WorldWideScience

Sample records for applying controllable lubrication

  1. Linear and Non-Linear Control Techniques Applied to Actively Lubricated Journal Bearings

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2003-01-01

    The main objectives of actively lubricated bearings are the simultaneous reduction of wear and vibration between rotating and stationary machinery parts. For reducing wear and dissipating vibration energy until certain limits, one can count with the conventional hydrodynamic lubrication. For furt......The main objectives of actively lubricated bearings are the simultaneous reduction of wear and vibration between rotating and stationary machinery parts. For reducing wear and dissipating vibration energy until certain limits, one can count with the conventional hydrodynamic lubrication....... For further reduction of shaft vibrations one can count with the active lubrication action, which is based on injecting pressurised oil into the bearing gap through orifices machined in the bearing sliding surface. The design and efficiency of some linear (PD, PI and PID) and non-linear controllers, applied...... vibration reduction of unbalance response of a rigid rotor, where the PD and the non-linear P controllers show better performance for the frequency range of study (0 to 80 Hz). The feasibility of eliminating rotor-bearing instabilities (phenomena of whirl) by using active lubrication is also investigated...

  2. Active lubrication applied to internal combustion engines - evaluation of control strategies

    DEFF Research Database (Denmark)

    Estupinan, Edgar Alberto; Santos, Ilmar

    2009-01-01

    surface. The behaviour of a main bearing of a medium size combustion engine, operating with radial oil injection and with four different control strategies is analyzed, giving some insights into the minimum fluid film thickness, maximum fluid film pressure, friction losses and maximum vibration levels...... of reducing friction losses and vibrations between the crankshaft and the bearings. The conventional hydrodynamic lubrication is combined with hydrostatic lubrication which is actively modified by radially injecting oil at controllable pressures, through orifices circumferentially located around the bearing...

  3. Active lubrication applied to radial gas journal bearings. Part 2: Modelling improvement and experimental validation

    DEFF Research Database (Denmark)

    Pierart, Fabián G.; Santos, Ilmar F.

    2016-01-01

    Actively-controlled lubrication techniques are applied to radial gas bearings aiming at enhancing one of their most critical drawbacks, their lack of damping. A model-based control design approach is presented using simple feedback control laws, i.e. proportional controllers. The design approach...... by finite element method and the global model is used as control design tool. Active lubrication allows for significant increase in damping factor of the rotor-bearing system. Very good agreement between theory and experiment is obtained, supporting the multi-physic design tool developed....

  4. Actively lubricated bearings applied as calibrated shakers to aid parameter identification in rotordynamics

    DEFF Research Database (Denmark)

    Santos, Ilmar; Cerda Varela, Alejandro Javier

    2013-01-01

    The servo valve input signal and the radial injection pressure are the two main parameters responsible for dynamically modifying the journal oil film pressure and generating active fluid film forces in controllable fluid film bearings. Such fluid film forces, resulting from a strong coupling...... domain and the application of such a controllable bearing as a calibrated shaker aiming at determining the frequency response function (FRF) of rotordynamic systems; b) experimental quantification of the influence of the supply pressure and servo valve input signal on the FRF of rotor-journal bearing...... between hydrodynamic, hydrostatic and controllable lubrication regimes, can be used either to control or to excite rotor lateral vibrations. An accurate characterization of the active oil film forces is of fundamental importance to elucidate the feasibility of applying the active lubrication as non...

  5. Controllable sliding bearings and controllable lubrication principles-an overview

    DEFF Research Database (Denmark)

    Santos, Ilmar F.

    2018-01-01

    -mechanical actuators have been coupled to such bearings. Depending on (i) the actuator type; (ii) the actuation principle, i.e., hydraulic, pneumatic, piezoelectric or magnetic among others; and (iii) how such an actuator is coupled to the sliding bearings, different regulation and control actions of fluid film...... bearing gap and its preload via moveable and compliant sliding surfaces; and (d) the control of the lubricant viscosity. All four parameters, i.e., pressure, flow (velocity profiles), gap and viscosity, are explicit parameters in the modified form of Reynolds' equations for active lubrication....... In this framework, this paper gives one main original contribution to the state-of-the-art of radial sliding bearings and controllable lubrication: a comprehensive overview about the different types of controllable sliding bearings and principles used by several authors. The paper ends with some conclusive remarks...

  6. Feasibility of Applying Active Lubrication to Dynamically Loaded Fluid Film Bearings

    DEFF Research Database (Denmark)

    Estupinan, Edgar Alberto; Santos, Ilmar

    2009-01-01

    The feasibility of modifying the dynamics of the thin fluid films of dynamically loaded journal bearings, using different strategies of active lubrication is studied in this work. A significant reduction in the vibration levels, wear and power friction losses, is expected. Particularly, the focus...... of this study is on the analysis of main crankshaft bearings, where the conventional hydrodynamic lubrication is modified by injecting oil at actively controllable pressures, through orifices circumferentially located along the bearing surface....

  7. Active lubrication applied to radial gas journal bearings. Part 1: Modeling

    DEFF Research Database (Denmark)

    Morosi, Stefano; Santos, Ilmar

    2011-01-01

    Active bearings represent a mechatronic answer to the growing industrial need to high performance turbomachinery. The present contribution aims at demonstrate the feasibility of applying active lubrication to gas journal bearings. The principle of operation is to generate active forces by regulat...

  8. Controllable Lubrication for Main Engine Bearings Using Mechanical and Piezoelectric Actuators

    DEFF Research Database (Denmark)

    Estupinan, Edgar; Santos, Ilmar

    2012-01-01

    Although mechatronic systems are nowadays implemented in a large number of systems in vehicles, active lubrication systems are still incipient in industrial applications. This study is an attempt to extend the active lubrication concept to combustion engines and gives a theoretical contribution...... equations. The global system is numerically solved using as a case study a single-cylinder combustion engine, where the conventional lubrication of the main bearing is modified by applying radial oil injection using piezo-actuated injection. The performance of such a hybrid bearing is compared...

  9. On the lubrication mechanism of detonation-synthesis nanodiamond additives in lubricant composites

    Science.gov (United States)

    Shepelevskii, A. A.; Esina, A. V.; Voznyakovskii, A. P.; Fadin, Yu. A.

    2017-09-01

    The lubrication of detonation-synthesis diamond additives in lubricant composites has been discussed. The mechanism of interaction between nanodiamonds and friction surface has been shown to depend on the applied load. Two models of the lubrication of nanodiamonds and the conditions for their validity have also been proposed.

  10. Oil and natural gas technology review-lubrication and lubricants

    Energy Technology Data Exchange (ETDEWEB)

    Moos, J

    1966-01-01

    A summary is presented of the advances made during 1967 in the following areas: production and transmission of natural gas; geosciences; drilling and production technology; secondary recovery; transportation by tanker, pipelines, and tank cars; storage; planning of refineries; control and automation; cracking and gasification of crude oil; separation and hydrogenation processes; petrochemicals; combustion technology; fuels and additives; air and water pollution control; production of lubricants; lubrication with mist, gas, and vapors; hydraulic fluids; lubricant additives; oxidation and aging of oils; greases; solid lubricants; bearings; machining; friction and wear; and changes in materials of construction. (220 refs.)

  11. Radial oil injection applied to main engine bearings: evaluation of injection control rules

    DEFF Research Database (Denmark)

    Estupiñan, EA; Santos, Ilmar

    2012-01-01

    , the dynamic behaviour of the main bearing of a medium-size engine is theoretically analysed when the engine operates with controllable radial oil injection and four different injection control rules. The theoretical investigation is based on a single-cylinder combustion engine model. The performance......The performance of main bearings in a combustion engine affects key functions such as durability, noise and vibration. Thus, with the aim of reducing friction losses and vibrations between the crankshaft and the bearings, the work reported here evaluates different strategies for applying...... controllable radial oil injection to main crankshaft journal bearings. In an actively lubricated bearing, conventional hydrodynamic lubrication is combined with controllable hydrostatic lubrication, where the oil injection pressures can be modified depending on the operational conditions. In this study...

  12. Performance Improvement of tilting-pad journal bearings by means of controllable lubrication

    DEFF Research Database (Denmark)

    Cerda, Alejandro; Santos, Ilmar

    2012-01-01

    Tilting-Pad Journal Bearings (TPJB) are commonly used on high-performance turbomachinery due to their excellent stability properties at high speed when compared to other designs for oil film bearings. Hence, efforts have been made to improve the accuracy for the available models for these mechani...... is used to show the benefits of applying a controllable lubrication regime, by means of the modification of the thermal and dynamic behaviour of the bearing....

  13. Feasibility of Applying Controllable Lubrication to Dynamically Loaded Journal Bearings

    DEFF Research Database (Denmark)

    Estupinan, Edgar Alberto; Santos, Ilmar

    2009-01-01

    A multibody dynamic model of the main mechanical components of a hermetic reciprocating compressor is presented in this work. Considering that some of the mechanical elements are interconnected via thin fluid films, the multibody dynamic model is coupled to the equations from the dynamics...... of the fluid films, based on fluid film theory. For a dynamically loaded journal bearing, the fluid film pressure distribution can be computed by numerically solving the Reynolds equation, by means of finite-difference method. Particularly, in this study the main focus is on the lubrication behavior...... and reaction forces in a reciprocating compressor have a cyclic behavior, periodic oil pressure injection rules based on the instantaneous crank angle and load bearing condition can be established. In this paper, several bearing configurations working under different oil pressure injection rules conditions...

  14. Active tilting-pad journal bearings supporting flexible rotors: Part II–The model-based feedback-controlled lubrication

    DEFF Research Database (Denmark)

    Salazar, Jorge Andrés González; Santos, Ilmar

    2017-01-01

    This is part II of a twofold paper series dealing with the design and implementation of model-based controllers meant for assisting the hybrid and developing the feedback-controlled lubrication regimes in active tilting pad journal bearings (active TPJBs). In both papers theoretical and experimen...... derived in part I. Results show further suppression of resonant vibrations when using the feedback-controlled or active lubrication, overweighting the reduction already achieved with hybrid lubrication, thus improving the whole machine dynamic performance.......This is part II of a twofold paper series dealing with the design and implementation of model-based controllers meant for assisting the hybrid and developing the feedback-controlled lubrication regimes in active tilting pad journal bearings (active TPJBs). In both papers theoretical...... and experimental analyses are presented with focus on the reduction of rotor lateral vibration. This part is devoted to synthesising model-based LQG optimal controllers (LQR regulator + Kalman Filter) for the feedback-controlled lubrication and is based upon the mathematical model of the rotor-bearing system...

  15. Lubrication a practical guide to lubricant selection

    CERN Document Server

    Lansdown, A R

    1982-01-01

    Lubrication: A Practical Guide to Lubricant Selection provides a guide to modern lubrication practice in industry, with emphasis on practical application, selection of lubricants, and significant factors that determine suitability of a lubricant for a specific application. Organized into 13 chapters, this book begins with a brief theoretical opening chapter on the basic principles of lubrication. A chapter then explains the choice of lubricant type, indicating how to decide whether to use oil, grease, dry lubricant, or gas lubrication. Subsequent chapters deal with detailed selection of lubric

  16. Ball Bearings Equipped for In Situ Lubrication on Demand

    Science.gov (United States)

    Marchetti, Mario; Jones, William R., Jr.; Pepper, Stephen V.; Jansen, Mark; Predmore, Roamer

    2005-01-01

    In situ systems that provide fresh lubricants to ball/race contacts on demand have been developed to prolong the operational lives of ball bearings. These systems were originally intended to be incorporated into ball bearings in mechanisms that are required to operate in outer space for years, in conditions in which lubricants tend to deteriorate and/or evaporate. These systems may also be useful for similarly prolonging bearing lifetimes on Earth. Reservoirs have been among the means used previously to resupply lubricants. Lubricant- resupply reservoirs are bulky and add complexity to bearing assemblies. In addition, such a reservoir cannot be turned on or off as needed: it supplies lubricant continuously, often leading to an excess of lubricant in the bearing. A lubricator of the present type includes a porous ring cartridge attached to the inner or the outer ring of a ball bearing (see Figure 1). Oil is stored in the porous cartridge and is released by heating the cartridge: Because the thermal expansion of the oil exceeds that of the cartridge, heating causes the ejection of some oil. A metal film can be deposited on a face of the cartridge to serve as an electrical-resistance heater. The heater can be activated in response to a measured increase in torque that signals depletion of oil from the bearing/race contacts. Because the oil has low surface tension and readily wets the bearing-ring material, it spreads over the bearing ring and eventually reaches the ball/race contacts. The Marangoni effect (a surface-tension gradient associated with a temperature gradient) is utilized to enhance the desired transfer of lubricant to the ball/race contacts during heating. For a test, a ball bearing designed for use at low speed was assembled without lubricant and equipped with a porous-ring lubricator, the resistance heater of which consumed a power of less than 1 W when triggered on by a torque-measuring device. In the test, a load of 20 lb (.89 N) was applied and the

  17. Adjustable ETHD lubrication applied to the improvement of dynamic performance of flexible rotors supported by active TPJB

    DEFF Research Database (Denmark)

    Salazar, Jorge Andrés González; Cerda Varela, Alejandro Javier; Santos, Ilmar

    2013-01-01

    This paper reports the dynamic study of a flexible rotor-bearing test rig which resembles a large overhung centrifugal compressor. The rotor is supported by an active tilting pad journal bearing (TPJB) able to perform the adjustable lubrication regime. Such a regime is obtained by injecting...... pressurized oil directly into the bearing clearance through a nozzle placed in a radial bore at the middle of the pad and connected to a high pressure supply unit by servovalves. The theoretical model is based on a finite element model, where the active TPJB with adjustable lubrication is included using...... and the experimental results are obtained. The improvements are obtained when the system response amplitudes in a bounded speed range is reduced by applying the adjustable lubrication. Results are in agreement with the established fact that a significant improvement of the rotor-bearing system dynamic performance can...

  18. A study of mechanisms of liquid lubrication in metal forming

    DEFF Research Database (Denmark)

    Bech, Jakob Ilsted; Bay, Niels; Eriksen, Morten

    1998-01-01

    Applying a transparent tool technique the lubrication in plane strip drawing of aluminium sheet is studied providing the strip with surface pockets for entrapment of lubricant. The compression and eventual escape of trapped lubricant by Micro Plasto HydroDynamic Lubrication (MPHDL) as well as Micro...

  19. Feedback-controlled lubrication for reducing the lateral vibration of flexible rotors supported by tilting-pad journal bearings

    DEFF Research Database (Denmark)

    Salazar, Jorge Andrés González; Santos, Ilmar

    2015-01-01

    function is optimized in the stabilizing gain domain and then chosen from a subdomain imposed by servovalve restrictions. This work demonstrates enhancements of the dynamic response of flexible rotor-bearing systems supported by an active tilting-pad journal bearing by means of the feedback......The feedback-controlled lubrication regime, based on a model-free designed proportional–derivative controller, is experimentally investigated in a flexible rotor mounted on an actively-lubricated tilting-pad journal bearing. With such a lubrication regime, both the resulting pressure distribution...

  20. Lubrication fundamentals

    International Nuclear Information System (INIS)

    Wills, J.G.

    1990-01-01

    This book is organized under the following headings: lubricating oils; lubricating greases; synthetic lubricants; machine elements; lubricant application; internal combustion engines; stationary gas turbines; steam turbines; hydraulic turbines; nuclear power plants; automotive chassis components; automotive power transmissions; compressors; handling, storing, and dispensing lubricants, in-plant handling for lubricant conservation

  1. Lubrication fundamentals

    CERN Document Server

    Pirro, DM

    2001-01-01

    This work discusses product basics, machine elements that require lubrication, methods of application, lubricant storage and handling, and lubricant conservation. This edition emphasizes the need for lubrication and careful lubricant selection.

  2. Exploring integral controllers in actively-lubricated tilting-pad journal bearings

    DEFF Research Database (Denmark)

    Salazar, Jorge Andrés González; Santos, Ilmar

    2015-01-01

    investigation of integral controllers for feedback-controlled lubrication with the aim of: a) presetting the static journal center and consequently exploring the changes of bearing dynamic properties; b) obtaining an integral controller capable of re-positioning the static journal eccentricity for matching......Active tilting-pad journal bearings with radial oil injection combine good stability properties of conventional tilting-pad journal bearings with the capability of improving their dynamic properties even more by control techniques. The main contribution of this work is the experimental...

  3. Mechanics of a gaseous film barrier to lubricant wetting of elastohydrodynamically lubricated conjunctions

    Science.gov (United States)

    Prahl, J. M.; Hamrock, B. J.

    1985-01-01

    Two analytical models, one based on simple hydrodynamic lubrication and the other on soft elastohydrodynamic lubrication, are presented and compared to delineate the dominant physical parameters that govern the mechanics of a gaseous film between a small droplet of lubricant and the outer race of a ball bearing. Both models are based on the balance of gravity forces, air drag forces, and air film lubrication forces and incorporate a drag coefficient C sub D and a lubrication coefficient C sub L to be determined from experiment. The soft elastohydrodynamic lubrication (EHL) model considers the effects of droplet deformation and solid-surface geometry; the simpler hydrodynamic lubrication (HL) model assumes that the droplet remains essentially spherical. The droplet's angular position depended primarily on the ratio of gas inertia to droplet gravity forces and on the gas Reynolds number and weakly on the ratio of droplet gravity forces to surface tension forces (Bond number) and geometric ratios for the soft EHL. An experimental configuration in which an oil droplet is supported by an air film on the rotating outer race of a ball bearing within a pressure-controlled chamber produced measurements of droplet angular position as a function of outer-race velocity droplet size and type, and chamber pressure.

  4. Micro-Plasto-Hydrodynamic Lubrication a Fundamental Mechanism in Cold Rolling

    DEFF Research Database (Denmark)

    Laugier, Maxime; Boman, Romain; Legrand, Nicolas

    2014-01-01

    This paper presents recent investigations in Micro-Plasto-Hydrodynamic (MPH) lubrication. Industrial evidences of the existence of MPH lubrication mechanism for cold rolling processes are presented. A new lubrication model developed for strip drawing processes is then applied to predict the MPH...

  5. Limits of Lubrication in

    DEFF Research Database (Denmark)

    Olsson, David Dam

    as delivered stainless steel surfaces implying microstructure changes in terms of larger ratio of closed lubricant pockets due to selective grain boundary etching. Strategic surfaces have also been created by macroscopic texturing using spherical indentations having a very small edge slope in order to promote...... by strategic surfaces in comparison to normal stainless steel surfaces implying a larger extent of bi-axial stretching. Numerical simulations have been applied in order to evaluate limits of lubrication in the simulative strip reduction based on predictions of critical parameters appearing in terms......-models corresponds well to experimental results in terms of lubricant film breakdown and subsequently pick-up development. Punching and blanking have been investigated regarding tribological conditions in case of using stainless steel workpiece materials. However, this has called for development of a new test method...

  6. Lubricating graphene with a nanometer-thick perfluoropolyether

    International Nuclear Information System (INIS)

    Kozbial, Andrew; Li, Zhiting; Iasella, Steven; Taylor, Alexander T.; Morganstein, Brittni; Wang, Yongjin; Sun, Jianing; Zhou, Bo; Randall, Nicholas X.; Liu, Haitao; Li, Lei

    2013-01-01

    Due to its atomic thickness (thinness), the wear of graphene in nanoscale devices or as a protective coating is a serious concern. It is highly desirable to develop effective methods to reduce the wear of graphene. In the current paper, the effect of a nano-lubricant, perfluoropolyether, on the wear of graphene on different substrates is investigated. Graphene was synthesized by chemical vapor deposition (CVD) and characterized by Raman spectroscopy. The nano-lubricant is applied on the graphene by dip-coating. The friction and wear of graphene samples are characterized by nanotribometer, AFM, optical microscopy and Raman spectroscopy. The results showed that lubricating silicon/graphene with nano-lubricant reduces the friction but increases the wear. However, lubricating nickel/graphene with nano-lubricant has little effect on the friction but reduce the wear significantly. The underlying mechanism has been discussed on the basis of the graphene–substrate adhesion and the roughness. The current study provides guidance to the future design of graphene-containing devices. - Highlights: • The effect of a nano-lubricant on the friction and wear of CVD graphene was studied. • Lubricating Graphene/Si results in lower friction but higher wear. • Lubricating Ggraphene/Ni results in lower wear but unchanged friction. • The mechanisms were discussed based on the roughness and interfacial adhesion

  7. Feedback-Controlled Lubrication for Reducing the Lateral Vibration of Flexible Rotors supported by Tilting-Pad Journal Bearings

    DEFF Research Database (Denmark)

    Salazar, Jorge Andrés González; Santos, Ilmar

    2014-01-01

    In this work, the feedback-controlled lubrication regime, based on a model-free designed proportional-derivative (PD) controller, is studied and experimentally tested in a flexible rotor mounted on an actively-lubricated tilting-pad journal bearing (active TPJB). With such a lubrication regime...... to experimentally characterized multi-input multi-output systems is used to determine the stabilizing PD gain domain. The main contribution of this work is to demonstrate the enhancement of the dynamic response of a flexible rotor-bearing system supported by an active TPJB by means of the feedback...... are used as actuators and the flexible rotor lateral movements as feedback control signals. To synthesise the PD controller gains an objective function is optimized in the stabilizing gain domain and then chosen from a subdomain imposed by the servovalves restrictions. The D-decomposition approach expanded...

  8. Studies on micro plasto hydrodymic lubrication in metal forming

    DEFF Research Database (Denmark)

    Bay, Niels; Bech, Jakob Ilsted; Andreasen, Jan Lasson

    2002-01-01

    The influence of work piece surface topography on friction and lubrication and final surface quality in metal forming operations is well known and has been pointed out by many researchers, see Schey (1983) and Bay and Wanheim (1990). This is especially the case when liquid lubrication is applied...... characterization models the potential entrapment of a lubricant in closed reservoirs is used as a parameter to predetermine the formability of a sheet metal, Steinhoff et al. (1996), Geiger et al. (1997) and Schmoeckel et al. (1997). In experimental studies on friction in metal forming applying the strip drawing...

  9. The Wear Characteristics of Heat Treated Manganese Phosphate Coating Applied to AlSi D2 Steel with Oil Lubricant

    Directory of Open Access Journals (Sweden)

    Venkatesan Alankaram

    2012-12-01

    Full Text Available Today, in the area of material design conversion coatings play an important role in the applications where temperature, corrosion, oxidation and wear come in to play. Wear of metals occurs when relative motion between counter-surfaces takes place, leading to physical or chemical destruction of the original top layers. In this study, the tribological behaviour of heat treated Manganese phosphate coatings on AISI D2 steel with oil lubricant was investigated. The Surface morphology of manganese phosphate coatings was examined by Scanning Electron Microscope (SEM and Energy Dispersive X-ray Spectroscopy (EDX .The wear tests were performed in a pin on disk apparatus as per ASTM G-99 Standard. The wear resistance of the coated steel was evaluated through pin on disc test using a sliding velocity of 3.0m/s under Constant loads of 40 N and 100 N with in controlled condition of temperature and humidity. The Coefficient of friction and wear rate were evaluated. Wear pattern of Manganese phosphate coated pins with oil lubricant, Heat treated Manganese phosphate coated pins with oil lubricant were captured using Scanning Electron Microscope (SEM. The results of the wear test established that the heat treated manganese phosphate coating with oil lubricant exhibited the lowest average coefficient of friction and the lowest wear loss up to 6583 m sliding distance under 40 N load and 3000 m sliding distance even under 100 N load respectively. The Wear volume and temperature rise in heat treated Manganese Phosphate coated pins with oil lubricant is lesser than the Manganese Phosphate coated pins with oil lubricant

  10. Determination of Lubricants on Ball Bearings by FT-IR using an Integrating Sphere

    Science.gov (United States)

    Street, K. W.; Pepper, S. V.; Wright, A.

    2003-01-01

    The lifetime determination of space lubricants is done at our facility by accelerated testing. Several micrograms of lubricant are deposited on the surface of a ball by syringing tens of micro liters of dilute lubricant solution. The solvent evaporates and the mass of lubricant is determined by twenty weighings near the balance reliability limit. This process is timely but does not produce a good correlation between the mass of lubricant and the volume of solution applied, as would be expected. The amount of lubricant deposited on a ball can be determined directly by Fourier Transform - Infrared Spectroscopy using an integrating sphere. In this paper, we discuss reasons for choosing this methodology, optimization of quantification conditions and potential applications for the technique. The volume of lubricant solution applied to the ball gives better correlation to the IR intensity than does the weight.

  11. Developments in lubricant technology

    CERN Document Server

    Srivastava, S P

    2014-01-01

    Provides a fundamental understanding of lubricants and lubricant technology including emerging lubricants such as synthetic and environmentally friendly lubricants Teaches the reader to understand the role of technology involved in the manufacture of lubricants Details both major industrial oils and automotive oils for various engines Covers emerging lubricant technology such as synthetic and environmentally friendly lubricants Discusses lubricant blending technology, storage, re-refining and condition monitoring of lubricant in equipment

  12. Elasto-hydrodynamic lubrication

    CERN Document Server

    Dowson, D; Hopkins, D W

    1977-01-01

    Elasto-Hydrodynamic Lubrication deals with the mechanism of elasto-hydrodynamic lubrication, that is, the lubrication regime in operation over the small areas where machine components are in nominal point or line contact. The lubrication of rigid contacts is discussed, along with the effects of high pressure on the lubricant and bounding solids. The governing equations for the solution of elasto-hydrodynamic problems are presented.Comprised of 13 chapters, this volume begins with an overview of elasto-hydrodynamic lubrication and representation of contacts by cylinders, followed by a discussio

  13. Molecular dynamics simulations of elasto-hydrodynamic lubrication and boundary lubrication for automotive tribology

    International Nuclear Information System (INIS)

    Washizu, Hitoshi; Sanda, Shuzo; Hyodo, Shi-aki; Ohmori, Toshihide; Nishino, Noriaki; Suzuki, Atsushi

    2007-01-01

    Friction control of machine elements on a molecular level is a challenging subject in vehicle technology. We describe the molecular dynamics studies of friction in two significant lubrication regimes. As a case of elastohydrodynamic lubrication, we introduce the mechanism of momentum transfer related to the molecular structure of the hydrocarbon fluids, phase transition of the fluids under high pressure, and a submicron thickness simulation of the oil film using a tera-flops computer. For boundary lubrication, the dynamic behavior of water molecules on hydrophilic and hydrophobic silicon surfaces under a shear condition is studied. The dynamic structure of the hydrogen bond network on the hydrophilic surface is related to the low friction of the diamond-like carbon containing silicon (DLC-Si) coating

  14. Tolerance Optimization for Mechanisms with Lubricated Joints

    International Nuclear Information System (INIS)

    Choi, J.-H.; Lee, S.J.; Choi, D.-H.

    1998-01-01

    This paper addresses an analytical approach to tolerance optimization for planar mechanisms with lubricated joints based on mechanical error analysis. The mobility method is applied to consider the lubrication effects at joints and planar mechanisms are stochastically defined by using the clearance vector model for mechanical error analysis. The uncertainties considered in the analysis are tolerances on link lengths and radial clearances and these are selected as design variables. To show the validity of the proposed method for mechanical error analysis, it is applied to two examples, and the results obtained are compared with those of Monte Carlo simulations. Based on the mechanical error analysis, tolerance optimizations are applied to the examples

  15. Statistical tools and control of internal lubricant content of inhalation grade HPMC capsules during manufacture.

    Science.gov (United States)

    Ayala, Guillermo; Díez, Fernando; Gassó, María T; Jones, Brian E; Martín-Portugués, Rafael; Ramiro-Aparicio, Juan

    2016-04-30

    The internal lubricant content (ILC) of inhalation grade HPMC capsules is a key factor to ensure good powder release when the patient inhales a medicine from a dry powder inhaler (DPI). Powder release from capsules has been shown to be influenced by the ILC. The characteristics used to measure this are the emitted dose, fine particle fraction and mass median aerodynamic diameter. In addition the ILC level is critical for capsule shell manufacture because it is an essential part of the process that cannot work without it. An experiment has been applied to the manufacture of inhalation capsules with the required ILC. A full factorial model was used to identify the controlling factors and from this a linear model has been proposed to improve control of the process. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Pleural Lubrication

    Directory of Open Access Journals (Sweden)

    Cristina Porta

    2016-05-01

    Full Text Available During breathing, the pleural surfaces slide against each other continuously without damage. Pleural liquid and lubricating molecules should provide the lubrication of the sliding surfaces, thus protecting the mesothelium from shear-induced abrasion. D’Angelo et al. (Respir. Physiol. Neurobiol. 2004 measured the coefficient of kinetic friction (μ of rabbit parietal pleura sliding against visceral pleura in vitro at physiological velocities and under physiological loads; it was ~0.02 and did not change with sliding velocity, consistent with boundary lubrication. μ in boundary lubrication can be influenced by surface molecules like hyaluronan, sialomucin or surface active phospholipidis. Hyaluronan or sialomucin is able to restore good boundary lubrication in damaged mesothelium. Nevertheless, hyaluronidase and neuraminidase treatment of the mesothelium does not increase μ, though neuraminidase cleaves sialic acid from the mesothelium. Short pronase or phospholipase treatment, so as to affect only the mesothelial glycocalyx, increases μ, and this increase is removed by hyaluronan or sialomucin. On the other hand, addition of phospholipids after phospholipase treatment produces a small effect relative to that of hyaluronan or sialomucin, and this effect is similar with unsaturated or saturated phospholipids. In damaged mesothelium, the lubrication regimen becomes mixed, but addition of hyaluronan or sialomucin restores boundary lubrication.

  17. Solid lubricants and surfaces

    CERN Document Server

    Braithwaite, E R

    1964-01-01

    Solid Lubricants and Surfaces deals with the theory and use of solid lubricants, particularly in colloidal form. Portions of this book are devoted to graphite and molybdenum disulfides, which are widely used solid lubricants in colloidal form. An extensive literature on the laboratory examination of hundreds of solids as potential lubricants is also provided in this text. Other topics discussed include the metals and solid lubricants; techniques for examining surfaces; other solid lubricants; metal shaping; and industrial uses of solid-lubricant dispersions. This publication is beneficial to e

  18. Role of water lubricated bearings in Candu reactors

    International Nuclear Information System (INIS)

    Kumar, Ashok N.

    1999-01-01

    During the twentieth century a great emphasis was placed in understanding and defining the operating regime of oil and grease lubricated components. Major advances have been made through elastohydrodynamic lubrication theory in the quantifying the design life of heavily loaded components such as rolling element bearings and gears. Detailed guidelines for the design of oil and grease lubricated components are widely available and are being applied to the successful design of these components. However similar guidelines for water lubricated components are either not available or not well documented. It is often forgotten that the water was used as a lubricant in several components as far back as 1884 B.C. During the twentieth century the water lubricated components continued to play a major role in some high technology industries such as in the power generation plants. In CANDU nuclear reactors water lubrication of several critical components always occupied a pride place and in most cases the only practical mode of lubrication of several critical components always occupied a pride place and in most cases the only practical mode of lubrication. This paper presents some examples of the major water lubricated components in a CANDU reactors. Major part of the paper is focused on presenting an example of successful operating history of water lubricated bearings used in the HT pumps are presented. Both types of bearings have been qualified by tests for operation under normal as well as under more severe postulated condition of loss-of-coolant-accident (LOCA). These bearings have been designed to operate for the 30 years in the existing CANDU 6 (600 MW) reactors. However for the next generation of CANDU 6 reactors which go into service in the year 2003, the HT pump bearing life has been extended to 40 years. (author)

  19. Numerical analysis of all flow state lubrication performance of water-lubricated thrust bearing

    International Nuclear Information System (INIS)

    Deng Xiao; Deng Liping; Huang Wei; Liu Lizhi; Zhao Xuecen; Liu Songya

    2015-01-01

    A model enabling all different flow state lubrication performance simulation and analysis for water-lubricated thrust bearing is presented, considering the temperature influence and elastic deformation. Lubrication state in the model is changed directly from laminar lubrication to turbulent lubrication once Reynolds number exceeds the critical Reynolds number. The model is numerically solved and results show that temperature variation is too little to influence the lubrication performance; the elastic deformation can slightly reduce the load carrying capacity of the thrust bearing; and the turbulent lubrication can remarkably improve the load carrying capacity. (authors)

  20. Lubrication in cold rolling : Numerical simulation using multigrid techniques

    NARCIS (Netherlands)

    Lugt, Pieter Martin

    1992-01-01

    In the cold rolling process a lubricant is applied on the rolls and/or the strip mate­rial. Due to the velocities of the rolls and the strip, part of the lubricant is sheared into the contact causing, amongst others, a reduction of the friction. In this thesis a physical-mathematical model is

  1. Influence of Workpiece Surface Topography on the Mechanisms of Liquid Lubrication in Strip Drawing

    DEFF Research Database (Denmark)

    Shimizu, I; Andreasen, Jan Lasson; Bech, Jakob Ilsted

    2001-01-01

    The workpiece surface topography is an important factor controlling the mechanisms of lubrication in metal forming processes. In the present work, the microscopic lubrication mechanisms induced by lubricant trapped in pockets of the surface in strip drawing are studied. The experiments are perfor......The workpiece surface topography is an important factor controlling the mechanisms of lubrication in metal forming processes. In the present work, the microscopic lubrication mechanisms induced by lubricant trapped in pockets of the surface in strip drawing are studied. The experiments...

  2. USDOE Top-of-Rail Lubricant Project; FINAL

    International Nuclear Information System (INIS)

    Mohumad F. Alzoubi; George R. Fenske; Robert A. Erck; Amrit S. Boparai

    2002-01-01

    Lubrication of wheel/rail systems has been recognized for the last two decades as a very important issue for railroads. Energy savings and less friction and wear can be realized if a lubricant can be used at the wheel/rail interface. On the other hand, adverse influences are seen in operating and wear conditions if improper or excessive lubrication is used. Also, inefficiencies in lubrication need to be avoided for economic and environmental reasons. The top-of-rail (TOR) lubricant concept was developed by Texaco Corporation to lubricate wheels and rails effectively and efficiently. Tranergy Corporation has been developing its SENTRAEN 2000(trademark) lubrication system for the last ten years, and this revolutionary new high-tech on-board rail lubrication system promises to dramatically improve the energy efficiency, performance, safety, and track environment of railroads. The system is fully computer-controlled and ensures that all of the lubricant is consumed as the end of the train passes. Lubricant quantity dispensed is a function of grade, speed, curve, and axle load. Tranergy also has its LA4000(trademark) wheel and rail simulator, a lubrication and traction testing apparatus. The primary task of this project was collecting and analyzing the volatile and semivolatile compounds produced as the lubricant was used. The volatile organic compounds were collected by Carbotrap cartridges and analyzed by adsorption and gas chromatography/mass spectrometry (GC/MS). The semivolatile fraction was obtained by collecting liquid that dripped from the test wheel. The collected material was also analyzed by GC/MS. Both of these analyses were qualitative. The results indicated that in the volatile fraction, the only compounds on the Environmental Protection Agency's (EPA) Superfund List of Analytes detected were contaminants either in the room air or from other potential contamination sources in the laboratory. Similarly, in the semivolatile fraction none of the detected

  3. Glass transitions in lubricants - Its relation to elastohydrodynamic lubrication /EHD/

    Science.gov (United States)

    Alsaad, M.; Bair, S.; Sanborn, D. M.; Winer, W. O.

    1977-01-01

    A preliminary investigation into the possible role of glass transition and glassy state behavior of lubricants in EHD contacts is reported. Measurements of the glass transition of lubricants as a function of pressure by two methods are presented along with a discussion indicating possible implications of the results to EHD lubrication.

  4. Normal Contacts of Lubricated Fractal Rough Surfaces at the Atomic Scale

    NARCIS (Netherlands)

    Solhjoo, Soheil; Vakis, Antonis I.

    The friction of contacting interfaces is a function of surface roughness and applied normal load. Under boundary lubrication, this frictional behavior changes as a function of lubricant wettability, viscosity, and density, by practically decreasing the possibility of dry contact. Many studies on

  5. Validity of the modified Reynolds equation for incompressible active lubrication

    DEFF Research Database (Denmark)

    Cerda Varela, Alejandro Javier; Santos, Ilmar

    2016-01-01

    The modified Reynolds equation for active lubrication has been the cornerstone around which the theoretical investigations regarding actively lubricated bearings have evolved over the years. Introduced originally in 1994, it enables to calculate in a simplified manner the bearing pressure field...... as a function of servovalve controlled pressurized oil injection. This article deals with a preliminary critical review of the simplificatory assumptions that are introduced into the modified Reynolds equation in order to model the phenomena taking place in the interface between the injection nozzle...... and the bearing clearance. The analysis is performed by means of direct comparison of the results of the modified Reynolds equation model versus benchmark CFD calculations, applied to a geometry representative of the system analyzed. The results show that the modified Reynolds equation mathematical simplicity...

  6. The role of lubricant analysis in maximizing lubricant and equipment life

    International Nuclear Information System (INIS)

    Janis, J.

    1995-01-01

    Lubricant analysis has always played an important yet somewhat invisible role in equipment health monitoring. At its most primitive, simple observations and field testing alert equipment operators to changing conditions. At its most advanced, data from performance and analytical tests are used to develop or select optimum lubricants for service, stretch drain intervals, predict remaining equipment life and identify potential equipment or system problems at an incipient stage. Coupled with thermography and vibration analysis, lubricant analysis can become a major component of a comprehensive predictive maintenance (PM) program. Ontario Hydro finds itself at a turning point regarding the use and monitoring of lubricants. Increasing emphasis on equipment reliability and plant life extension, coupled with major, recent changes in lubricant composition in response to environmental, energy and safety concerns, forces an upgrading of many aspects of lubricant monitoring so that it may establish itself as a key part of modern PM practices. This paper discusses some of these aspects. (author)

  7. Water drilling fluids: evaluation of lubricity and clay swelling control; Fluidos de perfuracao a base de agua: avaliacao de lubricidade e controle de inchamento de argilas

    Energy Technology Data Exchange (ETDEWEB)

    Felix, Thiago de Freitas; Arruda, Jefferson Teixeira; Medeiros, Ana Catarina; Garcia, Rosangela Balaban [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    During the oil well drilling, drilling fluids are used in order to transport the cuttings until the surface. This fluid is also responsible for the mechanical sustentation of the well walls, the control of undesirable production of fluids in the formation, the lubricity and the cooling of the bit. The drilling fluids based on water are extensively applied due to their lower cost, thermal stability, biodegradability, easiness of pumping and treatment, resulting in smaller environmental impacts. However, some situations, such as hydrophilic shale drilling, request the use of additives to avoid the hydration of them and, consequently, the tool imprisonment or migration (filtration) of the drilling fluids into the rock. The goal of this work was to develop and test formulations of water-base drilling fluids with high capacity of inhibition of clay swelling and lubricity, obtaining drillings with larger penetration rate and calipers without enlargements. The results showed that the appropriate combination of commonly used commercial products can promote the obtaining of fluids with equal or better performance than those used by world companies. (author)

  8. Determination of Lubricant Bulk Modulus in Metal Forming by Means of a Simple Laboratory Test and Inverse FEM Analysis

    DEFF Research Database (Denmark)

    Hafis, S. M.; Christiansen, P.; Martins, P. A. F.

    2016-01-01

    The influence of workpiece surface topography on friction, lubrication and final surface equality in metal forming operations is well known and has been pointed out by many researchers.This is especially the case when liquid lubricants are applied in situations, where increased surface roughness ...... couples lubricant flow with plastic deformation of the metal directly. Results show that the proposed procedure allows determining an approximate bulk modulus for the lubricant.......The influence of workpiece surface topography on friction, lubrication and final surface equality in metal forming operations is well known and has been pointed out by many researchers.This is especially the case when liquid lubricants are applied in situations, where increased surface roughness...... facilitates the lubricant entrainment, pressurization and possible escape by micro-plasto-hydrodynamic lubrication. In order to model these mechanisms an important lubricant propertyd esignated as the bulk modulus is needed for characterizing the compressibility of the lubricant. The present paper describes...

  9. A fully-coupled approach combining plastic deformation and liquid lubrication

    DEFF Research Database (Denmark)

    Üstünyagiz, Esmeray; Christiansen, Peter; Nielsen, Chris Valentin

    This paper presents a new approach based on a fully coupled procedure in which the lubricant flow and theplastic deformation of the metallic material are solved simultaneously. The approach is applied to strip reduction of asheet with surface pockets in order to investigate the escape of the lubr......This paper presents a new approach based on a fully coupled procedure in which the lubricant flow and theplastic deformation of the metallic material are solved simultaneously. The approach is applied to strip reduction of asheet with surface pockets in order to investigate the escape...

  10. 49 CFR 396.5 - Lubrication.

    Science.gov (United States)

    2010-10-01

    ..., DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS INSPECTION, REPAIR, AND MAINTENANCE § 396.5 Lubrication. Every motor carrier shall ensure that each motor vehicle subject to its control is...

  11. Ionic Liquids as Novel Lubricants and /or Lubricant Additives

    Energy Technology Data Exchange (ETDEWEB)

    Qu, J. [ORNL; Viola, M. B. [General Motors Company

    2013-10-31

    This ORNL-GM CRADA developed ionic liquids (ILs) as novel lubricants or oil additives for engine lubrication. A new group of oil-miscible ILs have been designed and synthesized with high thermal stability, non-corrosiveness, excellent wettability, and most importantly effective anti-scuffing/anti-wear and friction reduction characteristics. Mechanistic analysis attributes the superior lubricating performance of IL additives to their physical and chemical interactions with metallic surfaces. Working with a leading lubricant formulation company, the team has successfully developed a prototype low-viscosity engine oil using a phosphonium-phosphate IL as an anti-wear additive. Tribological bench tests of the IL-additized formulated oil showed 20-33% lower friction in mixed and elastohydrodynamic lubrication and 38-92% lower wear in boundary lubrication when compared with commercial Mobil 1 and Mobil Clean 5W-30 engine oils. High-temperature, high load (HTHL) full-size engine tests confirmed the excellent anti-wear performance for the IL-additized engine oil. Sequence VID engine dynamometer tests demonstrated an improved fuel economy by >2% for this IL-additized engine oil benchmarked against the Mobil 1 5W-30 oil. In addition, accelerated catalyst aging tests suggest that the IL additive may potentially have less adverse impact on three-way catalysts compared to the conventional ZDDP. Follow-on research is needed for further development and optimization of IL chemistry and oil formulation to fully meet ILSAC GF-5 specifications and further enhance the automotive engine efficiency and durability.

  12. De-Lubrication Behavior Of Novel EBS Based Admixed Lubricant In Aluminum P/M Alloy

    Directory of Open Access Journals (Sweden)

    Oh M.C.

    2015-06-01

    Full Text Available The objective of the present research is to develop a novel lubricant for Al-Cu-Mg P/M alloy and to address the effects of the lubricant and compaction pressure on sintered properties. A lubricant mixture consisting of Ethylene Bis Stearamide, Zn-Stearate, and fatty acid was newly developed in this study, and the de-lubrication behavior was compared with that of other commercial lubricants, such as Ethylene Bis Stearamide, Zn-Stearate, and Al-Stearate. Density and transverse rupture strength of sintered materials with each lubricant were examined, respectively. The microstructural analysis was conducted using optical microscope.

  13. Grease lubrication in rolling bearings

    CERN Document Server

    Lugt, Piet M

    2012-01-01

    The definitive book on the science of grease lubrication for roller and needle bearings in industrial and vehicle engineering. Grease Lubrication in Rolling Bearings provides an overview of the existing knowledge on the various aspects of grease lubrication (including lubrication systems) and the state of the art models that exist today. The book reviews the physical and chemical aspects of grease lubrication, primarily directed towards lubrication of rolling bearings. The first part of the book covers grease composition, properties and rheology, including thermal

  14. Potential of Palm Olein as Green Lubricant Source: Lubrication Analysis and Chemical Characterisation

    International Nuclear Information System (INIS)

    Darfizzi Derawi; Jumat Salimon

    2014-01-01

    Palm olein (PO o ) is widely used as edible oil in tropical countries. The lubrication properties and chemical compositions of PO o being considered to be used as renewable raw material for bio lubricant synthesis. PO o is suitable to be used directly as bio lubricant for medium temperature industrial applications. Palm olein has good viscosity index, oxidative stability, flash and fire point as a lubricant source. PO o contains unsaturated triacylglycerols (TAG): Palmitin-Olein-Olein, POO (33.3 %), Palmitin-Olein-Palmitin, POP (29.6 %), which are very important to produce good lubricant properties. This unsaturated bond is preferable in chemical modification to produce bio lubricant. The chemical compositions of PO o were tested by using high performance liquid chromatography (HPLC) and gas chromatography (GC) techniques. (author)

  15. Towards green lubrication in machining

    CERN Document Server

    Liew Yun Hsien, Willey

    2014-01-01

    The book gives an overview of environmental friendly gaseous and vapour, refrigerated compressed gas, solid lubricant, mist lubrication, minimum quantity lubrication (MQL) and vegetable oils that can be used as lubricants and additives in industrial machining applications. This book introduces vegetable oils as viable and good alternative resources because of their environmental friendly, non-toxic and readily biodegradable nature.  The effectiveness of various types of vegetables oils as lubricants and additives in reducing wear and friction is discussed in this book. Engineers and scientist working in the field of lubrication and machining will find this book useful.

  16. Ultralow Friction Self-Lubricating Nanocomposites with Mesoporous Metal-Organic Frameworks as Smart Nanocontainers for Lubricants.

    Science.gov (United States)

    Zhang, Guoliang; Xie, Guoxin; Si, Lina; Wen, Shizhu; Guo, Dan

    2017-11-01

    Smart nanocontainers with stimuli-responsive property can be used to fabricate a new kind of self-lubricating nanocomposite, while the practical potential of the metal-organic frameworks (MOFs) as nanocontainers for lubricants has not been realized. In this work, mesoporous Cu-BTC MOFs storing oleylamine nanocomposites were explored from synthesis and microstructure to self-lubricating characterization. The stress stimuli-responsiveness behavior of the Cu-BTC storing oleylamine (Cu-BTCO) for lubrication has been investigated by subjecting it to macroscopic ball-on-disc friction tests. The steady-state coefficients of friction (COFs) of the Cu-BTC nanocomposites without lubricants were ca. 0.5. In contrast, after oleylamine as the lubricant was incorporated into the Cu-BTC container in the nanocomposite, ultralow friction (COF, ca. 0.03) was achieved. It has been demonstrated that the improved lubricating performance was associated with the lubricating film which was in situ produced by the chemical reaction between the oleylamine released from the nanocontainer and the friction pairs. Therefore, the nanocomposite with smart Cu-BTC container holds the promise of realizing extraordinary self-lubricating properties under stress stimuli.

  17. Advanced lubrication systems and materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, S.

    1998-05-07

    This report described the work conducted at the National Institute of Standards and Technology under an interagency agreement signed in September 1992 between DOE and NIST for 5 years. The interagency agreement envisions continual funding from DOE to support the development of fuel efficient, low emission engine technologies in terms of lubrication, friction, and wear control encountered in the development of advanced transportation technologies. However, in 1994, the DOE office of transportation technologies was reorganized and the tribology program was dissolved. The work at NIST therefore continued at a low level without further funding from DOE. The work continued to support transportation technologies in the development of fuel efficient, low emission engine development. Under this program, significant progress has been made in advancing the state of the art of lubrication technology for advanced engine research and development. Some of the highlights are: (1) developed an advanced high temperature liquid lubricant capable of sustaining high temperatures in a prototype heat engine; (2) developed a novel liquid lubricant which potentially could lower the emission of heavy duty diesel engines; (3) developed lubricant chemistries for ceramics used in the heat engines; (4) developed application maps for ceramic lubricant chemistry combinations for design purpose; and (5) developed novel test methods to screen lubricant chemistries for automotive air-conditioning compressors lubricated by R-134a (Freon substitute). Most of these findings have been reported to the DOE program office through Argonne National Laboratory who manages the overall program. A list of those reports and a copy of the report submitted to the Argonne National Laboratory is attached in Appendix A. Additional reports have also been submitted separately to DOE program managers. These are attached in Appendix B.

  18. Gear Mesh Loss-of-Lubrication Experiments and Analytical Simulation

    Science.gov (United States)

    Handschuh, Robert F.; Polly, Joseph; Morales, Wilfredo

    2011-01-01

    An experimental program to determine the loss-of-lubrication (LOL) characteristics of spur gears in an aerospace simulation test facility has been completed. Tests were conducted using two different emergency lubricant types: (1) an oil mist system (two different misted lubricants) and (2) a grease injection system (two different grease types). Tests were conducted using a NASA Glenn test facility normally used for conducting contact fatigue. Tests were run at rotational speeds up to 10000 rpm using two different gear designs and two different gear materials. For the tests conducted using an air-oil misting system, a minimum lubricant injection rate was determined to permit the gear mesh to operate without failure for at least 1 hr. The tests allowed an elevated steady state temperature to be established. A basic 2-D heat transfer simulation has been developed to investigate temperatures of a simulated gear as a function of frictional behavior. The friction (heat generation source) between the meshing surfaces is related to the position in the meshing cycle, the load applied, and the amount of lubricant in the contact. Experimental conditions will be compared to those from the 2-D simulation.

  19. Two methodologies for optical analysis of contaminated engine lubricants

    International Nuclear Information System (INIS)

    Aghayan, Hamid; Yang, Jun; Bordatchev, Evgueni

    2012-01-01

    , coherence function, etc) are used for the analysis of combined object–lubricant images. Both proposed methodologies utilize the comparison of measured parameters and calculated object shape-based and statistical characteristics for fresh and contaminated lubricants. Developed methodologies are verified experimentally showing an ability to distinguish lubricant with 0%, 3%, 7% and 10% water and coolant contamination. This proves the potential applicability of the developed methodologies for on-line measurement, monitoring and control of the engine lubricant condition

  20. Lubrication theory analysis of the permeability of rough-walled fractures

    International Nuclear Information System (INIS)

    Zimmerman, R.W.; Kumar, S.; Bodvarsson, G.S.

    1991-01-01

    The flow of a fluid between the rough surfaces of a rock fracture is very complex, due to the tortuous paths followed by the fluid particles. Exact analytical modeling of these flows is made difficult by the irregular geometry of rock fracture surfaces, while full three-dimensional numerical simulations of these flows are as yet still impractical. To overcome the difficulties of working with the three-dimensional Navier-Stokes equations, the simpler Reynolds lubrication equation has sometimes been used to model flow in fractures. This paper focuses on two aspects of lubrication theory. First, lubrication theory is applied to two simplified aperture profiles, sinusoidal and sawtooth, and analytical expressions are found for the permeabilities. These results are then compared with numerical results obtained by solving the lubrication equation for fractures with random surfaces. Secondly, the validity of the lubrication equations for modeling flow in rough fractures is studied by examining higher-order perturbation solutions, as well as numerical solutions, to the Navier-Stokes equations for flow in fractures with sinusoidally-varying apertures. 22 refs., 6 figs

  1. Practical lubrication for industrial facilities

    CERN Document Server

    Bloch, Heinz

    2016-01-01

    Now completely revised and updated, this definitive, hands-on reference provides a comprehensive resource on the fundamental principles of lubricant application, what products are available, and which lubricants are most effective for specific applications. It also offers a detailed and highly practical discussion of lubrication delivery systems. You'll gain a clearer understanding of the "why" of relevant industrial lubrication practices, and, importantly, how these practices will facilitate optimized results. Lubricant applications covered include bearings and machine elements in earthbound

  2. Role of lubricants on friction between self-ligating brackets and archwires.

    Science.gov (United States)

    Leal, Renata C; Amaral, Flávia L B; França, Fabiana M G; Basting, Roberta T; Turssi, Cecilia P

    2014-11-01

    To evaluate the effect of different lubricants on friction between orthodontic brackets and archwires. Active (Quick, Forestadent) and passive (Damon 3MX, Ormco) self-ligating brackets underwent friction tests in the presence of mucin- and carboxymethylcellulose (CMC)-based artificial saliva, distilled water, and whole human saliva (positive control). Dry friction (no lubricant) was used as the negative control. Bracket/wire samples (0.014 × 0.025 inch, CuNiTi, SDS Ormco) underwent friction tests eight times in a universal testing machine. Two-way analysis of variance showed no significant interaction between bracket type and lubricant (P  =  .324). Friction force obtained with passive self-ligating brackets was lower than that for active brackets (P Friction observed in the presence of artificial saliva did not differ from that generated under lubrication with natural human saliva, as shown by Tukey test. Higher friction forces were found with the use of distilled water or when the test was performed under dry condition (ie, with no lubricant). Lubrication plays a role in friction forces between self-ligating brackets and CuNiTi wires, with mucin- and CMC-based artificial saliva providing a reliable alternative to human natural saliva.

  3. Lubricated immersed boundary method in two dimensions

    Science.gov (United States)

    Fai, Thomas G.; Rycroft, Chris H.

    2018-03-01

    Many biological examples of fluid-structure interaction, including the transit of red blood cells through the narrow slits in the spleen and the intracellular trafficking of vesicles into dendritic spines, involve the near-contact of elastic structures separated by thin layers of fluid. Motivated by such problems, we introduce an immersed boundary method that uses elements of lubrication theory to resolve thin fluid layers between immersed boundaries. We demonstrate 2nd-order accurate convergence for simple two-dimensional flows with known exact solutions to showcase the increased accuracy of this method compared to the standard immersed boundary method. Motivated by the phenomenon of wall-induced migration, we apply the lubricated immersed boundary method to simulate an elastic vesicle near a wall in shear flow. We also simulate the dynamics of a vesicle traveling through a narrow channel and observe the ability of the lubricated method to capture the vesicle motion on relatively coarse fluid grids.

  4. Lubrication and cartilage.

    Science.gov (United States)

    Wright, V; Dowson, D

    1976-02-01

    Mechanisms of lubrication of human synovial joints have been analysed in terms of the operating conditions of the joint, the synovial fluid and articular cartilage. In the hip and knee during a walking cycle the load may rise up to four times body weight. In the knee on dropping one metre the load may go up to 25 time body weight. The elastic modulus of cartilage is similar to that of the synthetic rubber of a car tyre. The cartilage surface is rough and in elderly specimens the centre line average is 2-75 mum. The friction force generated in reciprocating tests shows that both cartilage and synovial fluid are important in lubrication. The viscosity-shear rate relationships of normal synovial fluid show that it is non-Newtonian. Osteoarthrosic fluid is less so and rheumatoid fluid is more nearly Newtonian. Experiments with hip joints in a pendulum machine show that fluid film lubrication obtains at some phases of joint action. Boundary lubrication prevails under certain conditions and has been examined with a reciprocating friction machine. Digestion of hyaluronate does not alter the boundary lubrication, but trypsin digestion does. Surface active substances (lauryl sulphate and cetyl 3-ammonium bromide) give a lubricating ability similar to that of synovial fluid. The effectiveness of the two substances varies with pH.

  5. Slippery self-lubricating polymer surfaces

    Science.gov (United States)

    Aizenberg, Joanna; Aizenberg, Michael; Cui, Jiaxi; Dunn, Stuart; Hatton, Benjamin; Howell, Caitlin; Kim, Philseok; Wong, Tak Sing; Yao, Xi

    2018-05-08

    The present disclosure describes a strategy to create self-healing, slippery self-lubricating polymers. Lubricating liquids with affinities to polymers can be utilized to get absorbed within the polymer and form a lubricant layer (of the lubricating liquid) on the polymer. The lubricant layer can repel a wide range of materials, including simple and complex fluids (water, hydrocarbons, crude oil and bodily fluids), restore liquid-repellency after physical damage, and resist ice, microorganisms and insects adhesion. Some exemplary applications where self-lubricating polymers will be useful include energy-efficient, friction-reduction fluid handling and transportation, medical devices, anti-icing, optical sensing, and as self-cleaning, and anti-fouling materials operating in extreme environments.

  6. Trends in Controllable Oil Film Bearings

    DEFF Research Database (Denmark)

    Santos, Ilmar

    2011-01-01

    This work gives an overview about the theoretical and experimental achievements of mechatronics applied to oil film bearings, with the aim of: controlling the lateral vibration of flexible rotating shafts; modifying bearing dynamic characteristics, as stiffness and damping properties; increasing......" components and be applied to rotating machines with the goal of avoiding unexpected stops of plants, performing rotordynamic tests and identifying model parameters "on site". Emphasis is given to the controllable lubrication (active lubrication) applied to different types of oil film bearings, i...

  7. Numerical simulation of lubrication mechanisms at mesoscopic scale

    DEFF Research Database (Denmark)

    Hubert, C.; Bay, Niels; Christiansen, Peter

    2011-01-01

    The mechanisms of liquid lubrication in metal forming are studied at a mesoscopic scale, adopting a 2D sequential fluid-solid weak coupling approach earlier developed in the first author's laboratory. This approach involves two computation steps. The first one is a fully coupled fluid-structure F...... of pyramidal indentations. The tests are performed with variable reduction and drawing speed under controlled front and back tension forces. Visual observations through a transparent die of the fluid entrapment and escape from the cavities using a CCD camera show the mechanisms of Micro......PlastoHydroDynamic Lubrication (MPHDL) as well as cavity shrinkage due to lubricant compression and escape and strip deformation....

  8. Tribological properties and lubrication mechanism of in situ graphene-nickel matrix composite impregnated with lubricating oil

    Science.gov (United States)

    Lei, Yu; Du, Jinfang; Pang, Xianjuan; Wang, Haizhong; Yang, Hua; Jiang, Jinlong

    2018-05-01

    A solid-liquid synergetic lubricating system has been designed to develop a novel self-lubricating nickel matrix composite. The graphene-nickel (G-Ni) matrix composite with porous structure was fabricated by in situ growing graphene in bulk nickel using a powder metallurgy method. The porous structures of the composite were used to store polyalphaolefin (PAO) oil for self-lubricating. It is found that the G-Ni matrix composite under oil lubrication condition exhibited superior tribological properties as compared to pure nickel and the composite under dry sliding condition. The prestored oil was released from pores to the sliding surface forming a lubricating oil film during friction process. This lubricating oil film can protect the worn surface from severe oxidation, and help the formation and transfer of a carbon-based solid tribofilm derived from graphene and lubricating oil. This solid (graphene)-liquid (oil) synergistic lubricating mechanism is responsible for the reduction of friction coefficient and improvement of wear resistance of the in situ fabricated G-Ni matrix composite.

  9. Research on a lubricating grease print process for cylindrical cylinder

    Science.gov (United States)

    Yang, Liu; Zhang, Xuan; Wang, XianYan; Tan, XiaoYan

    2017-09-01

    In vehicle braking system and clutch system of transmission, there is always a kind of cylindrical component dose reciprocating motion. The main working method is the reciprocating motion between the rubber sealing parts and cylindrical parts, the main factor affects the service life of the product is the lubricating performance of the moving parts. So the lubricating performance between cylinders and rubber sealing rings is particularly important, same as the quality of the grease applies on the surface of the surface of cylinder. Traditional method of manually applying grease has some defects such as applying unevenly, applying tools like brush and cloth easily falls off and affect the cleanness of products, contact skin easily cause allergy, waste grease due to the uncontrollable of grease quantity using in applying, low efficiency of manual operation. An automatic, quantitative and high pressure applying equipment is introduced in this document to replace the traditional manually applying method, which can guarantee the applying quality of the grease which are painted on the surface of cylinder and bring economic benefits to the company.

  10. Experimental analysis of influence of different lubricants types on the multi-phase ironing process

    Directory of Open Access Journals (Sweden)

    Milan Djordjević

    2013-05-01

    Full Text Available This paper is aimed at presenting results of an experimental analysis of the different types of lubricants influence on the multi-phase ironing process. Based on sliding of the metal strip between the two contact elements a special tribological model was adopted. The subject of experimental investigations was variations of the drawing force, contact pressure and the friction coefficient for each type of the applied lubricants. The ironing process was conducted in three-phases at the constant sliding velocity. The objective of this analysis was to compare all the applied lubricants in order to estimate their quality from the point of view of their applicability in the multi-phase ironing process.

  11. EXPERIMENTAL ANALYSIS OF INFLUENCE OF DIFFERENT LUBRICANTS TYPES ON THE MULTI-PHASE IRONING PROCESS

    Directory of Open Access Journals (Sweden)

    Milan Djordjević

    2013-09-01

    Full Text Available This paper is aimed at presenting results of an experimental analysis of the different types of lubricants influence on the multi-phase ironing process. Based on sliding of the metal strip between the two contact elements a special tribological model was adopted. The subject of experimental investigations was variations of the drawing force, contact pressure and the friction coefficient for each type of the applied lubricants. The ironing process was conducted in three-phases at the constant sliding velocity. The objective of this analysis was to compare all the applied lubricants in order to estimate their quality from the point of view of their applicability in the multi-phase ironing process.

  12. The influence oil film lubrication of the piston-cylinder dynamic

    Directory of Open Access Journals (Sweden)

    Adriana Tokar

    2008-10-01

    Full Text Available An analytical study of the dynamics of a piston in a reciprocating engine was conducted. The equation of Reynolds and moving of piston are derived. The analysis, which incorporates a hydrodynamic lubrication model, was applied to M501 diesel engine. The results of this study indicate that piston dynamics were found to be sensitive to piston-cylinder bore clearance, location of the wrist pin and lubricant viscosity, underscoring their importance in engine design.

  13. Lubrication method and apparatus

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, R.S.

