutz; Raabe, Ferdinand; Scheper, Thomas-Helmut; Ulrich, Elizabeth; Marx, Uwe
1999-04-01
The new medical developments, e.g. immune therapy, patient oriented chemotherapy or even gene therapy, create a questionable doubt to the further requirement of animal test. Instead the call for humanitarian reproductive in vitro models becomes increasingly louder. Pharmaceutical usage of in vitro has a long proven history. In cancer research and therapy, the effect of chemostatica in vitro in the so-called oncobiogram is being tested; but the assays do not always correlate with in vivo-like drug resistance and sensitivity. We developed a drug test system in vitro, feasible for therapeutic drug monitoring by the combination of tissue cultivation in hollow fiber bioreactors and fiber optic sensors for monitoring the pharmaceutical effect. Using two fiber optic sensors - an optical oxygen sensor and a metabolism detecting Laserfluoroscope, we were able to successfully monitor the biological status of tissue culture and the drug or toxic effects of in vitro pharmaceutical testing. Furthermore, we developed and patented a system for monitoring the effect of minor toxic compounds which can induce Sick Building Syndrome.
Applied research of quantum information based on linear optics
Energy Technology Data Exchange (ETDEWEB)
Xu, Xiao-Ye
2016-08-01
This thesis reports on outstanding work in two main subfields of quantum information science: one involves the quantum measurement problem, and the other concerns quantum simulation. The thesis proposes using a polarization-based displaced Sagnac-type interferometer to achieve partial collapse measurement and its reversal, and presents the first experimental verification of the nonlocality of the partial collapse measurement and its reversal. All of the experiments are carried out in the linear optical system, one of the earliest experimental systems to employ quantum communication and quantum information processing. The thesis argues that quantum measurement can yield quantum entanglement recovery, which is demonstrated by using the frequency freedom to simulate the environment. Based on the weak measurement theory, the author proposes that white light can be used to precisely estimate phase, and effectively demonstrates that the imaginary part of the weak value can be introduced by means of weak measurement evolution. Lastly, a nine-order polarization-based displaced Sagnac-type interferometer employing bulk optics is constructed to perform quantum simulation of the Landau-Zener evolution, and by tuning the system Hamiltonian, the first experiment to research the Kibble-Zurek mechanism in non-equilibrium kinetics processes is carried out in the linear optical system.
Gauthier, Robert C.
2013-10-01
The whispering-gallery mode space of a cylindrically symmetric silicon micro-optic bottle resonator with an axial Gaussian dielectric profile is theoretically examined. Maxwell's wave equation for the magnetic field, expressed in cylindrical coordinates, is converted into an eigenvalue problem using a Fourier-Bessel basis space to expand the inverse dielectric and field components. The order of the eigen-matrix is reduced using symmetry arguments and azimuthal order segmentation such that the matrix can be solved on a desktop PC. The eigen-space reveals that several states can be confined in the bottle region, whereas another set of states extends the axial length of the structure similar to ridge waveguide modes. The hollow core bottle is also presented as a design modification. The micro-optic bottle resonator structure size makes it directly compatible with silicon-based photonics increasing its potential as a key component in sensing, communication, and other applications.
Energy Technology Data Exchange (ETDEWEB)
Chen, Yu; Leach, Franklin E.; Kaiser, Nathan K.; Dang, Xibei; Ibrahim, Yehia M.; Norheim, Randolph V.; Anderson, Gordon A.; Smith, Richard D.; Marshall, Alan G.
2015-01-01
Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry provides unparalleled mass accuracy and resolving power.[1],[2] With electrospray ionization (ESI), ions are typically transferred into the mass spectrometer through a skimmer, which serves as a conductance-limiting orifice. However, the skimmer allows only a small fraction of incoming ions to enter the mass spectrometer. An ion funnel, originally developed by Smith and coworkers at Pacific Northwest National Laboratory (PNNL)[3-5] provides much more efficient ion focusing and transfer. The large entrance aperture of the ion funnel allows almost all ions emanating from a heated capillary to be efficiently captured and transferred, resulting in nearly lossless transmission.
Gerchberg-Saxton algorithm applied to a translational-variant optical setup.
Amézquita-Orozco, Ricardo; Mejía-Barbosa, Yobani
2013-08-12
The standard Gerchberg-Saxton (GS) algorithm is normally used to find the phase (measured on two different parallel planes) of a propagating optical field (usually far-field propagation), given that the irradiance information on those planes is known. This is mostly used to calculate the modulation function of a phase mask so that when illuminated by a plane wave, it produces a known far-field irradiance distribution, or the equivalent, to calculate the phase mask to be used in a Fourier optical system so the desired pattern is obtained on the image plane. There are some extensions of the GS algorithm that can be used when the transformations that describe the optical setup are non-unitary, for example the Yang-Gu algorithm, but these are usually demonstrated using nonunitary translational-invariant optical systems. In this work a practical approach to use the GS algorithm is presented, where raytracing together with the Huygens-Fresnel principle are used to obtain the transformations that describe the optical system, so the calculation can be made when the field is propagated through a translational-variant optical system (TVOS) of arbitrary complexity. Some numerical results are shown for a system where a microscope objective composed by 5 lenses is used. PMID:23938827
Apply lightweight recognition algorithms in optical music recognition
Pham, Viet-Khoi; Nguyen, Hai-Dang; Nguyen-Khac, Tung-Anh; Tran, Minh-Triet
2015-02-01
The problems of digitalization and transformation of musical scores into machine-readable format are necessary to be solved since they help people to enjoy music, to learn music, to conserve music sheets, and even to assist music composers. However, the results of existing methods still require improvements for higher accuracy. Therefore, the authors propose lightweight algorithms for Optical Music Recognition to help people to recognize and automatically play musical scores. In our proposal, after removing staff lines and extracting symbols, each music symbol is represented as a grid of identical M ∗ N cells, and the features are extracted and classified with multiple lightweight SVM classifiers. Through experiments, the authors find that the size of 10 ∗ 12 cells yields the highest precision value. Experimental results on the dataset consisting of 4929 music symbols taken from 18 modern music sheets in the Synthetic Score Database show that our proposed method is able to classify printed musical scores with accuracy up to 99.56%.
New Electronic Technology Applied in Flexible Organic Optical System
Directory of Open Access Journals (Sweden)
Andre F. S. Guedes
2014-02-01
Full Text Available The synthesis and application of new organic materials, nanostructured, for developing technology based on organic devices, have been the main focus of the scientific community. In recent years, the first polymeric electronics products have entered the market (organic semiconductor materials and there are some electrochromic devices among them that have been called smart windows, once they control the passage of light or heat through a closed environment as an ordinary window. The main functional aspect of electrochromic devices, when being used in architectural and automotive industry, is to control the passage of light and temperature with thermal and visual comfort. These devices can be flexible and very thin, not containing heavy metals, and formed by layers of organic material deposited in several architectures. In this study, the electro-deposition of organic materials in the Polyaniline, PANI case, which provide stability in optical and electrical parameters, was utilized with the means of developing prototypes of organic electrochromic devices. These materials were characterized by: ultraviolet-visible spectroscopy absorption (UV-Vis, measurement of thickness (MT and electrical measurements (EM. This study aims to establish the relationship between the thickness of the active layer and the value of the electrical resistivity of the layer deposited through an electro-deposition technique. The experimental results enabled the equating of the electrical resistivity related to the thickness of the deposited layer. The linear fit of these results has expressed the thickness of the conducting layer, α, and the lowest value of the electrical resistivity, β, associated with the gap between the valence band and the conduction band. Thus, the results have demonstrated that, when the layer of organic material is completely conductive, we may obtain the thickness of the organic material deposited on the substrate.
Galizzi, Gustavo E.; Cuadrado-Laborde, Christian
2015-10-01
In this work we study the joint transform correlator setup, finding two analytical expressions for the extensions of the joint power spectrum and its inverse Fourier transform. We found that an optimum efficiency is reached, when the bandwidth of the key code is equal to the sum of the bandwidths of the image plus the random phase mask (RPM). The quality of the decryption is also affected by the ratio between the bandwidths of the RPM and the input image, being better as this ratio increases. In addition, the effect on the decrypted image when the detection area is lower than the encrypted signal extension was analyzed. We illustrate these results through several numerical examples.
Photonic microsystems micro and nanotechnology applied to optical devices and systems
Solgaard, Olav
2009-01-01
""Photonic Microsystems: Micro and Nanotechnology Applied to Optical Devices and Systems"", describes MEMS technology and demonstrates how MEMS allow miniaturization, parallel fabrication, and efficient packaging of optics, as well as integration of optics and electronics. It shows how the characteristics of MEMS enable practical implementations of a variety of applications, including projection displays, fiber switches, interferometers, spectrometers. The book describes the phenomenon of Photonic crystals (nanophotonics) and demonstrates how Photonic crystals enable synthesis of materials wit
Optical Conductivity of Impurity-Doped Parabolic Quantum Wells in an Applied Electric Field
Institute of Scientific and Technical Information of China (English)
GUO Kang-Xian; CHEN Chuan-Yu
2005-01-01
The optical conductivity of impurity-doped parabolic quantum wells in an applied electric field is investigated with the memory-function approach, and the analytic expression for the optical conductivity is derived. With characteristic parameters pertaining to GaAs/Ga1-xAlxAs parabolic quantum wells, the numerical results are presented.It is shown that, the smaller the well width, the larger the peak intensity of the optical conductivity, and the more asymmetric the shape of the optical conductivity; the optical conductivity is more sensitive to the electric field, the electric field enhances the optical conductivity; when the dimension of the quantum well increases, the optical conductivity increases until it reaches a maximum value, and then decreases.
Doblhoff-Dier, Veronika; Schmetterer, Leopold; Vilser, Walthard; Garhöfer, Gerhard; Gröschl, Martin; Leitgeb, Rainer A.; Werkmeister, René M.
2014-01-01
We present a system capable of measuring the total retinal blood flow using a combination of dual beam Fourier-domain Doppler optical coherence tomography with orthogonal detection planes and a fundus camera-based retinal vessel analyzer. Our results show a high degree of conformity of venous and arterial flows, which corroborates the validity of the measurements. In accordance with Murray’s law, the log-log regression coefficient between vessel diameter and blood flow was found to be ~3. The blood’s velocity scaled linearly with the vessel diameter at higher diameters (> 60 µm), but showed a clear divergence from the linear dependence at lower diameters. Good agreement with literature data and the large range and high measurement sensitivity point to a high potential for further investigations. PMID:24575355
DEFF Research Database (Denmark)
Torzicky, Teresa; Marschall, Sebastian; Pircher, Michael;
2013-01-01
-dimensional data sets of healthy human volunteers show different polarization characteristics in the eye, such as depolarization in the retinal pigment epithelium and birefringence in retinal nerve fiber layer and sclera. The increased speed allows imaging of large volumes with reduced motion artifacts. Moreover......We present a novel, high-speed, polarization-sensitive, optical coherence tomography set-up for retinal imaging operating at a central wavelength of 1060 nm which was tested for in vivo imaging in healthy human volunteers. We use the system in combination with a Fourier domain mode locked laser......, averaging several two-dimensional frames allows the generation of high-definition B-scans without the use of an eye-tracking system. The increased penetration depth of the system, which is caused by the longer probing beam wavelength, is beneficial for imaging choroidal and scleral structures and allows...
Arnott, W P; Schmitt, C; Liu, Y; Hallett, J
1997-07-20
Infrared extinction optical depth (500-5000 cm(-1)) has been measured with a Fourier transform infrared spectrometer for clouds produced with an ultrasonic nebulizer. Direct measurement of the cloud droplet size spectra agree with size spectra retrieved from inversion of the extinction measurements. Both indicate that the range of droplet sizes is 1-14 mum. The retrieval was accomplished with an iterative algorithm that simultaneously obtains water-vapor concentration. The basis set of droplet extinction functions are computed once by using numerical integration of the Lorenz-Mie theory over narrow size bins, and a measured water-vapor extinction curve was used. Extinction and size spectra are measured and computed for both steady-state and dissipating clouds. It is demonstrated that anomalous diffraction theory produces relatively poor droplet size and synthetic extinction spectra and that extinction measurements are helpful in assessing the validity of various theories. Calculations of cloud liquid-water content from retrieved size distributions agree with a parameterization based on optical-depth measurements at a wave number of 906 cm(-1) for clouds that satisfy the size spectral range assumptions of the parameterization. Significance of droplet and vapor contribution to the total optical depth is used to evaluate the reliability of spectral inversions. PMID:18259335
International Nuclear Information System (INIS)
Fourier Transform Infrared (FTIR) reflectance spectroscopy has been implemented as a non-destructive, non-invasive, tool for the optical characterization of a set of c-plane InN single heteroepitaxial layers spanning a wide range of thicknesses (30–2000 nm). The c-plane (0001) InN epilayers were grown by plasma-assisted molecular beam epitaxy (PAMBE) on GaN(0001) buffer layers which had been grown on Al2O3(0001) substrates. It is shown that for arbitrary multilayers with homogeneous anisotropic layers having their principal axes coincident with the laboratory coordinates, a 2 × 2 matrix algebra based on a general transfer-matrix method (GTMM) is adequate to interpret their optical response. Analysis of optical reflectance in the far and mid infrared spectral range has been found capable to discriminate between the bulk, the surface and interface contributions of free carriers in the InN epilayers revealing the existence of electron accumulation layers with carrier concentrations in mid 1019 cm−3 at both the InN surface and the InN/GaN interface. The spectra could be fitted with a three-layer model, determining the different electron concentration and mobility values of the bulk and of the surface and the interface electron accumulation layers in the InN films. The variation of these values with increasing InN thickness could be also sensitively detected by the optical measurements. The comparison between the optically determined drift mobility and the Hall mobility of the thickest sample reveals a value of rH = 1.49 for the Hall factor of InN at a carrier concentration of 1.11 × 1019 cm−3 at 300°Κ.
Fourier analysis and synthesis tomography.
Energy Technology Data Exchange (ETDEWEB)
Wagner, Kelvin H. (University of Colorado at Boulder, Boulder, CO); Sinclair, Michael B.; Feldkuhn, Daniel (University of Colorado at Boulder, Boulder, CO)
2010-05-01
Most far-field optical imaging systems rely on a lens and spatially-resolved detection to probe distinct locations on the object. We describe and demonstrate a novel high-speed wide-field approach to imaging that instead measures the complex spatial Fourier transform of the object by detecting its spatially-integrated response to dynamic acousto-optically synthesized structured illumination. Tomographic filtered backprojection is applied to reconstruct the object in two or three dimensions. This technique decouples depth-of-field and working-distance from resolution, in contrast to conventional imaging, and can be used to image biological and synthetic structures in fluoresced or scattered light employing coherent or broadband illumination. We discuss the electronically programmable transfer function of the optical system and its implications for imaging dynamic processes. Finally, we present for the first time two-dimensional high-resolution image reconstructions demonstrating a three-orders-of-magnitude improvement in depth-of-field over conventional lens-based microscopy.
Chen, Yu; Leach, Franklin E.; Kaiser, Nathan K.; Dang, Xibei; Ibrahim, Yehia M.; Norheim, Randolph V.; Anderson, Gordon A.; Smith, Richard D.; Marshall, Alan G.
2014-01-01
Enhancements to the ion source and transfer optics of our 9.4 T FT-ICR mass spectrometer have resulted in improved ion transmission efficiency for more sensitive mass measurement of complex mixtures at the MS and MS/MS levels. The tube lens/skimmer has been replaced by a dual ion funnel and the following octopole by a quadrupole for reduced ion cloud radial expansion before transmission into a mass-selective quadrupole. The number of ions that reach the ICR cell is increased by an order of magnitude for the funnel/quadrupole relative to the tube lens/skimmer/octopole. PMID:25601704
Hassan, Moinuddin; Ilev, Ilko
2016-03-01
Ophthalmic Viscosurgical Devices (OVDs) in clinical setting are a major health risk factor for potential endotoxin contamination in the eye, due to their extensive applications in cataract surgery for space creation, stabilization and protection of intraocular tissue and intraocular lens (IOL) during implantation. Endotoxin contamination of OVDs is implicated in toxic anterior syndrome (TASS), a severe complication of cataract surgery that leads to intraocular damage and even blindness. Current standard methods for endotoxin contamination detection utilize rabbit assay or Limulus amoebocyte lysate (LAL) assays. These endotoxin detection strategies are extremely difficult for gel-like type devices such as OVDs. To overcome the endotoxin detection limitations in OVDs, we have developed an alternative optical detection methodology for label-free and real-time sensing of bacterial endotoxin in OVDs, based on fiber-optic Fourier transform infrared (FO-FTIR) transmission spectrometry in the mid-IR spectral range from 2.5 micron to 12 micron. Endotoxin contaminated OVD test samples were prepared by serial dilutions of endotoxins on OVDs. The major results of this study revealed two salient spectral peak shifts (in the regions 2925 to 2890 cm^-1 and 1125 to 1100 cm^-1), which are associated with endotoxin in OVDs. In addition, FO-FTIR experimental results processed using a multivariate analysis confirmed the observed specific peak shifts associated with endotoxin contamination in OVDs. Thus, employing the FO-FTIR sensing methodology integrated with a multivariate analysis could potentially be used as an alternative endotoxin detection technique in OVD.
Experimental scrambling and noise reduction applied to the optical encryption of QR codes.
Barrera, John Fredy; Vélez, Alejandro; Torroba, Roberto
2014-08-25
In this contribution, we implement two techniques to reinforce optical encryption, which we restrict in particular to the QR codes, but could be applied in a general encoding situation. To our knowledge, we present the first experimental-positional optical scrambling merged with an optical encryption procedure. The inclusion of an experimental scrambling technique in an optical encryption protocol, in particular dealing with a QR code "container", adds more protection to the encoding proposal. Additionally, a nonlinear normalization technique is applied to reduce the noise over the recovered images besides increasing the security against attacks. The opto-digital techniques employ an interferometric arrangement and a joint transform correlator encrypting architecture. The experimental results demonstrate the capability of the methods to accomplish the task. PMID:25321236
The fiber optics router apply to the control system of HIRFL-CSR
International Nuclear Information System (INIS)
The authors introduced a kind of Fiber Optic Router that we had designed specially applies to the engineering HIRFL-CSR (Heavy Ion Research Facility in Lanzhou). Including design principle, operational principle, and hardware construction, field of application. The router has standard communication interface such as RS232, RS485, Ethernet and Optics; setup of an optical communication network is simplified. It solved problems such as communication disturb. The requirements of control in the national great science engineering HIRFL-CSR are fulfilled. (authors)
Experiment definition phase shuttle laboratory LDRL-10.6 experiment. [applying optical communication
1975-01-01
The 10.6 microns laser data relay link (LDRL 10.6) program was directed to applying optical communications to NASA's wideband data transmission requirements through the 1980's. The LDRL consists of a transmitter on one or more low earth orbit satellites with an elliptical orbit satellite receivers. Topics discussed include: update of the LDRL design control table to detail the transmitter optical chain losses and to incorporate the change to a reflective beam pre-expander; continued examination of the link establishment sequence, including its dependence upon spacecraft stability; design of the transmitter pointing and tracking control system; and finalization of the transmitter brassboard optical and mechanical design.
Programs for high-speed Fourier, Mellin and Fourier-Bessel transforms
Ikhabisimov, D. K.; Debabov, A. S.; Kolosov, B. I.; Usikov, D. A.
1979-01-01
Several FORTRAN program modules for performing one-dimensional and two-dimensional discrete Fourier transforms, Mellin, and Fourier-Bessel transforms are described along with programs that realize the algebra of high speed Fourier transforms on a computer. The programs can perform numerical harmonic analysis of functions, synthesize complex optical filters on a computer, and model holographic image processing methods.
Directory of Open Access Journals (Sweden)
Rolle T
2011-07-01
Full Text Available Teresa Rolle, Cristina Briamonte, Daniela Curto, Federico Maria GrignoloEye Clinic, Section of Ophthalmology, Department of Clinical Physiopathology, University of Torino, Torino, ItalyAims: To evaluate the capability of Fourier-domain optical coherence tomography (FD-OCT to detect structural damage in patients with preperimetric glaucoma.Methods: A total of 178 Caucasian subjects were enrolled in this cohort study: 116 preperimetric glaucoma patients and 52 healthy subjects. Using three-dimensional FD-OCT, the participants underwent imaging of the ganglion cell complex (GCC and the optic nerve head. Sensitivity, specificity, likelihood ratios, and predictive values were calculated for all parameters at the first and fifth percentiles. Areas under the curves (AUCs were generated for all parameters and were compared (Delong test. For both the GCC and the optic nerve head protocols, the OR logical disjunction (Boolean logic operator was calculated.Results: The AUCs didn’t significantly differ. Macular global loss volume had the largest AUC (0.81. Specificities were high at both the fifth and first percentiles (up to 97%, but sensitivities were low, especially at the first percentile (55%–27%.Conclusion: Macular and papillary diagnostic accuracies did not differ significantly based on the 95% confidence interval. The computation of the Boolean OR operator has been found to boost diagnostic accuracy. Using the software-provided classification, sensitivity and diagnostic accuracy were low for both the retinal nerve fiber layer and the GCC scans. FD-OCT does not seem to be decisive for early detection of structural damage in patients with no functional impairment. This suggests that there is a need for analysis software to be further refined to enhance glaucoma diagnostic capability.Keywords: OCT, RNFL, GCC, diagnostic accuracy
Fourier transforms in spectroscopy
Kauppinen, Jyrki
2000-01-01
This modern approach to the subject is clearly and logically structured, and gives readers an understanding of the essence of Fourier transforms and their applications. All important aspects are included with respect to their use with optical spectroscopic data. Based on popular lectures, the authors provide the mathematical fundamentals and numerical applications which are essential in practical use. The main part of the book is dedicated to applications of FT in signal processing and spectroscopy, with IR and NIR, NMR and mass spectrometry dealt with both from a theoretical and practical poi
Rigi, Mohammed; Blieden, Lauren S; Nguyen, Donna; Chuang, Alice Z; Baker, Laura A; Bell, Nicholas P; Lee, David A; Mankiewicz, Kimberly A; Feldman, Robert M
2014-01-01
Purpose. To introduce a new anterior segment optical coherence tomography parameter, trabecular-iris circumference volume (TICV), which measures the integrated volume of the peripheral angle, and establish a reference range in normal, open angle eyes. Methods. One eye of each participant with open angles and a normal anterior segment was imaged using 3D mode by the CASIA SS-1000 (Tomey, Nagoya, Japan). Trabecular-iris space area (TISA) and TICV at 500 and 750 µm were calculated. Analysis of covariance was performed to examine the effect of age and its interaction with spherical equivalent. Results. The study included 100 participants with a mean age of 50 (±15) years (range 20-79). TICV showed a normal distribution with a mean (±SD) value of 4.75 µL (±2.30) for TICV500 and a mean (±SD) value of 8.90 µL (±3.88) for TICV750. Overall, TICV showed an age-related reduction (P = 0.035). In addition, angle volume increased with increased myopia for all age groups, except for those older than 65 years. Conclusions. This study introduces a new parameter to measure peripheral angle volume, TICV, with age-adjusted normal ranges for open angle eyes. Further investigation is warranted to determine the clinical utility of this new parameter. PMID:25210623
Directory of Open Access Journals (Sweden)
Mohammed Rigi
2014-01-01
Full Text Available Purpose. To introduce a new anterior segment optical coherence tomography parameter, trabecular-iris circumference volume (TICV, which measures the integrated volume of the peripheral angle, and establish a reference range in normal, open angle eyes. Methods. One eye of each participant with open angles and a normal anterior segment was imaged using 3D mode by the CASIA SS-1000 (Tomey, Nagoya, Japan. Trabecular-iris space area (TISA and TICV at 500 and 750 µm were calculated. Analysis of covariance was performed to examine the effect of age and its interaction with spherical equivalent. Results. The study included 100 participants with a mean age of 50 (±15 years (range 20–79. TICV showed a normal distribution with a mean (±SD value of 4.75 µL (±2.30 for TICV500 and a mean (±SD value of 8.90 µL (±3.88 for TICV750. Overall, TICV showed an age-related reduction (P=0.035. In addition, angle volume increased with increased myopia for all age groups, except for those older than 65 years. Conclusions. This study introduces a new parameter to measure peripheral angle volume, TICV, with age-adjusted normal ranges for open angle eyes. Further investigation is warranted to determine the clinical utility of this new parameter.
Rampersad, Nishanee; Hansraj, Rekha
2016-01-01
Purpose: To compare anterior and posterior segment parameters measured with the iVue-100 optical coherence tomography (OCT) in photopic and scotopic conditions. Methods: Central and peripheral corneal thickness, retinal nerve fiber layer and macula thickness were measured using the iVue-100 OCT in 47 healthy individuals at a higher education institution in photopic (958 lux) and scotopic (0.03 lux) conditions. Results: As the lighting conditions changed from scotopic to photopic, a significant change in pupil size was noted (P < 0.001). However, there was no significant difference in central corneal thickness measurements with this change in surrounding illumination with only the temporal peripheral corneal area showing a significant difference (3.44 μm thinner). No significant differences were found in the retinal nerve fiber layer thickness. A significant decrease in the reading was noted in only the inferior (P = 0.05) and temporal (P = 0.05) inner macula area. Conclusion: Change in the ambient lighting conditions does not result in a clinically significant difference in corneal, retinal nerve fiber layer, and macula thickness when measured with the iVue-100 OCT. PMID:27050349
Debnath, Lokenath
2012-07-01
The profound study of nature is the most fertile source of mathematical discoveries. Not only does this study, by offering a definite goal to research, have the advantage of excluding vague questions and futile calculations, but it is also a sure means of moulding analysis itself, and discerning those elements in it which it is still essential to know and which science ought to conserve. These fundamental elements are those which recur in all natural phenomena. Joseph Fourier pure mathematics enables us to discover the concepts and laws connecting them, which gives us the key to the understanding of the phenomena of nature. Albert Einstein This article deals with a brief biographical sketch of Joseph Fourier, his first celebrated work on analytical theory of heat, his first great discovery of Fourier series and Fourier transforms. Included is a historical development of Fourier series and Fourier transforms with their properties, importance and applications. Special emphasis is made to his splendid research contributions to mathematical physics, pure and applied mathematics and his unprecedented public service accomplishments in the history of France. This is followed by historical comments about the significant and major impact of Fourier analysis on mathematical physics, probability and mathematical statistics, mathematical economics and many areas of pure and applied mathematics including geometry, harmonic analysis, signal analysis, wave propagation and wavelet analysis. Special attention is also given to the Fourier integral formula, Brownian motion and stochastic processes and many examples of applications including isoparametric inequality, everywhere continuous but nowhere differentiable functions, Heisenberg uncertainty principle, Dirichlets' theorem on primes in arithmetic progression, the Poisson summation formula and solutions of wave and diffusion equations. It is also shown that Fourier coefficients c n (t) in the Fourier expansion of a scalar field
Xiao, Qing; Hou, Jue; Fu, Ling
2012-06-01
A Fourier domain optical coherence tomography (OCT) system with 1310 nm light was demonstrated to study inflammatory human skin and the skin coated with a moisturizer in vivo. By using a graphics processing unit (GPU), the display rate could reach 20 frames/s with 1000 A-scans contained in one image. The field of view (FOV) of the cross-sectional image is 7 mm in the lateral direction and the penetration depth is ˜1 mm in skin. The result shows that, in inflammatory skin, the epidermis became thicker and had a decreased scattering; furthermore, the region of the severe lesion present an uneven thickness of the epidermis compared with the peripheral area. For the result of a finger tip coated with the moisturizer, the antireflection effect was significant and the stratum corneum became more transparent. In this letter, we demonstrated that real-time display with a large FOV could enable screening of a large tissue area; thereby increasing the dermatologic diagnostic potential of the method by permitting a comparison of the lesion and the normal peripheral region.
Popp, Alexander; Wendel, Martina; Knels, Lilla; Koch, T.; Koch, Edmund
2006-01-01
In this feasibility study, Fourier domain optical coherence tomography (FDOCT) is used for visualizing the 3-D structure of fixated lung parenchyma and to capture real-time cross sectional images of the subpleural alveolar mechanics in a ventilated and perfused isolated rabbit lung. The compact and modular setup of the FDOCT system allows us to image the first 500 µm of subpleural lung parenchyma with a 3-D resolution of 16×16×8 µm (in air). During mechanical ventilation, real-time cross sectional FDOCT images visualize the inflation and deflation of alveoli and alveolar sacks (acini) in successive images of end-inspiratory and end-expiratory phase. The FDOCT imaging shows the relation of local alveolar mechanics to the setting of tidal volume (VT), peak airway pressure, and positive end-expiratory pressure (PEEP). Application of PEEP leads to persistent recruitment of alveoli and acini in the end-expiratory phase, compared to ventilation without PEEP where alveolar collapse and reinflation are observed. The imaging of alveolar mechanics by FDOCT will help to determine the amount of mechanical stress put on the alveolar walls during tidal ventilation, which is a key factor in understanding the development of ventilator induced lung injury (VILI).
Fast Numerical Nonlinear Fourier Transforms
Wahls, Sander
2014-01-01
The nonlinear Fourier transform, which is also known as the forward scattering transform, decomposes a periodic signal into nonlinearly interacting waves. In contrast to the common Fourier transform, these waves no longer have to be sinusoidal. Physically relevant waveforms are often available for the analysis instead. The details of the transform depend on the waveforms underlying the analysis, which in turn are specified through the implicit assumption that the signal is governed by a certain evolution equation. For example, water waves generated by the Korteweg-de Vries equation can be expressed in terms of cnoidal waves. Light waves in optical fiber governed by the nonlinear Schr\\"dinger equation (NSE) are another example. Nonlinear analogs of classic problems such as spectral analysis and filtering arise in many applications, with information transmission in optical fiber, as proposed by Yousefi and Kschischang, being a very recent one. The nonlinear Fourier transform is eminently suited to address them ...
Iizuka, Keigo
2008-01-01
Engineering Optics is a book for students who want to apply their knowledge of optics to engineering problems, as well as for engineering students who want to acquire the basic principles of optics. It covers such important topics as optical signal processing, holography, tomography, holographic radars, fiber optical communication, electro- and acousto-optic devices, and integrated optics (including optical bistability). As a basis for understanding these topics, the first few chapters give easy-to-follow explanations of diffraction theory, Fourier transforms, and geometrical optics. Practical examples, such as the video disk, the Fresnel zone plate, and many more, appear throughout the text, together with numerous solved exercises. There is an entirely new section in this updated edition on 3-D imaging.
Handbook of Fourier analysis & its applications
Marks, Robert J
2009-01-01
Fourier analysis has many scientific applications - in physics, number theory, combinatorics, signal processing, probability theory, statistics, option pricing, cryptography, acoustics, oceanography, optics and diffraction, geometry, and other areas. In signal processing and related fields, Fourier analysis is typically thought of as decomposing a signal into its component frequencies and their amplitudes. This practical, applications-based professional handbook comprehensively covers the theory and applications of Fourier Analysis, spanning topics from engineering mathematics, signal process
Quantitative phase imaging via Fourier ptychographic microscopy
Ou, Xiaoze; Yang, Changhuei; Zheng, Guoan
2013-01-01
Fourier ptychographic microscopy (FPM) is a recently developed imaging modality that uses angularly varying illumination to extend a system performance beyond the limit defined by its optical elements. The FPM technique applies a novel phase retrieval procedure to achieve both resolution enhancement and complex image recovery. In this letter, we compare FPM data to both theoretical prediction and phase-shifting digital holography measurement to show that its acquired phase maps are quantitative and artifact-free. We additionally explore the relationship between the achievable spatial and optical thickness resolution offered by a reconstructed FPM phase image. We conclude by demonstrating both enhanced visualization and the collection of otherwise unobservable sample information using FPM quantitative phase.
Mei, Zhe; Wu, Tsung-Feng; Pion-Tonachini, Luca; Qiao, Wen; Zhao, Chao; Liu, Zhiwen; Lo, Yu-Hwa
2011-01-01
An “optical space-time coding method” was applied to microfluidic devices to detect the forward and large angle light scattering signals for unlabelled bead and cell detection. Because of the enhanced sensitivity by this method, silicon pin photoreceivers can be used to detect both forward scattering (FS) and large angle (45–60°) scattering (LAS) signals, the latter of which has been traditionally detected by a photomultiplier tube. This method yields significant improvements in coefficients ...
Reflective Fourier ptychography
Pacheco, Shaun; Zheng, Guoan; Liang, Rongguang
2016-02-01
The Fourier ptychography technique in reflection mode has great potential applications in tissue imaging and optical inspection, but the current configuration either has a limitation on cut-off frequency or is not practical. By placing the imaging aperture stop outside the illumination path, the illumination numerical aperture (NA) can be greater than the imaging NA of the objective lens. Thus, the cut-off frequency achieved in the proposed optical system is greater than twice the objective's NA divided by the wavelength (2NAobj/λ), which is the diffraction limit for the cut-off frequency in an incoherent epi-illumination configuration. We experimentally demonstrated that the synthesized NA is increased by a factor of 4.5 using the proposed optical concept. The key advantage of the proposed system is that it can achieve high-resolution imaging over a large field of view with a simple objective. It will have a great potential for applications in endoscopy, biomedical imaging, surface metrology, and industrial inspection.
Müller, Stefan C.; Murk, Axel; Monstein, Christian; Kämpfer, Niklaus; Meyer, HAnsueli
2006-01-01
The Institute of Applied Physics observes middle atmospheric trace gases, such as ozone and water vapour, by microwave radiometry. We report on the comparison of measurements using a novel digital Fast Fourier Transform and accousto optical spectrometers. First tests made on ground are presented as well as first experience about the use of such spectrometers under aircraft conditions.
Experience at Los Alamos with use of the optical model for applied nuclear data calculations
International Nuclear Information System (INIS)
While many nuclear models are important in calculations of nuclear data, the optical model usually provides the basic underpinning of analyses directed at data for applications. An overview is given here of experience in the Nuclear Theory and Applications Group at Los Alamos National Laboratory in the use of the optical model for calculations of nuclear cross section data for applied purposes. We consider the direct utilization of total, elastic, and reaction cross sections for neutrons, protons, deuterons, tritons, 3He and alpha particles in files of evaluated nuclear data covering the energy range of 0 to 200 MeV, as well as transmission coefficients for reaction theory calculations and neutron and proton wave functions direct-reaction and Feshbach-Kerman-Koonin analyses. Optical model codes such as SCAT and ECIS and the reaction theory codes COMNUC, GNASH FKK-GNASH, and DWUCK have primarily been used in our analyses. A summary of optical model parameterizations from past analyses at Los Alamos will be given, including detailed tabulations of the parameters for a selection of nuclei
Experience at Los Alamos with use of the optical model for applied nuclear data calculations
International Nuclear Information System (INIS)
While many nuclear models are important in calculations of nuclear data, the optical model usually provides the basic underpinning of analyses directed at data for applications. An overview is given here of experience in the Nuclear Theory and Applications Group at Los Alamos National Laboratory in the use of the optical model for calculations of nuclear cross section data for applied purposes. We consider the direct utilization of total, elastic, and reaction cross sections for neutrons, protons, deuterons, tritons, 3He and alpha particles in files of evaluated nuclear data covering the energy range of 0 to 200 MeV, as well as transmission coefficients for reaction theory calculations and neutron and proton wave functions in direct-reaction and Feshbach-Kerman-Koonin analyses. Optical model codes such as SCAT and ECIS and the reaction theory codes COMNUC, GNASH, FKK-GNASH, and DWUCK have primarily been used in our analyses. A summary of optical model parameterizations from past analyses at Los Alamos will be given, including detailed tabulations of the parameters for a selection of nuclei. (author)
From hyperons to applied optics: open-quotes Winston Conesclose quotes during and after ZGS era
International Nuclear Information System (INIS)
This paper discusses developments in light collection which had their origin in efforts to construct high performance gas Cerenkov detectors for precision studies of hyperon beta decays at the ZGS. The resulting devices, know generally as open-quotes compound parabolic concentrators,close quotes have found applications ranging from nuclear and particle physics experiments to solar energy concentration, instrument illumination, and understanding the optics of visual receptors. Interest in these devices and the ideas underlying them stimulated the development of a substantial new subfield of physics: nonimaging optics. This progression provides an excellent example of some ways in which unanticipated - and often unanticipatable - applied science and open-quotes practicalclose quotes devices naturally emerge from first-rate basic science. The characteristics of this process suggest that the term open-quotes spinoffclose quotes commonly used to denote it is misleading and in need of replacement
1st International Conference on Opto-Electronics and Applied Optics
Bhattacharya, Indrani
2015-01-01
The Proceedings of First International Conference on Opto-Electronics and Applied Optics 2014, IEM OPTRONIX 2014 presents the research contributions presented in the conference by researchers from both India and abroad. Contributions from established scientists as well as students are included. The book is organized to enable easy access to various topics of interest. The first part includes the Keynote addresses by Phillip Russell, Max Planck Institute of the Light Sciences, Erlangen, Germany and Lorenzo Pavesi, University of Trento, Italy. The second part focuses on the Plenary Talks given by eminent scientists, namely, Azizur Rahman, City University London, London; Bishnu Pal, President, The Optical Society of India; Kamakhya Ghatak, National Institute of Technology, Agartala; Kehar Singh, Former Professor, India Institute of Technology Delhi; Mourad Zghal, SUPCOM, University of Carthage, Tunisia; Partha Roy Chaudhuri, IIT Kharagpur; S K. Bhadra, CSIR-Central Glass and Ceramic Research Institute, Kol...
