WorldWideScience

Sample records for applied upper limb

  1. Impact of early applied upper limb stimulation : The EXPLICIT-stroke programme design

    NARCIS (Netherlands)

    Kwakkel, Gert; Meskers, Carel G. M.; van Wegen, Erwin E.; Lankhorst, Guus J.; Geurts, Alexander C. H.; van Kuijk, Annet A.; Lindeman, Eline; Visser-Meily, Anne; de Vlugt, Erwin; Arendzen, J. Hans

    2008-01-01

    Background: Main claims of the literature are that functional recovery of the paretic upper limb is mainly defined within the first month post stroke and that rehabilitation services should preferably be applied intensively and in a task-oriented way within this particular time window. EXplaining PL

  2. Impact of early applied upper limb stimulation: The EXPLICIT-stroke programme design

    NARCIS (Netherlands)

    Kwakkel, G.; Meskers, C.G.M.; Van Wegen, E.E.; Lankhorst, G.J.; Geurts, A.C.H.; Van Kuijk, A.A.; Lindeman, E.; Visser-Meily, A.; Vlugt, E.; Arendzen, J.H.

    2008-01-01

    Main claims of the literature are that functional recovery of the paretic upper limb is mainly defined within the first month post stroke and that rehabilitation services should preferably be applied intensively and in a task-oriented way within this particular time window. EXplaining PLastICITy aft

  3. Impact of early applied upper limb stimulation: The EXPLICIT-stroke programme design

    NARCIS (Netherlands)

    Kwakkel, G.; Meskers, C.G.M.; Van Wegen, E.E.; Lankhorst, G.J.; Geurts, A.C.H.; Van Kuijk, A.A.; Lindeman, E.; Visser-Meily, A.; Vlugt, E.; Arendzen, J.H.

    2008-01-01

    Main claims of the literature are that functional recovery of the paretic upper limb is mainly defined within the first month post stroke and that rehabilitation services should preferably be applied intensively and in a task-oriented way within this particular time window. EXplaining PLastICITy

  4. Impact of early applied upper limb stimulation : The EXPLICIT-stroke programme design

    NARCIS (Netherlands)

    Kwakkel, Gert; Meskers, Carel G. M.; van Wegen, Erwin E.; Lankhorst, Guus J.; Geurts, Alexander C. H.; van Kuijk, Annet A.; Lindeman, Eline; Visser-Meily, Anne; de Vlugt, Erwin; Arendzen, J. Hans

    2008-01-01

    Background: Main claims of the literature are that functional recovery of the paretic upper limb is mainly defined within the first month post stroke and that rehabilitation services should preferably be applied intensively and in a task-oriented way within this particular time window. EXplaining

  5. Impact of early applied upper limb stimulation: The EXPLICIT-stroke programme design

    NARCIS (Netherlands)

    Kwakkel, G.; Meskers, C.G.M.; Van Wegen, E.E.; Lankhorst, G.J.; Geurts, A.C.H.; Van Kuijk, A.A.; Lindeman, E.; Visser-Meily, A.; Vlugt, E.; Arendzen, J.H.

    2008-01-01

    Main claims of the literature are that functional recovery of the paretic upper limb is mainly defined within the first month post stroke and that rehabilitation services should preferably be applied intensively and in a task-oriented way within this particular time window. EXplaining PLastICITy aft

  6. Upper limb arterial thromboembolism

    DEFF Research Database (Denmark)

    Andersen, L V; Lip, Gregory Y.H.; Lindholt, J S;

    2013-01-01

    The aim of this review is to focus on risk factors, risk-modifying drugs and prognosis for upper limb arterial thromboembolism, and the relationship between upper limb arterial thromboembolism and atrial fibrillation (AF).......The aim of this review is to focus on risk factors, risk-modifying drugs and prognosis for upper limb arterial thromboembolism, and the relationship between upper limb arterial thromboembolism and atrial fibrillation (AF)....

  7. Impact of early applied upper limb stimulation: The EXPLICIT-stroke programme design

    Directory of Open Access Journals (Sweden)

    Lindeman Eline

    2008-12-01

    Full Text Available Abstract Background Main claims of the literature are that functional recovery of the paretic upper limb is mainly defined within the first month post stroke and that rehabilitation services should preferably be applied intensively and in a task-oriented way within this particular time window. EXplaining PLastICITy after stroke (acronym EXPLICIT-stroke aims to explore the underlying mechanisms of post stroke upper limb recovery. Two randomized single blinded trials form the core of the programme, investigating the effects of early modified Constraint-Induced Movement Therapy (modified CIMT and EMG-triggered Neuro-Muscular Stimulation (EMG-NMS in patients with respectively a favourable or poor probability for recovery of dexterity. Methods/design 180 participants suffering from an acute, first-ever ischemic stroke will be recruited. Functional prognosis at the end of the first week post stroke is used to stratify patient into a poor prognosis group for upper limb recovery (N = 120, A2 project and a group with a favourable prognosis (N = 60, A1 project. Both groups will be randomized to an experimental arm receiving respectively modified CIMT (favourable prognosis or EMG-NMS (poor prognosis for 3 weeks or to a control arm receiving usual care. Primary outcome variable will be the Action Research Arm Test (ARAT, assessed at 1,2,3,4,5, 8, 12 and 26 weeks post stroke. To study the impact of modified CIMT or EMG-NMS on stroke recovery mechanisms i.e. neuroplasticity, compensatory movements and upper limb neuromechanics, 60 patients randomly selected from projects A1 and A2 will undergo TMS, kinematical and haptic robotic measurements within a repeated measurement design. Additionally, 30 patients from the A1 project will undergo fMRI at baseline, 5 and 26 weeks post stroke. Conclusion EXPLICIT stroke is a 5 year translational research programme which main aim is to investigate the effects of early applied intensive intervention for regaining dexterity

  8. Upper Limb Exoskeleton

    NARCIS (Netherlands)

    Rusak, Z.; Luijten, J.; Kooijman, A.

    2015-01-01

    The present invention relates a wearable exoskeleton for a user having a torso with an upper limb to support motion of the said upper limb. The wearable exoskeleton comprises a first fixed frame mountable to the torso, an upper arm brace and a first group of actuators for moving the upper arm brace

  9. Upper Limb Exoskeleton

    NARCIS (Netherlands)

    Rusak, Z.; Luijten, J.; Kooijman, A.

    2015-01-01

    The present invention relates a wearable exoskeleton for a user having a torso with an upper limb to support motion of the said upper limb. The wearable exoskeleton comprises a first fixed frame mountable to the torso, an upper arm brace and a first group of actuators for moving the upper arm brace

  10. Exoskeleton-Based Robotic Platform Applied in Biomechanical Modelling of the Human Upper Limb

    Directory of Open Access Journals (Sweden)

    Andres F. Ruiz

    2009-01-01

    Full Text Available One of the approaches to study the human motor system, and specifically the motor strategies implied during postural tasks of the upper limbs, is to manipulate the mechanical conditions of each joint of the upper limbs independently. At the same time, it is essential to pick up biomechanical signals and bio-potentials generated while the human motor system adapts to the new condition. The aim of this paper is two-fold: first, to describe the design, development and validation of an experimental platform designed to modify or perturb the mechanics of human movement, and simultaneously acquire, process, display and quantify bioelectric and biomechanical signals; second, to characterise the dynamics of the elbow joint during postural control. A main goal of the study was to determine the feasibility of estimating human elbow joint dynamics using EMG-data during maintained posture. In particular, the experimental robotic platform provides data to correlate electromyographic (EMG activity, kinetics and kinematics information from the upper limb motion. The platform aims consists of an upper limb powered exoskeleton, an EMG acquisition module, a control unit and a software system. Important concerns of the platform such as dependability and safety were addressed in the development. The platform was evaluated with 4 subjects to identify, using system identification methods, the human joint dynamics, i.e. visco-elasticity. Results obtained in simulations and experimental phase are introduced.

  11. Tourniquet-applied upper limb orthopaedic surgery results in increased inflammation and changes to leukocyte, coagulation and endothelial markers.

    Directory of Open Access Journals (Sweden)

    Stephen F Hughes

    Full Text Available PURPOSE: During this pilot clinical study, patients scheduled for elective tourniquet-applied upper limb orthopaedic surgery were recruited to investigate the effects of surgery on various biological markers (n = 10 patients. METHODS: Three venous blood samples were collected from the arm at the ante-cubital fossa, at baseline (pre-operatively, 5 and 15 minutes after reperfusion (post-operatively. Neutrophil and monocyte leukocyte sub-populations were isolated by density gradient centrifugation techniques. Leukocyte activation was investigated by measuring the cell surface expression of CD62L (L-selectin, CD11b (Mac-1 and the intracellular production of hydrogen peroxide (H2O2, via flow cytometry. C-reactive protein (CRP was measured using a clinical chemistry analyser. Plasma concentrations of protein C and von Willebrand factor (vWF were measured using enzyme-linked fluorescent assays (ELFA. RESULTS: Following tourniquet-applied upper limb orthopaedic surgery, there was a decrease in neutrophil CD62L expression (p = 0.001, an increase in CD11b expression and in the intracellular production of H2O2 by neutrophils and monocytes (p<0.05. An increase in CRP concentration (p<0.001, a decrease in protein C concentration (p = 0.004, with a trend towards elevated vWF levels (p = 0.232 were also observed during this time. CONCLUSIONS: Conventionally, patients undergoing orthopaedic surgery have been monitored in the peri-operative period by means of CRP, which is a non-specific marker of inflammation. This test cannot differentiate between inflammation due to current or pre-existing disease processes and the development of ischaemia-reperfusion injury surgery. The findings from this study suggest that markers such as CD11b, protein C and H2O2 may provide alternative ways of assessing leukocyte and coagulation activation peri-operatively. It is proposed that by allowing orthopaedic surgeons access to laboratory markers such as CD11b, protein C and H2O2

  12. Simulation of Upper Limb Movements

    Science.gov (United States)

    Uherčík, Filip; Hučko, Branislav

    2011-12-01

    The paper deals with controlling an upper limb prosthesis based on the measurement of myoelectric signals (MES) while drinking. MES signals have been measured on healthy limbs to obtain the same response for the prosthesis. To simulate the drinking motion of a healthy upper limb, the program ADAMS was used, with all degrees of freedom and a hand after trans-radial amputation with an existing hand prosthesis. Modification of the simulation has the exact same logic of control, where the muscle does not have to be strenuous all the time, but it is the impulse of the muscle which drives the motor even though the impulse disappears and passed away.

  13. [Pathomimia in upper limb].

    Science.gov (United States)

    Maalla, Riadh; Bensalma, Hichem; Hamdi, Lamia; Assel, Salem; Bahri, Hichem; Hamdi, Abdelaziz

    2005-03-01

    Pathomimia, or factitious disorders, are characterized by producing symptoms voluntarily with the intention of playing the role of the patient. Inspite of being considerd as a psychatric disorder, pathomimuia is often encountered in the daily professional life of doctors without being recognized or diagnosed. There are various clinical aspects of pathomimia. The items that decide the orientation of the diagnosis are essentially the uncommon and odd expression of the reported symptoms, A capricious evolution as well as the multiplicity of the past medical cases. We report a group of five patients who were followed and treated between the years 2000 and 2003. This group was composed of three men and two women with an average age of 30 years. In three cases, we found the notion of skin injury. In one case, we noted a median nerve lesion in the elbow and once in the right upper member. The evolution was performed towards recidives of the initial symptomatology with more or less long periods of improvements.

  14. Congenital microgastria and hypoplastic upper limb anomalies.

    Science.gov (United States)

    Lueder, G T; Fitz-James, A; Dowton, S B

    1989-03-01

    Six cases of congenital microgastria associated with limb anomalies are reviewed. The microgastria-hypoplastic upper limb association may arise as a result of aberrant mesodermal development in the 5th embryonic week.

  15. Smartphone supported upper limb prosthesis

    Directory of Open Access Journals (Sweden)

    Hepp D.

    2015-09-01

    Full Text Available State of the art upper limb prostheses offer up to six active DoFs (degrees of freedom and are controlled using different grip patterns. This low number of DoFs combined with a machine-human-interface which does not provide control over all DoFs separately result in a lack of usability for the patient. The aim of this novel upper limb prosthesis is both offering simplified control possibilities for changing grip patterns depending on the patients’ priorities and the improvement of grasp capability. Design development followed the design process requirements given by the European Medical Device Directive 93/42 ECC and was structured into the topics mechanics, software and drive technology. First user needs were identified by literature research and by patient feedback. Consequently, concepts were evaluated against technical and usability requirements. A first evaluation prototype with one active DoF per finger was manufactured. In a second step a test setup with two active DoF per finger was designed. The prototype is connected to an Android based smartphone application. Two main grip patterns can be preselected in the software application and afterwards changed and used by the EMG signal. Three different control algorithms can be selected: “all-day”, “fine” and “tired muscle”. Further parameters can be adjusted to customize the prosthesis to the patients’ needs. First patient feedback certified the prosthesis an improved level of handling compared to the existing devices. Using the two DoF test setup, the possibilities of finger control with a neural network are evaluated at the moment. In a first user feedback test, the smartphone based software application increased the device usability, e.g. the change within preselected grip patterns and the “tired muscle” algorithm. Although the overall software application was positively rated, the handling of the prosthesis itself needs to be proven within a patient study to be

  16. Schwannoma in the Upper Limbs

    Directory of Open Access Journals (Sweden)

    Chris Yuk Kwan Tang

    2013-01-01

    Full Text Available Schwannomas are the commonest tumours of peripheral nerves. Despite the classical description that schwannomas are well encapsulated and can be completely enucleated during excision, a portion of them have fascicular involvement and could not be completely shelled out. A retrospective review for 8 patients was carried out over 10 years. 75% of schwannoma occurred over the distal region of upper limb (at elbow or distal to it. It occurs more in the mixed nerve instead of pure sensory or motor nerve. 50% of patients had mixed nerve involvement. Fascicular involvement was very common in schwannoma (75% of patients. Removal of the tumour with fascicles can cause functional deficit. At present, there is no method (including preoperative MRI which can predict the occurrence of fascicular involvement; the authors therefore proposed a new system to stratify patients who may benefit from interfascicular nerve grafts. In this group of patients, the authors strongly recommend that the possibility and option of nerve graft should be discussed with patients prior to schwannoma excision, so that nerve grafting could be directly proceeded with patient consent in case there is fascicular involvement of tumour found intraoperatively.

  17. Update on embryology of the upper limb.

    Science.gov (United States)

    Al-Qattan, Mohammad M; Kozin, Scott H

    2013-09-01

    Current concepts in the steps of upper limb development and the way the limb is patterned along its 3 spatial axes are reviewed. Finally, the embryogenesis of various congenital hand anomalies is delineated with an emphasis on the pathogenetic basis for each anomaly.

  18. Upper limb prosthetic use in Slovenia.

    Science.gov (United States)

    Burger, H; Marincek, C

    1994-04-01

    The article deals with the use of different types of upper limb prostheses in Slovenia. Four hundred and fourteen upper limb amputees were sent a questionnaire on the type of their prosthesis, its use and reasons for non-use, respectively. The replies were subject to statistical analysis. Most of the questioned upper limb amputees (70%) wear a prosthesis only for cosmesis. The use of a prosthesis depends on the level of upper limb amputation, loss of the dominant hand, and time from amputation. Prosthetic success appears to be unrelated to age at the time of amputation and the rehabilitation programme. The most frequent reason for not wearing a prosthesis is heat and consequent sweating of the stump. More than a third of amputees are dissatisfied with their prostheses.

  19. Interhemispheric sensorimotor integration; an upper limb phenomenon?

    Science.gov (United States)

    Ruddy, Kathy L; Jaspers, Ellen; Keller, Martin; Wenderoth, Nicole

    2016-10-01

    Somatosensory information from the limbs reaches the contralateral Primary Sensory Cortex (S1) with a delay of 23ms for finger, and 40ms for leg (somatosensory N20/N40). Upon arrival of this input in the cortex, motor evoked potentials (MEPs) elicited by Transcranial Magnetic Stimulation (TMS) are momentarily inhibited. This phenomenon is called 'short latency afferent inhibition (SAI)' and can be used as a tool for investigating sensorimotor interactions in the brain. We used SAI to investigate the process of sensorimotor integration in the hemisphere ipsilateral to the stimulated limb. We hypothesized that ipsilateral SAI would occur with a delay following the onset of contralateral SAI, to allow for transcallosal conduction of the signal. We electrically stimulated the limb either contralateral or ipsilateral to the hemisphere receiving TMS, using a range of different interstimulus intervals (ISI). We tested the First Dorsal Interosseous (FDI) muscle in the hand, and Tibialis Anterior (TA) in the lower leg, in three separate experiments. Ipsilateral SAI was elicited in the upper limb (FDI) at all ISIs that were greater than N20+18ms (all p<.05) but never at any earlier timepoint. No ipsilateral SAI was detected in the lower limb (TA) at any of the tested ISIs. The delayed onset timing of ipsilateral SAI suggests that transcallosal communication mediates this inhibitory process for the upper limb. The complete absence of ipsilateral SAI in the lower limb warrants consideration of the potential limb-specific differences in demands for bilateral sensorimotor integration.

  20. Neck muscle fatigue alters upper limb proprioception.

    Science.gov (United States)

    Zabihhosseinian, Mahboobeh; Holmes, Michael W R; Murphy, Bernadette

    2015-05-01

    Limb proprioception is an awareness by the central nervous system (CNS) of the location of a limb in three-dimensional space and is essential for movement and postural control. The CNS uses the position of the head and neck when interpreting the position of the upper limb, and altered input from neck muscles may affect the sensory inputs to the CNS and consequently may impair the awareness of upper limb joint position. The purpose of this study was to determine whether fatigue of the cervical extensors muscles (CEM) using a submaximal fatigue protocol alters the ability to recreate a previously presented elbow angle with the head in a neutral position. Twelve healthy individuals participated. CEM activity was examined bilaterally using surface electromyography, and kinematics of the elbow joint was measured. The fatigue protocol included an isometric neck extension task at 70 % of maximum until failure. Joint position error increased following fatigue, demonstrating a significant main effect of time (F 2, 18 = 19.41, p ≤ 0.0001) for absolute error. No significant differences were found for variable error (F 2, 18 = 0.27, p = 0.76) or constant error (F 2, 18 = 1.16 of time, p ≤ 0.33). This study confirms that fatigue of the CEM can reduce the accuracy of elbow joint position matching. This suggests that altered afferent input from the neck subsequent to fatigue may impair upper limb proprioception.

  1. Effect of Upper Limb Deformities on Gross Motor and Upper Limb Functions in Children with Spastic Cerebral Palsy

    Science.gov (United States)

    Park, Eun Sook; Sim, Eun Geol; Rha, Dong-wook

    2011-01-01

    The aims of this study were to investigate the nature and extent of upper limb deformities via the use of various classifications, and to analyze the relationship between upper limb deformities and gross motor or upper limb functionality levels. Upper extremity data were collected from 234 children with spastic cerebral palsy (CP) who were…

  2. Infantile lipofibromatosis of the upper limb

    Energy Technology Data Exchange (ETDEWEB)

    Teo, Harvey E.L.; Peh, Wilfred C.G. [KK Women' s and Children' s Hospital, Department of Diagnostic Imaging, Singapore (Singapore); Chan, Mei-Yoke [KK Women' s and Children' s Hospital, Department of Paediatric Medicine, Singapore (Singapore); Walford, Norman [Tan Tock Seng Hospital, Department of Pathology, Singapore (Singapore)

    2005-12-01

    The imaging features of extensive lipofibromatosis presenting in a 1-day-old female infant are reported. This lesion involved her entire right upper limb, extending from the axilla to the palm of the hand. Radiographs showed marked deformity and thinning of all the right upper-limb bones due to pressure effect of soft-tissue enlargement, especially affecting the distal humerus and proximal forearm bones. Magnetic resonance imaging showed a huge soft-tissue mass infiltrating most of the muscles of the entire upper limb, with bony erosion. The mass was largely T1-isointense, moderately T2-hyperintense and showed marked enhancement. There were intra-lesional signal changes consistent with fatty elements. A lesion debulking procedure was performed and the histology was that of lipofibromatosis. The limb was found to be non-viable after the procedure and a subsequent above-elbow amputation was performed. Although the resection margins were not clear, she had no further recurrence over a subsequent 3-year follow-up period. (orig.)

  3. Emulating Upper Limb Disorder for Therapy Education

    Directory of Open Access Journals (Sweden)

    Noor Ayuni binti Che Zakaria

    2014-11-01

    Full Text Available Robotics not only contributes to the invention of rehabilitation devices, it can also enhance the quality of medical education. In recent years, the use of patient simulators and part-task trainers in the medical education field has brought meaningful improvements in the training of medical practitioners. Nevertheless, in the context of therapy training for upper limb disorders, trainee therapists still have to engage directly with the patients to gain experience of the rehabilitation of physical diseases. In this work, a high-fidelity part-task trainer that is able to reproduce the stiffness of spasticity and rigidity symptoms of the upper limb, such as those observed in post-stroke patients and Parkinson's disease patients, has been developed. Based on the evaluation carried out by two experienced therapists, the developed part-task trainer is able to simulate different patient cases and help trainee therapists gain pre-clinical experience in a safe and intuitive learning environment.

  4. Neurons in red nucleus and primary motor cortex exhibit similar responses to mechanical perturbations applied to the upper-limb during posture.

    Science.gov (United States)

    Herter, Troy M; Takei, Tomohiko; Munoz, Douglas P; Scott, Stephen H

    2015-01-01

    Primary motor cortex (M1) and red nucleus (RN) are brain regions involved in limb motor control. Both structures are highly interconnected with the cerebellum and project directly to the spinal cord, although the contribution of RN is smaller than M1. It remains uncertain whether RN and M1 serve similar or distinct roles during posture and movement. Many neurons in M1 respond rapidly to mechanical disturbances of the limb, but it remains unclear whether RN neurons also respond to such limb perturbations. We have compared discharges of single neurons in RN (n = 49) and M1 (n = 109) of one monkey during a postural perturbation task. Neural responses to whole-limb perturbations were examined by transiently applying (300 ms) flexor or extensor torques to the shoulder and/or elbow while the monkeys attempted to maintain a static hand posture. Relative to baseline discharges before perturbation onset, perturbations evoked rapid (<100 ms) changes of neural discharges in many RN (28 of 49, 57%) and M1 (43 of 109, 39%) neurons. In addition to exhibiting a greater proportion of perturbation-related neurons, RN neurons also tended to exhibit higher peak discharge frequencies in response to perturbations than M1 neurons. Importantly, neurons in both structures exhibited similar response latencies and tuning properties (preferred torque directions and tuning widths) in joint-torque space. Proximal arm muscles also displayed similar tuning properties in joint-torque space. These results suggest that RN is more sensitive than M1 to mechanical perturbations applied during postural control but both structures may play a similar role in feedback control of posture.

  5. Neurons in red nucleus and primary motor cortex exhibit similar responses to mechanical perturbations applied to the upper-limb during posture

    Directory of Open Access Journals (Sweden)

    Troy Michael Herter

    2015-04-01

    Full Text Available Primary motor cortex (M1 and red nucleus (RN are brain regions involved in limb motor control. Both structures are highly interconnected with the cerebellum and project directly to the spinal cord, although the contribution of RN is smaller than M1. It remains uncertain whether RN and M1 serve similar or distinct roles during posture and movement. Many neurons in M1 respond rapidly to mechanical disturbances of the limb, but it remains unclear whether RN neurons also respond to such limb perturbations. We have compared discharges of single neurons in RN (n = 49 and M1 (n = 109 of one monkey during a postural perturbation task. Neural responses to whole-limb perturbations were examined by transiently applying (300 ms flexor or extensor torques to the shoulder and/or elbow while the monkeys attempted to maintain a static hand posture. Relative to baseline discharges before perturbation onset, perturbations evoked rapid (<100 ms changes of neural discharges in many RN (28 of 49, 57% and M1 (43 of 109, 39% neurons. In addition to exhibiting a greater proportion of perturbation-related neurons, RN neurons also tended to exhibit higher peak discharge frequencies in response to perturbations than M1 neurons. Importantly, neurons in both structures exhibited similar response latencies and tuning properties (preferred torque directions and tuning widths in joint-torque space. Proximal arm muscles also displayed similar tuning properties in joint-torque space. These results suggest that RN is more sensitive than M1 to mechanical perturbations applied during postural control but both structures may play a similar role in feedback control of posture.

  6. Proximal monomelic amyotrophy of the upper limb.

    Science.gov (United States)

    Amir, D; Magora, A; Vatine, J J

    1987-07-01

    A 30-year-old patient of Central European origin, suffering from monomelic amyotrophy, is presented. The disease was characterized by proximal weakness of one upper limb, mainly of the shoulder girdle, accompanied by atrophy. The electrodiagnostic examination revealed signs of partial denervation in the presence of normal motor and sensory conduction. The disease, which is probably of the anterior horn cells, had a benign course and good prognosis, as evident from repeated examinations during a follow-up of eight years.

  7. Radiofrequency upper thoracic sympathectomy in the treatment of critical upper limb ischemia--a case series.

    Science.gov (United States)

    Gabrhelik, Tomas; Stehlik, Daniel; Adamus, Milan; Zalesak, Bohumil; Michalek, Pavel

    2013-06-01

    Patients with significant medical and social problems resulting from impaired perfusion of the upper limbs caused by micro- or macro-angiopathy are now frequent in clinical practice. Vasospastic disease of the upper limbs of combined origin is a difficult condition to treat by conservative methods and therapeutic strategies are usually multidisciplinary. In addition to standard pharmacotherapy, treatment may involve regional anaesthesia, thoracoscopic or radiofrequency sympathectomy and surgical treatment of defects, including plastic surgery. This paper describes our successful work in the treatment of upper limb critical ischemia using radiofrequency upper thoracic sympathectomy. In three case reports we present the results of radiofrequency thermolysis applied to treat patients with chronic defects of the hand and fingers. These patients were diagnosed with upper limb critical ischemia of combined origin, standard conservative treatment methods failed and surgical intervention was originally not indicated, however, radiofrequency thermolysis proved to be beneficial. Radiofrequency thoracic sympathectomy could improve peripheral perfusion of the upper limbs and thereby contribute to healing of chronic defects, reduction of pain and improvement in the quality of life of the patients.

  8. Compressive neuropathy in the upper limb

    Directory of Open Access Journals (Sweden)

    Mukund R Thatte

    2011-01-01

    Full Text Available Entrampment neuropathy or compression neuropathy is a fairly common problem in the upper limb. Carpal tunnel syndrome is the commonest, followed by Cubital tunnel compression or Ulnar Neuropathy at Elbow. There are rarer entities like supinator syndrome and pronator syndrome affecting the Radial and Median nerves respectively. This article seeks to review comprehensively the pathophysiology, Anatomy and treatment of these conditions in a way that is intended for the practicing Hand Surgeon as well as postgraduates in training. It is generally a rewarding exercise to treat these conditions because they generally do well after corrective surgery. Diagnostic guidelines, treatment protocols and surgical technique has been discussed.

  9. UPPER LIMB PROSTHETIC FOR STROKE AFFECTED PATIENTS

    Directory of Open Access Journals (Sweden)

    DEBIKA KHANRA,

    2011-04-01

    Full Text Available Paralysis causes loss of muscle function and loss of feeling in the affected area. The main problem faced by the patients after paralysis is muscle atrophy caused due to non-functionality of the stump. Orthotics is an orthopedic device which supports the function of the arm, leg or torso. This paper deals with the design of an upper limb orthotic device which has a hollow shell/ braces structure and can be used by paralyzed patients to bring about simple hand movements independently by the patient.

  10. [Arterial surgery of the upper limb].

    Science.gov (United States)

    Perrault, L; Lassonde, J; Laurendeau, F

    1991-01-01

    Arterial surgery of the upper limb represents 2.5% of peripheral vascular procedures in our center. From 1976 to 1989, 58 procedures were performed in 45 patients. There were 26 men and 19 women with average age of 52 years, ranging from 6 to 92 years. These patients were grouped in three categories according to etiology: 1) trauma; 2) acute non traumatic ischemia and 3) chronic ischemia. Sixteen patients (35.5%) were operated on for arterial trauma including three false aneurysms. Blunt trauma was the cause in 9 patients, penetrating in 6 and iatrogenic in one. Angioplasty and primary end to end anastomosis were used in 6, bypass in 4, simple ligation in 3, thrombectomy in 3. The outcome was excellent in 15/16 (93%). Non traumatic acute ischemia occurred in 16 patients (35.5%) and was due to emboli of cardiac origin in 92%. All patients were treated by thromboembolectomy. This group had a high mortality (5/16, 31%) because of associated medical conditions. The third group of 13 patients (29%) underwent surgery for chronic ischemia of the upper limb localized to the subclavian artery in 92%. They were treated with carotid subclavian bypasses in 9, other types of bypass in 3 and endarterectomy in 1. Excellent results were obtained in 10/13 (78%). Overall, satisfactory results were obtained in 90% of surviving patients. Operative mortality was 11.1% and the amputation rate was 13%.

  11. Prevalence and Characteristics of Phantom Limb Pain and Residual Limb Pain in the Long Term after Upper Limb Amputation

    Science.gov (United States)

    Desmond, Deirdre M.; MacLachlan, Malcolm

    2010-01-01

    This study aims to describe the prevalence and characteristics of phantom limb pain and residual limb pain after upper limb amputation. One-hundred and forty-one participants (139 males; mean age 74.8 years; mean time since amputation 50.1 years) completed a self-report questionnaire assessing residual and phantom limb pain experience. Prevalence…

  12. Prevalence and Characteristics of Phantom Limb Pain and Residual Limb Pain in the Long Term after Upper Limb Amputation

    Science.gov (United States)

    Desmond, Deirdre M.; MacLachlan, Malcolm

    2010-01-01

    This study aims to describe the prevalence and characteristics of phantom limb pain and residual limb pain after upper limb amputation. One-hundred and forty-one participants (139 males; mean age 74.8 years; mean time since amputation 50.1 years) completed a self-report questionnaire assessing residual and phantom limb pain experience. Prevalence…

  13. Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study

    Directory of Open Access Journals (Sweden)

    McDonough Suzanne

    2010-12-01

    Full Text Available Abstract Background There is now sufficient evidence that using a rehabilitation protocol involving motor imagery (MI practice in conjunction with physical practice (PP of goal-directed rehabilitation tasks leads to enhanced functional recovery of paralyzed limbs among stroke sufferers. It is however difficult to confirm patient engagement during an MI in the absence of any on-line measure. Fortunately an EEG-based brain-computer interface (BCI can provide an on-line measure of MI activity as a neurofeedback for the BCI user to help him/her focus better on the MI task. However initial performance of novice BCI users may be quite moderate and may cause frustration. This paper reports a pilot study in which a BCI system is used to provide a computer game-based neurofeedback to stroke participants during the MI part of a protocol. Methods The participants included five chronic hemiplegic stroke sufferers. Participants received up to twelve 30-minute MI practice sessions (in conjunction with PP sessions of the same duration on 2 days a week for 6 weeks. The BCI neurofeedback performance was evaluated based on the MI task classification accuracy (CA rate. A set of outcome measures including action research arm test (ARAT and grip strength (GS, was made use of in assessing the upper limb functional recovery. In addition, since stroke sufferers often experience physical tiredness, which may influence the protocol effectiveness, their fatigue and mood levels were assessed regularly. Results Positive improvement in at least one of the outcome measures was observed in all the participants, while improvements approached a minimal clinically important difference (MCID for the ARAT. The on-line CA of MI induced sensorimotor rhythm (SMR modulation patterns in the form of lateralized event-related desynchronization (ERD and event-related synchronization (ERS effects, for novice participants was in a moderate range of 60-75% within the limited 12 training

  14. Radiogrammetric analysis of upper limb long bones

    Directory of Open Access Journals (Sweden)

    Stojanović Zlatan

    2011-01-01

    Full Text Available Radiogrammetry is radiological method of bone mineral density quantification. Besides giving an insight in diagnostics and evolution of metabolic bone disorders (osteoporosis, osteomalacia, osteitis deformans- Paget's disease, it can also explain some specific biomechanical characteristics of bone structures. The aim of this study is to evaluate the significance and perspectives of radiogrammetry as a scientific model for further inquiry of skeletal system. The work demonstrates mathematical parameters (Ca-Cortical area, CI- Cortical index, GI- Garn's index, ESI- Exton Smith's index of upper limb long bones (humerus, radius, ulna. Two standard radiological projections of bones were taken: antero-posterior (AP and latero-lateral (LL. Correlation with metacarpal and lower limb bones was also performed. The value of the cortical area of humerus is significantly higher comparing with the two other examined bones (Xmean 2,2443 cm2, p < 0.01. Radial bone has the highest values of the relational mathematical parameters, which implicates its higher strength by volumetric unit concerning humerus and ulna. Despite the development of contemporary osteometric procedures (ultrasound densitometry, dual X-ray absorptiometry, digital X-ray radiogrammetry, the classical radiogrammetry sustains its important role in diagnostics of metabolic bone disorders and it can be successfully used for biomechanical inquiry of skeletal system.

  15. Upper Limb Ischemic Gangrene as a Complication of Hemodialysis Access

    Directory of Open Access Journals (Sweden)

    Shamir O. Cawich

    2015-01-01

    Full Text Available Upper limb ischemia is a well-recognized complication of dialysis access creation but progression to gangrene is uncommon. We report a case of upper limb ischemic gangrene and discuss the lessons learned during the management of this case. Clinicians must be vigilant for this complication and they should be reminded that it requires urgent management to prevent tissue loss.

  16. Benign monomelic amyotrophy with proximal upper limb involvement: case report.

    Science.gov (United States)

    Neves, Marco Antonio Orsini; Freitas, Marcos R G de; Mello, Mariana Pimentel de; Dumard, Carlos Henrique; Freitas, Gabriel R de; Nascimento, Osvaldo J M

    2007-06-01

    Monomelic amyotrophy (MA) is a rare condition in which neurogenic amyotrophy is restricted to an upper or lower limb. Usually sporadic, it usually has an insidious onset with a mean evolution of 2 to 4 years following first clinical manifestations, which is, in turned, followed by stabilization. We report a case of 20-years-old man who presented slowly progressive amyotrophy associated with proximal paresis of the right upper limb, which was followed by clinical stabilization 4 years later. Eletroneuromyography revealed denervation along with myofasciculations in various muscle groups of the right upper limb. We call attention to this rare location of MA, as well as describe some theories concerning its pathophysiology .

  17. Primary Upper Limb Lymphedema: Case Report of a Rare Pathology

    Science.gov (United States)

    McFarlane, Michael EC

    2017-01-01

    Introduction Lymphedema is characterized by a defect in the lymphatic system that causes limb swelling. Impaired uptake and transport of lymphatic fluid through lymphatic vessels causes accumulation of protein-rich fluid in the interstitial spaces, which leads to swelling of the limb. Primary lymphedema often presents at birth. The rare cases that arise after age 35 years are described as lymphedema tarda. The great majority of patients with lymphedema have swelling of the lower limbs—upper limb lymphedema is a rare disorder. Case Presentation An 84-year-old woman presented with a 3-year history of unilateral swelling of the right upper limb. There were no constitutional symptoms and no evidence of lymphadenopathy or systemic disease. Blood tests, carcinoembryonic antigen test, computed tomography scans, and venous Doppler ultrasound were all normal. The diagnosis was primary upper limb lymphedema. Discussion The swelling that occurs in upper limb lymphedema is permanent and usually extends to the hand. About one-third of patients with this condition also present with lower limb lymphedema. Thorough investigations are warranted in cases of unilateral upper limb lymphedema to rule out occult malignancy and systemic disease. PMID:28080951

  18. [Tests of hand functionality in upper limb amputation with prosthesis].

    Science.gov (United States)

    Bazzini, G; Orlandini, D; Moscato, T A; Nicita, D; Panigazzi, M

    2007-01-01

    The need for standardized instruments for clinical measurements has become pressing in the fields of occupational rehabilitation and ergonomics. This is particularly the case for instruments that allow a quantitative evaluation of upper limb function, and especially hand function in patients who have undergone an amputation and then application of an upper limb prosthesis. This study presents a review of the main tests used to evaluate hand function, with a critical analysis of their use in subjects with an upper limb prosthesis. The tests are divided into: tests to evaluate strength, tests to evaluate co-ordination and dexterity, tests of global or overall function, and tests proposed specifically for subjects with an upper limb prosthesis. Of the various tests presented, the authors give their preference to the Bimanual Functional Assessment, Abilhand and/or the ADL Questionnaire, because of the practical usefulness, clinimetric features, simplicity and ease of administration of these tests.

  19. Upper Limb Absence : Predictors of Work Participation and Work Productivity

    NARCIS (Netherlands)

    Postema, Sietke G.; Bongers, Raoul. M.; Brouwers, Michael. A.; Burger, Helena; Norling-Hermansson, Liselotte M.; Reneman, Michiel F.; Dijkstra, Pieter U.; van der Sluis, Corry K.

    Objectives: To analyze work participation, work productivity, contributing factors, and physical work demands of individuals with upper limb absence (ULA). Design: Cross-sectional study: postal survey (response rate, 45%). Setting: Twelve rehabilitation centers and orthopedic workshops.

  20. The Floating Upper Limb: Multiple Injuries Involving Ipsilateral, Proximal, Humeral, Supracondylar, and Distal Radial Limb

    Science.gov (United States)

    Manaan, Qazi; Bashir, Adil; Zahoor, Adnan; Mokhdomi, Taseem A.

    2016-01-01

    Floating arm injury represents a common yet complicated injury of the childhood severely associated with limb deformation and even morbidity, if not precisely addressed and credibly operated. Here, we report a rare floating upper limb case of a 9-year-old boy with multiple injuries of ipsilateral proximal humeral, supracondylar and distal radial limb. This is the first report to document such a combined floating elbow and floating arm injury in the same limb. In this report, we discuss the surgical procedures used and recovery of the patient monitored to ascertain the effectiveness of the method in limb reorganisation. PMID:27583121

  1. The Floating Upper Limb: Multiple Injuries Involving Ipsilateral, Proximal, Humeral, Supracondylar, and Distal Radial Limb.

    Science.gov (United States)

    Manaan, Qazi; Bashir, Adil; Zahoor, Adnan; Mokhdomi, Taseem A; Danish, Qazi

    2016-09-01

    Floating arm injury represents a common yet complicated injury of the childhood severely associated with limb deformation and even morbidity, if not precisely addressed and credibly operated. Here, we report a rare floating upper limb case of a 9-year-old boy with multiple injuries of ipsilateral proximal humeral, supracondylar and distal radial limb. This is the first report to document such a combined floating elbow and floating arm injury in the same limb. In this report, we discuss the surgical procedures used and recovery of the patient monitored to ascertain the effectiveness of the method in limb reorganisation.

  2. Benign monomelic amyotrophy with proximal upper limb involvement: case report

    OpenAIRE

    Neves,Marco Antonio Orsini; Marcos R. G.de Freitas; Mello,Mariana Pimentel; Dumard,Carlos Henrique; Gabriel R. de Freitas; Nascimento, Osvaldo J.M.

    2007-01-01

    Monomelic amyotrophy (MA) is a rare condition in which neurogenic amyotrophy is restricted to an upper or lower limb. Usually sporadic, it usually has an insidious onset with a mean evolution of 2 to 4 years following first clinical manifestations, which is, in turned, followed by stabilization. We report a case of 20-years-old man who presented slowly progressive amyotrophy associated with proximal paresis of the right upper limb, which was followed by clinical stabilization 4 years later. E...

  3. THE INFLUENCE OF LOWER LIMB MOVEMENT ON UPPER LIMB MOVEMENT SYMMETRY WHILE SWIMMING THE BREASTSTROKE

    Directory of Open Access Journals (Sweden)

    M. Jaszczak

    2011-09-01

    Full Text Available This study 1 examined the influence of lower limb movement on upper limb movement symmetry, 2 determined the part of the propulsion phase displaying the greatest hand movement asymmetry, 3 diagnosed the range of upper limb propulsion phase which is the most prone to the influence of the lower limbs while swimming the breaststroke. Twenty-four participants took part in two tests. Half of them performed an asymmetrical leg movement. The propulsion in the first test was generated by four limbs while in the second one only by the upper limbs. The pressure differentials exerted by the water on the back and on the palm of the right and left hand were measured. Then, the asymmetry coefficient of the hand movement was determined. No changes in the level of the asymmetry index in participants performing correct (symmetrical lower limb movement were observed. Incorrect (asymmetrical leg motion resulted in an increase of hand asymmetry. It could be concluded that lower limb faults neutralize upper limb performance when swimming on a rectilinear path. However, most asymmetrical arm performance should be identified with the conversion of propulsion into recovery. Nevertheless, its proneness to influence improper leg performance might be expected at the beginning of arm propulsion.

  4. Combined transcranial direct current stimulation and robotic upper limb therapy improves upper limb function in an adult with cerebral palsy.

    Science.gov (United States)

    Friel, Kathleen M; Lee, Peter; Soles, Lindsey V; Smorenburg, Ana R P; Kuo, Hsing-Ching; Gupta, Disha; Edwards, Dylan J

    2017-01-01

    Robotic therapy can improve upper limb function in hemiparesis. Excitatory transcranial direct current stimulation (tDCS) can prime brain motor circuits before therapy. We tested safety and efficacy of tDCS plus robotic therapy in an adult with unilateral spastic cerebral palsy (USCP). In each of 36 sessions, anodal tDCS (2 mA, 20 min) was applied over the motor map of the affected hand. Immediately after tDCS, the participant completed robotic therapy, using the shoulder, elbow, and wrist (MIT Manus). The participant sat in a padded chair with affected arm abducted, forearm supported, and hand grasping the robot handle. The participant controlled the robot arm with his affected arm to move a cursor from the center of a circle to each of eight targets (960 movements). Motor function was tested before, after, and six months after therapy with the Wolf Motor Function Test (WMFT) and Fugl-Meyer (FM). Reaching accuracy on the robot task improved significantly after therapy. The WMFT and FM improved clinically meaningful amounts after therapy. The motor map of the affected hand expanded after therapy. Improvements were maintained six months after therapy. Combined tDCS and robotics safely improved upper limb function in an adult with USCP.

  5. Effects of Cued Micro-Breaks on Self-Reported Severity and Recovery of Upper Limb Disorders in Computer Operators

    NARCIS (Netherlands)

    Looze, M.P. de; Heuvel, S.G. van den; Hildebrandt, V.H.

    2002-01-01

    Software programs cueing computer workers to apply regular breaks and physical exercises may help in reducing work-related upper limb disorders. The effects of such a program was investigated among 268 computer workers with upper limb disorders, who were randomised into a control group, a group cued

  6. Ubiquitous human upper-limb motion estimation using wearable sensors.

    Science.gov (United States)

    Zhang, Zhi-Qiang; Wong, Wai-Choong; Wu, Jian-Kang

    2011-07-01

    Human motion capture technologies have been widely used in a wide spectrum of applications, including interactive game and learning, animation, film special effects, health care, navigation, and so on. The existing human motion capture techniques, which use structured multiple high-resolution cameras in a dedicated studio, are complicated and expensive. With the rapid development of microsensors-on-chip, human motion capture using wearable microsensors has become an active research topic. Because of the agility in movement, upper-limb motion estimation has been regarded as the most difficult problem in human motion capture. In this paper, we take the upper limb as our research subject and propose a novel ubiquitous upper-limb motion estimation algorithm, which concentrates on modeling the relationship between upper-arm movement and forearm movement. A link structure with 5 degrees of freedom (DOF) is proposed to model the human upper-limb skeleton structure. Parameters are defined according to Denavit-Hartenberg convention, forward kinematics equations are derived, and an unscented Kalman filter is deployed to estimate the defined parameters. The experimental results have shown that the proposed upper-limb motion capture and analysis algorithm outperforms other fusion methods and provides accurate results in comparison to the BTS optical motion tracker.

  7. Cardiac autonomic responses during upper versus lower limb resistance exercise in healthy elderly men

    Directory of Open Access Journals (Sweden)

    Heloisa G. Machado-Vidotti

    2014-01-01

    Full Text Available Objective: To investigate the cardiac autonomic responses during upper versus lower limb discontinuous resistance exercise (RE at different loads in healthy older men. Method: Ten volunteers (65±1.2 years underwent the one-repetition maximum (1RM test to determine the maximum load for the bench press and the leg press. Discontinuous RE was initiated at a load of 10%1RM with subsequent increases of 10% until 30%1RM, followed by increases of 5%1RM until exhaustion. Heart rate (HR and R-R interval were recorded at rest and for 4 minutes at each load applied. Heart rate variability (HRV was analyzed in 5-min segments at rest and at each load in the most stable 2-min signal. Results: Parasympathetic indices decreased significantly in both exercises from 30%1RM compared to rest (rMSSD: 20±2 to 11±3 and 29±5 to 12±2 ms; SD1: 15±2 to 8±1 and 23±4 to 7±1 ms, for upper and lower limb exercise respectively and HR increased (69±4 to 90±4 bpm for upper and 66±2 to 89±1 bpm for lower. RMSM increased for upper limb exercise, but decreased for lower limb exercise (28±3 to 45±9 and 34±5 to 14±3 ms, respectively. In the frequency domain, the sympathetic (LF and sympathovagal balance (LF/HF indices were higher and the parasympathetic index (HF was lower for upper limb exercise than for lower limb exercise from 35% of 1RM. Conclusions: Cardiac autonomic change occurred from 30% of 1RM regardless of RE limb. However, there was more pronounced sympathetic increase and vagal decrease for upper limb exercise than for lower limb exercise. These results provide a basis for more effective prescription of RE to promote health in this population.

  8. An approach to the painful upper limb

    African Journals Online (AJOL)

    to the shoulder, arm or hand, suggesting ... hand up towards the upper arm, suggesting .... typically includes the tips of the thumb, index and middle fingers, .... pathophysiology of overuse tendon injuries: Ideas on insertional tendinopathy.

  9. A passively safe cable driven upper limb rehabilitation exoskeleton.

    Science.gov (United States)

    Chen, Yanyan; Fan, Jizhuang; Zhu, Yanhe; Zhao, Jie; Cai, Hegao

    2015-01-01

    When using upper limb exoskeletons that assist the movement of physically weak people, safety should be the most important index. In this paper, a passively safe, cable-driven upper limb exoskeleton with parallel actuated joints, which perfectly mimics human motions, is proposed. Compared with the existing upper limb exoskeletons which are mostly designed only considering the realization of functional properties, and having poor wearabity, a passively safe prototype for motion assistance based on human anatomy structure has been developed in our design. This design is based on the prior exoskeleton structure with the adoption of a gravity balanced device. The gravity balanced mechanism was confirmed in theory and simulation, showing it has a positive effect on balance.

  10. Stellate ganglion blockade for analgesia following upper limb surgery.

    LENUS (Irish Health Repository)

    McDonnell, J G

    2012-01-31

    We report the successful use of a stellate ganglion block as part of a multi-modal postoperative analgesic regimen. Four patients scheduled for orthopaedic surgery following upper limb trauma underwent blockade of the stellate ganglion pre-operatively under ultrasound guidance. Patients reported excellent postoperative analgesia, with postoperative VAS pain scores between 0 and 2, and consumption of morphine in the first 24 h ranging from 0 to 14 mg. While these are preliminary findings, and must be confirmed in a clinical trial, they highlight the potential for stellate ganglion blockade to provide analgesia following major upper limb surgery.

  11. Work-Related Upper Limb Disorders: A Case Report

    Directory of Open Access Journals (Sweden)

    Zlatka Borisova Stoyneva

    2015-03-01

    Full Text Available In this study the complex interrelationship between physical factors, job stress, lifestyle and genetic factors on symptoms of work-related musculoskeletal disorders of the upper limbs is demonstrated by a case report and discussion of the literature. A 58 year old woman with long lasting complaints of the upper limbs with increasing intensity and duration, generalisation, combined with skin thickness, Raynaud’s phenomenon, joint disorders, arterial and pulmonary hypertension, metabolic lipid dysfunctions is presented. Occupational history proves continuous duration of service at a job with occupational physical static load with numerous repetitive monotonous systematic motions of fingers and hands as a weaver of Persian rugs followed by work at an automated loom and variable labour activities. Though the complaints dated since the time she was a manual weaver, the manifestations of generalized joint degenerative changes, system sclerosis with Raynaud’s phenomenon with similar upper extremities signs and symptoms discount upper limbs musculoskeletal disorder as caused only or mainly by occupational risk factors. The main principles and criteria for occupational diagnosis of musculoskeletal upper limb disorders and legislative requirements for their reglamentation are discussed.

  12. Motor cortex representation of the upper-limb in individuals born without a hand.

    Directory of Open Access Journals (Sweden)

    Karen T Reilly

    Full Text Available The body schema is an action-related representation of the body that arises from activity in a network of multiple brain areas. While it was initially thought that the body schema developed with experience, the existence of phantom limbs in individuals born without a limb (amelics led to the suggestion that it was innate. The problem with this idea, however, is that the vast majority of amelics do not report the presence of a phantom limb. Transcranial magnetic stimulation (TMS applied over the primary motor cortex (M1 of traumatic amputees can evoke movement sensations in the phantom, suggesting that traumatic amputation does not delete movement representations of the missing hand. Given this, we asked whether the absence of a phantom limb in the majority of amelics means that the motor cortex does not contain a cortical representation of the missing limb, or whether it is present but has been deactivated by the lack of sensorimotor experience. In four upper-limb amelic subjects we directly stimulated the arm/hand region of M1 to see 1 whether we could evoke phantom sensations, and 2 whether muscle representations in the two cortices were organised asymmetrically. TMS applied over the motor cortex contralateral to the missing limb evoked contractions in stump muscles but did not evoke phantom movement sensations. The location and extent of muscle maps varied between hemispheres but did not reveal any systematic asymmetries. In contrast, forearm muscle thresholds were always higher for the missing limb side. We suggest that phantom movement sensations reported by some upper limb amelics are mostly driven by vision and not by the persistence of motor commands to the missing limb within the sensorimotor cortex. We propose that prewired movement representations of a limb need the experience of movement to be expressed within the primary motor cortex.

  13. The effect of limb crossing and limb congruency on multisensory integration in peripersonal space for the upper and lower extremities

    NARCIS (Netherlands)

    van Elk, M.; Forget, J.; Blanke, O.

    2013-01-01

    The present study investigated how multisensory integration in peripersonal space is modulated by limb posture (i.e. whether the limbs are crossed or uncrossed) and limb congruency (i.e. whether the observed body part matches the actual position of one’s limb). This was done separately for the upper

  14. A short overview of upper limb rehabilitation devices

    Science.gov (United States)

    Macovei, S.; Doroftei, I.

    2016-08-01

    As some studies show, the number of people over 65 years old increases constantly, leading to the need of solution to provide services regarding patient mobility. Diseases, accidents and neurologic problems affect hundreds of people every day, causing pain and lost of motor functions. The ability of using the upper limb is indispensable for a human being in everyday activities, making easy tasks like drinking a glass of water a real challenge. We can agree that physiotherapy promotes recovery, but not at an optimal level, due to limited financial and human resources. Hence, the need of robot-assisted rehabilitation emerges. A robot for upper-limb exercises should have a design that can accurately control interaction forces and progressively adapt assistance to the patients’ abilities and also to record the patient's motion and evolution. In this paper a short overview of upper limb rehabilitation devices is presented. Our goal is to find the shortcomings of the current developed devices in terms of utility, ease of use and costs, for future development of a mechatronic system for upper limb rehabilitation.

  15. Core muscle activation during dynamic upper limb exercises in women.

    Science.gov (United States)

    Tarnanen, Sami P; Siekkinen, Kirsti M; Häkkinen, Arja H; Mälkiä, Esko A; Kautiainen, Hannu J; Ylinen, Jari J

    2012-12-01

    Although several everyday functions and sporting activities demand controlled use of the abdominal and back muscles while working with the upper limbs, the activity of core muscles during dynamic upper limb exercises in the standing position has not been studied extensively. The purpose of this cross-sectional study was to examine abdominal and back muscle activity during dynamic upper limb exercises while standing and to evaluate whether dynamic exercises are appropriate for strengthening muscles. The activation of the rectus abdominis, obliquus externus abdominis, longissimus, and multifidus muscles during dynamic bilateral or unilateral shoulder exercises with or without fixation of the pelvis was measured in 20 healthy women using surface electromyography. Trunk muscle activation during isometric maximum contraction was used as a comparative reference. With bilateral shoulder extension and unilateral shoulder horizontal adduction, abdominal muscle activity was >60% of activity during reference exercises. With unilateral shoulder horizontal abduction and shoulder extension exercises, back muscle activity was >60% of the activity level reference exercise. Muscle activation levels were 35-64% lower during shoulder horizontal adduction and abduction without fixation compared with exercises with fixation. The results indicate that upper limb exercises performed in the standing position are effective for activating core muscles. Bilateral and unilateral shoulder extension and unilateral shoulder horizontal abduction and adduction with the pelvis fixed elicited the greatest activity of the core muscles.

  16. Endoscopic thoracic sympathectomy in the treatment of upper limb hyperhidrosis.

    Science.gov (United States)

    Malone, P. S.; Cameron, A. E.; Rennie, J. A.

    1986-01-01

    The technique of endoscopic sympathectomy is described and its value in the treatment of upper limb hyperhidrosis is reported in an initial series of 7 patients (13 sympathectomies). It is recommended as the treatment of choice for this condition. Images Fig. 1 Fig. 2 PMID:3954316

  17. Diagnostic distribution of non-traumatic upper limb disorders

    DEFF Research Database (Denmark)

    Laursen, Lise H; Sjøgaard, Gisela; Hagert, C G

    2007-01-01

    BACKGROUND: Upper limb disorders (ULDs) are common, and so are the difficulties in specific diagnoses of these disorders. Prior studies have shed light on the nerves in the diagnostic approach beside disorders related to muscles, tendons and joints (MCDs). OBJECTIVE: The study aimed to compare th...

  18. Long-term outcomes after upper limb arterial injuries

    NARCIS (Netherlands)

    vanderSluis, CK; Kucey, DS; Brenneman, FD; Hunter, GA; Maggisano, R; tenDuis, HJ

    OBJECTIVE: To assess long-term outcomes in multisystem trauma victims who have arterial injuries to upper limbs. DESIGN: A retrospective case series. SETTING: Tertiary care regional trauma centre in a university hospital. PATIENTS: All consecutive severely injured patients (Injury Severity Score

  19. Upper limb tendinitis and entrapment neuropathy in coal miners.

    Science.gov (United States)

    Özdolap, Senay; Emre, Ufuk; Karamercan, Ayşe; Sarikaya, Selda; Köktürk, Fürüzan

    2013-05-01

    It is well-known that work-related upper limb musculoskeletal disorders, particularly tendinitis and nerve entrapment, remain a difficult and costly problem in industrialized countries. The aim of this study was to evaluate tendinitis and entrapment neuropathy of the upper limb of Turkish coal miners. Eighty coal miners and 43 age-matched clerical workers were included in the study. The evaluation procedures included collection of personal and clinical data, physical examination and bilateral electrodiagnostic testing. Subjects were examined to diagnose tendinitis and nerve entrapment of the upper limb. Bilateral median and ulnar nerves conduction tests were performed on all subjects. Data were collected between August 2011 and December 2011. There were 33 subjects with lateral epicondylitis, 10 with medial epicondylitis, and 22 with De Quervain's disease among the coal miners. There were seven subjects with lateral epicondylitis, eight with medial epicondylitis, and four with De Quervain's disease in the control group. The two groups significantly differed in the prevalences of lateral epicondylitis and De Quervain's disease (P = 0.024 and P =0.029, respectively). Sixteen subjects in the coal miners and 12 subjects in the controls had carpal tunnel syndrome (P = 0.66). Thirty-seven subjects in the coal miners had ulnar neuropathy of the elbow (UNE), while four subjects in the controls had UNE; this difference was statistically significant (P Quervain disease, and ulnar neuropathy are common work-related upper limb disorders among coal miners. Copyright © 2013 Wiley Periodicals, Inc.

  20. Stump sensibility in children with upper limb reduction deficiency

    NARCIS (Netherlands)

    Reinkingh, Marianne; Reinders-Messelink, Heleen A.; Dijkstra, Pieter U.; Maathuis, Karel G. B.; van der Sluis, Corry K.

    2014-01-01

    Objectives: To compare stump sensibility in children with upper limb reduction deficiency with sensibility of the unaffected arm and hand. In addition, to evaluate the associations between stump sensibility, stump length and activity level. Design: Cross-sectional study. Subjects: Children and young

  1. [Upper thoracic sympathectomy in treatment of upper limb ischaemia in distal lesions of the arterial bed].

    Science.gov (United States)

    Alukhanian, O A; Martirosian, Kh G; Aristov, D S; Kurganskiĭ, O V

    2013-01-01

    Analysed herein was efficacy of 76 videothoracoscopic upper chest sympathectomies performed for upper limb ischaemia in a total of 61 patients. Of these, 15 patients were found to suffer bilateral lesions. The findings of clinical follow up and instrumental examinations (laser Doppler flowmetry, rheovasography, measuring transcranial oxygen tension in tissues) made it possible to draw a conclusion on efficacy of upper chest sympathectomy in distal lesions of the vascular bed of the upper extremities.

  2. Prosthetic rehabilitation of the upper limb amputee

    Directory of Open Access Journals (Sweden)

    Bernard O′Keeffe

    2011-01-01

    Full Text Available The loss of all or part of the arm is a catastrophic event for a patient and a significant challenge to rehabilitation professionals and prosthetic engineers. The large, upper extremity amputee population in India has, historically, been poorly served, with most having no access to support or being provided with ineffective prostheses. In recent years, the arrival of organisations like Otto Bock has made high quality service standards and devices accessible to more amputees. This review attempts to provide surgeons and other medical professionals with an overview of the multidisciplinary, multistage rehabilitation process and the solution options available. With worldwide upper extremity prosthesis rejection rates at significant levels, the review also describes some of the factors which influence the outcome. This is particularly relevant in the Indian context where the service can involve high cost investments. It is the responsibility of all contributing professionals to guide vulnerable patients through the process and try to maximise the benefit that can be obtained within the resources available.

  3. Upper limb kinematical analysis of an elite weight lifter in the squat snatch.

    Science.gov (United States)

    Tang, Gang; Qian, Liwei; Wang, Dongmei; Wei, Gaofeng; Chang, Daofang; Wang, Chengtao; Mi, Weijian

    2014-01-01

    The kinematical parameters such as translational acceleration and angular acceleration in the upper limb of a weightlifter may change regularly during different phases of squat snatch. This study aims to make this question clear. At first, the joint coordinate system (JCS) of human upper limb based on the anatomical landmarks is defined. Then a novel method for calculating the kinematical parameters was brought forward, which was based on analyzing the relative position of the JCS to world coordinate system during an instantaneous situation and the relationship among each JCS at different times during squat snatch. Motion capture system is used to gather the data of the upper limb in an elite weightlifter during squat snatch (the mass of the barbell is 20 kg) and the method mentioned before is applied to analyze the data. Finally, the law of the change of kinematical parameters in each phase of squat snatch is found.

  4. Studying Upper-Limb Amputee Prosthesis Use to Inform Device Design

    Science.gov (United States)

    2016-10-01

    taxonomy was applied to classification of the recorded videos via custom tagging software with midi controller interface. The software creates...TERMS Upper Limb Prosthetics, Amputee, Assistive Technology , Motion Capture 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF...we expect to identify shortcomings in current terminal devices and implementations that will inform improvements to existing designs and inspire new

  5. Disorders of Upper Limb Movements in Ataxia-Telangiectasia.

    Directory of Open Access Journals (Sweden)

    Aasef G Shaikh

    Full Text Available Ataxia-telangiectasia is known for cerebellar degeneration, but clinical descriptions of abnormal tone, posture, and movements suggest involvement of the network between cerebellum and basal ganglia. We quantitatively assessed the nature of upper-limb movement disorders in ataxia-telangiectasia. We used a three-axis accelerometer to assess the natural history and severity of abnormal upper-limb movements in 80 ataxia-telangiectasia and 19 healthy subjects. Recordings were made during goal-directed movements of upper limb (kinetic task, while arms were outstretched (postural task, and at rest. Almost all ataxia-telangiectasia subjects (79/80 had abnormal involuntary movements, such as rhythmic oscillations (tremor, slow drifts (dystonia or athetosis, and isolated rapid movements (dystonic jerks or myoclonus. All patients with involuntary movements had both kinetic and postural tremor, while 48 (61% also had resting tremor. The tremor was present in transient episodes lasting several seconds during two-minute recording sessions of all three conditions. Percent time during which episodic tremor was present was greater for postural and kinetic tasks compared to rest. Resting tremor had higher frequency but smaller amplitude than postural and kinetic tremor. Rapid non-rhythmic movements were minimal during rest, but were triggered during sustained arm postures and goal directed arm movements suggesting they are best considered a form of dystonic jerks or action myoclonus. Advancing age did not correlate with the severity of involuntary limb movements. Abnormal upper-limb movements in ataxia-telangiectasia feature classic cerebellar impairment, but also suggest involvement of the network between the cerebellum and basal ganglia.

  6. Left and right hand recognition in upper limb amputees.

    Science.gov (United States)

    Nico, Daniele; Daprati, Elena; Rigal, François; Parsons, Lawrence; Sirigu, Angela

    2004-01-01

    Previous research suggests a close similarity in brain activity between mental simulation of a movement and its real counterpart. To explore this similarity, we aimed to assess whether imagery is affected by the loss of a limb or of its motor skills. We examined the performance of 16 adult, upper limb amputees (and age-matched controls) in a left/right hand judgement task that implicitly requires motor imagery. The experimental group included subjects who had suffered the amputation of the dominant or the non-dominant limb. Although responding well above chance, amputees as a group were slower and less accurate than controls. Nevertheless, their response pattern was similar to that of controls, namely slower response times and more errors for stimuli depicting hands in unnatural orientations, i.e. postures difficult to reach with a real movement. Interestingly, for all stimuli, amputees' performance was strongly affected by the side of limb loss: subjects who underwent amputation of their preferred limb made more errors and required greater latencies to respond as compared with amputees of the non-dominant limb. In a further analysis we observed that the habit of wearing an aesthetic prosthesis significantly interfered with the ability to judge the corresponding hand. Our data lead to three main conclusions: (i) loss of a single limb per se does not prevent motor imagery but it significantly enhances its difficulty; (ii) these subjects apparently perform the hand recognition task using a strategy in which they initially mentally simulate movements of their dominant limb; (iii) wearing a prosthesis, devoid of any motor function, seems to interfere with motor imagery, consistent with the view that only 'tools' can be incorporated in a dynamic body schema.

  7. Functional recovery of the paretic upper limb after stroke: who regains hand capacity?

    NARCIS (Netherlands)

    Houwink, A.; Nijland, R.H.; Geurts, A.C.H.; Kwakkel, G.

    2013-01-01

    OBJECTIVE: To describe recovery of upper limb capacity after stroke during inpatient rehabilitation based on the Stroke Upper Limb Capacity Scale (SULCS). DESIGN: Prospective observational study. SETTING: Inpatient department of a rehabilitation center. PARTICIPANTS: Patients with stroke (N=299) adm

  8. Responsiveness of outcome measures for upper limb prosthetic rehabilitation.

    Science.gov (United States)

    Resnik, Linda; Borgia, Matthew

    2016-02-01

    There is limited research on responsiveness of prosthetic rehabilitation outcome measures. To examine responsiveness of the Box and Block test, Jebsen-Taylor Hand Function tests, Upper Extremity Functional Scale, University of New Brunswick skill and spontaneity tests, Activity Measure for Upper Limb Amputation, and the Patient-Specific Functional Scale. This was a quasi-experimental study with repeated measurements in a convenience sample of upper limb amputees. Measures were collected before, during, and after training with the DEKA Arm. Largest effect sizes were observed for Patient-Specific Functional Scale (effect size: 1.59, confidence interval: 1.00, 2.14), Activity Measure for Upper Limb Amputation (effect size: 1.33, confidence interval: 0.73, 1.90), and University of New Brunswick skill test (effect size: 1.18, confidence interval: 0.61, 1.73). Other measures that were responsive to change were Box and Block test, Jebsen-Taylor Hand Function light and heavy can tests, and University of New Brunswick spontaneity test. Responsiveness and pattern of responsiveness varied by prosthetic level. The Box and Block test, Jebsen-Taylor Hand Function light and heavy can tests, University of New Brunswick skill and spontaneity tests, Activities Measure for Upper Limb Amputation, and the Patient-Specific Functional Scale were responsive to change during prosthetic training. These findings have implications for choice of measures for research and practice and inform clinicians about the amount of training necessary to maximize outcomes with the DEKA Arm. Findings on responsiveness of outcome measures have implications for the choice of measures for clinical trials and practice. Findings regarding the responsiveness to change over the course of training can inform clinicians about the amount of training that may be necessary to maximize specific outcomes with the DEKA Arm. © The International Society for Prosthetics and Orthotics 2014.

  9. Necrotising fasciitis of upper and lower limb: a systematic review.

    Science.gov (United States)

    Angoules, A G; Kontakis, G; Drakoulakis, E; Vrentzos, G; Granick, M S; Giannoudis, P V

    2007-12-01

    Necrotising fasciitis is a rapidly progressive, life threatening soft tissue infection. In a significant proportion of patients, the extremities are involved as a result of trauma, needle puncture or extravasation of drugs, often leading to limb loss and devastating disability. In this systematic review of necrotising fasciitis of the upper and lower extremities, we report on the clinical characteristics, the predisposing factors, the associated diseases, the pathogenic bacteria, the surgical treatment and the final outcome in terms of limb loss and mortality. Data for a total of 451 patients were analysed for each parameter of interest. A percentage of 22.3% of the reviewed patients underwent amputation or disarticulation of a limb following failure of multiple debridements to control infection and the mortality rate was estimated as high as 21.9%.

  10. Objective Assessment of Upper-Limb Mobility for Poststroke Rehabilitation.

    Science.gov (United States)

    Zhang, Zhe; Fang, Qiang; Gu, Xudong

    2016-04-01

    The assessment of the limb mobility of stroke patients is an essential part of poststroke rehabilitation. Conventionally, the assessment is manually performed by clinicians using chart-based ordinal scales, which can be subjective and inefficient. By introducing quantitative evaluation measures, the sensitivity and efficiency of the assessment process can be significantly improved. In this paper, a novel single-index-based assessment approach for quantitative upper-limb mobility evaluation has been proposed for poststroke rehabilitation. Instead of the traditional human-observation-based measures, the proposed assessment system utilizes the kinematic information automatically collected during a regular rehabilitation training exercise using a wearable inertial measurement unit. By calculating a single index, the system can efficiently generate objective and consistent quantitative results that can reflect the stroke patient's upper-limb mobility. In order to verify and validate the proposed assessment system, experiments have been conducted using 145 motion samples collected from 21 stroke patients (12 males, nine females, mean age 58.7±19.3) and eight healthy participants. The results have suggested that the proposed assessment index can not only differentiate the levels of limb function impairment clearly (p Brunnstrom stages of recovery (r = 0.86, p Brunnstrom stage classification application with an 82.1% classification accuracy, while using a K-nearest-neighbor classifier.

  11. Assessing upper limb function: transcultural adaptation and validation of the Portuguese version of the Stroke Upper Limb Capacity Scale.

    Science.gov (United States)

    Branco, João Paulo; Oliveira, Sandra; Páscoa Pinheiro, João; L Ferreira, Pedro

    2017-01-01

    Brachial hemiparesis is one of the most frequent sequelae of stroke, leading to important functional disability given the role of the upper limb in executing activities of daily living (ADL). The Stroke Upper Limb Capacity Scale (SULCS) is a stroke-specific assessment instrument that evaluates functional capacity of the upper limb based on the execution of 10 tasks. The objective of this study is the transcultural adaptation and psychometric validation of the Portuguese version of the SULCS. A Portuguese version of the SULCS was developed, using the process of forward-backward translation, after authorisation from the author of the original scale. Then, a multicentre study was conducted in Portuguese stroke patients (n = 122) to validate the psychometric properties of the instrument. The relationship between sociodemographic and clinical characteristics was used to test construct validity. The relationship between SULCS scores and other instruments was used to test criterion validity. Semantic and linguistic adaptation of the SULCS was executed without substantial issues and allowed the development of a Portuguese version. The application of this instrument suggested the existence of celling effect (19.7% of participants with maximum score). Reliability was demonstrated through the intraclass correlation coefficient of 0.98. As for construct validity, SULCS was sensible to muscle tonus and aphasia. SULCS classification impacted the scores of the Motor Evaluation Scale for Upper Extremity in Stroke (MESUPES) and the Stroke Impact Scale (SIS). The present version of SULCS shows valid and reliable cultural adaptation, with good reliability and stability.