    1988-05-03

    In a combustion turbine engine comprising a bearing member journaling a rotatable component, and compressor means providing pressurized air, the method of providing liquid lubricant to the bearing member is described comprising the steps of: providing the liquid lubricant sealed within a collapsible and penetrable bladder member; enclosing the bladder member and lubricant within a substantially closed housing sealingly cooperating with the bladder member to define a pair of chambers; arranging a penetrating lance member in one of the pair of chambers in confronting relationship with the bladder member; providing communication of the pressurized air with the other of the pair of chambers to force the bladder member into impaled sealing relationship with the lance member; communicating the lubricant to the bearing member via the lance member; and utilizing the pressurized air within the other chamber to collapse the bladder member, simultaneously flowing the lubricant to the bearing member.

  14. Pulsed Plasma Lubrication Device and Method

    Science.gov (United States)

    Hofer, Richard R. (Inventor); Bickler, Donald B. (Inventor); D'Agostino, Saverio A. (Inventor)

    2016-01-01

    Disclosed herein is a lubrication device comprising a solid lubricant disposed between and in contact with a first electrode and a second electrode dimensioned and arranged such that application of an electric potential between the first electrode and the second electrode sufficient to produce an electric arc between the first electrode and the second electrode to produce a plasma in an ambient atmosphere at an ambient pressure which vaporizes at least a portion of the solid lubricant to produce a vapor stream comprising the solid lubricant. Methods to lubricate a surface utilizing the lubrication device in-situ are also disclosed.

  15. Development of seismic support snubber using solid lubricant

    International Nuclear Information System (INIS)

    Sunakoda, Katsuaki; Akimoto, Kohichi; Uchi, Toshiyasu

    1990-01-01

    Solid lubricant MoS 2 films deposited by radio-frequency sputtering and a new physical process were applied to bearings and ball screws used in seismic support mechanical snubbers. The lubricity of MoS 2 films was maintained throughout 720 hours of exposure at a temperature of 200 degC. The endurance life of MoS 2 films using both radio-frequency sputtering and a new physical process was investigated by subjecting the mechanical snubber to a drag force test. Cumulative drag length reached 100 meters and 400 meters, respectively, for the two methods. The dynamic characteristics and durability of mechanical snubbers in an abnormal environment were also investigated. (author)

  16. Airlift bioreactor containing chitosan-immobilized Sphingobium sp. P2 for treatment of lubricants in wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Khondee, Nichakorn; Tathong, Sitti [International Postgraduate Programs in Environmental Management, Graduate School, Chulalongkorn University, Bangkok (Thailand); Bioremediation Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok (Thailand); Pinyakong, Onruthai [Bioremediation Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok (Thailand); National Center of Excellence for Environmental and Hazardous Waste Management (NCE-EHWM), Chulalongkorn University, Bangkok (Thailand); Powtongsook, Sorawit [Center of Excellence for Marine Biotechnology (c/o Department of Marine Science, Chulalongkorn University), National Center for Genetic Engineering and Biotechnology, Pathum Thani (Thailand); Chatchupong, Thawach; Ruangchainikom, Chalermchai [Environmental Research and Management Department, PTT Research and Technology Institute, Ayutthaya (Thailand); Luepromchai, Ekawan, E-mail: ekawan.l@chula.ac.th [Bioremediation Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok (Thailand); National Center of Excellence for Environmental and Hazardous Waste Management (NCE-EHWM), Chulalongkorn University, Bangkok (Thailand)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer Sphingobium sp. P2 effectively degraded various lubricant samples. Black-Right-Pointing-Pointer Efficiency of Sphingobium sp. P2 increased after immobilization on chitosan. Black-Right-Pointing-Pointer High removal efficiency was due to both sorption and degradation processes. Black-Right-Pointing-Pointer The immobilized bacteria (4 g L{sup -1}) were applied in internal loop airlift bioreactor. Black-Right-Pointing-Pointer The bioreactor continuously removed lubricant from emulsified wastewater. - Abstract: An internal loop airlift bioreactor containing chitosan-immobilized Sphingobium sp. P2 was applied for the removal of automotive lubricants from emulsified wastewater. The chitosan-immobilized bacteria had higher lubricant removal efficiency than free and killed-immobilized cells because they were able to sorp and degrade the lubricants simultaneously. In a semi-continuous batch experiment, the immobilized bacteria were able to remove 80-90% of the 200 mg L{sup -1} total petroleum hydrocarbons (TPH) from both synthetic and carwash wastewater. The internal loop airlift bioreactor, containing 4 g L{sup -1} immobilized bacteria, was later designed and operated at 2.0 h HRT (hydraulic retention time) for over 70 days. At a steady state, the reactor continuously removed 85 {+-} 5% TPH and 73 {+-} 11% chemical oxygen demand (COD) from the carwash wastewater with 25-200 mg L{sup -1} amended lubricant. The internal loop airlift reactor's simple operation and high stability demonstrate its high potential for use in treating lubricants in emulsified wastewater from carwashes and other industries.

  17. Airlift bioreactor containing chitosan-immobilized Sphingobium sp. P2 for treatment of lubricants in wastewater

    International Nuclear Information System (INIS)

    Khondee, Nichakorn; Tathong, Sitti; Pinyakong, Onruthai; Powtongsook, Sorawit; Chatchupong, Thawach; Ruangchainikom, Chalermchai; Luepromchai, Ekawan

    2012-01-01

    Highlights: ► Sphingobium sp. P2 effectively degraded various lubricant samples. ► Efficiency of Sphingobium sp. P2 increased after immobilization on chitosan. ► High removal efficiency was due to both sorption and degradation processes. ► The immobilized bacteria (4 g L −1 ) were applied in internal loop airlift bioreactor. ► The bioreactor continuously removed lubricant from emulsified wastewater. - Abstract: An internal loop airlift bioreactor containing chitosan-immobilized Sphingobium sp. P2 was applied for the removal of automotive lubricants from emulsified wastewater. The chitosan-immobilized bacteria had higher lubricant removal efficiency than free and killed-immobilized cells because they were able to sorp and degrade the lubricants simultaneously. In a semi-continuous batch experiment, the immobilized bacteria were able to remove 80–90% of the 200 mg L −1 total petroleum hydrocarbons (TPH) from both synthetic and carwash wastewater. The internal loop airlift bioreactor, containing 4 g L −1 immobilized bacteria, was later designed and operated at 2.0 h HRT (hydraulic retention time) for over 70 days. At a steady state, the reactor continuously removed 85 ± 5% TPH and 73 ± 11% chemical oxygen demand (COD) from the carwash wastewater with 25–200 mg L −1 amended lubricant. The internal loop airlift reactor's simple operation and high stability demonstrate its high potential for use in treating lubricants in emulsified wastewater from carwashes and other industries.

  18. Feasibility of Applying Active Lubrication to Reduce Vibration in Industrial Compressors

    DEFF Research Database (Denmark)

    Santos, Ilmar; Nicoletti, Rodrigo; Scalabrin, A.

    2004-01-01

    of the orifices distributed over the sliding surface. The dynamic coefficients of tilting-pad bearings with and without active lubrication and their influence on an industrial compressor of 391 Kg, which operates with a maximum speed of 10,200 rpm, are analyzed. In the original compressor design, the bearing...... housings are mounted on squeeze-film dampers in order to ensure reasonable stability margins during full load condition (high maximum continuous speed). Instead of having a combination of tilting-pad bearings and squeeze-film dampers, another design solution is proposed and theoretically investigated...

  19. Biodegradation of lubricant oil

    African Journals Online (AJOL)

    M

    2012-09-25

    Sep 25, 2012 ... lubricating oil, showed high biodegradation efficiency for different used lubricating oils. Capability of ..... amount after biodegradation showed no difference in the .... products polluted sites in Elele, Rivers State, Ngeria.

  20. Lubrication of ceramics in ring/cylinder applications

    International Nuclear Information System (INIS)

    Gaydos, P.A.; Dufrane, K.F.

    1989-01-01

    In support of efforts to apply ceramics to advanced heat engines, a study was performed of the wear mechanisms of ceramics at the ring/cylinder interface. A laboratory apparatus was constructed to reproduce most of the conditions of an actual engine but used easily prepared ring and cylinder specimens to facilitate their fabrication. Plasma-sprayed coatings of Cr 2 O 3 and hypersonic flame-sprayed coatings of cobalt-bonded WC performed particularly well as ring coatings. Similar performance was obtained with these coatings operating against SiC, Si 3 N 4 , SiC whisker-reinforced Al 2 O 3 and Cr 2 O 2 coatings. The study demonstrated the critical need for lubrication and evaluated the performance of two available lubricants

  1. Development of lubricant test for punching and blanking

    DEFF Research Database (Denmark)

    Olsson, David Dam

    2001-01-01

    The background for development of new lubricants Requirements to lubricant test for punching Methods of evaluating lubricants Test equipment developed at DTU Conclusion.......The background for development of new lubricants Requirements to lubricant test for punching Methods of evaluating lubricants Test equipment developed at DTU Conclusion....

  2. Power system with an integrated lubrication circuit

    Science.gov (United States)

    Hoff, Brian D [East Peoria, IL; Akasam, Sivaprasad [Peoria, IL; Algrain, Marcelo C [Peoria, IL; Johnson, Kris W [Washington, IL; Lane, William H [Chillicothe, IL

    2009-11-10

    A power system includes an engine having a first lubrication circuit and at least one auxiliary power unit having a second lubrication circuit. The first lubrication circuit is in fluid communication with the second lubrication circuit.

  3. Fault lubrication during earthquakes.

    Science.gov (United States)

    Di Toro, G; Han, R; Hirose, T; De Paola, N; Nielsen, S; Mizoguchi, K; Ferri, F; Cocco, M; Shimamoto, T

    2011-03-24

    The determination of rock friction at seismic slip rates (about 1 m s(-1)) is of paramount importance in earthquake mechanics, as fault friction controls the stress drop, the mechanical work and the frictional heat generated during slip. Given the difficulty in determining friction by seismological methods, elucidating constraints are derived from experimental studies. Here we review a large set of published and unpublished experiments (∼300) performed in rotary shear apparatus at slip rates of 0.1-2.6 m s(-1). The experiments indicate a significant decrease in friction (of up to one order of magnitude), which we term fault lubrication, both for cohesive (silicate-built, quartz-built and carbonate-built) rocks and non-cohesive rocks (clay-rich, anhydrite, gypsum and dolomite gouges) typical of crustal seismogenic sources. The available mechanical work and the associated temperature rise in the slipping zone trigger a number of physicochemical processes (gelification, decarbonation and dehydration reactions, melting and so on) whose products are responsible for fault lubrication. The similarity between (1) experimental and natural fault products and (2) mechanical work measures resulting from these laboratory experiments and seismological estimates suggests that it is reasonable to extrapolate experimental data to conditions typical of earthquake nucleation depths (7-15 km). It seems that faults are lubricated during earthquakes, irrespective of the fault rock composition and of the specific weakening mechanism involved.

  4. Surface Modification Of The High Temperature Porous Sliding Bearings With Solid Lubricant Nanoparticles

    Directory of Open Access Journals (Sweden)

    Wiśniewska-Weinert H.

    2015-09-01

    Full Text Available A surface modification of stainless steel bearing sleeves is developed to improve the tribology characteristics at high temperature. Solid lubricant nano- and microparticles are applied for this purpose. To create the quasi-hydrodynamic lubrication regimes, the solid lubricant powder layer is made by developed pressure impregnation technique. Porous sliding bearing sleeve prototypes were made by powder metallurgy technique. The purpose of the paper is to define the friction and wear characteristics of the sleeves and to determine the influence of sealing of the sliding interface on these characteristics. It is found that application of WS2 sold lubricant nano- and micro-particles and preservation of a particle leakage out of interface allows to achieve at the high temperature the friction coefficients comparable to those at ambient temperature.

  5. Development of the water-lubricated thrust bearing of the hydraulic turbine generator

    International Nuclear Information System (INIS)

    Inoue, K; Deguchi, K; Okude, K; Fujimoto, R

    2012-01-01

    In hydropower plant, a large quantities of turbine oil is used as machine control pressure oil and lubricating oil. If the oil leak out from hydropower plant, it flows into a river. And such oil spill has an adverse effect on natural environment because the oil does not degrade easily. Therefore the KANSAI and Hitachi Mitsubishi Hydro developed the water-lubricated thrust bearing for vertical type hydraulic turbine generator. The water-lubricated bearing has advantages in risk avoidance of river pollution because it does not need oil. For proceeding the development of the water-lubricated thrust bearing, we studied following items. The first is the examination of the trial products of water lubricating liquid. The second is the study of bearing structure which can satisfy bearing performance such as temperature characteristic and so on. The third is the mock-up testing for actual application in the future. As a result, it was found that the water-lubricated thrust bearing was technically applicable to actual equipments.

  6. Lubricant depletion under various laser heating conditions in Heat Assisted Magnetic Recording (HAMR)

    Science.gov (United States)

    Xiong, Shaomin; Wu, Haoyu; Bogy, David

    2014-09-01

    Heat assisted magnetic recording (HAMR) is expected to increase the storage areal density to more than 1 Tb/in2 in hard disk drives (HDDs). In this technology, a laser is used to heat the magnetic media to the Curie point (~400-600 °C) during the writing process. The lubricant on the top of a magnetic disk could evaporate and be depleted under the laser heating. The change of the lubricant can lead to instability of the flying slider and failure of the head-disk interface (HDI). In this study, a HAMR test stage is developed to study the lubricant thermal behavior. Various heating conditions are controlled for the study of the lubricant thermal depletion. The effects of laser heating repetitions and power levels on the lubricant depletion are investigated experimentally. The lubricant reflow behavior is discussed as well.

  7. Boundary lubrication of bearing steel in water-based lubricants with functional additives

    NARCIS (Netherlands)

    Wu, Y.

    2017-01-01

    This thesis focuses on the effect of additives on boundary lubrication of bearing steel for water-based lubrication systems. The oil-in-water (O/W) emulsion and the water-glycol based liquid were selected as the base fluids for research. Sulfur compounds, nitrogen heterocycles and graphene

  8. Modeling the lubrication, dynamics, and effects of piston dynamic tilt of twin-land oil control rings in internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Tian, T.; Wong, V.W.

    2000-01-01

    A theoretical model was developed to study the lubrication, friction, dynamics, and oil transport of twin-land oil control rings (TLOCR) in internal combustion engines. A mixed lubrication model with consideration of shear-thinning effects of multigrade oils was used to describe the lubrication between the running surfaces of the two lands and the liner. Oil squeezing and asperity contact were both considered for the interaction between the flanks of the TLOCR and the ring groove. Then, the moments and axial forces from TLOCR/liner lubrication and TLOCR/groove interaction were coupled into the dynamic equations of the TLOCR. Furthermore, effects of piston dynamic tilt were considered in a quasi three-dimensional manner so that the behaviors of the TLOCR at different circumferential location could be studied. As a first step, variation of the third land pressure was neglected. The model predictions were illustrated via an SI engine. One important finding is that around thrust and anti-thrust sides, the difference between the minimum oil film thickness of two lands can be as high as several micrometers due to piston dynamic tilt. As a result, at thrust and anti-thrust sides, significant oil can pass under one land of the TLOCR along the bore, although the other land perfectly seals the bore. Then, the capabilities of the model were further explained by studying the effects of ring tension and torsional resistance on the lubrication and oil transport between the lands and the liner. The effects of oil film thickness on the flanks of the ring groove on the dynamics of the TLOCR were also studied. Friction results show that boundary lubrication contributes significantly to the total friction of the TLOCR.

  9. Ultra Low Friction of DLC Coating with Lubricant

    International Nuclear Information System (INIS)

    Kano, M; Yoshida, K

    2010-01-01

    The objective of this study was to find a trigger to make clear a mechanism of the ultra low friction by evaluating the friction property of DLC-DLC combination under lubrication with the simple fluid. The Pin-on-disc reciprocating and rotating sliding tests were conducted to evaluate the friction property. The super low friction property of pure sliding with the ta-C(T) pair coated by the filtered arc deposition process under oleic acid lubrication was found at the mixed lubrication condition. It was thought that the low share strength tribofilm composed of water and acid seemed to be formed on ta-C sliding interface. Additionally, the smooth sliding surface formed on ta-C(T) was seemed to be required to keep this tribofilm. Then, the super low friction was thought to be obtained by this superlubrication condition. Although the accurate and direct experimental data must be required to make clear this super low friction mechanism, the advanced effect obtained by the simple material combination is expected to be applied on the large industrial fields in near future.

  10. Use of high-molecular compounds in plastic lubricants for geological exploratory drilling

    Energy Technology Data Exchange (ETDEWEB)

    Smyk, Z.I.; Kuz' michev, S.P.; Mnishchenko, V.G.; Smertenko, M.I.

    1982-01-01

    The existing lubricants in the series KAVS (OST 81-4-70) do not correspond to the conditions of high-rotational diamond drilling for a number of operating properties. Results are presented of studying the hydrated calcium lubricants with high molecular additives (polyisobutylene KP-10, polyethylene of high density of low pressure and atactic propylene in a quantity of 1-6%) improving their operating properties. Selection of the additives is governed by their compatability with the base and the capacity to improve the adhesion-cohesion properties with relative constancy of other characteristics. As a result of the studies it was established that the use in the lubricant of polymers of the carbon-chain type of amorphous structure in a quantity of 1-2% depending on the molecular weight noticeably improves the stickiness, resistance to erosion by water, colloidal stability, and lubricant properties. When they are added in a large quantity, a sharp weakening of the lubricants is observed and in individual cases, formation of unstable systems. Polymers of the hetero-chain type because of the presence of polar groups are highly effective adhesives. Protective and packing lubricants are developed which contain rubbers. Alkyl-phenol-amine resins (octophor-N), the bottoms from the production of phenol formaldehyde resin, rosin and lignite wax introduced at the stage of cooling have a positive effect on the lubricant properties. The best operating properties with satisfactory other indicators (viscosity, colloidal stability, antiwear properties) are found in the samples containing polyisobutylene KP-10, lignite wax and rosin. Operating tests of an experimental batch of this lubricant under conditions of real drilling indicated that its use as compared to KEVS-45 makes it possible to increase the drilling rate by 40%, reduce the outlays of power to 50%, reduce the service time and the outlays of energy resources for applying the lubricant layer to the pipe surface.

  11. Lubricants : the lifeblood of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, Y. [Petro-Canada, Calgary, AB (Canada)

    2009-07-01

    With the significant investments in wind turbine equipment, companies need to exercise due diligence when it comes to the types of lubricants and fluids used. Mechanical and equipment issues can often be eliminated with improved maintenance practices and the appropriate selection of lubricants. This presentation discussed lubricants as being the lifeblood of wind turbines. The presentation first provided an overview and discussed wind turbine trends and application trends. The technical aspects of fluid formation were presented. Lubrication maintenance practices and oil monitoring were discussed. Last, key industry tests, and OEM specifications for bearings, gearboxes, and wind turbines were identified. It was concluded that improved maintenance practices in combination with the correct lubricant selection can address several operating problems. figs.

  12. Experimental Analysis of Damping and Tribological Characteristics of Nano-CuO Particle Mixed Lubricant in Ball Bearings

    Science.gov (United States)

    Prakash, E.; Sivakumar, K.

    2015-12-01

    Experimental analysis of damping capacity and tribological characteristics of nano CuO added Servosystem 68 lubricant is attempted. CuO nano particles were synthesized by aqueous precipitation method and characterized. Prior to dispersion into lubricant, CuO nano particles were coated with 0.2 wt.% surfactant (Span-80) to stabilize the nano fluid. Tribological characteristics of particle added lubricant were tested in ASTM D 4172 four ball wear tester. Scanning electron microscopy test results of worn surfaces of nano CuO particle added lubricant were smoother than base lubricant. The particle added lubricant was applied in a new ball bearing and three defected ball bearings. When particle added lubricant was used, the ball defected bearing's vibration amplitude was reduced by 21.94% whereas it was 16.46% for new bearing and was ≤ 11% for other defected bearings. The formation of protection film of CuO over ball surface and regime of full film lubrication near the ball zone were observed to be reason for improved damping of vibrations.

  13. Double angle seal forming lubricant film

    Science.gov (United States)

    Ernst, William D.

    1984-01-01

    A lubricated piston rod seal which inhibits gas leaking from a high pressure chamber on one side of the seal to a low pressure chamber on the other side of the seal. A liquid is supplied to the surface of the piston rod on the low pressure side of the seal. This liquid acts as lubricant for the seal and provides cooling for the rod. The seal, which can be a plastic, elastomer or other material with low elastic modulus, is designed to positively pump lubricant through the piston rod/seal interface in both directions when the piston rod is reciprocating. The capacity of the seal to pump lubricant from the low pressure side to the high pressure side is less than its capacity to pump lubricant from the high pressure side to the low pressure side which ensures that there is zero net flow of lubricant to the high pressure side of the seal. The film of lubricant between the seal and the rod minimizes any sliding contact and prevents the leakage of gas. Under static conditions gas leakage is prevented by direct contact between the seal and the rod.

  14. Reduced Need of Lubricity Additives in Soybean Oil Blends Under Boundary Lubrication Conditions

    Science.gov (United States)

    Converging prices of vegetable oils and petroleum, along with increased focus on renewable resources, gave more momentum to vegetable oil lubricants. Boundary lubrication properties of four Extreme Pressure (EP) additive blends in conventional Soy Bean Oil (SBO) and Paraffinic Mineral Oil (PMO) of ...

  15. Influence of Cooling Lubricants on the Surface Roughness and Energy Efficiency of the Cutting Machine Tools

    Directory of Open Access Journals (Sweden)

    Jersák J.

    2017-08-01

    Full Text Available The Technical University of Liberec and Brandenburg University of Technology Cottbus-Senftenberg investigated the influence of cooling lubricants on the surface roughness and energy efficiency of cutting machine tools. After summarizing the achieved experimental results, the authors conclude that cooling lubricants extensively influence the cutting temperature, cutting forces and energy consumption. Also, it is recognizable that cooling lubricants affect the cutting tools lifetime and the workpiece surface quality as well. Furthermore, costs of these cooling lubricants and the related environmental burden need to be considered. A current trend is to reduce the amount of lubricants that are used, e.g., when the Minimum Quantity Lubrication (MQL technique is applied. The lubricant or process liquid is thereby transported by the compressed air in the form of an aerosol to the contact area between the tool and workpiece. The cutting process was monitored during testing by the three following techniques: lubricant-free cutting, cutting with the use of a lubricant with the MQL technique, and only utilizing finish-turning and finish-face milling. The research allowed the authors to monitor the cutting power and mark the achieved surface quality in relation to the electrical power consumption of the cutting machine. In conclusions, the coherence between energy efficiency of the cutting machine and the workpiece surface quality regarding the used cooling lubricant is described.

  16. A lubricant

    Energy Technology Data Exchange (ETDEWEB)

    Parfenova, V.A.; Belov, P.S.; Guliaev, I.A.; Korenev, K.D.

    1979-07-30

    For the purpose of improving the thermo-oxidation stability of washing and protective properties, dithiophosphate of the metal having the formula ((pi-R-C/sub 6/H/sub 4/OCH/sub 2/-CH/sub 2/O)/sub 2/P(=S)S)/sub 2/M (where R is the alkyl of C/sub 8/--C/sub 12/ isostructure, M is either cadmium, barium, or zinc) (I) is added into the petroleum oil for the lubrication of car engine units and containing polyethylene oxyphenylpolyamine (PEP). The lubricant has the following composition, in %: PEP, 1 to 5; (I), 0.5 to 5; petroleum oil, up to 100. In order to produce a lubricant for petroleum oil, for example MT-16, PEF and (I) are added (R = octyl or dodecyl), it is heated up to 80/sup 0/ and mixed in a nitrogen current for one hour. The combination of the additives in the patented composition has synergistic activities and the oil being patented, according to operative properties, surpasses the oil with industrial dithiophosphate additive MNI-IP-22k.

  17. Ionic liquids as lubricant additives: A review

    International Nuclear Information System (INIS)

    Zhou, Yan; Qu, Jun

    2016-01-01

    In pursuit of energy efficiency and durability throughout human history, advances in lubricants have always played important roles. Ionic liquids (ILs) are room-temperature molten salts that possess unique physicochemical properties and have shown great potential in many applications with lubrication as one of the latest. While earlier work (2001–2011) primarily explored the feasibility of using ILs as neat or base lubricants, using ILs as lubricant additives has become the new focal research topic since the breakthrough in ILs’ miscibility in nonpolar hydrocarbon oils in early 2012. This work reviews the recent advances in developing ILs as additives for lubrication with an attempt to correlate among the cationic and anionic structures, oil-solubility, and other relevant physicochemical properties, and lubricating behavior. Effects of the concentration of ILs in lubricants and the compatibility between ILs and other additives in the lubricant formulation on the tribological performance are described followed by a discussion of wear protection mechanism based on tribofilm characterization. As a result, future research directions are suggested at the end.

  18. Atomistic study of ternary oxides as high-temperature solid lubricants

    Science.gov (United States)

    Gao, Hongyu

    Friction and wear are important tribological phenomena tightly associated with the performance of tribological components/systems such as bearings and cutting machines. In the process of contact and sliding, friction and wear lead to energy loss, and high friction and wear typically result in shortened service lifetime. To reduce friction and wear, solid lubricants are generally used under conditions where traditional liquid lubricants cannot be applied. However, it is challenging to maintain the functionality of those materials when the working environment becomes severe. For instance, at elevated temperatures (i.e., above 400 °C), most traditional solid lubricants, such as MoS2 and graphite, will easily oxidize or lose lubricity due to irreversible chemical changes. For such conditions, it is necessary to identify materials that can remain thermally stable as well as lubricious over a wide range of temperatures. Among the currently available high-temperature solid lubricants, Ag-based ternary metal oxides have recently drawn attention due to their low friction and ability to resist oxidation. A recent experimental study showed that the Ag-Ta-O ternary exhibited an extremely low coefficient of friction (0.06) at 750 °C. To fully uncover the lubricious nature of this material as a high-temperature solid lubricant, a series of tribological investigations were carried out based on one promising candidate - silver tantalate (AgTaO3). The study was then extended to alternative materials, Cu-Ta-O ternaries, to accommodate a variety of application requirements. We aimed to understand, at an atomic level, the effects of physical and chemical properties on the thermal, mechanical and tribological behavior of these materials at high temperatures. Furthermore, we investigated potassium chloride films on a clean iron surface as a representative boundary lubricating system in a nonextreme environment. This investigation complemented the study of Ag/Cu-Ta-O and enhanced the

  19. Identifying lubricant options for compressor bearing designs

    Science.gov (United States)

    Karnaz, J.; Seeton, C.; Dixon, L.

    2017-08-01

    Today’s refrigeration and air conditioning market is not only driven by the environmental aspects of the refrigerants, but also by the energy efficiency and reliability of system operation. Numerous types of compressor designs are used in refrigeration and air conditioning applications which means that different bearings are used; and in some cases, multiple bearing types within a single compressor. Since only one lubricant is used, it is important to try to optimize the lubricant to meet the various demands and requirements for operation. This optimization entails investigating different types of lubricant chemistries, viscosities, and various formulation options. What makes evaluating these options more challenging is the refrigerant which changes the properties of the lubricant delivered to the bearing. Once the lubricant and refrigerant interaction are understood, through various test methods, then work can start on collaborating with compressor engineers on identifying the lubricant chemistry and formulation options. These interaction properties are important to the design engineer to make decisions on the adequacy of the lubricant before compressor tests are started. This paper will discuss the process to evaluate lubricants for various types of compressors and bearing design with focus on what’s needed for current refrigerant trends. In addition, the paper will show how the lubricant chemistry choice can be manipulated through understanding of the bearing design and knowledge of interaction with the refrigerant to maximize performance. Emphasis will be placed on evaluation of synthetic lubricants for both natural and synthetic low GWP refrigerants.

  20. 21 CFR 880.6375 - Patient lubricant.

    Science.gov (United States)

    2010-04-01

    ... § 880.6375 Patient lubricant. (a) Identification. A patient lubricant is a device intended for medical... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Patient lubricant. 880.6375 Section 880.6375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL...

  1. Metal forming and lubrication

    DEFF Research Database (Denmark)

    Bay, Niels

    2000-01-01

    Lubrication is essential in most metal forming processes. The lubricant film has two basic functions, [1]: i. to separate the work piece and tool surfaces and ii. to cool the workpiece and the tool. Separation of the two surfaces implies lower friction facilitating deformation and lowering the tool...

  2. Enhancement of tribofilm formation from water lubricated PEEK composites by copper nanowires

    Science.gov (United States)

    Gao, Chuanping; Fan, Shuguang; Zhang, Shengmao; Zhang, Pingyu; Wang, Qihua

    2018-06-01

    A high-performance tribofilm is crucial to enhance the tribological performance of tribomaterials. In order to promote tribofilm formation under water lubrication conditions, copper nanowires as a functional nanomaterial were filled into neat polyetheretherketone (PEEK) and PEEK10SCF8Gr (i.e., PEEK filled with 10 vol.% short carbon fibers and 8 vol.% graphite flakes). The results show that the addition of copper nanowires and a greater applied load can enhance materials transfer and tribofilm formation during sliding process. Moreover, copper nanowires can share a part of applied load, and retard the fatigue effect to some extent. In addition, copper nanowires, carbon fibers and graphite can synergistically improve the tribological performance and the tribofilm formation under water lubrication and severe working conditions. In particular, only 0.5 vol.% copper nanowires can form a high-performance tribofilm, which endows superior lubricating property and wear resistance capacity of the PEEK10SCF8Gr. Furthermore, the surface analysis indicates that the tribofilm contains some transferred materials and the products from tribochemical reactions as well.

  3. Laboratory services series: a lubrication program

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, H.B.; Miller, T.L.

    1976-05-01

    The diversity of equipment and operating conditions at a major national research and development laboratory requires a systematic, effective lubrication program. The various phases of this program and the techniques employed in formulating and administering this program are discussed under the following topics: Equipment Identification, Lubrication Requirements, Assortment of Lubricants, Personnel, and Scheduling.

  4. Laboratory services series: a lubrication program

    International Nuclear Information System (INIS)

    Bowen, H.B.; Miller, T.L.

    1976-05-01

    The diversity of equipment and operating conditions at a major national research and development laboratory requires a systematic, effective lubrication program. The various phases of this program and the techniques employed in formulating and administering this program are discussed under the following topics: Equipment Identification, Lubrication Requirements, Assortment of Lubricants, Personnel, and Scheduling

  5. Top-of-Rail lubricant

    Energy Technology Data Exchange (ETDEWEB)

    Alzoubi, M. F.; Fenske, G. R.; Erck, R. A.; Boparai, A. S.

    2000-07-14

    Analysis of the volatile and semivolatile fractions collected after use of the TOR lubricant indicated that other than contaminants in the collection laboratory, no compounds on the EPA's Target Compound Lists (Tables 2 and 5) were detected in these fractions. The data of these qualitative analyses, given in the various tables in the text, indicate only the relative amounts of the tentatively identified compounds. The authors recommend that quantitative analysis be performed on the volatile and semivolatile fractions to allow confirmation of the tentatively identified compounds and to obtain absolute amounts of the detected compounds. Additionally, the semivolatile fraction should be analyzed by liquid chromatography/mass spectrometry to identify compounds that are not chromatographable under the temperature program used for determination of semivolatile compounds. Introducing the top-of-rail (TOR) lubricant into the wheel/rail interface results in a reduction of almost 60% of lateral friction force over the forces encountered under dry conditions. This reveals good potential for energy savings, as well as wear reduction, for railroad companies. In TOR lubrication, an increase in the angle of attack and axle load results in increased lateral friction and rate of lubricant consumption. The most efficient TOR lubricant quantity to be used in the wheel/rail interface must be calculated precisely according to the number of cars, axle loads, train speed, and angle of attack.

  6. Influences of lubricant pocket geometry and working conditions upon micro lubrication mechanisms in upsetting and strip drawing

    DEFF Research Database (Denmark)

    Shimizu, Ichiro; Martins, P. A. F.; Bay, Niels

    2010-01-01

    , during upsetting and strip drawing, by means of a rigid-viscoplastic finite-element formulation. Special emphasis is placed on the effect of pocket geometry on the build-up of hydrostatic pressure, which is responsible for the onset of micro-lubrication mechanisms. A good agreement is found between......Micro-lubricant pockets located in the surface of plastically deforming workpieces are recognised to improve the performance of fluid lubrication in a metal-forming process. This work investigates the joint influence of pocket geometry and process working conditions on micro-lubrication mechanisms...

  7. Self lubrication of bitumen froth in pipelines

    International Nuclear Information System (INIS)

    Joseph, D.D.

    1997-01-01

    In this paper I will review the main properties of water lubricated pipelines and explain some new features which have emerged from studies of self-lubrication of Syncrudes' bitumen froth. When heavy oils are lubricated with water, the water and oil are continuously injected into a pipeline and the water is stable when in a lubricating sheath around the oil core. In the case of bitumen froth obtained from the Alberta tar sands, the water is dispersed in the bitumen and it is liberated at the wall under shear; water injection is not necessary because the froth is self-lubricating

  8. Lubricant flow analysis for effective lubrication of tractor forward/reverse clutch

    Directory of Open Access Journals (Sweden)

    Daekyung Noh

    2017-04-01

    Full Text Available Owing to the high power requirements of tractors, their low-power transmission gears often experience durability problems such as burning of the clutch. The operation of tractors under high load conditions also causes clutch slip, with the consequent longer operation duration exacerbating the burning of the friction plate. Solving this problem requires effective lubricant distribution. This was achieved in the present study by the development of an analysis model for predicting the lubricant flow rate. The reliability of the model was verified by comparing its predictions for various operation conditions with experimental measurements. Using the model, it was determined that effective distribution of the lubricant could be achieved without significant modification of the system, by only adjusting the gaps between the clutch piston and the housing, and between the separation plates and the case. Keywords: Mechanical engineering

  9. Comparison of sliding friction and wear behaviour of overhead conveyor steels tested under dry and lubrication conditions

    International Nuclear Information System (INIS)

    Castro-Regal, G.; Fernandez-Vicente, A.; Martinez, M. A.

    2005-01-01

    The sliding friction and wear behaviour of different steel qualities were investigated with and without lubrication conditions. Steel qualities tested are normally used in the overhead conveyor system of many industrial fields, like the automotive sector. Sliding wear tests have been conducted by means of a pin-on-disk machine. A 100Cr6 steel similar to that used within the overhead conveyor trolleys has been employed as a pin. Friction coefficient values obtained under lubrication conditions were three times smaller than those obtained without lubrication. The mechanism that controls wear behaviour under lubrication conditions is an abrasive one and the wear values obtained are almost worthless. On the other hand, mechanism controlling wear during non lubrication tests, was a combination of abrasion and adhesion. (Author) 20 refs

  10. Solid lubricants in the power station

    International Nuclear Information System (INIS)

    Gaensheimer, J.

    1981-01-01

    Example application are first outlined, followed by descriptions of inorganic solid lubricants and plastics. Waxes, soaps and salts are discussed. Notes for usage are given. Solid lubricants in oils and greases are comprehensively described, followed by the sections entitled Solid lubricants for gearboxes . References to samples, tests, standards and bibliography make up the conclusion. (orig.) [de

  11. Ecotoxicological study of used lubricating oil

    International Nuclear Information System (INIS)

    Wong, P.K.; Chan, W.L.; Wang, J.; Wong, C.K.

    1995-01-01

    Used lubricating oil is more toxic than crude oil and fuel oil since it contains comparatively high levels of heavy metals and polycyclic aromatic hydrocarbons (PAHs). No detail toxicological study has been conducted to evaluate the hazards of used lubricating oil to the environment. This study reports a battery of bioassays using bacteria (Microtox test and Mutatox test), algae, amphipod and shrimp larvae to determine the toxicity of water soluble fraction of used lubricating oil. The results will be used to formulate a complete and extensive ecotoxicological assessment of the impacts of used lubricating oil on aquatic environment

  12. New law concerning the control of chemical substances - The end of lubricants?; Neues Chemikalienrecht. Das Ende des Schmierstoffes?

    Energy Technology Data Exchange (ETDEWEB)

    Baumgaertel, Stephan [Verband Schmierstoff-Industrie e.V. (VSI), Hamburg (Germany)

    2010-08-15

    In recent years, legal requirements on chemicals significantly changed. The introduction of REACH, GHS and the Biocidal Products Directive requires that the manufacturer of lubricants and additives as well as the end user have to fulfill a number of new obligations. This may influences the availability and diversity of lubricants due to the relatively high financial and administrative burden coming along with the new law. A reduction of diversity of substances and, ultimately, lubricant suppliers could be the result. An increased number of lubricants will be labelled as dangerous, without any change in the composition. Risk assessment changes from exposure based to a hazard based risk assessment leading to re-classification of chemicals. However, enhanced customer communication measures and new safety measures are necessary in order to fulfill the new requirements. Lubricants will not disappear from the market but the market will change radically, as outlined in this paper. (orig.)

  13. Evaluation of replacement thread lubricants for red lead and graphite in mineral oil

    Energy Technology Data Exchange (ETDEWEB)

    Jungling, T.L.; Rauth, D.R.; Goldberg, D.

    1998-04-30

    Eight commercially available thread lubricants were evaluated to determine the best replacement for Red Lead and Graphite in Mineral Oil (RLGMO). The evaluation included coefficient of friction testing, high temperature anti-seizing testing, room temperature anti-galling testing, chemical analysis for detrimental impurities, corrosion testing, off-gas testing, and a review of health and environmental factors. The coefficient of friction testing covered a wide variety of factors including stud, nut, and washer materials, sizes, manufacturing methods, surface coatings, surface finishes, applied loads, run-in cycles, and relubrication. Only one lubricant, Dow Corning Molykote P37, met all the criteria established for a replacement lubricant. It has a coefficient of friction range similar to RLGMO. Therefore, it can be substituted directly for RLGMO without changing the currently specified fastener torque values for the sizes, materials and conditions evaluated. Other lubricants did not perform as well as Molykote P37 in one or more test or evaluation categories.

  14. Lubricant test for punching and blanking

    DEFF Research Database (Denmark)

    Olsson, David Dam; Bay, Niels; Andreasen, Jan Lasson

    2003-01-01

    Punching/blanking is one of the tribologically wise most severe metal forming processes.Insu $cient lubrication leads to heavy pick-up of work piece material on the punch stem,bad tolerances and eventual breakdown of the punch due to excessive backstroke force,especially in case of tribologically...... of alternative lubricants the present paper describes a new lubricant test for punching....

  15. Nuclear fuel handling grapple carriage with self-lubricating bearing

    International Nuclear Information System (INIS)

    Wade, E.E.

    1978-01-01

    Disclosed is a nuclear fuel handling grapple carriage having a bearing with a lubricant reservoir that is capable of being refilled when the bearing and reservoir are submerged in a lubricant pool. The lubricant reservoir supplies lubricant to the bearing while the bearing allows a small amount of lubricant to leak passed appropriately placed seals creating a positive out flow of lubricant thereby preventing foreign material from entering the bearing

  16. Oleoplaning droplets on lubricated surfaces

    Science.gov (United States)

    Daniel, Dan; Timonen, Jaakko V. I.; Li, Ruoping; Velling, Seneca J.; Aizenberg, Joanna

    2017-10-01

    Recently, there has been much interest in using lubricated surfaces to achieve extreme liquid repellency: a foreign droplet immiscible with the underlying lubricant layer was shown to slide off at a small tilt angle behaviour was hypothesized to arise from a thin lubricant overlayer film sandwiched between the droplet and solid substrate, but this has not been observed experimentally. Here, using thin-film interference, we are able to visualize the intercalated film under both static and dynamic conditions. We further demonstrate that for a moving droplet, the film thickness follows the Landau-Levich-Derjaguin law. The droplet is therefore oleoplaning--akin to tyres hydroplaning on a wet road--with minimal dissipative force and no contact line pinning. The techniques and insights presented in this study will inform future work on the fundamentals of wetting for lubricated surfaces and enable their rational design.

  17. Nanopolishing by colloidal nanodiamond in elastohydrodynamic lubrication

    Energy Technology Data Exchange (ETDEWEB)

    Shirvani, Khosro A., E-mail: Khosro.asgharishir@bison.howard.edu; Mosleh, Mohsen; Smith, Sonya T. [Howard University, Department of Mechanical Engineering (United States)

    2016-08-15

    In this paper, the feasibility of using explosion synthesized diamond nanoparticles with an average particle size (APS) of 3–5 nm with a concentration of 1 % by weight for improving lubrication and friction in elastohydrodynamic lubrication (EHL) was investigated. Owing to the orders of magnitude increase in the viscosity of the lubricant in the EHL contact zone, diamond nanoparticles in the lubricant polish the surfaces at the nanoscale which decreases the composite roughness of contacting surfaces. The reduced composite roughness results in an increased film thickness ratio which yields lower friction. In the numerical analysis, governing equations of lubricant flow in the full elastohydrodynamic lubrication were solved, and the shear stress distribution over the fluid film was calculated. Using an abrasion model and the shear stress distribution profile, the material removal by the nanofluid containing nanoparticles and the resultant surface roughness were determined. The numerical analysis showed that in full EHL regime, the nanolubricant can reduce the composite roughness of moving surfaces. Experimental results from prior studies which exhibited surface polishing by such nanolubricants in boundary, mixed, and full elastohydrodynamic lubrication were used for comparison to the numerical model.

  18. Nanopolishing by colloidal nanodiamond in elastohydrodynamic lubrication

    Science.gov (United States)

    Shirvani, Khosro A.; Mosleh, Mohsen; Smith, Sonya T.

    2016-08-01

    In this paper, the feasibility of using explosion synthesized diamond nanoparticles with an average particle size (APS) of 3-5 nm with a concentration of 1 % by weight for improving lubrication and friction in elastohydrodynamic lubrication (EHL) was investigated. Owing to the orders of magnitude increase in the viscosity of the lubricant in the EHL contact zone, diamond nanoparticles in the lubricant polish the surfaces at the nanoscale which decreases the composite roughness of contacting surfaces. The reduced composite roughness results in an increased film thickness ratio which yields lower friction. In the numerical analysis, governing equations of lubricant flow in the full elastohydrodynamic lubrication were solved, and the shear stress distribution over the fluid film was calculated. Using an abrasion model and the shear stress distribution profile, the material removal by the nanofluid containing nanoparticles and the resultant surface roughness were determined. The numerical analysis showed that in full EHL regime, the nanolubricant can reduce the composite roughness of moving surfaces. Experimental results from prior studies which exhibited surface polishing by such nanolubricants in boundary, mixed, and full elastohydrodynamic lubrication were used for comparison to the numerical model.

  19. Lubrication performance and mechanisms of Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxide nanoparticles as lubricant additives

    International Nuclear Information System (INIS)

    Li, Shuo; Bhushan, Bharat

    2016-01-01

    Highlights: • Mg/Al-, Zn/Al- and Zn/Mg/Al-layered double hydroxide were synthesized. • Mg/Al-LDH had superior tribological performance compared to other LDHs. • The best thermal stability of Mg/Al-LDH was responsible for its friction property. - Abstract: Solid lubricant particles are commonly used as oil additives for low friction and wear. Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxides (LDH) were synthesized by coprecipitation method. The benefits of LDH nanoparticles are that they can be synthesized using chemical methods where size and shape can be controlled, and can be modified organically to allow dispersal in fluids. The LDH nanoparticles were characterized by X-ray diffraction, scanning electron microscope, thermogravimetry, and differential scanning calorimetry. A pin-on-disk friction and wear tester was used for evaluating the friction and wear properties of LDH nanoparticles as lubricant additives. LDH nanoparticles have friction-reducing and anti-wear properties compared to oil without LDHs. Mg/Al-LDH has the best lubrication, possibly due to better thermal stability in severe conditions.

  20. Lubrication performance and mechanisms of Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxide nanoparticles as lubricant additives

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuo [School of Materials Science and Technology, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian Distract, Beijing 100083 (China); Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics (NLBB), The Ohio State University, 201 W. 19th Avenue Columbus, OH 43210-1142 (United States); Bhushan, Bharat, E-mail: bhushan.2@osu.edu [Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics (NLBB), The Ohio State University, 201 W. 19th Avenue Columbus, OH 43210-1142 (United States)

    2016-08-15

    Highlights: • Mg/Al-, Zn/Al- and Zn/Mg/Al-layered double hydroxide were synthesized. • Mg/Al-LDH had superior tribological performance compared to other LDHs. • The best thermal stability of Mg/Al-LDH was responsible for its friction property. - Abstract: Solid lubricant particles are commonly used as oil additives for low friction and wear. Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxides (LDH) were synthesized by coprecipitation method. The benefits of LDH nanoparticles are that they can be synthesized using chemical methods where size and shape can be controlled, and can be modified organically to allow dispersal in fluids. The LDH nanoparticles were characterized by X-ray diffraction, scanning electron microscope, thermogravimetry, and differential scanning calorimetry. A pin-on-disk friction and wear tester was used for evaluating the friction and wear properties of LDH nanoparticles as lubricant additives. LDH nanoparticles have friction-reducing and anti-wear properties compared to oil without LDHs. Mg/Al-LDH has the best lubrication, possibly due to better thermal stability in severe conditions.

  1. Nanoscale Organic−Inorganic Hybrid Lubricants

    KAUST Repository

    Kim, Daniel

    2011-03-15

    Silica (SiO2) nanoparticles densely grafted with amphiphilic organic chains are used to create a family of organic-inorganic hybrid lubricants. Short sulfonate-functionalized alkylaryl chains covalently tethered to the particles form a dense corona brush that stabilizes them against aggregation. When these hybrid particles are dispersed in poly-α-olefin (PAO) oligomers, they form homogeneous nanocomposite fluids at both low and high particle loadings. By varying the volume fraction of the SiO2 nanostructures in the PAO nanocomposites, we show that exceptionally stable hybrid lubricants can be created and that their mechanical properties can be tuned to span the spectrum from simple liquids to complex gels. We further show that these hybrid lubricants simultaneously exhibit lower interfacial friction coefficients, enhanced wear and mechanical properties, and superior thermal stability in comparison with either PAO or its nanocomposites created at low nanoparticle loadings. Profilometry and energy dispersive X-ray spectroscopic analysis of the wear track show that the enhanced wear characteristics in PAO-SiO2 composite lubricants originate from two sources: localization of the SiO2 particles into the wear track and extension of the elastohydrodynamic lubrication regime to Sommerfeld numbers more than an order of magnitude larger than for PAO. © 2011 American Chemical Society.

  2. Design and application on experimental platform for high-speed bearing with grease lubrication

    Directory of Open Access Journals (Sweden)

    He Qiang

    2015-12-01

    Full Text Available The experimental platform for high-speed grease is an important tool for research and development of high-speed motorized spindle with grease lubrication. In this article, the experimental platform for high-speed grease is designed and manufactured which consists of the drive system, the test portion, the loading system, the lubrication system, the control system, and so on. In the meantime, the high-speed angular contact ceramic ball bearings B7005C/HQ1P4 as the research object are tested and contrasted in the grease lubrication and oil mist lubrication. The experimental platform performance is validated by contrast experiment, and the high-speed lubricated bearing performance is also studied especially in the relationship among the rotating speed,load and temperature rise. The results show that the experimental platform works steadily, accurate, and reliable in the experimental testing. And the grease lubrication ceramic ball bearings B7005C/HQ1P4 can be used in high-speed motorized spindle in the circular water cooling conditions when the rotating speed is lower than 40,000 r/min or the DN value (the value of the bearing diameter times the rotating speed is lower than the 1.44 × 106 mm r/min. Grease lubrication instead of oil mist lubrication under high-speed rotating will simplify the structure design of the high-speed motorized spindle and reduce the pollution to the environment.

  3. Studies of lubricants and punch design in punching of stainless steel

    DEFF Research Database (Denmark)

    Olsson, David Dam; Bay, Niels; Andreasen, Jan Lasson

    2004-01-01

    Environmentally hazardous lubricants such as chlorinated paraffin oils are often applied in punching and blanking operations especially involving stainless steel workpiece materials. This is due to the fact that punching and blanking are among the tribologically most difficult forming operations...

  4. Lubricant Test Methods for Sheet Metal Forming

    DEFF Research Database (Denmark)

    Bay, Niels; Olsson, David Dam; Andreasen, Jan Lasson

    2008-01-01

    appearing in different sheet forming operations such as stretch forming, deep drawing, ironing and punching. The laboratory tests have been especially designed to model the conditions in industrial production. Application of the tests for evaluating new lubricants before introducing them in production has......Sheet metal forming of tribologically difficult materials such as stainless steel, Al-alloys and Ti-alloys or forming in tribologically difficult operations like ironing, punching or deep drawing of thick plate requires often use of environmentally hazardous lubricants such as chlorinated paraffin...... oils in order to avoid galling. The present paper describes a systematic research in the development of new, environmentally harmless lubricants focusing on the lubricant testing aspects. A system of laboratory tests has been developed to study the lubricant performance under the very varied conditions...

  5. A Review of Ionic Liquid Lubricants

    OpenAIRE

    Anthony E. Somers; Patrick C. Howlett; Douglas R. MacFarlane; Maria Forsyth

    2013-01-01

    Due to ever increasing demands on lubricants, such as increased service intervals, reduced volumes and reduced emissions, there is a need to develop new lubricants and improved wear additives. Ionic liquids (ILs) are room temperature molten salts that have recently been shown to offer many advantages in this area. The application of ILs as lubricants in a diverse range of systems has found that these materials can show remarkable protection against wear and significantly reduce friction in th...

  6. Determinan Kepuasan Pelanggan Pada Produk Pertamina Lubricants

    Directory of Open Access Journals (Sweden)

    Berto Mulia Wibawa

    2017-02-01

    Full Text Available Determinants of Customer Satisfaction at Pertamina's Lubricants ProductLubricant industry is one of the strategic industries in around the world. The potential of the lubricant industry in Indonesia grows rapidly along with the increasing demand and the number of a vehicle from year to year. This study aims to analyze factors that influencing customer satisfaction Pertamina Lubricants product and measure how far the customer satisfaction level of its product. This study observed eight categories of Pertamina Lubricants product, with quota sampling technique where each category of the product taken 30 samples, so the total number of the sample are 240 respondents. Multiple linear regression and customer satisfaction index were used in this study. The study finds brand popularity has the most significant effect on customer satisfaction, followed by price and durability. Customer satisfaction level stands at 78 percent, which means belongs in the satisfied category. Managerial implications of this study provide strategies for Pertamina Lubricants to improve their business performance and to increase the level of customer satisfactionDOI:  10.15408/ess.v7i1.4309  

  7. Application of Terahertz Attenuated Total Reflection Spectroscopy to Detect Changes in the Physical Properties of Lactose during the Lubrication Process Required for Drug Formulation.

    Science.gov (United States)

    Dohi, Masafumi; Momose, Wataru; Yamashita, Kazunari; Hakomori, Tadashi; Sato, Shusaku; Noguchi, Shuji; Terada, Katsuhide

    2017-02-01

    Manufacturing the solid dosage form of an orally administered drug requires lubrication to enhance manufacturability, ensuring that critical quality attributes such as disintegration and dissolution of the drug product are maintained during manufacture. Here, to evaluate lubrication performance during manufacture, we used terahertz attenuated total reflection (THz-ATR) spectroscopy to detect differences in the physical characteristics of the lubricated powder. We applied a simple formulation prepared by blending granulated lactose as filler with magnesium stearate as lubricant. A flat tablet was prepared using the lubricated powder to acquire sharp THz-ATR absorption peaks of the samples. First, we investigated the effects of lubricant concentration and compression pressure on preparation of the tablet and then determined the effect of the pressure applied to samples in contact with the ATR prism on sample absorption amplitude. We focused on the differences in the magnitudes of spectra at the lactose-specific frequency. Second, we conducted the dynamic lubrication process using a 120-L mixer to investigate differences in the magnitudes of absorption corresponding to the lactose-specific frequency during lubrication. In both studies, enriching the lubricated powder with a higher concentration of magnesium stearate or prolonging blending time correlated with higher magnitudes of spectra at the lactose-specific frequency. Further, in the dynamic lubrication study, the wettability and disintegration time of the tablets were compared with the absorption spectra amplitudes at the lactose-specific frequency. We conclude that THz-ATR spectroscopy is useful for detecting differences in densities caused by a change in the physical properties of lactose during lubrication.

  8. Application of a Biodegradable Lubricant in a Diesel Vehicle

    DEFF Research Database (Denmark)

    Schramm, Jesper

    2003-01-01

    , NOx, THC, PM, lubricant-SOF and PAH from one diesel and one gasoline type vehicle using biodegradable lubricants and conventional lubricants. This paper describes the results of the experiments with the diesel type vehicle only. Lubricant consumption and fuel consumption are other important parameters...

  9. Application of a Thermodynamic Concept for the Analysis of Structural Degradation of Soap Thickened Lubricating Greases

    Directory of Open Access Journals (Sweden)

    Erik Kuhn

    2018-01-01

    Full Text Available Lubricating greases are special lubricants with a wide range of application. The tribologically stressed grease is used as tribological system and finally modeled as an open thermodynamic system. This study investigated the phenomenon of self-optimization and applied to the process of shearing a grease. The conditions for self-optimization and the consequences of created dissipative structures are investigated according to the interpreted literature.

  10. Wear Characteristics of Ceramic Coating Materials by Plasma Spray under the Lubricative Environment

    International Nuclear Information System (INIS)

    Kim, Chang Ho

    2001-02-01

    This paper is to investigate the wear behaviors of two types of ceramics, Al 2 O 3 and TiO 2 , by coated plasma thermal spray method under the lubricative environment. The lubricative environments are grease fluids, a general hydraulic fluids, and bearing fluids. The wear testing machine used a pin on disk type. Wear characteristics, which were friction force, friction coefficient and the specific wear rate, according to the lubricative environments were obtained at the four kinds of load, and the sliding velocity is 0.2m/sec. After the wear experiments, the wear surfaces of the each test specimen were observed by a scanning electronic microscope. The obtained results are as follows. : 1. The friction coefficients of TiO 2 coating materials are 0.11 ∼ 0.16 range and those of Al 2 O 3 are 0.24 ∼ 0.39. The friction coefficient of two coating materials is relative to the hardness of these materials. 2. The friction coefficient of TiO 2 coating materials in three lubricative environments is almost same to each other in spite of changing of applied loads. 3. The friction coefficient of Al 2 O 3 coating materials is more large in low load than high load. And the friction coefficient in grease is more large than a general hydraulic and bearing fluids had almost same friction coefficient. 4. The specific wear rate in TiO 2 is greatly increasing according to change the applied loads, but that in Al 2 O 3 is slightly. And the wear in grease is the least among three lubricating environments. 5. On the wear mechanism by SEM image observation, the wear of Al 2 O 3 is adhesive wear and TiO 3 is abrasive wear

  11. Comparison of in vivo efficacy of different ocular lubricants in dry eye animal models.

    Science.gov (United States)

    Zheng, Xiaodong; Goto, Tomoko; Ohashi, Yuichi

    2014-04-29

    To compare the efficacy of three types of ocular lubricants in protecting corneal epithelial cells in dry eye animal models. Ocular lubricants containing 0.1% or 0.3% sodium hyaluronate (SH), carboxymethylcellulose (CMC), or hydroxypropyl methylcellulose (HPMC) were tested. First, ocular lubricant containing 0.002% fluorescein was dropped onto the rabbit corneas. The fluorescein intensity as an index of retention was measured. Second, a rabbit dry eye model was made by holding the eye open with a speculum, and 50 μL of each ocular lubricant was dropped onto the cornea. After 3 hours, the corneas were stained with 1% methylene blue (MB), and the absorbance of MB was measured. Third, a rat dry eye model was treated with the ocular lubricants for 4 weeks, and the corneal fluorescein staining was scored. Eyes treated with physiological saline were used as controls. Finally, immunohistochemistry was used to analyze occludin, an epithelial barrier protein, in cultured human corneal epithelial cells pretreated with ocular lubricants and desiccated for 20 or 60 minutes. Our results showed that 0.3% SH had a significantly longer retention time than the other lubricants (all P eye syndrome. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  12. Are Ionic Liquids Good Boundary Lubricants? A Molecular Perspective

    Directory of Open Access Journals (Sweden)

    Romain Lhermerout

    2018-01-01

    Full Text Available The application of ionic liquids as lubricants has attracted substantial interest over the past decade and this has produced a rich literature. The aim of this review is to summarize the main findings about frictional behavior of ionic liquids in the boundary lubrication regime. We first recall why the unusual properties of ionic liquids make them very promising lubricants, and the molecular mechanisms at the origin of their lubricating behavior. We then point out the main challenges to be overcome in order to optimise ionic liquid lubricant performance for common applications. We finally discuss their use in the context of electroactive lubrication.

  13. Synovial fluid lubrication of artificial joints: protein film formation and composition.

    Science.gov (United States)

    Fan, Jingyun; Myant, Connor; Underwood, Richard; Cann, Philippa

    2012-01-01

    Despite design improvements, wear of artificial implants remains a serious health issue particularly for Metal-on-Metal (MoM) hips where the formation of metallic wear debris has been linked to adverse tissue response. Clearly it is important to understand the fundamental lubrication mechanisms which control the wear process. It is usually assumed that MoM hips operate in the ElastoHydrodynamic Lubrication (EHL) regime where film formation is governed by the bulk fluid viscosity; however there is little experimental evidence of this. The current paper critically examines synovial fluid lubrication mechanisms and the effect of synovial fluid chemistry. Two composition parameters were chosen; protein content and pH, both of which are known to change in diseased or post-operative synovial fluid. Film thickness and wear tests were carried out for a series of model synovial fluid solutions. Two distinct film formation mechanisms were identified; an adsorbed surface film and a high-viscosity gel. The entrainment of this gel controls film formation particularly at low speeds. However wear of the femoral head still occurs and this is thought to be due primarily to a tribo-corrosion mechanisms. The implications of this new lubrication mechanism and the effect of different synovial fluid chemistries are examined. One important conclusion is that patient synovial fluid chemistry plays an important role in determining implant wear and the likelihood of failure.

  14. Compatibility of lubricant additives with HFC refrigerants and synthetic lubricants. Final report, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Cavestri, R.C. [Imagination Resources, Inc., Dublin, OH (United States)

    1997-07-01

    Part one of this research provides manufacturers of components of air-conditioning and refrigeration equipment with a useful list of lubricant additives, sources, functional properties and chemical species. The list in part one is comprised of domestic lubricant additive suppliers and the results of a literature search that was specifically targeted for additives reported to be useful in polyolester chemistry.

  15. A new lubricant carrier for metal forming

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Bay, Niels; Tang, Peter Torben

    2009-01-01

    A lubricant carrier for metal forming processes is developed. Surfaces with pores of micrometer size for entrapping lubricant are generated by electrochemical deposition of an alloy, consisting of two immiscible metals, of which one metal subsequently is etched away leaving 5 mu m layers with a s...... extrusion at high reduction and excessive stroke comparing with conventionally lubrication using phosphate coating and soap....

  16. Investigation of the effect of engine lubricant oil on remote temperature sensing using thermographic phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Abou Nada, Fahed, E-mail: Fahed.Abou_Nada@forbrf.lth.se; Aldén, Marcus; Richter, Mattias

    2016-11-15

    Phosphor thermometry, a remote temperature sensing technique, is widely implemented to measure the temperature of different combustion engines components. The presence of engine lubricant can influence the behavior of the applied sensor materials, known as thermographic phosphors, and thus leading to erroneous temperature measurements. The effect of two engine lubricants on decay times originating from six different thermographic phosphors was investigated. The decay time of each thermographic phosphor was investigated as a function of lubricant/phosphor mass ratio. Tests were conducted at temperatures around 293 K and 376 K for both lubricants. The investigations revealed that ZnO:Zn and ZnS:Ag are the only ones that exhibit a change of the decay time as function of the lubricant/phosphor mass ratio. While the remaining thermographic phosphors, namely BaMg{sub 2}Al{sub 16}O{sub 27}:Eu (BAM), Al{sub 2}O{sub 3}-coated BaMg{sub 2}Al{sub 16}O{sub 27}:Eu, La{sub 2}O{sub 2}S:Eu, Mg{sub 3}F{sub 2}GeO{sub 4}:Mn, displayed no sensitivity of their characteristic decay time on to the presence of lubricant on the porous coating. Biases in the calculated temperature are to be expected if the utilized thermographic phosphor displays decay time sensitivity to the existence of the engine lubricant within the sensor. Such distortions are concealed and can occur undetected leading to false temperature readings for the probed engine component.

