Sample records for applied type thin

  1. Thin-film limit formalism applied to surface defect absorption. (United States)

    Holovský, Jakub; Ballif, Christophe


    The thin-film limit is derived by a nonconventional approach and equations for transmittance, reflectance and absorptance are presented in highly versatile and accurate form. In the thin-film limit the optical properties do not depend on the absorption coefficient, thickness and refractive index individually, but only on their product. We show that this formalism is applicable to the problem of ultrathin defective layer e.g. on a top of a layer of amorphous silicon. We develop a new method of direct evaluation of the surface defective layer and the bulk defects. Applying this method to amorphous silicon on glass, we show that the surface defective layer differs from bulk amorphous silicon in terms of light soaking.

  2. Thin, applied surfacing for improving skid resistance of concrete pavements (United States)

    Scholer, C. F.


    The use of select aggregate in a thin wearing surface of portland cement mortar to prolone or restore a concrete pavement's ability to develop high friction was accomplished. Two fine aggregates, blast furnace slag and lightweight expanded shale were found to exhibit skid resistance greater than the other aggregates evaluated. The British polishing wheel was used in the laboratory evaluation of aggregate to simulate wear. The need for a method of restoring friction to a worn, but otherwise sound concrete pavement led to a field evaluation of several different techniques for placing a very thin overlay. The successful method was a broomed, very thin layer of mortar, 3 mm thick.

  3. Thin-film limit formalism applied to surface defect absorption


    Holovsky, Jakub; Ballif, Christophe


    The thin-film limit is derived by a nonconventional approach and equations for transmittance, reflectance and absorptance are presented in highly versatile and accurate form. In the thin-film limit the optical properties do not depend on the absorption coefficient, thickness and refractive index individually, but only on their product. We show that this formalism is applicable to the problem of ultrathin defective layer e. g. on a top of a layer of amorphous silicon. We develop a new method o...

  4. Photometric analysis applied in determining facial type

    Directory of Open Access Journals (Sweden)

    Luciana Flaquer Martins


    Full Text Available INTRODUCTION: In orthodontics, determining the facial type is a key element in the prescription of a correct diagnosis. In the early days of our specialty, observation and measurement of craniofacial structures were done directly on the face, in photographs or plaster casts. With the development of radiographic methods, cephalometric analysis replaced the direct facial analysis. Seeking to validate the analysis of facial soft tissues, this work compares two different methods used to determining the facial types, the anthropometric and the cephalometric methods. METHODS: The sample consisted of sixty-four Brazilian individuals, adults, Caucasian, of both genders, who agreed to participate in this research. All individuals had lateral cephalograms and facial frontal photographs. The facial types were determined by the Vert Index (cephalometric and the Facial Index (photographs. RESULTS: The agreement analysis (Kappa, made for both types of analysis, found an agreement of 76.5%. CONCLUSIONS: We concluded that the Facial Index can be used as an adjunct to orthodontic diagnosis, or as an alternative method for pre-selection of a sample, avoiding that research subjects have to undergo unnecessary tests.INTRODUÇÃO: em Ortodontia, a determinação do tipo facial é um elemento-chave na prescrição de um diagnóstico correto. Nos primórdios de nossa especialidade, a observação e a medição das estruturas craniofaciais eram feitas diretamente na face, em fotografias ou em modelos de gesso. Com o desenvolvimento dos métodos radiográficos, a análise cefalométrica foi substituindo a análise facial direta. Visando legitimar o estudo dos tecidos moles faciais, esse trabalho comparou a determinação do tipo facial pelos métodos antropométrico e cefalométrico. MÉTODOS: a amostra constou de sessenta e quatro indivíduos brasileiros, adultos, leucodermas, de ambos os sexos, que aceitaram participar da pesquisa. De todos os indivíduos da amostra

  5. Amorphous and microcrystalline silicon applied in very thin tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schicho, Sandra


    wider band gap of the intrinsic absorber and window-p-type doped material was achieved. Higher opencircuit voltages were observed using such materials. Two different types of high band gap amorphous absorber layers with the associated p-doped layers were implemented into very thin tandem cells. An elongation of the light path in the absorber material, which is usually accomplished by using textured front contacts and back reflectors, is crucial for the performance of very thin tandem cells. Periodically patterned aluminum plates, which had shown very good light trapping properties for {mu}c-Si:H single junction solar cells, were suggested as substrates for very thin tandem cells. In comparison to tandem cells on standard substrates, higher short-circuit current densities and quantum efficiencies were observed on Al that indicated good light trapping. However, tandem cells on aluminum plates exhibited much lower open-circuit voltages. Raman measurements revealed a higher crystallinity and compressive stress in the microcrystalline bottom cells deposited on aluminum plates compared to cells deposited on standard substrates under the same deposition conditions. The silane concentration that is applied for the deposition of {mu}c-Si:H influences the crystalline volume fraction in a way that under otherwise constant deposition conditions lower values lead to higher crystalline volume fractions. By means of a sample series for which different silane concentrations were applied the orientation of the cubic silicon crystals and the appearance of stacking faults or twinning in the microcrystalline layers were investigated depending on silane concentration and crystalline volume fraction. For these studies, Raman spectroscopy with two different excitation lasers and X-ray diffraction in Bragg-Brentano and Grazing Incidence geometry were carried out. No preferential orientation of the silicon crystals in the investigated materials was detected by asymmetrical Grazing Incidence XRD

  6. Applying the Notion of Metaphor Types to Enhance Counseling Protocols (United States)

    Tay, Dennis


    This article introduces the notion of metaphor types to show how the more nuanced aspects of metaphor theory can be applied to counseling practice. The author suggests that metaphor types can enhance existing interview protocols designed to help clients expand the source domain imagery of their metaphors and "bridge back" the expanded imagery to…

  7. Amorphous and microcrystalline silicon applied in very thin tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schicho, Sandra


    wider band gap of the intrinsic absorber and window-p-type doped material was achieved. Higher opencircuit voltages were observed using such materials. Two different types of high band gap amorphous absorber layers with the associated p-doped layers were implemented into very thin tandem cells. An elongation of the light path in the absorber material, which is usually accomplished by using textured front contacts and back reflectors, is crucial for the performance of very thin tandem cells. Periodically patterned aluminum plates, which had shown very good light trapping properties for {mu}c-Si:H single junction solar cells, were suggested as substrates for very thin tandem cells. In comparison to tandem cells on standard substrates, higher short-circuit current densities and quantum efficiencies were observed on Al that indicated good light trapping. However, tandem cells on aluminum plates exhibited much lower open-circuit voltages. Raman measurements revealed a higher crystallinity and compressive stress in the microcrystalline bottom cells deposited on aluminum plates compared to cells deposited on standard substrates under the same deposition conditions. The silane concentration that is applied for the deposition of {mu}c-Si:H influences the crystalline volume fraction in a way that under otherwise constant deposition conditions lower values lead to higher crystalline volume fractions. By means of a sample series for which different silane concentrations were applied the orientation of the cubic silicon crystals and the appearance of stacking faults or twinning in the microcrystalline layers were investigated depending on silane concentration and crystalline volume fraction. For these studies, Raman spectroscopy with two different excitation lasers and X-ray diffraction in Bragg-Brentano and Grazing Incidence geometry were carried out. No preferential orientation of the silicon crystals in the investigated materials was detected by asymmetrical Grazing Incidence XRD

  8. Influence of thinning intensity and canopy type on Scots pine stand and growth dynamics in a mixed managed forest

    Energy Technology Data Exchange (ETDEWEB)

    Primicia, I.; Artázcoz, R.; Imbert, J.B.; Puertas, F.; Traver, M.C.; Castillo, F.J.


    Aim of the study: We analysed the effects of thinning intensity and canopy type on Scots pine growth and stand dynamics in a mixed Scots pine-beech forest. Area of the study: Western Pyrenees. Material and methods: Three thinning intensities were applied in 1999 (0, 20 and 30% basal area removed) and 2009 (0, 20 and 40%) on 9 plots. Within each plot, pure pine and mixed pine-beech patches are distinguished. All pine trees were inventoried in 1999, 2009 and 2014. The effects of treatments on the tree and stand structure variables (density, basal area, stand and tree volume), on the periodic annual increment in basal area and stand and tree volume, and on mortality rates, were analysed using linear mixed effects models. Main Results: The enhancement of tree growth was mainly noticeable after the second thinning. Growth rates following thinning were similar or higher in the moderate than in the severe thinning. Periodic stand volume annual increments were higher in the thinned than in the unthinned plots, but no differences were observed between the thinned treatments. We observed an increase in the differences of the Tree volume annual increment between canopy types (mixed < pure) over time in the unthinned plots, as beech crowns developed. Research highlights: Moderate thinning is suggested as an appropriate forest practice at early pine age in these mixed forests, since it produced higher tree growth rates than the severe thinning and it counteracted the negative effect of beech on pine growth observed in the unthinned plots. (Author)

  9. Electron backscatter diffraction analysis applied to [0 0 1] magnetite thin films grown on MgO substrates (United States)

    Koblischka-Veneva, A.; Koblischka, M. R.; Zhou, Y.; Murphy, S.; Mücklich, F.; Hartmann, U.; Shvets, I. V.


    Electron backscatter diffraction (EBSD) analysis is applied to [0 0 1] oriented magnetite thin films grown on MgO substrates. A high image quality of the Kikuchi patterns was achieved enabling multi-phase scans. Several types of magnetite thin films were analyzed; one as-grown and the others after different annealing steps in oxygen atmosphere. From the EBSD mappings, we learn that the optimum orientation in [0 0 1]-direction is not yet achieved for the as-grown sample, but develops upon oxygen treatment. Furthermore, the distribution of misorientation angles within the investigated area (=1 grain) is found to change during the annealing steps. After 3 min of annealing, most of the misorientations around 30°-40° have vanished, and some islands with high misorientation angles remain, which may play a role as antiferromagnetic pinning centers.

  10. Thin film limits for Ginzburg--Landau with strong applied magnetic fields

    CERN Document Server

    Alama, Stan; Galvão-Sousa, Bernardo


    In this work, we study thin-film limits of the full three-dimensional Ginzburg-Landau model for a superconductor in an applied magnetic field oriented obliquely to the film surface. We obtain Gamma-convergence results in several regimes, determined by the asymptotic ratio between the magnitude of the parallel applied magnetic field and the thickness of the film. Depending on the regime, we show that there may be a decrease in the density of Cooper pairs. We also show that in the case of variable thickness of the film, its geometry will affect the effective applied magnetic field, thus influencing the position of vortices.

  11. Analytical methods applied to diverse types of Brazilian propolis (United States)


    Propolis is a bee product, composed mainly of plant resins and beeswax, therefore its chemical composition varies due to the geographic and plant origins of these resins, as well as the species of bee. Brazil is an important supplier of propolis on the world market and, although green colored propolis from the southeast is the most known and studied, several other types of propolis from Apis mellifera and native stingless bees (also called cerumen) can be found. Propolis is usually consumed as an extract, so the type of solvent and extractive procedures employed further affect its composition. Methods used for the extraction; analysis the percentage of resins, wax and insoluble material in crude propolis; determination of phenolic, flavonoid, amino acid and heavy metal contents are reviewed herein. Different chromatographic methods applied to the separation, identification and quantification of Brazilian propolis components and their relative strengths are discussed; as well as direct insertion mass spectrometry fingerprinting. Propolis has been used as a popular remedy for several centuries for a wide array of ailments. Its antimicrobial properties, present in propolis from different origins, have been extensively studied. But, more recently, anti-parasitic, anti-viral/immune stimulating, healing, anti-tumor, anti-inflammatory, antioxidant and analgesic activities of diverse types of Brazilian propolis have been evaluated. The most common methods employed and overviews of their relative results are presented. PMID:21631940

  12. Analytical methods applied to diverse types of Brazilian propolis

    Directory of Open Access Journals (Sweden)

    Marcucci Maria


    Full Text Available Abstract Propolis is a bee product, composed mainly of plant resins and beeswax, therefore its chemical composition varies due to the geographic and plant origins of these resins, as well as the species of bee. Brazil is an important supplier of propolis on the world market and, although green colored propolis from the southeast is the most known and studied, several other types of propolis from Apis mellifera and native stingless bees (also called cerumen can be found. Propolis is usually consumed as an extract, so the type of solvent and extractive procedures employed further affect its composition. Methods used for the extraction; analysis the percentage of resins, wax and insoluble material in crude propolis; determination of phenolic, flavonoid, amino acid and heavy metal contents are reviewed herein. Different chromatographic methods applied to the separation, identification and quantification of Brazilian propolis components and their relative strengths are discussed; as well as direct insertion mass spectrometry fingerprinting. Propolis has been used as a popular remedy for several centuries for a wide array of ailments. Its antimicrobial properties, present in propolis from different origins, have been extensively studied. But, more recently, anti-parasitic, anti-viral/immune stimulating, healing, anti-tumor, anti-inflammatory, antioxidant and analgesic activities of diverse types of Brazilian propolis have been evaluated. The most common methods employed and overviews of their relative results are presented.

  13. Identification of quality control types applied in mass customization

    Directory of Open Access Journals (Sweden)

    Gabriel Vidor


    Full Text Available The uses of quality control (QC in products and services obtained through mass customization (MC is an open research topic, attracting interest from researchers and practitioners due to its relevance and applicability. In this paper we identify QC types applied in MC to formalize them through scientific research. For that we performed a qualitative research carried out through interviews in six companies from the manufacturing and service areas, covering sectors such as automakers and electric energy suppliers. The analyses are organized through theoretical comparison, external comparison and ordering by consensus. It was found that the QC adopted by a company in mass customized products and services depends on the product structure.

  14. Novel p-Type Conductive Semiconductor Nanocrystalline Film as the Back Electrode for High-Performance Thin Film Solar Cells. (United States)

    Zhang, Ming-Jian; Lin, Qinxian; Yang, Xiaoyang; Mei, Zongwei; Liang, Jun; Lin, Yuan; Pan, Feng


    Thin film solar cells, due to the low cost, high efficiency, long-term stability, and consumer applications, have been widely applied for harvesting green energy. All of these thin film solar cells generally adopt various metal thin films as the back electrode, like Mo, Au, Ni, Ag, Al, graphite, and so forth. When they contact with p-type layer, it always produces a Schottky contact with a high contact potential barrier, which greatly affects the cell performance. In this work, we report for the first time to find an appropriate p-type conductive semiconductor film, digenite Cu9S5 nanocrystalline film, as the back electrode for CdTe solar cells as the model device. Its low sheet resistance (16.6 Ω/sq) could compare to that of the commercial TCO films (6-30 Ω/sq), like FTO, ITO, and AZO. Different from the traditonal metal back electrode, it produces a successive gradient-doping region by the controllable Cu diffusion, which greatly reduces the contact potential barrier. Remarkably, it achieved a comparable power conversion efficiency (PCE, 11.3%) with the traditional metal back electrode (Cu/Au thin films, 11.4%) in CdTe cells and a higher PCE (13.8%) with the help of the Au assistant film. We believe it could also act as the back electrode for other thin film solar cells (α-Si, CuInS2, CIGSe, CZTS, etc.), for their performance improvement.

  15. Thin-film type Li-ion battery, using a polyethylene separator grafted with glycidyl methacrylate

    Energy Technology Data Exchange (ETDEWEB)

    Ko, J.M.; Min, B.G.; Kim, D.-W. [Hanbat University, Taejon (Korea). Department of Chemical Technology; Ryu, K.S.; Kim, K.M.; Lee, Y.G.; Chang, S.H. [Electronic and Telecommunication Research Institute, Taejon (Korea)


    For the improvement of organic electrolyte holding ability, the hydrophobic surface of a porous polyethylene (PE)-membrane separator was modified by grafting a hydrophilic monomer, glycidyl methacrylate (GMA), PE-g-GMA, by using electron beam technology, and applied to a thin film type Li-ion battery to elucidate the effect of a surface modification of a PE membrane separator on the cyclic life of Li-ion batteries. The Li-ion battery using the PE-g-GMA membrane separator showed a better cycle life than that of the unmodified PE membrane separator, indicating that the surface hydrophilicity of the PE membrane separator improved the electrolyte holding capability between the electrodes in the Li-ion cell and prevented the electrolyte leakage. (author)

  16. Rapid method for hydrocarbon-type analysis of heavy oils and synthetic fuels by pyrolysis thin layer chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.A.; George, A.E.


    This work describes a rapid method for hydrocargon-type analysis applying thin layer chromatography (TLC) to the pentane-soluble fraction *malthenes) of the petroleum and synthetic fuels boiling above 200/sup 0/C. The principal component types encountered in this paper are saturates (SA), aromatics (AR), (mono and di together) polynuclear aromatics (PNA) and polar material (PO). The method uses a Iatroscan TLC pyrolyzer which combines the resolution capabilities of TLC with the possibility of quantification by using a flame-ionization detector (FID). Comparison of the results with those obtained by the API-60 procedure is presented.

  17. Comparing n- and p-type polycrystalline silicon absorbers in thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Deckers, J. [imec, Kapeldreef 75, B-3001 Heverlee, Leuven (Belgium); ESAT, KU Leuven, Kardinaal Mercierlaan 94, B-3001 Heverlee, Leuven (Belgium); Bourgeois, E. [Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); IMOMEC, IMEC vzw, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); Jivanescu, M. [Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200D, B-3001 Heverlee, Leuven (Belgium); Abass, A. [Photonics Research Group (INTEC), Ghent University-imec, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); Van Gestel, D.; Van Nieuwenhuysen, K.; Douhard, B. [imec, Kapeldreef 75, B-3001 Heverlee, Leuven (Belgium); D' Haen, J.; Nesladek, M.; Manca, J. [Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); IMOMEC, IMEC vzw, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); Gordon, I.; Bender, H. [imec, Kapeldreef 75, B-3001 Heverlee, Leuven (Belgium); Stesmans, A. [Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200D, B-3001 Heverlee, Leuven (Belgium); Mertens, R.; Poortmans, J. [imec, Kapeldreef 75, B-3001 Heverlee, Leuven (Belgium); ESAT, KU Leuven, Kardinaal Mercierlaan 94, B-3001 Heverlee, Leuven (Belgium)


    We have investigated fine grained polycrystalline silicon thin films grown by direct chemical vapor deposition on oxidized silicon substrates. More specifically, we analyze the influence of the doping type on the properties of this model polycrystalline silicon material. This includes an investigation of defect passivation and benchmarking of minority carrier properties. In our investigation, we use a variety of characterization techniques to probe the properties of the investigated polycrystalline silicon thin films, including Fourier Transform Photoelectron Spectroscopy, Electron Spin Resonance, Conductivity Activation, and Suns-Voc measurements. Amphoteric silicon dangling bond defects are identified as the most prominent defect type present in these layers. They are the primary recombination center in the relatively lowly doped polysilicon thin films at the heart of the current investigation. In contrast with the case of solar cells based on Czochralski silicon or multicrystalline silicon wafers, we conclude that no benefit is found to be associated with the use of n-type dopants over p-type dopants in the active absorber of the investigated polycrystalline silicon thin-film solar cells. - Highlights: • Comparison of n- and p-type absorbers for thin-film poly-Si solar cells • Extensive characterization of the investigated layers' characteristics • Literature review pertaining the use of n-type and p-type dopants in silicon.

  18. Piezo-phototronic effect on electroluminescence properties of p-type GaN thin films. (United States)

    Hu, Youfan; Zhang, Yan; Lin, Long; Ding, Yong; Zhu, Guang; Wang, Zhong Lin


    We present that the electroluminescence (EL) properties of Mg-doped p-type GaN thin films can be tuned by the piezo-phototronic effect via adjusting the minority carrier injection efficiency at the metal-semiconductor (M-S) interface by strain induced polarization charges. The device is a metal-semiconductor-metal structure of indium tin oxide (ITO)-GaN-ITO. Under different straining conditions, the changing trend of the transport properties of GaN films can be divided into two types, corresponding to the different c-axis orientations of the films. An extreme value was observed for the integral EL intensity under certain applied strain due to the adjusted minority carrier injection efficiency by piezoelectric charges introduced at the M-S interface. The external quantum efficiency of the blue EL at 430 nm was changed by 5.84% under different straining conditions, which is 1 order of magnitude larger than the change of the green peak at 540 nm. The results indicate that the piezo-phototronic effect has a larger impact on the shallow acceptor states related EL process than on the one related to the deep acceptor states in p-type GaN films. This study has great significance on the practical applications of GaN in optoelectronic devices under a working environment where mechanical deformation is unavoidable such as for flexible/printable light emitting diodes.

  19. A chip-type thin-layer electrochemical cell coupled with capillary electrophoresis for online separation of electrode reaction products

    Energy Technology Data Exchange (ETDEWEB)

    He, Jian-Bo, E-mail:; Cui, Ting; Zhang, Wen-Wen; Deng, Ning


    Graphical abstract: -- Highlights: •A new coupling of thin-layer electrolysis with capillary electrophoresis (CE). •Rapid electrolysis, direct sampling followed by online CE separation. •At least 13 products of quercetin oxidation were separated. •Thermodynamic and kinetic parameters were determined from CE peak areas. -- Abstract: A coupling technique of thin-layer electrolysis with high-performance capillary electrophoresis/UV–vis technique(EC/HPCE/UV–vis) is developed for online separation and determination of electrode reaction products. A chip-type thin-layer electrolytic (CTE) cell was designed and fabricated, which contains a capillary channel and a background electrolyte reservoir, allowing rapid electrolysis, direct sampling and online electrophoretic separation. This chip-type setup was characterized based on an electrophoresis expression of Nernst equation that was applied to the redox equilibrium of o-tolidine at different potentials. The utility of the method was demonstrated by separating and determining the electro-oxidation products of quercetin in different pH media. Two main products were always found in the studied time, potential and pH ranges. The variety of products increased not only with increasing potential but also with increasing pH value, and in total, at least 13 products were observed in the electropherograms. This work illustrates a novel example of capillary electrophoresis used online with thin-layer electrolysis to separate and detect electrode reaction products.