  12. Literature Review on Needs of Upper Limb Prosthesis Users

    OpenAIRE

    Cordella, Francesca; Ciancio, Anna Lisa; Sacchetti, Rinaldo; Davalli, Angelo; Cutti, Andrea Giovanni; Guglielmelli, Eugenio; Zollo, Loredana

    2016-01-01

    The loss of one hand can significantly affect the level of autonomy and the capability of performing daily living, working and social activities. The current prosthetic solutions contribute in a poor way to overcome these problems due to limitations in the interfaces adopted for controlling the prosthesis and to the lack of force or tactile feedback, thus limiting hand grasp capabilities. This paper presents a literature review on needs analysis of upper limb prosthesis users, and points out ...

  13. Robotics in Upper Limb Rehabilitation Nursing : A Literature Review

    OpenAIRE

    2016-01-01

    Purpose of this final thesis is to view what kind of robots there are in use in stroke rehabilitation nursing, focusing on upper limb rehabilitation. At the same time this work will view the attitudes of patients and therapist towards robotics in the health care field. Robots are present and with robots engineers are trying to develop the health care services. Robots have come to different health care fields different technology is used in rehabilitation nursing. Robots help patients to r...

  14. Pneumatic Muscle Actuated Rehabilitation Equipment of the Upper Limb Joints

    Science.gov (United States)

    Deaconescu dr. eng. habil., Andrea, Prof.

    2017-06-01

    Rehabilitation equipment of the upper limb joints holds a key role in passive physical therapy. Within this framework, the paper presents two such pieces of equipment developed for the rehabilitation of elbow and of wrist and knuckles, respectively. The presented and discussed equipment is actuated by pneumatic muscles, its benefits being a low cost, simple and robust construction, as well as short response time to commands.

  15. Quantification of upper limb kinetic asymmetries in front crawl swimming.

    Science.gov (United States)

    Morouço, Pedro G; Marinho, Daniel A; Fernandes, Ricardo J; Marques, Mário C

    2015-04-01

    This study aimed at quantifying upper limb kinetic asymmetries in maximal front crawl swimming and to examine if these asymmetries would affect the contribution of force exertion to swimming performance. Eighteen high level male swimmers with unilateral breathing patterns and sprint or middle distance specialists, volunteered as participants. A load-cell was used to quantify the forces exerted in water by completing a 30s maximal front crawl tethered swimming test and a maximal 50 m free swimming was considered as a performance criterion. Individual force-time curves were obtained to calculate the mean and maximum forces per cycle, for each upper limb. Following, symmetry index was estimated and breathing laterality identified by questionnaire. Lastly, the pattern of asymmetries along the test was estimated for each upper limb using linear regression of peak forces per cycle. Asymmetrical force exertion was observed in the majority of the swimmers (66.7%), with a total correspondence of breathing laterality opposite to the side of the force asymmetry. Forces exerted by the dominant upper limb presented a higher decrease than from the non-dominant. Very strong associations were found between exerted forces and swimming performance, when controlling the isolated effect of symmetry index. Results point that force asymmetries occur in the majority of the swimmers, and that these asymmetries are most evident in the first cycles of a maximum bout. Symmetry index stood up as an influencing factor on the contribution of tethered forces over swimming performance. Thus, to some extent, a certain degree of asymmetry is not critical for short swimming performance. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. The association of gegenhalten in the upper limbs with dyspraxia.

    Science.gov (United States)

    Tyrrell, P; Rossor, M

    1988-01-01

    Ten patients with gegenhalten of the upper limb of mixed aetiology were studied, in nine of whom an association with dyspraxia was found. In four of the patients, the rigidity became more pronounced after the instruction to relax, and only one patient showed improvement after this instruction. In these patients, the resistance to movement, evident as gegenhalten, may be a direct consequence of the dyspraxia. PMID:3204407

  17. Estimation of Upper Limb Joint Angle Using Surface EMG Signal

    Directory of Open Access Journals (Sweden)

    Yee Mon Aung

    2013-10-01

    Full Text Available In the development of robot-assisted rehabilitation systems for upper limb rehabilitation therapy, human electromyogram (EMG is widely used due to its ability to detect the user intended motion. EMG is one kind of biological signal that can be recorded to evaluate the performance of skeletal muscles by means of a sensor electrode. Based on recorded EMG signals, user intended motion could be extracted via estimation of joint torque, force or angle. Therefore, this estimation becomes one of the most important factors to achieve accurate user intended motion. In this paper, an upper limb joint angle estimation methodology is proposed. A back propagation neural network (BPNN is developed to estimate the shoulder and elbow joint angles from the recorded EMG signals. A Virtual Human Model (VHM is also developed and integrated with BPNN to perform the simulation of the estimated angle. The relationships between sEMG signals and upper limb movements are observed in this paper. The effectiveness of our developments is evaluated with four healthy subjects and a VHM simulation. The results show that the methodology can be used in the estimation of joint angles based on EMG.

  18. Repetitive training for ameliorating upper limbs spasm of hemiplegic patients

    Institute of Scientific and Technical Information of China (English)

    Lin Zhu; Lin Liu; Weiqun Song

    2006-01-01

    BACKGROUND:The main aim of rehabilitation is to ameliorate motor function and use the damaged limbs in the activities of daily living.Several factors are needed in the self-recovery of the patients,and the most important one is to reduce spasm.Some mechanical repetitive movements can affect and change the excitability of motor neurons.OBJECTIVE:To observe the effect of repetitive training on ameliorating spasm of upper limbs of hemiplegic patients.DESIGN:A self-controlled observation before and after training.SETTING:Department of Rehabilitation,Xuanwu Hospital of Capital Medical University.PARTICI PANTS: Seven hemiplegic patients induced by brain injury were selected from the Department of Rehabilitation,Xuanwu Hospital,Capital Medical University from March to June in 2005.Inclusive criteria:①Agreed and able to participate in the 30-minute training of hand function; ②Without disturbance of understanding.The patients with aphasia or apraxia,manifestation of shoulder pain,and severe neurological or mental defects.For the 7 patients,the Rivermead motor assessment(RMA)scores ranged 0-10 points,the Rivermead mobility index(RMI)ranged 1-3,and modified Ashworth scale(MAS)was grade 2-4.Their horizontal extension of shoulder joint was 0°-30°,anteflextion was 0°-50°,internal rotation was 50°-90°,external rotation was 0°-10°:and the elbow joint could extend for 15°-135°.METHODS:The viva 2 serial MOTOmed exerciser(Reck Company,Germany)was used.There were three phases of A-B-A.①The phase A lasted for 1 week.The patient sat on a chair facting to the MOTOmed screen.and did the circumduction of upper limbs forwardly,30 minutes a day and 5 days a week.②The phase B lasted for 3 weeks.The training consisted of forward circumduction of upper limbs for 15 minutes.followed by backward ones for 15 minutes and 5-minute rest.③The training in the phase A was performed again for 2 weeks.The extensions of upper limbs were recorded at phase A,the extension and flexion of

  19. Planar covariance of upper and lower limb elevation angles during hand-foot crawling in healthy young adults.

    Science.gov (United States)

    MacLellan, M J; Catavitello, G; Ivanenko, Y P; Lacquaniti, F

    2017-08-11

    Habitual quadrupeds have been shown to display a planar covariance of segment elevation angle waveforms in the fore and hind limbs during many forms of locomotion. The purpose of the current study was to determine if humans generate similar patterns in the upper and lower limbs during hand-foot crawling. Nine healthy young adults performed hand-foot crawling on a treadmill at speeds of 1, 2, and 3 km/h. A principal component analysis (PCA) was applied to the segment elevation angle waveforms for the upper (upper arm, lower arm, and hand) and lower (thigh, shank, and foot) limbs separately. The planarity of the elevation angle waveforms was determined using the sum of the variance explained by the first two PCs and the orientation of the covariance plane was quantified using the direction cosines of the eigenvector orthogonal to the plane, projected upon each of the segmental semi-axes. Results showed that planarity of segment elevation angles was maintained in the upper and lower limbs (explained variance >97%), although a slight decrease was present in the upper limb when crawling at 3 km/h. The orientation of the covariance plane was highly limb-specific, consistent with animal studies and possibly related to the functional neural control differences between the upper and lower limbs. These results may suggest that the motor patterns stored in the central nervous system for quadrupedal locomotion may be retained through evolution and may still be exploited when humans perform such tasks.

  20. Effect of Pilates Exercise on Range of Motion and Edema of Upper Limb in Mastectomy Side

    Directory of Open Access Journals (Sweden)

    Maryam Ghorbani

    2013-09-01

    Full Text Available Background & objectives : The surgery of breast cancer like any other surgeries may bring about some problems and complications, which the knowledge of these problems may be an effective way for prevention or dealing with the complications. The motor and sensory impairments in the upper limb of the surgery side necessitate the utilization of the rehabilitation methods. The main purpose of this research was to show the effect of Pilates exercise on range of motion and edema of upper limb in females suffering from breast cancer after going through surgery.   Methods: This quasi- experimental study was conducted on 25 patients randomly chosen among the patients referring to Cancer Institute. The designed exercise included five "Mat Pilates" moves which were done for 15 sessions until the patient reached fatigue borderlines. Meantime, the control group was doing routine active exercises in physiotherapy center. The range of motion and edema of upper limb was measured before and after applying the designed exercise. For describing the data, the mean and standard deviation, and for inferential analysis, the correlated T-tests and one way analysis of variance were used in level of significance of 5%, to compare the variants before and after applying the designed exercise.   Results: The results showed a significant difference between the flexion, extension, and internal, external rotation of shoulder, flexion and extension of elbow, flexion, extension, supination deviation and pronation deviation of the wrist and forearm before and after experiment in Pilates group. While in the control group, flexion, extension, internal and external rotation of shoulder, flexion and extension of elbow, and flexion of wrist showed a significant difference before and after the experiment.   Conclusion: The use of Pilates exercise after mastectomy surgery can increase the range of motion of the upper limb in the involved side of the patients, and decrease the edema

  1. Late morbidity in upper limb function and quality of life in women after breast cancer surgery

    Directory of Open Access Journals (Sweden)

    Marcia R. Assis

    2013-06-01

    Full Text Available BACKGROUND: Breast cancer is the most common malignancy in Brazilian women. In recent years, there has been great progress in and an increasing number of breast-conserving surgical techniques; however, immediate or late morbidity after surgery, in the form of functional impairment and pain, remains a significant clinical problem. OBJECTIVE: To investigate the relationship between late upper limb functional impairment and the quality of life in women subjected to breast cancer surgery. METHOD: A total of 81 women participated in the study, with the length of time since surgery ranging from one to five years. A survey of upper limb complaints reported by patients was conducted, and the questionnaires Disabilities of the Arm, Shoulder, and Hand (DASH and the European Organization for Research and Treatment of Cancer (EORTC QLQC-30 and BR23 were applied. RESULTS: The correlation between the DASH score and the length of time since surgery determined that the longer the time since surgery, the greater the difficulties in functionality of the upper limb (r=0.459; p<0.0001. A statistically significant correlation was observed between the DASH score and health-related quality of life. CONCLUSION: Late functional impairment had a significant impact on upper limb function in everyday life and health-related quality of life for women who underwent breast cancer surgery.

  2. Tracking upper limbs fatigue by means of electronic dynamometry

    Directory of Open Access Journals (Sweden)

    Fernando Max Lima

    2015-06-01

    Full Text Available This study aimed to identify useful electronic grip dynamometry parameters to track differences between trained (TR and untrained (UT participants, and between dominant (DO and non-dominant (ND limbs as a consequence of upper limbs muscle fatigue following 10 RM tests of the brachial biceps. This experimental study with transversal design involved 18 young adult males, of whom 9 were untrained and 9 were experienced in resistance training.Isometric grip force was evaluated (30 seconds long previous and after 10RM tests by means of a G200 Model grip dynamometer with precision load cell (Biometrics(r. Significant differences between initial and final measurements were found only for trained participants: Peak force for TR-DO (67.1 vs 55.5 kgf, p = .0277; Raw average for TR-DO (46.96 vs 42.22 kgf, p = .0464, and for TR-ND (40.34 vs 36.13 kgf, p = .0277. Electronic grip dynamometry efficiently identified upper limbs fatigue in trained participants, being raw average measurements the best parameter.

  3. Advances in upper limb stroke rehabilitation: a technology push.

    Science.gov (United States)

    Loureiro, Rui C V; Harwin, William S; Nagai, Kiyoshi; Johnson, Michelle

    2011-10-01

    Strokes affect thousands of people worldwide leaving sufferers with severe disabilities affecting their daily activities. In recent years, new rehabilitation techniques have emerged such as constraint-induced therapy, biofeedback therapy and robot-aided therapy. In particular, robotic techniques allow precise recording of movements and application of forces to the affected limb, making it a valuable tool for motor rehabilitation. In addition, robot-aided therapy can utilise visual cues conveyed on a computer screen to convert repetitive movement practice into an engaging task such as a game. Visual cues can also be used to control the information sent to the patient about exercise performance and to potentially address psychosomatic variables influencing therapy. This paper overviews the current state-of-the-art on upper limb robot-mediated therapy with a focal point on the technical requirements of robotic therapy devices leading to the development of upper limb rehabilitation techniques that facilitate reach-to-touch, fine motor control, whole-arm movements and promote rehabilitation beyond hospital stay. The reviewed literature suggest that while there is evidence supporting the use of this technology to reduce functional impairment, besides the technological push, the challenge ahead lies on provision of effective assessment of outcome and modalities that have a stronger impact transferring functional gains into functional independence.

  4. Serial splintage: Preoperative treatment of upper limb contracture.

    Science.gov (United States)

    Puri, Vinita; Khare, Nishant; Venkateshwaran, N; Bharadwaj, Sumit; Choudhary, Sushant; Deshpande, Omkarnath; Borkar, Rupali

    2013-09-01

    The present study aimed to study the efficacy of preoperative splints in treatment of upper limb contractures and to evaluate the response of contracture to splints depending on the etiology and the joint involved. Ninety joints of 42 patients were studied. Patients age, gender, etiology, duration of contracture, contracture site and joint and type of contracture was noted. The range of motion of the involved joint was recorded. Serial static splints made of thermoplastic material were applied after customizing them for each patient. The range of motion and percentage movement was recorded at weekly interval and the splints were modified as per need. Time taken to reach a plateau stage was noted. To compare the statistical significance between two groups and more than two groups of continuous variable unpaired t-test and one way ANOVA respectively was applied. We considered differences to be statistically significant when the p value was below 0.05. The strength of relationship between the two continuous variables was analyzed by Pearson correlation analysis. Etiological factors were thermal burns (36.7%), electrical burns (13.3%), post traumatic (35.6%) and post cellulitis (14.4%). Age ranged from 2 to 70 years with a mean of 28.9±13.4 years. Sixty-two patients treated were males (68.9%) and 28 were female (31.1%). The mean range of motion present across all joints before starting the therapy was 54.7±23.6 degrees. The mean improvement in contracture angle obtained by serial splintage was 37.4±28.1 degrees. The mean time taken to achieve plateau was 23.6±3.2 days. Maximum improvement was seen in thermal burn contractures (41.2±30.3 degrees). Least improvement was seen in contractures due to cellulitis (6.5±16.2 degrees). This finding was statistically significant [F(3,86)=4.25, p=0.005]. Significant difference was seen in response to therapy based on the joint involved [F(3,86)=3.36, p=0.02]. Highest improvement in the range of motion was seen in the

  5. Review on Upper Limb Continuous Passive Motion Devices

    Directory of Open Access Journals (Sweden)

    Ragazzo Francesco

    2016-01-01

    Full Text Available The paper is devoted to a survey on the state of the art of elements and parts for the upper limb rehabilitation. As a matter of fact, the use of technological, and specifically of robotic, devices is entering in the habits of clinical approaches, due to their ability to work efficiently and to be able to obtain, at least, the same rehabilitation results of manual therapy. At the same time, the therapists can change his/her role in rehabilitation activity from a physical contribution to an intellectual/motivational one.

  6. Work-related posttraumatic upper limb disorder. A case report.

    Science.gov (United States)

    Capodaglio, P; Nigrelli, M P; Malaguti, S; Panigazzi, M; Pierobon, A

    1999-01-01

    In this paper we describe a patient with mor-sensory loss in the right forearm and hand, which persisted more than 2 years after work-related crush trauma of the left hand. Radiographic and electromyographic investigations, somatosensory evoked potentials, CT scans of the encephalus as well as the Minnesota Multiphasic Personality Inventory and the Roarschach test have been performed. On the basis of these investigations, we think this represents a case of conversion disorder with somatic features. Included is a brief overview of other psychological illness with physical findings involving the upper limb.

  7. The microwave limb sounder for the Upper Atmosphere Research Satellite

    Science.gov (United States)

    Waters, J. W.; Peckham, G. E.; Suttie, R. A.; Curtis, P. D.; Maddison, B. J.; Harwood, R. S.

    1988-01-01

    The Microwave Limb Sounder was designed to map the concentrations of trace gases from the stratosphere to the lower thermosphere, to improve understanding of the photochemical reactions which take place in this part of the atmosphere. The instrument will measure the intensity of thermal radiation from molecules in the atmosphere at frequencies corresponding to rotational absorption bands of chlorine monoxide, ozone, and water vapor. Molecular concentration profiles will be determined over a height range of 15 to 80 km (20 to 45 km for C10). The 57 deg inclination orbit proposed for the Upper Atmosphere Research Satellite will allow global coverage.

  8. [Problems and techniques of functional rehabilitation of upper limb stump].

    Science.gov (United States)

    Martini, G; Vitangeli, L; Assennato, P; Drommi, M

    1990-07-15

    The authors discuss problems and techniques of rehabilitation in subjects who have undergone upper limb amputation, as well as the requirements for good application of a prosthesis. Various types of prostheses are described: passive ones, those moved by the body and externally operated ones. The amputee undergoes three stages of rehabilitation: a general preparatory phase for maintenance of good joint function and muscle efficiency; a phase of specific rehabilitation with the help of electromyometry and an electronic training device for the use of the prosthesis, and finally individual and group exercises in laboratories with special facilities.

  9. Correlations between motor and sensory functions in upper limb chronic hemiparetics after stroke

    OpenAIRE

    Thais Botossi Scalha; Erica Miyasaki; Núbia Maria Freire Vieira Lima; Guilherme Borges

    2011-01-01

    OBJECTIVE: Describe the somatosensory function of the affected upper limb of hemiparetic stroke patients and investigate the correlations between measurements of motor and sensory functions in tasks with and without visual deprivation. METHOD: We applied the Fugl-Meyer Assessment (FMA), Nottingham Sensory Assessment (NSA), and several motor and sensory tests: Paper manipulation (PM), Motor Sequences (MS), Reaching and grasping (RG) Tests Functional (TF), Tactile Discrimination (TD), Weight Di...

  10. Upper limb injury in rugby union football: results of a cohort study.

    Science.gov (United States)

    Usman, Juliana; McIntosh, Andrew Stuart

    2013-04-01

    There have been few in-depth studies of upper limb injury epidemiology in rugby union football, despite reports that they accounted for between 14% and 28% of all rugby injuries. To report on upper limb injury incidence, injury severity and to identify the risk factors associated with upper limb injuries, for example, level of play, season (years) and playing position. Prospective cohort study across five rugby seasons from 2004 to 2008. Formal rugby competitions-suburban, provincial and international. 1475 adult male rugby players in Colts, Grade and Elite competitions. An upper limb injury resulting in a missed game and its characteristics. A total of 61 598 athletic exposures (AE) and 606 upper limb injuries were recorded. About 66% of the injuries were to the shoulder. The overall upper limb injury incidence rate (IIR) was 9.84 injuries/1000 AE (95% CI 9.06 to 10.62). Statistically significant associations were found between upper limb injuries and level of play; and between shoulder injuries and playing position (p<0.05). No association was found between upper limb and shoulder injuries and study year. The overall upper limb IIR decreased as the level of play increased; 10.74 upper limb injuries/1000 AE (95% CI 9.93 to 11.56) in Colts to 6.07 upper limb injuries/1000 AE (95% CI 5.46 to 6.69) in Elite. The upper limb IIR decreased as the level of play increased indicating that age, level of skill and playing experience may be risk factors for upper limb injury.

  11. Technologically-advanced assessment of upper-limb spasticity

    DEFF Research Database (Denmark)

    Posteraro, Federico; Crea, Simona; Mazzoleni, Stefano

    2017-01-01

    post stroke patients. METHODS: A new robotic device able to automatically assess upper-limb spasticity during passive and active mobilization has been developed. The elbow spasticity of five post stroke patients has been assessed by using the new device and by means of the Modified Ashworth Scale (MAS......BACKGROUND: Spasticity is a muscle disorder associated with upper motor neuron syndrome occurring in neurological disorders, such as stroke, multiple sclerosis, spinal cord injury and others. It influences the patient's rehabilitation, interfering with function, limiting independence, causing pain......). After the first assessment, subjects were treated with botulin toxin injections, and then underwent 10 sessions of robotic treatments. After the treatment, subjects spasticity was assessed by using the robotic device and the MAS score. RESULTS: In four out of five patients, the botulin toxin injection...

  12. A survey on robotic devices for upper limb rehabilitation

    Science.gov (United States)

    2014-01-01

    The existing shortage of therapists and caregivers assisting physically disabled individuals at home is expected to increase and become serious problem in the near future. The patient population needing physical rehabilitation of the upper extremity is also constantly increasing. Robotic devices have the potential to address this problem as noted by the results of recent research studies. However, the availability of these devices in clinical settings is limited, leaving plenty of room for improvement. The purpose of this paper is to document a review of robotic devices for upper limb rehabilitation including those in developing phase in order to provide a comprehensive reference about existing solutions and facilitate the development of new and improved devices. In particular the following issues are discussed: application field, target group, type of assistance, mechanical design, control strategy and clinical evaluation. This paper also includes a comprehensive, tabulated comparison of technical solutions implemented in various systems. PMID:24401110

  13. Upper limb swelling following mastectomy: lymphedema or not?

    Science.gov (United States)

    Armer, Jane

    2007-04-01

    Having experienced an excisional biopsy, sentinel lymph node biopsy, and mastectomy, BH is at lifetime risk of developing post-breast cancer lymphedema in the arm on the side where her breast cancer was treated. She has two additional risk factors, among those documented in the literature: history of an infection (specifically a systemic infection, significant in that it required hospitalization for intravenous antibiotics) in the postsurgery period, and a moderate increase in bilateral limb volume and weight (body mass index) over the months and years following the breast cancer diagnosis. Further, the patient-reported transient hand swelling on the affected side and gradual weight increase are cues indicating a need for patient vigilance and careful monitoring by the health-care team. Preventing future infections, managing weight at an optimal level, and preventing trauma or injury to the affected arm and chest are important self-management precautions to reduce risk of chronic lymphedema development. BH needs continued support in reviewing evidence-based risk-reduction guidelines and understanding ways to apply them to her lifestyle. In the absence of preoperative baseline or contralateral limb measurements (with circumferences or perometry or water displacement), assessment of limb change at a level identified as diagnostic of lymphedema (commonly, 200-mL volume or 2-cm girth increase from baseline or as compared to the contralateral limb) is very challenging. Without bilateral preop limb measurements for baseline and contralateral limb comparisons, BH might have been diagnosed with lymphedema at postop or at 48 months, when both limbs increased symmetrically. Symptom assessment is also crucial, as symptom report of heaviness and swelling is found to be associated with limb volume changes indicative of lymphedema. Transient hand swelling may be evidence of latent lymphedema and cause for increased risk-reduction education and vigilance in assessment for

  14. The Upper Atmosphere Research Satellite microwave limb sounder instrument

    Science.gov (United States)

    Barath, F. T.; Chavez, M. C.; Cofield, R. E.; Flower, D. A.; Frerking, M. A.; Gram, M. B.; Harris, W. M.; Holden, J. R.; Jarnot, R. F.; Kloezeman, W. G.

    1993-01-01

    The microwave limb sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is the first satellite experiment using limb sounding techniques at microwave frequencies. Primary measurement objectives are stratospheric ClO, O3, H2O, temperature, and pressure. Measurements are of thermal emission: all are performed simultaneously and continuously and are not degraded by ice clouds or volcanic aerosols. The instrument has a 1.6-m mechanically scanning antenna system and contains heterodyne radiometers in spectral bands centred near 63, 183, and 205 GHz. The radiometers operate at ambient temperature and use Schottky-diode mixers with local oscillators derived from phase-locked Gunn oscillators. Frequency tripling by varactor multipliers generates the 183- and 205-GHz local oscillators, and quasi-optical techniques inject these into the mixers. Six 15-channel filter banks spectrally resolve stratospheric thermal emission lines and produce an output spectrum every 2 s. Thermal stability is sufficient for 'total power' measurements which do not require fast chopping. Radiometric calibration, consisting of measurements of cold space and an internal target, is performed every 65-s limb scan. Instrument in-orbit performance has been excellent, and all objectives are being met.

  15. The effects of menthol on cold allodynia and wind-up-like pain in upper limb amputees with different levels of phantom limb pain.

    Science.gov (United States)

    Vase, Lene; Svensson, Peter; Nikolajsen, Lone; Arendt-Nielsen, Lars; Jensen, Troels Staehelin

    2013-02-08

    The mechanisms underlying phantom limb pain are not fully known, but hypersensitivity appears to be a central element. Menthol has previously been suggested as a model for hypersensitivity, but it has not yet been investigated if different levels of neuropathic pain may influence the effects of menthol or if topical application of menthol may act as a model for hypersensitivity in patients with phantom limb pain. In the present study, menthol (l-menthol 40%) was applied to the affected and non-affected sides in 24 upper-limb amputees with different levels of phantom limb pain to test if menthol could induce cold allodynia and exacerbate wind-up-like pain. The average level of phantom limb pain was significantly related to cold allodynia (P=0.044). Prior to application of menthol, the level of phantom limb pain was significantly related to the level of wind-up-like pain following both brush (P=0.040) and pinprick (P=0.033) stimulation. After application of menthol, the level of phantom limb pain was only related to wind-up-like pain following brush (P=0.011) but not pinprick stimulation (P=0.233). This study indicates that menthol does influence hypersensitivity in phantom limb pain patients, and it is the first study to show that menthol may exacerbate wind-up-like pain in this group of neuropathic pain patients. The findings suggest that menthol may act as a model for studying sensitization in phantom limb patients.

  16. Study on upper limb rehabilitation system based on surface EMG.

    Science.gov (United States)

    Wang, Lan; Li, Hailong; Wang, Zhengyu; Meng, Fandong

    2015-01-01

    During the rehabilitation process, it is essential to accurately judge a patient's recovery in a timely manner. A reasonable and matched training program is significant in the development of rehabilitation system. This paper presents a new upper limb rehabilitation training system, which consists of an upper limb rehabilitation training device, a current detection circuit, a motor speed test circuit, a surface EMG (sEMG) sensor, and a dSPACE HIL simulation platform. The real-time output torque of the servo motor is calculated by using the motor's real-time current and speed, in order to monitor the patient's training situation. The signal of sEMG is collected in real time and is processed with root mean square (RMS) to characterize the degree of muscle activation. Based on this rehabilitation system, maximum voluntary contraction (MVC) experiments, passive training experiments under different speeds, and active training experiments under different damping are studied. The results show that this new system performs real-time and accurate monitoring of a patient's training situation. It can also assess a patient's recovery through muscle activation. To a certain extent, this system provides a platform for research and development of rehabilitation medical engineering.

  17. Literature Review on Needs of Upper Limb Prosthesis Users.

    Science.gov (United States)

    Cordella, Francesca; Ciancio, Anna Lisa; Sacchetti, Rinaldo; Davalli, Angelo; Cutti, Andrea Giovanni; Guglielmelli, Eugenio; Zollo, Loredana

    2016-01-01

    The loss of one hand can significantly affect the level of autonomy and the capability of performing daily living, working and social activities. The current prosthetic solutions contribute in a poor way to overcome these problems due to limitations in the interfaces adopted for controlling the prosthesis and to the lack of force or tactile feedback, thus limiting hand grasp capabilities. This paper presents a literature review on needs analysis of upper limb prosthesis users, and points out the main critical aspects of the current prosthetic solutions, in terms of users satisfaction and activities of daily living they would like to perform with the prosthetic device. The ultimate goal is to provide design inputs in the prosthetic field and, contemporary, increase user satisfaction rates and reduce device abandonment. A list of requirements for upper limb prostheses is proposed, grounded on the performed analysis on user needs. It wants to (i) provide guidelines for improving the level of acceptability and usefulness of the prosthesis, by accounting for hand functional and technical aspects; (ii) propose a control architecture of PNS-based prosthetic systems able to satisfy the analyzed user wishes; (iii) provide hints for improving the quality of the methods (e.g., questionnaires) adopted for understanding the user satisfaction with their prostheses.

  18. Serious games for upper limb rehabilitation: a systematic review.

    Science.gov (United States)

    Proença, João Pedro; Quaresma, Cláudia; Vieira, Pedro

    2017-03-30

    The aim of this research is to carry out a systematic review of the use of technological gaming platforms with serious games in the upper limb rehabilitation of patients with neuromotor disorders. Through a systematic review, the first two authors defined the inclusion criteria and extracted the data, resulting in 38 studies collected from B-On, PubMed and Medline. Ninety-two per cent of the selected articles were published since 2010. This review documents 35 different gaming platforms types. Twenty-one of the 38 articles included in this review conducted a clinical trial and of those only eight report improvements in the target population following the use of the games and platforms. This review concludes that a new paradigm is emerging in the rehabilitation field, characterized by the systematic use of technological gaming platforms with serious games in/for rehabilitation. The use of this approach seems to be beneficial. However, to facilitate the full integration of these platforms, it is necessary to conduct more research in this area, explore new approaches and carry out in-depth clinical studies into the benefits of these platforms. Implications for rehabilitation This review states that the use serious games and gaming platforms for upper limb rehabilitation are starting a new paradigm in the rehabilitation. For a full integration of this technologies in the rehabilitation field more studies are needed.

  19. A novel myoelectric training device for upper limb prostheses.

    Science.gov (United States)

    Clingman, Ryan; Pidcoe, Peter

    2014-07-01

    A training system intended for myoelectric prosthetic hands for upper limb amputees was developed to assist in learning myoelectric control schemes and training muscle isolation. The trainer allowed a user to operate a remote controlled car by use of a control scheme commonly used in myoelectric prosthetic hands. The trainer was designed to be easy for therapists to use and more engaging for the user than current methods of signal training. Preliminary testing of the trainer was conducted with eight nonamputee adult volunteers. The results indicated that the trainer could be a useful tool for myoelectric training in upper limb amputees. All subjects' skill with the myoelectric control scheme improved over the course of testing, with the improvements being greater at the beginning of the training period than at the end. Whereas the individual subjects' performance varied greatly at the beginning of the training, the subjects had achieved a more uniform level of performance by the end of the training, approaching the minimum possible values for the assessments.

  20. Tactile spatial acuity varies with site and axis in the human upper limb.

    Science.gov (United States)

    Cody, Frederick W J; Garside, Rebecca A D; Lloyd, Donna; Poliakoff, Ellen

    2008-03-12

    Historically, beginning with Weber's [E.H. Weber, On the sensitivity of the tactile senses, in: H.E. Ross, D.J. Murray (Eds. and Trans.), E.H. Weber on the Tactile Senses, Erlbaum (UK) Taylor & Francis, Hove, 1996 (Original work published in 1834), pp. 21-136] classical studies, regional variations in the accuracy of localisation of tactile stimuli applied to a limb have been recognised. However, important questions remain concerning both the map of localisation resolution and its neuroscientific basis since methodological confounds have militated against an unambiguous, unified interpretation of the diverse findings. To test the hypotheses that localisation precision on the upper limb varies with site (hand, wrist, forearm) and limb axis (transverse, longitudinal), regional differences in locognosic acuity were quantified in psychophysical experiments. Participants identified the perceived direction (e.g. medial or lateral) relative to a central reference locus of brief tactile test stimuli applied to a cruciform array of loci. Acuity was greater in the transverse than longitudinal axis. This effect probably arises from the asymmetry of receptive fields of upper limb first-order sensory units and their higher-order projection neurons. Additionally, acuity was greater on the dorsal surface at the wrist than either the hand or forearm sites, in the longitudinal axis, supporting an enhancement of resolution at joints (anchor points). This effect may contribute to improved proprioceptive guidance of active wrist movements.

  1. Correlations between motor and sensory functions in upper limb chronic hemiparetics after stroke

    Directory of Open Access Journals (Sweden)

    Thais Botossi Scalha

    2011-08-01

    Full Text Available OBJECTIVE: Describe the somatosensory function of the affected upper limb of hemiparetic stroke patients and investigate the correlations between measurements of motor and sensory functions in tasks with and without visual deprivation. METHOD: We applied the Fugl-Meyer Assessment (FMA, Nottingham Sensory Assessment (NSA, and several motor and sensory tests: Paper manipulation (PM, Motor Sequences (MS, Reaching and grasping (RG Tests Functional (TF, Tactile Discrimination (TD, Weight Discrimination (WD and Tactile Recognition of Objects (RO. RESULTS: We found moderate correlations between the FMA motor subscale and the tactile sensation score of the NSA. Additionally, the FMA sensitivity was correlated with the NSA total; and performance on the WD test items correlated with the NSA. CONCLUSION: There was a correlation between the sensory and motor functions of the upper limb in chronic hemiparetic stroke patients. Additionally, there was a greater reliance on visual information to compensate for lost sensory-motor skills.

  2. Reorganizing therapy: changing the clinical approach to upper limb recovery post-stroke.

    Science.gov (United States)

    Hubbard, Isobel J; Carey, Leeanne M; Budd, Timothy W; Parsons, Mark W

    2015-03-01

    Stroke is the leading cause of adult disability, and as a consequence, most therapists will provide health care to patients with stroke during their professional careers. An increasing number of studies are investigating the association between upper limb recovery and changes in brain activation patterns following stroke. In this review, we explore the translational implications of this research for health professionals working in stroke recovery. We argue that in light of the most recent evidence, therapists should consider how best to take full advantage of the brain's natural ability to reorganize, when prescribing and applying interventions to those with a stroke-affected upper limb. The authors propose that stroke is a brain-based problem that needs a brain-based solution. This review addresses two topics, anticipating recovery and maximizing recovery. It proposes five practice-ready recommendations that are based on the evidence reviewed. The over-riding aim of this review and discussion is to challenge therapists to reconsider the health care they prescribe and apply to people with a stroke-affected upper limb.

  3. Servelle-Martorell syndrome with extensive upper limb involvement: a case report

    Directory of Open Access Journals (Sweden)

    Karuppal Raju

    2008-05-01

    Full Text Available Abstract Introduction Angio-osteohypotrophic syndrome is also known as Servelle-Martorell angiodysplasia. It is characterized by venous or, rarely, arterial malformations, which may result in limb hypertrophy and bony hypoplasia. Extensive involvement of the upper limb is a rare feature of Servelle-Martorell syndrome. Cases with minimal upper limb involvement have been described in the literature. Case presentation A young man presented with multiple separate swollen areas over the right upper limb and functional difficulty since birth. The arm muscles and muscles of the limb girdle were atrophic. The forearm and hand bones were hypoplastic and tender. Conclusion We report a case of Servelle-Martorell syndrome with extensive involvement of the entire upper limb and periscapular region. Servelle-Martorell syndrome is highlighted as one of the causes of angiodysplastic limb hypertrophy.

  4. Sensory cortical re-mapping following upper-limb amputation and subsequent targeted reinnervation: A case report

    OpenAIRE

    Jun Yao; Albert Chen; Todd Kuiken; Carolina Carmona; Julius Dewald

    2015-01-01

    This case study demonstrates the change of sensory cortical representations of the residual parts of the arm in an individual who underwent a trans-humeral amputation and subsequent targeted reinnervation (TR). As a relatively new surgical technique, TR restores a direct neural connection from amputated sensorimotor nerves to specific target muscles. This method has been successfully applied to upper-limb and lower-limb amputees, and has shown effectiveness in regaining control signals via th...

  5. Monomelic amyotrophy: non progressive atrophy of the upper limb.

    Science.gov (United States)

    Kiernan; Lethlean; Blum

    1999-07-01

    Monomelic amyotrophy is a rare clinical entity, resulting in wasting and weakness localized to the hand and forearm unilaterally, in the absence of any sensory or long tract signs. The onset of the disease is insidious, occurring in males before the age of 30 years, with a clinical course marked by non-progression. The case of a 19-year-old Indonesian male patient is presented, with a one year history of right upper limb weakness. Nerve conduction studies were normal, without evidence of conduction block. Electromyography showed changes of chronic partial denervation. Magnetic resonance imaging scans revealed an asymmetry of the spinal cord. Possible aetiological mechanisms for these changes are discussed. Copyright 1999 Harcourt Publishers Ltd.

  6. Suicidal mercury injection into the upper limb: a case study.

    Science.gov (United States)

    Wong, F; Hung, L K; Wong, C H; Ho, P C

    2004-12-01

    We report a rare case of self-injection of mercury into the subcutaneous tissue of the upper limb. A multi-disciplinary management approach was adopted including cooperation between toxicologists, orthopaedic surgeons, radiologists and environment safety personnel. Surgical removal of mercury under radiological screening and systemic intoxication treated by chelating agents, namely dimercaprol and succimer. Serial serum and urine mercury levels showed an initial rise despite surgical removal and returned to normal after a prolonged period of time. Safety precautions were taken during surgery to avoid inadvertent intoxication of staff. Contamination of the operation theatre was monitored by the amount of mercury vapour released into the air. All personnels involved in the management of the patient did not show any evidence of mercury intoxication.

  7. Robotic assessment of upper limb motor function after stroke.

    Science.gov (United States)

    Balasubramanian, Sivakumar; Colombo, Roberto; Sterpi, Irma; Sanguineti, Vittorio; Burdet, Etienne

    2012-11-01

    Traditional assessment of a stroke subject's motor ability, carried out by a therapist who observes and rates the subject's motor behavior using ordinal measurements scales, is subjective, time consuming and lacks sensitivity. Rehabilitation robots, which have been the subject of intense inquiry over the last decade, are equipped with sensors that are used to develop objective measures of motor behaviors in a semiautomated way during therapy. This article reviews the current contributions of robot-assisted motor assessment of the upper limb. It summarizes the various measures related to movement performance, the models of motor recovery in stroke subjects and the relationship of robotic measures to standard clinical measures. It analyses the possibilities offered by current robotic assessment techniques and the aspects to address to make robotic assessment a mainstream motor assessment method.

  8. Enthesopathies as occupational stress markers: evidence from the upper limb.

    Science.gov (United States)

    Villotte, Sébastien; Castex, Dominique; Couallier, Vincent; Dutour, Olivier; Knüsel, Christopher J; Henry-Gambier, Dominique

    2010-06-01

    Enthesopathies--that is, "musculo-skeletal stress markers"--are frequently used to reconstruct past lifestyles and activity patterns. Relatively little attention has been paid in physical anthropology to methodological gaps implicit in this approach: almost all methods previously employed neglect current medical insights into enthesopathies and the distinction between healthy and pathological aspects has been arbitrary. This study presents a new visual method of studying fibrocartilaginous enthesopathies of the upper limb (modified from Villotte: Bull Mém Soc Anthropol Paris n.s. 18 (2006) 65-85), and application of this method to 367 males who died between the 18th and 20th centuries, from four European identified skeletal collections: the Christ Church Spitalfields Collection, the identified skeletal collection of the anthropological museum of the University of Coimbra, and the Sassari and Bologna collections of the museum of Anthropology, University of Bologna. The analysis, using generalized estimating equations to model repeated binary outcome variables, has established a strong link between enthesopathies and physical activity: men with occupations involving heavy manual tasks have significantly (P-value < 0.001) more lesions of the upper limbs than nonmanual and light manual workers. Probability of the presence of an enthesopathy also increases with age and is higher for the right side compared with the left. Our study failed to distinguish significant differences between the collections when adjusted for the other effects. It appears that enthesopathies can be used to reconstruct past lifestyles of populations if physical anthropologists: 1) pay attention to the choice of entheses in their studies and 2) use appropriate methods.

  9. Application of wavelet packet transform on myoelectric pattern recognition for upper limb rehabilitation after stroke.

    Science.gov (United States)

    Wang, Dongqing; Zhang, Xu; Chen, Xiang; Zhou, Ping

    2014-01-01

    Myoelectric pattern recognition applied to high-density surface electromyographic (sEMG) recordings from paretic muscles has been proven to identify various movement intents of stroke survivors, thus facilitating the design of myoelectrically controlled robotic systems for recovery of upper-limb dexterity. Aiming at effectively decoding neural control information under the condition of neurological injury following stroke, this paper further investigates the application of wavelet packet transform (WPT) on myoelectric feature extraction to identify 20 functional movements performed by the paretic upper limb of 4 chronic stroke subjects. The WPT was used to decompose the original sEMG signals via a tree of subspaces, where optimal ones were selected in term of the classification efficacy. The energies in the selected subspaces were calculated as optimal wavelet packet features, which were finally fed into a linear discriminant classifier. The WPT-based myoelectric feature extraction approach achieved accuracies above 94% for all subjects in a user-specific condition, demonstrating its potential applications in upper limb rehabilitation after stroke.

  10. Upper limb impairment is associated with use of assistive devices and unemployment in multiple sclerosis.

    Science.gov (United States)

    Marrie, Ruth Ann; Cutter, Gary R; Tyry, Tuula; Cofield, Stacey S; Fox, Robert; Salter, Amber

    2017-04-01

    Individuals with multiple sclerosis (MS) frequently suffer from impaired sensory function, reduced strength and tremor in the upper limbs, which may interfere with upper limb function. However, upper limb impairment in MS is under-recognized and understudied. We aimed to evaluate the prevalence of upper limb impairment in a large sample of persons with MS; the association between upper limb function and employment status in MS; and the frequency of use of assistive devices aimed at addressing upper limb impairments. We surveyed participants in the North American Research Committee on Multiple Sclerosis (NARCOMS) Registry regarding upper limb function using the ABILHAND questionnaire, and asked about use of assistive devices intended to improve the performance on upper limb activities. We evaluated the association between ABILHAND scores and current employment status using multivariable logistic regression analysis, and the association between ABILHAND scores and the use of an assistive device. Of 7463 eligible respondents, 5846 (78.3%) were female and mean (SD) age of 57.4 (10.2) years. The median (IQR) score on the ABILHAND was 45 (39-46). Higher levels of disability, as measured by the PDDS, correlated moderately with lower (worse) scores on the ABILHAND (r=-0.50; 95%CI: -0.48, -0.52). Over half of participants reported that they possessed an assistive device to aid upper limb function (3914, 56.0%). Older age, female sex, greater ambulatory disability, higher levels of fatigue, sensory impairment, spasticity and cognitive impairment, and visiting an occupational therapist were independently associated with increased odds of using an assistive device. After accounting for disability, perceived cognitive impairment, and fatigue, impaired upper limb function was associated with decreased odds of being employed (OR/1 point rise in ABILHAND 0.97; 95%CI: 0.96, 0.98). Upper limb impairment is common in older MS patients, and adversely affects the ability to perform

  11. Effects of Robot-Assisted Therapy for the Upper Limb After Stroke.

    Science.gov (United States)

    Veerbeek, Janne M; Langbroek-Amersfoort, Anneli C; van Wegen, Erwin E H; Meskers, Carel G M; Kwakkel, Gert

    2017-02-01

    Robot technology for poststroke rehabilitation is developing rapidly. A number of new randomized controlled trials (RCTs) have investigated the effects of robot-assisted therapy for the paretic upper limb (RT-UL). To systematically review the effects of poststroke RT-UL on measures of motor control of the paretic arm, muscle strength and tone, upper limb capacity, and basic activities of daily living (ADL) in comparison with nonrobotic treatment. Relevant RCTs were identified in electronic searches. Meta-analyses were performed for measures of motor control (eg, Fugl-Meyer Assessment of the arm; FMA arm), muscle strength and tone, upper limb capacity, and basic ADL. Subgroup analyses were applied for the number of joints involved, robot type, timing poststroke, and treatment contrast. Forty-four RCTs (N = 1362) were included. No serious adverse events were reported. Meta-analyses of 38 trials (N = 1206) showed significant but small improvements in motor control (~2 points FMA arm) and muscle strength of the paretic arm and a negative effect on muscle tone. No effects were found for upper limb capacity and basic ADL. Shoulder/elbow robotics showed small but significant effects on motor control and muscle strength, while elbow/wrist robotics had small but significant effects on motor control. RT-UL allows patients to increase the number of repetitions and hence intensity of practice poststroke, and appears to be a safe therapy. Effects on motor control are small and specific to the joints targeted by RT-UL, whereas no generalization is found to improvements in upper limb capacity. The impact of RT-UL started in the first weeks poststroke remains unclear. These limited findings could mainly be related to poor understanding of robot-induced motor learning as well as inadequate designing of RT-UL trials, by not applying an appropriate selection of stroke patients with a potential to recovery at baseline as well as the lack of fixed timing of baseline assessments and

  12. Characteristic MRI Findings of upper Limb Muscle Involvement in Myotonic Dystrophy Type 1.

    Directory of Open Access Journals (Sweden)

    Kazuma Sugie

    Full Text Available The objective of our study was to evaluate the relation between muscle MRI findings and upper limb weakness with grip myotonia in patients with myotonic dystrophy type 1 (DM1. Seventeen patients with DM1 were evaluated by manual muscle strength testing and muscle MRI of the upper limbs. Many DM1 patients presenting with decreased grasping power frequently showed high intensity signals in the flexor digitorum profundus (FDP muscles on T1-weighted imaging. Patients presenting with upper limb weakness frequently also showed high intensity signals in the flexor pollicis longus, abductor pollicis longus, and extensor pollicis muscles. Disturbances of the distal muscles of the upper limbs were predominant in all DM1 patients. Some DM1 patients with a prolonged disease duration showed involvement of not only distal muscles but also proximal muscles in the upper limbs. Muscle involvement of the upper limbs on MRI strongly correlated positively with the disease duration or the numbers of CTG repeats. To our knowledge, this is the first study to provide a detailed description of the distribution and severity of affected muscles of the upper limbs on MRI in patients with DM1. We conclude that muscle MRI findings are very useful for identifying affected muscles and predicting the risk of muscle weakness in the upper limbs of DM1 patients.

  13. Assessment of upper limb spasticity in stroke patients using the robotic device REAplan

    Directory of Open Access Journals (Sweden)

    Stéphanie Dehem

    2017-06-01

    Full Text Available Objective: To assess the capacity of the robotic device REAplan to measure overall upper limb peak resistance force, as a reflection of upper limb spasticity. Methods: Twelve patients with chronic stroke presenting upper limb spasticity were recruited to the study. Patients underwent musculocutaneous motor nerve block to reduce the spasticity of elbow flexor muscles. Each patient was assessed before and after the motor nerve block. Overall the REAplan measured upper limb resistance force. The robot passively mobilized the patient’s upper limb at various velocities (10, 20, 30, 40 and 50 cm/s in a back-and-forth trajectory (30 cm. The peak resistance force was analysed for each forward movement. Ten movements were performed and averaged at each velocity condition. Results: The overall upper limb resistance force increased proportionally to the mobilization velocity (p 0.6. Conclusion: This study proposes a new, valid, reliable and sensitive protocol to quantify upper limb resistance force using the REAplan, as a reflection of upper limb spasticity.

  14. Upper-limb thrombo-embolectomy: national cohort study in Denmark

    DEFF Research Database (Denmark)

    Andersen, L V; Mortensen, L S; Lindholt, Jes S.;

    2010-01-01

    We investigated the incidence of thrombo-embolectomy in upper-limb and prognosis with respect to arm amputation, stroke and death.......We investigated the incidence of thrombo-embolectomy in upper-limb and prognosis with respect to arm amputation, stroke and death....

  15. Technology that Touches Lives: Teleconsultation to Benefit Persons with Upper Limb Loss

    OpenAIRE

    Whelan, Lynsay R.; Wagner, Nathan

    2011-01-01

    While over 1.5 million individuals are living with limb loss in the United States (Ziegler-Graham et al., 2008), only 10% of these individuals have a loss that affects an upper limb. Coincident with the relatively low incidence of upper limb loss, is a shortage of the community-based prosthetic rehabilitation experts that can help prosthetic users to more fully integrate their devices into their daily routines. This article describes how expert prosthetists and occupational therapists at Touc...

  16. An upper limb robot model of children limb for cerebral palsy neurorehabilitation.

    Science.gov (United States)

    Pathak, Yagna; Johnson, Michelle

    2012-01-01

    Robot therapy has emerged in the last few decades as a tool to help patients with neurological injuries relearn motor tasks and improve their quality of life. The main goal of this study was to develop a simple model of the human arm for children affected with cerebral palsy (CP). The Simulink based model presented here shows a comparison for children with and without disabilities (ages 6-15) with normal and reduced range of motion in the upper limb. The model incorporates kinematic and dynamic considerations required for activities of daily living. The simulation was conducted using Matlab/Simulink and will eventually be integrated with a robotic counterpart to develop a physical robot that will provide assistance in activities of daily life (ADLs) to children with CP while also aiming to improve motor recovery.

  17. Upper limb function and cortical organisation in youth with hemiplegic, cerebral palsy

    Directory of Open Access Journals (Sweden)

    Anna eMackey

    2014-07-01

    Full Text Available Aim: To explore the relationship between motor cortical and descending motor pathway reorganisation, lesion type and upper limb function in youth with unilateral cerebral palsy. Methods: Twenty participants with unilateral cerebral palsy (mean age 15 ± 3 years; 11 males completed a range of upper limb functional measures. Structural MRI, diffusion weighted and functional MR imaging were conducted to determine type and extent of brain lesion, descending white matter integrity, and whole-brain activity during affected hand use. Single pulse transcranial magnetic stimulation (n = 12 was used to examine functional integrity of the corticospinal pathway as well as primary motor cortex intracortical and interhemispheric inhibition from motor evoked potentials and silent periods.Results: Fractional anisotropy measures within the posterior limb of the internal capsule were a predictor of upper limb function (R2 = 0.41, F = 11.3, p = 0.004. Participants with periventricular lesions tended to have better upper limb function (F (2, 17 = 42.48, p < 0.0001. Five participants with evidence of cortical reorganisation and functional ipsilateral projections to their affected hand had worse upper limb function. Deficits in intracortical and interhemispheric inhibitory mechanisms were found in participants with worse upper limb function (Melbourne Assessment of Unilateral Upper Limb Function: Mann Whitney p = 0.02.Conclusions: Neuroimaging and transcranial magnetic stimulation can provide useful information related to hand function of individuals with unilateral cerebral palsy and may have potential to assist as a predictive tool and / or guide rehabilitation.

  18. Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy.

    Directory of Open Access Journals (Sweden)

    Rui Diogo

    Full Text Available How do the various anatomical parts (modules of the animal body evolve into very different integrated forms (integration yet still function properly without decreasing the individual's survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA, to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs and diverse or complex tissue composition (e.g. bones, cartilages and muscles, by quantifying the spatial organization of these parts-their topological patterns relative to each other-using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are

  19. Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy.

    Science.gov (United States)

    Diogo, Rui; Esteve-Altava, Borja; Smith, Christopher; Boughner, Julia C; Rasskin-Gutman, Diego

    2015-01-01

    How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual's survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts-their topological patterns relative to each other-using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues

  20. Upper limb functions regained in quadriplegia: a hybrid computerized neuromuscular stimulation system.

    Science.gov (United States)

    Nathan, R H; Ohry, A

    1990-05-01

    A new, computerized neuromuscular stimulation system was applied to the upper limbs of two patients with complete quadriplegia below the C4 level. The stimulation-generated movements were integrated and augmented by residual, voluntary shoulder girdle movements and mechanical splinting. Up to 12 muscles were stimulated individually with high-resolution surface electrodes; coordination and control of the stimulation was effected by microcomputer. Simple vocal commands to the computer triggered preprogrammed hand prehensions, arm motion, and other functions, giving the patient complete control over the system. In pilot clinical trials of six weeks, writing, eating, and drinking, including picking up and replacing the pen or cup, were achieved.

  1. Activity of upper limb muscles during human walking.

    Science.gov (United States)

    Kuhtz-Buschbeck, Johann P; Jing, Bo

    2012-04-01

    The EMG activity of upper limb muscles during human gait has rarely been studied previously. It was examined in 20 normal volunteers in four conditions: walking on a treadmill (1) with unrestrained natural arm swing (Normal), (2) while volitionally holding the arms still (Held), (3) with the arms immobilized (Bound), and (4) with the arms swinging in phase with the ipsilateral legs, i.e. opposite-to-normal phasing (Anti-Normal). Normal arm swing involved weak rhythmical lengthening and shortening contractions of arm and shoulder muscles. Phasic muscle activity was needed to keep the unrestricted arms still during walking (Held), indicating a passive component of arm swing. An active component, possibly programmed centrally, existed as well, because some EMG signals persisted when the arms were immobilized during walking (Bound). Anti-Normal gait involved stronger EMG activity than Normal walking and was uneconomical. The present results indicate that normal arm swing has both passive and active components. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Temporal alignment of electrocorticographic recordings for upper limb movement

    Directory of Open Access Journals (Sweden)

    Omid eTalakoub

    2015-01-01

    Full Text Available The detection of movement-related components of the brain activity is useful in the design of brain machine interfaces. A common approach is to classify the brain activity into a number of templates or states. To find these templates, the neural responses are averaged over each movement task. For averaging to be effective, one must assume that the neural components occur at identical times over repeated trials. However, complex arm movements such as reaching and grasping are prone to cross-trial variability due to the way movements are performed. Typically initiation time, duration of movement and movement speed are variable even as a subject tries to reproduce the same task identically across trials. Therefore, movement-related neural activity will tend to occur at different times across each trial. Due to this mismatch, the averaging of neural activity will not bring into salience movement-related components. To address this problem, we present a method of alignment that accounts for the variabilities in the way the movements are conducted. In this study, arm speed was used to align neural activity. Four subjects had electrocorticographic (ECoG electrodes implanted over their primary motor cortex and were asked to perform reaching and retrieving tasks using the upper limb contralateral to the site of electrode implantation. The arm speeds were aligned using a nonlinear transformation of the temporal axes resulting in averaged spectrograms with superior visualization of movement-related neural activity when compared to averaging without alignment.

  3. Active upper limb prosthesis based on natural movement trajectories.

    Science.gov (United States)

    Ramírez-García, Alfredo; Leija, Lorenzo; Muñoz, Roberto

    2010-03-01

    The motion of the current prostheses is sequential and does not allow natural movements. In this work, complex natural motion patterns from a healthy upper limb were characterized in order to be emulated for a trans-humeral prosthesis with three degrees of freedom at the elbow. Firstly, it was necessary to define the prosthesis workspace, which means to establish a relationship using an artificial neural network (ANN), between the arm-forearm (3-D) angles allowed by the prosthesis, and its actuators length. The 3-D angles were measured between the forearm and each axis of the reference system attached at the elbow. Secondly, five activities of daily living (ADLs) were analyzed by means of the elbow flexion (EF), the forearm prono-supination (FPS) and the 3-D angles, from healthy subjects, by using a video-based motion analysis system. The 3-D angles were fed to the prosthesis model (ANN) in order to analyze which ADLs could be emulated by the prosthesis. As a result, a prosthesis kinematics approximation was obtained. In conclusion, in spite of the innovative mechanical configuration of the actuators, it was possible to carry out only three of the five ADLs considered. Future work will include improvement of the mechanical configuration of the prosthesis to have greater range of motion.

  4. Robot-Aided Upper-Limb Rehabilitation Based on Motor Imagery EEG

    Directory of Open Access Journals (Sweden)

    Baoguo Xu

    2011-09-01

    Full Text Available Stroke is a leading cause of disability worldwide. In this paper, a novel robot‐assisted rehabilitation system based on motor imagery electroencephalography (EEG is developed for regular training of neurological rehabilitation for upper limb stroke patients. Firstly, three‐dimensional animation was used to guide the patient image the upper limb movement and EEG signals were acquired by EEG amplifier. Secondly, eigenvectors were extracted by harmonic wavelet transform (HWT and linear discriminant analysis (LDA classifier was utilized to classify the pattern of the left and right upper limb motor imagery EEG signals. Finally, PC triggered the upper limb rehabilitation robot to perform motor therapy and gave the virtual feedback. Using this robot‐assisted upper limb rehabilitation system, the patientʹs EEG of upper limb movement imagination is translated to control rehabilitation robot directly. Consequently, the proposed rehabilitation system can fully explore the patientʹs motivation and attention and directly facilitate upper limb post‐stroke rehabilitation therapy. Experimental results on unimpaired participants were presented to demonstrate the feasibility of the rehabilitation system. Combining robot‐assisted training with motor imagery‐ based BCI will make future rehabilitation therapy more effective. Clinical testing is still required for further proving this assumption.

  5. Asymmetry in volume between dominant and nondominant upper limbs in young tennis players.

    Science.gov (United States)

    Rogowski, Isabelle; Ducher, Gaële; Brosseau, Olivier; Hautier, Christophe

    2008-08-01

    This study aimed at demonstrating the asymmetry in volume between the dominant and nondominant upper limbs in tennis players, controlled for maturity status. Upper limb volumes on both sides were calculated in 72 tennis players and 84 control subjects, using the truncated cone method. The participants' maturity status was determined using the predicted age at peak height velocity (PHV). The results showed significant larger side-to-side asymmetry in volume in tennis groups than in control groups. These findings suggested that, even before PHV, specific-sport adaptations occurred in the dominant upper limb in tennis players.

  6. The Effect of Upper Limb Massage on Infants' Venipuncture Pain.

    Science.gov (United States)

    Chik, Yuen-Man; Ip, Wan-Yim; Choi, Kai-Chow

    2017-02-01

    The purpose of the study was to investigate the effect of upper limb massage on relieving pain among infants undergoing venipuncture in Hong Kong. This study was a crossover, double-blind, randomized controlled trial. Eighty infants at the neonatal intensive care unit were randomly assigned to 2 groups in different order to receive interventions. The massage first group (N = 40) received 2-minute massage before venipuncture on the first occasion then received usual care (control) on the second occasion, and vice versa in the massage second group (N = 40). The infants' behavior and physiological responses were recorded on two occasions: (1) right after the intervention and (2) during the first 30 seconds of venipuncture procedure. The mean pain scores (Premature Infant Pain Profile) were significantly lower in infants who received massage (massage first: 6.0 [standard deviation = 3.3]; massage second: 7.30 [standard deviation = 4.4]) versus control (massage first: 12.0 [standard deviation = 4.3]; massage second: 12.7 [standard deviation = 3.1]). The crude and adjusted generalized estimating equations model showed that the infants had significantly lower pain score when receiving massage as compared to receiving the control treatment, and there were no significant time and carryover effects: -6.03 (95% confidence interval: -7.67 to -4.38), p massage may be effective in decreasing infants' venipuncture pain perception. Copyright © 2016 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  7. Classification of the pattern of intrauterine amputations of the upper limb in constriction ring syndrome.

    Science.gov (United States)

    Al-Qattan, M M

    2000-06-01

    Twenty patients with congenital upper limb amputations caused by constriction rings were reviewed to classify the pattern of these amputations. In the 20 patients studied, 31 upper limbs had congenital amputations. The pattern of amputation was classified into three types. Proximal upper limb amputation was considered type I and was only seen in one limb. The most common pattern of amputation was digital amputation associated with "coning" or "superimposition" of the digits (type II) and was seen in 20 hands. Type II amputations were subclassified according to the involvement of all, ulnar, radial, or central digits by the constriction ring. In type III amputations (N = 10 limbs), there was no associated coning or superimposition of the digits. This type of amputation was subclassified into type IIIA (multiple-digit amputations within the same hand) and type III B (single-digit amputation). Associated anomalies are reviewed and the pathogenesis of constriction rings is discussed.

  8. Remote Effect of Lower Limb Acupuncture on Latent Myofascial Trigger Point of Upper Trapezius Muscle: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Kai-Hua Chen

    2013-01-01

    Full Text Available Objectives. To demonstrate the use of acupuncture in the lower limbs to treat myofascial pain of the upper trapezius muscles via a remote effect. Methods. Five adults with latent myofascial trigger points (MTrPs of bilateral upper trapezius muscles received acupuncture at Weizhong (UB40 and Yanglingquan (GB34 points in the lower limbs. Modified acupuncture was applied at these points on a randomly selected ipsilateral lower limb (experimental side versus sham needling on the contralateral lower limb (control side in each subject. Each subject received two treatments within a one-week interval. To evaluate the remote effect of acupuncture, the range of motion (ROM upon bending the contralateral side of the cervical spine was assessed before and after each treatment. Results. There was significant improvement in cervical ROM after the second treatment (P=0.03 in the experimental group, and the increased ROM on the modified acupuncture side was greater compared to the sham needling side (P=0.036. Conclusions. A remote effect of acupuncture was demonstrated in this pilot study. Using modified acupuncture needling at remote acupuncture points in the ipsilateral lower limb, our treatments released tightness due to latent MTrPs of the upper trapezius muscle.

  9. Pattern of Nerve Blocks for Upper Limb Surgery at the University of ...

    African Journals Online (AJOL)

    Pattern of Nerve Blocks for Upper Limb Surgery at the University of Benin Teaching Hospital - A Ten Year Survey. ... Log in or Register to get access to full text downloads. ... Lower limb surgery is amenable to central neural blockade techniques, ... Information about patient demographic characteristics, surgical indication, ...

  10. Job adjustments, job satisfaction and health experience in upper and lower limb amputees

    NARCIS (Netherlands)

    van der Sluis, Corry K.; Hartman, Paul P.; Schoppen, Tanneke; Dijkstra, Pieter U.

    2009-01-01

    Objectives: To explore job adjustments, job satisfaction, and health experience among employees with an upper limb amputation and to compare the results with those of lower limb amputees and control subjects. Methods: Amputees were recruited from data files of a large European University Medical

  11. Risk factors of the upper limb disorders among cashiers in grocery retail industries: A review

    Science.gov (United States)

    Zuhaidi, Muhammad Fareez Ahmad; Nasrull Abdol Rahman, Mohd

    2017-08-01

    Cashiers have been appointed as one of top ten occupations in developing musculoskeletal disorders (MSDs) particularly on the upper limb. Many of the workers are still in high risk injury due to incorrect workstations and lack of employee education in basic biomechanical principles. Normally, cashiers are exposed in several risk factors such as awkward and static postures, repetition motion and forceful exertions. Thus, cashiers in supermarket are considered at risk from developing upper limb disorders (ULDs). This review evaluates selected papers that have studied risk factors of the upper limb disorders among cashiers in grocery retail industries. In addition, other studies from related industry were reviewed as applicable. In order to understand risk factors of the upper limb disorders among cashiers, it is recommended that future studies are needed in evaluating these risk factors among cashiers.

  12. The effects of model upper limb position on observer P300 event-related potential

    Directory of Open Access Journals (Sweden)

    Nagai Yukiko

    2013-11-01

    Full Text Available Study aim: This study reports on the characteristics of learners’ information-gathering processes when receiving visual motor information by examining the influence of differences in model upper limb placement on observer attention.

  13. Reliability of 3D upper limb motion analysis in children with obstetric brachial plexus palsy.

    Science.gov (United States)

    Mahon, Judy; Malone, Ailish; Kiernan, Damien; Meldrum, Dara

    2017-03-01

    Kinematics, measured by 3D upper limb motion analysis (3D-ULMA), can potentially increase understanding of movement patterns by quantifying individual joint contributions. Reliability in children with obstetric brachial plexus palsy (OBPP) has not been established.

  14. Assessing upper limb function in nonambulant SMA patients: development of a new module.

    Science.gov (United States)

    Mazzone, Elena; Bianco, Flaviana; Martinelli, Diego; Glanzman, Allan M; Messina, Sonia; De Sanctis, Roberto; Main, Marion; Eagle, Michelle; Florence, Julaine; Krosschell, Kristin; Vasco, Gessica; Pelliccioni, Marco; Lombardo, Marilena; Pane, Marika; Finkel, Richard; Muntoni, Francesco; Bertini, Enrico; Mercuri, Eugenio

    2011-06-01

    We report the development of a module specifically designed for assessing upper limb function in nonambulant SMA patients, including young children and those with severe contractures. The application of the module to a preschool cohort of 40 children (age 30-48 months) showed that all the items could be completed by 30 months. The module was also used in 45 nonambulant SMA patients (age 30 months to 27 years). Their scores were more variable than in the preschool cohort, ranging from 0 to 18. The magnitude of scores was not related to age (r=-0.19). The upper limb scores had a good correlation with the Hammersmith Functional Motor Scale, r=0.75, but the upper limb function did not always strictly follow the overall gross motor function. These findings suggest that even some of the very weak nonambulant children possess upper limb skills that can be measured.

  15. Prevention of upper limb symptoms and signs of nerve afflictions in computer operators

    DEFF Research Database (Denmark)

    Riis Jepsen, Jørgen; Thomsen, Gert

    2008-01-01

    ABSTRACT: BACKGROUND: In a previous study of computer operators we have demonstrated the relation of upper limb pain to individual and patterns of neurological findings (reduced function of muscles, sensory deviations from normal and mechanical allodynia of nerve trunks). The identified patterns......, respectively, computer operators in two divisions of an engineering consultancy company were invited to answer a questionnaire on upper limb symptoms and to undergo a blinded neurological examination. Participants in one division were subsequently instructed to participate in an upper limb stretching course...... could be drawn regarding the relation to the intervention of this reduction. Incident pain correlated to findings in accordance with the three locations of nerve affliction. CONCLUSION: A six month course of stretching seems to reduce upper limb symptoms in computer operators but we could...

  16. Upper limb joint muscle/tendon injury and anthropometric adaptations in French competitive tennis players.

    Science.gov (United States)

    Rogowski, Isabelle; Creveaux, Thomas; Genevois, Cyril; Klouche, Shahnaz; Rahme, Michel; Hardy, Philippe

    2016-01-01

    The purpose of this study was to examine the relationship between the upper limb anthropometric dimensions and a history of dominant upper limb injury in tennis players. Dominant and non-dominant wrist, forearm, elbow and arm circumferences, along with a history of dominant upper limb injuries, were assessed in 147 male and female players, assigned to four groups based on location of injury: wrist (n = 9), elbow (n = 25), shoulder (n = 14) and healthy players (n = 99). From anthropometric dimensions, bilateral differences in circumferences and in proportions were calculated. The wrist group presented a significant bilateral difference in arm circumference, and asymmetrical bilateral proportions between wrist and forearm, as well as between elbow and arm, compared to the healthy group (6.6 ± 3.1% vs. 4.9 ± 4.0%, P tennis injury and asymmetry in upper limb proportions using high-tech measurements in symptomatic tennis players.

  17. A review of nerve conduction studies in cases of suspected compression neuropathies of the upper limb.

    LENUS (Irish Health Repository)

    Neligan, A

    2010-01-01

    Entrapment neuropathies, particularly those affecting upper limbs, are common reasons for referral for nerve conduction studies (NCS). However, concordance between clinical findings and NCS findings, especially in patients being considered for intervention including decompressive surgery, has not been assessed.

  18. Bilateral upper limb amputations in victims of high tension electrical injuries: Three case studies

    Directory of Open Access Journals (Sweden)

    Cajetan Nwadinigwe

    2015-02-01

    Full Text Available Bilateral upper limb amputations result in severe disability. High voltage electrical injury is a rare cause of such an outcome and injuries often occur as occupational hazards. We present three case reports of accidental high voltage injuries that occurred in a non-occupational setting. Victims were all initially managed at other centres before referral to our hospital and all subsequently had bilateral upper limb amputations. The high cost of treatment, importance of prevention, and need for rehabilitation are highlighted.

  19. Assessment of posture and joint movements of the upper limbs of patients after mastectomy and lymphadenectomy

    OpenAIRE

    Haddad,Cinira Assad Simão; Saad, Marcelo; Perez, Maria del Carmen Janeiro; Miranda Júnior,Fausto

    2013-01-01

    OBJECTIVE: To evaluate alterations in posture and range of motion of the upper limbs in women after mastectomy and lymphadenectomy, submitted to radiotherapy as adjuvant treatment. METHODS: Two groups were evaluated: 16 post-mastectomy women with lymphedema of the upper limb and 14 post-mastectomy women without lymphedema. Patients were submitted to analysis made by software, one for posture and the other to measure ranges of movement of the shoulder, elbow, and wrists. The results obtained w...

  20. Patients with non-specific neck disorders commonly report upper limb disability.

    Science.gov (United States)

    Osborn, William; Jull, Gwendolen

    2013-12-01

    Patients with neck disorders can report difficulties with functional use of their upper limb because of their neck pain. Yet, there is little information on the frequency and specifically, the nature of these upper limb activities. This study surveyed patients with neck pain disorders (n = 103) presenting for management at private physiotherapy clinics in a large metropolitan area to investigate the frequency and nature of reduced upper limb function. Participants were asked to complete four questionnaires, the Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire, the Neck Disability Index (NDI), Pictorial Fear of Activity Scale-Cervical (PFActS-C) and Patient Specific Functional Scale (PSFS). Approximately 80% of patients spontaneously reported that upper limb activities aggravated their neck pain (PSFS). Most frequently, these activities involved loading of the upper limb such as lifting. Eight activity items on the DASH were scored positive by ≥50% of participants. Participants had mild to moderately severe neck pain (NDI: range 2-68%). The DASH and NDI were moderately-highly correlated (ρ = 0.669; p neck pain severity the greater the upper limb functional restrictions. There was a low correlation between the NDI and PFActS-C (ρ = 0.319; p = 0.001). These findings provide evidence that upper limb function is often impaired in association with neck pain disorders and suggest clinicians should routinely question patients regarding upper limb function. The DASH could be used as a suitable outcome measure in its current or possibly a modified form.