Optical dating results of beachrock, eolic dunes and sediments applied to sea-level changes study
International Nuclear Information System (INIS)
Quartz and feldspar crystals were selected from the samples as eolic dunes, beach-rock and marine terraces, all collected in the coast area of Paraiba State, located in northeastern Brazil, in order to obtain ages of deposition of the sediments. It is a systematic study in the area. The results of the ages will be used in local sea-level changes study and a correlation between highstands of marine oxygen-isotopes stages will be made. Optically stimulated luminescence and thermoluminescence have been measured and the regeneration method with multiple aliquot protocol was applied to obtain the paleodose values. Preliminaries ages spanning 3.2-229 kyr were evaluated
Massaro, Alessandro
2012-01-01
Optoelectronics--technology based on applications light such as micro/nano quantum electronics, photonic devices, laser for measurements and detection--has become an important field of research. Many applications and physical problems concerning optoelectronics are analyzed in Optical Waveguiding and Applied Photonics.The book is organized in order to explain how to implement innovative sensors starting from basic physical principles. Applications such as cavity resonance, filtering, tactile sensors, robotic sensor, oil spill detection, small antennas and experimental setups using lasers are a
Subharmonic Fourier domain mode locking.
Eigenwillig, Christoph M; Wieser, Wolfgang; Biedermann, Benjamin R; Huber, Robert
2009-03-15
We demonstrate a subharmonically Fourier domain mode-locked wavelength-swept laser source with a substantially reduced cavity fiber length. In contrast to a standard Fourier domain mode-locked configuration, light is recirculated repetitively in the delay line with the optical bandpass filter used as switch. The laser has a fundamental optical round trip frequency of 285 kHz and can be operated at integer fractions thereof (subharmonics). Sweep ranges up to 95 nm full width centred at 1317 nm are achieved at the 1/5th subharmonic. A maximum sensitivity of 116 dB and an axial resolution of 12 microm in air are measured at an average sweep power of 12 mW. A sensitivity roll-off of 11 dB over 4 mm and 25 dB over 10 mm is observed and optical coherence tomography imaging is demonstrated. Besides the advantage of a reduced fiber length, subharmonic Fourier domain mode locking (shFDML) enables simple scaling of the sweep speed by extracting light from the delay part of the resonator. A sweep rate of 570 kHz is achieved. Characteristic features of shFDML operation, such as power leakage during fly-back and cw breakthrough, are investigated. PMID:19282912
Matrix Fourier transform with discontinuous coefficients
Yaremko, O.; Zhuravleva, E.
2013-01-01
The explicit construction of direct and inverse Fourier's vector transform with discontinuous coefficients is presented. The technique of applying Fourier's vector transform with discontinuous coefficients for solving problems of mathematical physics.Multidimensional integral transformations with non-separated variables for problems with discontinuous coefficients are constructed in this work. The coefficient discontinuities focused on the of parallel hyperplanes. In this work explicit formul...
International Nuclear Information System (INIS)
According to a scalar theory of diffraction, light propagation can be expressed by two-dimensional fractional order Fourier transforms. Since the fractional Fourier transform of a chirp function is a Dirac distribution, focusing a light beam is optically achieved by using a diffractive screen whose transmission function is a two-dimensional chirp function. This property is applied to designing Fresnel microlenses, and the orders of the involved Fourier fractional transforms depend on diffraction distances as well as on emitter and receiver radii of curvature. If the emitter is astigmatic (with two principal radii of curvature), the diffraction phenomenon involves two one-dimensional fractional Fourier transforms whose orders are different. This degree of freedom allows us to design microlenses that can focus astigmatic Gaussian beams, as produced by a line-shaped laser diode source.
Energy Technology Data Exchange (ETDEWEB)
Patino, A [Universidad Technologica de Bolivar, Cartagena de Indias (Colombia); Durand, P-E; Fogret, E; Pellat-Finet, P, E-mail: alberto.patino-vanegas@univ-ubs.fr [Laboratoire de mathematiques et applications des mathematiques, Universite de Bretagne Sud, B P 92116, 56321 Lorient cedex (France)
2011-01-01
According to a scalar theory of diffraction, light propagation can be expressed by two-dimensional fractional order Fourier transforms. Since the fractional Fourier transform of a chirp function is a Dirac distribution, focusing a light beam is optically achieved by using a diffractive screen whose transmission function is a two-dimensional chirp function. This property is applied to designing Fresnel microlenses, and the orders of the involved Fourier fractional transforms depend on diffraction distances as well as on emitter and receiver radii of curvature. If the emitter is astigmatic (with two principal radii of curvature), the diffraction phenomenon involves two one-dimensional fractional Fourier transforms whose orders are different. This degree of freedom allows us to design microlenses that can focus astigmatic Gaussian beams, as produced by a line-shaped laser diode source.
Oversampling analysis in fractional Fourier domain
Institute of Scientific and Technical Information of China (English)
ZHANG Feng; TAO Ran; WANG Yue
2009-01-01
Oversampling is widely used in practical applications of digital signal processing. As the fractional Fourier transform has been developed and applied in signal processing fields, it is necessary to consider the oversampling theorem in the fractional Fourier domain. In this paper, the oversampling theorem in the fractional Fourier domain is analyzed. The fractional Fourier spectral relation between the original oversampled sequence and its subsequences is derived first, and then the expression for exact reconstruction of the missing samples in terms of the subsequences is obtained. Moreover, by taking a chirp signal as an example, it is shown that, reconstruction of the missing samples in the oversampled signal Is suitable in the fractional Fourier domain for the signal whose time-frequency distribution has the minimum support in the fractional Fourier domain.
Compact Fourier transform spectrometer without moving parts
Huang, Chu-Yu; Estroff, B.; Wang, Wei-Chih
2012-04-01
Fourier transform spectroscopy (FTS) is a potent analytical tool for chemical and biological analysis, but is limited by system size, expense, and robustness. To make FTS technology more accessible, we present a compact, inexpensive FTS system based on a novel liquid crystal (LC) interferometer. This design is unique because the optical path difference (OPD) is controlled by voltage applied to the LC cell. The OPD is further improved by reflecting the polarized incident light through the LC several times before reaching the second polarizer and measurement. This paper presents the theoretical model and numerical simulations for the liquid crystal Fourier transform spectrometer (LCFTS), and experimental results from the prototype. Based on the experimental results, the LCFTS performs in accordance with the theoretical predictions, achieving a maximum OPD of 210μm and a resolution of 1nm at a wavelength of 630nm. The instrumental response refresh rate is just under 1 second. Absorbance measurements were conducted for single and mixed solutions of deionized water and isopropyl alcohol, demonstrating agreement with a commercial system and literature values. We also present the LCFTS transmission spectra for varying concentrations of potassium permanganate to show system sensitivity.
A novel optical calorimetry dosimetry approach applied to an HDR Brachytherapy source
International Nuclear Information System (INIS)
The technique of Digital Holographic Interferometry (DHI) is applied to the measurement of radiation absorbed dose distribution in water. An optical interferometer has been developed that captures the small variations in the refractive index of water due to the radiation induced temperature increase ΔT. The absorbed dose D is then determined with high temporal and spatial resolution using the calorimetric relation D=cΔT (where c is the specific heat capacity of water). The method is capable of time resolving 3D spatial calorimetry. As a proof-of-principle of the approach, a prototype DHI dosimeter was applied to the measurement of absorbed dose from a High Dose Rate (HDR) Brachytherapy source. Initial results are in agreement with modelled doses from the Brachyvision treatment planning system, demonstrating the viability of the system for high dose rate applications. Future work will focus on applying corrections for heat diffusion and geometric effects. The method has potential to contribute to the dosimetry of diverse high dose rate applications which require high spatial resolution such as microbeam radiotherapy (MRT) or small field proton beam dosimetry but may potentially also be useful for interface dosimetry.
Weighted Fourier and Fourier-Stieltjes Algebras
Directory of Open Access Journals (Sweden)
Amin Mahmoodi
2010-10-01
Full Text Available Let $G$ be a locally compact group and $omega$ be a symmetric weight function on $G$. We define a co-product $Gamma_omega$ on the weighted algebra $L^infty(G, omega^{-1}$ of essentially $omega$-bounded Borel measurable functions on $G$ and show that $L^infty(G, omega^{-1}$ becomes a Kac algebra with natural co-inverse $kappa_omega$ and Haar weight $phi_omega$. We use the machinery of Kac algebras to introduce the weighted Fourier and Fourier-Stieltjes algebra $ A(G,omega^{-1}$ and $ B(G,omega^{-1}$ of $G$.
Weighted Fourier and Fourier-Stieltjes Algebras
Amin Mahmoodi
2010-01-01
Let $G$ be a locally compact group and $omega$ be a symmetric weight function on $G$. We define a co-product $Gamma_omega$ on the weighted algebra $L^infty(G, omega^{-1})$ of essentially $omega$-bounded Borel measurable functions on $G$ and show that $L^infty(G, omega^{-1})$ becomes a Kac algebra with natural co-inverse $kappa_omega$ and Haar weight $phi_omega$. We use the machinery of Kac algebras to introduce the weighted Fourier and Fourier-Stieltjes algebra $ A(G,omega^{-1})$ and $ B(G,o...
Abdulhalim, I.
2007-06-01
Optical scatterometry is being used as a powerful technique for measurement of sub-wavelength periodic structures. It is based on measuring the scattered signal and solving the inverse scattering problem. For periodic nano-arrays with feature size less than 100nm, it is possible to simplify the electromagnetic simulations using the Rytov near quasi-static approximation valid for feature periods only few times less than the wavelength. This is shown to be adequate for the determination of the structure parameters from the zero order reflected or transmitted waves and their polarization or ellipsometric properties. The validity of this approach is applied to lamellar nano-scale grating photo-resist lines on Si substrate. Formulation for structures containing anisotropic multilayers is presented using the 4x4 matrix approach.
Mei, Zhe; Wu, Tsung-Feng; Pion-Tonachini, Luca; Qiao, Wen; Zhao, Chao; Liu, Zhiwen; Lo, Yu-Hwa
2011-09-01
An "optical space-time coding method" was applied to microfluidic devices to detect the forward and large angle light scattering signals for unlabelled bead and cell detection. Because of the enhanced sensitivity by this method, silicon pin photoreceivers can be used to detect both forward scattering (FS) and large angle (45-60°) scattering (LAS) signals, the latter of which has been traditionally detected by a photomultiplier tube. This method yields significant improvements in coefficients of variation (CV), producing CVs of 3.95% to 10.05% for FS and 7.97% to 26.12% for LAS with 15 μm, 10 μm, and 5 μm beads. These are among the best values ever demonstrated with microfluidic devices. The optical space-time coding method also enables us to measure the speed and position of each particle, producing valuable information for the design and assessment of microfluidic lab-on-a-chip devices such as flow cytometers and complete blood count devices. PMID:21915241
International Nuclear Information System (INIS)
The linear and nonlinear optical absorption as well as the linear and nonlinear corrections to the refractive index are calculated in a disc shaped quantum dot under the effect of an external magnetic field and parabolic and inverse square confining potentials. The exact solutions for the two-dimensional motion of the conduction band electrons are used as the basis for a perturbation-theory treatment of the effect of a static applied electric field. In general terms, the variation of one of the different potential energy parameters – for a fixed configuration of the remaining ones – leads to either blueshifts or redshifts of the resonant peaks as well as to distinct rates of change for their amplitudes. -- Highlights: • Optical absorption and corrections to the refractive in quantum dots. • Electric and magnetic field and parabolic and inverse square potentials. • Perturbation-theory treatment of the effect of the electric field. • Induced blueshifts or redshifts of the resonant peaks are studied. • Evolution of rates of change for amplitudes of resonant peaks
Didactic toy for teaching the Fourier principle
Medina-Villanueva, Miguel; Medina-Tamez, Victor; Medina-Tamez, Javier; Garcia-Mederez, Adrian
2002-11-01
The mathematical tool of Fourier analysis is used in many areas like vibrations, communications, optics, electronics, etc. The understanding of this subject sometimes causes frustration in students. The main purpose of this presentation is to propose a didactic toy that calculates the harmonic magnitudes through the discrete values of analog periodic signals. This device shows the rotative vectors in a physical way that makes the principle of Fourier understandable.
A Student's Guide to Fourier Transforms - 2nd Edition
James, J. F.
2002-09-01
Fourier transform theory is of central importance in a vast range of applications in physical science, engineering, and applied mathematics. This new edition of a successful student text provides a concise introduction to the theory and practice of Fourier transforms, using qualitative arguments wherever possible and avoiding unnecessary mathematics. After a brief description of the basic ideas and theorems, the power of the technique is then illustrated by referring to particular applications in optics, spectroscopy, electronics and telecommunications. The rarely discussed but important field of multi-dimensional Fourier theory is covered, including a description of computer-aided tomography (CAT-scanning). The final chapter discusses digital methods, with particular attention to the fast Fourier transform. Throughout, discussion of these applications is reinforced by the inclusion of worked examples. The book assumes no previous knowledge of the subject, and will be invaluable to students of physics, electrical and electronic engineering, and computer science. Expanded to include more emphasis on applications An established successful textbook for undergraduate and graduate students Includes worked examples and copious diagrams throughout
Compact Microwave Fourier Spectrum Analyzer
Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry
2009-01-01
A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.
Applying new data-entropy and data-scatter methods for optical digital signal analysis
McMillan, N. D.; Egan, J.; Denieffe, D.; Riedel, S.; Tiernan, K.; McGowan, G.; Farrell, G.
2005-06-01
This paper introduces for the first time a numerical example of the data-entropy 'quality-budget' method. The paper builds on an earlier theoretical investigation into the application of this information theory approach for opto-electronic system engineering. Currently the most widely used way of analysing such a system is with the power budget. This established method cannot however integrate noise of different generic types. The traditional power budget approach is not capable of allowing analysis of a system with different noise types and specifically providing a measure of signal quality. The data-entropy budget first introduced by McMillan and Reidel on the other hand is able to handle diverse forms of noise. This is achieved by applying the dimensionless 'bit measure' in a quality-budget to integrate the analysis of all types of losses. This new approach therefore facilitates the assessment of both signal quality and power issues in a unified way. The software implementation of data-entropy has been utilised for testing on a fiber optic network. The results of various new quantitative data-entropy measures on the digital system are given and their utility discussed. A new data mining technique known as data-scatter also introduced by McMillan and Reidel provides a useful visualisation of the relationships between data sets and is discussed. The paper ends by giving some perspective on future work in which the data-entropy technique, providing the objective difference measure on the signals, and data-scatter technique, providing qualitative information on the signals, are integrated together for optical communication applications.
From "Dirac combs" to Fourier-positivity
Giraud, Bertrand G
2015-01-01
Motivated by various problems in physics and applied mathematics, we look for constraints and properties of real Fourier-positive functions, i.e. with positive Fourier transforms. Properties of the "Dirac comb" distribution and of its tensor products in higher dimensions lead to Poisson resummation, allowing for a useful approximation formula of a Fourier transform in terms of a limited number of terms. A connection with the Bochner theorem on positive definiteness of Fourier-positive functions is discussed. As a practical application, we find simple and rapid analytic algorithms for checking Fourier-positivity in 1- and (radial) 2-dimensions among a large variety of real positive functions. This may provide a step towards a classification of positive positive-definite functions.
Generalized Fourier-grid R-matrix theory: a discrete Fourier-Riccati-Bessel transform approach
International Nuclear Information System (INIS)
We present the latest developments in the Fourier-grid R-matrix theory of scattering. These developments are based on the generalized Fourier-grid formalism and use a new type of extended discrete Fourier transform: the discrete Fourier-Riccati-Bessel transform. We apply this new R-matrix approach to problems of potential scattering, to demonstrate how this method reduces computational effort by incorporating centrifugal effects into the representation. As this technique is quite new, we have hopes to broaden the formalism to many types of problems. (author)
International Nuclear Information System (INIS)
In this paper the effect of the laser field on the nonlinear optical properties of a square quantum well under the applied electric field is investigated theoretically. The calculations are performed in saturation limit using the density matrix formalism and the effective mass approach. Our results show that the laser field considerably effects the confining potential of the quantum well and thus the nonlinear optical properties.
Bejan, Doina; Niculescu, Ecaterina Cornelia
2016-06-01
We investigated the combined effects of a non-resonant intense laser field and a static electric field on the electronic structure and the nonlinear optical properties (absorption, optical rectification) of a GaAs asymmetric double quantum dot under a strong probe field excitation. The calculations were performed within the compact density-matrix formalism under steady state conditions using the effective mass approximation. Our results show that: (i) the electronic structure and optical properties are sensitive to the dressed potential; (ii) under applied electric fields, an increase of the laser intensity induces a redshift of the optical absorption and rectification spectra; (iii) the augment of the electric field strength leads to a blueshift of the spectra; (iv) for high electric fields the optical spectra show a shoulder-like feature, related with the occurrence of an anti-crossing between the two first excited levels.
Energy Technology Data Exchange (ETDEWEB)
Ansari, Mohammad Ali, E-mail: m_ansari@sbu.ac.ir; Mohajerani, Ezeddin
2014-08-14
The accuracy of diffuse optical tomography (DOT) highly depends on two important factors: first, the knowledge of the tissue optical heterogeneities for accurate modeling of light propagation, and second, the uniqueness of reconstructed values of optical properties. Previous studies illustrated that the inverse problem associated with steady-state DOT does not have unique solutions. In this study, we propose a simple method that can be applied to improve this challenging problem of steady-state DOT. In this method, we study the propagation of photons through compressed breast phantoms. The applied mechanical pressure can change the values of optical properties and this pressure dependence of optical properties as a set of constraint equations can be used to improve the inverse problem. The applied pressure can help us to restrict the distribution of possible values of depth and radius of defect inside breast phantom reconstructed by inverse problem. - Highlights: • An approach to estimate the unique solution for steady-state diffuse optical tomography. • Generate a number of constraint equation for solving the regularized inverse problem. • The efficiency of this method is experimentally tested.
Energy Technology Data Exchange (ETDEWEB)
Correa, J.D. [Departamento de Ciencias Básicas, Universidad de Medellín, Medellín (Colombia); Mora-Ramos, M.E. [Centro de Investigación en Ciencias, Instituto de Ciencias Básicas y Aplicadas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)
2015-09-01
A study on the effects of an externally applied electric field on the linear optical absorption and relative refractive index change associated with transitions between off-center donor impurity states in laterally coupled quantum dot-ring system is reported. Electron states are calculated within the effective mass and parabolic band approximations by means of an exact diagonalization procedure. The states and the optical response in each case show significant sensitivity to the geometrical distribution of confining energies as well as to the strength of the applied field.
International Nuclear Information System (INIS)
A study on the effects of an externally applied electric field on the linear optical absorption and relative refractive index change associated with transitions between off-center donor impurity states in laterally coupled quantum dot-ring system is reported. Electron states are calculated within the effective mass and parabolic band approximations by means of an exact diagonalization procedure. The states and the optical response in each case show significant sensitivity to the geometrical distribution of confining energies as well as to the strength of the applied field
Plasma Spectrochemistry with a Fourier Transform Spectrometer.
Manning, Thomas Joseph John
1990-01-01
This dissertation can be interpreted as being two-dimensional. The first dimension uses the Los Alamos Fourier Transform Spectrometer to uncover various physical aspects of a Inductively Coupled Plasma. The limits of wavenumber accuracy and resolution are pushed to measure line shifts and line profiles in an Inductively Coupled Argon Plasma. This is new physical information that the plasma spectroscopy community has been seeking for several years. Other plasma spectroscopy carried out includes line profile studies, plasma diagnostics, and exact identification of diatomic molecular spectra. The second aspect of the dissertation involves studies of light sources for Fourier Transform Spectroscopy. Sources developed use an inductively coupled plasma (ICP) power supply. New sources (neon ICP, closed cell ICP, and helium ICP) were developed and new methods to enhance the performance and understand a Fourier Transform Spectrometer were studied including a novel optical filter, a spectrum analyzer to study noises, and a standard to calibrate and evaluate a Fourier Transform Spectrometer.
Boriakoff, Valentin
1994-01-01
The goal of this project was the feasibility study of a particular architecture of a digital signal processing machine operating in real time which could do in a pipeline fashion the computation of the fast Fourier transform (FFT) of a time-domain sampled complex digital data stream. The particular architecture makes use of simple identical processors (called inner product processors) in a linear organization called a systolic array. Through computer simulation the new architecture to compute the FFT with systolic arrays was proved to be viable, and computed the FFT correctly and with the predicted particulars of operation. Integrated circuits to compute the operations expected of the vital node of the systolic architecture were proven feasible, and even with a 2 micron VLSI technology can execute the required operations in the required time. Actual construction of the integrated circuits was successful in one variant (fixed point) and unsuccessful in the other (floating point).
Harmonic functions on groups and Fourier algebras
Chu, Cho-Ho
2002-01-01
This research monograph introduces some new aspects to the theory of harmonic functions and related topics. The authors study the analytic algebraic structures of the space of bounded harmonic functions on locally compact groups and its non-commutative analogue, the space of harmonic functionals on Fourier algebras. Both spaces are shown to be the range of a contractive projection on a von Neumann algebra and therefore admit Jordan algebraic structures. This provides a natural setting to apply recent results from non-associative analysis, semigroups and Fourier algebras. Topics discussed include Poisson representations, Poisson spaces, quotients of Fourier algebras and the Murray-von Neumann classification of harmonic functionals.
Fourier transformation for pedestrians
Butz, Tilman
2015-01-01
This book is an introduction to Fourier Transformation with a focus on signal analysis, based on the first edition. It is well suited for undergraduate students in physics, mathematics, electronic engineering as well as for scientists in research and development. It gives illustrations and recommendations when using existing Fourier programs and thus helps to avoid frustrations. Moreover, it is entertaining and you will learn a lot unconsciously. Fourier series as well as continuous and discrete Fourier transformation are discussed with particular emphasis on window functions. Filter effects of digital data processing are illustrated. Two new chapters are devoted to modern applications. The first deals with data streams and fractional delays and the second with the back-projection of filtered projections in tomography. There are many figures and mostly easy to solve exercises with solutions.
Digital Fourier analysis fundamentals
Kido, Ken'iti
2015-01-01
This textbook is a thorough, accessible introduction to digital Fourier analysis for undergraduate students in the sciences. Beginning with the principles of sine/cosine decomposition, the reader walks through the principles of discrete Fourier analysis before reaching the cornerstone of signal processing: the Fast Fourier Transform. Saturated with clear, coherent illustrations, "Digital Fourier Analysis - Fundamentals" includes practice problems and thorough Appendices for the advanced reader. As a special feature, the book includes interactive applets (available online) that mirror the illustrations. These user-friendly applets animate concepts interactively, allowing the user to experiment with the underlying mathematics. For example, a real sine signal can be treated as a sum of clockwise and counter-clockwise rotating vectors. The applet illustration included with the book animates the rotating vectors and the resulting sine signal. By changing parameters such as amplitude and frequency, the reader ca...
Generalized Fourier transforms classes
DEFF Research Database (Denmark)
Berntsen, Svend; Møller, Steen
2002-01-01
The Fourier class of integral transforms with kernels $B(\\omega r)$ has by definition inverse transforms with kernel $B(-\\omega r)$. The space of such transforms is explicitly constructed. A slightly more general class of generalized Fourier transforms are introduced. From the general theory foll...... follows that integral transform with kernels which are products of a Bessel and a Hankel function or which is of a certain general hypergeometric type have inverse transforms of the same structure....
Fractional Fourier transform of Lorentz beams
Institute of Scientific and Technical Information of China (English)
Zhou Guo-Quan
2009-01-01
This paper introduces Lorentz beams to describe certain laser sources that produce highly divergent fields. The fractional Fourier transform (FRFT) is applied to treat the propagation of Lorentz beams. Based on the definition of convolution and the convolution theorem of the Fourier transform, an analytical expression for a Lorentz beam passing through a FRFT system has been derived. By using the derived formula, the properties of a Lorentz beam in the FRFT plane are illustrated numerically.
Fresnel diffraction in a theoretical eye: a fractional Fourier transform approach
Pons Moreno, Álvaro Máximo; Lorente Velázquez, Amalia; Illueca Contri, Carlos; Mas Candela, David; Artigas Verde, José María
1998-01-01
In this work, we have applied the fractional Fourier transform to obtain the Fresnel diffraction patterns in a theoretical eye. The FRT approach to Fresnel diffraction is easily implemented in a Gullstrand-Emsley theoretical eye, and it allows us to obtain the retinal image and then to derive the modulation transfer function of the eye, which can be used in the determination of optical performance of the eye.
Research progress on discretization of fractional Fourier transform
Institute of Scientific and Technical Information of China (English)
TAO Ran; ZHANG Feng; WANG Yue
2008-01-01
As the fractional Fourier transform has attracted a considerable amount of atten-tion in the area of optics and signal processing,the discretization of the fractional Fourier transform becomes vital for the application of the fractional Fourier trans-form.Since the discretization of the fractional Fourier transform cannot be obtained by directly sampling in time domain and the fractional Fourier domain,the discre-tization of the fractional Fourier transform has been investigated recently.A sum-mary of discretizations of the fractional Fourier transform developed in the last nearly two decades is presented in this paper.The discretizations include sampling in the fractional Fourier domain,discrete-time fractional Fourier transform,frac-tional Fourier series,discrete fractional Fourier transform (including 3 main types:linear combination-type;sampling-type;and eigen decomposition-type),and other discrete fractional signal transform.It is hoped to offer a doorstep for the readers who are interested in the fractional Fourier transform.
Battarel, D.; Fuss, P.; Durieux, A.; Martaud, E.
2015-09-01
As a manufacturer of optical systems for space applications, Sodern is faced with the necessity to design optical systems which image quality remains stable while the environment temperature changes. Two functions can be implemented: either a wavefront control or the athermalization of the optical system. In both cases, the mechanical deformations and thermal gradients are calculated by finite-element modeling with the IDEAS NX7 software. The data is then used in CODE V models for wavefront and image quality evaluation purposes. Two cases are presented: one is a UV beam expander in which a wavefront control is implemented and the other is an athermalized IR camera. The beam expander has a wavefront-tuning capability by thermal control. In order to perform the thermo-optical analysis in parallel with the opto-mechanical development, the thermo-optical modeling is done step by step in order to start before the mechanical design is completed. Each step then includes a new modeling stage leading to progressive improvements in accuracy. The IR camera athermalization is achieved through interaction between the mechanical CAD software and the optical design software to simulate the axial thermal gradients, radial gradients and all other thermal variations. The purpose of this paper is to present the steps that have led to the final STOP (Structural, Thermal Optical) analysis. Using incremental accuracy in modeling the thermo-optical effects enables to take them into account very early in the development process to devise all adjustment and test procedures to apply when assembling and testing the optical system.
One-dimensional rainbow technique using Fourier domain filtering.
Wu, Yingchun; Promvongsa, Jantarat; Wu, Xuecheng; Cen, Kefa; Grehan, Gerard; Saengkaew, Sawitree
2015-11-16
Rainbow refractometry can measure the refractive index and the size of a droplet simultaneously. The refractive index measurement is extracted from the absolute rainbow scattering angle. Accordingly, the angular calibration is vital for accurate measurements. A new optical design of the one-dimensional rainbow technique is proposed by using a one-dimensional spatial filter in the Fourier domain. The relationship between the scattering angle and the CCD pixel of a recorded rainbow image can be accurately determined by a simple calibration. Moreover, only the light perpendicularly incident on the lens in the angle (φ) direction is selected, which exactly matches the classical inversion algorithm used in rainbow refractometry. Both standard and global one-dimensional rainbow techniques are implemented with the proposed optical design, and are successfully applied to measure the refractive index and the size of a line of n-heptane droplets. PMID:26698532
Energy Technology Data Exchange (ETDEWEB)
Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Ave. Universidad 1001, CP. 62209 Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque_echeverri@yahoo.es [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia); Kasapoglu, E.; Sari, H. [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Soekmen, I. [Dokuz Eyluel University, Physics Department, 35160 Buca, Izmir (Turkey)
2012-04-15
In this work we are studying the intense laser effects on the electron-related linear and nonlinear optical properties in GaAs-Ga{sub 1-x}Al{sub x}As quantum wells under applied electric and magnetic fields. The calculated quantities include linear optical absorption coefficient and relative change of the refractive index, as well as their corresponding third-order nonlinear corrections. The nonlinear optical rectification and the second and third harmonic generation coefficients are also reported. The DC applied electric field is oriented along the hererostructure growth direction whereas the magnetic field is taken in-plane. The calculations make use of the density matrix formalism to express the different orders of the dielectric susceptibility. Additionally, the model includes the effective mass and parabolic band approximations. The intense laser effects upon the system enter through the Floquet method that modifies the confinement potential associated to the heterostructure. The results correspond to several configurations of the dimensions of the quantum well, the applied electric and magnetic fields, and the incident intense laser radiation. They suggest that the nonlinear optical absorption and optical rectification are nonmonotone functions of the dimensions of the heterostructure and of the external perturbations considered in this work. - Highlights: Black-Right-Pointing-Pointer Study of nonlinear optical properties in quantum wells. Black-Right-Pointing-Pointer The nonlinearities depend on electric and magnetic field. Black-Right-Pointing-Pointer Double quantum well is induced via intense laser field. Black-Right-Pointing-Pointer Dipole matrix elements contain main information. Black-Right-Pointing-Pointer Transition energy contain information about blue-shift.
International Nuclear Information System (INIS)
In this work we are studying the intense laser effects on the electron-related linear and nonlinear optical properties in GaAs–Ga1−xAlxAs quantum wells under applied electric and magnetic fields. The calculated quantities include linear optical absorption coefficient and relative change of the refractive index, as well as their corresponding third-order nonlinear corrections. The nonlinear optical rectification and the second and third harmonic generation coefficients are also reported. The DC applied electric field is oriented along the hererostructure growth direction whereas the magnetic field is taken in-plane. The calculations make use of the density matrix formalism to express the different orders of the dielectric susceptibility. Additionally, the model includes the effective mass and parabolic band approximations. The intense laser effects upon the system enter through the Floquet method that modifies the confinement potential associated to the heterostructure. The results correspond to several configurations of the dimensions of the quantum well, the applied electric and magnetic fields, and the incident intense laser radiation. They suggest that the nonlinear optical absorption and optical rectification are nonmonotone functions of the dimensions of the heterostructure and of the external perturbations considered in this work. - Highlights: ► Study of nonlinear optical properties in quantum wells. ► The nonlinearities depend on electric and magnetic field. ► Double quantum well is induced via intense laser field. ► Dipole matrix elements contain main information. ► Transition energy contain information about blue-shift.
Wavelet-Fourier self-deconvolution
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Using a wavelet function as the filter function of Fourier self-deconvolution, a new me- thod of resolving overlapped peaks, wavelet-Fourier self-deconvolution, is founded. The properties of different wavelet deconvolution functions are studied. In addition, a cutoff value coefficient method of eliminating artificial peaks and wavelet method of removing shoulder peaks using the ratio of maximum peak to minimum peak is established. As a result, some problems in classical Fourier self-deconvolution are solved, such as the bad result of denoising, complicated processing, as well as usual appearance of artificial and shoulder peaks. Wavelet-Fourier self-deconvolution is applied to determination of multi-components in oscillographic chronopotentiometry. Experimental results show that the method has characteristics of simpler process and better effect of processing.
Wavelet-Fourier self-deconvolution
Institute of Scientific and Technical Information of China (English)
郑建斌; 张红权; 高鸿
2000-01-01
Using a wavelet function as the filter function of Fourier self-deconvolution, a new method of resolving overlapped peaks, wavelet-Fourier self-deconvolution, is founded. The properties of different wavelet deconvolution functions are studied. In addition, a cutoff value coefficient method of eliminating artificial peaks and wavelet method of removing shoulder peaks using the ratio of maximum peak to minimum peak is established. As a result, some problems in classical Fourier self-deconvolution are solved, such as the bad result of denoising, complicated processing, as well as usual appearance of artificial and shoulder peaks. Wavelet-Fourier self-deconvolution is applied to determination of multi-components in oscillographic chronopotentiometry. Experimental results show that the method has characteristics of simpler process and better effect of processing.
Content adaptive sparse illumination for Fourier ptychography
Bian, Liheng; Situ, Guohai; Zheng, Guoan; Chen, Feng; Dai, Qionghai
2014-01-01
Fourier Ptychography (FP) is a recently proposed technique for large field of view and high resolution imaging. Specifically, FP captures a set of low resolution images under angularly varying illuminations and stitches them together in Fourier domain. One of FP's main disadvantages is its long capturing process due to the requisite large number of incident illumination angles. In this letter, utilizing the sparsity of natural images in Fourier domain, we propose a highly efficient method termed as AFP, which applies content adaptive sparse illumination for Fourier ptychography by capturing the most informative parts of the scene's spatial spectrum. We validate the effectiveness and efficiency of the reported framework with both simulations and real experiments. Results show that the proposed AFP could shorten the acquisition time of conventional FP by around 30%-60%.
Directory of Open Access Journals (Sweden)
Miguel Gonzalez-Andrades
Full Text Available Tissues and biomaterials used for corneal surface repair require fulfilling specific optical standards prior to implantation in the patient. However, there is not a feasible evaluation method to be applied in clinical or Good Manufacturing Practice settings. In this study, we describe and assess an innovative easy-applied photographic-based method (PBM for measuring functional optical blurring and transparency in corneal surface grafts.Plastic compressed collagen scaffolds (PCCS and multilayered amniotic membranes (AM samples were optically and histologically evaluated. Transparency and image blurring measures were obtained by PBM, analyzing photographic images of a standardized band pattern taken through the samples. These measures were compared and correlated to those obtained applying the Inverse Adding-Doubling (IAD technique, which is the gold standard method.All the samples used for optical evaluation by PBM or IAD were histological suitable. PCCS samples presented transmittance values higher than 60%, values that increased with increasing wavelength as determined by IAD. The PBM indicated that PCCS had a transparency ratio (TR value of 80.3 ± 2.8%, with a blurring index (BI of 50.6 ± 4.2%. TR and BI obtained from the PBM showed a high correlation (ρ>|0.6| with the diffuse transmittance and the diffuse reflectance, both determined using the IAD (p<0.005. The AM optical properties showed that there was a largely linear relationship between the blurring and the number of amnion layers, with more layers producing greater blurring.This innovative proposed method represents an easy-applied technique for evaluating transparency and blurriness of tissues and biomaterials used for corneal surface repair.
How to apply importance-sampling techniques to simulations of optical systems
McKinstrie, C. J.; Winzer, P. J.
2003-01-01
This report contains a tutorial introduction to the method of importance sampling. The use of this method is illustrated for simulations of the noise-induced energy jitter of return-to-zero pulses in optical communication systems.
Rudin, Walter
2011-01-01
In the late 1950s, many of the more refined aspects of Fourier analysis were transferred from their original settings (the unit circle, the integers, the real line) to arbitrary locally compact abelian (LCA) groups. Rudin's book, published in 1962, was the first to give a systematic account of these developments and has come to be regarded as a classic in the field. The basic facts concerning Fourier analysis and the structure of LCA groups are proved in the opening chapters, in order to make the treatment relatively self-contained.
Product-internal assembly functions: a novel micro-assembly concept applied to optical interconnects
Henneken, V.A.
2008-01-01
In this project, the technical feasibility of a novel assembly concept was explored, in which microsystem-based self-assembly functionality is added to an existing product. The case considered is the accurate alignment of an optical fibre relative to a telecommunication laser source. In the most demanding cases this requires alignment accuracies down to 0.1 µm to achieve adequate optical coupling. This is very difficult to achieve using conventional assembly, making the assembly cost up ...
Uhlig, Steffen
2006-01-01
ORMOCERR®s are organic-inorganic hybrid polymers. Since their material properties can be tailored precisely during synthesis, they are suitable for a wide range of applications in dielectric and optical microelectronics. This thesis reports on process development of ORMOCERR®s for Sequentially Build-Up (SBU) test vehicles, suitable for both electrical and optical interconnect. Furthermore, this work includes materials characterization, such as refractive index studies (system B59:V32), optica...
McGuire, Kimberly; de Croon, Guido; de Wagter, Christophe; Remes, Bart; Tuyls, Karl; Kappen, Hilbert
2016-01-01
Autonomous flight of pocket drones is challenging due to the severe limitations on on-board energy, sensing, and processing power. However, tiny drones have great potential as their small size allows maneuvering through narrow spaces while their small weight provides significant safety advantages. This paper presents a computationally efficient algorithm for determining optical flow, which can be run on an STM32F4 microprocessor (168 MHz) of a 4 gram stereo-camera. The optical flow algorithm ...
Performance of Non-local Optics when Applied to Plasmonic Nanostructures
Stella, Lorenzo; Zhang, Pu; García-Vidal, F. J.; Rubio, Angel; García-González, P.