  20. p-Type Transparent NiO Thin Films By e-Beam Evaporation Techniques

    Directory of Open Access Journals (Sweden)

    K.J. Patel1,


    Full Text Available Nickel oxide (NiO semiconductors thin films were prepared by e-beam evaporation technique at different substrate temperatures ranging from room temperature to 400 °C on glass substrate. Glancing incident X-ray diffraction depict that with the increases in substrate temperature the preferred orientation changes from (111 to (200 direction. Atomic force microscopy was used to investigate the surface morphology of the NiO thin films. The transmittance of NiO thin film increases with substrate temperature. NiO thin film was also deposited on n-type indium tin oxide (ITO thin films to investigate the diode characteristic of p-NiO/n-ITO junction.


    Directory of Open Access Journals (Sweden)



    Full Text Available Pb(Zr0.52Ti0.48O3 (PZT sols were prepared by a modified sol-gel route using both solvents - acetic acid and stabilizer solution (n-propanol : 1,2-propanediol in the rate 10 : 1. The sols were deposited by spin-coating onto platinized Al2O3 or SiO2/Si substrates. Results of SEM and XRD analyses confirmed, that the transformation of the amorphous PZT film to perovskite structure happened after sintering at 650°C. The mechanism of microstructure formation has described for morphologicaly different perovskite particle types in 1, 2 and 3-layered PZT thin films with thickness of 200-500 nm on used substrates. Three different PZT film microstructure types in dependence on the applied sol concentration were found. It was found, that the PZT/Pt/Al2O3 film microstructure at 1.0 M sol concentration was composed of two forms of perovskite particles, big rosette and irregular cuboidal particles. Small spherical particles and rosette structure were found in PZT/Pt/Si/SiO2 films.

  2. Perovskite type nanopowders and thin films obtained by chemical methods

    Directory of Open Access Journals (Sweden)

    Viktor Fruth


    Full Text Available The review presents the contribution of the authors, to the preparation of two types of perovskites, namely BiFeO3 and LaCoO3, by innovative methods. The studied perovskites were obtained as powders, films and sintered bodies. Their complex structural and morphological characterization is also presented. The obtained results have underlined the important influence of the method of preparation on the properties of the synthesized perovskites.

  3. Hot-wire chemical vapor deposition prepared aluminum doped p-type microcrystalline silicon carbide window layers for thin film silicon solar cells (United States)

    Chen, Tao; Köhler, Florian; Heidt, Anna; Carius, Reinhard; Finger, Friedhelm


    Al-doped p-type microcrystalline silicon carbide (µc-SiC:H) thin films were deposited by hot-wire chemical vapor deposition at substrate temperatures below 400 °C. Monomethylsilane (MMS) highly diluted in hydrogen was used as the SiC source in favor of SiC deposition in a stoichiometric form. Aluminum (Al) introduced from trimethylaluminum (TMAl) was used as the p-type dopant. The material property of Al-doped p-type µc-SiC:H thin films deposited with different deposition pressure and filament temperature was investigated in this work. Such µc-SiC:H material is of mainly cubic (3C) SiC polytype. For certain conditions, like high deposition pressure and high filament temperature, additional hexagonal phase and/or stacking faults can be observed. P-type µc-SiC:H thin films with optical band gap E04 ranging from 2.0 to 2.8 eV and dark conductivity ranging from 10-5 to 0.1 S/cm can be prepared. Such transparent and conductive p-type µc-SiC:H thin films were applied in thin film silicon solar cells as the window layer, resulting in an improved quantum efficiency at wavelengths below 480 nm.

  4. Preparation and photochromism of Keggin-type molybdphosphoric acid/silica mesoporous composite thin films

    Institute of Scientific and Technical Information of China (English)

    ZHANG XueAo; WU WenJian; MAN YaHui; TIAN Tian; TIAN XiaoZhou; WANG JianFang


    Using tetraethoxysilane and 3-aminopropyltriethoxysilane as the silica sources, amino-functionalized organic/inorganic hybrid mesoporous silica thin films with 2-dimensional hexagonal structure have been synthesized by evaporation induced self-assembly process in the presence of cetyltrimethyl ammonium bromide templates under acid conditions. The Keggin-type molybdphosphoric acid (PMo) is incorporated into the mesoporous silica thin films with amino-groups by wetness impregnation, and the PMo/silica mesoporous composite thin films are obtained. The results of X-ray diffraction (XRD),high resolution transmission electron microscopy (HRTEM), and Fourier transform infrared (FTIR)spectra indicate the PMo molecules maintain Keggin structure and are homogeneously distributed inside mesopores. The composite thin films possess excellent reversible photochromic properties, and change from colorless to blue under ultraviolet irradiation. The photochromic mechanism of the composite thin films is studied by ultraviolet-visible (UV-vis), electron spin resonance (ESR) and X-ray photoelectron spectroscopy (XPS) spectra. It is shown that intervalence charge transfer (IVCT) and ligand-to-metal charge transfer (LMCT) are the main reasons of photochromism. PMo anions interact strongly with amino-groups of the mesoporous suface via hydrogen bond and electrostatic force. After ultraviolet irradiation, the charge transfer occurs by reduction of heteropolyanions accompanying the formation of heteropolyblues with multivalence Mo(Ⅵ, Ⅴ), and the bleaching process of composite thin films is closely related to the presence of oxygen.

  5. Preparation and photochromism of Keggin-type molybdphosphoric acid/silica mesoporous composite thin films

    Institute of Scientific and Technical Information of China (English)


    Using tetraethoxysilane and 3-aminopropyltriethoxysilane as the silica sources, amino-functionalized organic/inorganic hybrid mesoporous silica thin films with 2-dimensional hexagonal structure have been synthesized by evaporation induced self-assembly process in the presence of cetyltrimethyl ammonium bromide templates under acid conditions. The Keggin-type molybdphosphoric acid (PMo) is incorporated into the mesoporous silica thin films with amino-groups by wetness impregnation, and the PMo/silica mesoporous composite thin films are obtained. The results of X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), and Fourier transform infrared (FTIR) spectra indicate the PMo molecules maintain Keggin structure and are homogeneously distributed inside mesopores. The composite thin films possess excellent reversible photochromic properties, and change from colorless to blue under ultraviolet irradiation. The photochromic mechanism of the composite thin films is studied by ultraviolet-visible (UV-vis), electron spin resonance (ESR) and X-ray photoelectron spectroscopy (XPS) spectra. It is shown that intervalence charge transfer (IVCT) and ligand-to-metal charge transfer (LMCT) are the main reasons of photochromism. PMo anions interact strongly with amino-groups of the mesoporous suface via hydrogen bond and electrostatic force. After ultraviolet irradiation, the charge transfer occurs by reduction of heteropolyanions accompanying the formation of heteropolyblues with multivalence Mo(VI, V), and the bleaching process of composite thin films is closely related to the presence of oxygen.

  6. Microstrip coupling techniques applied to thin-film Josephson junctions at microwave frequencies

    DEFF Research Database (Denmark)

    Sørensen, O H; Pedersen, Niels Falsig; Mygind, Jesper


    Three different schemes for coupling to low impedance Josephson devices have been investigated. They all employ superconducting thin-film microstrip circuit techniques. The schemes are: (i) a quarterwave stepped impedance transformer, (ii) a microstrip resonator, (iii) an adjustable impedance...... transformer in inverted microstrip. Using single microbridges to probe the performance we found that the most primising scheme in terms of coupling efficiency and useful bandwidth was the adjustable inverted microstrip transformer....


    Institute of Scientific and Technical Information of China (English)

    Du Liqun; Arai Fumihito; Fukuda Toshio; Kwon Guiryong


    Lead zirconate titanium solid-solution (PZT) thin films with various thickness are synthesized on titanium substrates by repeated hydrothermal treatments.Young modulus,electric-field- induced displacement and the density of the PZT film are measured respectively.Bimorph- type bending actuators are fabricated using these films.The model,which is used to analyze the driving ability of bimorph-type bending actuators by hydrothermal method,is set up.It can be seen that the driving ability of bimorph-type bending actuators can be greatly improved by optimizing the thickness of PZT thin film and substrate from the theoretical analysis results.The measured values are expected to agree with the theoretical values calculated by the above model.

  8. Texture-Etched SnO2 Glasses Applied to Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Bing-Rui Wu


    Full Text Available Transparent electrodes of tin dioxide (SnO2 on glasses were further wet-etched in the diluted HCl:Cr solution to obtain larger surface roughness and better light-scattering characteristic for thin-film solar cell applications. The process parameters in terms of HCl/Cr mixture ratio, etching temperature, and etching time have been investigated. After etching process, the surface roughness, transmission haze, and sheet resistance of SnO2 glasses were measured. It was found that the etching rate was increased with the additions in etchant concentration of Cr and etching temperature. The optimum texture-etching parameters were 0.15 wt.% Cr in 49% HCl, temperature of 90°C, and time of 30 sec. Moreover, silicon thin-film solar cells with the p-i-n structure were fabricated on the textured SnO2 glasses using hot-wire chemical vapor deposition. By optimizing the texture-etching process, the cell efficiency was increased from 4.04% to 4.39%, resulting from the increment of short-circuit current density from 14.14 to 15.58 mA/cm2. This improvement in cell performances can be ascribed to the light-scattering effect induced by surface texturization of SnO2.

  9. Fabrication of (110)-one-axis-oriented perovskite-type oxide thin films and their application to buffer layer (United States)

    Sato, Tomoya; Ichinose, Daichi; Kimura, Junichi; Inoue, Takaaki; Mimura, Takanori; Funakubo, Hiroshi; Uchiyama, Kiyoshi


    BaCe0.9Y0.1O3-δ (BCYO) and SrZr0.8Y0.2O3-δ (SZYO) thin films of perovskite-type oxides were deposited on (111)Pt/TiO x /SiO2/(100)Si substrates. X-ray diffraction patterns showed that the (110)-oriented BCYO and SZYO thin films were grown on (111)Pt/Si substrates directly without using any buffer layers. Thin films of SrRuO3 (SRO), a conductive perovskite-type oxide, were also deposited on those films and highly (110)-oriented SRO thin films were obtained. We believe that this (110)-oriented SRO works as a buffer layer to deposit (110)-oriented perovskite-type ferroelectric oxide thin films as well as a bottom electrode and can modify the ferroelectric properties of the oxide thin films by controlling their crystallographic orientations.

  10. Dynamic response of a thin sessile drop of conductive liquid to an abruptly applied or removed electric field (United States)

    Corson, L. T.; Mottram, N. J.; Duffy, B. R.; Wilson, S. K.; Tsakonas, C.; Brown, C. V.


    We consider, both theoretically and experimentally, a thin sessile drop of conductive liquid that rests on the lower plate of a parallel-plate capacitor. We derive analytical expressions for both the initial deformation and the relaxation dynamics of the drop as the electric field is either abruptly applied or abruptly removed, as functions of the geometrical, electrical, and material parameters, and investigate the ranges of validity of these expressions by comparison with full numerical simulations. These expressions provide a reasonable description of the experimentally measured dynamic response of a drop of conductive ionic liquid 1-butyl-3-methyl imidazolium tetrafluoroborate.

  11. One material, multiple functions: graphene/Ni(OH)2 thin films applied in batteries, electrochromism and sensors (United States)

    Neiva, Eduardo G. C.; Oliveira, Marcela M.; Bergamini, Márcio F.; Marcolino, Luiz H.; Zarbin, Aldo J. G.


    Different nanocomposites between reduced graphene oxide (rGO) and Ni(OH)2 nanoparticles were synthesized through modifications in the polyol method (starting from graphene oxide (GO) dispersion in ethylene glycol and nickel acetate), processed as thin films through the liquid-liquid interfacial route, homogeneously deposited over transparent electrodes and spectroscopically, microscopically and electrochemically characterized. The thin and transparent nanocomposite films (112 to 513 nm thickness, 62.6 to 19.9% transmittance at 550 nm) consist of α-Ni(OH)2 nanoparticles (mean diameter of 4.9 nm) homogeneously decorating the rGO sheets. As a control sample, neat Ni(OH)2 was prepared in the same way, consisting of porous nanoparticles with diameter ranging from 30 to 80 nm. The nanocomposite thin films present multifunctionality and they were applied as electrodes to alkaline batteries, as electrochromic material and as active component to electrochemical sensor to glycerol. In all the cases the nanocomposite films presented better performances when compared to the neat Ni(OH)2 nanoparticles, showing energy and power of 43.7 W h kg−1 and 4.8 kW kg−1 (8.24 A g−1) respectively, electrochromic efficiency reaching 70 cm2 C−1 and limit of detection as low as 15.4 ± 1.2 μmol L−1. PMID:27654065

  12. Azaisoindigo conjugated polymers for high performance n-type and ambipolar thin film transistor applications

    KAUST Repository

    Yue, Wan


    Two new alternating copolymers, PAIIDBT and PAIIDSe have been prepared by incorporating a highly electron deficient azaisoindigo core. The molecular structure and packing of the monomer is determined from the single crystal X-ray diffraction. Both polymers exhibit high EAs and highly planar polymer backbones. When polymers are used as the semiconducting channel for solution-processed thin film transistor application, good properties are observed. A–A type PAIIDBT exhibits unipolar electron mobility as high as 1.0 cm2 V−1 s−1, D–A type PAIIDSe exhibits ambipolar charge transport behavior with predominately electron mobility up to 0.5 cm2 V−1 s−1 and hole mobility to 0.2 cm2 V−1 s−1. The robustness of the extracted mobility values are also commented on in detail. Molecular orientation, thin film morphology and energetic disorder of both polymers are systematically investigated.

  13. Formation of p-type ZnO thin film through co-implantation (United States)

    Chuang, Yao-Teng; Liou, Jhe-Wei; Woon, Wei-Yen


    We present a study on the formation of p-type ZnO thin film through ion implantation. Group V dopants (N, P) with different ionic radii are implanted into chemical vapor deposition grown ZnO thin film on GaN/sapphire substrates prior to thermal activation. It is found that mono-doped ZnO by N+ implantation results in n-type conductivity under thermal activation. Dual-doped ZnO film with a N:P ion implantation dose ratio of 4:1 is found to be p-type under certain thermal activation conditions. Higher p-type activation levels (1019 cm-3) under a wider thermal activation range are found for the N/P dual-doped ZnO film co-implanted by additional oxygen ions. From high resolution x-ray diffraction and x-ray photoelectron spectroscopy it is concluded that the observed p-type conductivities are a result of the promoted formation of PZn-4NO complex defects via the concurrent substitution of nitrogen at oxygen sites and phosphorus at zinc sites. The enhanced solubility and stability of acceptor defects in oxygen co-implanted dual-doped ZnO film are related to the reduction of oxygen vacancy defects at the surface. Our study demonstrates the prospect of the formation of stable p-type ZnO film through co-implantation.



    Fereshteh Farzianpour; Gholamreza Jahead Khaniki; Masoud Younesian; Bahman Banaei Ghahferkhi; Mehraban Sadeghi; Shayan Hosseini


    The aim of this research was to investigate the role of the social demographic parameters of the people in charge of the facilities producing pastry, poolak (a type of coin-shaped candy) and rock candy in the consumption of food colors and to determine color type by thin layer chromatography in Shahr-e-kord city in 2011. This research was an interventional-analytical study and its target population is the people in charge of the facilities producing pastry, poolak and rock candy in Shahr-e-ko...

  15. P-type thin films transistors with solution-deposited lead sulfide films as semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo-Castillo, A.; Salas-Villasenor, A.; Mejia, I. [Department of Materials Science and Engineering, The University of Texas at Dallas. 800 West Campbell Rd, Richardson, TX 75083 (United States); Aguirre-Tostado, S. [Centro de Investigacion en Materiales Avanzados, S. C. Alianza Norte 202, Parque de Investigacion e Innovacion Tecnologica, Apodaca, Nuevo Leon, C.P. 666000 (Mexico); Gnade, B.E. [Department of Materials Science and Engineering, University of Texas at Dallas. 800 West Campbell Rd, Richardson, TX 75083 (United States); Quevedo-Lopez, M.A., E-mail: [Department of Materials Science and Engineering, University of Texas at Dallas. 800 West Campbell Rd, Richardson, TX 75083 (United States)


    In this paper we demonstrate p-type thin film transistors fabricated with lead sulfide (PbS) as semiconductor deposited by chemical bath deposition methods. Crystallinity and morphology of the resulting PbS films were characterized using X-ray diffraction, atomic force microscopy and scanning electron microscopy. Devices were fabricated using photolithographic processes in a bottom gate configuration with Au as source and drain top contacts. Field effect mobility for as-fabricated devices was {approx} 0.09 cm{sup 2} V{sup -1} s{sup -1} whereas the mobility for devices annealed at 150 Degree-Sign C/h in forming gas increased up to {approx} 0.14 cm{sup 2} V{sup -1} s{sup -1}. Besides the thermal annealing, the entire fabrications process was maintained below 100 Degree-Sign C. The electrical performance of the PbS-thin film transistors was studied before and after the 150 Degree-Sign C anneal as well as a function of the PbS active layer thicknesses. - Highlights: Black-Right-Pointing-Pointer Thin film transistors with PbS as semiconductor deposited by chemical bath deposition. Black-Right-Pointing-Pointer Photolithography-based thin film transistors with PbS films at low temperatures. Black-Right-Pointing-Pointer Electron mobility for anneal-PbS devices of {approx} 0.14 cm{sup 2} V{sup -1} s{sup -1}. Black-Right-Pointing-Pointer Highest mobility reported in thin film transistors with PbS as the semiconductor.

  16. Identification of thin elastic isotropic plate parameters applying Guided Wave Measurement and Artificial Neural Networks (United States)

    Pabisek, Ewa; Waszczyszyn, Zenon


    A new hybrid computational system for material identification (HCSMI) is presented, developed for the identification of homogeneous, elastic, isotropic plate parameters. Attention is focused on the construction of dispersion curves, related to Lamb waves. The main idea of the system HCSMI lies in separation of two essential basic computational stages, corresponding to direct or inverse analyses. In the frame of the first stage an experimental dispersion curve DCexp is constructed, applying Guided Wave Measurement (GWM) technique. Then, in the other stage, corresponding to the inverse analysis, an Artificial Neural Network (ANN) is trained 'off line'. The substitution of results of the first stage, treated as inputs of the ANN, gives the values of identified plate parameters. In such a way no iteration is needed, unlike to the classical approach. In such an approach, the "distance" between the approximate experimental curves DCexp and dispersion curves DCnum obtained in the direct analysis, is iteratively minimized. Two case studies are presented, corresponding either to measurements in laboratory tests or those related to pseudo-experimental noisy data of computer simulations. The obtained results prove high numerical efficiency of HCSMI, applied to the identification of aluminum plate parameters.

  17. Chemical synthesis of p-type nanocrystalline copper selenide thin films for heterojunction solar cells (United States)

    Ambade, Swapnil B.; Mane, R. S.; Kale, S. S.; Sonawane, S. H.; Shaikh, Arif V.; Han, Sung-Hwan


    Nanocrystalline thin films of copper selenide have been grown on glass and tin doped-indium oxide substrates using chemical method. At ambient temperature, golden films have been synthesized and annealed at 200 °C for 1 h and were examined for their structural, surface morphological and optical properties by means of X-ray diffraction (XRD), scanning electron microscopy and UV-vis spectrophotometry techniques, respectively. Cu 2- xSe phase was confirmed by XRD pattern and spherical grains of 30 ± 4 - 40 ± 4 nm in size aggregated over about 130 ± 10 nm islands were seen by SEM images. Effect of annealing on crystallinity improvement, band edge shift and photoelectrochemical performance (under 80 mW/cm 2 light intensity and in lithium iodide electrolyte) has been studied and reported. Observed p-type electrical conductivity in copper selenide thin films make it a suitable candidate for heterojunction solar cells.

  18. Chemical synthesis of p-type nanocrystalline copper selenide thin films for heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ambade, Swapnil B. [Department of Chemical Engineering, Vishwakarma Institute of Technology, Pune 411037 (India); Mane, R.S. [Inorganic Nanomaterials Laboratory, Department of Chemistry, Hanyang University, Sungdong-Ku, Haengdang-dong 17, Seoul 133-791 (Korea, Republic of); Kale, S.S. [Inorganic Nanomaterials Laboratory, Department of Chemistry, Hanyang University, Sungdong-Ku, Haengdang-dong 17, Seoul 133-791 (Korea, Republic of); Sonawane, S.H. [Department of Chemical Engineering, Vishwakarma Institute of Technology, Pune 411037 (India); Shaikh, Arif V. [Department of Electronic Science, AKI' s Poona College of Arts, Science and Commerce, Camp, Pune 411 001 (India); Han, Sung-Hwan [Inorganic Nanomaterials Laboratory, Department of Chemistry, Hanyang University, Sungdong-Ku, Haengdang-dong 17, Seoul 133-791 (Korea, Republic of)]. E-mail:


    Nanocrystalline thin films of copper selenide have been grown on glass and tin doped-indium oxide substrates using chemical method. At ambient temperature, golden films have been synthesized and annealed at 200 deg. C for 1 h and were examined for their structural, surface morphological and optical properties by means of X-ray diffraction (XRD), scanning electron microscopy and UV-vis spectrophotometry techniques, respectively. Cu{sub 2-x}Se phase was confirmed by XRD pattern and spherical grains of 30 {+-} 4 - 40 {+-} 4 nm in size aggregated over about 130 {+-} 10 nm islands were seen by SEM images. Effect of annealing on crystallinity improvement, band edge shift and photoelectrochemical performance (under 80 mW/cm{sup 2} light intensity and in lithium iodide electrolyte) has been studied and reported. Observed p-type electrical conductivity in copper selenide thin films make it a suitable candidate for heterojunction solar cells.