  1. Common goal areas in the treatment of upper limb spasticity:a multicentre analysis

    OpenAIRE

    Ashford, Stephen; Fheodoroff, Klemens; Jacinto, Jorge; Turner-Stokes, Lynne Frances

    2016-01-01

    Objective: We aimed to develop a goal classification of individualised goals for spasticity treatment incorporating botulinum toxin intervention for upper limb spasticity to under-pin a more structured approach to future goal setting.Design: Individualised goals for spasticity treatment incorporating botulinum toxin intervention for upper limb spasticity (n=696) were analysed initially from four studies published in 2008-2012, spanning a total of 18 centres (12 in the UK and 6 in Australia). ...

  2. [Hand-arm vibration syndrome and upper limbs diseases in the forest workers of Italia meridionale].

    Science.gov (United States)

    Fenga, C; Rapisarda, V; Valentino, M; Cacciola, A; Deboli, R; Calvo, A; Germanò, D

    2007-01-01

    Vibration exposure of the hand-arm system is associated with an increased risk of upper-limb vascular, neurological and musculoskeletal lesions, or hand-arm vibration syndrome (HAVS). The prevalence of occupational HAVS and upper-limb disorders was studied among 278 Forestry Service workers in Sicily and Calabria. Subjects who used chain-saws (18 weeks/year) had a greater prevalence of peripheral sensory-neural disturbances (28%), upper-limb musculoskeletal disorders (33%) and carpal tunnel syndrome (19%) compared with 260 manual workers from the same Corps not exposed to hand-transmitted vibration. Raynaud's phenomenon was comparable in exposed and control subjects (5.3% vs. 4.7%.) Upper-limb neuropathies were significantly associated with energy-equivalent frequency-weighted acceleration; exposure duration; and cumulative vibration dose (m2/s4h). The variable "years of work with vibrating tools" was strongly associated with peripheral neuropathies; carpal tunnel syndrome; and upper-limb musculotendinous syndromes. Data suggest that in Sicily and Calabria, where the climate is milder than in other areas of Italy, forestry work with hand-held vibrating tools does not entail a greater prevalence of peripheral vascular disorders (Raynaud's phenomenon), while the prevalence of occupational upper-limb neurological and musculoskeletal disorders, in which combined ergonomic and mechanical risk factors have a large pathogenic role, is significantly increased.

  3. The validity of the mangled extremity severity score in the assessment of upper limb injuries.

    Science.gov (United States)

    Togawa, S; Yamami, N; Nakayama, H; Mano, Y; Ikegami, K; Ozeki, S

    2005-11-01

    The Mangled Extremity Severity Score (MESS) may be used to decide whether to perform amputation in patients with injuries involving a limb. A score of 7 points or higher indicates the need for amputation. We have treated three patients with a MESS of 7 points or higher, in two of which the injured limb was salvaged. This scoring system was originally devised to assess injuries to the lower limb. However, a MESS of 7 points as a justification for amputation does not appear appropriate when assessing injuries to the major vessels in the upper limb.

  4. Differences in muscle power between the dominant and nondominant upper limbs of baseball players.

    Science.gov (United States)

    Noguchi, Takanori; Demura, Shinichi; Takahashi, Kenji; Demura, Gou; Mori, Yasunori

    2014-01-01

    We examined the differences in muscle power between the dominant and nondominant upper limbs of 33 healthy, right-handed, university baseball players (mean age, 20.4 ± 1.1 years) with an average baseball experience >11 years. After measuring maximal voluntary contraction (MVC) of hand grip, elbow flexion, and shoulder internal rotation in both upper limbs, the muscle power of each joint was measured at 40%, 50%, and 60% MVC. No significant differences were observed in the main factors affecting MVC and elbow flexion power loads between dominant and nondominant upper limbs. For handgrip power, load factors at 40% MVC in the dominant hand were lower than those at 60% MVC in the same hand and those at 50% and 60% MVC in the nondominant hand. Significant differences were observed in shoulder internal rotation power between dominant and nondominant upper limbs, with the dominant limb having greater power at all loads. Correlations between muscle power of both upper limbs for handgrip and elbow flexion were significant and moderately high at all loads. For shoulder internal rotation power, the degree of correlation was significant and moderately high at 40% MVC but low to moderate at 50% and 60% MVC. Therefore, baseball players have marked lateral dominance in shoulder internal rotation power unlike handgrip and elbow flexion power, although the relationship between shoulder internal rotation muscle powers of both upper limbs becomes lower with increasing load. The dominance of muscle power of each joint varied even in the same upper limb. It is thus beneficial for baseball players to train with even loads on both arms or adopt simultaneous workout of both arms after adjusting for strength differences.

  5. Technology that Touches Lives: Teleconsultation to Benefit Persons with Upper Limb Loss

    OpenAIRE

    Whelan, Lynsay R.; Nathan Wagner

    2011-01-01

    While over 1.5 million individuals are living with limb loss in the United States (Ziegler-Graham et al., 2008), only 10% of these individuals have a loss that affects an upper limb. Coincident with the relatively low incidence of upper limb loss, is a shortage of the community-based prosthetic rehabilitation experts that can help prosthetic users to more fully integrate their devices into their daily routines. This article describes how expert prosthetists and occupational therapis...

  6. The Armeo Spring as training tool to improve upper limb functionality in multiple sclerosis: a pilot study

    Directory of Open Access Journals (Sweden)

    Kerkhofs Lore

    2011-01-01

    Full Text Available Abstract Background Few research in multiple sclerosis (MS has focused on physical rehabilitation of upper limb dysfunction, though the latter strongly influences independent performance of activities of daily living. Upper limb rehabilitation technology could hold promise for complementing traditional MS therapy. Consequently, this pilot study aimed to examine the feasibility of an 8-week mechanical-assisted training program for improving upper limb muscle strength and functional capacity in MS patients with evident paresis. Methods A case series was applied, with provision of a training program (3×/week, 30 minutes/session, supplementary on the customary maintaining care, by employing a gravity-supporting exoskeleton apparatus (Armeo Spring. Ten high-level disability MS patients (Expanded Disability Status Scale 7.0-8.5 actively performed task-oriented movements in a virtual real-life-like learning environment with the affected upper limb. Tests were administered before and after training, and at 2-month follow-up. Muscle strength was determined through the Motricity Index and Jamar hand-held dynamometer. Functional capacity was assessed using the TEMPA, Action Research Arm Test (ARAT and 9-Hole Peg Test (9HPT. Results Muscle strength did not change significantly. Significant gains were particularly found in functional capacity tests. After training completion, TEMPA scores improved (p = 0.02, while a trend towards significance was found for the 9HPT (p = 0.05. At follow-up, the TEMPA as well as ARAT showed greater improvement relative to baseline than after the 8-week intervention period (p = 0.01, p = 0.02 respectively. Conclusions The results of present pilot study suggest that upper limb functionality of high-level disability MS patients can be positively influenced by means of a technology-enhanced physical rehabilitation program.

  7. Early delayed amputation: a paradigm shift in the limb-salvage time line for patients with major upper-limb injury.

    Science.gov (United States)

    Burdette, Todd E; Long, Sarah A; Ho, Oscar; Demas, Chris; Bell, John-Erik; Rosen, Joseph M

    2009-01-01

    Patients with major injuries to the upper limbs sometimes fail to achieve successful limb salvage. During the attempt to fashion a functional limb, multiple painful procedures may be ventured. Despite the best efforts of surgeons and therapists, a nonfunctioning or painful upper limb may remain in place for many months or years before late delayed amputation and progression to productive rehabilitation occur. We present three patient cases that illustrate failed upper-limb salvage. In each case, patients expressed a desire for amputation at 6 months after their injury. To reduce the pain and suffering that patients with failed limb salvage endure, we propose a paradigm shift in the limb-salvage time line. We suggest that patients be evaluated for early delayed amputation 6 months after their injury.

  8. Thermographic patterns of the upper and lower limbs: baseline data.

    Science.gov (United States)

    Gatt, Alfred; Formosa, Cynthia; Cassar, Kevin; Camilleri, Kenneth P; De Raffaele, Clifford; Mizzi, Anabelle; Azzopardi, Carl; Mizzi, Stephen; Falzon, Owen; Cristina, Stefania; Chockalingam, Nachiappan

    2015-01-01

    Objectives. To collect normative baseline data and identify any significant differences between hand and foot thermographic distribution patterns in a healthy adult population. Design. A single-centre, randomized, prospective study. Methods. Thermographic data was acquired using a FLIR camera for the data acquisition of both plantar and dorsal aspects of the feet, volar aspects of the hands, and anterior aspects of the lower limbs under controlled climate conditions. Results. There is general symmetry in skin temperature between the same regions in contralateral limbs, in terms of both magnitude and pattern. There was also minimal intersubject temperature variation with a consistent temperature pattern in toes and fingers. The thumb is the warmest digit with the temperature falling gradually between the 2nd and the 5th fingers. The big toe and the 5th toe are the warmest digits with the 2nd to the 4th toes being cooler. Conclusion. Measurement of skin temperature of the limbs using a thermal camera is feasible and reproducible. Temperature patterns in fingers and toes are consistent with similar temperatures in contralateral limbs in healthy subjects. This study provides the basis for further research to assess the clinical usefulness of thermography in the diagnosis of vascular insufficiency.

  9. Thermographic Patterns of the Upper and Lower Limbs: Baseline Data

    Directory of Open Access Journals (Sweden)

    Alfred Gatt

    2015-01-01

    Full Text Available Objectives. To collect normative baseline data and identify any significant differences between hand and foot thermographic distribution patterns in a healthy adult population. Design. A single-centre, randomized, prospective study. Methods. Thermographic data was acquired using a FLIR camera for the data acquisition of both plantar and dorsal aspects of the feet, volar aspects of the hands, and anterior aspects of the lower limbs under controlled climate conditions. Results. There is general symmetry in skin temperature between the same regions in contralateral limbs, in terms of both magnitude and pattern. There was also minimal intersubject temperature variation with a consistent temperature pattern in toes and fingers. The thumb is the warmest digit with the temperature falling gradually between the 2nd and the 5th fingers. The big toe and the 5th toe are the warmest digits with the 2nd to the 4th toes being cooler. Conclusion. Measurement of skin temperature of the limbs using a thermal camera is feasible and reproducible. Temperature patterns in fingers and toes are consistent with similar temperatures in contralateral limbs in healthy subjects. This study provides the basis for further research to assess the clinical usefulness of thermography in the diagnosis of vascular insufficiency.

  10. Upper Limb Portable Motion Analysis System Based on Inertial Technology for Neurorehabilitation Purposes

    Directory of Open Access Journals (Sweden)

    Enrique J. Gómez

    2010-12-01

    Full Text Available Here an inertial sensor-based monitoring system for measuring and analyzing upper limb movements is presented. The final goal is the integration of this motion-tracking device within a portable rehabilitation system for brain injury patients. A set of four inertial sensors mounted on a special garment worn by the patient provides the quaternions representing the patient upper limb’s orientation in space. A kinematic model is built to estimate 3D upper limb motion for accurate therapeutic evaluation. The human upper limb is represented as a kinematic chain of rigid bodies with three joints and six degrees of freedom. Validation of the system has been performed by co-registration of movements with a commercial optoelectronic tracking system. Successful results are shown that exhibit a high correlation among signals provided by both devices and obtained at the Institut Guttmann Neurorehabilitation Hospital.

  11. WORK RELATED MUSCULOSKELETAL DISORDERS OF THE UPPER LIMBS AMONG STEEL INDUSTRY POPULATIONS

    Directory of Open Access Journals (Sweden)

    S. A. Moussavi-Najarkola A. Khavanin

    2007-08-01

    Full Text Available For high occurrences of upper extremity disorders in working populations and in order to compare the occurrence of musculoskeletal alterations due to ergonomic risk factors such as highly force exertion, repetition, awkward posture between exposed and non-exposed groups, the research was carried out in Tabarestan steel industry. All 526 male workers (316 as exposed group : 132 aged 20-35 years, 184 aged >35 years; 210 as Non-exposed group: 89 aged 20-35 years, 121 aged > 35 years performing tasks exposed / not exposed to risk factors for WMSDS of the upper limbs underwent a clinical examinations as well as completing standardized Nordic Musculoskeletal Questionnaires. The anamnestic cases were defined on the basis of pain, paraesthesia, hyposthenia, and vegetative disorders during previous months. Mean age of exposed and non- exposed groups were obtained 36.3 years (SD= 5.9 and 37.9 years (SD = 7.3 respectively. There were distinguished differences in occurrences of WMSDS of upper limbs between two mentioned groups. The major occurrence was found for the right and left hands. Nocturnal and diurnal paraesthesia obtained an occurrence of about 54% and 53% respectively. Data bears witness to the greater occurrence of affected individuals in exposed group, with a non- exposed / exposed ratio of 1:7.2. The greater occurrences of affected individuals in exposed group (P = 0.006 and in subjects>35 years (P = 0.002 were significant. Structural, organizational and educational measures can be applied to prevent WMSDS or diminish the relative effects to acceptable limit.

  12. Control system design of a 3-DOF upper limbs rehabilitation robot.

    Science.gov (United States)

    Denève, Alexandre; Moughamir, Saïd; Afilal, Lissan; Zaytoon, Janan

    2008-02-01

    This paper presents the control system design of a rehabilitation and training robot for the upper limbs. Based on a hierarchical structure, this control system allows the execution of sequence of switching control laws (position, force, impedance and force/impedance) corresponding to the required training configuration. A model-based nonlinear controller is used to impose the desired environment to the patient's arm. The knowledge of robot kinematics and dynamics is thus necessary to ensure haptic transparency and patient safety. The identification process of robot dynamics is emphasised and experimental identification results are given for the designed robot. The paper also presents a particular rehabilitation mode named Active-Assisted. Simulation results of this rehabilitation mode illustrate the potentialities of the overall control scheme, which can also be applied to other rehabilitation robots.

  13. Wearable sensors for 3D upper limb motion modeling and ubiquitous estimation

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Human motion capture technologies are widely used in interactive game and learning, animation, film special effects, health care, and navigation. Because of the agility, upper limb motion estimation is the most difficult problem in human motion capture. Traditional methods always assume that the movements of upper arm and forearm are independent and then estimate their movements separately; therefore, the estimated motion are always with serious distortion. In this paper, we propose a novel ubiquitous upper...

  14. Computer-aided training sensorimotor cortex functions in humans before the upper limb transplantation using virtual reality and sensory feedback.

    Science.gov (United States)

    Kurzynski, Marek; Jaskolska, Anna; Marusiak, Jaroslaw; Wolczowski, Andrzej; Bierut, Przemyslaw; Szumowski, Lukasz; Witkowski, Jerzy; Kisiel-Sajewicz, Katarzyna

    2017-08-01

    One of the biggest problems of upper limb transplantation is lack of certainty as to whether a patient will be able to control voluntary movements of transplanted hands. Based on findings of the recent research on brain cortex plasticity, a premise can be drawn that mental training supported with visual and sensory feedback can cause structural and functional reorganization of the sensorimotor cortex, which leads to recovery of function associated with the control of movements performed by the upper limbs. In this study, authors - based on the above observations - propose the computer-aided training (CAT) system, which generating visual and sensory stimuli, should enhance the effectiveness of mental training applied to humans before upper limb transplantation. The basis for the concept of computer-aided training system is a virtual hand whose reaching and grasping movements the trained patient can observe on the VR headset screen (visual feedback) and whose contact with virtual objects the patient can feel as a touch (sensory feedback). The computer training system is composed of three main components: (1) the system generating 3D virtual world in which the patient sees the virtual limb from the perspective as if it were his/her own hand; (2) sensory feedback transforming information about the interaction of the virtual hand with the grasped object into mechanical vibration; (3) the therapist's panel for controlling the training course. Results of the case study demonstrate that mental training supported with visual and sensory stimuli generated by the computer system leads to a beneficial change of the brain activity related to motor control of the reaching in the patient with bilateral upper limb congenital transverse deficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Design and preliminary evaluation of an exoskeleton for upper limb resistance training

    Science.gov (United States)

    Wu, Tzong-Ming; Chen, Dar-Zen

    2012-06-01

    Resistance training is a popular form of exercise recommended by national health organizations, such as the American College of Sports Medicine (ACSM) and the American Heart Association (AHA). This form of training is available for most populations. A compact design of upper limb exoskeleton mechanism for homebased resistance training using a spring-loaded upper limb exoskeleton with a three degree-of-freedom shoulder joint and a one degree-of-freedom elbow joint allows a patient or a healthy individual to move the upper limb with multiple joints in different planes. It can continuously increase the resistance by adjusting the spring length to train additional muscle groups and reduce the number of potential injuries to upper limb joints caused by the mass moment of inertia of the training equipment. The aim of this research is to perform a preliminary evaluation of the designed function by adopting an appropriate motion analysis system and experimental design to verify our prototype of the exoskeleton and determine the optimal configuration of the spring-loaded upper limb exoskeleton.

  16. Characterizing upper limb muscle volume and strength in older adults: a comparison with young adults.

    Science.gov (United States)

    Vidt, Meghan E; Daly, Melissa; Miller, Michael E; Davis, Cralen C; Marsh, Anthony P; Saul, Katherine R

    2012-01-10

    Aging is associated with the loss of muscle volume (MV) and force leading to difficulties with activities of daily living. However, the relationship between upper limb MV and joint strength has not been characterized for older adults. Quantifying this relationship may help our understanding of the functional declines of the upper limb that older adults experience. Our objective was to assess the relationship between upper limb MV and maximal isometric joint moment-generating capacity (IJM) in a single cohort of healthy older adults (age ≥ 65 years) for 6 major functional groups (32 muscles). MV was determined from MRI for 18 participants (75.1±4.3 years). IJM at the shoulder (abduction/adduction), elbow (flexion/extension), and wrist (flexion/extension) was measured. MV and IJM measurements were compared to previous reports for young adults (28.6±4.5 years). On average older adults had 16.5% less total upper limb MV compared to young adults. Additionally, older adult wrist extensors composed a significantly increased percentage of upper limb MV. Older adult IJM was reduced across all joints, with significant differences for shoulder abductors (pIJM was accounted for by MV changes (p≤0.027), compared to 81.0% in young adults. We conclude that for older adults, MV and IJM are, on average, reduced but the significant linear relationship between MV and IJM is maintained. These results suggest that older adult MV and IJM cannot be simply scaled from young adults.

  17. A Systematic Review of Bilateral Upper Limb Training Devices for Poststroke Rehabilitation

    Directory of Open Access Journals (Sweden)

    A. (Lex E. Q. van Delden

    2012-01-01

    Full Text Available Introduction. In stroke rehabilitation, bilateral upper limb training is gaining ground. As a result, a growing number of mechanical and robotic bilateral upper limb training devices have been proposed. Objective. To provide an overview and qualitative evaluation of the clinical applicability of bilateral upper limb training devices. Methods. Potentially relevant literature was searched in the PubMed, Web of Science, and Google Scholar databases from 1990 onwards. Devices were categorized as mechanical or robotic (according to the PubMed MeSH term of robotics. Results. In total, 6 mechanical and 14 robotic bilateral upper limb training devices were evaluated in terms of mechanical and electromechanical characteristics, supported movement patterns, targeted part and active involvement of the upper limb, training protocols, outcomes of clinical trials, and commercial availability. Conclusion. Initial clinical results are not yet of such caliber that the devices in question and the concepts on which they are based are firmly established. However, the clinical outcomes do not rule out the possibility that the concept of bilateral training and the accompanied devices may provide a useful extension of currently available forms of therapy. To actually demonstrate their (surplus value, more research with adequate experimental, dose-matched designs, and sufficient statistical power are required.

  18. A systematic review of bilateral upper limb training devices for poststroke rehabilitation.

    Science.gov (United States)

    van Delden, A Lex E Q; Peper, C Lieke E; Kwakkel, Gert; Beek, Peter J

    2012-01-01

    Introduction. In stroke rehabilitation, bilateral upper limb training is gaining ground. As a result, a growing number of mechanical and robotic bilateral upper limb training devices have been proposed. Objective. To provide an overview and qualitative evaluation of the clinical applicability of bilateral upper limb training devices. Methods. Potentially relevant literature was searched in the PubMed, Web of Science, and Google Scholar databases from 1990 onwards. Devices were categorized as mechanical or robotic (according to the PubMed MeSH term of robotics). Results. In total, 6 mechanical and 14 robotic bilateral upper limb training devices were evaluated in terms of mechanical and electromechanical characteristics, supported movement patterns, targeted part and active involvement of the upper limb, training protocols, outcomes of clinical trials, and commercial availability. Conclusion. Initial clinical results are not yet of such caliber that the devices in question and the concepts on which they are based are firmly established. However, the clinical outcomes do not rule out the possibility that the concept of bilateral training and the accompanied devices may provide a useful extension of currently available forms of therapy. To actually demonstrate their (surplus) value, more research with adequate experimental, dose-matched designs, and sufficient statistical power are required.

  19. A Pilot Study of Botulinum Toxin for Jerky, Position-Specific, Upper Limb Action Tremor

    Science.gov (United States)

    Saifee, Tabish A.; Teodoro, Tiago; Erro, Roberto; Edwards, Mark J.; Cordivari, Carla

    2016-01-01

    Background We aimed to investigate the efficacy and safety of botulinum toxin (BT) injections for jerky action tremor of the upper limb. Methods We performed an uncontrolled, prospective study of electromyography (EMG)-guided BT injections for jerky, position-specific, upper limb action tremor. The primary outcome was clinical global impression at 3–6 weeks after baseline. Results Eight patients with jerky, position-specific action tremor involving the upper limb were consecutively recruited. After a median follow-up of 4.4 weeks (interquartile range [IQR] 3.6–6 weeks), four of them rated themselves as “improved” and two as “much improved.” Five of these six subjects reported improvements in specific activities of daily living (bringing liquids to mouth, feeding, shaving, and dressing). Upper limb subscore of the Fahn–Tolosa–Marin Tremor Rating Scale (FTM) significantly decreased from 4.5 (4–6) to 3 (2–5) (p = 0.01). Discussion This pilot, prospective cohort study suggests that EMG-guided BT injections may improve jerky, position-specific, upper limb action tremor. Placebo-controlled studies evaluating larger samples of patients are warranted to confirm these findings. PMID:27818844

  20. CLINICAL REABILITATION OF UPPER LIMB IN CHRONIC STROKE IN PORTUGAL A CROSS SECTIONAL SURVEY

    Directory of Open Access Journals (Sweden)

    Andre Vieira

    2016-02-01

    Full Text Available Background: More than 77% of stroke survivors have upper limb dysfunction. The scientific evidence for interventions in upper limb rehabilitation in stroke has shown variable results. To improve health care treatments in this domain it is needed to know what modalities are actually being used by physiotherapists. Methods: A national web-based survey focused in characterizing the profile of Portuguese physiotherapists working in post-stroke upper limb rehabilitation was conducted in 237 health institutions (n= 462 physiotherapists. The recruitment was conducted from August to December 2014. Analytic and descriptive analysis were used. Results: A total of 179 physiotherapists from 64 different locations from Portugal answered the survey, with a rate of response of 38.7%. The average age of respondents was 29.25±6.4 years old and predominantly finished the graduation or bachelor degree between 2001 and 2010. More than half hadn´t carried out any specialization in neurologic rehabilitation area. The top 5 modalities most used in the rehabilitation of upper limb in acute stroke are Goal Oriented Tasks (93.4% n=141, Motor Learning (89.4% n=135, Passive Mobilization (88.7% n=134, Task Repetition (87.4% n=132 and Bobath/Neurodevelopmental Therapy (86.9% n=131. Conclusions: The main modalities used for physiotherapists in upper limb rehabilitation in acute stroke have sparse levels of evidence. It is important to alert teachers, formers, physiotherapists and students for interventions with supported scientific results.

  1. Coupling of upper and lower limb pattern generators during human crawling at different arm/leg speed combinations.

    Science.gov (United States)

    MacLellan, M J; Ivanenko, Y P; Catavitello, G; La Scaleia, V; Lacquaniti, F

    2013-03-01

    A crawling paradigm was performed by healthy adults to examine inter-limb coupling patterns and to understand how central pattern generators (CPGs) for the upper and lower limbs are coordinated. Ten participants performed hands-and-feet crawling on two separate treadmills, one for the upper limbs and another one for the lower limbs, the speed of each of them being changed independently. A 1:1 frequency relationship was often maintained even when the treadmill speed was not matched between the upper and lower limbs. However, relative stance durations in the upper limbs were only affected by changes of the upper limb treadmill speed, suggesting that although absolute times are adjusted, the relative proportions of stances and swing do not adapt to changes in lower limb treadmill speeds. With large differences between treadmill speeds, changes in upper and lower limb coupling ratio tended to occur when the upper limbs stepped at slower speeds than the lower limbs, but more rarely the other way around. These findings are in sharp contrast with those in the cat, where forelimbs always follow the rhythm of the faster moving hindlimbs. However, the fact that an integer frequency ratio is often maintained between the upper and lower limbs supports evidence of coupled CPG control. We speculate that the preference for the upper limb to decrease step frequency at lower speeds in humans may be due to weaker ascending propriospinal connections and/or a larger influence of cortical control on the upper limbs which allows for an overriding of spinal CPG control.

  2. Upper Limb Posture Estimation in Robotic and Virtual Reality-Based Rehabilitation

    Directory of Open Access Journals (Sweden)

    Camilo Cortés

    2014-01-01

    Full Text Available New motor rehabilitation therapies include virtual reality (VR and robotic technologies. In limb rehabilitation, limb posture is required to (1 provide a limb realistic representation in VR games and (2 assess the patient improvement. When exoskeleton devices are used in the therapy, the measurements of their joint angles cannot be directly used to represent the posture of the patient limb, since the human and exoskeleton kinematic models differ. In response to this shortcoming, we propose a method to estimate the posture of the human limb attached to the exoskeleton. We use the exoskeleton joint angles measurements and the constraints of the exoskeleton on the limb to estimate the human limb joints angles. This paper presents (a the mathematical formulation and solution to the problem, (b the implementation of the proposed solution on a commercial exoskeleton system for the upper limb rehabilitation, (c its integration into a rehabilitation VR game platform, and (d the quantitative assessment of the method during elbow and wrist analytic training. Results show that this method properly estimates the limb posture to (i animate avatars that represent the patient in VR games and (ii obtain kinematic data for the patient assessment during elbow and wrist analytic rehabilitation.

  3. Upper limb posture estimation in robotic and virtual reality-based rehabilitation.

    Science.gov (United States)

    Cortés, Camilo; Ardanza, Aitor; Molina-Rueda, F; Cuesta-Gómez, A; Unzueta, Luis; Epelde, Gorka; Ruiz, Oscar E; De Mauro, Alessandro; Florez, Julian

    2014-01-01

    New motor rehabilitation therapies include virtual reality (VR) and robotic technologies. In limb rehabilitation, limb posture is required to (1) provide a limb realistic representation in VR games and (2) assess the patient improvement. When exoskeleton devices are used in the therapy, the measurements of their joint angles cannot be directly used to represent the posture of the patient limb, since the human and exoskeleton kinematic models differ. In response to this shortcoming, we propose a method to estimate the posture of the human limb attached to the exoskeleton. We use the exoskeleton joint angles measurements and the constraints of the exoskeleton on the limb to estimate the human limb joints angles. This paper presents (a) the mathematical formulation and solution to the problem, (b) the implementation of the proposed solution on a commercial exoskeleton system for the upper limb rehabilitation, (c) its integration into a rehabilitation VR game platform, and (d) the quantitative assessment of the method during elbow and wrist analytic training. Results show that this method properly estimates the limb posture to (i) animate avatars that represent the patient in VR games and (ii) obtain kinematic data for the patient assessment during elbow and wrist analytic rehabilitation.

  4. Upper Limb Posture Estimation in Robotic and Virtual Reality-Based Rehabilitation

    Science.gov (United States)

    Cortés, Camilo; Ardanza, Aitor; Molina-Rueda, F.; Cuesta-Gómez, A.; Ruiz, Oscar E.

    2014-01-01

    New motor rehabilitation therapies include virtual reality (VR) and robotic technologies. In limb rehabilitation, limb posture is required to (1) provide a limb realistic representation in VR games and (2) assess the patient improvement. When exoskeleton devices are used in the therapy, the measurements of their joint angles cannot be directly used to represent the posture of the patient limb, since the human and exoskeleton kinematic models differ. In response to this shortcoming, we propose a method to estimate the posture of the human limb attached to the exoskeleton. We use the exoskeleton joint angles measurements and the constraints of the exoskeleton on the limb to estimate the human limb joints angles. This paper presents (a) the mathematical formulation and solution to the problem, (b) the implementation of the proposed solution on a commercial exoskeleton system for the upper limb rehabilitation, (c) its integration into a rehabilitation VR game platform, and (d) the quantitative assessment of the method during elbow and wrist analytic training. Results show that this method properly estimates the limb posture to (i) animate avatars that represent the patient in VR games and (ii) obtain kinematic data for the patient assessment during elbow and wrist analytic rehabilitation. PMID:25110698

  5. Esthetic prostheses in minor and major upper limb amputations.

    Science.gov (United States)

    Leow, M E; Pho, R W; Pereira, B P

    2001-08-01

    In summary, the impact and value of esthetic prostheses on amputee rehabilitation and their long-term use were demonstrated in this study to have no correlation with the severity of injury and level of amputation. All patients with traumatic amputation should be given equal opportunity to receive prostheses if the service is readily available. Whether use of prostheses is temporary or long-term, they help patients cope with the traumatic life experience of limb loss.

  6. Single centre experience of the upper limb replantation and revascularisation.

    Science.gov (United States)

    Visnjic, Milan M; Kovacevic, Predrag T; Paunkovic, Ljiljana M; Milenkovic, Sasa S

    2004-01-01

    Replantation is defined as reattachment of the amputated limb using the neurovascular and musculoskeletal structures in order to obtain the recovery of the limb. Fortunately, injuries causing limb amputation are rare. Adequate treatment within the optimal time scale can provide successful rehabilitation of the shape and function of the replanted part. We report the experience of our Clinical Centre (regional replantation centre) in the replantation of five forearms/hands and revascularisation of six hands between 1997 and 2001. The most frequent site of injury was the distal part of the forearm, while the major cause of injuries was a wood processing machine. The surgical procedures were performed under general anaesthesia within 2-6 hours after injury. Vascular anastomoses, nerve repair and muscle repair were performed following the external bone fixation. All patients were given anticoagulation treatment postoperatively. Thrombosis in the anastomotic site developed as an early complication in two patients who underwent thrombectomy; one of these patients developed gangrene and underwent amputation. Late postoperative results were good in 10 patients. One patient developed acral epidermolysis. Postoperative results after revascularisation were good in all patients.

  7. An investigation into the neuromuscular control at the level of the upper limbs of junior handball girls players

    Directory of Open Access Journals (Sweden)

    Teodora-Mihaela Iconomescu

    2016-01-01

    Full Text Available In this paper we want to present the development of upper limb muscle control in sportswomen handball. Thus at the beginning and end of championship players girls were tested with one MOVE 1 DU device type, then centralized data obtained and analyzed statistically. Handball players’ were 10 girls subjected search with the average age of 12.5 years, the average height of 165.5 cm. and an average weight of 57.7 kg. By centralizing data obtained we have seen an increase in upper limb neuromuscular control in final testing of statistically p <.05. Statistical analysis confirms the hypothesis that the means to improve neuromuscular control if applied properly and psychomotor functional somatic features specific age increases the competitive performance.

  8. Combined mirror visual and auditory feedback therapy for upper limb phantom pain: a case report

    Directory of Open Access Journals (Sweden)

    Yan Kun

    2011-01-01

    Full Text Available Abstract Introduction Phantom limb sensation and phantom limb pain is a very common issue after amputations. In recent years there has been accumulating data implicating 'mirror visual feedback' or 'mirror therapy' as helpful in the treatment of phantom limb sensation and phantom limb pain. Case presentation We present the case of a 24-year-old Caucasian man, a left upper limb amputee, treated with mirror visual feedback combined with auditory feedback with improved pain relief. Conclusion This case may suggest that auditory feedback might enhance the effectiveness of mirror visual feedback and serve as a valuable addition to the complex multi-sensory processing of body perception in patients who are amputees.

  9. Aerobic exercise modulates intracortical inhibition and facilitation in a nonexercised upper limb muscle

    OpenAIRE

    Singh, Amaya M; Duncan, Robin E; Neva, Jason L.; Staines, W. Richard

    2014-01-01

    Background Despite growing interest in the relationship between exercise and short-term neural plasticity, the effects of exercise on motor cortical (M1) excitability are not well studied. Acute, lower-limb aerobic exercise may potentially modulate M1 excitability in working muscles, but the effects on muscles not involved in the exercise are unknown. Here we examined the excitability changes in an upper limb muscle representation following a single session of lower body aerobic exercise. Inv...

  10. Phantom pain and phantom sensations in upper limb amputees: an epidemiological study

    OpenAIRE

    Kooijman, CM; Dijkstra, PU; Geertzen, JHB; Elzinga, A; Van Der Schans, CP

    2000-01-01

    Phantom pain in subjects with an amputated limb is a well-known problem. However, estimates of the prevalence of phantom pain differ considerably in the literature. Various factors associated with phantom pain have been described including pain before the amputation, gender, dominance, and time elapsed since the amputation. The purposes of this study were to determine prevalence and factors associated with phantom pain and phantom sensations in upper limb amputees in The Netherlands. Addition...

  11. Mirror therapy for upper limb rehabilitation in chronic patients after stroke

    OpenAIRE

    Mota,Dreyzialle Vila Nova; Meireles,André Luís Ferreira de; Viana, Marcelo Tavares; ALMEIDA, Rita de Cássia de Albuquerque

    2016-01-01

    Abstract Introduction: Individuals with stroke sequelae present changes in the postural alignment and muscle strength associated with hemiplegia or hemiparesis. Mirror therapy is a technique that aims to improve the motor function of the paretic limb. Objective: The aim of this study was to evaluate the effect of mirror therapy, associated with conventional physiotherapy, for range of motion (ROM), degree of spasticity of the affected upper limb, and the level of independence in the activ...

  12. Withdrawal reflexes in the upper limb adapt to arm posture and stimulus location.

    Science.gov (United States)

    Peterson, Carrie L; Riley, Zachary A; Krepkovich, Eileen T; Murray, Wendy M; Perreault, Eric J

    2014-05-01

    Withdrawal reflexes in the leg adapt in a context-appropriate manner to remove the limb from noxious stimuli, but the extent to which withdrawal reflexes adapt in the arm remains unknown. We examined the adaptability of withdrawal reflexes in response to nociceptive stimuli applied in different arm postures and to different digits. Reflexes were elicited at rest, and kinetic and electromyographic responses were recorded under isometric conditions, thereby allowing motorneuron pool excitability to be controlled. Endpoint force changed from a posterior-lateral direction in a flexed posture to predominantly a posterior direction in a more extended posture [change in force angle (mean ± standard deviation) 35.6 ± 5.0°], and the force direction changed similarly with digit I stimulation compared with digit V (change = 22.9 ± 2.9°). The withdrawal reflex in the human upper limb adapts in a functionally relevant manner when elicited at rest. Copyright © 2013 Wiley Periodicals, Inc.

  13. High-density force myography: A possible alternative for upper-limb prosthetic control

    Directory of Open Access Journals (Sweden)

    Ashkan Radmand, PhD

    2016-07-01

    Full Text Available Several multiple degree-of-freedom upper-limb prostheses that have the promise of highly dexterous control have recently been developed. Inadequate controllability, however, has limited adoption of these devices. Introducing more robust control methods will likely result in higher acceptance rates. This work investigates the suitability of using high-density force myography (HD-FMG for prosthetic control. HD-FMG uses a high-density array of pressure sensors to detect changes in the pressure patterns between the residual limb and socket caused by the contraction of the forearm muscles. In this work, HD-FMG outperforms the standard electromyography (EMG-based system in detecting different wrist and hand gestures. With the arm in a fixed, static position, eight hand and wrist motions were classified with 0.33% error using the HD-FMG technique. Comparatively, classification errors in the range of 2.2%–11.3% have been reported in the literature for multichannel EMG-based approaches. As with EMG, position variation in HD-FMG can introduce classification error, but incorporating position variation into the training protocol reduces this effect. Channel reduction was also applied to the HD-FMG technique to decrease the dimensionality of the problem as well as the size of the sensorized area. We found that with informed, symmetric channel reduction, classification error could be decreased to 0.02%.

  14. Evaluation of upper limb sense of position in healthy individuals and patients after stroke.

    Science.gov (United States)

    Cusmano, I; Sterpi, I; Mazzone, A; Ramat, S; Delconte, C; Pisano, F; Colombo, R

    2014-01-01

    The aims of this study were to develop and evaluate reliability of a quantitative assessment tool for upper limb sense of position on the horizontal plane. We evaluated 15 healthy individuals (controls) and 9 stroke patients. A robotic device passively moved one arm of the blindfolded participant who had to actively move his/her opposite hand to the mirror location in the workspace. Upper-limb's position was evaluated by a digital camera. The position of the passive hand was compared with the active hand's 'mirror' position. Performance metrics were then computed to measure the mean absolute errors, error variability, spatial contraction/expansion, and systematic shifts. No significant differences were observed between dominant and non-dominant active arms of controls. All performance parameters of the post-stroke group differed significantly from those of controls. This tool can provide a quantitative measure of upper limb sense of position, therefore allowing detection of changes due to rehabilitation.

  15. A novel 5-DOF exoskeletal rehabilitation robot system for upper limbs

    Institute of Scientific and Technical Information of China (English)

    Li Qingling; Kong Minxiu; Du Zhijiang; Sun Lining

    2009-01-01

    A novel 5-DOF exoskeletal rehabilitation robot for upper limbs of hemiplegic patients caused by stroke is proposed in this paper. Its hardware structure is introduced and the control methods are analyzed. To implement intelligent and interactive rehabilitation exercises, motion intention of patients' upper limb is introduced into control methods of rehabilitation exercises. In passive motions, according to the character of unilateral impaired, multi-channels surface electromyogram (sEMG) signals of patients' healthy arm muscles are acquired and analyzed to recognize the upper limb motions, then drive the robot and assist paralysis arm's rehabilitation exercises. In active-resistant motions, because patients are recovered with some muscle forces and active motion ability after a rehabilitation period, the terminal force loaded on the robot by an impaired arm are estimated with multi-channel joint torque sensors, according to which, the terminal velocity of the robot is controlled to drive the joint motions with a damp controller.

  16. The Importance of Technical Devices in the Self-care of Upper Limbs Amputees.

    Science.gov (United States)

    Mészáros, Gabriella; Vén, Ildikó

    2015-01-01

    The National Institute of Medical Rehabilitation (NIMR) is engaged in the rehabilitation of posttraumatic patients, including also attending traumatic cases with amputated upper limbs. The lack of upper limbs is a great obstacle in essential functioning for the injured, and that is why we give high priority to planning, constructing and individually adopting appliances for aiding everyday life. Special literature gives distinguished attention to operative techniques and the possibilities of prosthetic devices, but no professional articles present any special devices needed for discharging everyday vital functions. The purpose of this lecture is to present the results of our follow-up examination aimed at upper limbs amputees reeducated since 1994 at the NIMR (9 patients). Case studies conclude that the prosthetic care plays a surprisingly small part in the self-sufficiency of the injured. Claims to individual appliances are already more considerable but these cannot be obtained in normal commerce because of unprofitable production in view of users so few in number.

  17. Acupotomy and venesection in Upper Limb Lymphedema and Peripheral neuropathy following Breast Cancer Surgery

    Directory of Open Access Journals (Sweden)

    Jang Eun-ha

    2009-12-01

    Full Text Available Purpose: In order to estimate clinical effects of acupotomy and venesection in a patient with peripheral neuropathy and upper limb lymphedema following breast cancer surgery. Methods: From 17th August, 2009 to 29th August 2009, 1 female patient with peripheral neuropathy and upper limb lymphedema following breast cancer surgery was treated with general oriental medicine therapy(acupuncture, moxibustion, cupping, physical therapy, herbal medication and acupotomy with venesection. Results: The patient's chief complaints- Lt hand numbness, Lt arm edema, Lt. wrist flexion limitation - were notably improved. Conclusions : This study demonstrates that oriental medical treatment with acupotomy and venesection therapy has significant effect in improving symptoms of peripheral neuropathy and upper limb lymphedema following breast cancer surgery, as though we had not wide experience in this treatment, more research is needed.

  18. Ethical considerations in providing an upper limb exoskeleton device for stroke patients.

    Science.gov (United States)

    Bulboacă, Adriana E; Bolboacă, Sorana D; Bulboacă, Angelo C

    2017-04-01

    The health care system needs to face new and advanced medical technologies that can improve the patients' quality of life by replacing lost or decreased functions. In stroke patients, the disabilities that follow cerebral lesions may impair the mandatory daily activities of an independent life. These activities are dependent mostly on the patient's upper limb function so that they can carry out most of the common activities associated with a normal life. Therefore, an upper limb exoskeleton device for stroke patients can contribute a real improvement of quality of their life. The ethical problems that need to be considered are linked to the correct adjustment of the upper limb skills in order to satisfy the patient's expectations, but within physiological limits. The debate regarding the medical devices dedicated to neurorehabilitation is focused on their ability to be beneficial to the patient's life, keeping away damages, injustice, and risks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Technology that Touches Lives: Teleconsultation to Benefit Persons with Upper Limb Loss.

    Science.gov (United States)

    Whelan, Lynsay R; Wagner, Nathan

    2011-01-01

    While over 1.5 million individuals are living with limb loss in the United States (Ziegler-Graham et al., 2008), only 10% of these individuals have a loss that affects an upper limb. Coincident with the relatively low incidence of upper limb loss, is a shortage of the community-based prosthetic rehabilitation experts that can help prosthetic users to more fully integrate their devices into their daily routines. This article describes how expert prosthetists and occupational therapists at Touch Bionics, a manufacturer of advanced upper limb prosthetic devices, employ Voice over the Internet Protocol (VoIP) videoconferencing software telehealth technologies to engage in remote consultation with users of prosthetic devices and/or their local practitioners. The Touch Bionics staff provide follow-up expertise to local prosthetists, occupational therapists, and other health professionals. Contrasted with prior telephone-based consultations, the video-enabled approach provides enhanced capabilities to benefit persons with upper limb loss. Currently, the opportunities for Touch Bionics occupational therapists to fully engage in patient-based services delivered through telehealth technologies are significantly reduced by their need to obtain and maintain professional licenses in multiple states.

  20. Technology that Touches Lives: Teleconsultation to Benefit Persons with Upper Limb Loss

    Directory of Open Access Journals (Sweden)

    Lynsay R. Whelan

    2011-12-01

    Full Text Available While over 1.5 million individuals are living with limb loss in the United States (Ziegler-Graham et al., 2008, only 10% of these individuals have a loss that affects an upper limb. Coincident with the relatively low incidence of upper limb loss, is a shortage of the community-based prosthetic rehabilitation experts that can help prosthetic users to more fully integrate their devices into their daily routines. This article describes how expert prosthetists and occupational therapists at Touch Bionics, a manufacturer of advanced upper limb prosthetic devices, employ Voice over the Internet Protocol (VoIP videoconferencing software telehealth technologies to engage in remote consultation with users of prosthetic devices and/or their local practitioners. The Touch Bionics staff provide follow-up expertise to local prosthetists, occupational therapists, and other health professionals. Contrasted with prior telephone-based consultations, the video-enabled approach provides enhanced capabilities to benefit persons with upper limb loss.  Currently, the opportunities for Touch Bionics occupational therapists to fully engage in patient-based services delivered through telehealth technologies are significantly reduced by their need to obtain and maintain professional licenses in multiple states.

  1. Determining the benefits of transcranial direct current stimulation on functional upper limb movement in chronic stroke.

    Science.gov (United States)

    Marquez, Jodie L; Conley, Alexander C; Karayanidis, Frini; Miller, James; Lagopoulos, Jim; Parsons, Mark W

    2017-02-13

    Transcranial direct current stimulation (tDCS) has been proposed as a tool to enhance stroke rehabilitation; however, evidence to support its use is lacking. The aim of this study was to investigate the effects of anodal and cathodal tDCS on upper limb function in chronic stroke patients. Twenty five participants were allocated to receive 20 min of 1 mA of anodal, cathodal or sham cortical stimulation in a random, counterbalanced order. Patients and assessors were blinded to the intervention at each time point. The primary outcome was upper limb performance as measured by the Jebsen Taylor Test of Hand Function (total score, fine motor subtest score and gross motor subtest score) as well as grip strength. Each outcome was assessed at baseline and at the conclusion of each intervention in both upper limbs. Neither anodal nor cathodal stimulation resulted in statistically significantly improved upper limb performance on any of the measured tasks compared with sham stimulation (P>0.05). When the data were analysed according to disability, participants with moderate/severe disability showed significantly improved gross motor function following cathodal stimulation compared with sham (P=0.014). However, this was accompanied by decreased key grip strength in the unaffected hand (P=0.003). We are unable to endorse the use of anodal and cathodal tDCS in the management of upper limb dysfunction in chronic stroke patients. Although there appears to be more potential for the use of cathodal stimulation in patients with severe disability, the effects were small and must be considered with caution as they were accompanied by unanticipated effects in the unaffected upper limb.

  2. Outcomes of the Bobath concept on upper limb recovery following stroke.

    Science.gov (United States)

    Luke, Carolyn; Dodd, Karen J; Brock, Kim

    2004-12-01

    To determine the effectiveness of the Bobath concept at reducing upper limb impairments, activity limitations and participation restrictions after stroke. Electronic databases were searched to identify relevant trials published between 1966 and 2003. Two reviewers independently assessed articles for the following inclusion criteria: population of adults with upper limb disability after stroke; stated use of the Bobath concept aimed at improving upper limb disability in isolation from other approaches; outcomes reflecting changes in upper limb impairment, activity limitation or participation restriction. Of the 688 articles initially identified, eight met the inclusion criteria. Five were randomized controlled trials, one used a single-group crossover design and two were single-case design studies. Five studies measured impairments including shoulder pain, tone, muscle strength and motor control. The Bobath concept was found to reduce shoulder pain better than cryotherapy, and to reduce tone compared to no intervention and compared to proprioceptive neuromuscular facilitation (PNF). However, no difference was detected for changes in tone between the Bobath concept and a functional approach. Differences did not reach significance for measures of muscle strength and motor control. Six studies measured activity limitations, none of these found the Bobath concept was superior to other therapy approaches. Two studies measured changes in participation restriction and both found equivocal results. Comparisons of the Bobath concept with other approaches do not demonstrate superiority of one approach over the other at improving upper limb impairment, activity or participation. However, study limitations relating to methodological quality, the outcome measures used and contextual factors investigated limit the ability to draw conclusions. Future research should use sensitive upper limb measures, trained Bobath therapists and homogeneous samples to identify the influence of

  3. Upper limb rehabilitation robotics after stroke: a perspective from the University of Padua, Italy.

    Science.gov (United States)

    Masiero, Stefano; Carraro, Elena; Ferraro, Claudio; Gallina, Paolo; Rossi, Aldo; Rosati, Giulio

    2009-11-01

    Rehabilitation robotics is an emerging research field that aims to employ leading-edge robotic technology and virtual reality systems in the rehabilitation treatment of neuro-logical patients. In post-stroke patients with upper limb impairment, clinical trials have so far shown positive results in terms of motor recovery, but poor efficacy in terms of functional outcome. Much work is needed to develop a new generation of rehabilitation robots and clinical protocols that will be more effective in helping patients to regain their abilities in activities of daily living. This paper presents some key issues in the future perspective of upper limb robotic rehabilitation after stroke.

  4. Neuromuscular taping for the upper limb in Cerebral Palsy: A case study in a patient with hemiplegia.

    Science.gov (United States)

    Camerota, Filippo; Galli, Manuela; Cimolin, Veronica; Celletti, Claudia; Ancillao, Andrea; Blow, David; Albertini, Giorgio

    2014-12-01

    To assess quantitatively the effects of Neuromuscular Taping (NMT) on the upper limb in a female child with left hemiplegia, due to Cerebral Palsy (CP). The patient underwent NMT on cervical level, shoulder and hand only of the plegic upper limb, followed by physical therapy. Kinematic data of upper limbs during reaching task were collected before (PRE) and after 2 weeks of treatment (POST). After the intervention, the affected limb improved in terms of movement duration, Average Jerk and Number of Unit Movements indices, indicating a faster, smoother and less segmented movement. Improvements appeared at the ranges of motion of the upper limb joints, both at shoulder and elbow joints. No significant changes were globally displayed for the unaffected arm. NMT seems to be a promising intervention for improving upper limb movement in patients with CP. Further investigations are certainly needed to assess effectively the effects of the intervention in this pathological state.

  5. Epidemiology of work related neck and upper limb problems: psychosocial and personal risk factors (part I) and effective interventions from a bio behavioural perspective (part II).

    Science.gov (United States)

    Bongers, P M; Ijmker, S; van den Heuvel, S; Blatter, B M

    2006-09-01

    Work related neck and upper limb symptoms have a multi-factorial origin. Possible risk factors are of a physical, psychosocial or personal origin. These factors can reinforce each other and their influence can also be mediated by cultural or societal factors. Initially, most research on neck and upper limb symptoms focused on work-related physical exposure. Nowadays, psychosocial work characteristics are recognized as important risk factors. Various models have been developed to offer frameworks for possible pathways, but their empirical support is still not conclusive. In part I of this paper an overview is presented of the results of recent epidemiological studies on work related psychosocial and personal risk factors for neck and upper limb symptoms. In addition, the interplay between these factors and the possible intermediate role of an individuals work style in this process is explored. In contrast to previous reviews, it is now possible to base the conclusions on the effect of work related psychosocial factors on neck and upper limb symptoms on quite a few longitudinal studies. These studies show that high work demands or little control at work are often related to these symptoms. However, this relationship is neither very strong nor very specific. Perceived stress is studied in not as many studies but more consistently related to neck and upper limb symptoms. This also applies to general distress or other pain (co-morbidity). Job dissatisfaction does not contribute to neck and upper limb symptoms. Too little research on personal characteristics is available to draw any conclusions. It is plausible that behavioural aspects, such as work style, are of importance in the etiology of work related upper limb symptoms. However, studies concerning these factors are promising but too scarce to draw conclusions. Future studies should address these behavioural aspects. In part II, the recent studies on the effectiveness of preventive measures for work related neck and

  6. [Interactive dynamic scalp acupuncture combined with occupational therapy for upper limb motor impairment in stroke: a randomized controlled trial].

    Science.gov (United States)

    Wang, Jun; Pei, Jian; Cui, Xiao; Sun, Kexing; Ni, Huanhuan; Zhou, Cuixia; Wu, Ji; Huang, Mei; Ji, Li

    2015-10-01

    To compare the clinical efficacy on upper limb motor impairment in stroke between the interactive dynamic scalp acupuncture therapy and the traditional scalp acupuncture therapy. The randomized controlled trial and MINIMIZE layering randomization software were adopted. Seventy patients of upper limb with III to V grade in Brunnstrom scale after stroke were randomized into an interactive dynamic scalp acupuncture group and a traditional scalp acupuncture group, 35 cases in each one. In the interactive dynamic scalp acupuncture group, the middle 2/5 of Dingnieqianxiexian (anterior oblique line of vertex-temporal), the middle 2/5 of Dingniehouxiexian (posterior oblique line of vertex-temporal) and Dingpangerxian (lateral line 2 of vertex) on the affected side were selected as the stimulation areas. Additionally, the rehabilitation training was applied during scalp acupuncture treatment. In the traditional scalp acupuncture group, the scalp stimulation areas were same as the interactive dynamic scalp acupuncture group. But the rehabilitation training was applied separately. The rehabilitation training was applied in the morning and the scalp acupuncture was done in the afternoon. The results in Fugl-Meyer for the upper limb motor function (U-FMA), the Wolf motor function measure scale (WM- FT) and the modified Barthel index in the two groups were compared between the two groups before treatment and in 1 and 2 months of treatment, respectively. After treatment, the U-FMA score, WMFT score and the score of the modified Barthel index were all apparently improved as compared with those before treatment (all P acupuncture group was better than that in the traditional scalp acupuncture group (P acupuncture group were improved apparently as compared with those in the traditional scalp acupuncture group (P acupuncture group were not different significantly as compared with those in the traditional scalp acupuncture group (both P > 0.05). For the patients of IV to V grade in

  7. Upper Limb Assessment in Tetraplegia: Clinical, Functional and Kinematic Correlations

    Science.gov (United States)

    Cacho, Enio Walker Azevedo; de Oliveira, Roberta; Ortolan, Rodrigo L.; Varoto, Renato; Cliquet, Alberto

    2011-01-01

    The aim of this study was to correlate clinical and functional evaluations with kinematic variables of upper limp reach-to-grasp movement in patients with tetraplegia. Twenty chronic patients were selected to perform reach-to-grasp kinematic assessment using a target placed at a distance equal to the arm's length. Kinematic variables (hand peak…

  8. The application of accelerometers to measure movements of upper limbs: Pilot study

    Directory of Open Access Journals (Sweden)

    Patrik Kutilek

    2017-03-01

    Full Text Available Background: Even though inertial measurement units (IMU are already being used experimentally for evaluating movements of segment of the axial skeleton, no studies have been found which have used IMUs to measure the behavior of the segments of upper limbs during quiet stance. Objective: The objective is to design a suitable application of IMUs to measure movements of the upper extremities in Romberg's test and analyze spontaneous arm movements. Second aim is to identify possible discrepancies between the dominant and non-dominant arm movements. Methods: The dominant and non-dominant upper limb of each participant was identified. Then, the movements of both upper limbs were measured by the Xsens system equipped with MTx motion trackers during the quiet stance on a firm surface with eyes open (EO and eyes closed (EC. The measured data was used to calculate the medians and maximums of the superior-inferior, medio-lateral and anterior-posterior acceleration. Also, tremor intensity was calculated to quantitatively evaluate the measured data. Results: The comparison of values of maximal accelerations of the dominant and non-dominant arms showed significant difference between the arms during EC conditions. The comparison of values of median accelerations of the dominant and non-dominant arms showed significant differences between the acceleration of arms in medio-lateral direction during EO and EC conditions. In all cases, values of maximal and median accelerations and values of tremor intensity of the dominant limb strongly correlated with values on the non-dominant limb. Conclusions: Findings suggest possible usefulness of the designed application of IMUs and evaluation methods for their use in Romberg's test in clinical practice for evaluation of upper limb movements.

  9. The impact of recovery of visuo-spatial neglect on motor recovery of the upper paretic limb after stroke.

    Directory of Open Access Journals (Sweden)

    Tanja C W Nijboer

    Full Text Available The aim of the current study was to investigate the longitudinal relationship between improvements of synergism and strength of the upper paretic limb and severity of visuo-spatial neglect during the first 52 weeks post-stroke. The longitudinal association between severity of VSN and motor impairment using Fugl Meyer motor score and Motricity Index of the arm was measured in an intensive repeated measurement design including 18 measurement sessions for each subject. Neglect was assessed using the letter cancellation test applied in a prospective cohort of 101 ischemic, first-ever, hemispheric stroke patients. All time-dependent measures were taken weekly, starting within 14 days post-stroke. From week 10 to 20 biweekly measurements are obtained. The longitudinal relationship of (biweekly time on improvement of motor functions and severity of neglect was investigated using random coefficient analysis and trend analyses. Fifty-one of the 101 stroke patients showed neglect at stroke onset. Less improvement of synergism and strength of the upper paretic limb was associated with more severe neglect. This association was most pronounced in the first 10 weeks post-stroke. The seemingly suppressive effect of neglect on upper-limb motor recovery appears to take place mainly during spontaneous neurological recovery of first 10 weeks post-stroke. This finding suggests that damage to large-scale white matter tracts of especially the perceptual-attention networks suppress recovery of other networks at distance in the brain suggesting a common underlying mechanism.

  10. Continuous theta-burst stimulation combined with occupational therapy for upper limb hemiparesis after stroke: a preliminary study.

    Science.gov (United States)

    Yamada, Naoki; Kakuda, Wataru; Kondo, Takahiro; Shimizu, Masato; Sageshima, Masashi; Mitani, Sugao; Abo, Masahiro

    2014-12-01

    The purpose of this study was to assess the safety, feasibility and efficacy of continuous theta-burst stimulation (cTBS) combined with intensive occupational therapy (OT) for upper limb hemiparesis after stroke. Ten patients with history of stroke and upper limb hemiparesis (age 62.0 ± 11.1 years, time since stroke 95.7 ± 70.2 months, mean ± SD) were studied. Each patient received 13 sessions, each comprising 160 s of cTBS applied to the skull on the area of the non-lesional hemisphere (using a 70-mm figure-8 coil, three pulse bursts at 50 Hz, repeated every 200 ms, i.e., 5 Hz, with total stimulation of 2,400 pulses), followed by intensive OT (comprising 120-min one-to-one training and 120-min self-training) during 15-day hospitalization. The motor function of the affected upper limb was evaluated by Fugl-Meyer Assessment (FMA) and Wolf Motor Function Test (WMFT) on the days of admission and discharge. All patients completed the 15-day protocol without any adverse effects. Treatment significantly increased the FMA score (from 46.6 ± 8.7 to 51.6 ± 8.2 points, p < 0.01) and shortened the log performance time of WMFT (from 2.5 ± 1.1 to 2.2 ± 1.2 s, p < 0.01). The 15-day protocol of cTBS combined with intensive OT is a safe and potentially useful therapeutic modality for upper limb hemiparesis after stroke.

  11. The Impact of Upper Tropospheric Humidity from Microwave Limb Sounder on the Midlatitude Greenhouse Effect

    Science.gov (United States)

    Hu, Hua; Liu, W. Timothy

    1998-01-01

    This paper presents an analysis of upper tropospheric humidity, as measured by the Microwave Limb Sounder, and the impact of the humidity on the greenhouse effect in the midlatitudes. Enhanced upper tropospheric humidity and an enhanced greenhouse effect occur over the storm tracks in the North Pacific and North Atlantic. In these areas, strong baroclinic activity and the large number of deep convective clouds transport more water vapor to the upper troposphere, and hence increase greenhouse trapping. The greenhouse effect increases with upper tropospheric humidity in areas with a moist upper troposphere (such as areas over storm tracks), but it is not sensitive to changes in upper tropospheric humidity in regions with a dry upper troposphere, clearly demonstrating that there are different mechanisms controlling the geographical distribution of the greenhouse effect in the midlatitudes.

  12. Successful salvage of the upper limb after crush injury requiring nine operations: a case report.

    Science.gov (United States)

    Zeng, Qingmin; Cai, Guoping; Liu, Dechang; Wang, Kun; Zhang, Xinchao

    2015-03-01

    Emergency treatment of amputation is one of the most frequently used therapeutic methods for patients with severe upper limb crush injury with a mangled extremity severity score (MESS) of more than 7. With the development of advanced surgical repair techniques and reconstructive technology, cases that once required amputation can now be salvaged with appropriate management, and some limb functions may also be reserved. A patient with a severe upper limb crush injury with a MESS score of 10 was treated in our hospital. The limb was salvaged after 9 surgeries over 10 months. The follow-up visits over the next 18 months post-injury showed that the shoulder joint functions were rated as "excellent" (90) according to the Neer score, the Harris hip evaluation (HHS) for elbow joint functions was "good" (80), and the patient was very satisfied with the overall therapeutic outcome. We conclude from the successful outcome of this extreme injury that salvage attempts should be the first management choice for upper limbs with complex injuries to save as much function as possible. Amputation should only be adopted when the injury is life-threatening or no more function can be saved. The level of evidence was V.

  13. Lewis-sumner syndrome of pure upper-limb onset: diagnostic, prognostic, and therapeutic features.

    Science.gov (United States)

    Rajabally, Yusuf A; Chavada, Govindsinh

    2009-02-01

    Lewis-Sumner syndrome (L-SS) represents the asymmetric variant of chronic inflammatory demyelinating polyneuropathy (CIDP). The characteristics and specificities of L-SS of pure upper-limb onset, as initially described by Lewis et al. [Multifocal demyelinating neuropathy with persistent conduction block. Neurology 32:958-964, 1982], have not been studied. We describe 8 such patients and review 82 previously reported cases. Distal involvement predominates and is mixed, sensory and motor from onset in only 50% of patients. Pain is a feature in about 20%. Subsequent lower-limb involvement occurs in or =1:6400) have not been reported. Over 80% of treated patients respond, and intravenous immunoglobulins may be more effective than steroids. The prognosis is favorable in 40% of patients who eventually stabilize without treatment. We also reviewed 36 cases of other forms of L-SS, and present a further 2 cases. The upper-limb-onset variant is significantly less likely to spread to other limbs and may be less likely to have raised CSF protein levels. This could reflect a more localized disease process in upper-limb-onset L-SS. This variant may represent a separate entity, to be distinguished from other asymmetric forms of CIDP.

  14. Calibration of the Microwave Limb Sounder on the Upper Atmosphere Research Satellite

    Science.gov (United States)

    Jarnot, R. F.; Cofield, R. E.; Waters, J. W.; Flower, D. A.; Peckham, G. E.

    1996-01-01

    The Microwave Limb Sounder (MLS) is a three-radiometer, passive, limb emission instrument onboard the Upper Atmosphere Research Satellite (UARS). Radiometric, spectral and field-of-view calibrations of the MLS instrument are described in this paper. In-orbit noise performance, gain stability, spectral baseline and dynamic range are described, as well as use of in-flight data for validation and refinement of prelaunch calibrations. Estimated systematic scaling uncertainties (3 sigma) on calibrated limb radiances from prelaunch calibrations are 2.6% in bands 1 through 3, 3.4% in band 4, and 6% in band 5. The observed systematic errors in band 6 are about 15%, consistent with prelaunch calibration uncertainties. Random uncertainties on individual limb radiance measurements are very close to the levels predicted from measured radiometer noise temperature, with negligible contribution from noise and drifts on the regular in-flight gain calibration measurements.

  15. Cervical selective dorsal rhizotomy for treating spasticity in upper limb neurosurgical way to neurosurgical technique

    Directory of Open Access Journals (Sweden)

    Yu Duan

    2015-03-01

    Full Text Available Selective dorsal rhizotomy is an effective method to reduce spasticity of the lower limbs. However, functional outcomes in the upper limb following selective dorsal rhizotomy at the cervical level have not been reported. Here we report the clinical course after selective dorsal rhizotomy at the cervical level in a patient with hemiplegic spasticity caused by brain injury. The selective dorsal rootlets at the cervical level were sectioned under electrophysiological monitoring. The patient was followed for 1 year to evaluate the outcome of surgery. The spasticity in the upper limb was reduced and the passive range of motion and function of movement improved. However, the effectiveness and the safety of operation should be studied further in clinical trials.

  16. Impact of spinal manipulation on cortical drive to upper and lower limb muscles

    DEFF Research Database (Denmark)

    Haavik, Heidi; Niazi, Imran Khan; Jochumsen, Mads;

    2017-01-01

    different days. During two separate days, lower limb TMS I/O curves and MRCPs were recorded from tibialis anterior muscle (TA) pre and post spinal manipulation. Dependent measures were compared with repeated measures analysis of variance, with p set at 0.05. Spinal manipulation resulted in a 54.5% ± 93...... (PN). The results of this study show that spinal manipulation leads to changes in cortical excitability, as measured by significantly larger MEPmax for TMS induced input-output curves for both an upper and lower limb muscle, and with larger amplitudes of MRCP component post manipulation. No changes......This study investigates whether spinal manipulation leads to changes in motor control by measuring the recruitment pattern of motor units in both an upper and lower limb muscle and to see whether such changes may at least in part occur at the cortical level by recording movement related cortical...

  17. Phantom hand and wrist movements in upper limb amputees are slow but naturally controlled movements.

    Science.gov (United States)

    De Graaf, J B; Jarrassé, N; Nicol, C; Touillet, A; Coyle, T; Maynard, L; Martinet, N; Paysant, J

    2016-01-15

    After limb amputation, patients often wake up with a vivid perception of the presence of the missing limb, called "phantom limb". Phantom limbs have mostly been studied with respect to pain sensation. But patients can experience many other phantom sensations, including voluntary movements. The goal of the present study was to quantify phantom movement kinematics and relate these to intact limb kinematics and to the time elapsed since amputation. Six upper arm and two forearm amputees with various delays since amputation (6months to 32years) performed phantom finger, hand and wrist movements at self-chosen comfortable velocities. The kinematics of the phantom movements was indirectly obtained via the intact limb that synchronously mimicked the phantom limb movements, using a Cyberglove® for measuring finger movements and an inertial measurement unit for wrist movements. Results show that the execution of phantom movements is perceived as "natural" but effortful. The types of phantom movements that can be performed are variable between the patients but they could all perform thumb flexion/extension and global hand opening/closure. Finger extension movements appeared to be 24% faster than finger flexion movements. Neither the number of types of phantom movements that can be executed nor the kinematic characteristics were related to the elapsed time since amputation, highlighting the persistence of post-amputation neural adaptation. We hypothesize that the perceived slowness of phantom movements is related to altered proprioceptive feedback that cannot be recalibrated by lack of visual feedback during phantom movement execution.

  18. Repeatability of upper limb kinematics for children with and without cerebral palsy.

    Science.gov (United States)

    Reid, Siobhán; Elliott, Catherine; Alderson, Jacqueline; Lloyd, David; Elliott, Bruce

    2010-05-01

    There is increasing demand for a standardised and reliable protocol for the objective assessment of upper limb motion in clinical populations. This paper describes the repeatability of a three-dimensional (3D) kinematic model and protocol to assess upper limb movement for children with and without cerebral palsy (CP). Ten typically developing (TD) children (m=10.5years+/-1.18) and seven children with CP (spastic hemiplegia) (m=11.14years+/-1.86) completed upper limb motion analysis on two occasions separated by at least one week. Participants performed three trials of four functional tasks, where 3D joint angles were calculated at the thorax, shoulder, elbow and wrist. Within and between-day repeatability was assessed using coefficients of multiple determination (CMD). There were distinct kinematic patterns for both groups for each functional task. In relation to their peers, children with CP consistently displayed reduced elbow extension, and compensatory patterns at the shoulder and thorax. High within and between-day CMD scores were revealed for specific rotations, with the highest being obtained at joints with large ranges of motion. The chosen tasks delineate the upper limb kinematic patterns of those with and without CP. The model has high within and between-day repeatability particularly where joint rotations demonstrate a large range of movement. 3D motion analysis is a feasible assessment tool for use with clinical populations. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Advanced insights in upper limb function of individuals with cervical spinal cord injury

    NARCIS (Netherlands)

    Velstra, Inge-Marie

    2015-01-01

    An important criterion for a clinical outcome measure, such as the Graded and Redefined Assessment of Strength, Sensibility and Prehension (GRASSP), is its sensitivity to detect changes in upper limb function over time. This facilitates the evaluation of recovery patterns and treatment efficacy of e

  20. The effect of physical activity in leisure time on neck and upper limb symptoms

    NARCIS (Netherlands)

    Heuvel, S.G. van den; Heinrich, J.; Jans, M.P.; Beek, A.J. van der; Bongers, P.M.

    2005-01-01

    Background. Little is known of the preventive effects of physical activity in leisure time on neck and upper limb symptoms. Methods. A cohort of 1742 employees was selected from a prospective cohort study with a follow-up period of 3 years. Independent variables were sporting activities and physical

  1. The clinical evaluation of the upper limb joints' function: back to Hippocrates.

    Science.gov (United States)

    Kapandji, Adalbert I

    2003-08-01

    This article provides evidence that evaluation of upper limb joint function may be performed without the use of instruments and using only clinical means to diagnose in most cases. Hippocrates would have proceeded the same way in the early ages of medicine.

  2. Addressing Sexuality as Standard Care in People with an Upper Limb Deficiency : Taboo or Necessary Topic?

    NARCIS (Netherlands)

    Verschuren, J.E.A.; Geertzen, J.H.B.; Enzlin, P.; Dijkstra, P. U.; Dekker, R.; Van Der Sluis, C.K.