2013-01-01
Semiclassical nonlocal optics based on the hydrodynamic description of conduction electrons might be an adequate tool to study complex phenomena in the emerging field of nanoplasmonics. With the aim of confirming this idea, we obtain the local and nonlocal optical absorption spectra in a model nanoplasmonic device in which there are spatial gaps between the components at nanometric and subnanometric scales. After a comparison against time-dependent density functional calculations, we conclude...
Analysis in the allocation of bandwidth applied to the concept of flexible optical networks
Puche, William S.; Sierra, Javier E.; Amaya, Ferney O.
2015-09-01
The continued increase in the capabilities and performance in fiber optic networks today require more robust network designs to allow high consumption of information and thus enable users to have greater capacity and data content. That's why we in the task of analyzing and implementing the concept of flexible optical networks to optimize the use of bandwidth at high transmission rates and improved spectral efficiency, which represents the industry an effective economy, and energy.
Directory of Open Access Journals (Sweden)
Nabanita Barua
2016-01-01
Full Text Available Context: Analysis of diagnostic ability of macular ganglionic cell complex and retinal nerve fiber layer (RNFL in glaucoma. Aim: To correlate functional and structural parameters and comparing predictive value of each of the structural parameters using Fourier-domain (FD optical coherence tomography (OCT among primary open angle glaucoma (POAG and ocular hypertension (OHT versus normal population. Setting and Design: Single centric, cross-sectional study done in 234 eyes. Materials and Methods: Patients were enrolled in three groups: POAG, ocular hypertensive and normal (40 patients in each group. After comprehensive ophthalmological examination, patients underwent standard automated perimetry and FD-OCT scan in optic nerve head and ganglion cell mode. The relationship was assessed by correlating ganglion cell complex (GCC parameters with mean deviation. Results were compared with RNFL parameters. Statistical Analysis: Data were analyzed with SPSS, analysis of variance, t-test, Pearson′s coefficient, and receiver operating curve. Results: All parameters showed strong correlation with visual field (P 0.5 when compared with other parameters. None of the parameters showed significant diagnostic capability to detect OHT from normal population. In diagnosing early glaucoma from OHT and normal population, only inferior GCC had statistically significant AUC value (0.715. Conclusion: In this study, GCC and RNFL parameters showed equal predictive capability in perimetric versus normal group. In early stage, inferior GCC was the best parameter. In OHT population, single day cross-sectional imaging was not valuable.
Barua, Nabanita; Sitaraman, Chitra; Goel, Sonu; Chakraborti, Chandana; Mukherjee, Sonai; Parashar, Hemandra
2016-01-01
Context: Analysis of diagnostic ability of macular ganglionic cell complex and retinal nerve fiber layer (RNFL) in glaucoma. Aim: To correlate functional and structural parameters and comparing predictive value of each of the structural parameters using Fourier-domain (FD) optical coherence tomography (OCT) among primary open angle glaucoma (POAG) and ocular hypertension (OHT) versus normal population. Setting and Design: Single centric, cross-sectional study done in 234 eyes. Materials and Methods: Patients were enrolled in three groups: POAG, ocular hypertensive and normal (40 patients in each group). After comprehensive ophthalmological examination, patients underwent standard automated perimetry and FD-OCT scan in optic nerve head and ganglion cell mode. The relationship was assessed by correlating ganglion cell complex (GCC) parameters with mean deviation. Results were compared with RNFL parameters. Statistical Analysis: Data were analyzed with SPSS, analysis of variance, t-test, Pearson's coefficient, and receiver operating curve. Results: All parameters showed strong correlation with visual field (P 0.5) when compared with other parameters. None of the parameters showed significant diagnostic capability to detect OHT from normal population. In diagnosing early glaucoma from OHT and normal population, only inferior GCC had statistically significant AUC value (0.715). Conclusion: In this study, GCC and RNFL parameters showed equal predictive capability in perimetric versus normal group. In early stage, inferior GCC was the best parameter. In OHT population, single day cross-sectional imaging was not valuable. PMID:27221682
Bilinear Fourier restriction theorems
Demeter, Ciprian
2012-01-01
We provide a general scheme for proving $L^p$ estimates for certain bilinear Fourier restrictions outside the locally $L^2$ setting. As an application, we show how such estimates follow for the lacunary polygon. In contrast with prior approaches, our argument avoids any use of the Rubio de Francia Littlewood--Paley inequality.
Doppler optical coherence microscopy and tomography applied to inner ear mechanics
Page, Scott; Ghaffari, Roozbeh; Freeman, Dennis M.
2015-12-01
While it is clear that cochlear traveling waves underlie the extraordinary sensitivity, frequency selectivity, and dynamic range of mammalian hearing, the underlying micromechanical mechanisms remain unresolved. Recent advances in low coherence measurement techniques show promise over traditional laser Doppler vibrometry and video microscopy, which are limited by low reflectivities of cochlear structures and restricted optical access. Doppler optical coherence tomography (DOCT) and Doppler optical coherence microscopy (DOCM) both utilize a broadband source to limit constructive interference of scattered light to a small axial depth called a coherence gate. The coherence gate can be swept axially to image and measure sub-nanometer motions of cochlear structures throughout the cochlear partition. The coherence gate of DOCT is generally narrower than the confocal gate of the focusing optics, enabling increased axial resolution (typically 15 μm) within optical sections of the cochlear partition. DOCM, frequently implemented in the time domain, centers the coherence gate on the focal plane, achieving enhanced lateral and axial resolution when the confocal gate is narrower than the coherence gate. We compare these two complementary systems and demonstrate their utility in studying cellular and micromechanical mechanisms involved in mammalian hearing.
Doppler optical coherence microscopy and tomography applied to inner ear mechanics
International Nuclear Information System (INIS)
While it is clear that cochlear traveling waves underlie the extraordinary sensitivity, frequency selectivity, and dynamic range of mammalian hearing, the underlying micromechanical mechanisms remain unresolved. Recent advances in low coherence measurement techniques show promise over traditional laser Doppler vibrometry and video microscopy, which are limited by low reflectivities of cochlear structures and restricted optical access. Doppler optical coherence tomography (DOCT) and Doppler optical coherence microscopy (DOCM) both utilize a broadband source to limit constructive interference of scattered light to a small axial depth called a coherence gate. The coherence gate can be swept axially to image and measure sub-nanometer motions of cochlear structures throughout the cochlear partition. The coherence gate of DOCT is generally narrower than the confocal gate of the focusing optics, enabling increased axial resolution (typically 15 μm) within optical sections of the cochlear partition. DOCM, frequently implemented in the time domain, centers the coherence gate on the focal plane, achieving enhanced lateral and axial resolution when the confocal gate is narrower than the coherence gate. We compare these two complementary systems and demonstrate their utility in studying cellular and micromechanical mechanisms involved in mammalian hearing
Doppler optical coherence microscopy and tomography applied to inner ear mechanics
Energy Technology Data Exchange (ETDEWEB)
Page, Scott; Freeman, Dennis M. [Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Ghaffari, Roozbeh [Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States)
2015-12-31
While it is clear that cochlear traveling waves underlie the extraordinary sensitivity, frequency selectivity, and dynamic range of mammalian hearing, the underlying micromechanical mechanisms remain unresolved. Recent advances in low coherence measurement techniques show promise over traditional laser Doppler vibrometry and video microscopy, which are limited by low reflectivities of cochlear structures and restricted optical access. Doppler optical coherence tomography (DOCT) and Doppler optical coherence microscopy (DOCM) both utilize a broadband source to limit constructive interference of scattered light to a small axial depth called a coherence gate. The coherence gate can be swept axially to image and measure sub-nanometer motions of cochlear structures throughout the cochlear partition. The coherence gate of DOCT is generally narrower than the confocal gate of the focusing optics, enabling increased axial resolution (typically 15 μm) within optical sections of the cochlear partition. DOCM, frequently implemented in the time domain, centers the coherence gate on the focal plane, achieving enhanced lateral and axial resolution when the confocal gate is narrower than the coherence gate. We compare these two complementary systems and demonstrate their utility in studying cellular and micromechanical mechanisms involved in mammalian hearing.
Micro wishbone interferometer for Fourier transform infrared spectrometry
International Nuclear Information System (INIS)
A miniature wishbone-type Si interferometer with electrically actuated rotary comb drive actuators is designed and fabricated to apply a Fourier transform infrared (FTIR) spectrometer. Corner cube mirrors are mounted on the end of the Si interferometer that is formed on a glass substrate. The total size of the interferometer is approximately 8 mm × 8 mm. The corner cube mirrors with sharp edges with a size of approximately 1 × 1 × 0.5 mm3 are fabricated using an indentation technique. The rotation angle of rotary comb drive actuators is approximately 11° with an applied voltage of 180 V. Hereby, the maximum optical path difference of approximately 2640 µm is achieved, which corresponds to the highest resolution of ∼4 cm−1 as a spectrometer
Directory of Open Access Journals (Sweden)
Daniele Tosi
2015-01-01
Full Text Available Radiofrequency thermal ablation (RFA is a procedure aimed at interventional cancer care and is applied to the treatment of small- and midsize tumors in lung, kidney, liver, and other tissues. RFA generates a selective high-temperature field in the tissue; temperature values and their persistency are directly related to the mortality rate of tumor cells. Temperature measurement in up to 3–5 points, using electrical thermocouples, belongs to the present clinical practice of RFA and is the foundation of a physical model of the ablation process. Fiber-optic sensors allow extending the detection of biophysical parameters to a vast plurality of sensing points, using miniature and noninvasive technologies that do not alter the RFA pattern. This work addresses the methodology for optical measurement of temperature distribution and pressure using four different fiber-optic technologies: fiber Bragg gratings (FBGs, linearly chirped FBGs (LCFBGs, Rayleigh scattering-based distributed temperature system (DTS, and extrinsic Fabry-Perot interferometry (EFPI. For each instrument, methodology for ex vivo sensing, as well as experimental results, is reported, leading to the application of fiber-optic technologies in vivo. The possibility of using a fiber-optic sensor network, in conjunction with a suitable ablation device, can enable smart ablation procedure whereas ablation parameters are dynamically changed.
Product-internal assembly functions: a novel micro-assembly concept applied to optical interconnects
Henneken, V.A.
2008-01-01
In this project, the technical feasibility of a novel assembly concept was explored, in which microsystem-based self-assembly functionality is added to an existing product. The case considered is the accurate alignment of an optical fibre relative to a telecommunication laser source. In the most dem
Applied nonlinear optics in the journal 'Quantum Electronics'
Energy Technology Data Exchange (ETDEWEB)
Grechin, Sergei G; Dmitriev, Valentin G; Chirkin, Anatolii S
2011-12-31
A brief historical review of the experimental and theoretical works on nonlinear optical frequency conversion (generation of harmonics, up- and down-conversion, parametric oscillation), which have been published in the journal 'Quantum Electronics' for the last 40 years, is presented.
Design and Fabrication of Micromechanical Optical Switches Based on the Low Applied Voltage
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
A micromechanical optical switch driven by electrostatic was fabricated with (100) silicon and tilted 2.5° (111) silicon. The pull-in voltage is 13.2V, the insertion loss is less than 1.4dB, the crosstalk is less than -50 dB.
Huo, Yanfeng; Duan, Minzheng; Tian, Wenshou; Min, Qilong
2015-08-01
A differential optical absorption spectroscopy (DOAS)-like algorithm is developed to retrieve the column-averaged dryair mole fraction of carbon dioxide from ground-based hyper-spectral measurements of the direct solar beam. Different to the spectral fitting method, which minimizes the difference between the observed and simulated spectra, the ratios of multiple channel-pairs—one weak and one strong absorption channel—are used to retrieve from measurements of the shortwave infrared (SWIR) band. Based on sensitivity tests, a super channel-pair is carefully selected to reduce the effects of solar lines, water vapor, air temperature, pressure, instrument noise, and frequency shift on retrieval errors. The new algorithm reduces computational cost and the retrievals are less sensitive to temperature and H2O uncertainty than the spectral fitting method. Multi-day Total Carbon Column Observing Network (TCCON) measurements under clear-sky conditions at two sites (Tsukuba and Bremen) are used to derive xxxx for the algorithm evaluation and validation. The DOAS-like results agree very well with those of the TCCON algorithm after correction of an airmass-dependent bias.
Theory of radiative transfer models applied in optical remote sensing of vegetation canopies.
Verhoef, W.
1998-01-01
In this thesis the work of the author on the modelling of radiative transfer in vegetation canopies and the terrestrial atmosphere is summarized. The activities span a period of more than fifteen years of research in this field carried out at the National Aerospace Laboratory NLR.For the interpretation of optical remote sensing observations of vegetation canopies from satellites or aircraft the use of simulation models can be an important tool, as these models give insight in the relations be...
Hyperpolarised xenon production via Rb and Cs optical pumping applied to functional lung MRI
Newton, Hayley Louise
2014-01-01
Hyperpolarisation encompasses a multitude of methods to increase the species' spin polarisation for nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) applications. Hyperpolarised 129Xe is produced via spin-exchange optical-pumping (SEOP). Firstly, electronic spins of alkali metal vapour are polarised via absorption of circularly polarised light. Alkali metal polarisation is subsequently transferred to noble gas nuclei via collisions. Within this thesis, the SEOP process...
New Organic Semiconductor Materials Applied in Organic Photovoltaic and Optical Devices
Andre F. S. Guedes; Vilmar P. Guedes; Simone Tartari; Mônica L. Souza; Idaulo J. Cunha
2015-01-01
The development of flexible organic photovoltaic solar cells, using an optically transparent substrate material and organic semiconductor materials, has been widely utilized by the electronic industry when producing new technological products. The flexible organic photovoltaic solar cells are the base Poly (3,4-ethylenedioxythiophene), PEDOT, Poly(3-hexyl thiophene, P3HT, Phenyl-C61-butyric acid methyl ester, PCBM and Polyaniline, PANI, were deposited in Indium Tin Oxide, ITO, and characteriz...
Proven high-reliability assembly methods applied to avionics fiber-optics high-speed transceivers
Lauzon, Jocelyn; Leduc, Lorrain; Bessette, Daniel; Bélanger, Nicolas; Larose, Robert; Dion, Bruno
2012-06-01
Harsh environment avionics applications require operating temperature ranges that can extend to, and exceed -50 to 115°C. For obvious maintenance, management and cost arguments, product lifetimes as long as 20 years are also sought. This leads to mandatory long-term hermeticity that cannot be obtained with epoxy or silicone sealing; but only with glass seal or metal solder or brazing. A hermetic design can indirectly result in the required RF shielding of the component. For fiber-optics products, these specifications need to be compatible with the smallest possible size, weight and power consumption. The products also need to offer the best possible high-speed performances added to the known EMI immunity in the transmission lines. Fiber-optics transceivers with data rates per fiber channel up to 10Gbps are now starting to be offered on the market for avionics applications. Some of them are being developed by companies involved in the "normal environment" telecommunications market that are trying to ruggedize their products packaging in order to diversify their customer base. Another approach, for which we will present detailed results, is to go back to the drawing boards and design a new product that is adapted to proven MIL-PRF-38534 high-reliability packaging assembly methods. These methods will lead to the introduction of additional requirements at the components level; such as long-term high-temperature resistance for the fiber-optic cables. We will compare both approaches and demonstrate the latter, associated with the redesign, is the preferable one. The performance of the fiber-optic transceiver we have developed, in terms of qualification tests such as temperature cycling, constant acceleration, hermeticity, residual gaz analysis, operation under random vibration and mechanical shocks and accelerated lifetime tests will be presented. The tests are still under way, but so far, we have observed no performance degradation of such a product after more than
Grafakos, Loukas
2014-01-01
The main goal of this text is to present the theoretical foundation of the field of Fourier analysis on Euclidean spaces. It covers classical topics such as interpolation, Fourier series, the Fourier transform, maximal functions, singular integrals, and Littlewood–Paley theory. The primary readership is intended to be graduate students in mathematics with the prerequisite including satisfactory completion of courses in real and complex variables. The coverage of topics and exposition style are designed to leave no gaps in understanding and stimulate further study. This third edition includes new Sections 3.5, 4.4, 4.5 as well as a new chapter on “Weighted Inequalities,” which has been moved from GTM 250, 2nd Edition. Appendices I and B.9 are also new to this edition. Countless corrections and improvements have been made to the material from the second edition. Additions and improvements include: more examples and applications, new and more relevant hints for the existing exercises, new exercises, and...
Fourier techniques and applications
1985-01-01
The first systematic methods of Fourier analysis date from the early eighteenth century with the work of Joseph Fourier on the problem of the flow of heat. (A brief history is contained in the first paper.) Given the initial tempera ture at all points of a region, the problem was to determine the changes in the temperature distribution over time. Understanding and predicting these changes was important in such areas as the handling of metals and the determination of geological and atmospheric temperatures. Briefly, Fourier noticed that the solution of the heat diffusion problem was simple if the initial temperature dis tribution was sinusoidal. He then asserted that any distri bution can be decomposed into a sum of sinusoids, these being the harmonics of the original function. This meant that the general solution could now be obtained by summing the solu tions of the component sinusoidal problems. This remarkable ability of the series of sinusoids to describe all "reasonable" functions, the sine qua n...
Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication
Cai, D. K.; Neyer, A.; Kuckuk, R.; Heise, H. M.
2008-03-01
The optical properties of transparent PDMS polymer materials, which can be integrated into general printed circuit board (PCB) for data communication, are of great interest due to the substantial market expectations for the near future. For the present paper, it was found that the absorption loss in polydimethylsiloxane (PDMS) is mainly caused by the vibrational overtone and combination bands of the CH 3-groups of the polymer in the spectral datacom region of 600-900 nm. Based on observed positions of fundamental, overtone and combination bands of the methyl-group, as recorded within the mid- and near-infrared spectra, anharmonicity constants and normal vibration frequencies were determined. Thus, an empirical equation for estimating the wavelengths with the most significant intrinsic absorption loss due to the corresponding band positions was formulated, which was found to agree well with the experimental data. In addition, PDMS multimode waveguides were fabricated and the respective optical insertion loss was measured at 850 nm, which is commercially used for optical datacom transmission and finally the thermal stability of PDMS multimode waveguides was verified as well.
On the Replica Fourier Transform
Carlucci, D. M.; De Dominicis, C.
1997-01-01
The Replica Fourier Transform introduced previously is related to the standard definition of Fourier transforms over a group. Its use is illustrated by block-diagonalizing the eigenvalue equation of a four-replica Parisi matrix.
Mende, Mathias; Jensen, Lars O.; Ehlers, Henrik; Bruns, Stefan; Vergöhl, Michael; Burdack, Peer; Ristau, Detlev
2012-11-01
The generation of third harmonic radiation (THG) is required for many pulsed solid-state laser applications in industry and science. In this contribution, the coatings for two necessary optical components, dichroic mirrors and nonlinear optical (NLO) crystals are in the focus of investigation. Because of the high bulk damage threshold lithium triborate (LBO) crystals are applied for this study. HfO2/SiO2 mixtures are employed as high refractive index material to improve the power handling capability of the multilayers. All coatings are produced by ion beam sputtering (IBS) using a zone target assembly for the deposition of material mixtures. The atomic composition and the oxidation ratio of different HfO2/SiO2 mixtures are analyzed by X-ray photoelectron spectroscopy (XPS). The influence of different deposition temperatures and post annealing on the optical properties and the amorphous micro structure of the films is investigated by UV/Vis/NIR spectroscopy and X-ray diffraction (XRD). The laser induced damage thresholds at 355 nm wavelength for nanosecond pulse durations are measured in a 10,000on1 experiment according with the standard ISO21254. Furthermore, the optical components are tested under real application conditions.
Fourier transforms principles and applications
Hansen, Eric W
2014-01-01
Fourier Transforms: Principles and Applications explains transform methods and their applications to electrical systems from circuits, antennas, and signal processors-ably guiding readers from vector space concepts through the Discrete Fourier Transform (DFT), Fourier series, and Fourier transform to other related transform methods. Featuring chapter end summaries of key results, over two hundred examples and four hundred homework problems, and a Solutions Manual this book is perfect for graduate students in signal processing and communications as well as practicing engineers.
A statistical model for road surface friction forecasting applying optical road weather measurements
Hippi, M.; Juga, I.; Nurmi, P.
2009-09-01
Road surface friction is defined as the grip between car tyre and underlying surface. Poor friction often plays a crucial role in wintertime car accidents. Friction can decrease dramatically during snowfall or when wet road surface temperature falls below zero. Even a thin layer of ice or snow can decrease friction substantially increasing the risk of accidents. Many studies have shown that road surface temperature, road conditions and friction can fluctuate dramatically within short distances under specific weather situations. Friction or grip can be improved with road maintenance activities like salting and gritting. Salting will melt the ice or snow layer, whereas gritting will improve the grip. Salting is effective only above -5C temperatures. Light snowfall together with low temperatures can result in very slippery driving conditions. Finnish Road Administration's observing network covers c. 500 road weather stations in Finland. Almost 100 of them are equipped with optical sensors (in winter 2008-2009). The number of optical sensors has increased remarkably during past few years. The optical measuring devices are Vaisala DSC111 sensors which measure the depth of water, snow and ice on the road surface and also produce an estimate of the state of road and prevailing friction. Observation data from road weather stations with optical sensors were collected from winter 2007/08, and a couple of representative (from a weather perspective) stations were selected for detailed statistical analysis. The purpose of the study was to find a statistical relationship between the observed values and, especially, the correlation between friction and other road weather parameters. Consequently, a model based on linear regression was developed. With the model friction being the dependent variable, the independent variables having highest correlations were the composite of ice and snow (water content) on the road, and the road surface temperature. In the case of a wet road
Directory of Open Access Journals (Sweden)
Khuat Thanh Tung
2016-11-01
Full Text Available Optical Character Recognition plays an important role in data storage and data mining when the number of documents stored as images is increasing. It is expected to find the ways to convert images of typewritten or printed text into machine-encoded text effectively in order to support for the process of information handling effectively. In this paper, therefore, the techniques which are being used to convert image into editable text in the computer such as principal component analysis, multilayer perceptron network, self-organizing maps, and improved multilayer neural network using principal component analysis are experimented. The obtained results indicated the effectiveness and feasibility of the proposed methods.
McBride, J W; Balestrero, A; Ghezzi, L; Tribulato, G; Cross, K J
2010-05-01
An integrated portable measurement system is described for the study of high speed and high temperature unsteady plasma flows such as those found in the vicinity of high current switching arcs. An array of optical fibers allows the formation of low spatial resolution images, with a maximum capture rate of 1 x 10(6) images per second (1 MHz), with 8 bit intensity resolution. Novel software techniques are reported to allow imaging of the arc; and to measure arc trajectories. Results are presented on high current (2 kA) discharge events in a model test fixture and on the application to a commercial low voltage circuit breaker. PMID:20515174
Shao, Bing
Non-invasive manipulation and analysis of biological objects with high resolution and efficiency have become extremely important. This dissertation presents three novel techniques based on light scattering and optical forces, which could bring high resolution and speed to submicron cell characterization, improve the throughput and functionality of self-propelled cell analysis and enhance the parallelism, portability and flexibility of cell manipulation instruments. Elastic light scattering is used for submicron cell characterization. An important problem in oceanic microbial ecology is characterizing the constituents of the sea. To pursue this goal, the application of angularly-dependent light scattering on oceanic microbe differentiation has been explored. Good overall agreement is found between scattering patterns simulated with developed models and those experimentally measured. The distinct scattering patterns of different species provide fingerprint information that will allow for routine identification of marine picoplankton. Optical tweezers have been used not only for manipulating cells, viruses and organelles within cells, but also measuring biological forces on the order of picoNewtons. In the second part of this dissertation, a three-dimensional resizable annular laser trap is developed for self-propelled cell manipulation and analysis. This system offers high power efficiency and is potentially useful for high-throughput multi-level sperm sorting based on motility and chemotaxis. With only tens of milliwatts devoted to each sperm, this new type of laser trap offers a gentle way to study the effect of optical force, laser radiation and external obstacles on sperm swimming patterns and membrane potential in detail. Applications could be extended to motility and biotropism studies on other self-propelled cells, such as algae and bacteria, etc. The third part of this dissertation involves manipulation of multiple biological cells both synchronously and
Liaparinos, P. F.
2016-02-01
Image quality for medical purposes is related to the useful diagnostic information that can be extracted from an image. The performance of indirect X-ray detectors, which in turn affects the quality of the medical image, can be significantly influenced by the characteristics of the phosphor, employed to convert incident radiation into emitted light. Given the technological and medical importance of phosphor materials, understanding the fundamental effects of optical anisotropy is crucial. The purpose of the present paper was to examine the influence of optical anisotropy in optical diffusion within the powder phosphor-based X-ray detectors. The present investigation was based on Mie scattering theory and Monte Carlo simulation techniques. The variation of the anisotropy factor was examined for: (1) light wavelengths in the range 400-700 nm, (2) particle refractive index between 1.5 and 2 and (3) three regions of particle sizes: nanoscale (from 10 up to 100 nm), submicron scale (from 100 nm up to 1 μm), and microscale (from 1 up to 10 μm). In addition, optical diffusion performance was carried out considering: (a) anisotropy factor values 0.2, 0.5, 0.8 which represent different aspects of light propagation after scattering and (b) phosphors of different layer thickness, 100 (thin layer) and 300 μm (thick layer), respectively. Results showed that the highest variation on the anisotropy factor was observed in the submicron scale, and, in particular, for grain diameters between 100 and 600 nm (increase from 0.1 up to 0.8). In addition, Monte Carlo simulations showed that the spread of light photons decreases (i.e., high spatial resolution) with the decrease in the anisotropy factor. In particular, the FWHM was found to decrease with the anisotropy factor: (1) 11.4 % at 100 μm and 4.2 %, at 300 μm layer thickness, for light extinction coefficient 0.217 μm-1 and (2) 1.9 % at 100 μm and 2.0 %, at 300 μm layer thickness, for light extinction coefficient 3 μm-1
The early-stage diagnosis of albinic embryos by applying optical coherence tomography
Yang, Bor-Wen; Wang, Shih-Yuan; Wang, Yu-Yen; Cai, Jyun-Jhang; Chang, Chung-Hao
2013-09-01
Albinism is a kind of congenital disease of abnormal metabolism. Poecilia reticulata (guppy fish) is chosen as the model to study the development of albinic embryos as it is albinic, ovoviviparous and with short life period. This study proposed an imaging method for penetrative embryo investigation using optical coherence tomography. By imaging through guppy mother’s reproduction purse, we found the embryo’s eyes were the early-developed albinism features. As human’s ocular albinism typically appear at about four weeks old, it is the time to determine if an embryo will grow into an albino.
Fast complexified quaternion Fourier transform
Said, Salem; Bihan, Nicolas le; Sangwine, Stephen J.
2006-01-01
A discrete complexified quaternion Fourier transform is introduced. This is a generalization of the discrete quaternion Fourier transform to the case where either or both of the signal/image and the transform kernel are complex quaternion-valued. It is shown how to compute the transform using four standard complex Fourier transforms and the properties of the transform are briefly discussed.
International Nuclear Information System (INIS)
Contamination of medical devices has become a critical and prevalent public health safety concern since medical devices are being increasingly used in clinical practices for diagnostics, therapeutics and medical implants. The development of effective sensing methods for real-time detection of pathogenic contamination is needed to prevent and reduce the spread of infections to patients and the healthcare community. In this study, a hollow-core fiber-optic Fourier transform infrared spectroscopy methodology employing a grazing incidence angle based sensing approach (FO-FTIR-GIA) was developed for detection of various biochemical contaminants on medical device surfaces. We demonstrated the sensitivity of FO-FTIR-GIA sensing approach for non-contact and label-free detection of contaminants such as lipopolysaccharide from various surface materials relevant to medical device. The proposed sensing system can detect at a minimum loading concentration of approximately 0.7 μg/cm2. The FO-FTIR-GIA has the potential for the detection of unwanted pathogen in real time
Energy Technology Data Exchange (ETDEWEB)
Hassan, Moinuddin, E-mail: moinuddin.hassan@fda.hhs.gov; Ilev, Ilko [Optical Therapeutics and Medical Nanophotonics Laboratory, Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States)
2014-10-15
Contamination of medical devices has become a critical and prevalent public health safety concern since medical devices are being increasingly used in clinical practices for diagnostics, therapeutics and medical implants. The development of effective sensing methods for real-time detection of pathogenic contamination is needed to prevent and reduce the spread of infections to patients and the healthcare community. In this study, a hollow-core fiber-optic Fourier transform infrared spectroscopy methodology employing a grazing incidence angle based sensing approach (FO-FTIR-GIA) was developed for detection of various biochemical contaminants on medical device surfaces. We demonstrated the sensitivity of FO-FTIR-GIA sensing approach for non-contact and label-free detection of contaminants such as lipopolysaccharide from various surface materials relevant to medical device. The proposed sensing system can detect at a minimum loading concentration of approximately 0.7 μg/cm{sup 2}. The FO-FTIR-GIA has the potential for the detection of unwanted pathogen in real time.
From hyperons to applied optics: {open_quotes}Winston Cones{close_quotes} during and after ZGS era
Energy Technology Data Exchange (ETDEWEB)
Swallow, E.C. [Elmhurst College, IL (United States)]|[Univ. of Chicago, IL (United States)
1994-12-31
This paper discusses developments in light collection which had their origin in efforts to construct high performance gas Cerenkov detectors for precision studies of hyperon beta decays at the ZGS. The resulting devices, know generally as {open_quotes}compound parabolic concentrators,{close_quotes} have found applications ranging from nuclear and particle physics experiments to solar energy concentration, instrument illumination, and understanding the optics of visual receptors. Interest in these devices and the ideas underlying them stimulated the development of a substantial new subfield of physics: nonimaging optics. This progression provides an excellent example of some ways in which unanticipated - and often unanticipatable - applied science and {open_quotes}practical{close_quotes} devices naturally emerge from first-rate basic science. The characteristics of this process suggest that the term {open_quotes}spinoff{close_quotes} commonly used to denote it is misleading and in need of replacement.
Laser-electron beam interaction applied to optical amplifiers and oscillators
Pantell, R. H.; Piestrup, M. A.
1976-01-01
Momentum modulation of a relativistic electron beam by a Nd:YAG laser is demonstrated. The electrons, at 100 MeV energy, interact with the laser light in helium gas at standard temperature and pressure. At an angle of 6.55 mrad between the two wavevectors, corresponding to the Cerenkov angle, a given electron remains in a field of constant phase as it passes through the light beam. The experimental arrangement is illustrated showing the trajectories of the electron and light. The particle momentum is measured by a mass spectrometer, and the angle between the wavevectors is controlled by a rotatable mirror. Experimental results indicate that momentum modulation of an electron beam may be used for amplification. A possible configuration for an optical klystron is illustrated.
Lang, N; Macherius, U; Wiese, M; Zimmermann, H; Röpcke, J; van Helden, J H
2016-03-21
We report on sensitive detection of atmospheric methane employing quantum cascade laser based optical feedback cavity-enhanced absorption spectroscopy (OF-CEAS). An instrument has been built utilizing a continuous-wave distributed feedback quantum cascade laser (cw-QCL) with a V-shaped cavity, a common arrangement that reduces feedback to the laser from non-resonant reflections. The spectrometer has a noise equivalent absorption coefficient of 3.6 × 10-9 cm-1 Hz-1/2 for a spectral scan of CH4 at 7.39 μm. From an Allan-Werle analysis a detection limit of 39 parts per trillion of CH4 at atmospheric pressure within 50 s acquisition time was found. PMID:27136874
Bastiaans, M J
2000-12-01
A measure for the twist of Gaussian light is expressed in terms of the second-order moments of the Wigner distribution function. The propagation law for these second-order moments between the input plane and the output plane of a first-order optical system is used to express the twist in one plane in terms of moments in the other plane. Although in general the twist in one plane is determined not only by the twist in the other plane but also by other combinations of the moments, several special cases exist for which a direct relationship between the twists can be formulated. Three such cases, for which zero twist is preserved, are considered: (i) propagation between conjugate planes, (ii) adaptation of the signal to the system, and (iii) the case of symplectic Gaussian light. PMID:11140506
Fast Fourier Transforms of Piecewise Constant Functions
Sorets, Eugene
1995-02-01
We present an algorithm for the evaluation of the Fourier transform of piecewise constant functions of two variables. The algorithm overcomes the accuracy problems associated with computing the Fourier transform of discontinuous functions; in fact, its time complexity is O (N2 logN + NP log2 (1/ε) + V log3 (1/ε)), where ε is the accuracy, N is the size of the problem, P is the perimeter of the set of discontinuities, and V is its number of vertices. The algorithm is based on the Lagrange interpolation formula and the Green's theorem, which are used to preprocess the data before applying the fast Fourier transform. It readily generalizes to higher dimensions and to piecewise smooth functions.
The Symmetric Group Defies Strong Fourier Sampling: Part I
Moore, Cristopher; Russell, Alexander; Schulman, Leonard J.
2005-01-01
We resolve the question of whether Fourier sampling can efficiently solve the hidden subgroup problem. Specifically, we show that the hidden subgroup problem over the symmetric group cannot be efficiently solved by strong Fourier sampling, even if one may perform an arbitrary POVM on the coset state. Our results apply to the special case relevant to the Graph Isomorphism problem.
Perez-Moreno, Javier; Kuzyk, Mark G
2016-01-01
We apply scaling and the theory of the fundamental limits of the second-order molecular susceptibility to identify material classes with ultralarge nonlinear-optical response. Size effects are removed by normalizing all nonlinearities to get intrinsic values so that the scaling behavior of a series of molecular homologues can be determined. Several new figures of merit are proposed that quantify the desirable properties for molecules that can be designed by adding a sequence of repeat units, and used in the assessment of the data. Three molecular classes are found. They are characterized by sub-scaling, nominal scaling, or super-scaling. Super-scaling homologues most efficiently take advantage of increased size. We apply our approach to data currently available in the literature to identify the best super-scaling molecular paradigms with the aim of identifying desirable traits of new materials.
Perez-Moreno, Javier; Kuzyk, Mark G
2016-01-01
The scaling of the fundamental limits of the second hyperpolarizability is used to define the intrinsic second hyperpolarizability, which aids in identifying material classes with ultralarge nonlinear-optical response per unit of molecular size. The intrinsic nonlinear response is a size-independent metric that we apply to comparing classes of molecular homologues, which are made by adding repeat units to extend their lengths. Several new figures of merit are proposed that quantify not only the intrinsic nonlinear response, but also how the second hyperpolarizability increases with size within a molecular class. Scaling types can be classified into sub-scaling, nominal scaling that follows the theory of limits, and super-scaling behavior. Super-scaling homologues that have large intrinsic nonlinearity are the most promising because they efficiently take advantage of increased size. We apply our approach to data in the literature to identify the best super-scaling molecular paradigms and articulate the importa...
Fourier analysis of metallic near-field superlens
Sheng, Yunlong; Tremblay, Guillaume; Gravel, Yann
2011-11-01
In the application to nanometre resolution lithography of the metallic near-field superlens, the image quality becomes a critical issue. Fundamental Fourier optics is applied to analyze the image system. The transfer function is computed with the transfer matrix method, the Surface Plasmon Polariton (SPP) resonance and the SPP waveguide theory. However, as the scattering of the object nano-structure involving the solution of the Maxwell's equations, so that the object function is in general unknown, and the impulse response is less likely useful for computing the image. Especially, metal object may induce the electrical dipoles, which launch the SPP and act as sources of radiation. The superlens may be optimized based on the transfer function using the long-range SPP mode cut-off technique, the genetic algorithm and other techniques in order to improve significantly the image quality. Design examples are presented, and confirmed by the real image computed with numerical simulation using the FDTD method.
Institute of Scientific and Technical Information of China (English)
孔德照; 林超; 沈学举; 王昕; 周晗
2013-01-01
提出一种基于小波包变换(WPT)的分数阶光学图像加密方法.利用WPT能够对图像多层次分解的特性,结合分数傅里叶变换(FRFT)的灵活性,将双随机相位、小波函数的类型及尺度因子和分数阶次作为密钥,实现了图像的多重密钥加解密.同时,实现了图像小波域上的选择性加密,使加密样式变得更灵活多样,还增强了加密图像的抵抗恶意的攻击能力.数值模拟了加密和解密过程,分析了加密效果和解密图像质量,验证了本文方法的可行性.%A novel method for the optical image encryption is presented, which is based on the wavelet packet transform (WPT) and fractional Fourier transform (FRFT). The idea of combining WPT with FRFT comes from the study of properties of them. Images can be decomposed by wavelet packet transform. With the increase in the order of WPT,the image will be decomposed into more parts,of which each contains the essential information. Based on the good property of WPT and the flexibility of FRFT, the method implicates encryption and decryption of the image and produces many keys, consisting of double random phase masks,the order of WPT and the order of FRFT. Meanwhile,the selected-image-encryption in wavlet domain is realized in this paper,which varies the patterns of encryptioa The method improves the security,and the ability of resisting malicious attacks is also enhanced. The encryption and decryption are implicated by numerical simulation. The result of the simulation provides the requirement for analyzing the properties of encryption and decryptioa The feasibility and simplicity of the method are verified by numerical simulation,and a simple optical implication of the method is also proposed. Based on the numerical simulation and theroy analysis,it can be confluded that the method for the optical image encryption is novel and effective.
Goza, B. K.; Hunter, L.; Shaw, J. M.; Metevier, A. J.; Raschke, L.; Espinoza, E.; Geaney, E. R.; Reyes, G.; Rothman, D. L.