  19. Preparation of Thin Melanin-Type Films by Surface-Controlled Oxidation. (United States)

    Salomäki, Mikko; Tupala, Matti; Parviainen, Timo; Leiro, Jarkko; Karonen, Maarit; Lukkari, Jukka


    The preparation of thin melanin films suitable for applications is challenging. In this work, we present a new alternative approach to thin melanin-type films using oxidative multilayers prepared by the sequential layer-by-layer deposition of cerium(IV) and inorganic polyphosphate. The interfacial reaction between cerium(IV) in the multilayer and 5,6-dihydroxyindole (DHI) in the adjacent aqueous solution leads to the formation of a thin uniform film. The oxidation of DHI by cerium(IV) proceeds via known melanin intermediates. We have characterized the formed DHI-melanin films using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), UV-vis spectroscopy, and spectroelectrochemistry. When a five-bilayer oxidative multilayer is used, the film is uniform with a thickness of ca. 10 nm. Its chemical composition, as determined using XPS, is typical for melanin. It is also redox active, and its oxidation occurs in two steps, which can be assigned to semiquinone and quinone formation within the indole structural motif. Oxidative multilayers can also oxidize dopamine, but the reaction stops at the dopamine quinone stage because of the limited amount of the multilayer-based oxidizing agent. However, dopamine oxidation by Ce(IV) was studied also in solution by UV-vis spectroscopy and mass spectrometry in order to verify the reaction mechanism and the final product. In solution, the oxidation of dopamine by cerium shows that the indole ring formation takes place already at low pH and that the mass spectrum of the final product is practically identical with that of commercial melanin. Therefore, layer-by-layer formed oxidative multilayers can be used to deposit functional melanin-type thin films on arbitrary substrates by a surface-controlled reaction.

  20. Chain relaxation in thin polymer films: turning a dielectric type-B polymer into a type-A' one. (United States)

    Solar, Mathieu; Paul, Wolfgang


    A molecular dynamics simulation study of chain relaxation in a thin polymer film is presented, studying the dielectric response of a random copolymer of cis and trans 1,4-polybutadiene, a type B polymer without net chain dipole moment, confined between graphite walls. We stress the orientational effect of the attractive walls, inducing polarization in the vicinity of the walls, while the center of the film stays bulk-like. This polarization leads to a net dipole moment of the adsorbed chains, which is perpendicular to their end-to-end vector, which we termed as type A' behavior. In this situation, the dipole moment relaxes only upon desorption of the chains from the wall, a dynamic process which occurs on timescales much longer than the bulk relaxation time of the polymer.

  1. Fuselage Boundary Layer Ingestion Propulsion Applied to a Thin Haul Commuter Aircraft for Optimal Efficiency (United States)

    Mikic, Gregor Veble; Stoll, Alex; Bevirt, JoeBen; Grah, Rok; Moore, Mark D.


    Theoretical and numerical aspects of aerodynamic efficiency of propulsion systems are studied. Focus is on types of propulsion that closely couples to the aerodynamics of the complete vehicle. We discuss the effects of local flow fields, which are affected both by conservative flow acceleration as well as total pressure losses, on the efficiency of boundary layer immersed propulsion devices. We introduce the concept of a boundary layer retardation turbine that helps reduce skin friction over the fuselage. We numerically investigate efficiency gains offered by boundary layer and wake interacting devices. We discuss the results in terms of a total energy consumption framework and show that efficiency gains offered depend on all the elements of the propulsion system.

  2. Analysis of MUSIC-type imaging functional for single, thin electromagnetic inhomogeneity in limited-view inverse scattering problem (United States)

    Ahn, Chi Young; Jeon, Kiwan; Park, Won-Kwang


    This study analyzes the well-known MUltiple SIgnal Classification (MUSIC) algorithm to identify unknown support of thin penetrable electromagnetic inhomogeneity from scattered field data collected within the so-called multi-static response matrix in limited-view inverse scattering problems. The mathematical theories of MUSIC are partially discovered, e.g., in the full-view problem, for an unknown target of dielectric contrast or a perfectly conducting crack with the Dirichlet boundary condition (Transverse Magnetic-TM polarization) and so on. Hence, we perform further research to analyze the MUSIC-type imaging functional and to certify some well-known but theoretically unexplained phenomena. For this purpose, we establish a relationship between the MUSIC imaging functional and an infinite series of Bessel functions of integer order of the first kind. This relationship is based on the rigorous asymptotic expansion formula in the existence of a thin inhomogeneity with a smooth supporting curve. Various results of numerical simulation are presented in order to support the identified structure of MUSIC. Although a priori information of the target is needed, we suggest a least condition of range of incident and observation directions to apply MUSIC in the limited-view problem.

  3. Dual-bath electrodeposition of n-type Bi–Te/Bi–Se multilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Ken; Okuhata, Mitsuaki; Takashiri, Masayuki, E-mail:


    N-type Bi–Te/Bi–Se multilayer thin films were prepared by dual-bath electrodeposition. We varied the number of layers from 2 to 10 while the total film thickness was maintained at approximately 1 μm. All the multilayer films displayed the X-ray diffraction peaks normally observed from individual Bi{sub 2}Te{sub 3} and Bi{sub 2}Se{sub 3} crystal structures, indicating that both phases coexist in the multilayer. The cross-section of the 10-layer Bi–Te/Bi–Se film was composed of stacked layers with nano-sized grains but the boundaries between the layers were not planar. The Seebeck coefficient was almost constant throughout the entire range of our experiment, but the electrical conductivity of the multilayer thin films increased significantly as the number of layers was increased. This may be because the electron mobility increases as the thickness of each layer is decreased. As a result of the increased electrical conductivity, the power factor also increased with the number of layers. The maximum power factor was 1.44 μW/(cm K{sup 2}) for the 10-layer Bi–Te/Bi–Se film, this was approximately 3 times higher than that of the 2-layer sample. - Highlights: • N-type Bi–Te/Bi–Se multilayer thin films were deposited by electrodeposition. • We employed a dual-bath electrodeposition process for preparing the multilayers. • The Bi–Te/Bi–Se film was composed of stacked layers with nano-sized grains. • The electrical conductivity increased as the number of layers was increased. • The power factor improved by 3 times as the number of layers was increased.

  4. Between types I and II: Intertype flux exotic states in thin superconductors (United States)

    Córdoba-Camacho, W. Y.; da Silva, R. M.; Vagov, A.; Shanenko, A. A.; Aguiar, J. Albino


    The Bogomolnyi point separates superconductivity types I and II while itself hiding infinitely degenerate magnetic flux configurations, including very exotic states (referred to here as flux "monsters"). When the degeneracy is removed, the Bogomolnyi point unfolds into a finite, intertype domain in the phase diagram between types I and II. One can expect that in this case the flux monsters can escape their "prison" at the Bogomolnyi point, occupying the intertype domain and shaping its internal structure. Our calculations reveal that such exotic flux distributions are indeed stable in the intertype regime of thin superconductors made of a type-I material, where the Bogomolnyi degeneracy is removed by stray magnetic fields. They can be classified into three typical patterns that are qualitatively different from those in types I and II: superconducting islands separated by vortex chains; stripes/worms/labyrinths patterns; and mixtures of giant vortices and vortex clusters. Our findings shed light on the problem of the interchange between types I and II, raising important questions on the completeness of the textbook classification of the superconductivity types.

  5. Thermal oxidation of Ni films for p-type thin-film transistors

    KAUST Repository

    Jiang, Jie


    p-Type nanocrystal NiO-based thin-film transistors (TFTs) are fabricated by simply oxidizing thin Ni films at temperatures as low as 400 °C. The highest field-effect mobility in a linear region and the current on-off ratio are found to be 5.2 cm2 V-1 s-1 and 2.2 × 103, respectively. X-ray diffraction, transmission electron microscopy and electrical performances of the TFTs with "top contact" and "bottom contact" channels suggest that the upper parts of the Ni films are clearly oxidized. In contrast, the lower parts in contact with the gate dielectric are partially oxidized to form a quasi-discontinuous Ni layer, which does not fully shield the gate electric field, but still conduct the source and drain current. This simple method for producing p-type TFTs may be promising for the next-generation oxide-based electronic applications. © 2013 the Owner Societies.


    Directory of Open Access Journals (Sweden)

    Fereshteh Farzianpour


    Full Text Available The aim of this research was to investigate the role of the social demographic parameters of the people in charge of the facilities producing pastry, poolak (a type of coin-shaped candy and rock candy in the consumption of food colors and to determine color type by thin layer chromatography in Shahr-e-kord city in 2011. This research was an interventional-analytical study and its target population is the people in charge of the facilities producing pastry, poolak and rock candy in Shahr-e-kord city. Social demographic data of the participants were collected using checklists and 720 samples of pastry, poolak and rock candy weighing at least 250 gr were randomly taken over a period of 10 months. With respect to color additives, the samples were analyzed by Thin Layer Chromatography (TLC in four groups: natural colors permitted artificial colors, forbidden artificial colors and without colors. 48.47% contained food color and 6.52% contained forbidden artificial food color. Sunset Yellow was the color the most consumed among the colors used. Regarding the results obtained, there is a high rate of consumption of artificial colors (41.22%, sunset Yellow being the most consumed. Therefore, it is of great importance to raise the awareness and change the attitude of the people in charge in these jobs as well as the consumers with regard to the side effects of artificial colors, which can be done through the mass media and NGOs.

  7. Thin perovskite-type ferromagnetic film (La,Sr)CoO3 (United States)

    Łoziński, A.


    Properties of materials having a perovskite-type oxide crystal structure ABO3 can easily be modified by means of partial substitution of cations located at A or B sites. Nonstoichiometric lanthanum-strontium cobalt oxides (La,Sr)CoO3 also referred to as LSCO exhibit electrical conductivity and ferromagnetic properties. Perovskite-type compounds LaCoO3 and SrCoO3 can form solid solutions in every ratios to each other. Notation (La,Sr)CoO3, or La(1-x)SrxCoO3 means that some lanthanum ions are substituted with the strontium ones at A sites of crystal cell. This paper describes a sol-gel manufacturing process of LSCO thin films, presents measurements of their resistivity vs. composition, shows thermal coefficient of selected composition resistivity as well as its magnetoresistive properties.

  8. Growth of n-type ZnO thin films by using mixture gas of hydrogen and argon

    Institute of Scientific and Technical Information of China (English)

    Zhou Xin; Wang Shi-Qi; Lian Gui-Jun; Xiong Guang-Cheng


    High-quality oxide semiconductor ZnO thin films were prepared on single-crystal sapphire and LaAlO3 substrates by pulsed laser deposition (PLD) in the mixture gas of hydrogen and argon. Low resistivity n-type ZnO thin films with smoother surface were achieved by deposition at 600℃ in 1Pa of the mixture gas. In addition, ferromagnetism was observed in Co-doped ZnO thin films and rectification Ⅰ-Ⅴ curves were found in p-GaN/n-ZnO and p-CdTe/n-ZnO heterostructure junctions. The results indicated that using mixture gas of hydrogen and argon in PLD technique was a flexible method for depositing high-quality n-type oxide semiconductor films, especially for the multilayer thin film devices.

  9. Realization of Ag-S codoped p-type ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tian Ning, E-mail: [Department of Science, Zhijiang College of Zhejiang University of Technology, Hangzhou, Zhejiang 310024 (China); Department of Physics, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Li, Xiang; Lu, Zhong [Department of Science, Zhijiang College of Zhejiang University of Technology, Hangzhou, Zhejiang 310024 (China); Chen, Yong Yue [Department of Physics, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Sui, Cheng Hua [Department of Science, Zhijiang College of Zhejiang University of Technology, Hangzhou, Zhejiang 310024 (China); Wu, Hui Zhen [Department of Physics, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China)


    Highlights: • Ag-S codoped p-type ZnO thin films have been fabricated. • The films exhibit low resistivity and high Hall mobility and hole concentration. • A ZnO:(Ag, S)/i-ZnO/ZnO:Al homojunction has been fabricated and shows rectifying behaviors. - Abstract: Ag-S codoped ZnO films have been grown on quartz substrates by e-beam evaporation at low temperature (100 °C). The effects of Ag{sub 2}S content on the structural and electrical properties of the films were investigated. The results showed that 2 wt% Ag{sub 2}S doped films exhibited p-type conduction, with a resistivity of 0.0347 Ω cm, a Hall mobility of 9.53 cm{sup 2} V{sup −1} s{sup −1}, and a hole concentration of 1.89 × 10{sup 19} cm{sup −3} at room temperature. The X-ray photoelectron spectroscopy measurements showed that Ag and S have been incorporated into the films. To further confirm the p-type conduction of Ag-S codoped ZnO films, a ZnO:(Ag, S)/i-ZnO/ZnO:Al homojunction was fabricated and rectifying behaviors of which was measured. High electrical performance and low growth temperature indicate that Ag{sub 2}S is a promising dopant to fabricate p-type Ag-S codoped ZnO films.

  10. Study of p-type AlN-doped SnO2 thin films and its transparent devices (United States)

    Wu, Y. J.; Liu, Y. S.; Hsieh, C. Y.; Lee, P. M.; Wei, Y. S.; Liao, C. H.; Liu, C. Y.


    The electrical properties of transparent Al-doped tin oxide (SnO2), N-doped SnO2, and AlN-doped SnO2 thin films were studied. The Al-doped tin oxide (SnO2) thin films all show n-type conduction regardless the annealing condition. The n-type conduction of the as-deposited N-doped SnO2, and AlN-doped SnO2 thin films could be converted to p-type conduction by annealing the films at an elevated temperature of 450 °C. XPS analysis verified that the substitution of N ions in the O ion sites in the annealed N-doped SnO2 and AlN-doped SnO2 thin films were responsible for the n-p conduction transition. The conduction of the annealed N-doped SnO2 and AlN-doped SnO2 thin films could be converted back to n-type conduction by thermally annealing the films at higher temperature, over 450 °C. The p-n conduction transition is related with the outgassing of N ions in the p-type N-doped SnO2 and AlN-doped SnO2 thin films. Remarkably, we found that the Al content can retard the outgassing of N ions in the p-type N-doped SnO2 and AlN-doped SnO2 thin films and prolong the p-n conduction transition temperature above 600 °C. XPS analysis revealed that the formation of the Snsbnd Nsbnd Al bond improved the stability of the N ions in the AlN-doped SnO2 thin films. I-V curve of the p-type AlN-doped SnO2/n-type fluorine-doped SnO2 junction exhibited clear p-n junction characteristics, a low leakage current under the revised bias (1.13 × 10-5 A at -5 V), and a low turn-on voltage (3.24 V). p-Type AlN-doped SnO2/n-type fluorine-doped SnO2 junction exhibited excellent transmittance (over 90%) in the visible region (470-750 nm).

  11. Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors (United States)

    Kim, Bongjun; Geier, Michael L.; Hersam, Mark C.; Dodabalapur, Ananth


    Ambipolar and p-type single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs) are reliably integrated into various complementary-like circuits on the same substrate by inkjet printing. We describe the fabrication and characteristics of inverters, ring oscillators, and NAND gates based on complementary-like circuits fabricated with such TFTs as building blocks. We also show that complementary-like circuits have potential use as chemical sensors in ambient conditions since changes to the TFT characteristics of the p-channel TFTs in the circuit alter the overall operating characteristics of the circuit. The use of circuits rather than individual devices as sensors integrates sensing and signal processing functions, thereby simplifying overall system design. PMID:28145438

  12. Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors (United States)

    Kim, Bongjun; Geier, Michael L.; Hersam, Mark C.; Dodabalapur, Ananth


    Ambipolar and p-type single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs) are reliably integrated into various complementary-like circuits on the same substrate by inkjet printing. We describe the fabrication and characteristics of inverters, ring oscillators, and NAND gates based on complementary-like circuits fabricated with such TFTs as building blocks. We also show that complementary-like circuits have potential use as chemical sensors in ambient conditions since changes to the TFT characteristics of the p-channel TFTs in the circuit alter the overall operating characteristics of the circuit. The use of circuits rather than individual devices as sensors integrates sensing and signal processing functions, thereby simplifying overall system design.

  13. Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors. (United States)

    Kim, Bongjun; Geier, Michael L; Hersam, Mark C; Dodabalapur, Ananth


    Ambipolar and p-type single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs) are reliably integrated into various complementary-like circuits on the same substrate by inkjet printing. We describe the fabrication and characteristics of inverters, ring oscillators, and NAND gates based on complementary-like circuits fabricated with such TFTs as building blocks. We also show that complementary-like circuits have potential use as chemical sensors in ambient conditions since changes to the TFT characteristics of the p-channel TFTs in the circuit alter the overall operating characteristics of the circuit. The use of circuits rather than individual devices as sensors integrates sensing and signal processing functions, thereby simplifying overall system design.

  14. Enhanced infrared detectors using resonant structures combined with thin type-II superlattice absorbers (United States)

    Goldflam, M. D.; Kadlec, E. A.; Olson, B. V.; Klem, J. F.; Hawkins, S. D.; Parameswaran, S.; Coon, W. T.; Keeler, G. A.; Fortune, T. R.; Tauke-Pedretti, A.; Wendt, J. R.; Shaner, E. A.; Davids, P. S.; Kim, J. K.; Peters, D. W.


    We examined the spectral responsivity of a 1.77 μm thick type-II superlattice based long-wave infrared detector in combination with metallic nanoantennas. Coupling between the Fabry-Pérot cavity formed by the semiconductor layer and the resonant nanoantennas on its surface enables spectral selectivity, while also increasing peak quantum efficiency to over 50%. Electromagnetic simulations reveal that this high responsivity is a direct result of field-enhancement in the absorber layer, enabling significant absorption in spite of the absorber's subwavelength thickness. Notably, thinning of the absorbing material could ultimately yield lower photodetector noise through a reduction in dark current while improving photocarrier collection efficiency. The temperature- and incident-angle-independent spectral response observed in these devices allows for operation over a wide range of temperatures and optical systems. This detector paradigm demonstrates potential benefits to device performance with applications throughout the infrared.

  15. [Ideal type and history--a critical review of applied criminology]. (United States)

    Köchel, Stefan


    Applied Criminology describes an established criminological school in the German-speaking area, which was founded by Hans Göppinger and Michael Bock, criminologists at Tübingen, in the 1980s and has meanwhile published a number of comprehensive basic methodological papers. The conceptual centrepiece with interdisciplinary approach is the formation and application of concepts referring to the so-called ideal type, which has been essentially inspired by the epistemology of Max Weber. However, the result of a critical reconstruction of these fundamentals is that the claimed interdisciplinary approach comes into conflict with a second much more phenomenological approach of Applied Criminology which is unable to comply with the political implications of criminological research and thus disavows the necessary historical relationality of the ideal type concepts.

  16. Electroanalysis of tetracycline using nickel-implanted boron-doped diamond thin film electrode applied to flow injection system. (United States)

    Treetepvijit, Surudee; Chuanuwatanakul, Suchada; Einaga, Yasuaki; Sato, Rika; Chailapakult, Orawon


    The electrochemical analysis of tetracycline was investigated using nickel-implanted boron-doped diamond thin film electrode by cyclic voltammetry and amperometry with a flow injection system. Cyclic voltammetry was used to study the electrochemical oxidation of tetracycline. Comparison experiments were carried out using as-deposited boron-doped diamond thin film electrode (BDD). Nickel-implanted boron-doped diamond thin film electrode (Ni-DIA) provided well-resolved oxidation irreversible cyclic voltammograms. The current signals were higher than those obtained using the as-deposited BDD electrode. Results using nickel-implanted boron-doped diamond thin film electrode in flow injection system coupled with amperometric detection are presented. The optimum potential for tetracycline was 1.55 V versus Ag/AgCl. The linear range of 1.0 to 100 microM and the detection limit of 10 nM were obtained. In addition, the application for drug formulation was also investigated.

  17. Effect of doping concentration on the conductivity and optical properties of p-type ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Trilok Kumar [Semiconductor Research Lab, Department of Physics, Gurukula Kangri University, Haridwar (India); Kumar, Vinod, E-mail: [Department of Physics, University of the Free State, Bloemfontein (South Africa); Swart, H.C., E-mail: [Department of Physics, University of the Free State, Bloemfontein (South Africa); Purohit, L.P., E-mail: [Semiconductor Research Lab, Department of Physics, Gurukula Kangri University, Haridwar (India)


    Nitrogen doped ZnO (NZO) thin films were synthesized on glass substrates by the sol–gel and spin coating method. Zinc acetate dihydrates and ammonium acetate were used as precursors for zinc and nitrogen, respectively. X-ray diffraction study showed that the thin films have a hexagonal wurtzite structure corresponding (002) peak for undoped and doped ZnO thin films. The transmittance of the films was above 80% and the band gap of the film varies from 3.21±0.03 eV for undoped and doped ZnO. The minimum resistivity of NZO thin films was obtained as 0.473 Ω cm for the 4 at% of nitrogen (N) doping with a mobility of 1.995 cm{sup 2}/V s. The NZO thin films showed p-type conductivity at 2 and 3 at% of N doping. The AC conductivity measurements that were carried out in the frequency range 10 kHz to 0.1 MHz showed localized conduction in the NZO thin films. These highly transparent ZnO films can be used as a possible window layer in solar cells.

  18. Study of p-type ZnO and MgZnO Thin Films for Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jianlin [Univ. of California, Riverside, CA (United States)


    This project on study of p-type ZnO and MgZnO thin films for solid state lighting was carried out by research group of Prof. Jianlin Liu of UCR during the four-year period between August 2011 and July 2015. Tremendous progress has been made on the proposed research. This final report summarizes the important findings.