    2013-01-01

    The purpose of this paper is to analyze whether professionals who work with people with an upper limb deficiency (ULD) received questions about sexuality from their patients and whether they addressed sexuality themselves, and to analyze their knowledge and comfort level, approach and attitudes towa

  3. Frequency upper limbs injuries in the emergency health service in Paranaiba, MS, Brazil

    Directory of Open Access Journals (Sweden)

    Eliane Cristina Coelho de Oliveira Correia

    2012-09-01

    Full Text Available To assess the frequency of upper limb injuries in the only emergency medical service inParanaiba, State of Mato Grosso do Sul. Methods: Retrospective study with data collection from medical recordsof patients assisted with upper limb injuries in “Santa Casa de Misericordia” Hospital, the only hospital in the cityto provide emergency care, in 2008. Variables of interest such as gender and type of injury were collected basedon the International Code of Diseases (ICD 10. Results: There were 314 cases of upper limb injury in 2008and men were the most affected with 211 cases (67.2%. The wrist was the most affected segment with 64 cases(20.4%, followed by the shoulder with 55 cases (17.5% and the hand with 50 cases (15.9%. Interventions andsurgeries involving bone portion were the most frequent - 225 (71.7%, followed by tendon - 19 (6.1% and neural - 16 (5.1%; 35 patients (11.1% underwent multiple operations. Osteosyntheses - 94 (29.9%, fractures- 48 (15.3%, and reduction - 46 (14.6% were the most frequent interventions, followed by 26 dislocations(8.3% and 14 tenorrhaphies (4.5%. Conclusion: The involvement of the upper limbs, especially bone lesions,is frequent. The segments most affected by injuries are men’s wrists and shoulders.

  4. Gait and upper limb variability in Parkinson's disease patients with and without freezing of gait

    NARCIS (Netherlands)

    Barbe, M.T.; Amarell, M.; Snijders, A.H.; Florin, E.; Quatuor, E.L.; Schonau, E.; Fink, G.R.; Bloem, B.R.; Timmermann, L.

    2014-01-01

    Patients with Parkinson's disease (PD) and freezing of gait (FOG) (freezers) demonstrate high gait variability. The objective of this study was to determine whether freezers display a higher variability of upper limb movements and elucidate if these changes correlate with gait. We were the first gro

  5. Deviations in upper limb function of the less-affected side in congenital hemiparesis

    NARCIS (Netherlands)

    Steenbergen, B.; Meulenbroek, R.G.J.

    2006-01-01

    In the present study we examined upper-limb function of the less-affected side in young adolescents with congenital hemiparesis (cerebral palsy: CP). Five participants with hemiparetic CP and five control participants performed a cyclical reach-and-grasp task with the less-affected hand towards targ

  6. A novel motion tracking system for evaluation of functional rehabilitation of the upper limbs*****

    Institute of Scientific and Technical Information of China (English)

    Ángel Gil-Agudo; Ana de los Reyes-Guzmn; Iris Dimbwadyo-Terrer; Benito Peasco-Martn; Alberto Bernal-Sahn; Patricia Lpez-Monteagudo; Antonio del Ama-Espinosa; Jos Luis Pons

    2013-01-01

    Upper limb function impairment is one of the most common sequelae of central nervous system in-jury, especial y in stroke patients and when spinal cord injury produces tetraplegia. Conventional assessment methods cannot provide objective evaluation of patient performance and the effec-tiveness of therapies. The most common assessment tools are based on rating scales, which are inefficient when measuring smal changes and can yield subjective bias. In this study, we designed an inertial sensor-based monitoring system composed of five sensors to measure and analyze the complex movements of the upper limbs, which are common in activities of daily living. We devel-oped a kinematic model with nine degrees of freedom to analyze upper limb and head movements in three dimensions. This system was then validated using a commercial optoelectronic system. These findings suggest that an inertial sensor-based motion tracking system can be used in patients who have upper limb impairment through data integration with a virtual reality-based neurorehabilitation system.

  7. Deviations in upper limb function of the less-affected side in congenital hemiparesis

    NARCIS (Netherlands)

    Steenbergen, B.; Meulenbroek, R.G.J.

    2006-01-01

    In the present study we examined upper-limb function of the less-affected side in young adolescents with congenital hemiparesis (cerebral palsy: CP). Five participants with hemiparetic CP and five control participants performed a cyclical reach-and-grasp task with the less-affected hand towards

  8. Predictive value of upper-limb accelerometry in acute stroke with hemiparesis

    NARCIS (Netherlands)

    Gebruers, Nick; Truijen, Steven; Engelborghs, Sebastiaan; De Deyn, Peter P.

    2013-01-01

    Few studies have investigated how well early activity measurements by accelerometers predict recovery after stroke. First, we assessed the predictive value of accelerometer-based measurements of upper-limb activity in patients with acute stroke with a hemiplegic arm. Second, we established the

  9. The role of order of practice in learning to handle an upper-limb prosthesis

    NARCIS (Netherlands)

    Bouwsema, Hanneke; van der Sluis, Corry K.; Bongers, Raoul M.

    2008-01-01

    Objective: To determine which Order of presentation of practice tasks had the highest effect oil using an upper-limb prosthetic simulator. Design: A cohort analytic Study. Setting: University laboratory. Participants: Healthy, able-bodied participants (N=72) randomly assigned to I Of 8 groups, each

  10. Bilateral upper-limb rehabilitation after stroke using a movement-based game controller

    NARCIS (Netherlands)

    Hijmans, Juha M.; Hale, Leigh A.; Satherley, Jessica A.; McMillan, Nicole J.; King, Marcus J.

    2011-01-01

    This study aimed to determine the effectiveness of a bilateral, self-supported, upper-limb rehabilitation intervention using a movement-based game controller for people with chronic stroke. Fourteen participants received a control treatment, followed by a washout period, and then the intervention. T

  11. Robot-Mediated Upper Limb Physiotherapy: Review and Recommendations for Future Clinical Trials

    Science.gov (United States)

    Peter, Orsolya; Fazekas, Gabor; Zsiga, Katalin; Denes, Zoltan

    2011-01-01

    Robot-mediated physiotherapy provides a new possibility for improving the outcome of rehabilitation of patients who are recovering from stroke. This study is a review of robot-supported upper limb physiotherapy focusing on the shoulder, elbow, and wrist. A literature search was carried out in PubMed, OVID, and EBSCO for clinical trials with robots…

  12. The Corticospinal Tract: A Biomarker to Categorize Upper Limb Functional Potential in Unilateral Cerebral Palsy

    Science.gov (United States)

    Jaspers, Ellen; Byblow, Winston D.; Feys, Hilde; Wenderoth, Nicole

    2016-01-01

    Children with unilateral cerebral palsy (CP) typically present with largely divergent upper limb sensorimotor deficits and individual differences in response to upper limb rehabilitation. This review summarizes how early brain damage can cause dramatic deviations from the normal anatomy of sensory and motor tracts, resulting in unique “wiring patterns” of the sensorimotor system in CP. Based on the existing literature, we suggest that corticospinal tract (CST) anatomy and integrity constrains sensorimotor function of the upper limb and potentially also the response to treatment. However, it is not possible to infer CST (re)organization from clinical presentation alone and conventional biomarkers, such as time of insult, location, and lesion extent seem to have limited clinical utility. Here, we propose a theoretical framework based on a detailed examination of the motor system using behavioral, neurophysiological, and magnetic resonance imaging measures, akin to those used to predict potential for upper limb recovery of adults after stroke. This theoretical framework might prove useful because it provides testable hypotheses for future research with the goal to develop and validate a clinical assessment flowchart to categorize children with unilateral CP. PMID:26779464

  13. Upper limb muscle imbalance in tennis elbow: a functional and electromyographic assessment.

    Science.gov (United States)

    Alizadehkhaiyat, Omid; Fisher, Anthony C; Kemp, Graham J; Vishwanathan, Karthik; Frostick, Simon P

    2007-12-01

    The purpose of this study was to investigate strength, fatigability, and activity of upper limb musculature to elucidate the role of muscular imbalance in the pathophysiology of tennis elbow. Sixteen patients clinically diagnosed with tennis elbow, recruited from a university hospital upper limb orthopedic clinic, were compared with 16 control subjects with no history of upper limb musculoskeletal problem, recruited from university students and staff. Muscle strength was measured for grip, metacarpophalangeal, wrist, and shoulder on both sides. Electromyographic activity (RMS amplitude) and fatigue characteristics (median frequency slope) of five forearm and two shoulder muscles were measured during isometric contraction at 50% maximum voluntary contraction. All strength measurements showed dominance difference in C, but none in TE. In tennis elbow compared to controls, hand/wrist and shoulder strength and extensor carpi radialis (ECR) activity were reduced (p imbalance among forearm muscles (reduced extensor carpi radialis activity) in tennis elbow, probably due to protective pain-related inhibition, could lead to a widespread upper limb muscle imbalance.

  14. Association between Severe Upper Limb Spasticity and Brain Lesion Location in Stroke Patients

    Directory of Open Access Journals (Sweden)

    Alessandro Picelli

    2014-01-01

    Full Text Available Association between the site of brain injury and poststroke spasticity is poorly understood. The present study investigated whether lesion analysis could document brain regions associated with the development of severe upper limb poststroke spasticity. A retrospective analysis was conducted on 39 chronic stroke patients. Spasticity was assessed at the affected upper limb with the modified Ashworth scale (shoulder, elbow, wrist, and fingers. Brain lesions were traced from magnetic resonance imaging performed within the first 7 days after stroke and region of interest images were generated. The association between severe upper limb spasticity (modified Ashworth scale ≥2 and lesion location was determined with the voxel-based lesion-symptom mapping method implemented in MRIcro software. Colored maps representing the z statistics were generated and overlaid onto the automated anatomical labeling and the Johns Hopkins University white matter templates provided with MRIcron. Thalamic nuclei were identified with the Talairach Daemon software. Injuries to the insula, the thalamus, the basal ganglia, and white matter tracts (internal capsule, corona radiata, external capsule, and superior longitudinal fasciculus were significantly associated with severe upper limb poststroke spasticity. Further advances in our understanding of the neural correlates of spasticity may lead to early targeted rehabilitation when key regions are damaged.

  15. Improving work style behavior in computer workers with neck and upper limb symptoms

    NARCIS (Netherlands)

    Bernaards, C.M.; Ariëns, G.A.M.; Simons, M.; Knol, D.L.; Hildebrandt, V.H.

    2008-01-01

    Introduction: The goal of this study was to assess the effectiveness of a group-based interactive work style intervention in improving work style behavior. Methods: Computer workers with neck and upper limb symptoms were randomised into the work style group (WS, N = 152), the work style and physical

  16. Workstyle and overcommitment in relation to neck and upper limb symptoms

    NARCIS (Netherlands)

    Heuvel, S.G. van den; Beek, A.J. van der; Blatter, B.M.; Bongers, P.M.

    2007-01-01

    Few studies have examined the concepts of workstyle and overcommitment in relation to the occurrence of neck and upper limb symptoms. The aim of this study was to examine whether a high-risk workstyle is a mediator in the relation of work-related exposure (job demands and computer work) and

  17. Improving work style behavior in computer workers with neck and upper limb symptoms

    NARCIS (Netherlands)

    Bernaards, C.M.; Ariëns, G.A.M.; Simons, M.; Knol, D.L.; Hildebrandt, V.H.

    2008-01-01

    Introduction: The goal of this study was to assess the effectiveness of a group-based interactive work style intervention in improving work style behavior. Methods: Computer workers with neck and upper limb symptoms were randomised into the work style group (WS, N = 152), the work style and physical

  18. Golf and upper limb injuries: a summary and review of the literature

    Directory of Open Access Journals (Sweden)

    Pollard Henry P

    2005-05-01

    Full Text Available Abstract Background Golf is a popular past time that provides exercise with social interaction. However, as with all sports and activities, injury may occur. Many golf-related injuries occur in the upper limb, yet little research on the potential mechanisms of these injuries has been conducted. Objective To review the current literature on golf-related upper limb injuries and report on potential causes of injury as it relates to the golf swing. Discussion An overview of the golf swing is described in terms of its potential to cause the frequently noted injuries. Most injuries occur at impact when the golf club hits the ball. This paper concludes that more research into golf-related upper limb injuries is required to develop a thorough understanding of how injuries occur. Types of research include epidemiology studies, kinematic swing analysis and electromyographic studies of the upper limb during golf. By conducting such research, preventative measures maybe developed to reduce golf related injury.

  19. Addressing Sexuality as Standard Care in People with an Upper Limb Deficiency : Taboo or Necessary Topic?

    NARCIS (Netherlands)

    Verschuren, J.E.A.; Geertzen, J.H.B.; Enzlin, P.; Dijkstra, P. U.; Dekker, R.; Van Der Sluis, C.K.

    2013-01-01

    The purpose of this paper is to analyze whether professionals who work with people with an upper limb deficiency (ULD) received questions about sexuality from their patients and whether they addressed sexuality themselves, and to analyze their knowledge and comfort level, approach and attitudes

  20. Robot-Mediated Upper Limb Physiotherapy: Review and Recommendations for Future Clinical Trials

    Science.gov (United States)

    Peter, Orsolya; Fazekas, Gabor; Zsiga, Katalin; Denes, Zoltan

    2011-01-01

    Robot-mediated physiotherapy provides a new possibility for improving the outcome of rehabilitation of patients who are recovering from stroke. This study is a review of robot-supported upper limb physiotherapy focusing on the shoulder, elbow, and wrist. A literature search was carried out in PubMed, OVID, and EBSCO for clinical trials with robots…

  1. A case report of neck, chest and upper limb cutaneous metastasis from synchronous colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    WANG Jian; SHI Yu-qian; WU Zhi-yong

    2009-01-01

    Cutaneous metastasis from colorectal carcinoma is uncommon, occurring in less than 4% of the whole patients.' The most frequently involved are incision scar or abdominal skin,24 while cutaneous metastasis to neck and chest is very rare. We hereby report a case of synchronous, postoperative cutaneous metastasis from colorectal carcinoma to neck, upper limb and chest skin, which were confirmed by biopsy.

  2. Intra-arterial Autologous Bone Marrow Cell Transplantation in a Patient with Upper-extremity Critical Limb Ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Madaric, Juraj, E-mail: jurmad@hotmail.com [National Institute of Cardiovascular Diseases (NUSCH) and Slovak Medical University, Department of Cardiology and Angiology (Slovakia); Klepanec, Andrej [National Institute of Cardiovascular Diseases, Department of Diagnostic and Interventional Radiology (Slovakia); Mistrik, Martin [Clinic of Hematology and Transfusiology, Faculty Hospital (Slovakia); Altaner, Cestmir [Slovak Academy of Science, Institute of Experimental Oncology (Slovakia); Vulev, Ivan [National Institute of Cardiovascular Diseases, Department of Diagnostic and Interventional Radiology (Slovakia)

    2013-04-15

    Induction of therapeutic angiogenesis by autologous bone marrow mononuclear cell transplantation has been identified as a potential new option in patients with advanced lower-limb ischemia. There is little evidence of the benefit of intra-arterial cell application in upper-limb critical ischemia. We describe a patient with upper-extremity critical limb ischemia with digital gangrene resulting from hypothenar hammer syndrome successfully treated by intra-arterial autologous bone marrow mononuclear cell transplantation.

  3. Development of Device to Evoke Stretch Reflexes by Use of Electromagnetic Force for the Rehabilitation of the Hemiplegic Upper Limb after Stroke

    Science.gov (United States)

    Hayashi, Ryota; Ishimine, Tomoyasu; Kawahira, Kazumi; Yu, Yong; Tsujio, Showzow

    In this research, we focus on the method of rehabilitation with stretch reflexes for the hemiplegic upper limb in stroke patients. We propose a new device which utilizes electromagnetic force to evoke stretch reflexes. The device can exert an assisting force safely, because the electromagnetic force is non contact force. In this paper, we develop a support system applying the proposed device for the functional recovery training of the hemiplegic upper limb. The results obtained from several clinical tests with and without our support system are compared. Then we discuss the validity of our support system.

  4. Development of adaptive pneumatic tourniquet systems based on minimal inflation pressure for upper limb surgeries.

    Science.gov (United States)

    Liu, Hong-yun; Guo, Jun-yan; Zhang, Zheng-bo; Li, Kai-yuan; Wang, Wei-dong

    2013-09-23

    Pneumatic tourniquets are medical devices that occlude blood flow to distal part of extremities and are commonly used in upper limb surgeries to provide a dry, clean and bloodless field. To decrease pressure-related injuries and potential risk of complications subjected to the high inflation pressure of pneumatic tourniquet, minimal inflation pressures are recommended. A new occlusion pressure mathematical model for the upper limb was established based on the correlation analysis between several possible influencing parameters and the minimal pneumatic tourniquet pressure at which the peripheral pulse disappeared was recorded using a digital plethysmograph. A prototype of an adaptive pneumatic tourniquet which automatically varies the pressure in the tourniquet cuff according to the above prediction model was developed for the upper limb which used the lowest possible inflation pressure to achieve occlusion. The prototype comprises a blood pressure monitoring module, an inflatable tourniquet cuff, and a pressure relief mechanism to maintain an optimal cuff inflation pressure. Simulation experiments were conducted to verify the function and stability of the designed adaptive pneumatic tourniquet and clinical experiments using volunteers were undertaken to evaluate the performance of the prototype design in achieving adequate haemostasis in the upper limb. Results demonstrated that the mean arterial occlusion pressure was 152.3 ± 16.7 mmHg, obviously below the 250 to 300 mmHg previously recommended (J Bone Joint Surg Br 68:625-628, 1986 and Arthroscopy 11:307-311, 1995). In conclusion, this adaptive method and apparatus which can provide minimal inflation pressure may be a clinically practical alternative for upper limb surgery performed with pneumatic tourniquets.

  5. Controlling a multi-degree of freedom upper limb prosthesis using foot controls: user experience.

    Science.gov (United States)

    Resnik, Linda; Klinger, Shana Lieberman; Etter, Katherine; Fantini, Christopher

    2014-07-01

    The DEKA Arm, a pre-commercial upper limb prosthesis, funded by the DARPA Revolutionizing Prosthetics Program, offers increased degrees of freedom while requiring a large number of user control inputs to operate. To address this challenge, DEKA developed prototype foot controls. Although the concept of utilizing foot controls to operate an upper limb prosthesis has been discussed for decades, only small-sized studies have been performed and no commercial product exists. The purpose of this paper is to report amputee user perspectives on using three different iterations of foot controls to operate the DEKA Arm. Qualitative data was collected from 36 subjects as part of the Department of Veterans Affairs (VA) Study to Optimize the DEKA Arm through surveys, interviews, audio memos, and videotaped sessions. Three major, interrelated themes were identified using the constant comparative method: attitudes towards foot controls, psychomotor learning and physical experience of using foot controls. Feedback about foot controls was generally positive for all iterations. The final version of foot controls was viewed most favorably. Our findings indicate that foot controls are a viable control option that can enable control of a multifunction upper limb prosthesis (the DEKA Arm). Multifunction upper limb prostheses require many user control inputs to operate. Foot controls offer additional control input options for such advanced devices, yet have had minimal study. This study found that foot controls were a viable option for controlling multifunction upper limb prostheses. Most of the 36 subjects in this study were willing to adopt foot controls to control the multiple degrees of freedom of the DEKA Arm. With training and practice, all users were able to develop the psychomotor skills needed to successfully operate food controls. Some had initial difficulty, but acclimated over time.

  6. Scaling and kinematics optimisation of the scapula and thorax in upper limb musculoskeletal models.

    Science.gov (United States)

    Prinold, Joe A I; Bull, Anthony M J

    2014-08-22

    Accurate representation of individual scapula kinematics and subject geometries is vital in musculoskeletal models applied to upper limb pathology and performance. In applying individual kinematics to a model's cadaveric geometry, model constraints are commonly prescriptive. These rely on thorax scaling to effectively define the scapula's path but do not consider the area underneath the scapula in scaling, and assume a fixed conoid ligament length. These constraints may not allow continuous solutions or close agreement with directly measured kinematics. A novel method is presented to scale the thorax based on palpated scapula landmarks. The scapula and clavicle kinematics are optimised with the constraint that the scapula medial border does not penetrate the thorax. Conoid ligament length is not used as a constraint. This method is simulated in the UK National Shoulder Model and compared to four other methods, including the standard technique, during three pull-up techniques (n=11). These are high-performance activities covering a large range of motion. Model solutions without substantial jumps in the joint kinematics data were improved from 23% of trials with the standard method, to 100% of trials with the new method. Agreement with measured kinematics was significantly improved (more than 10° closer at pthorax scaling correction factor were shown to be key. Separation of the medial border of the scapula from the thorax was large, although this may be physiologically correct due to the high loads and high arm elevation angles. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Benign monomelic amyotrophy in a 7-year-old girl with proximal upper limb involvement: case report.

    Science.gov (United States)

    Yilmaz, Oznur; Alemdaroğlu, Ipek; Karaduman, Ayşe; Haliloğlu, Göknur; Topaloğlu, Haluk

    2011-01-01

    Monomelic amyotrophy (MMA) is a benign motor neuron disease characterized by neurogenic amyotrophy, which usually affects one of the upper or lower extremities. Progression is slow and symptoms are clinically stable. Symptoms are seen in the second or third decades of life. In this study, we present a seven-year-old girl who was diagnosed and directed to the Physiotherapy Department at the age of 5 years and had unilateral proximal upper limb involvement. Family history of the case was recorded. Neurologic evaluation was performed. Range of joint motion, muscle shortness and strength, posture, extremity lengths, gait, timed performance, arm function, and motor and mental maturation were assessed. The physiotherapy program was designed progressively as strengthening and resistive exercises. Motor and mental developmental milestones were normal. There was no limitation in active or passive motion of all joints. She had more flexible joints, scapula alata, asymmetry between shoulder levels, and weakness on proximal muscles of the right upper extremity. In the follow-up assessment at eight months, there was no asymmetry between shoulder levels and scapular symmetry began to improve. Female gender and involvement restricted to one proximal upper limb are rare in the literature. This patient demonstrates the positive effects of physical therapy with early diagnosis of MMA. The rapid recovery of muscle weakness shows the importance of strengthening and resistive exercises applied to specific muscles in the treatment.

  8. Micro movements of the upper limb in fibromyalgia: The relation to proprioceptive accuracy and visual feedback.

    Science.gov (United States)

    Bardal, Ellen Marie; Roeleveld, Karin; Ihlen, Espen; Mork, Paul Jarle

    2016-02-01

    The purpose of this study was to explore the role of visual and proprioceptive feedback in upper limb posture control in fibromyalgia (FM) and to assess the coherence between acceleration measurements of upper limb micro movements and surface electromyography (sEMG) of shoulder muscle activity (upper trapezius and deltoid). Twenty-five female FM patients and 25 age- and sex-matched healthy controls (HCs) performed three precision motor tasks: (1) maintain a steady shoulder abduction angle of 45° while receiving visual feedback about upper arm position and supporting external loads (0.5, 1, or 2kg), (2) maintain the same shoulder abduction angle without visual feedback (eyes closed) and no external loading, and (3) a joint position sense test (i.e., assessment of proprioceptive accuracy). Patients had more extensive increase in movement variance than HCs when visual feedback was removed (PProprioceptive accuracy was related to movement variance in HCs (R⩾0.59, P⩽0.002), but not in patients (R⩽0.25, P⩾0.24). There was no difference between patients and HCs in coherence between sEMG and acceleration data. These results may indicate that FM patients are more dependent on visual feedback and less reliant on proprioceptive information for upper limb posture control compared to HCs.

  9. Upper limb biomechanics during the volleyball serve and spike.

    Science.gov (United States)

    Reeser, Jonathan C; Fleisig, Glenn S; Bolt, Becky; Ruan, Mianfang

    2010-09-01

    The shoulder is the third-most commonly injured body part in volleyball, with the majority of shoulder problems resulting from chronic overuse. Significant kinetic differences exist among specific types of volleyball serves and spikes. Controlled laboratory study. Fourteen healthy female collegiate volleyball players performed 5 successful trials of 4 skills: 2 directional spikes, an off-speed roll shot, and the float serve. Volunteers who were competent in jump serves (n, 5) performed 5 trials of that skill. A 240-Hz 3-dimensional automatic digitizing system captured each trial. Multivariate analysis of variance and post hoc paired t tests were used to compare kinetic parameters for the shoulder and elbow across all the skills (except the jump serve). A similar statistical analysis was performed for upper extremity kinematics. Forces, torques, and angular velocities at the shoulder and elbow were lowest for the roll shot and second-lowest for the float serve. No differences were detected between the cross-body and straight-ahead spikes. Although there was an insufficient number of participants to statistically analyze the jump serve, the data for it appear similar to those of the cross-body and straight-ahead spikes. Shoulder abduction at the instant of ball contact was approximately 130° for all skills, which is substantially greater than that previously reported for female athletes performing tennis serves or baseball pitches. Because shoulder kinetics were greatest during spiking, the volleyball player with symptoms of shoulder overuse may wish to reduce the number of repetitions performed during practice. Limiting the number of jump serves may also reduce the athlete's risk of overuse-related shoulder dysfunction. Volleyball-specific overhead skills, such as the spike and serve, produce considerable upper extremity force and torque, which may contribute to the risk of shoulder injury.

  10. Constraint-induced movement therapy improves upper limb activity and participation in hemiplegic cerebral palsy: a systematic review

    Directory of Open Access Journals (Sweden)

    Hsiu-Ching Chiu

    2016-07-01

    Full Text Available Questions: Does constraint-induced movement therapy improve activity and participation in children with hemiplegic cerebral palsy? Does it improve activity and participation more than the same dose of upper limb therapy without restraint? Is the effect of constraint-induced movement therapy related to the duration of intervention or the age of the children? Design: Systematic review of randomised trials with meta-analysis. Participants: Children with hemiplegic cerebral palsy with any level of motor disability. Intervention: The experimental group received constraint-induced movement therapy (defined as restraint of the less affected upper limb during supervised activity practice of the more affected upper limb. The control group received no intervention, sham intervention, or the same dose of upper limb therapy. Outcome measures: Measures of upper limb activity and participation were used in the analysis. Results: Constraint-induced movement therapy was more effective than no/sham intervention in terms of upper limb activity (SMD 0.63, 95% CI 0.20 to 1.06 and participation (SMD 1.21, 95% CI 0.41 to 2.02. However, constraint-induced movement therapy was no better than the same dose of upper limb therapy without restraint either in terms of upper limb activity (SMD 0.05, 95% CI –0.21 to 0.32 or participation (SMD –0.02, 95% CI –0.34 to 0.31. The effect of constraint-induced movement therapy was not related to the duration of intervention or the age of the children. Conclusions: This review suggests that constraint-induced movement therapy is more effective than no intervention, but no more effective than the same dose of upper limb practice without restraint. Registration: PROSPERO CRD42015024665. [Chiu H-C, Ada L (2016 Constraint-induced movement therapy improves upper limb activity and participation in hemiplegic cerebral palsy: a systematic review. Journal of Physiotherapy 62: 130–137

  11. EFFECTS OF BURN ON THE MOBILITY OF UPPER LIMB/S, FUNCTIONS OF HAND /S & ACTIVITIES OF DAILY LIVING

    Directory of Open Access Journals (Sweden)

    Perera M M N

    2015-02-01

    Full Text Available Background: Burn is an injury cause destruction of skin and underling tissue. Post burns complications are severe. Objective of this study is to identify the effects on the Active Range of Motion (AROM of upper limb/s, hand functions and Activities of Daily Living (ADL who attend the physical therapy department of burns unit. Methodology: It was a descriptive cross sectional study carried out at out-patient physical therapy department of burns unit of National Hospital of SriLanka (NHSL. Fifty subjects recruited into the study. Interviewer assisted self administered questionnaire Disabilities of Arm, Shoulder,Hand Questionnaire (DASH, AROM of nine movements of shoulder and elbow joints and hand function assessment Signals of Functional, Impairements of hand (SOFI was used to collect data. Results: Study results showed that Flame burns were the most common burn type and majority of the victims were females. Study population had affected AROM in almost all the movements at the joint, which had affected to the ADL significantly. “Keeping an object shelf above head” and “engaging in heavy work”, showed significant correlation with movements of shoulder. SOFI score for the right hand showed significant correlation with selected Activities of Daily Living (ADL (“writing”,” using knife to cut food” opening a jar” etc ;. Conclusion: patient with burn injury including upper limb joints may encounter disabilities. Even though it is mild AROM restrictions at a joint, This restriction affects to persons’ independency in ADL s. This emphasizes the need of intensive medical care as well as long term physical therapy rehabilitation programme for burns patients. Limitations: Each subject’s AROM was not measured at their discharge which was already stated to be a limitation.

  12. Major ozonated autohemotherapy promotes the recovery of upper limb motor function in patients with acute cerebral infarction

    Institute of Scientific and Technical Information of China (English)

    Xiaona Wu; Zhensheng Li; Xiaoyan Liu; Haiyan Peng; Yongjun Huang; Gaoquan Luo; Kairun Peng

    2013-01-01

    Major ozonated autohemotherapy is classically used in treating ischemic disorder of the lower limbs. In the present study, we performed major ozonated autohemotherapy treatment in patients with acute cerebral infarction, and assessed outcomes according to the U.S. National Institutes of Health Stroke Score, Modified Rankin Scale, and transcranial magnetic stimulation motor-evoked potential. Compared with the control group, the clinical total effective rate and the cortical potential rise rate of the upper limbs were significantly higher, the central motor conduction time of upper limb was significantly shorter, and the upper limb motor-evoked potential amplitude was significantly increased, in the ozone group. In the ozone group, the National Institutes of Health Stroke Score was positively correlated with the central motor conduction time and the motor-evoked potential amplitude of the upper limb. Central motor conduction time and motor-evoked potential amplitude of the upper limb may be effective indicators of motor-evoked potentials to assess upper limb motor function in cerebral infarct patients. Furthermore, major ozonated autohemotherapy may promote motor function recovery of the upper limb in patients with acute cerebral infarction.

  13. Intraobserver and Interobserver Reliability of the Oberg-Manske-Tonkin (OMT) Classification: Establishing a Registry on Congenital Upper Limb Differences.

    Science.gov (United States)

    Bae, Donald S; Canizares, Maria F; Miller, Patricia E; Roberts, Summer; Vuillermin, Carley; Wall, Lindley B; Waters, Peter M; Goldfarb, Charles A

    2016-02-02

    The purpose of this investigation was to determine the reliability of the Oberg-Manske-Tonkin (OMT) classification system applied to patients enrolled in a prospective, multicenter cohort study of congenital upper limb differences. Our hypothesis was that the OMT classification would exhibit high intraobserver and interobserver reliability and thus would be an appropriate tool for the new Congenital Upper Limb Differences registry. Four pediatric hand surgeons independently reviewed the medical records, clinical photographs, and radiographs of 60 randomly selected patients previously enrolled in the Congenital Upper Limb Differences registry. Patient's information was summarized and shared electronically (PowerPoint). Each rater classified each congenital anomaly according to the OMT classification system. Responses were recorded using a web-based data capture tool (REDCap). Three weeks later, the surgeons repeated the process. Intraobserver reliability for each rater was assessed using Fleiss' κ. Interobserver reliability was assessed using percent exact agreement (when all 4 raters were in agreement) as well as Fleiss' κ. Using the OMT classification, intraobserver reliability for the 4 pediatric hand surgeons showed almost perfect agreement, with κ values in the range of 0.89 to 0.93. Interobserver reliability demonstrated substantial agreement, with κ value of 0.79 (95% confidence interval, 0.77-0.82) in the first reading and 0.80 (95% confidence interval, 0.77-0.83) in the second reading. The highest possible agreement (κ=1) was seen for the following diagnoses: congenital dislocation of radial head (OMT I.A.2.v), Madelung deformity (I.A.2.vii), radial polydactyly (I.B.2.iii), triphalangeal thumb (I.B.2.iv), Kirner deformity (I.B.4.vi), and osteochondromatosis (3.B.4.i). The OMT classification of congenital upper limb differences exhibits substantial to almost perfect intraobserver and interobserver reliability among pediatric hand surgeons at different

  14. Adaptive control based on an on-line parameter estimation of an upper limb exoskeleton.

    Science.gov (United States)

    Riani, Akram; Madani, Tarek; Hadri, Abdelhafid El; Benallegue, Abdelaziz

    2017-07-01

    This paper presents an adaptive control strategy for an upper-limb exoskeleton based on an on-line dynamic parameter estimator. The objective is to improve the control performance of this system that plays a critical role in assisting patients for shoulder, elbow and wrist joint movements. In general, the dynamic parameters of the human limb are unknown and differ from a person to another, which degrade the performances of the exoskeleton-human control system. For this reason, the proposed control scheme contains a supplementary loop based on a new efficient on-line estimator of the dynamic parameters. Indeed, the latter is acting upon the parameter adaptation of the controller to ensure the performances of the system in the presence of parameter uncertainties and perturbations. The exoskeleton used in this work is presented and a physical model of the exoskeleton interacting with a 7 Degree of Freedom (DoF) upper limb model is generated using the SimMechanics library of MatLab/Simulink. To illustrate the effectiveness of the proposed approach, an example of passive rehabilitation movements is performed using multi-body dynamic simulation. The aims is to maneuver the exoskeleton that drive the upper limb to track desired trajectories in the case of the passive arm movements.

  15. Measuring upper limb function in children with hemiparesis with 3D inertial sensors.

    Science.gov (United States)

    Newman, Christopher J; Bruchez, Roselyn; Roches, Sylvie; Jequier Gygax, Marine; Duc, Cyntia; Dadashi, Farzin; Massé, Fabien; Aminian, Kamiar

    2017-08-25

    Upper limb assessments in children with hemiparesis rely on clinical measurements, which despite standardization are prone to error. Recently, 3D movement analysis using optoelectronic setups has been used to measure upper limb movement, but generalization is hindered by time and cost. Body worn inertial sensors may provide a simple, cost-effective alternative. We instrumented a subset of 30 participants in a mirror therapy clinical trial at baseline, post-treatment, and follow-up clinical assessments, with wireless inertial sensors positioned on the arms and trunk to monitor motion during reaching tasks. Inertial sensor measurements distinguished paretic and non-paretic limbs with significant differences (P < 0.01) in movement duration, power, range of angular velocity, elevation, and smoothness (normalized jerk index and spectral arc length). Inertial sensor measurements correlated with functional clinical tests (Melbourne Assessment 2); movement duration and complexity (Higuchi fractal dimension) showed moderate to strong negative correlations with clinical measures of amplitude, accuracy, and fluency. Inertial sensor measurements reliably identify paresis and correlate with clinical measurements; they can therefore provide a complementary dimension of assessment in clinical practice and during clinical trials aimed at improving upper limb function.

  16. Normative Data for an Instrumental Assessment of the Upper-Limb Functionality.

    Science.gov (United States)

    Caimmi, Marco; Guanziroli, Eleonora; Malosio, Matteo; Pedrocchi, Nicola; Vicentini, Federico; Molinari Tosatti, Lorenzo; Molteni, Franco

    2015-01-01

    Upper-limb movement analysis is important to monitor objectively rehabilitation interventions, contributing to improving the overall treatments outcomes. Simple, fast, easy-to-use, and applicable methods are required to allow routinely functional evaluation of patients with different pathologies and clinical conditions. This paper describes the Reaching and Hand-to-Mouth Evaluation Method, a fast procedure to assess the upper-limb motor control and functional ability, providing a set of normative data from 42 healthy subjects of different ages, evaluated for both the dominant and the nondominant limb motor performance. Sixteen of them were reevaluated after two weeks to perform test-retest reliability analysis. Data were clustered into three subgroups of different ages to test the method sensitivity to motor control differences. Experimental data show notable test-retest reliability in all tasks. Data from older and younger subjects show significant differences in the measures related to the ability for coordination thus showing the high sensitivity of the method to motor control differences. The presented method, provided with control data from healthy subjects, appears to be a suitable and reliable tool for the upper-limb functional assessment in the clinical environment.

  17. BCI-Triggered functional electrical stimulation therapy for upper limb

    Directory of Open Access Journals (Sweden)

    Cesar Marquez-Chin

    2016-08-01

    Full Text Available We present here the integration of brain-computer interfacing (BCI technology with functional electrical stimulation therapy to restore voluntary function. The system was tested with a single man with chronic (6 years severe left hemiplegia resulting from a stroke. The BCI, implemented as a simple “brain-switch” activated by power decreases in the 18 Hz – 28 Hz frequency range of the participant’s electroencephalograpic signals, triggered a neuroprosthesis designed to facilitate forward reaching, reaching to the mouth, and lateral reaching movements. After 40 90-minute sessions in which the participant attempted the reaching tasks repeatedly, with the movements assisted by the BCI-triggered neuroprosthesis, the participant’s arm function showed a clinically significant six point increase in the Fugl-Meyer Asessment Upper Extermity Sub-Score. These initial results suggest that the combined use of BCI and functional electrical stimulation therapy may restore voluntary reaching function in individuals with chronic severe hemiplegia for whom the rehabilitation alternatives are very limited.

  18. Computer simulations of neural mechanisms explaining upper and lower limb excitatory neural coupling

    Directory of Open Access Journals (Sweden)

    Ferris Daniel P

    2010-12-01

    Full Text Available Abstract Background When humans perform rhythmic upper and lower limb locomotor-like movements, there is an excitatory effect of upper limb exertion on lower limb muscle recruitment. To investigate potential neural mechanisms for this behavioral observation, we developed computer simulations modeling interlimb neural pathways among central pattern generators. We hypothesized that enhancement of muscle recruitment from interlimb spinal mechanisms was not sufficient to explain muscle enhancement levels observed in experimental data. Methods We used Matsuoka oscillators for the central pattern generators (CPG and determined parameters that enhanced amplitudes of rhythmic steady state bursts. Potential mechanisms for output enhancement were excitatory and inhibitory sensory feedback gains, excitatory and inhibitory interlimb coupling gains, and coupling geometry. We first simulated the simplest case, a single CPG, and then expanded the model to have two CPGs and lastly four CPGs. In the two and four CPG models, the lower limb CPGs did not receive supraspinal input such that the only mechanisms available for enhancing output were interlimb coupling gains and sensory feedback gains. Results In a two-CPG model with inhibitory sensory feedback gains, only excitatory gains of ipsilateral flexor-extensor/extensor-flexor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 26%. In a two-CPG model with excitatory sensory feedback gains, excitatory gains of contralateral flexor-flexor/extensor-extensor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 100%. However, within a given excitatory sensory feedback gain, enhancement due to excitatory interlimb gains could only reach levels up to 20%. Interconnecting four CPGs to have ipsilateral flexor-extensor/extensor-flexor coupling, contralateral flexor-flexor/extensor-extensor coupling, and bilateral flexor-extensor/extensor-flexor coupling could enhance

  19. Ultrasound guided distal peripheral nerve block of the upper limb: A technical review

    Directory of Open Access Journals (Sweden)

    Herman Sehmbi

    2015-01-01

    Full Text Available Upper extremity surgery is commonly performed under regional anesthesia. The advent of ultrasonography has made performing upper extremity nerve blocks relatively easy with a high degree of reliability. The proximal approaches to brachial plexus block such as supraclavicular plexus block, infraclavicular plexus block, or the axillary block are favored for the most surgical procedures of distal upper extremity. Ultrasound guidance has however made distal nerve blocks of the upper limb a technically feasible, safe and efficacious option. In recent years, there has thus been a resurgence of distal peripheral nerve blocks to facilitate hand and wrist surgery. In this article, we review the technical aspects of performing the distal blocks of the upper extremity and highlight some of the clinical aspects of their usage.

  20. Epidemiology of Congenital Upper Limb Anomalies in a Midwest United States Population: An Assessment Using the OMT Classification

    Science.gov (United States)

    Goldfarb, Charles A.; Wall, Lindley B.; Bohn, Deborah C.; Moen, Patrick; Van Heest, Ann E.

    2014-01-01

    Purpose To examine the relative presentation frequency of children with upper limb congenital anomalies at 3 Midwestern referral centers using the Oberg, Manske, and Tonkin (OMT) classification and to assess the utility of this new classification system. Methods 641 individuals with 653 congenital upper extremity anomalies were identified at 3 hospitals in 2 large metropolitan areas during a 1-year interval. Patients were identified prospectively and the specific upper extremity anomaly and any associated syndromes were confirmed using medical records and radiographs. We applied the OMT classification that categorizes anomalies using a dysmorphology outline as malformations, dysplasias, deformations, and syndromes, and assessed its utility and ease of use. Results There were 480 extremities (74%) with a limb malformation including 184 involving the entire limb. Arthrogryposis was the most common of these (53 extremities). Anomalies affecting only the hand plate accounted for 62% (296) of the malformations. Of these, radial polydactyly (15%) was the most common specific anomaly, followed by symbrachydactyly (13%) and cleft hand (11%). Dysplasias were noted in 86 extremities; 55 of these were multiple hereditary exostoses. There were 87 extremities with deformations and 58 of these were trigger digits. A total of 98 children had a syndrome or association. Constriction ring sequence was most common. The OMT was straightforward to use and most anomalies could be easily assigned. There were a few conditions, such as Madelung deformity and symbrachydactyly, that would benefit from clarification on how to best classify them. Conclusions Malformations were the most common congenital anomalies in the 653 upper extremities evaluated over a 1-year period at 3 institutions. We were able to classify all individuals using the OMT classification system. PMID:25534840

  1. Concomitant upper limb fractures and short-term functional recovery in hip fracture patients: does the site of upper limb injury matter?

    Science.gov (United States)

    Di Monaco, Marco; Castiglioni, Carlotta; Vallero, Fulvia; Di Monaco, Roberto; Tappero, Rosa

    2015-05-01

    The aim of this study was to evaluate functional recovery in a subgroup of hip fracture patients who sustained a simultaneous fracture at the upper limb, taking into account the site of upper limb injury. Of 760 patients admitted consecutively to the authors' rehabilitation hospital because of a fall-related hip fracture, 700 were retrospectively investigated. Functional outcome was assessed using Barthel Index scores. In 49 of the 700 patients, a single fall resulted in both a hip fracture and a fracture of either wrist (n = 34) or proximal humerus (n = 15). The patients with concomitant shoulder fractures had lower median Barthel Index scores after rehabilitation (70 vs. 90, P = 0.003), lower median Barthel Index effectiveness (57.1 vs. 76.9, P = 0.018), and prolonged median length of stay (42 vs. 36 days, P = 0.011) than did the patients with isolated hip fractures. Significant differences persisted after adjustment for six potential confounders. The adjusted odds ratio for achieving a Barthel Index score lower than 85 was 6.71 (95% confidence interval, 1.68-26.81; P = 0.007) for the patients with concomitant shoulder fractures. Conversely, no prognostic disadvantages were associated with concomitant wrist fractures. Data show a worse functional recovery and a prolonged length of stay in the subgroup of hip fracture patients who sustained a concomitant fracture at the proximal humerus, but not at the wrist.

  2. An upper-limb power-assist exoskeleton using proportional myoelectric control.

    Science.gov (United States)

    Tang, Zhichuan; Zhang, Kejun; Sun, Shouqian; Gao, Zenggui; Zhang, Lekai; Yang, Zhongliang

    2014-04-10

    We developed an upper-limb power-assist exoskeleton actuated by pneumatic muscles. The exoskeleton included two metal links: a nylon joint, four size-adjustable carbon fiber bracers, a potentiometer and two pneumatic muscles. The proportional myoelectric control method was proposed to control the exoskeleton according to the user's motion intention in real time. With the feature extraction procedure and the classification (back-propagation neural network), an electromyogram (EMG)-angle model was constructed to be used for pattern recognition. Six healthy subjects performed elbow flexion-extension movements under four experimental conditions: (1) holding a 1-kg load, wearing the exoskeleton, but with no actuation and for different periods (2-s, 4-s and 8-s periods); (2) holding a 1-kg load, without wearing the exoskeleton, for a fixed period; (3) holding a 1-kg load, wearing the exoskeleton, but with no actuation, for a fixed period; (4) holding a 1-kg load, wearing the exoskeleton under proportional myoelectric control, for a fixed period. The EMG signals of the biceps brachii, the brachioradialis, the triceps brachii and the anconeus and the angle of the elbow were collected. The control scheme's reliability and power-assist effectiveness were evaluated in the experiments. The results indicated that the exoskeleton could be controlled by the user's motion intention in real time and that it was useful for augmenting arm performance with neurological signal control, which could be applied to assist in elbow rehabilitation after neurological injury.

  3. An Upper-Limb Power-Assist Exoskeleton Using Proportional Myoelectric Control

    Science.gov (United States)

    Tang, Zhichuan; Zhang, Kejun; Sun, Shouqian; Gao, Zenggui; Zhang, Lekai; Yang, Zhongliang

    2014-01-01

    We developed an upper-limb power-assist exoskeleton actuated by pneumatic muscles. The exoskeleton included two metal links: a nylon joint, four size-adjustable carbon fiber bracers, a potentiometer and two pneumatic muscles. The proportional myoelectric control method was proposed to control the exoskeleton according to the user's motion intention in real time. With the feature extraction procedure and the classification (back-propagation neural network), an electromyogram (EMG)-angle model was constructed to be used for pattern recognition. Six healthy subjects performed elbow flexion-extension movements under four experimental conditions: (1) holding a 1-kg load, wearing the exoskeleton, but with no actuation and for different periods (2-s, 4-s and 8-s periods); (2) holding a 1-kg load, without wearing the exoskeleton, for a fixed period; (3) holding a 1-kg load, wearing the exoskeleton, but with no actuation, for a fixed period; (4) holding a 1-kg load, wearing the exoskeleton under proportional myoelectric control, for a fixed period. The EMG signals of the biceps brachii, the brachioradialis, the triceps brachii and the anconeus and the angle of the elbow were collected. The control scheme's reliability and power-assist effectiveness were evaluated in the experiments. The results indicated that the exoskeleton could be controlled by the user's motion intention in real time and that it was useful for augmenting arm performance with neurological signal control, which could be applied to assist in elbow rehabilitation after neurological injury. PMID:24727501

  4. Comprehensive assessment of gesture production: a new test of upper limb apraxia (TULIA).

    Science.gov (United States)

    Vanbellingen, T; Kersten, B; Van Hemelrijk, B; Van de Winckel, A; Bertschi, M; Müri, R; De Weerdt, W; Bohlhalter, S

    2010-01-01

    Only few standardized apraxia scales are available and they do not cover all domains and semantic features of gesture production. Therefore, the objective of the present study was to evaluate the reliability and validity of a newly developed test of upper limb apraxia (TULIA), which is comprehensive and still short to administer. The TULIA consists of 48 items including imitation and pantomime domain of non-symbolic (meaningless), intransitive (communicative) and transitive (tool related) gestures corresponding to 6 subtests. A 6-point scoring method (0-5) was used (score range 0-240). Performance was assessed by blinded raters based on videos in 133 stroke patients, 84 with left hemisphere damage (LHD) and 49 with right hemisphere damage (RHD), as well as 50 healthy subjects (HS). The clinimetric findings demonstrated mostly good to excellent internal consistency, inter- and intra-rater (test-retest) reliability, both at the level of the six subtests and at individual item level. Criterion validity was evaluated by confirming hypotheses based on the literature. Construct validity was demonstrated by a high correlation (r = 0.82) with the De Renzi-test. These results show that the TULIA is both a reliable and valid test to systematically assess gesture production. The test can be easily applied and is therefore useful for both research purposes and clinical practice.

  5. Non-target stimuli in the visual field influence movement preparation in upper-limb reaching.

    Science.gov (United States)

    Neely, Kristina A; Morris, Laura J

    2015-09-14

    The present work provides an empirical test of the Dynamic Field Theory of visuospatial cognition. The Dynamic Field Theory is a bi-stable neural network model applied to explain how visual information is integrated during the preparation of reaching responses (Erlhagen and Schöner). The dynamic field theory posits that motor cortices develop peaks of activation for each possible target in the visual field. Targets that are close in space produce neural peaks with overlapping distributions, whereas targets that are far apart produce distinct peaks with non-overlapping distributions. As such, the Dynamic Field Theory predicts reaction times to potential targets that are close in space will be faster than those to targets that are far apart. The present work examined how proximal and distal distractors impact reaction time in an upper-limb reaching task. The results demonstrated that distal distractors result in prolonged reaction times compared to proximal distractors. We suggest that reaction time represents the time required to inhibit neural activity representing the location of the distractor. Thus, prolonged reaction times observed for distal distractors reflect the temporal demands associated with the competition of two non-overlapping distributions of activity in the brain. These findings support the tenets of the Dynamic Field Theory and demonstrate that non-target stimuli in the visual field can influence movement preparation.

  6. Admittance-based Upper Limb Robotic Active and Active-assistive Movements

    Directory of Open Access Journals (Sweden)

    Cristóbal Ochoa Luna

    2015-09-01

    Full Text Available This paper presents two rehabilitation schemes for patients with upper limb impairments. The first is an active-assistive scheme based on the trajectory tracking of predefined paths in Cartesian space. In it, the system allows for an adjustable degree of variation with respect to ideal tracking. The amount of variation is determined through an admittance function that depends on the opposition forces exerted on the system by the user, due to possible impairments. The coefficients of the function allow the adjustment of the degree of assistance the robot will provide in order to complete the target trajectory. The second scheme corresponds to active movements in a constrained space. Here, the same admittance function is applied; however, in this case, it is unattached to a predefined trajectory and instead connected to one generated in real time, according to the user’s intended movements. This allows the user to move freely with the robot in order to track a given path. The free movement is bounded through the use of virtual walls that do not allow users to exceed certain limits. A human-machine interface was developed to guide the robot’s user.

  7. Limb salvage surgery in a patient with macrodystrophia lipomatosa involving an entire upper extremity

    Institute of Scientific and Technical Information of China (English)

    GAO Bo; ZHENG Long-po; CAI Zheng-dong

    2010-01-01

    @@ Macrodystrophia lipomatosa is a rare form of congenital localized gigantism, which is characterized by slowly progressive overgrowth of the mesenchymal elements, especially the fibroadipose tissue,in a limb. Frequently, multiple contiguous digits are involved on the lateral side of the hand or the medial side of the foot. Overabundance of the fibroadipose tissue and osseous overgrowth are most remarkable at the distal ends of the extremity. Macrodystrophia lipomatosa involving an entire limb has been previously reported for only one case in a 45-year-old adult male;1 however, no details of treatment were described. Here, we present the first report of successful limb salvage surgery of macrodystrophia lipomatosa in an adolescent involving an entire upper extremity.

  8. The OMT Classification of Congenital Anomalies of the Hand and Upper Limb.

    Science.gov (United States)

    Tonkin, Michael A; Oberg, Kerby C

    2015-10-01

    The Oberg, Manske and Tonkin (OMT) Classification of congenital anomalies of the hand and upper limb uses dysmorphological terminology, placing conditions in one of three groups: Malformations, Deformations and Dysplasias. The main group, Malformations, is further subdivided according to whether the whole of the limb is affected or the hand plate alone, and whether the primary insult involves one of the three axes of limb development and patterning or is non-axial. The common surgical diagnoses, such as thumb duplication and thumb hypoplasia, are then placed within this framework. Recently the International Federation of Societies for Surgery of the Hand Scientific Committee for Congenital Conditions approved the OMT Classification as a timely and appropriate replacement of the previously accepted Swanson Classification. This review charts the development of and modifications to the OMT Classification and its current status.

  9. Upper-limb prosthetic control using wearable multichannel mechanomyography.

    Science.gov (United States)

    Wilson, Samuel; Vaidyanathan, Ravi

    2017-07-01

    In this paper we introduce a robust multi-channel wearable sensor system for capturing user intent to control robotic hands. The interface is based on a fusion of inertial measurement and mechanomyography (MMG), which measures the vibrations of muscle fibres during motion. MMG is immune to issues such as sweat, skin impedance, and the need for a reference signal that is common to electromyography (EMG). The main contributions of this work are: 1) the hardware design of a fused inertial and MMG measurement system that can be worn on the arm, 2) a unified algorithm for detection, segmentation, and classification of muscle movement corresponding to hand gestures, and 3) experiments demonstrating the real-time control of a commercial prosthetic hand (Bebionic Version 2). Results show recognition of seven gestures, achieving an offline classification accuracy of 83.5% performed on five healthy subjects and one transradial amputee. The gesture recognition was then tested in real time on subsets of two and five gestures, with an average accuracy of 93.3% and 62.2% respectively. To our knowledge this is the first applied MMG based control system for practical prosthetic control.

  10. Music Upper Limb Therapy – Integrated: an Enriched Collaborative Approach for Stroke Rehabilitation

    Directory of Open Access Journals (Sweden)

    Preeti Raghavan

    2016-10-01

    Full Text Available Stroke is a leading cause of disability worldwide. It leads to a sudden and overwhelming disruption in one’s physical body, and alters the stroke survivors’ sense of self. Long-term recovery requires that bodily perception, social participation and sense of self are restored; this is challenging to achieve, particularly with a single intervention. However, rhythmic synchronization of movement to external stimuli facilitates sensorimotor coupling for movement recovery, enhances emotional engagement, and has positive effects on interpersonal relationships. In this proof-of-concept study, we designed a group music-making intervention, Music Upper Limb Therapy-Integrated (MULT-I, to address the physical, psychological and social domains of rehabilitation simultaneously, and investigated its effects on long-term post-stroke upper limb recovery. The study used a mixed-method pre-post design with one-year follow up. Thirteen subjects completed the 45-minute intervention twice a week for six weeks. The primary outcome was reduced upper limb motor impairment on the Fugl-Meyer Scale. Secondary outcomes included sensory impairment (two-point discrimination test, activity limitation (Modified Rankin scale, well-being (WHO well-being index, and participation (Stroke Impact Scale. Repeated measures ANOVA was used to test for differences between pre- and post-intervention, and one-year follow up scores. Significant improvement was found in upper limb motor impairment, sensory impairment, activity limitation, and well-being immediately post-intervention that persisted at 1 year. Activities of daily living and social participation improved only from post-intervention to one-year follow up. The improvement in upper limb motor impairment was more pronounced in a subset of lower functioning individuals as determined by their pre-intervention wrist range of motion. Qualitatively, subjects reported new feelings of ownership of their impaired limb, more

  11. Music Upper Limb Therapy—Integrated: An Enriched Collaborative Approach for Stroke Rehabilitation

    Science.gov (United States)

    Raghavan, Preeti; Geller, Daniel; Guerrero, Nina; Aluru, Viswanath; Eimicke, Joseph P.; Teresi, Jeanne A.; Ogedegbe, Gbenga; Palumbo, Anna; Turry, Alan

    2016-01-01

    Stroke is a leading cause of disability worldwide. It leads to a sudden and overwhelming disruption in one’s physical body, and alters the stroke survivors’ sense of self. Long-term recovery requires that bodily perception, social participation and sense of self are restored; this is challenging to achieve, particularly with a single intervention. However, rhythmic synchronization of movement to external stimuli facilitates sensorimotor coupling for movement recovery, enhances emotional engagement and has positive effects on interpersonal relationships. In this proof-of-concept study, we designed a group music-making intervention, Music Upper Limb Therapy-Integrated (MULT-I), to address the physical, psychological and social domains of rehabilitation simultaneously, and investigated its effects on long-term post-stroke upper limb recovery. The study used a mixed-method pre-post design with 1-year follow up. Thirteen subjects completed the 45-min intervention twice a week for 6 weeks. The primary outcome was reduced upper limb motor impairment on the Fugl-Meyer Scale (FMS). Secondary outcomes included sensory impairment (two-point discrimination test), activity limitation (Modified Rankin Scale, MRS), well-being (WHO well-being index), and participation (Stroke Impact Scale, SIS). Repeated measures analysis of variance (ANOVA) was used to test for differences between pre- and post-intervention, and 1-year follow up scores. Significant improvement was found in upper limb motor impairment, sensory impairment, activity limitation and well-being immediately post-intervention that persisted at 1 year. Activities of daily living and social participation improved only from post-intervention to 1-year follow up. The improvement in upper limb motor impairment was more pronounced in a subset of lower functioning individuals as determined by their pre-intervention wrist range of motion. Qualitatively, subjects reported new feelings of ownership of their impaired limb, more

  12. Haptic Neurorehabilitation and Virtual Reality for Upper Limb Paralysis: A Review.

    Science.gov (United States)

    Piggott, Leah; Wagner, Samantha; Ziat, Mounia

    2016-01-01

    Motor and sensory loss or dysfunction affects the quality of life for thousands of individuals daily. The upper limb, and especially the hand, are important for a person's ability to complete activities of daily living. Traditional therapy methods focus on motor recovery, but future methods should include sensory recovery and should promote the use of the affected limb(s) at home. In this review, we highlight the current state-of-art robotic devices for the upper limb, and we discuss benefits of including haptic feedback and virtual reality environments during neurorehabilitation. Robotic devices, such as end-effector devices, grounded and ungrounded exoskeletons, have been developed to assist with various functions including individual finger, whole hand, and shoulder movements. Many robots highlighted in this paper are inexpensive and are small enough to be in a patient's home, or allow for telerehabilitation. Virtual reality creates safe environments for patients to practice motor movements and interactive games improve enjoyment of therapy. Haptic feedback creates more immersive virtual reality, and contributes to the recovery of sensory function. Physiological studies conducted after brain trauma and with robotic devices contribute to the understanding of brain plasticity, and illustrate the efficacy of these technologies. We conclude by addressing the future direction of neurorehabilitation research.

  13. Risk of upper limb complaints due to computer use in older persons: a randomized study

    Directory of Open Access Journals (Sweden)

    Jolles Jelle

    2007-08-01

    Full Text Available Abstract Background We studied whether the twelve-month use of a standard computer would induce complaints of upper limb pain or functional limitations in older novice computer users. Methods Participants between 64 and 76 of age were randomly assigned to an Intervention group (n = 62, whose members received a personal computer and fast Internet access at their homes, or a No Intervention control group (n = 61, whose members refrained from computer use during the twelve month study period. Results Difference scores between baseline and twelve months assessments on both complaint (SFS and functional health scales (SF-36 did not differ between groups (all p > .05. Conclusion Prolonged, self-paced use of a standard computer interface does not put older persons at a risk of upper limb complaints or reduce functional health in older adults.

  14. Design and Interaction Control of a New Bilateral Upper-Limb Rehabilitation Device

    Directory of Open Access Journals (Sweden)

    Qing Miao

    2017-01-01

    Full Text Available This paper proposed a bilateral upper-limb rehabilitation device (BULReD with two degrees of freedom (DOFs. The BULReD is portable for both hospital and home environment, easy to use for therapists and patients, and safer with respect to upper-limb robotic exoskeletons. It was implemented to be able to conduct both passive and interactive training, based on system kinematics and dynamics, as well as the identification of real-time movement intention of human users. Preliminary results demonstrate the potential of the BULReD for clinical applications, with satisfactory position and interaction force tracking performance. Future work will focus on the clinical evaluation of the BULReD on a large sample of poststroke patients.

  15. Proprioceptive rehabilitation of upper limb dysfunction in movement disorders: a clinical perspective.

    Science.gov (United States)

    Abbruzzese, Giovanni; Trompetto, Carlo; Mori, Laura; Pelosin, Elisa

    2014-01-01

    Movement disorders (MDs) are frequently associated with sensory abnormalities. In particular, proprioceptive deficits have been largely documented in both hypokinetic (Parkinson's disease) and hyperkinetic conditions (dystonia), suggesting a possible role in their pathophysiology. Proprioceptive feedback is a fundamental component of sensorimotor integration allowing effective planning and execution of voluntary movements. Rehabilitation has become an essential element in the management of patients with MDs, and there is a strong rationale to include proprioceptive training in rehabilitation protocols focused on mobility problems of the upper limbs. Proprioceptive training is aimed at improving the integration of proprioceptive signals using "task-intrinsic" or "augmented feedback." This perspective article reviews the available evidence on the effects of proprioceptive stimulation in improving upper limb mobility in patients with MDs and highlights the emerging innovative approaches targeted to maximizing the benefits of exercise by means of enhanced proprioception.

  16. [Cross-hand replantation in bilateral upper limb amputation: An anatomical emergency].

    Science.gov (United States)

    Andre, A; Rongieres, M; Laffosse, J-M; Pailhe, R; Lauwers, F; Grolleau, J-L

    2015-08-01

    Bilateral amputations of upper limbs are excessively rare clinical situations. We report an exceptional clinical case of bilateral amputation of upper limbs at different levels: destruction of the right hand and left transhumeral amputation in a patient after an attempted suicide on train lines. This special situation led us to perform a cross-hand replantation of the left hand to the right forearm. Only 4 other similar cases have been published in the literature. Once the surgical indication had been formulated collectively, and taking into account all the ethical issues surrounding such a decision, we had to solve the issue of inverting anatomical structures in emergency. We have provided a detailed description of our surgical technique. The aim was to save at least one organ used for grasping. The result obtained is presented and reviewed.

  17. [Anatomo-functional aspects and diagnostic algorithm (of the upper limb pathologies secondary to repeated trauma)].

    Science.gov (United States)

    Bazzini, G

    2001-01-01

    The epidemiology of work-related musculo-skeletal pathologies of the upper limbs has become significantly relevant in the last years, and a sharp increasing trend can be observed. This paper mainly focuses on the chronic inflammatory and degenerative conditions, which are more complex and difficult to accurately diagnose and treat. A synthesis of the diagnostic picture of the different types, involving the joints, muscles and tendons, and peripheral nerves is provided, with mention of the sensitivity and specificity of the main diagnostic tests. The possible entrapments of the radial, median and ulnar nerves are described in detail. Finally, a brief critical review on the principal movements of the upper limbs which are responsible of the onset of such conditions is presented.

  18. Proprioceptive rehabilitation of upper limb dysfunction in movement disorders: a clinical perspective

    Directory of Open Access Journals (Sweden)

    Giovanni eAbbruzzese

    2014-11-01

    Full Text Available Movement disorders are frequently associated with sensory abnormalities. In particular, proprioceptive deficits have been largely documented in both hypokinetic (Parkinson’s disease and hyperkinetic conditions (dystonia suggesting a possible role in their pathophysiology. Proprioceptive feedback is a fundamental component of sensorimotor integration allowing effective planning and execution of voluntary movements. Rehabilitation has become an essential element in the management of patients with movement disorders and there is a strong rationale to include proprioceptive training in rehabilitation protocols focused on mobility problems of the upper limbs. Proprioceptive training is aimed at improving the integration of proprioceptive signals using task intrinsic or augmented feedback. This perspective article reviews the available evidences on the effects of proprioceptive stimulation in improving upper limb mobility in patients with movement disorders and highlights the emerging innovative approaches targeted to maximizing the benefits of exercise by means of enhanced proprioception.

  19. Development of rehabilitation training support system for occupational therapy of upper limb motor function

    Science.gov (United States)

    Morita, Yoshifumi; Hirose, Akinori; Uno, Takashi; Uchid, Masaki; Ukai, Hiroyuki; Matsui, Nobuyuki

    2007-12-01

    In this paper we propose a new rehabilitation training support system for upper limbs. The proposed system enables therapists to quantitatively evaluate the therapeutic effect of upper limb motor function during training, to easily change the load of resistance of training and to easily develop a new training program suitable for the subjects. For this purpose we develop control algorithms of training programs in the 3D force display robot. The 3D force display robot has parallel link mechanism with three motors. The control algorithm simulating sanding training is developed for the 3D force display robot. Moreover the teaching/training function algorithm is developed. It enables the therapists to easily make training trajectory suitable for subject's condition. The effectiveness of the developed control algorithms is verified by experiments.

  20. The Flail and Pulseless Upper Limb: an Extreme Case of Traumatic Scapulo-thoracic Dissociation

    Directory of Open Access Journals (Sweden)

    Maria SW

    2015-07-01

    Full Text Available Scapulo-thoracic dissociation is an infrequent injury resulting from high energy trauma which is often associated with severe neurological and vascular injuries which may be unrecognised at the time of presentation. A 24 year-old female presented with bilateral rib fractures, pneumothorax, liver and kidney injuries following a road traffic accident. She also sustained fractures of her right scapula, odontoid, right transverse processes of the thoracic and lumbar vertebrae and a closed fracture of her right femur. Her right upper limb was later noted to be flail and pulseless, due to complete right brachial plexus injury, scapula-thoracic dissociation and subclavian artery avulsion. We managed the upper limb injuries non-operatively, and focused on resuscitation of the patient. Early exploration of the complete brachial plexus injury was not undertaken in spite of the possible associated poor functional outcome as there was no life-threatening indication.

  1. Study of the different types of actuators and mechanisms for upper limb prostheses.

    Science.gov (United States)

    Cura, Vanderlei O Del; Cunha, Fransérgio L; Aguiar, Manoel L; Cliquet, Alberto

    2003-06-01

    Research in the area of actuators and mechanisms has shown steadily growing technological advances in externally activated upper limb prostheses. From among the actuators, advances include the use of piezoelectric materials, special metal alloys, polymers, and new motor applications, while the advances in mechanisms include mechanical designs based on the anatomy of the human hand and improvements in the way these components are combined. These efforts are aimed at meeting the need for anthropomorphic and functional prosthetic devices that enable patients to carry out basic daily tasks more easily and reduce the rejection rate of prostheses. This article technically discusses the several types of actuators and mechanisms, listing their main characteristics, applications, and advantages and disadvantages, and the current state of research in the area of rehabilitation of upper limb functions through the use of active prostheses. Comparisons of these devices are made with regard to the main criteria of construction and operation required to achieve optimal prosthetic performance.

  2. Functional electrical stimulation for the upper limb in tetraplegic spinal cord injury: a systematic review.

    Science.gov (United States)

    Patil, Siddeshwar; Raza, Wajid A; Jamil, Firas; Caley, Richard; O'Connor, Rory J

    2014-01-01

    Technological advances have helped to improve functional ability in spinal cord injury survivors. The aim of this study is to systematically review the evidence for functional electrical stimulation (FES) on functional tasks involving the upper limb in people with spinal cord injuries. The authors systematically searched from September 2009 to September 2014 in relevant databases using a combination of keywords covering spinal cord injury and FES. Studies were selected using pre-determined criteria. The search yielded 144 studies. Only five studies met the inclusion criteria. All five reported improvements immediately and at follow-up in functional ability as a result of FES or FES combined with conventional therapy. There is some preliminary evidence that FES may reduce disability due to upper limb-related activity limitations in tetraplegic spinal cord injury. Further work needs to examine the role of FES in more detail and in combination with other treatments.

  3. Combining Upper Limb Robotic Rehabilitation with Other Therapeutic Approaches after Stroke: Current Status, Rationale, and Challenges

    Directory of Open Access Journals (Sweden)

    Stefano Mazzoleni

    2017-01-01

    Full Text Available A better understanding of the neural substrates that underlie motor recovery after stroke has led to the development of innovative rehabilitation strategies and tools that incorporate key elements of motor skill relearning, that is, intensive motor training involving goal-oriented repeated movements. Robotic devices for the upper limb are increasingly used in rehabilitation. Studies have demonstrated the effectiveness of these devices in reducing motor impairments, but less so for the improvement of upper limb function. Other studies have begun to investigate the benefits of combined approaches that target muscle function (functional electrical stimulation and botulinum toxin injections, modulate neural activity (noninvasive brain stimulation, and enhance motivation (virtual reality in an attempt to potentialize the benefits of robot-mediated training. The aim of this paper is to overview the current status of such combined treatments and to analyze the rationale behind them.

  4. Virtual reality and motor rehabilitation of the upper limb after stroke: a generation of progress?

    Science.gov (United States)

    Lucca, Lucia Francesca

    2009-11-01

    To review the rationale, criteria of application, potentialities and limits of the available procedures for upper limb rehabilitation in virtual reality setups. Classification of the available virtual reality setups and comparison among published studies, with focus on the criteria of motor impairment and recovery assessment, rehabilitation procedures, and efficacy. The studies completed to date support application of virtual reality methods in the treatment of the paretic upper limb after stroke, but the superiority of virtual reality methods in comparison with conventional procedures currently in use is still unproven. Larger samples, adequate controlled study design and follow-up, greater homogeneity in the selection criteria and parameters measuring severity of stroke, motor impairment and recovery are necessary.

  5. A Force-Feedback Exoskeleton for Upper-Limb Rehabilitation in Virtual Reality

    Directory of Open Access Journals (Sweden)

    Antonio Frisoli

    2009-01-01

    Full Text Available This paper presents the design and the clinical validation of an upper-limb force-feedback exoskeleton, the L-EXOS, for robotic-assisted rehabilitation in virtual reality (VR. The L-EXOS is a five degrees of freedom exoskeleton with a wearable structure and anthropomorphic workspace that can cover the full range of motion of human arm. A specific VR application focused on the reaching task was developed and evaluated on a group of eight post-stroke patients, to assess the efficacy of the system for the rehabilitation of upper limb. The evaluation showed a significant reduction of the performance error in the reaching task (paired t-test, p < 0.02

  6. A hybrid Force Position Control for a Upper Limb Rehabilitation Robot of Series Mechanism

    OpenAIRE

    Liu Yali; Ji Linhong

    2016-01-01

    Interactive rehabilitation robot which has better interaction is one main method to improve the patients’ motion performance. The rehabilitation robot developed by Tsinghua University UECM for patients having weakness with shoulder and elbow should be improved by increasing interactive parts to adapt to patients’ state. This paper described one control strategy to increase the interaction between robot and patients. The hybrid force position control for the upper limb rehabilitation robot UEC...