2010-12-01
This paper describes the interaction of four elements of social science as they have evolved in concert with the Center for Adaptive Optics Professional Development Program (CfAO PDP). We hope these examples persuade early-career scientists and engineers to include social science activities as they develop grant proposals and carry out their research. To frame our discussion we use a metaphor from astronomy. At the University of California Santa Cruz (UCSC), the CfAO PDP and the Educational Partnership Center (EPC) are two young stars in the process of forming a solar system. Together, they are surrounded by a disk of gas and dust made up of program evaluation, applied research, educational assessment, and pedagogy. An idea from the 2001 PDP intensive workshops program evaluation developed into the Assessing Scientific Inquiry and Leadership Skills (AScILS) applied research project. In iterative cycles, AScILS researchers participated in subsequent PDP intensive workshops, teaching social science while piloting AScILS measurement strategies. Subsequent "orbits" of the PDP program evaluation gathered ideas from the applied research and pedagogy. The denser regions of this disk of social science are in the process of forming new protoplanets as tools for research and teaching are developed. These tools include problem-solving exercises or simulations of adaptive optics explanations and scientific reasoning; rubrics to evaluate the scientific reasoning simulation responses, knowledge regarding inclusive science education, and student explanations of science/engineering inquiry investigations; and a scientific reasoning curriculum. Another applied research project is forming with the design of a study regarding how to assess engineering explanations. To illustrate the mutual shaping of the cross-disciplinary, intergenerational group of educational researchers and their projects, the paper ends with a description of the professional trajectories of some of the
XFT: Extending the Digital Application of the Fourier Transform
Campos, Rafael G; Chávez, Edgar
2009-01-01
In recent years there has been a growing interest in the fractional Fourier transform driven by its great number of applications. The literature in this field follows two main routes. On the one hand the applications fields where the ordinary Fourier transform can be applied are being revisited to use this intermediate time-frequency representation of signals; and on the other hand fast algorithms for numerical computation of the fractional Fourier transform are devised. In this paper we derive a Gaussian-like quadrature of the continuous fractional Fourier transform. This quadrature is given in terms of the Hermite polynomials and their zeros. By using some asymptotic formulae we are able to solve the quadrature by a diagonal congruence transformation equivalent to a chirp-FFT-chirp transformation, yielding a fast discretization of the fractional Fourier transform and its inverse in closed form. We extend the range of the fractional Fourier transform by considering arbitrary complex values inside the unitary...
Two fiber optics communication adapters apply to the control system of HIRFL-CSR
International Nuclear Information System (INIS)
The authors introduced two kinds of fiber adapters that apply to the engineering HIRFL-CSR. Including design of two adapters, operational principle, and hardware construction, field of application. How to control equipment which have the standard RS232 or RS485 interface at long distance by two adapters. Replace the RS485 bus with the fiber and the 485-Fiber Adapter, solved the problem of communication disturb. The requirements of control in the national great science engineering HIRFL-CSR are fulfilled. (authors)
Energy Technology Data Exchange (ETDEWEB)
Restrepo, R.L., E-mail: pfrire@eia.edu.co [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Escuela de Ingeniería de Antioquia-EIA, Envigado (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia); Ungan, F.; Kasapoglu, E. [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonóma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Morales, A.L.; Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia)
2015-01-15
This paper presents the results of the theoretical study of the effects of non-resonant intense laser field and electric and magnetic fields on the optical properties (the linear and third-order nonlinear refractive index and absorption coefficients) in an asymmetric quantum well. The electric field and intense laser field are applied along the growth direction of the asymmetric quantum well and the magnetic field is oriented perpendicularly. To calculate the energy and the wave functions of the electron in the asymmetric quantum well, the effective mass approximation and the method of envelope wave function are used. The asymmetric quantum well is constructed by using different aluminium concentrations in both right and left barriers. The confinement in the quantum well is changed drastically by either the effect of electric and magnetic fields or by the application of intense laser field. The optical properties are calculated using the compact density matrix approach. The results show that the effect of the intense laser field competes with the effects of the electric and magnetic fields. Consequently, peak position shifts to lower photon energies due to the effect of the intense laser field and it shifts to higher photon energies by the effects of electric and magnetic fields. In general, it is found that the concentration of aluminum, electric and magnetic fields and intense laser field are external agents that modify the optical responses in the asymmetric quantum well.
Lannutti, E.; Lenzano, M. G.; Toth, C.; Lenzano, L.; Rivera, A.
2016-06-01
In this work, we assessed the feasibility of using optical flow to obtain the motion estimation of a glacier. In general, former investigations used to detect glacier changes involve solutions that require repeated observations which are many times based on extensive field work. Taking into account glaciers are usually located in geographically complex and hard to access areas, deploying time-lapse imaging sensors, optical flow may provide an efficient solution at good spatial and temporal resolution to describe mass motion. Several studies in computer vision and image processing community have used this method to detect large displacements. Therefore, we carried out a test of the proposed Large Displacement Optical Flow method at the Viedma Glacier, located at South Patagonia Icefield, Argentina. We collected monoscopic terrestrial time-lapse imagery, acquired by a calibrated camera at every 24 hour from April 2014 until April 2015. A filter based on temporal correlation and RGB color discretization between the images was applied to minimize errors related to changes in lighting, shadows, clouds and snow. This selection allowed discarding images that do not follow a sequence of similarity. Our results show a flow field in the direction of the glacier movement with acceleration in the terminus. We analyzed the errors between image pairs, and the matching generally appears to be adequate, although some areas show random gross errors related to the presence of changes in lighting. The proposed technique allowed the determination of glacier motion during one year, providing accurate and reliable motion data for subsequent analysis.
International Nuclear Information System (INIS)
This paper presents the results of the theoretical study of the effects of non-resonant intense laser field and electric and magnetic fields on the optical properties (the linear and third-order nonlinear refractive index and absorption coefficients) in an asymmetric quantum well. The electric field and intense laser field are applied along the growth direction of the asymmetric quantum well and the magnetic field is oriented perpendicularly. To calculate the energy and the wave functions of the electron in the asymmetric quantum well, the effective mass approximation and the method of envelope wave function are used. The asymmetric quantum well is constructed by using different aluminium concentrations in both right and left barriers. The confinement in the quantum well is changed drastically by either the effect of electric and magnetic fields or by the application of intense laser field. The optical properties are calculated using the compact density matrix approach. The results show that the effect of the intense laser field competes with the effects of the electric and magnetic fields. Consequently, peak position shifts to lower photon energies due to the effect of the intense laser field and it shifts to higher photon energies by the effects of electric and magnetic fields. In general, it is found that the concentration of aluminum, electric and magnetic fields and intense laser field are external agents that modify the optical responses in the asymmetric quantum well
Directory of Open Access Journals (Sweden)
Sin-Liang Ou
2014-01-01
Full Text Available Mo/Si bilayer thin films were grown by magnetron sputtering and applied to write-once blu-ray disc (BD-R. The microstructures and optical storage properties of Mo/Si bilayer were investigated. From the temperature dependence of reflectivity measurement, it was revealed that a phase change occurred in the range of 255–425°C. Transmission electron microscopy analysis showed that the as-deposited film possessed Mo polycrystalline phase. The hexagonal MoSi2 and cubic Mo3Si phases appeared after annealing at 300 and 450°C, respectively. By measuring the optical reflectivity at a wavelength of 405 nm, the optical contrast of Mo/Si bilayer between as-deposited and 450°C-annealed states was evaluated to 25.8%. The optimum jitter value of 6.8% was obtained at 10.65 mW for 4× recording speed. The dynamic tests show that the Mo/Si bilayer has high potential in BD-R applications.
New Organic Semiconductor Materials Applied in Organic Photovoltaic and Optical Devices
Directory of Open Access Journals (Sweden)
Andre F. S. Guedes
2015-04-01
Full Text Available The development of flexible organic photovoltaic solar cells, using an optically transparent substrate material and organic semiconductor materials, has been widely utilized by the electronic industry when producing new technological products. The flexible organic photovoltaic solar cells are the base Poly (3,4-ethylenedioxythiophene, PEDOT, Poly(3-hexyl thiophene, P3HT, Phenyl-C61-butyric acid methyl ester, PCBM and Polyaniline, PANI, were deposited in Indium Tin Oxide, ITO, and characterized by Electrical Measurements and Scanning Electron Microscopy (SEM. In addition, the thin film obtained by the deposition of PANI, prepared in perchloric acid solution, was identified through PANI-X1. The result obtained by electrical Measurements has demonstrated that the PET/ITO/PEDOT/P3HT:PCBM Blend/PANI-X1 layer presents the characteristic curve of standard solar cell after spin-coating and electrodeposition. The Thin film obtained by electrodeposition of PANI-X1 on P3HT/PCBM Blend was prepared in perchloric acid solution. These flexible organic photovoltaic solar cells presented power conversion efficiency of 12%. The inclusion of the PANI-X1 layer reduced the effects of degradation these organic photovoltaic panels induced for solar irradiation. In Scanning Electron Microscopy (SEM these studies reveal that the surface of PANI-X1 layers is strongly conditioned by the surface morphology of the dielectric.
Mota, Cláudia C. B. O.; Guerra, Bruna A.; Machado, Brena S. A.; Cabral, Adolfo J.; Gomes, Anderson S. L.
2015-06-01
Resin composites are widely used as restorative materials due to their excellent aesthetical and mechanical properties. Posterior teeth are constantly submitted to occlusal stress and upon restoration require more resistant resins. The aim of this study was to analyze in vitro the wear suffered over time by restorations in resin composite in posterior teeth, by Optical Coherence Tomography (OCT). 30 molars had occlusal cavities prepared and were randomly divided into three groups (n=10) and restored with resin composite: G1: Filtek P90 (3M/ESPE), G2: Tetric N-Ceram (Ivoclar Vivadent); G3: Filtek P60 (3M/ESPE). Specimens were subjected to initial analysis by OCT (OCP930SR, Thorlabs, axial resolution 6.2 μm) and stereoscopic microscope. Specimens were submitted to thermocycling (500 cycles, 5-55 °C) and subjected to simulated wear through a machine chewing movements (Wear Machine WM001), projecting four years of use. After mechanical cycles, the specimens were submitted to a second evaluation by the OCT and stereoscopic microscopy. As a result, it was observed that 90% of the restorations of both groups had fractures and/or points of stress concentration, considered niches for early dissemination of new fracture lines. It was also found that G1 and G2 had more points of stress concentration, whereas G3 had a higher incidence of fracture lines already propagated. It was concluded that the G3 showed more brittle behavior at the masticatory wear when compared to G1 and G2.
Security optical data storage in Fourier holograms.
Su, Wei-Chia; Chen, Yu-Wen; Chen, Yu-Jen; Lin, Shiuan-Huei; Wang, Li-Karn
2012-03-20
We have proposed and demonstrated a holographic security storage system that is implemented with a shift multiplexing technique. The security function of this storage system is achieved by using a microdiffuser (MD) for random phase encoding of the reference beams. The apparatus of random phase encoding in this system offers an additional and flexible function during the recording processes. The system can generate holographic security memory or nonsecurity holographic memory via using the MD or not. The storage capacity and the average signal-to-noise value of the security storage system are 16 bits/μm(2) and 3.5, respectively. Lateral shifting selectivity in this holographic security storage system is theoretically analyzed and experimentally investigated. PMID:22441475
Clifford Fourier transform on vector fields.
Ebling, Julia; Scheuermann, Gerik
2005-01-01
Image processing and computer vision have robust methods for feature extraction and the computation of derivatives of scalar fields. Furthermore, interpolation and the effects of applying a filter can be analyzed in detail and can be advantages when applying these methods to vector fields to obtain a solid theoretical basis for feature extraction. We recently introduced the Clifford convolution, which is an extension of the classical convolution on scalar fields and provides a unified notation for the convolution of scalar and vector fields. It has attractive geometric properties that allow pattern matching on vector fields. In image processing, the convolution and the Fourier transform operators are closely related by the convolution theorem and, in this paper, we extend the Fourier transform to include general elements of Clifford Algebra, called multivectors, including scalars and vectors. The resulting convolution and derivative theorems are extensions of those for convolution and the Fourier transform on scalar fields. The Clifford Fourier transform allows a frequency analysis of vector fields and the behavior of vector-valued filters. In frequency space, vectors are transformed into general multivectors of the Clifford Algebra. Many basic vector-valued patterns, such as source, sink, saddle points, and potential vortices, can be described by a few multivectors in frequency space. PMID:16138556
Comparative analysis of imaging configurations and objectives for Fourier microscopy
Kurvits, Jonathan A; Zia, Rashid
2015-01-01
Fourier microscopy is becoming an increasingly important tool for the analysis of optical nanostructures and quantum emitters. However, achieving quantitative Fourier space measurements requires a thorough understanding of the impact of aberrations introduced by optical microscopes, which have been optimized for conventional real-space imaging. Here, we present a detailed framework for analyzing the performance of microscope objectives for several common Fourier imaging configurations. To this end, we model objectives from Nikon, Olympus, and Zeiss using parameters that were inferred from patent literature and confirmed, where possible, by physical disassembly. We then examine the aberrations most relevant to Fourier microscopy, including the alignment tolerances of apodization factors for different objective classes, the effect of magnification on the modulation transfer function, and vignetting-induced reductions of the effective numerical aperture for wide-field measurements. Based on this analysis, we ide...
Surrogates with random Fourier Phases
Raeth, Christoph
2008-01-01
The method of surrogates is widely used in the field of nonlinear data analysis for testing for weak nonlinearities. The two most commonly used algorithms for generating surrogates are the amplitude adjusted Fourier transform (AAFT) and the iterated amplitude adjusted Fourier transfom (IAAFT) algorithm. Both the AAFT and IAAFT algorithm conserve the amplitude distribution in real space and reproduce the power spectrum (PS) of the original data set very accurately. The basic assumption in both algorithms is that higher-order correlations can be wiped out using a Fourier phase randomization procedure. In both cases, however, the randomness of the Fourier phases is only imposed before the (first) Fourier back tranformation. Until now, it has not been studied how the subsequent remapping and iteration steps may affect the randomness of the phases. Using the Lorenz system as an example, we show that both algorithms may create surrogate realizations containing Fourier phase correlations. We present two new iterativ...
Quadrature formulas for Fourier coefficients
Bojanov, Borislav; Petrova, Guergana
2009-09-01
We consider quadrature formulas of high degree of precision for the computation of the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials. In particular, we show the uniqueness of a multiple node formula for the Fourier-Tchebycheff coefficients given by Micchelli and Sharma and construct new Gaussian formulas for the Fourier coefficients of a function, based on the values of the function and its derivatives.
Quadrature formulas for Fourier coefficients
Bojanov, Borislav
2009-09-01
We consider quadrature formulas of high degree of precision for the computation of the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials. In particular, we show the uniqueness of a multiple node formula for the Fourier-Tchebycheff coefficients given by Micchelli and Sharma and construct new Gaussian formulas for the Fourier coefficients of a function, based on the values of the function and its derivatives. © 2009 Elsevier B.V. All rights reserved.
Kilicaslan, A.; Levasseur, O.; Roy-Garofano, V.; Profili, J.; Moisan, M.; Côté, C.; Sarkissian, A.; Stafford, L.
2014-03-01
An atmospheric-pressure plasma sustained by an electromagnetic surface wave (SW) in the microwave regime combined with a bubbler/flash evaporator for the injection of liquid precursors was used to produce organosilicon and organotitanium nanopowders. Following the addition of hexamethyldisiloxane (HMDSO) vapors in the nominally pure argon plasma, optical emission spectra revealed the apparition of strong C2 molecular bands along with Si and Balmer H emission lines. Such features were not observed in our atmospheric-pressure Ar/HMDSO discharges controlled by dielectric barriers, indicating that microwave plasmas are characterized by much higher fragmentation levels of the precursors due to much higher electron densities. Emission spectra from the Ar/HMDSO SW plasma further showed a high-intensity continuum, the intensity of which decreased with time as powders started to form on the discharge tube walls. In presence of titanium isopropoxide (TTIP) vapors in the nominally pure Ar plasma, the emission was dominated by Ar and Ti lines, with no trace of carbon and no continuum. Fourier-Transform Infrared (FTIR) Spectroscopy of the powders formed in Ar/HMDSO plasmas showed very strong Si-(CH3)x and O-Si-(CH3)x bands, which is consistent with the formation of silicon oxycarbide. Transmission Electron Microscopy (TEM) further showed tube and sheet-like nanofeatures as well as larger structures consisting of agglomerated primary clusters. On the other hand, introduction of O2 in Ar/HMDSO plasmas produced only round-like nanoparticles with strong Si-O-Si bands and no trace of carbon, consistent with the formation of SiOx. The average size of the silica nanoparticles was 50 nm. FTIR spectra of powders formed in Ar/TTIP plasmas showed strong Ti-O signals, even without the addition of O2 in the gas phase. Corresponding TEM analysis showed nano- and agglomerated features comparable to those obtained in Ar/HMDSO although the average size of the titanate nanoparticles was smaller
Energy Technology Data Exchange (ETDEWEB)
Kilicaslan, A.; Levasseur, O.; Roy-Garofano, V.; Profili, J.; Moisan, M.; Stafford, L., E-mail: luc.stafford@umontreal.ca [Département de Physique, Université de Montréal, Montréal, Québec H3C 3J7 (Canada); Côté, C.; Sarkissian, A. [Plasmionique Inc., Varennes, Québec J3X 1S2 (Canada)
2014-03-21
An atmospheric-pressure plasma sustained by an electromagnetic surface wave (SW) in the microwave regime combined with a bubbler/flash evaporator for the injection of liquid precursors was used to produce organosilicon and organotitanium nanopowders. Following the addition of hexamethyldisiloxane (HMDSO) vapors in the nominally pure argon plasma, optical emission spectra revealed the apparition of strong C{sub 2} molecular bands along with Si and Balmer H emission lines. Such features were not observed in our atmospheric-pressure Ar/HMDSO discharges controlled by dielectric barriers, indicating that microwave plasmas are characterized by much higher fragmentation levels of the precursors due to much higher electron densities. Emission spectra from the Ar/HMDSO SW plasma further showed a high-intensity continuum, the intensity of which decreased with time as powders started to form on the discharge tube walls. In presence of titanium isopropoxide (TTIP) vapors in the nominally pure Ar plasma, the emission was dominated by Ar and Ti lines, with no trace of carbon and no continuum. Fourier-Transform Infrared (FTIR) Spectroscopy of the powders formed in Ar/HMDSO plasmas showed very strong Si-(CH{sub 3}){sub x} and O-Si-(CH{sub 3}){sub x} bands, which is consistent with the formation of silicon oxycarbide. Transmission Electron Microscopy (TEM) further showed tube and sheet-like nanofeatures as well as larger structures consisting of agglomerated primary clusters. On the other hand, introduction of O{sub 2} in Ar/HMDSO plasmas produced only round-like nanoparticles with strong Si-O-Si bands and no trace of carbon, consistent with the formation of SiO{sub x}. The average size of the silica nanoparticles was 50 nm. FTIR spectra of powders formed in Ar/TTIP plasmas showed strong Ti-O signals, even without the addition of O{sub 2} in the gas phase. Corresponding TEM analysis showed nano- and agglomerated features comparable to those obtained in Ar/HMDSO although the
Fourier modal method and its applications in computational nanophotonics
Kim, Hwi
2012-01-01
Most available books on computational electrodynamics are focused on FDTD, FEM, or other specific technique developed in microwave engineering. In contrast, Fourier Modal Method and Its Applications in Computational Nanophotonics is a complete guide to the principles and detailed mathematics of the up-to-date Fourier modal method of optical analysis. It takes readers through the implementation of MATLAB(R) codes for practical modeling of well-known and promising nanophotonic structures. The authors also address the limitations of the Fourier modal method. Features Provides a comprehensive guid
Miniaturization of holographic Fourier-transform spectrometers.
Agladze, Nikolay I; Sievers, Albert J
2004-12-20
Wave propagation equations in the stationary-phase approximation have been used to identify the theoretical bounds of a miniature holographic Fourier-transform spectrometer (HFTS). It is demonstrated that the HFTS throughput can be larger than for a scanning Fourier-transform spectrometer. Given room- or a higher-temperature constraint, a small HFTS has the potential to outperform a small multichannel dispersive spectrograph with the same resolving power because of the size dependence of the signal-to-noise ratio. These predictions are used to analyze the performance of a miniature HFTS made from simple optical components covering a broad spectral range from the UV to the near IR. The importance of specific primary aberrations in limiting the HFTS performance has been both identified and verified. PMID:15646777
Digital Backpropagation in the Nonlinear Fourier Domain
Wahls, Sander; Prilepsky, Jaroslaw E; Poor, H Vincent; Turitsyn, Sergei K
2015-01-01
Nonlinear and dispersive transmission impairments in coherent fiber-optic communication systems are often compensated by reverting the nonlinear Schr\\"odinger equation, which describes the evolution of the signal in the link, numerically. This technique is known as digital backpropagation. Typical digital backpropagation algorithms are based on split-step Fourier methods in which the signal has to be discretized in time and space. The need to discretize in both time and space however makes the real-time implementation of digital backpropagation a challenging problem. In this paper, a new fast algorithm for digital backpropagation based on nonlinear Fourier transforms is presented. Aiming at a proof of concept, the main emphasis will be put on fibers with normal dispersion in order to avoid the issue of solitonic components in the signal. However, it is demonstrated that the algorithm also works for anomalous dispersion if the signal power is low enough. Since the spatial evolution of a signal governed by the ...
The design of the CMOS wireless bar code scanner applying optical system based on ZigBee
Chen, Yuelin; Peng, Jian
2008-03-01
The traditional bar code scanner is influenced by the length of data line, but the farthest distance of the wireless bar code scanner of wireless communication is generally between 30m and 100m on the market. By rebuilding the traditional CCD optical bar code scanner, a CMOS code scanner is designed based on the ZigBee to meet the demands of market. The scan system consists of the CMOS image sensor and embedded chip S3C2401X, when the two dimensional bar code is read, the results show the inaccurate and wrong code bar, resulted from image defile, disturber, reads image condition badness, signal interference, unstable system voltage. So we put forward the method which uses the matrix evaluation and Read-Solomon arithmetic to solve them. In order to construct the whole wireless optics of bar code system and to ensure its ability of transmitting bar code image signals digitally with long distances, ZigBee is used to transmit data to the base station, and this module is designed based on image acquisition system, and at last the wireless transmitting/receiving CC2430 module circuit linking chart is established. And by transplanting the embedded RTOS system LINUX to the MCU, an applying wireless CMOS optics bar code scanner and multi-task system is constructed. Finally, performance of communication is tested by evaluation software Smart RF. In broad space, every ZIGBEE node can realize 50m transmission with high reliability. When adding more ZigBee nodes, the transmission distance can be several thousands of meters long.
Lynch, P.; Reid, J. S.; Westphal, D. L.; Zhang, J.; Hogan, T. F.; Hyer, E. J.; Curtis, C. A.; Hegg, D. A.; Shi, Y.; Campbell, J. R.; Rubin, J. I.; Sessions, W. R.; Turk, F. J.; Walker, A. L.
2015-12-01
While standalone satellite and model aerosol products see wide utilization, there is a significant need in numerous climate and applied applications for a fused product on a regular grid. Aerosol data assimilation is an operational reality at numerous centers, and like meteorological reanalyses, aerosol reanalyses will see significant use in the near future. Here we present a standardized 2003-2013 global 1° × 1° and 6 hourly modal aerosol optical thickness (AOT) reanalysis product. This dataset can be applied to basic and applied earth system science studies of significant aerosol events, aerosol impacts on numerical weather prediction, and electro-optical propagation and sensor performance, among other uses. This paper describes the science of how to develop and score an aerosol reanalysis product. This reanalysis utilizes a modified Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled retrievals of AOT from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua and the Multi-angle Imaging SpectroRadiometer (MISR) on Terra. The aerosol source functions, including dust and smoke, were regionally tuned to obtain the best match between the model fine and coarse mode AOTs and the Aerosol Robotic Network (AERONET) AOTs. Other model processes, including deposition, were tuned to minimize the AOT difference between the model and satellite AOT. Aerosol wet deposition in the tropics is driven with satellite retrieved precipitation, rather than the model field. The final reanalyzed fine and coarse mode AOT at 550 nm is shown to have good agreement with AERONET observations, with global mean root mean square error around 0.1 for both fine and coarse mode AOTs. This paper includes a discussion of issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses, considerations for extending such a reanalysis outside of the NASA A-Train era, and examples of how the
Fractional Fourier Transform of Cantor Sets
Institute of Scientific and Technical Information of China (English)
LIAO Tian-ne; GAO Qiong
2005-01-01
@@ A new kind of multifractal is constructed by fractional Fourier transform of Cantor sets. The wavelet transform modulus maxima method is applied to calculate the singularity spectrum under an operational definition of multifractal. In particular, an analysing procedure to determine the spectrum is suggested for practice. Nonanalyticities of singularity spectra or phase transitions are discovered, which are interpreted as some indications on the range of Boltzmann temperature q, on which the scaling relation of partition function holds.
Incoherent Optical Frequency Domain Reflectometry for Distributed Thermal Sensing
Karamehmedovic, Emir; Jeppesen, Palle; Peucheret, Christophe; Bjarklev, Anders Overgaard
2006-01-01
This thesis reports the main results from an investigation of a fibre-optic distributed temperature sensor based on spontaneous Raman scattering. The technique used for spatial resolving is the incoherent optical frequency domain reflectometry, where a pump laser is sine modulated with a stepwise increasing frequency, after which the inverse Fourier transform is applied to the signal from the backscattered light. This technique is compared with the more conventional optical time domain reflec...
Wavelet-fractional Fourier transforms
Institute of Scientific and Technical Information of China (English)
Yuan Lin
2008-01-01
This paper extends the definition of fractional Fourier transform (FRFT) proposed by Namias V by using other orthonormal bases for L2 (R) instead of Hermite-Ganssian functions.The new orthonormal basis is gained indirectly from multiresolution analysis and orthonormal wavelets. The so defined FRFT is called wavelets-fractional Fourier transform.
International Nuclear Information System (INIS)
Nonstationary heat conduction in a single-walled carbon nanotube was investigated by applying a local heat pulse with duration of subpicoseconds. The investigation was based on classical molecular dynamics simulations, where the heat pulse was generated as coherent fluctuations by connecting a thermostat to the local cell for a short duration. The heat conduction through the nanotube was observed in terms of spatiotemporal temperature profiles. Results of the simulations exhibit non-Fourier heat conduction where a distinct amount of heat is transported in a wavelike form. The geometry of carbon nanotubes allows us to observe such a phenomenon in the actual scale of the material. The resulting spatiotemporal profile was compared with the available macroscopic equations, the so-called non-Fourier heat conduction equations, in order to investigate the applicability of the phenomenological models to a quasi-one-dimensional system. The conventional hyperbolic diffusion equation fails to predict the heat conduction due to the lack of local diffusion. It is shown that this can be remedied by adopting a model with dual relaxation time. Further modal analyses using wavelet transformations reveal a significant contribution of the optical phonon modes to the observed wavelike heat conduction. The result suggests that, in carbon nanotubes with finite length where the long-wavelength acoustic phonons behave ballistically, even optical phonons can play a major role in the non-Fourier heat conduction
Application of micro-Fourier transform infrared spectroscopy to the examination of paint samples
Zięba-Palus, J.
1999-11-01
The examination and identification of automobile paints is an important problem in road accidents investigations. Since the real sample available is very small, only sensitive microtechniques can be applied. The methods of optical microscopy and micro-Fourier transform infrared spectroscopy (MK-FTIR) supported by scanning electron microscopy together with X-ray microanalysis (SEM-EDX) allow one to carry out the examination of each paint layer without any separation procedure. In this paper an attempt is made to discriminate between different automobile paints of the same colour by the use of these methods for criminalistic investigations.
Digital Fourier analysis advanced techniques
Kido, Ken'iti
2015-01-01
This textbook is a thorough, accessible introduction to advanced digital Fourier analysis for advanced undergraduate and graduate students. Assuming knowledge of the Fast Fourier Transform, this book covers advanced topics including the Hilbert transform, cepstrum analysis, and the two-dimensional Fourier transform. Saturated with clear, coherent illustrations, "Digital Fourier Analysis - Advanced Techniques" includes practice problems and thorough Appendices. As a central feature, the book includes interactive applets (available online) that mirror the illustrations. These user-friendly applets animate concepts interactively, allowing the user to experiment with the underlying mathematics. The applet source code in Visual Basic is provided online, enabling advanced students to tweak and change the programs for more sophisticated results. A complete, intuitive guide, "Digital Fourier Analysis - Advanced Techniques" is an essential reference for students in science and engineering.
International Nuclear Information System (INIS)
Optical emission spectroscopy (OES) and multipole resonance probe (MRP) are adopted to characterize low-pressure microwave (MW) and radio frequency (RF) discharges in oxygen. In this context, both discharges are usually applied for the deposition of permeation barrier SiOx films on plastic foils or the inner surface of plastic bottles. For technological reasons the MW excitation is modulated and a continuous wave (cw) RF bias is used. The RF voltage produces a stationary low-density plasma, whereas the high-density MW discharge is pulsed. For the optimization of deposition process and the quality of the deposited barrier films, plasma conditions are characterized using OES and MRP. To simplify the comparison of applied diagnostics, both MW and RF discharges are studied separately in cw mode. The OES and MRP diagnostic methods complement each other and provide reliable information about electron density and electron temperature. In the MW case, electron density amounts to ne = (1.25 ± 0.26) × 1017 m−3, and kTe to 1.93 ± 0.20 eV, in the RF case ne = (6.8 ± 1.8)×1015 m−3 and kTe = 2.6 ± 0.35 eV. The corresponding gas temperatures are 760±40 K and 440±20 K. (paper)
Explicit Fourier wavefield operators
Ferguson, R. J.; Margrave, G. F.
2006-04-01
Explicit wavefield extrapolators are based on direct analytic mathematical formulae that express the output as an extrapolation operator acting on the input, while implicit methods usually require the calculation of the numerical inverse of a matrix to obtain the output. Typically, explicit methods are faster than implicit methods, and they often give more insight into the physics of the wave propagation, but they often suffer from instability. Four different explicit extrapolators based on Fourier theory are presented and analysed. They are: PS (ordinary phase shift), GPSPI (generalized phase shift plus interpolation), NSPS (non-stationary phase shift) and SNPS (symmetric non-stationary phase shift). A formal proof is given that NSPS in a direction orthogonal to the velocity gradient is the mathematical adjoint process to GPSPI in the opposite direction. This motivates the construction of SNPS that combines NSPS and GPSPI in a symmetric fashion. This symmetry (under interchange of input and output lateral coordinates) is required by reciprocity arguments. PS and SNPS are symmetric while NSPS and GPSPI are not. A numerical stability study using SVD (singular value decomposition) shows that all of these extrapolators can become unstable for strong lateral velocity gradients. Unstable operators allow amplitudes to grow non-physically in a recursion. Stability is enhanced by introducing a small (~3 per cent) imaginary component to the velocities. This causes a numerical attenuation that tends to stabilize the operators but does not address the cause of the instability. For the velocity model studied (a very challenging case) GPSPI and NSPS have exactly the same instability while SNPS is always more stable. Instability manifests in a complicated way as a function of extrapolation step size, frequency, velocity gradient, and strength of numerical attenuation. The SNPS operator can be stabilized over a wide range of conditions with considerably less attenuation than is
Mathematical principles of signal processing Fourier and wavelet analysis
Brémaud, Pierre
2002-01-01
Fourier analysis is one of the most useful tools in many applied sciences. The recent developments of wavelet analysis indicates that in spite of its long history and well-established applications, the field is still one of active research. This text bridges the gap between engineering and mathematics, providing a rigorously mathematical introduction of Fourier analysis, wavelet analysis and related mathematical methods, while emphasizing their uses in signal processing and other applications in communications engineering. The interplay between Fourier series and Fourier transforms is at the heart of signal processing, which is couched most naturally in terms of the Dirac delta function and Lebesgue integrals. The exposition is organized into four parts. The first is a discussion of one-dimensional Fourier theory, including the classical results on convergence and the Poisson sum formula. The second part is devoted to the mathematical foundations of signal processing - sampling, filtering, digital signal proc...
Twin image elimination in digital holography by combination of Fourier transformations
Choudhury, Debesh
2013-01-01
We present a new technique for removing twin image in in-line digital Fourier holography using a combination of Fourier transformations. Instead of recording only a Fourier transform hologram of the object, we propose to record a combined Fourier transform hologram by simultaneously recording the hologram of the Fourier transform and the inverse Fourier transform of the object with suitable weighting coefficients. Twin image is eliminated by appropriate inverse combined Fourier transformation and proper choice of the weighting coefficients. An optical configuration is presented for recording combined Fourier transform holograms. Simulations demonstrate the feasibility of twin image elimination. The hologram reconstruction is sensitive to phase aberrations of the object, thereby opening a way for holographic phase sensing.
Ghosh, Goutam
This thesis summarizes a new micro-optic method for singlet oxygen generation and sensitizer drug delivery, which include i) synthesis and evaluation of a first generation device for drug delivery from native and fluorinated silica probe tips, ii) synthesis of PEG conjugated sensitizers to study phototoxicity in ovarian cancer cells, and iii) synthesis and evaluation of tris-PEGylated chlorin conjugated fluorinated silica for its future integration into the device to use as a 2nd generation device. A first generation micro-optic device was developed that works by sparging O2 gas and light generating cytotoxic singlet oxygen that cleaves the covalently attached drug (sensitizer) from the probe tip at the distal end of the fiber. The aim is to develop a 1st and 2nd generation device for site specific delivery of photosensitizer and singlet oxygen to overcome the challenges involved in systemic administration of the sensitizer. Synthesis and evaluation of drug (pheophorbide-a) delivery applying micro-optic method from native and fluorinated silica probe tip was achieved. The amount of sensitizer photocleavage depends on the loading level of sensitizer onto the probe tips. We also found that photorelease efficiency depends on the nature of the solvents where sensitizer is photocleaved. For example, no photorelease was observed in an aqueous solvent where sensitizer remained adsorbed to the native silica probe-tip. But, 90% photocleavage was obtained in octanol. A significant amount of photosensitizer (formate ester of pyropheophorbide- a) diffused into the liposome when photocleavage study was carried out in liposome. Substantial increase of photorelease was observed in organic solvent when pyropheophorbide-a (PPa) sensitizer was attached to the partially fluorinated porous Vycor glass. We also explored sensitizer photorelease from the fluorinated silica surface at various temperatures and we found that autocatalytic photorelease happened at room temperature and above
Matrix isolation studies with Fourier transform ir
International Nuclear Information System (INIS)
The combination of Fourier transform infrared (FT-IR) spectroscopy with the matrix-isolation techniques has advantages compared with the use of more conventional grating spectroscopy. Furthermore, the recent commercial availability of Fourier transform spectrometers has made FT-IR a practical alternative. Some advantages of the FT-IR spectrometer over the grating spectrometer are the result of the computerized data system that is a necessary part of the FT-IR spectrometer; other advantages are a consequence of the difference in optical arrangements and these represent the inherent advantages of the FT-IR method. In most applications with the matrix-isolation technique, the use of FT-IR spectroscopy results in either an improved signal-to-noise ratio or a shorter time for data collection compared with grating infrared spectroscopy. Fourier transform infrared spectroscopy has been used in the laboratory to study several molecular species in low-temperature matrices. Some species have been produced by high-temperature vaporization from Knudsen cells and others by sputtering. By sputtering, Ar and Kr matrices have been prepared which contain U atoms, UO, UO2, UO3, PuO, PuO2, UN, or UN2, depending upon the composition of the gas used to sputter as well as the identity of the metallic cathode. Infrared spectra of matrices containing these compounds are presented and discussed
The PROSAIC Laplace and Fourier Transform
International Nuclear Information System (INIS)
Integral Transform methods play an extremely important role in many branches of science and engineering. The ease with which many problems may be solved using these techniques is well known. In Electrical Engineering especially, Laplace and Fourier Transforms have been used for a long time as a way to change the solution of differential equations into trivial algebraic manipulations or to provide alternate representations of signals and data. These techniques, while seemingly overshadowed by today's emphasis on digital analysis, still form an invaluable basis in the understanding of systems and circuits. A firm grasp of the practical aspects of these subjects provides valuable conceptual tools. This tutorial paper is a review of Laplace and Fourier Transforms from an applied perspective with an emphasis on engineering applications. The interrelationship of the time and frequency domains will be stressed, in an attempt to comfort those who, after living so much of their lives in the time domain, find thinking in the frequency domain disquieting
Residual Stress Studies Using the Cairo Fourier Diffractometer Facility
International Nuclear Information System (INIS)
The present paper deals with residual stress studies using the Cairo Fourier diffractometer facility CFDF. The CFDF is a reverse - time of -flight (RTOF) diffractometer; applies a Fourier chopper. The measurements were performed for copper samples in order to study the residual stress after welding. The maximum modulation of the Fourier chopper during the measurements was 136 khz; leading to a time resolution half-width of about 7 μ s. It has been found from the present measurements that, the resulting diffraction spectra could be successfully used for studying the residual stress; in the wavelength range between 0.7-2.9 A degree at ∼ 0.45 % relative resolution
Fourier mode analysis of source iteration in spatially periodic media
International Nuclear Information System (INIS)
The standard Fourier mode analysis is an indispensable tool when designing acceleration techniques for transport iterations; however, it requires the assumption of a homogeneous infinite medium. For problems of practical interest, material heterogeneities may significantly impact iterative performance. Recent work has applied a Fourier analysis to the discretized two-dimensional transport operator with heterogeneous material properties. The results of these analyses may be difficult to interpret because the heterogeneity effects are inherently coupled to the discretization effects. Here, the authors describe a Fourier analysis of source iteration (SI) that allows the calculation of the eigenvalue spectrum for the one-dimensional continuous transport operator with spatially periodic heterogeneous media
Fourier analysis and stochastic processes
Brémaud, Pierre
2014-01-01
This work is unique as it provides a uniform treatment of the Fourier theories of functions (Fourier transforms and series, z-transforms), finite measures (characteristic functions, convergence in distribution), and stochastic processes (including arma series and point processes). It emphasises the links between these three themes. The chapter on the Fourier theory of point processes and signals structured by point processes is a novel addition to the literature on Fourier analysis of stochastic processes. It also connects the theory with recent lines of research such as biological spike signals and ultrawide-band communications. Although the treatment is mathematically rigorous, the convivial style makes the book accessible to a large audience. In particular, it will be interesting to anyone working in electrical engineering and communications, biology (point process signals) and econometrics (arma models). A careful review of the prerequisites (integration and probability theory in the appendix, Hilbert spa...