  19. Friction characteristics of a new type of continuous rotary electro-hydraulic servomotor applied to simulator

    Institute of Scientific and Technical Information of China (English)

    CAO Jian; XU Hong-guang


    The principle of a new type of no-pulsation continuous rotary electro-hydraulic servomotor applied to simulators is introduced. LuGre friction model was analyzed. The identification method of LuGre parameters was proposed, and the measures to compensate the effect of friction forces were given. A friction torque model for the new rotary motor was proposed. The low-speed response and step response of the motor were studied experi-mentally. Experimental results proved that using friction compensation could eliminate stick-slip motion at the low speed, which makes the servomotor applicable to simulators.

  20. The Dielectric Breakdown Model applied to explain various morphologies of deposited metallic structures in thin gap metal electro-deposition

    Directory of Open Access Journals (Sweden)

    Aditya Chowdhury


    Full Text Available The phenomenon of metal electro-deposition in thin-gap geometry leads to very interesting and diverse two dimensional morphologies. This varies from dense ramified growth to thin dendritic projections. In this paper, we have proposed a stochastic model that incorporates such diversity. We carried out thin-gap electro-deposition of Copper and Zinc with varying electrolytic concentrations. A well known model, that until this work was used to explain dielectric breakdown patterns, was employed to explain the variation in deposition morphology with concentration. The sole parameter in the model was varied and the numerically obtained patterns was seen to correlate well with those obtained from electro-deposition. A linear relationship between the parameter and molar concentration was established. The established relationship was then analysed and interpreted.

  1. Chemical fabrication of p-type Cu{sub 2}O transparent thin film using molecular precursor method

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Hiroki [Research Institute of Science and Technology, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan); Suzuki, Tatsuya [Department of Applied Chemistry and Chemical Engineering, Graduate School of Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan); Hara, Hiroki; Mochizuki, Chihiro; Takano, Ichiro; Honda, Tohru [Research Institute of Science and Technology, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan); Sato, Mitsunobu, E-mail: [Research Institute of Science and Technology, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan)


    A transparent p-type Cu{sub 2}O thin film of 50 nm thickness was successfully fabricated by means of a solution-based process involving the thermal reaction of molecular precursor films spin-coated on a Na-free glass substrate. The precursor solution was prepared by the reaction of an isolated Cu{sup 2+} complex of ethylenediamine-N, N, N Prime , N Prime -tetraacetic acid with dibutylamine in ethanol. The Cu{sub 2}O thin films resulting from heat treatment of the precursor film at 450 Degree-Sign C for 10 min in Ar gas at a flow rate of 1.0 L min{sup -1} were characterized by X-ray diffraction which indicated a precise cubic lattice cell parameter of a = 0.4265(2) nm, with a crystallite size of 8(2) nm. X-ray photoelectron spectroscopy peaks, attributable to the O 1s and Cu 2p{sub 3/2} level of the Cu{sub 2}O film were found at 532.6 eV and 932.4 eV, respectively. An average grain size of the deposited Cu{sub 2}O particles of ca. 200 nm was observed via field-emission scanning electron microscopy. The optical band edge evaluated from the absorption spectrum of the Cu{sub 2}O transparent thin film was 2.3 eV, assuming a direct-transition semiconductor. Hall Effect measurements of the thin film indicated that the single-phase Cu{sub 2}O thin film is a typical p-type semiconductor, with a hole concentration of 1.7 Multiplication-Sign 10{sup 16} cm{sup -3} and hole mobility of 4.8 cm{sup 2} V{sup -1} s{sup -1} at ambient temperature. The activation energy from the valence band to the acceptor level determined from an Arrhenius plot was 0.34 eV. The adhesion strength of the thin film on the Na-free glass substrate was also determined as a critical load (Lc1) of 2.0 N by means of a scratch test. The method described is the first example of fabrication and characterization of a p-type Cu{sub 2}O transparent thin film by a wet process. -- Graphical abstract: The p-type Cu{sub 2}O transparent thin film was facilely fabricated on a Na-free grass substrate by a solution based

  2. High performance p-type NiOx thin-film transistor by Sn doping (United States)

    Lin, Tengda; Li, Xiuling; Jang, Jin


    Major obstacles towards power efficient complementary electronics employing oxide thin-film transistors (TFTs) lie in the lack of equivalent well performing p-channel devices. Here, we report a significant performance enhancement of solution-processed p-type nickel oxide (NiOx) TFTs by introducing Sn dopant. The Sn-doped NiOx (Sn-NiOx) TFTs annealed at 280 °C demonstrate substantially improved electrical performances with the increase in the on/off current ratio (Ion/Ioff) by ˜100 times, field-effect mobility (μlin) by ˜3 times, and the decrease in subthreshold swing by half, comparing with those of pristine NiOx TFTs. X-ray photoelectron spectroscopy and X-ray diffraction results confirm that Sn atoms tend to substitute Ni sites and induce more amorphous phase. A decrease in density of states in the gap of NiOx by Sn doping and the shift of Fermi level (EF) into the midgap lead to the improvements of TFT performances. As a result, Sn-NiOx can be a promising material for the next-generation, oxide-based electronics.

  3. Preparation of n-type semiconductor SnO2 thin films

    Institute of Scientific and Technical Information of China (English)

    Achour Rahal; Said Benramache; Boubaker Benhaoua


    We studied fluorine-doped tin oxide on a glass substrate at 350 ℃ using an ultrasonic spray technique.Tin (Ⅱ) chloride dehydrate,ammonium fluoride dehydrate,ethanol and NaOH were used as the starting material,dopant source,solvent and stabilizer,respectively.The SnO2:F thin films were deposited at 350 ℃ and a pending time of 60 and 90 s.The as-grown films exhibit a hexagonal wurtzite structure and have (101) orientation.The G =31.82 nm value of the grain size is attained from SnO2:F film grown at 90 s,and the transmittance is greater than 80% in the visible region.The optical gap energy is found to measure 4.05 eV for the film prepared at 90 s,and the increase in the electrical conductivity of the film with the temperature of the sample is up to a maximum value of 265.58 (Ω·cm)-1,with the maximum activation energy value of the films being found to measure 22.85 meV,indicating that the films exhibit an n-type semiconducting nature.

  4. Numerical Investigation of Shell Formation in Thin Slab Casting of Funnel-Type Mold (United States)

    Vakhrushev, A.; Wu, M.; Ludwig, A.; Tang, Y.; Hackl, G.; Nitzl, G.


    The key issue for modeling thin slab casting (TSC) process is to consider the evolution of the solid shell including fully solidified strand and partially solidified dendritic mushy zone, which strongly interacts with the turbulent flow and in the meantime is subject to continuous deformation due to the funnel-type mold. Here an enthalpy-based mixture solidification model that considers turbulent flow [Prescott and Incropera, ASME HTD, 1994, vol. 280, pp. 59-69] is employed and further enhanced by including the motion of the solidifying and deforming solid shell. The motion of the solid phase is calculated with an incompressible rigid viscoplastic model on the basis of an assumed moving boundary velocity condition. In the first part, a 2D benchmark is simulated to mimic the solidification and motion of the solid shell. The importance of numerical treatment of the advection of latent heat in the deforming solid shell (mushy zone) is specially addressed, and some interesting phenomena of interaction between the turbulent flow and the growing mushy zone are presented. In the second part, an example of 3D TSC is presented to demonstrate the model suitability. Finally, techniques for the improvement of calculation accuracy and computation efficiency as well as experimental evaluations are also discussed.

  5. In situ growth of p and n-type graphene thin films and diodes by pulsed laser deposition

    KAUST Repository

    Sarath Kumar, S. R.


    We report the in situ growth of p and n-type graphene thin films by ultraviolet pulsed laser deposition in the presence of argon and nitrogen, respectively. Electron microscopy and Raman studies confirmed the growth, while temperature dependent electrical conductivity and Seebeck coefficient studies confirmed the polarity type of graphene films. Nitrogen doping at different sites of the honeycomb structure, responsible for n-type conduction, is identified using X-ray photoelectron spectroscopy, for films grown in nitrogen. A diode-like rectifying behavior is exhibited by p-n junction diodes fabricated using the graphene films.

  6. Fabrication of p-type conductivity in SnO{sub 2} thin films through Ga doping

    Energy Technology Data Exchange (ETDEWEB)

    Tsay, Chien-Yie, E-mail:; Liang, Shan-Chien


    Highlights: • P-type Ga-doped SnO{sub 2} semiconductor films were prepared by sol-gel spin coating. • Optical bandgaps of the SnO{sub 2}:Ga films are narrower than that of the SnO{sub 2} film. • SnO{sub 2}:Ga films exhibited p-type conductivity as Ga doping content higher than 10%. • A p-n heterojunction composed of p-type SnO{sub 2}:Ga and n-type ZnO:Al was fabricated. - Abstract: P-type transparent tin oxide (SnO{sub 2}) based semiconductor thin films were deposited onto alkali-free glass substrates by a sol-gel spin-coating method using gallium (Ga) as acceptor dopant. In this study, we investigated the influence of Ga doping concentration ([Ga]/[Sn] + [Ga] = 0%, 5%, 10%, 15%, and 20%) on the structural, optical and electrical properties of SnO{sub 2} thin films. XRD analysis results showed that dried Ga-doped SnO{sub 2} (SnO{sub 2}:Ga) sol-gel films annealed in oxygen ambient at 520 °C for 1 h exhibited only the tetragonal rutile phase. The average optical transmittance of as-prepared thin film samples was higher than 87.0% in the visible light region; the optical band gap energy slightly decreased from 3.92 eV to 3.83 eV with increases in Ga doping content. Hall effect measurement showed that the nature of conductivity of SnO{sub 2}:Ga thin films changed from n-type to p-type when the Ga doping level was 10%, and when it was at 15%, Ga-doped SnO{sub 2} thin films exhibited the highest mean hole concentration of 1.70 × 10{sup 18} cm{sup -3}. Furthermore, a transparent p-SnO{sub 2}:Ga (Ga doping level of 15%)/n-ZnO:Al (Al doping level of 2%) heterojunction was fabricated on alkali-free glass. The I-V curve measurement for the p-n heterojunction diode showed a typical rectifying characteristic with a forward turn-on voltage of 0.65 V.

  7. Study of nanoparticles TiO2 thin films on p-type silicon substrate using different alcoholic solvents (United States)

    Muaz, A. K. M.; Hashim, U.; Arshad, M. K. Md.; Ruslinda, A. R.; Ayub, R. M.; Gopinath, Subash C. B.; Voon, C. H.; Liu, Wei-Wen; Foo, K. L.


    In this paper, sol-gel method spin coating technique is adopted to prepare nanoparticles titanium dioxide (TiO2) thin films. The prepared TiO2 sol was synthesized using titanium butoxide act as a precursor and subjected to deposited on the p-type silicon oxide (p-SiO2) and glass slide substrates under room temperature. The effect of different alcoholic solvents of methanol and ethanol on the structural, morphological, optical and electrical properties were systematically investigated. The coated TiO2 thin films were annealed in furnace at 773 K for 1 h. The structural properties of the TiO2 films were examined with X-ray Diffraction (XRD). From the XRD analysis, both solvents showing good crystallinity with anatase phase were the predominant structure. Atomic Force Microscopy (AFM) was employed to study the morphological of the thin films. The optical properties were investigated by Ultraviolet-visible (UV-Vis) spectroscopy were found that ethanol as a solvent give a higher optical transmittance if compare to the methanol solvent. The electrical properties of the nanoparticles TiO2 thin films were measured using two-point-probe technique.

  8. Performance and Stability Enhancement of Perovskite-Type Nanomaterials Applied for Carbon Capture Utilizing Oxyfuel Combustion

    Directory of Open Access Journals (Sweden)

    Qiuwan Shen


    Full Text Available A new series of Ba-Co-Operovskite-type oxygen carriers has been successfully synthesized by the microwave-assisted sol-gel method and further applied for producing an O2/CO2 mixture gas. The oxygen adsorption/desorption performance of synthesized samples was studied in a fixed-bed reactor system. Effects of A/B-site substitution on the oxygen desorption performance of Ba-Co-O–based perovskites are also included. Furthermore, the effects of operating conditions including the adsorption time and temperature as well as the desorption temperature on oxygen production performance were investigated in detail. The results indicated that BaCoO3-δ exhibited an excellent oxygen desorption performance among the synthesized A/B-site–substituted ACoO3-δ and BaBO3-δ samples, and that the optimal adsorption time, adsorption temperature and desorption temperatureforBaCoO3-δ were determined to be 20min, 850◦Cand850◦C, respectively, in this study.

  9. Nanoparticles and Nanostructured Thin Films Based on Strong Polycations of Integral type

    Institute of Scientific and Technical Information of China (English)

    E. S. Dragan; M. Mihai; S. Schwarz


    @@ 1Introduction Nonstoichiometric interpolyelectrolyte complexes (NIPECs) as nanoparticles, on the one side, and nanostructured thin films with controlled architecture, deposited on some planar surfaces, on the other side,have been designed by eco-friendly techniques using strong polycations (PC) containing quaternary ammonium groups in the backbone and either strong polyanions or multicharged azo dyes.

  10. Fermi level de-pinning of aluminium contacts to n-type germanium using thin atomic layer deposited layers

    Energy Technology Data Exchange (ETDEWEB)

    Gajula, D. R., E-mail:; Baine, P.; Armstrong, B. M.; McNeill, D. W. [School of Electronics, Electrical Engineering and Computer Science, Queen' s University Belfast, Ashby Building, Stranmillis Road, Belfast BT9 5AH (United Kingdom); Modreanu, M.; Hurley, P. K. [Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland)


    Fermi-level pinning of aluminium on n-type germanium (n-Ge) was reduced by insertion of a thin interfacial dielectric by atomic layer deposition. The barrier height for aluminium contacts on n-Ge was reduced from 0.7 eV to a value of 0.28 eV for a thin Al{sub 2}O{sub 3} interfacial layer (∼2.8 nm). For diodes with an Al{sub 2}O{sub 3} interfacial layer, the contact resistance started to increase for layer thicknesses above 2.8 nm. For diodes with a HfO{sub 2} interfacial layer, the barrier height was also reduced but the contact resistance increased dramatically for layer thicknesses above 1.5 nm.

  11. Realization of Cu-Doped p-Type ZnO Thin Films by Molecular Beam Epitaxy. (United States)

    Suja, Mohammad; Bashar, Sunayna B; Morshed, Muhammad M; Liu, Jianlin


    Cu-doped p-type ZnO films are grown on c-sapphire substrates by plasma-assisted molecular beam epitaxy. Photoluminescence (PL) experiments reveal a shallow acceptor state at 0.15 eV above the valence band edge. Hall effect results indicate that a growth condition window is found for the formation of p-type ZnO thin films, and the best conductivity is achieved with a high hole concentration of 1.54 × 10(18) cm(-3), a low resistivity of 0.6 Ω cm, and a moderate mobility of 6.65 cm(2) V(-1) s(-1) at room temperature. Metal oxide semiconductor capacitor devices have been fabricated on the Cu-doped ZnO films, and the characteristics of capacitance-voltage measurements demonstrate that the Cu-doped ZnO thin films under proper growth conditions are p-type. Seebeck measurements on these Cu-doped ZnO samples lead to positive Seebeck coefficients and further confirm the p-type conductivity. Other measurements such as X-ray diffraction, X-ray photoelectron, Raman, and absorption spectroscopies are also performed to elucidate the structural and optical characteristics of the Cu-doped p-type ZnO films. The p-type conductivity is explained to originate from Cu substitution of Zn with a valency of +1 state. However, all p-type samples are converted to n-type over time, which is mostly due to the carrier compensation from extrinsic defects of ZnO.

  12. Enhanced performance of CdS/CdTe thin-film devices through temperature profiling techniques applied to close-spaced sublimation deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xiaonan Li; Sheldon, P.; Moutinho, H.; Matson, R. [National Renewable Energy Lab., Golden, CO (United States)


    The authors describe a methodology developed and applied to the close-spaced sublimation technique for thin-film CdTe deposition. The developed temperature profiles consisted of three discrete temperature segments, which the authors called the nucleation, plugging, and annealing temperatures. They have demonstrated that these temperature profiles can be used to grow large-grain material, plug pinholes, and improve CdS/CdTe photovoltaic device performance by about 15%. The improved material and device properties have been obtained while maintaining deposition temperatures compatible with commercially available substrates. This temperature profiling technique can be easily applied to a manufacturing environment by adjusting the temperature as a function of substrate position instead of time.

  13. Realization of stable p-type ZnO thin films using Li-N dual acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Rao, T. Prasada, E-mail: [Advanced Materials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli- 620 015 (India); Kumar, M.C. Santhosh, E-mail: [Advanced Materials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli- 620 015 (India)


    Highlights: > We have presented a promising Li-N dual acceptor doping method to realize p-type ZnO films via spray pyrolysis. > The influence of concentration of Li-N on the structural, electrical, and optical properties of p-type ZnO:(Li, N) films were investigated in detail. > It is found that (Li, N):ZnO films deposited on glass substrate show the preferential orientation of (002) plane. > The Hall Effect measurements exhibited p-type behaviour on (Li, N):ZnO thin films and the stability of the samples were verified by aging studies. - Abstract: Lithium and nitrogen dual acceptors-doped p-type ZnO thin films have been prepared using spray pyrolysis technique. The influence of dual acceptor (Li, N) doping on the structural, electrical, and optical properties of (Li, N):ZnO films are investigated in detail. The (Li, N):ZnO films exhibit good crystallinity with a preferred c-axis orientation. From AFM studies, it is found that the surface roughness of the thin films increases with the increase of doping percentage. The Hall Effect measurements showed p-type conductivity. The Hall measurements have been performed periodically up to seven months and it is observed that the films show p-type conductivity throughout the period of observation. The samples with Li:N ratio of 8:8 mol% showed the lowest resistivity of 35.78 {Omega} cm, while sample with Li:N ratio of 6:6 mol% showed highest carrier concentration. The PL spectra of (Li, N):ZnO films show a strong UV emission at room temperature. Furthermore, PL spectra show low intensity in deep level transition, indicating a low density of native defects. This indicates that the formation of intrinsic defects is effectively suppressed by dual acceptor (Li, N) doping in ZnO thin films. The chemical bonding states of N and Li in the films were examined by XPS analysis.

  14. Nanostructured p-type CZTS thin films prepared by a facile solution process for 3D p-n junction solar cells. (United States)

    Park, Si-Nae; Sung, Shi-Joon; Sim, Jun-Hyoung; Yang, Kee-Jeong; Hwang, Dae-Kue; Kim, JunHo; Kim, Gee Yeong; Jo, William; Kim, Dae-Hwan; Kang, Jin-Kyu


    Nanoporous p-type semiconductor thin films prepared by a simple solution-based process with appropriate thermal treatment and three-dimensional (3D) p-n junction solar cells fabricated by depositing n-type semiconductor layers onto the nanoporous p-type thin films show considerable photovoltaic performance compared with conventional thin film p-n junction solar cells. Spin-coated p-type Cu2ZnSnS4 (CZTS) thin films prepared using metal chlorides and thiourea show unique nanoporous thin film morphology, which is composed of a cluster of CZTS nanograins of 50-500 nm, and the obvious 3D p-n junction structure is fabricated by the deposition of n-type CdS on the nanoporous CZTS thin films by chemical bath deposition. The photovoltaic properties of 3D p-n junction CZTS solar cells are predominantly affected by the scale of CZTS nanograins, which is easily controlled by the sulfurization temperature of CZTS precursor films. The scale of CZTS nanograins determines the minority carrier transportation within the 3D p-n junction between CZTS and CdS, which are closely related with the photocurrent of series resistance of 3D p-n junction solar cells. 3D p-n junction CZTS solar cells with nanograins below 100 nm show power conversion efficiency of 5.02%, which is comparable with conventional CZTS thin film solar cells.

  15. Magneto-elastic behaviour of thin type-II superconducting strip with field-dependent critical current (United States)

    Xue, Cun; He, An; Yong, Huadong; Zhou, Youhe


    The magneto-elastic behavior of thin superconducting strip in perpendicular magnetic field with field-dependent critical current is studied. We calculate numerically the body force, strain, displacement, and thickness changes in the strip for the Bean model and Kim model during the field ascent and descent. The differences in magnetostriction between the Bean model and the Kim model are analyzed. The magnetostriction during one full cycle of the applied field for both models is presented. The results show that magnetostriction loops are different in these models, and at low temperatures Kim model is in better agreement with experiment than Bean model.

  16. Structural and morphological study of ZnO thin films electrodeposited on n-type silicon

    Energy Technology Data Exchange (ETDEWEB)

    Ait Ahmed, N., E-mail: [Laboratoire de Technologie des materiaux et Genie des Procedes : Equipe d' electrochimie - Corrosion Universite Abderrahmane Mira, Bejaia, 06000 (Algeria); Unite de Developpement de la Technologie du Silicium, 02 Bd Frantz Fanon, B.P. 140, Alger 7 Merveilles (Algeria); Fortas, G. [Unite de Developpement de la Technologie du Silicium, 02 Bd Frantz Fanon, B.P. 140, Alger 7 Merveilles (Algeria); Hammache, H. [Laboratoire de Technologie des materiaux et Genie des Procedes : Equipe d' electrochimie - Corrosion Universite Abderrahmane Mira, Bejaia, 06000 (Algeria); Sam, S.; Keffous, A.; Manseri, A. [Unite de Developpement de la Technologie du Silicium, 02 Bd Frantz Fanon, B.P. 140, Alger 7 Merveilles (Algeria); Guerbous, L. [Centre de Recherche Nucleaire d' Alger (Algeria); Gabouze, N., E-mail: [Unite de Developpement de la Technologie du Silicium, 02 Bd Frantz Fanon, B.P. 140, Alger 7 Merveilles (Algeria)


    In this work, we report on the electrodeposition of ZnO thin films on n-Si (1 0 0) and glass substrates. The influence of the deposition time on the morphology of ZnO thin films was investigated. The ZnO thin films were characterized by X-ray diffraction (XRD), energy dispersive X-ray (EDS) and scanning electron microscopy (SEM). The results show a variation of ZnO texture from main (0 0 2) at 10 min to totally (1 0 1) at 15 min deposition time. The photoluminescence (PL) studies show that both UV ({approx}382 nm) and blue ({approx}432 nm) luminescences are the main emissions for the electrodeposited ZnO films. In addition, the film grown at 15 min indicates an evident decrease of the yellow-green ({approx}520 nm) emission band comparing with that of 10 min. Finally, transmittance spectra show a high transmission value up to 85% in the visible wavelength range. Such results would be very interesting for solar cells applications.