  7. Effect of two contrasting interventions on upper limb chronic pain and disability

    DEFF Research Database (Denmark)

    Sundstrup, Emil; Jakobsen, Markus D; Andersen, Christoffer H

    2014-01-01

    questionnaire) as well as isometric shoulder and wrist muscle strength were secondary outcomes. RESULTS: Pain intensity, disability, and muscle strength improved more following resistance training than usual care (P respectively). Pain intensity decreased by 1.5 points (95% confidence......: Resistance training at the workplace results in clinical relevant improvements in pain, disability, and muscle strength in adults with upper limb chronic pain exposed to highly repetitive and forceful manual work. Trial registration: NCT01671267....

  8. Development and testing of new upper-limb prosthetic devices: Research designs for usability testing

    OpenAIRE

    Linda Resnik, PT, PhD, OCS

    2011-01-01

    The purposes of this article are to describe usability testing and introduce designs and methods of usability testing research as it relates to upper-limb prosthetics. This article defines usability, describes usability research, discusses research approaches to and designs for usability testing, and highlights a variety of methodological considerations, including sampling, sample size requirements, and usability metrics. Usability testing is compared with other types of study designs used in...

  9. Can new technologies improve upper limb performance in grown-up diplegic children?

    Science.gov (United States)

    Turconi, Anna C; Biffi, Emilia; Maghini, Cristina; Peri, Elisabetta; Servodio Iammarone, Fernanda; Gagliardi, Chiara

    2016-10-01

    Few systematic studies describe rehabilitation trainings for upper limb in diplegic children with cerebral palsy (CP), who - especially once grown up - are often not considered as a target for rehabilitation interventions. In this pilot study, we describe the details and the effectiveness of an intensive, technology assisted intervention for upper limb. The treatment combines the utilization of Armeo® Spring with a training focused on hand/finger fluency and dexterity in a pre-post treatment experimental design. Participants were ten school-aged children (mean age 11.2) with bilateral CP and diplegia, attending mainstream schools. Participants underwent 40 therapy sessions in four weeks. Armeo® Spring measures, standardized motor and perceptual outcome indexes, as well as everyday life indicators were utilized to assess the effect of the intervention. Upper limb coordination, fluency and quality of movements mainly of hands and fingers significantly improved, with a good transferability to everyday life also in areas not specifically trained, such as self-care abilities and mobility. Probably due to the visual feedback provided by the virtual reality setting (which was all in one the context, the incentive and the product of activities), perceptual abilities significantly improved, too. Our study suggests the importance of intervention on upper limb even in milder CP diplegic forms and in relatively grown-up children. The possibility of modification at least partially relies on learning processes that are active all along development and benefit from stimulation. Though further studies with control groups and follow-up perspective are needed to confirm, new technologies offer interesting possibilities to be integrated into new evidence-based rehabilitation models.

  10. Ultrasound-guided posterior approach to brachial plexus for the treatment of upper phantom limb syndrome.

    Science.gov (United States)

    Tognù, A; Borghi, B; Gullotta, S; White, P F

    2012-01-01

    The purpose of the case is to report the clinical value of the ultrasound-guided posterior approach to the brachial plexus in the treatment of phantom limb syndrome after an upper extremity amputation. The author experienced ultrasound guidance as sole technique to localize the brachial plexus for the purpose of placing a catheter for continuous infusion of a local anesthetic in a patient where standard landmark-based nerve stimulation for placement of a continuous perineural block was not possible.

  11. Investigation into the applicability of a passive upper-limb exoskeleton in automotive industry

    OpenAIRE

    Spada, Stefania; Ghibaudo, Lidia; Gilotta, Silvia; Gastaldi, Laura; Cavatorta, Maria Pia

    2017-01-01

    The fourth industrial revolution faces the technological challenge of human-robot cooperation in manufacturing process. Aim of this study was to investigate the effectiveness and user's acceptance of a passive exoskeleton for upper limbs. Three different tests, involving static and dynamic tasks, were performed by 29 automotive operators without and with the exoskeleton. Main aspects and results of the testing campaign are presented in the paper. Potential issues associated to the introductio...

  12. Upper Limb Outcome Measures Used in Stroke Rehabilitation Studies: A Systematic Literature Review.

    Directory of Open Access Journals (Sweden)

    Leire Santisteban

    Full Text Available Establishing which upper limb outcome measures are most commonly used in stroke studies may help in improving consensus among scientists and clinicians.In this study we aimed to identify the most commonly used upper limb outcome measures in intervention studies after stroke and to describe domains covered according to ICF, how measures are combined, and how their use varies geographically and over time.Pubmed, CinHAL, and PeDRO databases were searched for upper limb intervention studies in stroke according to PRISMA guidelines and477 studies were included.In studies 48different outcome measures were found. Only 15 of these outcome measures were used in more than 5% of the studies. The Fugl-Meyer Test (FMTwas the most commonly used measure (in 36% of studies. Commonly used measures covered ICF domains of body function and activity to varying extents. Most studies (72% combined multiple outcome measures: the FMT was often combined with the Motor Activity Log (MAL, the Wolf Motor Function Test and the Action Research Arm Test, but infrequently combined with the Motor Assessment Scale or the Nine Hole Peg Test. Key components of manual dexterity such as selective finger movements were rarely measured. Frequency of use increased over a twelve-year period for the FMT and for assessments of kinematics, whereas other measures, such as the MAL and the Jebsen Taylor Hand Test showed decreased use over time. Use varied largely between countries showing low international consensus.The results showed a large diversity of outcome measures used across studies. However, a growing number of studies used the FMT, a neurological test with good psychometric properties. For thorough assessment the FMT needs to be combined with functional measures. These findings illustrate the need for strategies to build international consensus on appropriate outcome measures for upper limb function after stroke.

  13. Variable structure pantograph mechanism with spring suspension system for comprehensive upper-limb haptic movement training

    Directory of Open Access Journals (Sweden)

    Joel C. Perry, PhD

    2011-05-01

    Full Text Available Numerous haptic devices have been developed for upper-limb neurorehabilitation, but their widespread use has been largely impeded because of complexity and cost. Here, we describe a variable structure pantograph mechanism combined with a spring suspension system that produces a versatile rehabilitation robot, called Universal Haptic Pantograph, for movement training of the shoulder, elbow, and wrist. The variable structure is a 5-degree-of-freedom (DOF mechanism composed of 7 joints, 11 joint axes, and 3 configurable joint locks that reduce the number of system DOFs to between 0 and 3. The resulting device has eight operational modes: Arm, Wrist, ISO (isometric 1, ISO 2, Reach, Lift 1, Lift 2, and Steer. The combination of available work spaces (reachable areas shows a high suitability for movement training of most upper-limb activities of daily living. The mechanism, driven by series elastic actuators, performs similarly in all operational modes, with a single control scheme and set of gains. Thus, a single device with minimal setup changes can be used to treat a variety of upper-limb impairments that commonly afflict veterans with stroke, traumatic brain injury, or other direct trauma to the arm. With appropriately selected design parameters, the developed multimode haptic device significantly reduces the costs of robotic hardware for full-arm rehabilitation while performing similarly to that of single-mode haptic devices. We conducted case studies with three patients with stroke who underwent clinical training using the developed mechanism in Arm, Wrist, and/or Reach operational modes. We assessed outcomes using Fugl-Meyer Motor Assessment and Wolf Motor Function Test scores showing that upper-limb ability improved significantly following training sessions.

  14. Liminality and decision making for upper limb surgery in tetraplegia: a grounded theory.

    Science.gov (United States)

    Dunn, Jennifer A; Hay-Smith, E Jean C; Whitehead, Lisa C; Keeling, Sally

    2013-07-01

    To explore, from the perspective of the person with tetraplegia, the issues that influenced decision making about upper limb surgery and develop a conceptual framework describing the decision making process. Purposive and theoretical sampling of 22 people with tetraplegia, followed by interviews. Ten people had upper limb surgery and 12 had not. Verbatim transcripts were analyzed with constructivist grounded theory. Participants responded to the offer of surgery in one of three ways: yes, let me have it; no thanks; or possibly. Many influences on the decision about surgery had a temporal element, such as hope for the cure or recovery from SCI, inadequate physical or social supports while rehabilitating, life roles and goals, and the avoidance of re-hospitalization. The conceptual framework illustrated that many participants entered a liminal state within which they required a stimulus to review their decision about upper limb surgery. Decision making is a temporal process, and for some the process was a prolonged and liminal one. Therefore, multiple offers for surgery are required to allow for changing thoughts and circumstances throughout an individual's lifetime. Flexibility with regard to timing for surgery and type of rehabilitation may increase the uptake, especially for women. • Multiple offers for upper limb surgery are required throughout an individual's lifetime to account for changing thoughts and priorities. • Identification of the type of support required (informational, emotional) may assist in decreasing the time taken to make the decision about surgery. • Flexibility in surgical and rehabilitation options, especially for women, may increase the uptake of surgery.

  15. Upper Limb Outcome Measures Used in Stroke Rehabilitation Studies: A Systematic Literature Review

    Science.gov (United States)

    Santisteban, Leire; Térémetz, Maxime; Bleton, Jean-Pierre; Baron, Jean-Claude; Maier, Marc A.; Lindberg, Påvel G.

    2016-01-01

    Background Establishing which upper limb outcome measures are most commonly used in stroke studies may help in improving consensus among scientists and clinicians. Objective In this study we aimed to identify the most commonly used upper limb outcome measures in intervention studies after stroke and to describe domains covered according to ICF, how measures are combined, and how their use varies geographically and over time. Methods Pubmed, CinHAL, and PeDRO databases were searched for upper limb intervention studies in stroke according to PRISMA guidelines and477 studies were included. Results In studies 48different outcome measures were found. Only 15 of these outcome measures were used in more than 5% of the studies. The Fugl-Meyer Test (FMT)was the most commonly used measure (in 36% of studies). Commonly used measures covered ICF domains of body function and activity to varying extents. Most studies (72%) combined multiple outcome measures: the FMT was often combined with the Motor Activity Log (MAL), the Wolf Motor Function Test and the Action Research Arm Test, but infrequently combined with the Motor Assessment Scale or the Nine Hole Peg Test. Key components of manual dexterity such as selective finger movements were rarely measured. Frequency of use increased over a twelve-year period for the FMT and for assessments of kinematics, whereas other measures, such as the MAL and the Jebsen Taylor Hand Test showed decreased use over time. Use varied largely between countries showing low international consensus. Conclusions The results showed a large diversity of outcome measures used across studies. However, a growing number of studies used the FMT, a neurological test with good psychometric properties. For thorough assessment the FMT needs to be combined with functional measures. These findings illustrate the need for strategies to build international consensus on appropriate outcome measures for upper limb function after stroke. PMID:27152853

  16. EFFECTS OF WRIST WEIGHING IN REDUCING UPPER LIMB TREMORS IN PATIENTS WITH CEREBELLAR LESIONS

    Directory of Open Access Journals (Sweden)

    Vishnu Priya

    2015-08-01

    Full Text Available Background: An intentional tremor is one of the most untreated causes in patients with cerebellar ataxia. Upper limb tremors decreases the performance of many activities of daily life Thus treatment of patients with tremor probably implies better functional ability. It is one of the major areas of concern to improve functional independence hence, this study proposed to know the effects of wrist weighing in reducing upper limb tremors in cerebellar injury patients. Materials and Methods: A total number of 21 patients with various abnormalities of cerebellum were selected depending on selection criteria. These patients were randomly divided into two groups. One group was treated with wrist weighing by using Velcro weight cuffs for 15 minutes along with conventional physiotherapy for 5 days a week for 2 months & other group is treated with conventional physiotherapy for 5 days in a week for 2 months. The objectives were tested by using tremor rating scale and nine hole peg test. The values are collected before and after the treatment Results: In the group treated with wrist weighing the improvement in the tremor rating scale is very significant (p: 0.0001 and in nine hole peg test is extremely significant (p: 0.0001. In conventional therapy group the improvement in the tremor rating scale is not significant (p: 0.0051 and in nine hole peg test is very significant (p: 0.0002. Conclusion: Incorporation of wrist weighing along with conventional therapy reduced the intensity of upper limb tremors in patients with cerebellar injuries but both the treatments are effective in improving upper limb functions. KEY WORDS: Intentional tremor, Rehabilitation, Wrist weighing

  17. A Case of Upper Limb Compartment Syndrome following Snake Envenomation: Measure Twice, Cut Once.

    Science.gov (United States)

    Thomas, D K; Budhoo, E J; Mencia, M M; Ali, T F; Santana, D

    2014-08-01

    We report a case of a 16-year old male patient who sustained a poisonous bite from a mapepire balsain snake on the dorsum of his left hand. The subject presented within one hour of envenomation and subsequently developed clinical features of acute compartment syndrome in the involved upper limb. Early diagnosis and emergency fasciotomy effectively treated his condition. Aggressive physiotherapy coupled with this ensured best functional outcome.

  18. A Case of Upper Limb Compartment Syndrome following Snake Envenomation Measure Twice, Cut Once

    Science.gov (United States)

    Thomas, DK; Budhoo, EJ; Mencia, MM; Ali, TF; Santana, D

    2014-01-01

    We report a case of a 16-year old male patient who sustained a poisonous bite from a mapepire balsain snake on the dorsum of his left hand. The subject presented within one hour of envenomation and subsequently developed clinical features of acute compartment syndrome in the involved upper limb. Early diagnosis and emergency fasciotomy effectively treated his condition. Aggressive physiotherapy coupled with this ensured best functional outcome. PMID:25429488

  19. Vibrotactile sense in patients with different upper limb disorders compared with a control group

    DEFF Research Database (Denmark)

    Laursen, Lise Hedegaard; Jepsen, Jørgen Riis; Sjøgaard, Gisela

    2006-01-01

    BACKGROUND: Upper limb disorders (ULDs) are common, and so are the difficulties with regard to their specific diagnoses. According to diagnostic consensus criteria, specific diagnoses include neuropathy and muscular- and connective-tissue disorders (MCDs). There is a need for valid objective...... diagnostic tools to reveal underlying mechanisms for specific diagnoses. OBJECTIVE: To investigate the possible differences in vibration perception threshold (VPT) and tolerance to suprathreshold stimulation (STS) between controls and specific diagnostic ULD patient groups with uni- and bilateral neuropathy...

  20. Using data from the Microsoft Kinect 2 to quantify upper limb behavior: a feasibility study.

    Science.gov (United States)

    Dehbandi, Behdad; Barachant, Alexandre; Harary, David; Long, John; Tsagaris, K Zoe; Bumanlag, Silverio; He, Victor; Putrino, David

    2016-09-05

    The objective of this study was to assess whether the novel application of a machine learning approach to data collected from the Microsoft Kinect 2 (MK2) could be used to classify differing levels of upper limb impairment. twenty-four healthy subjects completed items of the Wolf Motor Function Test (WMFT), which is a clinically validated metric of upper limb function for stroke survivors. Subjects completed the WMFT 3 times: 1) as a healthy individual, 2) emulating mild impairment, and 3) emulating moderate impairment. A MK2 was positioned in front of participants, and collected kinematic data as they completed the WMFT. A classification framework, based on Riemannian geometry and the use of covariance matrices as feature representation of the MK2 data, was developed for these data, and its ability to successfully classify subjects as either "healthy", "mildly impaired" or "moderately impaired" was assessed. Mean accuracy for our classifier was 91.7%, with a specific accuracy breakdown of 100%, 83.3% and 91.7% for the "healthy", "mildly impaired" and "moderately impaired" conditions, respectively. We conclude that data from the MK2 is of sufficient quality to perform objective motor behavior classification in individuals with upper limb impairment. The data collection and analysis framework that we have developed has the potential to disrupt the field of clinical assessment. Future studies will focus on validating this protocol on large populations of individuals with actual upper limb impairments in order to create a toolkit that is clinically validated and available to the clinical community.

  1. Development and testing of new upper-limb prosthetic devices: Research designs for usability testing

    Directory of Open Access Journals (Sweden)

    Linda Resnik, PT, PhD, OCS

    2011-07-01

    Full Text Available The purposes of this article are to describe usability testing and introduce designs and methods of usability testing research as it relates to upper-limb prosthetics. This article defines usability, describes usability research, discusses research approaches to and designs for usability testing, and highlights a variety of methodological considerations, including sampling, sample size requirements, and usability metrics. Usability testing is compared with other types of study designs used in prosthetic research.

  2. Application progress of virtual reality rehabilitation technology in upper limb dysfunction after stroke

    OpenAIRE

    Li, Bing-Jie; Li, Fang

    2017-01-01

     Virtual reality (VR) rehabilitation technology is a kind of integrated technology which simulates the real world via computer. It has three characteristics: immersion, interaction and imagination. It is widely used in the field of stroke rehabilitation. This review briefly describes the application of virtual reality rehabilitation technology in upper limb dysfunction after stroke. DOI: 10.3969/j.issn.1672-6731.2017.04.002

  3. Application progress of virtual reality rehabilitation technology in upper limb dysfunction after stroke

    Directory of Open Access Journals (Sweden)

    Bing-jie LI

    2017-07-01

    Full Text Available  Virtual reality (VR rehabilitation technology is a kind of integrated technology which simulates the real world via computer. It has three characteristics: immersion, interaction and imagination. It is widely used in the field of stroke rehabilitation. This review briefly describes the application of virtual reality rehabilitation technology in upper limb dysfunction after stroke. DOI: 10.3969/j.issn.1672-6731.2017.04.002

  4. Jellyfish Envenomation Resulting In Vascular Insufficiency And Neurogenic Injury of Upper Limb

    Directory of Open Access Journals (Sweden)

    Choong CYL

    2015-11-01

    Full Text Available Following a week after a jellyfish sting, a young man presented with regional cyanosis and threat of distal gangrene secondary to vascular spasm in the forearm. The patient also suffered from transient paresis and numbness of the affected upper limb. Contrasted imaging revealed unopacified vessels in the distal forearm and worsening swelling warranted emergency surgical fasciotomy for impending compartment syndrome. This case highlights the occurrence of jellyfish envenomation and the need for early treatment.

  5. The pedicled thoraco-umbilical flap: A versatile technique for upper limb coverage

    Directory of Open Access Journals (Sweden)

    Mishra Sharad

    2009-01-01

    Full Text Available Injuries to upper limb has been on the increase and is invariably associated with significant soft tissue loss requiring a flap cover. Local tissue may not be available for cover in a majority of situations, necessitating import of tissue from a distant source. We have utilized the thoraco-umbilical flap taken from the trunk for this purpose. This flap is based on the perforators of the deep inferior epigastric artery that are maximally centred on the periumbilical region.This flap was used in 83 patients. The patients were observed for at least 3 weeks and any flap or donor site complications were recorded. The patients were again followed up at 3 months interval and the donor site scar was assessed. The flaps survived in 81 patients; there was marginal flap necrosis in five patients and partial flap necrosis in two patients. None of these patients required any additional procedure for coverage. The flap is technically easy to plan, almost effortless to drape around upper limb defects, with no significant donor site morbidity and also the post operative immobilization was fairly comfortable. The thoraco-umbilical flap thus is a very useful technique for coverage of the upper limb and is recommended as a first line flap for this purpose.

  6. Epidural electrocorticography of phantom hand movement following long-term upper-limb amputation

    Directory of Open Access Journals (Sweden)

    Alireza eGharabaghi

    2014-05-01

    Full Text Available Introduction: Prostheses for upper-limb amputees are currently controlled by either myoelectric or peripheral neural signals. Performance and dexterity of these devices is still limited, particularly when it comes to controlling hand function. Movement-related brain activity might serve as a complementary bio-signal for motor control of hand prosthesis. Methods: We introduced a methodology to implant a cortical interface without direct exposure of the brain surface in an upper-limb amputee. This bi-directional interface enabled us to explore the cortical physiology following long-term transhumeral amputation. In addition, we investigated neurofeedback of electrocorticographic brain activity related to the patient’s motor imagery to open his missing hand, i.e. phantom hand movement, for real-time control of a virtual hand prosthesis.Results: Both event-related brain potentials and cortical stimulation revealed mutually overlapping cortical representations of the phantom hand. Phantom hand movements could be robustly classified and the patient required only three training sessions to gain reliable control of the virtual hand prosthesis in an online closed-loop paradigm that discriminated between hand opening and rest. Conclusion: Epidural implants may constitute a powerful and safe alternative communication pathway between the brain and external devices for upper-limb amputees, thereby facilitating the integrated use of different signal sources for more intuitive and specific control of multi-functional devices in clinical use.

  7. Gesture recognition in upper-limb prosthetics: a viability study using dynamic time warping and gyroscopes.

    Science.gov (United States)

    Dermitzakis, Konstantinos; Arieta, Alejandro Hernandez; Pfeifer, Rolf

    2011-01-01

    One of the significant challenges in the upper-limb-prosthetics research field is to identify appropriate interfaces that utilize the full potential of current state-of-the-art neuroprostheses. As the new generation of such prostheses paces towards approximating the human physiological performance in terms of movement dexterity and sensory feedback, it is clear that current non-invasive interfaces are still severely limited. Surface electromyography, the interface ubiquitously used in the field, is riddled with several shortcomings. Gesture recognition, an interface pervasively used in wearables and mobile devices, shows a strong potential as a non-invasive upper-limb prosthetic interface. This study aims at showcasing its potential in the field by using gyroscope sensors. To this end, we (1) explore the viability of Dynamic Time Warping as a classification method for upper-limb prosthetics and (2) look for appropriate sensor locations on the body. Results indicate an optimal classification rate of 97.53%, σ = 8.74 using a sensor located proximal to the endpoint performing a gesture.

  8. OCRA: a concise index for the assessment of exposure to repetitive movements of the upper limbs.

    Science.gov (United States)

    Occhipinti, E

    1998-09-01

    In the light of data and speculation contained in the literature, and based on procedures illustrated in a previous research project in which the author described and evaluated occupational risk factors associated with work-related musculoskeletal disorders of the upper limbs (WMSDs), this paper proposes a method for calculating a concise index of exposure to repetitive movements of the upper limbs. The proposal, which still has to be substantiated and validated by further studies and applications, is conceptually based on the procedure recommended by the NIOSH for calculating the Lifting Index in manual load handling activities. The concise exposure index (OCRA index) in this case is based on the relationship between the daily number of actions actually performed by the upper limbs in repetitive tasks, and the corresponding number of recommended actions. The latter are calculated on the basis of a constant (30 actions per minute), which represents the action frequency factor; it is valid--hypothetically--under so-called optimal conditions; the constant is diminished case by case (using appropriate factors) as a function of the presence and characteristics of the other risk factors (force, posture, additional elements, recovery periods). Although still experimental, the exposure index can be used to obtain an integrated and concise assessment of the various risk factors analysed and to classify occupational scenarios featuring significant and diversified exposure to such risk factors.

  9. PARTICIPATORY DESIGN OF PEDIATRIC UPPER LIMB PROSTHESES: QUALITATIVE METHODS AND PROTOTYPING.

    Science.gov (United States)

    Sims, Tara; Cranny, Andy; Metcalf, Cheryl; Chappell, Paul; Donovan-Hall, Maggie

    2017-09-06

    The study aims to develop an understanding of the views of children and adolescents, parents, and professionals on upper limb prosthetic devices to develop and improve device design. Previous research has found that children are dissatisfied with prostheses but has relied heavily on parent proxy reports and quantitative measures (such as questionnaires) to explore their views. Thirty-four participants (eight children aged 8-15 years with upper limb difference, nine parents, eight prosthetists, and nine occupational therapists) contributed to the development of new devices through the BRIDGE methodology of participatory design, using focus groups and interviews. The study identified areas for improving prostheses from the perspective of children and adolescents, developed prototypes based on these and gained feedback on the prototypes from the children and other stakeholders (parents and professionals) of paediatric upper limb prostheses. Future device development needs to focus on ease of use, versatility, appearance, and safety. This study has demonstrated that children and adolescents can and should be involved as equal partners in the development of daily living equipment and that rapid prototyping (three-dimensional printing or additive manufacturing), used within a participatory design framework, can be a useful tool for facilitating this.

  10. A Framework to Automate Assessment of Upper-Limb Motor Function Impairment: A Feasibility Study

    Directory of Open Access Journals (Sweden)

    Paul Otten

    2015-08-01

    Full Text Available Standard upper-limb motor function impairment assessments, such as the Fugl-Meyer Assessment (FMA, are a critical aspect of rehabilitation after neurological disorders. These assessments typically take a long time (about 30 min for the FMA for a clinician to perform on a patient, which is a severe burden in a clinical environment. In this paper, we propose a framework for automating upper-limb motor assessments that uses low-cost sensors to collect movement data. The sensor data is then processed through a machine learning algorithm to determine a score for a patient’s upper-limb functionality. To demonstrate the feasibility of the proposed approach, we implemented a system based on the proposed framework that can automate most of the FMA. Our experiment shows that the system provides similar FMA scores to clinician scores, and reduces the time spent evaluating each patient by 82%. Moreover, the proposed framework can be used to implement customized tests or tests specified in other existing standard assessment methods.

  11. Effect of Kayak Ergometer Elastic Tension on Upper Limb EMG Activity and 3D Kinematics.

    Science.gov (United States)

    Fleming, Neil; Donne, Bernard; Fletcher, David

    2012-01-01

    Despite the prevalence of shoulder injury in kayakers, limited published research examining associated upper limb kinematics and recruitment patterns exists. Altered muscle recruitment patterns on-ergometer vs. on-water kayaking were recently reported, however, mechanisms underlying changes remain to be elucidated. The current study assessed the effect of ergometer recoil tension on upper limb recruitment and kinematics during the kayak stroke. Male kayakers (n = 10) performed 4 by 1 min on-ergometer exercise bouts at 85%VO2max at varying elastic recoil tension; EMG, stroke force and three-dimensional 3D kinematic data were recorded. While stationary recoil forces significantly increased across investigated tensions (125% increase, p kayakers maintained normal upper limb kinematics via additional AD recruitment despite ergometer induced recoil forces. Key pointsKayak ergometer elastic tension significantly alters Anterior Deltoid recruitment patterns.Kayakers maintain optimal arm kinematics despite changing external forces via altered shoulder muscle recruitment.Overhead arm movements account for a high proportion of the kayak stroke cycle.

  12. Evaluation of Upper Limb Sense of Position in Healthy Individuals and Patients after Stroke

    Directory of Open Access Journals (Sweden)

    I. Cusmano

    2014-01-01

    Full Text Available The aims of this study were to develop and evaluate reliability of a quantitative assessment tool for upper limb sense of position on the horizontal plane. We evaluated 15 healthy individuals (controls and 9 stroke patients. A robotic device passively moved one arm of the blindfolded participant who had to actively move his/her opposite hand to the mirror location in the workspace. Upper-limb's position was evaluated by a digital camera. The position of the passive hand was compared with the active hand's ‘mirror’ position. Performance metrics were then computed to measure the mean absolute errors, error variability, spatial contraction/expansion, and systematic shifts. No significant differences were observed between dominant and non-dominant active arms of controls. All performance parameters of the post-stroke group differed significantly from those of controls. This tool can provide a quantitative measure of upper limb sense of position, therefore allowing detection of changes due to rehabilitation.

  13. Cost-Effectiveness of Treating Upper Limb Spasticity Due to Stroke with Botulinum Toxin Type A: Results from the Botulinum Toxin for the Upper Limb after Stroke (BoTULS) Trial

    OpenAIRE

    Shackley, P; Shaw, L; Price, C.; Wijck, F, van; Barnes, M; Graham, L; Ford, G.A.; Steen, N; Rodgers, H

    2012-01-01

    Stroke imposes significant burdens on health services and society, and as such there is a growing need to assess the cost-effectiveness of stroke treatment to ensure maximum benefit is derived from limited resources. This study compared the cost-effectiveness of treating post-stroke upper limb spasticity with botulinum toxin type A plus an upper limb therapy programme against the therapy programme alone. Data on resource use and health outcomes were prospectively collected for 333 patients wi...

  14. Effects of the racket polar moment of inertia on dominant upper limb joint moments during tennis serve

    National Research Council Canada - National Science Library

    Rogowski, Isabelle; Creveaux, Thomas; Chèze, Laurence; Macé, Pierre; Dumas, Raphaël

    2014-01-01

    ...). An eight-camera motion analysis system collected the 3D trajectories of 16 markers, located on the thorax, upper limbs and racket, from which shoulder, elbow and wrist net joint moments and powers...

  15. Upper limb activity measures for 5- to 16-year-old children with congenital hemiplegia: a systematic review

    National Research Council Canada - National Science Library

    Gilmore, Rose; Sakzewski, Leanne; Boyd, Roslyn

    2010-01-01

    This systematic review aimed to compare the validity, reliability, evaluative validity, and clinical utility of upper limb activity measures for children aged 5 to 16 years with congenital hemiplegia...

  16. The effect of exercise types for rotator cuff repair patients on activities of shoulder muscles and upper limb disability

    National Research Council Canada - National Science Library

    Kang, Jeong-Il; Moon, Young-Jun; Choi, Hyun; Jeong, Dae-Keun; Kwon, Hye-Min; Park, Jun-Su

    2016-01-01

    [Purpose] This study investigated the effect on activities, shoulder muscle fatigue, upper limb disability of two exercise types performed by patients in the post- immobilization period of rotator cuff repair...

  17. Upper Limb Rehab Robot Used in Rehabilitation of Upper Limb Function of Hemiplegia Patients%上肢康复机器人应用于偏瘫患者上肢功能康复

    Institute of Scientific and Technical Information of China (English)

    邹贵娣; 欧阳冬方

    2014-01-01

    上肢康复机器人技术是一种新兴的运动神经康复治疗技术,越来越多研究证实机器人可以实现长期、稳定的重复训练,具备目标导向性和任务导向性等特点,保证了训练的强度和时间,弥补了传统康复训练方法的不足。偏瘫患者上肢功能康复应用上肢康复机器人取得良好效果。%Upper limb rehab robot technology is developed in recent years as a new motor nerve rehabilitation technology. It is more and more con-firmed by foreign researchs that the robot can finish the long-term and stable repetitive training , it is charactered of target oriented and task oriented, and so on, which ensures the training intensity and time, making up for the deficiency of the traditional rehabilitation training methods. It has achieved good rehabilitation results by applying in the upper limb function rehab in patients with hemiplegia.

  18. The application of precisely controlled functional electrical stimulation to the shoulder, elbow and wrist for upper limb stroke rehabilitation: a feasibility study.

    Science.gov (United States)

    Meadmore, Katie L; Exell, Timothy A; Hallewell, Emma; Hughes, Ann-Marie; Freeman, Chris T; Kutlu, Mustafa; Benson, Valerie; Rogers, Eric; Burridge, Jane H

    2014-06-30

    Functional electrical stimulation (FES) during repetitive practice of everyday tasks can facilitate recovery of upper limb function following stroke. Reduction in impairment is strongly associated with how closely FES assists performance, with advanced iterative learning control (ILC) technology providing precise upper-limb assistance. The aim of this study is to investigate the feasibility of extending ILC technology to control FES of three muscle groups in the upper limb to facilitate functional motor recovery post-stroke. Five stroke participants with established hemiplegia undertook eighteen intervention sessions, each of one hour duration. During each session FES was applied to the anterior deltoid, triceps, and wrist/finger extensors to assist performance of functional tasks with real-objects, including closing a drawer and pressing a light switch. Advanced model-based ILC controllers used kinematic data from previous attempts at each task to update the FES applied to each muscle on the subsequent trial. This produced stimulation profiles that facilitated accurate completion of each task while encouraging voluntary effort by the participant. Kinematic data were collected using a Microsoft Kinect, and mechanical arm support was provided by a SaeboMAS. Participants completed Fugl-Meyer and Action Research Arm Test clinical assessments pre- and post-intervention, as well as FES-unassisted tasks during each intervention session. Fugl-Meyer and Action Research Arm Test scores both significantly improved from pre- to post-intervention by 4.4 points. Improvements were also found in FES-unassisted performance, and the amount of arm support required to successfully perform the tasks was reduced. This feasibility study indicates that technology comprising low-cost hardware fused with advanced FES controllers accurately assists upper limb movement and may reduce upper limb impairments following stroke.

  19. An experimental investigation on the influence of hand orientation on the control of trunk-assisted upper-limb movements

    OpenAIRE

    CHEVALOT, N; WANG, X; DORIOT, N

    2003-01-01

    In order to investigate the computationally ill-posed problems related to the kinematic redundancy in both task and joint space of human movements, the present work aims to extend the work done by Wang (1999) and to study trunk-assisted upper limb reaching movements. In particular, the influence of pushing direction on the control of hand trajectory and upper limb movements was studied. The purpose of the paper is to present the main results of this investigation.

  20. Timing training in three children with diplegic cerebral palsy: Short- and long-term effects on upper-limb movement organization and functioning

    Directory of Open Access Journals (Sweden)

    Anna-Maria eJohansson

    2014-03-01

    Full Text Available Despite the great need of interventions to maintain and improve motor functions in children with diplegic cerebral palsy (DCP, scientific evaluations of existing training methods are rare. This study aimed to explore individual effects of synchronized metronome training (SMT on motor timing, spatio-temporal movement organization, and subjective experiences of changes in upper-limb functions in three children with DCP. All children participated in an individualized 4-week/12 session SMT training regime. Measurements before training (Pre, after training (Post1 and at 6 months post completed training (Post2 were made by the applied SMT training equipment, optoelectronic registrations of goal-directed upper-limb movements, and a questionnaire assessing subjective experiences of changes in upper-limb functions and usability. In general, the training regime was shown to have little effect on motor timing. However, some positive changes in spatio-temporal movement organization were found. Two children also reported substantial long-lasting positive changes in subjective experiences of hand/arm functionality in terms of increased movement control and reduced muscle tone. For these children, parallel kinematic findings also indicated smoother and faster movement trajectories that remained at Post2. Although highly individualized, the shown improvements in upper-limb kinematics and subjective experiences of improved functionality of the hands/arms for two of the cases warrant further explorations of SMT outcomes in children with DCP.

  1. P300-amplitudes in upper limb amputees with and without phantom limb pain in a visual oddball paradigm.

    Science.gov (United States)

    Karl, Anke; Diers, Martin; Flor, Herta

    2004-07-01

    The aim of the study was to investigate to what extent cortical hyper-reactivity to visual stimuli is present in upper limb amputees. Five amputees with phantom limb pain (PLP), five amputees without PLP (Non-PLP) and 10 healthy controls (HC) were investigated using a visual oddball paradigm. Two hundred visual stimuli were presented with target stimuli occurring at a probability of 25% and standard stimuli at a probability of 75%. Event-related potentials were recorded from nine scalp positions (F3, F4, Fz, C3, C4, Cz, P3, P4, Pz). The PLP-patients had significantly higher P300-amplitudes to both types of stimuli compared to the non-PLP-patients. The HC were not significantly different from both amputee groups. P300-amplitude to targets at frontal sites in the hemisphere contralateral to the amputation was higher in the PLP patients. P300-latencies to target stimuli differed only at frontal sites with PLP-patients showing significantly longer latencies than non-PLP-patients. To standard stimuli, however, they showed significantly shorter latencies at central and parietal scalp positions. The HC had significantly shorter latencies than both amputee groups. The size of the P300-amplitude was positively correlated with the intensity of PLP. These findings suggest a higher magnitude of non-specific cortical excitability in amputees with PLP and a reduced excitability in amputees without PLP. This extends previous findings of differences in cortical excitability in PLP and non-PLP patients in the sensorimotor domain.

  2. Virtual musculo-skeletal model for the biomechanical analysis of the upper limb.

    Science.gov (United States)

    Pennestrì, E; Stefanelli, R; Valentini, P P; Vita, L

    2007-01-01

    In this paper, a musculo-skeletal model of the upper limb is presented. The limb is modelled as a three-dimensional 7 degrees-of-freedom system, linked to the shoulder, which has been considered as frame. The upper limb model is made up of four links corresponding to the most important body segments: the humerus, the ulna, the radius and the hand, considered as a single rigid body. Particular attention has been paid to the modelling of joints in order to mimic all the possible arm and forearm movements (including prono-supination). The model also includes 24 muscles. The mathematical model used to describe the muscles is that proposed by Zajac in 1989, modified by the authors. The kinematic analysis has been performed including an ergonomics index to take into account the posture and joint physical limits. Moreover an optimization criterion based on minimum activation pattern has been included in order to find muscular activation coefficients. The results of the proposed methodology concerning muscular activations have been compared to those coming from processed EMG signals, which have been acquired during experimental tests.

  3. Comparison of TMS-induced arm activation and upper limb functional tests in hemiparetic stroke

    Directory of Open Access Journals (Sweden)

    Tarkka Ina M.

    2013-01-01

    Full Text Available Stroke has a major impact in the total cost of healthcare in the Western world as stroke is the most common cause of long-term disability [1]. In attempts to enhance motor recovery after stroke effective treatment strategies have been developed in recent years. Appropriate evaluation of the intervention programs requires comprehensive and accurate assessment of the residual abnormal function. In the present study we compare two well-known clinical functional scoring tests developed for the assessment of hemiparetic upper limb function due to stroke and navigated transcranial magnetic stimulation (nTMS, which measures involuntary target muscle response to cortical stimulation. The aim is to investigate the equivalence of these methods and thus add objective evidence of the limb function to strengthen evidence-based practice. In addition to functional tests, four muscles of both arms were studied in twenty chronic stroke patients. Those patients without motor evoked potentials (MEP to nTMS in the affected upper limb had significantly lower total score in Action Research Arm Test and Wolf Motor Function Test and longer performance time than those patients with MEP. Patients, in whom MEP in each of the four target muscles was elicitable, had better than average scores in clinical functional tests while patients, in whom no MEP was elicitable in any target muscle, had worse than average scores. Transcranial magnetic stimulation adds crucial information when clinical assessment based on voluntary activation by command is challenging, e.g. in patients suffering from cognitive deficits.

  4. Strain-stress analysis of lower limb with applied fixator

    Directory of Open Access Journals (Sweden)

    Mrázek M.

    2010-07-01

    Full Text Available This paper compares physiological state of tibia before and after application of an external fixator. The fixator systems’ models but also model of tibia are loaded in the direction of body axis. The paper is focused on the examination of differences in stiffness before and after the application of fixation. Two types of axial external fixators are compared. Both fixators differ in their construction. The first fixator is two-frame and fixation rods are used for fixing the bone tissue (variant I. The second one is fixed into tibia with screws (variant II. We have found out that the two-frame external fixator has much bigger stiffness during limb fixation than the fixator with one body. Much higher deformations compared to physiological state of tibia occur in the variant II.

  5. Control of the seven-degree-of-freedom upper limb exoskeleton for an improved human-robot interface

    Science.gov (United States)

    Kim, Hyunchul; Kim, Jungsuk

    2017-04-01

    This study analyzes a practical scheme for controlling an exoskeleton robot with seven degrees of freedom (DOFs) that supports natural movements of the human arm. A redundant upper limb exoskeleton robot with seven DOFs is mechanically coupled to the human body such that it becomes a natural extension of the body. If the exoskeleton robot follows the movement of the human body synchronously, the energy exchange between the human and the robot will be reduced significantly. In order to achieve this, the redundancy of the human arm, which is represented by the swivel angle, should be resolved using appropriate constraints and applied to the robot. In a redundant 7-DOF upper limb exoskeleton, the pseudoinverse of the Jacobian with secondary objective functions is widely used to resolve the redundancy that defines the desired joint angles. A secondary objective function requires the desired joint angles for the movement of the human arm, and the angles are estimated by maximizing the projection of the longest principle axis of the manipulability ellipsoid for the human arm onto the virtual destination toward the head region. Then, they are fed into the muscle model with a relative damping to achieve more realistic robot-arm movements. Various natural arm movements are recorded using a motion capture system, and the actual swivel-angle is compared to that estimated using the proposed swivel angle estimation algorithm. The results indicate that the proposed algorithm provides a precise reference for estimating the desired joint angle with an error less than 5°.

  6. Therapists' perceptions of social media and video game technologies in upper limb rehabilitation.

    Science.gov (United States)

    Tatla, Sandy K; Shirzad, Navid; Lohse, Keith R; Virji-Babul, Naznin; Hoens, Alison M; Holsti, Liisa; Li, Linda C; Miller, Kimberly J; Lam, Melanie Y; Van der Loos, H F Machiel

    2015-03-10

    The application of technologies, such as video gaming and social media for rehabilitation, is garnering interest in the medical field. However, little research has examined clinicians' perspectives regarding technology adoption by their clients. The objective of our study was to explore therapists' perceptions of how young people and adults with hemiplegia use gaming and social media technologies in daily life and in rehabilitation, and to identify barriers to using these technologies in rehabilitation. We conducted two focus groups comprised of ten occupational therapists/physiotherapists who provide neurorehabilitation to individuals with hemiplegia secondary to stroke or cerebral palsy. Data was analyzed using inductive thematic analysis. The diffusion of innovations theory provided a framework to interpret emerging themes. Therapists were using technology in a limited capacity. They identified barriers to using social media and gaming technology with their clients, including a lack of age appropriateness, privacy issues with social media, limited transfer of training, and a lack of accessibility of current systems. Therapists also questioned their role in the context of technology-based interventions. The opportunity for social interaction was perceived as a major benefit of integrated gaming and social media. This study reveals the complexities associated with adopting new technologies in clinical practice, including the need to consider both client and clinician factors. Despite reporting several challenges with applying gaming and social media technology with clinical populations, therapists identified opportunities for increased social interactions and were willing to help shape the development of an upper limb training system that could more readily meet the needs of clients with hemiplegia. By considering the needs of both therapists and clients, technology developers may increase the likelihood that clinicians will adopt innovative technologies.

  7. An Upper-Limb Power-Assist Exoskeleton Using Proportional Myoelectric Control

    Directory of Open Access Journals (Sweden)

    Zhichuan Tang

    2014-04-01

    Full Text Available We developed an upper-limb power-assist exoskeleton actuated by pneumatic muscles. The exoskeleton included two metal links: a nylon joint, four size-adjustable carbon fiber bracers, a potentiometer and two pneumatic muscles. The proportional myoelectric control method was proposed to control the exoskeleton according to the user’s motion intention in real time. With the feature extraction procedure and the classification (back-propagation neural network, an electromyogram (EMG-angle model was constructed to be used for pattern recognition. Six healthy subjects performed elbow flexion-extension movements under four experimental conditions: (1 holding a 1-kg load, wearing the exoskeleton, but with no actuation and for different periods (2-s, 4-s and 8-s periods; (2 holding a 1-kg load, without wearing the exoskeleton, for a fixed period; (3 holding a 1-kg load, wearing the exoskeleton, but with no actuation, for a fixed period; (4 holding a 1-kg load, wearing the exoskeleton under proportional myoelectric control, for a fixed period. The EMG signals of the biceps brachii, the brachioradialis, the triceps brachii and the anconeus and the angle of the elbow were collected. The control scheme’s reliability and power-assist effectiveness were evaluated in the experiments. The results indicated that the exoskeleton could be controlled by the user’s motion intention in real time and that it was useful for augmenting arm performance with neurological signal control, which could be applied to assist in elbow rehabilitation after neurological injury.

  8. Cardiac autonomic modulation during progressive upper limb exercise by patients with coronary artery disease

    Directory of Open Access Journals (Sweden)

    H.G. Machado

    2011-12-01

    Full Text Available The purpose of this study was to investigate the behavior of heart rate (HR and HR variability (HRV during different loads of resistance exercise (incline bench press in patients with coronary artery disease (CAD and healthy sedentary controls. Ten healthy men (65 ± 1.2 years, control group, CG and 10 men with clinically stable CAD (66 ± 2.4 years, CADG were recruited. A discontinuous progressive protocol was applied with an initial load of 10% of the maximum load achieved in the 1RM (1 repetition maximum with increases of 10% until 30% 1RM was reached, which was followed by subsequent increases of 5% 1RM until exhaustion. HRV was analyzed by linear and non-linear methods. There was a significant reduction in rMSSD (CG: 20 ± 2 to 11 ± 3 ms; CADG: 19 ± 3 to 9 ± 1 ms and SD1 indexes (CG: 14 ± 2 to 8 ± 1 ms; CADG: 14 ± 2 to 7 ± 1 ms. An increase in HR (CG: 69 ± 5 to 90 ± 5 bpm; CADG: 62 ± 4 to 75 ± 4 bpm and in systolic blood pressure (CG: 124 ± 3 to 138 ± 3 mmHg; CADG: 122 ± 6 to 126 ± 9 bpm were observed (P < 0.05 when comparing pre-effort rest and 40% 1RM in both groups. Furthermore, an increase in RMSM index was also observed (CG: 28 ± 3 to 45 ± 9 ms; CADG: 22 ± 2 to 79 ± 33 ms, with higher values in CADG. We conclude that loads up to 30% 1RM during incline bench press result in depressed vagal modulation in both groups, although only stable CAD patients presented sympathetic overactivity at 20% 1RM upper limb exercise.

  9. [Upper limb functional assessment scale for children with Duchenne muscular dystrophy and Spinal muscular atrophy].

    Science.gov (United States)

    Escobar, Raúl G; Lucero, Nayadet; Solares, Carmen; Espinoza, Victoria; Moscoso, Odalie; Olguín, Polín; Muñoz, Karin T; Rosas, Ricardo

    2016-08-16

    Duchenne muscular dystrophy (DMD) and Spinal muscular atrophy (SMA) causes significant disability and progressive functional impairment. Readily available instruments that assess functionality, especially in advanced stages of the disease, are required to monitor the progress of the disease and the impact of therapeutic interventions. To describe the development of a scale to evaluate upper limb function (UL) in patients with DMD and SMA, and describe its validation process, which includes self-training for evaluators. The development of the scale included a review of published scales, an exploratory application of a pilot scale in healthy children and those with DMD, self-training of evaluators in applying the scale using a handbook and video tutorial, and assessment of a group of children with DMD and SMA using the final scale. Reliability was assessed using Cronbach and Kendall concordance and with intra and inter-rater test-retest, and validity with concordance and factorial analysis. A high level of reliability was observed, with high internal consistency (Cronbach α=0.97), and inter-rater (Kendall W=0.96) and intra-rater concordance (r=0.97 to 0.99). The validity was demonstrated by the absence of significant differences between results by different evaluators with an expert evaluator (F=0.023, P>.5), and by the factor analysis that showed that four factors account for 85.44% of total variance. This scale is a reliable and valid tool for assessing UL functionality in children with DMD and SMA. It is also easily implementable due to the possibility of self-training and the use of simple and inexpensive materials. Copyright © 2016 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Sensory cortical re-mapping following upper-limb amputation and subsequent targeted reinnervation: A case report.

    Science.gov (United States)

    Yao, Jun; Chen, Albert; Kuiken, Todd; Carmona, Carolina; Dewald, Julius

    2015-01-01

    This case study demonstrates the change of sensory cortical representations of the residual parts of the arm in an individual who underwent a trans-humeral amputation and subsequent targeted reinnervation (TR). As a relatively new surgical technique, TR restores a direct neural connection from amputated sensorimotor nerves to specific target muscles. This method has been successfully applied to upper-limb and lower-limb amputees, and has shown effectiveness in regaining control signals via the newly re-innervated muscles. Correspondingly, recent study results have shown that motor representations for the missing limb move closer to their original locations following TR. Besides regaining motor control signals, TR also restores the sensation in the re-innervated skin areas. We therefore hypothesize that TR causes analogous cortical sensory remapping that may return closer to their original locations. In order to test this hypothesis, cortical activity in response to sensory-level electrical stimulation in different parts of the arm was studied longitudinally in one amputated individual before and up to 2 years after TR. Our results showed that 1) before TR, the cortical response to sensory electrical stimulation in the residual limb showed a diffuse bilateral pattern without a clear focus in either the time or spatial domain; and 2) 2 years after TR, the sensory map of the reinnervated median nerve reorganized, showing predominant activity over the contralateral S1 hand area as well as moderate activity over the ipsilateral S1. Therefore, this work provides new evidence for long-term sensory cortical plasticity in the human brain after TR.

  11. Sensory cortical re-mapping following upper-limb amputation and subsequent targeted reinnervation: A case report

    Directory of Open Access Journals (Sweden)

    Jun Yao

    2015-01-01

    Full Text Available This case study demonstrates the change of sensory cortical representations of the residual parts of the arm in an individual who underwent a trans-humeral amputation and subsequent targeted reinnervation (TR. As a relatively new surgical technique, TR restores a direct neural connection from amputated sensorimotor nerves to specific target muscles. This method has been successfully applied to upper-limb and lower-limb amputees, and has shown effectiveness in regaining control signals via the newly re-innervated muscles. Correspondingly, recent study results have shown that motor representations for the missing limb move closer to their original locations following TR. Besides regaining motor control signals, TR also restores the sensation in the re-innervated skin areas. We therefore hypothesize that TR causes analogous cortical sensory remapping that may return closer to their original locations. In order to test this hypothesis, cortical activity in response to sensory-level electrical stimulation in different parts of the arm was studied longitudinally in one amputated individual before and up to 2 years after TR. Our results showed that 1 before TR, the cortical response to sensory electrical stimulation in the residual limb showed a diffuse bilateral pattern without a clear focus in either the time or spatial domain; and 2 2 years after TR, the sensory map of the reinnervated median nerve reorganized, showing predominant activity over the contralateral S1 hand area as well as moderate activity over the ipsilateral S1. Therefore, this work provides new evidence for long-term sensory cortical plasticity in the human brain after TR.

  12. 6-REXOS: Upper Limb Exoskeleton Robot with Improved pHRI

    Directory of Open Access Journals (Sweden)

    Malin Gunasekara

    2015-04-01

    Full Text Available Close interaction can be observed between an exoskeleton robot and its wearer. Therefore, appropriate physical human-robot interaction (pHRI should be considered when designing an exoskeleton robot to provide safe and comfortable motion assistance. Different features have been used in recent studies to enhance the pHRI in upper-limb exoskeleton robots. However, less attention has been given to integrating kinematic redundancy into upper-limb exoskeleton robots to improve the pHRI. In this context, this paper proposes a six-degrees-of-freedom (DoF upper-limb exoskeleton robot (6-REXOS for the motion assistance of physically weak individuals. The 6-REXOS uses a kinematically different structure to that of the human lower arm, where the exoskeleton robot is worn. The 6-REXOS has four active DoFs to generate the motion of the human lower arm. Furthermore, two flexible bellow couplings are attached to the wrist and elbow joints to generate two passive DoFs. These couplings not only allow translational motion in wrist and elbow joints but also a redundancy in the robot. Furthermore, the compliance of the flexible coupling contributes to avoiding misalignments between human and robot joint axes. The redundancy in the 6-REXOS is verified based on manipulability index, minimum singular value, condition number and manipulability ellipsoids. The 6-REXOS and a four-DoF exoskeleton robot are compared to verify the manipulation advantage due to the redundancy. The four-DoF exoskeleton robot is designed by excluding the two passive DoFs of the 6-REXOS. In addition, a kinematic model is proposed for the human lower arm to validate the performance of the 6-REXOS. Kinematic analysis and simulations are carried out to validate the 6-REXOS and human-lower-arm model.

  13. Neural and cognitive bases of upper limb apraxia in corticobasal degeneration.

    Science.gov (United States)

    Peigneux, P; Salmon, E; Garraux, G; Laureys, S; Willems, S; Dujardin, K; Degueldre, C; Lemaire, C; Luxen, A; Moonen, G; Franck, G; Destee, A; Van der Linden, M

    2001-10-09

    To investigate the neural and cognitive bases of upper limb apraxia in corticobasal degeneration (CBD). Eighteen patients with CBD underwent a cognitive neuropsychological assessment of apraxia and resting [(18)F]-fluorodeoxyglucose PET scanning. Two complementary measures of apraxia were computed for each modality of gesture production. First, a performance score measured error frequency during gesture execution. Second, as a more stringent test of the integrity of the praxis system, the correction score measured the patient's ability to correct his or her errors on a second attempt. For each measure type, a cut-off score for the presence of apraxia was defined with regard to healthy controls. Using each cut-off score, the regional cerebral glucose metabolism of patients with CBD with apraxia (i.e., performing below cut-off score) was compared with that of patients with CBD without apraxia. Mean performance scores were below normal values in all modalities. Anterior cingulate hypometabolism predominated in patients with CBD who performed below the cut-off performance score. At variance, mean correction scores were below normal values for gesture imitation only. Hypometabolism in superior parietal lobule and supplementary motor area characterized patients with CBD who were unable to correct their errors at the same rate as control subjects did. Distinct neural networks underlie distinct aspects of the upper limb apraxic deficits in CBD. Extending previous findings of gesture production deficits in CBD, the use of complementary measures of apraxic behavior discloses a visuoimitative upper limb apraxia in CBD, underlain by a metabolic decrease in a parietofrontal neural network.

  14. [Symptoms and upper limb work-related musculo-skeletal disorders among 173 supermarket cashiers].

    Science.gov (United States)

    Barbieri, P G; Pizzoni, Tiziana; Scolari, Luisa; Lucchini, R

    2013-01-01

    Cashiers in supermarket chains have long been considered at risk for the development of work related musculo-skeletal disorders of the upper limbs (UL-WMSDs). The aim of this study was to assess the prevalence of UL-WMSDs among workers operating supermarket cash tills and, after clinical tests, their frequency. A standardized questionnaire was given to a random group of 173 workers in order to collect information regarding symptoms in the upper limbs (pain and parasthesia). Among the 111 workers who reached a "positive clinical history threshold" we selected a random sample of subjects to undergo clinical tests (professional medical care, ultrasound examination, electro-neurographic examination). 64% of the workers had a positive clinical history for UL-WMSDs. The most frequently reported disorder was pain, especially in the shoulder, while 37% of workers suffered from one or more disorders of the upper limbs. Clinical tests were performed on 51 workers (47 women) whose average length of service was 20 years and 2/3 were part-time workers; a total of 43 UL-WMSDs (59%) were diagnosed in 30 workers, including 13 (30.2%) cases of compressive neuropathies, 13 cases of hand/elbow tendinitis (30.2%) and 17 cases of shoulder tendinitis (39.5%). The average age of these 30 subjects was 47 years, with a length of service of 23 years, mostly part-time workers. We found a high prevalence of general disorders and cases of UL-WMSDs among the workers investigated, including part-time workers and workers who were not working exclusively as cashiers. The study also revealed a poor health surveillance programme to identify/ UL-WMSDs that should be the responsibility of the occupational physician and a consequent underestimation of risk and lack of the information needed to adopt preventive measures.

  15. EFFECT OF KAYAK ERGOMETER ELASTIC TENSION ON UPPER LIMB EMG ACTIVITY AND 3D KINEMATICS

    Directory of Open Access Journals (Sweden)

    Neil Fleming

    2012-09-01

    Full Text Available Despite the prevalence of shoulder injury in kayakers, limited published research examining associated upper limb kinematics and recruitment patterns exists. Altered muscle recruitment patterns on-ergometer vs. on-water kayaking were recently reported, however, mechanisms underlying changes remain to be elucidated. The current study assessed the effect of ergometer recoil tension on upper limb recruitment and kinematics during the kayak stroke. Male kayakers (n = 10 performed 4 by 1 min on-ergometer exercise bouts at 85%VO2max at varying elastic recoil tension; EMG, stroke force and three-dimensional 3D kinematic data were recorded. While stationary recoil forces significantly increased across investigated tensions (125% increase, p < 0.001, no significant differences were detected in assessed force variables during the stroke cycle. In contrast, increasing tension induced significantly higher Anterior Deltoid (AD activity in the latter stages (70 to 90% of the cycle (p < 0.05. No significant differences were observed across tension levels for Triceps Brachii or Latissimus Dorsi. Kinematic analysis revealed that overhead arm movements accounted for 39 ± 16% of the cycle. Elbow angle at stroke cycle onset was 144 ± 10°; maximal elbow angle (151 ± 7° occurred at 78 ± 10% into the cycle. All kinematic markers moved to a more anterior position as tension increased. No significant change in wrist marker elevation was observed, while elbow and shoulder marker elevations significantly increased across tension levels (p < 0.05. In conclusion, data suggested that kayakers maintained normal upper limb kinematics via additional AD recruitment despite ergometer induced recoil forces

  16. Cognitive predictors of skilled performance with an advanced upper limb multifunction prosthesis: a preliminary analysis.

    Science.gov (United States)

    Hancock, Laura; Correia, Stephen; Ahern, David; Barredo, Jennifer; Resnik, Linda

    2016-04-06

    Purpose The objectives were to 1) identify major cognitive domains involved in learning to use the DEKA Arm; 2) specify cognitive domain-specific skills associated with basic versus advanced users; and 3) examine whether baseline memory and executive function predicted learning. Method Sample included 35 persons with upper limb amputation. Subjects were administered a brief neuropsychological test battery prior to start of DEKA Arm training, as well as physical performance measures at the onset of, and following training. Multiple regression models controlling for age and including neuropsychological tests were developed to predict physical performance scores. Prosthetic performance scores were divided into quartiles and independent samples t-tests compared neuropsychological test scores of advanced scorers and basic scorers. Baseline neuropsychological test scores were used to predict change in scores on physical performance measures across time. Results Cognitive domains of attention and processing speed were statistically significantly related to proficiency of DEKA Arm use and predicted level of proficiency. Conclusions Results support use of neuropsychological tests to predict learning and use of a multifunctional prosthesis. Assessment of cognitive status at the outset of training may help set expectations for the duration and outcomes of treatment. Implications for Rehabilitation Cognitive domains of attention and processing speed were significantly related to level of proficiencyof an advanced multifunctional prosthesis (the DEKA Arm) after training. Results provide initial support for the use of neuropsychological tests to predict advanced learningand use of a multifunctional prosthesis in upper-limb amputees. Results suggest that assessment of patients' cognitive status at the outset of upper limb prosthetictraining may, in the future, help patients, their families and therapists set expectations for theduration and intensity of training and may help set

  17. Robotic assessment of the influence of age on upper-limb sensorimotor function.

    Science.gov (United States)

    Llinares, Ana; Badesa, Francisco Javier; Morales, Ricardo; Garcia-Aracil, Nicolas; Sabater, J M; Fernandez, Eduardo

    2013-01-01

    This paper examines the influence of age on several attributes of sensorimotor performance while performing a reaching task. Our hypothesis, based on previous studies, is that aged persons will show differences in one or more of the attributes of sensorimotor performance. Fifty-one subjects (aged 20-80 years) with no known neuromotor disorders of the upper limbs participated in the study. Subjects were asked to grasp the end-effector of a pneumatic robotic device with two degrees of freedom in order to reach peripheral targets (1.0 cm radius), "quickly and accurately", from a centrally located target (1.0 cm radius). Subjects began each trial by holding the hand within the central target for 2000 milliseconds. Afterwards, a peripheral target was illuminated. Then participants were given 3000 milliseconds to complete the movement. When a target was reached, the participant had to return to the central target in order to start a new trial. A total of 64 trials were completed and each peripheral target was illuminated in a random block design. SUBJECTS WERE DIVIDED INTO THREE GROUPS ACCORDING TO AGE: group 1 (age 20-40 years), group 2 (age 41-60 years), and group 3 (age 61-80 years). The Kruskal-Wallis test showed significant differences (P 0.05). These results suggest that age introduces significant differences in upper-limb motor function. Our findings show that there are objective differences in sensorimotor function due to age, and that these differences are greater for the dominant arm. Therefore for the assessment of upper-limb function, we should take into account the influence of age. Moreover, these results suggest that robotic systems can provide a new and effective approach in the assessment of sensorimotor function.

  18. A Pre-Clinical Framework for Neural Control of a Therapeutic Upper-Limb Exoskeleton

    OpenAIRE

    Blank, Amy; O’Malley, Marcia K.; Francisco, Gerard E; Contreras-Vidal, Jose L.

    2013-01-01

    In this paper, we summarize a novel approach to robotic rehabilitation that capitalizes on the benefits of patient intent and real-time assessment of impairment. Specifically, an upper-limb, physical human-robot interface (the MAHI EXO-II robotic exoskeleton) is augmented with a non-invasive brain-machine interface (BMI) to include the patient in the control loop, thereby making the therapy ‘active’ and engaging patients across a broad spectrum of impairment severity in the rehabilitation tas...

  19. Stewart-Treves syndrome: MR imaging of a postmastectomy upper-limb chronic lymphedema with angiosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Schindera, S.T.; Anderson, S.E. [University Hospital of Bern, Department of Diagnostic Radiology, Inselspital, Bern (Switzerland); Streit, M.; Kaelin, U. [University Hospital of Bern, Department of Dermatology, Inselspital, Bern (Switzerland); Stauffer, E. [University Hospital of Bern, Department of Pathology, Inselspital, Bern (Switzerland); Steinbach, L. [University of California San Francisco, Department of Radiology, San Francisco, CA (United States)

    2005-03-01

    The rare occurrence of angiosarcoma in postmastectomy upper-limb lymphedema with magnetic resonance (MR) imaging is discussed. Unfamiliarity with this aggressive vascular tumor and its harmless appearance often leads to delayed diagnosis. Angiosarcoma complicating chronic lymphedema may be low in signal intensity on T2-weighting and short tau inversion recovery (STIR) imaging reflecting the densely cellular, fibrous stroma, and sparsely vascularized tumor histology. Additional administration of intravenous contrast medium revealed significant enhancement of the tumorous lesions. Awareness of angiosarcoma and its MR imaging appearance in patients with chronic lymphedema may be a key to early diagnosis or allow at least inclusion in the differential diagnosis. (orig.)

  20. Salvage of extensively burned upper limbs by a pedicled latissimus dorsi flap.

    Science.gov (United States)

    Delay, E; Foyatier, J L; el Kollali, R; Comparin, J P; Weil, E; Latarjet, J

    1995-09-01

    Very deep burns of the arm and elbow lead to soft tissue necrosis and infection with exposure of important structures. Aggressive debridement should be performed as early as possible to cut the vicious circle, and the defect, which may be extensive, should be covered by well-vascularized tissues. The reliability and versatility of the pedicled latissimus dorsi muscle or musculocutaneous flap make it our first choice in the management of this problem. A retrospective study of three patients for whom salvage of the upper limb has been achieved by the use of a pedicled latissimus dorsi flap is presented, illustrating the advantages of this technique.

  1. Upper limb compartment syndrome after an adder bite:a case report

    Institute of Scientific and Technical Information of China (English)

    Mohamed Faouzi Hamdi; Sayed Baccari; Mehdi Daghfous; Lamjed Tarhouni

    2010-01-01

    Compartment syndrome after an adder bite is extremely rare, whose effects are only secondary to the cytotoxic and hemorrhagic effects of venom.Here we reported a case of compartment syndrome in the upper limb following an adder bite in the thenar eminence.Elevated compartment pressure was documented and immediate sur-gical fasciotomy was practiced.The patient achieved com-plete recovery with a good functional result.We discussed the controversies on fasciotomy and non-invasive measures in such a situation, and recommended intracompartmental pressure monitoring during the management of compart-ment syndrome following adder bites.

  2. Gesture therapy: an upper limb virtual reality-based motor rehabilitation platform.

    Science.gov (United States)

    Sucar, Luis Enrique; Orihuela-Espina, Felipe; Velazquez, Roger Luis; Reinkensmeyer, David J; Leder, Ronald; Hernández-Franco, Jorge

    2014-05-01

    Virtual reality platforms capable of assisting rehabilitation must provide support for rehabilitation principles: promote repetition, task oriented training, appropriate feedback, and a motivating environment. As such, development of these platforms is a complex process which has not yet reached maturity. This paper presents our efforts to contribute to this field, presenting Gesture Therapy, a virtual reality-based platform for rehabilitation of the upper limb. We describe the system architecture and main features of the platform and provide preliminary evidence of the feasibility of the platform in its current status.

  3. Experimental development of a sensory control system for an upper limb myoelectric prosthesis with cosmetic covering.

    Science.gov (United States)

    Tura, A; Lamberti, C; Davalli, A; Sacchetti, R

    1998-01-01

    A sensory control system based on the force-sensing resistor (FSR) for an upper limb prosthesis has been designed for application to a commercial prosthetic hand of proven reliability. In particular, FSR sensors have been used to control the strength of the grip on objects. Moreover, the problem of the object possibly slipping from the grip has been addressed by a system based on an optical sensor for detecting movement. Tests on different everyday objects have shown the feasibility of the above approach, given the constraints of the limited dimensions of the prosthesis and the presence of a cosmetic glove.

  4. The biological and behavioral basis of upper limb asymmetries in sensorimotor performance.

    Science.gov (United States)

    Goble, Daniel J; Brown, Susan H

    2008-01-01

    Asymmetries in upper limb performance are a fundamental aspect of human behavior. This phenomenon, commonly known as handedness, has inspired a great deal of research over the course of the past century garnering interest across a multitude of scientific domains. In the present paper, a thorough review of this literature is provided focusing on the current state of knowledge regarding neuro-anatomical and behavior-based arm asymmetries. It is hoped that this information will provide a basis for new insights regarding the design and implementation of future studies regarding arm laterality.

  5. Upper limb compartment syndrome after an adder bite: a case report.

    Science.gov (United States)

    Hamdi, Mohamed Faouzi; Baccari, Sayed; Daghfous, Mehdi; Tarhouni, Lamjed

    2010-04-01

    Compartment syndrome after an adder bite is extremely rare, whose effects are only secondary to the cytotoxic and hemorrhagic effects of venom. Here we reported a case of compartment syndrome in the upper limb following an adder bite in the thenar eminence. Elevated compartment pressure was documented and immediate surgical fasciotomy was practiced. The patient achieved complete recovery with a good functional result. We discussed the controversies on fasciotomy and non-invasive measures in such a situation, and recommended intracompartmental pressure monitoring during the management of compartment syndrome following adder bites.

  6. Body Structures and Physical Complaints in Upper Limb Reduction Deficiency : A 24-Year Follow-Up Study

    NARCIS (Netherlands)

    Postema, Sietke G.; van der Sluis, Corry K.; Waldenlov, Kristina; Hermansson, Liselotte M. Norling

    2012-01-01

    Objective: To describe upper body structures associated with upper limb reduction deficiency and the development of these structures over time, to examine the presence of physical complaints in this population, and to compare body structures and complaints between groups based on prosthesis use. Des

  7. [The effect of neurorehabilitation on the functional state and muscle tone of upper limb in patients after ischaemic stroke].

    Science.gov (United States)

    Klimkiewicz, Paulina; Kubsik, Anna; Jankowska, Agnieszka; Woldańska-Okońska, Marta

    2014-03-01

    Rehabilitation of upper limb in patients after ischemic stroke is a major challenge for modern neurorehabilitation. Function of upper limb of patients after ischemic stroke returns on the end of the rehabilitation comparing with another parts of the body. Below presents two groups of patients after ischemic stroke who were rehabilitated with use of the following methods: kinesiotherapy combined with NDT- Bobath method and kinesiotherapy only. The aim of this study was to assess the impact of kinesiotherapy only and NDT- Bobath method combined with kinesiotherapy on the functional state and muscle tone of upper limb in patients after ischemic stroke. The study involved a group of 40 patients after ischemic stroke with motor control and muscle tone problems of upper limb. Patients were divided into two groups, each of them included 20 people. Upper limb in group I was rehabilitated with the use of kinesiotherapy exercise however group II with the use of kinesiotherapy exercise combined with NDT- Bobath method (Neurodevelopmental Treatment Bobath). To evaluate the patients before and after rehabilitation muscle tone Asworth scale was used and to assess functional status Rivermead Motor Assessment (RMAIII) scale was used. After 5 weeks of rehabilitation in group II in majority patients were observed decrease of muscle tone and improvement in upper limb functional status. In group I the muscle tone were also decreased and functional status were better but in smaller impact than in II group. Classical kinesiotherapy combined with the NDT-Bobath method gives better results in neurorehabilitation of upper limb than the use of kinesiotherapy exercises only in patients after ischemic stroke.

  8. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.