Fourier Analysis of Musical Intervals
LoPresto, Michael C.
2008-11-01
Use of a microphone attached to a computer to capture musical sounds and software to display their waveforms and harmonic spectra has become somewhat commonplace. A recent article in The Physics Teacher aptly demonstrated the use of MacScope2 in just such a manner as a way to teach Fourier analysis.3 A logical continuation of this project is to use MacScope not just to analyze the Fourier composition of musical tones but also musical intervals.
Compact snapshot birefringent imaging Fourier transform spectrometer
Kudenov, Michael W.; Dereniak, Eustace L.
2010-08-01
The design and implementation of a compact multiple-image Fourier transform spectrometer (FTS) is presented. Based on the multiple-image FTS originally developed by A. Hirai, the presented device offers significant advantages over his original implementation. Namely, its birefringent nature results in a common-path interferometer which makes the spectrometer insensitive to vibration. Furthermore, it enables the potential of making the instrument ultra-compact, thereby improving the portability of the sensor. The theory of the birefringent FTS is provided, followed by details of its specific embodiment. A laboratory proof of concept of the sensor, designed and developed at the Optical Detection Lab, is also presented. Spectral measurements of laboratory sources are provided, including measurements of light-emitting diodes and gas-discharge lamps. These spectra are verified against a calibrated Ocean Optics USB2000 spectrometer. Other data were collected outdoors, demonstrating the sensor's ability to resolve spectral signatures in standard outdoor lighting and environmental conditions.
The Fourier dimension is not finitely stable
Ekström, Fredrik
2014-01-01
The Fourier dimension is not in general stable under finite unions of sets. Moreover, the stability of the Fourier dimension on particular pairs of sets is independent from the stability of the compact Fourier dimension.
Convolution Theorems for Quaternion Fourier Transform: Properties and Applications
Ryuichi Ashino; Mawardi Bahri; Rémi Vaillancourt
2013-01-01
General convolution theorems for two-dimensional quaternion Fourier transforms (QFTs) are presented. It is shown that these theorems are valid not only for real-valued functions but also for quaternion-valued functions. We describe some useful properties of generalized convolutions and compare them with the convolution theorems of the classical Fourier transform. We finally apply the obtained results to study hypoellipticity and to solve the heat equation in quaternion al...
Yuan, Jian-Hui; Zhang, Zhi-Hai
2015-12-01
Guo and Du (2013) reported theirs result for the linear and nonlinear optical absorption coefficients and refractive index changes in asymmetrical Gaussian potential quantum wells with applied electric field. We find both the energy and the corresponding wavefunction for the low-lying state are wrong to applied in their works. For the same set of parameters studied by Guo and Du, we obtain new and reliable results via the differential method.
Grid-Independent Compressive Imaging and Fourier Phase Retrieval
Liao, Wenjing
2013-01-01
This dissertation is composed of two parts. In the first part techniques of band exclusion(BE) and local optimization(LO) are proposed to solve linear continuum inverse problems independently of the grid spacing. The second part is devoted to the Fourier phase retrieval problem. Many situations in optics, medical imaging and signal processing call…
Power filtering of nth order in the fractional Fourier domain
Energy Technology Data Exchange (ETDEWEB)
Alieva, Tatiana; Calvo, Maria Luisa [Departamento de Optica, Facultad de Fisicas, Universidad Complutense de Madrid, Madrid (Spain); Bastiaans, Martin J. [Faculteit Elektrotechniek, Technische Universiteit Eindhoven, Eindhoven (Netherlands)
2002-09-13
The main properties of the power filtering operation in the fractional Fourier domain and its relationship to the differentiation operation are considered. The application of linear power filtering for solving the phase retrieval problem from intensity distributions only is proposed. The optical configuration for the experimental realization of the method is discussed. (author)
Power filtering of nth order in the fractional Fourier domain
International Nuclear Information System (INIS)
The main properties of the power filtering operation in the fractional Fourier domain and its relationship to the differentiation operation are considered. The application of linear power filtering for solving the phase retrieval problem from intensity distributions only is proposed. The optical configuration for the experimental realization of the method is discussed. (author)
Fourier transform resampling: Theory and application
International Nuclear Information System (INIS)
One of the most challenging problems in medical imaging is the development of reconstruction algorithms for nonstandard geometries. This work focuses on the application of Fourier analysis to the problem of resampling or rebinning. Conventional resampling methods utilizing some form of interpolation almost always result in a loss of resolution in the tomographic image. Fourier Transform Resampling (FTRS) offers potential improvement because the Modulation Transfer Function (MTF) of the process behaves like an ideal low pass filter. The MTF, however, is nonstationary if the coordinate transformation is nonlinear. FTRS may be viewed as a generalization of the linear coordinate transformations of standard Fourier analysis. Simulated MTF's were obtained by projecting point sources at different transverse positions in the flat fan beam detector geometry. These MTF's were compared to the closed form expression for FIRS. Excellent agreement was obtained for frequencies at or below the estimated cutoff frequency. The resulting FTRS algorithm is applied to simulations with symmetric fan beam geometry, an elliptical orbit and uniform attenuation, with a normalized root mean square error (NRME) of 0.036. Also, a Tc-99m point source study (1 cm dia., placed in air 10 cm from the COR) for a circular fan beam acquisition was reconstructed with a hybrid resampling method. The FWHM of the hybrid resampling method was 11.28 mm and compares favorably with a direct reconstruction (FWHM: 11.03 mm)
Multiplexed fluorescence lifetime measurements by frequency-sweeping Fourier spectroscopy
Zhao, Ming; Peng, Leilei
2010-01-01
We report simultaneous measurements of fluorescence lifetimes at multiple excitation wavelengths with a Fourier transform frequency domain fluorescence lifetime spectrometer. The spectrometer uses a Michelson interferometer with its differential optical path length scanning at 22,000 Hz scan rate. The scan speed of the optical delay varies linearly during each scan and creates interference modulations that sweep from −150 to 150 MHz in 45.5 μs. The frequency-sweeping modulation allows nanosec...
Dispersive Fourier Transformation for Versatile Microwave Photonics Applications
Chao Wang
2014-01-01
Abstract: Dispersive Fourier transformation (DFT) maps the broadband spectrum of an ultrashort optical pulse into a time stretched waveform with its intensity profile mirroring the spectrum using chromatic dispersion. Owing to its capability of continuous pulse-by-pulse spectroscopic measurement and manipulation, DFT has become an emerging technique for ultrafast signal generation and processing, and high-throughput real-time measurements, where the speed of traditional optical instruments fa...
Applications of Fourier profilometry on different types of surface
Czech Academy of Sciences Publication Activity Database
Pochmon, Michal; Rössler, T.; Hrabovský, Miroslav; Gallo, J.
Sibiu : University "Lucian Blaga" of Sibiu and ARTENS, 2007 - (Pastrav, I.), s. 91-92 ISBN 978-973-739-456-9. [Danubia-Adria symposium of developments in experimental mechanics /24./. Sibiu (RO), 19.09.2007-22.09.2007] R&D Projects: GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : Fourier profilometry * optical structure Subject RIV: BH - Optics, Masers, Lasers
Yu, Francis T. S.; Jutamulia, Suganda
2008-10-01
Contributors; Preface; 1. Pattern recognition with optics Francis T. S. Yu and Don A. Gregory; 2. Hybrid neural networks for nonlinear pattern recognition Taiwei Lu; 3. Wavelets, optics, and pattern recognition Yao Li and Yunglong Sheng; 4. Applications of the fractional Fourier transform to optical pattern recognition David Mendlovic, Zeev Zalesky and Haldum M. Oxaktas; 5. Optical implementation of mathematical morphology Tien-Hsin Chao; 6. Nonlinear optical correlators with improved discrimination capability for object location and recognition Leonid P. Yaroslavsky; 7. Distortion-invariant quadratic filters Gregory Gheen; 8. Composite filter synthesis as applied to pattern recognition Shizhou Yin and Guowen Lu; 9. Iterative procedures in electro-optical pattern recognition Joseph Shamir; 10. Optoelectronic hybrid system for three-dimensional object pattern recognition Guoguang Mu, Mingzhe Lu and Ying Sun; 11. Applications of photrefractive devices in optical pattern recognition Ziangyang Yang; 12. Optical pattern recognition with microlasers Eung-Gi Paek; 13. Optical properties and applications of bacteriorhodopsin Q. Wang Song and Yu-He Zhang; 14. Liquid-crystal spatial light modulators Aris Tanone and Suganda Jutamulia; 15. Representations of fully complex functions on real-time spatial light modulators Robert W. Cohn and Laurence G. Hassbrook; Index.
Energy Technology Data Exchange (ETDEWEB)
Hoberg, Jacob Ray [Iowa State Univ., Ames, IA (United States)
2008-01-01
The magnetic flux structures in the intermediate state of bulk, pinning-free Type-I superconductors are studied using a high resolution magneto-optical imaging technique. Unlike most previous studies, this work focuses on the pattern formation of the coexisting normal and superconducting phases in the intermediate state. The influence of various parameters such as sample shape, structure defects (pinning) and applied current are discussed in relation to two distinct topologies: flux tubes (closed topology) and laminar (open topology). Imaging and magnetization measurements performed on samples of different shapes (cones, hemispheres and slabs), show that contrary to previous beliefs, the tubular structure is the equilibrium topology, but it is unstable toward defects and flux motion. Moreover, the application of current into a sample with the geometric barrier can replace an established laminar structure with flux tubes. At very high currents, however, there exists a laminar 'stripe pattern.' Quantitative analysis of the mean tube diameter is shown to be in good agreement with the prediction proposed by Goren and Tinkham. This is the first time that this model has been confirmed experimentally. Further research into the flux tube phase shows a direct correlation with the current loop model proposed in the 1990's by Goldstein, Jackson and Dorsey. There also appears a range of flux tube density that results in a suprafroth structure, a well-formed polygonal mesh, which behaves according to the physics of foams, following standard statistical laws such as von Neumann and Lewis. The reaction of flux structures to a fast-ramped magnetic field was also studied. This provided an alignment of the structure not normally observed at slow ramp rates.
International Nuclear Information System (INIS)
The magnetic flux structures in the intermediate state of bulk, pinning-free Type-I superconductors are studied using a high resolution magneto-optical imaging technique. Unlike most previous studies, this work focuses on the pattern formation of the coexisting normal and superconducting phases in the intermediate state. The influence of various parameters such as sample shape, structure defects (pinning) and applied current are discussed in relation to two distinct topologies: flux tubes (closed topology) and laminar (open topology). Imaging and magnetization measurements performed on samples of different shapes (cones, hemispheres and slabs), show that contrary to previous beliefs, the tubular structure is the equilibrium topology, but it is unstable toward defects and flux motion. Moreover, the application of current into a sample with the geometric barrier can replace an established laminar structure with flux tubes. At very high currents, however, there exists a laminar 'stripe pattern.' Quantitative analysis of the mean tube diameter is shown to be in good agreement with the prediction proposed by Goren and Tinkham. This is the first time that this model has been confirmed experimentally. Further research into the flux tube phase shows a direct correlation with the current loop model proposed in the 1990's by Goldstein, Jackson and Dorsey. There also appears a range of flux tube density that results in a suprafroth structure, a well-formed polygonal mesh, which behaves according to the physics of foams, following standard statistical laws such as von Neumann and Lewis. The reaction of flux structures to a fast-ramped magnetic field was also studied. This provided an alignment of the structure not normally observed at slow ramp rates.
Corrected Fourier series and its application to function approximation
Directory of Open Access Journals (Sweden)
Qing-Hua Zhang
2005-02-01
Full Text Available Any quasismooth function f(x in a finite interval [0,x0], which has only a finite number of finite discontinuities and has only a finite number of extremes, can be approximated by a uniformly convergent Fourier series and a correction function. The correction function consists of algebraic polynomials and Heaviside step functions and is required by the aperiodicity at the endpoints (i.e., f(0Ã¢Â‰Â f(x0 and the finite discontinuities in between. The uniformly convergent Fourier series and the correction function are collectively referred to as the corrected Fourier series. We prove that in order for the mth derivative of the Fourier series to be uniformly convergent, the order of the polynomial need not exceed (m+1. In other words, including the no-more-than-(m+1 polynomial has eliminated the Gibbs phenomenon of the Fourier series until its mth derivative. The corrected Fourier series is then applied to function approximation; the procedures to determine the coefficients of the corrected Fourier series are illustrated in detail using examples.
Design of high-resolution Fourier transform lens
Zhang, Lei; Zhong, Xing; Jin, Guang
2007-12-01
With the development of optical information processing, high-resolution Fourier transform lens has often been used in holographic data storage system, spatial filtering and observation of particles. This paper studies the optical design method of high-resolution Fourier transform optical lenses system, which could be used in particles observation and holographic data storage system. According to Fourier transform relation between object and its frequency plane and the theory of geometrical optics, the system with working wavelength 532nm and resolution 3μm was designed based on ZEMAX. A multi-configuration method was adopted to optimize the system's lenses. In the optical system, a diaphragm was placed at the system's spectrum plane and the system demanded a low vacuum to cut down the influences of atmosphere and other particles. The result of finite element analysis indicated that the influences of vacuum pumping to optics spacing and mirror surface shape very minor, and the imaging quality not being affected. This system has many advantages, such as simple structure, good image quality and a high resolution of 3μm. So it has a wide application prospect and can be used both in holographic data storage system and particles observation.
Surface defect inspection of TFT-LCD panels based on 1D Fourier method
Zhang, Teng-da; Lu, Rong-sheng
2016-01-01
Flat panel displays have been used in a wide range of electronic devices. The defects on their surfaces are an important factor affecting the product quality. Automated optical inspection (AOI) method is an important and effective means to perform the surface defection inspection. In this paper, a kind of defect extraction algorithm based on one dimensional (1D) Fourier theory for the surface defect extraction with periodic texture background is introduced. In the algorithm, the scanned surface images are firstly transformed from time domain to frequency domain by 1D Fourier transform. The periodic texture background on the surface is then removed by using filtering methods in the frequency domain. Then, a dual-threshold statistical control method is applied to separate the defects from the surface background. Traditional 1D Fourier transform scheme for detecting ordinary defects is very effective; however, the method is not where the defect direction is close to horizontal in periodic texture background. In order to tackle the problem, a mean threshold method based on faultless image is put forward. It firstly calculates the upper and lower control limits of the every reconstructed line scanned image with faultless and then computes the averages of the upper and lower limits. The averages then act as the constant double thresholds to extract the defects. The experimental results of different defects show that the method developed in the paper is very effective for TFT-LCD panel surface defect inspection even in the circumstance that the defect directions are close to horizontal.
On higher order Fourier analysis
Szegedy, Balazs
2012-01-01
We develop a theory of higher order structures in compact abelian groups. In the frame of this theory we prove general inverse theorems and regularity lemmas for Gowers's uniformity norms. We put forward an algebraic interpretation of the notion "higher order Fourier analysis" in terms of continuous morphisms between structures called compact $k$-step nilspaces. As a byproduct of our results we obtain a new type of limit theory for functions on abelian groups in the spirit of the so-called graph limit theory. Our proofs are based on an exact (non-approximative) version of higher order Fourier analysis which appears on ultra product groups.
Fourier Series, the DFT and Shape Modelling
DEFF Research Database (Denmark)
Skoglund, Karl
2004-01-01
This report provides an introduction to Fourier series, the discrete Fourier transform, complex geometry and Fourier descriptors for shape analysis. The content is aimed at undergraduate and graduate students who wish to learn about Fourier analysis in general, as well as its application to shape...
Grange, Benjamin; Kumar, Vikas; Torres, Juliana Beltran; Perez, Victor G.; Armstrong, Peter R.; Slocum, Alexander; Calvet, Nicolas
2016-05-01
In the framework of the CSPonD Demo project, the optical characterization of the Beam Down Optical Experiment (BDOE) heliostats field is an important step to certify the required power is provided. To achieve this goal, an experiment involving a single heliostat is carried out. The results of the experiment and the comparison with simulated results are presented in this paper. Only the reflection on the heliostat is observed in order to have a better assessment of its optical performance. The heliostat reflectance is modified and the experimental and simulated concentration distribution are confronted. Results indicate that the shapes of the concentration distributions are quite similar, hence validating the optical model respects the geometry of the BDOE. Moreover these results lead to an increase of the optimized heliostat reflectance when the incident angle on the heliostat decreases. Further investigation is required to validate this method with all the individual heliostats of the BDOE solar field.
Espinosa-Torres, Néstor D; la Luz, David Hernández-de; Flores-Gracia, José Francisco J; Luna-López, José A; Martínez-Juárez, Javier; Vázquez-Valerdi, Diana E
2014-01-01
In systems in atomic scale and nanoscale such as clusters or agglomerates constituted by particles from a few to less than 100 atoms, quantum confinement effects are very important. Their optical and electronic properties are often dependent on the size of the systems and the way in which the atoms in these clusters are bonded. Generally, these nanostructures display optical and electronic properties significantly different to those found in corresponding bulk materials. Silicon agglomerates ...
Fourier Series and Elliptic Functions
Fay, Temple H.
2003-01-01
Non-linear second-order differential equations whose solutions are the elliptic functions "sn"("t, k"), "cn"("t, k") and "dn"("t, k") are investigated. Using "Mathematica", high precision numerical solutions are generated. From these data, Fourier coefficients are determined yielding approximate formulas for these non-elementary functions that are…
Optical Tomography in Combustion
DEFF Research Database (Denmark)
Evseev, Vadim
The new methodology of optical infrared tomography of flames and hot gas flows was developed in the PhD project with a view to future industrial applications. In particular, the methodology for the tomographic reconstruction of an axisymmetric lab flame temperature profile was developed and tested...... in the lab using Fourier transform infrared spectroscopy techniques, including a new tomographic measurement scheme, sweeping scanning, having great potential for industrial applications with limited optical access. The results were compared to the reference point measurements on the same flame and...... infrared spectral measurements at several line-of-sights with a view to applications for tomographic measurements on full-scale industrial combustion systems. The system was successfully applied on industrial scale for simultaneous fast exhaust gas temperature measurements in the three optical ports of the...
Yuan, Jian-Hui; Zhang, Yan; Guo, Xinxia; Zhang, Jinjin; Mo, Hua
2015-04-01
Using the configuration-integration method, we investigated theoretically the low-lying states and optical absorption properties of a hydrogenic impurity in a parabolic quantum dot modulation by applied electric field. The low-lying states and optical absorption properties depend sensitively on the electric field F and the strength of the parabolic confinement ℏω0 . We discuss the linear and third-order nonlinear optical absorption coefficients of the dot (i) with the impurity ion and (ii) without the impurity ion. In the first case, the increase of the parabolic confinement ℏω0 (or the electric field F) can induce the blueshift (or redshift) of the peak of the absorption coefficient. Also the optical intensity can induce the increase of the third-order nonlinear optical absorption coefficients to weaken and even bleach the total optical absorption coefficients. Similar behavior has also been observed in the second case, but there is no redshift of the peak positions of the absorption coefficient with the increase of the electric field F. Compared with the second case, it is easily seen that there are the blueshifts of the peak of the absorption coefficients, which can be used as a technical means for detecting impurities.
Performance of the Fourier transform reconstructor for the European Extremely Large Telescope
Montilla, I.; Reyes, M.; Le Louarn, M.; Marichal-Hernández, J. G.; Rodríguez-Ramos, J. M.; Rodríguez-Ramos, L. F.
2008-07-01
The forthcoming Extremely Large Telescopes, and the new generation of Extreme Adaptive Optics systems, carry on a boost in the number of actuators that makes the real-time correction of the atmospheric aberration computationally challenging. It is necessary to study new algorithms for performing Adaptive Optics at the required speed. Among the last generation algorithms that are being studied, the Fourier Transform Reconstructor (FTR) appears as a promising candidate. Its feasibility to be used for Single-Conjugate Adaptive Optics has been extensively proved by Poyneer et al.[1] As part of the activities supported by the ELT Design Study (European Community's Framework Programme 6) we have studied the performance of this algorithm applied to the case of the European ELT, in two different cases: single-conjugate and ground-layer adaptive optics and we are studying different approaches to apply it to the more complex multi-conjugate case. The algorithm has been tested on ESO's OCTOPUS software, which simulates the atmosphere, the deformable mirror, the sensor and the closed-loop control. The performance has been compared with other algorithms as well as their response in the presence of noise and with various atmospheric conditions. The good results on performance and robustness, and the possibility of parallelizing the algorithm (shown by Rodríguez-Ramos and Marichal-Hernández) make it an excellent alternative to the typically used Matrix-Vector Multiply algorithm.
Fincham, W H A
2013-01-01
Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen
Single shot telecentricity measurement by Fourier space grid separation.
Lorbeer, Raoul-Amadeus; Hitzemann, Moritz; Heidrich, Marko; Antonopoulos, Georgios; Ripken, Tammo; Meyer, Heiko
2015-03-01
The experimental documentation of the properties of an optical system represents a particular challenge. Besides the measurement of focal quality and field distortions, telecentric systems have to yield a parallel beam propagation direction. In this paper we propose a method to test, document and optimize the telecentricity of a laser scanning system by scanning two crossed polka dot beam splitters at once. By separating both beam splitters in Fourier space we were able to detect tilting angles below 2 · 10(-3) rad for four different laser wavelengths within the same optical system. By this we determined the optimum system parameters for our scanning laser optical tomography (SLOT) setup. PMID:25836878
Fourier microscopy of single plasmonic scatterers
Sersic, Ivana; Koenderink, A Femius
2011-01-01
We report a new experimental technique for quantifying the angular distribution of light scattered by single plasmonic and metamaterial nanoscatterers, based on Fourier microscopy in a dark field confocal set up. This new set up is a necessary tool for quantifying the scattering properties of single plasmonic and meatamaterial building blocks, as well as small coupled clusters of such building blocks, which are expected to be the main ingredients of nano-antennas, light harvesting structures and transformation optics. We present a set of measurements on Au nanowires of different lengths and show how the radiation pattern of single Au nanowires evolve with wire length and as a function of driving polarization and wave vector.
Maciel, M. J.; Costa, C. G.; Silva, M. F.; Gonçalves, S. B.; Peixoto, A. C.; Ribeiro, A. Fernando; Wolffenbuttel, R. F.; Correia, J. H.
2016-08-01
This paper reports on the development of a technology for the wafer-level fabrication of an optical Michelson interferometer, which is an essential component in a micro opto-electromechanical system (MOEMS) for a miniaturized optical coherence tomography (OCT) system. The MOEMS consists on a titanium dioxide/silicon dioxide dielectric beam splitter and chromium/gold micro-mirrors. These optical components are deposited on 45° tilted surfaces to allow the horizontal/vertical separation of the incident beam in the final micro-integrated system. The fabrication process consists of 45° saw dicing of a glass substrate and the subsequent deposition of dielectric multilayers and metal layers. The 45° saw dicing is fully characterized in this paper, which also includes an analysis of the roughness. The optimum process results in surfaces with a roughness of 19.76 nm (rms). The actual saw dicing process for a high-quality final surface results as a compromise between the dicing blade’s grit size (#1200) and the cutting speed (0.3 mm s‑1). The proposed wafer-level fabrication allows rapid and low-cost processing, high compactness and the possibility of wafer-level alignment/assembly with other optical micro components for OCT integrated imaging.
Directory of Open Access Journals (Sweden)
Pavlos Konstantinidis
2009-06-01
Full Text Available The SITHON system, a fully wireless optical imaging system, integrating a network of in-situ optical cameras linking to a multi-layer GIS database operated by Control Operating Centres, has been developed in response to the need for early detection, notification and monitoring of forest fires. This article presents in detail the architecture and the components of SITHON, and demonstrates the first encouraging results of an experimental test with small controlled fires over Sithonia Peninsula in Northern Greece. The system has already been scheduled to be installed in some fire prone areas of Greece.
Guenther, B D
2015-01-01
Modern Optics is a fundamental study of the principles of optics using a rigorous physical approach based on Maxwell's Equations. The treatment provides the mathematical foundations needed to understand a number of applications such as laser optics, fiber optics and medical imaging covered in an engineering curriculum as well as the traditional topics covered in a physics based course in optics. In addition to treating the fundamentals in optical science, the student is given an exposure to actual optics engineering problems such as paraxial matrix optics, aberrations with experimental examples, Fourier transform optics (Fresnel-Kirchhoff formulation), Gaussian waves, thin films, photonic crystals, surface plasmons, and fiber optics. Through its many pictures, figures, and diagrams, the text provides a good physical insight into the topics covered. The course content can be modified to reflect the interests of the instructor as well as the student, through the selection of optional material provided in append...
Fincham, W H A
2013-01-01
Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st
International Nuclear Information System (INIS)
Polymers are a class of materials widely used for a broad field of applications. Ion irradiation ranging from several eV to GeV is a quite efficient tool to modify the properties of polymers like wettability, optical properties, adhesion between metal and polymer surfaces. In this paper ion induced chemical changes of polymers will be discussed in relation to the modified macroscopic properties. In the field of optical telecommunication, polymers are discussed as a new class of materials for the fabrication of passive optical devices. Ion irradiation is a promising method to generate structures with a modified index of refraction, which is necessary for the guidance of light with different wavelengths in optical devices. Modified optical properties of different polymers under ion irradiation will be discussed. Analytical investigations like infrared measurements and measurement of the outgassing reaction products during irradiation will be discussed to interpret the chemical changes of the polymers. Metallization of polymers is of interest in several fields of application like for multilayer systems in microtechnology or casings for radiation shielding for example. Ion beam mixing at low energies is a promising method to improve the metal/polymer adhesion. Also ion irradiation at high energies applied to a metal/polymer multilayer can improve the adhesion of a metal layer to a polymer surface, if not sufficient. Different metal/polymer systems will be presented as well as specific applications
Motion-corrected Fourier ptychography
Bian, Liheng; Guo, Kaikai; Suo, Jinli; Yang, Changhuei; Chen, Feng; Dai, Qionghai
2016-01-01
Fourier ptychography (FP) is a recently proposed computational imaging technique for high space-bandwidth product imaging. In real setups such as endoscope and transmission electron microscope, the common sample motion largely degrades the FP reconstruction and limits its practicability. In this paper, we propose a novel FP reconstruction method to efficiently correct for unknown sample motion. Specifically, we adaptively update the sample's Fourier spectrum from low spatial-frequency regions towards high spatial-frequency ones, with an additional motion recovery and phase-offset compensation procedure for each sub-spectrum. Benefiting from the phase retrieval redundancy theory, the required large overlap between adjacent sub-spectra offers an accurate guide for successful motion recovery. Experimental results on both simulated data and real captured data show that the proposed method can correct for unknown sample motion with its standard deviation being up to 10% of the field-of-view scale. We have released...
Fourier Analysis of Blazar Variability
Finke, Justin D
2014-01-01
Blazars display strong variability on multiple timescales and in multiple radiation bands. Their variability is often characterized by power spectral densities (PSDs) and time lags plotted as functions of the Fourier frequency. We develop a new theoretical model based on the analysis of the electron transport (continuity) equation, carried out in the Fourier domain. The continuity equation includes electron cooling and escape, and a derivation of the emission properties includes light travel time effects associated with a radiating blob in a relativistic jet. The model successfully reproduces the general shapes of the observed PSDs and predicts specific PSD and time lag behaviors associated with variability in the synchrotron, synchrotron self-Compton (SSC), and external Compton (EC) emission components, from sub-mm to gamma-rays. We discuss applications to BL Lacertae objects and to flat-spectrum radio quasars (FSRQs), where there are hints that some of the predicted features have already been observed. We a...
From Fourier analysis to wavelets
Gomes, Jonas
2015-01-01
This text introduces the basic concepts of function spaces and operators, both from the continuous and discrete viewpoints. Fourier and Window Fourier Transforms are introduced and used as a guide to arrive at the concept of Wavelet transform. The fundamental aspects of multiresolution representation, and its importance to function discretization and to the construction of wavelets is also discussed. Emphasis is given on ideas and intuition, avoiding the heavy computations which are usually involved in the study of wavelets. Readers should have a basic knowledge of linear algebra, calculus, and some familiarity with complex analysis. Basic knowledge of signal and image processing is desirable. This text originated from a set of notes in Portuguese that the authors wrote for a wavelet course on the Brazilian Mathematical Colloquium in 1997 at IMPA, Rio de Janeiro.
Slice Fourier transform and convolutions
Cnudde, Lander; De Bie, Hendrik
2015-01-01
Recently the construction of various integral transforms for slice monogenic functions has gained a lot of attention. In line with these developments, the article at hand introduces the slice Fourier transform. In the first part, the kernel function of this integral transform is constructed using the Mehler formula. An explicit expression for the integral transform is obtained and allows for the study of its properties. In the second part, two kinds of corresponding convolutions are examined:...
Winding numbers and Fourier series
Kahane, Jean-Pierre
2010-01-01
This is an expository talk on a topic of classical analysis, arising from the VMO theory of the topological degree due to Br\\'ezis and Nirenberg (1995). We sketch the history of the subject and some of its recent developments. The paper is organized as a sequence of questions. Most of them, in particular the last one, deal with Fourier series of continuous functions of constant absolute value. One of them contains new results on the comparison of summation processes.
Fourier methods for biosequence analysis.
Benson, D C
1990-01-01
Novel methods are discussed for using fast Fourier transforms for DNA or protein sequence comparison. These methods are also intended as a contribution to the more general computer science problem of text search. These methods extend the capabilities of previous FFT methods and show that these methods are capable of considerable refinement. In particular, novel methods are given which (1) enable the detection of clusters of matching letters, (2) facilitate the insertion of gaps to enhance seq...
Fourier analysis of blazar variability
Energy Technology Data Exchange (ETDEWEB)
Finke, Justin D. [U.S. Naval Research Laboratory, Code 7653, 4555 Overlook Avenue SW, Washington, DC 20375-5352 (United States); Becker, Peter A., E-mail: justin.finke@nrl.navy.mil [School of Physics, Astronomy, and Computational Sciences, MS 5C3, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States)
2014-08-10
Blazars display strong variability on multiple timescales and in multiple radiation bands. Their variability is often characterized by power spectral densities (PSDs) and time lags plotted as functions of the Fourier frequency. We develop a new theoretical model based on the analysis of the electron transport (continuity) equation, carried out in the Fourier domain. The continuity equation includes electron cooling and escape, and a derivation of the emission properties includes light travel time effects associated with a radiating blob in a relativistic jet. The model successfully reproduces the general shapes of the observed PSDs and predicts specific PSD and time lag behaviors associated with variability in the synchrotron, synchrotron self-Compton, and external Compton emission components, from submillimeter to γ-rays. We discuss applications to BL Lacertae objects and to flat-spectrum radio quasars (FSRQs), where there are hints that some of the predicted features have already been observed. We also find that FSRQs should have steeper γ-ray PSD power-law indices than BL Lac objects at Fourier frequencies ≲ 10{sup –4} Hz, in qualitative agreement with previously reported observations by the Fermi Large Area Telescope.
A More Accurate Fourier Transform
Courtney, Elya
2015-01-01
Fourier transform methods are used to analyze functions and data sets to provide frequencies, amplitudes, and phases of underlying oscillatory components. Fast Fourier transform (FFT) methods offer speed advantages over evaluation of explicit integrals (EI) that define Fourier transforms. This paper compares frequency, amplitude, and phase accuracy of the two methods for well resolved peaks over a wide array of data sets including cosine series with and without random noise and a variety of physical data sets, including atmospheric $\\mathrm{CO_2}$ concentrations, tides, temperatures, sound waveforms, and atomic spectra. The FFT uses MIT's FFTW3 library. The EI method uses the rectangle method to compute the areas under the curve via complex math. Results support the hypothesis that EI methods are more accurate than FFT methods. Errors range from 5 to 10 times higher when determining peak frequency by FFT, 1.4 to 60 times higher for peak amplitude, and 6 to 10 times higher for phase under a peak. The ability t...
Fourier Response of a Memristor: Generation of High Harmonics with Increasing Weights
Joglekar, Yogesh N.; Meijome, Natalia
2012-01-01
We investigate the Fourier transform of the current through a memristor when the applied-voltage frequency is smaller than the characteristic memristor frequency, and the memristor shows hysteresis in the current-voltage plane. We find that when the hysteresis curve is "smooth", the current Fourier transform has weights at odd and even harmonics that decay rapidly and monotonically with the order of the harmonic; when the hysteresis curve is "sharp", the Fourier transform of the current is si...
Fourier transformation methods in the field of gamma spectrometry
Indian Academy of Sciences (India)
A Abdel-Hafiez
2006-09-01
The basic principles of a new version of Fourier transformation is presented. This new version was applied to solve some main problems such as smoothing, and denoising in gamma spectroscopy. The mathematical procedures were first tested by simulated data and then by actual experimental data.
Logarithm of the Discrete Fourier Transform
Directory of Open Access Journals (Sweden)
Michael Aristidou
2007-01-01
Full Text Available The discrete Fourier transform defines a unitary matrix operator. The logarithm of this operator is computed, along with the projection maps onto its eigenspaces. A geometric interpretation of the discrete Fourier transform is also given.
Logarithm of the Discrete Fourier Transform
Michael Aristidou; Jason Hanson
2007-01-01
The discrete Fourier transform defines a unitary matrix operator. The logarithm of this operator is computed, along with the projection maps onto its eigenspaces. A geometric interpretation of the discrete Fourier transform is also given.
Glantz, P.; Tesche, M
2012-01-01
The aim of the present study is to validate AOT (aerosol optical thickness) and Ångström exponent (α), obtained from MODIS (MODerate resolution Imaging Spectroradiometer) Aqua and Terra calibrated level 1 data (1 km horizontal resolution at ground) with the SAER (Satellite AErosol Retrieval) algorithm and with MODIS Collection 5 (c005) standard product retrievals (10 km horizontal resolution), against AERONET (AErosol RObotic NETwork) sun photometer observations over land su...
Wide-field, high-resolution Fourier ptychographic microscopy
Zheng, Guoan; Yang, Changhuei
2014-01-01
In this article, we report an imaging method, termed Fourier ptychographic microscopy (FPM), which iteratively stitches together a number of variably illuminated, low-resolution intensity images in Fourier space to produce a wide-field, high-resolution complex sample image. By adopting a wavefront correction strategy, the FPM method can also correct for aberrations and digitally extend a microscope's depth-of-focus beyond the physical limitations of its optics. As a demonstration, we built a microscope prototype with a resolution of 0.78 um, a field-of-view of ~120 mm2, and a resolution-invariant depth-of-focus of 0.3 mm (characterized at 632 nm). Gigapixel colour images of histology slides verify FPM's successful operation. The reported imaging procedure transforms the general challenge of high-throughput, high-resolution microscopy from one that is coupled to the physical limitations of the system's optics to one that is solvable through computation.
Extending Fourier transformations to Hamilton's quaternions and Clifford's geometric algebras
Hitzer, Eckhard
2013-10-01
We show how Fourier transformations can be extended to Hamilton's algebra of quaternions. This was initially motivated by applications in nuclear magnetic resonance and electric engineering. Followed by an ever wider range of applications in color image and signal processing. Hamilton's algebra of quaternions is only one example of the larger class of Clifford's geometric algebras, complete algebras encoding a vector space and all its subspace elements. We introduce how Fourier transformations are extended to Clifford algebras and applied in electromagnetism, and in the processing of images, color images, vector field and climate data.
Energy Technology Data Exchange (ETDEWEB)
Rusu, G.I.; Leontie, L. [Faculty of Physics, Al. I. Cuza Universiy, Iasi (Romania); Tigau, N. [Faculty of Sciences, Dunarea de Jos University, Galati (Romania); Condurache-Bota, S.