  17. Characterization of used lubricating oil by spectrometric techniques

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Andressa Moreira de, E-mail: andressa@ctaa.embrapa.br [Embrapa Agroindustria de Alimentos, Guaratiba, Rio de Janeiro, RJ (Brazil); Correa, Sergio Machado [Faculdade de Engenharia. Universidade do Estado do Rio de Janeiro (UERJ), Resende, RJ (Brazil); Silva, Glauco Correa da [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Full text: The engine lubricating oil drags all kinds of impurities generated by wear of internal components. Thus, it is necessary to monitor the physical and chemical properties and concentration of metals in lubricants used to determine the appropriate time to replace them. Moreover, one can monitor the wear of the engines through the levels of metals in oils. To achieve these goals, some detection techniques such as Flame atomic absorption spectrometry (FAAS), Inductively coupled plasma optical emission spectrometry (ICP-OES) and X-ray fluorescence (XRF), have been widely used to determine metals in lubricating oils and also in other oil derivatives. Thus, some of these techniques were used in this study. Also the technique used was Gas chromatography mass spectrometry (GC / MS) for characterization of chromatographic profile of the engine lubricating oil after use. Through the technique of ICP-OES for method of United States Environmental Protection Agency (USEPA) METHOD 6010B - Inductively coupled plasma optical emission spectrometry was performed to characterize metals in lubricating oil motor, using equipment from ICP-OES Perkin-Elmer{sup R} OPTIMA 3000 ICP-Winlab and software, obtaining the following identification of metals: barium (Ba), calcium (Ca), lead (Pb), copper (Cu), Chromium (Cr), iron (Fe), magnesium (Mg), molybdenum (Mo) and zinc (Zn). Using the XRF technique, through the equipment EDFRX Shimadzu{sup R} model 800HS EDX, Rh tube, applied voltage of 50kV, amperage 100{mu}A, detector Si (Li) cooled with liquid nitrogen and collimator 10mm, we analyzed all the components comprised in the range of Ti to U and Na to SC, identified the following metals: calcium (Ca), zinc (Zn), iron (Fe), copper (Cu), molybdenum (Mo) and nickel (Ni). The characterization was performed by chromatographic methods: USEPA METHOD 5021A - Volatile organic compounds in various sample matrices using equilibrium headspace analysis, USEPA METHOD 8015B - Nonhalogenated Organics

  18. Characterization of used lubricating oil by spectrometric techniques

    International Nuclear Information System (INIS)

    Souza, Andressa Moreira de; Correa, Sergio Machado; Silva, Glauco Correa da

    2011-01-01

    Full text: The engine lubricating oil drags all kinds of impurities generated by wear of internal components. Thus, it is necessary to monitor the physical and chemical properties and concentration of metals in lubricants used to determine the appropriate time to replace them. Moreover, one can monitor the wear of the engines through the levels of metals in oils. To achieve these goals, some detection techniques such as Flame atomic absorption spectrometry (FAAS), Inductively coupled plasma optical emission spectrometry (ICP-OES) and X-ray fluorescence (XRF), have been widely used to determine metals in lubricating oils and also in other oil derivatives. Thus, some of these techniques were used in this study. Also the technique used was Gas chromatography mass spectrometry (GC / MS) for characterization of chromatographic profile of the engine lubricating oil after use. Through the technique of ICP-OES for method of United States Environmental Protection Agency (USEPA) METHOD 6010B - Inductively coupled plasma optical emission spectrometry was performed to characterize metals in lubricating oil motor, using equipment from ICP-OES Perkin-Elmer R OPTIMA 3000 ICP-Winlab and software, obtaining the following identification of metals: barium (Ba), calcium (Ca), lead (Pb), copper (Cu), Chromium (Cr), iron (Fe), magnesium (Mg), molybdenum (Mo) and zinc (Zn). Using the XRF technique, through the equipment EDFRX Shimadzu R model 800HS EDX, Rh tube, applied voltage of 50kV, amperage 100μA, detector Si (Li) cooled with liquid nitrogen and collimator 10mm, we analyzed all the components comprised in the range of Ti to U and Na to SC, identified the following metals: calcium (Ca), zinc (Zn), iron (Fe), copper (Cu), molybdenum (Mo) and nickel (Ni). The characterization was performed by chromatographic methods: USEPA METHOD 5021A - Volatile organic compounds in various sample matrices using equilibrium headspace analysis, USEPA METHOD 8015B - Nonhalogenated Organics Using GC

  19. New Lubricants Protect Machines and the Environment

    Science.gov (United States)

    2007-01-01

    In 1994, NASA and Lockheed Martin Space Operations commissioned Sun Coast Chemicals of Daytona Inc to develop a new type of lubricant that would be safe for the environment and help "grease the wheels" of the shuttle-bearing launcher platform. Founded in 1989, Sun Coast Chemicals is known amongst the racing circuit for effective lubricants that help overcome engine and transmission problems related to heat and wear damage. In a matter of weeks, Sun Coast Chemical produced the biodegradable, high-performance X-1R Crawler Track Lube. In 1996, Sun Coast Chemical determined there was a market for this new development, and introduced three derivative products, Train Track Lubricant, Penetrating Spray Lubricant, and Biodegradable Hydraulic Fluid, and then quickly followed with a gun lubricant/cleaner and a fishing rod and reel lubricant. Just recently, Sun Coast introduced the X-1R Corporation, which folds the high-performance, environmentally safe benefits into a full line of standard automotive and specially formulated racing products. The entire X-1R automotive product line has stood up to rigorous testing by groups such as the American Society of Mechanical Engineers, the Swedish National Testing and Research Institute, the Department of Mechanical Engineering at Oakland University (Rochester, Michigan), and Morgan-McClure Motorsports (Abingdon, Virginia). The X-1R Corporation also markets "handy packs" for simple jobs around the house, consisting of a multi-purpose, multi-use lubricant and grease. In 2003, The X-1R Corporation teamed up with Philadelphia-based Penn Tackle Manufacturing Co., a leading manufacturer of fishing tackle since 1932, to jointly develop and market a line of advanced lubrication products for saltwater and freshwater anglers

  20. Sexual lubricants in South Africa may potentially disrupt mucosal ...

    African Journals Online (AJOL)

    more likely to result in HIV transmission than unprotected vaginal intercourse due to ... Distribution of condoms and water-based sexual lubricants forms a cornerstone of .... Organisations such as the US Centers for Disease. Control and the ...

  1. Lubrication for hot working of titanium alloys

    International Nuclear Information System (INIS)

    Gotlib, B.M.

    1980-01-01

    The isothermal lubrication of the following composition is suggested, wt. %: aluminium powder 4-6, iron scale 15-25, vitreous enamel up to 100. The lubricant improves forming and decreases the danger of the metal fracture when titanium alloys working. It is advisable to use the suggested lubrication when stamping thin-walled products of titanium alloys at the blank temperature from 700 to 1000 deg C [ru

  2. FY2014 Fuel & Lubricant Technologies Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Stork, Kevin [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2016-02-01

    Annual progress report for Fuel & Lubricant Technologies. The Fuel & Lubricant Technologies Program supports fuels and lubricants research and development (R&D) to provide vehicle manufacturers and users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.

  3. Markets for lubricants at a time of upheaval; Schmierstoffmarkt im Umbruch

    Energy Technology Data Exchange (ETDEWEB)

    Lindemann, Lutz [Fuchs Petrolub AG (Germany)

    2011-05-15

    The presentation considers the lubricants market and the lubricants under three different points of view. I will discuss the lubricants market under view of the development of the upcoming and existing regulatory risks. The requirements out of the regulations, which need to be fulfilled in the future by the lubricants manufacturer to handle the supply chain in a globalized economy are highlighted. The raw material world will be analyzed, since the raw material becomes a more and more dominating part of the lubricants world. Due to technical requirements the complexity of used raw material becomes a problem in view of the regulatory conditions we are working in. The latest development in the base oil landscape will be discussed. The influence of the changing refinery landscape in Europe and the influence on availability in Europe, USA and Asia are shown. Further more alternative base oils, inorganic additives, i.e. Mo and Li compounds and of course the special chemistry are part of the considerations as well. The third point of view considers the complexity of the lubricant development. The modern lubricant has seen a dramatic change from being a commodity to a process or construction element. The tribology as young discipline in science with a lot of cross-functional aspects requires a lot of additional research to understand more the mechanisms working in the tribosystem. In the farer future this may lead to more predictability than today. The necessity of research in research communities together with universities is mandatory to get the complexity under control. We have to leave the path of phenomenological research to knowledge based development. This is a necessary condition to be faster in development and more effective, which is needed to maintain our European first class position in the globalized world. (orig.)

  4. Lubricant effects on low Dk and silicone hydrogel lens comfort.

    Science.gov (United States)

    Ozkan, Jerome; Papas, Eric

    2008-08-01

    To investigate the influence of three lubricants of varying viscosity, on postinsertion and 6 h comfort with contact lens wear. Comfort and associated symptoms of dryness were assessed in 15 experienced contact lens wearers. Subjects wore a low Dk lens in one eye and a silicone hydrogel in the other and participated in four separate trials involving no lubricant (baseline), saline, and two commercially available lubricants of differing viscosity. The in-eye lubricants were used immediately following lens insertion and every 2 h postinsertion for a 6 h wear period. Postlens insertion comfort was significantly better for both lens types when lubricants or saline were used compared with no lubricant use. After 6 h lens wear, comfort was influenced by lens type and not by in-eye lubricant or saline use. Also after 6 h lens wear, less dryness sensation was reported for silicone hydrogel lenses when using lubricants but not saline. Although lubricant use does help reduce dryness symptoms with silicone hydrogel lens wear, there appears to be minimal longer-term benefit to comfort. Furthermore, increased lubricant viscosity did not lead to improved longer-term comfort.

  5. Non-Invasive Parameter Identification in Rotordynamics via Fluid Film Bearings: Linking Active Lubrication and Operational Modal Analysis

    DEFF Research Database (Denmark)

    Santos, Ilmar; Svendsen, Peter Kjær

    2017-01-01

    the rotor as a function of a suitable control signal. The servovalve input signal and the radial injection pressure are the two main parameters responsible for dynamically modifying the journal oil film pressure and generating active fluid film forces in controllable fluid film bearings. Such fluid film...... forces, resulting from a strong coupling between hydrodynamic, hydrostatic and controllable lubrication regimes, can be used either to control or to excite rotor lateral vibrations. If non-invasive forces are generated via lubricant fluid film, in situ parameter identification can be carried out......, enabling evaluation of the mechanical condition of the rotating machine. Using the lubricant fluid film as a non-invasive calibrated shaker is troublesome, once several transfer functions among mechanical, hydraulic and electronic components become necessary. In this framework the main original...

  6. Non-Invasive Parameter Identification in Rotordynamics via Fluid Film Bearings: Linking Active Lubrication and Operational Modal Analysis

    DEFF Research Database (Denmark)

    Santos, Ilmar; Svendsen, Peter Kjær

    2016-01-01

    the rotor as a function of a suitable control signal. The servovalve input signal and the radial injection pressure are the two main parameters responsible for dynamically modifying the journal oil film pressure and generating active fluid film forces in controllable fluid film bearings. Such fluid film...... forces, resulting from a strong coupling between hydrodynamic, hydrostatic and controllable lubrication regimes, can be used either to control or to excite rotor lateral vibrations. If non-invasive forces are generated via lubricant fluid film, in situ parameter identification can be carried out......, enabling evaluation of the mechanical condition of the rotating machine.Using the lubricant fluid film as a non-invasive calibrated shaker is troublesome, once several transfer functions among mechanical, hydraulic and electronic components become necessary. In this framework the main original contribution...

  7. Biodegradable lubricants - ''the solution for future?''

    International Nuclear Information System (INIS)

    Jahan, A.

    1997-01-01

    The environmental impact of lubricants use concern the direct effects from spills but also the indirect effects such as their lifetime and the emissions from thermal engines. The biodegradable performances and the toxicity are the environmental criteria that must be taken into account in the development and application of lubricants together with their technical performances. This paper recalls first the definition of biodegradable properties of hydrocarbons and the standardized tests, in particular the CEC and AFNOR tests. Then, the biodegradable performances of basic oils (mineral, vegetal, synthetic esters, synthetic hydrocarbons etc..), finite lubricants (hydraulic fluids..) and engine oils is analyzed according to these tests. Finally, the definition of future standards would take into account all the environmental characteristics of the lubricant: biodegradable performances, energy balance (CO 2 , NOx and Hx emissions and fuel savings), eco-toxicity and technical performances (wearing and cleanliness). (J.S.)

  8. The use of screening tests in spacecraft lubricant evaluation

    Science.gov (United States)

    Kalogeras, Chris; Hilton, Mike; Carre, David; Didziulis, Stephen; Fleischauer, Paul

    1993-01-01

    A lubricant screening test fixture has been devised in order to satisfy the need to obtain lubricant performance data in a timely manner. This fixture has been used to perform short-term tests on potential lubricants for several spacecraft applications. The results of these tests have saved time by producing qualitative performance rankings of lubricant selections prior to life testing. To date, this test fixture has been used to test lubricants for 3 particular applications. The qualitative results from these tests have been verified by life test results and have provided insight into the function of various anti-wear additives.

  9. Enhanced Biodegradability, Lubricity and Corrosiveness of Lubricating Oil by Oleic Acid Diethanolamide Phosphate

    Directory of Open Access Journals (Sweden)

    Fang Jianhua

    2012-09-01

    Full Text Available Impacts of oleic acid diethanolamide phosphate (abbreviated as ODAP as an additive on biodegradability, anti-wear capacity, friction-reducing ability and corrosiveness of an unreadily biodegradable HVI 350 mineral lubricating oil was studied. The biodegradabilities of neat lubricating oil and its formulations with ODAP were evaluated on a biodegradation tester. Furthermore, the anti-wear and friction-reducing abilities and the corrosiveness of neat oil and the formulated oils were determined on a four-ball tribotester and a copper strip corrosion tester, respectively. The results indicated that ODAP markedly enhanced biodegradability as well as anti-wear and friction-reducing abilities of the lubricating oil. On the other hand, excellent color ratings of copper strips for both neat oil and the ODAP-doped oil were obtained in the corrosion tests, demonstrating that the corrosiveness of neat oil and the doped oil was negligible, although the latter seemed to provide slightly better anti-corrosion ability.

  10. Strip reduction testing of lubricants developed during ENFORM project

    DEFF Research Database (Denmark)

    Gazvoda, S.; Andreasen, Jan Lasson; Olsson, David Dam

    Strip reduction testing of lubricants developed during ENFORM project. Experiments were conducted with the strip reduction test [1] in order to classify experimental lubricants, developed during concerned project. One reference lubricant was used during testing....

  11. A comparison of the tribological behaviour of steel/steel, steel/DLC and DLC/DLC contact when lubricated with mineral and biodegradable oils

    OpenAIRE

    Kalin, Mitjan; Vižintin, Jože

    2015-01-01

    Diamond-like carbon (DLC) coatings, which can nowadays be applied to many highly loaded mechanical components, sometimes need to operate under lubricated conditions. It is reasonable to expect that in steel/DLC contacts, at least the steel counter body will behave according to conventional lubrication mechanisms and will interact with lubricants and additives in the contact. However, in DLC/DLC contacts, such mechanisms are still unclear. For example, the "inertness" of DLC coatings raises se...

  12. Tethered Lubricants for Small Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lynden A. Archer

    2006-01-09

    The objective of this research project is two-fold. First, to fundamentally understand friction and relaxation dynamics of polymer chains near surfaces; and second, to develop novel self-lubricated substrates suitable for MEMS devices. During the three-year performance period of this study the PI and his students have shown using theory and experiments that systematic introduction of disorder into tethered lubricant coatings (e.g. by using self-assembled monolayer (SAM) mixtures or SAMs with nonlinear, branched architectures) can be used to significantly reduce the friction coefficient of a surface. They have also developed a simple procedure based on dielectric spectroscopy for quantifying the effect of surface disorder on molecular relaxation in lubricant coatings. Details of research accomplishments in each area of the project are described in the body of the report.

  13. Tribological performance of nanoparticles as lubricating oil additives

    International Nuclear Information System (INIS)

    Gulzar, M.; Masjuki, H. H.; Kalam, M. A.; Varman, M.; Zulkifli, N. W. M.; Mufti, R. A.; Zahid, Rehan

    2016-01-01

    The prospect of modern tribology has been expanded with the advent of nanomaterial-based lubrication systems, whose development was facilitated by the nanotechnology in recent years. In literature, a variety of nanoparticles have been used as lubricant additives with potentially interesting friction and wear properties. To date, although there has been a great deal of experimental research on nanoparticles as lubricating oil additives, many aspects of their tribological behavior are yet to be fully understood. With growing number of possibilities, the key question is: what types of nanoparticles act as a better lubricating oil additive and why? To answer this question, this paper reviews main types of nanoparticles that have been used as lubricants additives and outlines the mechanisms by which they are currently believed to function. Significant aspects of their tribological behavior such as dispersion stability and morphology are also highlighted.

  14. Tribological performance of nanoparticles as lubricating oil additives

    Energy Technology Data Exchange (ETDEWEB)

    Gulzar, M., E-mail: mubashir-nustian@hotmail.com; Masjuki, H. H., E-mail: masjuki@um.edu.my; Kalam, M. A.; Varman, M.; Zulkifli, N. W. M. [University of Malaya, Department of Mechanical Engineering, Faculty of Engineering, Centre for Energy Sciences (Malaysia); Mufti, R. A. [National University of Sciences and Technology (NUST) (Pakistan); Zahid, Rehan [University of Malaya, Department of Mechanical Engineering, Faculty of Engineering, Centre for Energy Sciences (Malaysia)

    2016-08-15

    The prospect of modern tribology has been expanded with the advent of nanomaterial-based lubrication systems, whose development was facilitated by the nanotechnology in recent years. In literature, a variety of nanoparticles have been used as lubricant additives with potentially interesting friction and wear properties. To date, although there has been a great deal of experimental research on nanoparticles as lubricating oil additives, many aspects of their tribological behavior are yet to be fully understood. With growing number of possibilities, the key question is: what types of nanoparticles act as a better lubricating oil additive and why? To answer this question, this paper reviews main types of nanoparticles that have been used as lubricants additives and outlines the mechanisms by which they are currently believed to function. Significant aspects of their tribological behavior such as dispersion stability and morphology are also highlighted.

  15. Development of high performance lubricant through the compatibility of polyalphaolefin, polyurea and irradiated polytetrafluoroethylene

    International Nuclear Information System (INIS)

    Ratao, Natalia Torres

    2013-01-01

    Lubricants are gaseous, liquid, semi solid or solid (powder) materials those form a film between two parties preventing friction. High performance lubricants are designed to work under severe conditions of temperature, pressure, and contamination. The most used are liquids (oils) and semi solids (greases). Greases are applied where oils can drain or in inaccessible places and are divided generally into two classes, soap and no soap. The most used non soap grease is polyurea, obtained by the reaction between amine and isocyanate, has highly thixotropic, high dielectric strength and excellent anticorrosive property, so it is widely used for lubrication of electric motors and shipbuilding machinery. For a grease with high performance, in this study was used a synthetic lubricant fluid, polyalphaolefin, and was also employed solid lubricant additive polytetrafluoroethylene (PTFE) due its lowest coefficient of friction, is found commercially irradiated in air to obtain smaller particles and to produce oxygenated terminal groups those are more compatible with the metal surface. The tests conducted were comparatively between pure polyurea grease and with PTFE additive. The characterizations were made by infrared spectroscopy and elemental analysis of C, N and H and Free NCO index, proving the formation of four carbons polyurea (tetraurea). The functional analysis of drop point and oil separation showed high stability and compatibility between the polymers increased when PTFE was added. The excellent resistance of pure tetraurea grease to wear and extreme pressure were demonstrated by four-ball and practical bearings tests, characterizing this grease as a high performance lubricant, when compared to most used greases in the market. (author)

  16. Specific grinding energy and surface roughness of nanoparticle jet minimum quantity lubrication in grinding

    Directory of Open Access Journals (Sweden)

    Zhang Dongkun

    2015-04-01

    Full Text Available Nanoparticles with the anti-wear and friction reducing features were applied as cooling lubricant in the grinding fluid. Dry grinding, flood grinding, minimal quantity of lubrication (MQL, and nanoparticle jet MQL were used in the grinding experiments. The specific grinding energy of dry grinding, flood grinding and MQL were 84, 29.8, 45.5 J/mm3, respectively. The specific grinding energy significantly decreased to 32.7 J/mm3 in nanoparticle MQL. Compared with dry grinding, the surface roughness values of flood grinding, MQL, and nanoparticle jet MQL were significantly reduced with the surface topography profile values reduced by 11%, 2.5%, and 10%, respectively, and the ten point height of microcosmic unflatness values reduced by 1.5%, 0.5%, and 1.3%, respectively. These results verified the satisfactory lubrication effects of nanoparticle MQL. MoS2, carbon nanotube (CNT, and ZrO2 nanoparticles were also added in the grinding fluid of nanoparticle jet MQL to analyze their grinding surface lubrication effects. The specific grinding energy of MoS2 nanoparticle was only 32.7 J/mm3, which was 8.22% and 10.39% lower than those of the other two nanoparticles. Moreover, the surface roughness of workpiece was also smaller with MoS2 nanoparticle, which indicated its remarkable lubrication effects. Furthermore, the role of MoS2 particles in the grinding surface lubrication at different nanoparticle volume concentrations was analyzed. MoS2 volume concentrations of 1%, 2%, and 3% were used. Experimental results revealed that the specific grinding energy and the workpiece surface roughness initially increased and then decreased as MoS2 nanoparticle volume concentration increased. Satisfactory grinding surface lubrication effects were obtained with 2% MoS2 nanoparticle volume concentration.

  17. Exposure of natural rubber to personal lubricants--swelling and stress relaxation as potential indicators of reduced seal integrity of non-lubricated male condoms.

    Science.gov (United States)

    Sarkar Das, Srilekha; Coburn, James C; Tack, Charles; Schwerin, Matthew R; Richardson, D Coleman

    2014-07-01

    Male condoms act as mechanical barriers to prevent passage of body fluids. For effective use of condoms the mechanical seal is also expected to remain intact under reasonable use conditions, including with personal lubricants. Absorption of low molecular weight lubricant components into the material of male condoms may initiate material changes leading to swelling and stress relaxation of the polymer network chains that could affect performance of the sealing function of the device. Swelling indicates both a rubber-solvent interaction and stress relaxation, the latter of which may indicate and/or result in a reduced seal pressure in the current context. Swelling and stress relaxation of natural rubber latex condoms were assessed in a laboratory model in the presence of silicone-, glycol-, and water-based lubricants. Within 15 minutes, significant swelling (≥6 %) and stress reduction (≥12 %) of condoms were observed with 2 out of 4 silicone-based lubricants tested, but neither was observed with glycol- or water-based lubricants tested. Under a given strain, reduction in stress was prominent during the swelling processes, but not after the process was complete. Lubricant induced swelling and stress relaxation may loosen the circumferential stress responsible for the mechanical seal. Swelling and stress relaxation behavior of latex condoms in the presence of personal lubricants may be useful tests to identify lubricant-rooted changes in condom-materials. For non-lubricated latex condoms, material characteristics--which are relevant to failure--may change in the presence of a few silicone-based personal lubricants. These changes may in turn induce a loss of condom seal during use, specifically at low strain conditions. Published by Elsevier Inc.

  18. Experimental verification of nanoparticle jet minimum quantity lubrication effectiveness in grinding

    International Nuclear Information System (INIS)

    Jia, Dongzhou; Li, Changhe; Zhang, Dongkun; Zhang, Yanbin; Zhang, Xiaowei

    2014-01-01

    In our experiment, K-P36 precision numerical control surface grinder was used for dry grinding, minimum quantity lubrication (MQL) grinding, nanoparticle jet MQL grinding, and traditional flood grinding of hardened 45 steel. A three-dimensional dynamometer was used to measure grinding force in the experiment. In this research, experiments were conducted to measure and calculate specific tangential grinding force, frictional coefficient, and specific grinding energy, thus verifying the lubrication performance of nanoparticles in surface grinding. Findings present that compared with dry grinding, the specific tangential grinding force of MQL grinding, nanoparticle jet MQL grinding, and flood grinding decreased by 45.88, 62.34, and 69.33 %, respectively. Their frictional coefficient was reduced by 11.22, 29.21, and 32.18 %, and the specific grinding energy declined by 45.89, 62.34, and 69.45 %, respectively. Nanoparticle jet MQL presented ideal lubrication effectiveness, which was attributed to the friction oil film with strong antifriction and anti-wear features formed by nanoparticles on the grinding wheel/workpiece interface. Moreover, lubricating properties of nanoparticles of the same size (50 nm) but different types were verified through experimentation. In our experiment, ZrO 2 nanoparticles, polycrystal diamond (PCD) nanoparticles, and MoS 2 nanoparticles were used in the comparison of nanoparticle jet MQL grinding. The experimental results manifest that MoS 2 nanoparticles exhibited the optimal lubricating effectiveness, followed by PCD nanoparticles. Our research also integrated the properties of different nanoparticles to analyze the lubrication mechanisms of different nanoparticles. The experiment further verified the impact of nanoparticle concentration on the effectiveness of nanoparticle jet MQL in grinding. The experimental results demonstrate that when the nanoparticle mass fraction was 6 %, the minimum specific tangential grinding force

  19. Friction and lubrication modelling in sheet metal forming: Influence of lubrication amount, tool roughness and sheet coating on product quality

    Science.gov (United States)

    Hol, J.; Wiebenga, J. H.; Carleer, B.

    2017-09-01

    In the stamping of automotive parts, friction and lubrication play a key role in achieving high quality products. In the development process of new automotive parts, it is therefore crucial to accurately account for these effects in sheet metal forming simulations. This paper presents a selection of results considering friction and lubrication modelling in sheet metal forming simulations of a front fender product. For varying lubrication conditions, the front fender can either show wrinkling or fractures. The front fender is modelled using different lubrication amounts, tool roughness’s and sheet coatings to show the strong influence of friction on both part quality and the overall production stability. For this purpose, the TriboForm software is used in combination with the AutoForm software. The results demonstrate that the TriboForm software enables the simulation of friction behaviour for varying lubrication conditions, i.e. resulting in a generally applicable approach for friction characterization under industrial sheet metal forming process conditions.

  20. Hydrodynamic Lubrication

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 9. Hydrodynamic Lubrication Experiment with 'Floating' Drops. Jaywant H Arakeri K R Sreenivas. General Article Volume 1 Issue 9 September 1996 pp 51-58. Fulltext. Click here to view fulltext PDF. Permanent link:

  1. Lubrication and cooling for high speed gears

    Science.gov (United States)

    Townsend, D. P.

    1985-01-01

    The problems and failures occurring with the operation of high speed gears are discussed. The gearing losses associated with high speed gearing such as tooth mesh friction, bearing friction, churning, and windage are discussed with various ways shown to help reduce these losses and thereby improve efficiency. Several different methods of oil jet lubrication for high speed gearing are given such as into mesh, out of mesh, and radial jet lubrication. The experiments and analytical results for the various methods of oil jet lubrication are shown with the strengths and weaknesses of each method discussed. The analytical and experimental results of gear lubrication and cooling at various test conditions are presented. These results show the very definite need of improved methods of gear cooling at high speed and high load conditions.

  2. Lubricant reflow after laser heating in heat assisted magnetic recording

    Science.gov (United States)

    Wu, Haoyu; Mendez, Alejandro Rodriguez; Xiong, Shaomin; Bogy, David B.

    2015-05-01

    In heat assisted magnetic recording (HAMR) technology for hard disk drives, the media will be heated to about 500 °C during the writing process in order to reduce its magnetic coercivity and thus allow data writing with the magnetic head transducers. The traditional lubricants such as Z-dol and Z-tetraol may not be able to perform in such harsh heating conditions due to evaporation, decomposition and thermal depletion. However, some of the lubricant depletion can be recovered due to reflow after a period of time, which can help to reduce the chance of head disk interface failure. In this study, experiments of lubricant thermal depletion and reflow were performed using a HAMR test stage for a Z-tetraol type lubricant. Various lubricant depletion profiles were generated using different laser heating conditions. The lubricant reflow process after thermal depletion was monitored by use of an optical surface analyzer. In addition, a continuum based lubrication model was developed to simulate the lubricant reflow process. Reasonably good agreement between simulations and experiments was achieved.

  3. Temperature dependence on the synthesis of Jatropha bio lubricant

    International Nuclear Information System (INIS)

    Gunam Resul, M.F.M.; Tinia Idaty Mohd Ghazi; Idris, A.

    2009-01-01

    Full text: Jatropha oil has good potential as the renewable energy as well as lubricant feedstock. The synthesis of jatropha bio lubricant was performed by transesterification of jatropha methyl ester (JME) with trimethyl-ol-propane (TMP) with sodium methoxide (NaOCH 3 ) catalyst. The effects of temperature on the synthesis were studied at a range between 120 degree Celsius and 200 degree Celsius with pressure kept at 10 mbar. The conversion of JME to jatropha bio lubricant was found to be the highest (47 %) at 200 degree Celsius. However, it was suggested that the optimum temperature of the reaction is at 150 degree Celsius due to insignificant improvement in bio lubricant production. To maintain forward reaction, the excess amount of JME was maintained at 3.9:1 ratios to TMP. Kinetic study was done and compared. The synthesis was found to follow a second order reaction with overall rate constant of 1.49 x 10 -1 (% wt/ wt.min.degree Celsius) -1 . The estimated activation energy was 3.94 kJ/mol. Pour point for jatropha bio lubricant was at -3 degree Celsius and Viscosity Index (VI) ranged from 178 to 183. The basic properties of jatropha bio lubricant, pour point and viscosities are found comparable to other plant based bio lubricant, namely palm oil and soybean based bio lubricant. (author)

  4. Boundary mode lubrication of articular cartilage by recombinant human lubricin.

    Science.gov (United States)

    Gleghorn, Jason P; Jones, Aled R C; Flannery, Carl R; Bonassar, Lawrence J

    2009-06-01

    Lubrication of cartilage involves a variety of physical and chemical factors, including lubricin, a synovial glycoprotein that has been shown to be a boundary lubricant. It is unclear how lubricin boundary lubricates a wide range of bearings from tissue to artificial surfaces, and if the mechanism is the same for both soluble and bound lubricin. In the current study, experiments were conducted to investigate the hypothesis that recombinant human lubricin (rh-lubricin) lubricates cartilage in a dose-dependent manner and that soluble and bound fractions of rh-lubricin both contribute to the lubrication process. An rh-lubricin dose response was observed with maximal lubrication achieved at concentrations of rh-lubricin greater than 50 microg/mL. A concentration-response variable-slope model was fit to the data, and indicated that rh-lubricin binding to cartilage was not first order. The pattern of decrease in equilibrium friction coefficient indicated that aggregation of rh-lubricin or steric arrangement may regulate boundary lubrication. rh-lubricin localized at the cartilage surface was found to lubricate a cartilage-glass interface in boundary mode, as did soluble rh-lubricin at high concentrations (150 microg/mL); however, the most effective lubrication occurred when both soluble and bound rh-lubricin were present at the interface. These findings point to two distinct mechanisms by which rh-lubricin lubricates, one mechanism involving lubricin bound to the tissue surface and the other involving lubricin in solution. Copyright 2008 Orthopaedic Research Society

  5. Synthetics, mineral oils, and bio-based lubricants chemistry and technology

    CERN Document Server

    Rudnick, Leslie R

    2005-01-01

    As the field of tribology has evolved, the lubrication industry is also progressing at an extraordinary rate. Updating the author's bestselling publication, Synthetic Lubricants and High-Performance Functional Fluids, this book features the contributions of over 60 specialists, ten new chapters, and a new title to reflect the evolving nature of the field: Synthetics, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology. The book contains chapters on all major lubricant fluids used in a wide range of applications. For each type of lubricant, the authors discuss the historical develo

  6. Solar Alpha Rotary Joint (SARJ) Lubrication Interval Test and Evaluation (LITE). Post-Test Grease Analysis

    Science.gov (United States)

    Golden, Johnny L.; Martinez, James E.; Devivar, Rodrigo V.

    2015-01-01

    The Solar Alpha Rotary Joint (SARJ) is a mechanism of the International Space Station (ISS) that orients the solar power generating arrays toward the sun as the ISS orbits our planet. The orientation with the sun must be maintained to fully charge the ISS batteries and maintain all the other ISS electrical systems operating properly. In 2007, just a few months after full deployment, the starboard SARJ developed anomalies that warranted a full investigation including ISS Extravehicular Activity (EVA). The EVA uncovered unexpected debris that was due to degradation of a nitride layer on the SARJ bearing race. ISS personnel identified the failure root-cause and applied an aerospace grease to lubricate the area associated with the anomaly. The corrective action allowed the starboard SARJ to continue operating within the specified engineering parameters. The SARJ LITE (Lubrication Interval Test and Evaluation) program was initiated by NASA, Lockheed Martin, and Boeing to simulate the operation of the ISS SARJ for an extended time. The hardware was designed to test and evaluate the exact material components used aboard the ISS SARJ, but in a controlled area where engineers could continuously monitor the performance. After running the SARJ LITE test for an equivalent of 36+ years of continuous use, the test was opened to evaluate the metallography and lubrication. We have sampled the SARJ LITE rollers and plate to fully assess the grease used for lubrication. Chemical and thermal analysis of these samples has generated information that has allowed us to assess the location, migration, and current condition of the grease. The collective information will be key toward understanding and circumventing any performance deviations involving the ISS SARJ in the years to come.

  7. A Review of Ionic Liquid Lubricants

    Directory of Open Access Journals (Sweden)

    Anthony E. Somers

    2013-01-01

    Full Text Available Due to ever increasing demands on lubricants, such as increased service intervals, reduced volumes and reduced emissions, there is a need to develop new lubricants and improved wear additives. Ionic liquids (ILs are room temperature molten salts that have recently been shown to offer many advantages in this area. The application of ILs as lubricants in a diverse range of systems has found that these materials can show remarkable protection against wear and significantly reduce friction in the neat state. Recently, some researchers have shown that a small family of ILs can also be incorporated into non-polar base oils, replacing traditional anti-wear additives, with excellent performance of the neat IL being maintained. ILs consist of large asymmetrical ions that may readily adsorb onto a metal surface and produce a thin, protective film under boundary lubrication conditions. Under extreme pressure conditions, certain IL compounds can also react to form a protective tribofilm, in particular when fluorine, phosphorus or boron atoms are present in the constituent ions.

  8. Tribology of the lubricant quantized sliding state.

    Science.gov (United States)

    Castelli, Ivano Eligio; Capozza, Rosario; Vanossi, Andrea; Santoro, Giuseppe E; Manini, Nicola; Tosatti, Erio

    2009-11-07

    In the framework of Langevin dynamics, we demonstrate clear evidence of the peculiar quantized sliding state, previously found in a simple one-dimensional boundary lubricated model [A. Vanossi et al., Phys. Rev. Lett. 97, 056101 (2006)], for a substantially less idealized two-dimensional description of a confined multilayer solid lubricant under shear. This dynamical state, marked by a nontrivial "quantized" ratio of the averaged lubricant center-of-mass velocity to the externally imposed sliding speed, is recovered, and shown to be robust against the effects of thermal fluctuations, quenched disorder in the confining substrates, and over a wide range of loading forces. The lubricant softness, setting the width of the propagating solitonic structures, is found to play a major role in promoting in-registry commensurate regions beneficial to this quantized sliding. By evaluating the force instantaneously exerted on the top plate, we find that this quantized sliding represents a dynamical "pinned" state, characterized by significantly low values of the kinetic friction. While the quantized sliding occurs due to solitons being driven gently, the transition to ordinary unpinned sliding regimes can involve lubricant melting due to large shear-induced Joule heating, for example at large speed.

  9. Origins of extreme boundary lubrication by phosphatidylcholine liposomes.

    Science.gov (United States)

    Sorkin, Raya; Kampf, Nir; Dror, Yael; Shimoni, Eyal; Klein, Jacob

    2013-07-01

    Phosphatidylcholine (PC) vesicles have been shown to have remarkable boundary lubricating properties under physiologically-high pressures. Here we carry out a systematic study, using a surface force balance, of the normal and shear (frictional) forces between two opposing surfaces bearing different PC vesicles across water, to elucidate the origin of these properties. Small unilamellar vesicles (SUVs, diameters < 100 nm) of the symmetric saturated diacyl PCs DMPC (C(14)), DPPC (C(16)) and DSPC (C(18)) attached to mica surfaces were studied in their solid-ordered (SO) phase on the surface. Overall liposome lubrication ability improves markedly with increasing acyl chain length, and correlates strongly with the liposomes' structural integrity on the substrate surface: DSPC-SUVs were stable on the surface, and provided extremely efficient lubrication (friction coefficient μ ≈ 10(-4)) at room temperature at pressures up to at least 18 MPa. DMPC-SUVs ruptured following adsorption, providing poor high-pressure lubrication, while DPPC-SUVs behavior was intermediate between the two. These results can be well understood in terms of the hydration-lubrication paradigm, but suggest that an earlier conjecture, that highly-efficient lubrication by PC-SUVs depended simply on their being in the SO rather than in the liquid-disordered phase, should be more nuanced. Our results indicate that the resistance of the SUVs to mechanical deformation and rupture is the dominant factor in determining their overall boundary lubrication efficiency in our system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Excellent lubricating behavior of Brasenia schreberi mucilage.

    Science.gov (United States)

    Li, Jinjin; Liu, Yuhong; Luo, Jianbin; Liu, Pengxiao; Zhang, Chenhui

    2012-05-22

    The present work reports an excellent lubrication property of an aquatic plant called Brasenia schreberi (BS). To investigate the lubrication characteristics of the BS mucilage, a novel measuring system is designed, and an ultralow friction coefficient about 0.005 between the mucilage and glass surface has been obtained. It is found that the ultralow friction is closely related to the structure of mucilage and water molecules in the mucilage. The microstructure analysis indicates that the mucilage surrounding BS forms a kind of polysaccharide gel with many nanosheets. A possible lubrication mechanism is proposed that the formation of hydration layers among these polymer nanosheets with plenty of bonded water molecules causes the ultralow friction. The excellent lubrication property has a potential application for reducing the friction between a glossy pill coated with such layer of mucilage and people's throats.

  11. Numerical analysis of capillary compensated micropolar fluid lubricated hole-entry journal bearings

    Directory of Open Access Journals (Sweden)

    Nathi Ram

    2016-06-01

    Full Text Available The micropolar lubricated symmetric/asymmetric hole-entry bearings using capillary restrictor have been analyzed in the present work. Reynolds equation for micropolar lubricant has been derived and solved by FEM. The results have been computed using selected parameters of micropolar lubricant for hole-entry hydrostatic/hybrid journal bearings. A significant increase in damping and stiffness coefficients is observed for bearings having micropolar parameter N2=0.9, lm=10 than similar bearings under Newtonian lubricant. The threshold speed gets increased when symmetric bearing lubricated under micropolar fluid than Newtonian lubricant. The threshold speed gets increased when symmetric bearing lubricated under micropolar fluid than Newtonian lubricant.

  12. The Role of Nano-TiO2 Lubricating Fluid on the Hot Rolled Surface and Metallographic Structure of SS41 Steel

    Directory of Open Access Journals (Sweden)

    Yanan Meng

    2018-02-01

    Full Text Available In this paper, nano-TiO2lubricating fluid was chosen as an advanced rolling lubricant to investigate its effect on the hot rolled surface and metallographic structure of SS41 steel strips. The tribological performances of nano-TiO2 lubricating fluid were measured by a four-ball tribotester. The hot rolling experiments under different lubrication conditions were carried out by a four-high rolling mill. The surface morphology, oxide scales and metallographic structure after hot rolling were observed using a confocal laser scanning microscope and scanning electron microscope (SEM, respectively. The composition of surface attachments was analyzed with X-ray photoelectron spectroscopy (XPS. The results indicate that the nano-TiO2 lubricating fluid has a better tribological performance. The surface defects on the hot rolled surface could be decreased. The phase composition of the surface still appears as a mixture of ferrite and pearlite. The surface of steel strips is not micro-alloyed with titanium as predicted. Additionally, the grain size of rolled steel strips which were lubricated with the nano-TiO2lubricating fluid decreased by nearly 50%, compared with traditional lubricating fluid. Furthermore, it was found that the thickness of the oxide layers on the surface reduced, whilst the Rockwell hardness of the oxide layers was enhanced as nano-TiO2 lubricating fluid was applied.

  13. Lubricity characteristics of marine distillate fuels

    Energy Technology Data Exchange (ETDEWEB)

    Crutchley, Ian [Innospec Fuel Specialties, Ellesmere Port (United Kingdom); Green, Michael [Intertek Lintec ShipCare Services, Darlington (United Kingdom)

    2012-08-15

    This article from Innospec Fuel Specialties, Ellesmere Port, UK, and Intertek Lintec ShipCare Services, Darlington, UK, examines the lubricity characteristics of marine distillate fuels available today in relation to the requirements and limits imposed in ISO8217:2010. It will estimate expected failure rates and also asses the perceived relationship between lubricity, sulphur content and viscosity. (orig.)

  14. RADIAL FORCE IMPACT ON THE FRICTION COEFFICIENT AND TEMPERATURE OF A SELF-LUBRICATING PLAIN BEARING

    Directory of Open Access Journals (Sweden)

    Nada Bojić

    2017-12-01

    Full Text Available Self-lubricating bearings are available in spherical, plain, flanged journal, and rod end bearing configurations. They were originally developed to eliminate the need for re-lubrication, to provide lower torque and to solve application problems where the conventional metal-to-metal bearings would not perform satisfactorily, for instance, in the presence of high frequency vibrations. Among the dominant tribological parameters of the self-lubricating bearing, two could be singled out: the coefficient of friction and temperature. To determine these parameters, an experimental method was applied in this paper. By using this method, the coefficient of friction and temperature were identified and their correlation was established. The aim of this research was to determine the effect of radial force on tribological parameters in order to predict the behavior of sliding bearings with graphite in real operating conditions.

  15. Method to improve lubricity of low-sulfur diesel and gasoline fuels

    Science.gov (United States)

    Erdemir, Ali

    2004-08-31

    A method for providing lubricity in fuels and lubricants includes adding a boron compound to a fuel or lubricant to provide a boron-containing fuel or lubricant. The fuel or lubricant may contain a boron compound at a concentration between about 30 ppm and about 3,000 ppm and a sulfur concentration of less than about 500 ppm. A method of powering an engine to minimize wear, by burning a fuel containing boron compounds. The boron compounds include compound that provide boric acid and/or BO.sub.3 ions or monomers to the fuel or lubricant.

  16. Assessment of lubricating oil degradation in small motorcycle engine fueled with gasohol

    Directory of Open Access Journals (Sweden)

    Nakorn Tippayawong

    2010-05-01

    Full Text Available Assessment of the degradation of lubricating oil was performed on the lubricants which had been used in a small motorcycle engine fueled with gasohol in comparison with the lubricants from gasoline-run engine. The lubricant properties examined in the assessment were lubricating capacity, viscosity and stability to oxidation. Lubricating capacity was evaluated by accelerated wear test on the Timken tester. Lubricating oils from gasohol-run engine appeared to produce about 10% greater wear than that made in oils from gasoline-run engine. There was no significant difference between the effect of gasohol and gasoline on the viscosity of the used lubricating oils. Moreover, no oxidation products in any used oil samples could be detected.

  17. Lubrication from mixture of boric acid with oils and greases

    Science.gov (United States)

    Erdemir, Ali

    1995-01-01

    Lubricating compositions including crystalline boric acid and a base lubricant selected from oils, greases and the like. The lubricity of conventional oils and greases can also be improved by adding concentrates of boric acid.

  18. Improved Ionic Liquids as Space Lubricants, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Ionic liquids are candidate lubricant materials. However for application in low temperature space mechanisms their lubrication performance needs to be enhanced. UES...

  19. Cooling lubricants; Kuehlschmierstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, W. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Breuer, D. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Blome, H. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Deininger, C. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Hahn, J.U. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Kleine, H. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Nies, E. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Pflaumbaum, W. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Stockmann, R. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Willert, G. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Sonnenschein, G. [Maschinenbau- und Metall-Berufsgenossenschaft, Duesseldorf (Germany)

    1996-08-01

    As a rule, the base substances used are certain liquid hydrocarbons from mineral oils as well as from native and synthetic oils. Through the addition of further substances the cooling lubricant takes on the particular qualities required for the use in question. Employees working with cooling lubricants are exposed to various hazards. The assessment of the concentrations at the work station is carried out on the basis of existing technical rules for contact with hazardous substances. However, the application/implementation of compulsory investigation and supervision in accordance with these rules is made difficult by the fact that cooling lubricants are, as a rule, made up of complicated compound mixtures. In addition to protecting employees from exposure to mists and vapours from the cooling lubricants, protection for the skin is also of particular importance. Cooling lubricants should not, if at all possible, be brought into contact with the skin. Cleansing the skin and skin care is just as important as changing working clothes regularly, and hygiene and cleanliness at the workplace. Unavoidable emissions are to be immediately collected at the point where they arise or are released and safely disposed of. This means taking into account all sources of emissions. The programme presented in this report therefore gives a very detailed account of the individual protective measures and provides recommendations for the design of technical protection facilities. (orig./MG) [Deutsch] Als Basisstoffe dienen in der Regel bestimmte fluessige Kohlenwasserstoffverbindungen aus Mineraloelen sowie aus nativen oder synthetischen Oelen. Durch die Zugabe von weiteren Stoffen erlangt der Kuehlschmierstoff seine fuer den jeweiligen Anwendungsabfall geforderten Eigenschaften. Beschaeftigte, die mit Kuehlschmierstoffen umgehen, sind unterschiedliche Gefahren ausgesetzt. Die Beurteilung der Kuehlschmierstoffkonzentrationen in der Luft am Arbeitsplatz erfolgt auf der Grundlage bestehender

  20. Ionic liquids containing symmetric quaternary phosphonium cations and phosphorus-containing anions, and their use as lubricant additives

    Science.gov (United States)

    Qu, Jun; Luo, Huimin

    2018-05-01

    An ionic liquid composition having the following generic structural formula: ##STR00001## wherein R1, R2, R3, and R4 are equivalent and selected from hydrocarbon groups containing at least three carbon atoms, and X- is a phosphorus-containing anion, particularly an organophosphate, organophosphonate, or organophosphinate anion, or a thio-substituted analog thereof containing hydrocarbon groups with at least three carbon atoms. Also described are lubricant compositions comprising the above ionic liquid and a base oil, wherein the ionic liquid is dissolved in the base oil. Further described are methods for applying the ionic liquid or lubricant composition onto a mechanical device for which lubrication is beneficial, with resulting improvement in friction reduction, wear rate, and/or corrosion inhibition.

  1. Additives for high-temperature liquid lubricants

    Science.gov (United States)

    Lawton, Emil A.; Yavrouian, Andre H.; Repar, John

    1988-01-01

    A preliminary research program was conducted to demonstrate a new concept for additives to liquid lubricants. It was demonstrated that suspensions of o-phthalonitrile and a substituted 1,2-maleonitrile in mineral oil and dilute solutions of o-phthalonitrile and tetrafluoro-o-phthalonitrile extended the lifetime of bearings under boundary lubricating conditions. The solutions exhibited coefficients of friction under high loads of 0.02-0.03. These results were consistent with the hypothesis that these compounds react with the hot metal surface to form a planar lubricating film by means of a metal or metal oxide template reaction. Also, the adherence was very strong due to the chelating action of the planar macrocycles postulated to form under the experimental conditions.

  2. Self-lubricating polymer composites : Tribology and interface

    NARCIS (Netherlands)

    Shen, Jintao

    2015-01-01

    In cooperation with SKF, this PhD project focus on the improvement of the tribological performance of self-lubricating composites for dry sliding bearings. Several novel self-lubricating composites with very good performance and low production cost is developed in this research, which perform better

  3. A Biomimetic Approach to Lubricate Engineering Materials

    DEFF Research Database (Denmark)

    Røn, Troels

    lubrication characteristic is dominant via ‘selfhealing’ mechanism. The glycosylated FpHYD5 revealed a better lubrication than HFBI. Two type II hydrophobins function more favorably compared to synthetic amphiphilic copolymer, PEO-PPO-PEO, with a similar molecular weight. This is ascribed to higher amount...

  4. Thermo-Rheometric Studies of New Class Ionic Liquid Lubricants

    Science.gov (United States)

    Bakhtiyarov, Sayavur; Street, Kenneth; Scheiman, Daniel; van Dyke, Alan

    2010-11-01

    Due to their specific properties, such as small volatility, nonflammability, extreme thermal stability, low melting point, wide liquid range, and good miscibility with organic materials, ionic liquids attracted particular interest in various industrial processes. Recently, the unique properties of ionic liquids caught the attention of space tribologists. The traditional lubricating materials used in space have limited lifetimes in vacuum due to the catalytic degradation on metal surfaces, high vaporization at high temperatures, dewetting, and other disadvantages. The lubricants for the space applications must have vacuum stability, high viscosity index, low creep tendency, good elastohydrodynamic and boundary lubrication properties, radiation atomic oxygen resistance, optical or infrared transparency. Unfortunately, the properties such as heat flow, heat capacity, thermogravimetric weight loss, and non-linearity in the rheological behavior of the lubricants are not studied well for newly developed systems. These properties are crucial to analyzing thermodynamic and energy dissipative aspects of the lubrication process. In this paper we will present the rheological and heat and mass transfer measurements for the ionic liquid lubricants, their mixtures with and without additive.

  5. A new Friction and Lubrication Test for Cold Forging

    DEFF Research Database (Denmark)

    Bay, Niels; Wibom, Ole; Aalborg Nielsen, J

    1995-01-01

    This paper presents a new friction and lubrication test for cold forging. The test allows controlled variation of the surface expansion in the range 0-2000%, the tool temperature in the range 20-270°C and the sliding length between 0 and infinite. Friction is decreasing with increasing temperature...

  6. Evaluation of risk and benefit in thermal effusivity sensor for monitoring lubrication process in pharmaceutical product manufacturing.

    Science.gov (United States)

    Uchiyama, Jumpei; Kato, Yoshiteru; Uemoto, Yoshifumi

    2014-08-01

    In the process design of tablet manufacturing, understanding and control of the lubrication process is important from various viewpoints. A detailed analysis of thermal effusivity data in the lubrication process was conducted in this study. In addition, we evaluated the risk and benefit in the lubrication process by a detailed investigation. It was found that monitoring of thermal effusivity detected mainly the physical change of bulk density, which was changed by dispersal of the lubricant and the coating powder particle by the lubricant. The monitoring of thermal effusivity was almost the monitoring of bulk density, thermal effusivity could have a high correlation with tablet hardness. Moreover, as thermal effusivity sensor could detect not only the change of the conventional bulk density but also the fractional change of thermal conductivity and thermal capacity, two-phase progress of lubrication process could be revealed. However, each contribution of density, thermal conductivity, or heat capacity to thermal effusivity has the risk of fluctuation by formulation. After carefully considering the change factor with the risk to be changed by formulation, thermal effusivity sensor can be a useful tool for monitoring as process analytical technology, estimating tablet hardness and investigating the detailed mechanism of the lubrication process.

  7. Application of a Biodegradable Lubricant in a Diesel Vehicle

    DEFF Research Database (Denmark)

    Schramm, Jesper

    2003-01-01

    The IEA Advanced Motor Fuels Agreement has initiated this project concerning the application of biodegradable lubricants to diesel and gasoline type vehicles. Emission measurements on a chassis dynamometer were carried out. The purpose of these measurements was to compare the emissions of CO, CO2......, NOx, THC, PM, lubricant-SOF and PAH from one diesel and one gasoline type vehicle using biodegradable lubricants and conventional lubricants. This paper describes the results of the experiments with the diesel type vehicle only. Lubricant consumption and fuel consumption are other important parameters...... that have been evaluated during the experiments. Both vehicle types were operated on conventional crude oil based fuels and alternative fuels. The diesel vehicle was operated on conventional diesel fuel from a Danish fuel station, low sulfur diesel from Sweden and biodiesel, which was bought at a fuel...

  8. Commercial lubricant use among HIV-negative men who have sex with men in Los Angeles: implications for the development of rectal microbicides for HIV prevention.

    Science.gov (United States)

    Pines, Heather A; Gorbach, Pamina M; Reback, Cathy J; Landovitz, Raphael J; Mutchler, Matt G; Mitsuyasu, Ronald

    2014-01-01

    To inform the development and assess potential use of rectal microbicide gels for HIV prevention among men who have sex with men (MSM), we examined the dynamics and contexts of commercial lubricant use during receptive anal intercourse (RAI) within this population. From 2007 to 2010, 168 HIV-negative MSM living in Los Angeles who practice RAI completed computer-assisted self-interviews, which collected information on their last sexual event with ≤3 recent partners, at baseline, three months, and one-year study visits. Logistic generalized linear mixed models were used to identify individual- and sexual event-level characteristics associated with commercial lubricant use during RAI at the last sexual event within 421 partnerships reported by participants over the course of follow-up. During RAI at their last sexual event, 57% of partnerships used a condom and 69% used commercial lubricant. Among partnerships that used commercial lubricant, 56% reported lubricant application by both members of the partnership, 66% first applied lubricant during sex, but before penetration, and 98% applied lubricant at multiple locations. The relationship between substance use and commercial lubricant use varied by condom use (interaction p-value = 0.01). Substance use was positively associated with commercial lubricant use within partnerships that did not use condoms during RAI at their last sexual event (AOR = 4.47, 95% [corrected] [CI]: 1.63-12.28), but no association was observed within partnerships that did use condoms (AOR = 0.66, 95% CI: 0.23-1.85). Commercial lubricant use during RAI was also positively associated with reporting more sexual partners (AOR = 1.18, 95% CI: 1.05-1.31), while older age (units = 5 years; AOR = 0.75, 95% CI: 0.61-0.94), homelessness (past year; AOR = 0.32, 95% CI: 0.13-0.76), and having sex with an older (>10 years) partner (AOR = 0.37, 95% CI: 0.14-0.95) were negatively associated with commercial lubricant use. These factors should be considered

  9. Investigation of lubricants under boundary friction

    Science.gov (United States)

    Heidebroek, E; Pietsch, E

    1942-01-01

    Numerous observations of such lubrication processes within range of boundary friction on journal bearings and gear tooth profiles have strengthened the supposition that it should be possible to study the attendant phenomena with engineering methods and equipment. These considerations formed the basis of the present studies, which have led to the discovery of relations governing the suitability of bearing surfaces and the concept of "lubricating quality."

  10. The Lubricity of Glycerol and its Solutions

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Jakobsen, J.

    2016-01-01

    Glycerol has been recognised as an excellent diesel fuel and lubricant. It is a liquid that can originate from the transesterification of plant oil that also results in plant oil metyl (or ethyl) ester (biodiesel). Machine elements lubricated by glycerol show very low friction, in fact lower than...

  11. On a new method to determine the yield stress in lubricating grease

    NARCIS (Netherlands)

    Cyriac, F.; Lugt, Pieter Martin; Bosman, Rob

    2015-01-01

    An experimental study using both a controlled stress and a controlled strain rheometer has been undertaken to characterize lubricating grease in shear, creep, stress relaxation, and oscillatory flow, with a main focus on determining the yield stress. The yield stress was examined using a cone–plate

  12. Piston ring lubrication and hydrocarbon emissions from internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Froelund, K.

    1997-11-01

    Is it the intention with this project to improve the existing hydrocarbon emission model at the Institute by combining it with a model for predicting the piston ring lubrication. The piston ring lubrication model should be experimentally verified to ensure the validity of the model. The following items were the objectives of the current study: Develop a piston ring lubrication model. This implies the development of a ring-pack gas flow model; Examine the response of the piston ring lubrication model to changing engineer conditions. Especially, it would be interesting to look at the engine warm-up phase since this is the phase where the engine-out emissions are highest and where the commonly used three way catalyst is not capable of converting the engine-out emissions, thereby leading the engine-out emissions directly out in to the environment with the exhaust gases; In order to verify the piston ring lubrication model the lubricant distribution on the cylinder liner should be investigated experimentally. Here again it would be of great interesting to look at the engine warm-up phase; The piston ring lubrication model should be adjusted for application together with the new hydrocarbon emission model for SI-engines at the Institute in order to increase the accuracy of the latter; The piston ring lubrication model could be used for describing the transport of PAH`s in diesel engines. (EG)

  13. Graphite and Hybrid Nanomaterials as Lubricant Additives

    Directory of Open Access Journals (Sweden)

    Zhenyu J. Zhang

    2014-04-01

    Full Text Available Lubricant additives, based on inorganic nanoparticles coated with organic outer layer, can reduce wear and increase load-carrying capacity of base oil remarkably, indicating the great potential of hybrid nanoparticles as anti-wear and extreme-pressure additives with excellent levels of performance. The organic part in the hybrid materials improves their flexibility and stability, while the inorganic part is responsible for hardness. The relationship between the design parameters of the organic coatings, such as molecular architecture and the lubrication performance, however, remains to be fully elucidated. A survey of current understanding of hybrid nanoparticles as lubricant additives is presented in this review.

  14. 3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces

    Science.gov (United States)

    Kajiya, Tadashi; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen

    2016-04-01

    Condensation of water from the atmosphere on a solid surface is an ubiquitous phenomenon in nature and has diverse technological applications, e.g. in heat and mass transfer. We investigated the condensation kinetics of water drops on a lubricant-impregnated surface, i.e., a micropillar array impregnated with a non-volatile ionic liquid. Growing and coalescing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. Different stages of condensation can be discriminated. On a lubricant-impregnated hydrophobic micropillar array these are: (1) Nucleation on the lubricant surface. (2) Regular alignment of water drops between micropillars and formation of a three-phase contact line on a bottom of the substrate. (3) Deformation and bridging by coalescence which eventually leads to a detachment of the drops from the bottom substrate. The drop-substrate contact does not result in breakdown of the slippery behaviour. Contrary, on a lubricant-impregnated hydrophilic micropillar array, the condensed water drops replace the lubricant. Consequently, the surface loses its slippery property. Our results demonstrate that a Wenzel-like to Cassie transition, required to maintain the facile removal of condensed water drops, can be induced by well-chosen surface hydrophobicity.

  15. Lubrication pressure and fractional viscous damping effects on the spring-block model of earthquakes

    Science.gov (United States)

    Tanekou, G. B.; Fogang, C. F.; Kengne, R.; Pelap, F. B.

    2018-04-01

    We examine the dynamical behaviours of the "single mass-spring" model for earthquakes considering lubrication pressure effects on pre-existing faults and viscous fractional damping. The lubrication pressure supports a part of the load, thereby reducing the normal stress and the associated friction across the gap. During the co-seismic phase, all of the strain accumulated during the inter-seismic duration does not recover; a fraction of this strain remains as a result of viscous relaxation. Viscous damping friction makes it possible to study rocks at depth possessing visco-elastic behaviours. At increasing depths, rock deformation gradually transitions from brittle to ductile. The fractional derivative is based on the properties of rocks, including information about previous deformation events ( i.e., the so-called memory effect). Increasing the fractional derivative can extend or delay the transition from stick-slip oscillation to a stable equilibrium state and even suppress it. For the single block model, the interactions of the introduced lubrication pressure and viscous damping are found to give rise to oscillation death, which corresponds to aseismic fault behaviour. Our result shows that the earthquake occurrence increases with increases in both the damping coefficient and the lubrication pressure. We have also revealed that the accumulation of large stresses can be controlled via artificial lubrication.

  16. A preventive maintenance lubricant

    Energy Technology Data Exchange (ETDEWEB)

    Chapaykina, S A; Ol' kov, P L; Pertsev, A N; Rodzevillo, I T; Rogacheva, O I; Zinov' yev, A P

    1980-02-15

    A method is disclosed to lower the adherence of materials by reducing the viscosity of a preventive maintenance lubricant against adhesion of moist, freeflowing materials, containing extract of selective cleaning of oil fractions and asphalt. Gas oil of catalytic cracking is added having a boiling point of 190-300 degrees, with the following ratio of components (%): selective cleaning extract, 43-50; asphalt, 14-16; and gas oil of catalytic cracking, the remainder, Treating a surface with the proposed lubricant lowers the specific resistance to shift of rock compared with the prototype (g/cm/sup 2/): sand (moisture content, 18%) from 3.82 to 1.55; and clay (moisture content 16%), from 5.41 to 3.51.

  17. Diesel fuel lubricity testing revisited : Tests von Dieselkraftstoffschmierfähigkeit erneut betrachtet

    NARCIS (Netherlands)

    van Leeuwen, H.J.

    2017-01-01

    Fuel is used as a lubricant in several engine components. Diesel fuel is known for its good lubrication properties, better than gasoline. These properties are examined in standard tests, as prescribed by ASTM. Good lubrication properties are designated as a good lubricity. Most commonly, fuel

  18. Molecular dynamics study of lubricant depletion by pulsed laser heating

    Science.gov (United States)

    Seo, Young Woo; Rosenkranz, Andreas; Talke, Frank E.

    2018-05-01

    In this study, molecular dynamics simulations were performed to numerically investigate the effect of pulsed laser heating on lubricant depletion. The maximum temperature, the lubricant depletion width, the number of evaporated lubricant beads and the number of fragmented lubricant chains were studied as a function of laser peak power, pulse duration and repetition rate. A continuous-wave laser and a square pulse laser were simulated and compared to a Gaussian pulse laser. With increasing repetition rate, pulsed laser heating was found to approach continuous-wave laser heating.

  19. Tribology and energy efficiency: from molecules to lubricated contacts to complete machines.

    Science.gov (United States)

    Taylor, Robert Ian

    2012-01-01

    The impact of lubricants on energy efficiency is considered. Molecular details of base oils used in lubricants can have a great impact on the lubricant's physical properties which will affect the energy efficiency performance of a lubricant. In addition, molecular details of lubricant additives can result in significant differences in measured friction coefficients for machine elements operating in the mixed/boundary lubrication regime. In single machine elements, these differences will result in lower friction losses, and for complete systems (such as cars, trucks, hydraulic circuits, industrial gearboxes etc.) lower fuel consumption or lower electricity consumption can result.