    Science.gov (United States)

    Proietti, Tommaso; Guigon, Emmanuel; Roby-Brami, Agnès; Jarrassé, Nathanaël

    2017-06-12

    The possibility to modify the usually pathological patterns of coordination of the upper-limb in stroke survivors remains a central issue and an open question for neurorehabilitation. Despite robot-led physical training could potentially improve the motor recovery of hemiparetic patients, most of the state-of-the-art studies addressing motor control learning, with artificial virtual force fields, only focused on the end-effector kinematic adaptation, by using planar devices. Clearly, an interesting aspect of studying 3D movements with a robotic exoskeleton, is the possibility to investigate the way the human central nervous system deals with the natural upper-limb redundancy for common activities like pointing or tracking tasks. We asked twenty healthy participants to perform 3D pointing or tracking tasks under the effect of inter-joint velocity dependant perturbing force fields, applied directly at the joint level by a 4-DOF robotic arm exoskeleton. These fields perturbed the human natural inter-joint coordination but did not constrain directly the end-effector movements and thus subjects capability to perform the tasks. As a consequence, while the participants focused on the achievement of the task, we unexplicitly modified their natural upper-limb coordination strategy. We studied the force fields direct effect on pointing movements towards 8 targets placed in the 3D peripersonal space, and we also considered potential generalizations on 4 distinct other targets. Post-effects were studied after the removal of the force fields (wash-out and follow up). These effects were quantified by a kinematic analysis of the pointing movements at both end-point and joint levels, and by a measure of the final postures. At the same time, we analysed the natural inter-joint coordination through PCA. During the exposition to the perturbative fields, we observed modifications of the subjects movement kinematics at every level (joints, end-effector, and inter-joint coordination

  9. Evaluation of inter-rater reliability of subjective and objective criteria for diagnosis of lymphedema in upper and lower limbs

    Directory of Open Access Journals (Sweden)

    Larissa Louise Campanholi

    2015-03-01

    Full Text Available BACKGROUND: The diagnosis of lymphedema can be obtained objectively by measurement methods, and also by subjective methods, based on the patient's complaint. OBJECTIVE: To evaluate inter-rater reliability of objective and subjective criteria used for diagnosis of lymphedema and to propose a lymphedema cut-off for differences in volume between affected and control limbs. METHODS: We studied 84 patients who had undergone lymphadenectomy for treatment of cutaneous melanoma. Physical measures were obtained by manual perimetry (MP. The subjective criteria analyzed were clinical diagnosis of lymphedema in patients' medical records and self-report of feelings of heaviness and/or increase in volume in the affected limb. RESULTS: For upper limbs, the subjective criteria clinical observation (k 0.754, P<0.001 and heaviness and swelling (k 0.689, P<0.001 both exhibited strong agreement with MP results and there was moderate agreement between MP results and swelling (k 0.483 P<0.001, heaviness (k 0.576, P<0.001 and heaviness or swelling (k 0.412, P=0.001. For lower limbs there was moderate agreement between MP results and clinical observation (k 0.423, P=0.003 and regular agreement between MP and self-report of swelling (k 0.383, P=0.003. Cut-off values for diagnosing lymphedema were defined as a 9.7% difference between an affected upper limb and control upper limb and a 5.7% difference between lower limbs. CONCLUSION: Manual perimetry, medical criteria, and self-report of heaviness and/or swelling exhibited better agreement for upper limbs than for lower limbs for diagnosis of lymphedema.

  10. Electromyography-based analysis of human upper limbs during 45-day head-down bed-rest

    Science.gov (United States)

    Fu, Anshuang; Wang, Chunhui; Qi, Hongzhi; Li, Fan; Wang, Zheng; He, Feng; Zhou, Peng; Chen, Shanguang; Ming, Dong

    2016-03-01

    Muscle deconditioning occurs in response to simulated or actual microgravity. In spaceflight, astronauts become monkey-like for mainly using their upper limbs to control the operating system and to complete corresponding tasks. The changes of upper limbs' athletic ability will directly affect astronauts' working performance. This study investigated the variation trend of surface electromyography (sEMG) during prolonged simulated microgravity. Eight healthy males participating in this study performed strict 45-day head-down bed-rest (HDBR). On the 5th day of pre-HDBR, and the 15th, the 30th and the 45th days of HDBR, the subjects performed maximum pushing task and maximum pulling task, and sEMG was collected from upper limbs synchronously. Each subject's maximum volunteer contractions of both the tasks during these days were compared, showing no significant change. However, changes were detected by sEMG-based analysis. It was found that integrated EMG, root mean square, mean frequency, fuzzy entropy of deltoid, and fuzzy entropy of triceps brachii changed significantly when comparing pre-HDBR with HDBR. The variation trend showed a recovery tendency after significant decline, which is inconsistent with the monotonic variation of lower limbs that was proved by previous research. These findings suggest that EMG changes in upper limbs during prolonged simulated microgravity, but has different variation trend from lower limbs.

  11. Impact of Spinal Manipulation on Cortical Drive to Upper and Lower Limb Muscles

    Science.gov (United States)

    Haavik, Heidi; Niazi, Imran Khan; Jochumsen, Mads; Sherwin, Diane; Flavel, Stanley; Türker, Kemal S.

    2016-01-01

    This study investigates whether spinal manipulation leads to changes in motor control by measuring the recruitment pattern of motor units in both an upper and lower limb muscle and to see whether such changes may at least in part occur at the cortical level by recording movement related cortical potential (MRCP) amplitudes. In experiment one, transcranial magnetic stimulation input–output (TMS I/O) curves for an upper limb muscle (abductor pollicus brevis; APB) were recorded, along with F waves before and after either spinal manipulation or a control intervention for the same subjects on two different days. During two separate days, lower limb TMS I/O curves and MRCPs were recorded from tibialis anterior muscle (TA) pre and post spinal manipulation. Dependent measures were compared with repeated measures analysis of variance, with p set at 0.05. Spinal manipulation resulted in a 54.5% ± 93.1% increase in maximum motor evoked potential (MEPmax) for APB and a 44.6% ± 69.6% increase in MEPmax for TA. For the MRCP data following spinal manipulation there were significant difference for amplitude of early bereitschafts-potential (EBP), late bereitschafts potential (LBP) and also for peak negativity (PN). The results of this study show that spinal manipulation leads to changes in cortical excitability, as measured by significantly larger MEPmax for TMS induced input–output curves for both an upper and lower limb muscle, and with larger amplitudes of MRCP component post manipulation. No changes in spinal measures (i.e., F wave amplitudes or persistence) were observed, and no changes were shown following the control condition. These results are consistent with previous findings that have suggested increases in strength following spinal manipulation were due to descending cortical drive and could not be explained by changes at the level of the spinal cord. Spinal manipulation may therefore be indicated for the patients who have lost tonus of their muscle and/or are

  12. Impact of Spinal Manipulation on Cortical Drive to Upper and Lower Limb Muscles

    Directory of Open Access Journals (Sweden)

    Heidi Haavik

    2016-12-01

    Full Text Available This study investigates whether spinal manipulation leads to changes in motor control by measuring the recruitment pattern of motor units in both an upper and lower limb muscle and to see whether such changes may at least in part occur at the cortical level by recording movement related cortical potential (MRCP amplitudes. In experiment one, transcranial magnetic stimulation input–output (TMS I/O curves for an upper limb muscle (abductor pollicus brevis; APB were recorded, along with F waves before and after either spinal manipulation or a control intervention for the same subjects on two different days. During two separate days, lower limb TMS I/O curves and MRCPs were recorded from tibialis anterior muscle (TA pre and post spinal manipulation. Dependent measures were compared with repeated measures analysis of variance, with p set at 0.05. Spinal manipulation resulted in a 54.5% ± 93.1% increase in maximum motor evoked potential (MEPmax for APB and a 44.6% ± 69.6% increase in MEPmax for TA. For the MRCP data following spinal manipulation there were significant difference for amplitude of early bereitschafts-potential (EBP, late bereitschafts potential (LBP and also for peak negativity (PN. The results of this study show that spinal manipulation leads to changes in cortical excitability, as measured by significantly larger MEPmax for TMS induced input–output curves for both an upper and lower limb muscle, and with larger amplitudes of MRCP component post manipulation. No changes in spinal measures (i.e., F wave amplitudes or persistence were observed, and no changes were shown following the control condition. These results are consistent with previous findings that have suggested increases in strength following spinal manipulation were due to descending cortical drive and could not be explained by changes at the level of the spinal cord. Spinal manipulation may therefore be indicated for the patients who have lost tonus of their muscle

  13. Bilateral robots for upper-limb stroke rehabilitation: State of the art and future prospects.

    Science.gov (United States)

    Sheng, Bo; Zhang, Yanxin; Meng, Wei; Deng, Chao; Xie, Shengquan

    2016-07-01

    Robot-assisted bilateral upper-limb training grows abundantly for stroke rehabilitation in recent years and an increasing number of devices and robots have been developed. This paper aims to provide a systematic overview and evaluation of existing bilateral upper-limb rehabilitation devices and robots based on their mechanisms and clinical-outcomes. Most of the articles studied here were searched from nine online databases and the China National Knowledge Infrastructure (CNKI) from year 1993 to 2015. Devices and robots were categorized as end-effectors, exoskeletons and industrial robots. Totally ten end-effectors, one exoskeleton and one industrial robot were evaluated in terms of their mechanical characteristics, degrees of freedom (DOF), supported control modes, clinical applicability and outcomes. Preliminary clinical results of these studies showed that all participants could gain certain improvements in terms of range of motion, strength or physical function after training. Only four studies supported that bilateral training was better than unilateral training. However, most of clinical results cannot definitely verify the effectiveness of mechanisms and clinical protocols used in robotic therapies. To explore the actual value of these robots and devices, further research on ingenious mechanisms, dose-matched clinical protocols and universal evaluation criteria should be conducted in the future.

  14. Shoulder Strength Requirements for Upper Limb Functional Tasks: Do age and Rotator Cuff Tear Status Matter?

    Science.gov (United States)

    Santago, Anthony C; Vidt, Meghan E; Li, Xiaotong; Tuohy, Christopher J; Poehling, Gary G; Freehill, Michael T; Saul, Katherine R

    2017-07-17

    Understanding upper limb strength requirements for daily tasks is imperative for early detection of strength loss that may progress to disability due to age or rotator cuff tear. We quantified shoulder strength requirements for five upper limb tasks performed by three groups: uninjured young adults and older adults, and older adults with a degenerative supraspinatus tear prior to repair. Musculoskeletal models were developed for each group representing age, sex, and tear-related strength losses. Percentage of available strength used was quantified for the subset of tasks requiring the largest amount of shoulder strength. Significant differences in strength requirements existed across tasks: upward reach 105° required the largest average strength; axilla wash required the largest peak strength. However, there were limited differences across participant groups. Older adults with and without a tear used a larger percentage of their shoulder elevation (p<.001, p<.001) and external rotation (p<.001, p=.017) strength than the young adults respectively. Presence of a tear signficantly increased percentage of internal rotation strength compared to young (p<.001) and uninjured older adults (p=.008). Marked differences in strength demand across tasks indicate the need for evaluating a diversity of functional tasks to effectively detect early strength loss which may lead to disability.

  15. Upper Limb Neurodynamic Test 1 and symptoms reproduction in carpal tunnel syndrome. A validity study.

    Science.gov (United States)

    Vanti, Carla; Bonfiglioli, Roberta; Calabrese, Monica; Marinelli, Francesco; Guccione, Andrew; Violante, Francesco Saverio; Pillastrini, Paolo

    2011-06-01

    The aim of this study was to estimate the validity of the Upper Limb Neurodynamic Test 1 (ULNT1) for the diagnosis of Carpal Tunnel Syndrome (CTS) with blind comparison to a reference criterion of a compatible clinical presentation and abnormal nerve conduction. 47 subjects with suspected CTS were enrolled. All patients were tested with nerve conduction studies and ULNT1. Considering results as positive in the presence of reproduction of symptoms on affected upper limb, or side-to-side differences in elbow extension, or symptoms modified by lateral neck side-bending, we estimated sensitivity as 91.67%, specificity as 15%, positive likelihood ratio as 1.0784, negative likelihood ratio as 0.5556, and post-test probability for negative test as 40%. Using a new criterion, i.e. the reproduction of symptoms only in the first three digits of the affected hand, we estimated sensitivity as 54.17%, specificity as 70%, positive and negative likelihood ratios as 1.8056 and 0.6548, respectively, and post-test probability for positive test as 68%. Our investigation suggests that the reproduction of the typical current CTS symptoms in the affected hand during ULNT1 testing, improves estimation of the probability of the presence of this condition, even if this test alone cannot be used to diagnose CTS.

  16. Long-Latency Feedback Coordinates Upper-Limb and Hand Muscles during Object Manipulation Tasks.

    Science.gov (United States)

    Crevecoeur, Frédéric; Thonnard, Jean-Louis; Lefèvre, Philippe; Scott, Stephen H

    2016-01-01

    Suppose that someone bumps into your arm at a party while you are holding a glass of wine. Motion of the disturbed arm will engage rapid and goal-directed feedback responses in the upper-limb. Although such responses can rapidly counter the perturbation, it is also clearly desirable not to destabilize your grasp and/or spill the wine. Here we investigated how healthy humans maintain a stable grasp following perturbations by using a paradigm that requires spatial tuning of the motor response dependent on the location of a virtual target. Our results highlight a synchronized expression of target-directed feedback in shoulder and hand muscles occurring at ∼60 ms. Considering that conduction delays are longer for the more distal hand muscles, these results suggest that target-directed responses in hand muscles were initiated before those for the shoulder muscles. These results show that long-latency feedback can coordinate upper limb and hand muscles during object manipulation tasks.

  17. Long-Latency Feedback Coordinates Upper-Limb and Hand Muscles during Object Manipulation Tasks123

    Science.gov (United States)

    Thonnard, Jean-Louis; Scott, Stephen H.

    2016-01-01

    Suppose that someone bumps into your arm at a party while you are holding a glass of wine. Motion of the disturbed arm will engage rapid and goal-directed feedback responses in the upper-limb. Although such responses can rapidly counter the perturbation, it is also clearly desirable not to destabilize your grasp and/or spill the wine. Here we investigated how healthy humans maintain a stable grasp following perturbations by using a paradigm that requires spatial tuning of the motor response dependent on the location of a virtual target. Our results highlight a synchronized expression of target-directed feedback in shoulder and hand muscles occurring at ∼60 ms. Considering that conduction delays are longer for the more distal hand muscles, these results suggest that target-directed responses in hand muscles were initiated before those for the shoulder muscles. These results show that long-latency feedback can coordinate upper limb and hand muscles during object manipulation tasks. PMID:27022624

  18. Therapeutic Efficacy Analysis of Balancing Yin-yang Manipulation for Post-stroke Upper Limb Spasticity

    Institute of Scientific and Technical Information of China (English)

    Cui Hua-feng; Gao Guo-qiang; Wang Yan-li; Yu Xiao-hua; Guo Li; Ren Shuo

    2014-01-01

    Objective: To observe the effect of balancing yin-yang needling manipulation on post-stroke upper limb spasticity and changes of electromyography (EMG) after treatment. Methods: A total of 60 eligible cases were randomly allocated into an observation group and a control group, 30 in each group. Based on routine medication, cases in the control group were treated with conventional needling manipulation, whereas cases in the observation group were treated with balancing yin-yang manipulation. After the courses of treatment were completed, the therapeutic efficacies were evaluated using modified Ashworth scale and clinical spasticity index (CSI), coupled with the integrated electromyography (IEMG) and root mean square (RMS) value of biceps in passive flexion of the elbow joint during isokinetic testing recorded with the surface EMG. Results: The total effective rate in the observation group was 86.7%, versus 53.3% in the control group, showing a statistical significance (P Conclusion:Balancing yin-yang and conventional needling manipulations can both improve upper limb spasm and reduce CSI as well as IEMG and RMS values in stroke patients;however, balancing yin-yang manipulation is better than conventional manipulation in clinical effect.

  19. [Coordination patterns assessed by a continuous measure of joints coupling during upper limb repetitive movements].

    Science.gov (United States)

    Draicchio, F; Silvetti, A; Ranavolo, A; Iavicoli, S

    2008-01-01

    We analyzed the coordination patterns between elbow, shoulder and trunk in a motor task consisting of reaching out, picking up a cylinder, and transporting it back by using the Dynamical Systems Theory and calculating the continuous relative phase (CRP), a continuous measure of the coupling between two interacting joints. We used an optoelectronic motion analysis system consisting of eight infra-red ray cameras to detect the movements of nine skin-mounted markers. We calculated the root square of the adjusted coefficient of determination, the coefficient of multiple correlation (CMC), in order to investigate the repeatability of the joints coordination. The data confirm that the CNS establishes both synergic (i.e. coupling between shoulder and trunk on the frontal plane) and hierarchical (i.e. coupling between elbow-shoulder-trunk on the horizontal plane) relationships among the available degrees of freedom to overcome the complexity due to motor redundancy. The present study describes a method to investigate the organization of the kinematic degrees of freedom during upper limb multi-joint motor tasks that can be useful to assess upper limb repetitive movements.

  20. Impact of tactile function on upper limb motor function in children with Developmental Coordination Disorder.

    Science.gov (United States)

    Cox, Lauren E; Harris, Elizabeth C; Auld, Megan L; Johnston, Leanne M

    2015-01-01

    This study investigated the presence of, and relationship between tactile dysfunction and upper limb motor function in children with Developmental Coordination Disorder (DCD) compared to typical developing (TD) children. Participants were 36 children aged 6-12 years. Presence of DCD (n=20) or TD (n=16) was confirmed using the Movement Assessment Battery for Children, second edition. All children participated in a comprehensive assessment of tactile registration (Semmes Weinstein Monofilaments); tactile spatial perception (Single Point Localisation (SPL) and two-point discrimination (2PD)); haptic perception (Stereognosis); speed of simple everyday manual tasks (Jebsen-Taylor Test of Hand Function (JTTHF)); and handwriting speed and accuracy (Evaluation Tool of Children's Handwriting (ETCH)). Compared to TD children, children with DCD demonstrated poorer localisation of touch in the non-dominant hand (p=0.04), slower speed of alphabet writing (p0.05). Regression analysis showed that spatial tactile perception (SPL) predicted handwriting legibility (ETCH: r=0.11) and speed of functional tasks (JTTHF: r=0.33). These results suggest that tactile function, specifically single point localisation, should be a primary tactile assessment employed to determine reasons for upper limb motor difficulties experienced by children with DCD.

  1. Transcranial direct current stimulation and EEG-based motor imagery BCI for upper limb stroke rehabilitation.

    Science.gov (United States)

    Ang, Kai Keng; Guan, Cuntai; Phua, Kok Soon; Wang, Chuanchu; Teh, Irvin; Chen, Chang Wu; Chew, Effie

    2012-01-01

    Clinical studies had shown that EEG-based motor imagery Brain-Computer Interface (MI-BCI) combined with robotic feedback is effective in upper limb stroke rehabilitation, and transcranial Direct Current Stimulation (tDCS) combined with other rehabilitation techniques further enhanced the facilitating effect of tDCS. This motivated the current clinical study to investigate the effects of combining tDCS with MI-BCI and robotic feedback compared to sham-tDCS for upper limb stroke rehabilitation. The stroke patients recruited were randomized to receive 20 minutes of tDCS or sham-tDCS prior to 10 sessions of 1-hour MI-BCI with robotic feedback for 2 weeks. The online accuracies of detecting motor imagery from idle condition were assessed and offline accuracies of classifying motor imagery from background rest condition were assessed from the EEG of the evaluation and therapy parts of the 10 rehabilitation sessions respectively. The results showed no evident differences between the online accuracies on the evaluation part from both groups, but the offline analysis on the therapy part yielded higher averaged accuracies for subjects who received tDCS (n=3) compared to sham-tDCS (n=2). The results suggest towards tDCS effect in modulating motor imagery in stroke, but a more conclusive result can be drawn when more data are collected in the ongoing study.

  2. Outcome of selective motor fasciculotomy in the treatment of upper limb spasticity

    Directory of Open Access Journals (Sweden)

    Aneel Kumar Puligopu

    2011-01-01

    Full Text Available Objective: The objective was to assess the outcome of selective motor fasciculotomy in relieving upper limb harmful resistant spasticity and thereby to improve motor functions in persons with cerebral palsy. Materials and Methods: Twenty people having cerebral palsy (12 females and 8 males with age ranging from 5 to 35 (mean 12.85 years with upper limb resistant spasticity due to spastic hemiplegia (n=7, triplegia (n=6, and quadriplegia (n=7 were assessed using Modified Ashworth Scale, Selective Voluntary Control Grade, Wee FIM Scale and hand function evaluation. Selective motor fasciculotomy was performed on the musculocutaneous nerve (n=13 for elbow flexors spasticity, median nerve (n=24 for pronators and radial wrist flexors spasticity and ulnar nerve (n=3 for ulnar wrist flexors spasticity. Pre- and post-op therapeutic exercises were performed. Results: Statistical analysis using the Wilcoxon Signed Ranks test showed significant reduction in spasticity and improvement in selective voluntary control, hand functions (grasp to hold a 2 inch rod, and Wee FIM (self-care domain in particular. There was no recurrence in spasticity and complications following surgery. Conclusions: The selective motor fasciculotomy of musculocutaneous, median, and ulnar nerves significantly reduces spasticity in the affected muscle groups and thereby improves the self-care (motor functions in selected people with cerebral palsy who have harmful resistant spasticity without any organic shortening of the muscles. The procedure is safe and the spasticity does not recur.

  3. Artificial motor control for electrically stimulated upper limbs of plegic or paretic people

    Directory of Open Access Journals (Sweden)

    Elgison da Luz dos Santos

    Full Text Available Introduction: Functional Electrical Stimulation (FES is a technique used in the restoration and generation of movements performed by subjects with neuromuscular disorders such as spinal cord injury (SCI. The purpose of this article is to outline the state of the art and perspectives of the use of FES in artificial motor control of the upper limbs in paretic or plegic people. Methods The databases used in papers selection were Google Scholar and Capes’ Portals as well as proceedings of the Annual Conference of the International Functional Electrical Stimulation Society (IFESS. Results Approximately 85% of the reviewed studies showed FES profile with pulse duration ranging from 1 to 300 μs and modulating (burst frequency between 10 and 40 Hz. Regarding the type of electrodes, 88% of the studies employed transcutaneous electrodes. Conclusion We concluded that FES with closed-loop feedback and feedforward are the most used and most viable systems for upper limbs motor control, because they perform self-corrections slowing neuromuscular adaptation, allowing different planes and more range of movement and sensory-motor integration. One of the difficulties found in neuroprosthesis systems are electrical wires attached to the user, becoming uninteresting in relation to aesthetics and break. The future perspectives lead to a trend to miniaturization of the stimulation equipment and the availability of wireless networks, which allow the attachment of modules to other components without physical contact, and will become more attractive for daily use.

  4. Inadvertent recovery in communication deficits following the upper limb mirror therapy in stroke: A case report.

    Science.gov (United States)

    Arya, Kamal Narayan; Pandian, Shanta

    2014-10-01

    Broca's aphasia is the most challenging communication deficit in stroke. Left inferior frontal gyrus (IFG), a key region of the mirror-neuron system, gets lesioned in Broca's aphasia. Mirror therapy (MT), a form of action-observation, may trigger the mirror neurons. The aim of this study was to report a case of poststroke subject with Broca's aphasia, who exhibited an inadvertent and significant improvement in speech after MT for the paretic upper limb. The 20-month old stroke patient underwent MT through goal-directed tasks. He received a total absence of spontaneous speech, writing, and naming. After 45 sessions of task-based MT for the upper limb, he showed tremendous recovery in expressive communication. He had fluent and comprehensive communication; however, with a low pitch and minor pronunciation errors. He showed a substantial change (from 18/100 to 79/100) on the Communicative Effective Index, particularly, on items such as expressing emotions, one-to-one conversation, naming, and spontaneous conversation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. E2Rebot: A robotic platform for upper limb rehabilitation in patients with neuromotor disability

    Directory of Open Access Journals (Sweden)

    Juan C Fraile

    2016-08-01

    Full Text Available The use of robotic platforms for neuro-rehabilitation may boost the neural plasticity process and improve motor recovery in patients with upper limb mobility impairment as a consequence of an acquired brain injury. A robotic platform for this aim must provide ergonomic and friendly design, human safety, intensive task-oriented therapy, and assistive forces. Its implementation is a complex process that involves new developments in the mechanical, electronics, and control fields. This article presents the end-effector rehabilitation robot, a 2-degree-of-freedom planar robotic platform for upper limb rehabilitation in patients with neuromotor disability after a stroke. We describe the ergonomic mechanical design, the system control architecture, and the rehabilitation therapies that can be performed. The impedance-based haptic controller implemented in end-effector rehabilitation robot uses the information provided by a JR3 force sensor to achieve an efficient and friendly patient–robot interaction. Two task-oriented therapy modes have been implemented based on the “assist as needed” paradigm. As a result, the amount of support provided by the robot adapts to the patient’s requirements, maintaining the therapy as intensive as possible without compromising the patient’s health and safety and promoting engagement.

  6. Muscle fatigue evaluation of astronaut upper limb based on sEMG and subjective assessment

    Science.gov (United States)

    Zu, Xiaoqi; Zhou, Qianxiang; Li, Yun

    2012-07-01

    All movements are driven by muscle contraction, and it is easy to cause muscle fatigue. Evaluation of muscle fatigue is a hot topic in the area of astronaut life support training and rehabilitation. If muscle gets into fatigue condition, it may reduce work efficiency and has an impact on psychological performance. Therefore it is necessary to develop an accurate and usable method on muscle fatigue evaluation of astronaut upper limb. In this study, we developed a method based on surface electromyography (sEMG) and subjective assessment (Borg scale) to evaluate local muscle fatigue. Fifteen healthy young male subjects participated in the experiment. They performed isometric muscle contractions of the upper limb. sEMG of the biceps brachii were recorded during the entire process of isotonic muscle contraction and Borg scales of muscle fatigue were collected in certain times. sEMG were divided into several parts, and then mean energy of each parts were calculated by the one-twelfth band octave method. Equations were derived based on the relationship between the mean energy of sEMG and Borg scale. The results showed that cubic curve could describe the degree of local muscle fatigue, and could be used to evaluate and monitor local muscle fatigue during the entire process.

  7. Biomechanical analysis of upper limb during the use of touch screen: motion strategies identification.

    Science.gov (United States)

    Jacquier-Bret, Julien; Gorce, Philippe; Motti Lilian, Genaro; Vigouroux, Nadine

    2017-03-01

    Nowadays touch technology is growing and developers try to make it ever more intuitive and easier to use. This present work focused on the upper limb joint coordination during the achievement of puzzles on touch screen. A 5-inch and 10-inch devices were used to perform 9 and 16 pieces puzzles dragged with digits. The conclusions showed an increase in joint solicitation with the number of piece and the touch screen size. Moreover, three interactions strategies proved to be an evidence: the 'wrist strategy' preferentially implying wrist flexion/extension, the 'elbow strategy' preferentially implying the elbow flexion/extension and the 'neutral strategy' mobilising equally the two joints. From an ergonomic point of view, the data about how the upper limb segments are mobilised while interacting with the screen could be relevant to increase the adaptability of the devices to the user, including users with motor impairments. Practitioner Summary: Information about the biomechanical organisation of movement during interaction with touch devices appears relevant in order to develop applications adapted to the motor capacities of users. From the analysis of joint angles when performing several times a puzzle with healthy subjects, three motor strategies were highlighted.

  8. Design and kinematic analysis of a novel upper limb exoskeleton for rehabilitation of stroke patients.

    Science.gov (United States)

    Zeiaee, Amin; Soltani-Zarrin, Rana; Langari, Reza; Tafreshi, Reza

    2017-07-01

    This paper details the design process and features of a novel upper limb rehabilitation exoskeleton named CLEVER (Compact, Low-weight, Ergonomic, Virtual/Augmented Reality Enhanced Rehabilitation) ARM. The research effort is focused on designing a lightweight and ergonomic upper-limb rehabilitation exoskeleton capable of producing diverse and perceptually rich training scenarios. To this end, the knowledge available in the literature of rehabilitation robotics is used along with formal conceptual design techniques. This paper briefly reviews the systematic approach used for design of the exoskeleton, and elaborates on the specific details of the proposed design concept and its advantages over other design possibilities. The kinematic structure of CLEVER ARM has eight degrees of freedom supporting the motion of shoulder girdle, glenohumeral joint, elbow and wrist. Six degrees of freedom of the exoskeleton are active, and the two degrees of freedom supporting the wrist motion are passive. Kinematics of the proposed design is studied analytically and experimentally with the aid of a 3D printed prototype. The paper is concluded by some remarks on the optimization of the design, motorization of device, and the fabrication challenges.

  9. Quantitative analysis of upper-limb ataxia in patients with spinocerebellar degeneration.

    Science.gov (United States)

    Ueda, Naohisa; Hakii, Yasuhito; Koyano, Shigeru; Higashiyama, Yuichi; Joki, Hideto; Baba, Yasuhisa; Suzuki, Yume; Kuroiwa, Yoshiyuki; Tanaka, Fumiaki

    2014-07-01

    Spinocerebellar degeneration (SCD) is a progressive neurodegenerative disorder in which cerebellar ataxia causes motor disability. There are no widely applicable methods for objective evaluation of ataxia in SCD. An objective system to evaluate ataxia is necessary for use in clinical trials of newly developed medication and rehabilitation. The aim of this study was to develop a simple method to quantify the degree of upper-limb ataxia. Forty-nine patients with SCD participated in this study. Patients were instructed to trace an Archimedean spiral template, and the gap between the template spiral and the drawn spiral (gap area; GA) was measured using Image J software. Ataxia was rated using the Scale for the Assessment and Rating of Ataxia (SARA) and cerebellar volume was evaluated in 37 patients using an axial cross-section of magnetic resonance images that were obtained within 6 months of clinical evaluation. Regression analysis was performed to assess the relation between GA and patient age, disease duration, SARA score, and cerebellar volume. GA was significantly related to total SARA score (r = 0.660, p ataxia, especially upper-limb ataxia, and can be widely adopted in various settings, including clinical trials.

  10. A Pre-Clinical Framework for Neural Control of a Therapeutic Upper-Limb Exoskeleton.

    Science.gov (United States)

    Blank, Amy; O'Malley, Marcia K; Francisco, Gerard E; Contreras-Vidal, Jose L

    2013-01-01

    In this paper, we summarize a novel approach to robotic rehabilitation that capitalizes on the benefits of patient intent and real-time assessment of impairment. Specifically, an upper-limb, physical human-robot interface (the MAHI EXO-II robotic exoskeleton) is augmented with a non-invasive brain-machine interface (BMI) to include the patient in the control loop, thereby making the therapy 'active' and engaging patients across a broad spectrum of impairment severity in the rehabilitation tasks. Robotic measures of motor impairment are derived from real-time sensor data from the MAHI EXO-II and the BMI. These measures can be validated through correlation with widely used clinical measures and used to drive patient-specific therapy sessions adapted to the capabilities of the individual, with the MAHI EXO-II providing assistance or challenging the participant as appropriate to maximize rehabilitation outcomes. This approach to robotic rehabilitation takes a step towards the seamless integration of BMIs and intelligent exoskeletons to create systems that can monitor and interface with brain activity and movement. Such systems will enable more focused study of various issues in development of devices and rehabilitation strategies, including interpretation of measurement data from a variety of sources, exploration of hypotheses regarding large scale brain function during robotic rehabilitation, and optimization of device design and training programs for restoring upper limb function after stroke.

  11. Site-specific muscle hyper-reactivity in musicians with occupational upper limb pain.

    Science.gov (United States)

    Moulton, B; Spence, S H

    1992-07-01

    Fourteen musicians who reported a history of pain in the upper limb associated with the playing of their instruments were compared with a sample of pain-free musicians, matched for age, sex and musical instrument. Four tasks were presented in random order and included neutral, general stressor, personal stressor and pain stressor tasks. Ratings of stressfulness and recordings of skin conductance level confirmed the effectiveness of the experimental manipulations for both subject groups. No differences were found between groups or tasks for frontalis surface electromyograph (EMG) activity. Evidence was found, however, of EMG elevation in flexor and trapezius muscles on the pain side for the pain subjects, in response to the task involving recall of a pain experience. This elevation was not found for the pain-free controls or for other stressor tasks, although some elevation in response to the pain stressor task was found for pain subjects in the trapezius muscles of the non-pain side. The duration of return to baseline of EMG following the pain stressor task was found to be extended in pain subjects for the trapezius, but not for the flexor muscles of the pain side. The findings suggest that site-specific muscle hyper-reactivity may play a role in the development and maintenance of occupational upper limb pain in musicians.

  12. Using virtual reality environment to facilitate training with advanced upper-limb prosthesis

    Directory of Open Access Journals (Sweden)

    Linda Resnik, PT, PhD, OCS

    2011-07-01

    Full Text Available Technological advances in upper-limb prosthetic design offer dramatically increased possibilities for powered movement. The DEKA Arm system allows users 10 powered degrees of movement. Learning to control these movements by utilizing a set of motions that, in most instances, differ from those used to obtain the desired action prior to amputation is a challenge for users. In the Department of Veterans Affairs "Study to Optimize the DEKA Arm," we attempted to facilitate motor learning by using a virtual reality environment (VRE program. This VRE program allows users to practice controlling an avatar using the controls designed to operate the DEKA Arm in the real world. In this article, we provide highlights from our experiences implementing VRE in training amputees to use the full DEKA Arm. This article discusses the use of VRE in amputee rehabilitation, describes the VRE system used with the DEKA Arm, describes VRE training, provides qualitative data from a case study of a subject, and provides recommendations for future research and implementation of VRE in amputee rehabilitation. Our experience has led us to believe that training with VRE is particularly valuable for upper-limb amputees who must master a large number of controls and for those amputees who need a structured learning environment because of cognitive deficits.

  13. A Serious Game for Upper Limb Stroke Rehabilitation Using Biofeedback and Mirror-Neurons Based Training.

    Science.gov (United States)

    Cargnin, Diego João; Cordeiro d'Ornellas, Marcos; Cervi Prado, Ana Lúcia

    2015-01-01

    Upper limb stroke rehabilitation requires early, intensive and repetitive practice to be effective. Consequently, it is often difficult to keep patients committed to their rehabilitation regimen. In addition to direct measures of rehabilitation achievable through targeted assessments, other factors can indirectly lead to rehabilitation. Current levels of integration between commodity graphics software, hardware, and body-tracking devices have provided a reliable tool to build what are referred to as serious games, focusing on the rehabilitation paradigm. More specifically, serious games can captivate and engage players for a specific purpose such as developing new knowledge or skills. This paper discusses a serious game application with a focus on upper limb rehabilitation in patients with hemiplegia or hemiparesis. The game makes use of biofeedback and mirror-neurons to enhance the patient's engagement. Results from the application of a quantitative self-report instrument to assess in-game engagement suggest that the serious game is a viable instructional approach rather than an entertaining novelty and, furthermore, demonstrates the future potential for dual action therapy-focused games.

  14. Wearable kinesthetic system for capturing and classifying upper limb gesture in post-stroke rehabilitation

    Directory of Open Access Journals (Sweden)

    Tesconi Mario

    2005-03-01

    Full Text Available Abstract Background Monitoring body kinematics has fundamental relevance in several biological and technical disciplines. In particular the possibility to exactly know the posture may furnish a main aid in rehabilitation topics. In the present work an innovative and unobtrusive garment able to detect the posture and the movement of the upper limb has been introduced, with particular care to its application in post stroke rehabilitation field by describing the integration of the prototype in a healthcare service. Methods This paper deals with the design, the development and implementation of a sensing garment, from the characterization of innovative comfortable and diffuse sensors we used to the methodologies employed to gather information on the posture and movement which derive from the entire garments. Several new algorithms devoted to the signal acquisition, the treatment and posture and gesture reconstruction are introduced and tested. Results Data obtained by means of the sensing garment are analyzed and compared with the ones recorded using a traditional movement tracking system. Conclusion The main results treated in this work are summarized and remarked. The system was compared with a commercial movement tracking system (a set of electrogoniometers and it performed the same accuracy in detecting upper limb postures and movements.

  15. Standardizing the approach to evidence-based upper limb rehabilitation after stroke.

    Science.gov (United States)

    McDonnell, Michelle N; Hillier, Susan L; Esterman, Adrian J

    2013-01-01

    To describe the development of a clinical algorithm to enable standardized intervention prescription and progression for upper limb rehabilitation post stroke. We developed a standardized clinical algorithm that involved assessment of 18 critical impairments of upper limb function and application of task-specific exercises appropriate to the level of impairment. These tasks were consistent with recent evidence-based guidelines. We tested the feasibility of the algorithm with 20 participants recently discharged from inpatient rehabilitation following stroke who received outpatient therapy according to the clinical algorithm. Participants' abilities were regularly re-evaluated and task difficulty progressed. Outcomes were assessed at the level of impairment (Action Research Arm Test, Fugl-Meyer Assessment) and activity (Motor Activity Log). All participants attended the 9 sessions of training over the 3-week intervention period (100% compliance). No adverse events were reported. There were significant improvements in all outcome measures (P stroke based on the assessment of functioning of the individual following stroke in day-to-day life. This approach is appropriate for patients with different functional levels and may be used to standardize individual or group self-directed practice sessions or to standardize the intervention and progressions in experimental studies.

  16. Hybrid robotic systems for upper limb rehabilitation after stroke: A review.

    Science.gov (United States)

    Resquín, Francisco; Cuesta Gómez, Alicia; Gonzalez-Vargas, Jose; Brunetti, Fernando; Torricelli, Diego; Molina Rueda, Francisco; Cano de la Cuerda, Roberto; Miangolarra, Juan Carlos; Pons, José Luis

    2016-11-01

    In recent years the combined use of functional electrical stimulation (FES) and robotic devices, called hybrid robotic rehabilitation systems, has emerged as a promising approach for rehabilitation of lower and upper limb motor functions. This paper presents a review of the state of the art of current hybrid robotic solutions for upper limb rehabilitation after stroke. For this aim, studies have been selected through a search using web databases: IEEE-Xplore, Scopus and PubMed. A total of 10 different hybrid robotic systems were identified, and they are presented in this paper. Selected systems are critically compared considering their technological components and aspects that form part of the hybrid robotic solution, the proposed control strategies that have been implemented, as well as the current technological challenges in this topic. Additionally, we will present and discuss the corresponding evidences on the effectiveness of these hybrid robotic therapies. The review also discusses the future trends in this field. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Relationships between power and strength of the upper and lower limb muscles and throwing velocity in male handball players.

    Science.gov (United States)

    Chelly, Mohamed Souhaiel; Hermassi, Souhail; Shephard, Roy J

    2010-06-01

    This study aimed to investigate relationships between peak power (PP) as measured by upper limb (PPUL) and lower limb (PPLL) force-velocity tests, maximal upper limb force assessed by 1 repetition maximum bench press (1RMBP), and pullover (1RMPO) exercises, estimates of local muscle volume and 3-step running handball throwing velocity (T3-Steps). Fourteen male handball players volunteered for the investigation (age: 19.6+/-0.6 years; body mass: 86.7+/-12.9 kg; and height 1.87+/-0.07 m). Lower and upper limb force-velocity tests were performed on appropriately modified forms of a Monark cycle ergometer, with measurement of PPUL and PPLL, and the corresponding respective maximal forces (F0UL and F0LL) and velocities (V0UL and V0LL). T3-Steps was assessed using a radar Stalker ATS system. Muscle volumes of the upper and lower limbs were estimated with a standard anthropometric kit. T3-Steps was closely related to absolute PPUL and to F0UL (r=0.69, plimb muscle volume, the relationship with T3-Steps disappeared. This suggests the importance of muscle volume to performance in throwing events. Force-velocity data may prove useful in regulating conditioning and rehabilitation programs for handball players. Our results also highlight the contribution of both the lower and the upper limbs to handball throwing velocity, suggesting the need for coaches to include upper and lower limb strength and power programs when improving the throwing velocity of handball players.

  18. Role of Brain-Derived Neurotrophic Factor in Beneficial Effects of Repetitive Transcranial Magnetic Stimulation for Upper Limb Hemiparesis after Stroke.

    Science.gov (United States)

    Niimi, Masachika; Hashimoto, Kenji; Kakuda, Wataru; Miyano, Satoshi; Momosaki, Ryo; Ishima, Tamaki; Abo, Masahiro

    2016-01-01

    Repetitive transcranial magnetic stimulation (rTMS) can improve upper limb hemiparesis after stroke but the mechanism underlying its efficacy remains elusive. rTMS seems to alter brain-derived neurotrophic factor (BDNF) and such effect is influenced by BDNF gene polymorphism. To investigate the molecular effects of rTMS on serum levels of BDNF, its precursor proBDNF and matrix metalloproteinase-9 (MMP-9) in poststroke patients with upper limb hemiparesis. Poststroke patients with upper limb hemiparesis were studied. Sixty-two patients underwent rehabilitation plus rTMS combination therapy and 33 patients underwent rehabilitation monotherapy without rTMS for 14 days at our hospital. One Hz rTMS was applied over the motor representation of the first dorsal interosseous muscle on the non-lesional hemisphere. Fugl-Meyer Assessment and Wolf Motor Function (WMFT) were used to evaluate motor function on the affected upper limb before and after intervention. Blood samples were collected for analysis of BDNF polymorphism and measurement of BDNF, proBDNF and MMP-9 levels. Two-week combination therapy increased BDNF and MMP-9 serum levels, but not serum proBDNF. Serum BDNF and MMP-9 levels did not correlate with motor function improvement, though baseline serum proBDNF levels correlated negatively and significantly with improvement in WMFT (ρ = -0.422, p = 0.002). The outcome of rTMS therapy was not altered by BDNF gene polymorphism. The combination therapy of rehabilitation plus low-frequency rTMS seems to improve motor function in the affected limb, by activating BDNF processing. BDNF and its precursor proBDNF could be potentially suitable biomarkers for poststroke motor recovery.

  19. Role of Brain-Derived Neurotrophic Factor in Beneficial Effects of Repetitive Transcranial Magnetic Stimulation for Upper Limb Hemiparesis after Stroke.

    Directory of Open Access Journals (Sweden)

    Masachika Niimi

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS can improve upper limb hemiparesis after stroke but the mechanism underlying its efficacy remains elusive. rTMS seems to alter brain-derived neurotrophic factor (BDNF and such effect is influenced by BDNF gene polymorphism.To investigate the molecular effects of rTMS on serum levels of BDNF, its precursor proBDNF and matrix metalloproteinase-9 (MMP-9 in poststroke patients with upper limb hemiparesis.Poststroke patients with upper limb hemiparesis were studied. Sixty-two patients underwent rehabilitation plus rTMS combination therapy and 33 patients underwent rehabilitation monotherapy without rTMS for 14 days at our hospital. One Hz rTMS was applied over the motor representation of the first dorsal interosseous muscle on the non-lesional hemisphere. Fugl-Meyer Assessment and Wolf Motor Function (WMFT were used to evaluate motor function on the affected upper limb before and after intervention. Blood samples were collected for analysis of BDNF polymorphism and measurement of BDNF, proBDNF and MMP-9 levels.Two-week combination therapy increased BDNF and MMP-9 serum levels, but not serum proBDNF. Serum BDNF and MMP-9 levels did not correlate with motor function improvement, though baseline serum proBDNF levels correlated negatively and significantly with improvement in WMFT (ρ = -0.422, p = 0.002. The outcome of rTMS therapy was not altered by BDNF gene polymorphism.The combination therapy of rehabilitation plus low-frequency rTMS seems to improve motor function in the affected limb, by activating BDNF processing. BDNF and its precursor proBDNF could be potentially suitable biomarkers for poststroke motor recovery.

  20. Retrieval of water vapor vertical distributions in the upper troposphere and the lower stratosphere from SCIAMACHY limb measurements

    Directory of Open Access Journals (Sweden)

    A. Rozanov

    2010-09-01

    Full Text Available This study describes the retrieval of water vapor vertical distributions in the upper troposphere and lower stratosphere (UTLS altitude range from space-borne observations of the scattered solar light made in limb viewing geometry and presents first results using measurements from SCIAMACHY. In the previous publications, the retrieval of water vapor vertical distributions has been achieved exploiting either the emitted radiance leaving the atmosphere or the transmitted solar radiation. In this study the scattered solar radiation is used as a new source of information on the water vapor content in the UTLS region. A recently developed retrieval algorithm utilizes the differential absorption structure of the water vapor in 1353–1410 nm spectral range and yields the water vapor content in 11–25 km altitude range. In this study the retrieval algorithm is successfully applied to SCIAMACHY limb measurements and the resulting water vapor profiles are compared to in situ balloon-borne observations. The results from both satellite and balloon-borne instruments are found to agree typically within 20%.

  1. Retrieval of water vapor vertical distributions in the upper troposphere and the lower stratosphere from SCIAMACHY limb measurements

    Directory of Open Access Journals (Sweden)

    A. Rozanov

    2011-05-01

    Full Text Available This study describes the retrieval of water vapor vertical distributions in the upper troposphere and lower stratosphere (UTLS altitude range from space-borne observations of the scattered solar light made in limb viewing geometry. First results using measurements from SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY aboard ENVISAT (Environmental Satellite are presented here. In previous publications, the retrieval of water vapor vertical distributions has been achieved exploiting either the emitted radiance leaving the atmosphere or the transmitted solar radiation. In this study, the scattered solar radiation is used as a new source of information on the water vapor content in the UTLS region. A recently developed retrieval algorithm utilizes the differential absorption structure of the water vapor in 1353–1410 nm spectral range and yields the water vapor content in the 11–25 km altitude range. In this study, the retrieval algorithm is successfully applied to SCIAMACHY limb measurements and the resulting water vapor profiles are compared to in situ balloon-borne observations. The results from both satellite and balloon-borne instruments are found to agree typically within 10 %.

  2. Potential of robots as next-generation technology for clinical assessment of neurological disorders and upper-limb therapy

    Directory of Open Access Journals (Sweden)

    Stephen H. Scott, PhD

    2011-05-01

    Full Text Available Robotic technologies have profoundly affected the identification of fundamental properties of brain function. This success is attributable to robots being able to control the position of or forces applied to limbs, and their inherent ability to easily, objectively, and reliably quantify sensorimotor behavior. Our general hypothesis is that these same attributes make robotic technologies ideal for clinically assessing sensory, motor, and cognitive impairments in stroke and other neurologi-cal disorders. Further, they provide opportunities for novel therapeutic strategies. The present opinionated review describes how robotic technologies combined with virtual/augmented reality systems can support a broad range of behavioral tasks to objectively quantify brain function. This information could potentially be used to provide more accurate diagnostic and prognostic information than is available from current clinical assessment techniques. The review also highlights the potential benefits of robots to provide upper-limb therapy. Although the capital cost of these technologies is substantial, it pales in comparison with the potential cost reductions to the overall healthcare system that improved assessment and therapeutic interventions offer.

  3. Upper limb joint motion of two different user groups during manual wheelchair propulsion

    Science.gov (United States)

    Hwang, Seonhong; Kim, Seunghyeon; Son, Jongsang; Lee, Jinbok; Kim, Youngho

    2013-02-01

    Manual wheelchair users have a high risk of injury to the upper extremities. Recent studies have focused on kinematic and kinetic analyses of manual wheelchair propulsion in order to understand the physical demands on wheelchair users. The purpose of this study was to investigate upper limb joint motion by using a motion capture system and a dynamometer with two different groups of wheelchair users propelling their wheelchairs at different speeds under different load conditions. The variations in the contact time, release time, and linear velocity of the experienced group were all larger than they were in the novice group. The propulsion angles of the experienced users were larger than those of the novices under all conditions. The variances in the propulsion force (both radial and tangential) of the experienced users were larger than those of the novices. The shoulder joint moment had the largest variance with the conditions, followed by the wrist joint moment and the elbow joint moment. The variance of the maximum shoulder joint moment was over four times the variance of the maximum wrist joint moment and eight times the maximum elbow joint moment. The maximum joint moments increased significantly as the speed and load increased in both groups. Quick and significant manipulation ability based on environmental changes is considered an important factor in efficient propulsion. This efficiency was confirmed from the propulsion power results. Sophisticated strategies for efficient manual wheelchair propulsion could be understood by observation of the physical responses of each upper limb joint to changes in load and speed. We expect that the findings of this study will be utilized for designing a rehabilitation program to reduce injuries.

  4. Upper limb dynamic responses to impulsive forces for selected assembly workers.

    Science.gov (United States)

    Sesto, Mary E; Radwin, Robert G; Block, Walter F; Best, Thomas M

    2006-02-01

    This study evaluated the upper limb, dynamic, mechanical response parameters for 14 male assembly workers recruited from selected jobs based on power tool use. It was hypothesized that the type of power tool operation would affect stiffness, effective mass, and damping of the upper extremity; and workers with symptoms and positive physical examination findings would have different mechanical responses than asymptomatic workers without physical examination findings. Participants included operators who regularly used torque reaction power hand tools, such as nutrunners and screwdrivers, and nontorque reaction power hand tools, such as riveters. The mechanical parameters of the upper limb were characterized from the loading response of an apparatus having known dynamic properties while worker grasps an oscillating handle in free vibration. In addition, all workers underwent a physical examination, magnetic resonance imaging, and completed a symptom survey. Workers were categorized as controls or cases based on reported forearm symptoms and physical exam findings. A total of seven workers were categorized as cases and had less average mechanical stiffness (46%, p > 0.01), damping (74%, p > 0.01), and effective mass (59%, p > 0.05) than the seven workers categorized as controls. Magnetic resonance imaging (MRI) findings suggestive of muscle edema were observed for two workers classified as cases and who regularly used torque reaction power tools. No MRI enhancement was observed in the seven subjects who did not regularly use torque reaction power tools. The ergonomic consequences of less stiffness, effective mass, and damping in symptomatic workers may include reduced capacity to react against rapidly building torque reaction forces encountered when operating power hand tools.

  5. A neural tracking and motor control approach to improve rehabilitation of upper limb movements

    Directory of Open Access Journals (Sweden)

    Schmid Maurizio

    2008-02-01

    Full Text Available Abstract Background Restoration of upper limb movements in subjects recovering from stroke is an essential keystone in rehabilitative practices. Rehabilitation of arm movements, in fact, is usually a far more difficult one as compared to that of lower extremities. For these reasons, researchers are developing new methods and technologies so that the rehabilitative process could be more accurate, rapid and easily accepted by the patient. This paper introduces the proof of concept for a new non-invasive FES-assisted rehabilitation system for the upper limb, called smartFES (sFES, where the electrical stimulation is controlled by a biologically inspired neural inverse dynamics model, fed by the kinematic information associated with the execution of a planar goal-oriented movement. More specifically, this work details two steps of the proposed system: an ad hoc markerless motion analysis algorithm for the estimation of kinematics, and a neural controller that drives a synthetic arm. The vision of the entire system is to acquire kinematics from the analysis of video sequences during planar arm movements and to use it together with a neural inverse dynamics model able to provide the patient with the electrical stimulation patterns needed to perform the movement with the assisted limb. Methods The markerless motion tracking system aims at localizing and monitoring the arm movement by tracking its silhouette. It uses a specifically designed motion estimation method, that we named Neural Snakes, which predicts the arm contour deformation as a first step for a silhouette extraction algorithm. The starting and ending points of the arm movement feed an Artificial Neural Controller, enclosing the muscular Hill's model, which solves the inverse dynamics to obtain the FES patterns needed to move a simulated arm from the starting point to the desired point. Both position error with respect to the requested arm trajectory and comparison between curvature factors

  6. [Women boxing athletes' EMG of upper limbs and lumbar muscles in the training of air striking of straight punch].

    Science.gov (United States)

    Zhang, Ri-Hui; Kang, Zhi-Xin

    2011-05-01

    To study training effect of upper limbs and lumbar muscles in the proceed of air striking of straight punch by analyzing boxing athletes' changes of electromyogram (EMG). We measured EMG of ten women boxing athletes' upper arm biceps (contractor muscle), upper arm triceps (antagonistic muscle), forearm flexor muscle (contractor muscle), forearm extensor muscle (antagonistic muscle), and lumbar muscles by ME6000 (Mega Electronics Ltd.). The stipulated exercise was to do air striking of straight punch with loads of 2.5 kg of dumbbell in the hand until exhausted. In the proceed of exercise-induce exhausted, the descend magnitude and speed of median frequency (MF) in upper limb antagonistic muscle exceeded to contracting muscle, moreover, the work percentage showed that contractor have done a larger percentage of work than antagonistic muscle. Compared with world champion's EMG, the majority of ordinary athletes' lumbar muscles MF revealed non-drop tendency, and the work percentage showed that lumbar muscles had a very little percentage of work. After comparing the EMG test index in upper limb and lumbar muscle of average boxing athletes with that of the world champion, we find the testees lack of the training of upper limb antagonistic muscle and lumbar muscle, and more trainings aimed at these muscles need to be taken.

  7. Development of risk filter and risk assessment worksheets for HSE guidance--'Upper Limb Disorders in the Workplace' 2002.

    Science.gov (United States)

    Graves, Rod J; Way, Kïrsten; Riley, David; Lawton, Clare; Morris, Len

    2004-09-01

    Upper limb disorders (ULDs) in the workplace represent a significant cause of ill health in Great Britain. As part of the Health and Safety Commission's strategy for the prevention of musculoskeletal disorders (MSDs), the well known guidance document on ULDs--"Work-related Upper Limb Disorders: a Guide to Prevention" (HSG60), (HMSO, London.), has been extensively revised. This revision (Upper limb disorders in the workplace. HSG60 (rev), HSE Books, Sudbury.) includes the development of new risk assessment tools that can be used by employers to identify ULD risk factors in work activities and more importantly to take action to reduce or eliminate ULD risks. The risk assessment tools form part of a seven stage management approach that underpins the new guidance. This paper outlines the development of the risk assessment tools contained in the revised guidance.

  8. Development of subliminal persuasion system to improve the upper limb posture in laparoscopic training: a preliminary study.

    Science.gov (United States)

    Zhang, Di; Sessa, Salvatore; Kong, Weisheng; Cosentino, Sarah; Magistro, Daniele; Ishii, Hiroyuki; Zecca, Massimiliano; Takanishi, Atsuo

    2015-11-01

    Current training for laparoscopy focuses only on the enhancement of manual skill and does not give advice on improving trainees' posture. However, a poor posture can result in increased static muscle loading, faster fatigue, and impaired psychomotor task performance. In this paper, the authors propose a method, named subliminal persuasion, which gives the trainee real-time advice for correcting the upper limb posture during laparoscopic training like the expert but leads to a lower increment in the workload. A 9-axis inertial measurement unit was used to compute the upper limb posture, and a Detection Reaction Time device was developed and used to measure the workload. A monitor displayed not only images from laparoscope, but also a visual stimulus, a transparent red cross superimposed to the laparoscopic images, when the trainee had incorrect upper limb posture. One group was exposed, when their posture was not correct during training, to a short (about 33 ms) subliminal visual stimulus. The control group instead was exposed to longer (about 660 ms) supraliminal visual stimuli. We found that subliminal visual stimulation is a valid method to improve trainees' upper limb posture during laparoscopic training. Moreover, the additional workload required for subconscious processing of subliminal visual stimuli is less than the one required for supraliminal visual stimuli, which is processed instead at the conscious level. We propose subliminal persuasion as a method to give subconscious real-time stimuli to improve upper limb posture during laparoscopic training. Its effectiveness and efficiency were confirmed against supraliminal stimuli transmitted at the conscious level: Subliminal persuasion improved upper limb posture of trainees, with a smaller increase on the overall workload.

  9. Comparing unilateral and bilateral upper limb training: The ULTRA-stroke program design

    Directory of Open Access Journals (Sweden)

    Koppe Peter

    2009-11-01

    Full Text Available Abstract Background About 80% of all stroke survivors have an upper limb paresis immediately after stroke, only about a third of whom (30 to 40% regain some dexterity within six months following conventional treatment programs. Of late, however, two recently developed interventions - constraint-induced movement therapy (CIMT and bilateral arm training with rhythmic auditory cueing (BATRAC - have shown promising results in the treatment of upper limb paresis in chronic stroke patients. The ULTRA-stroke (acronym for Upper Limb TRaining After stroke program was conceived to assess the effectiveness of these interventions in subacute stroke patients and to examine how the observed changes in sensori-motor functioning relate to changes in stroke recovery mechanisms associated with peripheral stiffness, interlimb interactions, and cortical inter- and intrahemispheric networks. The present paper describes the design of this single-blinded randomized clinical trial (RCT, which has recently started and will take several years to complete. Methods/Design Sixty patients with a first ever stroke will be recruited. Patients will be stratified in terms of their remaining motor ability at the distal part of the arm (i.e., wrist and finger movements and randomized over three intervention groups receiving modified CIMT, modified BATRAC, or an equally intensive (i.e., dose-matched conventional treatment program for 6 weeks. Primary outcome variable is the score on the Action Research Arm test (ARAT, which will be assessed before, directly after, and 6 weeks after the intervention. During those test sessions all patients will also undergo measurements aimed at investigating the associated recovery mechanisms using haptic robots and magneto-encephalography (MEG. Discussion ULTRA-stroke is a 3-year translational research program which aims (1 to assess the relative effectiveness of the three interventions, on a group level but also as a function of patient

  10. Robotic assessment of the influence of age on upper-limb sensorimotor function

    Directory of Open Access Journals (Sweden)

    LLinares A

    2013-07-01

    Full Text Available Ana LLinares, Francisco Javier Badesa, Ricardo Morales, Nicolas Garcia-Aracil, JM Sabater, Eduardo Fernandez Biomedical Neuroengineering, Universidad Miguel Hernández de Elche, Elche, Spain Purpose: This paper examines the influence of age on several attributes of sensorimotor performance while performing a reaching task. Our hypothesis, based on previous studies, is that aged persons will show differences in one or more of the attributes of sensorimotor performance. Patients and methods: Fifty-one subjects (aged 20–80 years with no known neuromotor disorders of the upper limbs participated in the study. Subjects were asked to grasp the end-effector of a pneumatic robotic device with two degrees of freedom in order to reach peripheral targets (1.0 cm radius, "quickly and accurately", from a centrally located target (1.0 cm radius. Subjects began each trial by holding the hand within the central target for 2000 milliseconds. Afterwards, a peripheral target was illuminated. Then participants were given 3000 milliseconds to complete the movement. When a target was reached, the participant had to return to the central target in order to start a new trial. A total of 64 trials were completed and each peripheral target was illuminated in a random block design. Results: Subjects were divided into three groups according to age: group 1 (age 20–40 years, group 2 (age 41–60 years, and group 3 (age 61–80 years. The Kruskal–Wallis test showed significant differences (P < 0.05 between groups, except for the variables postural speed in the dominant arm, and postural speed and initial deviation in the non-dominant arm (P > 0.05. These results suggest that age introduces significant differences in upper-limb motor function. Conclusion: Our findings show that there are objective differences in sensorimotor function due to age, and that these differences are greater for the dominant arm. Therefore for the assessment of upper-limb function, we should

  11. Rehabilitation for hemiplegia using an upper limb training system based on a force direction.

    Science.gov (United States)

    Ogata, Kunihiro; Hirabayashi, Yuto; Kubota, Keisuke; Hasegawa, Yuri; Tsuji, Toshiaki

    2017-07-01

    Hemiplegia patients have complete paralysis of half their body, and encounter many challenges in living an independent life. Rehabilitation of the lower body is more important than that of the upper body for independent living; thus, recovering upper body functions of their paralyzed side is not enough. Rehabilitation robots may be used to assist training without therapists. In this study, a small portable rehabilitation robot was developed for use at home, and a new training method was proposed. This robot consists on an omni wheel mechanism and a force sensor, and is capable of deciding the motion based on the force value. Voluntary movement of a hemiplegia patient is recovered by the rehabilitation robot and proposed training method. Thus, verification experiments were performed using participants with hemiplegia. The CCI (Co-Contraction Index) from after training were smaller than ones of before training, thus the movement skills of the participants improved with respect to controlling force direction and magnitude. Moreover, manual function test (MFT) scores increased as reflected by improvements in the motor function of the upper limb using the proposed training method.

  12. Kinect One-based biomechanical assessment of upper-limb performance compared to clinical scales in post-stroke patients.

    Science.gov (United States)

    Scano, Alessandro; Caimmi, Marco; Chiavenna, Andrea; Malosio, Matteo; Tosatti, Lorenzo Molinari

    2015-08-01

    This paper presents a Kinect One sensor-based protocol for the evaluation of the motor-performances of the upper limb of neurological patients during rehabilitative sessions. The assessment provides evaluations of kinematic, dynamic, motor and postural control variables. A pilot study was conducted on three post-stroke neurological patients, comparing Kinect-One biomechanical assessment with the outcomes of some of the most common clinical scales for the evaluation of the upper-limb functionality. Preliminary results indicate coherency between the clinical and instrumental evaluation. Moreover, the Kinect-One assessment seems to provide some complementary quantitative information, consistently integrating the clinical assessment.

  13. Is upper limb virtual reality training more intensive than conventional training for patients in the subacute phase after stroke?

    DEFF Research Database (Denmark)

    Brunner, Iris; Skouen, Jan Sture; Hofstad, Håkon

    2016-01-01

    Background: Virtual reality (VR) training is thought to improve upper limb (UL) motor function after stroke when utilizing intensive training with many repetitions. The purpose of this study was to compare intensity and content of a VR training intervention to a conventional task-oriented interve......Background: Virtual reality (VR) training is thought to improve upper limb (UL) motor function after stroke when utilizing intensive training with many repetitions. The purpose of this study was to compare intensity and content of a VR training intervention to a conventional task...

  14. EEG controlled neuromuscular electrical stimulation of the upper limb for stroke patients

    Science.gov (United States)

    Tan, Hock Guan; Shee, Cheng Yap; Kong, Keng He; Guan, Cuntai; Ang, Wei Tech

    2011-03-01

    This paper describes the Brain Computer Interface (BCI) system and the experiments to allow post-acute (neuromuscular electrical stimulation (NMES)-assisted extension of the wrist/fingers, which are essential pre-requisites for useful hand function. EEG was recorded while subjects performed motor imagery of their paretic limb, and then analyzed to determine the optimal frequency range within the mu-rhythm, with the greatest attenuation. Aided by visual feedback, subjects then trained to regulate their mu-rhythm EEG to operate the BCI to trigger NMES of the wrist/finger. 6 post-acute stroke patients successfully completed the training, with 4 able to learn to control and use the BCI to initiate NMES. This result is consistent with the reported BCI literacy rate of healthy subjects. Thereafter, without the loss of generality, the controller of the NMES is developed and is based on a model of the upper limb muscle (biceps/triceps) groups to determine the intensity of NMES required to flex or extend the forearm by a specific angle. The muscle model is based on a phenomenological approach, with parameters that are easily measured and conveniently implemented.

  15. Upper-limb muscle responses to epidural, subdural and intraspinal stimulation of the cervical spinal cord

    Science.gov (United States)

    Sharpe, Abigail N.; Jackson, Andrew

    2014-02-01

    Objective. Electrical stimulation of the spinal cord has potential applications following spinal cord injury for reanimating paralysed limbs and promoting neuroplastic changes that may facilitate motor rehabilitation. Here we systematically compare the efficacy, selectivity and frequency-dependence of different stimulation methods in the cervical enlargement of anaesthetized monkeys. Approach. Stimulating electrodes were positioned at multiple epidural and subdural sites on both dorsal and ventral surfaces, as well as at different depths within the spinal cord. Motor responses were recorded from arm, forearm and hand muscles. Main results. Stimulation efficacy increased from dorsal to ventral stimulation sites, with the exception of ventral epidural electrodes which had the highest recruitment thresholds. Compared to epidural and intraspinal methods, responses to subdural stimulation were more selective but also more similar between adjacent sites. Trains of stimuli delivered to ventral sites elicited consistent responses at all frequencies whereas from dorsal sites we observed a mixture of short-latency facilitation and long-latency suppression. Finally, paired stimuli delivered to dorsal surface and intraspinal sites exhibited symmetric facilitatory interactions at interstimulus intervals between 2-5 ms whereas on the ventral side interactions tended to be suppressive for near-simultaneous stimuli. Significance. We interpret these results in the context of differential activation of afferent and efferent roots and intraspinal circuit elements. In particular, we propose that distinct direct and indirect actions of spinal cord stimulation on motoneurons may be advantageous for different applications, and this should be taken into consideration when designing neuroprostheses for upper-limb function.

  16. Detecting the Intention to Move Upper Limbs from Electroencephalographic Brain Signals

    Science.gov (United States)

    Gudiño-Mendoza, Berenice; Sanchez-Ante, Gildardo; Antelis, Javier M.

    2016-01-01

    Early decoding of motor states directly from the brain activity is essential to develop brain-machine interfaces (BMI) for natural motor control of neuroprosthetic devices. Hence, this study aimed to investigate the detection of movement information before the actual movement occurs. This information piece could be useful to provide early control signals to drive BMI-based rehabilitation and motor assisted devices, thus providing a natural and active rehabilitation therapy. In this work, electroencephalographic (EEG) brain signals from six healthy right-handed participants were recorded during self-initiated reaching movements of the upper limbs. The analysis of these EEG traces showed that significant event-related desynchronization is present before and during the execution of the movements, predominantly in the motor-related α and β frequency bands and in electrodes placed above the motor cortex. This oscillatory brain activity was used to continuously detect the intention to move the limbs, that is, to identify the motor phase prior to the actual execution of the reaching movement. The results showed, first, significant classification between relax and movement intention and, second, significant detection of movement intention prior to the onset of the executed movement. On the basis of these results, detection of movement intention could be used in BMI settings to reduce the gap between mental motor processes and the actual movement performed by an assisted or rehabilitation robotic device. PMID:27217826

  17. Understanding and Overcoming Barriers to Upper Limb Surgical Reconstruction After Tetraplegia: The Need for Interdisciplinary Collaboration.

    Science.gov (United States)

    Punj, Vandana; Curtin, Catherine

    2016-06-01

    There are approximately 300,000 persons with spinal cord injury living in the United States, and nearly 60% of these persons have suffered tetraplegia with resultant alterations in body function, activity, and therefore participation. Restoring hand function can improve independence, and various studies have shown that persons with tetraplegia rate restoration of arm and hand function higher than bowel and bladder control, walking, or sexuality. There are conservative options to improve upper limb function in this population (eg, orthoses, neuroprostheses). Surgical interventions are also available, and 70% of surgical patients report satisfaction and improvement in various activities of daily living after surgery to restore arm and hand function. Despite these positive surgical outcomes, education of providers and patients and team building across disciplines these barriers can be overcome, ultimately leading to reduced disability and improved quality of life for persons with tetraplegia. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  18. Robotic upper limb rehabilitation after acute stroke by NeReBot: evaluation of treatment costs.

    Science.gov (United States)

    Stefano, Masiero; Patrizia, Poli; Mario, Armani; Ferlini, Gregorio; Rizzello, Roberto; Rosati, Giulio

    2014-01-01

    Stroke is the first cause of disability. Several robotic devices have been developed for stroke rehabilitation. Robot therapy by NeReBot is demonstrated to be an effective tool for the treatment of poststroke paretic upper limbs, able to improve the activities of daily living of stroke survivors when used both as additional treatment and in partial substitution of conventional rehabilitation therapy in the acute and subacute phases poststroke. This study presents the evaluation of the costs related to delivering such therapy, in comparison with conventional rehabilitation treatment. By comparing several NeReBot treatment protocols, made of different combinations of robotic and nonrobotic exercises, we show that robotic technology can be a valuable and economically sustainable aid in the management of poststroke patient rehabilitation.

  19. [Palsy of the upper limb: Obstetrical brachial plexus palsy, arthrogryposis, cerebral palsy].

    Science.gov (United States)

    Salazard, B; Philandrianos, C; Tekpa, B

    2016-10-01

    "Palsy of the upper limb" in children includes various diseases which leads to hypomobility of the member: cerebral palsy, arthrogryposis and obstetrical brachial plexus palsy. These pathologies which differ on brain damage or not, have the same consequences due to the early achievement: negligence, stiffness and deformities. Regular entire clinical examination of the member, an assessment of needs in daily life, knowledge of the social and family environment, are key points for management. In these pathologies, the rehabilitation is an emergency, which began at birth and intensively. Splints and physiotherapy are part of the treatment. Surgery may have a functional goal, hygienic or aesthetic in different situations. The main goals of surgery are to treat: joints stiffness, bones deformities, muscles contractures and spasticity, paresis, ligamentous laxity. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Design of a wearable cable-driven upper limb exoskeleton based on epicyclic gear trains structure.

    Science.gov (United States)

    Xiao, Feiyun; Gao, Yongsheng; Wang, Yong; Zhu, Yanhe; Zhao, Jie

    2017-07-20

    Many countries, including Japan, Italy, and China are experiencing demographic shifts as their populations age. Some basic activities of daily living (ADLs) are difficult for elderly people to complete independently due to declines in motor function. In this paper, a 6-DOF wearable cable-driven upper limb exoskeleton (CABexo) based on epicyclic gear trains structure is proposed. The main structure of the exoskeleton system is composed of three epicyclic gear train sections. This new exoskeleton has a parallel mechanical structure to the traditional serial structure, but is stiffer and has a stronger carrying capacity. The traditional gear transmission structure is replaced with a cable transmission system, which is quieter, and has higher accuracy and smoother transmission. The static workspace of the exoskeleton is large enough to meet the demand of assisting aged and disabled individuals in completing most of their activities of daily living (ADLs).

  1. Upper limb functional assessment of children with cerebral palsy using a sorting box.

    Science.gov (United States)

    Quijano-Gonzalez, Y; Melendez-Calderon, A; Burdet, E; Chong-Quero, J E; Villanueva-Ayala, D; Perez-Moreno, J C

    2014-01-01

    We investigated the use of a sorting box to obtain a quantitative assessment of upper limb motor function in children with cerebral palsy. In our study, children with and without cerebral palsy placed and removed geometrical objects of a sorting-box while their wrist position was monitored by a camera-based, motion-tracking system. We analyzed three different smoothness metrics (logarithmic dimensionless jerk, spectral arc-length and number of peaks) together with time to task completion. Our results suggest that smoothness metrics are an effective tool to distinguish between impaired and non-impaired subjects, as well as to quantify differences between the affected and less-affected sides in children with hemiparetic cerebral palsy.