2010-05-15
Different optical parameters for thin solid films can be computed as functions of wavelength from the optical transmission and reflection spectra. Subsequently, several models can be tested on the obtained data, in order to check their validity with respect to the materials under study. Moreover, these models offer the possibility to estimate essential physical parameters. Such models are tested within this article for the refraction index and for the real part of the complex dielectric constant, for bismuth trioxide thin films deposited on glass substrates maintained at three different temperatures. Also, the model proposed by Tauc is applied for the absorption spectrum of the same films, in order to determine the type of electronic transition and to estimate the optical energy bandgap. It will be noticed that the optical parameters vary rather significantly with changing substrate temperature, while the structure of the films, as studied by means of X-ray diffractometry is almost insensitive to this change of deposition parameter. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
International Nuclear Information System (INIS)
The intersubband electron-related nonlinear optical absorption and nonlinear optical rectification in GaAs-Ga1-xAlxAs asymmetric double quantum wells are studied, under the influence of combined or independent applied electric and magnetic fields as well as hydrostatic pressure. The outcome of the density matrix formalism and the effective mass, and parabolic-band approximations have been considered as main theoretical tools for the description. It is obtained that under particular geometrical conditions, with or without electric and/or magnetic field strength, the optical rectification is null and, simultaneously, in such circumstances the optical absorption has a relative maximum. It is also detected that the influence of the hydrostatic pressure leads to increasing or decreasing behaviors of the nonlinear optical absorption in dependence of the particular regime of pressure values considered, with significant distinction of the cases of opposite electric field orientations. - Highlights: → Maxima of the NOA correspond to zero in the NOR. → Electric fields can couple the double quantum wells. → Hydrostatic pressure can couple the double quantum wells. → NOA can increase/decrease with hydrostatic pressure. → Overlap between wave functions depends on the magnetic field.
Energy Technology Data Exchange (ETDEWEB)
Karabulut, I. [Department of Physics, Selcuk University, Konya 42075 (Turkey); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque_echeverri@yahoo.e [Instituto de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia)
2011-07-15
The intersubband electron-related nonlinear optical absorption and nonlinear optical rectification in GaAs-Ga{sub 1-x}Al{sub x}As asymmetric double quantum wells are studied, under the influence of combined or independent applied electric and magnetic fields as well as hydrostatic pressure. The outcome of the density matrix formalism and the effective mass, and parabolic-band approximations have been considered as main theoretical tools for the description. It is obtained that under particular geometrical conditions, with or without electric and/or magnetic field strength, the optical rectification is null and, simultaneously, in such circumstances the optical absorption has a relative maximum. It is also detected that the influence of the hydrostatic pressure leads to increasing or decreasing behaviors of the nonlinear optical absorption in dependence of the particular regime of pressure values considered, with significant distinction of the cases of opposite electric field orientations. - Highlights: {yields} Maxima of the NOA correspond to zero in the NOR. {yields} Electric fields can couple the double quantum wells. {yields} Hydrostatic pressure can couple the double quantum wells. {yields} NOA can increase/decrease with hydrostatic pressure. {yields} Overlap between wave functions depends on the magnetic field.
Han, Xu; Xie, Guangping; Laflen, Brandon; Jia, Ming; Song, Guiju; Harding, Kevin G.
2015-05-01
In the real application environment of field engineering, a large variety of metrology tools are required by the technician to inspect part profile features. However, some of these tools are burdensome and only address a sole application or measurement. In other cases, standard tools lack the capability of accessing irregular profile features. Customers of field engineering want the next generation metrology devices to have the ability to replace the many current tools with one single device. This paper will describe a method based on the ring optical gage concept to the measurement of numerous kinds of profile features useful for the field technician. The ring optical system is composed of a collimated laser, a conical mirror and a CCD camera. To be useful for a wide range of applications, the ring optical system requires profile feature extraction algorithms and data manipulation directed toward real world applications in field operation. The paper will discuss such practical applications as measuring the non-ideal round hole with both off-centered and oblique axes. The algorithms needed to analyze other features such as measuring the width of gaps, radius of transition fillets, fall of step surfaces, and surface parallelism will also be discussed in this paper. With the assistance of image processing and geometric algorithms, these features can be extracted with a reasonable performance. Tailoring the feature extraction analysis to this specific gage offers the potential for a wider application base beyond simple inner diameter measurements. The paper will present experimental results that are compared with standard gages to prove the performance and feasibility of the analysis in real world field engineering. Potential accuracy improvement methods, a new dual ring design and future work will be discussed at the end of this paper.
Novel Micro Fourier Transform Spectrometers
Institute of Scientific and Technical Information of China (English)
KONG Yan-mei; LIANG Jing-qiu; LIANG Zhong-zhu; WANG-Bo; ZHANG Jun
2008-01-01
The miniaturization of spectrometer opens a new application area with real-time and on-site measurements. The Fourier transform spectrometer(FTS) is much attractive considering its particular advantages among the approaches. This paper reviews the current status of micro FTS in worldwide and describes its developments; In addition, analyzed are the key problems in designing and fabricating FTS to be settled during the miniaturization. Finally, a novel model of micro FTS with no moving parts is proposed and analyzed, which may provide new concepts for the design of spectrometers.
Giraldo-Tobón, Eugenio; Ospina, Walter; Miranda-Pedraza, Guillermo L.; Mora-Ramos, Miguel E.
2015-07-01
The coefficients of the second-order nonlinear optical rectification and the generation of second and third harmonics, related to electron energy transitions in a two-dimensional elliptical quantum dot are calculated. The conduction band states are obtained using the finite element method to numerically solve the effective mass Schrödinger differential equation in the parabolic approximation, including the influence of an externally applied static electric field. It comes about that the geometry of the ellipse has a strong influence on the optical response, being the large eccentricity case the more favorable one. Furthermore, it is shown that the application of an electric field is of most importance for achieving well-resolved higher harmonics signals.
Fourier-Based Fast Multipole Method for the Helmholtz Equation
Cecka, Cris
2013-01-01
The fast multipole method (FMM) has had great success in reducing the computational complexity of solving the boundary integral form of the Helmholtz equation. We present a formulation of the Helmholtz FMM that uses Fourier basis functions rather than spherical harmonics. By modifying the transfer function in the precomputation stage of the FMM, time-critical stages of the algorithm are accelerated by causing the interpolation operators to become straightforward applications of fast Fourier transforms, retaining the diagonality of the transfer function, and providing a simplified error analysis. Using Fourier analysis, constructive algorithms are derived to a priori determine an integration quadrature for a given error tolerance. Sharp error bounds are derived and verified numerically. Various optimizations are considered to reduce the number of quadrature points and reduce the cost of computing the transfer function. © 2013 Society for Industrial and Applied Mathematics.
Ballering, Nicholas P; Rieke, George H; Gaspar, Andras
2016-01-01
We investigate whether varying the dust composition (described by the optical constants) can solve a persistent problem in debris disk modeling--the inability to fit the thermal emission without over-predicting the scattered light. We model five images of the beta Pictoris disk: two in scattered light from HST/STIS at 0.58 microns and HST/WFC3 at 1.16 microns, and three in thermal emission from Spitzer/MIPS at 24 microns, Herschel/PACS at 70 microns, and ALMA at 870 microns. The WFC3 and MIPS data are published here for the first time. We focus our modeling on the outer part of this disk, consisting of a parent body ring and a halo of small grains. First, we confirm that a model using astronomical silicates cannot simultaneously fit the thermal and scattered light data. Next, we use a simple, generic function for the optical constants to show that varying the dust composition can improve the fit substantially. Finally, we model the dust as a mixture of the most plausible debris constituents: astronomical sili...
Summation of the Fourier Transform of Measures and Four Denominator Estimates
International Nuclear Information System (INIS)
In this paper we consider convergence exponent for the Fourier transform of surface-carried measures. We apply the obtained bound for the Fourier transform of measures to so-called four denominator estimate related to the Schroedinger operator on a lattice. (author)
Far-Infrared double-Fourier interferometers and their spectral sensitivity
Rizzo, Maxime J; Rinehart, Stephen A; Dhabal, Arnab; Fixsen, Dale J; Juanola-Parramon, Roser; Benford, Dominic J; Leisawitz, David T; Silverberg, Robert F; Veach, Todd J
2015-01-01
Double-Fourier interferometry is the most viable path to sub-arcsecond spatial resolution for future astronomical instruments that will observe the universe at far-infrared wavelengths. The double transform spatio-spectral interferometry couples pupil plane beam combination with detector arrays to enable imaging spectroscopy of wide fields, that will be key to accomplishing top-level science goals. The wide field of view and the necessity for these instruments to fly above the opaque atmosphere create unique characteristics and requirements compared to instruments on ground-based telescopes. In this paper, we discuss some characteristics of single-baseline spatio-spectral interferometers. We investigate the impact of intensity and optical path difference noise on the interferogram and the spectral signal-to-noise ratio. We apply our findings to the special case of the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), a balloon payload that will be a first application of this technique ...
Photoacoustic detection of blood in dental pulp by using short-time Fourier transform
Yamada, Azusa; Kakino, Satoko; Matsuura, Yuji
2016-03-01
A method based on photoacoustic analysis is proposed to diagnose dental pulp vitality. Photoacoustic analysis enables to get signal from deeper tissues than other optical analyses and therefore, signal detection from root canal of thick dental tissues such as molar teeth is expected. As a light source for excitation of photoacoustic waves, a microchip Q-switched YAG laser with a wavelength of 1064 nm was used and owing to large penetration depth of the near infrared laser, photoacoustic signals from dental root were successfully obtained. It was found that the photoacoustic signals from the teeth containing hemoglobin solution in the pulp cavity provide vibration in high frequency region. It was also shown that the intensities of the high frequency component have correlation with the hemoglobin concentration of solution. We applied short-time Fourier transform for evaluation of photoacoustic signals and this analysis clearly showed photoacoustic signals from dental root.
Energy Technology Data Exchange (ETDEWEB)
Weiss, Shimon
2006-08-30
The objectives of this report are to: Develop novel site-specific protein labeling chemistries for assaying protein-protein interactions in MR-1; and development of a novel optical acquisition and data analysis method for characterizing protein-protein interactions in MR-1 model systems. Our work on analyzing protein-protein interactions in MR-1 is divided in four areas: (1) expression and labeling of MR-1 proteins; (2) general scheme for site-specific fluorescent labeling of expressed proteins; (3) methodology development for monitoring protein-protein interactions; and (4) study of protein-protein interactions in MR-1. In this final report, we give an account for our advances in all areas.
Gåsvik, Kjell J
2003-01-01
New material on computerized optical processes, computerized ray tracing, and the fast Fourier transform, Bibre-Bragg sensors, and temporal phase unwrapping.* New introductory sections to all chapters.* Detailed discussion on lasers and laser principles, including an introduction to radiometry and photometry.* Thorough coverage of the CCD camera.
Soons, Joris; Lava, Pascal; Debruyne, Dimitri; Dirckx, Joris
2012-10-01
In this paper two easy-to-use optical setups for the validation of biomechanical finite element (FE) models are presented. First, we show an easy-to-build Michelson digital speckle pattern interferometer (DSPI) setup, yielding the out-of-plane displacement. We also introduce three-dimensional digital image correlation (3D-DIC), a stereo photogrammetric technique. Both techniques are non-contact and full field, but they differ in nature and have different magnitudes of sensitivity. In this paper we successfully apply both techniques to validate a multi-layered FE model of a small bird beak, a strong but very light biological composite. DSPI can measure very small deformations, with potentially high signal-to-noise ratios. Its high sensitivity, however, results in high stability requirements and makes it hard to use it outside an optical laboratory and on living samples. In addition, large loads have to be divided into small incremental load steps to avoid phase unwrapping errors and speckle de-correlation. 3D-DIC needs much larger displacements, but automatically yields the strains. It is more flexible, does not have stability requirements, and can easily be used as an optical strain gage. PMID:23026697
Fourier Transforms of Finite Chirps
Directory of Open Access Journals (Sweden)
Fickus Matthew
2006-01-01
Full Text Available Chirps arise in many signal processing applications. While chirps have been extensively studied as functions over both the real line and the integers, less attention has been paid to the study of chirps over finite groups. We study the existence and properties of chirps over finite cyclic groups of integers. In particular, we introduce a new definition of a finite chirp which is slightly more general than those that have been previously used. We explicitly compute the discrete Fourier transforms of these chirps, yielding results that are number-theoretic in nature. As a consequence of these results, we determine the degree to which the elements of certain finite tight frames are well distributed.
Energy Technology Data Exchange (ETDEWEB)
Peach, D.F.; Adair, R.T.
1988-03-01
The Mulitier Specification was developed to provide guidelines and recommendations for improving the durability of the communication installations necessary for National Security/Emergency Preparedness (NSEP). The application of the Multitier Specification is considered beyond the installation and engineering requirements of typical commercial fiber optic systems. Five levels of hardness are defined in the specification. A link that could be important (may be asked to provide service) to the operation of the U.S. Space Command/NORAD was chosen as a candidate for the analysis. Based on the time-critical nature of the telecommunication traffic carried on this link and the stress expected, the Level 4 (Maximum) hardness was chosen as the target level for upgrade of this link. The elements of the existing system are classified into levels using the Mulitier Specification. The report describes the enhancements necessary to mitigate the stress threat within the guidelines of the Mulitier Specification and to raise the level of hardness to Level 4 (Maximum). The cost associated with the installation of these enhancements is included. Solutions to problems peculiar to the path specified for the link are described in terms of one suggested alternative. Also, an estimate of the additional initial investment required to harden the system to Level 4 (Maximum) is included.
International Nuclear Information System (INIS)
The Mulitier Specification was developed to provide guidelines and recommendations for improving the durability of the communication installations necessary for National Security/Emergency Preparedness (NSEP). The application of the Multitier Specification is considered beyond the installation and engineering requirements of typical commercial fiber optic systems. Five levels of hardness are defined in the specification. A link that could be important (may be asked to provide service) to the operation of the U.S. Space Command/NORAD was chosen as a candidate for the analysis. Based on the time-critical nature of the telecommunication traffic carried on this link and the stress expected, the Level 4 (Maximum) hardness was chosen as the target level for upgrade of this link. The elements of the existing system are classified into levels using the Mulitier Specification. The report describes the enhancements necessary to mitigate the stress threat within the guidelines of the Mulitier Specification and to raise the level of hardness to Level 4 (Maximum). The cost associated with the installation of these enhancements is included. Solutions to problems peculiar to the path specified for the link are described in terms of one suggested alternative. Also, an estimate of the additional initial investment required to harden the system to Level 4 (Maximum) is included
2D and 3D optical diagnostic techniques applied to Madonna dei Fusi by Leonardo da Vinci
Fontana, R.; Gambino, M. C.; Greco, M.; Marras, L.; Materazzi, M.; Pampaloni, E.; Pelagotti, A.; Pezzati, L.; Poggi, P.; Sanapo, C.
2005-06-01
3D measurement and modelling have been traditionally applied to statues, buildings, archeological sites or similar large structures, but rarely to paintings. Recently, however, 3D measurements have been performed successfully also on easel paintings, allowing to detect and document the painting's surface. We used 3D models to integrate the results of various 2D imaging techniques on a common reference frame. These applications show how the 3D shape information, complemented with 2D colour maps as well as with other types of sensory data, provide the most interesting information. The 3D data acquisition was carried out by means of two devices: a high-resolution laser micro-profilometer, composed of a commercial distance meter mounted on a scanning device, and a laser-line scanner. The 2D data acquisitions were carried out using a scanning device for simultaneous RGB colour imaging and IR reflectography, and a UV fluorescence multispectral image acquisition system. We present here the results of the techniques described, applied to the analysis of an important painting of the Italian Reinassance: `Madonna dei Fusi', attributed to Leonardo da Vinci.
Fourier analysis of blurred images for the measurement of the in-plane dynamics of MEMS
International Nuclear Information System (INIS)
The goal of this paper is to use FFT imaging techniques to measure in-plane resonances of MEMS devices from blurred microphotographs where the presence of resonance is not visually discernable. A method is presented for measuring the high-frequency (in the 10s–100s of kHz range) response characteristics of MEMS devices using only standard optical microscope cameras (15–30 Hz frame rate) and applying Fourier analysis of camera images of periodic patterns on the oscillating devices. In the frequency domain, in-plane blurring acts as a low pass filter, attenuating all frequency components, but preferentially attenuating the higher order harmonics. A theoretical formula for the blur-induced attenuation of the harmonics of Fourier series components is derived and it is shown that it follows a Bessel curve. The theoretical predictions were verified experimentally using a series of camera microphotographs of three different variations of an electro-thermally driven pad suspended on springs. The predicted attenuations of harmonics were observed and verified. The analysis of the measured attenuation was able to (1) determine in-plane resonant frequencies, (2) measure submicron motions and (3) characterize the nonlinear dynamics (modeled by the Duffing equation). The amplitude uncertainty of the FFT method for detecting in-plane resonant peaks at 75 kHz and 3.5 V was found to be ±0.027 µm using a single image and ±0.011 µm using an average of 10 images. (paper)
Boucherit, S.; Bouamama, L.; Zegadi, R.; Simöens, S.
2008-09-01
The follow-up of particles of the tracer type in the fluids constitutes a field of study rather significant and at the same time rather complex owing to the fact that the number of parameters studied and at the same time significant and concerning the random one. The use of holography as a technique of imagery for the follow-up of these particles was applied by various laboratories for a long time. With the appearance of digital holography, the application of this technique became more than of topicality owing to the fact that it became possible to record in real time a succession of holograms using a camera CCD rapid, that it will be possible to put in perspective there after in a numerical way and to try to extract information related to the movements described by these particles which will be automatically those of the studied fluids. The numerical reconstruction of digital holograms being based on the laws of light propagation such as, the Fresnel integral and the traditional Fourier transform. The fractional Fourier Transform (FrFT) is defined as being a generalization of the traditional Fourier transform. It was proposed by Namias and was reintroduced in the optical systems by Lohmann, Mendlovic and Ozaktas. Pellat-Finet studied the relationship between (FrFT) and the Fresnel diffraction, therefore this operator also allows rebuilding the holograms. In this study we use the (FrFT) to reconstruct in line holograms of small particles plunged in a fluid. Three-dimensional information on the particles can be extracted by sweeping the fractional order.
Energy Technology Data Exchange (ETDEWEB)
Paulsson, Bjorn N.P. [Paulsson, Inc., Van Nuys, CA (United States)
2015-02-28
To address the critical site characterization and monitoring needs for CCS programs, US Department of Energy (DOE) awarded Paulsson, Inc. in 2010 a contract to design, build and test a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into high temperature and high pressure boreholes. Paulsson, Inc. has completed a design or a unique borehole seismic system consisting of a novel drill pipe based deployment system that includes a hydraulic clamping mechanism for the sensor pods, a new sensor pod design and most important – a unique fiber optic seismic vector sensor with technical specifications and capabilities that far exceed the state of the art seismic sensor technologies. These novel technologies were all applied to the new borehole seismic system. In combination these technologies will allow for the deployment of up to 1,000 3C sensor pods in vertical, deviated or horizontal wells. Laboratory tests of the fiber optic seismic vector sensors developed during this project have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown that the system can record events at magnitudes much smaller than M-2.3 at frequencies up to 2,000 Hz. The sensors have also proved to be about 100 times more sensitive than the regular coil geophones that are used in borehole seismic systems today. The fiber optic seismic sensors have furthermore been qualified to operate at temperatures over 300°C (572°F). The fibers used for the seismic sensors in the system are used to record Distributed Temperature Sensor (DTS) data allowing additional value added data to be recorded simultaneously with the seismic vector sensor data.
Ultraminiature one-shot Fourier-spectroscopic tomography
Sato, Shun; Qi, Wei; Kawashima, Natsumi; Nogo, Kosuke; Hosono, Satsuki; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro
2016-02-01
We propose one-shot Fourier-spectroscopic tomography as a method of ultraminiature spectroscopic imaging. The apparatus used in this technique consists solely of a glass slab with a portion of its surface polished at a certain inclination angle-a device we term a relative-inclination phase shifter-simply mounted on an infinite-distance-corrected optical imaging system. For this reason, the system may be ultraminiaturized to sizes on the order of a few tens of millimeters. Moreover, because our technique uses a near-common-path wavefront-division phase-shift interferometer and has absolutely no need for a mechanical drive unit, it is highly robust against mechanical vibrations. In addition, because the proposed technique uses Fourier-transform spectroscopy, it offers highly efficient light utilization and an outstanding signal-to-noise ratio compared to devices that incorporate distributed or hyperspectral acousto-optical tunable filters. The interferogram, which is a pattern formed by interference of waves at all wavelengths, reflects the spatial variation in the intensity of the interference depending on the magnitude of the phase shift. We first discuss the design of the phase shifter and the results of tests to validate the principles underlying one-shot Fourier-spectroscopic tomography. We then report the results of one-dimensional spectroscopic imaging using this technique.
The Table of Analytical Discrete Fourier Transforms
Briggs, William L.; Henson, Van Emden
1995-01-01
While most people rely on numerical methods (most notably the fast Fourier transform) for computing discrete Fourier transforms (DFTs), there is still an occasional need to have analytical DFTs close at hand. Such a table of analytical DFTs is provided in this paper, along with comments and observations, in the belief that it will serve as a useful resource or teaching aid for Fourier practioners.
Directory of Open Access Journals (Sweden)
P. Glantz
2012-07-01
Full Text Available The aim of the present study is to validate AOT (aerosol optical thickness and Ångström exponent (α, obtained from MODIS (MODerate resolution Imaging Spectroradiometer Aqua and Terra calibrated level 1 data (1 km horizontal resolution at ground with the SAER (Satellite AErosol Retrieval algorithm and with MODIS Collection 5 (c005 standard product retrievals (10 km horizontal resolution, against AERONET (AErosol RObotic NETwork sun photometer observations over land surfaces in Europe. An inter-comparison of AOT at 0.469 nm obtained with the two algorithms has also been performed. The time periods investigated were chosen to enable a validation of the findings of the two algorithms for a maximal possible variation in sun elevation. The satellite retrievals were also performed with a significant variation in the satellite-viewing geometry, since Aqua and Terra passed the investigation area twice a day for several of the cases analyzed. The validation with AERONET shows that the AOT at 0.469 and 0.555 nm obtained with MODIS c005 is within the expected uncertainty of one standard deviation of the MODIS c005 retrievals (ΔAOT = ± 0.05 ± 0.15 · AOT. The AOT at 0.443 nm retrieved with SAER, but with a much finer spatial resolution, also agreed reasonably well with AERONET measurements. The majority of the SAER AOT values are within the MODIS c005 expected uncertainty range, although somewhat larger average absolute deviation occurs compared to the results obtained with the MODIS c005 algorithm. The discrepancy between AOT from SAER and AERONET is, however, substantially larger for the wavelength 488 nm. This means that the values are, to a larger extent, outside of the expected MODIS uncertainty range. In addition, both satellite retrieval algorithms are unable to estimate α accurately, although the MODIS c005 algorithm performs better. Based on the inter-comparison of the SAER and MODIS c005 algorithms, it was found that SAER on the whole is
Limitations on continuous variable quantum algorithms with Fourier transforms
International Nuclear Information System (INIS)
We study quantum algorithms implemented within a single harmonic oscillator, or equivalently within a single mode of the electromagnetic field. Logical states correspond to functions of the canonical position, and the Fourier transform to canonical momentum serves as the analogue of the Hadamard transform for this implementation. This continuous variable version of quantum information processing has widespread appeal because of advanced quantum optics technology that can create, manipulate and read Gaussian states of light. We show that, contrary to a previous claim, this implementation of quantum information processing has limitations due to a position-momentum trade-off of the Fourier transform, analogous to the famous time-bandwidth theorem of signal processing.
Proposal of snapshot line-imaging Fourier spectroscopy for smartphone
Kawashima, Natsumi; Sato, Shun; Ishida, Akane; Inohara, Daichi; Tanaka, Naotaka; Wada, Kenji; Nishiyama, Akira; Fujiwara, Masaru; Ishimaru, Ichiro
2015-03-01
We propose the extremely-compact-size line-imaging Fourier spectroscopy for smartphones. We realize the near common-path interferometer with strong robustness for mechanical vibrations by installing the transmission-type relative-inclined phase-shifter. The interferogram of an imaging line is formed as 2-dimensional fringe pattern on imaging sensor, such as CCD camera. In other words, the horizontal axis on an imaging sensor is assigned to phase-shift value. And the vertical axis is corresponds to image formation coordinate. Thus, by installing a relatively-inclined thin glass into imaging optics, such as smartphone, we will realize the line-imaging Fourier spectroscopy for healthcare sensor in daily-life environments.
Fourier-based magnetic induction tomography for mapping resistivity
International Nuclear Information System (INIS)
Magnetic induction tomography is used as an experimental tool for mapping the passive electromagnetic properties of conductors, with the potential for imaging biological tissues. Our numerical approach to solving the inverse problem is to obtain a Fourier expansion of the resistivity and the stream functions of the magnetic fields and eddy current density. Thus, we are able to solve the inverse problem of determining the resistivity from the applied and measured magnetic fields for a two-dimensional conducting plane. When we add noise to the measured magnetic field, we find the fidelity of the measured to the true resistivity is quite robust for increasing levels of noise and increasing distances of the applied and measured field coils from the conducting plane, when properly filtered. We conclude that Fourier methods provide a reliable alternative for solving the inverse problem.
Fourier-based magnetic induction tomography for mapping resistivity
Puwal, Steffan; Roth, Bradley J.
2011-01-01
Magnetic induction tomography is used as an experimental tool for mapping the passive electromagnetic properties of conductors, with the potential for imaging biological tissues. Our numerical approach to solving the inverse problem is to obtain a Fourier expansion of the resistivity and the stream functions of the magnetic fields and eddy current density. Thus, we are able to solve the inverse problem of determining the resistivity from the applied and measured magnetic fields for a two-dimensional conducting plane. When we add noise to the measured magnetic field, we find the fidelity of the measured to the true resistivity is quite robust for increasing levels of noise and increasing distances of the applied and measured field coils from the conducting plane, when properly filtered. We conclude that Fourier methods provide a reliable alternative for solving the inverse problem.
Institute of Scientific and Technical Information of China (English)
卜贵军; 于静; 邸慧慧; 罗世家; 周大寨; 肖强
2015-01-01
堆肥材料中腐殖酸的组成和结构直接影响堆肥产品品质和腐熟度。为研究堆肥腐殖酸的组成和形成过程，进行了生活垃圾堆肥并提取了不同堆肥阶段样品中的胡敏酸和富里酸，采用红外光谱和二维相关分析，探讨了堆肥过程胡敏酸、富里酸的组成、结构及随时间演化规律。红外光谱结果显示，堆肥胡敏酸组成复杂，在2917～2924，2844～2852，2549，1662，1566，1454，1398，1351，990～1063，839，711 cm－1均出现了吸收峰；相对于胡敏酸，堆肥富里酸结构简单，仅在1725，1637，990 cm－1出现了吸收峰。上述吸收峰的出现表明堆肥胡敏酸和富里酸均含有木质素来源的苯环和糖类结构，但胡敏酸还含有丰富的脂族和蛋白类结构，这些在富里酸中含量较低；堆肥过程糖类、脂类、蛋白类及木质素结构均发生了降解，但是在胡敏酸和富里酸中它们的降解优先顺序不同。二维相关光谱分析结果表明，胡敏酸中降解先后顺序为脂肪类—蛋白类—多糖类和木质素，而富里酸中为蛋白质—多糖和脂肪类，降解过程均生成了羧酸、酮类和酯类结构，其中羧酸类物质一部分在堆肥中形成了碳酸盐。研究结果表明，红外光谱结合二维相关分析不仅可以获得堆肥腐殖酸官能团组成，还可以揭示堆肥过程这些官能团降解顺序，确定堆肥腐殖酸合成机制和动力学过程。%The composition and structure of humic acids formed during composting play an important influence on the quality and mature of compost.In order to explore the composition and evolution mechanism,municipal solid wastes were collected to com-post and humic and fulvic acids were obtained from these composted municipal solid wastes.Furthermore,fourier transform in-frared spectra and two-dimensional correlation analysis were applied to study the composition and transformation of humic and fulvic
Airborne fourier infrared spectrometer system
International Nuclear Information System (INIS)
A commercial Fourier Transform Infrared (FTIR) spectrometer has been interfaced to a 35 cm aperture telescope and a digital data processing and display system and flown in a downward-viewing configuration on a Queen Air aircraft. Real-time spectral analysis and display software were developed to provide the means to direct aircraft flight operations based on atmospheric and/or surface features identified on 1 to 8 cm-1 resolution infrared spectra. Data are presented from ground-based tests consisting of simultaneous horizontal path measurements by the FTIR system and an infrared differential absorption lidar (DIAL) observing gas volumes generated in an open-ended chamber. Airborne FUR data are presented on the tracking of a surface-released puff of SF6 gas to a downwind distance of 45 km in a time period of 1.5 hours. The experiment demonstrated the real time tracking of a gas tracer cloud to provide atmospheric transport and diffusion information and for directing airborne in-situ sensors for optimum cloud sampling. 5 refs., 5 figs
Evaluating Agricultural Banking Efficiency Using the Fourier Flexible Functional Form
Yu, Yingzhuo; Escalante, Cesar L.; Deng, Xiaohui
2007-01-01
This study applied more flexible cost functional form, Fourier Flexible Functional Form, and tested the validity of the Translog cost functional form as to estimate the cost function incorporating risk and loan's quality for banking industry. Meanwhile, the study extended four different cost efficiency measures for banking industry not only among different sized banks but also between commercial banks and agricultural banks. And thereafter, by evaluating these efficiency measures, banks will ...
Fourier-based magnetic induction tomography for mapping resistivity
Puwal, Steffan; Roth, Bradley J.
2011-01-01
Magnetic induction tomography is used as an experimental tool for mapping the passive electromagnetic properties of conductors, with the potential for imaging biological tissues. Our numerical approach to solving the inverse problem is to obtain a Fourier expansion of the resistivity and the stream functions of the magnetic fields and eddy current density. Thus, we are able to solve the inverse problem of determining the resistivity from the applied and measured magnetic fields for a two-dime...
Trigonometric Pade approximants for functions with regularly decreasing Fourier coefficients
International Nuclear Information System (INIS)
Sufficient conditions describing the regular decrease of the coefficients of a Fourier series f(x)=a0/2 + Σ an cos kx are found which ensure that the trigonometric Pade approximants πtn,m(x;f) converge to the function f in the uniform norm at a rate which coincides asymptotically with the highest possible one. The results obtained are applied to problems dealing with finding sharp constants for rational approximations. Bibliography: 31 titles.
Quaternion Fourier Transform on Quaternion Fields and Generalizations
Hitzer, Eckhard
2013-01-01
We treat the quaternionic Fourier transform (QFT) applied to quaternion fields and investigate QFT properties useful for applications. Different forms of the QFT lead us to different Plancherel theorems. We relate the QFT computation for quaternion fields to the QFT of real signals. We research the general linear ($GL$) transformation behavior of the QFT with matrices, Clifford geometric algebra and with examples. We finally arrive at wide-ranging non-commutative multivector FT generalization...
Two modified discrete chirp Fourier transform schemes
Institute of Scientific and Technical Information of China (English)
樊平毅; 夏香根
2001-01-01
This paper presents two modified discrete chirp Fourier transform (MDCFT) schemes.Some matched filter properties such as the optimal selection of the transform length, and its relationship to analog chirp-Fourier transform are studied. Compared to the DCFT proposed previously, theoretical and simulation results have shown that the two MDCFTs can further improve the chirp rate resolution of the detected signals.
Product Theorem for Quaternion Fourier Transform
Bahri, Mawardi
2014-01-01
In this paper we present the generalized convolution and correlation for the two-dim ensional discrete quaternion Fourier transform (DQFT). We provide several new properties of the generalizations. There results can be considered as the extension of correlation and convolution properties of real and complex Fourier transform to the DQFT domain.
On the $q$-Bessel Fourier transform
Dhaouadi, Lazhar
2013-01-01
In this work, we are interested by the $q$-Bessel Fourier transform with a new approach. Many important results of this $q$-integral transform are proved with a new constructive demonstrations and we establish in particular the associated $q$-Fourier-Neumen expansion which involves the $q$-little Jacobi polynomials.
1-Convergence of Complex Double Fourier Series
Indian Academy of Sciences (India)
Kulwinder Kaur; S S Bhatia; Babu Ram
2003-11-01
It is proved that the complex double Fourier series of an integrable function (, ) with coefficients {} satisfying certain conditions, will converge in 1-norm. The conditions used here are the combinations of Tauberian condition of Hardy–Karamata kind and its limiting case. This paper extends the result of Bray [1] to complex double Fourier series.
Hyatt, C J; Maughan, D W
1994-01-01
A method for determining and analyzing the wing beat frequency in Diptera is presented. This method uses an optical tachometer to measure Diptera wing movement during flight. The resulting signal from the optical measurement is analyzed using a Fast Fourier Transform (FFT) technique, and the dominant frequency peak in the Fourier spectrum is selected as the wing beat frequency. Also described is a method for determining quantitatively the degree of variability of the wing beat frequency about...
Wang, Xiaoli; Yao, Youwei; Cao, Jian; Vaynman, Semyon; Graham, Michael E.; Liu, Tianchen; Ulmer, M. P.
2015-09-01
Our goal is to improve initially fabricated X-ray optics figures by applying a magnetic field to drive a magnetic smart material (MSM) coating on the non-reflecting side of the mirror. The consequent deformation of the surface should be three-dimensional. Here we will report on the results of working with a glass sample of 50x50x0.2 mm that has been coated with MSMs. The coated glass can be deformed in 3 dimensions and its surface profile was measured under our Zygo NewView white light interferometer (WLI). The driving magnetic field was produced via a pseudo-magnetic write head made up of two permanent magnet posts. The magnet posts were moved about the bottom of the glass sample with a 3-d computer controlled translation stage. The system allowed four degrees of freedom of motion, i.e., up and down, side to side, back and forth, and rotation of the posts (3.175 mm diameter) about the vertical axis to allow us to change the orientation of the magnetic field in the (horizontal) plane of the sample. We established a finite element analysis (FEA) model to predict deformations and compare with the observed results in order to guide the application of the magnetically controlled MSMs to improve the future X-ray optics figures.
Directory of Open Access Journals (Sweden)
Wen-Jeng Ho
2016-08-01
Full Text Available This paper reports impressive improvements in the optical and electrical performance of metal-oxide-semiconductor (MOS-structure silicon solar cells through the incorporation of plasmonic indium nanoparticles (In-NPs and an indium-tin-oxide (ITO electrode with periodic holes (perforations under applied bias voltage. Samples were prepared using a plain ITO electrode or perforated ITO electrode with and without In-NPs. The samples were characterized according to optical reflectance, dark current voltage, induced capacitance voltage, external quantum efficiency, and photovoltaic current voltage. Our results indicate that induced capacitance voltage and photovoltaic current voltage both depend on bias voltage, regardless of the type of ITO electrode. Under a bias voltage of 4.0 V, MOS cells with perforated ITO and plain ITO, respectively, presented conversion efficiencies of 17.53% and 15.80%. Under a bias voltage of 4.0 V, the inclusion of In-NPs increased the efficiency of cells with perforated ITO and plain ITO to 17.80% and 16.87%, respectively.
Collier, Robert
2013-01-01
Optical Holography deals with the use of optical holography to solve technical problems, with emphasis on the properties of holograms formed with visible light. Topics covered include the Fourier transform, propagation and diffraction, pulsed-laser holography, and optical systems with spherical lenses. A geometric analysis of point-source holograms is also presented, and holograms and hologram spatial filters formed with spatially modulated reference waves are described. This book is comprised of 20 chapters and begins with an introduction to concepts that are basic to understanding hologr
Denoise in the pseudopolar grid Fourier space using exact inverse pseudopolar Fourier transform
Wei, Fan Jun
2015-01-01
In this paper I show a matrix method to calculate the exact inverse pseudopolar grid Fourier transform, and use this transform to do noise removals in the k space of pseudopolar grids. I apply the Gaussian filter to this pseudopolar grid and find the advantages of the noise removals are very excellent by using pseudopolar grid, and finally I show the Cartesian grid denoise for comparisons. The results present the signal to noise ratio and the variance are much better when doing noise removals in the pseudopolar grid than the Cartesian grid. The noise removals of pseudopolar grid or Cartesian grid are both in the k space, and all these noises are added in the real space.
Improved optics for laser light scattering
Cheung, H. Michael
1989-01-01
Laser light scattering experiments contemplated for use in a microgravity environment must conform to a number of operational constraints which do not apply on Earth. In particular, the use of index matching fluid to control flare is unacceptable. Work to eliminate index matching fluids by the use of high spatial resolution receiving optics is described. By increasing on-axis spatial resolution flare from the sample cell walls (both the cell sample and cell air interfaces) can be effectively prevented from reaching the photodetector. In general, improving the on-axis discrimination degrades the angular resolution of a receiving optical train. Several different possible configurations of receiving optics are compared for their spatial resolution and angular resolution. For cylinder symmetric optics, the dual lens, fourier transform pair, receiving train with a center mask located between the lenses gives the best on-axis spatial resolution.