  17. S-type Er-Yb Co-doped Phosphate Glass Waveguide Amplifier Integrated with Cascaded Multilayer Medium Thin Film Filter

    Institute of Scientific and Technical Information of China (English)

    CHEN Hai-yan; DAI Ji-zhi; LIU Yong-zhi


    A new S-type of erbium-ytterbium co-doped phosphate glass waveguide amplifier integrated with cascaded multilayer medium thin film filter is proposed,this S-type geometry waveguide structure is used to achieve a long path in a compact chip,and obtained higher gain with lower Er-doped concentration. The cascaded multilayer medium thin film filter is utilized to achieve a broader flattening gain bandwidth.The intrinsical gain spectrum is obtained by solving rate and power propagation equations,the effect of transmittance spectrum of thin film filter on flattening gain is discussed.

  18. Growth of nitrogen-doped p-type ZnO thin films prepared by atomic layer epitaxy

    Institute of Scientific and Technical Information of China (English)

    LEE Chongmu; LIM Jongmin; PARK Suyoung; KIM Hyounwoo


    Nitrogen-doped, p-type ZnO thin films were grown successfully on sapphire (0001) substrates by using atomic layer epitaxy (ALE). Zn(C2H5)2[Diethylzinc,DEZn], H2O and NH3 were used as a zinc precursor, an oxidant and a doping source gas, respectively. The lowest electrical resistivity of the p-type ZnO films grown by ALE and annealed at 1000 ℃ in an oxygen atmosphere for 1 h was 18.3 Ω·m with a hole concentration of 3.71×1017cm-3 . Low temperature-photoluminescence analysis and time-dependent Hall measurement results support that the nitrogen-doped ZnO after annealing is ap-type semiconductor.

  19. Hadron-therapy beam monitoring: Towards a new generation of ultra-thin p-type silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bouterfa, M.; Aouadi, K. [Inst. of Information and Communication Technologies, Electronics and Applied Mathematics ICTEAM, Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium); Bertrand, D. [Particle Therapy Dept., Ion Beam Application IBA, 1348 Louvain-la-Neuve (Belgium); Olbrechts, B.; Delamare, R. [Inst. of Information and Communication Technologies, Electronics and Applied Mathematics ICTEAM, Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium); Raskin, J. P.; Gil, E. C. [Institut de Recherche en Mathematique et Physique IRMP, Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium); Flandre, D. [Inst. of Information and Communication Technologies, Electronics and Applied Mathematics ICTEAM, Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium)


    Hadron-therapy has gained increasing interest for cancer treatment especially within the last decade. System commissioning and quality assurance procedures impose to monitor the particle beam using 2D dose measurements. Nowadays, several monitoring systems exist for hadron-therapy but all show a relatively high influence on the beam properties: indeed, most devices consist of several layers of materials that degrade the beam through scattering and energy losses. For precise treatment purposes, ultra-thin silicon strip detectors are investigated in order to reduce this beam scattering. We assess the beam size increase provoked by the Multiple Coulomb Scattering when passing through Si, to derive a target thickness. Monte-Carlo based simulations show a characteristic scattering opening angle lower than 1 mrad for thicknesses below 20 {mu}m. We then evaluated the fabrication process feasibility. We successfully thinned down silicon wafers to thicknesses lower than 10 {mu}m over areas of several cm{sup 2}. Strip detectors are presently being processed and they will tentatively be thinned down to 20 {mu}m. Moreover, two-dimensional TCAD simulations were carried out to investigate the beam detector performances on p-type Si substrates. Additionally, thick and thin substrates have been compared thanks to electrical simulations. Reducing the pitch between the strips increases breakdown voltage, whereas leakage current is quite insensitive to strips geometrical configuration. The samples are to be characterized as soon as possible in one of the IBA hadron-therapy facilities. For hadron-therapy, this would represent a considerable step forward in terms of treatment precision. (authors)

  20. CdS-Free p-Type Cu2ZnSnSe4/Sputtered n-Type In x Ga1- x N Thin Film Solar Cells (United States)

    Chen, Wei-Liang; Kuo, Dong-Hau; Tuan, Thi Tran Anh


    Cu2ZnSnSe4 (CZTSe) films for solar cell devices were fabricated by sputtering with a Cu-Zn-Sn metal target, followed by two-step post-selenization at 500-600°C for 1 h in the presence of single or double compensation discs to supply Se vapor. After that, two kinds of n-type III-nitride bilayers were prepared by radio frequency sputtering for CdS-free CZTSe thin film solar cell devices: In0.15Ga0.85N/GaN/CZTSe and In0.15Ga0.85N/In0.3Ga0.7N/CZTSe. The p-type CZTSe and the n-type In x Ga1- x N films were characterized. The properties of CZTSe changed with the selenization temperature and the In x Ga1- x N with its indium content. With the CdS-free modeling for a solar cell structure, the In0.15Ga0.85N/In0.3Ga0.7N/CZTSe solar cell device had an improved efficiency of 4.2%, as compared with 1.1% for the conventional design with the n-type conventional ZnO/CdS bilayer. Current density of ˜48 mA/cm2, the maximum open-circuit voltage of 0.34 V, and fill factor of 27.1% are reported. The 3.8-fold increase in conversion efficiency for the CZTSe thin film solar cell devices by replacing n-type ZnO/CdS with the III-nitride bilayer proves that sputtered III-nitride films have their merits.

  1. Effects of air-annealing on the electrical properties of p-type tin monoxide thin-film transistors (United States)

    Cho, In-Tak; U, Myeonghun; Song, Sang-Hun; Lee, Jong-Ho; Kwon, Hyuck-In


    We have investigated the effects of air-annealing on the electrical performance of the p-type tin oxide thin-film transistors (TFTs). The air-annealing of the tin oxide thin-film was made using a mini furnace at various temperatures. From the x-ray photoelectron spectroscopy (XPS) and x-ray diffraction (XRD) data, it is demonstrated that the phase of tin oxide partially transforms from SnO to SnO2 with an air-annealing process, and it accelerates as the annealing temperature increases. The electrical performance of the p-type tin oxide TFT with a channel thickness of 25 nm exhibits much improved electrical performance when air-annealed at 230 °C for 1 h, but a decrease of the on-current is observed with an ambipolar operation in 260 and 290 °C air-annealed devices. Based on the XPS, XRD, and Hall measurement data, the reduced hole concentration inside the channel due to the recombination with electrons from SnO2 is believed to be the reason for the electrical performance improvement in 230 °C air-annealed p-type tin oxide TFTs, and a partial formation of n-type SnO2 channel is considered as the plausible reason for the ambipolar operation in tin oxide TFTs with high annealing temperatures. Our experimental results show that there is an optimum air-annealing temperature which can improve the electrical performance in p-type tin oxide TFTs.

  2. Isotropic damage model and serial/parallel mix theory applied to nonlinear analysis of ferrocement thin walls. Experimental and numerical analysis

    Directory of Open Access Journals (Sweden)

    Jairo A. Paredes


    Full Text Available Ferrocement thin walls are the structural elements that comprise the earthquake resistant system of dwellings built with this material. This article presents the results drawn from an experimental campaign carried out over full-scale precast ferrocement thin walls that were assessed under lateral static loading conditions. The tests allowed the identification of structural parameters and the evaluation of the performance of the walls under static loading conditions. Additionally, an isotropic damage model for modelling the mortar was applied, as well as the classic elasto-plastic theory for modelling the meshes and reinforcing bars. The ferrocement is considered as a composite material, thus the serial/parallel mix theory is used for modelling its mechanical behavior. In this work a methodology for the numerical analysis that allows modeling the nonlinear behavior exhibited by ferrocement walls under static loading conditions, as well as their potential use in earthquake resistant design, is proposed.

  3. Vortex dynamics in a thin superconducting film with a non-uniform magnetic field applied at its center with a small coil (United States)

    Lemberger, Thomas R.; Loh, Yen Lee


    This paper models the dynamics of vortices that are generated in the middle of a thin, large-area, superconducting film by a low-frequency magnetic field from a small coil, motivated by a desire to better understand measurements of the superconducting coherence length made with a two-coil apparatus. When the applied field exceeds a critical value, vortices and antivortices originate near the middle of the film at the radius where the Lorentz force of the screening supercurrent is largest. The Lorentz force from the screening supercurrent pushes vortices toward the center of the film and antivortices outward. In an experiment, vortices are detected as an increase in mutual inductance between the drive coil and a coaxial "pickup" coil on the opposite side of the film. The model shows that the essential features of measurements are well described when vortex pinning and the attendant hysteresis are included.

  4. Microstructure, elastic deformation behavior and mechanical properties of biomedical β-type titanium alloy thin-tube used for stents. (United States)

    Tian, Yuxing; Yu, Zhentao; Ong, Chun Yee Aaron; Kent, Damon; Wang, Gui


    Cold-deformability and mechanical compatibility of the biomedical β-type titanium alloy are the foremost considerations for their application in stents, because the lower ductility restricts the cold-forming of thin-tube and unsatisfactory mechanical performance causes a failed tissue repair. In this paper, β-type titanium alloy (Ti-25Nb-3Zr-3Mo-2Sn, wt%) thin-tube fabricated by routine cold rolling is reported for the first time, and its elastic behavior and mechanical properties are discussed for the various microstructures. The as cold-rolled tube exhibits nonlinear elastic behavior with large recoverable strain of 2.3%. After annealing and aging, a nonlinear elasticity, considered as the intermediate stage between "double yielding" and normal linear elasticity, is attributable to a moderate precipitation of α phase. Quantitive relationships are established between volume fraction of α phase (Vα) and elastic modulus, strength as well as maximal recoverable strain (εmax-R), where the εmax-R of above 2.0% corresponds to the Vα range of 3-10%. It is considered that the "mechanical" stabilization of the (α+β) microstructure is a possible elastic mechanism for explaining the nonlinear elastic behavior.

  5. P-type Cu2O/SnO bilayer thin film transistors processed at low temperatures

    KAUST Repository

    Al-Jawhari, Hala A.


    P-type Cu2O/SnO bilayer thin film transistors (TFTs) with tunable performance were fabricated using room temperature sputtered copper and tin oxides. Using Cu2O film as capping layer on top of a SnO film to control its stoichiometry, we have optimized the performance of the resulting bilayer transistor. A transistor with 10 nm/15 nm Cu2O to SnO thickness ratio (25 nm total thickness) showed the best performance using a maximum process temperature of 170 C. The bilayer transistor exhibited p-type behavior with field-effect mobility, on-to-off current ratio, and threshold voltage of 0.66 cm2 V-1 s-1, 1.5×10 2, and -5.2 V, respectively. The advantages of the bilayer structure relative to single layer transistor are discussed. © 2013 American Chemical Society.

  6. Identification of Acceptor States in Li-N Dual-Doped p-Type ZnO Thin Films

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yin-Zhu; LU Jian-Guo; YE Zhi-Zhen; HE Hai-Ping; CHEN Lan-Lan; ZHAO Bing-Hui


    @@ Li-N dual-doped p-type ZnO (ZnO:(Li,N)) thin films are prepared by pulsed laser deposition. The optical properties are studied using temperature-dependent photoluminescence. The Lizn-No complex aceeptor with an energy level of 138 meV is identified from the free-to-neutral-acceptor (e, Ao) emission. The Haynes factor is about 0.087 for the LiZn-NO complex acceptor, with the acceptor bound-exciton binding energy of 12meV. Another deeper acceptor state located at 248meV, also identified from the (e, Ao) emission, is attributed to zinc vacancy acceptor. The two acceptor states might both contribute to the observed p-type conductivity in ZnO:(Li,N).

  7. Pinning effects on the vortex critical velocity in type-II superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Leo, A., E-mail: antoleo@sa.infn.i [CNR-SPIN-Salerno and Dipartimento di Fisica ' E R Caianiello' , Universita di Salerno, via Ponte Don Melillo, 84084 Fisciano (Italy); Grimaldi, G.; Nigro, A.; Pace, S. [CNR-SPIN-Salerno and Dipartimento di Fisica ' E R Caianiello' , Universita di Salerno, via Ponte Don Melillo, 84084 Fisciano (Italy); Verellen, N.; Silhanek, A.V.; Gillijns, W.; Moshchalkov, V.V. [INPAC-Institute for Nanoscale Physics and Chemistry, KU Leuven, Celestijnenlaan 200D, Leuven B-3001 (Belgium); Metlushko, V. [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Ilic, B. [Cornell Nanofabrication Facility, Cornell University, Ithaca, NY 14853 (United States)


    We study the influence of artificial pinning centers on the vortex critical velocity in Al thin films deposited on top of a periodic array of Permalloy (FeNi) square rings. We demonstrate that the field dependence of the flux flow velocity strongly depends on the particular magnetic state of the rings. In particular, we find that, even when the rings are in a flux closure state, i.e. with little stray field, the vortex critical velocity shows a non-monotonic magnetic field dependence. This behaviour is in sharp contrast with the results obtained in a reference plain film, with no rings underneath. A comparison with the intrinsic strong pinning Nb films previously studied, suggests an interpretation in terms of a channel-like motion of vortices, here induced by the artificial pinning structure.

  8. On a Ginzburg-Landau Type Energy with Discontinuous Constraint for High Values of Applied Field

    Institute of Scientific and Technical Information of China (English)

    Hassen AYDI


    In the presence of applied magnetic fields H such that |Inε| << H <<1/ε2, the author evaluates the minimal Ginzburg-Landau energy with discontinuous constraint. Its expression is analogous to the work of Sandier and Serfaty.

  9. Low-temperature perovskite-type cadmium titanate thin films derived from a simple particulate sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, M.R. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Department of Materials Science and Engineering, Sharif University of Technology, Azadi Street, Tehran (Iran, Islamic Republic of)], E-mail:; Fray, D.J. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)


    Low-temperature perovskite-type cadmium titanate (CdTiO{sub 3}) with a nanocrystalline and mesoporous structure was prepared at various Ti:Cd molar ratios by a straightforward particulate sol-gel route. The prepared sols had a narrow particle size distribution, in the range 23-26 nm. X-ray diffraction and Fourier transform infrared spectroscopy revealed that the powders contained a mixture of ilmenite-CdTiO{sub 3}, perovskite-CdTiO{sub 3}, anatase and rutile phases, depending on the annealing temperature and the Ti:Cd molar ratio. Perovskite-CdTiO{sub 3} was the major type obtained from cadmium-prominent powders at low temperature, whereas ilmenite-CdTiO{sub 3} was the major type obtained from titanium-prominent powders at high temperature. It was observed that the anatase-to-rutile phase transformation accelerated with decreasing Ti:Cd molar ratio. Furthermore, the ilmenite-to-perovskite phase transformation accelerated with a decrease in both the Ti:Cd molar ratio and the annealing temperature. The crystallite sizes of the ilmenite- and perovskite-CdTiO{sub 3} phases reduced with increasing the Ti:Cd molar ratio. Field emission scanning electron microscopic analysis revealed that the average grain size of the thin films decreased with an increase in the Ti:Cd molar ratio. Moreover, atomic force microscope images showed that CdTiO{sub 3} thin films had a columnar-like morphology. Based on Brunauer-Emmett-Taylor analysis, cadmium titanate powder containing Ti:Cd = 75:25 showed the greatest surface area and roughness and the smallest pore size among all the powders annealed at 500 deg. C. This is one of the smallest crystallite sizes and largest surface areas reported in the literature, and can be used in many applications in areas from optical electronics to gas sensors.

  10. Controlled p-type to n-type conductivity transformation in NiO thin films by ultraviolet-laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Pranav; Dutta, Titas; Mal, Siddhartha; Narayan, Jagdish [Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606 (United States)


    We report the systematic changes in structural, electrical, and optical properties of NiO thin films on c-sapphire introduced by nanosecond ultraviolet excimer laser pulses. Epitaxial nature of as deposited NiO was determined by x-ray diffraction phi scans and transmission electron microscopy (TEM) and it was established that NiO film growth takes place with twin domains on sapphire where two types of domains have 60 deg. in-plane rotation with respect to each other about the [111] growth direction. We determined that at pulsed laser energy density of 0.275 J/cm{sup 2}, NiO films exhibited conversion from p-type semiconducting to n-type conductive behavior with three orders of magnitude decrease in resistivity, while maintaining its cubic crystal structure and good epitaxial relationship. Our TEM and electron-energy-loss spectroscopy studies conclusively ruled out the presence of any Ni clustering or precipitation due to the laser treatment. The laser-induced n-type carrier transport and conductivity enhancement were shown to be reversible through subsequent thermal annealing in oxygen. This change in conductivity behavior was correlated with the nonequilibrium concentration of laser induced Ni{sup 0}-like defect states.

  11. Impacts of Mastication: Soil Seed Bank Responses to a Forest Thinning Treatment in Three Colorado (USA Conifer Forest Types

    Directory of Open Access Journals (Sweden)

    Akasha M. Faist


    Full Text Available Mastication is a forest fuel thinning treatment that involves chipping or shredding small trees and shrubs and depositing the material across the forest floor. By decreasing forest density mastication has been shown to lessen crown fire hazard, yet other impacts have only recently started to be studied. Our study evaluates how mastication treatments alter the density and composition of soil seed banks in three Colorado conifer forest types. The three forest types were (1 lodgepole pine, (2 ponderosa pine and (3 pinyon pine-juniper. Results showed that masticated sites contained higher seed bank densities than untreated sites: a pattern primarily driven by treatment effects in ponderosa pine forests. The seed bank was dominated by forbs regardless of forest type or treatment. This pattern of forb dominance was not observed in the aboveground vegetation cover as it demonstrated more even proportions of the functional groups. Graminoids showed a higher seed density in treated sites than untreated and, similarly, the identified non-native species only occurred in the treated ponderosa pine sites suggesting a potential belowground invasion for this forest type. These results suggest that presence of masticated material might not be creating a physical barrier hindering the transfer of seeds as predicted.

  12. Low temperature acetone detection by p-type nano-titania thin film: Equivalent circuit model and sensing mechanism (United States)

    Bhowmik, B.; Dutta, K.; Hazra, A.; Bhattacharyya, P.


    Undoped nanocrystalline anatase p-type TiO2 thin film was deposited by sol-gel method on thermally oxidized p-Si (2-5 Ω cm, ) substrates. The thin film was characterized by X-ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) to confirm the formation of nanocrystalline anatase titania and to determine the crystallite size (∼7 nm). The resistive sensor structure was fabricated employing two lateral Pd electrodes on top of the TiO2 sensing layer. The developed sensor was tested in the temperature range of 50-200 °C for the detection of low ppm acetone (0.5-50 ppm). The maximum response of ∼115% was obtained at 150 °C with response/recovery time of 14 s/22 s at 50 ppm acetone (in air). Moreover, the sensors were capable of detecting acetone as low as 0.5 ppm with acceptable response magnitude. As titania acetone sensors are mostly n-TiO2 based, the acetone sensing mechanism for p-TiO2 is yet to be established authentically. To address the issue, an equivalent circuit model, based on the corresponding band diagram of nanocrystalline p-TiO2 with Pd electrode, was developed to describe the electron transfer mechanism through grain, grain boundary and Pd electrode under the influence of acetone vapor.

  13. RBF-Type Artificial Neural Network Model Applied in Alloy Design of Steels

    Institute of Scientific and Technical Information of China (English)

    YOU Wei; LIU Ya-xiu; BAI Bing-zhe; FANG Hong-sheng


    RBF model, a new type of artificial neural network model was developed to design the content of carbon in low-alloy engineering steels. The errors of the ANN model are. MSE 0. 052 1, MSRE 17. 85%, and VOF 1. 932 9. The results obtained are satisfactory. The method is a powerful aid for designing new steels.

  14. New Type Regulating Valve Applied in Cooling System of Blast Furnace

    Institute of Scientific and Technical Information of China (English)

    HE Sheng-ping; ZOU De-yu; XU Gang; LU De-chang


    A new type regulating valve with the cooling mode of constant temperature difference water supply, temperature difference self-operated regulating valve, was introduced into blast furnace cooling system to overcome shortcomings of the cooling mode of constant flow rate water supply. The results show that the temperature difference between inlet and outlet water of cooling wall can be decreased greatly and steadily, and the water supply for blast furnace cooling can be reduced considerably.