  20. Use of Textured Surfaces to Mitigate Sliding Friction and Wear of Lubricated and Non-Lubricated Contacts

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL

    2012-03-01

    If properly employed, the placement of three-dimensional feature patterns, also referred to as textures, on relatively-moving, load-bearing surfaces can be beneficial to their friction and wear characteristics. For example, geometric patterns can function as lubricant supply channels or depressions in which to trap debris. They can also alter lubricant flow in a manner that produces thicker load-bearing films locally. Considering the area occupied by solid areas and spaces, textures also change the load distribution on surfaces. At least ten different attributes of textures can be specified, and their combinations offer wide latitude in surface engineering. By employing directional machining and grinding procedures, texturing has been used on bearings and seals for well over a half century, and the size scales of texturing vary widely. This report summarizes past work on the texturing of load-bearing surfaces, including past research on laser surface dimpling of ceramics done at ORNL. Textured surfaces generally show most pronounced effects when they are used in conformal or nearly conformal contacts, like that in face seals. Combining textures with other forms of surface modification and lubrication methods can offer additional benefits in surface engineering for tribology. As the literature and past work at ORNL shows, texturing does not always provide benefits. Rather, the selected pattern and arrangement of features must be matched to characteristics of the proposed application, bearing materials, and lubricants.

  1. Developments of New Lubricants for Cold Forging of Stainless Steel

    DEFF Research Database (Denmark)

    Steenberg, Thomas; Christensen, Erik; Olesen, P.

    1997-01-01

    Two new lubricant systems for cold forging of stainless steel have been developed. The main component of these systems are FeCl3 and ZnCa2(PO4)2, respectively. Both lubricant systems have been tested using a backward extrusion test. The results show excellent lubricating properties with respect...

  2. Numerical methods and computers used in elastohydrodynamic lubrication

    Science.gov (United States)

    Hamrock, B. J.; Tripp, J. H.

    1982-01-01

    Some of the methods of obtaining approximate numerical solutions to boundary value problems that arise in elastohydrodynamic lubrication are reviewed. The highlights of four general approaches (direct, inverse, quasi-inverse, and Newton-Raphson) are sketched. Advantages and disadvantages of these approaches are presented along with a flow chart showing some of the details of each. The basic question of numerical stability of the elastohydrodynamic lubrication solutions, especially in the pressure spike region, is considered. Computers used to solve this important class of lubrication problems are briefly described, with emphasis on supercomputers.

  3. Effect of gamma radiation on graphite – PTFE dry lubrication system

    International Nuclear Information System (INIS)

    Singh, Sachin; Tyagi, Mukti; Seshadri, Geetha; Tyagi, Ajay Kumar; Varshney, Lalit

    2017-01-01

    An effect of gamma radiation on lubrication behavior of graphite -PTFE dry lubrication system has been studied using (TR-TW-30L) tribometer with thrust washer attachment in plane contact. Different compositions of graphite and PTFE were prepared and irradiated by gamma rays. Gamma radiation exposure significantly improves the tribological properties indicated by decrease in coefficient of friction and wear properties of graphite -PTFE dry lubrication system. SEM and XRD analysis confirm the physico-chemical modification of graphite-PTFE on gamma radiation exposure leading to a novel dry lubrication system with good slip and anti friction properties. - Highlights: • Novel dry lubrication system of graphite -PTFE using gamma radiation. • Gamma radiation processing. • Reduction in coefficient of friction, frictional torque and wear loss of developed dry lubrication system.

  4. Formulation of lubricating grease using Beeswax thickener

    Science.gov (United States)

    Suhaila, N.; Japar, A.; Aizudin, M.; Aziz, A.; Najib Razali, Mohd

    2018-04-01

    The issues on environmental pollution has brought the industries to seek the alternative green solutions for lubricating grease formulation. The significant challenges in producing modified grease are in which considering the chosen thickener as one of the environmental friendly material. The main purposes of the current research were to formulate lubricant grease using different types of base oils and to study the effect of thickener on the formulated lubricant grease. Used oil and motor oil were used as the base oils for the grease preparation. Beeswax and Damar were used as thickener and additive. The grease is tested based on its consistency, stability and oil bleeding. The prepared greases achieved grease consistency of grade 2 and 3 except for grease with unfiltered used oil. Grease formulated with used oil and synthetic oil tend to harden and loss its lubricating ability under high temperature compared to motor oil’ grease. Grease modification using environmental friendly thickener were successfully formulated but it is considered as a low temperature grease as the beeswax have low melting point of 62°C-65°C.

  5. Used lubricants and ecological problems

    International Nuclear Information System (INIS)

    Evdokimov, A.Yu.; Dzhamalov, A.A.; Lashkhi, V.L.

    1993-01-01

    This planet is undergoing a severe ecological crisis. The consequent problems include not only how to prevent the destruction of contemporary civilization, but also how to preserve mankind as a biological species. In the onset of this crisis, used lubricants (ULs) play a role that is by no means the least important. Every year, the worldwide discharge of petroleum products to the biosphere is approximately 6 million tonnes, of which more than 50% consists of ULs. The ecologically dangerous components of both commercial lubricants and used lubricants are the polycyclic aromatic hydrocarbons (PAHs) that are originally present in crude oil; polyhalobiphenyls, mainly polychlorobiphenyls (PCBs) of anthropogenic origin; sulfur- and chlorine-containing additives; a number of biocides; organic compounds of metals (lead, barium, antimony, zinc); and nitrites. These substances are distributed in the atmosphere, water, and soil, entering the food chain and appearing in foodstuffs. Moreover, hydrocarbons of petroleum and synthetic oils with a low degree of biodegradability (10-30%) accumulate in the environment and may shift the ecological equilibrium (accelerated multiplication and mutation of microorganisms that assimilate petroleum products). 32 refs., 1 fig

  6. Compatibility of refrigerants and lubricants with elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Hamed, G.R.; Seiple, R.H.

    1993-01-01

    The information contained in this report is designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. 97% of the swell measurements have been made to date. The other 3% of the measurements are contingent on availability of additional R-32. Swell behavior in the fluids have been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 and 24 hours for samples removed from the refrigerant test fluids and 24 hours after removal from the lubricants.

  7. Fuels and Lubricants Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Modern naval aircraft and turbine-powered craft require reliable and high-quality fuels and lubricants to satisfy the demands imposed upon them for top performance...

  8. Steady state characteristics of a tilting pad journal bearing with controllable lubrication: Comparison between theoretical and experimental results

    DEFF Research Database (Denmark)

    Cerda Varela, Alejandro Javier; Nielsen, Bo Bjerregaard; Santos, Ilmar

    2013-01-01

    direction. The modification of the injection pressure enables to modify the bearing static and dynamic properties according to the operational needs. The results presented are obtained using a theoretical model, which considers all the effects that determine the bearing behavior (controllable......This paper is aimed at presenting results regarding the static and thermal behavior of a tilting-pad journal bearing operating under controllable regime. The bearing is rendered controllable by injecting high pressure oil into the clearance using holes drilled across the bearing pads in the radial...... elastothermohydrodynamic lubrication regime), as well as using a test rig designed and built to this effect. The comparison between experimental and theoretical results provides solid ground to determine the accuracy of the available model for the the prediction of the steady-state behavior of the tilting-pad bearing...

  9. Assessment of a lubricant based nanofluid application in a rotary system

    International Nuclear Information System (INIS)

    Hajmohammadi, M.R.

    2017-01-01

    Highlights: • Application of metallic nanoparticles in a rotary system is evaluated. • Evaluations are based on first and second laws of thermodynamics. • Two-phase numerical method is used and lubricant is considered inhomogeneous. • Nanoparticles with limited concentricity in lowspeed rotary system are recommended. - Abstract: Rotary systems and nanofluids are frequently used in energy conversion and management systems. In this paper, a numerical study is performed to evaluate the application of metallic nano-particles in a rotary system filled with a lubricant from first and second laws of thermodynamics points of view. The nano-lubricant (lubricant based nanofluid) is considered inhomogeneous with dependent transport properties on nano-particles volume fraction, nano-particles size and the temperature. A two-phase model is undertaken to account for the Brownian motion and thermophoresis diffusion. The principal objective centers in the advantages and penalties of using nano-lubricant over the pure lubricant on the basis of first and second law (of thermodynamics). The numerical results demonstrate that the nano-particles enhance the thermal performance of the rotary system. However, undesirable aspect from hydro-dynamical and second law (of thermodynamic) perspectives are reported. While a nano-lubricant with limited volume fraction in low speed rotary system is recommended, the disadvantages of nano-lubricants with high volume fractions and/or used in a high-speed rotary system are dominant to nano-lubricants advantages and must be avoided.

  10. Development and efficiency assessment of process lubrication for hot forging

    Science.gov (United States)

    Kargin, S.; Artyukh, Viktor; Ignatovich, I.; Dikareva, Varvara

    2017-10-01

    The article considers innovative technologies in testing and production of process lubricants for hot bulk forging. There were developed new compositions of eco-friendly water-graphite process lubricants for hot extrusion and forging. New approaches to efficiency assessment of process lubricants are developed and described in the following article. Laboratory and field results are presented.

  11. Effect of an isotonic lubricant on sperm collection and sperm quality.

    Science.gov (United States)

    Agarwal, Ashok; Malvezzi, Helena; Sharma, Rakesh

    2013-05-01

    To assess the influence of an isotonic lubricant used during sperm sample collection on [1] ease of collection and [2] resultant sperm quality. Paired randomized cross-over design. Tertiary hospital. Healthy men over 18 years old with normal semen analysis as per World Health Organization 2010 guidelines. Collection of semen sample from 22 subjects by masturbation with or without the use of Pre-Seed personal lubricant. Qualitative survey results and quantitative sperm function outcomes were measured to determine resultant sperm quality and collection experience with and without Pre-Seed lubricant. The qualitative questionnaire results showed that 73% of donors prefer the semen collection process with the isotonic lubricant and 55% recommended the use of lubricant in their everyday collection. The motility, viability, membrane integrity, levels of reactive oxygen species, total antioxidant capacity, and percentage of DNA damage in collected semen samples were not affected by the use of the lubricant. More donors prefer, and find it easier, to collect semen samples with the use of the lubricant. The isotonic lubricant Pre-Seed did not compromise sperm quality as evaluated in an array of sperm assays, suggesting its safe use in fertility patients as required during sperm collection. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Solid Lubricants and Coatings for Extreme Environments: State-of-the-Art Survey

    Science.gov (United States)

    Miyoshi, Kazuhisa

    2007-01-01

    An investigation was conducted to survey anticipated requirements for solid lubricants in lunar and Martian environments, as well as the effects of these environments on lubricants and their performance and durability. The success of habitats and vehicles on the Moon and Mars, and ultimately, of the human exploration of and permanent human presence on the Moon and Mars, are critically dependent on the correct and reliable operation of many moving mechanical assemblies and tribological components. The coefficient of friction and lifetime of any lubricant generally vary with the environment, and lubricants have very different characteristics under different conditions. It is essential, therefore, to select the right lubrication technique and lubricant for each mechanical and tribological application. Several environmental factors are hazardous to performance integrity on the Moon and Mars. Potential threats common to both the Moon and Mars are low ambient temperatures, wide daily temperature swings (thermal cycling), solar flux, cosmic radiation, and large quantities of dust. The surface of Mars has the additional challenges of dust storms, winds, and a carbon dioxide atmosphere. Solid lubricants and coatings are needed for lunar and Martian applications, where liquid lubricants are ineffective and undesirable, and these lubricants must perform well in the extreme environments of the Moon, Mars, and space, as well as on Earth, where they will be assembled and tested. No solid lubricants and coatings and their systems currently exist or have been validated that meet these requirements, so new solid lubricants must be designed and validated for these applications.

  13. Shear thinning behavior of monolayer liquid lubricant films measured by fiber wobbling method

    International Nuclear Information System (INIS)

    Hamamoto, Y; Itoh, S; Fukuzawa, K; Zhang, H

    2010-01-01

    It is essential to clarify mechanical properties of monolayer lubricant films coated on magnetic disks under shearing motion for designing future hard disk drives with ultra-low flying height. Many of previous researchers reported that strong shear rate dependence of viscoelasticity was one of the typical phenomena observed with molecularly thin liquid films. However, it has not been clarified whether or not perfluoropolyether (PFPE) lubricant films, which are used for the head-disk interface (HDI) lubrication, show shear thinning behavior under actual HDI conditions. In this study, we used the fiber wobbling method that can achieve both highly-sensitive shear force measurement and precise gap control and measured shear rate dependence of viscoelastic properties of monolayer PFPE films coated on the magnetic disk. Our experimental results showed that shear thinning does occur at high shear rate ranged from 10 2 to 10 6 s -1 .

  14. Numerical study on the lubrication performance of compression ring-cylinder liner system with spherical dimples.

    Directory of Open Access Journals (Sweden)

    Cheng Liu

    Full Text Available The effects of surface texture on the lubrication performance of a compression ring-cylinder liner system are studied in this paper. By considering the surface roughness of the compression ring and cylinder liner, a mixed lubrication model is presented to investigate the tribological behaviors of a barrel-shaped compression ring-cylinder liner system with spherical dimples on the liner. In order to determine the rupture and reformulation positions of fluid film accurately, the Jacoboson-Floberg-Olsson (JFO cavitation boundary condition is applied to the mixed lubrication model for ensuring the mass-conservative law. On this basis, the minimum oil film thickness and average friction forces in the compression ring-cylinder liner system are investigated under the engine-like conditions by changing the dimple area density, radius, and depth. The wear load, average friction forces, and power loss of the compression ring-cylinder liner system with and without dimples are also compared for different compression ring face profiles. The results show that the spherical dimples can produce a larger reduction of friction in mixed lubrication region, and reduce power loss significantly in the middle of the strokes. In addition, higher reduction percentages of average friction forces and wear are obtained for smaller crown height or larger axial width.

  15. When you lubricate well, you go well? A cause analysis of damages on bearer rings at a hydrogen compressor recently brought into service with the aid of monitoring the lubricating points of cylinder liners; Wer gut schmiert, der gut faehrt? Ursachenanalyse an Tragringschaeden bei einem neu in Betrieb genommenen Wasserstoffverdichter mit Hilfe einer Zylinderschmierstellenueberwachung

    Energy Technology Data Exchange (ETDEWEB)

    Klinger, Lars [Bayernoil Raffineriegesellschaft mbH, Neustadt a.d. Donau (Germany)

    2013-02-15

    For humans the blood circuit transports the ''lifeblood''. It supplies the body with the different essential nutrients and disposes adverse waste. The circuit of lubricant in recip compressors has quiet similar functions. It provides all relevant components with lubricant. This lubricant circuit supplies i.a. the crosshead slide way and bearings, where a hydrodynamic flooding is created. At the same time frictional heat is conducted and pollutions as well as deposits are washed away. But especially for recip compressors there is also another lubricating system, which is barely applied in the real operating process. It is about the supply of the packing glands and the piston liners with lubricant inside the compression chamber at ''wet running machines''. In the case of the lubricant supply at cylinder liners the lubricating oil is dispatched to the appropriate areas by an external lubricating system, which consists of a reservoir and an oil pump. This is a loss lubrication, i.e. the used lubricate is transported into the process by the transfer medium. The mechanical quality of this lubricating system can have great influence on the durability of bearer rings and sealing rings in a recip compressor. Especially the homogeneity of the dispatched lubricating oil amount and the absolute dispatched amount are two very important factors. The absolute amount is within the range of cm{sup 3} per hour. The influences of the cylinder liner lubricant supply on the durability of piston seal rings and bearer rings are shown with the concrete example of one recip compressor. Analytical measures to clearly detect such damages at the bearer rings are disclosed, just as which possibility there is to measure the low quantity of lubricant to the cylinder liners reliably. Furthermore a solution is presented, which allows the solid operation of the compressor.

  16. Using stamping punch force variation for the identification of changes in lubrication and wear mechanism

    Science.gov (United States)

    Voss, B. M.; Pereira, M. P.; Rolfe, B. F.; Doolan, M. C.

    2017-09-01

    The growth in use of Advanced High Strength Steels in the automotive industry for light-weighting and safety has increased the rates of tool wear in sheet metal stamping. This is an issue that adds significant costs to production in terms of manual inspection and part refinishing. To reduce these costs, a tool condition monitoring system is required and a firm understanding of process signal variation must form the foundation for any such monitoring system. Punch force is a stamping process signal that is widely collected by industrial presses and has been linked closely to part quality and tool condition, making it an ideal candidate as a tool condition monitoring signal. In this preliminary investigation, the variation of punch force due to different lubrication conditions and progressive wear are examined. Linking specific punch force signature changes to developing lubrication and wear events is valuable for die wear and stamping condition monitoring. A series of semi-industrial channel forming trials were conducted under different lubrication regimes and progressive die wear. Punch force signatures were captured for each part and Principal Component Analysis (PCA) was applied to determine the key Principal Components of the signature data sets. These Principal Components were linked to the evolution of friction conditions over the course of the stroke for the different lubrication regimes and mechanism of galling wear. As a result, variation in punch force signatures were correlated to the current mechanism of wear dominant on the formed part; either abrasion or adhesion, and to changes in lubrication mechanism. The outcomes of this study provide important insights into punch force signature variation, that will provide a foundation for future work into the development of die wear and lubrication monitoring systems for sheet metal stamping.

  17. Mild wear modeling in the boundary lubrication regime

    NARCIS (Netherlands)

    Bosman, Rob

    2011-01-01

    Currently, the increasing demand for smaller and more efficient systems is increasing the stress put on interacting components. This forces components to operate in the boundary lubrication regime. In this lubrication regime, the normal load put on the components is no longer carried by the

  18. Effect of gamma radiation on graphite - PTFE dry lubrication system

    Science.gov (United States)

    Singh, Sachin; Tyagi, Mukti; Seshadri, Geetha; Tyagi, Ajay Kumar; Varshney, Lalit

    2017-12-01

    An effect of gamma radiation on lubrication behavior of graphite -PTFE dry lubrication system has been studied using (TR-TW-30L) tribometer with thrust washer attachment in plane contact. Different compositions of graphite and PTFE were prepared and irradiated by gamma rays. Gamma radiation exposure significantly improves the tribological properties indicated by decrease in coefficient of friction and wear properties of graphite -PTFE dry lubrication system. SEM and XRD analysis confirm the physico-chemical modification of graphite-PTFE on gamma radiation exposure leading to a novel dry lubrication system with good slip and anti friction properties.

  19. Biodiesel as a lubricity additive for ultra low sulfur diesel

    Directory of Open Access Journals (Sweden)

    Subongkoj Topaiboul1 and 2,*

    2010-05-01

    Full Text Available With the worldwide trend to reduce emission from diesel engines, ultra low sulfur diesel has been introduced with thesulfur concentration of less than 10 ppm. Unfortunately, the desulfurization process inevitably reduces the lubricity of dieselfuel significantly. Alternatively, biodiesel, with almost zero sulfur content, has been added to enhance lubricity in an ultralow sulfur diesel. This work has evaluated the effectiveness of the biodiesel amount, sourced from palm and jatropha oil,and origin in ultra low sulfur diesel locally available in the market. Wear scar from a high-frequency reciprocating rig isbenchmarked to the standard value (460 m of diesel fuel lubricity. It was found that very small amount (less than 1% ofbiodiesel from either source significantly improves the lubricity in ultra low sulfur diesel, and the biodiesel from jatropha oilis a superior lubricity enhancer.

  20. Compressibilities and viscosities of reference, vegetable, and synthetic gear lubricants

    DEFF Research Database (Denmark)

    Regueira Muñiz, Teresa; Lugo, Luis; Fernández, Josefa

    2014-01-01

    Nowadays, one of the primary choices of base oils for environmentally aware lubricants is vegetable oils. This is due to their good natural biodegradability and very low toxicity in combination with very good lubricity characteristics. The development of new vegetable-based lubricants requires...... values of six gear lubricants, two of them reference mineral oils and the other four developed biodegradable oils based in high oleic sunflower oil or in synthetic esters. It was found that all of the lubricants have both similar compressibilities and similar expansivities. Dowson and Higginson, Zhu.......06%. Dowson and Higginson and Zhu and Wen equations of state do not predict well the isothermal compressibilities, with AAD % being around 45% for both equations. Moreover, the viscosities were measured in the temperature range from 278.15 to 373.15 K at atmospheric pressure for these oils, and the viscosity...

  1. Lubrication analysis of the thrust bearing in the main coolant pump of SMART

    International Nuclear Information System (INIS)

    Lee, J. S.; Park, J. S.; Kim, J. H.; Hur, H.; Kim, J. I.

    2001-01-01

    Thrust bearing and journal bearings are installed in the main coolant pump for SMART to support the rotating shaft with proper lubrication. The canned motor type main coolant pumps are arranged vertically on the reactor vessel and especially the MCP bearings are lubricated with water without external lubricating oil supply. Because axial load capacity of the thrust bearing can hardly meet requirement to acquire hydrodynamic or fluid film lubrication state, self-lubrication characteristics of silicon graphite meterials would be needed. Lubricational analysis method for thrust bearing for the main coolant pump of SMART is proposed, and lubricational characteristics of the bearing generated by solving the Reynolds equation are examined in this paper

  2. Performance of two-lobe hole-entry hybrid journal bearing system under the combined influence of textured surface and couple stress lubricant

    Science.gov (United States)

    Khatri, Chandra B.; Sharma, Satish C.

    2018-02-01

    Textured surface in journal bearings is becoming an important area of investigation during the last few years. Surface textures have the shapes of micro-dimple with a small diameter and depth having order of magnitude of bearing clearance. This paper presents the influence of couple stress lubricant on the circular and non-circular hole-entry hybrid journal bearing system and reports the comparative study between the textured and non-textured circular/non-circular hybrid journal bearing system. The governing Reynolds equation has been modified for the couple stress lubricant flow in the clearance of bearing and journal. The FEM technique has been applied to solve the modified Reynolds equation together with restrictor flow equation. The numerically simulated results indicate that the influence of couple stress lubricant is significantly more in textured journal bearing than that of non-textured journal bearing. Further, it has been observed that the textured two-lobe (δ = 1.1) hybrid journal bearing lubricated with couple stress lubricant provides larger values of fluid film stiffness coefficients and stability threshold speed against other bearings studied in the present paper.

  3. Systematic evaluation of common lubricants for optimal use in tablet formulation.

    Science.gov (United States)

    Paul, Shubhajit; Sun, Changquan Calvin

    2018-05-30

    As an essential formulation component for large-scale tablet manufacturing, the lubricant preserves tooling by reducing die-wall friction. Unfortunately, lubrication also often results in adverse effects on tablet characteristics, such as prolonged disintegration, slowed dissolution, and reduced mechanical strength. Therefore, the choice of lubricant and its optimal concentration in a tablet formulation is a critical decision in tablet formulation development to attain low die-wall friction while minimizing negative impact on other tablet properties. Three commercially available tablet lubricants, i.e., magnesium stearate, sodium stearyl fumerate, and stearic acid, were systematically investigated in both plastic and brittle matrices to elucidate their effects on reducing die-wall friction, tablet strength, tablet hardness, tablet friability, and tablet disintegration kinetics. Clear understanding of the lubrication efficiency of commonly used lubricants as well as their impact on tablet characteristics would help future tablet formulation efforts. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Advances and patents about grinding equipments with nano-particle jet minimum quantity lubrication.

    Science.gov (United States)

    Jia, Dongzhou; Li, Changhe; Wang, Sheng; Zhang, Qiang; Hou, Yali

    2014-01-01

    In recent years, a large number of patents have been devoted to developing minimum quantity lubrication (MQL) grinding techniques that can significantly improve both environmentally conscious and energy saving and costeffective sustainable grinding fluid alternatives. Among them, one patent is about a controllable nano-fluids jet MQL grinding system based on electrostatic atomization. Using the principle of electrostatics, it can achieve the control of droplet transfer by charging the sprayed droplets. This system can improve the uniformity of the droplet spectrum, liquid deposition efficiency and effective utilization of liquid. It can also effectively control the movement patterns of the droplets, thereby reducing the pollution of the environment and providing better health protection for workers. Although researchers accomplished profound and systematic studies on MQL, especially on nano-particles jet MQL. It can solve the shortage of MQL in cooling performance, greatly improve the working environment, save energy and reduce costs to achieve a low-carbon manufacturing. The unique lubricating performance and tribological property of solid nano-particles form nano-particle shearing films at the grinding wheel/workpiece interface, which can enhance the lubricating performance of MQL grinding. Existing studies on MQL grinding equipments, however, cannot meet the needs of the technological development. Therefore, our research provided a general introduction of the latest patients and research progress of nanoparticles jet MQL grinding equipments presented by the research team from Qingdao Technological University.

  5. Deposited Micro Porous Layer as Lubricant Carrier in Metal Forming

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Bay, Niels; Tang, Peter Torben

    2008-01-01

    as lubricant reservoirs. Conventional friction tests for cold forming; ring compression and double cup extrusion tests are carried out with Molykote DX paste and mineral oil as lubricant. Both lubricants act as intended for the ring compressions test whereas only the low viscosity oil perform successfully...... in the cup extrusion test. For all specimens without the porous coating, high friction conditions are identified....

  6. Raman chemical mapping of magnesium stearate delivered by a punch-face lubrication system on the surface of placebo and active tablets.

    Science.gov (United States)

    Šašiċ, Slobodan; Ojakovo, Peter; Warman, Martin; Sanghvi, Tapan

    2013-09-01

    Raman chemical mapping was used to determine the distribution of magnesium stearate, a lubricant, on the surface of tablets. The lubrication was carried out via a punch-face lubrication system with different spraying rates applied on placebo and active-containing tablets. Principal component analysis was used for decomposing the matrix of Raman mapping spectra. Some of the loadings associated with minuscule variation in the data significantly overlap with the Raman spectrum of magnesium stearate in placebo tablets and allow for imaging the domains of magnesium stearate via corresponding scores. Despite the negligible variation accounted for by respective principal components, the score images seem reliable as demonstrated through thresholding the one-dimensional representation and the spectra of the hot pixels that show a weak but perceivable magnesium stearate band at 1295 cm(-1). The same approach was applied on the active formulation, but no magnesium stearate was identified, presumably due to overwhelming concentration and spectral contribution of the active pharmaceutical ingredient.

  7. Effect of boundary conditions on the performances of gas-lubricated micro journal bearing

    International Nuclear Information System (INIS)

    Wang Sheng; Lei Kangbin; Kiwamu, Kase; Luo Xilian; Gu Zhaolin

    2010-01-01

    As significant components of micromechanics, gas-lubricated microbearings are more prevalent for their special advantages than other types. The fluid dynamics of the microbearing is different from their larger cousins due to the noncontinuum effect and surface-dominated effect, which may make the Navier-Stokes equations invalid. In this paper, by considering the accommodation coefficients on journal (α i ) and that on bearing (α o ) separately, the microbearings with different bearing numbers under the assumption of large L/D (length to diameter) are simulated using direct simulation Monte Carlo (DSMC) program incorporated with a Volume-CAD software. The diffuse reflection model and Cercignani-Lampis-Lord (CLL) model are applied to model the molecule-surface interaction. The flow field characteristics, as well as the performances of gas-lubricated journal bearings including load-carrying capacity, attitude angle and bearing drag are obtained. The results reveal that α i and α o have different effects to flow field characteristics and bearing performances. The bearing number has significantly impact on the bearing performances. The method developed in this paper would be very useful for designing and evaluating the gas-lubricated journal microbearing.

  8. High-Performing, Low-Temperature-Operating, Long-Lifetime Aerospace Lubricants

    Science.gov (United States)

    Joshi, Prakash

    2015-01-01

    Long-duration space exploration will require spacecraft systems that can operate effectively over several years with minimal or no maintenance. Aerospace lubricants are key components of spacecraft systems. Physical Sciences Inc., has synthesized and characterized novel ionic liquids for use in aerospace lubricants that contribute to decreased viscosity, friction, and wear in aerospace systems. The resulting formulations offer low vapor pressure and outgassing properties and thermal stability up to 250 C. They are effective for use at temperatures as low as -70 C and provide long-term operational stability in aerospace systems. In Phase II, the company scaled several new ionic liquids and evaluated a novel formulation in a NASA testbed. The resulting lubricant compounds will offer lower volatility, decreased corrosion, and better tribological characteristics than standard liquid lubricants, particularly at lower temperatures.

  9. Compatibility of refrigerants and lubricants with elastomers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hamed, G.R.; Seiple, R.H.; Taikum, Orawan

    1994-01-01

    The information contained in this report is designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. In part I of the program the swell behavior in the test fluids has been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 and 24 hours for samples removed fro the refrigerant test fluids and 24 hours after removal from the lubricants. Part II of the testing program includes the evaluation of tensile strength, hardness, weight, and dimensional changes after immersion aging in refrigerant/lubricant mixtures of selected elastomer formulations at elevated temperature and pressure.

  10. Tribological study for the application of biodegradable lubricants in the industry

    Energy Technology Data Exchange (ETDEWEB)

    Igartua, A.; Aranzabe, A.; Barriga, J.; Rodriguez, J. [TEKNIKER, Eibar (Spain)

    1998-11-01

    The main problems in critical machinery elements using vegetable base oil, are the poor behaviour concerning low temperature properties, hydrolytic and oxidation stability problems, overheating, compatibility, smell and corrosivity. Our technical approach deals with the development of new base-stocks such regrew industrial crops, biological and chemically improved vegetable oils decreasing the content of non stable products. It is necessary improve the rheologic behaviour, its oxidation and hydrolytic stability and decrease the actual limit of temperature of machines avoiding nucleation of paraffin`s. Transformation of these high performance oils into higher added value to lubricate gears is another objective of this research. Specialist in the world of surface treatments and lubrication with combined expertise in tribological behaviour and lubrication will perform tests in order to improve technical performance and efficiency of these new vegetable lubricants. Lifecycle cost will help to evaluate environmental and cost effective complete chain. In this paper, characteristics of the reference lubricants actually used for lubricate hydraulic equipment`s are reported. (author) 7 refs.

  11. Design considerations in mechanical face seals for improved performance. 2: Lubrication

    Science.gov (United States)

    Ludwig, L. P.; Greiner, H. F.

    1977-01-01

    The importance of sealing technology in our industrial, chemical-oriented society in regard to maintenance and environmental contamination is pointed out. It is stated that seal performance (leakage, life) is directly related to seal lubrication. Current thinking in regard to seal lubrication is reviewed; the effect of energy dissipation in the thin lubricating film separating the sealing faces is pointed out, and the results of vaporization due to heating are illustrated. Also, hydrodynamic lubrication is reviewed, and an inherent tendency for the seal to operate with angular misalignment is shown. Recent work on hydrostatic effects is summarized and the conditions for seal instability are discussed. Four different modes of seal lubrication are postulated with the mode type being a strong function of speed and pressure.

  12. Nanomaterials in Lubricants: An Industrial Perspective on Current Research

    Directory of Open Access Journals (Sweden)

    Boris Zhmud

    2013-11-01

    Full Text Available This paper presents an overview on the use of various classes of nanomaterials in lubricant formulations. The following classes of nanomaterials are considered: fullerenes, nanodiamonds, ultradispersed boric acid and polytetrafluoroethylene (PTFE. Current advances in using nanomaterials in engine oils, industrial lubricants and greases are discussed. Results of numerous studies combined with formulation experience of the authors strongly suggest that nanomaterials do indeed have potential for enhancing certain lubricant properties, yet there is a long way to go before balanced formulations are developed.

  13. Lubrication of Space Shuttle Main Engine Turbopump Bearings

    Science.gov (United States)

    Gibson, Howard; Munafo, Paul (Technical Monitor)

    2001-01-01

    The Space Shuttle has three main engines that are used for propulsion into orbit. These engines are fed propellants by four turbopumps on each engine. A main element in the turbopump is the bearings supporting the rotor that spins the turbine blades and the pump impeller. These bearings are required to spin at very high speeds, support radial and thrust loads, and have high wear resistance without the benefit of lubrication. The liquid hydrogen and oxygen propellants flow through the bearings to cool the surfaces. The volatile nature of the propellants excludes any conventional means of lubrication. Lubrication for these bearings is provided by the ball separator inside the bearing. The separator is a composite material that supplies a transfer film of lubrication to the rings and balls. New separator materials and lubrication schemes have been investigated at Marshall Space Flight Center in a bearing test rig with promising results. Hybrid bearings with silicon nitride balls have also been evaluated. The use of hybrid, silicon nitride ball bearings in conjunction -with better separator materials has shown excellent results. The work that Marshall has done is being utilized in turbopumps flying on the space shuttle fleet and will be utilized in future space travel. This result of this work is valuable for all aerospace and commercial applications where high-speed bearings are used.

  14. Reliability model for helicopter main gearbox lubrication system using influence diagrams

    International Nuclear Information System (INIS)

    Rashid, H.S.J.; Place, C.S.; Mba, D.; Keong, R.L.C.; Healey, A.; Kleine-Beek, W.; Romano, M.

    2015-01-01

    The loss of oil from a helicopter main gearbox (MGB) leads to increased friction between components, a rise in component surface temperatures, and subsequent mechanical failure of gearbox components. A number of significant helicopter accidents have been caused due to such loss of lubrication. This paper presents a model to assess the reliability of helicopter MGB lubricating systems. Safety risk modeling was conducted for MGB oil system related accidents in order to analyse key failure mechanisms and the contributory factors. Thus, the dominant failure modes for lubrication systems and key contributing components were identified. The Influence Diagram (ID) approach was then employed to investigate reliability issues of the MGB lubrication systems at the level of primary causal factors, thus systematically investigating a complex context of events, conditions, and influences that are direct triggers of the helicopter MGB lubrication system failures. The interrelationships between MGB lubrication system failure types were thus identified, and the influence of each of these factors on the overall MGB lubrication system reliability was assessed. This paper highlights parts of the HELMGOP project, sponsored by the European Aviation Safety Agency to improve helicopter main gearbox reliability. - Highlights: • We investigated methods to optimize helicopter MGB oil system run-dry capability. • Used Influence Diagram to assess design and maintenance factors of MGB oil system. • Factors influencing overall MGB lubrication system reliability were identified. • This globally influences current and future helicopter MGB designs

  15. Growth and opportunities in the lubricants business in Asia

    International Nuclear Information System (INIS)

    Burke, B.F.

    1995-01-01

    The demand for lubricants is increasing faster in Asia than any other part of the world. This development is being propelled largely by the expansion of the transportation and manufacturing sectors. By the year 2000, lubricant consumption in Asia will exceed that of Western Europe, Africa and the Middle East combined. Aside from this growth, most of the region is shifting from very low quality to higher quality value-added products. In view of these factors, there has been an explosion of activity over the past few years as lubricant blenders and additive suppliers attempt to position themselves within the market. Over the past year, Chem Systems has undertaken an extensive study of the lubricants business in East Asia, focusing on the evolution of this complex market structure and the identification of attractive opportunities. The overview presented in this paper is a product of these efforts. Whether you are a multinational oil company, independent blender, national oil company or multinational additive suppler, the questions are the same when developing a strategy for the region: regional overview of lubricant business structure; outlook for Asian demand; profile of lube/additives businesses; and successful competition--what is required?

  16. Friction-induced nano-structural evolution of graphene as a lubrication additive

    Science.gov (United States)

    Zhao, Jun; Mao, Junyuan; Li, Yingru; He, Yongyong; Luo, Jianbin

    2018-03-01

    Graphene has attracted enormous attention in the field of lubrication based on its excellent physical and chemical properties. Although many studies have obtained thermally or chemically- exfoliated graphene and investigated their wide and important application, few studies have reported their physical nano-structural evolution under friction. In this study, we investigated the lubrication properties of graphene additives with different layer numbers and interlayer spacing by exfoliating. The additives with a higher degrees of exfoliation changed to ordering under friction, and had better lubrication properties, while that with a lower degrees exhibited obvious structural defects and high friction. Therefore, the original degrees of exfoliation plays a key role in the structural evolution of graphene and superior lubrication can be achieved through the physical nano-structure changing to ordering, even graphitization. Furthermore, the ordered tribofilm on the frictional interfaces was parallel to the sliding direction, meaning the highly exfoliated graphene indeed reaching slippage between its layers, which wasn't experimentally discovered in previous studies. This work provides a new understanding of the relationship between friction-induced nano-structural evolution and lubrication properties of graphene as a lubrication additive, and has great potential for the structural design of graphene as a lubrication additive.

  17. Design considerations in mechanical face seals for improved performance. II - Lubrication

    Science.gov (United States)

    Ludwig, L. P.; Greiner, H. F.

    1977-01-01

    The importance of sealing technology in the U.S. industrial chemical-orientated society in regard to maintenance and environmental contamination is pointed out. It is stated that seal performance (leakage, life) is directly related to seal lubrication, which is a mechanism not well understood. Current thinking in regard to seal lubrication is reviewed, the effect of energy dissipation in the thin lubricating film separating the sealing faces is pointed out, and the results of vaporization due to heating are illustrated. Also, hydrodynamic lubrication is reviewed, and an inherent tendency for the seal to operate with angular misalignment is pointed out. Recent work on hydrostatic effects is summarized and the conditions for seal instability are discussed. Four different modes of seal lubrication are postulated with the mode type being a strong function of speed and pressure.

  18. Surface effects in adhesion, friction, wear, and lubrication

    National Research Council Canada - National Science Library

    Buckley, Donald H

    1981-01-01

    ... for carbon bodies to improve their wear resistance in high altitude aircraft generator applications. Basic researchers found that moisture in the carbon was critical t o its lubrication. Therefore, the presence of moisture o n the surface of the carbon was important. With it present, the carbon lubricated very effectively and very low wear was ...

  19. Biofluid lubrication for artificial joints

    Science.gov (United States)

    Pendleton, Alice Mae

    This research investigated biofluid lubrication related to artificial joints using tribological and rheological approaches. Biofluids studied here represent two categories of fluids, base fluids and nanostructured biofluids. Base fluids were studied through comparison of synthetic fluids (simulated body fluid and hyaluronic acid) as well as natural biofluids (from dogs, horses, and humans) in terms of viscosity and fluid shear stress. The nano-structured biofluids were formed using molecules having well-defined shapes. Understanding nano-structured biofluids leads to new ways of design and synthesis of biofluids that are beneficial for artificial joint performance. Experimental approaches were utilized in the present research. This includes basic analysis of biofluids' property, such as viscosity, fluid shear stress, and shear rate using rheological experiments. Tribological investigation and surface characterization were conducted in order to understand effects of molecular and nanostructures on fluid lubrication. Workpiece surface structure and wear mechanisms were investigated using a scanning electron microscope and a transmission electron microscope. The surface topography was examined using a profilometer. The results demonstrated that with the adding of solid additives, such as crown ether or fullerene acted as rough as the other solids in the 3-body wear systems. In addition, the fullerene supplied low friction and low wear, which designates the lubrication purpose of this particular particle system. This dissertation is constructed of six chapters. The first chapter is an introduction to body fluids, as mentioned earlier. After Chapter II, it examines the motivation and approach of the present research, Chapter III discusses the experimental approaches, including materials, experimental setup, and conditions. In Chapter IV, lubrication properties of various fluids are discussed. The tribological properties and performance nanostructured biofluids are

  20. Direct observation of lubricant additives using tomography techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yunyun [Department of Materials Science and Engineering, Texas A& M University, College Station, Texas 77843 (United States); Sanchez, Carlos [Mechanical Engineering, Texas A& M University, College Station, Texas 77843 (United States); Parkinson, Dilworth Y. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Liang, Hong, E-mail: hliang@tamu.edu [Department of Materials Science and Engineering, Texas A& M University, College Station, Texas 77843 (United States); Mechanical Engineering, Texas A& M University, College Station, Texas 77843 (United States)

    2016-07-25

    Lubricants play important roles in daily activities such as driving, walking, and cooking. The current understanding of mechanisms of lubrication, particularly in mechanical systems, has been limited by the lack of capability in direct observation. Here, we report an in situ approach to directly observe the motion of additive particles in grease under the influence of shear. Using the K-edge tomography technique, it is possible to detect particular additives in a grease and observe their distribution through 3D visualization. A commercial grease as a reference was studied with and without an inorganic additive of Fe{sub 3}O{sub 4} microparticles. The results showed that it was possible to identify these particles and track their movement. Under a shear stress, Fe{sub 3}O{sub 4} particles were found to adhere to the edge of calcium complex thickeners commonly used in grease. Due to sliding, the grease formed a film with increased density. This approach enables in-line monitoring of a lubricant and future investigation in mechanisms of lubrication.

  1. The Role of Interstitial Fluid Pressurization in Articular Cartilage Lubrication

    Science.gov (United States)

    Ateshian, Gerard A.

    2009-01-01

    Over the last two decades, considerable progress has been reported in the field of cartilage mechanics that impacts our understanding of the role of interstitial fluid pressurization on cartilage lubrication. Theoretical and experimental studies have demonstrated that the interstitial fluid of cartilage pressurizes considerably under loading, potentially supporting most of the applied load under various transient or steady-state conditions. The fraction of the total load supported by fluid pressurization has been called the fluid load support. Experimental studies have demonstrated that the friction coefficient of cartilage correlates negatively with this variable, achieving remarkably low values when the fluid load support is greatest. A theoretical framework that embodies this relationship has been validated against experiments, predicting and explaining various outcomes, and demonstrating that a low friction coefficient can be maintained for prolonged loading durations under normal physiological function. This paper reviews salient aspects of this topic, as well as its implications for improving our understanding of boundary lubrication by molecular species in synovial fluid and the cartilage superficial zone. Effects of cartilage degeneration on its frictional response are also reviewed. PMID:19464689

  2. Synthetic lubricating oils

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Jurado, J

    1953-01-01

    A yellow solid petroleum paraffin d/sup 60/ 0.808, I number 3.5, average molecular weight 350, chlorinated and condensed with benzene, xylene, or naphthalene by the Friedel and Crafts reaction, in the presence of anhydrous AlCl/sub 3/ or activated Al, gave synthetic lubricating oils. Xylene was the preferred aromatic compound, naphthalene required the use of less completely chlorinated paraffin, benzene produced resins difficult to remove and gave darker oils with excessive green fluorescence. Activated Al rather than anhydrous AlCl/sub 3/ gave darker oils with higher viscosity and Conradson C values. Tar from the low-temperature distillation of lignite, used as a source of a paraffin fraction melting 40/sup 0/ to 48/sup 0/ (chlorinated to 26.5 percent Cl) and an aromatic fraction, 45 percent aromatic compounds by volume (mainly polysubstituted benzenes), I number 10, was converted to a similar synthetic lubricant with the following properties: Kinematic viscosity at 210/sup 0/ F., 50.4 centistokes; viscosity index, 92; Conradson C, 1.5 percent; solidification point, 9/sup 0/; S, 0.41 percent.

  3. Effect of lubricant on the reliability of dental implant abutment screw joint: An in vitro laboratory and three-dimension finite element analysis.

    Science.gov (United States)

    Wu, Tingting; Fan, Hongyi; Ma, Ruiyang; Chen, Hongyu; Li, Zhi; Yu, Haiyang

    2017-06-01

    Biomechanical factors play a key role in the success of dental implants. Fracture and loosening of abutment screws are major issues. This study investigated the effect of lubricants on the stability of dental implant-abutment connection. As lubricants, graphite and vaseline were coated on the abutment screw surface, respectively, and a blank without lubricant served as the control. The total friction coefficient (μ tot ), clamping force, fatigue behavior and detorque of the joint combined with dynamic cyclic loading were measured under different lubricating conditions. Further, a three-dimensional finite element analysis was used to investigate stress distribution, in conjunction with experimental images. The results showed that the lubricant reduced μ tot , which in turn led to an increase in clamping force. Decrease in loading increased the fatigue life of the screw. However, use of lubricant at high load reduced the fatigue life. Ductile fracture at the first thread of the screw was the chief failure mode, which was due to maximum von Mises stress. Higher stress levels occurred in the lubricant groups. Lubricated screws resulted in lower detorque which made the joint easier to loosen. In conclusion, the lubricant cannot effectively improve the reliability of dental implant-abutment connection. Keeping the interfaces of implant-screw uncontaminated and strengthening the surface of the screw may be recommend for clinical operation and future design. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Improving the Friction Durability of Magnetic Head-Disk Interfaces by Thin Lubricant Films

    Directory of Open Access Journals (Sweden)

    Shojiro Miyake

    2016-01-01

    Full Text Available Nanowear and viscoelasticity were evaluated to study the nanotribological properties of lubricant films of Z-tetraol, D-4OH, and A20H, including their retention and replenishment properties. For A20H and thick Z-tetraol-coated disks, the disk surface partially protrudes, and the phase lag (tan⁡δ increases with friction. This result is consistent with replenishment of the lubricant upon tip sliding. For the D-4OH-coated disk, the tan⁡δ value decreases with tip sliding, similar to the case for the unlubricated disk. The durability of the lubricant-coated magnetic disks was then evaluated by load increase and decrease friction tests. The friction force of the unlubricated disk rapidly increases after approximately 30 reciprocating cycles, regardless of the load. The lubrication state can be estimated by mapping the dependence of friction coefficient on the reciprocating cycle number and load. The friction coefficient can be classified into one of four areas. The lowest friction area constitutes fluid lubrication. The second area constitutes the transition to mixed lubrication. The third area constitutes boundary lubrication. The highest friction of the fourth area results from surface fracture. The boundary lubricating area of the A20H lubricant was wide, because of its good retention and replenishment properties.

  5. On the energy economics of air lubrication drag reduction

    Directory of Open Access Journals (Sweden)

    Simo A. Mäkiharju

    2012-12-01

    Full Text Available Air lubrication techniques for frictional drag reduction on ships have been proposed by numerous researchers since the 19th century. However, these techniques have not been widely adopted as questions persist about their drag reduction performance beyond the laboratory, as well as energy and economic cost-benefit. This paper draws on data from the literature to consider the suitability of air lubrication for large ocean going and U.S. Great Lakes ships, by establishing the basic energy economic calculations and presenting results for a hypothetical air lubricated ship. All the assumptions made in the course of the analysis are clearly stated so that they can be refined when considering application of air lubrication to a specific ship. The analysis suggests that, if successfully implemented, both air layer and partial cavity drag reduction could lead to net energy savings of 10 to 20%, with corresponding reductions in emissions.

  6. Microscopic alterations in silicone tubes surface after application of ophthalmological lubricants

    Directory of Open Access Journals (Sweden)

    Jacqueline Sousa

    2015-02-01

    Full Text Available Objective: To identify microscopic morphological alterations in the surface of silicone tubes used for intubation of the lachrymal system after exposure to ophthalmological lubricants. Methods: Experimental, descriptive and longitudinal study consisted of the application of ophthalmological lubricants in silicone tubes. The tubes were divided in: Group 1 (Cylocort®, 2 (Epitezan®, 3 (Labcaína®, 4 (Liposic®, 5 (Maxinom® and 6 (Vista Gel®. One tube was not exposed to any lubricant, used as control. The tubes were observed and photographed after 2 hours, 30 days, 45 days before and after cleaning the surface and lumen. The following aspects were observed: surface (regularity, transparency, quantity, size and shape of the substances and lumen (obstruction. Results: Control: irregular surface with pores after 2 hours: Group 1 – irregular surface with presence of film; Groups 2, 3 and 5 – abundant and irregular quantity of ointment at the surface; Group 4 – discrete modification at the surface; Group 6 – growth of pigmented (brownish structures with filaments in the lumen, with discrete film in the surface. 30 Days: Groups 1, 4 and 5 – increase of the irregular superficial film; Group 2 – crust with notorious horizontal lines; Group 3 – diminution of the superficial film; Group 4 – crust less evident. Group 6 – increase of the structure seen with 2 hours of exposition, arboriform aspect. Forty-five days pre cleaning: Group 4 – diminution of the surface crust; Group 6 – expansion of the arboriform structure; unaltered findings in other groups. 45 days after cleaning: Groups 1 and 5 – light diminution of the surface crust; Groups 2, 3 and 4 – kept the modifications; Group 6 – the structure inside the lumen was not identified, clear surface, without evidence of film. Conclusions: Microscopic morphological alterations in the surface and lumen of silicone tubes can occur when those remain in contact with determined

  7. Fe-Modeling Of Starved Hydrodynamic Lubrication With Free Surface Effects

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Vølund, Anders; Klit, Peder

    2017-01-01

    This work concerns a new finite-element formulation for solving hydrody-namic lubrication problems that include partially flooded regions, where the lubricant film behavior is governed by free surface flow....

  8. Universal water-dilutable inhibited protective lubricants

    International Nuclear Information System (INIS)

    Mamtseva, M.V.; Kardash, N.V.; Latynina, M.B.

    1993-01-01

    In the interest of environmental protection, improvement of working conditions, and reduced fire hazard in production operations, water-based protective lubricants are now available in a wide assortment, and the production volume has increased greatly. The term water-dilutable inhibited protective lubricants (WDIPL) means water-soluble, water-emulsifiable, or water-dispersible products with the dual function of reducing friction and wear and protecting metal surfaces against corrosion for specified periods of time. According to the standard Unified System of Protection Against Corrosion and Aging (COST 9.103-78), WDIPLs are classed as products for the temporary corrosion protection of metals and end-items. In the general class of WDIPLs one can identify water-dilutable combination corrosion inhibitors, film-forming inhibited petroleum compositions (FIPC-d), detergent-preservative fluids, operational-preservative lubricating-cooling process compounds (ICPC), and, finally, universal multifunctional products. Combined corrosion inhibitors may consist of water-soluble organic and inorganic compounds; water/oil and oil-soluble surfactants - corrosion inhibitors of the chemisorption type or donor and/or acceptor types; shielding inhibitors of the adsorption type; and fast-acting water-displacing components. 23 refs

  9. Tribological characteristic enhancement effects by polymer thickened oil in lubricated sliding contacts

    Science.gov (United States)

    Pratomo, Ariawan Wahyu; Muchammad, Tauviqirrahman, Mohammad; Jamari, Bayuseno, Athanasius P.

    2016-04-01

    Polymer thickened oils are the most preferred materials for modern lubrication applications due to their high shear. The present paper explores a lubrication mechanism in sliding contact lubricated with polymer thickened oil considering cavitation. Investigations are carried out by using a numerical method based on commercial CFD (computational fluid dynamic) software ANSYS for fluid flow phenomenon (Fluent) to assess the tribological characteristic (i.e. hydrodynamic pressure distribution) of lubricated sliding contact. The Zwart-Gerber-Belamri model for cavitation is adopted in this simulation to predict the extent of the full film region. The polymer thickened oil is characterized as non-Newtonian power-law fluid. The simulation results show that the cavitation lead lower pressure profile compared to that without cavitation. In addition, it is concluded that the characteristic of the lubrication performance with polymer thickened oil is strongly dependent on the Power-law index of lubricant.

  10. Lubrication analysis of the journal bearing in the main coolant pump of SMART

    International Nuclear Information System (INIS)

    Lee, J. S.; Park, J. S.; Kim, J. H.; Kim, J. I.; Jang, M. H.

    2000-01-01

    Special type journal bearings are installed in the main coolant pump for SMART to support the rotating shaft with proper lubrication. The canned motor type main coolant pumps are arranged vertically on the reactor vessel. The MCP bearings are lubricated with water without external lubricating oil supply. Long bearing with vertical grooves is designed with relatively large bearing clearance to accommodate the long shaft. Lubricational analysis method for journal bearing with vertical grooves in the main coolant pump of SMART is proposed, and lubricational characteristics of the bearings are examined in this paper

  11. A model of synovial fluid lubricant composition in normal and injured joints

    Directory of Open Access Journals (Sweden)

    M E Blewis

    2007-03-01

    Full Text Available The synovial fluid (SF of joints normally functions as a biological lubricant, providing low-friction and low-wear properties to articulating cartilage surfaces through the putative contributions of proteoglycan 4 (PRG4, hyaluronic acid (HA, and surface active phospholipids (SAPL. These lubricants are secreted by chondrocytes in articular cartilage and synoviocytes in synovium, and concentrated in the synovial space by the semi-permeable synovial lining. A deficiency in this lubricating system may contribute to the erosion of articulating cartilage surfaces in conditions of arthritis. A quantitative intercompartmental model was developed to predict in vivo SF lubricant concentration in the human knee joint. The model consists of a SF compartment that (a is lined by cells of appropriate types, (b is bound by a semi-permeable membrane, and (c contains factors that regulate lubricant secretion. Lubricant concentration was predicted with different chemical regulators of chondrocyte and synoviocyte secretion, and also with therapeutic interventions of joint lavage and HA injection. The model predicted steady-state lubricant concentrations that were within physiologically observed ranges, and which were markedly altered with chemical regulation. The model also predicted that when starting from a zero lubricant concentration after joint lavage, PRG4 reaches steady-state concentration ~10-40 times faster than HA. Additionally, analysis of the clearance rate of HA after therapeutic injection into SF predicted that the majority of HA leaves the joint after ~1-2 days. This quantitative intercompartmental model allows integration of biophysical processes to identify both environmental factors and clinical therapies that affect SF lubricant composition in whole joints.

  12. Testing of environmentally friendly lubricants for sheet metal forming

    DEFF Research Database (Denmark)

    Bay, Niels; Olsson, David Dam; Andreasen, Jan Lasson

    2005-01-01

    the authors have especially been involved in the development of a system of test methods for sheet metal forming and in testing of friction and limits of lubrication of new, environmentally friendly lubricants. An overview of the developed tests is presented together with selected results....

  13. Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 2 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    2006-06-01

    This report summarizes the results of the second phase of a lubricants project, which investigated the impact of engine oil formulation on diesel vehicle emissions and the performance of a nitrogen oxide adsorber catalyst (NAC).

  14. Converting an icebreaker from an oil lubricated stern tube bearing system to a seawater lubricated stern tube bearing considering environmental and operating costs

    Energy Technology Data Exchange (ETDEWEB)

    Ogle, Ken J.; Carter, Craig D. [Thordon Bearings Inc., Burlington, Ontario (Canada)], email: keno@thordonbearings.com, email: craigc@thordonbearings.com

    2010-07-01

    Icebreakers are prone to oil discharges from the stern tube, and lubricants that are biodegradable elsewhere may not be biodegradable enough in the Arctic and have a toxic effect on the food chain. The vulnerable element is the shaft seal, which must leak a small amount to operate in the first place, and ice milling causes very fast shaft movements that increase the leakage. Also, other objects such as fishing lines seriously compromise the operation of the seal. However, there is an alternative-namely the conversion of oil-lubricated bearings to Thordon COMPAC seawater-lubricated bearings. In this operation, white-metal bearings are replaced with Thordon non-metallic bearings; then, seawater is used as the lubrication and cooling medium. The seawater enters the front part of the stern, passes through the front and aft bearing before returning to the sea. This system totally eliminates the risk of polluting the Arctic ecosystem.

  15. Rotor Rolling over a Water-Lubricated Bearing

    Science.gov (United States)

    Shatokhin, V. F.

    2018-02-01

    The article presents the results of studying the effect of forces associated with secondary damping coefficients (gyroscopic forces) on the development of asynchronous rolling of the rotor over a water-lubricated bearing. The damping forces act against the background of other exciting forces in the rotor-supports system, in particular, the exciting forces of contact interaction between the rotor and bearing. The article considers a rotor resting on supports rubbing against the bearing and the occurrence of self-excited vibration in the form of asynchronous roll-over. The rotor supports are made in the form of plain-type water-lubricated bearings. The plain-type bearing's lubrication stiffness and damping forces are determined using the wellknown algorithms taking into account the physical properties of water serving as lubrication of the bearing. The bearing sliding pair is composed of refractory materials. The lubrication layer in such bearings is thinner than that used in oil-lubricated bearings with white metal lining, and there is no white metal layer in waterlubricated bearings. In case of possible deviations from normal operation of the installation, the rotating rotor comes into direct contact with the liner's rigid body. Unsteady vibrations are modeled using a specially developed software package for calculating the vibration of rotors that rub against the turbine (pump) stator elements. The stiffness of the bearing liner with the stator support structure is specified by a dependence in the force-deformation coordinate axes. In modeling the effect of damping forces, the time moment corresponding to the onset of asynchronous rolling-over with growing vibration amplitudes is used as the assessment criterion. With a longer period of time taken for the rolling-over to develop, it becomes possible to take the necessary measures in response to actuation of the equipment set safety system, which require certain time for implementing them. It is shown that the

  16. Tribology experiment. [journal bearings and liquid lubricants

    Science.gov (United States)

    Wall, W. A.

    1981-01-01

    A two-dimensional concept for Spacelab rack 7 was developed to study the interaction of liquid lubricants and surfaces under static and dynamic conditions in a low-gravity environment fluid wetting and spreading experiments of a journal bearing experiments, and means to accurately measure and record the low-gravity environment during experimentation are planned. The wetting and spreading process of selected commercial lubricants on representative surface are to the observes in a near-zero gravity environment.

  17. Noise estimation of oil lubricated journal bearings

    International Nuclear Information System (INIS)

    Rho, Byoung Hoo; Kim, Kyung Woong

    2003-01-01

    Noise estimating procedures of oil lubricated journal bearings are presented. Nonlinear analysis of rotor-bearing system including unbalance mass of the rotor is performed in order to obtain acoustical properties of the bearing. Acoustical properties of the bearing are investigated through frequency analysis of the pressure fluctuation of the fluid film calculated from the nonlinear analysis. Noise estimating procedures presented in this paper could aid in the evaluation and understanding of acoustical properties of oil lubricated journal bearings

  18. Mixed Lubricated Line Contacts

    NARCIS (Netherlands)

    Faraon, I.C.

    2005-01-01

    The present work deals with friction in mixed lubricated line contacts. Components in systems are becoming smaller and due to, for instance power transmitted, partial contact may occur. In industrial applications, friction between the moving contacting surfaces cannot be avoided, therefore it is

  19. Non-equilibrium responses of PFPE lubricants with various atomistic/molecular architecture at elevated temperature

    Science.gov (United States)

    Chung, Pil Seung; Song, Wonyup; Biegler, Lorenz T.; Jhon, Myung S.

    2017-05-01

    During the operation of hard disk drive (HDD), the perfluoropolyether (PFPE) lubricant experiences elastic or viscous shear/elongation deformations, which affect the performance and reliability of the HDD. Therefore, the viscoelastic responses of PFPE could provide a finger print analysis in designing optimal molecular architecture of lubricants to control the tribological phenomena. In this paper, we examine the rheological responses of PFPEs including storage (elastic) and loss (viscous) moduli (G' and G″) by monitoring the time-dependent-stress-strain relationship via non-equilibrium molecular dynamics simulations. We analyzed the rheological responses by using Cox-Merz rule, and investigated the molecular structural and thermal effects on the solid-like and liquid-like behaviors of PFPEs. The temperature dependence of the endgroup agglomeration phenomena was examined, where the functional endgroups are decoupled as the temperature increases. By analyzing the relaxation processes, the molecular rheological studies will provide the optimal lubricant selection criteria to enhance the HDD performance and reliability for the heat-assisted magnetic recording applications.

  20. Non-equilibrium responses of PFPE lubricants with various atomistic/molecular architecture at elevated temperature

    Directory of Open Access Journals (Sweden)

    Pil Seung Chung

    2017-05-01

    Full Text Available During the operation of hard disk drive (HDD, the perfluoropolyether (PFPE lubricant experiences elastic or viscous shear/elongation deformations, which affect the performance and reliability of the HDD. Therefore, the viscoelastic responses of PFPE could provide a finger print analysis in designing optimal molecular architecture of lubricants to control the tribological phenomena. In this paper, we examine the rheological responses of PFPEs including storage (elastic and loss (viscous moduli (G′ and G″ by monitoring the time-dependent-stress-strain relationship via non-equilibrium molecular dynamics simulations. We analyzed the rheological responses by using Cox-Merz rule, and investigated the molecular structural and thermal effects on the solid-like and liquid-like behaviors of PFPEs. The temperature dependence of the endgroup agglomeration phenomena was examined, where the functional endgroups are decoupled as the temperature increases. By analyzing the relaxation processes, the molecular rheological studies will provide the optimal lubricant selection criteria to enhance the HDD performance and reliability for the heat-assisted magnetic recording applications.

  1. Oils; lubricants; paraffin-wax compositions; hydrocarbon condensation products

    Energy Technology Data Exchange (ETDEWEB)

    1934-04-04

    Petroleum hydrocarbons such as gasoline, kerosene, Diesel fuel oil, lubricating-oil, and paraffin wax, and like hydrocarbons such as are obtainable from shale oil and by the hydrogenation of carbonaceous materials, are improved by addition of products obtained by condensing a cyclic hydrocarbon with a saturated dihalogen derivative of an aliphatic hydrocarbon containing less than five carbon atoms. The addition of the condensation products increases the viscosity of the hydrocarbon oils specified, and is particularly useful in the case of lubricating-oils; addition of the condensation products to paraffin wax increases the transparency and adherent properties of the wax, and is useful in the manufacture of moulded articles such as candles; the products may also be used in solid lubricating-compositions.

  2. Prediction of limits of lubrication in strip reduction testing

    DEFF Research Database (Denmark)

    Olsson, David Dam; Bay, Niels; Andreasen, Jan Lasson

    2004-01-01

    Pick-up and galling due to lubricant film breakdown is a severe limitation in cold forming of tribologically difficult metals like stainless steel and aluminium. The present paper describes a method of combined experimental and numerical analysis to quantify the limits of lubrication in a dedicated...

  3. A Review to the Laser Cladding of Self-Lubricating Composite Coatings

    Science.gov (United States)

    Quazi, M. M.; Fazal, M. A.; Haseeb, A. S. M. A.; Yusof, Farazila; Masjuki, H. H.; Arslan, A.

    2016-06-01

    Liquid lubricants are extremely viable in reducing wear damage and friction of mating components. However, due to the relentless pressure and the recent trend towards higher operating environments in advanced automotive and aerospace turbo-machineries, these lubricants cease to perform and hence, an alternate system is required for maintaining the self-lubricating environment. From the viewpoint of tribologist, wear is related to near-surface regions and hence, surface coatings are considered suitable for improving the functioning of tribo-pairs. Wear resistant coatings can be fabricated with the addition of various solid lubricants so as to reduce friction drag. In order to protect bulk substrates, self-lubricating wear resistant composite coatings have been fabricated by employing various surface coating techniques such as electrochemical process, physical and chemical vapor depositions, thermal and plasma spraying, laser cladding etc. Studies related to laser-based surface engineering approaches have remained vibrant and are recognized in altering the near surface regions. In this work, the latest developments in laser based self-lubricating composite coatings are highlighted. Furthermore, the effect of additives, laser processing parameters and their corresponding influence on mechanical and tribological performance is briefly reviewed.