Fourier theory of linear gain media
Hâgenvik, Hans Olaf; Malema, Markus E.; Skaar, Johannes
2015-04-01
The analysis of wave propagation in linear, passive media is usually done by considering a single real frequency (the monochromatic limit) and also often a single plane-wave component (plane-wave limit). For gain media, we demonstrate that these two limits generally do not commute; for example, one order may lead to a diverging field, while the other order leads to a finite field. Moreover, the plane-wave limit may be dependent on whether it is realized with a finite-support excitation or Gaussian excitation, eventually of infinite widths. We consider wave propagation in gain media by a Fourier-Laplace integral in space and time, and demonstrate how the correct monochromatic limit or plane-wave limit can be taken, by deforming the integration surface in complex frequency-complex wave-number space. We also give the most general criterion for absolute instabilities. The general theory is applied in several cases, and is used to predict media with novel properties. In particular, we show the existence of isotropic media which in principle exhibit simultaneous refraction, meaning that they refract positively and negatively at the same time.
Fourier theory of linear gain media
Hågenvik, Hans Olaf; Skaar, Johannes
2014-01-01
The analysis of wave propagation in linear, passive media is usually done by considering a single real frequency (the monochromatic limit) and also often a single plane wave component (plane wave limit), separately. For gain media, we demonstrate that these two limits generally do not commute; for example, one order may lead to a diverging field, while the other order leads to a finite field. Moreover, the plane wave limit may be dependent on whether it is realized with a rect function excitation or gaussian excitation of infinite widths. We consider wave propagation in gain media by a Fourier--Laplace integral in time and space, and demonstrate how the correct monochromatic limit or plane wave limit can be taken, by deforming the integration surface in complex frequency--complex wavenumber space. We also give the most general criterion for absolute instabilities. The general theory is applied in several cases, and is used to predict media with novel properties. In particular, we show the existence of isotrop...
Birefringent Fourier transform imaging spectrometer with a rotating retroreflector.
Bai, Caixun; Li, Jianxin; Shen, Yan; Zhou, Jianqiang
2016-08-01
A birefringent Fourier transform imaging spectrometer with a new lateral shearing interferometer is presented. The interferometer includes a Wollaston prism and a retroreflector. It splits an incident light beam into two shearing parallel parts to obtain interference fringe patterns of an imaging target, which is well established as an aid in reducing problems associated with optical alignment and manufacturing precision. Continuously rotating the retroreflector enables the spectrometer to acquire two-dimensional spectral images without spatial scanning. This technology, with a high work efficiency and low complexity, is inherently compact and robust. The effectiveness of the proposed method is demonstrated by the experimental results. PMID:27472640
Quantum control in two-dimensional Fourier-transform spectroscopy
International Nuclear Information System (INIS)
We present a method that harnesses coherent control capability to two-dimensional Fourier-transform optical spectroscopy. For this, three ultrashort laser pulses are individually shaped to prepare and control the quantum interference involved in two-photon interexcited-state transitions of a V-type quantum system. In experiments performed with atomic rubidium, quantum control for the enhancement and reduction of the 5P1/2→ 5P3/2 transition was successfully tested in which the engineered transitions were distinguishably extracted in the presence of dominant one-photon transitions.
Accelerated radial Fourier-velocity encoding using compressed sensing
Energy Technology Data Exchange (ETDEWEB)
Hilbert, Fabian; Han, Dietbert [Wuerzburg Univ. (Germany). Inst. of Radiology; Wech, Tobias; Koestler, Herbert [Wuerzburg Univ. (Germany). Inst. of Radiology; Wuerzburg Univ. (Germany). Comprehensive Heart Failure Center (CHFC)
2014-10-01
Purpose:Phase Contrast Magnetic Resonance Imaging (MRI) is a tool for non-invasive determination of flow velocities inside blood vessels. Because Phase Contrast MRI only measures a single mean velocity per voxel, it is only applicable to vessels significantly larger than the voxel size. In contrast, Fourier Velocity Encoding measures the entire velocity distribution inside a voxel, but requires a much longer acquisition time. For accurate diagnosis of stenosis in vessels on the scale of spatial resolution, it is important to know the velocity distribution of a voxel. Our aim was to determine velocity distributions with accelerated Fourier Velocity Encoding in an acquisition time required for a conventional Phase Contrast image. Materials and Methods:We imaged the femoral artery of healthy volunteers with ECG - triggered, radial CINE acquisition. Data acquisition was accelerated by undersampling, while missing data were reconstructed by Compressed Sensing. Velocity spectra of the vessel were evaluated by high resolution Phase Contrast images and compared to spectra from fully sampled and undersampled Fourier Velocity Encoding. By means of undersampling, it was possible to reduce the scan time for Fourier Velocity Encoding to the duration required for a conventional Phase Contrast image. Results:Acquisition time for a fully sampled data set with 12 different Velocity Encodings was 40 min. By applying a 12.6 - fold retrospective undersampling, a data set was generated equal to 3:10 min acquisition time, which is similar to a conventional Phase Contrast measurement. Velocity spectra from fully sampled and undersampled Fourier Velocity Encoded images are in good agreement and show the same maximum velocities as compared to velocity maps from Phase Contrast measurements. Conclusion: Compressed Sensing proved to reliably reconstruct Fourier Velocity Encoded data. Our results indicate that Fourier Velocity Encoding allows an accurate determination of the velocity
Development of applied optical techniques
International Nuclear Information System (INIS)
This report resents the status of researches on the applications of lasers at KAERI. A compact portable laser fluorometer detecting uranium desolved in aqueous solution was built. The laser-induced fluorescence of uranium was detected with a photomultiplier tube. A delayed gate circuit and an integrating circuit were used to process the electrical signal. A small nitrogen laser was used to excite uranium. The detecting limit is about 0.1 ppb. The effect of various acidic solutions was investigated. Standard addition technique was incorporated to improve the measuring accuracy. This instrument can be used for safety inspection of workers in the nuclear fuel cycle facilities. (Author)
Fourier transforms in radar and signal processing
Brandwood, David
2011-01-01
Fourier transforms are used widely, and are of particular value in the analysis of single functions and combinations of functions found in radar and signal processing. Still, many problems that could have been tackled by using Fourier transforms may have gone unsolved because they require integration that is difficult and tedious. This newly revised and expanded edition of a classic Artech House book provides you with an up-to-date, coordinated system for performing Fourier transforms on a wide variety of functions. Along numerous updates throughout the book, the Second Edition includes a crit
On the positivity of Fourier transforms
Giraud, Bertrand G
2014-01-01
Characterizing in a constructive way the set of real functions whose Fourier transforms are positive appears to be yet an open problem. Some sufficient conditions are known but they are far from being exhaustive. We propose two constructive sets of necessary conditions for positivity of the Fourier transforms and test their ability of constraining the positivity domain. One uses analytic continuation and Jensen inequalities and the other deals with Toeplitz determinants and the Bochner theorem. Applications are discussed, including the extension to the two-dimensional Fourier-Bessel transform and the problem of positive reciprocity, i.e. positive functions with positive transforms.
Matrix-Vector Based Fast Fourier Transformations on SDR Architectures
Directory of Open Access Journals (Sweden)
Y. He
2008-05-01
Full Text Available Today Discrete Fourier Transforms (DFTs are applied in various radio standards based on OFDM (Orthogonal Frequency Division Multiplex. It is important to gain a fast computational speed for the DFT, which is usually achieved by using specialized Fast Fourier Transform (FFT engines. However, in face of the Software Defined Radio (SDR development, more general (parallel processor architectures are often desirable, which are not tailored to FFT computations. Therefore, alternative approaches are required to reduce the complexity of the DFT. Starting from a matrix-vector based description of the FFT idea, we will present different factorizations of the DFT matrix, which allow a reduction of the complexity that lies between the original DFT and the minimum FFT complexity. The computational complexities of these factorizations and their suitability for implementation on different processor architectures are investigated.
A Fourier dimensionality reduction model for big data interferometric imaging
Kartik, S Vijay; Thiran, Jean-Philippe; Wiaux, Yves
2016-01-01
Data dimensionality reduction in radio interferometry can provide critical savings of computational resources for image reconstruction, which is of paramount importance for the scalability of imaging methods to the big data setting of the next-generation telescopes. This article sheds new light on dimensionality reduction from the perspective of the compressed sensing theory and studies its interplay with imaging algorithms designed in the context of convex optimization. We propose a post-gridding linear data embedding to the space spanned by the left singular vectors of the measurement operator, providing a dimensionality reduction below image size. This embedding preserves the null space of the measurement operator and hence its sampling properties are also preserved in light of the compressed sensing theory. We show that this can be approximated by first computing the dirty image and then applying a weighted subsampled discrete Fourier transform to obtain the final reduced data vector. This Fourier dimensi...
M. Amaral, Marcello; Raele, Marcus P.; Z. de Freitas, Anderson; Zahn, Guilherme S.; Samad, Ricardo E.; D. Vieira, Nilson, Jr.; G. Tarelho, Luiz V.
2009-07-01
This work presents a compositional characterization of 1939's Thousand "Réis" and 1945's One "Cruzeiro" Brazilian coins, forged on aluminum bronze alloy. The coins were irradiated by a Q-switched Nd:YAG laser with 4 ns pulse width and energy of 25mJ emitting at 1064nm reaching 3.1010Wcm-2 (assured condition for stoichiometric ablation), forming a plasma in a small fraction of the coin. Plasma emission was collected by an optical fiber system connected to an Echelle spectrometer. The capability of LIBS to remove small fraction of material was exploited and the coins were analyzed ablating layer by layer from patina to the bulk. The experimental conditions to assure reproductivity were determined by evaluation of three plasma paramethers: ionization temperature using Saha-Boltzmann plot, excitation temperature using Boltzmann plot, plasma density using Saha-Boltzmann plot and Stark broadening. The Calibration-Free LIBS technique was applied to both coins and the analytical determination of elemental composition was employed. In order to confirm the Edict Law elemental composition the results were corroborated by Neutron Activation Analysis (NAA). In both cases the results determined by CF-LIBS agreed to with the Edict Law and NAA determination. Besides the major components for the bronze alloy some other impurities were observed. Finally, in order to determine the coin damage made by the laser, the OCT (Optical Coherence Tomography) technique was used. After tree pulses of laser 54μg of coin material were removed reaching 120μm in depth.
Energy Technology Data Exchange (ETDEWEB)
Buecking, N.
2007-11-05
In this work a new theoretical formalism is introduced in order to simulate the phononinduced relaxation of a non-equilibrium distribution to equilibrium at a semiconductor surface numerically. The non-equilibrium distribution is effected by an optical excitation. The approach in this thesis is to link two conventional, but approved methods to a new, more global description: while semiconductor surfaces can be investigated accurately by density-functional theory, the dynamical processes in semiconductor heterostructures are successfully described by density matrix theory. In this work, the parameters for density-matrix theory are determined from the results of density-functional calculations. This work is organized in two parts. In Part I, the general fundamentals of the theory are elaborated, covering the fundamentals of canonical quantizations as well as the theory of density-functional and density-matrix theory in 2{sup nd} order Born approximation. While the formalism of density functional theory for structure investigation has been established for a long time and many different codes exist, the requirements for density matrix formalism concerning the geometry and the number of implemented bands exceed the usual possibilities of the existing code in this field. A special attention is therefore attributed to the development of extensions to existing formulations of this theory, where geometrical and fundamental symmetries of the structure and the equations are used. In Part II, the newly developed formalism is applied to a silicon (001)surface in a 2 x 1 reconstruction. As first step, density-functional calculations using the LDA functional are completed, from which the Kohn-Sham-wave functions and eigenvalues are used to calculate interaction matrix elements for the electron-phonon-coupling an the optical excitation. These matrix elements are determined for the optical transitions from valence to conduction bands and for electron-phonon processes inside the
Photonic crystal biosensor in spatial fourier domain
Hallynck, Elewout; Bienstman, Peter
2011-01-01
We propose a photonic crystal biosensor, operating at a single wavelength, based on analysis of resonant guided modes in the spatial Fourier domain. Sensitivities of 65 degrees per RIU and more have been simulated.
Fourier tranform in exponential rearrangement invariant spaces
Ostrovsky, E.; Sirota, L.
2004-01-01
In this article we investigate the Fourier series and transforms for the functions defined on the $ [0, 2 \\pi]^ d $ or $ R^d $ and belonging to the exponential Orlicz and some other rearrangement invariant (r.i.) spaces.
International Nuclear Information System (INIS)
Highlights: • Introduce a finite Fourier-series model for evaluating monthly movement of annual average solar insolation. • Present a forecast method for predicting its movement based on the extended Fourier-series model in the least-squares. • Shown its movement is well described by a low numbers of harmonics with approximately 6-term Fourier series. • Predict its movement most fitting with less than 6-term Fourier series. - Abstract: Solar insolation is one of the most important measurement parameters in many fields. Modeling and forecasting monthly movement of annual average solar insolation is of increasingly importance in areas of engineering, science and economics. In this study, Fourier-analysis employing finite Fourier-series is proposed for evaluating monthly movement of annual average solar insolation and extended in the least-squares for forecasting. The conventional Fourier analysis, which is the most common analysis method in the frequency domain, cannot be directly applied for prediction. Incorporated with the least-square method, the introduced Fourier-series model is extended to predict its movement. The extended Fourier-series forecasting model obtains its optimums Fourier coefficients in the least-square sense based on its previous monthly movements. The proposed method is applied to experiments and yields satisfying results in the different cities (states). It is indicated that monthly movement of annual average solar insolation is well described by a low numbers of harmonics with approximately 6-term Fourier series. The extended Fourier forecasting model predicts the monthly movement of annual average solar insolation most fitting with less than 6-term Fourier series
Quantum transport efficiency and Fourier's law
Manzano, Daniel; Tiersch, Markus; Asadian, Ali; Briegel, Hans J.
2011-01-01
We analyze the steady-state energy transfer in a chain of coupled two-level systems connecting two thermal reservoirs. Through an analytic treatment we find that the energy current is independent of the system size, hence violating Fourier's law of heat conduction. The classical diffusive behavior in Fourier's law of heat conduction can be recovered by introducing decoherence to the quantum systems constituting the chain. Implications of these results on energy transfer in biological light ha...
Holomorphic Continuation via Laplace-Fourier series
Kounchev, O
2011-01-01
Let $B_{R}$ be the ball in the euclidean space $\\mathbb{R}^{n}$ with center 0 and radius $R$ and let $f$ be a complex-valued, infinitely differentiable function on $B_{R}.$ We show that the Laplace-Fourier series of $f$ has a holomorphic extension which converges compactly in the Lie ball $\\hat {B_{R}}$ in the complex space $\\mathbb{C}^{n}$ when one assumes a natural estimate for the Laplace-Fourier coefficients.
Multifunctional metasurface lens for imaging and Fourier transform
Wen, Dandan; Yue, Fuyong; Ardron, Marcus; Chen, Xianzhong
2016-06-01
A metasurface can manipulate light in a desirable manner by imparting local and space-variant abrupt phase change. Benefiting from such an unprecedented capability, the conventional concept of what constitutes an optical lens continues to evolve. Ultrathin optical metasurface lenses have been demonstrated based on various nanoantennas such as V-shape structures, nanorods and nanoslits. A single device that can integrate two different types of lenses and polarities is desirable for system integration and device miniaturization. We experimentally demonstrate such an ultrathin metasurface lens that can function either as a spherical lens or a cylindrical lens, depending on the helicity of the incident light. Helicity-controllable focal line and focal point in the real focal plane, as well as imaging and 1D/2D Fourier transforms, are observed on the same lens. Our work provides a unique tool for polarization imaging, image processing and particle trapping.
Extreme-ultraviolet lensless Fourier-transform holography.
Lee, S H; Naulleau, P; Goldberg, K A; Cho, C H; Jeong, S; Bokor, J
2001-06-01
We demonstrate 100-nm-resolution holographic aerial image monitoring based on lensless Fourier-transform holography at extreme-UV (EUV) wavelengths, using synchrotron-based illumination. This method can be used to monitor the coherent imaging performance of EUV lithographic optical systems. The system has been implemented in the EUV phase-shifting point-diffraction interferometer recently developed at Lawrence Berkeley National Laboratory. Here we introduce the idea of the holographic aerial image-recording technique and present imaging performance characterization results for a 10x Schwarzschild objective, a prototype EUV lithographic optic. The results are compared with simulations, and good agreement is obtained. Various object patterns, including phase-shift-enhanced patterns, have been studied. Finally, the application of the holographic aerial image-recording technique to EUV multilayer mask-blank defect characterization is discussed. PMID:18357280
Dispersive Fourier Transformation for Versatile Microwave Photonics Applications
Directory of Open Access Journals (Sweden)
Chao Wang
2014-12-01
Full Text Available Dispersive Fourier transformation (DFT maps the broadband spectrum of an ultrashort optical pulse into a time stretched waveform with its intensity profile mirroring the spectrum using chromatic dispersion. Owing to its capability of continuous pulse-by-pulse spectroscopic measurement and manipulation, DFT has become an emerging technique for ultrafast signal generation and processing, and high-throughput real-time measurements, where the speed of traditional optical instruments falls short. In this paper, the principle and implementation methods of DFT are first introduced and the recent development in employing DFT technique for widespread microwave photonics applications are presented, with emphasis on real-time spectroscopy, microwave arbitrary waveform generation, and microwave spectrum sensing. Finally, possible future research directions for DFT-based microwave photonics techniques are discussed as well.
Evaluation of Geometrical Modulation Transfer Function in Optical Lens System
Directory of Open Access Journals (Sweden)
Cheng-Mu Tsai
2015-01-01
Full Text Available This paper presents ray tracing algorithms to evaluate the geometrical modulation transfer function (GMTF of optical lens system. There are two kinds of ray tracings methods that can be applied to help simulate the point spread function (PSF in the image plane, for example, paraxial optics and real ray tracings. The paraxial optics ray tracing is used to calculate the first-order properties such as the effective focal length (EFL and the entrance pupil position through less cost of computation. However, the PSF could have a large tolerance by only using paraxial optics ray tracing for simulation. Some formulas for real ray tracing are applied in the sagittal and tangential line spread function (LSF. The algorithms are developed to demonstrate the simulation of LSF. Finally, the GMTF is evaluated after the fast Fourier transform (FFT of the LSF.
International Nuclear Information System (INIS)
In this work, the conduction band electron states and the associated intersubband-related linear and nonlinear optical absorption coefficient and relative refractive index change are calculated for an asymmetric double n-type δ-doped quantum well in a GaAs-matrix. The effects of an external applied static electric field are included. Values of the two-dimensional impurities density (N2d) of each single δ-doped quantum well are taken to vary within the range of 1.0×1012 to 7.0×1012 cm−2, consistent with the experimental data growth regime. The optical responses are reported as a function of the δ-doped impurities density and the applied electric field. It is shown that single electron states and the related optical quantities are significantly affected by the structural asymmetry of the double δ-doped quantum well system. In addition, a brief comparison with the free-carrier-related optical response is presented. -- Highlights: • Nonlinear optics in asymmetric double n-type δ-doped quantum well in a GaAs-matrix. • The system is considered under external applied electric field in growth direction. • The 2D impurity density is consistent with the experimental data growth regime. • The optical quantities are significantly affected by the structural asymmetry of the system
Energy Technology Data Exchange (ETDEWEB)
Rodríguez-Magdaleno, K.A.; Martínez-Orozco, J.C.; Rodríguez-Vargas, I. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calz. Solidaridad Esq. Paseo a La Bufa S/N. C.P. 98060 Zacatecas (Mexico); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Física Teórica y Aplicada, Escuela de Ingeniería de Antioquia, AA 7516 Medellín (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)
2014-03-15
In this work, the conduction band electron states and the associated intersubband-related linear and nonlinear optical absorption coefficient and relative refractive index change are calculated for an asymmetric double n-type δ-doped quantum well in a GaAs-matrix. The effects of an external applied static electric field are included. Values of the two-dimensional impurities density (N{sub 2d}) of each single δ-doped quantum well are taken to vary within the range of 1.0×10{sup 12} to 7.0×10{sup 12} cm{sup −2}, consistent with the experimental data growth regime. The optical responses are reported as a function of the δ-doped impurities density and the applied electric field. It is shown that single electron states and the related optical quantities are significantly affected by the structural asymmetry of the double δ-doped quantum well system. In addition, a brief comparison with the free-carrier-related optical response is presented. -- Highlights: • Nonlinear optics in asymmetric double n-type δ-doped quantum well in a GaAs-matrix. • The system is considered under external applied electric field in growth direction. • The 2D impurity density is consistent with the experimental data growth regime. • The optical quantities are significantly affected by the structural asymmetry of the system.
Energy Technology Data Exchange (ETDEWEB)
Santos Froes, Roberta Eliane; Borges Neto, Waldomiro [Departamento de Quimica, Universidade Federal de Minas Gerais, Campus Pampulha, Cx Postal 702, Belo Horizonte, MG, 31270-901 (Brazil); Oliveira Couto e Silva, Nilton; Lopes Pereira Naveira, Rita [Fundacao Ezequiel Diaz, FUNED, Belo Horizonte, MG (Brazil); Nascentes, Clesia Cristina [Departamento de Quimica, Universidade Federal de Minas Gerais, Campus Pampulha, Cx Postal 702, Belo Horizonte, MG, 31270-901 (Brazil)], E-mail: clesia@qui.ufmg.br; Bento Borba da Silva, Jose [Departamento de Quimica, Universidade Federal de Minas Gerais, Campus Pampulha, Cx Postal 702, Belo Horizonte, MG, 31270-901 (Brazil)
2009-06-15
A method for the direct determination (without sample pre-digestion) of microelements in fruit juice by inductively coupled plasma optical emission spectrometry has been developed. The method has been optimized by a 2{sup 3} factorial design, which evaluated the plasma conditions (nebulization gas flow rate, applied power, and sample flow rate). A 1:1 diluted juice sample with 2% HNO{sub 3} (Tetra Packed, peach flavor) and spiked with 0.5 mg L{sup - 1} of Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Sn, and Zn was employed in the optimization. The results of the factorial design were evaluated by exploratory analysis (Hierarchical Cluster Analysis, HCA, and Principal Component Analysis, PCA) to determine the optimum analytical conditions for all elements. Central point condition differentiation (0.75 L min{sup - 1}, 1.3 kW, and 1.25 mL min{sup - 1}) was observed for both methods, Principal Component Analysis and Hierarchical Cluster Analysis, with higher analytical signal values, suggesting that these are the optimal analytical conditions. F and t-student tests were used to compare the slopes of the calibration curves for aqueous and matrix-matched standards. No significant differences were observed at 95% confidence level. The correlation coefficient was higher than 0.99 for all the elements evaluated. The limits of quantification were: Al 253, Cu 3.6, Fe 84, Mn 0.4, Zn 71, Ni 67, Cd 69, Pb 129, Sn 206, Cr 79, Co 24, and Ba 2.1 {mu}g L{sup - 1}. The spiking experiments with fruit juice samples resulted in recoveries between 80 and 120%, except for Co and Sn. Al, Cd, Pb, Sn and Cr could not be quantified in any of the samples investigated. The method was applied to the determination of several elements in fruit juice samples commercialized in Brazil.
Froes, Roberta Eliane Santos; Neto, Waldomiro Borges; Silva, Nilton Oliveira Couto e.; Naveira, Rita Lopes Pereira; Nascentes, Clésia Cristina; da Silva, José Bento Borba
2009-06-01
A method for the direct determination (without sample pre-digestion) of microelements in fruit juice by inductively coupled plasma optical emission spectrometry has been developed. The method has been optimized by a 2 3 factorial design, which evaluated the plasma conditions (nebulization gas flow rate, applied power, and sample flow rate). A 1:1 diluted juice sample with 2% HNO 3 (Tetra Packed, peach flavor) and spiked with 0.5 mg L - 1 of Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Sn, and Zn was employed in the optimization. The results of the factorial design were evaluated by exploratory analysis (Hierarchical Cluster Analysis, HCA, and Principal Component Analysis, PCA) to determine the optimum analytical conditions for all elements. Central point condition differentiation (0.75 L min - 1 , 1.3 kW, and 1.25 mL min - 1 ) was observed for both methods, Principal Component Analysis and Hierarchical Cluster Analysis, with higher analytical signal values, suggesting that these are the optimal analytical conditions. F and t-student tests were used to compare the slopes of the calibration curves for aqueous and matrix-matched standards. No significant differences were observed at 95% confidence level. The correlation coefficient was higher than 0.99 for all the elements evaluated. The limits of quantification were: Al 253, Cu 3.6, Fe 84, Mn 0.4, Zn 71, Ni 67, Cd 69, Pb 129, Sn 206, Cr 79, Co 24, and Ba 2.1 µg L - 1 . The spiking experiments with fruit juice samples resulted in recoveries between 80 and 120%, except for Co and Sn. Al, Cd, Pb, Sn and Cr could not be quantified in any of the samples investigated. The method was applied to the determination of several elements in fruit juice samples commercialized in Brazil.
International Nuclear Information System (INIS)
A method for the direct determination (without sample pre-digestion) of microelements in fruit juice by inductively coupled plasma optical emission spectrometry has been developed. The method has been optimized by a 23 factorial design, which evaluated the plasma conditions (nebulization gas flow rate, applied power, and sample flow rate). A 1:1 diluted juice sample with 2% HNO3 (Tetra Packed, peach flavor) and spiked with 0.5 mg L- 1 of Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Sn, and Zn was employed in the optimization. The results of the factorial design were evaluated by exploratory analysis (Hierarchical Cluster Analysis, HCA, and Principal Component Analysis, PCA) to determine the optimum analytical conditions for all elements. Central point condition differentiation (0.75 L min- 1, 1.3 kW, and 1.25 mL min- 1) was observed for both methods, Principal Component Analysis and Hierarchical Cluster Analysis, with higher analytical signal values, suggesting that these are the optimal analytical conditions. F and t-student tests were used to compare the slopes of the calibration curves for aqueous and matrix-matched standards. No significant differences were observed at 95% confidence level. The correlation coefficient was higher than 0.99 for all the elements evaluated. The limits of quantification were: Al 253, Cu 3.6, Fe 84, Mn 0.4, Zn 71, Ni 67, Cd 69, Pb 129, Sn 206, Cr 79, Co 24, and Ba 2.1 μg L- 1. The spiking experiments with fruit juice samples resulted in recoveries between 80 and 120%, except for Co and Sn. Al, Cd, Pb, Sn and Cr could not be quantified in any of the samples investigated. The method was applied to the determination of several elements in fruit juice samples commercialized in Brazil.
Fourier Synthesis Lithographic Machine for large panel display fabrication
Sadovnik, Lev
1995-01-01
This report addresses the development of a substitute for conventional lithographic technologies used to fabricate flat panel displays. Conventional technology has several weaknesses: an image field less than 50 mm x 50 mm, a need for expensive projection equipment and precision stepper machines with a positioning accuracy of -0.25 microns and depth of focus of -1 micron; and the necessity to use complicated mask technologies which pollute the environment. Physical Optics Corporation (POC) is developing a new Fourier synthesis lithography technology which will provide a field size of 500 mm x 500 mm without optical distortion or aberration. During Phase I, POC completed an optimization procedure to find the exact harmonic exposure to create the highest edge gradient in a synthetic lithographic pattern. We produced a comprehensive computer model of photoresist multiple exposure, and confirmed it experimentally. We also experimentally confirmed our simulation of the lateral propagation of the development process in photoresist. We completely designed the proposed Fourier synthesis lithographic machine (FSLM). We anticipate that development of this new technology will lead to the construction of a full scale FSLM.
International Nuclear Information System (INIS)
Recent vibrational activity (VOA) research is discussed. The vibrational circular dichroism (VCD) experiments were carried out with a Fourier transform infrared spectrometer. One of the major anticipations from VOA spectroscopy is to be able to derive new pathways for determining the molecular structure. Shown is Fourier transform infrared absorption and VCD spectra of lyxopyranose in pyradine-d5 solvent. Raman optical activity measurements are discussed, and depolarized Raman and Raman optical activity spectra for (+)-alpha-pinene are presented. It was concluded that at present Raman optical activity can be measured in the entire vibrational spectral region, where as VCD has not been measured below 600 cm-1
Thévenaz, Luc; Dainesi, Paolo
2003-01-01
An optical modulator is arranged to compensate for the thermo-optical modulating effects induced by charge-injection based phase modulators. It comprises first modulator means (3), that receive optical radiation (11, 21), direct it along an optical path, apply a first predetermined optical phase modulation by the injection of free charges into the optical path, and output optical radiation (13, 22) so modulated. Compensator means (4) apply, to optical radiation output from (13, 22), or to be ...
Optical fiber interferometer array for scanless Fourier-transform spectroscopy
Czech Academy of Sciences Publication Activity Database
Velasco, A. V.; Cheben, P.; Florjańczyk, M.; Schmid, J. H.; Bock, P. J.; Lapointe, J.; Delage, A.; Janz, S.; Vachon, M.; Calvo, M. L.; Xu, D.-X.; Civiš, Svatopluk
2013-01-01
Roč. 38, č. 13 (2013), s. 2262-2264. ISSN 0146-9592 Institutional support: RVO:61388955 Keywords : SPATIAL HETERODYNE SPECTROMETER * WAVE-GUIDE Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.179, year: 2013
The methods and computer structures for adaptive Fourier descriptive image analysis
V.Perzhu; A. Gurau
1997-01-01
New architectures of image processing computer systems, based on the algorithms of Fourier - descriptive (FD) analysis have been developed. A new computing processes organisation method on the basis of FD image features has been proposed. The structures of two problem-oriented optical-electronic computer systems have been developed. The estimation of time expenditures in the systems have been carried out.
Hermann, Peter; Hoehl, Arne; Patoka, Piotr; Huth, Florian; Rühl, Eckart; Ulm, Gerhard
2013-02-11
We demonstrate scanning near-field optical microscopy with a spatial resolution below 100 nm by using low intensity broadband synchrotron radiation in the IR regime. The use of such a broadband radiation source opens up the possibility to perform nano-Fourier-transform infrared spectroscopy over a wide spectral range. PMID:23481749
An Algorithm for Fresnel Diffraction Computing Based on Fractional Fourier Transform
Stoilov, Georgi
2007-01-01
The fractional Fourier transform (FrFT) is used for the solution of the diffraction integral in optics. A scanning approach is proposed for finding the optimal FrFT order. In this way, the process of diffraction computing is speeded up. The basic algorithm and the intermediate results at each stage are demonstrated.
Modeling cavities exhibiting strong lateral confinement using open geometry Fourier modal method
DEFF Research Database (Denmark)
Häyrynen, Teppo; Gregersen, Niels
2016-01-01
We have developed a computationally eﬃcient Fourier-Bessel expansion based open geometry formalism for modeling the optical properties of rotationally symmetric photonic nanostructures. The lateral computation domain is assumed inﬁnite so that no artiﬁcial boundary conditions are needed. Instead...
Fourier analysis of conductive heat transfer for glazed roofing materials
Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah; Zakaria, Nor Zaini
2014-07-01
For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.
Fourier analysis of conductive heat transfer for glazed roofing materials
International Nuclear Information System (INIS)
For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate
Fourier analysis of conductive heat transfer for glazed roofing materials
Energy Technology Data Exchange (ETDEWEB)
Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah [Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Zakaria, Nor Zaini [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)
2014-07-10
For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.
Evaluation of gastric motility by Fourier analysis of condensed images
Energy Technology Data Exchange (ETDEWEB)
Linke, R.; Muenzing, W.; Hahn, K.; Tatsch, K. [Dept. of Nuclear Medicine, Univ. of Munich, Munich (Germany)
2000-10-01
In this study Fourier analysis was applied to condensed images of gastric emptying with the aim of evaluating the amplitude and frequency of gastric contractions as well as gastric emptying in patients with various well-defined disorders. In 15 controls, 65 patients with progressive systemic sclerosis (PSS), 41 patients with diabetes mellitus type I (DM), 12 patients with pyloric stenosis and 9 patients who had undergone gastric surgery, gastric emptying was determined after ingestion of a semi-solid test meal. In addition, condensed images were generated to evaluate the amplitude and frequency of gastric contractions by means of Fourier analysis. In PSS and DM patients, gastric emptying and contraction amplitudes were significantly reduced (P<0.01). Patients with pyloric stenosis displayed regular peristalsis but significantly delayed emptying (P<0.01). Patients who had undergone gastric surgery showed normal or rapid gastric emptying associated with decreased amplitudes (P<0.01). The frequency of gastric contractions in the patient groups was not different from that in controls. This study showed Fourier analysis of condensed images to be a rapid and feasible approach for the evaluation of gastric contractions. Depending on the underlying disorder, gastric emptying and peristalsis showed both corresponding and discrepant findings. Data on gastric contractions provided additional information compared with results obtained by conventional emptying studies. Therefore, both parameters should be routinely assessed to further improve characterisation of gastric dysfunction by scintigraphy. (orig.)
Fourier-transform Ghost Imaging with Hard X-rays
Yu, Hong; Han, Shensheng; Xie, Honglan; Du, Guohao; Xiao, Tiqiao; Zhu, Daming
2016-01-01
Knowledge gained through X-ray crystallography fostered structural determination of materials and greatly facilitated the development of modern science and technology in the past century. Atomic details of sample structures is achievable by X-ray crystallography, however, it is only applied to crystalline structures. Imaging techniques based on X-ray coherent diffraction or zone plates are capable of resolving the internal structure of non-crystalline materials at nanoscales, but it is still a challenge to achieve atomic resolution. Here we demonstrate a novel lensless Fourier-transform ghost imaging method with pseudo-thermal hard X-rays by measuring the second-order intensity correlation function of the light. We show that high resolution Fourier-transform diffraction pattern of a complex structure can be achieved at Fresnel region, and the amplitude and phase distributions of a sample in spatial domain can be retrieved successfully. The method of lensless X-ray Fourier-transform ghost imaging extends X-ray...
Fractional Transforms in Optical Information Processing
Directory of Open Access Journals (Sweden)
Maria Luisa Calvo
2005-06-01
Full Text Available We review the progress achieved in optical information processing during the last decade by applying fractional linear integral transforms. The fractional Fourier transform and its applications for phase retrieval, beam characterization, space-variant pattern recognition, adaptive filter design, encryption, watermarking, and so forth is discussed in detail. A general algorithm for the fractionalization of linear cyclic integral transforms is introduced and it is shown that they can be fractionalized in an infinite number of ways. Basic properties of fractional cyclic transforms are considered. The implementation of some fractional transforms in optics, such as fractional Hankel, sine, cosine, Hartley, and Hilbert transforms, is discussed. New horizons of the application of fractional transforms for optical information processing are underlined.
Andreeva, A; Burova, M; Burov, J
2007-06-01
A metal object is computer visualized by registration of the amplitudes of the transmitted through the object short acoustic pulses. The pulses are separated by time, because of the presence of holes and internal compact components in the longitudinal section (structure along the propagation direction of acoustic wave). The acoustic field transmitted through the object is composited from a field presenting Fourier transformation of the hole shape and field, transmitted through the metal components in the longitudinal section of the object. A computer Fourier transformation of the digital data of the amplitude fields transmitted through the object components is performed instead of converging lens. The Fourier series of the object obtained as digital data after the transformation is multiplied with a term, describing the angle distribution of the field on spatial frequencies. The reconstruction of the image of the metal components is performed by reverse transformation, i.e. summing up in all spatial frequencies. 3D visualization of the transmitted through the hole acoustic field determines the hole geometry (circular, square, rectangular). It is shown that at the transmission of a short acoustic pulse through the components with different thicknesses and holes, presenting Fourier and non-Fourier transformation can be registered separately in contrast to the optics. PMID:17395232
Fourier transform infrared studies in solid egg white lysozyme
International Nuclear Information System (INIS)
Fourier Transform Infrared (FTIR) Spectroscopy is the most recent addition to the arsenal of bioanalytical techniques capable of providing information about the secondary structure of proteins in a variety of environments. FTIR spectra have been obtained in solid egg white lysozyme. The spectra display the usual amide I, II and III bands. Secondary structural information obtained from the spectra after applying resolution enhancement techniques to the amide I band has been found consistent with the x-ray crystallographic data of the protein and also to the spectroscopic data of the protein in aqueous solution. (author). 17 refs, 6 figs, 2 tabs
LPA1, LPA2, Deconvolution Program Using Fourier Transform
International Nuclear Information System (INIS)
1 - Description of program or function: LPA1,LPA2 is a general deconvolution program suitable for application in applied mathematics, experimental physics, signal analytical system and some engineering application range, i.e. deconvolution spectrum, signal analysis and system property analysis, etc. 2 - Method of solution: It makes use of the Deconvolution Theorem and Fourier Transform algorithm (FFT). 3 - Restrictions on the complexity of the problem: The number of data points accepted is not greater than 1024 in this program. This can be increased by changing the data dimension in the program
Magneto-sensor circuit efficiency incremented by Fourier-transformation
Talukdar, Abdul Hafiz Ibne
2011-10-01
In this paper detection by recognized intelligent algorithm for different magnetic films with the aid of a cost-effective and simple high efficient circuit are realized. Well-known, magnetic films generate oscillating frequencies when they stay a part of an LC- oscillatory circuit. These frequencies can be further analyzed to gather information about their magnetic properties. For the first time in this work we apply the signal analysis in frequency domain to create the Fourier frequency spectra which was used to detect the sample properties and their recognition. In this paper we have summarized both the simulation and experimental results. © 2011 Elsevier Ltd. All rights reserved.