  15. Fabrication of dye sensitized solar cell using Cr doped Cu-Zn-Se type chalcopyrite thin film

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, D. Paul; Venkateswaran, C. [Materials Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai-600 025 (India); Ganesan, S.; Suthanthiraraj, S. Austin; Maruthamuthu, P. [Department of Energy, University of Madras, Guindy Campus, Chennai 600 025 (India); Kovendhan, M. [Department of Physics, Presidency College, Chennai 600 005 (India)


    Chalcopyrites are a versatile class of semiconductors known for their potential in photovoltaic applications. Considering the well established CuInSe{sub 2} as a prototype system, a new compound of the chalcopyrite type, Cu{sub 1-x}Zn{sub 1-y}Se{sub 2-{delta}}, by replacing In with Zn, has been prepared (both undoped and 2% Cr doped) by the metallurgical method. Thin films have been deposited by the thermal evaporation technique using the stabilized polycrystalline compounds as charge. Structural, compositional, morphological, and optical properties of the films are analyzed and reported. Use of these films as electrodes in dye sensitized solar cell (DSSC) is demonstrated. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Optical Properties and Boron Doping-Induced Conduction-Type Change in SnO2 Thin Films (United States)

    Tran, Quang-Phu; Fang, Jau-Shiung; Chin, Tsung-Shune


    Boron-doped tin oxide (BTO) films, 0-5 at.% B, were prepared by sol-gel dip coating on a glass substrate. Dried precursor films were post-annealed at a temperature between 400°C and 750°C for 2 h. The obtained BTO thin films were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible light (UV-Vis) spectrometry, a four-point probe, and Hall-effect and Seebeck-effect measurements. Optimal optical transmittance was achieved for post-annealed BTO thin film at 700°C. XRD results show a rutile SnO2 structure with a preferred (110) orientation for all the films. The grain size is 47-21 nm, which reduces with increasing B contents. The optical transmittance is 84.6-88.5% at a wavelength of 550 nm and optical band gap of 3.52-3.75 eV. Electrical resistivity is (3.4-8.2) × 10-3 Ω cm, and figure of merit (0.9-4.3) × 10-3 Ω-1. Carrier concentration is (0.97-7.4) × 1020 cm-3 and mobility (2.5-7.8) cm2 V-1 s-1. BTO film with 4 at.% B shows an optimal combination of properties. Conduction type changes from n- (undoped) to p- (1-4 at.% B), then to n-types (5 at.% B), as evidenced from Hall-effect and Seebeck-effect measurements. This is explained by doping-generated defects and phase separations of Sn3O4 and B2O3.

  17. Vibrations and instabilities of thin rectangular plates separated by fluid medium with applications to the plate type heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Gi-Man, Kim [Kum-Oh National Univ., Taegu (Korea, Republic of)


    Due to the prohibition law for using preon gas, many items in engineering field, specially heat exchanger, should be redesigned. The newly designed heat exchanger such a plate type heat exchanger is known to have a good efficiency in exchanging heat. From view of structures of a plate type heat exchanger, thin tube are used instead of circular pipe and the path of the fluid is developed for the high efficiency of the heat exchange by varying the array of tubes. The principal problem in the design of the plate heat exchanger is the potentiality of structural instabilities due to the fluid loading effect during operations. Excessive plate deflections would eventually result in permanent deformation or collapse which would cause an obstruction of the fluid flow in the narrow channels. In this study, a fluid-structural interaction model was developed to investigate analytically the static and dynamic instabilities that have been observed in flat plate heat exchanger. The model consist of two flat plates separated by water. The effects of the internal fluid in the channel was studied. As results, the natural frequency coefficients were investigated for the plate aspect ratios, channel heights, and boundary conditions. For the design criteria in plate type heat exchanger, the critical flow velocities which cause the responses of a plate were defined for divergence, resonance and flutter phenomena. (author). 25 refs. 2 tabs. 48 figs.

  18. Effect of papain-based gel on type I collagen--spectroscopy applied for microstructural analysis. (United States)

    Silva Júnior, Zenildo Santos; Botta, Sergio Brossi; Ana, Patricia Aparecida; França, Cristiane Miranda; Fernandes, Kristianne Porta Santos; Mesquita-Ferrari, Raquel Agnelli; Deana, Alessandro; Bussadori, Sandra Kalil


    Considering the improvement of biomaterials that facilitate atraumatic restorative techniques in dentistry, a papain-based gel can be used in the chemomechanical removal of decayed dental tissue. However, there is no information regarding the influence of this gel on the structure of sound collagen. The aim of the present study was to investigate the adsorption of a papain-based gel (Papacarie(TM)) to collagen and determine collagen integrity after treatment. A pilot study was first performed with 10 samples of type I collagen membrane obtained from bovine Achilles deep tendon to compare the influence of hydration (Milli-Q water) on infrared bands of collagen. In a further experiment, 10 samples of type I collagen membrane were used to evaluate the effects of Papacarie(TM) on the collagen microstructure. All analyses were performed using the attenuated total reflectance technique of Fourier transform infrared (ATR-FTIR). The results demonstrated that the application of Papacarie(TM) does not lead to the degradation of collagen and this product can be safely used in minimally invasive dentistry. As the integrity of sound collagen is preserved after the application of the papain-based gel, this product is indicated for the selective removal of infected dentin, leaving the affected dentin intact and capable of re-mineralization.

  19. Ohmic contacts of Au and Ag metals to n-type GdN thin films

    Directory of Open Access Journals (Sweden)

    Felicia Ullstad


    Full Text Available The rare-earth nitrides appear as attractive alternatives to dilute ferromagnetic semiconductors for spintronics device applications. Most of them combine the properties of the ferromagnet and the semiconductor, an exceedingly rare combination. In this work we have grown n-type polycrystalline semiconducting GdN layers between pre-deposited contacts made of Cr/Au and Cr/Ag. The resistivity of the GdN layers ranges from 4.4×10-4 Ωcm to 3.1×10-2 Ωcm depending on the nitrogen pressure during the growth. The electrical properties of metal/n-type GdN/metal planar junctions are investigated as a function of the temperature. The current voltage characteristics of the junctions were linear for temperatures ranging from 300 K down to 5 K, suggesting an ohmic contact between the Au or Ag metal and the n-type GdN layer.

  20. Impedance spectroscopic investigation of the effect of thin azo-calix[4]arene film type on the cation sensitivity of the gold electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mlika, R., E-mail: [Laboratoire de Physique et Chimie des Interfaces (LPCI), Faculte des Sciences de Monastir, Avenue de l' environnement, 5000 Monastir (Tunisia); Rouis, A. [Laboratoire de Physique et Chimie des Interfaces (LPCI), Faculte des Sciences de Monastir, Avenue de l' environnement, 5000 Monastir (Tunisia); Bonnamour, I. [Universite de Lyon, Institut de Chimie et Biochimie Moleculaires et Supramoleculaires, Universite Claude Bernar, Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne (France); Ouada, H. Ben [Laboratoire de Physique et Chimie des Interfaces (LPCI), Faculte des Sciences de Monastir, Avenue de l' environnement, 5000 Monastir (Tunisia)


    In this work, we report the impedance spectroscopic investigation of the effect of the thin film type on the selectivity of gold/azo-calix[4]arene electrodes. For this purpose, two C1 and C3 azo-calix[4]arene derivative molecules, used as thin films, are deposited by spin-coating process on the gold surface. These thin films were first studied using contact angle measurements. This revealed a less hydrophobic character for C3 thin film, which has been attributed to the presence of hydroxyl groups at the lower rim. The sensitivity study, by Electrochemical Impedance Spectroscopy (EIS), towards Cu{sup 2+} and Eu{sup 3+} cations, has showed that the C3 thin film is more sensitive and selective towards Eu{sup 3+} than C1. This best performance is due to the presence of two ester groups acting as clips and leading to more complexation stability. The EIS results were modeled by an appropriate equivalent circuit for the aim of elucidating electrical properties of thin films. This modeling has exposed that C3 thin film presents lower ionic conductivity and limited diffusion phenomenon at the interface. Highlights: {yields} C1 and C3 azo-calix[4]arenes thin films are deposited on the gold surface. {yields} The lower hydrophobicity for C3 was attributed to the presence of hydroxyl groups. {yields} The C3 thin film is more sensitive and selective towards Eu{sup 3+} than C1 one. {yields} This best performance is due to the presence of two ester groups acting as clips.

  1. Effects of Concentration and Substrate Type on Structure and Conductivity of p-Type CuS Thin Films Grown by Spray Pyrolysis Deposition (United States)

    Sabah, Fayroz A.; Ahmed, Naser M.; Hassan, Z.


    Copper sulphide (CuS) thin films were grown upon Ti, indium tin oxide (ITO), and glass substrates by using spray pyrolysis deposition at 200°C. The films exhibited good adhesion compared to chemical bath deposition. CuCl2·2H2O and Na2S2O3·5H2O precursors were used as Cu2+ and S2- sources, respectively. Two concentrations (i.e., 0.2 M and 0.4 M) were selected in this study. X-ray diffraction analysis reveals that the films with 0.2 M showed only the formation of a covellite CuS phase having a hexagonal crystal structure with diffraction peaks of low intensity. For 0.4 M concentration, in addition to the covellite CuS phase, chalcocite Cu2S phase having a hexagonal crystal structure also appeared with relatively higher intensity peaks for all thin films. Field-emission scanning electron microscopy observations showed the formation of small grains for 0.2 M, whereas a mixture of grains with square-like shape and nanoplates were formed for 0.4 M. Depending on the 0.2 M and 0.4 M thin films thicknesses (3.2 μm and 4 μm, respectively), the band gap energy was obtained from optical measurements to be approximately 2.64 eV for 0.2 M (pure CuS phase), which slightly decreased up to 2.56 eV for 0.4 M concentration. Hall effect measurements showed that all grown films are p-type. The 0.2 M film exhibited much lower sheet resistance (R sh = 33.96 Ω/Sq-55.70 Ω/Sq) compared to 0.4 M film (R sh = 104.33 Ω/Sq-466.6 Ω/Sq). Moreover, for both concentrations, the films deposited onto ITO substrate showed the lowest sheet resistance (R sh = 33.96 Ω/Sq-104.33 Ω/Sq).

  2. 2D seismostratigraphic inversion applied to a thin reservoir characterization; Inversao sismoestratigrafica 2D aplicada a caracterizacao de um reservatorio delgado

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Antonio Carlos de Almeida


    The purpose of this work is to estimate thin reservoir properties even without counting on a good quality and a homogeneous database. Following a regional geological setting, well data such as logs, reports, cores had led to an interpretation of the depositional model in which the sandstone interval is inserted as an filling an incised valley system. This knowledge is essential to provide elements for a final work judgement. The main geological properties were then extracted from logs. The geophysical approach has counted on a 1D modeling of the main well acoustic parameters and a 2D Seismostratigraphic Inversion with a {alpha} priori acoustic impedance, which was able to enhance the frequency content of the original data. After the interpretation of the inverted data, seismic attributes were then extracted. A multivariate statistics was performed in order to establish which correlations between geological and seismic would be carried forward. An Ordinary Kriging was applied to the 2D seismic attributes. The External Drift Kriging was used to derive maps of the geological properties with the constraint of seismic variables. The final geological properties maps are similar in shape and coherent with the depositional model proposed. (author)

  3. Applying microCT and 3D Visualization to Jurassic Silicified Conifer Seed Cones: A Virtual Advantage Over Thin-Sectioning

    Directory of Open Access Journals (Sweden)

    Carole T. Gee


    Full Text Available Premise of the study: As an alternative to conventional thin-sectioning, which destroys fossil material, high-resolution X-ray computed tomography (also called microtomography or microCT integrated with scientific visualization, three-dimensional (3D image segmentation, size analysis, and computer animation is explored as a nondestructive method of imaging the internal anatomy of 150-million-year-old conifer seed cones from the Late Jurassic Morrison Formation, USA, and of recent and other fossil cones. Methods: MicroCT was carried out on cones using a General Electric phoenix v|tome|x s 240D, and resulting projections were processed with visualization software to produce image stacks of serial single sections for two-dimensional (2D visualization, 3D segmented reconstructions with targeted structures in color, and computer animations. Results: If preserved in differing densities, microCT produced images of internal fossil tissues that showed important characters such as seed phyllotaxy or number of seeds per cone scale. Color segmentation of deeply embedded seeds highlighted the arrangement of seeds in spirals. MicroCT of recent cones was even more effective. Conclusions: This is the first paper on microCT integrated with 3D segmentation and computer animation applied to silicified seed cones, which resulted in excellent 2D serial sections and segmented 3D reconstructions, revealing features requisite to cone identification and understanding of strobilus construction.

  4. Gas doping ratio effects on p-type hydrogenated nanocrystalline silicon thin films grown by hot-wire chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Luo, P.Q. [Solar Energy Institute, Department of Physics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)], E-mail:; Zhou, Z.B. [Solar Energy Institute, Department of Physics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)], E-mail:; Chan, K.Y. [Thin Film Laboratory, Faculty of Engineering, Multimedia University, Jalan Multimedia, Cyberjaya 63100, Selangor (Malaysia); Tang, D.Y.; Cui, R.Q.; Dou, X.M. [Solar Energy Institute, Department of Physics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)


    Hydrogenated nanocrystalline silicon (nc-Si:H) grown by hot-wire chemical vapor deposition (HWCVD) has recently drawn significant attention in the area of thin-film large area optoelectronics due to possibility of high deposition rate. We report on the effects of diborane (B{sub 2}H{sub 6}) doping ratio on the microstructural and optoelectrical properties of the p-type nc-Si:H thin films grown by HWCVD at low substrate temperature of 200 deg. C and with high hydrogen dilution ratio of 98.8%. An attempt has been made to elucidate the boron doping mechanism of the p-type nc-Si:H thin films deposited by HWCVD and the correlation between the B{sub 2}H{sub 6} doping ratio, crystalline volume fraction, optical band gap and dark conductivity.

  5. Ultra-thin wideband magnetic-type metamaterial absorber based on LC resonator at low frequencies (United States)

    Zhang, Linbo; Zhou, Peiheng; Chen, Haiyan; Lu, Haipeng; Xie, Jianliang; Deng, Longjiang


    In this paper, we propose to realize a broad absorption band in the frequency regimes of 2-6 GHz based on multiple resonances. A magnetic-type metamaterial absorber with cross-arrow pattern is further demonstrated numerically and experimentally. Two absorption resonances are generated by LC resonance, leading to bandwidth expansion. The equivalent circuit theory and the surface current distributions of the proposed absorber are discussed to analyze the physical mechanism. Moreover, the broad bandwidth can be maintained as incident angle up to 30° for transverse electric polarization and 45° for transverse magnetic polarization. Finally, experimental results show that the proposed absorber with the total thickness of 2.4 mm exhibits a -10 dB absorption bandwidth by more than 70 %. The low-frequency absorber has potential applications in the area of eliminating microwave energy.

  6. Sputtered-deposited thin brass films in a modified glow discharge Grimm-type source (United States)

    Grais, K. I.; Eid, M. A.; Tawfik, N. L.; Abd-El-Aal, M. S.; Shaltout, A. A.


    Modification of the non-assisted gas flow-line across the target surface in a Grimm-type glow discharge source is described. The new flow line permits the gas to flow through a cylindrical annular space ending with a disc-space annular gap, facing the target surface. This configuration would cause directed jet assisted gas flow rays to impinge on infinite points across the cathode surface. Improvement has been achieved in the V-I characteristics where Δ V/Δ I increases from 1.8 to 3.5 V/mA. The sputtering as well as simultaneous deposition rates, have been increased by a factor of 16 and 17 respectively. These roll over with increasing sputtering time, their maximum values at a characteristic time, toc of 21 min. The toc value was constant for different operating parameters provided that the source geometry assembly is kept fixed. The presence of a glass substrate in the anode cavity has, apparently, no effect on the obtained data. Improvements have also been achieved in the crater profile, characterized by an approximately flat crater bottom with nearly vertical walls, and less re-deposited particles on the crater depth and edge. Fixing the distance Z of the substrate from target surface, along the cell axis, and varying the deposition time from 1 to 30 min, a sequence of changes in the deposited film were observed by X-ray diffraction and energy dispersion X-ray (EDX). These changes start with an amorphous structure, followed by the appearance of Cu and Zn crystallites and a probable deposition of Cu{5}Zn{8} clusters. The profile of the number of sputtered particles at different Z values is characterized by a number of peaks and troughs. This behavior has been explained by the occurrence of local cluster-dissociation and formation, by different collision processes. The improvements achieved by the application of the present jet assisted gas flow can be of value in the analytical application of this type of glow discharge.

  7. Role of thin n-type metal-oxide interlayers in inverted organic solar cells. (United States)

    Gadisa, Abay; Liu, Yingchi; Samulski, Edward T; Lopez, Rene


    We have investigated the photovoltaic properties of inverted solar cells comprising a bulk heterojunction film of poly(3-hexylthiophene) and phenyl-C(61)-butyric acid methyl ester, sandwiched between an indium-tin-oxide/Al-doped zinc oxide (ZnO-Al) front, and tungsten oxide/aluminum back electrodes. The inverted solar cells convert photons to electrons at an external quantum efficiency (EQE) exceeding 70%. This is a 10-15% increase over EQEs of conventional solar cells. The increase in EQE is not fully explained by the difference in the optical transparency of electrodes, interference effects due to an optical spacer effect of the metal-oxide electrode buffer layers, or variation in charge generation profile. We propose that a large additional splitting of excited states at the ZnO-Al/polymer interface leads to the considerably large photocurrent yield in inverted cells. Our finding provides new insights into the benefits of n-type metal-oxide interlayers in bulk heterojunction solar cells, namely the splitting of excited states and conduction of free electrons simultaneously.

  8. Estimating particulate black carbon concentrations using two offline light absorption methods applied to four types of filter media (United States)

    Davy, Pamela M.; Tremper, Anja H.; Nicolosi, Eleonora M. G.; Quincey, Paul; Fuller, Gary W.


    Atmospheric particulate black carbon has been linked to adverse health outcomes. Additional black carbon measurements would aid a better understanding of population exposure in epidemiological studies as well as the success, or otherwise, of relevant abatement technologies and policies. Two light absorption measurement methods of particles collected on filters have been applied to four different types of filters to provide estimations of particulate black carbon concentrations. The ratio of transmittance (lnI0/I) to reflectance (lnR0/R) varied by filter type and ranged from close to 0.5 (as expected from simple theory) to 1.35 between the four filter types tested. The relationship between light absorption and black carbon, measured by the thermal EC(TOT) method, was nonlinear and differed between filter type and measurement method. This is particularly relevant to epidemiological studies that use light absorption as an exposure metric. An extensive archive of filters was used to derive loading factors and mass extinction coefficients for each filter type. Particulate black carbon time series were then calculated at locations where such measurements were not previously available. When applied to two roads in London, black carbon concentrations were found to have increased between 2011 and 2013, by 0.3 (CI: -0.1, 0.5) and 0.4 (CI: 0.1, 0.9) μg m-3 year-1, in contrast to the expectation from exhaust abatement policies. New opportunities using archived or bespoke filter collections for studies on the health effects of black carbon and the efficacy of abatement strategies are created.

  9. The novel transparent sputtered p-type CuO thin films and Ag/p-CuO/n-Si Schottky diode applications

    Directory of Open Access Journals (Sweden)

    A. Tombak


    Full Text Available In the current paper, the physical properties and microelectronic parameters of direct current (DC sputtered p-type CuO film and diode have been investigated. The film of CuO as oxide and p-type semiconductor is grown onto glass and n-Si substrates by reactive DC sputtering at 250 °C. After deposition, a post-annealing procedure is applied at various temperatures in ambient. Through this research, several parameters are determined such structural, optical and electrical magnitudes. The thickness of CuO thin films goes from 122 to 254 nm. A (111-oriented cubic crystal structure is revealed by X-ray analysis. The grain size is roughly depending on the post-annealing temperature, it increases with temperature within the 144–285 nm range. The transmittance reaches 80% simultaneously in visible and infrared bands. The optical band gap is varied between 1.99 and 2.52 eV as a result of annealing temperature while the resistivity and the charge carrier mobility decrease with an increase in temperature from 135 to 14 Ω cm and 0.92 to 0.06 cm2/Vs, respectively. The surface of samples is homogenous, bright dots are visible when temperature reaches the highest value. As a diode, Ag/CuO/n-Si exhibits a non-ideal behavior and the ideality factor is about 3.5. By Norde method, the barrier height and the series resistance are extracted and found to be 0.96 V and 86.6 Ω respectively.

  10. Fabrication and Characterization of p-Type SnO Thin Film with High c-Axis Preferred Orientation (United States)

    Pei, Yanli; Liu, Wuguang; Shi, Jingtao; Chen, Zimin; Wang, Gang


    p-Type tin monoxide (SnO) thin films with high c-axis preferred orientation have been fabricated on quartz substrate via electron-beam evaporation at 280°C. Subsequently, rapid thermal annealing (RTA) was performed in N2 atmosphere at 400°C to 800°C. Their structural, chemical, optical, and electrical properties were investigated by x-ray diffraction analysis, ultraviolet-visible spectroscopy, scanning electron microscopy, x-ray photoelectron spectroscopy, and Hall-effect measurements. The c-axis-oriented films of Sn-rich SnO presented excellent thermal stability up to RTA at 700°C. Both the crystallization and the hole Hall mobility were enhanced with increasing RTA temperature, with Hall mobility of 16 cm2 V-1 s-1 being obtained after RTA at 700°C. It was considered that the presence of defects and low scattering from grain boundaries contributed to this high Hall mobility. RTA annealing temperature above 700°C induced chemical reaction between SnO and the quartz substrate, with a change of the film to amorphous state with Sn4+ formation.

  11. Tuning Bandgap of p-Type Cu2Zn(Sn, Ge)(S, Se)4 Semiconductor Thin Films via Aqueous Polymer-Assisted Deposition. (United States)

    Yi, Qinghua; Wu, Jiang; Zhao, Jie; Wang, Hao; Hu, Jiapeng; Dai, Xiao; Zou, Guifu


    Bandgap engineering of kesterite Cu2Zn(Sn, Ge)(S, Se)4 with well-controlled stoichiometric composition plays a critical role in sustainable inorganic photovoltaics. Herein, a cost-effective and reproducible aqueous solution-based polymer-assisted deposition approach is developed to grow p-type Cu2Zn(Sn, Ge)(S, Se)4 thin films with tunable bandgap. The bandgap of Cu2Zn(Sn, Ge)(S, Se)4 thin films can be tuned within the range 1.05-1.95 eV using the aqueous polymer-assisted deposition by accurately controlling the elemental compositions. One of the as-grown Cu2Zn(Sn, Ge)(S, Se)4 thin films exhibits a hall coefficient of +137 cm(3)/C. The resistivity, concentration and carrier mobility of the Cu2ZnSn(S, Se)4 thin film are 3.17 ohm·cm, 4.5 × 10(16) cm(-3), and 43 cm(2)/(V·S) at room temperature, respectively. Moreover, the Cu2ZnSn(S, Se)4 thin film when used as an active layer in a solar cell leads to a power conversion efficiency of 3.55%. The facile growth of Cu2Zn(Sn, Ge)(S, Se)4 thin films in an aqueous system, instead of organic solvents, provides great promise as an environmental-friendly platform to fabricate a variety of single/multi metal chalcogenides for the thin film industry and solution-processed photovoltaic devices.