  4. Enhanced lubricant film formation through micro-dimpled hard-on-hard artificial hip joint: An in-situ observation of dimple shape effects.

    Science.gov (United States)

    Choudhury, Dipankar; Rebenda, David; Sasaki, Shinya; Hekrle, Pavel; Vrbka, Martin; Zou, Min

    2018-05-01

    This study evaluates the impact of dimple shapes on lubricant film formation in artificial hip joints. Micro-dimples with 20-50 µm lateral size and 1 ± 0.2 µm depths were fabricated on CrCoMo hip joint femoral heads using a picosecond laser. Tribological studies were performed using a pendulum hip joint simulator to apply continuous swing flexion-extension motions. The results revealed a significantly enhanced lubricant film thickness (≥ 500 nm) with micro-dimpled prosthesis heads at equilibrium position after the lubricant film has fully developed. The average lubricant film thickness of dimpled prostheses with square- and triangular-shaped dimple arrays over time is about 3.5 that of the non-dimpled prosthesis (204 nm). Remarkably, the prosthesis with square-shaped dimple arrays showed a very fast lubricant film formation reaching their peak values within 0.5 s of pendulum movement, followed by prosthesis with triangular-shaped dimple arrays with a transition period of 42.4 s. The fully developed lubricant film thicknesses (≥ 700 nm) are significantly higher than the surface roughness (≈ 25 nm) demonstrating a hydrodynamic lubrication. Hardly any scratches appeared on the post-experimental prosthesis with square-shaped dimple array and only a few scratches were found on the post-experimental prosthesis with triangular-shaped dimple arrays. Thus, prostheses with square-shaped dimple arrays could be a potential solution for durable artificial hip joints. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Friction and Lubrication of Large Tilting-Pad Thrust Bearings

    Directory of Open Access Journals (Sweden)

    Michał Wasilczuk

    2015-04-01

    Full Text Available Fluid film bearings have been extensively used in the industry because of their unbeatable durability and extremely low friction coefficient, despite a very low coefficient of friction dissipation of energy being noticeable, especially in large bearings. Lubricating systems of large tilting pad thrust bearings utilized in large, vertical shaft hydrogenerators are presented in this paper. A large amount of heat is generated due to viscous shearing of the lubricant large tilting pad thrust bearings, and this requires systems for forced cooling of the lubricant. In the dominant bath lubrication systems, cooling is realized by internal coolers or external cooling systems, with the latter showing some important advantages at the cost of complexity and also, potentially, lower reliability. Substantial losses in the bearings, reaching 1 MW in extreme cases, are a good motivation for the research and development aimed at reducing them. Some possible methods and their potential efficiency, along with some effects already documented, are also described in the paper.

  6. WATER-EMULSION LUBRICANTS FOR PRESS-MODES OF CASTING UNDER PRESSURE

    Directory of Open Access Journals (Sweden)

    A. M. Mihaltsov

    2005-01-01

    Full Text Available It is shown that for more successful using of wateremulsion lubricants it is necessary to use new lubricating component. One of such component is complex component on the basis of siloxanes.

  7. New lubricant systems for cold and warm forging – advantages and limitations

    DEFF Research Database (Denmark)

    Bay, Niels

    2011-01-01

    . The present paper gives an overview of these efforts substituting environmentally hazardous lubricants in cold, warm and hot forging by new, more harmless lubricants. Introduction of these new lubricants, however, has some drawbacks due to lower limits of lubrication leading to risk of pick-up, poor product......The increasing focus on environmental issues and the requirements to establish solutions diminishing the impact on working environment as well as external environment has strongly motivated the efforts to develop new, environmentally friendly tribological systems for metal forming production...

  8. Research into Oil-based Colloidal-Graphite Lubricants for Forging of Al-based Alloys

    International Nuclear Information System (INIS)

    Petrov, A.; Petrov, P.; Petrov, M.

    2011-01-01

    The presented paper describes the topical problem in metal forging production. It deals with the choice of an optimal lubricant for forging of Al-based alloys. Within the scope of the paper, the properties of several oil-based colloidal-graphite lubricants were investigated. The physicochemical and technological properties of these lubricants are presented. It was found that physicochemical properties of lubricant compositions have an influence on friction coefficient value and quality of forgings.The ring compression method was used to estimate the friction coefficient value. Hydraulic press was used for the test. The comparative analysis of the investigated lubricants was carried out. The forging quality was estimated on the basis of production test. The practical recommendations were given to choose an optimal oil-based colloidal-graphite lubricant for isothermal forging of Al-based alloy.

  9. On the performance of laser-induced breakdown spectroscopy for direct determination of trace metals in lubricating oils

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Lijuan [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China); Cao, Fan; Xiu, Junshan; Bai, Xueshi; Motto-Ros, Vincent [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Gilon, Nicole [Institut des Sciences Analytiques, UMR5280 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Zeng, Heping [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China); Yu, Jin, E-mail: jin.yu@univ-lyon1.fr [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astrophysics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-09-01

    Laser-induced breakdown spectroscopy (LIBS) provides a technique to directly determine metals in viscous liquids and especially in lubricating oils. A specific laser ablation configuration of a thin layer of oil applied on the surface of a pure aluminum target was used to evaluate the analytical figures of merit of LIBS for elemental analysis of lubricating oils. Among the analyzed oils, there were a certified 75cSt blank mineral oil, 8 virgin lubricating oils (synthetic, semi-synthetic, or mineral and of 2 different manufacturers), 5 used oils (corresponding to 5 among the 8 virgin oils), and a cooking oil. The certified blank oil and 4 virgin lubricating oils were spiked with metallo-organic standards to obtain laboratory reference samples with different oil matrix. We first established calibration curves for 3 elements, Fe, Cr, Ni, with the 5 sets of laboratory reference samples in order to evaluate the matrix effect by the comparison among the different oils. Our results show that generalized calibration curves can be built for the 3 analyzed elements by merging the measured line intensities of the 5 sets of spiked oil samples. Such merged calibration curves with good correlation of the merged data are only possible if no significant matrix effect affects the measurements of the different oils. In the second step, we spiked the remaining 4 virgin oils and the cooking oils with Fe, Cr and Ni. The accuracy and the precision of the concentration determination in these prepared oils were then evaluated using the generalized calibration curves. The concentrations of metallic elements in the 5 used lubricating oils were finally determined. - Highlights: • Direct determination of wear metals in lubricating oils using LIBS. • Generalized calibration curves for different oils. • Ablation of a thin oil layer on a pure metallic target.

  10. How tests of lubricating and transformer oils became part of power plant chemistry in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, H [I/S Nordjyllandsvaerket, Vodskov (Denmark)

    1996-12-01

    Lubricating, hydraulic and transformer oils based on refined crude oil are used in nearly all power station components, such as gear, turbines, hydraulic stations, feed pumps and transformers. The function of these components totally depends on the condition of the oils and their properties. Seen from this point one may wonder why examination and evaluation of oils did not become part of the power station chemistry within the ELSAM utility area until during the middle of the eighties. We started to examine the properties of lubricating oils at the time when several steam turbines experienced serious problems with formation of deposits in their hydraulic control circuits. This work was intensified in connection with the significant number of CHPs and wind turbines erected within the Danish electricity sector during the past 10 years or so. The majority of the CHPs are natural gas fired turbines or motors, equipment which severely stresses the lubricating oil. In collaboration with KEMA, the Netherlands, we have carried through with a large examination of lubricating oils in gas turbines and we have found suitable oil types. The objectives of our work with lubricating and transformer oils have been to link together the laboratory measurements with operational experience. Only by doing this is it possible to utilize the laboratory measurements in a correct way. It must be remembered that the main part of all oil specifications concerns the properties of new oils. Only very little is published about the requirements concerning used oils. (EG)

  11. A Systems Approach to the Solid Lubrication of Foil Air Bearings for Oil-Free Turbomachinery

    Science.gov (United States)

    DellaCorte, Christopher; Zaldana, Antonio R.; Radil, Kevin C.

    2002-01-01

    Foil air bearings are self-acting hydrodynamic bearings which rely upon solid lubricants to reduce friction and minimize wear during sliding which occurs at start-up and shut-down when surface speeds are too low to allow the formation of a hydrodynamic air film. This solid lubrication is typically accomplished by coating the non-moving foil surface with a thin, soft polymeric film. The following paper introduces a systems approach in which the solid lubrication is provided by a combination of self lubricating shaft coatings coupled with various wear resistant and lubricating foil coatings. The use of multiple materials, each providing different functions is modeled after oil-lubricated hydrodynamic sleeve bearing technology which utilizes various coatings and surface treatments in conjunction with oil lubricants to achieve optimum performance. In this study, room temperature load capacity tests are performed on journal foil air bearings operating at 14,000 rpm. Different shaft and foil coating technologies such as plasma sprayed composites, ceramic, polymer and inorganic lubricant coatings are evaluated as foil bearing lubricants. The results indicate that bearing performance is improved through the individual use of the lubricants and treatments tested. Further, combining several solid lubricants together yielded synergistically better results than any material alone.

  12. Predictive modelling of fatigue failure in concentrated lubricated contacts.

    Science.gov (United States)

    Evans, H P; Snidle, R W; Sharif, K J; Bryant, M J

    2012-01-01

    Reducing frictional losses in response to the energy agenda will require use of less viscous lubricants causing hydrodynamically-lubricated bearings to operate with thinner films leading to "mixed lubrication" conditions in which a degree of direct interaction occurs between surfaces protected only by boundary tribofilms. The paper considers the consequences of thinner films and mixed lubrication for concentrated contacts such as those occurring between the teeth of power transmission gears and in rolling element bearings. Surface fatigue in gears remains a serious problem in demanding applications, and its solution will become more pressing with the tendency towards thinner oils. The particular form of failure examined here is micropitting, which is identified as a fatigue phenomenon occurring at the scale of the surface roughness asperities. It has emerged recently as a systemic difficulty in the operation of large scale wind turbines where it occurs in both power transmission gears and their support bearings. Predictive physical modelling of these contacts requires a transient mixed lubrication analysis for conditions in which the predicted lubricant film thickness is of the same order or significantly less than the height of surface roughness features. Numerical solvers have therefore been developed which are able to deal with situations in which transient solid contacts occur between surface asperity features under realistic engineering conditions. Results of the analysis, which reveal the detailed time-varying behaviour of pressure and film clearance, have been used to predict fatigue and damage accumulation at the scale of surface asperity features with the aim of improving understanding of the micropitting phenomenon. The possible consequences on fatigue of residual stress fields resulting from plastic deformation of surface asperities is also considered.

  13. Progress in Tribological Properties of Nano-Composite Hard Coatings under Water Lubrication

    Directory of Open Access Journals (Sweden)

    Qianzhi Wang

    2017-02-01

    Full Text Available The tribological properties, under water-lubricated conditions, of three major nano-composite coatings, i.e., diamond-like carbon (DLC or a-C, amorphous carbon nitride (a-CNx and transition metallic nitride-based (TiN-based, CrN-based, coatings are reviewed. The influences of microstructure (composition and architecture and test conditions (counterparts and friction parameters on their friction and wear behavior under water lubrication are systematically elucidated. In general, DLC and a-CNx coatings exhibit superior tribological performance under water lubrication due to the formation of the hydrophilic group and the lubricating layer with low shear strength, respectively. In contrast, TiN-based and CrN-based coatings present relatively poor tribological performance in pure water, but are expected to present promising applications in sea water because of their good corrosion resistance. No matter what kind of coatings, an appropriate selection of counterpart materials would make their water-lubricated tribological properties more prominent. Currently, Si-based materials are deemed as beneficial counterparts under water lubrication due to the formation of silica gel originating from the hydration of Si. In the meantime, the tribological properties of nano-composite coatings in water could be enhanced at appropriate normal load and sliding velocity due to mixed or hydrodynamic lubrication. At the end of this article, the main research that is now being developed concerning the development of nano-composite coatings under water lubrication is described synthetically.

  14. Engineered Joint Lubrication for OA Prevention and Treatment

    Science.gov (United States)

    2015-09-01

    that work together with liquid lubricants to achieve low-friction systems. Lubrication between tissues is also important to maintain low-friction...movement within a number of biological systems, including the pleural cavity, the surface of the eye, visceral organs, and diarthroidal joints3. In...purified using reverse-phase high-performance liquid chromatography (C18 Grace-Vydac column) on a water/acetonitrile gradient. Purified peptides were

  15. Characteristics Study of In-Situ Capacitive Sensor for Monitoring Lubrication Oil Debris.

    Science.gov (United States)

    Han, Zhibin; Wang, Yishou; Qing, Xinlin

    2017-12-08

    As an essential part of engine health monitoring (EHM), online lubrication oil debris monitoring has recently received great attention for the assessment of rotating and reciprocating parts in aero-engines, due to its high integration, low cost and safe characteristics. However, it is be a challenge to find a suitable sensor operating in such a complex environment. We present an unconventional novel approach, in which a cylinder capacitive sensor is designed and integrated with the pipeline of an engine lubrication system, so that the capacitive sensor can effectively detect changes in the lubrication oil condition. In this paper, an attempt to illustrate the performance characteristics of the developed cylinder capacitive sensor is made, through an experiment system that simulates a real scenario of a lubrication oil system. The main aim of the research was to qualitatively describe the relationship between the sensor parameter and the lubrication oil debris. In addition, the effect of the temperature and flow rate of the lubrication oil on capacitance change was performed by several experiments and we figured out a compensation method. The experimental results demonstrated that the cylinder capacitive sensor can potentially be used for lubrication oil debris monitoring of the health condition of an aero-engine.

  16. Lubrication of soft and hard interfaces with thermo-responsive F127 hydrogel

    DEFF Research Database (Denmark)

    Røn, Troels; Chronakis, Ioannis S.; Lee, Seunghwan

    2014-01-01

    of F127-20 also displayed varying lubricating properties, both in the lubricating mechanism and efficacy, as a function of temperature, speed and tribopairs. F127-20 was most effective in lubricating a soft interface (PDMSePDMS) based on its gel-forming properties in 22.5-60 °C and feasible formation...

  17. INVESTIGATION OF FLOW BEHAVIOR IN MINIMUM QUANTITY LUBRICATION NOZZLE FOR END MILLING PROCESSES

    OpenAIRE

    M.S. Najiha; M.M.Rahman; A.R. Yusoff; K. Kadirgama

    2012-01-01

    Minimum quantity lubrication (MQL) is a sustainable manufacturing technique that has replaced conventional flooded lubrication methods and dry machining. In the MQL technique, the lubricant is sprayed onto the friction surfaces through nozzles through small pneumatically-operated pumps. This paper presents an investigation into the flow behavior of the lubricant and air mixture under certain pressures at the tip of a nozzle specially designed for MQL. The nozzle used is an MQL stainless steel...

  18. From Hybrid to Actively-Controlled Gas Lubricated Bearings – Theory and Experiment

    DEFF Research Database (Denmark)

    Morosi, Stefano

    bearings, tilting pad and flexure pivot gas bearings. These solutions proved to be effective in improving static and dynamic properties of the bearings, however issues related to the manufacturing and accuracy of predictions has so far limited their applications. Another drawback is that passive bearings......-rig are backed by a comprehensive mathematical model that couples a finite element model of a flexible rotor, a thermohydrodynamic model based on a modified form of the Reynold’s equation for hybrid aerostatic-aerodynamic lubrication of compressible fluid, a piezoelectric injection system and a proportional...

  19. Regeneration of used lubricating oil as a source of energy

    Directory of Open Access Journals (Sweden)

    A. T. Abdulrahim

    2001-10-01

    Full Text Available Conservation of natural resources by refining used lubricating oil was attempted in this work. Used lubricating oil was purified and distilled. The distillates obtained were divided into two temperature ranges of 60 - 210°C and 210 - 310°C. Analyses of the physicochemical properties of the two samples revealed that they have similar properties with gasoline and diesel fuels respectively. This result shows that used lubricating oils, which are usually regarded as waste, can be regenerated to obtain useful hydrocarbons that can be used as fuels to power internal combustion engines

  20. The Stability of Lubricant Oil Acidity of Biogas Fuelled Engine due to Biogas Desulfurization

    Science.gov (United States)

    Gde Tirta Nindhia, Tjokorda; Wayan Surata, I.; Wardana, Ari

    2017-05-01

    This research is established for the purpose of the understanding the stability of the acidity of lubricant oil in biogas fuelled engine due to the absence of hydrogen sulfide (H2S). As was recognized that other than Methane (CH4), there are also other gas impurities in the biogas such as carbon dioxide (CO2), hydrogen sulfide (H2S), moisture (H2O) and ammonia (NH3). Due to H2S contents in the biogas fuel, the engine was found failure. This is caused by corrosion in the combustion chamber due to increase of lubricant acidity. To overcome this problem in practical, the lubricant is increased the pH to basic level with the hope will be decrease to normal value after several time use. Other method is by installing pH measurement sensor in the engine lubricant so that when lubricant is known turn to be acid, then lubricant replacement should be done. In this research, the effect of biogas desulfurization down to zero level to the acidity of lubricant oil in the four stroke engine was carried out with the hope that neutral lubrication oil to be available during running the engine. The result indicates that by eliminating H2S due desulfurization process, effect on stability and neutrality of pH lubricant. By this method the engine safety can be obtained without often replacement the lubricant oil.

  1. Electromagnetic Linear Vibration Energy Harvester Using Sliding Permanent Magnet Array and Ferrofluid as a Lubricant

    Directory of Open Access Journals (Sweden)

    Song Hee Chae

    2017-09-01

    Full Text Available We present an electromagnetic linear vibration energy harvester with an array of rectangular permanent magnets as a springless proof mass. Instead of supporting the magnet assembly with spring element, ferrofluid has been used as a lubricating material. When external vibration is applied laterally to the harvester, magnet assembly slides back and forth on the channel with reduced friction and wear due to ferrofluid, which significantly improves the long-term reliability of the device. Electric power is generated across an array of copper windings formed at the bottom of the aluminum housing. A proof-of-concept harvester has been fabricated and tested with a vibration exciter at various input frequencies and accelerations. For the device where 5 μL of ferrofluid was used for lubrication, maximum output power of 493 μW has been generated, which was 4.37% higher than that without ferrofluid. Long-term reliability improvement due to ferrofluid lubrication has also been verified. For the device with ferrofluid, 1.02% decrease of output power has been observed, in contrast to 59.73% decrease of output power without ferrofluid after 93,600 cycles.

  2. Adaptive system of supplying lubricant to the internal combustion engine

    Science.gov (United States)

    Barylnikova, E. P.; Kulakov, A. T.; Kulakov, O. A.

    2017-09-01

    This paper assesses the impact of reducing the pressure in the lubrication system on the failures of the crankshaft bearings. The method of adapting lubricating system of the diesel engine as the wear in operation and depending on the operation modes.

  3. Formation of metal-F bonds during frictional sliding : Influence of water and applied load

    NARCIS (Netherlands)

    Shen, J. T.; Pei, Y. T.; De Hosson, J. Th. M.

    2016-01-01

    Effects of water lubrication and applied load on the formation of PTFE transfer films and metal-F bonds during sliding when PTFE filled composites sliding against steel and Al2O3 are investigated. In water lubricated conditions, XPS analysis reveals that a thin layer of water molecules at the

  4. Organic-Modified Silver Nanoparticles as Lubricant Additives.

    Science.gov (United States)

    Kumara, Chanaka; Luo, Huimin; Leonard, Donovan N; Meyer, Harry M; Qu, Jun

    2017-10-25

    Advanced lubrication is essential in human life for improving mobility, durability, and efficiency. Here we report the synthesis, characterization, and evaluation of two groups of oil-suspendable silver nanoparticles (NPs) as candidate lubricant additives. Two types of thiolated ligands, 4-(tert-butyl)benzylthiol (TBBT) and dodecanethiol (C12), were used to modify Ag NPs in two size ranges, 1-3 and 3-6 nm. The organic surface layer successfully suspended the Ag NPs in a poly-alpha-olefin (PAO) base oil with concentrations up to 0.19-0.50 wt %, depending on the particle type. Use of the Ag NPs in the base oil reduced friction by up to 35% and wear by up to 85% in boundary lubrication. The two TBBT-modified NPs produced a lower friction coefficient than the C12-modified one, while the two larger NPs (3-6 nm) had better wear protection than the smaller one (1-3 nm). Results suggested that the molecular structure of the organic ligand might have a dominant effect on the friction behavior, while the NP size could be more influential in the wear protection. No mini-ball-bearing or surface smoothening effects were observed in the Stribeck scans. Instead, the wear protection in boundary lubrication was attributed to the formation of a silver-rich 50-100 nm thick tribofilm on the worn surface, as revealed by morphology examination and composition analysis from both the top surface and cross section.

  5. Bioinspired lubricating films of cellulose nanofibrils and hyaluronic acid.

    Science.gov (United States)

    Valle-Delgado, Juan José; Johansson, Leena-Sisko; Österberg, Monika

    2016-02-01

    The development of materials that combine the excellent mechanical strength of cellulose nanofibrils (CNF) with the lubricating properties of hyaluronic acid (HA) is a new, promising approach to cartilage implants not explored so far. A simple, solvent-free method to produce a very lubricating, strong cellulosic material by covalently attaching HA to the surface of CNF films is described in this work. A detailed analysis of the tribological properties of the CNF films with and without HA is also presented. Surface and friction forces at micro/nanoscale between model hard surfaces (glass microspheres) and the CNF thin films were measured using an atomic force microscope and the colloid probe technique. The effect of HA attachment, the pH and the ionic strength of the aqueous medium on the forces was examined. Excellent lubrication was observed for CNF films with HA attached in conditions where the HA layer was highly hydrated. These results pave the way for the development of new nanocellulose-based materials with good lubrication properties that could be used in biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Tribological Performance of Hydrogenated Amorphous Carbon (a-C: H DLC Coating when Lubricated with Biodegradable Vegetal Canola Oil

    Directory of Open Access Journals (Sweden)

    H.M. Mobarak

    2014-06-01

    Full Text Available Increasing environmental awareness and demands for lowering energy consumptions are strong driving forces behind the development of the vehicles of tomorrow. Without the advances of lubricant chemistry and adequate lubricant formulation, expansion of modern engines would not have been possible. Considering environmental awareness factors as compared to mineral oils, vegetal oil based biolubricants are renewable, biodegradable, non-toxic and have a least amount of greenhouse gases. Furthermore, improvement in engine performance and transmission components, which were impossible to achieve by applying only lubricants design, is now possible through diamond like carbon (DLC coatings. DLC coatings exhibit brilliant tribological properties, such as good wear resistance and low friction. In this regard, tribological performance of a-C: H DLC coating when lubricated with Canola vegetal oil has been investigated by the help of a ball-on-flat geometry. Experimental results demonstrated that the a-C: H DLC coating exhibited better performance with Canola oil in terms of friction and wear as compared to the uncoated materials. Large amount of polar components in the Canola oil significantly improved the tribological properties of the a-C:H coating. Thus, usage of a-C: H DLC coating with Canola oil in the long run may have a positive impact on engine life.

  7. Influence of lubrication forces in direct numerical simulations of particle-laden flows

    Science.gov (United States)

    Maitri, Rohit; Peters, Frank; Padding, Johan; Kuipers, Hans

    2016-11-01

    Accurate numerical representation of particle-laden flows is important for fundamental understanding and optimizing the complex processes such as proppant transport in fracking. Liquid-solid flows are fundamentally different from gas-solid flows because of lower density ratios (solid to fluid) and non-negligible lubrication forces. In this interface resolved model, fluid-solid coupling is achieved by incorporating the no-slip boundary condition implicitly at particle's surfaces by means of an efficient second order ghost-cell immersed boundary method. A fixed Eulerian grid is used for solving the Navier-Stokes equations and the particle-particle interactions are implemented using the soft sphere collision and sub-grid scale lubrication model. Due to the range of influence of lubrication force on a smaller scale than the grid size, it is important to implement the lubrication model accurately. In this work, different implementations of the lubrication model on particle dynamics are studied for various flow conditions. The effect of a particle surface roughness on lubrication force and the particle transport is also investigated. This study is aimed at developing a validated methodology to incorporate lubrication models in direct numerical simulation of particle laden flows. This research is supported from Grant 13CSER014 of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO).

  8. Nanoscale Organic−Inorganic Hybrid Lubricants

    KAUST Repository

    Kim, Daniel; Archer, Lynden A.

    2011-01-01

    Silica (SiO2) nanoparticles densely grafted with amphiphilic organic chains are used to create a family of organic-inorganic hybrid lubricants. Short sulfonate-functionalized alkylaryl chains covalently tethered to the particles form a dense corona

  9. Feasibility study of self-lubrication by chlorine implantation

    International Nuclear Information System (INIS)

    Akhajdenung, T.; Aizawa, T.; Yoshitake, M.; Mitsuo, A.

    2003-01-01

    Implantation of chlorine into titanium nitride (TiN) coating on the high-speed steel substrate has succeeded in significant reduction of wear rate and friction coefficient for original TiN under dry wear condition. Through precise investigation on the surface reaction in the wear track, in situ formation of oxygen-deficient titanium oxides was found to play a role as a lubricious oxide. In the present paper, this self-lubrication mechanism is further investigated for various wearing conditions. For wide range of sliding speed and normal load in the wear map, the wear volume of a counter material is actually reduced with comparison to the un-implanted TiN. Effect of the ion implantation dose on this self-lubrication mechanism is also studied for practical use. Some comments are made on further application of this self-lubrication to manufacturing

  10. Treatment of Waste Lubricating Oil by Chemical and Adsorption Process Using Butanol and Kaolin

    Science.gov (United States)

    Riyanto; Ramadhan, B.; Wiyanti, D.

    2018-04-01

    Treatment of waste lubricating oil by chemical and adsorption process using butanol and kaolin has been done. Quality of lubricating oil after treatment was analysis using Atomic Absorption Spectrophotometer (AAS) and Gas Chromatography-Mass Spectrometry (GC-MS). The effects of the treatment of butanol, KOH, and kaolin to metals contain in waste lubricating oil treatment have been evaluated. Treatment of waste lubricating oil has been done using various kaolin weight, butanol, and KOH solution. The result of this research show metal content of Ca, Mg, Pb, Fe and Cr in waste lubricating oil before treatment are 1020.49, 367.02, 16.40, 36.76 and 1,80 ppm, respectively. The metal content of Ca, Mg, Pb, Fe and Cr in the waste lubricating oil after treatment are 0.17, 9.85, 34.07, 78.22 and 1.20 ppm, respectively. The optimum condition for treatment of waste lubricating oil using butanol, KOH, and kaolin is 30 mL, 3.0 g and 1.5 g, respectively. Chemical and adsorption method using butanol and kaolin can be used for decrease of metals contain in waste lubricating oil.

  11. Standard test method for determination of surface lubrication on flexible webs

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 This test method has been used since 1988 as an ANSI/ISO standard test for determination of lubrication on processed photographic films. Its purpose was to determine the presence of process-surviving lubricants on photographic films. It is the purpose of this test method to expand the applicability of this test method to other flexible webs that may need lubrication for suitable performance. This test measures the breakaway (static) coefficient of friction of a metal rider on the web by the inclined plane method. The objectives of the test is to determine if a web surface has a lubricant present or not. It is not intended to assign a friction coefficient to a material. It is not intended to rank lubricants. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish ...

  12. Surface functionalization by fine ultraviolet-patterning of nanometer-thick liquid lubricant films

    International Nuclear Information System (INIS)

    Lu, Renguo; Zhang, Hedong; Komada, Suguru; Mitsuya, Yasunaga; Fukuzawa, Kenji; Itoh, Shintaro

    2014-01-01

    Highlights: • We present fine UV-patterning of nm-thick liquid films for surface functionalization. • The patterned films exhibit both a morphological pattern and a functional pattern of different surface properties. • The finest pattern linewidth was 0.5 μm. • Fine patterning is crucial for improving surface and tribological properties. - Abstract: For micro/nanoscale devices, surface functionalization is essential to achieve function and performance superior to those that originate from the inherent bulk material properties. As a method of surface functionalization, we dip-coated nanometer-thick liquid lubricant films onto solid surfaces and then patterned the lubricant films with ultraviolet (UV) irradiation through a photomask. Surface topography, adhesion, and friction measurements demonstrated that the patterned films feature a concave–convex thickness distribution with thicker lubricant in the irradiated regions and a functional distribution with lower adhesion and friction in the irradiated convex regions. The pattern linewidth ranged from 100 to as fine as 0.5 μm. The surface functionalization effect of UV-patterning was investigated by measuring the water contact angles, surface energies, friction forces, and depletion of the patterned, as-dipped, and full UV-irradiated lubricant films. The full UV-irradiated lubricant film was hydrophobic with a water contact angle of 102.1°, and had lower surface energy, friction, and depletion than the as-dipped film, which was hydrophilic with a water contact angle of 80.7°. This demonstrates that UV irradiation substantially improves the surface and tribological properties of the nanometer-thick liquid lubricant films. The UV-patterned lubricant films exhibited superior surface and tribological properties than the as-dipped film. The water contact angle increased and the surface energy, friction, and depletion decreased as the pattern linewidth decreased. In particular, the 0.5-μm patterned lubricant

  13. Investigation of Lubrication Properties of Petroleum Fuel and Biohydrocarbon Blends

    Directory of Open Access Journals (Sweden)

    Gawron Bartosz

    2016-07-01

    Full Text Available The paper covers issues regarding lubricity of petroleum fuels used in piston and turbine engines, containing hydrocarbon biocomponents. Basing on available literature it can be said that the most prospective fuel components are biohydrocarbons. The paper describes effect of biohydrocarbons included in aviation fuel and diesel fuel on lubricity of such blends. The analysis covers two processes for obtaining biohydrocarbons, the HVO and the Fischer-Tropsch process. Due to problems with actual products acquiring, biohydrocarbons models representing chemically the actual ones from specific process. Lubricity testing was carried out according to standard test methods.

  14. Design and Construction of Wireless Control System for Drilling Machine

    Directory of Open Access Journals (Sweden)

    Nang Su Moan Hsam

    2015-06-01

    Full Text Available Abstract Drilling machine is used for boring holes in various materials and used in woodworking metalworking construction and do-it-yourself projects. When the machine operate for a long time the temperature increases and so we need to control the temperature of the machine and some lubrication system need to apply to reduce the temperature. Due to the improvement of technology the system can be controlled with wireless network. This control system use Window Communication Foundation WCF which is the latest service oriented technology to control all drilling machines in industries simultaneously. All drilling machines are start working when they received command from server. After the machine is running for a long time the temperature is gradually increased. This system used LM35 temperature sensor to measure the temperature. When the temperature is over the safely level that is programmed in host server the controller at the server will command to control the speed of motor and applying some lubrication system at the tip and edges of drill. The command from the server is received by the client and sends to PIC. In this control system PIC microcontroller is used as an interface between the client computer and the machine. The speed of motor is controlled with PWM and water pump system is used for lubrication. This control system is designed and simulated with 12V DC motor LM35 sensor LCD displayand relay which is to open the water container to spray water between drill and work piece. The host server choosing to control the drilling machine that are overheat by selecting the clients IP address that is connected with that machine.

  15. Friction and wear performance of low-friction carbon coatings under oil lubrication

    International Nuclear Information System (INIS)

    Kovalchenko, A.; Ajayi, O. O.; Erdemir, A.; Fenske, G. R.

    2001-01-01

    Amorphous carbon coatings with very low friction properties were recently developed at Argonne National Laboratory. These coatings have shown good promise in mitigating excessive wear and scuffing problems associated with low-lubricity diesel fuels. To reduce the negative effect of sulfur and other lubricant additives in poisoning the after-treatment catalyst, a lubricant formulation with a low level of sulfur may be needed. Exclusion of proven sulfur-containing extreme pressure (EP) and antiwear additives from oils will require other measures to ensure durability of critical lubricated components. The low-friction carbon coating has the potential for such applications. In the present study, we evaluated the friction and wear attributes of three variations of the coating under a boundary lubrication regime. Tests were conducted with both synthetic and mineral oil lubricants using a ball-on-flat contact configuration in reciprocating sliding. Although the three variations of the coating provided modest reductions in friction coefficient, they all reduced wear substantially compared to an uncoated surface. The degradation mode of oxidative wear on the uncoated surface was replaced by a polishing wear mode on the coated surfaces

  16. Active Lubrication: Feasibility and Limitations on Reducing Vibration in Rotating Machinery

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2004-01-01

    of increasing their operational range. As a result, one achieves intelligent machines that are more flexible to operate in a fast-changing demand environment. Some limitations of the active lubrication are also discussed based on experimental data, where the response of the servo valves and the supply pressure...... play an important role: the eigenfrequency of the servo valves establishes the operational frequency range of the active lubrication, whereas the supply pressure establishes the amplitude of vibration reduction achieved with the active lubrication....

  17. Hydrophobins as aqueous lubricant additive for a soft sliding contact

    DEFF Research Database (Denmark)

    Lee, Seunghwan; Røn, Troels; Pakkanen, Kirsi I.

    2015-01-01

    lubrication characteristic is dominant via ‘self-healing’ mechanism. FpHYD5 revealed a better lubrication than HFBI presumably due to the presence of glycans and improved hydration of the sliding interface. Two type II hydrophobins function more favorably compared to a synthetic amphiphilic copolymer, PEO-PPO...

  18. 21 CFR 178.3910 - Surface lubricants used in the manufacture of metallic articles.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Surface lubricants used in the manufacture of... lubricants used in the manufacture of metallic articles. The substances listed in this section may be safely used in surface lubricants employed in the manufacture of metallic articles that contact food, subject...

  19. Men's use and perceptions of commercial lubricants: prevalence and characteristics in a nationally representative sample of American adults.

    Science.gov (United States)

    Reece, Michael; Herbenick, Debby; Schick, Vanessa; Sanders, Stephanie A; Fortenberry, J Dennis

    2014-05-01

    Most research on men's use of commercial lubricants during sexual activities is in the context of condom use and often specifically among men who have sex with men. Less is known about men's use of lubricants associated with a broader range of sexual experiences. The aims of this study are to document the prevalence of commercial lubricant use among adult U.S. men (age 18+), to document men's use of lubricants across solo and partnered sexual behaviors, and to assess men's perceptions of the contributions lubricants have to the sexual experience. Data are from the 2012 National Survey of Sexual Health and Behavior, which involved the administration of an online questionnaire to a nationally representative probability sample of U.S. adults ages 18 and older. Sociodemographic characteristics, recent and lifetime commercial lubricant use, lubricant use during specific sexual behaviors, frequency of lubricant use, and reasons for lubricant use. Most men in the United States (70%, N = 1,014) reported having used a commercial lubricant, with men older than 24 and those in a relationship more likely to report lubricant use. About one in four men had used a lubricant in the past 30 days. Intercourse was the most common behavior during which men used lubricant, though solo masturbation and partnered sexual play were also frequently linked to lubricant use. The most common reasons for lubricant use included "to make sex more comfortable," "for fun," "curiosity," and "my partner wanted to." Most American men have used a lubricant; lubricant use is common across all age groups, and some of the most common reasons why men report using lubricants have to do with sexual enhancement, comfort, and pleasure. Clinicians may find these data helpful to their efforts to educate patients about lubricant use, comfort during sex, and sexual enhancement. © 2014 International Society for Sexual Medicine.

  20. Kinetics approach to modeling of polymer additive degradation in lubricants

    Institute of Scientific and Technical Information of China (English)

    llyaI.KUDISH; RubenG.AIRAPETYAN; Michael; J.; COVITCH

    2001-01-01

    A kinetics problem for a degrading polymer additive dissolved in a base stock is studied.The polymer degradation may be caused by the combination of such lubricant flow parameters aspressure, elongational strain rate, and temperature as well as lubricant viscosity and the polymercharacteristics (dissociation energy, bead radius, bond length, etc.). A fundamental approach tothe problem of modeling mechanically induced polymer degradation is proposed. The polymerdegradation is modeled on the basis of a kinetic equation for the density of the statistical distribu-tion of polymer molecules as a function of their molecular weight. The integrodifferential kineticequation for polymer degradation is solved numerically. The effects of pressure, elongational strainrate, temperature, and lubricant viscosity on the process of lubricant degradation are considered.The increase of pressure promotes fast degradation while the increase of temperature delaysdegradation. A comparison of a numerically calculated molecular weight distribution with an ex-perimental one obtained in bench tests showed that they are in excellent agreement with eachother.

  1. IUTAM Symposium on Lubricated Transport of Viscous Materials

    CERN Document Server

    1998-01-01

    The main objective of the First International Symposium on Lubricated Transport of Viscous Materials was to bring together scientists and engineers from academia and industryto discuss current research work and exchange ideas in this newly emerging field. It is an area offluid dynamics devoted to laying bare the principlesofthe lubricated transport of viscous materials such as crude oil, concentrated oil/water emulsion, slurries and capsules. It encompasses several types of problem. Studies of migration of particulates away from walls, Segre-Silverberg effects, lubrication versus lift and shear-induced migration belong to one category. Some of the technological problems are the fluid dynamics ofcore flows emphasizing studies ofstability, problems of start-up, lift-off and eccentric flow where gravity causes the core flow to stratify. Another category of problems deals with the fouling of pipe walls with oil, with undesirable increases in pressure gradients and even blocking. This study involves subjects like ...

  2. Green Lubricants for Metal Forming

    DEFF Research Database (Denmark)

    Bay, Niels

    2010-01-01

    The increasing focus on legislation towards diminishing the impact on working environment as well as external environment has driven efforts to develop new, environmentally benign lubricants for metal forming. The present paper gives an overview of these efforts to substitute environmentally...

  3. Rolling Friction Torque in Ball-Race Contacts Operating in Mixed Lubrication Conditions

    Directory of Open Access Journals (Sweden)

    Mihaela Rodica D. Bălan

    2015-04-01

    Full Text Available Based on a theoretical model and an experimental methodology for defining the friction torque for lubricated conditions in a modified thrust ball bearing having only three balls, the authors experimentally investigated the influence of the lubricant parameter Λ on friction torque for mixed IVR (isoviscous rigid and EHL (elastohydrodynamic lubrication conditions. The experiments were conducted using ball diameters of 3 mm, 3.97 mm and 6.35 mm loaded at 0.125 N, 0.400 N and 0.633 N. Two oils of viscosity 0.08 Pa·s and 0.05 Pa·s were used and rotational speed was varied in the range 60–210 rpm to obtain a lubricant parameter Λ varying between 0.3 and 3.2. The experiments confirmed that the measured friction torque can be explained using hydrodynamic rolling force relationships respecting the transition from an IVR to an EHL lubrication regime.

  4. Lubricant-impregnated surfaces for electrochemical applications, and devices and systems using same

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, Brian Richmond; Chen, Xinwei; Chiang, Yet-Ming; Varanasi, Kripa K.

    2018-04-17

    In certain embodiments, the invention relates to an electrochemical device having a liquid lubricant impregnated surface. At least a portion of the interior surface of the electrochemical device includes a portion that includes a plurality of solid features disposed therein. The plurality of solid features define a plurality of regions therebetween. A lubricant is disposed in the plurality of regions which retain the liquid lubricant in the plurality of regions during operation of the device. An electroactive phase comes in contact with at least the portion of the interior surface. The liquid lubricant impregnated surface introduces a slip at the surface when the electroactive phase flows along the surface. The electroactive phase may be a yield stress fluid.

  5. Effect of the External Lubrication Method for a Rotary Tablet Press on the Adhesion of the Film Coating Layer.

    Science.gov (United States)

    Kondo, Hisami; Toyota, Hiroyasu; Kamiya, Takayuki; Yamashita, Kazunari; Hakomori, Tadashi; Imoto, Junko; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2017-01-01

    External lubrication is a useful method which reduces the adhesion of powder to punches and dies by spraying lubricants during the tableting process. However, no information is available on whether the tablets prepared using an external lubrication system can be applicable for a film coating process. In this study, we evaluated the adhesion force of the film coating layer to the surface of tablets prepared using an external lubrication method, compared with those prepared using internal lubrication method. We also evaluated wettability, roughness and lubricant distribution state on the tablet surface before film coating, and investigated the relationship between peeling of the film coating layer and these tablet surface properties. Increasing lubrication through the external lubrication method decreased wettability of the tablet surface. However, no change was observed in the adhesion force of the film coating layer. On the other hand, increasing lubrication through the internal lubrication method, decreased both wettability of the tablet surface and the adhesion force of the film coating layer. The magnesium stearate distribution state on the tablet surface was assessed using an X-ray fluorescent analyzer and lubricant agglomerates were observed in the case of the internal lubrication method. However, the lubricant was uniformly dispersed in the external lubrication samples. These results indicate that the distribution state of the lubricant affects the adhesion force of the film coating layer, and external lubrication maintained sufficient lubricity and adhesion force of the film coating layer with a small amount of lubricant.

  6. Modified Ionic Liquid-Based High-Performance Lubricants for Robotic Operations, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs an advanced lubrication solution for its future robotic systems and planetary surface assets. The required lubrication technology must offer...

  7. A Novel Bearing Lubricating Device Based on the Piezoelectric Micro-Jet

    Directory of Open Access Journals (Sweden)

    Kai Li

    2016-02-01

    Full Text Available A novel bearing lubricating device, which is embedded in gyroscope’s bearing system and based on the theory of the piezoelectric micro-jet, was designed for this study. The embedded structure of a bearing lubricating system can make effective use of the limited space of bearing systems without increasing the whole mass of the system. The drop-on-demand (DOD lubrication can be realized by the piezoelectric micro-jet system to implement the long acting lubrication of the bearing system. A mathematical model of inlet boundary conditions was established to carry on the numerical simulation based on CFD. The motion states of the droplets with different voltage excitations were analyzed via numerical simulations, and the injection performances of the piezoelectric micro-jet lubricating device were tested in accordance with past experiments. The influences of different parameters of voltage excitation on injection performance were obtained, and the methods of adjusting the injection performance to meet different requirements are given according to the analyses of the results. The mathematical model and numerical simulation method were confirmed by comparing the results of past simulations and experiments.

  8. Applied Control Systems Design

    CERN Document Server

    Mahmoud, Magdi S

    2012-01-01

    Applied Control System Design examines several methods for building up systems models based on real experimental data from typical industrial processes and incorporating system identification techniques. The text takes a comparative approach to the models derived in this way judging their suitability for use in different systems and under different operational circumstances. A broad spectrum of control methods including various forms of filtering, feedback and feedforward control is applied to the models and the guidelines derived from the closed-loop responses are then composed into a concrete self-tested recipe to serve as a check-list for industrial engineers or control designers. System identification and control design are given equal weight in model derivation and testing to reflect their equality of importance in the proper design and optimization of high-performance control systems. Readers’ assimilation of the material discussed is assisted by the provision of problems and examples. Most of these e...

  9. A newly developed lubricant, chitosan laurate, in the manufacture of acetaminophen tablets.

    Science.gov (United States)

    Bani-Jaber, Ahmad; Kobayashi, Asuka; Yamada, Kyohei; Haj-Ali, Dana; Uchimoto, Takeaki; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2015-04-10

    To study the usefulness of chitosan laurate (CS-LA), a newly developed chitosan salt, as a lubricant, lubrication properties such as the pressure transmission ratio and ejection force were determined at different concentrations of CS-LA in tableting. In addition, tablet properties such as the tensile strength, disintegration time, and dissolution behavior, were also determined. When CS-LA was mixed at concentrations of 0.1%-3.0%, the pressure transmission ratio was increased in a concentration-dependent manner, and the value at a CS-LA concentration of 3% was equal to that of magnesium stearate (Mg-St), a widely used lubricant. Additionally, a reduction in the ejection force was observed at a concentration from 1%, proving that CS-LA has good lubrication performance. A prolonged disintegration time and decreased tensile strength, which are known disadvantages of Mg-St, were not observed with CS-LA. Furthermore, with CS-LA, retardation of dissolution of the drug from the tablets was not observed. Conjugation of CS with LA was found to be quite important for both lubricant and tablet properties. In conclusion, CS-LA should be useful as an alternative lubricant to Mg-St. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Full Life Wind Turbine Gearbox Lubricating Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Glenn A.; Jungk, Manfred; Bryant, Jonathan J.; Lauer, Rebecca S.; Chobot, Anthony; Mayer, Tyler; Palmer, Shane; Kauffman, Robert E.

    2012-02-28

    Industrial gear box lubricants typically are hydrocarbon based mineral oils with considerable amounts of additives to overcome the lack of base fluid properties like wear protection, oxidation stability, load carrying capacity, low temperature solidification and drop of viscosity at higher temperatures. For today's wind turbine gearboxes, the requirements are more severe and synthetic hydrocarbon oils are used to improve on this, but all such hydrocarbon based lubricants require significant amounts of Extreme Pressure (EP) additives to meet performance requirements. Perfluoropolyether (PFPE) fluids provide load carrying capacity as an inherent property. During the course of the project with the main tasks of 'Establish a Benchmark', 'Lubricant Evaluation', 'Full Scale Gearbox Trial' and 'Economic Evaluation', the PAO Reference oil exhibited significant changes after laboratory gear testing, in service operation in the field and full scale gearbox trial. Four hydrocarbon base oils were selected for comparison in the benchmarking exercise and showed variation with respect to meeting the requirements for the laboratory micro-pitting tests, while the PFPE fluid exceeded the requirements even with the material taken after the full scale gear box trial. This is remarkable for a lubricant without EP additives. Laboratory bearing tests performed on the PFPE fluids before and after the full scale gear box trial showed the results met requirements for the industry standard. The PFPE fluid successfully completed the full scale gear box test program which included baseline and progressive staged load testing. The evaluation of gears showed no micro-pitting or objectionable wear. By the final stage, lubricant film thickness had been reduced to just 21% of its original value, this was by design and resulted in a lambda ratio of well below 1. This test design scenario of a low lambda ratio is a very undesirable lubrication condition

  11. Contribution of surface analysis spectroscopic methods to the lubrication field

    International Nuclear Information System (INIS)

    Blanc, C.

    1979-01-01

    The analytical surface technics such as ESCA, AES and SIMS are tested to be applied to a particular lubrication field. One deals with a 100 C 6 steel surface innumered in tricresylphosphate at 110 0 C for 15 days. The nature of the first layers is studied after relevant solvant cleaning. An iron oxide layer is produced on the bearing surface, namely αFe 2 -O 3 . ESCA, AES and SIMS studies show an overlayer of iron phosphate. The exact nature of iron phosphate is not clearly established but the formation of a ferrous phosphate coating can be assumed from ESCA analysis [fr

  12. Determination of lubricating capabilities with a mechanical test device; Ermittlung des Verschleissschutzverhaltens mit der MPH-Apparatur

    Energy Technology Data Exchange (ETDEWEB)

    Krause, D.; Feldmann, D.G.; Schmidt, J. [Technische Univ. Hamburg-Harburg (Germany). Inst. fuer Produktentwicklung und Konstruktionstechnik; Padgurskas, J. [Lithuanian Univ. of Agriculture (Lithuania)

    2006-02-15

    This paper describes a friction and wear test in a newly developed test machine, which was developed at the TU Hamburg-Harburg to investigate the lubricating capability of hydraulic fluids. The aim of the development of the new test procedure is a better representation of the tribological contacts and effects in fluid power machinery. The investigation of the lubrication capabilities of hydraulic fluids using a line contact showed, that a distinction between different fluids regarding their lubrication capabilities can be made, using friction-, wear- and erosion tests (galling). The high reproducibility of the boundary conditions during different tests was achieved by steady design modifications of the test rig and the development of a computer program for fully-automatic control of the test procedure. The developed test machine fulfils the requirements of a simple test procedure and simple shape test specimen, which could be produced from principally every type of material and production machines, existing in every company that produce fluid power components. (orig.)

  13. The State of the Art in Cold Forging Lubrication

    DEFF Research Database (Denmark)

    Bay, Niels

    1994-01-01

    The manufature of components in steel, aluminium and copper alloys by cold forging production has increased ever since the 1950's. Typical processes are forward rod extrusion and backward can extrusion, upsetting, ironing, tube extrusion and radial extrusion. The tribological conditions in cold...... forging are extremely severe due to large surface expansion and normal pressure in the tool/workpiece interface combined with elevated tool temperatures. Except for the more simple cold forging operations successful production therefore requires advanced lubrication systems. The present paper gives...... a detailed description of the state of art for lubricant systems for cold forging of C-steels and low alloy steels as well as aluminium alloys including all the basic operations such as cleaning of the slugs, application of eventual conversion coating and lubrication. As regards cold forging of steel...

  14. Analysis of fluid lubrication mechanisms in metal forming at mesoscopic scale

    DEFF Research Database (Denmark)

    Dubar, L.; Hubert, C.; Christiansen, Peter

    2012-01-01

    The lubricant entrapment and escape phenomena in metal forming are studied experimentally as well as numerically. Experiments are carried out in strip reduction of aluminium sheet applying a transparent die to study the fluid flow between mesoscopic cavities. The numerical analysis involves two...... computation steps. The first one is a fully coupled fluid-structure Finite Element computation, where pockets in the surface are plastically deformed leading to the pressurization of the entrapped fluid. The second step computes the fluid exchange between cavities through the plateaus of asperity contacts...

  15. An Advanced Microturbine System with Water-Lubricated Bearings

    Directory of Open Access Journals (Sweden)

    Susumu Nakano

    2009-01-01

    Full Text Available A prototype of the next-generation, high-performance microturbine system was developed for laboratory evaluation. Its unique feature is its utilization of water. Water is the lubricant for the bearings in this first reported application of water-lubricated bearings in gas turbines. Bearing losses and limitations under usage conditions were found from component tests done on the bearings and load tests done on the prototype microturbine. The rotor system using the water-lubricated bearings achieved stable rotating conditions at a rated rotational speed of 51,000 rpm. An electrical output of 135 kW with an efficiency of more than 33% was obtained. Water was also utilized to improve electrical output and efficiency through water atomizing inlet air cooling (WAC and a humid air turbine (HAT. The operation test results for the WAC and HAT revealed the WAC and HAT operations had significant effects on both electrical output and electrical efficiency.

  16. Experiments on Ultrasonic Lubrication Using a Piezoelectrically-assisted Tribometer and Optical Profilometer.

    Science.gov (United States)

    Dong, Sheng; Dapino, Marcelo

    2015-09-28

    Friction and wear are detrimental to engineered systems. Ultrasonic lubrication is achieved when the interface between two sliding surfaces is vibrated at a frequency above the acoustic range (20 kHz). As a solid-state technology, ultrasonic lubrication can be used where conventional lubricants are unfeasible or undesirable. Further, ultrasonic lubrication allows for electrical modulation of the effective friction coefficient between two sliding surfaces. This property enables adaptive systems that modify their frictional state and associated dynamic response as the operating conditions change. Surface wear can also be reduced through ultrasonic lubrication. We developed a protocol to investigate the dependence of friction force reduction and wear reduction on the linear sliding velocity between ultrasonically lubricated surfaces. A pin-on-disc tribometer was built which differs from commercial units in that a piezoelectric stack is used to vibrate the pin at 22 kHz normal to the rotating disc surface. Friction and wear metrics including effective friction force, volume loss, and surface roughness are measured without and with ultrasonic vibrations at a constant pressure of 1 to 4 MPa and three different sliding velocities: 20.3, 40.6, and 87 mm/sec. An optical profilometer is utilized to characterize the wear surfaces. The effective friction force is reduced by 62% at 20.3 mm/sec. Consistently with existing theories for ultrasonic lubrication, the percent reduction in friction force diminishes with increasing speed, down to 29% friction force reduction at 87 mm/sec. Wear reduction remains essentially constant (49%) at the three speeds considered.

  17. The effect of inertia force in water lubricated thrust bearings of canned reactor coolant pump

    International Nuclear Information System (INIS)

    Deng Liping

    1994-01-01

    The water lubricated thrust bearings are analyzed. According to characteristic of low viscosity of water the lubricated equation for design and calculation of water lubricated thrust bearings is established. The calculation and analyses show that the effect of inertia force in water lubricated thrust bearings should not be neglected except the conditions of low speed, high angle of inclination and low radius ratio of pad

  18. Solid lubricant mass contact transfer technology usage for vacuum ball bearings longevity increasing

    Science.gov (United States)

    Arzymatov, B.; Deulin, E.

    2016-07-01

    A contact mass transfer technological method of solid lubricant deposition on components of vacuum ball bearings is presented. Physics-mathematical model of process contact mass transfer is being considered. The experimental results of ball bearings covered with solid lubricant longevity in vacuum are presented. It is shown that solid lubricant of contact mass transfer method deposition is prospective for ball bearing longevity increasing.

  19. An experimental assessment on the performance of different lubrication techniques in grinding of Inconel 751.

    Science.gov (United States)

    Balan, A S S; Vijayaraghavan, L; Krishnamurthy, R; Kuppan, P; Oyyaravelu, R

    2016-09-01

    The application of emulsion for combined heat extraction and lubrication requires continuous monitoring of the quality of emulsion to sustain a desired grinding environment; this is applicable to other grinding fluids as well. Thus to sustain a controlled grinding environment, it is necessary to adopt an effectively lubricated wheel-work interface. The current study was undertaken to assess experimentally the ​ effects of different grinding environments such as dry, minimum quantity lubrication (MQL) and Cryo-MQL on performance, such as grinding force, temperature, surface roughness and chip morphology on Inconel 751, a higher heat resistance material posing thermal problems and wheel loading. The results show that grinding with the combination of both liquid nitrogen (LN2) and MQL lowers temperature, cutting forces, and surface roughness as compared with MQL and dry grinding. Specific cutting energy is widely used as an inverse measure of process efficiency in machining. It is found from the results that specific cutting energy of Cryo-MQL assisted grinding is 50-65% lower than conventional dry grinding. The grindability of Inconel 751 superalloy can be enhanced with Cryo-MQL condition.

  20. Chemical discrimination of lubricant marketing types using direct analysis in real time time-of-flight mass spectrometry.

    Science.gov (United States)

    Maric, Mark; Harvey, Lauren; Tomcsak, Maren; Solano, Angelique; Bridge, Candice

    2017-06-30

    In comparison to other violent crimes, sexual assaults suffer from very low prosecution and conviction rates especially in the absence of DNA evidence. As a result, the forensic community needs to utilize other forms of trace contact evidence, like lubricant evidence, in order to provide a link between the victim and the assailant. In this study, 90 personal bottled and condom lubricants from the three main marketing types, silicone-based, water-based and condoms, were characterized by direct analysis in real time time of flight mass spectrometry (DART-TOFMS). The instrumental data was analyzed by multivariate statistics including hierarchal cluster analysis, principal component analysis, and linear discriminant analysis. By interpreting the mass spectral data with multivariate statistics, 12 discrete groupings were identified, indicating inherent chemical diversity not only between but within the three main marketing groups. A number of unique chemical markers, both major and minor, were identified, other than the three main chemical components (i.e. PEG, PDMS and nonoxynol-9) currently used for lubricant classification. The data was validated by a stratified 20% withheld cross-validation which demonstrated that there was minimal overlap between the groupings. Based on the groupings identified and unique features of each group, a highly discriminating statistical model was then developed that aims to provide the foundation for the development of a forensic lubricant database that may eventually be applied to casework. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Tribological properties of solid lubricants filled glass fiber reinforced polyamide 6 composites

    International Nuclear Information System (INIS)

    Li, Du-Xin; You, Yi-Lan; Deng, Xin; Li, Wen-Juan; Xie, Ying

    2013-01-01

    Highlights: ► The tribological properties of GF/PA6 improved by the incorporation of PTFE. ► PTFE and UHMWPE exhibited a synergism effect on reducing friction coefficient. ► Solid lubricants enlarged the range of applied velocity for GF/PA6 composite. - Abstract: The main purpose of this paper is to further optimize the tribological properties of the glass fiber reinforced PA6 (GF/PA6,15/85 by weight) for high performance friction materials using single or combinative solid lubricants such as Polytetrafluroethylene (PTFE), ultra-high molecular weight polyethylene (UHMWPE) and the combination of both of them. Various polymer blends, where GF/PA6 acts as the polymer matrix and solid lubricants as the dispersed phase were prepared by injection molding. The tribological properties of these materials and the synergism as a result of the incorporation of both PTFE and UHMWPE were investigated. The results showed that, at a load of 40 N and a velocity of 200 rpm, PTFE was effective in improving the tribological capabilities of matrix material. On the contrary, UHMWPE was not conductive to maintain the structure integrity of GF/PA6 composite and harmful to the friction and wear properties. The combination of PTFE and UHMWPE showed synergism on further reducing the friction coefficient of the composites filled with either PTFE or UHMWPE only. Effects of load and velocity on tribological behavior were also discussed. To further understand the wear mechanism, the worn surfaces were examined by scanning electron microscopy

  2. Coefficient of friction of a starved lubricated spur gear pair

    International Nuclear Information System (INIS)

    Liu, Huaiju; Zhu, Caichao; Sun, Zhangdong; Zhang, Yuanyuan; Song, Chaosheng

    2016-01-01

    The frictional power loss issue of gear pairs becomes an important concern in both industry and academia due to the requirement of the energy saving and the improvement of power density of gear drives. A thermal starved elastohydrodynamic lubrication model is developed to study the tribological performance of a spur gear pair under starved lubrication conditions. The contact pressure, the film thickness, the temperature rise, the frictional power loss, as well as the coefficient of friction are evaluated by considering the variation of the curvature radius, the sliding/rolling motion, and the load distribution of gear tooth within the meshing period. Effects of lubrication starvation condition, load and speed on the coefficient of friction are studied.

  3. Effectiveness of Biodiesel from Various Tropical Oil Crops on Lubricity Improvement of Ultra Low Sulfur Diesel (ULSD)

    Energy Technology Data Exchange (ETDEWEB)

    Chollacoop, Nuwong; Topaiboul, Subongkoj; Goodwin, Vituruch (Bioenergy Group, National Metal and Materials Technology Center (MTEC), Thailand Science Park, Pathumthani, 12120 (Thailand)). e-mail: nuwongc@mtec.or.th

    2008-10-15

    Ultra low sulfur diesel (ULSD) has been introduced worldwide with an aim to reduce emission. Since the desulfurization process for ULSD inadvertently reduces its lubricity, lubricity additive is needed. Biodiesel emerges as a potential candidate due to its excellent lubricity property and little sulfur content. In the present study, biodiesel from various energy crops available in Thailand was added at various amounts to ULSD to test the lubricity according to the CEC-F-06-A-96 standard (using High-Frequency Reciprocating Rig: HFRR [1]). It was found that when biodiesel from crude palm, jatropha, soybean, coconut, sunflower, rice, corn and sesame oils of less than 1% (by volume) is additized to ULSD, the lubricity is improved to meet the diesel standard. Further addition beyond 2% (by volume) does not improve lubricity remarkably, where the lubrication seems to saturate. Biodiesel improves lubricity property by film formation preventing mechanical contact between the rubbing surfaces, and the effectiveness varies among different feedstock oils. Biodiesel from crude palm oil, jatropha oil and coconut oil seemingly are superior lubricity additives in ULSD than that from soybean oil, sunflower oil, rice oil, corn oil and sesame oil. Keywords: biodiesel, bio-lubricants, palm oil, sunflower oil

  4. A Comparative Study of Face Milling of D2 Steel Using Al2O3 Based Nanofluid Minimum Quantity Lubrication and Minimum Quantity Lubrication

    Directory of Open Access Journals (Sweden)

    Muhammad Ahsan Ul Haq

    2018-03-01

    Full Text Available This study aims to investigate the effects of process parameters feed, depth of cut and flow rate, on the temperature during face milling of the D2 tool steel under two different lubricant conditions, Minimum Quantity Lubrication (MQL and Nanofluid Minimum Quantity Lubrication (NFMQL. Distilled water with the flow rate range 200-400 ml/hr was used in MQL. 2% by weight concentration of Al2O3 nanoparticles with distilled water as the base fluid used as NFMQL with same flow rate. Response surface methodology RSM central composite design CCD was used to design experiment run, modeling, and analysis. ANOVA was used for the adequacy and validation of the system. The comparison shows that NFMQL condition reduced more temperature during machining.

  5. A fundamental investigation into the relationship between lubricant composition and fuel ignition quality

    KAUST Repository

    Kuti, Olawole Abiola

    2015-11-01

    A fundamental experiment involving the use of an ignition quality tester (IQT) was carried out to elucidate the effects of lubricant oil composition which could lead to low speed pre-ignition (LSPI) processes in direct injection spark ignition (DISI) engines. Prior to the IQT tests, lubricant base oils were analyzed using ultra-high resolution mass spectrometry to reveal their molecular composition. High molecular-weight hydrocarbons such as nC16H34, nC17H36, and nC18H38 were selected as surrogates of lubricant base oil constituents, and then mixed with iso-octane (iC8H18-gasoline surrogate) in proportions of 1 vol.% (iC8H18 = 99 vol.%) and 10 vol.% (iC8H18 = 90 vol.%) for the IQT experiments. In addition, lubricant base oils such as SN100 (Group I) and HC4 and HC6 (Group III) and a fully formulated lubricant (SAE 20W50) were mixed with iso-octane in the same proportions. The IQT results were conducted at an ambient pressure of 15 bar and a temperature range of 680-873 K. In the temperature range of 710-850 K, the addition of 10 vol.% base oils surrogates, base oils, and lubricating oil to the 90 vol.% iC8H18 reduces the average total ignition delay time by up to 54% for all mixtures, while the addition of 1 vol.% to 99 vol.% iC8H18 yielded a 7% reduction within the same temperature range. The shorter total ignition delay was attributed to the higher reactivity of the lubricant base oil constituents in the fuel mixtures. A correlation between reactivity of base oils and their molecular composition was tentatively established. These results suggest that the lubricants have the propensity of initiating LSPI in DISI engines. Furthermore, similar results for n-alkanes, lubricant base oils, and fully formulated commercial lubricants suggest that it is the hydrocarbon fraction that contributes primarily to enhanced reactivity, and not the inorganic or organometallic additives. © 2015 Elsevier Ltd. All rights reserved.