Jianchun Qiu; Dongjian Zheng; Kai Zhu; Bin Fang; Lin Cheng
2015-01-01
Considering the differential settlement in the junction between the structure perpendicular to the dike and the body and foundation of dike (called the earth-rock junction in this paper) during runtime, an experimental investigation of optical fiber sensor monitoring was conducted. Based on the sensing mechanism of single-mode optical fiber bending loss, the experiment focused on the influence of the bending radius of an optical fiber on the bending loss. In view of the characteristics of the...
Methods of Fourier analysis and approximation theory
Tikhonov, Sergey
2016-01-01
Different facets of interplay between harmonic analysis and approximation theory are covered in this volume. The topics included are Fourier analysis, function spaces, optimization theory, partial differential equations, and their links to modern developments in the approximation theory. The articles of this collection were originated from two events. The first event took place during the 9th ISAAC Congress in Krakow, Poland, 5th-9th August 2013, at the section “Approximation Theory and Fourier Analysis”. The second event was the conference on Fourier Analysis and Approximation Theory in the Centre de Recerca Matemàtica (CRM), Barcelona, during 4th-8th November 2013, organized by the editors of this volume. All articles selected to be part of this collection were carefully reviewed.
Learning DNF Expressions from Fourier Spectrum
Feldman, Vitaly
2012-01-01
Since its introduction by Valiant in 1984, PAC learning of DNF expressions remains one of the central problems in learning theory. We consider this problem in the setting where the underlying distribution is uniform, or more generally, a product distribution. Kalai, Samorodnitsky and Teng (2009) showed that in this setting a DNF expression can be efficiently approximated from its "heavy" low-degree Fourier coefficients alone. This is in contrast to previous approaches where boosting was used and thus Fourier coefficients of the target function modified by various distributions were needed. This property is crucial for learning of DNF expressions over smoothed product distributions, a learning model introduced by Kalai et al. (2009) and inspired by the seminal smoothed analysis model of Spielman and Teng (2001). We give a new, simple algorithm for approximating any polynomial-size DNF expression from its "heavy" low-degree Fourier coefficients alone. Our algorithm greatly simplifies the proof of learnability o...
Projective Fourier duality and Weyl quantization
International Nuclear Information System (INIS)
The Weyl-Wigner correspondence prescription, which makes large use of Fourier duality, is reexamined from the point of view of Kac algebras, the most general background for non-commutative Fourier analysis allowing for that property. It is shown how the standard Kac structure has to be extended in order to accommodate the physical requirements. An Abelian and a symmetric projective Kac algebras are shown to provide, in close parallel to the standard case, a new dual framework and a well-defined notion of projective Fourier duality for the group of translations on the plane. The Weyl formula arises naturally as an irreducible component of the duality mapping between these projective algebras. (author). 29 refs
Fourier duality as a quantization principle
International Nuclear Information System (INIS)
The Weyl-Wigner prescription for quantization on Euclidean phase spaces makes essential use of Fourier duality. The extension of this property to more general phase spaces requires the use of Kac algebras, which provide the necessary background for the implementation of Fourier duality on general locally groups. Kac algebras - and the duality they incorporate are consequently examined as candidates for a general quantization framework extending the usual formalism. Using as a test case the simplest non-trivial phase space, the half-plane, it is shown how the structures present in the complete-plane case must be modified. Traces, for example, must be replaced by their noncommutative generalizations - weights - and the correspondence embodied in the Weyl-Wigner formalism is no more complete. Provided the underlying algebraic structure is suitably adapted to each case, Fourier duality is shown to be indeed a very powerful guide to the quantization of general physical systems. (author). 30 refs
Fourier analysis and boundary value problems
Gonzalez-Velasco, Enrique A
1996-01-01
Fourier Analysis and Boundary Value Problems provides a thorough examination of both the theory and applications of partial differential equations and the Fourier and Laplace methods for their solutions. Boundary value problems, including the heat and wave equations, are integrated throughout the book. Written from a historical perspective with extensive biographical coverage of pioneers in the field, the book emphasizes the important role played by partial differential equations in engineering and physics. In addition, the author demonstrates how efforts to deal with these problems have lead to wonderfully significant developments in mathematics.A clear and complete text with more than 500 exercises, Fourier Analysis and Boundary Value Problems is a good introduction and a valuable resource for those in the field.Key Features* Topics are covered from a historical perspective with biographical information on key contributors to the field* The text contains more than 500 exercises* Includes practical applicati...
International Nuclear Information System (INIS)
In this study, we consider a novel form of computed tomography (CT), that is, linear scan CT (LCT), which applies a straight line trajectory. Furthermore, an iterative algorithm is proposed for pseudo-polar Fourier reconstruction through total variation minimization (PPF-TVM). Considering that the sampled Fourier data are distributed in pseudo-polar coordinates, the reconstruction model minimizes the TV of the image subject to the constraint that the estimated 2D Fourier data for the image are consistent with the 1D Fourier transform of the projection data. PPF-TVM employs the alternating direction method (ADM) to develop a robust and efficient iteration scheme, which ensures stable convergence provided that appropriate parameter values are given. In the ADM scheme, PPF-TVM applies the pseudo-polar fast Fourier transform and its adjoint to iterate back and forth between the image and frequency domains. Thus, there is no interpolation in the Fourier domain, which makes the algorithm both fast and accurate. PPF-TVM is particularly useful for limited angle reconstruction in LCT and it appears to be robust against artifacts. The PPF-TVM algorithm was tested with the FORBILD head phantom and real data in comparisons with state-of-the-art algorithms. Simulation studies and real data verification suggest that PPF-TVM can reconstruct higher accuracy images with lower time consumption
Fourier transforms and convolutions for the experimentalist
Jennison, RC
1961-01-01
Fourier Transforms and Convolutions for the Experimentalist provides the experimentalist with a guide to the principles and practical uses of the Fourier transformation. It aims to bridge the gap between the more abstract account of a purely mathematical approach and the rule of thumb calculation and intuition of the practical worker. The monograph springs from a lecture course which the author has given in recent years and for which he has drawn upon a number of sources, including a set of notes compiled by the late Dr. I. C. Browne from a series of lectures given by Mr. J . A. Ratcliffe of t
Energy Technology Data Exchange (ETDEWEB)
Olivier, S S; Jones, S M; Chen, D C; Zawadzki, R J; Choi, S S; Laut, S P; Werner, J S
2006-01-05
Optical coherence tomography (OCT) sees the human retina sharply with adaptive optics. In vivo cellular visualization of the human retina at micrometer-scale resolution is possible by enhancing Fourier-domain optical-coherence tomography with adaptive optics, which compensate for the eye's optical aberrations.
Goda, Keisuke; Jalali, Bahram
2008-01-01
Dispersive Fourier transformation is a powerful technique in which the spectrum of an optical pulse is mapped into a time-domain waveform using chromatic dispersion. It replaces a diffraction grating and detector array with a dispersive fiber and single photodetector. This simplifies the system and, more importantly, enables fast real-time measurements. Here we describe a novel ultrafast barcode reader and displacement sensor that employs internally-amplified dispersive Fourier transformation. This technique amplifies and simultaneously maps the spectrally encoded barcode into a temporal waveform. It achieves a record acquisition speed of 25 MHz -- four orders of magnitude faster than the current state-of-the-art.
Goda, Keisuke; Tsia, Kevin K.; Jalali, Bahram
2008-09-01
Dispersive Fourier transformation is a powerful technique in which the spectrum of an optical pulse is mapped into a time-domain waveform using chromatic dispersion. It replaces a diffraction grating and detector array with a dispersive fiber and single photodetector. This simplifies the system and, more importantly, enables fast real-time measurements. Here we describe a novel ultrafast barcode reader and displacement sensor that employs internally amplified dispersive Fourier transformation. This technique amplifies and simultaneously maps the spectrally encoded barcode into a temporal waveform. It achieves a record acquisition speed of 25MHz—four orders of magnitude faster than the current state of the art.
Orthonormal mode sets for the two-dimensional fractional Fourier transformation.
Alieva, Tatiana; Bastiaans, Martin J
2007-05-15
A family of orthonormal mode sets arises when Hermite-Gauss modes propagate through lossless first-order optical systems. It is shown that the modes at the output of the system are eigenfunctions for the symmetric fractional Fourier transformation if and only if the system is described by an orthosymplectic ray transformation matrix. Essentially new orthonormal mode sets can be obtained by letting helical Laguerre-Gauss modes propagate through an antisymmetric fractional Fourier transformer. The properties of these modes and their representation on the orbital Poincaré sphere are studied. PMID:17440542
Adaptive Fourier Analysis For Unequally-Spaced Time Series Data
Liang, Hong
2002-01-01
Adaptive Fourier Analysis For Unequally-Spaced Time Series Data by Hong Liang Robert V. Foutz, Chairman Statistics (ABSTRACT) Fourier analysis, Walsh-Fourier analysis, and wavelet analysis have often been used in time series analysis. Fourier analysis can be used to detect periodic components that have sinusoidal shape; however, it might be misleading when the periodic components are not sinusoidal. Walsh-Fourier analysis is suitable for revealing the rectangular ...
Suppression law of quantum states in a 3D photonic fast Fourier transform chip.
Crespi, Andrea; Osellame, Roberto; Ramponi, Roberta; Bentivegna, Marco; Flamini, Fulvio; Spagnolo, Nicolò; Viggianiello, Niko; Innocenti, Luca; Mataloni, Paolo; Sciarrino, Fabio
2016-01-01
The identification of phenomena able to pinpoint quantum interference is attracting large interest. Indeed, a generalization of the Hong-Ou-Mandel effect valid for any number of photons and optical modes would represent an important leap ahead both from a fundamental perspective and for practical applications, such as certification of photonic quantum devices, whose computational speedup is expected to depend critically on multi-particle interference. Quantum distinctive features have been predicted for many particles injected into multimode interferometers implementing the Fourier transform over the optical modes. Here we develop a scalable approach for the implementation of the fast Fourier transform algorithm using three-dimensional photonic integrated interferometers, fabricated via femtosecond laser writing technique. We observe the suppression law for a large number of output states with four- and eight-mode optical circuits: the experimental results demonstrate genuine quantum interference between the injected photons, thus offering a powerful tool for diagnostic of photonic platforms. PMID:26843135
Directional Uncertainty Principle for Quaternion Fourier Transform
Hitzer, Eckhard
2013-01-01
This paper derives a new directional uncertainty principle for quaternion valued functions subject to the quaternion Fourier transformation. This can be generalized to establish directional uncertainty principles in Clifford geometric algebras with quaternion subalgebras. We demonstrate this with the example of a directional spacetime algebra function uncertainty principle related to multivector wave packets.
Ultrafast Fourier-transform parallel processor
Energy Technology Data Exchange (ETDEWEB)
Greenberg, W.L.
1980-04-01
A new, flexible, parallel-processing architecture is developed for a high-speed, high-precision Fourier transform processor. The processor is intended for use in 2-D signal processing including spatial filtering, matched filtering and image reconstruction from projections.
A Fourier analysis of extremal events
DEFF Research Database (Denmark)
Zhao, Yuwei
extremal periodogram. The extremal periodogram shares numerous asymptotic properties with the periodogram of a linear process in classical time series analysis: the asymptotic distribution of the periodogram ordinates at the Fourier frequencies have a similar form and smoothed versions of the periodogram...
Fourier transforms on an amalgam type space
Liflyand, E
2012-01-01
We introduce an amalgam type space, a subspace of $L^1(\\mathbb R_+).$ Integrability results for the Fourier transform of a function with the derivative from such an amalgam space are proved. As an application we obtain estimates for the integrability of trigonometric series.
Fourier theory and C∗-algebras
Bédos, Erik; Conti, Roberto
2016-07-01
We discuss a number of results concerning the Fourier series of elements in reduced twisted group C∗-algebras of discrete groups, and, more generally, in reduced crossed products associated to twisted actions of discrete groups on unital C∗-algebras. A major part of the article gives a review of our previous work on this topic, but some new results are also included.
Fourier-Bessel heat kernel estimates
Malecki, Jacek; Serafin, Grzegorz; Zorawik, Tomasz
2015-01-01
We provide sharp two-sided estimates of the Fourier-Bessel heat kernel and we give sharp two-sided estimates of the transition probability density for the Bessel process in (0,1) killed at 1 and killed or reflected at 0.
Harmonic oscillator: an analysis via Fourier series
de Castro, A. S.
2013-01-01
The Fourier series method is used to solve the homogeneous equation governing the motion of the harmonic oscillator. It is shown that the general solution to the problem can be found in a surprisingly simple way for the case of the simple harmonic oscillator. It is also shown that the damped harmonic oscillator is susceptible to the analysis.
Fourier synthesis of radiofrequency nanomechanical pulses with different shapes
Schülein, Florian J. R.; Zallo, Eugenio; Atkinson, Paola; Schmidt, Oliver G.; Trotta, Rinaldo; Rastelli, Armando; Wixforth, Achim; Krenner, Hubert J.
2015-06-01
The concept of Fourier synthesis is heavily used in both consumer electronic products and fundamental research. In the latter, pulse shaping is key to dynamically initializing, probing and manipulating the state of classical or quantum systems. In NMR, for instance, shaped pulses have a long-standing tradition and the underlying fundamental concepts have subsequently been successfully extended to optical frequencies and even to the implementation of quantum gate operations. Transferring these paradigms to nanomechanical systems requires tailored nanomechanical waveforms. Here, we report on an additive Fourier synthesizer for nanomechanical waveforms based on monochromatic surface acoustic waves. As a proof of concept, we electrically synthesize four different elementary nanomechanical waveforms from a fundamental surface acoustic wave at f1 ≈ 150 MHz using a superposition of up to three discrete harmonics. We use these shaped pulses to interact with an individual sensor quantum dot and detect their deliberately and temporally modulated strain component via the optomechanical quantum dot response. Importantly, and in contrast to direct mechanical actuation by bulk piezoactuators, surface acoustic waves provide much higher frequencies (>20 GHz ref. 10) to resonantly drive mechanical motion. Thus, our technique uniquely allows coherent mechanical control of localized vibronic modes of optomechanical crystals, even in the quantum limit when cooled to the vibrational ground state.
Choi, Yong-Kyu; Hosoya, Kenta; Lee, Chung Ghiu; Hanawa, Masanori; Park, Chang-Soo
2011-03-28
We propose and experimentally demonstrate a hybrid WDM/OCDMA ring with a dynamic add/drop function based on Fourier code for local area networks. Dynamic function is implemented by mechanically tuning the Fourier encoder/decoder for optical code division multiple access (OCDMA) encoding/decoding. Wavelength division multiplexing (WDM) is utilized for node assignment and 4-chip Fourier code recovers the matched signal from the codes. For an optical source well adapted to WDM channels and its short optical pulse generation, reflective semiconductor optical amplifiers (RSOAs) are used with a fiber Bragg grating (FBG) and gain-switched. To demonstrate we experimentally investigated a two-node hybrid WDM/OCDMA ring with a 4-chip Fourier encoder/decoder fabricated by cascading four FBGs with the bit error rate (BER) of <10(-9) for the node span of 10.64 km at 1.25 Gb/s. PMID:21451649
Levy, R. C.; Munchak, L. A.; Mattoo, S.; Patadia, F.; Remer, L. A.; Holz, R. E.
2015-10-01
To answer fundamental questions about aerosols in our changing climate, we must quantify both the current state of aerosols and how they are changing. Although NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) sensors have provided quantitative information about global aerosol optical depth (AOD) for more than a decade, this period is still too short to create an aerosol climate data record (CDR). The Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on the Suomi-NPP satellite in late 2011, with additional copies planned for future satellites. Can the MODIS aerosol data record be continued with VIIRS to create a consistent CDR? When compared to ground-based AERONET data, the VIIRS Environmental Data Record (V_EDR) has similar validation statistics as the MODIS Collection 6 (M_C6) product. However, the V_EDR and M_C6 are offset in regards to global AOD magnitudes, and tend to provide different maps of 0.55 μm AOD and 0.55/0.86 μm-based Ångström Exponent (AE). One reason is that the retrieval algorithms are different. Using the Intermediate File Format (IFF) for both MODIS and VIIRS data, we have tested whether we can apply a single MODIS-like (ML) dark-target algorithm on both sensors that leads to product convergence. Except for catering the radiative transfer and aerosol lookup tables to each sensor's specific wavelength bands, the ML algorithm is the same for both. We run the ML algorithm on both sensors between March 2012 and May 2014, and compare monthly mean AOD time series with each other and with M_C6 and V_EDR products. Focusing on the March-April-May (MAM) 2013 period, we compared additional statistics that include global and gridded 1° × 1° AOD and AE, histograms, sampling frequencies, and collocations with ground-based AERONET. Over land, use of the ML algorithm clearly reduces the differences between the MODIS and VIIRS-based AOD. However, although global offsets are near zero, some regional biases remain, especially in
Spectroscopic Stokes polarimetry based on Fourier transform spectrometer
Liu, Yeng-Cheng; Lo, Yu-Lung; Li, Chang-Ye; Liao, Chia-Chi
2015-02-01
Two methods are proposed for measuring the spectroscopic Stokes parameters using a Fourier transform spectrometer. In the first method, it is designed for single point measurement. The parameters are extracted using an optical setup comprising a white light source, a polarizer set to 0°, a quarter-wave plate and a scanning Michelson interferometer. In the proposed approach, the parameters are extracted from the intensity distributions of the interferograms produced with the quarter-wave plate rotated to 0°, 22.5°, 45° and -45°, respectively. For the second approach, the full-field and dynamic measurement can be designed based upon the first method with special angle design in a polarizer and a quarter-wave plate. Hence, the interferograms of two-dimensional detection also can be simultaneously extracted via a pixelated phase-retarder and polarizer array on a high-speed CCD camera and a parallel read-out circuit with a multi-channel analog to digital converter. Thus, a full-field and dynamic spectroscopic Stokes polarimetry without any rotating components could be developed. The validity of the proposed methods is demonstrated both numerically and experimentally. To the authors' knowledge, this could be the simplest optical arrangement in extracting the spectral Stokes parameters. Importantly, the latter one method avoids the need for rotating components within the optical system and therefore provides an experimentally straightforward means of extracting the dynamic spectral Stokes parameters.
Xu, Yang; Liu, Yuan-Zhi; Boppart, Stephen A; Carney, P Scott
2016-03-10
In this paper, we introduce an algorithm framework for the automation of interferometric synthetic aperture microscopy (ISAM). Under this framework, common processing steps such as dispersion correction, Fourier domain resampling, and computational adaptive optics aberration correction are carried out as metrics-assisted parameter search problems. We further present the results of this algorithm applied to phantom and biological tissue samples and compare with manually adjusted results. With the automated algorithm, near-optimal ISAM reconstruction can be achieved without manual adjustment. At the same time, the technical barrier for the nonexpert using ISAM imaging is also significantly lowered. PMID:26974799
High order generalized permutational fractional Fourier transforms
Institute of Scientific and Technical Information of China (English)
Ran Qi-Wen; Yuan Lin; Tan Li-Ying; Ma Jing; Wang Qi
2004-01-01
We generalize the definition of the fractional Fourier transform (FRFT) by extending the new definition proposed by Shih. The generalized FRFT, called the high order generalized permutational fractional Fourier transform (HGPFRFT),is a generalized permutational transform. It is shown to have arbitrary natural number M periodic eigenvalues not only with respect to the order of Hermite-Gaussian functions but also to the order of the transform. This HGPFRFT will be reduced to the original FRFT proposed by Namias and Liu's generalized FRFT and Shih's FRFT at the three limits with M = +∞,M = 4k (k is a natural number), and M = 4, respectively. Therefore the HGPFRFT introduces a comprehensive approach to Shih's FRFT and the original definition. Some important properties of HGPFRFT are discussed. Lastly the results of computer simulations and symbolic representations of the transform are provided.
High order generalized permutational fractional Fourier transforms
Ran, Qi-Wen; Yuan, Lin; Tan, Li-Ying; Ma, Jing; Wang, Qi
2004-02-01
We generalize the definition of the fractional Fourier transform (FRFT) by extending the new definition proposed by Shih. The generalized FRFT, called the high order generalized permutational fractional Fourier transform (HGPFRFT), is a generalized permutational transform. It is shown to have arbitrary natural number M periodic eigenvalues not only with respect to the order of Hermite-Gaussian functions but also to the order of the transform. This HGPFRFT will be reduced to the original FRFT proposed by Namias and Liu's generalized FRFT and Shih's FRFT at the three limits with M = +infty, M = 4k (k is a natural number) and M = 4, respectively. Therefore the HGPFRFT introduces a comprehensive approach to Shih's FRFT and the original definition. Some important properties of HGPFRFT are discussed. Lastly the results of computer simulations and symbolic representations of the transform are provided.
Fourier transform of momentum distribution in vanadium
International Nuclear Information System (INIS)
Experimental Compton profile and 2D-angular correlation of positron annihilation radiation data from vanadium are analyzed by the mean of their Fourier transform. They are compared with the functions calculated with the help of both the linear muffin-tin orbital and the Hubbard-Mijnarends band structure methods. The results show that the functions are influenced by the positron wave function, by the e+-e- many-body correlations and by the differences in the electron wave functions used for the band structure calculations. It is concluded that Fourier analysis is a sensitive approach to investigate the momentum distributions in transition metals and to understnad the effects of the positron. (Auth.)
Fourier Transform Infrared Spectroscopic Studies in Flotation
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Fourier transform infrared (FTIR) spectroscopy has been extensively employed in flotation research.The work done by the author and co-workers has been reported.A comparison has been made among the different FTIR spectroscopic techniques,e.g.,transmission FTIR spectroscopy,diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy,and attenuated total reflectance (ATR) FTIR spectroscopy.FTIR spectroscopy has been used to study the mechanism of interaction between the collector and the surfaces of different minerals,the mechanism of action of the depressant in improving the selectivity of flotation,and the mechanism of adsorption of the polymeric modifying reagent on mineral surfaces.The interaction between particles in mineral suspension has also been studied by FTIR spectroscopy.
Energy Technology Data Exchange (ETDEWEB)
Pinzón, M.J. [Grupo de Ciencia de Materiales y Superficies, Departamento de Física, Universidad Nacional de Colombia, AA 14490 Bogotá (Colombia); Alfonso, J.E., E-mail: jealfonsoo@unal.edu.co [Grupo de Ciencia de Materiales y Superficies, Departamento de Física, Universidad Nacional de Colombia, AA 14490 Bogotá (Colombia); Olaya, J.J. [Grupo de Ciencia de Materiales y Superficies, Departamento de Física, Universidad Nacional de Colombia, AA 14490 Bogotá (Colombia); Cubillos, G.I.; Romero, E. [Grupo de Materiales y Procesos Químicos, Universidad Nacional de Colombia, AA 14490 Bogotá (Colombia)
2014-12-01
The influence of the variation of electrical power applied to the target on the morphology and optical properties of zirconium oxynitride - zirconium oxide (ZrON) films deposited via RF magnetron sputtering on common glass substrates in a reactive atmosphere of N{sub 2}/O{sub 2}, with a flow ratio ΦN{sub 2}/ΦO{sub 2} of 1.25 was investigated. The crystallographic structure of the films was established through X-ray diffraction (XRD), the morphology was evaluated through scanning electron microscopy (SEM) and atomic force microscopy (AFM), and the optical behavior was evaluated through transmittance measurements. The XRD analysis showed that the films grew with mixed crystalline structures: monoclinic (ZrO{sub 2}) and body-centered cubic (Zr{sub 2}ON{sub 2}). SEM analysis showed that the films grew with a homogeneous morphology, and AFM results established that as the electrical power applied to the target increased, there were changes in the grain size and the roughness of the films. The thickness, refractive index, and absorption coefficient of the films were calculated using the values of the transmittance through the Swanepoel method. Additionally, the energy band gap was determined via analysis of the free interference region. - Highlights: • We growth zirconium oxynitride films by RF magnetron sputtering in reactive atmosphere. • We determine the influence of the electrical power applied at the target in optical and structural properties. • We determine the crystallite size, grain size and roughness of the zirconium oxynitride films. • We determine the optical parameters such refractive index of the zirconium oxynitride films through Swanepoel method. • We calculated the absorption coefficient and optical band gap of the zirconium oxynitride films.
Fourier evaluation of broad Moessbauer spectra
International Nuclear Information System (INIS)
It is shown by the Fourier analysis of broad Moessbauer spectra that the even part of the distribution of the dominant hyperfine interaction (hyperfine field or quadrupole splitting) can be obtained directly without using least-square fitting procedures. Also the odd part of this distribution correlated with other hyperfine parameters (e.g. isomer shift) can be directly determined. Examples for amorphous magnetic and paramagnetic iron-based alloys are presented. (author)
A Fourier analysis of extreme events
DEFF Research Database (Denmark)
Mikosch, Thomas Valentin; Zhao, Yuwei
2014-01-01
The extremogram is an asymptotic correlogram for extreme events constructed from a regularly varying stationary sequence. In this paper, we define a frequency domain analog of the correlogram: a periodogram generated from a suitable sequence of indicator functions of rare events. We derive basic ...... properties of the periodogram such as the asymptotic independence at the Fourier frequencies and use this property to show that weighted versions of the periodogram are consistent estimators of a spectral density derived from the extremogram....
An Imaging Fourier Transform Spectrometer for NGST
Graham, J R
1999-01-01
Due to its simultaneous deep imaging and integral field spectroscopic capability, an Imaging Fourier Transform Spectrograph (IFTS) is ideally suited to the Next Generation Space Telescope (NGST) mission, and offers opportunities for tremendous scientific return in many fields of astrophysical inquiry. We describe the operation and quantify the advantages of an IFTS for space applications. The conceptual design of the Integral Field Infrared Spectrograph (IFIRS) is a wide field (5'.3 x 5'.3) four-port imaging Michelson interferometer.
CONTINUOUS QUATERNION FOURIER AND WAVELET TRANSFORMS
Bahri, Mawardi
2014-01-01
A two-dimensional quaternion Fourier transform (QFT) defined with the kernel $e^{-\\frac{\\boldsymbol{i} + \\boldsymbol{j} + \\boldsymbol{k}} {\\sqrt{3}} \\boldsymbol{\\omega} \\cdot \\boldsymbol{x} }$ is proposed. Some fundamental properties, such as convolution theorem, Plancherel theorem, and vector differential, are established. The heat equation in quaternion algebra is presented as an example of the application of the QFT to partial differential equations. The wavelet tra...
Fourier Spectra of Binomial APN Functions
Bracken, Carl; Markin, Nadya; McGuire, Gary
2008-01-01
In this paper we compute the Fourier spectra of some recently discovered binomial APN functions. One consequence of this is the determination of the nonlinearity of the functions, which measures their resistance to linear cryptanalysis. Another consequence is that certain error-correcting codes related to these functions have the same weight distribution as the 2-error-correcting BCH code. Furthermore, for fields of odd degree, our results provide an alternative proof of the APN property of the functions.
Fourier Transform Spectrometer Controller for Partitioned Architectures
DEFF Research Database (Denmark)
Tamas-Selicean, Domitian; Keymeulen, D.; Berisford, D.; Carlson, R.; Hand, K.; Pop, Paul; Wadsworth, W.; Levy, R.
2013-01-01
The current trend in spacecraft computing is to integrate applications of different criticality levels on the same platform using no separation. This approach increases the complexity of the development, verification and integration processes, with an impact on the whole system life cycle......, such as avionics and automotive. In this paper we investigate the challenges of developing and the benefits of integrating a scientific instrument, namely a Fourier Transform Spectrometer, in such a partitioned architecture....
Computation of copulas by Fourier methods
Antonis Papapantoleon
2011-01-01
We provide an integral representation for the (implied) copulas of dependent random variables in terms of their moment generating functions. The proof uses ideas from Fourier methods for option pricing. This representation can be used for a large class of models from mathematical finance, including L\\'evy and affine processes. As an application, we compute the implied copula of the NIG L\\'evy process which exhibits notable time-dependence.
Turbulence on a Fractal Fourier set
Lanotte, Alessandra Sabina; Biferale, Luca; Malapaka, Shiva Kumar; Toschi, Federico
2015-01-01
The dynamical effects of mode reduction in Fourier space for three dimensional turbulent flows is studied. We present fully resolved numerical simulations of the Navier-Stokes equations with Fourier modes constrained to live on a fractal set of dimension D. The robustness of the energy cascade and vortex stretching mechanisms are tested at changing D, from the standard three dimensional case to a strongly decimated case for D = 2.5, where only about $3\\%$ of the Fourier modes interact. While the direct energy cascade persist, deviations from the Kolmogorov scaling are observed in the kinetic energy spectra. A model in terms of a correction with a linear dependency on the co-dimension of the fractal set, $E(k)\\sim k^{- 5/3 + 3 -D }$, explains the results. At small scales, the intermittent behaviour due to the vorticity production is strongly modified by the fractal decimation, leading to an almost Gaussian statistics already at D ~ 2.98. These effects are connected to a genuine modification in the triad-to-tri...
Soil science research is increasingly applying Fourier transform infrared (FTIR) spectroscopy for analysis of soil organic matter (SOM). However, the compositional complexity of soils and the dominance of the mineral component can limit spectroscopic resolution of SOM and other minor components. The...
The Cairo Fourier Diffractometer Facility At The ETRR-1 Reactor
International Nuclear Information System (INIS)
The work presents the Cairo Fourier diffractometer facility (CFDF). The CFDF is based on the reverse time-of-flight (RTOF) concept and was recently installed, as IAEA TC Project, at one of the ET-RR-1 reactor horizontal channels. The CFDF performance is assessed and its main parameters are given. The facility applies a Fourier chopper system and 6Li-glass scintillators (NE-912) arranged according to the time focusing geometry in order to detect neutrons scattered from the sample at an angle 29= 90 diameter. The detector system has been optimized for studying the internal stresses in materials along with neutron diffraction measurements. Its angular aperture was found, from precise calculations, by a special program, to be equal to S.1 x 102 steradians. The neutron guide system attached to the CFDF provides a thermal neutron flux-l.lxl06n/cm2/sec at the sample position. It has been found, from measurements with different powder samples, that such value of the thermal neutron flux is adequate for neutron diffraction measurements, at scattering angle 2θ= 90ο and d-spacing values between 0.7 A and 2.5 A, within 0.45% resolution
Burleigh, D.; Vavilov, V. P.; Pawar, S. S.
2016-07-01
IR NDT (Infrared Nondestructive Testing) is a popular method for detecting defects in composite, ceramic, and metallic structures. The effectiveness of IR NDT depends on various thermal and optical properties of the material being tested. The thermal properties, including thermal conductivity, thermal diffusivity, specific heat and density are important and have been discussed extensively in many treatises on IR NDT. However the optical properties of the surface are equally important and while the thermal properties cannot be changed, sometimes the optical properties can be. Bare metal surfaces have high reflectivities and low emissivities, and as a result, they are generally not good candidates for IR NDT. Painted, coated, anodized, and oxidized metal surfaces can, in some cases, be successfully tested with IR NDT, but the effectiveness depends on the optical properties of the surface. It is well known by IR NDT practitioners that the easy solution to the testing of reflective materials is to paint the surface black. However, this is not always practical and it may not be permitted by the "owner" of the part. This paper demonstrates a process of analyzing the interaction of spectral curves that are relevant to the IR NDT process. This process can be used to evaluate the effectiveness of an IR NDT process for use on real parts with specific coatings and can help select a coating that may improve the effectiveness. This paper shows examples of optical properties for some typical paints and coatings that may be used on aluminum aircraft structures. It shows the spectrum of a generic incandescent radiant heat source and how the energy from this source is absorbed by several of these paints. Further, it shows the interaction between an IR camera detector response curve and the other curves. And finally, it shows how these three can be combined to produce an "IR NDT" efficiency rating for several examples.
A Note on Fourier and the Greenhouse Effect
Postma, Joseph E.
2015-01-01
Joseph Fourier's discovery of the greenhouse effect is discussed and is compared to the modern conception of the greenhouse effect. It is confirmed that what Fourier discovered is analogous to the modern concept of the greenhouse effect. However, the modern concept of the greenhouse effect is found to be based on a paradoxical analogy to Fourier's greenhouse work and so either Fourier's greenhouse work, the modern conception of the greenhouse effect, or the modern definition of heat is incorr...
Fractional Fourier transform for partially coherent beam in spatial-frequency domain
Institute of Scientific and Technical Information of China (English)
Cai Yang-Jian; Lin Qiang
2004-01-01
By using Fourier transform and the tensor analysis method, the fractional Fourier transform (FRT) in the spatialfrequency domain for partially coherent beams is derived. Based on the FRT in the spatial-frequency domain, an analytical transform formula is derived for a partially coherent twisted anisotropic Gaussian-Schell model (GSM) beam passing through the FRT system. The connections between the FRT formula and the generalized diffraction integral formulae for partially coherent beams through an aligned optical system and a misaligned optical system in the spatialfrequency domain are discussed, separately. By using the derived formula, the intensity distribution of partially coherent twisted anisotropic GSM beams in the FRT plane are studied in detail. The formula derived provide a convenient tool for analysing and calculating the FRTs of the partially coherent beams in spatial-frequency domain.
Surpassing the Path-Limited Resolution of a Fourier Transform Spectrometer with Frequency Combs
Maslowski, Piotr; Johansson, Alexandra C; Khodabakhsh, Amir; Kowzan, Grzegorz; Rutkowski, Lucile; Mills, Andrew A; Mohr, Christian; Jiang, Jie; Fermann, Martin E; Foltynowicz, Aleksandra
2015-01-01
Fourier transform spectroscopy based on incoherent light sources is a well-established tool in research fields from molecular spectroscopy and atmospheric monitoring to material science and biophysics. It provides broadband molecular spectra and information about the molecular structure and composition of absorptive media. However, the spectral resolution is fundamentally limited by the maximum delay range ({\\Delta}$_{max}$) of the interferometer, so acquisition of high-resolution spectra implies long measurement times and large instrument size. We overcome this limit by combining the Fourier transform spectrometer with an optical frequency comb and measuring the intensities of individual comb lines by precisely matching the {\\Delta}$_{max}$ to the comb line spacing. This allows measurements of absorption lines narrower than the nominal (optical path-limited) resolution without ringing effects from the instrumental lineshape and reduces the acquisition time and interferometer length by orders of magnitude.
Information Transmission using the Nonlinear Fourier Transform, Part I: Mathematical Tools
Yousefi, Mansoor I
2012-01-01
The nonlinear Fourier transform (NFT), a powerful tool in soliton theory and exactly solvable models, is a method for solving integrable partial differential equations governing wave propagation in certain nonlinear media. The NFT decorrelates signal degrees-of-freedom in such models, in much the same way that the Fourier transform does for linear systems. In this paper, this observation is exploited for data transmission over integrable channels such as optical fibers, where pulse propagation is governed by the nonlinear Schr\\"odinger equation. In this transmission scheme, which can be viewed as a nonlinear analogue of orthogonal frequency division multiplexing commonly used in linear channels, information is encoded in the spectral amplitudes associated with nonlinear frequencies. Unlike most other fiber-optic transmission schemes, this technique deals with both dispersion and nonlinearity directly and unconditionally without the need for dispersion or nonlinearity compensation methods. This paper explains ...
Some Applications of Fourier's Great Discovery for Beginners
Kraftmakher, Yaakov
2012-01-01
Nearly two centuries ago, Fourier discovered that any periodic function of period T can be presented as a sum of sine waveforms of frequencies equal to an integer times the fundamental frequency [omega] = 2[pi]/T (Fourier's series). It is impossible to overestimate the importance of Fourier's discovery, and all physics or engineering students…
CONVOLUTION THEOREMS FOR CLIFFORD FOURIER TRANSFORM AND PROPERTIES
Directory of Open Access Journals (Sweden)
Mawardi Bahri
2014-10-01
Full Text Available The non-commutativity of the Clifford multiplication gives different aspects from the classical Fourier analysis.We establish main properties of convolution theorems for the Clifford Fourier transform. Some properties of these generalized convolutionsare extensions of the corresponding convolution theorems of the classical Fourier transform.
The Fourier Transform and FTIR System as a Technique in Semiconductor Research
International Nuclear Information System (INIS)
In this paper a simple treatment of Fourier transform in FTIR with an introductory picture of its use in Semiconductor Research is described. A brief account of research foucssing on optical characterization of silicon (Si) wafers is outlined. The smeasurement of residual oxygen (O2) concentration is an important indicator in determining the overall quality of the finished Si wafers. The O2 concentration is determined directly from an infrared absorption band occurring at 1106 cm-1 in the Si Lattice
Non-uniform sampled scalar diffraction calculation using non-uniform fast Fourier transform
Shimobaba, Tomoyoshi; Kakue, Takashi; Oikawa, Minoru; Okada, Naohisa; Endo, Yutaka; Hirayama, Ryuji; Ito, Tomoyoshi
2013-01-01
Scalar diffraction calculations such as the angular spectrum method (ASM) and Fresnel diffraction, are widely used in the research fields of optics, X-rays, electron beams, and ultrasonics. It is possible to accelerate the calculation using fast Fourier transform (FFT); unfortunately, acceleration of the calculation of non-uniform sampled planes is limited due to the property of the FFT that imposes uniform sampling. In addition, it gives rise to wasteful sampling data if we calculate a plane...