  2. Coordinated upper limb training assisted with an electromyography (EMG)-driven hand robot after stroke.

    Science.gov (United States)

    Hu, X L; Tong, K Y; Wei, X J; Rong, W; Susanto, E A; Ho, S K

    2013-01-01

    An electromyography (EMG)-driven hand robot had been developed for post-stroke rehabilitation training. The effectiveness of the hand robot assisted whole upper limb training on muscular coordination was investigated on persons with chronic stroke (n=10) in this work. All subjects attended a 20-session training (3-5 times/week) by using the hand robot to practice object grasp/release and arm transportation tasks. Improvements were found in the muscle co-ordination between the antagonist muscle pair (flexor digitorum and extensor digitorum) as measured by muscle co-contractions in EMG signals; and also in the reduction of excessive muscle activities in the biceps brachii. Reduced spasticity in the fingers was also observed as measured by the Modified Ashworth Score.

  3. Design and analysis of an underactuated anthropomorphic finger for upper limb prosthetics.

    Science.gov (United States)

    Omarkulov, Nurdos; Telegenov, Kuat; Zeinullin, Maralbek; Begalinova, Ainur; Shintemirov, Almas

    2015-01-01

    This paper presents the design of a linkage based finger mechanism ensuring extended range of anthropomorphic gripping motions. The finger design is done using a path-point generation method based on geometrical dimensions and motion of a typical index human finger. Following the design description, and its kinematics analysis, the experimental evaluation of the finger gripping performance is presented using the finger 3D printed prototype. The finger underactuation is achieved by utilizing mechanical linkage system, consisting of two crossed four-bar linkage mechanisms. It is shown that the proposed finger design can be used to design a five-fingered anthropomorphic hand and has the potential for upper limb prostheses development.

  4. Design of a Workstation for People with Upper-Limb Disabilities Using a Brain Computer Interface

    Directory of Open Access Journals (Sweden)

    John E. Muñoz-Cardona

    2013-11-01

    Full Text Available  This paper shows the design of work-station for work-related inclusion people upper-limb disability. The system involves the use of novel brain computer interface used to bridge the user-computer interaction. Our hope objective is elucidating functional, technological, ergonomic and procedural aspects to runaway operation station; with propose to scratch barrier to impossibility access to TIC’s tools and work done for individual disability person. We found access facility ergonomics, adaptability and portable issue of workstation are most important design criteria. Prototype implementations in workplace environment have TIR estimate of 43% for retrieve. Finally we list a typology of services that could be the most appropriate for the process of labor including: telemarketing, telesales, telephone surveys, order taking, social assistance in disasters, general information and inquiries, reservations at tourist sites, technical support, emergency, online support and after-sales services.

  5. Development of Quasi-3DOF upper limb rehabilitation system using ER brake: PLEMO-P1

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, T; Fukushima, K; Furusho, J; Ozawa, T [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)], E-mail: kikuchi@mech.eng.osaka-u.ac.jp

    2009-02-01

    In recent years, many researchers have studied the potential of using robotics technology to assist and quantify the motor functions for neuron-rehabilitation. Some kinds of haptic devices have been developed and evaluated its efficiency with clinical tests, for example, upper limb training for patients with spasticity after stroke. However, almost all the devices are active-type (motor-driven) haptic devices and they basically require high-cost safety system compared to passive-type (brake-based) devices. In this study, we developed a new practical haptic device 'PLEMO-P1'; this system adopted ER brakes as its force generators. In this paper, the mechanism of PLEMO-P1 and its software for a reaching rehabilitation are described.

  6. Control system design for electrical stimulation in upper limb rehabilitation modelling, identification and robust performance

    CERN Document Server

    Freeman, Chris

    2016-01-01

    This book presents a comprehensive framework for model-based electrical stimulation (ES) controller design, covering the whole process needed to develop a system for helping people with physical impairments perform functional upper limb tasks such as eating, grasping and manipulating objects. The book first demonstrates procedures for modelling and identifying biomechanical models of the response of ES, covering a wide variety of aspects including mechanical support structures, kinematics, electrode placement, tasks, and sensor locations. It then goes on to demonstrate how complex functional activities of daily living can be captured in the form of optimisation problems, and extends ES control design to address this case. It then lays out a design methodology, stability conditions, and robust performance criteria that enable control schemes to be developed systematically and transparently, ensuring that they can operate effectively in the presence of realistic modelling uncertainty, physiological variation an...

  7. [Remote intelligent Brunnstrom assessment system for upper limb rehabilitation for post-stroke based on extreme learning machine].

    Science.gov (United States)

    Wang, Yue; Yu, Lei; Fu, Jianming; Fang, Qiang

    2014-04-01

    In order to realize an individualized and specialized rehabilitation assessment of remoteness and intelligence, we set up a remote intelligent assessment system of upper limb movement function of post-stroke patients during rehabilitation. By using the remote rehabilitation training sensors and client data sampling software, we collected and uploaded the gesture data from a patient's forearm and upper arm during rehabilitation training to database of the server. Then a remote intelligent assessment system, which had been developed based on the extreme learning machine (ELM) algorithm and Brunnstrom stage assessment standard, was used to evaluate the gesture data. To evaluate the reliability of the proposed method, a group of 23 stroke patients, whose upper limb movement functions were in different recovery stages, and 4 healthy people, whose upper limb movement functions were normal, were recruited to finish the same training task. The results showed that, compared to that of the experienced rehabilitation expert who used the Brunnstrom stage standard table, the accuracy of the proposed remote Brunnstrom intelligent assessment system can reach a higher level, as 92.1%. The practical effects of surgery have proved that the proposed system could realize the intelligent assessment of upper limb movement function of post-stroke patients remotely, and it could also make the rehabilitation of the post-stroke patients at home or in a community care center possible.

  8. 卒中早期诱发上肢伸展运动对上肢恢复的影响%Effect of the Induced Upper Limb Stretching Exercise in Early Stage of Stroke on the Recovery of Upper Limb

    Institute of Scientific and Technical Information of China (English)

    林立军; 董明; 刘悦

    2015-01-01

    目的:探讨早期诱发上肢伸展运动对脑卒中患者上肢屈肌张力和功能恢复的影响.方法:将60例发病1个月内的脑卒中患者随机分为试验组(30例)和对照组(30例),均给予常规康复训练,试验组则在常规康复训练基础上配合诱发上肢伸展功能,评估两组患者上肢的肌张力及运动功能恢复情况.结果:治疗后,试验组Brunnstrom评分、MAS评分均显著优于对照组(P<0.05).结论:早期诱发上肢伸展运动对脑卒中患者上肢屈肌张力有抑制作用,并能有效促进其功能恢复.%Objective:To investigate the effect of early induced upper limb stretching on upper limb flexor muscle tension and function recovery of stroke patients. Methods:60 cases of stroke patients within a month were randomly divided into experimental group (30 cases) and control group (30 cases), both with routine rehabilitation training, experimental group added induced upper limb stretching exercise, muscle tension and motor function recovery of upper limb between the two groups were assessed. Results:Brunnstrom score and MAS score of experimental group were significantly better than those of control group after treatment (P<0.05). Conclusion:Early induced upper limb stretching exercise has inhibitory effect on upper flexor muscle tension of stroke, and can effectively promote the functional recovery.

  9. Neuromuscular Activity of Upper and Lower Limbs during two Backstroke Swimming Start Variants

    Directory of Open Access Journals (Sweden)

    Karla De Jesus, Kelly De Jesus, Alexandre I. A. Medeiros, Pedro Gonçalves, Pedro Figueiredo, Ricardo J. Fernandes, João Paulo Vilas-Boas

    2015-09-01

    Full Text Available A proficient start is decisive in sprint competitive swimming events and requires swimmers’ to exert maximal forces in a short period to complete the task successfully. The aim of this study was to compare the electromyographic (EMG activity in-between the backstroke start with feet positioned parallel and partially emerged performed with the hands on the highest horizontal and on the vertical handgrip at hands-off, take-off, flight and entry start phases. EMG comparisons between starting variants were supported by upper and lower limb joint angles at starting position and 15 m start time data. Following a four-week start training to familiarize participants with each start variant, 10 male competitive backstroke swimmers performed randomly six 15 m maximal trials, being three of each start variant. Surface EMG of Biceps Brachii, Triceps Brachii, Rectus Femoris, Biceps Femoris, Gastrocnemius Medialis and Tibialis Anterior was recorded and processed using the time integral EMG (iEMG. Eight video cameras (four surface and four underwater were used to determine backstroke start phases and joint angles at starting position. EMG, joint angles and temporal parameters have not evidenced changes due to the different handgrips. Nevertheless, clear differences were observed in both variants for upper and lower limb muscles activity among starting phases (e.g. Biceps Brachii at take-off vs. flight phase, 15.17% ± 2.76% and 22.38% ± 4.25%; 14.24% ± 7.11% and 25.90% ± 8.65%, for variant with hands horizontal and vertically positioned, respectively. It was concluded that different handgrips did not affect EMG, kinematics and temporal profile in backstroke start. Despite coaches might plan similar strength training for both start variants, further attention should be given on the selection of proper exercises to maximize the contribution of relevant muscles at different starting phases.

  10. Early influence of auditory stimuli on upper-limb movements in young human infants: an overview

    Directory of Open Access Journals (Sweden)

    Priscilla Augusta Monteiro Ferronato

    2014-09-01

    Full Text Available Given that the auditory system is rather well developed at the end of the third trimester of pregnancy, it is likely that couplings between acoustics and motor activity can be integrated as early as at the beginning of postnatal life. The aim of the present mini-review was to summarize and discuss studies on early auditory-motor integration, focusing particularly on upper-limb movements (one of the most crucial means to interact with the environment in association with auditory stimuli, to develop further understanding of their significance with regard to early infant development. Many studies have investigated the relationship between various infant behaviors (e.g., sucking, visual fixation, head turning and auditory stimuli, and established that human infants can be observed displaying couplings between action and environmental sensory stimulation already from just after birth, clearly indicating a propensity for intentional behavior. Surprisingly few studies, however, have investigated the associations between upper-limb movements and different auditory stimuli in newborns and young infants, infants born at risk for developmental disorders/delays in particular. Findings from studies of early auditory-motor interaction support that the developing integration of sensory and motor systems is a fundamental part of the process guiding the development of goal-directed action in infancy, of great importance for continued motor, perceptual and cognitive development. At-risk infants (e.g., those born preterm may display increasing central auditory processing disorders, negatively affecting early sensory-motor integration, and resulting in long-term consequences on gesturing, language development and social communication. Consequently, there is a need for more studies on such implications

  11. NORMATIVE DATA OF UPPER LIMB NERVE CONDUCTION IN YOUNG POPULATION IN AND AROUND BARPETA TOWN, ASSAM

    Directory of Open Access Journals (Sweden)

    Dipti

    2015-12-01

    Full Text Available INTRODUCTION Goal of our work was to establish the data of normal nerve conduction velocity (NCV for the median and the ulnar nerves in normal healthy adults in Barpeta town area, Assam, India. METHODS Nerve conduction studies were performed prospectively in the upper limbs of 100 carefully screened, healthy individuals of either sex, who were between the ages of 20 and 60 years, by using a standardized technique. RESULTS: MOTOR STUDIES The median distal latency (DL in men was 3.48 (0.26 ms, the amplitude (CMAPA was 9.86 (1.92 mV, the conduction velocity (MNCV was 55.94 (2.94 m/s and the F-wave (min latency was 26.86 (2.12 minute. In the ulnar nerve, the motor DL was 2.3 (0.26 ms, the amplitude (CMAPA was 9.97 (3.90 mV, MNCV was 62.97 (3.90 m/s and the F-Wave (min latency was 25.98±2.41. In the sensory studies, the median nerve DL was 1.89 (0.25 ms, SNCV was 53.14±3.80 m/s and the amplitude (SNAPA was 42.69 (20.48 μV for was. For the ulnar nerve the DL was 1.89 (0.36 ms, SNCV was 56.86 (6.23 m/s and the amplitude (SNAPA was 40.92 (168.4 μV. CONCLUSION The normative conduction parameters of the commonly tested nerves in the upper limb were established in research laboratory of physiology department of our institute. The mean motor nerve conduction parameters for the median and the ulnar nerves correlated favorably with the existing literature data. However, for the sensory nerves, a higher value for the nerve action potential amplitude was demonstrated in this study.

  12. Study on 3D printer production of auxiliary device for upper limb for medical imaging test

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeong Gyun [Dept. of Radiological Science, Far East University, Eumsung (Korea, Republic of); Yoon, Jae Ho [Jukwang Precision Co., Ltd., Gumi (Korea, Republic of); Choi, Seong Dae [Dept. of Mechanical system engineering, Kumoh Institute of Technology, Gumi (Korea, Republic of)

    2015-12-15

    There is a progressive development in the medical imaging technology, especially of descriptive capability for anatomical structure of human body thanks to advancement of information technology and medical devices. But however maintenance of correct posture is essential for the medical imaging checkup on the shoulder joint requiring rotation of the upper limb due to the complexity of human body. In the cases of MRI examination, long duration and fixed posture are critical, as failure to comply with them leads to minimal possibility of reproducibility only with the efforts of the examiner and will of the patient. Thus, this study aimed to develop an auxiliary device that enables rotation of the upper limb as well as fixing it at quantitative angles for medical imaging examination capable of providing diagnostic values. An auxiliary device has been developed based on the results of precedent studies, by designing a 3D model with the CATIA software, an engineering application, and producing it with the 3D printer. The printer is Objet350 Connex from Stratasys, and acrylonitrile- butadiene-styrene(ABS) is used as the material of the device. Dimensions are 120 X 150 X 190 mm, with the inner diameter of the handle being 125.9 mm. The auxiliary device has 4 components including the body (outside), handle (inside), fixture terminal and the connection part. The body and handle have the gap of 2.1 mm for smooth rotation, while the 360 degree of scales have been etched on the handle so that the angle required for observation may be recorded per patient for traceability and dual examination.

  13. Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke

    Directory of Open Access Journals (Sweden)

    Frisoli Antonio

    2012-06-01

    Full Text Available Abstract This study, conducted in a group of nine chronic patients with right-side hemiparesis after stroke, investigated the effects of a robotic-assisted rehabilitation training with an upper limb robotic exoskeleton for the restoration of motor function in spatial reaching movements. The robotic assisted rehabilitation training was administered for a period of 6 weeks including reaching and spatial antigravity movements. To assess the carry-over of the observed improvements in movement during training into improved function, a kinesiologic assessment of the effects of the training was performed by means of motion and dynamic electromyographic analysis of reaching movements performed before and after training. The same kinesiologic measurements were performed in a healthy control group of seven volunteers, to determine a benchmark for the experimental observations in the patients’ group. Moreover degree of functional impairment at the enrolment and discharge was measured by clinical evaluation with upper limb Fugl-Meyer Assessment scale (FMA, 0–66 points, Modified Ashworth scale (MA, 0–60 pts and active ranges of motion. The robot aided training induced, independently by time of stroke, statistical significant improvements of kinesiologic (movement time, smoothness of motion and clinical (4.6 ± 4.2 increase in FMA, 3.2 ± 2.1 decrease in MA parameters, as a result of the increased active ranges of motion and improved co-contraction index for shoulder extension/flexion. Kinesiologic parameters correlated significantly with clinical assessment values, and their changes after the training were affected by the direction of motion (inward vs. outward movement and position of target to be reached (ipsilateral, central and contralateral peripersonal space. These changes can be explained as a result of the motor recovery induced by the robotic training, in terms of regained ability to execute single joint movements and of improved

  14. Modulation of the Cutaneous Silent Period in the Upper-Limb with Whole-Body Instability.

    Science.gov (United States)

    Eckert, Nathanial R; Poston, Brach; Riley, Zachary A

    2016-01-01

    The silent period induced by cutaneous electrical stimulation of the digits has been shown to be task-dependent, at least in the grasping muscles of the hand. However, it is unknown if the cutaneous silent period is adaptable throughout muscles of the entire upper limb, in particular when the task requirements are substantially altered. The purpose of the present study was to examine the characteristics of the cutaneous silent period in several upper limb muscles when introducing increased whole-body instability. The cutaneous silent period was evoked in 10 healthy individuals with electrical stimulation of digit II of the right hand when the subjects were seated, standing, or standing on a wobble board while maintaining a background elbow extension contraction with the triceps brachii of ~5% of maximal voluntary contraction (MVC) strength. The first excitatory response (E1), first inhibitory response (CSP), and second excitatory response (E2) were quantified as the percent change from baseline and by their individual durations. The results showed that the level of CSP suppression was lessened (47.7 ± 7.7% to 33.8 ± 13.2% of baseline, p = 0.019) and the duration of the CSP inhibition decreased (p = 0.021) in the triceps brachii when comparing the seated and wobble board tasks. For the wobble board task the amount of cutaneous afferent inhibition of EMG activity in the triceps brachii decreased; which is proposed to be due to differential weighting of cutaneous feedback relative to the corticospinal drive, most likely due to presynaptic inhibition, to meet the demands of the unstable task.

  15. Modulation of the Cutaneous Silent Period in the Upper-Limb with Whole-Body Instability.

    Directory of Open Access Journals (Sweden)

    Nathanial R Eckert

    Full Text Available The silent period induced by cutaneous electrical stimulation of the digits has been shown to be task-dependent, at least in the grasping muscles of the hand. However, it is unknown if the cutaneous silent period is adaptable throughout muscles of the entire upper limb, in particular when the task requirements are substantially altered. The purpose of the present study was to examine the characteristics of the cutaneous silent period in several upper limb muscles when introducing increased whole-body instability. The cutaneous silent period was evoked in 10 healthy individuals with electrical stimulation of digit II of the right hand when the subjects were seated, standing, or standing on a wobble board while maintaining a background elbow extension contraction with the triceps brachii of ~5% of maximal voluntary contraction (MVC strength. The first excitatory response (E1, first inhibitory response (CSP, and second excitatory response (E2 were quantified as the percent change from baseline and by their individual durations. The results showed that the level of CSP suppression was lessened (47.7 ± 7.7% to 33.8 ± 13.2% of baseline, p = 0.019 and the duration of the CSP inhibition decreased (p = 0.021 in the triceps brachii when comparing the seated and wobble board tasks. For the wobble board task the amount of cutaneous afferent inhibition of EMG activity in the triceps brachii decreased; which is proposed to be due to differential weighting of cutaneous feedback relative to the corticospinal drive, most likely due to presynaptic inhibition, to meet the demands of the unstable task.

  16. Temporal-spatial parameters of the upper limb during a Reach & Grasp Cycle for children.

    Science.gov (United States)

    Butler, Erin E; Ladd, Amy L; Lamont, Lauren E; Rose, Jessica

    2010-07-01

    The objective of this study was to characterize normal temporal-spatial patterns during the Reach & Grasp Cycle and to identify upper limb motor deficits in children with cerebral palsy (CP). The Reach & Grasp Cycle encompasses six sequential tasks: reach, grasp cylinder, transport to self (T(1)), transport back to table (T(2)), release cylinder, and return to initial position. Three-dimensional motion data were recorded from 25 typically developing children (11 males, 14 females; ages 5-18 years) and 12 children with hemiplegic CP (2 males, 10 females; ages 5-17 years). Within-day and between-day coefficients of variation for the control group ranged from 0 to 0.19, indicating good repeatability of all parameters. The mean duration of the Cycle for children with CP was nearly twice as long as controls, 9.5±4.3s versus 5.1±1.2s (U=37.0, P=.002), partly due to prolonged grasp and release durations. Peak hand velocity occurred at approximately 40% of each phase and was greater during the transport (T(1), T(2)) than non-transport phases (reach, return) in controls (Pchildren. Children with CP demonstrated an increased index of curvature during reach (U=46.0, P=.0074) and an increased total number of movement units (U=16.5, Pmovements. Total duration of the Reach & Grasp Cycle (rho=.957, Pmovement units (rho=.907, Pchildren with CP and controls reflect utility of the Reach & Grasp Cycle for quantitative evaluation of upper limb motor deficits.

  17. Is cardiac autonomic modulation during upper limb isometric contraction and Valsalva maneuver impaired in COPD patients?

    Science.gov (United States)

    Goulart, Cássia da Luz; Cabiddu, Ramona; Schneiders, Paloma de Borba; Antunes San Martin, Elisabete; Trimer, Renata; Borghi-Silva, Audrey; da Silva, Andréa Lúcia Gonçalves

    2017-01-01

    Purpose To evaluate the heart rate variability (HRV) indices and heart rate (HR) responses during isometric contraction (IC) and Valsalva maneuver (VM) in COPD patients. Methods Twenty-two stable moderate to severe COPD patients were evaluated. R-R intervals were recorded (monitor Polar® S810i) during dominant upper limb IC (2 minutes). Stable signals were analyzed by Kubios HRV® software. Indices of HRV were computed in the time domain (mean HR; square root of the mean squared differences of successive RR intervals [RMSSD] and HRV triangular index [RR tri index]) and in the frequency domain (high frequency [HF]; low frequency [LF] and LF/HF ratio). The HR responses were evaluated at rest, at the peak and at the nadir of the VM (15 seconds). The Valsalva index was also calculated. Results During IC: time domain indices (mean HR increased [P=0.001], RMSSD, and RR tri index decreased [P=0.005 and P=0.005, respectively]); frequency domain indices (LF increased [P=0.033] and HF decreased [P=0.002]); associations were found between forced expiratory volume in 1 second (FEV1) vs RMSSD (P=0.04; r=−0.55), FEV1 vs HR (P=0.04; r=−0.48), forced vital capacity (FVC) vs RMSSD (P=0.05; r=−0.62), maximum inspiratory pressure (MIP) vs HF (P=0.02; r=0.68). FEV1 and FVC justified 30% of mean HR. During VM: HR increased (P=0.01); the nadir showed normal bradycardic response; the Valsalva index was =0.7. Conclusion COPD patients responded properly to the upper limb IC and to the VM; however, HR recovery during VM was impaired in these patients. The severity of the disease and MIP were associated with increased parasympathetic modulation and higher chronotropic response.

  18. Vascular malformations of the upper limb: a review of 270 patients.

    Science.gov (United States)

    Upton, J; Coombs, C J; Mulliken, J B; Burrows, P E; Pap, S

    1999-09-01

    Vascular malformations of the upper limb were once thought to be impossible to properly diagnose and treat. We reviewed our experience with these malformations of the upper limb in 270 patients seen over a 28-year period. These anomalies were slightly more common in females than males (ratio, 1.5:1.0). The malformations were categorized as either slow flow (venous, n = 125; lymphatic, n = 47; capillary, n = 32; combined, n = 33) or fast flow (arterial, n = 33). Three categories of fast-flow malformations were identified and designated as types A, B, and C. Over 90% of these lesions could be properly diagnosed by their appearance and growth pattern within the first 2 years of life. Additional radiographic studies were used to confirm this diagnosis and to define specific characteristics. Magnetic resonance imaging with and without contrast best demonstrated site, size, flow characteristics, and involvement of contiguous structures for all types of malformations. Algorithms for treatment of both slow-flow and fast-flow anomalies are presented. Two hundred sixty surgical resections were performed in 141 patients, including 24 of 33 fast-flow anomalies. Preoperative angiographic assessment, with magnified views, was an important preoperative adjunct before any well-planned resection of fast-flow arteriovenous malformations. The surgical strategy in all groups was to thoroughly extirpate the malformation, with preservation of nerves, tendons, joints, and uninvolved muscle, and microvascular revascularization and skin replacement as required. Resections were always restricted to well-defined regions and often completed in stages. Symptomatic slow-flow malformations and types A and B fast-flow anomalies were resected without major sequelae. Type C arterial anomalies, diffuse, pulsating lesions with distal vascular steal, and involvement of all tissues, including bone, progressed clinically and resulted in amputation in 10 of 14 patients. The complication rate was 22% for

  19. Lesões do membro superior no esporte Sports injuries of the upper limb

    Directory of Open Access Journals (Sweden)

    Rogerio Teixeira da Silva

    2010-01-01

    Full Text Available As lesões esportivas do membro superior são muito comuns da prática de atividades físicas e, por isso, devem ser estudadas detalhadamente, levando-se em consideração aspectos específicos da modalidades esportiva praticada. Especial atenção deve ser dada à dinâmica da articulação do ombro e toda cintura escapular, pois somente assim poderemos tratar de forma mais adequada os atletas, atuando também na prevenção das recidivas, que podem ocorrer em alguns casos devido ao fato de o atleta procurar sempre o retorno ao mesmo nível esportivo anterior à lesão. Este artigo vai focar principalmente o manejo das lesões tendíneas do membro superior, da fisiopatologia até os novos métodos de tratamento das lesões de maior prevalência na prática esportiva em nosso país.Sports injuries of the upper limbs are very common in physical activities, and need to be studied in detail, taking into consideration specific aspects of the types of sports practiced. Special attention should be paid to the dynamics of the shoulder girdle and scapular belt, as this will enable us to treat athletes more adequately, also helping prevent recurrences that can occur in some cases, due to the fact that the athlete always attempts to return to their pre-injury level of sport. This review focuses primarily on the management of upper limb tendon sports injuries, from the physiopathology through to the more common new methods of treatment in sports practice in our country.

  20. An augmented reality system for upper-limb post-stroke motor rehabilitation: a feasibility study.

    Science.gov (United States)

    Assis, Gilda Aparecida de; Corrêa, Ana Grasielle Dionísio; Martins, Maria Bernardete Rodrigues; Pedrozo, Wendel Goes; Lopes, Roseli de Deus

    2016-08-01

    To determine the clinical feasibility of a system based on augmented reality for upper-limb (UL) motor rehabilitation of stroke participants. A physiotherapist instructed the participants to accomplish tasks in augmented reality environment, where they could see themselves and their surroundings, as in a mirror. Two case studies were conducted. Participants were evaluated pre- and post-intervention. The first study evaluated the UL motor function using Fugl-Meyer scale. Data were compared using non-parametric sign tests and effect size. The second study used the gain of motion range of shoulder flexion and abduction assessed by computerized biophotogrammetry. At a significance level of 5%, Fugl-Meyer scores suggested a trend for greater UL motor improvement in the augmented reality group than in the other. Moreover, effect size value 0.86 suggested high practical significance for UL motor rehabilitation using the augmented reality system. System provided promising results for UL motor rehabilitation, since enhancements have been observed in the shoulder range of motion and speed. Implications for Rehabilitation Gain of range of motion of flexion and abduction of the shoulder of post-stroke patients can be achieved through an augmented reality system containing exercises to promote the mental practice. NeuroR system provides a mental practice method combined with visual feedback for motor rehabilitation of chronic stroke patients, giving the illusion of injured upper-limb (UL) movements while the affected UL is resting. Its application is feasible and safe. This system can be used to improve UL rehabilitation, an additional treatment past the traditional period of the stroke patient hospitalization and rehabilitation.

  1. Upper Limb Static-Stretching Protocol Decreases Maximal Concentric Jump Performance

    Directory of Open Access Journals (Sweden)

    Paulo H. Marchetti

    2014-12-01

    Full Text Available The purpose of the present study was to evaluate the acute effects of an upper limb static-stretching (SS protocol on the maximal concentric jump performance. We recruited 25 young healthy, male, resistance trained individuals (stretched group, n = 15 and control group, n = 10 in this study. The randomized between group experimental protocol consisted of a three trials of maximal concentric jump task, before and after a SS of the upper limb. Vertical ground reaction forces (vGRF and surface electromyography (sEMG of both gastrocnemius lateralis (GL and vastus lateralis (VL were acquired. An extensive SS was employed consisting of ten stretches of 30 seconds, with 15 seconds of rest, and 70-90% of the point of discomfort (POD. ANOVA (2x2 (group x condition was used for shoulder joint range of motion (ROM, vGRF and sEMG. A significant interaction for passive ROM of the shoulder joint revealed significant increases between pre- and post-SS protocol (p < 0.001. A significant interaction demonstrated decreased peak force and an increased peak propulsion duration between pre- and post-stretching only for stretch group (p = 0.021, and p = 0.024, respectively. There was a significant main effect between groups (stretch and control for peak force for control group (p = 0.045. Regarding sEMG variables, there were no significant differences between groups (control versus stretched or condition (pre-stretching versus post-stretching for the peak amplitude of RMS and IEMG for both muscles (VL and GL. In conclusion, an acute extensive SS can increase the shoulder ROM, and negatively affect both the propulsion duration and peak force of the maximal concentric jump, without providing significant changes in muscle activation.

  2. OPTIMIZING OVERALL FUNCTION OF THE UPPER LIMB IS EFFECTIVE TREATMENT FOR SHOULDER PAIN IN INDIVIDUALS WITH STROKE: A RANDOMIZED CONTROLLED TRIAL

    Directory of Open Access Journals (Sweden)

    Mohamed E Khallaf, PhD PT

    2014-04-01

    Full Text Available Background: Shoulder pain is frequent after stroke and interferes with the rehabilitative process and functional outcomes. Treatments used for post-stroke shoulder pain are limited and largely ineffective. Objectives: This randomized controlled study was conducted to study the effect of optimizing overall function of upper limb on the basis of pathomechanics and motor relearning as a treatment of hemiparetic shoulder pain. Subjects and methods: Thirty patients with first ever stroke suffering shoulder pain on movement and at rest were included in this study. Pain was measured by the Visual Analogue Scale (VAS and Chedoke-McMaster Stroke Assessment (CMSA was used for measuring motor recovery and functional level. Shoulder abduction, flexion and external rotation ranges of motion (ROM were also measured. The participants were randomly assigned into two equal groups (G1 and G2. Those in G1 received an exercise therapy based on optimizing overall function of upper limb as a treatment of hemiparetic shoulder pain. Shoulder range of motion exercises were done for the patients represented G2. Treatments were applied for twelve weeks 5 times per week for 60 minutes. Results: shoulder pain and motor recovery scores improved significantly in addition to a significant increase in the shoulder ROMs (p < 0.05. Conclusion: These results suggest that exercise therapy which emphasize interrelationship of all areas of the upper limb to optimize overall function exerts positive effects on shoulder pain and functional recovery in participants with stroke.

  3. Measuring Upper Limb Capacity in Poststroke Patients : Development, Fit of the Monotone Homogeneity Model, Unidimensionality, Fit of the Double Monotonicity Model, Differential Item Functioning, Internal Consistency, and Feasibility of the Stroke Upper Limb Capacity Scale, SULCS

    NARCIS (Netherlands)

    Roorda, Leo D.; Houwink, Annemieke; Smits, Wendy; Molenaar, Ivo W.; Geurts, Alexander C.

    2011-01-01

    Objectives: To develop an easy-to-use scale that measures upper limb capacity, according to the International Classification of Functioning, Disability and Health definition, in patients after stroke, and to investigate certain psychometric properties of this scale. Design: Cohort study. Setting: In

  4. Course review: the 4th Bob Huffstadt upper and lower limb flap dissection course.

    Science.gov (United States)

    Dunne, Jonathan A

    2014-12-01

    The Bob Huffstadt course is a 2-day upper and lower limb flap dissection course held in Groningen, the Netherlands. The course is in English, with an international faculty of senior consultants from the Netherlands, Belgium, and United Kingdom. Faculty to participant ratio is 2:1, with 2 participants at each dissection table. The course is aimed at trainees in plastic surgery of all levels, and a comprehensive DVD is provided before the course, which demonstrates dissection of 35 flaps, ensuring those with little experience to have an understanding before dissection.This course offered a comprehensive overview with plenty of practical application. The course can greatly develop operative and theoretical knowledge, while also demonstrating a commitment for those wishing to pursue a career in plastic surgery. Longer courses are available; however, the 2-day course can already provide an excellent introduction for junior trainees. There are few flap courses in the United Kingdom and senior trainees may have difficulty acquiring a place as they book up well in advance. With reductions in operating time, trainees may welcome further experience and development of techniques in the dissection room.Most of both days were spent in the dissection room, raising flaps and receiving teaching from the faculty. Dissections included Foucher, Moberg, Becker, radial forearm, anterolateral thigh, and fibula flaps. Dissection specimens were fresh-frozen preparation, and 9 upper limb flaps were raised on the first day and 5 lower limb flaps on the second day. The faculty provided live demonstrations of perforator dissection, use of the hand-held Doppler, and tips and tricks. The last 2 hours of each day were spent with 2 lectures, including topics from the history of flaps and developments to challenging cases and reconstructive options.The course fee was 1000 euros, including a 5-course dinner, lunch on both days, and a drinks reception on the final evening. I would recommend this

  5. Upper-limb stroke rehabilitation using electrode-array based functional electrical stimulation with sensing and control innovations.

    Science.gov (United States)

    Kutlu, M; Freeman, C T; Hallewell, E; Hughes, A-M; Laila, D S

    2016-04-01

    Functional electrical stimulation (FES) has shown effectiveness in restoring upper-limb movement post-stroke when applied to assist participants' voluntary intention during repeated, motivating tasks. Recent clinical trials have used advanced controllers that precisely adjust FES to assist functional reach and grasp tasks with FES applied to three muscle groups, showing significant reduction in impairment. The system reported in this paper advances the state-of-the-art by: (1) integrating an FES electrode array on the forearm to assist complex hand and wrist gestures; (2) utilising non-contact depth cameras to accurately record the arm, hand and wrist position in 3D; and (3) employing an interactive touch table to present motivating virtual reality (VR) tasks. The system also uses iterative learning control (ILC), a model-based control strategy which adjusts the applied FES based on the tracking error recorded on previous task attempts. Feasibility of the system has been evaluated in experimental trials with 2 unimpaired participants and clinical trials with 4 hemiparetic, chronic stroke participants. The stroke participants attended 17, 1 hour training sessions in which they performed functional tasks, such as button pressing using the touch table and closing a drawer. Stroke participant results show that the joint angle error norm reduced by an average of 50.3% over 6 attempts at each task when assisted by FES.

  6. 一种气动驱动新型上肢康复机器人%A Novel upper limb rehabilitation robot by pneumatic actuators

    Institute of Scientific and Technical Information of China (English)

    王生泽; 金韬

    2011-01-01

    The clinical rehabilitative medicine theory and the clinical recovery experience conducts are unified,researched into the upper limb rehabilitation robot's program and designed a rehabilitation training upper limb rehabilitation of pneumatic flexible robot which is applied to patients with hemiplegia.Then the security and the flexibility of pneumatic technology is applied into the fleld of rehabilitation.And showed an effort to effectively implement the limbs from completely passive to passive to active mainly dominated gradually to the finally rehabilitation of the training process to completely take the initiative training appropriate mode.%结合临床康复医学理论及临床康复经验对上肢康复机器人方案进行研究,设计了一种应用于偏瘫患者康复训练的气动式上肢康复柔性机器人,进而将气动技术的安全性、柔顺性应用到康复领域中来,有效地实现了患肢由完全被动到以被动为主逐渐到以主动为主,最后康复到完全主动训练过程的适宜模式.

  7. A feasibility study of an upper limb rehabilitation system using Kinect and computer games.

    Science.gov (United States)

    Pastor, Isaac; Hayes, Heather A; Bamberg, Stacy J M

    2012-01-01

    A new low-cost system for rehabilitation of the impaired upper limb for stroke survivors is presented. A computer game was developed specifically for this purpose and the user's impaired upper extremity is tracked using a downward-pointed Kinect, an inexpensive motion capture system commercially available from Microsoft. A Kalman filter was implemented to reduce data jittering. Patients are required to move their impaired arm, sliding it on top of a transparent support, in order to play the game. The game is personalized to the patient through specific settings that adapt to the patient's range of motion and motor control at the start of the game as well as performance during the game. The final score is proportional to the arm's movement speed. A feasibility study was carried out with one stroke survivor. The game was played for ten days and usability surveys were answered before and after the study. The patient was engaged with the game, found it easy to understand and reported willingness to use it in the home environment and enjoyment of the use in the clinic.

  8. Evaluation of a noninvasive expandable prosthesis in musculoskeletal oncology patients for the upper and lower limb.

    Science.gov (United States)

    Beebe, Kathleen; Benevenia, Joseph; Kaushal, Neil; Uglialoro, Anthony; Patel, Neeraj; Patterson, Francis

    2010-06-09

    The noninvasive expandable prosthesis is used for limb-salvage surgery following tumor resection in skeletally immature patients. The purpose of this retrospective study is to report our experience with the Repiphysis (Wright Medical Technology, Inc; Arlington, Tennessee) noninvasive expandable prosthesis for both the lower extremity and compassionate use in the upper extremity in 12 patients between 2003 and 2008. Twelve prostheses were implanted in 12 patients with an average follow-up of 38 months (range, 12-78 months). Nine patients underwent a total of 38 expansion procedures. Mean total expansion was 4.5 cm (range, 0.8-9.9 cm). No complications of lengthening occurred. Seven nononcologic complications were noted. One infection was reported in 12 patients. The mean MSTS score after rehabilitation was 24.5 (range, 13-30). The Repiphysis noninvasive prosthesis provides acceptable functional outcomes for both upper and lower extremity implantation and appears to have an advantage as compared to conventional expandable prosthetics, which require open procedures that can potentially increase the risk of infection from repeated hardware exposure.

  9. Constraint-induced movement therapy for the upper paretic limb in acute or sub-acute stroke : a systematic review

    NARCIS (Netherlands)

    Nijland, Rinske; Kwakkel, Gert; Bakers, Japie; van Wegen, Erwin

    2011-01-01

    Constraint-induced movement therapy is a commonly used intervention to improve upper limb function after stroke. However, the effectiveness of constraint-induced movement therapy and its optimal dosage during acute or sub-acute stroke is still under debate. To examine the literature on the effects o

  10. Risk factors for upper limb deep vein thrombosis associated with the use of central vein catheter in cancer patients.

    NARCIS (Netherlands)

    Verso, M.; Agnelli, G.; Kamphuisen, P.W.; Ageno, W.; Bazzan, M.; Lazzaro, A.; Paoletti, F.; Paciaroni, M.; Mosca, S.; Bertoglio, S.

    2008-01-01

    Deep vein thrombosis of upper limb is a common complication of CVC in patients with cancer. In these patients the risk factors for CVC-related thrombosis are not completely defined. The purpose of this study was to identify the risk factors for CVC-related thrombosis in patients included in a random

  11. Effects of software programs stimulating regular breaks and exercises on work-related neck and upper-limb disorders

    NARCIS (Netherlands)

    Heuvel, S.G. van den; Looze, M.P. de; Hildebrandt, V.H.; Thé, K.H.

    2003-01-01

    Objectives. This study evaluated the effects on work-related neck and upper-limb disorders among computer workers stimulated (by a software program) to take regular breaks and perform physical exercises. Possible effects on sick leave and productivity were studied as well. Methods. A randomized cont

  12. Using thermal imaging to assess the effect of classical massage on selected physiological parameters of upper limbs

    Directory of Open Access Journals (Sweden)

    Boguszewski Dariusz

    2014-12-01

    Full Text Available Study aim: the aim of this study was to assess the relationship between classical sport massage of the hand and the forearm and the surface temperature of upper limb muscles, and between hand grip strength and the range of motion in the radiocarpal joint.

  13. Sport prostheses and prosthetic adaptations for the upper and lower limb amputees : an overview of peer reviewed literature

    NARCIS (Netherlands)

    Bragaru, Mihai; Dekker, Rienk; Geertzen, Jan H. B.

    Background: Sport prostheses are used by both upper- and lower-limb amputees while participating in sports and other physical activities. Although the number of these devices has increased over the past decade, no overview of the peer reviewed literature describing them has been published

  14. Effects of intensive repetition of a new facilitation technique on motor functional recovery of the hemiplegic upper limb and hand

    Science.gov (United States)

    Kawahira, Kazumi; Shimodozono, Megumi; Etoh, Seiji; Kamada, Katsuya; Noma, Tomokazu; Tanaka, Nobuyuki

    2010-01-01

    Objective To study the effects on the hemiplegic upper limb of repetitive facilitation exercises (RFEs) using a novel facilitation technique, in which the patient's intention to move the hemiplegic upper limb or finger was followed by realization of the movement using multiple sensory stimulations. Methods Twenty-three stroke patients were enrolled in a cross-over study in which 2-week RFE sessions (100 repetitions each of five-to-eight types of facilitation exercise per day) were alternated with 2-week conventional rehabilitation (CR) sessions, for a total of four sessions. Treatments were begun with the 2-week RFE session in one group and the 2-week CR session in the second group. Results After the first 2-week RFE session, both groups showed improvements in the Brunnstrom stages of the upper limb and the hand, in contrast to the small improvements observed during the first CR session. The Simple Test for Evaluating Hand Function (STEF) score, which evaluates the ability of manipulating objects, in both groups improved during both sessions. After the second 2-week RFE and CR sessions, both groups showed little further improvement except in the STEF score. Conclusion The novel RFEs promoted the functional recovery of the hemiplegic upper limb and hand to a greater extent than the CR sessions. PMID:20715890

  15. The Use of an Upper-limb-artery Approach and Long Sheaths in Splanchnic Angiography and Interventional Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Shimohira, Masashi; Ogino, Hiroyuki; Mori, Yuji; Shibamoto, Yuta (Dept. of Radiology, Nagoya City Univ. Graduate School of Medical Sciences, Nagoya (Japan)); Omiya, Hiroko; Suzuki, Hirochika (Dept. of Radiology, Tsushima City Hospital, Tsushima (Japan))

    2009-08-15

    Background: The prolonged bed-rest required achieving hemostasis after splanchnic angiography and interventional procedures can be avoided if the upper limb arteries are used. In such procedures, the use of long sheaths capable of reaching the descending aorta may be advantageous. Purpose: To analyze the results of procedures that utilizes an upper-limb-artery approach and long sheaths. Material and Methods: Two hundred forty-two patients with a mean age of 64 years underwent splanchnic angiography and interventional procedures via an upper limb artery using a long sheath (85 cm, 4-French). Repeat examinations were performed on 48 patients and the total number of examinations was 296. The records of these 296 examinations were reviewed and the success rate and complications were evaluated. Results: Overall, 295 of 296 (99.7%) examinations were successful, and one (0.3%) failed. Complications and side effects occurred in six cases (2.0%), a painful sheath manipulation occurred in two examinations (0.7%), and arterial occlusion (including temporary occlusion), hematoma of the puncture site, and pseudoaneurysm occurred in two (0.7%), one (0.3%), and one (0.3%) patient, respectively. Conclusion: The use of a long sheath capable of reaching the descending aorta enables the performance of splanchnic angiography and interventional procedures via the upper limb arteries

  16. Participant perceptions of use of CyWee Z as adjunct to rehabilitation of upper-limb function following stroke

    NARCIS (Netherlands)

    Hale, Leigh A.; Satherley, Jessica A.; McMillan, Nicole J.; Milosavljevic, Stephan; Hijmans, Juha M.; King, Marcus J.

    2012-01-01

    This article reports on the perceptions of 14 adults with chronic stroke who participated in a pilot study to determine the utility, acceptability, and potential efficacy of using an adapted CyWee Z handheld game controller to play a variety of computer games aimed at improving upper-limb function.

  17. The impact of recovery of visuo-spatial neglect on motor recovery of the upper paretic limb after stroke

    NARCIS (Netherlands)

    Nijboer, T.C.W.; Kollen, B.J.; Kwakkel, G.

    2014-01-01

    The aim of the current study was to investigate the longitudinal relationship between improvements of synergism and strength of the upper paretic limb and severity of visuo-spatial neglect during the first 52 weeks post-stroke. The longitudinal association between severity of VSN and motor impairmen

  18. The Impact of Recovery of Visuo-Spatial Neglect on Motor Recovery of the Upper Paretic Limb after Stroke

    NARCIS (Netherlands)

    Nijboer, Tanja C. W.; Kollen, Boudewijn J.; Kwakkel, Gert

    2014-01-01

    The aim of the current study was to investigate the longitudinal relationship between improvements of synergism and strength of the upper paretic limb and severity of visuo-spatial neglect during the first 52 weeks post-stroke. The longitudinal association between severity of VSN and motor impairmen

  19. Bihemispheric repetitive transcranial magnetic stimulation combined with intensive occupational therapy for upper limb hemiparesis after stroke: a preliminary study.

    Science.gov (United States)

    Yamada, Naoki; Kakuda, Wataru; Kondo, Takahiro; Shimizu, Masato; Mitani, Sugao; Abo, Masahiro

    2013-12-01

    We investigated the safety, feasibility, and efficacy of the combination of bihemispheric repetitive transcranial magnetic stimulation (rTMS) and intensive occupational therapy (OT) for upper limb hemiparesis in poststroke patients. The study participants were eight poststroke patients with upper limb hemiparesis (age at intervention: 62.8±4.9 years, time after stroke: 84.3±87.2 months, mean±SD). During 15 days of hospitalization, each patient received 10 sessions of 40-min bihemispheric rTMS and 240-min intensive OT (120-min one-to-one training and 120-min self-training). One session of bihemispheric rTMS comprised the application of both 1 and 10 Hz rTMS (2000 stimuli for each hemisphere). The Fugl-Meyer Assessment, Wolf Motor Function Test, and the Modified Ashworth Scale were administered on the day of admission and at discharge. All patients completed the treatment without any adverse effects. Motor function of the affected upper limb improved significantly, on the basis of changes in Fugl-Meyer Assessment and Wolf Motor Function Test (Ptherapy for poststroke hemiparetic patients, and improved motor function of the hemiparetic upper limb in poststroke patients. The findings provide a new avenue for the treatment of patients with poststroke hemiparesis.

  20. Upper-limb motor control in patients after stroke: Attentional demands and the potential beneficial effects of arm support

    NARCIS (Netherlands)

    Houwink, A.; Steenbergen, B.; Prange, G.B.; Buurke, J.H.; Geurts, A.C.H.

    2013-01-01

    The goal of this study was to investigate the attentional load of using the upper limb in moderately and mildly affected patients after stroke, with and without arm support. Ten patients with stroke (4 mild and 6 moderate paresis) and ten healthy, gender- and age-matched control subjects performed a

  1. Upper-limb motor control in patients after stroke: Attentional demands and the potential beneficial effects of arm support.

    NARCIS (Netherlands)

    Houwink, A.; Steenbergen, B.; Prange, G.B.; Buurke, J.H.; Geurts, A.C.H.

    2013-01-01

    The goal of this study was to investigate the attentional load of using the upper limb in moderately and mildly affected patients after stroke, with and without arm support. Ten patients with stroke (4 mild and 6 moderate paresis) and ten healthy, gender- and age-matched control subjects performed a

  2. Sports Adaptations for Unilateral and Bilateral Upper-Limb Amputees: Archery/Badminton/Baseball/Softball/Bowling/Golf/Table Tennis.

    Science.gov (United States)

    Cowart, Jim

    1979-01-01

    The booklet discusses sports adaptations for unilateral and bilateral upper limb amputees. Designs for adapted equipment are illustrated and information on adaptations are described for archery (including an archery release aid and a stationary bow holder); badminton (serving tray); baseball/softball (adaptations for catching, throwing, and…

  3. Constraint-induced movement therapy for the upper paretic limb in acute or sub-acute stroke : a systematic review

    NARCIS (Netherlands)

    Nijland, Rinske; Kwakkel, Gert; Bakers, Japie; van Wegen, Erwin

    2011-01-01

    Constraint-induced movement therapy is a commonly used intervention to improve upper limb function after stroke. However, the effectiveness of constraint-induced movement therapy and its optimal dosage during acute or sub-acute stroke is still under debate. To examine the literature on the effects

  4. Effects of botulinum toxin type A on upper limb function in children with cerebral palsy: a systematic review.

    NARCIS (Netherlands)

    Reeuwijk, A.; Schie, P.E. van; Becher, J.G.; Kwakkel, G.

    2006-01-01

    OBJECTIVE: To evaluate whether botulinum toxin type A injections improve upper limb function in children with cerebral palsy. METHODS: An extensive search was carried out in PUBMED, CINAHL, PICARTA, EMBASE, PEDRO and the Cochrane Controlled Trials Register. Controlled and uncontrolled studies were i

  5. Intermanual Transfer in Training With an Upper-Limb Myoelectric Prosthesis Simulator : A Mechanistic, Randomized, Pretest-Posttest Study

    NARCIS (Netherlands)

    Romkema, Sietske; Bongers, Raoul M.; van der Sluis, Corry K.

    2013-01-01

    Background. Intermanual transfer may improve prosthetic handling and acceptance if used in training soon after an amputation. Objective. The purpose of this study was to determine whether intermanual transfer effects can be detected after training with a myoelectric upper-limb prosthesis simulator.

  6. Current status of robotic stroke rehabilitation and opportunities for a cyber-physically assisted upper limb stroke rehabilitation

    NARCIS (Netherlands)

    Li, C.; Rusak, Z.; Horvath, I.; Ji, L.; Hou, Y.

    2014-01-01

    In the last two decades, robotics-assisted stroke reha-bilitation has been wide-spread, in particular for movement rehabilitation of upper limbs. Several studies have reported on the clinical effectiveness of this kind of therapy. The results of these studies show that robot assisted therapy can be

  7. Sport prostheses and prosthetic adaptations for the upper and lower limb amputees : an overview of peer reviewed literature

    NARCIS (Netherlands)

    Bragaru, Mihai; Dekker, Rienk; Geertzen, Jan H. B.

    2012-01-01

    Background: Sport prostheses are used by both upper- and lower-limb amputees while participating in sports and other physical activities. Although the number of these devices has increased over the past decade, no overview of the peer reviewed literature describing them has been published previously

  8. Angiographic study of upper limb vascularization in a large cohort of hemodialysis patients with critical hand ischemia.

    Science.gov (United States)

    Ferraresi, Roberto; Acuña-Valerio, Jorge; Ferraris, Matteo; Fresa, Marco; Hamade, Meneme; Danzi, Gian B; Gandini, Roberto; Mauri, Giovanni

    2016-12-01

    Critical hand ischemia (CHI) is a not rare condition in patients with end-stage-renal-disease on hemodialysis (HD), and presents devastating consequences due to its impact on life quality. In HD patients CHI may be related to three main conditions: obstruction of the big upper limb arteries, obstruction of the small hand and finger arteries, and the steal effect of a hemodialysis access. The aim of this study was to describe the angiographic pattern of upper limb vascularization and associated cardiovascular risk factors, in a large cohort of consecutive HD patients with CHI studied in our center. In our center 114 HD consecutive patients (age 64±10 years) with a total of 132 upper limbs affected by CHI (21 with rest pain and 93 with tissue loss) underwent angiography in our center. The majority of them were diabetic males. We computed the prevalence of obstructive disease for each vascular segment of the upper limb. Above-the-elbow arteries were mostly spared, while below-the-elbow and hand arteries were extensively affected. We found a stenosis or occlusion in humeral artery (2.3%), radial (61.4%) or ulnar (90.1%) arteries, deep palmar arch (51.5%), superficial palmar arch (58.3%) and digital arteries (72.4%). In 42.4% of cases an ipsilateral functioning arteriovenous fistula was present. CHI in HD patients is a result of below-the-elbow and hand vessel obstruction and is not primarily related to dialysis access.

  9. Current status of robotic stroke rehabilitation and opportunities for a cyber-physically assisted upper limb stroke rehabilitation

    NARCIS (Netherlands)

    Li, C.; Rusak, Z.; Horvath, I.; Ji, L.; Hou, Y.

    2014-01-01

    In the last two decades, robotics-assisted stroke reha-bilitation has been wide-spread, in particular for movement rehabilitation of upper limbs. Several studies have reported on the clinical effectiveness of this kind of therapy. The results of these studies show that robot assisted therapy can be

  10. The effectiveness of a work style intervention and a lifestyle physical activity intervention on the recovery from neck and upper limb symptoms in computer workers

    NARCIS (Netherlands)

    Bernaards, C.M.; Ariëns, G.A.M.; Knol, D.L.; Hildebrandt, V.H.

    2007-01-01

    This study assessed the effectiveness of a single intervention targeting work style and a combined intervention targeting work style and physical activity on the recovery from neck and upper limb symptoms. Computer workers with frequent or long-term neck and upper limb symptoms were randomised into

  11. The effectiveness of a work style intervention and a lifestyle physical activity intervention on the recovery from neck and upper limb symptoms in computer workers

    NARCIS (Netherlands)

    Bernaards, C.M.; Ariëns, G.A.M.; Knol, D.L.; Hildebrandt, V.H.

    2007-01-01

    This study assessed the effectiveness of a single intervention targeting work style and a combined intervention targeting work style and physical activity on the recovery from neck and upper limb symptoms. Computer workers with frequent or long-term neck and upper limb symptoms were randomised into

  12. Robot Assisted Training for the Upper Limb after Stroke (RATULS): study protocol for a randomised controlled trial.

    Science.gov (United States)

    Rodgers, Helen; Shaw, Lisa; Bosomworth, Helen; Aird, Lydia; Alvarado, Natasha; Andole, Sreeman; Cohen, David L; Dawson, Jesse; Eyre, Janet; Finch, Tracy; Ford, Gary A; Hislop, Jennifer; Hogg, Steven; Howel, Denise; Hughes, Niall; Krebs, Hermano Igo; Price, Christopher; Rochester, Lynn; Stamp, Elaine; Ternent, Laura; Turner, Duncan; Vale, Luke; Warburton, Elizabeth; van Wijck, Frederike; Wilkes, Scott

    2017-07-20

    Loss of arm function is a common and distressing consequence of stroke. We describe the protocol for a pragmatic, multicentre randomised controlled trial to determine whether robot-assisted training improves upper limb function following stroke. Study design: a pragmatic, three-arm, multicentre randomised controlled trial, economic analysis and process evaluation. NHS stroke services. adults with acute or chronic first-ever stroke (1 week to 5 years post stroke) causing moderate to severe upper limb functional limitation. Randomisation groups: 1. Robot-assisted training using the InMotion robotic gym system for 45 min, three times/week for 12 weeks 2. Enhanced upper limb therapy for 45 min, three times/week for 12 weeks 3. Usual NHS care in accordance with local clinical practice Randomisation: individual participant randomisation stratified by centre, time since stroke, and severity of upper limb impairment. upper limb function measured by the Action Research Arm Test (ARAT) at 3 months post randomisation. upper limb impairment (Fugl-Meyer Test), activities of daily living (Barthel ADL Index), quality of life (Stroke Impact Scale, EQ-5D-5L), resource use, cost per quality-adjusted life year and adverse events, at 3 and 6 months. Blinding: outcomes are undertaken by blinded assessors. Economic analysis: micro-costing and economic evaluation of interventions compared to usual NHS care. A within-trial analysis, with an economic model will be used to extrapolate longer-term costs and outcomes. Process evaluation: semi-structured interviews with participants and professionals to seek their views and experiences of the rehabilitation that they have received or provided, and factors affecting the implementation of the trial. allowing for 10% attrition, 720 participants provide 80% power to detect a 15% difference in successful outcome between each of the treatment pairs. Successful outcome definition: baseline ARAT 0-7 must improve by 3 or more points; baseline

  13. Links between nurses' organisational work environment and upper limb musculoskeletal symptoms: independently of effort-reward imbalance! The ORSOSA study.

    Science.gov (United States)

    Herin, Fabrice; Paris, Christophe; Levant, Aude; Vignaud, Marie-Chantal; Sobaszek, Annie; Soulat, Jean-Marc

    2011-09-01

    The role of psychosocial factors in the development of upper limb musculoskeletal disorders has now been clearly demonstrated. However, only a few studies have analysed the association between the organisational work environment and musculoskeletal disorders in health care workers. The main goal of this study was to test the hypothesis that some specific organisational constraints may be related to upper limb musculoskeletal symptoms experienced by registered nurses, independently of the effort/reward imbalance model and major confounding factors. In 2006, 2194 female registered nurses in 7 French teaching hospitals, recruited from the baseline screening of an epidemiological cohort study (the ORSOSA study), responded to valid self-report questionnaires (ERI [effort-reward imbalance], Nordic-style questionnaire). The organisational work environment was assessed by the self-rated Nursing Work Index-Extended Organisation scale. Multilevel models were used for analyses. We found that 2 organisational health care constraints: low level of shared values about work between members in the unit and lack of support from the administration were significantly associated with upper limb symptoms, independently of ERI perceptions. This study identified and quantified specific health care organisational factors that have an impact on nurses' upper limb symptoms, sometimes independently of ERI perception. A prospective study is needed to clarify the causal role of psychosocial and organisational work factors in upper limb injury in nurses. Organisational approaches may be more effective in improving health at work and may also have a longer-lasting impact than individual approaches. Copyright © 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  14. The mirror therapy program enhances upper-limb motor recovery and motor function in acute stroke patients.

    Science.gov (United States)

    Lee, Myung Mo; Cho, Hwi-Young; Song, Chang Ho

    2012-08-01

    The purpose of this study was to evaluate the effects of the mirror therapy program on upper-limb motor recovery and motor function in patients with acute stroke. Twenty-six patients who had an acute stroke within 6 mos of study commencement were assigned to the experimental group (n = 13) or the control group (n = 13). Both experimental and control group members participated in a standard rehabilitation program, but only the experimental group members additionally participated in mirror therapy program, for 25 mins twice a day, five times a week, for 4 wks. The Fugl-Meyer Assessment, Brunnstrom motor recovery stage, and Manual Function Test were used to assess changes in upper-limb motor recovery and motor function after intervention. In upper-limb motor recovery, the scores of Fugl-Meyer Assessment (by shoulder/elbow/forearm items, 9.54 vs. 4.61; wrist items, 2.76 vs. 1.07; hand items, 4.43 vs. 1.46, respectively) and Brunnstrom stages for upper limb and hand (by 1.77 vs. 0.69 and 1.92 vs. 0.50, respectively) were improved more in the experimental group than in the control group (P mirror therapy program is an effective intervention for upper-limb motor recovery and motor function improvement in acute stroke patients. Additional research on mirror therapy program components, intensity, application time, and duration could result in it being used as a standardized form of hand rehabilitation in clinics and homes.

  15. Effectiveness of botulinum toxin A for upper and lower limb spasticity in children with cerebral palsy: a summary of evidence.

    Science.gov (United States)

    Lukban, Marissa Barlaan; Rosales, Raymond L; Dressler, Dirk

    2009-03-01

    Botulinum toxin type A (BoNT-A) therapy has gained wide acceptance in the management of spasticity in cerebral palsy (CP). Clinical experience from numerous case reports and series, retrospective and prospective open label cohort studies, and randomized controlled trials (RCT) has grown over the past 10 years. Several independent systematic reviews on the role of BoNT-A for upper and lower limb spasticity have been written by various authors. The objective of this paper is to summarize past systematic reviews and recent RCT not yet included in the systematic reviews that assess the effectiveness of BoNT-A in upper and lower limb spasticity in children with CP. We reviewed four Class II RCT discussed in five independent systematic reviews and two new Class II trials on the use of BoNT-A alone or with occupational therapy compared to placebo or occupational therapy alone in children with upper limb spasticity. There were 229 children recruited in these six trials and of those, 115 children received BoNT-A in the upper limbs. Five of six RCT showed a time limited decrease in muscle tone most especially at the wrist. Four of six trials showed improvement of hand function on a few specific functional tests. Four systematic reviews concluded that there is insufficient and inconsistent evidence to support or refute the effectiveness of BoNT-A in upper limb spasticity but one recent review recommended that BoNT-A should be considered as a treatment option in upper limb spasticity. For lower limb spasticity, we reviewed 13 RCT discussed in six systematic reviews and two new trials comparing BoNT-A with placebo or other rehabilitation modalities such as physiotherapy, occupational therapy, casting or electrical stimulation. In these studies, 617 children were recruited and of those, 360 children received BoNT-A in the lower limbs. There were six Class I and nine Class II trials. Three Class I trials documented significant improvement in gait pattern in children with

  16. Acute Upper Limb Ischemia due to Cardiac Origin Thromboembolism: the Usefulness of Percutaneous Aspiration Thromboembolectomy via a Transbrachial Approach

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Kwan; Kwak, Hyo Sung; Chung, Gyoung Ho; Han, Young Min [Chonbuk National University Hospital and Medical School, Chonju (Korea, Republic of)

    2011-10-15

    To evaluate the usefulness of percutaneous aspiration thromboembolectomy (PAT) via a transbrachial approach in patients with acute upper limb ischemia. From July 2004 to March 2008, eleven patients with acute upper limb ischemia were enrolled in this study. They were initially treated with thrombolysis (n = 1), PAT (n = 6), or both (n = 4) via a femoral artery approach. However, all of the patients had residual thrombus in the brachial artery, which was subsequently managed by PAT via the transbrachial approach for removal of residual emboli. Successful re-canalization after PAT via a transbrachial approach was achieved in all patients. Two patients experienced early complications: one experienced a massive hematoma of the upper arm due to incomplete compression and was treated by stent deployment. The other patient experienced a re-occlusion of the brachial artery the day after the procedure due to excessive manual compression of the puncture site, but did not show recurrence of ischemic symptoms in the artery of the upper arm. Clinical success with complete resolution of ischemic symptoms was achieved in all patients. PAT via a transbrachial approach is a safe and effective treatment for patients with acute upper limb ischemia.

  17. A palmar pressure sensor for measurement of upper limb weight bearing by the hands during transfers by paraplegics.

    Science.gov (United States)

    Kunju, Nissan; Ojha, Rajdeep; Devasahayam, Suresh R

    2013-10-01

    Paraplegic patients have to effect transfer from one seat to another by using their upper limbs. In this process the hands bear almost the entire weight of the body in at least some phases of the transfer. It is desirable to train patients, especially those who are elderly and otherwise weak, to distribute their weight so as to avoid large forces being sustained on any one hand for an extended period. It is also desirable to evaluate the effectiveness of assistive devices like lower limb FES in sharing the load on the hand. This study presents a simple and versatile method of measuring palmar hand force during transfers by paraplegic patients. It is important that this force sensor should not interfere with the grasping and stabilizing properties of the hands and should permit normal transferring. The force sensor comprises an air-filled pouch or pillow that can be placed on any surface. This pneumatic sensor feels like upholstery padding on the surface on which it is placed. The sensor integrates the total pressure applied to the surface of the pouch, thereby obtaining the total force exerted by the palm/hand. The fabrication of the sensor is described, as well as the associated measurement circuit. The static calibration shows that the sensor is linear up to 350 N and the dynamic calibration shows that it has a bandwidth of 13 Hz. The sensor was fabricated using an inflated inelastic airbag attached to a pressure transducer. An automatic offset correction circuit in the preamplifier module ensures that any offset due to initial pressure or sensor drift is removed and the output is zero under no load condition. The key to this sensor arrangement is the ease of fitting it into the intended location without disturbing the existing arrangement for the subject's activities of daily living (ADL).

  18. The co-contraction index of the upper limb for young and old adult cyclists.

    Science.gov (United States)

    Kiewiet, H; Bulsink, V E; Beugels, F; Koopman, H F J M

    2017-08-01

    Bicycling is a popular and convenient means of transportation amongst the elderly in the Netherlands. However, the uptake of the electric bicycle resulted in an increase of single-sided bicycle accidents amongst the elderly (Veiligheid, 2010). Since elderly are prone to severe injuries, bicycle stability is currently a popular research topic. Three main balance strategies have been proposed in former studies: steering as the primary balance strategy and trunk -and lateral knee movement as secondary balance strategies (Moore et al., 2011; Cain, 2013). Since steering is the primary strategy for bicycle stability, the stiffness of the arms plays an important role in active stability during cycling. It has been shown that the arm stiffness of a passive rider is an important factor on the stability of a bicycle (Doria and Tognazzo, 2014). In the study presented here, the co-contraction index (CCI) of the upper limb for young and old adult cyclist is studied. Data is collected during experiments based on the setup described in (Kiewiet et al., 2014), wherein contact forces, muscle activities and motions of the rider and bicycle are measured for 15 young adult (mean±sd: 25.3±2.8 yrs) and 15 old adult (mean±sd: 58.1±2.1 yrs) subjects during unperturbed and perturbed cycling. The arm stiffness is defined as a co-contraction ratio between muscle activity of the m. Biceps Brachii and m. Triceps Lateralis. Results suggest that older adult cyclists use more co-contraction of their arm muscles during cycling, compared to young cyclists. The inter-subject variability of the found CCI was higher for the old adult subject group, compared to the young group. The results support the initial hypothesis that the increase in co-contraction of the upper limb for older cyclists is higher during perturbed cycling compared to unperturbed cycling than for younger cyclists. The findings might give direction towards solutions for increasing the safety and stability for elderly cyclists

  19. Changes in somatosensory evoked potentials elicited by stimulation of upper-limb and lower-limb nerves in amyotrophic lateral sclerosis patients

    Institute of Scientific and Technical Information of China (English)

    Ying Zheng; Zhaohuan Zhang; Weihua Wu; Zhongxin Zhao

    2011-01-01

    This study observed the changes in somatosensory evoked potentials between patients with amyotrophic lateral sclerosis (ALS) and healthy controls to evaluate the function of the central deep somatosensory pathway. In patients with ALS, 28 patients (54%) showed an abnormality in somatosensory evoked potentials. All had abnormal lower limb somatosensory evoked potentials. Compared with healthy controls, the abnormality in somatosensory evoked potential was characterized by prolonged N20, P2, N2 latency and central conduction time, with or without a decrease in wave amplitude or disappearance of waveform. Results showed marked alterations in the somatosensory evoked potential in cortical components of the upper and lower limb in 54% of patients with ALS, and confirmed that patients with ALS may also have a defective deep somatosensory pathway, particularly an abnormal central deep somatosensory pathway.

  20. Disfunção muscular periférica em DPOC: membros inferiores versus membros superiores Peripheral muscle dysfunction in COPD: lower limbs versus upper limbs

    Directory of Open Access Journals (Sweden)

    Eduardo Foschini Miranda

    2011-06-01

    Full Text Available O prejuízo funcional parece diferir entre membros superiores e membros inferiores de pacientes com DPOC. Dois possíveis mecanismos explicam os sintomas importantes de dispneia e fadiga relatados pelos pacientes ao executar tarefas com membros superiores não sustentados: a disfunção neuromecânica dos músculos respiratórios e a alteração dos volumes pulmonares durante as atividades realizadas com membros superiores. A disfunção neuromecânica está relacionada à alteração do padrão respiratório e à simultaneidade de estímulos aferentes e eferentes musculares, o que causaria a dissincronia na ação dos músculos respiratórios em pacientes com DPOC durante esse tipo de exercício. Adicionalmente, o aumento da ventilação durante os exercícios com membros superiores em pacientes com DPOC induz à hiperinsuflação dinâmica em diferentes cargas de trabalho. Nos membros inferiores, há redução da força e da endurance muscular do quadríceps femoral nos pacientes com DPOC comparados a indivíduos saudáveis. Uma explicação para essas reduções é a anormalidade no metabolismo muscular (diminuição da capacidade aeróbia, a dependência do metabolismo glicolítico e o acúmulo rápido de lactato durante o exercício. Quando contrastadas as atividades de membros superiores e membros inferiores, os exercícios com membros superiores resultam em maior demanda metabólica e ventilatória com mais intensa sensação de dispneia e fadiga. Devido às diferenças nas adaptações morfofuncionais dos músculos dos membros superiores e membros inferiores em pacientes com DPOC, protocolos específicos de treinamento de força e/ou endurance devem ser desenvolvidos e testados para os grupos musculares desses segmentos corporaisIn patients with COPD, the degree of functional impairment appears to differ between the upper and lower limbs. Significant dyspnea and fatigue have been reported by these patients when performing tasks with

  1. Budget impact analysis of botulinum toxin A therapy for upper limb spasticity in the United Kingdom

    Directory of Open Access Journals (Sweden)

    Abogunrin S

    2015-04-01

    Full Text Available Seye Abogunrin,1 Linda Hortobagyi,2 Edit Remak,3 Jerome Dinet,4 Sylvie Gabriel,5 Abdel Magid O Bakheit6 1Meta Research, 2Health Economics, Evidera, London, UK; 3Health Economics, Evidera, Budapest, Hungary; 4Health Economics and Outcomes Research (Global, 5Global Market Access and Pricing, Ipsen Pharma, Boulogne-Billancourt, France; 6Neurological Rehabilitation, Moseley Hall Hospital, Birmingham, UK Background: Botulinum toxin A (BoNT-A is an effective treatment for patients with upper limb spasticity (ULS, which is a debilitating feature of upper motor neuron lesions. BoNT-A preparations available in the UK are associated with different costs. Methods: We developed a budget impact model to assess the effect of changing market shares of different BoNT-A formulations – abobotulinumtoxinA, onabotulinumtoxinA, and incobotulinumtoxinA – and best supportive care, from the UK payer perspective, over a 5-year time horizon. Epidemiological and resource use data were derived from published literature and clinical expert opinion. One-way sensitivity analyses were performed to determine parameters most influential on budget impact. Results: Base-case assumptions showed that an increased uptake of abobotulinumtoxinA resulted in a 5-year savings of £6,283,829. Treatment with BoNT-A costs less than best supportive care per patient per year, although treating a patient with onabotulinumtoxinA (£20,861 and incobotulinumtoxinA (£20,717 cost more per patient annually than with abobotulinumtoxinA (£19,800. Sensitivity analyses showed that the most influential parameters on budget were percentage of cerebral palsy and stroke patients developing ULS, and the prevalence of stroke. Conclusion: Study findings suggest that increased use of abobotulinumtoxinA for ULS in the UK could potentially reduce total ULS cost for the health system and society. Keywords: stroke, cerebral palsy, multiple sclerosis, traumatic brain injury 

  2. A Randomized, Controlled Trial of Mirror Therapy for Upper Extremity Phantom Limb Pain in Male Amputees

    Directory of Open Access Journals (Sweden)

    Sacha B. Finn

    2017-07-01

    Full Text Available ObjectivePhantom limb pain (PLP is prevalent in patients post-amputation and is difficult to treat. We assessed the efficacy of mirror therapy in relieving PLP in unilateral, upper extremity male amputees.MethodsFifteen participants from Walter Reed and Brooke Army Medical Centers were randomly assigned to one of two groups: mirror therapy (n = 9 or control (n = 6, covered mirror or mental visualization therapy. Participants were asked to perform 15 min of their assigned therapy daily for 5 days/week for 4 weeks. The primary outcome was pain as measured using a 100-mm Visual Analog Scale.ResultsSubjects in the mirror therapy group had a significant decrease in pain scores, from a mean of 44.1 (SD = 17.0 to 27.5 (SD = 17.2 mm (p = 0.002. In addition, there was a significant decrease in daily time experiencing pain, from a mean of 1,022 (SD = 673 to 448 (SD = 565 minutes (p = 0.003. By contrast, the control group had neither diminished pain (p = 0.65 nor decreased overall time experiencing pain (p = 0.49. A pain decrement response seen by the 10th treatment session was predictive of final efficacy.ConclusionThese results confirm that mirror therapy is an effective therapy for PLP in unilateral, upper extremity male amputees, reducing both severity and duration of daily episodes.RegistrationNCT0030144 ClinicalTrials.gov.