  6. A fundamental investigation into the relationship between lubricant composition and fuel ignition quality

    KAUST Repository

    Kuti, Olawole Abiola; Yang, Seung Yeon; Hourani, Nadim; Naser, Nimal; Roberts, William L.; Chung, Suk-Ho; Sarathy, Mani

    2015-01-01

    A fundamental experiment involving the use of an ignition quality tester (IQT) was carried out to elucidate the effects of lubricant oil composition which could lead to low speed pre-ignition (LSPI) processes in direct injection spark ignition (DISI) engines. Prior to the IQT tests, lubricant base oils were analyzed using ultra-high resolution mass spectrometry to reveal their molecular composition. High molecular-weight hydrocarbons such as nC16H34, nC17H36, and nC18H38 were selected as surrogates of lubricant base oil constituents, and then mixed with iso-octane (iC8H18-gasoline surrogate) in proportions of 1 vol.% (iC8H18 = 99 vol.%) and 10 vol.% (iC8H18 = 90 vol.%) for the IQT experiments. In addition, lubricant base oils such as SN100 (Group I) and HC4 and HC6 (Group III) and a fully formulated lubricant (SAE 20W50) were mixed with iso-octane in the same proportions. The IQT results were conducted at an ambient pressure of 15 bar and a temperature range of 680-873 K. In the temperature range of 710-850 K, the addition of 10 vol.% base oils surrogates, base oils, and lubricating oil to the 90 vol.% iC8H18 reduces the average total ignition delay time by up to 54% for all mixtures, while the addition of 1 vol.% to 99 vol.% iC8H18 yielded a 7% reduction within the same temperature range. The shorter total ignition delay was attributed to the higher reactivity of the lubricant base oil constituents in the fuel mixtures. A correlation between reactivity of base oils and their molecular composition was tentatively established. These results suggest that the lubricants have the propensity of initiating LSPI in DISI engines. Furthermore, similar results for n-alkanes, lubricant base oils, and fully formulated commercial lubricants suggest that it is the hydrocarbon fraction that contributes primarily to enhanced reactivity, and not the inorganic or organometallic additives. © 2015 Elsevier Ltd. All rights reserved.

  7. Experimental Measurements of Journal Bearing Friction Using Mineral, Synthetic, and Bio-Based Lubricants

    Directory of Open Access Journals (Sweden)

    Pantelis G. Nikolakopoulos

    2015-04-01

    Full Text Available The environmental impact of many industrial and naval applications is becoming increasingly important. Journal bearings are crucial components related with the reliable, safe and environmentally friendly operation of rotating machinery in many applications, e.g., in hydroplants, ships, power generation stations. The maintenance activities in certain cases also have considerable environmental impact. Fortunately, it is relatively easy to reduce the impact by changing the way lubricants are being used. Selecting the proper lubricant is important to sharply reduce long-term costs. The best-fit product selection can mean longer lubricant life, reduced machine wear, reduced incipient power losses and improved safety. Suitable basestocks and additives reduce environmental impact. In this paper, three types of lubricants are used in order to examine their effects on the tribological behavior of journal bearings. A mineral oil, a synthetic oil and a bio-based lubricant are experimentally and analytically examined for several configurations of load and journal rotational velocity. The friction forces and the hydrodynamic friction coefficients are calculated and compared. This investigation can assist the correct choice of lubricant in journal bearings with minimized environmental footprint.

  8. Analysis of BJ493 diesel engine lubrication system properties

    Science.gov (United States)

    Liu, F.

    2017-12-01

    The BJ493ZLQ4A diesel engine design is based on the primary model of BJ493ZLQ3, of which exhaust level is upgraded to the National GB5 standard due to the improved design of combustion and injection systems. Given the above changes in the diesel lubrication system, its improved properties are analyzed in this paper. According to the structures, technical parameters and indices of the lubrication system, the lubrication system model of BJ493ZLQ4A diesel engine was constructed using the Flowmaster flow simulation software. The properties of the diesel engine lubrication system, such as the oil flow rate and pressure at different rotational speeds were analyzed for the schemes involving large- and small-scale oil filters. The calculated values of the main oil channel pressure are in good agreement with the experimental results, which verifies the proposed model feasibility. The calculation results show that the main oil channel pressure and maximum oil flow rate values for the large-scale oil filter scheme satisfy the design requirements, while the small-scale scheme yields too low main oil channel’s pressure and too high. Therefore, application of small-scale oil filters is hazardous, and the large-scale scheme is recommended.

  9. Re-Refining of Waste Lubricating Oil by Solvent Extraction

    Directory of Open Access Journals (Sweden)

    Hassan Ali Durrani

    2011-04-01

    Full Text Available Re-refining of waste lubricating oil by solvent extraction is one of the potential techniques. The advantages of solvent extraction technique practically offers from environmental and economic points of view have received due attention. In this paper selection of composite solvent and technique to upgrade the used lubricant oil into base oil has been made. The composite solvent 2-propanol, 1-butanol and butanone have two alcohols that make a binary system reasonably effective. This work also attempts to study the performance of the composite solvent in the extraction process for recovering waste lubricating oil. The key parameters considered were vacuum pressure, temperature and the weight ratio of solvent to waste lubricating oil. The performance was investigated on the PSR (Percentage Sludge Removal and POL (Percent Oil Loss. The best results were obtained using composite solvent 25% 2-propanol, 37% 1-butanol and 38% butanone by a solvent to oil ratio of 6:1 at vacuum pressure 600mmHg and distillation temperature 250oC. The vacuum distilled oil pretreated with the composite solvents was matched to the standard base oil 500N and 150N, found in close agreement and could be used for similar purpose.

  10. Fluorescence excitation-emission matrix spectroscopy for degradation monitoring of machinery lubricants

    Science.gov (United States)

    Sosnovski, Oleg; Suresh, Pooja; Dudelzak, Alexander E.; Green, Benjamin

    2018-02-01

    Lubrication oil is a vital component of heavy rotating machinery defining the machine's health, operational safety and effectiveness. Recently, the focus has been on developing sensors that provide real-time/online monitoring of oil condition/lubricity. Industrial practices and standards for assessing oil condition involve various analytical methods. Most these techniques are unsuitable for online applications. The paper presents the results of studying degradation of antioxidant additives in machinery lubricants using Fluorescence Excitation-Emission Matrix (EEM) Spectroscopy and Machine Learning techniques. EEM Spectroscopy is capable of rapid and even standoff sensing; it is potentially applicable to real-time online monitoring.

  11. Integrated Mechanical Pulse Jet Coolant Delivery System Performance for Minimal Quantity Lubrication

    OpenAIRE

    Nik Fazli Sapian; Badrul Omar; Mohd Hamdi Abd Shukor

    2010-01-01

    Minimum quantity lubrication (MQL) machining is one of the promising solutions to the requirement for decrease in cutting fluid consumption. This research describes MQL machining in a range of lubricant consumption 2.0ml/h, which is 10–100 times smaller than the consumption usually adopted in industries. MQL machining in this range is called pulse jet coolant delivery system in this research. A specially designed system was used for concentrating small amounts of lubricant onto the cutting in...

  12. Tribological characteristics of monodispersed cerium borate nanospheres in biodegradable rapeseed oil lubricant

    Energy Technology Data Exchange (ETDEWEB)

    Boshui, Chen, E-mail: boshuichen@163.com; Kecheng, Gu; Jianhua, Fang; Jiang, Wu; Jiu, Wang; Nan, Zhang

    2015-10-30

    Graphical abstract: - Highlights: • Monodispersed stearic acid-capped cerium borate composite nanoparticles were prepared by hydrothermal method. Their morphologies, element compositions, size distributions, crystal and chemical structures, hydrophobic characteristics were also characterized. • The surface-capped cerium borate nanoparticles exhibited excellent dispersing stability in rapeseed oil. As new lubricating additives, they were also outstanding in enhancing friction-reducing and anti-wear capacities of rapeseed oil in biodegradable rapeseed oil. The results presented in this paper would be of important significance for developing green lubricants and lubricant additives. • The prominent tribological performances of SA/CeBO{sub 3} in rapeseed oil were investigated and attributed to the formation of a composite boundary lubrication film mainly composed of lubricous tribochemical species on the tribo-surfaces. - Abstract: Stearic acid-capped cerium borate composite nanoparticles, abbreviated as SA/CeBO{sub 3}, were prepared by hydrothermal method. The morphologies, element compositions, size distributions, crystal and chemical structures, hydrophobic characteristics, of SA/CeBO{sub 3} were characterized by scanning electron microscope, energy dispersive X-ray spectrometer, dynamic laser particle size analyzer, X-ray diffraction, and Fourier transform infrared spectrometer, respectively. The friction and wear performances of SA/CeBO{sub 3} as a lubricating additive in a rapeseed oil were evaluated on a four-ball tribo-tester. The tribochemical characteristics of the worn surfaces were investigated by X-ray photoelectron spectroscopy. The results showed that the hydrophobic SA/CeBO{sub 3} were monodispersed nanospheres with an average diameter of 8 nm, and exhibited excellent dispersing stability in rapeseed oil. Meanwhile, SA/CeBO{sub 3} nanospheres were outstanding in enhancing friction-reducing and anti-wear capacities of rapeseed oil. The prominent

  13. Testing of Lubricant Performance in Sheet Metal Forming

    DEFF Research Database (Denmark)

    Bay, Niels; Olsson, David Dam; Friis, Kasper Leth

    2008-01-01

    Increasing focus on environmental issues in industrial production has urged a number of sheet metal forming companies to look for new tribo-systems in order to substitute hazardous lubricants such as chlorinated paraffin oils. The problems are especially pronounced, when forming tribologically...... of the lubricant film causing pick-up of work piece material on the tool surface and scoring of subsequent work piece surfaces. The present paper gives an overview of more than 10 years work by the authors’ research group through participation in national as well as international framework programmes on developing...

  14. Application of strip-reduction-test in hte evaluation of lubricants developed in Enform project

    DEFF Research Database (Denmark)

    Andreasen, Jan Lasson; Olsson, David Dam; Gazvoda, S.

    2001-01-01

    The performance of three different lubricants in relation to sheet metal forming of steel, Zinc coated steel and stainless steel is investigated in the present paper. A strip reduction test simulating can wall ironing is used. The test was originally developed for determining the limits...... of lubrication in forming of stainless steel by quantification of the degree of galling. The present results show that the test methodology to some extend can be used in testing of lubricants for Zinc coated steels whereas the lubricant performance in forming of steel is more complicated to quantify since...

  15. Effects of disintegration-promoting agent, lubricants and moisture treatment on optimized fast disintegrating tablets.

    Science.gov (United States)

    Late, Sameer G; Yu, Yi-Ying; Banga, Ajay K

    2009-01-05

    Effects of calcium silicate (disintegration-promoting agent) and various lubricants on an optimized beta-cyclodextrin-based fast-disintegrating tablet formulation were investigated. Effects of moisture treatment were also evaluated at 75, 85 and 95% relative humidities. A two factor, three levels (3(2)) full factorial design was used to optimize concentrations of calcium silicate and lubricant. Magnesium stearate, being commonly used lubricant, was used to optimize lubricant concentration in optimization study. Other lubricants were evaluated at an obtained optimum concentration. Desiccator with saturated salt solutions was used to analyze effects of moisture treatments. Results of multiple linear regression analysis revealed that concentration of calcium silicate had no effect; however concentration of lubricant was found to be important for tablet disintegration and hardness. An optimized value of 1.5% of magnesium stearate gave disintegration time of 23.4 s and hardness of 1.42 kg. At an optimized concentration, glycerol dibehenate and L-leucine significantly affected disintegration time, while talc and stearic acid had no significant effect. Tablet hardness was significantly affected with L-leucine, while other lubricants had no significant effect. Hardness was not affected at 75% moisture treatment. Moisture treatment at 85 and 95% increased hardness of the tablets; however at the same time it negatively affected the disintegration time.

  16. Tribological Behaviour of W-DLC against an Aluminium Alloy Subjected to Lubricated Sliding

    Directory of Open Access Journals (Sweden)

    S. Bhowmick

    2015-09-01

    Full Text Available Diamond like carbon (DLC coatings mitigate aluminium adhesion and reduce friction under the ambient conditions but their tribological behaviour under lubricated sliding need to be further investigated. In this study, tribological tests were performed to evaluate the friction and wear characteristics of W-DLC and H-DLC coatings sliding against an aluminium alloy (319 Al under unlubricated (40 % RH and lubricated sliding conditions. For unlubricated sliding, coefficient of friction (COF values of H-DLC and W-DLC were 0.15 and 0.20. A lower COF value of 0.11 was observed when W-DLC was tested using lubricant oil incorporating sulphur while the H-DLC’s COF remained almost unchanged. The mechanisms responsible for the low friction of W-DLC observed during lubricated sliding were revealed by studying the compositions of the coating surfaces and the transfer layers formed on 319 Al. Micro-Raman spectroscopy indicated that the transfer layers formed during lubricated sliding of W-DLC incorporated tungsten disulphide (WS2.

  17. Boundary lubrication by nano-particles; Lubrification limite par les nanoparticules

    Energy Technology Data Exchange (ETDEWEB)

    Cizaire, L.

    2003-09-15

    The replacement of aggressive organic molecules by mineral particles which could reduce friction and wear has been the main idea of this research work. The aim is thus to reduce product concentration in lubricant and pollutant gas emission. Boundary lubrication regime is well suited for this type of study in particular for being discriminative in tested nano-particles efficacy. We are firstly being interested in an anti-wear additive. A physical and chemical study of dialysed over based calcium sulfonates by EFTEM, XPS and ToF-SIMS lead to describe nano-particles as calcium carbonate core, still amorphous by the residual presence of calcium hydroxide and surrounded by di-dodecyl-benzene sulfonate surfactant chains. Their anti-wear action has been investigated by coupling many tribo-meters with different contact geometry. Rubbing surfaces were protected by a thick tribo-film being on surfaces without any scratches. When additive is in contact area under high pressure and shearing, micellar structure is broken. Hydro-carbonated chains initially control friction by being broken up and then with increasing of contact severity, sulfonate chains are expulsed out of the tribo-film. Tribo-film growth corresponds then to agglomeration and crystallization of calcium carbonate core striped of detergent chains. We have shown then friction reduction capabilities of inorganic-fullerene (IF) MoS{sub 2} nano-particles. Lubricating power of MoS{sub 2} layers is as good whatever the layers number leading thinking that friction value is intrinsic character of compound nature. Fullerene nano-particles were described by HR-TEM as a concentric and closed multi-layered structure. Coupling of Raman, XRD and EXAFS have shown that MoS{sub 2} layers were well organised in hexagonal form with distortion in Mo-Mo bonds reaching 1% of initial length. Chemical stability of such structure, in particular in regard of oxidation, is very impressive. XPS, XANES and ToF-SIMS analyses have lead to

  18. Utilisation of acoustic emission technique to monitor lubrication condition in a low speed bearing

    International Nuclear Information System (INIS)

    Nordin Jamaludin; Mohd Jailani Mohd Nor

    2003-01-01

    Monitoring of lubrication condition in rolling element bearings through the use of vibration analysis is an established technique. However, this success has not mirrored at low rotational speeds. At low speeds the energy generated from the poor lubricated bearing lubrication might not show as an obvious change in signature and thus become undetectable using conventional vibration measuring equipment. This paper presents an investigation into the applicability of acoustic emission technique and analysis for detecting poorly lubricated bearing rotating at a speed of 1.12 rpm. Investigations were centered on a test-rig designed to simulate the real bearing used in the field. The variation of lubricant amount in the low-speed bearing was successfully monitored using a new developed method known as pulse injection technique (PIT). The PIT technique was based on acoustic emission method. The technique involved transmitting a Dirac pulse to the test bearing via a transmitting acoustic emission sensor while the bearing was in operation. Analysing the captured acoustic emission signatures using established statistical method could differentiate between properly and poorly lubricated bearing. (Author)

  19. 49 CFR 215.109 - Defective plain bearing box: Journal lubrication system.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Defective plain bearing box: Journal lubrication... Freight Car Components Suspension System § 215.109 Defective plain bearing box: Journal lubrication system...) Metal parts contacting the journal; or (e) Is— (1) Missing; or (2) Not in contact with the journal. ...

  20. Friction Reduction Tested for a Downsized Diesel Engine with Low-Viscosity Lubricants Including a Novel Polyalkylene Glycol

    Directory of Open Access Journals (Sweden)

    David E. Sander

    2017-04-01

    Full Text Available With the increasing pressure to reduce emissions, friction reduction is always an up-to-date topic in the automotive industry. Among the various possibilities to reduce mechanical friction, the usage of a low-viscosity lubricant in the engine is one of the most effective and most economic options. Therefore, lubricants of continuously lower viscosity are being developed and offered on the market that promise to reduce engine friction while avoiding deleterious mixed lubrication and wear. In this work, a 1.6 L downsized Diesel engine is used on a highly accurate engine friction test-rig to determine the potential for friction reduction using low viscosity lubricants under realistic operating conditions including high engine loads. In particular, two hydrocarbon-based lubricants, 0W30 and 0W20, are investigated as well as a novel experimental lubricant, which is based on a polyalkylene glycol base stock. Total engine friction is measured for all three lubricants, which show a general 5% advantage for the 0W20 in comparison to the 0W30 lubricant. The polyalkylene glycol-based lubricant, however, shows strongly reduced friction losses, which are about 25% smaller than for the 0W20 lubricant. As the 0W20 and the polyalkylene glycol-based lubricant have the same HTHS-viscosity , the findings contradict the common understanding that the HTHS-viscosity is the dominant driver related to the friction losses.

  1. Tribochemistry of Ionic Liquid Lubricant on Magnetic Media

    Directory of Open Access Journals (Sweden)

    Hirofumi Kondo

    2012-01-01

    Full Text Available The newly synthesized perfluoropolyether (PFPE ionic liquid whose terminal group is an ammonium salt with a carboxylic acid has better frictional properties when compared to the conventional PFPEs. Stick-slip motion was not observed even for the smooth surface for the modified PFPE tape. The friction is almost independent of the PFPE structure, but depends on the amine structures. The ammonium salt being tightly anchored to the rubbing surface covers uniformly, which leads to better lubricity. The higher dispersive interaction of the hydrophobic group of the amine is endowed with a compensating friction reduction. Steric hindrance of the hydrophilic group causes a high friction. Based on these findings, a saturated long chain ammonium salt is the best selection. Moreover, the modified PFPEs are dissolved in alcohol and hexane, which makes practical use convenient without any environmental problems. These ionic lubricants invented around 1987 have been used for magnetic tapes for about a quarter century because of their good lubricity and are reviewed in this paper.

  2. Au/Graphene Oxide Nanocomposite Synthesized in Supercritical CO2 Fluid as Energy Efficient Lubricant Additive.

    Science.gov (United States)

    Meng, Yuan; Su, Fenghua; Chen, Yangzhi

    2017-11-15

    Au nanoparticles are successfully decorated onto graphene oxide (GO) sheets with the aid of supercritical carbon dioxide (ScCO 2 ) fluid. The synthesized nanocomposite (Sc-Au/GO) was characterized by X-ray diffraction (XRD), Raman spectroscopy, thermal gravimetric analysis (TGA), and transmission electron microscopy (TEM). The characterization results show that the Au nanoparticles are featured with face-centered cubic crystal structure and disperse well on the GO nanosheet surfaces with average diameters of 4-10 nm. The tribological behaviors of Sc-Au/GO as lubricating additive in PAO6 oil were investigated using a ball-on-disc friction tester, and a control experiment by respectively adding GO, nano-Au particles, and Au/GO produced in the absence of ScCO 2 was performed as well. It is found that Sc-Au/GO exhibits the best lubricating performances among all the samples tested. When 0.10 wt % Sc-Au/GO is dispersed into PAO6 oil, the friction coefficient and wear rate are respectively reduced by 33.6% and 72.8% as compared to that of the pure PAO6 oil, indicating that Sc-Au/GO is an energy efficient lubricant additive. A possible lubricating mechanism of Sc-Au/GO additive in PAO6 oil has been tentatively proposed on the basis of the analyzed results of the worn surface examined by scanning electron microscopy (SEM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS).

  3. Optimization of Minimum Quantity Lubricant Conditions and Cutting Parameters in Hard Milling of AISI H13 Steel

    OpenAIRE

    The-Vinh Do; Quang-Cherng Hsu

    2016-01-01

    As a successful solution applied to hard machining, the minimum quantity lubricant (MQL) has already been established as an alternative to flood coolant processing. The optimization of MQL parameters and cutting parameters under MQL condition are essential and pressing. The study was divided into two parts. In the first part of this study, the Taguchi method was applied to find the optimal values of MQL condition in the hard milling of AISI H13 with consideration of reduced surface roughness....

  4. Synthetic lubrication oil influences on performance and emission characteristic of coated diesel engine fuelled by biodiesel blends

    International Nuclear Information System (INIS)

    Mohamed Musthafa, M.

    2016-01-01

    Highlights: • Synthetic lubricant provides the maximum performance benefits. • Synthetic lubricant is capable of retaining satisfactory viscosity. • Synthetic lubricant is to increase the life of the engine. • Improvement in efficiency of the coated engine with synthetic lubrication. • No significant changes in the coated engine emission with synthetic lubricants. - Abstract: In this study, the effects of using synthetic lubricating oil on the performance and exhaust emissions in a low heat rejection diesel engine running on Pongamia methyl ester blends and diesel have been investigated experimentally compared to those obtained from a conventional diesel engine with SAE 40 lubrication oil fuelled by diesel. For this purpose, direct injection diesel engine was converted to Yttria-stabilized zirconia (YSZ) coated engine. The results showed 5–9% increase in engine efficiency and 8–17% decrease in specific fuel consumption, as well as significant improvements in exhaust gas emissions (except NO_X) for all tested fuels (pure diesel, B10 and B20) used in coated engine with synthetic lubricants compared to that of the uncoated engine with SAE 40 lubricant running on diesel fuel.

  5. Phospholipid-Coated Mesoporous Silica Nanoparticles Acting as Lubricating Drug Nanocarriers

    Directory of Open Access Journals (Sweden)

    Tao Sun

    2018-05-01

    Full Text Available Osteoarthritis (OA is a severe disease caused by wear and inflammation of joints. In this study, phospholipid-coated mesoporous silica nanoparticles (MSNs@lip were prepared in order to treat OA at an early stage. The phospholipid layer has excellent lubrication capability in aqueous media due to the hydration lubrication mechanism, while mesoporous silica nanoparticles (MSNs act as effective drug nanocarriers. The MSNs@lip were characterized by scanning electron microscope, transmission electron microscope, Fourier transform infrared spectrum, X-ray photoelectron spectrum, thermogravimetric analysis and dynamic light scattering techniques to confirm that the phospholipid layer was coated onto the surface of MSNs successfully. A series of tribological tests were performed under different experimental conditions, and the results showed that MSNs@lip with multi-layers of phospholipids greatly reduced the friction coefficient in comparison with MSNs. Additionally, MSNs@lip demonstrated sustained drug release behavior and were biocompatible based on CCK-8 assay using MC3T3-E1 cells. The MSNs@lip developed in the present study, acting as effective lubricating drug nanocarriers, may represent a promising strategy to treat early stage OA by lubrication enhancement and drug delivery therapy.

  6. Lubrication and thermal characteristics of mechanical seal with porous surface based on cavitation

    Science.gov (United States)

    Huilong, Chen; Muzi, Zuo; Tong, Liu; Yu, Wang; Cheng, Xu; Qiangbo, Wu

    2014-04-01

    The theory model of mechanical seals with laser-textured porous surface (LST-MS) was established. The liquid film of LST-MS was simulated by the Fluent software, using full cavitation model and non-cavitation model separately. Dynamic mesh technique and relationship between viscosity and temperature were applied to simulate the internal flow field and heat characteristics of LST-MS, based on the more accurate cavitation model. Influence of porous depth ratio porous diameter ɛ and porous density SP on lubrication performance and the variation of lubrication and thermal properties with shaft speed and sealing pressure were analyzed. The results indicate that the strongest hydrodynamic pressure effect and the biggest thickness of liquid film are obtained when ɛ and SP are respectively about 0.025 and 0.5 which were thought to be the optimum value. The frictional heat leads to the increase of liquid film temperature and the decrease of medium viscosity with the shaft speed increasing. The hydrodynamic pressure effect increases as shaft speed increasing, however it decreases as the impact of frictional heat.

  7. High paraffin Kumkol petroleum processing under fuel and lubricant petroleum scheme

    International Nuclear Information System (INIS)

    Nadirov, N.K.; Konaev, Eh.N.

    1997-01-01

    Technological opportunity of high paraffin Kumkol petroleum processing under the fuel and lubricant scheme with production of lubricant materials in short supply, combustible materials and technical paraffin is shown. Mini petroleum block putting into operation on Kumkol deposit is reasonable economically and raises profitableness of hydrocarbon raw material production. (author)

  8. Experience with synthetic fluorinated fluid lubricants

    Science.gov (United States)

    Conley, Peter L.; Bohner, John J.

    1990-01-01

    Since the late 1970's, the wet lubricant of choice for space mechanisms has been one of the family of synthetic perfluoro polyalkylether (PFPE) compounds, namely Fomblin Z-25 (Bray-815Z) or DuPont's Krytox 143xx series. While offering the advantages of extremely low vapor pressures and wide temperature ranges, these oils and derived greases have a complex chemistry compared to the more familiar natural and synthetic hydrocarbons. Many aerospace companies have conducted test programs to characterize the behavior of these compounds in a space environment, resulting in a large body of hard knowledge as well as considerable space lore concerning the suitability of the lubricants for particular applications and techniques for successful application. The facts are summarized and a few myths about the compounds are dispelled, and some performance guidelines for the mechanism design engineer are provided.

  9. Noise of oil lubricated journal bearings

    International Nuclear Information System (INIS)

    Rho, Byoung Hoo; Kim, Kyung Woong

    2002-01-01

    The purpose of the paper is to provide a procedure to calculate the noise of oil lubricated journal bearings. To do this, the nonlinear transient analysis of rotor-bearing system including rotor imbalance is performed. Acoustical properties of the bearing are investigated through frequency analysis of the pressure fluctuation of the fluid film calculated from the nonlinear analysis. Furthermore, a transmission theory of plane waves on a boundary of the outer surface of the bearing is used to obtain the sound pressure level of the bearing. Results show that the sound pressure level of the bearing can be increased with the rotational speed of the rotor although the whirl amplitude of the rotor is decreased at high speed. Noise estimating procedures presented in this paper could be an aid in the evaluation and understanding of acoustical properties of oil lubricated journal bearings

  10. On the combined effect of lubrication and compaction temperature on properties of iron-based P/M parts

    International Nuclear Information System (INIS)

    Babakhani, Abolfazl; Haerian, Ali; Ghambari, Mohammad

    2006-01-01

    Addition of lubricant in the form of admixed with powder reduces friction between die wall and powder during compaction of P/M parts. However, it has detrimental effect on mechanical properties. On the other hand, warm compaction of powders improves density and hence, the mechanical properties of these parts. Die wall lubrication can be used along with warm compaction to avoid the disadvantages of the admixed lubricant while reducing the friction, and benefiting the advantages of warm compaction. In this study, the combined effect of warm compaction and die wall lubrication with various amounts of admixed lubricant has been examined. Compacts were made of admixed powders containing from 0 to 0.6% lithium stearate with the die wall lubricated by 1.5% emulsion of lithium stearate under two different pressing pressures of 500 and 650 MPa. The temperatures used were: RT, 130, 150 and 165 deg. C. It was found out that at both compaction pressures, reduction of admixed lubricant down to 0% increased the green density and mechanical properties of the sintered parts. For samples pressed at 500 and 650 MPa the increase in green density due to elimination of admixed lubricant and using die wall lubrication was 0.33 and 0.35 g/cm 3 , respectively. It was also found out that die wall lubrication is more effective in increasing green density at higher compaction pressures. Sinter density and mechanical properties increased by increasing compaction temperature up to 150 deg. C. Both parameters were deteriorated above this temperature for admixed powders, while it kept increasing for die wall lubrication

  11. Development of High Temperature Solid Lubricant Coatings

    National Research Council Canada - National Science Library

    Bhattacharya, Rabi

    1999-01-01

    ... environment. To test this approach, UES and Cleveland State University have conducted experiments to form cesium oxythiotungstate, a high temperature lubricant, on Inconel 718 surface from composite coatings...

  12. Biodegradation of used lubricating and diesel oils by a new yeast ...

    African Journals Online (AJOL)

    A new yeast strain, identified by 18S-rRNA gene sequencing as Candida viswanathii KA-201l, was isolated from used lubricating oil, showed high biodegradation efficiency for different used lubricating oils. Capability of this isolate to degrade different high and low molecular weight hydrocarbons, castor oil, diesel oil and ...

  13. The effects of ion implantation on the tribology of perfluoropolyether-lubricated 440C stainless steel couples

    Science.gov (United States)

    Shogrin, Bradley; Jones, William R., Jr.; Wilbur, Paul J.; Pilar, Herrera-Fierro; Williamson, Don L.

    1995-01-01

    The lubricating lifetime of thin films of a perfluoropolyether (PFPE) based on hexafluoropropene oxide in the presence of ion implanted 440C stainless steel is presented. Stainless steel discs, either unimplanted or implanted with N2, C, Ti, Ti + N2, or Ti + C had a thin film of PFPE (60-400 A) applied to them reproducibly (+/- 20 percent) and uniformly (+/- 15 percent) using a device developed for this study. The lifetimes of these films were quantified by measuring the number of sliding-wear cycles required to induce an increase in the friction coefficient from an initial value characteristic of the lubricated wear couple to a final, or failure value, characteristic of an unlubricated, unimplanted couple. The tests were performed in a dry nitrogen atmosphere (less than 1 percent RH) at room temperature using a 3 N normal load with a relative sliding speed of 0.05 m/s. The lubricated lifetime of the 440C couple was increased by an order of magnitude by implanting the disc with Ti. Ranked from most to least effective, the implanted species were: Ti; Ti+C; unimplanted; N2; C approximately equals Ti+N2. The mechanism postulated to explain these results involves the formation of a passivating or reactive layer which inhibits or facilitates the production of active sites. The corresponding surface microstructures induced by ion implantation, obtained using x-ray diffraction and conversion electron Mossbauer spectroscopy, ranked from most to least effective in enhancing lubricant lifetime were: amorphous Fe-Cr-Ti; amorphous Fe-Cr-Ti-C + TiC; unimplanted; epsilon-(Fe,Cr)(sub x)N, x = 2 or 3; amorphous Fe-Cr-C approximately equals amorphous Fe-Cr-Ti-N.

  14. Upgrading the lubricity of bio-oil via homogeneous catalytic esterification under vacuum distillation conditions

    International Nuclear Information System (INIS)

    Xu, Yufu; Zheng, Xiaojing; Peng, Yubin; Li, Bao; Hu, Xianguo; Yin, Yanguo

    2015-01-01

    In order to accelerate the application of bio-oil in the internal combustion engines, homogeneous catalytic esterification technology under vacuum distillation conditions was used to upgrade the crude bio-oil. The lubricities of the crude bio-oil (BO) and refined bio-oil with homogeneous catalytic esterification (RBO hce ) or refined bio-oil without catalyst but with distillation operation (RBO wc ) were evaluated by a high frequency reciprocating test rig according to the ASTM D 6079 standard. The basic physiochemical properties and components of the bio-oils were analyzed. The surface morphology, contents and chemical valence of active elements on the worn surfaces were investigated by scanning electron microscopy, energy dispersive spectroscopy and X-ray photoelectron spectroscopy, respectively. The results show that RBO hce has better lubricities than those of BO, but RBO wc has worse lubricities than those of BO. The tribological mechanisms of the bio-oils are attributed to the combined actions of lubricating films and factors that will break the film. Compared with BO, plenty of phenols in RBO wc results in corrosion of the substrate and destroys the integrity of the lubricating films, which is responsible for its corrosive wear. However, more esters and alkanes in RBO hce contribute to forming a complete boundary lubricating film on the rubbed surfaces which result in its excellent antifriction and antiwear properties. - Highlights: • Refined bio-oil was prepared through homogeneous catalytic esterification technology. • Properties of the bio-oils before and after refining were assessed by HFRR. • Refined bio-oil showed better lubricities than crude bio-oil. • More esters and alkanes in refined bio-oil contributed to forming superior boundary lubrication

  15. Thermo-hydrodynamic lubrication in hydrodynamic bearings

    CERN Document Server

    Bonneau, Dominique; Souchet, Dominique

    2014-01-01

    This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the thermo-hydrodynamic and the thermo-elasto-hydrodynamic lubrication. The algorithms are methodically detailed and each section is thoroughly illustrated.

  16. Next Generation Refrigeration Lubricants for Low Global Warming Potential/Low Ozone Depleting Refrigeration and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hessell, Edward

    2013-12-31

    The goal of this project is to develop and test new synthetic lubricants that possess high compatibility with new low ozone depleting (LOD) and low global warming potential (LGWP) refrigerants and offer improved lubricity and wear protection over current lubricant technologies. The improved compatibility of the lubricants with the refrigerants, along with improved lubricating properties, will resulted in lower energy consumption and longer service life of the refrigeration systems used in residential, commercial and industrial heating, ventilating and air-conditioning (HVAC) and refrigeration equipment.

  17. The Effects of Acid Passivation, Tricresyl Phosphate Presoak, and UV/Ozone Treatment on the Tribology of Perfluoropolyether-Lubricated 440C Stainless Steel Couples

    Science.gov (United States)

    Shogrin, Bradley A.; Jones, William R., Jr.; Herrera-Fierro, Pilar; Jansen, Mark J.

    2001-01-01

    The boundary-lubrication performance of two perfluoropolyether (PFPE) thin films in the presence of passivated 440C stainless steel is presented. The study used a standard ball on disk (BoD) tribometer in dry nitrogen and a vacuum spiral orbit tribometer (SOT). Stainless steel surfaces were passivated with one of four techniques: high and low temperature chromic acid bath, a tricresyl phosphate (TCP) soak, or UV/Ozone treated for 15 min. After passivation, each BoD disk had a 400A film of Krytox 16256 (PFPE) applied to it. The lifetimes of these films were quantified by measuring the number of sliding cycles before an increase in friction occurred. The lubricated lifetime of the 440C couple was not altered as a result of the various passivation techniques. The resulting surface chemistry of each passivation technique was examined using X-ray photoelectron spectroscopy (XPS). The SOT was used to examine the effects of the TCP treatment on the lubricated lifetime of another PFPE, Brayco 815Z, under rolling conditions. None of the passivation techniques were found to dramatically increase the oxide film thickness or lubricated lifetimes.

  18. Analysis of lubricant oil contamination and degradation and wear of a biogas-fed otto cycle engine

    Directory of Open Access Journals (Sweden)

    Rovian Bertinatto

    2017-09-01

    Full Text Available The increasing deployment of biodigesters for the treatment of waste on farms and the use of the biogas generated in the production of energy have highlighted the need for knowing the influence of this fuel on internal combustion engines. This study aimed to analyze the influence of filtrated biogas on lubricant oil contamination and degradation, as well as on engine wear and corrosion. Lubricant oil samples were collected every 75 engine operating hours (EOH and then correlated between each other and with a sample of new oil, determining the elements present in the biogas that contribute to lubricant oil contamination and degradation, as well as lubricant oil performance in the course of EOH and engine wear. The results demonstrate that hydrogen sulfide affects the performance of the lubricant oil and engine wear. Among the metals, we observed that the copper concentration exceeded the maximum limit recommended in the literature. As for the additives, the variation in concentrations of magnesium impacted on lubricant performance. By monitoring lubricant oil quality were able to extend the engine oil change interval of this study by 50%, what resulted in a savings of 33.3% in the cost of lubricant per hour worked.

  19. An experimental assessment on the performance of different lubrication techniques in grinding of Inconel 751

    Directory of Open Access Journals (Sweden)

    A.S.S. Balan

    2016-09-01

    Full Text Available The application of emulsion for combined heat extraction and lubrication requires continuous monitoring of the quality of emulsion to sustain a desired grinding environment; this is applicable to other grinding fluids as well. Thus to sustain a controlled grinding environment, it is necessary to adopt an effectively lubricated wheel-work interface. The current study was undertaken to assess experimentally the ​ effects of different grinding environments such as dry, minimum quantity lubrication (MQL and Cryo-MQL on performance, such as grinding force, temperature, surface roughness and chip morphology on Inconel 751, a higher heat resistance material posing thermal problems and wheel loading. The results show that grinding with the combination of both liquid nitrogen (LN2 and MQL lowers temperature, cutting forces, and surface roughness as compared with MQL and dry grinding. Specific cutting energy is widely used as an inverse measure of process efficiency in machining. It is found from the results that specific cutting energy of Cryo-MQL assisted grinding is 50–65% lower than conventional dry grinding. The grindability of Inconel 751 superalloy can be enhanced with Cryo-MQL condition.

  20. Performance of Metal Cutting on Endmills Manufactured by Cooling-Air and Minimum Quantity Lubrication Grinding

    Science.gov (United States)

    Inoue, Shigeru; Aoyama, Tojiro

    Grinding fluids have been commonly used during the grinding of tools for their cooling and lubricating effect since the hard, robust materials used for cutting tools are difficult to grind. Grinding fluids help prevent a drop in hardness due to burning of the cutting edge and keep chipping to an absolute minimum. However, there is a heightened awareness of the need to improve the work environment and protect the global environment. Thus, the present study is aimed at applying dry grinding, cooling-air grinding, cooling-air grinding with minimum quantity lubrication (MQL), and oil-based fluid grinding to manufacturing actual endmills (HSS-Co). Cutting tests were performed by a vertical machining center. The results indicated that the lowest surface inclination values and longest tool life were obtained by cooling-air grinding with MQL. Thus, cooling-air grinding with MQL has been demonstrated to be at least as effective as oil-based fluid grinding.

  1. Phospholipid-Coated Mesoporous Silica Nanoparticles Acting as Lubricating Drug Nanocarriers

    OpenAIRE

    Tao Sun; Yulong Sun; Hongyu Zhang

    2018-01-01

    Osteoarthritis (OA) is a severe disease caused by wear and inflammation of joints. In this study, phospholipid-coated mesoporous silica nanoparticles (MSNs@lip) were prepared in order to treat OA at an early stage. The phospholipid layer has excellent lubrication capability in aqueous media due to the hydration lubrication mechanism, while mesoporous silica nanoparticles (MSNs) act as effective drug nanocarriers. The MSNs@lip were characterized by scanning electron microscope, transmission el...

  2. Thermal Stability and Lubrication Properties of Biodegradable Castor Oil on AISI 4140 Steel

    Directory of Open Access Journals (Sweden)

    María Teresa Hernández-Sierra

    2018-06-01

    Full Text Available Lubricants have much importance in several industries, principally serving to reduce friction and wear in mechanical elements. In this study, the influence of Castor oil as bio-lubricant on the friction and wear performance of AISI 4140 steel was investigated. For that purpose, pin-on-disk friction tests were conducted according to ASTM G-99, by using pins of tungsten carbide (WC as counterparts. The experiments were performed at two different temperatures. This work also presents the Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR and 1H-NMR analyses for the chemical characterization of oils and a study of their degradation by oxidation. The analysis of the damage caused to steel due to friction was deepened by analyzing its microhardness and microstructure in the worn zone. As a reference, the same experiments were performed with a commercial oil. The friction behavior of 4140 steel/WC with Castor oil lubrication at the two temperatures was notably better than that obtained under the reference oil lubrication. The kinetic friction coefficient (µk was up to 76% lower. However, a slight increase in steel wear was observed under Castor oil lubrication. Despite this, these results suggest that Castor oil could be used as bio-lubricant in systems which are susceptible to levels of high friction.

  3. INVESTIGATION OF FLOW BEHAVIOR IN MINIMUM QUANTITY LUBRICATION NOZZLE FOR END MILLING PROCESSES

    Directory of Open Access Journals (Sweden)

    M.S. Najiha

    2012-12-01

    Full Text Available Minimum quantity lubrication (MQL is a sustainable manufacturing technique that has replaced conventional flooded lubrication methods and dry machining. In the MQL technique, the lubricant is sprayed onto the friction surfaces through nozzles through small pneumatically-operated pumps. This paper presents an investigation into the flow behavior of the lubricant and air mixture under certain pressures at the tip of a nozzle specially designed for MQL. The nozzle used is an MQL stainless steel nozzle, 6.35 mm in diameter. Computational fluid dynamics is used to determine the flow pattern at the tip of the nozzle where the lubricant and compressed air are mixed to form a mist. The lubricant volume flow is approximately 0.08 ml/cycle of the pump. A transient, pressure-based, three-dimensional analysis is performed with a viscous, realizable k-ε model. The results are obtained in the form of vector plots and flow fields. The flow mixing at the tip of the nozzle is wholly shown through the flow fields and vector plots. This study provides an insight into the flow distribution at the tip of the nozzle for a certain pressure to aid modifications in the design of the nozzle for future MQL studies. It attainable aids to determine the correct pressure for the air jet at the nozzle tip.

  4. Self-lubricating formula

    Energy Technology Data Exchange (ETDEWEB)

    Borzenko, V.A.; Koltovskiy, L.V.; Koshelyov, Yu.I.; Kuzovlyev, G.F.; Lebedyev, S.I.; Sitnikov, S.A.; Telegin, V.D.

    1979-12-30

    To improve operation of scrubbers that operate in crystallizers for deparaffinization of oil products, a formula is being suggested which contains siliceous fibers, and a type of thermoactive resin - phenol-formaldehyde laquer, with the following component ration (% weight): carbon fiber 20-25, siliceous fibers 20-30, dry lubricant 10-15, phenolformaldehyde laquer up to 100. Phys.-mech. characteristics are flexure, compression, Ak of the suggested and known compositions (kgs/cm/sup 2/) 2150-2450 and 2550-2700, 32-37 and 1750, 2150 and 27 operation resource 2100:2500 and 1400.

  5. Consistency-dependent optical properties of lubricating grease studied by terahertz spectroscopy

    International Nuclear Information System (INIS)

    Tian Lu; Zhao Kun; Zhou Qing-Li; Shi Yu-Lei; Zhao Dong-Mei; Zhang Cun-Lin; Zhao Song-Qing; Zhao Hui; Bao Ri-Ma; Zhu Shou-Ming; Miao Qing

    2011-01-01

    The optical properties of four kinds of lubricating greases (urea, lithium, extreme pressure lithium, molybdenum disulfide lithium greases) with different NLGL (National Lubricant Grease Institute of America) numbers were investigated using terahertz time-domain spectroscopy. Greases with different NLGL grades have unique spectral features in the terahertz range. Comparison of the experimental data with predictions based on Lorentz—Lorenz theory exhibited that the refractive indices of each kind of lubricating grease were dependent on the their consistency. In addition, molybdenum disulfide (MoS 2 ) as a libricant additive shows strong absorption from 0.2 to 1.4 THz, leading to higher absorption of MoS 2 -lithium grease than that of lithium grease. (general)

  6. Feasibility of Applying Controllable Lubrication Techniques to Reciprocating Machines

    DEFF Research Database (Denmark)

    Pulido, Edgar Estupinan

    of the reciprocating engine, obtained with the help of multibody dynamics (rigid components) and finite elements method (flexible components), and the global system of equations is numerically solved. The analysis of the results was carried out with focus on the behaviour of the journal orbits, maximum fluid film...

  7. Fuels and Petroleum, Oil & Lubricants (POL) Laboratories

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuels and Lubricants Technology Team operates and maintains the Fuels and POL Labs at TARDEC. Lab experts adhere to standardized American Society for Testing and...

  8. Lubricating grease shear flow and boundary layers in a concentric cylinder configuration

    NARCIS (Netherlands)

    Li, J.X.; Westerberg, L.G.; Höglund, E.; Lugt, Pieter Martin; Baart, P.

    2014-01-01

    Grease is extensively used to lubricate various machine elements such as rolling bearings, seals, and gears. Understanding the flow dynamics of grease is relevant for the prediction of grease distribution for optimum lubrication and for the migration of wear and contaminant particles. In this study,

  9. Corrosion protection of steel by thin coatings of starch-oil dry lubricants

    Science.gov (United States)

    Corrosion of materials is one of the most serious and challenging problems faced worldwide by industry. Dry lubricants reduce friction between two metal surfaces. This research investigated the inhibition of corrosive behavior a dry lubricant formulation consisting of jet-cooked corn starch and soyb...

  10. Frictional characteristics of stainless steel 440C lubricated with water at pressurized high temperature

    International Nuclear Information System (INIS)

    Kim, E. H.; Lee, J. S.; Kim, J. H.; Kim, J. I.

    2001-01-01

    The fatigue life of stainless steel bearings is one of the most critical factors to determine the performance of the driving system. Because the bearings which are installed on the driving mechanism in the nuclear reactor are operated at high temperature and high pressure and especially lubricated with water with low viscosity, the friction and wear characteristics of the bearing material should be investigated thoroughly. In many control element drive mechanisms in the nuclear reactor the support bearings are made of the stainless steel and the sliding bearing ceramic material mainly. This study is focused on the characteristics of support bearing which may be used in the SMART. The ball bearings are made of standardized 440C stainless steel, and it supports thrust load including the weight of the driving system and external force. The friction and wear characteristics of this material operating under severe lubrication condition are not well known yet, however it will be changed with respect to temperature and boundary pressure. In this paper the friction characteristics are investigated experimentally using the reciprocating tribometer which can simulate the SMART operating conditions. Highly purified water is used as lubricant, and the water is warmed up and pressurized. Friction forces on the reciprocating specimens are measured insitu strain gages

  11. "Insensitive" to touch: fabric-supported lubricant-swollen polymeric films for omniphobic personal protective gear.

    Science.gov (United States)

    Damle, Viraj G; Tummala, Abhishiktha; Chandrashekar, Sriram; Kido, Cassidee; Roopesh, Ajay; Sun, Xiaoda; Doudrick, Kyle; Chinn, Jeff; Lee, James R; Burgin, Timothy P; Rykaczewski, Konrad

    2015-02-25

    The use of personal protective gear made from omniphobic materials that easily shed drops of all sizes could provide enhanced protection from direct exposure to most liquid-phase biological and chemical hazards and facilitate the postexposure decontamination of the gear. In recent literature, lubricated nanostructured fabrics are seen as attractive candidates for personal protective gear due to their omniphobic and self-healing characteristics. However, the ability of these lubricated fabrics to shed low surface tension liquids after physical contact with other objects in the surrounding, which is critical in demanding healthcare and military field operations, has not been investigated. In this work, we investigate the depletion of oil from lubricated fabrics in contact with highly absorbing porous media and the resulting changes in the wetting characteristics of the fabrics by representative low and high surface tension liquids. In particular, we quantify the loss of the lubricant and the dynamic contact angles of water and ethanol on lubricated fabrics upon repeated pressurized contact with highly absorbent cellulose-fiber wipes at different time intervals. We demonstrate that, in contrast to hydrophobic nanoparticle coated microfibers, fabrics encapsulated within a polymer that swells with the lubricant retain the majority of the oil and are capable of repelling high as well as low surface tension liquids even upon multiple contacts with the highly absorbing wipes. The fabric supported lubricant-swollen polymeric films introduced here, therefore, could provide durable and easy to decontaminate protection against hazardous biological and chemical liquids.

  12. On-line surveillance of lubricants in bearings by means of surface acoustic waves.

    Science.gov (United States)

    Lindner, Gerhard; Schmitt, Martin; Schubert, Josephine; Krempel, Sandro; Faustmann, Hendrik

    2010-01-01

    The acoustic wave propagation in bearings filled with lubricants and driven by pulsed excitation of surface acoustic waves has been investigated with respect to the presence and the distribution of different lubricants. Experimental setups, which are based on the mode conversion between surface acoustic waves and compression waves at the interface between a solid substrate of the bearing and a lubricant are described. The results of preliminary measurements at linear friction bearings, rotation ball bearings and axial cylinder roller bearings are presented.

  13. Evaluation of minimum quantity lubrication grinding with nano-particles and recent related patents.

    Science.gov (United States)

    Li, Changhe; Wang, Sheng; Zhang, Qiang; Jia, Dongzhou

    2013-06-01

    In recent years, a large number of patents have been devoted to developing minimum quantity lubrication (MQL) grinding techniques that can significantly improve both environmentally conscious and energy saving and costeffective sustainable grinding fluid alternatives. Among them, one patent is about a supply system for the grinding fluid in nano-particle jet MQL, which produced MQL lubricant by adding solid nano-particles in degradable grinding fluid. The MQL supply device turns the lubricant to the pulse drops with fixed pressure, unchanged pulse frequency and the same drop diameter. The drops will be produced and injected in the grinding zone in the form of jet flow under high pressure gas and air seal. As people become increasingly demanding on our environment, minimum quantity lubrication has been widely used in the grinding and processing. Yet, it presents the defect of insufficient cooling performance, which confines its development. To improve the heat transfer efficiency of MQL, nano-particles of a certain mass fraction can be added in the minimum quantity of lubricant oil, which concomitantly will improve the lubrication effects in the processing. In this study, the grinding experiment corroborated the effect of nano-particles in surface grinding. In addition, compared with other forms of lubrication, the results presented that the grinding force, the friction coefficient and specific grinding energy of MQL grinding have been significantly weakened, while G ratio greatly rose. These are attributed to the friction oil-film with excellent anti-friction and anti-wear performance, which is generated nano-particles at the wheel/workpiece interface. In this research, the cooling performance of nano-particle jet MQL was analyzed. Based on tests and experiments, the surface temperature was assayed from different methods, including flood lubricating oil, dry grinding, MQL grinding and nano-particle jet MQL grinding. Because of the outstanding heat transfer

  14. Tribology: Friction, lubrication, and wear technology

    Science.gov (United States)

    Blau, Peter J.

    1993-01-01

    The topics are presented in viewgraph form and include the following: introduction and definitions of terms; friction concepts; lubrication technology concepts; wear technology concepts; and tribological transitions. This document is designed for educators who seek to teach these concepts to their students.

  15. Tribological Testing of Hemispherical Titanium Pin Lubricated by Novel Palm Oil: Evaluating Anti-Wear and Anti-Friction Properties

    Institute of Scientific and Technical Information of China (English)

    Norzahir Sapawe; Syahrullail Samion; Mohd Izhan Ibrahim; Md Razak Daud; Azli Yahya; Muhammad Farhan Hanafi

    2017-01-01

    In this study,the properties of hip implant material and lubricants were examined using a pin on disc apparatus,to compare the effect of metal-on-metal (MoM) contact with a bio-lubricant derived from palm oil.The behaviour of the lubricants was observed during the experiments,in which a hemispherical pin was loaded against a rotating disc with a groove.A titanium alloy was used to modify the hemispherical pin and disc.Before and after the experiments,the weight and surface roughness were analysed,to detect any degradation.The results were compared according to the different kinematic viscosities.The wear rates and level of friction with each lubricant were also examined.The lubricant with the highest viscosity had the lowest frictional value.Therefore,developing suitable lubricants has the potential to prolong the lifespan of prostheses or implants used in biomedical applications.The experiments collectively show that lubricants derived from palm oil could be used as efficient bio-lubricants in the future.

  16. Sulphur removal from used automotive lubricating oil by ionizing radiation

    International Nuclear Information System (INIS)

    Scapin, Marcos Antonio; Duarte, Celina Lopes; Sato, Ivone Mulako

    2007-01-01

    Following the worldwide evolution with the purpose of a higher control of vehicular emissions, the specialists have looked for clean technologies and efficient procedures to make vehicular emissions free of pollutants. Much attention is given to the sulphur concentration in the gasoline, diesel and lubricating oils. The ionizing radiation is a promising technology for the removal of this pollutant when compared to other conventional treatment methods. In this work, the ionizing radiation was used to remove in significant levels the presence of sulphur in automotive motor oil. A 1000 mL sample of used automotive lubricating oil from a gas station was collected. This sample was fractioned and irradiated with 10, 20 50, 100, 200 and 500 kGy doses in a 60 Co irradiator (GAMMACELL-220 - 12 kCi). The 50 and 70% (v/v) of MilliQ water and 30% (v/v) of hydrogen peroxide was used to improve the radiolysis The sulphur element before and after the irradiation was determined by X-ray fluorescence technique (WDXRF) using the Fundamental Parameters Method. The results showed approximately 70% sulphur removal at 500 kGy irradiation dose with 70% (v/v) of MilliQ water addition. (author)

  17. Elastic model of the traction behavior of two traction lubricants

    Science.gov (United States)

    Loewenthal, S. H.; Rohn, D. A.

    1984-01-01

    In the analysis of rolling-sliding concentrated contacts, such as gears, bearings and traction drives, the traction characteristics of the lubricant are of prime importance. The elastic shear modulus and limiting shear stress properties of the lubricant dictate the traction/slip characteristics and power loss associated with an EHD contact undergoing slip and/or spin. These properties can be deducted directly from the initial slope m and maximum traction coefficient micron of an experimental traction curve. In this investigation, correlation equations are presented to predict m and micron for two modern traction fluids based on the regression analysis of 334 separate traction disk machine experiments. The effects of contact pressure, temperature, surface velocity, ellipticity ratio are examined. Problems in deducing lubricant shear moduli from disk machine tests are discussed. Previously announced in STAR as N83-20116

  18. Boundary lubrication of stainless steel and CoCrMo in aqueous systems

    NARCIS (Netherlands)

    Yan, J.

    2014-01-01

    Oil-based lubricants are widely used in many mechanical applications, but they cannot be used for applications with a high risk of polluting the environment or for applications that involve a bio-medical environment. Water-based lubricants can be used as alternative because they can potentially

  19. The effect of the electrical double layer on hydrodynamic lubrication: a non-monotonic trend with increasing zeta potential

    Directory of Open Access Journals (Sweden)

    Dalei Jing

    2017-07-01

    Full Text Available In the present study, a modified Reynolds equation including the electrical double layer (EDL-induced electroviscous effect of lubricant is established to investigate the effect of the EDL on the hydrodynamic lubrication of a 1D slider bearing. The theoretical model is based on the nonlinear Poisson–Boltzmann equation without the use of the Debye–Hückel approximation. Furthermore, the variation in the bulk electrical conductivity of the lubricant under the influence of the EDL is also considered during the theoretical analysis of hydrodynamic lubrication. The results show that the EDL can increase the hydrodynamic load capacity of the lubricant in a 1D slider bearing. More importantly, the hydrodynamic load capacity of the lubricant under the influence of the EDL shows a non-monotonic trend, changing from enhancement to attenuation with a gradual increase in the absolute value of the zeta potential. This non-monotonic hydrodynamic lubrication is dependent on the non-monotonic electroviscous effect of the lubricant generated by the EDL, which is dominated by the non-monotonic electrical field strength and non-monotonic electrical body force on the lubricant. The subject of the paper is the theoretical modeling and the corresponding analysis.

  20. Comparison Between Oil-mist and Oil-jet Lubrication of High-speed, Small-bore, Angular-contact Ball Bearings

    Science.gov (United States)

    Pinel, Stanley I.; Signer, Hans R.; Zaretsky, Erwin V.

    2001-01-01

    Parametric tests were conducted with an optimized 35-mm-bore-angular-contact ball bearing on a high-speed, high-temperature bearing tester. Results from both air-oil mist lubrication and oil-jet lubrication systems used to lubricate the bearing were compared to speeds of 2.5 x 10(exp 6) DN. The maximum obtainable speed with air-oil mist lubrication is 2.5 x 10(exp 6) DN. Lower bearing temperatures and higher power losses are obtained with oil-jet lubrication than with air-oil mist lubrication. Bearing power loss is a direct function of oil flow to the bearing and independent of oil delivery system. For a given oil-flow rate, bearing temperature and power loss increase with increases in speed. Bearing life is an inverse function of temperature, the difference in temperature between the individual bearing ring components, and the resultant elastohydrodynamic (EHD) film thicknesses. Bearing life is independent of the oil delivery system except as it affects temperature. Cage slip increased with increases in speed. Cage slip as high as 7 percent was measured and was generally higher with air-oil mist lubrication than with oil-jet lubrication.

  1. Intermetallic Nickel-Titanium Alloys for Oil-Lubricated Bearing Applications

    Science.gov (United States)

    DellaCorte, C.; Pepper, S. V.; Noebe, R.; Hull, D. R.; Glennon, G.

    2009-01-01

    An intermetallic nickel-titanium alloy, NITINOL 60 (60NiTi), containing 60 wt% nickel and 40 wt% titanium, is shown to be a promising candidate material for oil-lubricated rolling and sliding contact applications such as bearings and gears. NiTi alloys are well known and normally exploited for their shape memory behavior. When properly processed, however, NITINOL 60 exhibits excellent dimensional stability and useful structural properties. Processed via high temperature, high-pressure powder metallurgy techniques or other means, NITINOL 60 offers a broad combination of physical properties that make it unique among bearing materials. NITINOL 60 is hard, electrically conductive, highly corrosion resistant, less dense than steel, readily machined prior to final heat treatment, nongalling and nonmagnetic. No other bearing alloy, metallic or ceramic encompasses all of these attributes. Further, NITINOL 60 has shown remarkable tribological performance when compared to other aerospace bearing alloys under oil-lubricated conditions. Spiral orbit tribometer (SOT) tests were conducted in vacuum using NITINOL 60 balls loaded between rotating 440C stainless steel disks, lubricated with synthetic hydrocarbon oil. Under conditions considered representative of precision bearings, the performance (life and friction) equaled or exceeded that observed with silicon nitride or titanium carbide coated 440C bearing balls. Based upon this preliminary data, it appears that NITINOL 60, despite its high titanium content, is a promising candidate alloy for advanced mechanical systems requiring superior and intrinsic corrosion resistance, electrical conductivity and nonmagnetic behavior under lubricated contacting conditions.

  2. Industrial tribology tribosystems, friction, wear and surface engineering, lubrication

    CERN Document Server

    Mang, Theo; Bartels, Thorsten

    2010-01-01

    Integrating very interesting results from the most important R & D project ever made in Germany, this book offers a basic understanding of tribological systems and the latest developments in reduction of wear and energy consumption by tribological measures. This ready reference and handbook provides an analysis of the most important tribosystems using modern test equipment in laboratories and test fields, the latest results in material selection and wear protection by special coatings and surface engineering, as well as with lubrication and lubricants.This result is a quick introductio

  3. Frictional characteristics of silicon graphite lubricated with water at high pressure and high temperature

    International Nuclear Information System (INIS)

    Lee, Jae Seon; Kim, Eun Hyun; Park, Jin Seok; Kim, Jong In

    2001-01-01

    Experimental frictional and wear characteristics of silicon graphite materials is studied in this paper. Those specimens are lubricated with high temperature and highly pressurized water to simulate the same operating condition for the journal bearing and the thrust bearing on the main coolant pump bearing in the newly developing nuclear reactor named SMART(System-integrated Modular Advanced ReacTor). Operating condition of the bearings is realized by the tribometer and the autoclave. Friction coefficient and wear loss are analyzed to choose the best silicon graphite material. Pin on plate test specimens are used and coned disk springs are used to control the applied force on the specimens. Wear loss and wear width are measured by a precision balance and a micrometer. The friction force is measured by the strain gauge which can be used under high temperature and high pressure. Three kinds of silicon graphite materials are examined and compared with each other, and each material shows similar but different results on frictional and wear characteristics

  4. Galectin-3 Binds to Lubricin and Reinforces the Lubricating Boundary Layer of Articular Cartilage.

    Science.gov (United States)

    Reesink, Heidi L; Bonnevie, Edward D; Liu, Sherry; Shurer, Carolyn R; Hollander, Michael J; Bonassar, Lawrence J; Nixon, Alan J

    2016-05-09

    Lubricin is a mucinous, synovial fluid glycoprotein that enables near frictionless joint motion via adsorption to the surface of articular cartilage and its lubricating properties in solution. Extensive O-linked glycosylation within lubricin's mucin-rich domain is critical for its boundary lubricating function; however, it is unknown exactly how glycosylation facilitates cartilage lubrication. Here, we find that the lubricin glycome is enriched with terminal β-galactosides, known binding partners for a family of multivalent lectins called galectins. Of the galectin family members present in synovial fluid, we find that galectin-3 is a specific, high-affinity binding partner for lubricin. Considering the known ability of galectin-3 to crosslink glycoproteins, we hypothesized that galectins could augment lubrication via biomechanical stabilization of the lubricin boundary layer. We find that competitive inhibition of galectin binding results in lubricin loss from the cartilage surface, and addition of multimeric galectin-3 enhances cartilage lubrication. We also find that galectin-3 has low affinity for the surface layer of osteoarthritic cartilage and has reduced affinity for sialylated O-glycans, a glycophenotype associated with inflammatory conditions. Together, our results suggest that galectin-3 reinforces the lubricin boundary layer; which, in turn, enhances cartilage lubrication and may delay the onset and progression of arthritis.