  12. 薄膜太阳电池用TCO薄膜制造技术及其特性研究%Research on the Fabrication Technology and Characteristics for TCO Thin Films Applied in Thin Film Solar Cells

    Institute of Scientific and Technical Information of China (English)

    陈新亮; 王斐; 闫聪博; 李林娜; 林泉; 倪牮; 张晓丹; 耿新华; 赵颖


    The up-to-date experiment progresses in TCO thin films on glass and flexible substrates and their ap-plications for Si-based thin film solar cells were presented. Textured surface with good light scattering can improve the solar cells efficiency, stability and reduce the production costs. Magnetron sputtering and LP-MOCVD are the main fabrication technology for textured ZnO-TCO thin films. TCO thin films (IMO, IWO, ZnO : Ga) with high mobility and these thin films on the flexible substrates have become the key issues.%阐述了玻璃衬底、柔性衬底透明导电氧化物薄膜(Transparent conductive oxides-TCO)以及硅基薄膜太阳电池应用方面的最新研究成果.绒面结构可以提高薄膜太阳电池效率和稳定性并降低生产成本.磁控溅射技术和LP-MOCVD技术是制造绒面结构ZnO-TCO薄膜(例如“弹坑”状和“类金字塔”状表面)的主流生长技术;高迁移率TCO薄膜(IMO、IWO、ZnO∶Ga等)以及柔性衬底TCO薄膜是研究开发的重点.

  13. 应用型本科院校定位及应用型人才培养研究%Research on Applied Type of Undergraduate Colleges and Universities and Cultivation of Applied Talents

    Institute of Scientific and Technical Information of China (English)



    探讨应用型本科院校定位及应用型人才的内涵,指出应用型人才与研究型人才的区别、应用型本科院校应用型人才培养与高职高专技能型人才培养的区别,提出应用型本科院校转型发展的任务和应用型人才培养的措施。%This paper explored the position and the connotation of the applied type of undergraduate colleges and u-niversities and pointed out the differences between applied type of talented students and those of the researching type,the differences between cultivating the applied type of undergraduates of the colleges and universities and those of the skilled type of talents trained in higher vocational and technical colleges,and finally proposed the transformational and developing tasks for the applied type of undergraduate institutions and measures for training the applied type of talents.

  14. Electrical properties and surface morphology of electron beam evaporated p-type silicon thin films on polyethylene terephthalate for solar cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Ang, P. C.; Ibrahim, K.; Pakhuruddin, M. Z. [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, Minden 11800 Penang (Malaysia)


    One way to realize low-cost thin film silicon (Si) solar cells fabrication is by depositing the films with high-deposition rate and manufacturing-compatible electron beam (e-beam) evaporation onto inexpensive foreign substrates such as glass or plastic. Most of the ongoing research is reported on e-beam evaporation of Si films on glass substrates to make polycrystalline solar cells but works combining both e-beam evaporation and plastic substrates are still scarce in the literature. This paper studies electrical properties and surface morphology of 1 µm electron beam evaporated Al-doped p-type silicon thin films on textured polyethylene terephthalate (PET) substrate for application as an absorber layer in solar cells. In this work, Si thin films with different doping concentrations (including an undoped reference) are prepared by e-beam evaporation. Energy dispersion X-ray (EDX) showed that the Si films are uniformly doped by Al dopant atoms. With increased Al/Si ratio, doping concentration increased while both resistivity and carrier mobility of the films showed opposite relationships. Root mean square (RMS) surface roughness increased. Overall, the Al-doped Si film with Al/Si ratio of 2% (doping concentration = 1.57×10{sup 16} atoms/cm{sup 3}) has been found to provide the optimum properties of a p-type absorber layer for fabrication of thin film Si solar cells on PET substrate.

  15. Antibacterial and barrier properties of oriented polymer films with ZnO thin films applied with atomic layer deposition at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Vähä-Nissi, Mika, E-mail: [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Pitkänen, Marja; Salo, Erkki; Kenttä, Eija [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Tanskanen, Anne, E-mail: [Aalto University, School of Chemical Technology, Department of Chemistry, Laboratory of Inorganic Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Sajavaara, Timo, E-mail: [University of Jyväskylä, Department of Physics, P.O. Box 35, FI-40014 Jyväskylä (Finland); Putkonen, Matti; Sievänen, Jenni; Sneck, Asko; Rättö, Marjaana [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Karppinen, Maarit, E-mail: [Aalto University, School of Chemical Technology, Department of Chemistry, Laboratory of Inorganic Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Harlin, Ali [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland)


    Concerns on food safety, and need for high quality and extended shelf-life of packaged foods have promoted the development of antibacterial barrier packaging materials. Few articles have been available dealing with the barrier or antimicrobial properties of zinc oxide thin films deposited at low temperature with atomic layer deposition (ALD) onto commercial polymer films typically used for packaging purposes. The purpose of this paper was to study the properties of ZnO thin films compared to those of aluminum oxide. It was also possible to deposit ZnO thin films onto oriented polylactic acid and polypropylene films at relatively low temperatures using ozone instead of water as an oxidizing precursor for diethylzinc. Replacing water with ozone changed both the structure and the chemical composition of films deposited on silicon wafers. ZnO films deposited with ozone contained large grains covered and separated probably by a more amorphous and uniform layer. These thin films were also assumed to contain zinc salts of carboxylic acids. The barrier properties of a 25 nm ZnO thin film deposited with ozone at 100 °C were quite close to those obtained earlier with ALD Al{sub 2}O{sub 3} of similar apparent thickness on similar polymer films. ZnO thin films deposited at low temperature indicated migration of antibacterial agent, while direct contact between ZnO and Al{sub 2}O{sub 3} thin films and bacteria promoted antibacterial activity. - Highlights: • Thin films were grown from diethylzinc also with ozone instead of water at 70 and 100 °C. • ZnO films deposited with diethylzinc and ozone had different structures and chemistries. • Best barrier properties obtained with zinc oxide films close to those obtained with Al{sub 2}O{sub 3} • Ozone as oxygen source provided better barrier properties at 100 °C than water. • Both aluminum and zinc oxide thin films showed antimicrobial activity against E. coli.

  16. Porous NASICON-Type Li3Fe2(PO4)3 Thin Film Deposited by RF Sputtering as Cathode Material for Li-Ion Microbatteries. (United States)

    Sugiawati, Vinsensia Ade; Vacandio, Florence; Eyraud, Marielle; Knauth, Philippe; Djenizian, Thierry


    We report the electrochemical performance of porous NASICON-type Li3Fe2(PO4)3 thin films to be used as a cathode for Li-ion microbatteries. Crystalline porous NASICON-type Li3Fe2(PO4)3 layers were obtained by radio frequency sputtering with an annealing treatment. The thin films were characterized by XRD, SEM, and electrochemical techniques. The chronoamperometry experiments showed that a discharge capacity of 88 mAhg(-1) (23 μAhcm(-2)) is attained for the first cycle at C/10 to reach 65 mAhg(-1) (17 μAhcm(-2)) after 10 cycles with a good stability over 40 cycles.

  17. Porous NASICON-Type Li3Fe2(PO4)3 Thin Film Deposited by RF Sputtering as Cathode Material for Li-Ion Microbatteries (United States)

    Sugiawati, Vinsensia Ade; Vacandio, Florence; Eyraud, Marielle; Knauth, Philippe; Djenizian, Thierry


    We report the electrochemical performance of porous NASICON-type Li3Fe2(PO4)3 thin films to be used as a cathode for Li-ion microbatteries. Crystalline porous NASICON-type Li3Fe2(PO4)3 layers were obtained by radio frequency sputtering with an annealing treatment. The thin films were characterized by XRD, SEM, and electrochemical techniques. The chronoamperometry experiments showed that a discharge capacity of 88 mAhg-1 (23 μAhcm-2) is attained for the first cycle at C/10 to reach 65 mAhg-1 (17 μAhcm-2) after 10 cycles with a good stability over 40 cycles.

  18. CuS p- type thin film characterization deposited on Ti, ITO and glass substrates using spray pyrolysis deposition (SPD) for light emitting diode (LED) application (United States)

    Sabah, Fayroz A.; Ahmed, Naser M.; Hassan, Z.; Rasheed, Hiba S.; Azzez, Shrook A.; Al-Hazim, Nabeel Z.


    The copper sulphide (CuS) thin films were grown with good adhesion by spray pyrolysis deposition (SPD) on Ti, ITO and glass substrates at 200 °C. The distance between nozzle and substrate is 30 cm. The composition was prepared by mixing copper chloride CuCl2.2H2O as a source of Cu2+ and sodium thiosulfate Na2S2O3.5H2O as a source of and S2-. Two concentrations (0.2 and 0.4 M) were used for each CuCl2 and Na2S2O3 to be prepared and then sprayed (20 ml). The process was started by spraying the solution for 3 seconds and after 10 seconds the cycle was repeated until the solution was sprayed completely on the hot substrates. The structural characteristics were studied using X-ray diffraction; they showed covellite CuS hexagonal crystal structure for 0.2 M concentration, and covellite CuS hexagonal crystal structure with two small peaks of chalcocite Cu2S hexagonal crystal structure for 0.4 M concentration. Also the surface and electrical characteristics were investigated using Field Emission Scanning Electron Microscopy (FESEM) and current source device, respectively. The surface study for the CuS thin films showed nanorods to be established for 0.2 M concentration and mix of nanorods and nanoplates for 0.4 M concentration. The electrical study showed ohmic behavior and low resistivity for these films. Hall Effect was measured for these thin films, it showed that all samples of CuS are p- type thin films and ensured that the resistivity for thin films of 0.2 M concentration was lower than that of 0.4 M concentration; and for the two concentrations CuS thin film deposited on ITO had the lowest resistivity. This leads to the result that the conductivity was high for CuS thin film deposited on ITO substrate, and the conductivity of the three thin films of 0.2 M concentration was higher than that of 0.4 M concentration.

  19. Epitaxial thin-film growth of Ruddlesden-Popper-type Ba3Zr2O7 from a BaZrO3 target by pulsed laser deposition (United States)

    Butt, Shariqa Hassan; Rafique, M. S.; Siraj, K.; Latif, A.; Afzal, Amina; Awan, M. S.; Bashir, Shazia; Iqbal, Nida


    Ruddlesden-Popper Ba3Zr2O7 thin films have been synthesized via pulsed laser deposition (PLD) technique. The optimization of deposition parameters in PLD enables the formation of thin film of metastable Ba3Zr2O7 phase from BaZrO3 target. In order to see the post-annealing effects on the structural and optical properties, the deposited Ba3Zr2O7 thin films were annealed at 500, 600 and 800 °C. X-ray diffraction (XRD) reveals the formation of Ba3Zr2O7 phase with tetragonal structure. The changes in the surface of the deposited films were analysed by FE-SEM and AFM. The thin film post-annealed at 500 °C exhibited the best structural, optical and surface properties. Furthermore, the chemical states and chemical composition of the films were determined by X-ray photoelectron spectroscopy (XPS) near the surface. The XPS results show that Ba, Zr and O exist mainly in the form of Ba3Zr2O7 Ruddlesden-Popper-type perovskite structure.

  20. An investigation of Au/Ti multilayer thin-films: surface morphology, structure and interfacial/surface migration of constituents under applied thermal stress (United States)

    Senevirathne, Indrajith; Kemble, Eric; Lavoie, John


    Multilayer thin films are ubiquitous in industry. Au/Ti/substrate is unique due to possible biological applications in proof of concept devices. Material used for substrates include borosilicate glass, and quartz. Typical Ti depositions on substrates give rise to Stanski-Krastonov (SK) like growth while Frank-van der Merwe (FM) like growth is preferred. Ti films with thickness of ~ 100nm were deposited onto varying substrates using a thermal evaporator. The additional Au layer is then deposited via magnetron sputter deposition at 100mtorr at low deposition rates (~ 1ML/min) onto the Ti thin film. These systems were annealed at varying temperatures and at different durations. Systems were investigated via AFM (Atomic Force Microscopy) probes to examine the surface morphology, and structure. Further, the ambient contamination and elemental distribution/diffusion at annealing was investigated via Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray spectroscopy (EDX). PASSHE FPDC Annual Grant (LOU # 2010-LHU-03)

  1. Planning the City Logistics Terminal Location by Applying the Green p-Median Model and Type-2 Neurofuzzy Network. (United States)

    Pamučar, Dragan; Vasin, Ljubislav; Atanasković, Predrag; Miličić, Milica


    The paper herein presents green p-median problem (GMP) which uses the adaptive type-2 neural network for the processing of environmental and sociological parameters including costs of logistics operators and demonstrates the influence of these parameters on planning the location for the city logistics terminal (CLT) within the discrete network. CLT shows direct effects on increment of traffic volume especially in urban areas, which further results in negative environmental effects such as air pollution and noise as well as increased number of urban populations suffering from bronchitis, asthma, and similar respiratory infections. By applying the green p-median model (GMM), negative effects on environment and health in urban areas caused by delivery vehicles may be reduced to minimum. This model creates real possibilities for making the proper investment decisions so as profitable investments may be realized in the field of transport infrastructure. The paper herein also includes testing of GMM in real conditions on four CLT locations in Belgrade City zone.

  2. Planning the City Logistics Terminal Location by Applying the Green p-Median Model and Type-2 Neurofuzzy Network

    Directory of Open Access Journals (Sweden)

    Dragan Pamučar


    Full Text Available The paper herein presents green p-median problem (GMP which uses the adaptive type-2 neural network for the processing of environmental and sociological parameters including costs of logistics operators and demonstrates the influence of these parameters on planning the location for the city logistics terminal (CLT within the discrete network. CLT shows direct effects on increment of traffic volume especially in urban areas, which further results in negative environmental effects such as air pollution and noise as well as increased number of urban populations suffering from bronchitis, asthma, and similar respiratory infections. By applying the green p-median model (GMM, negative effects on environment and health in urban areas caused by delivery vehicles may be reduced to minimum. This model creates real possibilities for making the proper investment decisions so as profitable investments may be realized in the field of transport infrastructure. The paper herein also includes testing of GMM in real conditions on four CLT locations in Belgrade City zone.

  3. Modeling of the Partial Discharge Process in a Liquid Dielectric: Effect of Applied Voltage, Gap Distance, and Electrode Type

    Directory of Open Access Journals (Sweden)

    Tao Yuan


    Full Text Available The partial discharge (PD process in liquid dielectrics is influenced by several factors. Although the PD current contains the information representing the discharge process during the PD event, it is difficult to determine the detailed dynamics of what is happening in the bulk of the liquid. In this paper, a microscopic model describing the dynamics of the charge carriers is implemented. The model consists of drift-diffusion equations of electrons, positive and negative ions coupled with Poisson’s equation. The stochastic feature of PD events is included in the equation. First the model is validated through comparison between the calculated PD current and experimental data. Then experiments are conducted to study the effects of the amplitude of the applied voltage, gap distance and electrode type on the PD process. The PD currents under each condition are recorded. Simulations based on the model have been conducted to analyze the dynamics of the PD events under each condition, and thus explain the mechanism of how these factors influence the PD events. The space charge generated in the PD process is revealed as the main reason affecting the microscopic process of the PD events.

  4. Mapping Plant Functional Types over Broad Mountainous Regions: A Hierarchical Soft Time-Space Classification Applied to the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Danlu Cai


    Full Text Available Research on global climate change requires plant functional type (PFT products. Although several PFT mapping procedures for remote sensing imagery are being used, none of them appears to be specifically designed to map and evaluate PFTs over broad mountainous areas which are highly relevant regions to identify and analyze the response of natural ecosystems. We present a methodology for generating soft classifications of PFTs from remotely sensed time series that are based on a hierarchical strategy by integrating time varying integrated NDVI and phenological information with topography: (i Temporal variability: a Fourier transform of a vegetation index (MODIS NDVI, 2006 to 2010. (ii Spatial partitioning: a primary image segmentation based on a small number of thresholds applied to the Fourier amplitude. (iii Classification by a supervised soft classification step is based on a normalized distance metric constructed from a subset of Fourier coefficients and complimentary altitude data from a digital elevation model. Applicability and effectiveness is tested for the eastern Tibetan Plateau. A classification nomenclature is determined from temporally stable pixels in the MCD12Q1 time series. Overall accuracy statistics of the resulting classification reveal a gain of about 7% from 64.4% compared to 57.7% by the MODIS PFT products.

  5. Hydrogen plasma treatment of very thin p-type nanocrystalline Si films grown by RF-PECVD in the presence of B(CH33

    Directory of Open Access Journals (Sweden)

    Sergej Alexandrovich Filonovich, Hugo Águas, Tito Busani, António Vicente, Andreia Araújo, Diana Gaspar, Marcia Vilarigues, Joaquim Leitão, Elvira Fortunato and Rodrigo Martins


    Full Text Available We have characterized the structure and electrical properties of p-type nanocrystalline silicon films prepared by radio-frequency plasma-enhanced chemical vapor deposition and explored optimization methods of such layers for potential applications in thin-film solar cells. Particular attention was paid to the characterization of very thin (~20 nm films. The cross-sectional morphology of the layers was studied by fitting the ellipsometry spectra using a multilayer model. The results suggest that the crystallization process in a high-pressure growth regime is mostly realized through a subsurface mechanism in the absence of the incubation layer at the substrate-film interface. Hydrogen plasma treatment of a 22-nm-thick film improved its electrical properties (conductivity increased more than ten times owing to hydrogen insertion and Si structure rearrangements throughout the entire thickness of the film.

  6. Synthesis of TiN/a-Si3N4 thin film by using a Mather type dense plasma focus system

    Institute of Scientific and Technical Information of China (English)

    T.Hussain; R.Ahmad; N.Khalid; Z.A.Umar; A.Hussnain


    A 2.3 kJ Mather type pulsed plasma focus device was used for the synthesis of a TiN/a-Si3N4 thin film at room temperature.The film was characterized using X-ray diffraction (XRD),X-ray photoelectron spectroscopy (XPS),scanning electron microscopy (SEM),and atomic force microscopy (AFM).The XRD pattern confirms the growth of polycrystalline TiN thin film.The XPS results indicate that the synthesized film is non-stoichiometric and contains titanium nitride,silicon nitride,and a phase of silicon oxy-nitride.The SEM and AFM results reveal that the surface of the synthesized film is quite smooth with 0.59 nm roughness (root-mean-square).

  7. Magneto-optical study of the intermediate state in type-I superconductors: Effects of sample shape and applied current

    Energy Technology Data Exchange (ETDEWEB)

    Hoberg, Jacob Ray [Iowa State Univ., Ames, IA (United States)


    The magnetic flux structures in the intermediate state of bulk, pinning-free Type-I superconductors are studied using a high resolution magneto-optical imaging technique. Unlike most previous studies, this work focuses on the pattern formation of the coexisting normal and superconducting phases in the intermediate state. The influence of various parameters such as sample shape, structure defects (pinning) and applied current are discussed in relation to two distinct topologies: flux tubes (closed topology) and laminar (open topology). Imaging and magnetization measurements performed on samples of different shapes (cones, hemispheres and slabs), show that contrary to previous beliefs, the tubular structure is the equilibrium topology, but it is unstable toward defects and flux motion. Moreover, the application of current into a sample with the geometric barrier can replace an established laminar structure with flux tubes. At very high currents, however, there exists a laminar 'stripe pattern.' Quantitative analysis of the mean tube diameter is shown to be in good agreement with the prediction proposed by Goren and Tinkham. This is the first time that this model has been confirmed experimentally. Further research into the flux tube phase shows a direct correlation with the current loop model proposed in the 1990's by Goldstein, Jackson and Dorsey. There also appears a range of flux tube density that results in a suprafroth structure, a well-formed polygonal mesh, which behaves according to the physics of foams, following standard statistical laws such as von Neumann and Lewis. The reaction of flux structures to a fast-ramped magnetic field was also studied. This provided an alignment of the structure not normally observed at slow ramp rates.

  8. Interpretation of transmission through type II superconducting thin film on dielectric substrate as observed by laser thermal spectroscopy (United States)

    Šindler, M.; Tesař, R.; Koláček, J.; Skrbek, L.


    We provide a thorough analysis of THz properties of BCS-like superconducting thin films. Temperature and frequency dependence of complex conductivity in zero magnetic field is discussed by utilizing the Zimmerman et al. explicit BCS based formula [Physica C 183 (1991) 99]. We extend this approach by employing the effective medium theory and develop a phenomenological model capable of accounting for the influence of external magnetic field. Using Yeh powerful formalism [Surface Sci. 96 (1980) 41] we calculate optical transmission of linearly polarized laser beam normally incident to a multilayered sample consisting of a thin NbN film grown on birefringent sapphire substrate, entirely covering ranges of interest in temperature and frequency. A proposal to exploit linear polarization of the incident beam parallel with principal axes of conductivity tensor is explained and theoretical predictions for a realistic NbN sample are computed and discussed.