  3. A Randomized, Controlled Trial of Mirror Therapy for Upper Extremity Phantom Limb Pain in Male Amputees.

    Science.gov (United States)

    Finn, Sacha B; Perry, Briana N; Clasing, Jay E; Walters, Lisa S; Jarzombek, Sandra L; Curran, Sean; Rouhanian, Minoo; Keszler, Mary S; Hussey-Andersen, Lindsay K; Weeks, Sharon R; Pasquina, Paul F; Tsao, Jack W

    2017-01-01

    Phantom limb pain (PLP) is prevalent in patients post-amputation and is difficult to treat. We assessed the efficacy of mirror therapy in relieving PLP in unilateral, upper extremity male amputees. Fifteen participants from Walter Reed and Brooke Army Medical Centers were randomly assigned to one of two groups: mirror therapy (n = 9) or control (n = 6, covered mirror or mental visualization therapy). Participants were asked to perform 15 min of their assigned therapy daily for 5 days/week for 4 weeks. The primary outcome was pain as measured using a 100-mm Visual Analog Scale. Subjects in the mirror therapy group had a significant decrease in pain scores, from a mean of 44.1 (SD = 17.0) to 27.5 (SD = 17.2) mm (p = 0.002). In addition, there was a significant decrease in daily time experiencing pain, from a mean of 1,022 (SD = 673) to 448 (SD = 565) minutes (p = 0.003). By contrast, the control group had neither diminished pain (p = 0.65) nor decreased overall time experiencing pain (p = 0.49). A pain decrement response seen by the 10th treatment session was predictive of final efficacy. These results confirm that mirror therapy is an effective therapy for PLP in unilateral, upper extremity male amputees, reducing both severity and duration of daily episodes. NCT0030144 ClinicalTrials.gov.

  4. Upper-limb kinematic reconstruction during stroke robot-aided therapy.

    Science.gov (United States)

    Papaleo, E; Zollo, L; Garcia-Aracil, N; Badesa, F J; Morales, R; Mazzoleni, S; Sterzi, S; Guglielmelli, E

    2015-09-01

    The paper proposes a novel method for an accurate and unobtrusive reconstruction of the upper-limb kinematics of stroke patients during robot-aided rehabilitation tasks with end-effector machines. The method is based on a robust analytic procedure for inverse kinematics that simply uses, in addition to hand pose data provided by the robot, upper arm acceleration measurements for computing a constraint on elbow position; it is exploited for task space augmentation. The proposed method can enable in-depth comprehension of planning strategy of stroke patients in the joint space and, consequently, allow developing therapies tailored for their residual motor capabilities. The experimental validation has a twofold purpose: (1) a comparative analysis with an optoelectronic motion capturing system is used to assess the method capability to reconstruct joint motion; (2) the application of the method to healthy and stroke subjects during circle-drawing tasks with InMotion2 robot is used to evaluate its efficacy in discriminating stroke from healthy behavior. The experimental results have shown that arm angles are reconstructed with a RMSE of 8.3 × 10(-3) rad. Moreover, the comparison between healthy and stroke subjects has revealed different features in the joint space in terms of mean values and standard deviations, which also allow assessing inter- and intra-subject variability. The findings of this study contribute to the investigation of motor performance in the joint space and Cartesian space of stroke patients undergoing robot-aided therapy, thus allowing: (1) evaluating the outcomes of the therapeutic approach, (2) re-planning the robotic treatment based on patient needs, and (3) understanding pathology-related motor strategies.

  5. Dystrophic epidermolysis bullosa associated with congenital contractures of the upper and lower limbs: literature review

    Directory of Open Access Journals (Sweden)

    Ольга Евгеньевна Агранович

    2015-12-01

    Full Text Available Epidermolysis bullosa (EB is a rare hereditary disease. Its main feature is vesication and weeping sores (erosions of the skin and mucous membranes, resulting from a minor injury. Clinical manifestations of the disease may vary from localized vesicles on the hands and feet to a generalized rash of the skin as well as lesions of the mucosa of the inner organs. At present, there are four main groups of EB: simple, intermediate, dystrophic, and Kindler syndrome. Mutations cause changes in the structure of the proteins responsible for the adhesion between layers of the dermis, leading to vesication. Treatment of EB is a challenge because of the lack of opportunities for the direct influence on the disease process, and its main purpose is to correct the existing cutaneous manifestations and prevent the occurrence of new elements. This article describes the main types of EB, methods of current diagnosis, and treatment of the disease as well as a clinical case of a rare combination of two severe disorders: 1 dystrophic EB and 2 arthrogryposis with upper and lower limb involvement.

  6. Primary cutaneous diffuse large B-cell lymphoma of the upper limb: A fascinating entity

    Directory of Open Access Journals (Sweden)

    Manoj Madakshira Gopal

    2013-01-01

    Full Text Available Primary cutaneous lymphomas are defined as lymphoid neoplasms that present themselves clinically on the skin and do not have extra-cutaneous disease, when the diagnosis is made or even after 6 months of the diagnosis. Primary cutaneous lymphomas of B-cells are less frequent than lymphomas of T-cells. Primary B-cell lymphomas have a better prognosis than secondary B-cell lymphomas. Primary B-cell cutaneous lymphomas are classified into five types according to the World Health Organization and European Organization for Research and Treatment of Cancer classification. The primary diffuse large B-cell cutaneous lymphoma - leg type corresponds to approximately 5-10% of the B-cell cutaneous lymphomas. It is predominantly seen in elderly people and has a female preponderance. Skin lesions can be single, multiple, and even grouped. A 5-year survival rate ranges from 36 to 100% of the cases. The expression of Bcl-2, presence of multiple lesions, and involvement of both the upper limbs lead to a worse prognosis. Very few cases have been described in the literature.

  7. Two-dimensional myoelectric control of a robotic arm for upper limb amputees

    Science.gov (United States)

    López Celani, Natalia M.; Soria, Carlos M.; Orosco, Eugenio C.; di Sciascio, Fernando A.; Valentinuzzi, Max E.

    2007-11-01

    Rehabilitation engineering and medicine have become integral and significant parts of health care services, particularly and unfortunately in the last three or four decades, because of wars, terrorism and large number of car accidents. Amputees show a high rate of rejection to wear prosthetic devices, often because of lack of an adequate period of adaptation. A robotic arm may appear as a good preliminary stage. To test the hypothesis, myoelectric signals from two upper limb amputees and from four normal volunteers were fed, via adequate electronic conditioning and using MATLAB, to an industrial robotic arm. Proportional strength control was used for two degrees of freedom (x-y plane) by means of eight signal features of control (four traditional statistics plus energy, integral of the absolute value, Willison's amplitude, waveform length and envelope) for comparison purposes, and selecting the best of them as final reference. Patients easily accepted the system and learned in short time how to operate it. Results were encouraging so that valuable training, before prosthesis is implanted, appears as good feedback; besides, these patients can be hired as specialized operators in semi-automatized industry.

  8. Exoskeleton Technology in Rehabilitation: Towards an EMG-Based Orthosis System for Upper Limb Neuromotor Rehabilitation

    Directory of Open Access Journals (Sweden)

    Luis Manuel Vaca Benitez

    2013-01-01

    Full Text Available The rehabilitation of patients should not only be limited to the first phases during intense hospital care but also support and therapy should be guaranteed in later stages, especially during daily life activities if the patient’s state requires this. However, aid should only be given to the patient if needed and as much as it is required. To allow this, automatic self-initiated movement support and patient-cooperative control strategies have to be developed and integrated into assistive systems. In this work, we first give an overview of different kinds of neuromuscular diseases, review different forms of therapy, and explain possible fields of rehabilitation and benefits of robotic aided rehabilitation. Next, the mechanical design and control scheme of an upper limb orthosis for rehabilitation are presented. Two control models for the orthosis are explained which compute the triggering function and the level of assistance provided by the device. As input to the model fused sensor data from the orthosis and physiology data in terms of electromyography (EMG signals are used.

  9. Motor imagery training improves precision of an upper limb movement in patients with hemiparesis.

    Science.gov (United States)

    Grabherr, Luzia; Jola, Corinne; Berra, Gilberto; Theiler, Robert; Mast, Fred W

    2015-01-01

    In healthy participants, beneficial effects of motor imagery training on movement execution have been shown for precision, strength, and speed. In the clinical context, it is still debated whether motor imagery provides an effective rehabilitation technique in patients with motor deficits. To compare the effectiveness of two different types of movement training: motor imagery vs. motor execution. Twenty-five patients with hemiparesis were assigned to one of two training groups: the imagery or the execution-training group. Both groups completed a baseline test before they received six training sessions, each of which was followed by a test session. Using a novel and precisely quantifiable test, we assessed how accurately patients performed an upper limb movement. Both training groups improved performance over the six test sessions but the improvement was significantly larger in the imagery group. That is, the imagery group was able to perform more precise movements than the execution group after the sixth training session while there was no difference at the beginning of the training. The results provide evidence for the benefit of motor imagery training in patients with hemiparesis and thus suggest the integration of cognitive training in conventional physiotherapy practice.

  10. Improved Haptic Linear Lines for Better Movement Accuracy in Upper Limb Rehabilitation

    Directory of Open Access Journals (Sweden)

    Joan De Boeck

    2012-01-01

    Full Text Available Force feedback has proven to be beneficial in the domain of robot-assisted rehabilitation. According to the patients' personal needs, the generated forces may either be used to assist, support, or oppose their movements. In our current research project, we focus onto the upper limb training for MS (multiple sclerosis and CVA (cerebrovascular accident patients, in which a basic building block to implement many rehabilitation exercises was found. This building block is a haptic linear path: a second-order continuous path, defined by a list of points in space. Earlier, different attempts have been investigated to realize haptic linear paths. In order to have a good training quality, it is important that the haptic simulation is continuous up to the second derivative while the patient is enforced to follow the path tightly, even when low or no guiding forces are provided. In this paper, we describe our best solution to these haptic linear paths, discuss the weaknesses found in practice, and propose and validate an improvement.

  11. Autobiographical memory and psychological distress in a sample of upper-limb amputees.

    Directory of Open Access Journals (Sweden)

    Martina Luchetti

    Full Text Available Amputation is a traumatic and life-changing event that can take years to adjust to. The present study (a examines psychological adjustment in a specific trauma-exposed sample, (b compares the phenomenology (e.g., vividness of amputation-related memories to more recent memories, and (c tests whether memory phenomenology is associated with psychological distress. A total of 24 upper-limb amputees recalled two autobiographical memories--an amputation-related memory and a recent memory--and rated the phenomenological qualities of each memory, including Vividness, Coherence, Emotional Intensity, Visual Perspective, and Distancing. Participants also completed self-rated measures of psychological distress and personality. The sample was generally well adjusted; participants showed no relevant symptoms of anxiety and depression, and personality scores were similar to the general population. There were no significant differences in phenomenology between the two types of memories recalled. Even though amputation-related memories were, on average, almost 20 years older than the recent memories, they retained their intense phenomenology. Despite the intensity of the memory, none of the phenomenological dimensions were associated with psychological distress. It is worth to further define which dimensions of phenomenology characterize memories of traumatic events, and their association with individuals' psychological reactions.

  12. Effect of the upper limbs muscles activity on the mechanical energy gain in pole vaulting.

    Science.gov (United States)

    Frère, Julien; Göpfert, Beat; Slawinski, Jean; Tourny-chollet, Claire

    2012-04-01

    The shoulder muscles are highly solicited in pole vaulting and may afford energy gain. The objective of this study was to determine the bilateral muscle activity of the upper-limbs to explain the actions performed by the vaulter to bend the pole and store elastic energy. Seven experienced athletes performed 5-10 vaults which were recorded using two video cameras (50Hz). The mechanical energy of the centre of gravity (CG) was computed, while surface electromyographic (EMG) profiles were recorded from 5 muscles bilateral: deltoideus, infraspinatus, biceps brachii, triceps, and latissimus dorsi muscles. The level of intensity from EMG profile was retained in four sub phases between take-off (TO1) and complete pole straightening (PS). The athletes had a mean mechanical energy gain of 22% throughout the pole vault, while the intensities of deltoideus, biceps brachii, and latissimus dorsi muscles were sub phases-dependent (pmechanical energy of the vaulter could be linked to an increase in muscle activation, especially from latissimusdorsi muscles. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Energy Harvesting from Upper-Limb Pulling Motions for Miniaturized Human-Powered Generators

    Directory of Open Access Journals (Sweden)

    Jeongjin Yeo

    2015-07-01

    Full Text Available The human-powered self-generator provides the best solution for individuals who need an instantaneous power supply for travel, outdoor, and emergency use, since it is less dependent on weather conditions and occupies less space than other renewable power supplies. However, many commercial portable self-generators that employ hand-cranking are not used as much as expected in daily lives although they have enough output capacity due to their intensive workload. This study proposes a portable human-powered generator which is designed to obtain mechanical energy from an upper limb pulling motion for improved human motion economy as well as efficient human-mechanical power transfer. A coreless axial-flux permanent magnet machine (APMM and a flywheel magnet rotor were used in conjunction with a one-way clutched power transmission system in order to obtain effective power from the pulling motion. The developed prototype showed an average energy conversion efficiency of 30.98% and an average output power of 0.32 W with a maximum of 1.89 W. Its small form factor (50 mm × 32 mm × 43.5 mm, 0.05 kg and the substantial electricity produced verify the effectiveness of the proposed method in the utilization of human power. It is expected that the developed generator could provide a mobile power supply.

  14. Proposal of new category for congenital unilateral upper limb muscular hypertrophy.

    Science.gov (United States)

    Takka, Semih; Doi, Kazuteru; Hattori, Yasunori; Kitajima, Izuru; Sano, Kazufumi

    2005-01-01

    According to congenital anomalies of the hand and forearm classifications, the common characteristic of overgrowth problems is the skeletal overgrowth of part or all of the hand. Congenital unilateral muscular hypertrophy of the upper extremity has been classified under the overgrowth (gigantism) problems as whole-limb hemihypertrophy. The common characteristic of overgrowth problems is the skeletal overgrowth of part or all of the hand, which is not prominent in these patients. Only 15 cases with this anomaly have been reported since 1962. These patients have abnormal muscles with hypertrophic appearance and changed tendon to muscle length ratio. This type of muscular hypertrophy shows an increase in the number of fibers in transverse section, as also seen in multiply innervated muscles like the sartorius and gracilis in humans. Although this phenomenon has a mosaic type distribution, there is no progression of the muscular hypertrophy during growth period. Hand deformities are not due to a part of progression of the disease but result of imbalance of the extrinsic and intrinsic muscles. The evolutionary changes of skeletal muscles should be investigated to explain this congenital phenomenon and might be classified in a different entity from the present categories.

  15. Robot training of upper limb in multiple sclerosis: comparing protocols with or without manipulative task components.

    Science.gov (United States)

    Carpinella, Ilaria; Cattaneo, Davide; Bertoni, Rita; Ferrarin, Maurizio

    2012-05-01

    In this pilot study, we compared two protocols for robot-based rehabilitation of upper limb in multiple sclerosis (MS): a protocol involving reaching tasks (RT) requiring arm transport only and a protocol requiring both objects' reaching and manipulation (RMT). Twenty-two MS subjects were assigned to RT or RMT group. Both protocols consisted of eight sessions. During RT training, subjects moved the handle of a planar robotic manipulandum toward circular targets displayed on a screen. RMT protocol required patients to reach and manipulate real objects, by moving the robotic arm equipped with a handle which left the hand free for distal tasks. In both trainings, the robot generated resistive and perturbing forces. Subjects were evaluated with clinical and instrumental tests. The results confirmed that MS patients maintained the ability to adapt to the robot-generated forces and that the rate of motor learning increased across sessions. Robot-therapy significantly reduced arm tremor and improved arm kinematics and functional ability. Compared to RT, RMT protocol induced a significantly larger improvement in movements involving grasp (improvement in Grasp ARAT sub-score: RMT 77.4%, RT 29.5%, p=0.035) but not precision grip. Future studies are needed to evaluate if longer trainings and the use of robotic handles would significantly improve also fine manipulation.

  16. Direct kinematic modeling of the upper limb during trunk-assisted reaching.

    Science.gov (United States)

    Hanneton, Sylvain; Dedobbeler, Svetlana; Hoellinger, Thomas; Roby-Brami, Agnes

    2011-08-01

    The study proposes a rigid-body biomechanical model of the trunk and whole upper limb including scapula and the test of this model with a kinematic method using a six-dimensional (6-D) electromagnetic motion capture (mocap) device. Large unconstrained natural trunk-assisted reaching movements were recorded in 7 healthy subjects. The 3-D positions of anatomical landmarks were measured and then compared to their estimation given by the biomechanical chain fed with joint angles (the direct kinematics). Thus, the prediction errors was attributed to the different joints and to the different simplifications introduced in the model. Large (approx. 4 cm) end-point prediction errors at the level of the hand were reduced (to approx. 2 cm) if translations of the scapula were taken into account. As a whole, the 6-D mocap seems to give accurate results, except for prono-supination. The direct kinematic model could be used as a virtual mannequin for other applications, such as computer animation or clinical and ergonomical evaluations.

  17. Upper limb kinematic differences between breathing and non-breathing conditions in front crawl sprint swimming.

    Science.gov (United States)

    McCabe, Carla B; Sanders, Ross H; Psycharakis, Stelios G

    2015-11-26

    The purpose of this study was to determine whether the breathing action in front crawl (FC) sprint swimming affects the ipsilateral upper limb kinematics relative to a non-breathing stroke cycle (SC). Ten male competitive swimmers performed two 25m FC sprints: one breathing to their preferred side (Br) and one not breathing (NBr). Both swim trials were performed through a 6.75m(3) calibrated space and recorded by six gen-locked JVC KY32 CCD cameras. A paired t-test was used to assess statistical differences between the trials, with a confidence level of pswim performance is compromised by the inclusion of taking a breath in sprint FC swimming. It was proposed that swimmers aim to orient their ipsilateral shoulder into a stronger position by stretching and rolling the shoulders more in the entry phase whilst preparing to take a breath. Swimmers should focus on lengthening the push phase by extending the elbow more and not accelerating the hand too quickly upwards when preparing to inhale.

  18. Three upper limb robotic devices for stroke rehabilitation: a review and clinical perspective.

    Science.gov (United States)

    Bishop, Lauri; Stein, Joel

    2013-01-01

    Stroke is a leading cause of disability worldwide. Many survivors of stroke remain with residual disabilities, even years later. Advances in technology have led to the development of a variety of robotic devices for use in rehabilitation. The integration of robotics in the delivery of neurorehabilitation is promising, but still not widely used in clinical settings. The aim of this review is to discuss the general design of three typical upper limb robotic devices, and examine the practical considerations for their use in a clinical environment. Each device is described, the available clinical literature is reviewed and a clinical perspective is given on the usefulness of these robotic devices in rehabilitation of this population. Current literature supports the use of robotics in the clinical environment. However, claims that robotic therapy is more effective than traditional treatment is not substantially supported. The majority of clinical trials reported are small, and lack the use of a control group for comparison treatment. The use of robotics in stroke rehabilitation is still a relatively new treatment platform, and still evolving. As technological advances are made, there is much potential for growth in this field.

  19. Energy Harvesting from Upper-Limb Pulling Motions for Miniaturized Human-Powered Generators.

    Science.gov (United States)

    Yeo, Jeongjin; Ryu, Mun-ho; Yang, Yoonseok

    2015-07-03

    The human-powered self-generator provides the best solution for individuals who need an instantaneous power supply for travel, outdoor, and emergency use, since it is less dependent on weather conditions and occupies less space than other renewable power supplies. However, many commercial portable self-generators that employ hand-cranking are not used as much as expected in daily lives although they have enough output capacity due to their intensive workload. This study proposes a portable human-powered generator which is designed to obtain mechanical energy from an upper limb pulling motion for improved human motion economy as well as efficient human-mechanical power transfer. A coreless axial-flux permanent magnet machine (APMM) and a flywheel magnet rotor were used in conjunction with a one-way clutched power transmission system in order to obtain effective power from the pulling motion. The developed prototype showed an average energy conversion efficiency of 30.98% and an average output power of 0.32 W with a maximum of 1.89 W. Its small form factor (50 mm × 32 mm × 43.5 mm, 0.05 kg) and the substantial electricity produced verify the effectiveness of the proposed method in the utilization of human power. It is expected that the developed generator could provide a mobile power supply.

  20. Dynamic Characterization and Interaction Control of the CBM-Motus Robot for Upper-Limb Rehabilitation

    Directory of Open Access Journals (Sweden)

    Loredana Zollo

    2013-10-01

    Full Text Available This paper presents dynamic characterization and control of an upper-limb rehabilitation machine aimed at improving robot performance in the interaction with the patient. An integrated approach between mechanics and control is the key issue of the paper for the development of a robotic machine with desirable dynamic properties. Robot inertial and acceleration properties are studied in the workspace via a graphical representation based on ellipses. Robot friction is experimentally retrieved by means of a parametric identification procedure. A current-based impedance control is developed in order to compensate for friction and enhance control performance in the interaction with the patient by means of force feedback, without increasing system inertia. To this end, servo-amplifier motor currents are monitored to provide force feedback in the interaction, thus avoiding the need for force sensors mounted at the robot end-effector. Current-based impedance control is implemented on the robot; experimental results in free space as well as in constrained space are provided.

  1. IKO: A Five Actuated DoF Upper Limb Exoskeleton Oriented to Workplace Assistance

    Directory of Open Access Journals (Sweden)

    Felix Martinez

    2009-01-01

    Full Text Available IKerlan’s Orthosis (IKO is an upper limb exoskeleton oriented to increasing human force during routine activity at the workplace. Therefore, it can be considered as a force-amplification device conceived to work in collaboration with the human arm and implementing biomimetic principles. The aim of the proposed design is to find the best compromise between maximum reachable workspace and minimum moving mass, which are the key factors for obtaining an ergonomic, wearable exoskeleton. It consists of five actuated degree of freedom (DoF to move the human arm and three non-actuated DoF between the back and shoulder to allow relative displacement of the sterno-clavicular joint. Conventional electrical motors are used for most of the DoF and pneumatic muscles for one of them (forearm rotation. Power transmission is based on Bowden cables. This paper presents the IKO design, the mechanical structure of a first prototype and the redesign process from an aesthetic point of view. Controller set-up and control strategies are also shown, together with dynamic performance from experimental results.

  2. Upper Limb Kinematics Using Inertial and Magnetic Sensors: Comparison of Sensor-to-Segment Calibrations

    Directory of Open Access Journals (Sweden)

    Brice Bouvier

    2015-07-01

    Full Text Available Magneto-Inertial Measurement Unit sensors (MIMU display high potential for the quantitative evaluation of upper limb kinematics, as they allow monitoring ambulatory measurements. The sensor-to-segment calibration step, consisting of establishing the relation between MIMU sensors and human segments, plays an important role in the global accuracy of joint angles. The aim of this study was to compare sensor-to-segment calibrations for the MIMU-based estimation of wrist, elbow, and shoulder joint angles, by examining trueness (“close to the reference” and precision (reproducibility validity criteria. Ten subjects performed five sessions with three different operators. Three classes of calibrations were studied: segment axes equal to technical MIMU axes (TECH, segment axes generated during a static pose (STATIC, and those generated during functional movements (FUNCT. The calibrations were compared during the maximal uniaxial movements of each joint, plus an extra multi-joint movement. Generally, joint angles presented good trueness and very good precision in the range 5°–10°. Only small discrepancy between calibrations was highlighted, with the exception of a few cases. The very good overall accuracy (trueness and precision of MIMU-based joint angle data seems to be more dependent on the level of rigor of the experimental procedure (operator training than on the choice of calibration itself.

  3. Upper Limb Kinematics Using Inertial and Magnetic Sensors: Comparison of Sensor-to-Segment Calibrations.

    Science.gov (United States)

    Bouvier, Brice; Duprey, Sonia; Claudon, Laurent; Dumas, Raphaël; Savescu, Adriana

    2015-07-31

    Magneto-Inertial Measurement Unit sensors (MIMU) display high potential for the quantitative evaluation of upper limb kinematics, as they allow monitoring ambulatory measurements. The sensor-to-segment calibration step, consisting of establishing the relation between MIMU sensors and human segments, plays an important role in the global accuracy of joint angles. The aim of this study was to compare sensor-to-segment calibrations for the MIMU-based estimation of wrist, elbow, and shoulder joint angles, by examining trueness ("close to the reference") and precision (reproducibility) validity criteria. Ten subjects performed five sessions with three different operators. Three classes of calibrations were studied: segment axes equal to technical MIMU axes (TECH), segment axes generated during a static pose (STATIC), and those generated during functional movements (FUNCT). The calibrations were compared during the maximal uniaxial movements of each joint, plus an extra multi-joint movement. Generally, joint angles presented good trueness and very good precision in the range 5°-10°. Only small discrepancy between calibrations was highlighted, with the exception of a few cases. The very good overall accuracy (trueness and precision) of MIMU-based joint angle data seems to be more dependent on the level of rigor of the experimental procedure (operator training) than on the choice of calibration itself.

  4. Analysis of voluntary opening Ottobock Hook and Hosmer Hook for upper limb prosthetics: a preliminary study.

    Science.gov (United States)

    Hashim, Nur Afiqah; Abd Razak, Nasrul Anuar Bin; Gholizadeh, Hossein; Osman, Noor Azuan Abu

    2016-11-19

    There are a number of prosthetic terminal devices which offer functional restoration to individuals with upper limb deficiencies. Hosmer and Ottobock are major commercial hook providers for prosthetic terminal devices. The concern of this paper is to analyse the voluntary opening (VO) Ottobock model 10A18 and Hosmer model 99P hooks (one band) during opening operation and to find out favourable features in the design. Two tests were conducted to analyse the performance of both hooks. The first test used a simple bench tool to investigate cable excursion and hook opening angle and the second test used force sensor to find out the force supplied at a different hook opening angle. The study found that the average cable excursion for both hooks is approximately 30% less than the hook's opening span with the force at the hook's tip section being inversely proportional to the force at the lateral section. Ottobock 10A18 has a better control for grasping larger objects, while Hosmer 99P has the highest average force at the tip section but yet less efficient in generating adequate force for activities of daily living. Favourable features identified are low cable excursion per hook opening span and balance lateral to hook tip pinch force.

  5. Autobiographical memory and psychological distress in a sample of upper-limb amputees.

    Science.gov (United States)

    Luchetti, Martina; Montebarocci, Ornella; Rossi, Nicolino; Cutti, Andrea G; Sutin, Angelina R

    2014-01-01

    Amputation is a traumatic and life-changing event that can take years to adjust to. The present study (a) examines psychological adjustment in a specific trauma-exposed sample, (b) compares the phenomenology (e.g., vividness) of amputation-related memories to more recent memories, and (c) tests whether memory phenomenology is associated with psychological distress. A total of 24 upper-limb amputees recalled two autobiographical memories--an amputation-related memory and a recent memory--and rated the phenomenological qualities of each memory, including Vividness, Coherence, Emotional Intensity, Visual Perspective, and Distancing. Participants also completed self-rated measures of psychological distress and personality. The sample was generally well adjusted; participants showed no relevant symptoms of anxiety and depression, and personality scores were similar to the general population. There were no significant differences in phenomenology between the two types of memories recalled. Even though amputation-related memories were, on average, almost 20 years older than the recent memories, they retained their intense phenomenology. Despite the intensity of the memory, none of the phenomenological dimensions were associated with psychological distress. It is worth to further define which dimensions of phenomenology characterize memories of traumatic events, and their association with individuals' psychological reactions.

  6. Upper limb function is normal in patients with restless legs syndrome (Willis-Ekbom Disease).

    Science.gov (United States)

    Todd, Gabrielle; Haberfield, Miranda; Faulkner, Patrick L; Hayes, Michael; Wilcox, Robert A; Rae, Caroline; Bulathsinhala, Tarsha; Grunstein, Ron R; Yee, Brendon J; Double, Kay L

    2015-04-01

    Restless legs syndrome, now called Willis-Ekbom Disease (RLS/WED), is a sensorimotor-related sleep disorder. Little is known of the effect of RLS/WED on motor function. The current study investigated upper limb function in RLS/WED patients. We hypothesised that RLS/WED patients exhibit subtle changes in tremor amplitude but normal dexterity and movement speed and rhythmicity compared to healthy controls. RLS/WED patients (n=17, 59 ± 7 years) with moderate disease and healthy controls (n=17, 58 ± 6 years) completed screening tests and five tasks including object manipulation, maximal pinch grip, flexion and extension of the index finger (tremor assessment), maximal finger tapping (movement speed and rhythmicity assessment), and the grooved pegboard test. Force, acceleration, and/or first dorsal interosseus EMG were recorded during four of the tasks. Task performance did not differ between groups. Learning was evident on tasks with repeated trials and the magnitude of learning did not differ between groups. Hand function, tremor, and task learning were unaffected in RLS/WED patients. Patients manipulated objects in a normal manner and exhibited normal movement speed, rhythmicity, and tremor. Further research is needed to assess other types of movement in RLS/WED patients to gain insight into the motor circuitry affected and the underlying pathophysiology. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Study on development of active-passive rehabilitation system for upper limbs: Hybrid-PLEMO

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, T; Jin, Y; Fukushima, K; Akai, H; Furusho, J [Department of Mechanical Engineering, Graduate School of Engineering, Osaka University, Osaka (Japan)], E-mail: kikuchi@mech.eng.osaka-u.ac.jp

    2009-02-01

    In recent years, many researchers have studied the potential of using robotics technology to assist and quantify the motor functions for neuron-rehabilitation. Some kinds of haptic devices have been developed and evaluated its efficiency with clinical tests, for example, upper limb training for patients with spasticity after stroke. Active-type (motor-driven) haptic devices can realize a lot of varieties of haptics. But they basically require high-cost safety system. On the other hand, passive-type (brake-based) haptic devices have inherent safety. However, the passive robot system has strong limitation on varieties of haptics. There are not sufficient evidences to clarify how the passive/active haptics effect to the rehabilitation of motor skills. In this paper, we developed an active-passive-switchable rehabilitation system with ER clutch/brake device named 'Hybrid-PLEMO' in order to address these problems. In this paper, basic structures and haptic control methods of the Hybrid-PLEMO are described.

  8. Usability testing of gaming and social media applications for stroke and cerebral palsy upper limb rehabilitation.

    Science.gov (United States)

    Valdés, Bulmaro A; Hilderman, Courtney G E; Hung, Chai-Ting; Shirzad, Navid; Van der Loos, H F Machiel

    2014-01-01

    As part of the FEATHERS (Functional Engagement in Assisted Therapy Through Exercise Robotics) project, two motion tracking and one social networking applications were developed for upper limb rehabilitation of stroke survivors and teenagers with cerebral palsy. The project aims to improve the engagement of clients during therapy by using video games and a social media platform. The applications allow users to control a cursor on a personal computer through bimanual motions, and to interact with their peers and therapists through the social media. The tracking applications use either a Microsoft Kinect or a PlayStation Eye camera, and the social media application was developed on Facebook. This paper presents a usability testing of these applications that was conducted with therapists from two rehabilitation clinics. The "Cognitive Walkthrough" and "Think Aloud" methods were used. The objectives of the study were to investigate the ease of use and potential issues or improvements of the applications, as well as the factors that facilitate and impede the adoption of technology in current rehabilitation programs.

  9. The evaluation of function of the flail upper limb classification system: its application to unilateral brachial plexus injuries.

    Science.gov (United States)

    Eggers, I M; Mennen, U

    2001-01-01

    The evaluation of function of the flail upper limb (EFFUL) classification system measures in numerical terms the improvement achieved through hand surgery and hand therapy in patients with peripheral nerve injuries. To research the effectiveness of the EFFUL system a study was conducted that included 103 adult traumatic brachial plexus palsies. The measurement of upper limb function has 2 distinct phases: function without adaptation and function with adaptation. Patients will naturally adapt in order to cope whether we encourage them or not. This jump in gain of function by adaptation is a bonus that cannot be measured for comparison with other patients because each patient is different. Differences include factors such as each individual's personal pattern of adaptation with or without assistive devices, intelligence, dominant hand, and, in particular, motivation. Measurement of preoperative and postoperative function (with its associated hand therapy) therefore may not include adaptation. The EFFUL system is a method developed to measure unadapted function; it measures residual function of the flail upper arm using practical, everyday tasks performed by the shoulder, elbow, forearm, wrist, and hand, ie, all upper limb regions. It is a ranking system with a hierarchy of increasingly higher demands placed on function until normal function has been achieved. The execution of the tasks focuses on 2-handed coordination and hand dominance. The score is divided into no function, minimal nondominant arm function, supportive arm (nondominant side) function, minimal dominant arm function, useful arm function as done by the dominant arm, and normal arm function. These descriptive scores are subdivided into scores ranging from 0 to 10. Thus, the EFFUL classification system is an objective method of measuring residual function before and after treatment. The clinical examination and functional evaluation ought to have equal significance in the final report on outcome. This

  10. Characterization of age-related modifications of upper limb motor control strategies in a new dynamic environment

    Directory of Open Access Journals (Sweden)

    Dario Paolo

    2008-11-01

    Full Text Available Abstract Background In the past, several research groups have shown that when a velocity dependent force field is applied during upper limb movements subjects are able to deal with this external perturbation after some training. This adaptation is achieved by creating a new internal model which is included in the normal unperturbed motor commands to achieve good performance. The efficiency of this motor control mechanism can be compromised by pathological disorders or by muscular-skeletal modifications such as the ones due to the natural aging process. In this respect, the present study aimed at identifying the age-related modifications of upper limb motor control strategies during adaptation and de-adaptation processes in velocity dependent force fields. Methods Eight young and eight elderly healthy subjects were included in the experiment. Subjects were instructed to perform pointing movements in the horizontal plane both in a null field and in a velocity dependent force field. The evolution of smoothness and hand path were used to characterize the performance of the subjects. Furthermore, the ability of modulating the interactive torque has been used as a paradigm to explain the observed discoordinated patterns during the adaptation process. Results The evolution of the kinematics during the experiments highlights important behavioural differences between the two groups during the adaptation and de-adaptation processes. In young subjects the improvement of movement smoothness was in accordance with the expected learning trend related to the consolidation of the internal model. On the contrary, elders did not show a coherent learning process. The kinetic analysis pointed out the presence of different strategies for the compensation of the external perturbation: older people required an increased involvement of the shoulder with a different modulation of joint torque components during the evolution of the experiments. Conclusion The results

  11. The reliability of the ELEPAP clinical protocol for the 3D kinematic evaluation of upper limb function.

    Science.gov (United States)

    Vanezis, Athanasios; Robinson, Mark A; Darras, Nikolaos

    2015-02-01

    Upper limb (UL) kinematic assessment protocols are becoming integrated into clinical practice due to their development over the last few years. We propose the ELEPAP UL protocol, a contemporary UL kinematic protocol that can be applied to different pathological conditions. This model is based on ISB modeling recommendations, uses functional joint definitions, and models three joints of the shoulder girdle. The specific aim of this study was to determine the within and between session reliability of the ELEPAP UL model. Ten healthy subjects (mean age: 13.6±4.3 years) performed four reach-to-grasp and five functional tasks, which included a novel throwing task to assess a wide spectrum of motor skills. Three trials of every task in two different sessions were analyzed. The reliability of angular waveforms was evaluated by measurement error (σ) and coefficient of multiple correlation (CMC). Spatiotemporal parameters were assessed by standard error of measurement (SEM). Generally joint kinematics presented low σw and σb errors (0.60) were found, demonstrating good to excellent reliability especially in joints with larger ranges of motion. The throwing task proved equally reliable, enhancing the universal application of the protocol. Compared to the literature, this study demonstrated higher reliability of the thorax, scapula and wrist joints. This was attributed to the highly standardized procedure and the implementation of recent methodological advancements. In conclusion, ELEPAP protocol was proved a reliable tool to analyze UL kinematics. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Characterization of In-Body to On-Body Wireless Radio Frequency Link for Upper Limb Prostheses

    Science.gov (United States)

    Stango, Antonietta; Yazdandoost, Kamya Yekeh; Negro, Francesco; Farina, Dario

    2016-01-01

    Wireless implanted devices can be used to interface patients with disabilities with the aim of restoring impaired motor functions. Implanted devices that record and transmit electromyographic (EMG) signals have been applied for the control of active prostheses. This simulation study investigates the propagation losses and the absorption rate of a wireless radio frequency link for in-to-on body communication in the medical implant communication service (MICS) frequency band to control myoelectric upper limb prostheses. The implanted antenna is selected and a suitable external antenna is designed. The characterization of both antennas is done by numerical simulations. A heterogeneous 3D body model and a 3D electromagnetic solver have been used to model the path loss and to characterize the specific absorption rate (SAR). The path loss parameters were extracted and the SAR was characterized, verifying the compliance with the guideline limits. The path loss model has been also used for a preliminary link budget analysis to determine the feasibility of such system compliant with the IEEE 802.15.6 standard. The resulting link margin of 11 dB confirms the feasibility of the system proposed. PMID:27764182

  13. Effect of position feedback during task-oriented upper-limb training after stroke: Five-case pilot study

    Directory of Open Access Journals (Sweden)

    Birgit I. Molier, MSc

    2011-11-01

    Full Text Available Feedback is an important element in motor learning during rehabilitation therapy following stroke. The objective of this pilot study was to better understand the effect of position feedback during task-oriented reach training of the upper limb in people with chronic stroke. Five subjects participated in the training for 30 minutes three times a week for 6 weeks. During training, subjects performed reaching movements over a predefined path. When deviation from this path occurred, shoulder and elbow joints received position feedback using restraining forces. We recorded the amount of position feedback used by each subject. During pre- and posttraining assessments, we collected data from clinical scales, isometric strength, and workspace of the arm. All subjects showed improvement on one or several kinematic variables during a circular motion task after training. One subject showed improvement on all clinical scales. Subjects required position feedback between 7.4% and 14.7% of training time. Although augmented feedback use was limited, kinematic outcome measures and movement performance during training increased in all subjects, which was comparable with other studies. Emphasis on movement errors at the moment they occur may possibly stimulate motor learning when movement tasks with sufficiently high levels of difficulty are applied.

  14. Measurement of the effect of playground surface materials on hand impact forces during upper limb fall arrests.

    Science.gov (United States)

    Choi, Woochol J; Kaur, Harjinder; Robinovitch, Stephen N

    2014-04-01

    Distal radius fractures are common on playgrounds. Yet current guidelines for the selection of playground surface materials are based only on protection against fall-related head injuries. We conducted "torso release" experiments to determine how common playground surface materials affect impact force applied to the hand during upper limb fall arrests. Trials were acquired for falls onto a rigid surface, and onto five common playground surface materials: engineered wood fiber, gravel, mulch, rubber tile, and sand. Measures were acquired for arm angles of 20 and 40 degrees from the vertical. Playground surface materials influenced the peak resultant and vertical force (Pforce (P=.159). When compared with the rigid condition, peak resultant force was reduced 17% by sand (from 1039 to 864 N), 16% by gravel, 7% by mulch, 5% by engineered wood fiber, and 2% by rubber tile. The best performing surface provided only a 17% reduction in peak resultant force. These results help to explain the lack of convincing evidence from clinical studies on the effectiveness of playground surface materials in preventing distal radius fractures during playground falls, and highlight the need to develop playground surface materials that provide improved protection against these injuries.

  15. Modeling the Step-like Response in the Upper Limbs of Hemiplegic Subjects for Evaluation of Spasticity

    Science.gov (United States)

    Uchiyama, Takanori; Uchida, Ryusei

    The purpose of this study is to develop a new modeling technique for quantitative evaluation of spasticity in the upper limbs of hemiplegic patients. Each subject lay on a bed, and his forearm was supported with a jig to measure the elbow joint angle. The subject was instructed to relax and not to resist the step-like load which was applied to extend the elbow joint. The elbow joint angle and electromyogram (EMG) of the biceps muscle, triceps muscle and brachioradialis muscle were measured. First, the step-like response was approximated with a proposed mathematical model based on musculoskeletal and physiological characteristics by the least square method. The proposed model involved an elastic component depending on both muscle activities and elbow joint angle. The responses were approximated well with the proposed model. Next, the torque generated by the elastic component was estimated. The normalized elastic torque was approximated with a dumped sinusoid by the least square method. The reciprocal of the time constant and the natural frequency of the normalized elastic torque were calculated and they varied depending on the grades of the modified Ashworth scale of the subjects. It was suggested that the proposed modeling technique would provide a good quantitative index of spasticity as shown in the relationship between the reciprocal of the time constant and the natural frequency.

  16. Use of Fourier transforms for asynoptic mapping: Applications to the Upper Atmosphere Research Satellite microwave limb sounder

    Science.gov (United States)

    Elson, Lee S.; Froidevaux, Lucien

    1993-01-01

    Fourier analysis has been applied to data obtained from limb viewing instruments on the Upper Atmosphere Research Satellite. A coordinate system rotation facilitates the efficient computation of Fourier transforms in the temporal and longitudinal domains. Fields such as ozone (O3), chlorine monoxide (ClO), temperature, and water vapor have been transformed by this process. The transforms have been inverted to provide maps of these quantities at selected times, providing a method of accurate time interpolation. Maps obtained by this process show evidence of both horizontal and vertical transport of important trace species such as O3 and ClO. An examination of the polar regions indicates that large-scale planetary variations are likely to play a significant role in transporting midstratospheric O3 into the polar regions. There is also evidence that downward transport occurs, providing a means of moving O3 into the polar vortex at lower altitudes. The transforms themselves show the structure and propagation characteristics of wave variations.

  17. Retention of finger blood flow against postural change as an indicator of successful sympathetic block in the upper limb

    Science.gov (United States)

    Nakatani, Toshihiko; Hashimoto, Tatsuya; Sutou, Ichiro; Saito, Yoji

    2017-01-01

    Background Sympathetic block in the upper limb has diagnostic, therapeutic and prognostic utility for disorders in the upper extremity that are associated with sympathetic disturbances. Increased skin temperature and decreased sweating are used to identify the adequacy of sympathetic block in the upper limb after stellate ganglion block (SGB). Baroreflexes elicited by postural change induce a reduction in peripheral blood flow by causing sympathetic vasoconstriction. We hypothesized that sympathetic block in the upper limb reduces the decrease in finger blood flow caused by baroreflexes stimulated by postural change from the supine to long sitting position. This study evaluated if sympathetic block of the upper limb affects the change in finger blood flow resulting from postural change. If change in finger blood flow would be kept against postural changes, it has a potential to be a new indicator of sympathetic blockade in the upper limb. Methods Subjects were adult patients who had a check-up at the Department of Pain Management in our university hospital over 2 years and 9 months from May 2012. We executed a total of 91 SGBs in nine patients (N=9), which included those requiring treatment for pain associated with herpes zoster in seven of the patients, tinnitus in one patient and upper limb pain in one patient. We checked for the following four signs after performing SGB: Horner’s sign, brachial nerve blockade, finger blood flow measured by a laser blood flow meter and skin temperature of the thumb measured by thermography, before and after SGB in the supine position and immediately after adopting the long sitting position. Results We executed a total of 91 SGBs in nine patients. Two SGBs were excluded from the analysis due to the absence of Horner’s sign. We divided 89 procedures into two groups according to elevation in skin temperature of the thumb: by over 1°C (sympathetic block group, n=62) and by <1°C (nonsympathetic block group, n=27). Finger blood

  18. Perception and action in swimming: Effects of aquatic environment on upper limb inter-segmental coordination.

    Science.gov (United States)

    Guignard, Brice; Rouard, Annie; Chollet, Didier; Ayad, Omar; Bonifazi, Marco; Dalla Vedova, Dario; Seifert, Ludovic

    2017-10-01

    This study assessed perception-action coupling in expert swimmers by focusing on their upper limb inter-segmental coordination in front crawl. To characterize this coupling, we manipulated the fluid flow and compared trials performed in a swimming pool and a swimming flume, both at a speed of 1.35ms(-1). The temporal structure of the stroke cycle and the spatial coordination and its variability for both hand/lower arm and lower arm/upper arm couplings of the right body side were analyzed as a function of fluid flow using inertial sensors positioned on the corresponding segments. Swimmers' perceptions in both environments were assessed using the Borg rating of perceived exertion scale. Results showed that manipulating the swimming environment impacts low-order (e.g., temporal, position, velocity or acceleration parameters) and high-order (i.e., spatial-temporal coordination) variables. The average stroke cycle duration and the relative duration of the catch and glide phases were reduced in the flume trial, which was perceived as very intense, whereas the pull and push phases were longer. Of the four coordination patterns (in-phase, anti-phase, proximal and distal: when the appropriate segment is leading the coordination of the other), flume swimming demonstrated more in-phase coordination for the catch and glide (between hand and lower arm) and recovery (hand/lower arm and lower arm/upper arm couplings). Conversely, the variability of the spatial coordination was not significantly different between the two environments, implying that expert swimmers maintain consistent and stable coordination despite constraints and whatever the swimming resistances. Investigations over a wider range of velocities are needed to better understand coordination dynamics when the aquatic environment is modified by a swimming flume. Since the design of flumes impacts significantly the hydrodynamics and turbulences of the fluid flow, previous results are mainly related to the

  19. Cost-effectiveness of treating upper limb spasticity due to stroke with botulinum toxin type A: results from the botulinum toxin for the upper limb after stroke (BoTULS) trial.

    Science.gov (United States)

    Shackley, Phil; Shaw, Lisa; Price, Christopher; van Wijck, Frederike; Barnes, Michael; Graham, Laura; Ford, Gary A; Steen, Nick; Rodgers, Helen

    2012-12-01

    Stroke imposes significant burdens on health services and society, and as such there is a growing need to assess the cost-effectiveness of stroke treatment to ensure maximum benefit is derived from limited resources. This study compared the cost-effectiveness of treating post-stroke upper limb spasticity with botulinum toxin type A plus an upper limb therapy programme against the therapy programme alone. Data on resource use and health outcomes were prospectively collected for 333 patients with post-stroke upper limb spasticity taking part in a randomized trial and combined to estimate the incremental cost per quality adjusted life year (QALY) gained of botulinum toxin type A plus therapy relative to therapy alone. The base case incremental cost-effectiveness ratio (ICER) of botulinum toxin type A plus therapy was £93,500 per QALY gained. The probability of botulinum toxin type A plus therapy being cost-effective at the England and Wales cost-effectiveness threshold value of £20,000 per QALY was 0.36. The point estimates of the ICER remained above £20,000 per QALY for a range of sensitivity analyses, and the probability of botulinum toxin type A plus therapy being cost-effective at the threshold value did not exceed 0.39, regardless of the assumptions made.

  20. Cost-Effectiveness of Treating Upper Limb Spasticity Due to Stroke with Botulinum Toxin Type A: Results from the Botulinum Toxin for the Upper Limb after Stroke (BoTULS Trial

    Directory of Open Access Journals (Sweden)

    Nick Steen

    2012-11-01

    Full Text Available Stroke imposes significant burdens on health services and society, and as such there is a growing need to assess the cost-effectiveness of stroke treatment to ensure maximum benefit is derived from limited resources. This study compared the cost-effectiveness of treating post-stroke upper limb spasticity with botulinum toxin type A plus an upper limb therapy programme against the therapy programme alone. Data on resource use and health outcomes were prospectively collected for 333 patients with post-stroke upper limb spasticity taking part in a randomized trial and combined to estimate the incremental cost per quality adjusted life year (QALY gained of botulinum toxin type A plus therapy relative to therapy alone. The base case incremental cost-effectiveness ratio (ICER of botulinum toxin type A plus therapy was £93,500 per QALY gained. The probability of botulinum toxin type A plus therapy being cost-effective at the England and Wales cost-effectiveness threshold value of £20,000 per QALY was 0.36. The point estimates of the ICER remained above £20,000 per QALY for a range of sensitivity analyses, and the probability of botulinum toxin type A plus therapy being cost-effective at the threshold value did not exceed 0.39, regardless of the assumptions made.

  1. Hybrid Neuroprosthesis for the Upper Limb: Combining Brain-Controlled Neuromuscular Stimulation with a Multi-Joint Arm Exoskeleton.

    Science.gov (United States)

    Grimm, Florian; Walter, Armin; Spüler, Martin; Naros, Georgios; Rosenstiel, Wolfgang; Gharabaghi, Alireza

    2016-01-01

    and antigravity assistance augments upper limb function and brain activity during rehabilitation exercises and may thus provide a novel restorative framework for severely affected stroke patients.

  2. On the use of information theory for detecting upper limb motor dysfunction: An application to Parkinson’s disease

    Science.gov (United States)

    de Oliveira, M. Elias; Menegaldo, L. L.; Lucarelli, P.; Andrade, B. L. B.; Büchler, P.

    2011-11-01

    Parkinson’s disease (PD) is a chronic neurodegenerative disorder characterized by a selective loss of dopaminergic neurons in the substantia nigra, decreased striatal dopamine levels, and consequent extrapyramidal motor dysfunctions. Several potential early diagnostic markers of PD have been proposed. Since they have not been validated in presymptomatic PD, the diagnosis and monitoring of the disease is based on subjective clinical assessment of cognitive and motor symptoms. In this study, we investigated interjoint coordination synergies in the upper limb of healthy and parkinsonian subjects during the performance of unconstrained linear-periodic movements in a horizontal plane using the mutual information (MI). We found that the MI is a sensitive metric in detecting upper limb motor dysfunction, thus suggesting that this method might be applicable to quantitatively evaluating the effects of the antiparkinsonian medication and to monitor the disease progression.

  3. Combined transcranial direct current stimulation and home-based occupational therapy for upper limb motor impairment following intracerebral hemorrhage

    DEFF Research Database (Denmark)

    Mortensen, Jesper; Figlewski, Krystian; Andersen, Henning

    2016-01-01

    PURPOSE: To investigate the combined effect of transcranial direct current stimulation (tDCS) and home-based occupational therapy on activities of daily living (ADL) and grip strength, in patients with upper limb motor impairment following intracerebral hemorrhage (ICH). METHODS: A double......-blind randomized controlled trial with one-week follow-up. Patients received five consecutive days of occupational therapy at home, combined with either anodal (n = 8) or sham (n = 7) tDCS. The primary outcome was ADL performance, which was assessed with the Jebsen-Taylor test (JTT). RESULTS: Both groups improved...... with the sham group, from baseline to post-assessment (p = 0.158). CONCLUSIONS: Five consecutive days of tDCS combined with occupational therapy provided greater improvements in grip strength compared with occupational therapy alone. tDCS is a promising add-on intervention regarding training of upper limb motor...

  4. DEXMEDETOMIDINE AS AN ADJUNCT TO 0.5% LIGNOCAINE FOR INTRAVENOUS REGIONAL ANAESTHESIA FOR UPPER LIMB SURGERIES

    Directory of Open Access Journals (Sweden)

    Shilpashri

    2015-08-01

    Full Text Available Intravenous regional anesthesia with technical modifications is an ideal method of providing anaesthesia for minor surgical procedures to the extremities. It has the advantages of speed of onset, rapid recovery, reliability of blockade & costeffectiveness. Adjuvants to local anaesthetics have expanded the applications of regional anaesthesia by providing faster onset time, inhibition of tourniquet pain, improved peri - operative analgesia and prolonged post - operative analgesia, apart from decreasing the risks of local anaesthetic toxicity. This randomized prospective study of 60 patients, of either sex, between 20 - 60 years, scheduled for elective or emergency surgeries of upper limb was able to prove that dexmedetomidine as an adjuvant to lignocaine in IVRA has faster onset of sensory and motor blockade, significantly longer post - operative analgesia and lesser incidence of tourniquet pain as compared to Lignocaine alone in surgeries of upper limb

  5. Feasibility of Using Microsoft Kinect to Assess Upper Limb Movement in Type III Spinal Muscular Atrophy Patients

    Science.gov (United States)

    Siebourg-Polster, Juliane; Wolf, Detlef; Czech, Christian; Bonati, Ulrike; Fischer, Dirk; Khwaja, Omar; Strahm, Martin

    2017-01-01

    Although functional rating scales are being used increasingly as primary outcome measures in spinal muscular atrophy (SMA), sensitive and objective assessment of early-stage disease progression and drug efficacy remains challenging. We have developed a game based on the Microsoft Kinect sensor, specifically designed to measure active upper limb movement. An explorative study was conducted to determine the feasibility of this new tool in 18 ambulant SMA type III patients and 19 age- and gender-matched healthy controls. Upper limb movement was analysed elaborately through derived features such as elbow flexion and extension angles, arm lifting angle, velocity and acceleration. No significant differences were found in the active range of motion between ambulant SMA type III patients and controls. Hand velocity was found to be different but further validation is necessary. This study presents an important step in the process of designing and handling digital biomarkers as complementary outcome measures for clinical trials. PMID:28122039

  6. [Does upper limb robot-assisted rehabilitation contribute to improve the prognosis of post-stroke hemiparesis?].

    Science.gov (United States)

    Duret, C; Gracies, J-M

    2014-11-01

    Upper limb robot-assisted rehabilitation is a novel physical treatment for neurological motor impairments. During the last decade, this rehabilitation option utilizing technological tools has been evaluated in hemiparetic patients, mostly after stroke. Studies at acute and chronic stages suggested good tolerance and a significant and persistent reduction of motor impairment; a real impact on disability has been shown in acute/sub acute patients. Improved access to rehabilitation robots and an optimal use will probably be associated with higher efficiency of rehabilitative work in the paretic upper limb. Even if this treatment is still confined to a narrow circle of users, the device's biomechanical properties and clinical suggestions from the literature may show promise for the future of rehabilitation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. The influence of a real job on upper limb performance in motor skill tests: Which abilities are transferred?

    Science.gov (United States)

    Giangiardi, Vivian Farahte; Alouche, Sandra Regina; Freitas, Sandra Maria Sbeghen Ferreira de; Pires, Raquel Simoni; Padula, Rosimeire Simprini

    2016-12-20

    To investigate whether the specificities of real jobs create distinctions in the performance of workers in different motor tests for the upper limbs, twenty-four participants were divided into two groups according to their specific job: fine and repetitive tasks and general tasks. Both groups reproduced tasks related to aiming movements, handling, and the strength of the upper limbs. There were no significant differences between groups in the dexterity and performance of aiming movements. However, the general tasks group had higher grip strength than the repetitive tasks group, demonstrating differences according to job specificity. The results suggest that a particular motor skill in a specific job cannot improve performance in others tasks with the same motor requirements. The transfer of the fine and gross motor skills from previous experience in a job specific task is the basis for allocating training and guidance to workers.

  8. The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot.

    Science.gov (United States)

    Hu, X L; Tong, K Y; Wei, X J; Rong, W; Susanto, E A; Ho, S K

    2013-10-01

    Loss of hand function and finger dexterity are main disabilities in the upper limb after stroke. An electromyography (EMG)-driven hand robot had been developed for post-stroke rehabilitation training. The effectiveness of the hand robot assisted whole upper limb training was investigated on persons with chronic stroke (n=10) in this work. All subjects attended a 20-session training (3-5times/week) by using the hand robot to practice object grasp/release and arm transportation tasks. Significant motor improvements were observed in the Fugl-Meyer hand/wrist and shoulder/elbow scores (pEMG level (p<0.05) and a significant decrease of ED and FD co-contraction during the training (p<0.05); the excessive muscle activities in the biceps brachii were also reduced significantly after the training (p<0.05).

  9. Feasibility of Using Microsoft Kinect to Assess Upper Limb Movement in Type III Spinal Muscular Atrophy Patients.

    Science.gov (United States)

    Chen, Xing; Siebourg-Polster, Juliane; Wolf, Detlef; Czech, Christian; Bonati, Ulrike; Fischer, Dirk; Khwaja, Omar; Strahm, Martin

    2017-01-01

    Although functional rating scales are being used increasingly as primary outcome measures in spinal muscular atrophy (SMA), sensitive and objective assessment of early-stage disease progression and drug efficacy remains challenging. We have developed a game based on the Microsoft Kinect sensor, specifically designed to measure active upper limb movement. An explorative study was conducted to determine the feasibility of this new tool in 18 ambulant SMA type III patients and 19 age- and gender-matched healthy controls. Upper limb movement was analysed elaborately through derived features such as elbow flexion and extension angles, arm lifting angle, velocity and acceleration. No significant differences were found in the active range of motion between ambulant SMA type III patients and controls. Hand velocity was found to be different but further validation is necessary. This study presents an important step in the process of designing and handling digital biomarkers as complementary outcome measures for clinical trials.

  10. Effectiveness of the Virtual Reality System Toyra on Upper Limb Function in People with Tetraplegia: A Pilot Randomized Clinical Trial

    OpenAIRE

    Dimbwadyo-Terrer, I.; A. Gil-Agudo; A. Segura-Fragoso; de los Reyes-Guzmán, A.; F. Trincado-Alonso; Piazza, S.; Polonio-López, B.

    2016-01-01

    The aim of this study was to investigate the effects of a virtual reality program combined with conventional therapy in upper limb function in people with tetraplegia and to provide data about patients' satisfaction with the virtual reality system. Thirty-one people with subacute complete cervical tetraplegia participated in the study. Experimental group received 15 sessions with Toyra® virtual reality system for 5 weeks, 30 minutes/day, 3 days/week in addition to conventional therapy, while ...

  11. Upper Limb Functionality and Quality of Life in Women with Five-Year Survival after Breast Cancer Surgery.

    Science.gov (United States)

    Recchia, Thaís Lunardi; Prim, Amably Cristiny; Luz, Clarissa Medeiros da

    2017-03-01

    Objective To evaluate the correlation between upper limb functionality and quality of life in women with five-year survival following breast cancer surgical treatment. The secondary objective was to evaluate the function of the ipsilateral upper limb and the quality of life in relation to the type of surgery and the presence of pain. Methods The Disabilities of Arm, Shoulder and Hand (DASH), and the Functional Assessment of Cancer Therapy - Breast plus Arm Morbidity (FACTB + 4) questionnaires were used to evaluate upper limb function and quality of life respectively. Data distribution was verified by the Shapiro-Wilk test. Pearson's correlation coefficient was used for the parametric variables, and Spearman's rank correlation coefficient was used for the distribution of non-parametric variables. The statistical significance was set at 5% (p < 0.05). Results The study included 30 patients, with a mean age of 51.23 (±8.72) years. The most common complications were: pain (50%), adherence (33.3%), and nerve lesion (20.0%). There was a moderate negative correlation between the instruments DASH and FACTB + 4 (total score), r = -0.634, and a strong negative correlation between the DASH and the FACTB + 4 arm subscale, r = -0.829. The scores of both questionnaires showed significant difference on the manifestation of pain. However, there was no significant difference found when comparing the scores considering the type of surgery performed. Conclusions Five years after surgery, the patients showed regular functionality levels on the ipsilateral upper limb and decreased quality of life, especially in the group manifesting pain. Thieme-Revinter Publicações Ltda Rio de Janeiro, Brazil.

  12. PHYSICAL WORKLOAD AS A RISK FACTOR FOR SYMPTOMS IN THE NECK AND UPPER LIMBS: EXPOSURE ASSESSMENT AND ERGONOMIC INTERVENTION

    OpenAIRE

    Ritva Ketola

    2004-01-01

    The aims of this study were to investigate work related and individual factors as predictors of insident neck pain among video display unit (VDU) workers, to assess the effects of an ergonomic intervention and education on musculoskeletal symptoms, and to study the repeatability and validity of an expert assessment method of VDU workstation ergonomics. A method to assess the risk factors for upper limb disorders was developed, and its validity and repeatability were studied. The annual inc...

  13. The effects of neck and trunk stabilization exercises on upper limb and visuoperceptual function in children with cerebral palsy

    OpenAIRE

    2016-01-01

    [Purpose] The present study aimed to investigate the effects of neck and trunk stabilization exercises on upper limb and visuoperceptual function in children with cerebral palsy. The Jebson-Taylor hand function test and the Korean Developmental Test of Visual Perception-2 (K-DTVP-2) test were utilised. [Subjects and Methods] The study subjects were 11 schoolchildren who had paraplegia caused by premature birth, and who had been diagnosed with periventricular leukomalacia. Kinesitherapy was im...

  14. Upper limb children action-observation training (UP-CAT): a randomised controlled trial in Hemiplegic Cerebral Palsy

    OpenAIRE

    Biagi Laura; Guzzetta Andrea; Cossu Giuseppe; Ferrari Adriano; Sgandurra Giuseppina; Tosetti Michela; Fogassi Leonardo; Cioni Giovanni

    2011-01-01

    Abstract Background Rehabilitation for children with hemiplegic cerebral palsy (HCP) aimed to improve function of the impaired upper limb (UL) uses a wide range of intervention programs. A new rehabilitative approach, called Action-Observation Therapy, based on the recent discovery of mirror neurons, has been used in adult stroke but not in children. The purpose of the present study is to design a randomised controlled trial (RCT) for evaluating the efficacy of Action-Observation Therapy in i...

  15. How could robotic training and botolinum toxin be combined in chronic post stroke upper limb spasticity? A pilot study.

    Science.gov (United States)

    Pennati, G V; Da Re, C; Messineo, I; Bonaiuti, D

    2015-08-01

    Spasticity has a role of primary importance in functional motor recovery of upper limb after a stroke. The widespread intervention is the botulinum toxin neurolysis, however robotic training could have a role as useful addition to this conventional therapy. The aim of this study was to verify how the combination of a short robotic training and chemical neurolysis reduces spasticity and improves function in chronic post-stroke patients. Prospective single blind randomized controlled clinical trial. Post-stroke outpatients. Fifteen chronic post-stroke outpatients with severe upper limb spastic paresis. Two experimental groups underwent ten sessions of robotic training, alone (Group A) or with Botulinum toxin neurolysis (Group B). Evaluation of motor function with Fugl Meyer Upper Limb Assessment Scale (FMA) and Box & Block Test (B&B), disability with Functional Indipendence Measure (FIM), spasticity with Modified Ashworth Scale (MAS), and the Quality of Life (Euro-Qol) and muscular recruitment pattern with dynamic surface electromyography were carried out before and after the interventions. Both groups showed improvement in FMA (Group A 8.25 and Group B 5.29). Higher improvement in B&B was detected in the group A (2.62 versus 0,14 in Group B). MAS was improved more in the Group B (-0,86 versus -0,14 in Group A). In both groups, sEMG showed a reduction of co-contractions and an increase of agonist muscles recruitment during the reaching movement and the robotic exercises. The demonstrated improvement in motor function and in muscular activation pattern suggests how a short robotic training could be effective in chronic post-stroke spasticity of upper limb and in less severe spasticity the only robotic treatment could be effective. With the limits of small sample, the results showed some equivalence between these two approaches with respect to motor recovery and spasticity reduction suggesting that the cost effectiveness of each treatment may have an important role in

  16. Current status of robotic stroke rehabilitation and opportunities for a cyber-physically assisted upper limb stroke rehabilitation

    OpenAIRE

    Li, C.; Rusak, Z.; Horvath, I; Ji, L.; Hou, Y

    2014-01-01

    In the last two decades, robotics-assisted stroke reha-bilitation has been wide-spread, in particular for movement rehabilitation of upper limbs. Several studies have reported on the clinical effectiveness of this kind of therapy. The results of these studies show that robot assisted therapy can be more effective in recovering motor control abilities than conventional therapy. On the other hand, studies found no signifi-cant improvement on motor function abilities of pa-tients. These contradi...

  17. Upper limb children action-observation training (UP-CAT): a randomised controlled trial in Hemiplegic Cerebral Palsy

    OpenAIRE

    Biagi Laura; Guzzetta Andrea; Cossu Giuseppe; Ferrari Adriano; Sgandurra Giuseppina; Tosetti Michela; Fogassi Leonardo; Cioni Giovanni

    2011-01-01

    Abstract Background Rehabilitation for children with hemiplegic cerebral palsy (HCP) aimed to improve function of the impaired upper limb (UL) uses a wide range of intervention programs. A new rehabilitative approach, called Action-Observation Therapy, based on the recent discovery of mirror neurons, has been used in adult stroke but not in children. The purpose of the present study is to design a randomised controlled trial (RCT) for evaluating the efficacy of Action-Observation Therapy in i...

  18. Amyotrophic lateral sclerosis presenting as upper limb weakness in a 35 year old female: a case report.

    Science.gov (United States)

    Sigurdson, Leif A

    2011-09-01

    Chiropractors regularly assess and provide treatment for a variety of neuromuscular complaints. Many of these respond well to conservative care however some represent conditions that must be referred for further evaluation. This article chronicles the management of a patient who presented with upper limb weakness and was subsequently diagnosed with amyotrophic lateral sclerosis (ALS). Chiropractors should be informed of the nature and presentation of this disease to facilitate early diagnosis and treatment.

  19. Upper limb amputation due to a brachial arterial embolism associated with a superior mesenteric arterial embolism: a case report

    Directory of Open Access Journals (Sweden)

    Yamada Tsuyoshi

    2012-07-01

    Full Text Available Abstract Background Acute mesenteric ischemia due to an embolism of the superior mesenteric artery is associated with a high mortality rate. Over 20 percent of acute mesenteric embolism cases consist of multiple emboli, and the long-term prognosis depends on the incidence of subsequent embolic events at other sites. The incidence of emboli in the upper extremity associated with a superior mesenteric arterial embolism has rarely been described. The signs and symptoms of ischemic change in the upper limb can be masked by other circumstances, such as postoperative conditions or complications. In these cases, a late presentation or delayed diagnosis and treatment can result in limb loss. Case presentation We present a rare case of a 67-year-old Japanese woman with atrial fibrillation who developed an embolic occlusion of the brachial artery associated with a superior mesenteric arterial embolism. She developed gangrene in her right hand, which had progressed to the point that amputation was necessary by the time the gastrointestinal surgeon had consulted the Department of Orthopedic Surgery. The brachial arterial embolism diagnosis was delayed by the severe abdominal symptoms and shock conditions that followed the emergency enterectomy, resulting in amputation of the upper limb despite anticoagulation therapy. In this case, multiple infarctions of the spleen were also observed, indicating a shower embolism. Conclusions When treating a superior mesenteric arterial embolism in a patient with atrial fibrillation, the possibility of recurrent or multiple arterial thromboembolic events should be considered, even after the procedure is completed.

  20. Evaluation of Frequency and Risk Factors of Soft Tissue Rheumatism of Upper Limbs in Diabetic Patients in Kerman in 2001

    Directory of Open Access Journals (Sweden)

    M.R. Shakibi

    2003-10-01

    Full Text Available Diabetes mellitus is a metabolic disorder that affect different systems in human. Wide range of musculoskeletal syndromes have been described in association with diabetes. To determine the prevalence of upper limb soft tissue rheumatism in diabetes patients. In a cross sectional study 300 diabetic patients was examined by COPCORD questionnaire. The examination was performed by internist and rheumatologist . Data was analyzed by logistic regression. 73.3% of patients were female. Average age of cases was 51.2±13.7 years and mean of duration of disease was 7±6.4 years. 152 cases (50.7% had soft tissue rheumatism in upper limbs. 66 cases had carpal tannel syndrome, 23 cases with Dupuytren’s disease, 23 cases with Flexortenosynovitis, 91 cases with shoulder periarthritis, 4 cases had limited joint mobility and 12 had Elbow Epicandititis. Logestic regression analysis showed that type 2 diabetes, weak control of blood sugur and duration of disease>5years were risk factors for incidence of soft tissue rheumatism in upper limbs. Results have showed the high prevalence of soft tissue rheumatism in diabetic patients.