  5. Vegetable oil basestocks for lubricants

    Directory of Open Access Journals (Sweden)

    Garcés, Rafael

    2011-03-01

    Full Text Available The use of vegetable biodegradable basestocks for lubricant oils present several advantages over the much more extended mineral bases. These advantages refer to biodegradability, a renewable feedstock of local production, lubricant and viscosity index and lower costs than synthetic lubricant bases. Despite these benefits, their use in industry and motor vehicles is not yet extensive due their lower stability and higher pour points. Vegetable oils are esters of fatty acids and glycerol, and their physicochemical properties rely mainly on the composition of their acyl moieties. Thus, to assure the maximum levels of stability while maintaining acceptable behavior at low temperatures, monounsaturated fatty acids are preferred for this purpose. The presence of natural antioxidants also improves the properties of these vegetable based stocks as lubricants. These oils usually require additives to improve their viscosity value, oxidative stability and properties at low temperatures. In the present work, the different sources of vegetable oils appropriate for biolubricant production were reviewed. Their properties and the future improvement of the oil bases, oil based stock production, uses and additives are discussed.

    El uso de bases vegetales biodegradables para aceites lubricantes presenta varias ventajas sobre las mucho más extendidas bases minerales. Estas ventajas se centran sobre todo en su biodegradabilidad, en ser un recurso renovable de producción local, en su lubricidad y en su índice de viscosidad, presentando además costes más bajos que las bases sintéticas. Sin embargo, estas ventajas no han extendido el uso de bases vegetales ni en industria ni en automoción debido a su menor estabilidad y sus mayores puntos críticos de fluidez. Los aceites vegetales son ésteres de ácidos grasos y glicerol y sus propiedades físico-químicas dependen principalmente de su composición acílica. Así, para asegurar los máximos niveles de

  6. Lubricated sliding wear behaviour of Ni-P-W multilayered alloy coatings produced by pulse plating

    DEFF Research Database (Denmark)

    Panagopoulos, C. N.; Papachristos, V. D.; Christoffersen, Lasse

    2000-01-01

    The lubricated sliding wear behaviour of Ni-P-W multilayered alloy coatings sliding against hardened steel discs was studied, in a pin-on-disc set-up. The multilayered coatings had been deposited on mild steel pins by pulse plating and they consisted of ternary Ni-P-W layers of high and low W con...... lubrication regimes. The wear mechanisms in each lubrication regime were studied and in mixed lubrication regime, the effect of normal load and sliding speed on wear volume and friction coefficient was also studied. (C) 2000 Elsevier Science S.A. All rights reserved....

  7. 49 CFR 1242.59 - Train inspection and lubrication (account XX-51-62).

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Train inspection and lubrication (account XX-51-62). 1242.59 Section 1242.59 Transportation Other Regulations Relating to Transportation (Continued) SURFACE...-Transportation § 1242.59 Train inspection and lubrication (account XX-51-62). Separate common expenses on basis...

  8. Influence of Lubricant Pocket Geometry upon Lubrication Mechanisms on Tool-Workpiece Interfaces in Metal Forming

    DEFF Research Database (Denmark)

    Shimizu, I; Martins, P.A.F.; Bay, Niels

    2004-01-01

    mechanisms, during upsetting and strip drawing, by means of a rigid viscoplastic finite element formulation. Special emphasis is placed on the effect of pocket geometry on the build up of hydrostatic pressure, which is responsible for the onset of micro lubrication mechanisms. A good agreement is found...... between the numerically predicted and the experimentally measured distributions of hydrostatic stress....

  9. Evaluation report on the development of ultra-solid lubricant with cluster diamond; Cluster diamond wo riyoshita kotai junkatsu fukugo zairyo no kaihatsu hyoka hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The fiscal 1998-2000 results of efforts to develop cluster diamond (CD)-diffused solid lubricant composite materials expected to exhibit excellent lubrication are stated. Since friction greatly affects machine life and energy efficiency, friction reduction is an important task. Very hard and microscopic CD was utilized for the achievement of a friction coefficient of 0.08. A manufacturing technology for molds 10nm or smaller was developed, which enabled the development of a gear not larger than 8mm. The success will enable the operation of micromachines in the absence of lubrication which is impossible at present. A CD-aided functional layer creation technology was also developed. It is expected that the development and practical application of micromechanisms will make rapid progress in the 21st century. Much is expected from the creation, and goods with the achievement applied thereto, of advanced technologies whereinto non-lubrication, functional layer creation, and excellent heat conductivity are incorporated. It is quite significant that, since CD is available in any field as far as light-load low-speed sliding conditions are satisfied, sliding parts will be improved and service life will be prolonged. (NEDO)

  10. Experimental evaluation of chromium-carbide-based solid lubricant coatings for use to 760 C

    Science.gov (United States)

    Dellacorte, Christopher

    1987-01-01

    A research program is described which further developed and investigated chromium carbide based self-lubricating coatings for use to 760 C. A bonded chromium carbide was used as the base stock because of the known excellent wear resistance and the chemical stability of chromium carbide. Additives were silver and barium fluoride/calcium fluoride eutectic. The three coating components were blended in powder form, applied to stainless steel substrates by plasma spraying and then diamond ground to the desired coating thickness. A variety of coating compositions was tested to determine the coating composition which gave optimum tribological results. Coatings were tested in air, helium, and hydrogen at temperatures from 25 to 760 C. Several counterface materials were evaluated with the objective of discovering a satisfactory metal/coating sliding combination for potential applications, such as piston ring/cylinder liner couples for Stirling engines. In general, silver and fluoride additions to chromium carbide reduced the friction coefficient and increased the wear resistance relative to the unmodified coating. The lubricant additives acted synergistically in reducing friction and wear.

  11. Thermal Behavior of Aerospace Spur Gears in Normal and Loss-of-Lubrication Conditions

    Science.gov (United States)

    Handschuh, Robert F.

    2015-01-01

    Testing of instrumented spur gears operating at aerospace rotorcraft conditions was conducted. The instrumented gears were operated in a normal and in a loss-of-lubrication environment. Thermocouples were utilized to measure the temperature at various locations on the test gears and a test utilized a full-field, high-speed infrared thermal imaging system. Data from thermocouples was recorded during all testing at 1 hertz. One test had the gears shrouded and a second test was run without the shrouds to permit the infrared thermal imaging system to take data during loss-of-lubrication operation. Both tests using instrumented spur gears were run in normal and loss-of-lubrication conditions. Also the result from four other loss-of-lubrication tests will be presented. In these tests two different torque levels were used while operating at the same rotational speed (10000 revolutions per minute).

  12. Fundamentals of Friction and Vapor Phase Lubrication

    National Research Council Canada - National Science Library

    Gellman, Andrew

    2004-01-01

    This is the final report for the three year research program on "Fundamentals of Friction and Vapor Phase Lubrication" conducted at Carnegie Mellon with support from AFOSR grant number F49630-01-1-0069...

  13. Determining minimum lubrication film for machine parts

    Science.gov (United States)

    Hamrock, B. J.; Dowson, D.

    1978-01-01

    Formula predicts minimum film thickness required for fully-flooded ball bearings, gears, and cams. Formula is result of study to determine complete theoretical solution of isothermal elasto-hydrodynamic lubrication of fully-flooded elliptical contacts.

  14. Shear thickening in suspensions: the lubricated-to-frictional contact scenario

    Science.gov (United States)

    Morris, Jeffrey

    2017-11-01

    Suspensions of solid particles in viscous liquids can vary from low-viscosity liquids to wet granular materials or soft solids depending on the solids loading and the forces acting between particles. When the particles are very concentrated, these mixtures are ''dense suspensions.'' Dense suspensions often exhibit shear thickening, an increase in apparent viscosity as the shear rate is increased. In its most extreme form, order of magnitude increases in viscosity over such a narrow range in shear rate occur that the term discontinuous shear thickening (DST) is applied. DST is particularly striking as it occurs in the relatively simple case of nearly hard spheres in a Newtonian liquid, and is found to take place for submicron particles in colloidal dispersions to much larger particle corn starch dispersions. We focus on simulations of a recently developed ``lubricated-to-frictional'' rheology in which the interplay of viscous lubrication, repulsive surface forces, and contact friction between particle surfaces provides a scenario to explain DST. Our simulation method brings together elements of the discrete-element method from granular flow with a simplified Stokesian Dynamics, and can rationalize not only the abrupt change in properties with imposed shear rate (or shear stress), but also the magnitude of the change. The large change in properties is associated with the breakdown of lubricating films between particles, with activation of Coulomb friction between particles. The rate dependence is caused by the shearing forces driving particles to contact, overwhelming conservative repulsive forces between surfaces; the repulsive forces are representative of colloidal stabilization by surface charge or steric effects, e.g. due to adsorbed polymer. The results of simulation are compared to developments by other groups, including a number of experimental studies and a theory incorporating the same basic elements as the simulation. The comparison to experiments of the

  15. AUTOMOTIVE DIESEL MAINTENANCE, UNIT V, MAINTAINING THE LUBRICATION SYSTEM--DETROIT DIESEL ENGINE.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE LUBRICATION SYSTEM. TOPICS ARE LUBE OILS USED, MAINTENANCE OF THE LUBRICATION SYSTEM, AND CRANKCASE VENTILATION COMPONENTS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "BASIC ENGINE…

  16. Lubricant induced pre-ignition in an optical spark-ignition engine

    OpenAIRE

    Dingle, Simon Frederick

    2014-01-01

    This thesis was submitted for the award of Doctor of Philosophy and was awarded by Brunel University London This work focuses on the introduction of lubricant into the combustion chamber and the effect that this has on pre-ignition. Apparently for the first time, the work presented provides detailed full-bore optical data for lubricant induced pre-ignition and improves understanding of the super-knock phenomena that affects modern downsized gasoline engines. A new single-cylinder optical r...

  17. Self-lubricating fluid bearing assembly

    International Nuclear Information System (INIS)

    Kapich, D.D.

    1981-01-01

    A sealed self-lubricating fluid bearing assembly is described for circulating fluid in the form of a gas coolant in a nuclear reactor, the power for the circulator being provided by a shaft located within the primary containment vessel. In such a system the reactor coolant is isolated from the fluid region at the far end of the drive shaft. (U.K.)

  18. Hard-on-hard lubrication in the artificial hip under dynamic loading conditions.

    Directory of Open Access Journals (Sweden)

    Robert Sonntag

    Full Text Available The tribological performance of an artificial hip joint has a particularly strong influence on its success. The principle causes for failure are adverse short- and long-term reactions to wear debris and high frictional torque in the case of poor lubrication that may cause loosening of the implant. Therefore, using experimental and theoretical approaches models have been developed to evaluate lubrication under standardized conditions. A steady-state numerical model has been extended with dynamic experimental data for hard-on-hard bearings used in total hip replacements to verify the tribological relevance of the ISO 14242-1 gait cycle in comparison to experimental data from the Orthoload database and instrumented gait analysis for three additional loading conditions: normal walking, climbing stairs and descending stairs. Ceramic-on-ceramic bearing partners show superior lubrication potential compared to hard-on-hard bearings that work with at least one articulating metal component. Lubrication regimes during the investigated activities are shown to strongly depend on the kinematics and loading conditions. The outcome from the ISO gait is not fully confirmed by the normal walking data and more challenging conditions show evidence of inferior lubrication. These findings may help to explain the differences between the in vitro predictions using the ISO gait cycle and the clinical outcome of some hard-on-hard bearings, e.g., using metal-on-metal.

  19. Mobility of Yield-Stress Fluids on Lubricant-Impregnated Surface

    Science.gov (United States)

    Rapoport, Leonid; Solomon, Brian; Varanasi, Kripa; Varanasi Research Group Team

    2017-11-01

    Assuring the flow of yield-stress fluids is an essential problem for various industries such as consumer products, health care, and energy. Elimination of wall-induced pinning forces can potentially save power and cleaning costs as well as enable the flow of yield-stress fluids in channels previously considered too narrow. Lubricant-Impregnated Surfaces (LIS) have been demonstrated to change the dynamic behavior of yield-stress fluids and enable them to move as bulk without shearing at all. However, despite the wide applicability of this technology and its general appeal, the fundamental principles governing the performance of yield stress fluids on LIS have not yet been fully explained. In this work, we explore the mobility of yield stress fluids on a wide range of LIS, and explain the connection between macroscale behavior and the microscale properties of the LIS. Specifically, we show a striking difference in mobility between an LIS that contains a lubricant which fully spreads on the rough micro-features of the surface, and an LIS that contains a lubricant which only imbibes these features but does spread over them

  20. Numerical research on rotating speed influence and flow state distribution of water-lubricated thrust bearing

    International Nuclear Information System (INIS)

    Deng Xiao; Deng Liping; Huang Wei

    2015-01-01

    Water-lubricated thrust bearing is one of the key parts in canned motor pump, for example, the RCP in AP1000, and it functions to balance axial loads. A calculation model which can handle all flow state lubrication performance for water-lubricated thrust bearing has been presented. The model first includes laminar and turbulent Reynolds' equation. Then to get continuous viscosity coefficients cross critical Reynolds number, a transition zone which ranges based on engineering experience is put up, through which Hermite interpolation is employed. The model is numerically solved in finite difference method with uniform grids. To accelerate the calculation process, multigrid method and line relaxation is adopted within the iteration procedure. A medium sized water-lubricated tilting pad thrust bearing is exampled to verify the calculation model. Results suggest that as rotating speed enlarges, lubrication state distribution of the thrust bearing gradually tends to turbulent lubrication from the intersection corner of pad outer diameter and pad inlet to the opposite, minimum water film thickness increases approximately linearly, maximum water film pressure has little change, meanwhile the friction power grows nearly in exponential law which could result in bad effect by yielding much more heat. (author)

  1. Viscous Flow Behaviour of Karanja Oil Based Bio-lubricant Base Oil.

    Science.gov (United States)

    Sharma, Umesh Chandra; Sachan, Sadhana; Trivedi, Rakesh Kumar

    2018-01-01

    Karanja oil (KO) is widely used for synthesis of bio-fuel karanja oil methyl ester (KOME) due to its competitive price, good energy values and environmentally friendly combustion properties. Bio-lubricant is another value added product that can be synthesized from KO via chemical modification. In this work karanja oil trimethylolpropane ester (KOTMPE) bio-lubricant was synthesized and evaluated for its viscous flow behaviour. A comparison of viscous flow behaviours of natural KO and synthesized bio-fuel KOME and bio-lubricant KOTMPE was also made. The aim of this comparison was to validate the superiority of KOTMPE bio-lubricant over its precursors KO and KOME in terms of stable viscous flow at high temperature and high shear rate conditions usually encountered in engine operations and industrial processes. The free fatty acid (FFA) content of KO was 5.76%. KOME was synthesized from KO in a two-step, acid catalyzed esterification followed by base catalyzed transesterification, process at 65°C for 5 hours with oil-methanol ratio 1:6, catalysts H 2 SO 4 and KOH (1 and 1.25% w/w KO, respectively). In the final step, KOTMPE was prepared from KOME via transesterification with trimethylolpropane (TMP) at 150°C for 3 hours with KOME-TMP ratio 4:1 and H 2 SO 4 (2% w/w KOME) as catalyst. The viscosity versus temperature studies were made at 0-80°C temperatures in shear rate ranges of 10-1000 s -1 using a Discovery Hybrid Rheometer, model HR-3 (TA instruments, USA). The study found that viscosities of all three samples decreased with increase in temperature, though KOTMPE was able to maintain a good enough viscosity at elevated temperatures due to chemical modifications in its molecular structure. The viscosity index (VI) value for KOTMPE was 206.72. The study confirmed that the synthesized bio-lubricant KOTMPE can be used at high temperatures as a good lubricant, though some additives may be required to improve properties other than viscosity.

  2. Bimetallic nanoparticles for surface modification and lubrication of MEMS switch contacts

    International Nuclear Information System (INIS)

    Patton, Steven T; Hu Jianjun; Slocik, Joseph M; Campbell, Angela; Naik, Rajesh R; Voevodin, Andrey A

    2008-01-01

    Reliability continues to be a critical issue in microelectromechanical systems (MEMS) switches. Failure mechanisms include high contact resistance (R), high adhesion, melting/shorting, and contact erosion. Little previous work has addressed the lubrication of MEMS switches. In this study, bimetallic nanoparticles (NPs) are synthesized using a biotemplated approach and deposited on Au MEMS switch contacts as a nanoparticle-based lubricant. Bimetallic nanoparticles are comprised of a metallic core (∼10 nm diameter gold nanoparticle) with smaller metallic nanoparticles (∼2-3 nm diameter Pd nanoparticles) populating the core surface. Adhesion and resistance (R) were measured during hot switching experiments at low (10 μA) and high (1 mA) current. The Au/Pd NP coated contacts led to reduced adhesion as compared to pure Au contacts with a compromise of slightly higher R. For switches held in the closed position at low current, R gradually decreased over tens of seconds due to increased van der Waals force and growth of the real area of contact with temporal effects being dominant over load effects. Contact behavior transitioned from 'Pd-like' to 'Au-like' during low current cycling experiments. Melting at high current resulted in rapid formation of large real contact area, low and stable R, and minimal effect of load on R. Durability at high current was excellent with no failure through 10 6 hot switching cycles. Improvement at high current is due to controlled nanoscale surface roughness that spreads current through multiple nanocontacts, which restricts the size of melting regions and causes termination of nanowire growth (prevents shorting) during contact opening. Based on these results, bimetallic NPs show excellent potential as surface modifiers/lubricants for MEMS switch contacts

  3. Microstructural modelling and lubrication study during zirconium alloy hot extrusion

    International Nuclear Information System (INIS)

    Gaudout, B.

    2009-01-01

    Using torsion tests (with strain rate jumps) and an experimental hot mini-extrusion apparatus, several samples zirconium alloy have been deformed: Zircaloy-4 (high α range) and Zr-1Nb (α + β domain). The fragmentation of the microstructure and post-dynamic grain growth have been examined. The main difference between these two alloys is that Zr-1Nb does not show grain growth during a heat treatment within the α + β domain after hot deformation. The recrystallization volume fraction has been measured on extruded samples with or without heat treatment. These rheological and microstructural data have been used to determine the parameters of a microstructural model including: a work-hardening model (Laaasraoui/Jonas), a continuous dynamic recrystallization model (Gourdet/Montheillet) and a grain growth model. This model leads to a good prediction of recrystallization volume fraction for Zircaloy-4 extrusion. However, the Zr-1Nb model cannot be validated because of the difficulty to observe deformed microstructures. Extrusion process is lubricated with a solid film. Trapping tests show that this lubricant is thermoviscoplastic. Friction along the container and several observations show the lubrication is not realized by a continuous film. Indeed, the heterogeneousness of deformation of these alloys causes a rupture of the lubricant film. Experiments and numerical simulations show that the radial gradient of axial displacement is affected by friction but also by stress softening of the alloys. (author)

  4. Microstructure and lubricating property of ultra-fast laser pulse textured silicon carbide seals

    Science.gov (United States)

    Chen, Chien-Yu; Chung, Chung-Jen; Wu, Bo-Hsiung; Li, Wang-Long; Chien, Chih-Wei; Wu, Ping-Han; Cheng, Chung-Wei

    2012-05-01

    Most previous studies have employed surface patterning to improve the performance of lubrication systems. However, few have experimentally analyzed improved effects on friction reduction in SiC mechanical seals by ultra-fast laser pulse texturing. This work applies surface texturing on a non-contact mechanical seal and analyzes the characteristics of the resultant surface morphology. A femtosecond laser system is employed to fabricate micro/nanostructures on the SiC mechanical seal, and generates microscale-depth stripes and induces nanostructures on the seal surface. This work examines the morphology and cross section of the SiC nanostructures that correspond to the different scanning speeds of the laser pulse. Results show that varying the scanning speed enables the application of nanostructures of different amplitudes and widths on the surface of the seal. The friction coefficient of the introduced SiC full-textured seal is about 20% smaller than that of a conventional SiC mechanical seal. Hence, femtosecond laser texturing is effective and enables direct fabrication of the surface micro/nanostructures of SiC seals. This technique also serves as a potential approach to lubricating applications.

  5. Microstructure and lubricating property of ultra-fast laser pulse textured silicon carbide seals

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chien-Yu.; Li, Wang-Long [National Cheng Kung University, Department of Materials Science and Engineering, Tainan, Taiwan (China); Chung, Chung-Jen; Wu, Bo-Hsiung [National Cheng Kung University, Center for Micro/Nano Science and Technology, Tainan, Taiwan (China); Chien, Chih-Wei; Wu, Ping-Han; Cheng, Chung-Wei [ITRI South, Industrial Technology, Research Institute, Laser Application Technology Center, Tainan, Taiwan (China)

    2012-05-15

    Most previous studies have employed surface patterning to improve the performance of lubrication systems. However, few have experimentally analyzed improved effects on friction reduction in SiC mechanical seals by ultra-fast laser pulse texturing. This work applies surface texturing on a non-contact mechanical seal and analyzes the characteristics of the resultant surface morphology. A femtosecond laser system is employed to fabricate micro/nanostructures on the SiC mechanical seal, and generates microscale-depth stripes and induces nanostructures on the seal surface. This work examines the morphology and cross section of the SiC nanostructures that correspond to the different scanning speeds of the laser pulse. Results show that varying the scanning speed enables the application of nanostructures of different amplitudes and widths on the surface of the seal. The friction coefficient of the introduced SiC full-textured seal is about 20% smaller than that of a conventional SiC mechanical seal. Hence, femtosecond laser texturing is effective and enables direct fabrication of the surface micro/nanostructures of SiC seals. This technique also serves as a potential approach to lubricating applications. (orig.)

  6. Self-lubricating fluorine shaft seal material

    Science.gov (United States)

    Munk, W. R.

    1970-01-01

    Lubricating film is produced by a reaction of fluorine with a composite of aluminum oxide and nickel powder. The rate of nickel fluoride generation is proportional to the rate at which the fluoride is rubbed off the surface, allowing the seal to operate with the lowest possible heating.

  7. Mixed Mechanism of Lubrication by Lipid Bilayer Stacks.

    Science.gov (United States)

    Boţan, Alexandru; Joly, Laurent; Fillot, Nicolas; Loison, Claire

    2015-11-10

    Although the key role of lipid bilayer stacks in biological lubrication is generally accepted, the mechanisms underlying their extreme efficiency remain elusive. In this article, we report molecular dynamics simulations of lipid bilayer stacks undergoing load and shear. When the hydration level is reduced, the velocity accommodation mechanism changes from viscous shear in hydration water to interlayer sliding in the bilayers. This enables stacks of hydrated lipid bilayers to act as efficient boundary lubricants for various hydration conditions, structures, and mechanical loads. We also propose an estimation for the friction coefficient; thanks to the strong hydration forces between lipid bilayers, the high local viscosity is not in contradiction with low friction coefficients.

  8. New lubrication concepts for environmental friendly machines. Tribological, thermophysical and viscometric properties of lubricants interacting with triboactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.; Klingenberg, G. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Woydt, M. [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2006-07-01

    The present research report was elaborated in close cooperation with Renault SAS, FUCHS Petrolub AG and Ingenieurgesellschaft Auto und Verkehr (IAV). The use of alternative oils for the lubrication of automobile engines has a potential of ecological and technical advantages. It requires the detailed knowledge of several thermophysical and viscometric properties in a large temperature range (mapping). Therefore, the following properties of up to twenty-eight different oils have been measured in the temperature range from 22 C to 150 C: density, heat capacity, thermal conductivity, viscosity at ambient pressure, viscosity under shear rates above 10{sup 6} s{sup -1}, and the viscosity at elevated pressures (maximum 100 MPa). The last two have been measured with a substantially improved and a newly developed apparatus, respectively. The pressure-viscosity coefficient has been measured on four hydrocarbon-based, factory-fill oils, a paraffin oil and twenty-three alternative oils. Nine of the alternative oils are based partly or completely on esters, the other fourteen on polyglycols, two of them additionally on water. Based on the piston ring/cylinder liner simulation tests of BAM performed outside of engines and the SRV {sup registered} tests both performed only under conditions of mixed/boundary lubrication, it is reasonable that thermally sprayed TiO{sub x}-based, Ti{sub n-2}Cr{sub 2}O{sub 2n-1} and (Ti,Mo)(C,N)+23NiMo piston ring coatings, so called 'lubricious or triboactive oxides', can substitute common materials and serve as a promising alternative to commercial piston ring coatings made of strategic Molybdenum and super-finishing intensive blends of WC/Cr{sub 3}C{sub 2}. Some couples qualified for 'zero' wear. In combination with bionotox ester- and polyglycol-based lubricants the coefficient of friction can be reduced fulfilling simultaneously stronger European exhaust emission regulations. Thermally sprayed Ti-based coatings with their

  9. Evaluation of different polyolefins as rheology modifier additives in lubricating grease formulations

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Alfonso, J.E.; Valencia, C.; Sanchez, M.C. [Departamento de Ingenieria Quimica, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus Universitario del Carmen, 21071 Huelva (Spain); Franco, J.M., E-mail: franco@uhu.es [Departamento de Ingenieria Quimica, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus Universitario del Carmen, 21071 Huelva (Spain); Gallegos, C. [Departamento de Ingenieria Quimica, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus Universitario del Carmen, 21071 Huelva (Spain)

    2011-08-15

    Highlights: {yields} Evaluation of different polyolefins as modifiers of the rheological properties and mechanical stability of lithium lubricating greases. {yields} The type of polymer, molecular weight, cristallinity degree and vinyl acetate content influences the rheological and thermal response of lubricating greases. {yields} The crystallinity degree, mainly dependent on the nature of the polymer, is the most highly influencing parameter on the rheology of lubricating greases. {yields} The rheological modification exerted by EVA copolymers mainly depends on the vinyl acetate content. - Abstract: The purpose of the present work is to evaluate the effect that different polyolefins, used as additives in small proportions, exert on the rheological properties of standard lithium lubricating greases. Grease formulations containing several polyolefins, differing in nature and molecular weight, were manufactured and rheologically characterized. The influence of the type of polymer, molecular weight, crystallinity degree and vinyl acetate content has been analyzed. Small-amplitude oscillatory shear (SAOS) and viscous flow measurements, as well as calorimetric (DSC) and thermogravimetric (TGA) analysis, were carried out. In general, the addition of polymers such as HDPE, LDPE, LLDPE and PP to lithium lubricating greases significantly increases the values of the rheological parameters analyzed, consistency and mechanical stability. However, the use of polyolefins as rheology modifiers does not significantly affect the friction coefficient determined in a tribological contact. The crystallinity degree, mainly dependent on the nature of the polymer, has been found the most highly influencing parameter on the rheology of the lubricating greases studied. However, the rheological modification exerted by EVA copolymers mainly depends on the vinyl acetate content. Thus, a negative effect in both apparent viscosity and linear viscoelastic functions of greases was obtained when

  10. Molecular simulations of hydrocarbon lubricants: Impact of molecular architecture on performance properties

    Science.gov (United States)

    Kioupis, Loukas I.

    2000-07-01

    With the increased power of modern computers, molecular modeling has been used widely and proven to be a valuable tool for elucidating the physical processes important in many industrial and engineering problems. Of particular interest to us is the rheology and physical chemistry of complex fluids, such as hydrocarbon lubricants and polymers. The goal is to provide qualitative and quantitative molecular-level explanations for the behavior of such fluids, and provide guidance in the development of new improved materials. For example, during the production of poly-α-olefin (PAO) synthetic lubricants, the number of the isomer skeletal structures that can be obtained is staggering. Which of the countless PAO isomers produce a lubricant with superior performance properties? How does it behave under different operational conditions of temperature, pressure, and shear rate? A fundamental understanding of the effect that molecular structure has on the oil's rheological and lubricant performance is first needed, in order to answer these questions. To serve this purpose, we have developed efficient molecular dynamics (MD) simulation programs, which utilize multiple time step algorithms and parallel computational techniques. This enables us to conduct simulations of typical PAO isomers and compute the viscosity, as well as several other dynamic and static properties, as a function of temperature, pressure, and shear rate. The key molecular mechanisms that determine important macroscopic properties, such as viscosity index, viscosity-pressure coefficient, traction coefficient, and shear thinning behavior are discussed. Based on this analysis, lubricant and traction fluid structures that have a high likelihood of having desirable properties are proposed. In addition, studies on simple alkane mixtures are presented, in an attempt to understand the more complex polydisperse lubricant fluids, their blends, and their interaction with additives.

  11. Light-scattering study of the glass transition in lubricants

    Science.gov (United States)

    Alsaad, M. A.; Winer, W. O.; Medina, F. D.; Oshea, D. C.

    1977-01-01

    The sound velocity of four lubricants has been measured as a function of temperature and pressure using Brillouin scattering. A change in slope of the velocity as a function of temperature or pressure allowed the determination of the glass transition temperature and pressure. The glass transition data were used to construct a phase diagram for each lubricant. The data indicate that the glass transition temperature increased with pressure at a rate which ranged from 120 to 200 C/GPa. The maximum pressure attained was 0.69 GPa and the temperature range was from 25 to 100 C.

  12. Aqueous lubricating properties of charged (ABC) and neutral (ABA) triblock copolymer chains

    DEFF Research Database (Denmark)

    Røn, Troels; Javakhishvili, Irakli; Patil, Navin J.

    2014-01-01

    Application of charged polymer chains as additives for lubricating neutral surfaces in aqueous envi- ronment, especially via polymer physisorption, is generally impeded by the electrostatic repulsion be- tween adjacent polymers on the surface. In this study, we have investigated the adsorption an...... improvement compared to fully charged polymer chains, e.g. poly(acrylic acid)- block -poly(2-methoxyethyl acrylate) (PAA- b -PMEA), which is attributed to dilution of charged moieties on the surface and subsequent improvement of the lubricating fi lm stability......Application of charged polymer chains as additives for lubricating neutral surfaces in aqueous envi- ronment, especially via polymer physisorption, is generally impeded by the electrostatic repulsion be- tween adjacent polymers on the surface. In this study, we have investigated the adsorption...... and aqueous lubricating properties of an amphiphilic triblock copolymer, comprised of a neutral poly(ethylene glycol) (PEG) block, a hydrophobic poly(2-methoxyethyl acrylate) (PMEA) block, and a charged poly(methacrylic acid) (PMAA) block, namely PEG- b -PMEA- b -PMAA. After adsorption onto a nonpolar...

  13. Tribological properties of Ti-doped DLC coatings under ionic liquids lubricated conditions

    International Nuclear Information System (INIS)

    Feng Xin; Xia Yanqiu

    2012-01-01

    In this paper, titanium doped diamond-like carbon (Ti-DLC) coatings were prepared onto AISI 52100 steel substrates using medium frequency magnetic sputtering process, and were analyzed using the Raman and transmission electron microscope (TEM). Two kinds of 1,3-dialkyl imidazolium ionic liquids (ILs) were synthesized and evaluated as lubricants for Ti-DLC/steel contacts at room temperature, and PFPE as comparison lubricant. The tribological properties of the ILs were investigated using a ball-on-disk type UMT reciprocating friction tester. The results indicated that the ILs have excellent friction-reducing properties, the friction coefficient kept at a relatively stable value of 0.07-0.06, which was reduced approximately by 47% compared with perfluoropolyether (PFPE). The worn surfaces of Ti-DLC coatings were observed and analyzed using a MICROXAM-3D non-contact surface profiler, scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The Ti-DLC coatings using ionic liquids lubricating systems are considered as potential lubricating system in vacuum and space moving friction pairs.

  14. State-of-the-Art of Extreme Pressure Lubrication Realized with the High Thermal Diffusivity of Liquid Metal.

    Science.gov (United States)

    Li, Haijiang; Tian, Pengyi; Lu, Hongyu; Jia, Wenpeng; Du, Haodong; Zhang, Xiangjun; Li, Qunyang; Tian, Yu

    2017-02-15

    Sliding between two objects under very high load generally involves direct solid-solid contact at molecular/atomic level, the mechanism of which is far from clearly disclosed yet. Those microscopic solid-solid contacts could easily lead to local melting of rough surfaces. At extreme conditions, this local melting could propagate to the seizure and welding of the entire interface. Traditionally, the microscopic solid-solid contact is alleviated by various lubricants and additives based on their improved mechanical properties. In this work, we realized the state-of-the-art of extreme pressure lubrication by utilizing the high thermal diffusivity of liquid metal, 2 orders of magnitude higher than general organic lubricants. The extreme pressure lubrication property of gallium based liquid metal (GBLM) was compared with gear oil and poly-α-olefin in a four-ball test. The liquid metal lubricates very well at an extremely high load (10 kN, the maximum capability of a four-ball tester) at a rotation speed of 1800 rpm for a duration of several minutes, much better than traditional organic lubricants which typically break down within seconds at a load of a few kN. Our comparative experiments and analysis showed that this superextreme pressure lubrication capability of GBLM was attributed to the synergetic effect of the ultrafast heat dissipation of GBLM and the low friction coefficient of FeGa 3 tribo-film. The present work demonstrated a novel way of improving lubrication capability by enhancing the lubricant thermal properties, which might lead to mechanical systems with much higher reliability.

  15. Design of the GLARE tool. A grease lubrication apparatus for research and education

    International Nuclear Information System (INIS)

    Rawlings, B.

    2012-01-01

    The GLARE: Grease Lubrication Apparatus for Research and Education was designed as a fourth year thesis project with the University of Ontario Institute of Technology (UOIT). The purpose of the apparatus is to train Ontario Power Generation Nuclear (OPGN) staff to properly lubricate bearings with grease and to help detect early equipment failures. Proper re-lubrication is critical to the nuclear industry as equipment may be inaccessible for long periods of time. A secondary purpose for the tool is for UOIT research and undergraduate laboratories.This abstract provides an overview of the project and its application to the nuclear industry. (author)

  16. Bio-lubricants derived from waste cooking oil with improved oxidation stability and low-temperature properties.

    Science.gov (United States)

    Li, Weimin; Wang, Xiaobo

    2015-01-01

    Waste cooking oil (WCO) was chemically modified via epoxidation using H2O2 followed by transesterification with methanol and branched alcohols (isooctanol, isotridecanol and isooctadecanol) to produce bio-lubricants with improved oxidative stability and low temperature properties. Physicochemical properties of synthesized bio-lubricants such as pour point (PP), cloud point (CP), viscosity, viscosity index (VI), oxidative stability, and corrosion resistant property were determined according to standard methods. The synthesized bio-lubricants showed improved low temperature flow performances compared with WCO, which can be attributing to the introduction of branched chains in their molecular structures. What's more, the oxidation stability of the WCO showed more than 10 folds improvement due to the elimination of -C=C-bonds in the WCO molecule. Tribological performances of these bio-lubricants were also investigated using four-ball friction and wear tester. Experimental results showed that derivatives of WCO exhibited favorable physicochemical properties and tribological performances which making them good candidates in formulating eco-friendly lubricants.

  17. 14 CFR 33.71 - Lubrication system.

    Science.gov (United States)

    2010-01-01

    ... arranged that condensed water vapor that might freeze and obstruct the line cannot accumulate at any point... fireproof. (9) Each unpressurized oil tank may not leak when subjected to a maximum operating temperature... supply becomes depleted due to failure of any part of the lubricating system other than the tank itself...

  18. Transition to thermohydrodynamic lubrication problem

    Czech Academy of Sciences Publication Activity Database

    Ciuperca, I. S.; Feireisl, Eduard; Jai, M.; Petrov, A.

    2017-01-01

    Roč. 75, č. 3 (2017), s. 391-414 ISSN 0033-569X EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : free boundary problems * lubrication * asymptotic approach * Stokes equation Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.788, year: 2016 http://www.ams.org/journals/qam/2017-75-03/S0033-569X-2017-01468-X/

  19. Boundary Lubrication of PEO-PPO-PEO Triblock Copolymer Physisorbed on Polypropylene, Polyethylene, and Cellulose Surfaces

    KAUST Repository

    Li, Yangyang

    2012-02-22

    In situ lateral force microscopy (LFM) and X-ray photoelectron spectroscopy (XPS) were used to probe the lubrication behavior of an aqueous solution of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) (PEO-PPO-PEO) symmetric triblock copolymer on thin films of polypropylene (PP), polyethylene (PE), and cellulose. LFM experiments were carried out while the substrates were immersed in water and in solutions of the copolymer. The friction coefficient on PP and PE was reduced after adsorption from the PEO-PPO-PEO aqueous solution while the opposite effect was observed for cellulose surfaces. A critical normal loading force, at which the friction coefficient of the lubricated and unlubricated surfaces is equal, was identified and related to the affinity of the polymer with the substrate. Further experiments were performed to mimic practical operations involving lubricant addition during manufacturing and postprocessing removal. XPS was used to verify the presence of the lubricant on the polymeric substrates and to evaluate its removal by water washing. The lubricant layer was easily removed by water from the PP and cellulose surfaces while a durable layer was found on PE. The XPS results were in agreement with the highest critical normal loading force measured for PE (52 nN for PE in contrast to a minimum of 10 nN for cellulose). While several reports exist on lubrication on hard surfaces, friction behavior on soft surfaces is still not well documented as the substrates usually deform under loading pressure. Therefore, we also propose a simple lubrication model for PP, PE, and cellulose and the use of critical normal loading force as a parameter to predict lubricity and durability of adsorbed nonionic block copolymers. © 2012 American Chemical Society.

  20. Materials and lubrication for gear and bearing surfaces in UHV

    International Nuclear Information System (INIS)

    Kirby, R.E.; Collet, G.J.; Garwin, E.L.

    1981-01-01

    During design and construction of the SLAC polarized LEED (PLEED) system, a search was made for a dependable gear, bearing and lubrication system for the computer-controlled Faraday cup used to measure diffracted beams. Components must be nonmagnetic, bakeable to 250 0 C, and at room temperature must operate at pressures in the 10 -9 to 10 -10 Pa range. A test system was constructed which incorporated a meshed pair of dissimilar pitch diameter spur gears, one of which was confined by bushings to a fixed shaft on which it rotated, while the other gear was driven through a commercial rotary motion feedthrough rotated by a servo motor driven in sine fashion with a direction reversal every six turns and peak speeds of 50 rpm. The criterion for a successful pair was approx. equal to 10 5 turns, the life rating for the feedthrough. Pairs had actual turn counts from less than 1 to 91 000. Materials for gears included stainless steel, beryllium copper and aluminium alloys. Lubricants used singly and in concert were MoS 2 , WS 2 , Ag, hard chrome and a MoS 2 -graphite-sodium silicate-coated Be-Cu. Subsequent performance in the PLEED system after repeated bakeouts will also be discussed. (orig.)

  1. Tribology - friction, lubrication and wear: fifty years on. 2 v

    International Nuclear Information System (INIS)

    1987-01-01

    The paper presents the proceedings of the International Tribology Conference held in London (United Kingdom), 1987, and organised by the Institution of Mechanical Engineers. The aim of the conference was to address the current status and future developments in all aspects of tribology. The conference proceedings contained 121 papers, and the sessions were structured under six headings: hydrodynamic, elastohydrodynamic and mixed lubrication; friction and wear; contact mechanics; materials; design and applications; and lubricants. Four papers were chosen for INIS and indexed separately. (U.K.)

  2. Use of an additive in biofuel to evaluate emissions, engine component wear and lubrication characteristics

    International Nuclear Information System (INIS)

    Kalam, M.A.; Majsuki, H.H.

    2003-01-01

    This paper presents the results of experiments carried out to evaluate the effect of adding an anticorrosion additive to blended biofuel and lubricating oil on emissions, engine component wear and lubrication characteristics. The blended biofuels consist of 7.5 and 15 per cent palm olein (PO) with ordinary diesel oil (OD). Pure OD was used for comparison purposes. Exhaust emission gases such as NO x , CO and hydrocarbons (HCs) were measured by an exhaust emission analyser for engine operation on 50 per cent throttle at speeds of 800-3600 r/min. To measure engine component wear and lubricating oil characteristics, the engine was operated at 50 per cent throttle at a speed of 2000 r/min for a period of 100 h with each of the fuel samples. The same lubricating oil, conventional SAE 40, was used in all the fuels. A multielement oil analyser (MOA) was used to measure the increase in wear of metals (Fe, Cu, Al, Pd) and the decrease in lubricating oil additives (Zn, Ca) in the lubricating oil used. An ISL automatic Houillon viscometer (ASTM D445) and potentiometric titration (ASTM D2896) were used to measure viscosity and total base number (TBN) respectively. The results show that the addition of anticorrosion additive with biofuel and lubricating oil improves the emission and engine wear characteristics; both the exhaust emission gases (NO x , CO and HCs) and the wear of metals (Fe, Cu, Al and Pd) decrease with the blended fuels in comparison with the base fuel OD. Detailed results, including engine brake power, are discussed. (Author)

  3. Testing the ecotoxicology of vegetable versus mineral based lubricating oils: 2. Induction of mixed function oxidase enzymes in barramundi, Lates calcarifer, a tropical fish species

    International Nuclear Information System (INIS)

    Mercurio, Philip; Burns, Kathryn A.; Cavanagh, Joanne

    2004-01-01

    An increasing number of vegetable-based oils are being developed as environmentally friendly alternatives to petroleum products. However, toxicity towards key tropical marine species has not been investigated. In this study we used laboratory-based biomarker induction experiments to compare the relative stress of a vegetable-based lubricating oil for marine 2-stroke engines with its mineral oil-based counterpart on tropical fish. The sub-lethal stress of 2-stoke outboard lubricating oils towards the fish Lates calcarifer (barramundi) was examined using liver microsomal mixed function oxidase (MFO) induction assays. This study is the first investigation into the use of this key commercial species in tropical North Queensland, Australia in stress assessment of potential hydrocarbon pollution using ethoxyresorufin O-deethylase (EROD) induction. Our results indicated that barramundi provide a wide range of inducible rates of EROD activity in response to relevant organic stressors. The vegetable- and mineral-based lubricants induced significant EROD activity at 1.0 mg kg -1 and there was no significant difference between the two oil treatments at that concentration. At increasing concentrations of 2 and 3 mg kg -1 , the mineral-based lubricant resulted in slightly higher EROD activity than the vegetable-based lubricant. The EROD activity of control and treated barramundi are found to be within ranges for other species from temperate and tropical environments. These results indicate that vegetable-based lubricants may be less stressful to barramundi than their mineral counterparts at concentrations of lubricant ≥2 mg kg -1 . There is great potential for this species to be used in the biomonitoring of waterways around tropical North Queensland and SE Asia. - Vegetable-based lubricating oils appear to cause a tropical fish species less stress than mineral oils

  4. Testing the ecotoxicology of vegetable versus mineral based lubricating oils: 2. Induction of mixed function oxidase enzymes in barramundi, Lates calcarifer, a tropical fish species

    Energy Technology Data Exchange (ETDEWEB)

    Mercurio, Philip; Burns, Kathryn A.; Cavanagh, Joanne

    2004-05-01

    An increasing number of vegetable-based oils are being developed as environmentally friendly alternatives to petroleum products. However, toxicity towards key tropical marine species has not been investigated. In this study we used laboratory-based biomarker induction experiments to compare the relative stress of a vegetable-based lubricating oil for marine 2-stroke engines with its mineral oil-based counterpart on tropical fish. The sub-lethal stress of 2-stoke outboard lubricating oils towards the fish Lates calcarifer (barramundi) was examined using liver microsomal mixed function oxidase (MFO) induction assays. This study is the first investigation into the use of this key commercial species in tropical North Queensland, Australia in stress assessment of potential hydrocarbon pollution using ethoxyresorufin O-deethylase (EROD) induction. Our results indicated that barramundi provide a wide range of inducible rates of EROD activity in response to relevant organic stressors. The vegetable- and mineral-based lubricants induced significant EROD activity at 1.0 mg kg{sup -1} and there was no significant difference between the two oil treatments at that concentration. At increasing concentrations of 2 and 3 mg kg{sup -1}, the mineral-based lubricant resulted in slightly higher EROD activity than the vegetable-based lubricant. The EROD activity of control and treated barramundi are found to be within ranges for other species from temperate and tropical environments. These results indicate that vegetable-based lubricants may be less stressful to barramundi than their mineral counterparts at concentrations of lubricant {>=}2 mg kg{sup -1}. There is great potential for this species to be used in the biomonitoring of waterways around tropical North Queensland and SE Asia. - Vegetable-based lubricating oils appear to cause a tropical fish species less stress than mineral oils.

  5. Soluble, Exfoliated Two-Dimensional Nanosheets as Excellent Aqueous Lubricants.

    Science.gov (United States)

    Zhang, Wenling; Cao, Yanlin; Tian, Pengyi; Guo, Fei; Tian, Yu; Zheng, Wen; Ji, Xuqiang; Liu, Jingquan

    2016-11-30

    Dispersion in water of two-dimensional (2D) nanosheets is conducive to their practical applications in fundamental science communities due to their abundance, low cost, and ecofriendliness. However, it is difficult to achieve stable aqueous 2D material suspensions because of the intrinsic hydrophobic properties of the layered materials. Here, we report an effective and economic way of producing various 2D nanosheets (h-BN, MoS 2 , MoSe 2 , WS 2 , and graphene) as aqueous dispersions using carbon quantum dots (CQDs) as exfoliation agents and stabilizers. The dispersion was prepared through a liquid phase exfoliation. The as-synthesized stable 2D nanosheets based dispersions were characterized by UV-vis, HRTEM, AFM, Raman, XPS, and XRD. The solutions based on CQD decorated 2D nanosheets were utilized as aqueous lubricants, which realized a friction coefficient as low as 0.02 and even achieved a superlubricity under certain working conditions. The excellent lubricating properties were attributed to the synergetic effects of the 2D nanosheets and CQDs, such as good dispersion stability and easy-sliding interlayer structure. This work thus proposes a novel strategy for the design and preparation of high-performance water based green lubricants.

  6. Characterization of Lubricants on Ball Bearings by FT-IR Using an Integrating Sphere

    Science.gov (United States)

    Street, K. W.; Pepper, S. V.; Wright, A. A.; Grady, B.

    2007-01-01

    Fourier Transform-Infrared reflectance microspectroscopy has been used extensively for the examination of coatings on nonplanar surfaces such as ball bearings. While this technique offers considerable advantages, practical application has many drawbacks, some of which are easily overcome by the use of integrating sphere technology. This paper describes the use of an integrating sphere for the quantification of thin layers of lubricant on the surface of ball bearings and the parameters which require optimization in order to obtain reliable data. Several applications of the technique are discussed including determination of lubricant load on 12.7 mm steel ball bearings and the examination of degraded lubricant on post mortem specimens.

  7. Investigation on Capability of Reaming Process using Minimal Quantity Lubrication

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Tosello, Guido; Piska, Miroslav

    2008-01-01

    An investigation on reaming using minimal quantity lubrication (MQL) was carried out with the scope of documenting process capability using a metrological approach. Reaming tests were carried out on austenitic stainless steel, using HSS reamers with different cutting data and lubrication conditions...... depth of cut was employed. The suitability of MQL for reaming was proven under the investigated process conditions, concerning both the quality of the machined holes, in terms of geometrical characteristics and surface finishing, and the process quality, with respect to reaming torque and thrust, along...

  8. Carbon microspheres as ball bearings in aqueous-based lubrication.

    Science.gov (United States)

    St Dennis, J E; Jin, Kejia; John, Vijay T; Pesika, Noshir S

    2011-07-01

    We present an exploratory study on a suspension of uniform carbon microspheres as a new class of aqueous-based lubricants. The surfactant-functionalized carbon microspheres (∼0.1 wt %) employ a rolling mechanism similar to ball bearings to provide low friction coefficients (μ ≈ 0.03) and minimize surface wear in shear experiments between various surfaces, even at high loads and high contact pressures. The size range, high monodispersity, and large yield stress of the C(μsphere), as well as the minimal environmental impact, are all desirable characteristics for the use of a C(μsphere)-SDS suspension as an alternative to oil-based lubricants in compatible devices and machinery.

  9. Bimetallic nanoparticles for surface modification and lubrication of MEMS switch contacts

    Energy Technology Data Exchange (ETDEWEB)

    Patton, Steven T; Hu Jianjun [University of Dayton Research Institute, Dayton, OH 45469-0168 (United States); Slocik, Joseph M; Campbell, Angela; Naik, Rajesh R; Voevodin, Andrey A [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433-7750 (United States)], E-mail: steve.patton@wpafb.af.mil, E-mail: rajesh.naik@wpafb.af.mil

    2008-10-08

    Reliability continues to be a critical issue in microelectromechanical systems (MEMS) switches. Failure mechanisms include high contact resistance (R), high adhesion, melting/shorting, and contact erosion. Little previous work has addressed the lubrication of MEMS switches. In this study, bimetallic nanoparticles (NPs) are synthesized using a biotemplated approach and deposited on Au MEMS switch contacts as a nanoparticle-based lubricant. Bimetallic nanoparticles are comprised of a metallic core ({approx}10 nm diameter gold nanoparticle) with smaller metallic nanoparticles ({approx}2-3 nm diameter Pd nanoparticles) populating the core surface. Adhesion and resistance (R) were measured during hot switching experiments at low (10 {mu}A) and high (1 mA) current. The Au/Pd NP coated contacts led to reduced adhesion as compared to pure Au contacts with a compromise of slightly higher R. For switches held in the closed position at low current, R gradually decreased over tens of seconds due to increased van der Waals force and growth of the real area of contact with temporal effects being dominant over load effects. Contact behavior transitioned from 'Pd-like' to 'Au-like' during low current cycling experiments. Melting at high current resulted in rapid formation of large real contact area, low and stable R, and minimal effect of load on R. Durability at high current was excellent with no failure through 10{sup 6} hot switching cycles. Improvement at high current is due to controlled nanoscale surface roughness that spreads current through multiple nanocontacts, which restricts the size of melting regions and causes termination of nanowire growth (prevents shorting) during contact opening. Based on these results, bimetallic NPs show excellent potential as surface modifiers/lubricants for MEMS switch contacts.

  10. Water and clay based drilling fluids: rheologic, filtration and lubricity behavior; Fluidos hidroargilosos: comportamento reologico, de filtracao e lubricidade

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Luciana V.; Pereira, Melquesedek S.; Ferreira, Heber C. [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2008-07-01

    The aim of this work is to provide continuity for UFCG studies presenting results of rheological, filtration and the lubricity behaviors obtained with fluids prepared with bentonite clays from Paraiba, in binary compositions, after treatment with lubricants agents. It was selected two samples of bentonite clays and four lubricants (Lub 1, Lub 2, Lub 3 and Lub 4). The results showed that: depending on the composition, the drilling fluids presented bingham and pseudo plastic rheological behaviors, and with the additives bingham behavior; among the rheological and filtration properties evaluated, the apparent viscosity, yield limiting and the water loss are the have changes with the addition of lubricants; the values of the lubricity coefficient (LC) of fluids without additives were next of 0.50, independent of the composition of the bentonite clay mixture; after addition of the lubricants, the LC of fluids reduced for values next to 0,11, independent of its concentration and lubricants the best-performing are the Lub 2 and Lub 4. (author)

  11. Women's willingness to experiment with condoms and lubricants: A study of women residing in a high HIV seroprevalence area.

    Science.gov (United States)

    Sanders, Stephanie A; Crosby, Richard A; Milhausen, Robin R; Graham, Cynthia A; Tirmizi, Amir; Yarber, William L; Beauchamps, Laura; Mena, Leandro

    2018-03-01

    The objective of this study was to investigate women's willingness to experiment with new condoms and lubricants, in order to inform condom promotion in a city with high rates of poverty and HIV. One hundred and seventy-three women (85.9% Black) sexually transmitted infection clinic attendees in Jackson, Mississippi, United States completed a questionnaire assessing willingness to experiment with condoms and lubricants and sexual pleasure and lubrication in relation to last condom use. Most women were willing to: (1) experiment with new types of condoms and lubricants to increase their sexual pleasure, (2) touch/handle these products in the absence of a partner, and (3) suggest experimenting with new condoms and lubricants to a sex partner. Previous positive sexual experiences with lubricant during condom use predicted willingness. The role women may play in male condom use should not be underestimated. Clinicians may benefit women by encouraging them to try new types of condoms and lubricants to find products consistent with sexual pleasure.

  12. Wear Behavior of Medium Carbon Steel with Biomimetic Surface Under Starved Lubricated Conditions

    Science.gov (United States)

    Zhang, Zhihui; Shao, Feixian; Liang, Yunhong; Lin, Pengyu; Tong, Xin; Ren, Luquan

    2017-07-01

    Friction and wear under starved lubrication condition are both key life-related factors for mechanical performance of many structural parts. In this paper, different surface morphologies on medium carbon steel were fabricated using laser, inspired by the surface coupling effect of biological system. The friction and sliding wear behaviors of biomimetic specimens (characterized by convex and concave units on the specimen surface) were studied under starved lubrication condition. The stress distribution on different sliding surfaces under sliding friction was studied using finite element method. The results showed that the tribological performance of studied surfaces under starved lubrication condition depended not only on the surface morphology but also on the structure of biomimetic units below surface (subsurface structure). The friction coefficient of biomimetic surface was effectively reduced by the concave unit depth, while the refined microstructure with higher hardness led to the much better wear resistance. In addition to lubricant reserving and wear debris trapping effect derived from the surface concave morphology, it was believed that the well-formed subsurface structure of biomimetic units could carry much heavy loads against tribopair, which enhanced the function of surface topography and resulted in complementary lubrication in the wear contact area. The uniform stress distribution on the entire biomimetic surface also played an important role in stabilizing the friction coefficient and reducing the wear cracks.

  13. Increased production of naphtenic lubricants using more active catalysts; Aumento da producao de lubrificantes naftenicos usando catalisadores mais ativos

    Energy Technology Data Exchange (ETDEWEB)

    Fontes, Anita Eleonora F.; Lima, Anie Daniela M.; Figueiredo, Joao B.; Nogueira, Wlamir S.; Zotin, Jose L. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    PETROBRAS produces lubricant base oil in three of its refineries: Duque de Caxias (REDUC), Landulpho Alves (RLAM) and Lubricants and Derivatives of Petroleum of Northeast (LUBNOR). LUBNOR, which began its operation in 1998, is the only refinery that produces naphtenic lubricant base oils with a current capacity of 60.000 m{sup 3}/year. It processes Brazilian naphtenic crudes in a vacuum distillation unit to produce distillates, which are then fed in to a hydrotreatment unit (HDT). This HDT unit processes 170 m{sup 3}/day to obtain base oils NH-10, NH-20, NH-140 and ISOVOLT. In 2007, an evaluation study of new catalysts was made for this unit at PETROBRAS Research Center (CENPES) aiming to increase the production capacity of the HDT unit. The concept was based on increasing the catalytic activity in the HTD unit by testing new catalysts and operating conditions in a pilot-plant unit. The results obtained were very promising showing that a selected catalyst achieved the normal production rate maintaining the same high quality product at a temperature lower than the conventional process. Alternatively, a 77% increase in the throughput capacity was achieved when the normal reaction temperature was applied to this selected catalyst. (author)

  14. Unctuous ZrO2 nanoparticles with improved functional attributes as lubricant additives

    Science.gov (United States)

    Espina Casado, Jorge; Fernández González, Alfonso; José del Reguero Huerga, Ángel; Rodríguez-Solla, Humberto; Díaz-García, Marta Elena; Badía-Laíño, Rosana

    2017-12-01

    One of the main drawbacks in the application of metal-oxide nanoparticles as lubricant additives is their poor stability in organic media, despite the good anti-wear, friction-reducing and high-load capacity properties described for these materials. In this work, we present a novel procedure to chemically cap the surface of ZrO2 nanoparticles (ZrO2NPs) with long hydrocarbon chains in order to obtain stable dispersions of ZrO2NPs in non-aqueous media without disrupting their attributes as lubricant additives. C-8, C-10 and C-16 saturated flexible chains were attached to the ZrO2NP surface and their physical and chemical characterization was performed by transmission electron microscopy, thermogravimetric analysis, attenuated total reflectance Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy and solid-state nuclear magnetic resonance. The dispersion stability of the modified ZrO2NPs in non-aqueous media was studied using static multiple light scattering. Tribological tests demonstrated that dispersions of the long-chain capped ZrO2NPs in base lubricating oils exhibited low friction coefficients and improved the anti-wear properties of the base oil when compared with the raw lubricating oil.

  15. Deformation and friction of MoS2 particles in liquid suspensions used to lubricate sliding contact

    International Nuclear Information System (INIS)

    Sahoo, Rashmi R.; Biswas, Sanjay K.

    2010-01-01

    Tribology of a well known solid lubricant molybdenum disulphide is studied here in water and oil medium, over a large range of contact dimensions. Lateral force microscopy is used to identify the deformation modes; intra-crystalline slip, plastic grooving, fragmentation and fracture, of single particles. The medium and agglomeration were found to dictate the deformation mode. Steel on steel tribology lubricated by suspensions of these particles in liquid media was conducted over a range of contact pressure and sliding velocity. A scrutiny of the frictional data with the aid of Raman spectroscopy to identify the transfer film, suggested that the particle size, as it is at contact, is an important tribological parameter. Ultrasonication of the suspension and dispersion of the particle by surfactants were used to control the apriori particle size fed into the suspension. Correspondence of friction data of the gently sonicated suspension with that of the ultrasonicated suspension with dispersants indicated the importance of liquid ingestion by these particles as it controls their mode of deformation and consequent tribology.

  16. Double hollow MoS{sub 2} nano-spheres: Synthesis, tribological properties, and functional conversion from lubrication to photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yueru [Department of Chemical and Materials Engineering, Hefei University, Hefei 230601 (China); Hu, Kunhong, E-mail: hukunhong@163.com [Department of Chemical and Materials Engineering, Hefei University, Hefei 230601 (China); Hu, Enzhu; Guo, Jianhua; Han, Chengliang [Department of Chemical and Materials Engineering, Hefei University, Hefei 230601 (China); Hu, Xianguo [Institute of Tribology, Hefei University of Technology, Hefei 230009 (China)

    2017-01-15

    Highlights: • Novel double-hollow-sphere MoS{sub 2} nanoparticles were synthesized on sericite. • Friction and wear decreased by 22.4 and 63.5% by the novel MoS{sub 2}/sericite. • Friction induced conversion of MoS{sub 2}/sericite from lubricant to catalyst. • MoS{sub 2}/sericite can be used as a photocatalyst after lubricating service life. • A possible approach was proposed for designing a novel green lubricant. - Abstract: Molybdenum disulfide (MoS{sub 2}) has extensive applications in industries as solid lubricants and catalysts. To improve the lubricating performance of MoS{sub 2}, novel double-hollow-sphere MoS{sub 2} (DHSM) nanoparticles with an average diameter of approximately 90 nm were synthesized on sericite mica (SM). When the DHSM/SM composite was used as an additive in polyalphaolefin oil, friction and wear decreased by 22.4% and 63.5% respectively. The low friction and wear were attributed to the easy exfoliation of DHSM. The DHSM/SM composite was then rubbed under 40 MPa for 1 h to investigate the exfoliation and functional conversion behaviors of DHSM. Results showed that DHSM (lubricating structure) on SM could be completely exfoliated into nanosheets (catalytic structure) by rubbing. The nanosheets exfoliated from DHSM presented good photocatalytic activity for the removal of organic compounds from waste water. This work provided both a novel solid lubricant for industrial applications and a possible approach to designing a novel green lubricant for use as a photocatalyst in organic-waste treatment after lubricating service life.

  17. Testing the ecotoxicology of vegetable versus mineral based lubricating oils: 1. Degradation rates using tropical marine microbes

    International Nuclear Information System (INIS)

    Mercurio, Philip; Burns, Kathryn A.; Negri, Andrew

    2004-01-01

    Vegetable-derived lubricants (VDL) might be more biodegradable than mineral-derived lubricants (MDL) due to the absence of high molecular weight aromatics, but this remains largely untested in tropical conditions. In this laboratory study, the degradation rates of 2-stroke, 4-stroke and hydraulic VDLs were compared with their MDL counterparts in the presence of mangrove and coral reef microbial communities. While MDLs were comprised largely of unresolved saturated and some aromatic hydrocarbons, their VDL counterparts contained, potentially more degradable, fatty acid methyl esters. Degradation of some VDL was observed by day 7, with the 2-stroke VDL markedly consumed by mangrove microorganisms and the hydraulic VDL degraded by both microorganism communities after this short period. All of the VDL groups were significantly more degraded than the comparable MDLs mineral oil lubricants over 14 days in the presence of either mangrove or coral reef microbial communities. In general the mangrove-sourced microorganisms more efficiently degraded the lubricants than reef-sourced microorganisms. - Vegetable-derived lubricants were more degradable than mineral oil lubricants

  18. Testing the ecotoxicology of vegetable versus mineral based lubricating oils: 1. Degradation rates using tropical marine microbes

    Energy Technology Data Exchange (ETDEWEB)

    Mercurio, Philip; Burns, Kathryn A.; Negri, Andrew

    2004-05-01

    Vegetable-derived lubricants (VDL) might be more biodegradable than mineral-derived lubricants (MDL) due to the absence of high molecular weight aromatics, but this remains largely untested in tropical conditions. In this laboratory study, the degradation rates of 2-stroke, 4-stroke and hydraulic VDLs were compared with their MDL counterparts in the presence of mangrove and coral reef microbial communities. While MDLs were comprised largely of unresolved saturated and some aromatic hydrocarbons, their VDL counterparts contained, potentially more degradable, fatty acid methyl esters. Degradation of some VDL was observed by day 7, with the 2-stroke VDL markedly consumed by mangrove microorganisms and the hydraulic VDL degraded by both microorganism communities after this short period. All of the VDL groups were significantly more degraded than the comparable MDLs mineral oil lubricants over 14 days in the presence of either mangrove or coral reef microbial communities. In general the mangrove-sourced microorganisms more efficiently degraded the lubricants than reef-sourced microorganisms. - Vegetable-derived lubricants were more degradable than mineral oil lubricants.

  19. A quantitative lubricant test for deep drawing

    DEFF Research Database (Denmark)

    Olsson, David Dam; Bay, Niels; Andreasen, Jan L.

    2010-01-01

    A tribological test for deep drawing has been developed by which the performance of lubricants may be evaluated quantitatively measuring the maximum backstroke force on the punch owing to friction between tool and workpiece surface. The forming force is found not to give useful information...

  20. Synthesis of Renewable Lubricant Alkanes from Biomass-Derived Platform Chemicals.

    Science.gov (United States)

    Gu, Mengyuan; Xia, Qineng; Liu, Xiaohui; Guo, Yong; Wang, Yanqin

    2017-10-23

    The catalytic synthesis of liquid alkanes from renewable biomass has received tremendous attention in recent years. However, bio-based platform chemicals have not to date been exploited for the synthesis of highly branched lubricant alkanes, which are currently produced by hydrocracking and hydroisomerization of long-chain n-paraffins. A selective catalytic synthetic route has been developed for the production of highly branched C 23 alkanes as lubricant base oil components from biomass-derived furfural and acetone through a sequential four-step process, including aldol condensation of furfural with acetone to produce a C 13 double adduct, selective hydrogenation of the adduct to a C 13 ketone, followed by a second condensation of the C 13 ketone with furfural to generate a C 23 aldol adduct, and finally hydrodeoxygenation to give highly branched C 23 alkanes in 50.6 % overall yield from furfural. This work opens a general strategy for the synthesis of high-quality lubricant alkanes from renewable biomass. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Surface composition variation and high-vacuum performance of DLC/ILs solid-liquid lubricating coatings: Influence of space irradiation

    International Nuclear Information System (INIS)

    Liu Xiufang; Wang Liping; Pu Jibin; Xue Qunji

    2012-01-01

    In this paper, we fabricated a DLC/ionic liquid (DLC/ILs) solid-liquid lubricating coating and investigated the effect of atomic oxygen (AO), ultraviolet (UV), proton and electron irradiations on composition, structure, morphology and tribological properties of the DLC/ILs solid-liquid lubricating coatings. A ground-based simulation facility was employed to carry out the irradiation experiments. X-ray photoelectron spectroscope (XPS), Raman spectra, and Fourier Transform Infrared Spectroscopy (FTIR) were used to analyzed the structure and composition changes of DLC film and IL lubricant before and after irradiations. The tribological behavior of the DLC/ILs solid-liquid lubricating coating before and after irradiations was investigated by a vacuum tribometer with the pressure of 10 -5 Pa. The experimental results revealed that irradiations induced the structural changes, including oxidation, bond break and crosslinking reactions of DLC film and IL lubricant. The damage of proton and AO irradiations to lubricating materials were the most serious, and UV irradiation was the slightest. After irradiations, the friction coefficient of the solid-liquid lubricating coatings decreased (except for AO irradiation), but the disc wear rate increased compared with non-irradiation coatings.

  2. Solid Lubricated Rolling Element Bearings

    Science.gov (United States)

    1979-02-15

    lubricant into uneven patches of varnish . This varnish , along with the file-like action of the exposed ball carbides on the relatively softer races, can...its structure. Fluorine , one of the most reactive elements, reacts with graphite without combustion from about 790’F to 1022°F, forming a grey-colored...to allow for molding and machining after molding. 0 Method 2 (Hughes) Impregnating these dense weaves with a Thermid 600 polyimide varnish

  3. Compensation of Cross-Coupling Stiffness and Increase of Direct Damping in Multirecess Journal Bearings using Active Hybrid Lubrication

    DEFF Research Database (Denmark)

    Santos, Ilmar; Watanabe, F.Y.

    2004-01-01

    journal bearings (HJB). When part of hydrostatic pressure is also dynamically modified by means of hydraulic control systems, one refers to the active lubrication. The main contribution of the present theoretical work is to show that it is possible to reduce cross-coupling stiffness and increase...

  4. Idemitsu Kosan establishes the lubricating oil marketer in Shanghai; Idemitsu, Shanhai ni junkatsuyu hansha

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    Idemitsu Kosan established 100% marketer 'Shanghai rising light lubricating oil trade limited company (SIL)' of the lubricating oil in China and Shanghai on 28th, and it was announced that the business activity was done from July first. Toshifumi Okubo (lubricating oil division three sections) takes to the president placed headquarters at (about 24000000 yen) 200000 dollar in the Shanghai outside high bridge bond ward new company capital. Employees are the 5 persons. The first year 3000 kilo liter is being estimated at the sales of (about six hundred million yen) 5 million dollar. (translated by NEDO)

  5. A study on the noise characteristics of polymer ball bearings under various lubrication conditions

    Science.gov (United States)

    Dinç, S. K.; Temiz, V.; Kamburoǧlu, E.

    2013-12-01

    Polymer bearings are generally praised by the manufacturers for running silently. However such statements never go beyond qualitative assumptions. Therefore, studying polymer ball bearing noise would have been meaningful solely on the perspective of silent running machinery. On the other hand, the service life of a polymer ball bearing is unpredictable and there's no preventive maintenance practice that provides data regarding the condition of a polymer ball bearing. In this study, we assume that an investigation of their noise characteristics could also reveal clues concerning their performances. The main objective of this study is to determine the noise characteristics of polymer ball bearings lubricated with different lubricant greases of varying viscosity grades through experimental means. Sound pressure level measurements of SKF brand polymer bearings with polypropylene rings, polypropylene cage and glass balls were made with a 1/2 inch microphone in 1/3-octave bands, at frequencies up to 12.5 kHz, under various radial loads and rotational speeds. The bearings were mounted on a shaft driven by an AC motor with stepless speed control, adjustable between 0 - 1400 rpm. The ball bearings were running inside an acoustic chamber designed for the insulation of environmental noise and the noise of the motor at target frequencies. The resulting sound pressure level spectra were evaluated and the effects of the lubrication conditions on the noise of the ball bearing and possible diagnostic insight that could be gained through studying bearing noise characteristics were discussed.

  6. Optimization of the irradiation conditions of some control components and materials for the nuclear power plants and the radiation stability of certain types of plastic lubricants

    International Nuclear Information System (INIS)

    Pesek, M.; Rerichova, M.; Trebicky, V.; Chvojka, M.

    1989-01-01

    Fail-safe operation of various safeguard devices, operational and auxiliary equipments and control components, e.g. servomotors other engines and various appliances, is required for a safe operation of nuclear power plants. Non-metal materials, control components, motors and other appliances have to be tested and their properties evaluated after γ-irradiation with doses corresponding to the assumed long term radiation commitment and also to the irradiation caused by an eventual accident. The radiation stability of greases used in devices exposed to high doses of the ionizing radiation presents a rather serious and important problem. The results of some tests and the evaluation of the properties of irradiated plastic lubricants are described. (author)

  7. Removal of cobalt from lubricant oil by the use of bentonite: equilibrium, kinetic and adsorption preliminary studies

    Energy Technology Data Exchange (ETDEWEB)

    Cuccia, Valeria; Seles, Sandro R.N.; Ladeira, Ana Cláudia Queiroz, E-mail: vc@cdtn.br, E-mail: seless@cdtn.br, E-mail: acql@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-11-01

    Radionuclides may contaminate lubricant oils in nuclear power plants. In Brazil, this kind of waste has been stored in the generator's facilities, awaiting treatment alternatives. This work intends to investigate a process to treat it for final deposition, using bentonite as sorbent material. This process will result in decontaminated oil, free from radiological control, and radioactive loaded sorbent, with considerable volume reduction of the radioactive waste. The study focuses in cobalt removal from a simulated oil waste (non-active). The production of the simulated waste is described. Bentonite was used for equilibrium time determination, kinetic and adsorption studies. Cobalt adsorption equilibrium was rapidly attained after 30 minutes. The data was used for modelling the system's kinetic, applying the pseudo first and pseudo second order equation models. Experimental data fitted to pseudo second order model, supporting the assumption that the adsorption is due to chemisorption. Batch sorption tests were conducted and the results fitted to Langmuir and Freundlich sorption models. Both isotherm models chosen for this work did not fit to the experimental data. Thus, these are preliminary results and the studies must be repeated to evaluate data variability and better statistical inference. Other isotherm models must be evaluated to choose the best fitted one and describe the sorption of cobalt on bentonite in oil matrix. Even though, bentonite has considerable potential as sorbent for the removal of cobalt from lubricant oil. Finally, the results might be extended to other kinds of radioactive oils and radioactive organic wastes. (author)

  8. Inorganic elements and organic compounds degradation studies by gamma irradiation in used lubricating oils

    International Nuclear Information System (INIS)

    Scapin, Marcos Antonio

    2008-01-01

    The automotive lubricating oils have partial degradation of organic compounds and addition of undesirable inorganic elements, during its use. These substances classify the used lubricating oils as dangerous and highly toxic. According to global consensus, concerning the environmental conservation, the best is to perform a reuse treatment of these lubricating oils. For this purpose, the uses of an alternative and effective technology have been sought. In this work, the efficacy and technical feasibility of the advanced oxidation process (AOP), by gamma radiation, for used automotive lubricating oil treatment has been studied. Different quantities of hydrogen peroxide and water Milli-Q were added to oil samples. They were submitted to the Cobalt-60 irradiator, type Gammacell, with 100, 200 and 500 kGy absorbed doses. The inorganic analysis by X-ray fluorescence (WDXRF) showed inorganic elements removal, mainly to sulphur, calcium, iron and nickel elements at acceptable levels by environmental protection law for oils reusing. The gas chromatography (GC/MS) analysis showed that the advanced oxidation process promotes the organic compounds degradation. The main identified compounds were tridecane, 2-methyl-naphthalene, and trietilamina-tetramethyl urea, which have important industrial applications. The multivariate analysis, Cluster Analysis, showed that advanced oxidation process application is a viable and promising treatment for used lubricating oil reusing. (author)

  9. MIL-L-87177 and CLT:X-10 Lubricants Improve Electrical Connector Fretting Corrosion Behavior

    International Nuclear Information System (INIS)

    AUKLAND, NEIL R.; HANLON, JAMES T.

    1999-01-01

    We have conducted a fretting research project using MIL-L-87177 and CLT: X-10 lubricants on Nano-miniature connectors. When they were fretted without lubricant, individual connectors first exceeded our 0.5 ohm failure criteria from 2,341 to 45,238 fretting cycles. With additional fretting, their contact resistance increased to more than 100,000 ohms. Unmodified MIL-L-87177 lubricant delayed the onset of first failure to between 430,000 and over 20,000,000 fretting cycles. MIL-L-87177 modified by addition of Teflon powder delayed first failure to beyond 5 million fretting cycles. Best results were obtained when Teflon was used and also when both the straight and modified lubricants were poured into and then out of the connector. CLT: X-10 lubricant delayed the onset of first failure to beyond 55 million cycles in one test where a failure was actually observed and to beyond 20 million cycles in another that was terminated without failure. CLT: X-10 recovered an unlubricated connector driven deeply into failure, with six failed pins recovering immediately and four more recovering during an additional 420 thousand fretting cycles. MIL-L-87177 was not able to recover a connector under similar conditions

  10. Influence of Stern Shaft Inclination on the Cooling Performance of Water-Lubricated Bearing

    Directory of Open Access Journals (Sweden)

    Zou Li

    2016-01-01

    Full Text Available The water film model of the marine water-lubricated stern bearing was established by FLUENT. The influence law of water flow rate on the cooling performance of water-lubricated bearing was studied in consideration of the stern shaft inclination. It will be helpful to improve the performance of marine water-lubricated stern bearing and both security and reliability of propulsion system. The simulation results show that the increase of cooling water flow rate in a certain range can effectively reduce bearing temperature. The bearing temperature rises sharply with thinning of water film thickness which is caused by the increase of inclination angle. Larger inclination angle can deteriorate the operating reliability of bearing.

  11. A method of applying two-pump system in automatic transmissions for energy conservation

    Directory of Open Access Journals (Sweden)

    Peng Dong

    2015-06-01

    Full Text Available In order to improve the hydraulic efficiency, modern automatic transmissions tend to apply electric oil pump in their hydraulic system. The electric oil pump can support the mechanical oil pump for cooling, lubrication, and maintaining the line pressure at low engine speeds. In addition, the start–stop function can be realized by means of the electric oil pump; thus, the fuel consumption can be further reduced. This article proposes a method of applying two-pump system (one electric oil pump and one mechanical oil pump in automatic transmissions based on the forward driving simulation. A mathematical model for calculating the transmission power loss is developed. The power loss transfers to heat which requires oil flow for cooling and lubrication. A leakage model is developed to calculate the leakage of the hydraulic system. In order to satisfy the flow requirement, a flow-based control strategy for the electric oil pump is developed. Simulation results of different driving cycles show that there is a best combination of the size of electric oil pump and the size of mechanical oil pump with respect to the optimal energy conservation. Besides, the two-pump system can also satisfy the requirement of the start–stop function. This research is extremely valuable for the forward design of a two-pump system in automatic transmissions with respect to energy conservation and start–stop function.

  12. Investigation on Nano-Self-Lubricant Coating Synthesized by Laser Cladding and Ion Sulfurization

    Directory of Open Access Journals (Sweden)

    Meiyan Li

    2015-01-01

    Full Text Available The composite processing between laser cladding and low temperature (300°C ion sulfurization was applied to prepare wear resistant and self-lubricating coating. The microstructure, morphology, phase composition, valence states, and wear resistance of the composite coating were investigated by scanning electron microscopy (SEM, atomic force microscope (AFM, X-ray diffraction (XRD, X-ray photoelectron spectroscope (XPS, and friction and wear apparatus. The results indicate that the laser cladding Ni-based coatings and the maximum hardness of 46.5 HRC were obtained when the percent of pure W powder was 10%, composed of columnar dendrites crystals and ultrafine dendritic structure. After ion sulfurization at 300°C for 4 h, the loose and porous composite coating is formed with nanograins and the granularity of all grains is less than 100 nm, which consists of γ-(Fe, Ni, M23C6 carbides, FeS, FeS2, and WS2. Furthermore, the wear resistance of the composite coating is better than the laser cladding Ni55 + 10%W coating, and the friction coefficient and mass losses under the conditions of dry and oil lubrication are lower than those of laser cladding Ni55 + 10%W coating.

  13. Physicochemical properties and lubricant potentials of Blighia ...

    African Journals Online (AJOL)

    Fatty acid methyl ester analysis (FAME) revealed 96.89 % of monounsaturated fatty acids and esters in the range ... uniformity, hardness, disintegration and dissolution characteristics. Conclusion: Blighia sapida seed oil is a potentially useful low-cost tablet lubricant. However ... Products derived from plants sources can be ...

  14. Analysis of hazardous organic residues from sodium hydrosulfite industry and utilization as raw materials in a novel solid lubricant production

    International Nuclear Information System (INIS)

    Shang, Jiwu; Zhang, Yihe; Zhou, Fengshan; Lv, Fengzhu; Han, Feng; Lu, Jinbo; Meng, Xianghai; Chu, Paul K.; Ye, Zhengfang; Xing, Jing

    2011-01-01

    Highlights: ► The hazardous organic residual wastes produced by the sodium hydrosulfite industry are analyzed and the main compounds are found to be thiodiglycol and 2,2′-dithiodiethanol. ► The lubricity of the organic residues is subsequently studied and the homemade solid lubricant is observed to have good lubricity. ► The clean process is expected to not only have commercial impact but also help to reduce environmental pollution. - Abstract: The hazardous organic residual wastes produced by the sodium hydrosulfite industry are demonstrated to be convertible into a novel solid lubricant. Identification and isolation of the organic residues are achieved by Fourier transform infrared (FTIR) spectroscopy, gas chromatography–mass spectrometry (GC–MS), and nuclear magnetic resonance (NMR). FTIR and GC–MS provide important information about the residues and the two main components obtained by column chromatography are further analyzed by NMR. The main organic residues are found to be thiodiglycol and 2,2′-dithiodiethanol which have potential applications in petroleum drilling because of their S–S and/or C–S functional groups. The lubricity of the organic residues is subsequently studied and the influence of different adsorbents on the lubricity is investigated and discussed. This homemade lubricant is observed to have good lubricity and by increasing the concentration of the commercial solid lubricant M, the lubricity diminishes. The process is expected to not only have commercial impact but also help to reduce environmental pollution.

  15. Analysis of hazardous organic residues from sodium hydrosulfite industry and utilization as raw materials in a novel solid lubricant production

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Jiwu [State Key Laboratory of Geological Processes and Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Zhang, Yihe, E-mail: zyh@cugb.edu.cn [State Key Laboratory of Geological Processes and Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Zhou, Fengshan; Lv, Fengzhu; Han, Feng; Lu, Jinbo; Meng, Xianghai [State Key Laboratory of Geological Processes and Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Ye, Zhengfang [Department of Environmental Engineering, Key Laboratory of Water and Sediment Sciences of the Ministry of Education, Peking University, Beijing 100871 (China); Xing, Jing [State Key Laboratory of Geological Processes and Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer The hazardous organic residual wastes produced by the sodium hydrosulfite industry are analyzed and the main compounds are found to be thiodiglycol and 2,2 Prime -dithiodiethanol. Black-Right-Pointing-Pointer The lubricity of the organic residues is subsequently studied and the homemade solid lubricant is observed to have good lubricity. Black-Right-Pointing-Pointer The clean process is expected to not only have commercial impact but also help to reduce environmental pollution. - Abstract: The hazardous organic residual wastes produced by the sodium hydrosulfite industry are demonstrated to be convertible into a novel solid lubricant. Identification and isolation of the organic residues are achieved by Fourier transform infrared (FTIR) spectroscopy, gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR). FTIR and GC-MS provide important information about the residues and the two main components obtained by column chromatography are further analyzed by NMR. The main organic residues are found to be thiodiglycol and 2,2 Prime -dithiodiethanol which have potential applications in petroleum drilling because of their S-S and/or C-S functional groups. The lubricity of the organic residues is subsequently studied and the influence of different adsorbents on the lubricity is investigated and discussed. This homemade lubricant is observed to have good lubricity and by increasing the concentration of the commercial solid lubricant M, the lubricity diminishes. The process is expected to not only have commercial impact but also help to reduce environmental pollution.

  16. Preparation of flame sprayed poly(tetrafluoroethylene-co-hexafluoropropylene) coatings and their tribological properties under water lubrication

    International Nuclear Information System (INIS)

    Feng Zhizhong; Xu Haiyan; Yan Fengyuan

    2008-01-01

    Poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) coatings were prepared on AISI-1045 steel via flame spraying. The chemical changes of the FEP powder occurring during the spraying process were analyzed by means of Fourier transformation infrared spectroscopy. The flame spraying of the FEP powders under the chosen conditions did not lead to structural changes related to degradation and oxidation. The friction and wear behaviors of the FEP coatings sliding against AISI-52100 steel ball under dry- and water-lubricated conditions were investigated using a ball-on-disc test rig, and the worn surface morphologies of the coatings were also observed using the scanning electron microscope. The FEP coatings recorded smaller friction coefficients under water lubrication than under dry sliding. However, the wear rate of the coating under water lubrication was about two times of that under dry sliding. This indicated that water as a lubricant was able to effectively reduce the friction coefficient but it led to an increased wear rate of the FEP coatings/steel sliding pairs. X-ray photoelectron spectroscope (XPS) results illustrate that the transfer film did formed during the dry sliding but it is hindered under water lubrication, and it might be the major cause of the larger wear rate under the water lubrication.

  17. One of possible variants of the organization for recycling lubricate cooling of technological means for small businesses

    Science.gov (United States)

    Rusica, I.; Toca, A.; Stingaci, I.; Scaticailov, S.; Scaticailov, I.; Marinescu, O.; Kosenko, P.

    2016-11-01

    In the paper we analyze the application lubricate cooling technological environment in the processing of various materials in the past century greatly have increased cutting speed and respectively, has increased productivity [1]. Today, none of production in which anyway is used metal cutting machines of all types (milling, turning, grinding, drilling, etc.) is not without lubricant cooling technological liquid which in turn are designed to reduce cutting force and the load on metal cutting machine tools and machined parts in order to increase durability machine tools and reduce errors of processing details and also in resource energy saving. When using lubricate cooling technological environment reduces the temperature in the cutting zone resulting in higher tool life and the preservation of the surface structure being treated reducing wear of metal parts of the machine. Typically, lubricant cooling process fluids is used without replacing as long as possible not yet beginning to negatively affect the quality of process. However life expectancy lubricate cooling technological environment is limited. According to existing normative acts every kind of lubricate cooling technological environment through certain time must be deleted by from the system and subjected to a recycling. Lubricate cooling technological environment must be disposed of for the following reasons: occurs the microbial and the mechanical pollution cutting fluid, free oil impairs operational characteristics cutting fluid and increases consumption.

  18. Visco-plastic Lubrication: New Areas for Application

    Science.gov (United States)

    Hormozi, Sarah; Frigaard, Ian

    2011-11-01

    Stable multi-layer flows can be achieved at high Reynolds numbers by using a yield stress fluids in a lubricating outer layer. These flows have been demonstrated to be linearly and nonlinearly stable as well as observable experimentally; see Frigaard (2001), Moyers-Gonzalez et al. (2004) and Huen et al. (2007). Recently, we have studied these flows computationally in the setting of a Newtonian core fluid surrounded by a Bingham lubricated fluid, within pipe and channel configurations; see Hormozi et al. (2011a) and Hormozi et al. (2011b). The results show that we are able to freeze in non-planar interface and form interesting patterns by retaining an unyielded plug region at the interface. Our studies open up new potential areas for application such as drop encapsulation and near net shape production of multi-layered products with axial variations. We give an overview of experimental results on establishing these exotic patterns.

  19. Studies on Thermal Oxidation Stability of Aviation Lubricating Oils

    Directory of Open Access Journals (Sweden)

    Wu Nan

    2017-01-01

    Full Text Available Simulating the operating condition of aviation engine via autoclave experiment of high temperature and pressure, we studied the physic-chemical property of poly-α-olefin base oil samples mixed with antioxidants of 2,6-di-tert-butyl-4-methylphenol and p,p’-diisooctyl diphenylamine at different temperature. The mechanism of degradation of PAO aviation lubricating oil was analyzed according to the oxidized products by modern analytical instruments. The results showed that the aviation lubricating oil produced a large number of low molecule compounds while increasing the temperature, and resulted in the viscosity decreasing and acid value increasing which indicated that the thermal oxidation of the oil sample underwent a radical process.

  20. Tribological properties of self-lubricating Ta-Cu films

    Science.gov (United States)

    Qin, Wen; Fu, Licai; Zhu, Jiajun; Yang, Wulin; Li, Deyi; Zhou, Lingping

    2018-03-01

    In this paper, Ta and TaCu films were deposited by using magnetron sputtering, and the tribological properties of the films against Si3N4 balls were investigated under the loads of 2 N and 5 N. The average grain sizes of both films are below 25 nm. Ta and TaCu films have approximate hardness. While the wear rate of TaCu film is much smaller than that of Ta film. Post-wear testing XRD, Raman and XPS revealed the formation of tantalum oxide on the worn surface of both Ta and TaCu films. Tantalum oxidation is effectively lubricating to reduce friction coefficient. So the friction coefficient of both Ta and TaCu film is about 0.45 under different applied loads. Meanwhile, the addition of Cu could increase the toughness of the film, and avoid the generation of wear debris, resulting in a significant increase in wear resistance.

  1. Supporting Information Synthesis of fatty monoester lubricant base ...

    Indian Academy of Sciences (India)

    Synthesis of fatty monoester lubricant base oil catalyzed by Fe-Zn ... Physical properties of fatty acid monoesters viz., kinematic viscosity, viscosity index, density ... The analysis method involves titration of the diluted sample with ethanolic alkali ...

  2. Analysis of a thioether lubricant by infrared Fourier microemission spectrophotometry

    Science.gov (United States)

    Jones, W. R., Jr.; Morales, W.; Lauer, J. L.

    1986-01-01

    An infrared Fourier microemission spectrophotometer is used to obtain spectra (wavenumber range, 630 to 1230 0.1 cm) from microgram quantities of thioether lubricant samples deposited on aluminum foil. Infrared bands in the spectra are reproducible and could be identified as originating from aromatic species (1,3-disubstituted benzenes). Spectra from all samples (neat and formulated, used and unused) are very similar. Additives (an acid and a phosphinate) present in low concentration (0.10 percent) in the formulated fluid are not detected. This instrument appears to be a viable tool in helping to identify lubricant components separated by liquid chromatography.

  3. Electrotunable lubricity with ionic liquids: the influence of nanoscale roughness.

    Science.gov (United States)

    David, Alessio; Fajardo, Oscar Y; Kornyshev, Alexei A; Urbakh, Michael; Bresme, Fernando

    2017-07-01

    The properties of ionic liquids can be modified by applying an external electrostatic potential, providing a route to control their performance in nanolubrication applications. Most computational studies to date have focused on the investigation of smooth surfaces. Real surfaces are generally inhomogeneous and feature roughness of different length scales. We report here a study of the possible effects that surface roughness may have on electrotunable lubricity with ionic liquids, performed here by means of non-equilibrium molecular dynamics simulations. In order to advance our understanding of the interplay of friction and substrate structure we investigate coarse grained models of ionic liquids confined in model surfaces with nanometer roughness. The friction is shown to depend on the roughness of the substrate and the direction of shear. For the investigated systems, the friction coefficient is found to increase with roughness. These results are in contrast with previous studies, where roughness induced reduction of friction was reported, and they highlight the strong sensitivity of the friction process to the structure of the surfaces. The friction force features a maximum at a specific surface charge density. This behaviour is reminiscent of the one reported in ionic liquids confined by flat surfaces, showing the generality of this physical effect in confined ionic liquids. We find that an increase of the substrate-liquid dispersion interactions shifts the maximum to lower surface charges. This effect opens a route to control electrotunable friction phenomena by tuning both the electrostatic potential and the composition of the confining surfaces.

  4. Boundary Lubrication of PEO-PPO-PEO Triblock Copolymer Physisorbed on Polypropylene, Polyethylene, and Cellulose Surfaces

    KAUST Repository

    Li, Yangyang; Rojas, O. J.; Hinestroza, J. P.

    2012-01-01

    to the affinity of the polymer with the substrate. Further experiments were performed to mimic practical operations involving lubricant addition during manufacturing and postprocessing removal. XPS was used to verify the presence of the lubricant on the polymeric

  5. Materials and lubrication for gear and bearing surfaces in uhv

    International Nuclear Information System (INIS)

    Kirby, R.E.; Collet, G.J.; Garwin, E.L.

    1980-06-01

    During design and construction of the SLAC polarized LEED (PLEED) system, a search was made for a dependable gear, bearing, and lubrication system for the computer-controlled Faraday cup used to measure diffracted beams. Components must be nonmagnetic, bakeable to 250 0 C, and at room temperature must operate at pressures in the 10 -9 to 10 -10 Pa range. A test system was constructed which incorporated a meshed pair of dissimilar pitch diameter spur gears, one of which was confined to (by bushings) and rotated on a fixed shaft, while the other gear was driven by a commercial rotary motion feedthrough which was rotated by a servo motor driven in sine fashion with a direction reversal every six turns and peak speeds of 50 rpm. The criterion for a successful pair was approx. 10 5 turns, the life rating for the feedthrough. Pairs had actual turn counts from less than 1 to 91,000. Materials for gears included stainless steel, beryllium copper, and aluminum alloys. Lubricants used singly and in concert were MoS 2 , WS 2 , Ag, hard chrome, and a MoS 2 -graphite-sodium silicate mixture. The successful gear pair was Ag-plated Al alloy and MoS 2 -graphite-sodium silicate-coated Be-Cu. Subsequent performance in the PLEED system after repeated bakeouts will also be discussed

  6. Collaborative Lubricating Oil Study on Emissions: November 28, 2006 - March 31, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, J. N.; Khalek, I. A.; Smith, L. R.; Fujita, E.; Zielinska, B.

    2011-10-01

    The Collaborative Lubricating Oil Study on Emissions (CLOSE) project was a pilot investigation of how fuels and crankcase lubricants contribute to the formation of particulate matter (PM) and semi-volatile organic compounds (SVOC) in vehicle exhaust. As limited vehicles were tested, results are not representative of the whole on-road fleet. Long-term effects were not investigated. Pairs of vehicles (one normal PM emitting, one high-PM emitting) from four categories were selected: light-duty (LD) gasoline cars, medium-duty (MD) diesel trucks, heavy-duty (HD) natural-gas-fueled buses, and HD diesel buses. HD vehicles procured did not exhibit higher PM emissions, and thus were labeled high mileage (HM). Fuels evaluated were non-ethanol gasoline (E0), 10 percent ethanol (E10), conventional low-sulfur TxLED diesel, 20% biodiesel (B20), and natural gas. Temperature effects (20 degrees F, 72 degrees F) were evaluated on LD and MD vehicles. Lubricating oil vintage effects (fresh and aged) were evaluated on all vehicles. LD and MD vehicles were operated on a dynamometer over the California Unified Driving Cycle, while HD vehicles followed the Heavy Duty Urban Dynamometer Driving Schedule. Regulated and unregulated emissions were measured. Chemical markers from the unregulated emissions measurements and a tracer were utilized to estimate the lubricant contribution to PM.

  7. Analysis of chain saw lubricating oils commonly used in Thailand's southern border provinces for forensic science purpose.

    Science.gov (United States)

    Choodum, Aree; Tripuwanard, Kijja; Daeid, Niamh Nic

    2014-08-01

    In recent years, Thailand's southern border provinces (Malay-Muslim-majority border provinces) have become the scene of violence and insurgency. One of the attack patterns is the blocking of roads with perennial plants followed by planned attacks using improvised explosive devices (IEDs) or weapons on first responders. Containers of viscous dark lubricating oil and traces of lubricants on the felled trees were usually found at the scene. These were suspected to be chain oil lubricant from the chainsaws used to cut down the trees used for the roadblock. This work aimed to differentiate the chromatographic patterns of used lubricating oils available in automobile repair shops from various locations across Thailand's southern border provinces. Lubricating oils were analyzed using gas chromatography/flame ionization detector (GC/FID) every two weeks to study their variation in chemical compositions over time. The results obtained from GC/FID were normalized for differentiation. This included four two-stroke, six four-stroke, and three recycled oils. Two lubricating oils found at an incident scene were also analyzed and the results compared with the chain oil from five seized chainsaws. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Testing of nuclear grade lubricants and their effects on A540 B24 and A193 B7 bolting materials

    International Nuclear Information System (INIS)

    Czajkowski, C.J.

    1985-01-01

    An investigation was performed on eleven commonly used lubricants by the nuclear power industry. The investigation included EDS analysis of the lubricants, notched-tensile constant extension rate testing of bolting materials with the lubricants, frictional testing of the lubricants and weight loss testing of a bonded solid film lubricant. The report generally concludes that there is a significant amount of variance in the mechanical properties of common bolting materials; that MoS 2 can hydrolyze to form H 2 S at 100 0 C and cause stress corrosion cracking (SCC) of bolting materials, and that the use of copper-containing lubricants can be potentially detrimental to high strength steels in an aqueous environment. Additionally, the testing of various lubricants disclosed that some lubricants contain potentially detrimental elements (e.g. S, Sb) which can promote SCC of the common bolting materials. One of the most significant findings of this report is the observation that both A193 B7 and A540 B24 bolting materials are susceptible to transgranular stress corrosion cracking in demineralized H 2 O at 280 0 C in notched tensile tests

  9. Investigation on Capability of the Reaming Process using Minimal Quantity Lubrication

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Tosello, Guido; Píška, Miroslav

    2009-01-01

    An investigation on reaming usingminimal quantity lubrication (MQL) was carried out with the scope of documenting process capability using a metrological approach. Reaming tests were carried out on austenitic stainless steel, using HSS reamers with different cutting data and lubrication conditions...... depth of cut was employed. The suitability of MQL for reaming was proven under the investigated process conditions, concerning both the quality of the machined holes, in terms of geometrical characteristics and surface finishing, and the process quality, with respect to reaming torque and thrust, along...

  10. Single Common Powertrain Lubricant Development

    Science.gov (United States)

    2012-01-01

    this particular shortcoming of the current MIL specification lubricant lineup . Perameter: Units: Average Std. Dev. Average Std. Dev. Average...variations of each 0.2-second time block of all engagements. Test Number The run number listed on this report is a random number and is not sequential ...is not sequential . Only SwRI® can link this run number to JDQ-96, L0254054, August 3, 2010. Page 2 of3 John Deere JDQ-96 Performed using 1400

  11. The effect of load in a contact with boundary lubrication. [reduction of coefficient of friction

    Science.gov (United States)

    Georges, J. M.; Lamy, B.; Daronnat, M.; Moro, S.

    1978-01-01

    The effect of the transition load on the wear in a contact with boundary lubrication was investigated. An experimental method was developed for this purpose, and parameters affecting the boundary lubrication under industrial operating conditions were identified. These parameters are the adsorbed boundary film, the contact microgeometry (surface roughness), macrogeometry, and hardness of materials used. It was found that the curve of the tops of the surface protrustion affect the transition load, and thus the boundary lubrication. The transition load also depends on the chemical nature of the contact and its geometrical and mechanical aspects.

  12. Effects of Velocity-Slip and Viscosity Variation in Squeeze Film Lubrication of Two Circular Plates

    Directory of Open Access Journals (Sweden)

    R.R. Rao

    2013-03-01

    Full Text Available A generalized form of Reynolds equation for two symmetrical surfaces is taken by considering velocity-slip at the bearing surfaces. This equation is applied to study the effects of velocity-slip and viscosity variation for the lubrication of squeeze films between two circular plates. Expressions for the load capacity and squeezing time obtained are also studied theoretically for various parameters. The load capacity and squeezing time decreases due to slip. They increase due to the presence of high viscous layer near the surface and decrease due to low viscous layer.

  13. Revisiting liquid lubrication methods by means of a fully coupled approach combining plastic deformation and liquid lubrication

    DEFF Research Database (Denmark)

    Üstünyagiz, Esmeray; Christiansen, Peter; Nielsen, Chris Valentin

    2017-01-01

    This paper presents a new approach based on a fully coupled procedure in which the lubricant flow and the plasticdeformation of the metallic material in metal forming are solved simultaneously. The proposed method is an alternativeto conventional modelling techniques which allow studying the effect...... andanalytical model, and by variations in drawing speed. Good agreement is found with the experimental observations....

  14. Performance of palm oil as a biobased machining lubricant when drilling inconel 718

    Directory of Open Access Journals (Sweden)

    Abd Rahim Erween

    2017-01-01

    Full Text Available Metalworking fluid acts as cooling and lubrication agent at the cutting zone in the machining process. However, conventional Metalworking fluid such mineral oil gives negative impact on the human and environment. Therefore, the manufacture tends to substitute the mineral oil to bio-based oil such as vegetables and synthetic oil. In this paper, the drilling experiment was carried out to evaluate the efficiency of palm oil and compare it with minimal quantity lubrication technique using synthetic ester, flood coolant and air blow with respect to cutting temperature, cutting force, torque and tool life. The experimental results showed that the application of palm oil under minimal quantity lubrication condition as the cutting fluid was more efficient process as it improves the machining performances.

  15. Slippery when sticky: Lubricating properties of thin films of Taxus baccata aril mucilage

    DEFF Research Database (Denmark)

    Røn, Troels; Sankaranarayanan, Rishikesan; Chronakis, Ioannis S.

    2016-01-01

    Mucilage is hydrogel produced from succulent plants and microorganisms displaying unique adhesiveness and slipperiness simultaneously. The objective of this study is to establish an understanding on the lubricating mechanisms of the mucilage from Taxus baccata aril as thin, viscous lubricant films....... Oscillation and flow rheological studies revealed that T. baccata mucilage is shear-thinning, thixotropic, and weak hydrogel that is highly stretchable under shear stress due to its high density physical crosslinking characteristics. In addition, T. baccata mucilage showed a distinct Weissenberg effect, i...... effectively manifested at soft, hydrophilic, and rolling tribological contacts. Based on tenacious spreading on highly wettingsurfaces, slip plane can be formed within mucilage hydrogel network even when the lubricating films cannot completely separate the opposing surfaces. Moreover, highly stretchable...

  16. Numerical modelling of microscopic lubricant flow in sheet metal forming. Application to plane strip drawing

    DEFF Research Database (Denmark)

    Carretta, Y.; Boman, R.; Bech, Jakob Ilsted

    2017-01-01

    This paper presents a numerical investigation of microscopic lubricant flows from the cavities to the plateaus of the surface roughness of metal sheets during forming processes. This phenomenon, called micro-plasto-hydrodynamic (MPH) lubrication, was observed experimentally in various situations...

  17. Surface investigation and tribological mechanism of a sulfate-based lubricant deposited on zinc-coated steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Timma, Christian, E-mail: christian.timma@thyssenkrupp.com [ThyssenKrupp Steel Europe AG, Technology & Innovation, Kaiser-Wilhelm Str. 100, 47166 Duisburg (Germany); University of Duisburg-Essen, Faculty of Chemistry, CENIDE, Universitätsstraße 7, 45141 Essen (Germany); Lostak, Thomas; Janssen, Stella; Flock, Jörg [ThyssenKrupp Steel Europe AG, Technology & Innovation, Kaiser-Wilhelm Str. 100, 47166 Duisburg (Germany); Mayer, Christian [University of Duisburg-Essen, Faculty of Chemistry, CENIDE, Universitätsstraße 7, 45141 Essen (Germany)

    2016-12-30

    Highlights: • Skin-passed hot-dip galvanized (HDG-) steel sheets were coated with (NH{sub 4}){sub 2}SO{sub 4} in a common roll-coating method. • A formation of (NH{sub 4}){sub 2}Zn(SO{sub 4}) * xH{sub 2}O was observed and the reaction mainly occurred in the skin-passed areas of the surface. • Sulfate coated samples reveal a superior friction behaviour in oil-like conditions compared non-sulfated specimen. - Abstract: Phosphatation is a well-known technique to improve friction and wear behaviour of zinc coated steel, but has a variety of economic and ecologic limitations. In this study an alternative coating based on ammonium sulfate ((NH{sub 4}){sub 2}SO{sub 4}) is applied on skin-passed hot-dip galvanized steel sheets in order to investigate its surface chemical and tribological behaviour in a Pin-on-Disk Tribometer. Raman- and X-ray photoelectron spectroscopic results revealed a formation of ammonium zinc sulfate ((NH{sub 4}){sub 2}Zn(SO{sub 4}){sub 2} * xH{sub 2}O) on the surface, which is primarily located in the skin-passed areas of the steel material. Sulfate coated samples exhibited a superior friction behaviour in Pin-on-Disk Tests using squalane as a model substance for oil-like lubricated conditions and a formation of a thin lubrication film is obtained in the wear track. Squalane acts as a carrier substance for ammonium zinc sulfate, leading to an effective lubrication film in the wear track.

  18. Preliminary Results of Cleaning Process for Lubricant Contamination

    Science.gov (United States)

    Eisenmann, D.; Brasche, L.; Lopez, R.

    2006-03-01

    Fluorescent penetrant inspection (FPI) is widely used for aviation and other components for surface-breaking crack detection. As with all inspection methods, adherence to the process parameters is critical to the successful detection of defects. Prior to FPI, components are cleaned using a variety of cleaning methods which are selected based on the alloy and the soil types which must be removed. It is also important that the cleaning process not adversely affect the FPI process. There are a variety of lubricants and surface coatings used in the aviation industry which must be removed prior to FPI. To assess the effectiveness of typical cleaning processes on removal of these contaminants, a study was initiated at an airline overhaul facility. Initial results of the cleaning study for lubricant contamination in nickel, titanium and aluminum alloys will be presented.

  19. Preliminary Results of Cleaning Process for Lubricant Contamination

    International Nuclear Information System (INIS)

    Eisenmann, D.; Brasche, L.; Lopez, R.

    2006-01-01

    Fluorescent penetrant inspection (FPI) is widely used for aviation and other components for surface-breaking crack detection. As with all inspection methods, adherence to the process parameters is critical to the successful detection of defects. Prior to FPI, components are cleaned using a variety of cleaning methods which are selected based on the alloy and the soil types which must be removed. It is also important that the cleaning process not adversely affect the FPI process. There are a variety of lubricants and surface coatings used in the aviation industry which must be removed prior to FPI. To assess the effectiveness of typical cleaning processes on removal of these contaminants, a study was initiated at an airline overhaul facility. Initial results of the cleaning study for lubricant contamination in nickel, titanium and aluminum alloys will be presented

  20. Auto-ignition of lubricating oil working at high pressures in a compressor for an air conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chul Jin; Choi, Hyo Hyun [Department of Mechanical Engineering, Sejong University, Seoul 143-747 (Korea, Republic of); Sohn, Chae Hoon, E-mail: chsohn@sejong.ac.kr [Department of Mechanical Engineering, Sejong University, Seoul 143-747 (Korea, Republic of)

    2011-01-15

    Auto-ignition of lubricating oil working in a compressor for an air conditioner is studied experimentally. The adopted lubricating oil is an unknown mixture with multi-components and known to have flash point temperature of 170 deg. C. First, its auto-ignition temperature is measured 365 deg. C at atmospheric pressure. The lubricating oil works under high-pressure condition up to 30 atm and it is heated and cooled down repeatedly. Accordingly, auto-ignition temperatures or flammable limits of lubricating oil are required at high pressures with respect to fire safety. Because there is not a standard test method for the purpose, a new ignition-test method is proposed in this study and thereby, auto-ignition temperatures are measured over the pressure range below 30 atm. The measured temperatures range from 215 deg. C to 255 deg. C and they strongly depend on pressure of gas mixture consisting of oil vapor, nitrogen, and oxygen. They are close to flash point temperature and the lubricating oil can be hazardous when it works for high-pressure operating condition and abundant air flows into a compressor.

  1. Auto-ignition of lubricating oil working at high pressures in a compressor for an air conditioner

    International Nuclear Information System (INIS)

    Kim, Chul Jin; Choi, Hyo Hyun; Sohn, Chae Hoon

    2011-01-01

    Auto-ignition of lubricating oil working in a compressor for an air conditioner is studied experimentally. The adopted lubricating oil is an unknown mixture with multi-components and known to have flash point temperature of 170 deg. C. First, its auto-ignition temperature is measured 365 deg. C at atmospheric pressure. The lubricating oil works under high-pressure condition up to 30 atm and it is heated and cooled down repeatedly. Accordingly, auto-ignition temperatures or flammable limits of lubricating oil are required at high pressures with respect to fire safety. Because there is not a standard test method for the purpose, a new ignition-test method is proposed in this study and thereby, auto-ignition temperatures are measured over the pressure range below 30 atm. The measured temperatures range from 215 deg. C to 255 deg. C and they strongly depend on pressure of gas mixture consisting of oil vapor, nitrogen, and oxygen. They are close to flash point temperature and the lubricating oil can be hazardous when it works for high-pressure operating condition and abundant air flows into a compressor.

  2. An Electrochemical Processing Strategy for Improving Tribological Performance of Aisi 316 Stainless Steel Under Grease Lubrication

    Science.gov (United States)

    Zou, Jiaojuan; Li, Maolin; Lin, Naiming; Zhang, Xiangyu; Qin, Lin; Tang, Bin

    2014-12-01

    In order to improve the tribological performance of AISI 316 stainless steel (316 SS) under grease lubrication, electrochemical processing was conducted on it to obtain a rough (surface texturing-like) surface by making use of the high sensitivity of austenitic stainless steel to pitting corrosion in Cl--rich environment. Numerous corrosion pits or micro-ditches acted as micro-reservoirs on the obtained surface. While the grease could offer consistent lubrication, and then improve the tribological performance of 316 SS. Tribological behaviors of raw 316 SS and the treated sample were measured using a reciprocating type tribometer sliding against GCr15 steel counterpart under dry and grease lubrication conditions. The results showed that the mass losses of the two samples were in the same order of magnitude, and the raw sample exhibited lower friction coefficient in dry sliding. When the tests were conducted under grease lubrication condition, the friction coefficients and mass losses of the treated sample were far lower than those of the raw 316 SS. The tribological performance of 316 SS under grease lubrication was drastically improved after electrochemical processing.

  3. Advanced `KS-6` dry type lubricant for aluminum sheet forming; Arumi ban seikeiyo koseino kokei junkatsuzai `KS-5`

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, K.; Sugita, T.; Imamura, Y. [Kobe Steel, Ltd., Kobe (Japan)

    1997-09-01

    The advanced `KS-5` dry film type lubricant was developed for press forming of aluminum sheets. KS-5 uses water- soluble resin poly-alkylene-oxide superior in formability, weldability and adhesivity, and contains higher fatty-acid soap as oil solvent to improve a formability. The verification test result of KS-5 is as follows. Both stretchability and drawability were confirmed through a ball head stretching test and a cylinder drawing test as formability test, respectively, and a forming height more than that of mild steel sheets was obtained by using the solid lubricant showing a high stretchability. The drawability of nearly 80% of that of mild steel sheets was also obtained showing a high formability. Since the amount of the solid lubricant has reciprocal effect on the formability and degreasing property, it is important to select the suitable amount of the solid lubricant according to use conditions. Lubricants generally deteriorate a spot weldability, however, this lubricant has no practical problems by coating rust preventive oil. 3 refs., 8 figs., 3 tabs.

  4. Making Self-Lubricating Parts By Powder Metallurgy

    Science.gov (United States)

    Sliney, Harold E.; Dellacorte, Christopher

    1990-01-01

    Compositions and parameters of powder-metallurgical fabrication processes determined for new class of low-friction, low-wear, self-lubricating materials. Used in oxidizing or reducing atmospheres in bearings and seals, at temperatures from below 25 degrees C to as high as 900 degrees C. Thick parts made with minimal waste.

  5. Preparation and investigation of nano-AlN lubricant with high performance

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Yu; Tao, Yuxiao; Wang, Biaobing [School of Materials Science and Engineering, Changzhou University, Changzhou 201326 (China); Tai, Yanlong, E-mail: ytai@ucdavis.edu [Department of Biomedical Engineering, University of California Davis, Davis, CA 95616 (United States)

    2014-09-15

    A new kind of macromolecular coupling agent (LMW-a-PP-g-MAH) of maleic anhydride (MAH) onto low-molecular-weight atactic polypropylene (LMW-a-PP) was synthesized according to molecular design and was used as modifier for surface modification of nano-Aluminum nitride (AlN) by a high-pressure homogenization (HPH) process. IR was conducted to confirm the chemical structure of the step products of LMW-a-PP-g-MAH. The availability as a modifier for surface modification of nano-AlN was distinguished by Fourier transform infrared spectroscopy (FTIR), particle size analysis, transmission electron microscope (TEM), thermogravimetric analysis (TGA), contact angle experiments and the dispersion stability in dimethylbenzene and Greatwall lubrication oil. It can be inferred that the optimal loading is 10 wt. %–12 wt. % of LMW-a-PP-g-MAH to modify nano-AlN particles. Nano-AlN lubricating composite materials (LMW-a-PP-g-MAH-AlN) was used to improve the antifriction performance and the load capability of Greatwall lubrication oil, and maximum non-seizure load (P{sub B}) can increase highly from 1000 N to 1490 N when the loading is 0.3 wt. %. - Highlights: • Design and synthesis of macromolecular coupling agent (a-PP-g-MAH). • Surface modification and characterization of nano-AlN by HPH process. • Preparation and investigation of nano-AlN/lubricating oil with high performance.

  6. MEMS Lubrication by In-Situ Tribochemical Reactions From the Vapor Phase.

    Energy Technology Data Exchange (ETDEWEB)

    Dugger, Michael Thomas; Asay, David B.; Kim, Seong H.

    2008-01-01

    Vapor Phase Lubrication (VPL) of silicon surfaces with pentanol has been demonstrated. Two potential show stoppers with respect to application of this approach to real MEMS devices have been investigated. Water vapor was found to reduce the effectiveness of VPL with alcohol for a given alcohol concentration, but the basic reaction mechanism observed in water-free environments is still active, and devices operated much longer in mixed alcohol and water vapor environments than with chemisorbed monolayer lubricants alone. Complex MEMS gear trains were successfully lubricated with alcohol vapors, resulting in a factor of 104 improvement in operating life without failure. Complex devices could be made to fail if operated at much higher frequencies than previously used, and there is some evidence that the observed failure is due to accumulation of reaction products at deeply buried interfaces. However, if hypothetical reaction mechanisms involving heated surfaces are valid, then the failures observed at high frequency may not be relevant to operation at normal frequencies. Therefore, this work demonstrates that VPL is a viable approach for complex MEMS devices in conventional packages. Further study of the VPL reaction mechanisms are recommended so that the vapor composition may be optimized for low friction and for different substrate materials with potential application to conventionally fabricated, metal alloy parts in weapons systems. Reaction kinetics should be studied to define effective lubrication regimes as a function of the partial pressure of the vapor phase constituent, interfacial shear rate, substrate composition, and temperature.

  7. Self lubricating fluid bearings

    International Nuclear Information System (INIS)

    Kapich, D.D.

    1980-01-01

    The invention concerns self lubricating fluid bearings, which are used in a shaft sealed system extending two regions. These regions contain fluids, which have to be isolated. A first seal is fluid tight for the first region between the carter shaft and the shaft. The second seal is fluid tight between the carter and the shaft, it communicates with the second region. The first fluid region is the environment surrounding the shaft carter. The second fluid region is a part of a nuclear reactor which contains the cooling fluid. The shaft is conceived to drive a reactor circulating and cooling fluid [fr

  8. Development of adaptive control applied to chaotic systems

    Science.gov (United States)

    Rhode, Martin Andreas

    1997-12-01

    Continuous-time derivative control and adaptive map-based recursive feedback control techniques are used to control chaos in a variety of systems and in situations that are of practical interest. The theoretical part of the research includes the review of fundamental concept of control theory in the context of its applications to deterministic chaotic systems, the development of a new adaptive algorithm to identify the linear system properties necessary for control, and the extension of the recursive proportional feedback control technique, RPF, to high dimensional systems. Chaos control was applied to models of a thermal pulsed combustor, electro-chemical dissolution and the hyperchaotic Rossler system. Important implications for combustion engineering were suggested by successful control of the model of the thermal pulsed combustor. The system was automatically tracked while maintaining control into regions of parameter and state space where no stable attractors exist. In a simulation of the electrochemical dissolution system, application of derivative control to stabilize a steady state, and adaptive RPF to stabilize a period one orbit, was demonstrated. The high dimensional adaptive control algorithm was applied in a simulation using the Rossler hyperchaotic system, where a period-two orbit with two unstable directions was stabilized and tracked over a wide range of a system parameter. In the experimental part, the electrochemical system was studied in parameter space, by scanning the applied potential and the frequency of the rotating copper disk. The automated control algorithm is demonstrated to be effective when applied to stabilize a period-one orbit in the experiment. We show the necessity of small random perturbations applied to the system in order to both learn the dynamics and control the system at the same time. The simultaneous learning and control capability is shown to be an important part of the active feedback control.

  9. Rheological and tribological behaviour of lubricating oils containing platelet MoS2 nanoparticles

    Science.gov (United States)

    Wan, Qingming; Jin, Yi; Sun, Pengcheng; Ding, Yulong

    2014-05-01

    This work concerns rheological and frictional behaviour of lubricating oils containing platelet molybdenum disulfide (MoS2) nanoparticles (average diameter 50 nm; single layer thickness 3 nm). Stable nano-MoS2 lubricants were formulated and measured for their rheological behaviour and tribological performance. Rheological experiments showed that the nano-MoS2 oils were non-Newtonian following the Bingham plastic fluid model. The viscosity data fitted the classic Hinch-Leal (H-L) model if an agglomeration factor of 1.72 was introduced. Tribological experiments indicated that the use of MoS2 nanoparticles could enhance significantly the tribological performance of the base lubricating oil (reduced frictional coefficient, reduced surface wear and increased stability). Scanning electron microscopy, laser confocal microscope and x-ray energy dispersive spectroscopy analyses suggested that the reduced frictional coefficient and surface wear be associated with surface patching effects. Such patching effects were shown to depend on the concentration of MoS2 nanoparticles, and an effective patching required a concentration over approximately 1 wt%. The increased stability could be attributed to the enhanced heat transfer and lubricating oil film strength due to the presence of nanoparticles.

  10. Control system design for flexible rotors supported by actively lubricated bearings

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2008-01-01

    and keeping the lengths of the two eigenvalues constant in the real-imaginary plane. The methodology is applied to an industrial gas compressor supported by active tilting-pad journal bearings. The unbalance response functions and mode shapes of the flexible rotor with and without active control are presented...

  11. Base Oil-Extreme Pressure Additive Synergy in Lubricants

    Science.gov (United States)

    Extreme pressure (EP) additives are those containing reactive elements such as sulfur, phosphorus, and chlorine. In lubrication processes that occur under extremely severe conditions (e.g., high pressure and/or slow speed), these elements undergo chemical reactions generating new materials (tribofi...

  12. Impact of molecular structure on the lubricant squeeze-out between curved surfaces with long range elasticity

    DEFF Research Database (Denmark)

    Tartaglino, Ugo; Sivebæk, Ion Marius; Persson, B N J

    2006-01-01

    layers develop in the lubricant film when the width is of the order of a few atomic diameters. The branched isobutane forms more disordered structures which permit it to stay liquidlike at smaller surface separations. During squeezing the solvation forces show oscillations corresponding to the width...... of a molecule. At low speeds (interfacial) squeezing velocity in most practical applications is very low when the lubricant layer has molecular thickness, one expects n-butane to be a better boundary lubricant than...

  13. Optimization of wear behavior of electroless Ni-P-W coating under dry and lubricated conditions using genetic algorithm (GA

    Directory of Open Access Journals (Sweden)

    Arkadeb Mukhopadhyay

    2016-12-01

    Full Text Available The present study aims to investigate the tribological behavior of Ni-P-W coating under dry and lubricated condition. The coating is deposited onto mild steel (AISI 1040 specimens by the electroless method using a sodium hypophosphite based alkaline bath. Coating characterization is done to investigate the effect of microstructure on its performance. The change in microhardness is observed to be quite significant after annealing the deposits at 400°C for 1h. A pin–on–disc type tribo-tester is used to investigate the tribological behavior of the coating under dry and lubricated conditions. The experimental design formulation is based on Taguchi’s orthogonal array. The design parameters considered are the applied normal load, sliding speed and sliding duration while the response parameter is wear depth. Multiple regression analysis is employed to obtain a quadratic model of the response variables with the main design parameters under considerations. A high value of coefficient of determination of 95.3% and 87.5% of wear depth is obtained under dry and lubricated conditions, respectively which indicate good correlation between experimental results and the multiple regression models. Analysis of variance at a confidence level of 95% shows that the models are statistically significant. Finally, the quadratic equations are used as objective functions to obtain the optimal combination of tribo testing parameters for minimum wear depth using genetic algorithm (GA.

  14. Lubricant based determination of design space for continuously manufactured high dose paracetamol tablets.

    Science.gov (United States)

    Taipale-Kovalainen, Krista; Karttunen, Anssi-Pekka; Ketolainen, Jarkko; Korhonen, Ossi

    2018-03-30

    The objective of this study was to devise robust and stable continuous manufacturing process settings, by exploring the design space after an investigation of the lubrication-based parameters influencing the continuous direct compression tableting of high dose paracetamol tablets. Experimental design was used to generate a structured study plan which involved 19 runs. The formulation variables studied were the type of lubricant (magnesium stearate or stearic acid) and its concentration (0.5, 1.0 and 1.5%). Process variables were total production feed rate (5, 10.5 and 16kg/h), mixer speed rpm (500, 850 and 1200rpm), and mixer inlet port for lubricant (A or B). The continuous direct compression tableting line consisted of loss-in-weight feeders, a continuous mixer and a tablet press. The Quality Target Product Profile (QTPP) was defined for the final product, as the flowability of powder blends (2.5s), tablet strength (147N), dissolution in 2.5min (90%) and ejection force (425N). A design space was identified which fulfilled all the requirements of QTPP. The type and concentration of lubricant exerted the greatest influence on the design space. For example, stearic acid increased the tablet strength. Interestingly, the studied process parameters had only a very minor effect on the quality of the final product and the design space. It is concluded that the continuous direct compression tableting process itself is insensitive and can cope with changes in lubrication, whereas formulation parameters exert a major influence on the end product quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Aminodisulfides as additives to lubricants

    Energy Technology Data Exchange (ETDEWEB)

    Balin, A.I.; Tarasevich, V.B.; Veretenova, T.N.

    1980-01-01

    A study was carried out and tehcnology developed for producing sulfur-nitrogen containing additives of the type of aminodisulfide by interaction of beta, beta-dichlordialkyl (aryl) disulfides with diethanolamine in a medium of sulfur-diethanolamine. The 2,2'-bis-(diethanol)-dialkyl(aryl) disulfides obtained do not hydrolyze in aqueous soltuions of alkalis, exhibit rather high antiscoring properties and are recommended for tests as active additives of high pressure to SOZH and technological lubricants of the oil and emulsion types.

  16. On the lubrication of mechanical face seals

    NARCIS (Netherlands)

    Lubbinge, H.

    1999-01-01

    Hence, in this thesis, a model is presented which is able to calculate a complete Stribeck curve for a mechanical face seal and, as a consequence, the transition from full film to mixed lubrication as a function of the operational conditions. This model is based on a combination of a contact model

  17. The Lubrication Qualities of Dimethyl Ether (DME)

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Sorenson, Spencer C; Jakobsen, J.

    2002-01-01

    by mixing the DME with reasonable amounts of additives. The main conclusion drawn from these measurements is that a combination of lubricity and viscosity comparable to one of diesel oil cannot be reached in the case of DME unless a huge amount of additive is used. This is not an attractive solution...

  18. Oleic Acid Based Polyesters of Trimethylolpropane and Pentaerythritol for Bio lubricant Application

    International Nuclear Information System (INIS)

    Hamizah Ammarah Mahmud; Nadia Salih; Jumat Salimon

    2015-01-01

    The production of polyesters based on oleic acid and trimethylolpropane (TMP) or pentaerythritol (PE) as potential bio lubricant were carried out. The esterification processes between oleic acid with TMP or PE were carried out using sulfuric acid as a catalyst. The esterification process produced high yield between 92 %-94 % w/w respectively. The formation of polyesters was confirmed using gas chromatography (GC-FID), Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR). The polyesters were analyzed for basic lubrication physicochemical properties. The results showed that polyesters of both TMP and PE having high viscosity index between 200-309, good pour points ranging from -42 to -59 degree Celsius and high flash points of 280 - 300 degree Celsius respectively. The polyesters also showed good thermal oxidative stability with TGA onset temperatures above 180 degree Celsius. In general both products are plausible to be used as bio lubricant for industrial application. (author)

  19. The Improvement of Screening the Significant Factors of Oil Blends as Bio lubricant Base Stock

    International Nuclear Information System (INIS)

    Noor Hajarul Ashikin Shamsuddin; Rozaini Abdullah; Zainab Hamzah; Siti Jamilah Hanim Mohd Yusof

    2015-01-01

    A new formulation bio lubricant base stock was developed by blending of waste cooking oil (WCO) with Jatropha curcas oil (JCO). The objective of this research is to evaluate significant factors contributing to the production of oil blends for bio lubricant application. The significant factors used in this study were oil ratio (WCO:JCO), agitation times (min) and agitation speed (rpm). The blended oil bio based lubricant was used to determine the saponification, acid, peroxide and iodine values. The experimental design used in this study was the 2 level-factorial design. In this experiment, it was found that the effect of oil ratio and interaction of oil ratio and agitation speed gave the most significant effect in oil blends as bio lubricant base stock. The highest ratio of oil blend 80 %:20 % WCO:JCO, with low agitation speed of 300 rpm and low agitation time of 30 minutes gave the optimum results. The acid, saponification, peroxide and iodine values obtained were 0.517±0.08 mg KOH/ g, 126.23±1.62 mg/ g, 7.5±2.0 m eq/ kg and 50.42±2.85 mg/ g respectively. A higher ratio of waste cooking oil blends was found to be favourable as bio lubricant base stock. (author)

  20. The Analysis of Secondary Motion and Lubrication Performance of Piston considering the Piston Skirt Profile

    Directory of Open Access Journals (Sweden)

    Yanjun Lu

    2018-01-01

    Full Text Available The work performance of piston-cylinder liner system is affected by the lubrication condition and the secondary motion of the piston. Therefore, more and more attention has been paid to the secondary motion and lubrication of the piston. In this paper, the Jakobson-Floberg-Olsson (JFO boundary condition is employed to describe the rupture and reformation of oil film. The average Reynolds equation of skirt lubrication is solved by the finite difference method (FDM. The secondary motion of piston-connecting rod system is modeled; the trajectory of the piston is calculated by the Runge-Kutta method. By considering the inertia of the connecting rod, the influence of the longitudinal and horizontal profiles of piston skirt, the offset of the piston pin, and the thermal deformation on the secondary motion and lubrication performance is investigated. The parabolic longitudinal profile, the smaller top radial reduction and ellipticities of the middle-convex piston, and the bigger bottom radial reduction and ellipticities can effectively reduce the secondary displacement and velocity, the skirt thrust, friction, and the friction power loss. The results show that the connecting rod inertia, piston skirt profile, and thermal deformation have important influence on secondary motion and lubrication performance of the piston.