  9. Applying non-uniform grids to evaluating susceptibility from flow-type phenomena: an example of application to Mount Etna (United States)

    Bongolan, Vena Pearl; Lupiano, Valeria; D'Ambrosio, Donato; Rongo, Rocco; Spataro, William; Iovine, Giulio


    The hazard induced by dangerous flow-type phenomena - e.g. lava flows, earth flows, debris flows, and debris avalanches - can be assessed by analysing a proper set of simulations of hypothetical events. Non-uniform grids are commonly used to study particular areas of interest in computational domains. Examples of application concern, for instance, the turbulence in a boundary layer. While non-uniform grids frequently appear in adaptive methods, they may also be used in a "static" environment. A purposive sampling method, based on a non-uniform grid of sources coupled with numerical simulations of independent events, has recently been employed to evaluate the hazard induced by flow-type phenomena. An example of application to lava-flows at Mount Etna (Italy) is described in this study. The method aims at refining the spatial distribution of hypothetical eruptive vents with respect to an original uniform grid. The density of eruptive vents has been determined by considering the historical distribution of lateral and eccentric vents, and the distribution of the main faults/structures on the volcano. A higher number of sources marks higher-probability zones of vent opening, based on classes of activation: the number of vents in each class has been set proportionally to the probability of activation of the class. By considering the different types of eruption expected from the considered volcano, based on the historical activity of the past 400 years, a set of simulations per each vent has been performed. The employed model is SCIARA-fv2, a Cellular Automata numerical code recently applied to the same study area for preliminary hazard analyses. In this work, calibration could therefore be skipped, by taking advantage from such experience of tuning of the parameters. Performed simulations have been analysed by a GIS, to verify the number of events affecting each cell of the domain. A probability of occurrence could be assigned to each simulation, based on statistics of

  10. Potentialities and practical limitations of absolute neutron dosimetry using thin films of uranium and thorium applied to the fission track dating

    CERN Document Server

    Bigazzi, G; Hadler-Neto, J C; Iunes, P J; Paulo, S R; Oddone, M; Osorio, A M A; Zúñiga, A G


    Neutron dosimetry using natural uranium and thorium thin films makes possible that mineral dating by the fission-track method can be accomplished, even when poor thermalized neutron facilities are employed. In this case, the contributions of the fissions of sup 2 sup 3 sup 5 U, sup 2 sup 3 sup 8 U and sup 2 sup 3 sup 2 Th induced by thermal, epithermal and fast neutrons to the population of tracks produced during irradiation are quantified through the combined use of natural uranium and thorium films. If the Th/U ratio of the sample is known, only one irradiation (where the sample and the films of uranium and thorium are present) is necessary to perform the dating. However, if that ratio is unknown, it can be determined through another irradiation where the mineral to be dated and both films are placed inside a cadmium box. Problems related with film manufacturing and calibration are discussed. Special attention is given to the utilization of thin films having very low uranium content. The problems faced sugg...

  11. Air-stable conversion of separated carbon nanotube thin-film transistors from p-type to n-type using atomic layer deposition of high-κ oxide and its application in CMOS logic circuits. (United States)

    Zhang, Jialu; Wang, Chuan; Fu, Yue; Che, Yuchi; Zhou, Chongwu


    Due to extraordinary electrical properties, preseparated, high purity semiconducting carbon nanotubes hold great potential for thin-film transistors (TFTs) and integrated circuit applications. One of the main challenges it still faces is the fabrication of air-stable n-type nanotube TFTs with industry-compatible techniques. Here in this paper, we report a novel and highly reliable method of converting the as-made p-type TFTs using preseparated semiconducting nanotubes into air-stable n-type transistors by adding a high-κ oxide passivation layer using atomic layer deposition (ALD). The n-type devices exhibit symmetric electrical performance compared with the p-type devices in terms of on-current, on/off ratio, and device mobility. Various factors affecting the conversion process, including ALD temperature, metal contact material, and channel length, have also been systematically studied by a series of designed experiments. A complementary metal-oxide-semiconductor (CMOS) inverter with rail-to-rail output, symmetric input/output behavior, and large noise margin has been further demonstrated. The excellent performance gives us the feasibility of cascading multiple stages of logic blocks and larger scale integration. Our approach can serve as the critical foundation for future nanotube-based thin-film macroelectronics.

  12. Using the hydrothermal method to grow p-type ZnO nanowires on Al-doped ZnO thin film to fabricate a homojunction diode. (United States)

    Tseng, Yung-Kuan; Hung, Meng-Chun; Su, Shun-Lung; Li, Sheng-Kai


    In this study, the hydrothermal method is used to grow phosphorus-doped ZnO nanowires on Si/SiO2 substrates deposited with Al-doped ZnO thin film. This structure forms a homogeneous p-n junction. In this study, we are the pioneers to use ammonium hypophosphite (NH4H2PO2) as a source of phosphorus to prepare the precursor solution. Ammonium hypophosphite of different concentration levels is used to observe its effects on the growth of nanowires. The results show that the precursor solution prepared from ammonium hypophosphite can produce good crystalline ZnO nanowires while there is no linear relationship between the amounts and concentration levels of phosphorus doped into the nanowires. Whether the phosphorus-doped ZnO nanowires have the characteristics of a p-type semiconductor is indirectly verified by measuring whether the p-n junction made up of Al-doped ZnO thin film and phosphorus-doped ZnO nanowires shows rectifying behavior. I-V measurements are made on the specimens. The results show good rectifying behavior, proving that the phosphorus-doped ZnO nanowires and Al-doped AZO films have p-type and n-type semiconductor properties, constituting a good p-n junction. This result also proves that ammonium hypophosphite is a better source of phosphorus in the hydrothermal method to synthesize phosphorus-doped ZnO nanowires.

  13. Lead free CH3NH3SnI3 perovskite thin-film with p-type semiconducting nature and metal-like conductivity



    Lead free CH3NH3SnI3 perovskite thin film was prepared by low temperature solution processing and characterized using current sensing atomic force microscopy (CS-AFM). Analysis of electrical, optical, and optoelectrical properties reveals unique p-type semiconducting nature and metal like conductivity of this material. CH3NH3SnI3 film also showed a strong absorption in visible and near infrared spectrum with absorption onset of 1.3 eV. X-ray Diffraction analysis and scanning electron microsco...

  14. Enhanced p-type conductivity and band gap narrowing in heavily Al doped NiO thin films deposited by RF magnetron sputtering. (United States)

    Nandy, S; Maiti, U N; Ghosh, C K; Chattopadhyay, K K


    Stoichiometric NiO, a Mott-Hubbard insulator at room temperature, shows p-type electrical conduction due to the introduction of Ni(2+) vacancies (V(Ni)('')) and self-doping of Ni(3+) ions in the presence of excess oxygen. The electrical conductivity of this important material is low and not sufficient for active device fabrication. Al doped NiO thin films were synthesized by radio frequency (RF) magnetron sputtering on glass substrates at a substrate temperature of 250 °C in an oxygen + argon atmosphere in order to enhance the p-type electrical conductivity. X-ray diffraction studies confirmed the correct phase formation and also oriented growth of NiO thin films. Al doping was confirmed by x-ray photoelectron spectroscopic studies. The structural, electrical and optical properties of the films were investigated as a function of Al doping (0-4 wt%) in the target. The room temperature electrical conductivity increased from 0.01-0.32 S cm (-1) for 0-4% Al doping. With increasing Al doping, above the Mott critical carrier density, energy band gap shrinkage was observed. This was explained by the shift of the band edges due to the existence of exchange and correlation energies amongst the electron-electron and hole-hole systems and also by the interaction between the impurity quasi-particle system.

  15. Comparison of ferromagnetism in n- and p-type magnetic semiconductor thin films of ZnCoO

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.H., E-mail: [Department of Physics, National Cheng Kung University, No. 1, Ta-Shuei Road, Tainan 70101, Taiwan (China); Lee, J.C.; Min, J.F. [Department of Physics, National Cheng Kung University, No. 1, Ta-Shuei Road, Tainan 70101, Taiwan (China); Su, C.W. [Department of Applied Physics, National Chiayi University, Chiayi 60004, Taiwan (China)


    Both n- and p-type diluted magnetic semiconductor ZnCoO are made by magnetron co-sputtering with, respectively, dopants of Al and dual dopants of Al and N. The two sputtering targets are compound ZnCoO with 5% weight of Co and pure metal Al. Sputtering gases for n- and p-type films are pure Ar and N{sub 2}, respectively. These films are magnetic at room temperature and possess free electron- and hole-concentration of 5.34x10{sup 20} and 5.27x10{sup 13} cm{sup -3}. Only the n-type film exhibits anomalous Hall-effect signals. Magnetic properties of these two types of films are compared and discussed based on measurements of microstructure and magneto-transport properties. - Research highlights: n-type ZnCoO:Al and p-type ZnCoO:(Al, N) films are made and are both ferromagnetic at room temperature. Signal of anomalous Hall-effect (AHE) is clearly observed only for n-type film but not for p-type film. Photoluminescence (PL) spectrum shows a peak attributed to shallow acceptor band of N. Ferromagnetic exchange coupling between magnetic ions in n-type film is through spin polarized free electrons. Ferromagnetism in p-type film is not attributed to the free hole-carriers mediation but to the overlap of BMP.

  16. Synthesis of fibrous reticulate nanocrystalline n-type MoBi{sub 2}(Se{sub 1−x}Te{sub x}){sub 5} thin films: Thermocooling applications

    Energy Technology Data Exchange (ETDEWEB)

    Salunkhe, Manauti M.; Kharade, Rohini R.; Kharade, Suvarta D. [Materials Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416004 (India); Mali, Sawanta S.; Patil, P.S. [Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (India); Bhosale, P.N., E-mail: [Materials Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416004 (India)


    Graphical abstract: Ostwald ripening: If small nucleus is close to a larger crystal, ions formed by particle dissolution of smaller crystal incorporated into larger crystal, and film formation takes place by ion by ion condensation. Display Omitted Highlights: ► Arrested Precipitation Technique is applied to deposit MoBi{sub 2}(Se{sub 1−x}Te{sub x}){sub 5}. ► X-ray diffraction confirms the proper phase formation of material. ► MoBi{sub 2}(Se{sub 1−x}Te{sub x}){sub 5} exhibits an n-type semiconducting behavior. ► Good thermoelectric performance suggests future fantasy. -- Abstract: In the present investigation n-type MoBi{sub 2}(Se{sub 1−x}Te{sub x}){sub 5} nanocrystalline thin films with various compositions of Se and Te were successfully deposited on ultrasonically cleaned glass substrates using recently developed Arrested Precipitation Technique (APT). The effect of composition on optical, morphological, structural, electrical and thermocooling properties of MoBi{sub 2}(Se{sub 1−x}Te{sub x}){sub 5} were investigated using UV–vis–NIR Spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, X-ray diffractometer, thermoelectric power and thermocooling measurements. Thermoelectric properties including electrical conductivity (σ), Seeback coefficient (S) and figure of merit (ZT) were measured at 300 K. Our aim is to investigate thermocooling behavior in respect of variation in composition of Se and Te in MoBi{sub 2}(Se{sub 1−x}Te{sub x}){sub 5} thin films along with optostructural and optoelectric properties.

  17. Low-field tunnel-type magnetoresistance properties of polycrystalline and epitaxial La sub 0 sub . sub 6 sub 7 Sr sub 0 sub . sub 3 sub 3 MnO sub 3 thin films

    CERN Document Server

    Shim, I B; Choi, S Y


    The low-field tunnel-type magnetoresistance (TMB) properties of sol-gel derived polycrystalline and epitaxial La sub 0 sub . sub 6 sub 7 Sr sub 0 sub . sub 3 sub 3 MnO sub 3 (LSMO) thin films were investigated. The polycrystalline thin films were fabricated on Si (100) with a thermally oxidized SiO sub 2 layer while the epitaxial thin films were grown on LaAlO sub 3 (001) single-crystal substrates. The epitaxial thin films displayed both typical intrinsic colossal magnetoresistance (CMR) and abnormal extrinsic tunnel-type magnetoresistance behaviors. Tunnel-type MR ratio as high as 0.4% were observed in the polycrystalline thin films at a field of 120 Oe at room temperature (300 K) whereas the ratios were less than 0.1% for the epitaxial films in the same field range. The low-field tunnel-type MR of polycrystalline LSMO/SiO sub 2 ?Si (100) thin films originated from the behaviors of the grain-boundary properties.

  18. RETRACTED: P-type Zno thin films fabricated by Al-N co-doping method at different substrate temperature (United States)

    Yuan, Guodong; Ye, Zhizhen; Qian, Qing; Zhu, Liping; Huang, Jingyun; Zhao, Binghui


    This article has been retracted at the request of the Editor-in-Chief. Please see Elsevier Policy on Article Withdrawal ( The editors and publisher would like to confirm the retraction of this paper at the request of the author Guodong Yuan. Reason: The SIMS profile published in this paper had already been included in articles published in Mater. Lett., 58 (2004) 3741-3744, and Thin Solid Films, 484 (2005) 420-425 describing a sample prepared under different conditions. The author did not notify either the Journal of Crystal Growth Editors or the coauthors of this fact. The author apologizes sincerely to the readers, referees, and Editors for violating the guidelines of ethical publication.Also the author apologizes to the coauthors for mishandling of the manuscript.

  19. The n-type conduction of indium-doped Cu{sub 2}O thin films fabricated by direct current magnetron co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Xing-Min; Su, Xiao-Qiang; Ye, Fan, E-mail:; Wang, Huan; Tian, Xiao-Qing; Zhang, Dong-Ping; Fan, Ping; Luo, Jing-Ting; Zheng, Zhuang-Hao; Liang, Guang-Xing [Institute of Thin Film Physics and Applications, School of Physical Science and Technology and Shenzhen Key Laboratory of Sensor Technology, Shenzhen University, Shenzhen 518060 (China); Roy, V. A. L. [Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong (China)


    Indium-doped Cu{sub 2}O thin films were fabricated on K9 glass substrates by direct current magnetron co-sputtering in an atmosphere of Ar and O{sub 2}. Metallic copper and indium disks were used as the targets. X-ray diffraction showed that the diffraction peaks could only be indexed to simple cubic Cu{sub 2}O, with no other phases detected. Indium atoms exist as In{sup 3+} in Cu{sub 2}O. Ultraviolet-visible spectroscopy showed that the transmittance of the samples was relatively high and that indium doping increased the optical band gaps. The Hall effect measurement showed that the samples were n-type semiconductors at room temperature. The Seebeck effect test showed that the films were n-type semiconductors near or over room temperature (<400 K), changing to p-type at relatively high temperatures. The conduction by the samples in the temperature range of the n-type was due to thermal band conduction and the donor energy level was estimated to be 620.2–713.8 meV below the conduction band. The theoretical calculation showed that indium doping can raise the Fermi energy level of Cu{sub 2}O and, therefore, lead to n-type conduction.

  20. Characterization and Stability of Na-doped p-type ZnO Thin Films Preparation by Reactive DC Magnetron Sputtering

    Institute of Scientific and Technical Information of China (English)

    JI Zhen-guo; LIU Fang; HE Hai-yan; HAN Wei-zhi


    Na-doped p-type ZnO thin films have been realized by DC reactive magnetron sputtering with a set of metal-Zn targets doped with various Na contents and under different substrate temperatures,respectively.Hall effect measurement,field-emission SEM,X-ray diffraction and optical transmission were carried out to investigate the effects of Na content and substrate temperature on the properties of p-type films. Results indicate that all the Na-doped ZnO films are strongly (002) oriented,and have an average transmittance ~85% in the visible region.Na-doped p-type ZnO films with good structural,electrical,and optical properties can only be obtained at an intermediate amount of Na content and under appropriate substrate temperature.At the optimal condition,the Na-doped p-type ZnO has the lowest resistivity of 13.8Ω· cm with the carrier concentration as high as 1.07×10~(18) cm~(-3).The stability of the Na-doped p-type ZnO is also studied in this paper and it is found that the electrical properties keep stable in a period of one month.

  1. Methods of the professional-applied physical preparation of students of higher educational establishments of economic type

    Directory of Open Access Journals (Sweden)

    Maliar E.I.


    Full Text Available Is considered the directions of professionally-applied physical preparation of students with the prevailing use of facilities of football. Are presented the methods of professionally-applied physical preparation of students. It is indicated that application of method of the circular training is rendered by an assistance development of discipline, honesty, honesty, rational use of time. Underline, that in teaching it is necessary to provide a short cut to mastering of the planned knowledge, abilities and skills, improvement of physical qualities.

  2. Magnetostatic Coupling in CoFe2O4/Pb(Zr0.53Ti0.47)O3 Magnetoelectric Composite Thin Films of 2-2 Type Structure

    Institute of Scientific and Technical Information of China (English)

    Yu-dong Xu; Lei Wang; Min Shi; Hai-lin Su; Guang Wu


    CoFe2O4/Pb(Zr0.5aTi0.47)O3 (CFO/PZT) magnetoelectric composite thin films of 2-2 type structure had been prepared onto Pt/Ti/SiO2/Si substrate by a sol-gel process and spin coating technique.The structure of the prepared thin film is substrate/PZT/CFO/PZT/CFO.Two CFO ferromagnetic layers are separated from each other by a thin PZT layer.The upper CFO layer is magnetostatically coupled with the lower CFO layer.Subsequent scanning electron microscopy (SEM) investigations show that the prepared thin films exhibit good morphologies and compact structure,and cross-sectional micrographs clearly display a multilayered nanostructure of multilayered thin films.The composite thin films exhibit both good magnetic and ferroelectric properties.The spacing between ferromagnetic layers can be varied by adjusting the thickness of intermediate PZT layer.It is found that the strength of magnetostatic coupling has a great impact on magnetoelectric properties of composite thin films,i.e.,the magnetoelectric voltage coefficient of composite thin film tends to increase with the decreasing of pacing between two neighboring CFO ferromagnetic layers as a result of magnetostatic coupling effect.

  3. NMR characterization of thin films (United States)

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela


    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  4. Organic Thin-Film Transistors with Phase Separation of Polymer-Blend Small-Molecule Semiconductors: Dependence on Molecular Weight and Types of Polymer (United States)

    Ohe, Takahiro; Kuribayashi, Miki; Tsuboi, Ami; Satori, Kotaro; Itabashi, Masao; Nomoto, Kazumasa


    We have investigated effect of polymer on solution-processed organic thin-film transistors (TFTs) with polymer-blend semiconductors. Organic TFTs made from a solution of 6,13-bis(triisopropylsilylethynyl)-pentacene with a poly(α-methylstyrene) (PaMS) molecular weight of 20 k or above, exhibited mobility around 0.1 cm2/(V.s). On the other hand, the organic TFTs with a PaMS molecular weight of 2 k or with a poly(isobutyl methacrylate), exhibited much lower mobility. This can be explained in terms of the structure and crystallinity of the films. The results of film structure can be explained by applying the Flory-Huggins theory.

  5. Effect of microstructure on thermal conductivity of Cu, Ag thin films. (United States)

    Ryu, Sang; Juhng, Woonam; Kim, Youngman


    Thin film type materials are widely used in modern industries, such as semiconductor devices, functional superconductors, machining tools, and so on. The thermal properties of material in semiconductor are very important factors for stable operation because the heat generated during device operation may increase clock frequency. Even though thermal properties of thin films may play a major role in assessing reliability of parts, the measurement methods of thin film thermal properties are generally known to be complex to devise. In this study, a temperature distribution method was applied for the measurement of thermal conductivity of Cu and Ag thin film on borosilicate glass substrate. Cu and Ag thin films were deposited on borosilicate glass using thermal evaporation processes. To measure the thermal conductivity changes according to the microstructure of metallic thin film, the processing variables for the Cu and Ag thin film deposition were changed. To minimize the effect of film thickness, the film thickness was fixed to the thickness of approximately 500 nm throughout experiments. The thermal conductivities of thin films were measured to be much lower than those of bulk materials. Thin film with larger grain size showed higher thermal conductivity probably due to the lower number density of grain boundary. Weidman-Franz law could be applied to thin films produced in this study. Thermal conductivity was also estimated from the resistivity of thin film and Lorenz number of bulk material.

  6. Atomic Layer Deposition of p-Type Epitaxial Thin Films of Undoped and N-Doped Anatase TiO2. (United States)

    Vasu, K; Sreedhara, M B; Ghatak, J; Rao, C N R


    Employing atomic layer deposition, we have grown p-type epitaxial undoped and N-doped anatase TiO2(001) thin films on c-axis Al2O3 substrate. From X-ray diffraction and transmission electron microscopy studies, crystallographic relationships between the film and the substrate are found to be (001)TiO2//(0001)Al2O3 and [1̅10]TiO2//[011̅0]Al2O3. N-doping in TiO2 thin films enhances the hole concentration and mobility. The optical band gap of anatase TiO2 (3.23 eV) decreases to 3.07 eV upon N-doping. The epitaxial films exhibit room-temperature ferromagnetism and photoresponse. A TiO2-based homojunction diode was fabricated with rectification from the p-n junction formed between N-doped p-TiO2 and n-TiO2.

  7. Collapse and revival of a Dicke-type coherent narrowing in potassium vapor confined in a nanometric-thin cell

    CERN Document Server

    Sargsyan, A; Leroy, C; Sarkisyan, D


    A nanometer-thin-cell (in the direction of laser beam propagation) has been elaborated with the thickness of the atomic vapor column varying smoothly in the range of $L = \\unit[50-1500]{nm}$. The cell allows one to study the behavior of the resonance absorption over the $D_1$ line of potassium atoms by varying the laser intensity and the cell thickness from $L = \\lambda / 2$ to $L = 2 \\lambda$ with the step $\\lambda/2$ ($\\lambda =\\unit[770]{nm}$ is the resonant wavelength of the laser). It is shown that despite the huge Doppler broadening ($>\\unit[0.9]{GHz}$ at the cell temperature $\\unit[170]{^{\\circ}C}$), at low laser intensities a narrowing of the resonance absorption spectrum is observed for $L = \\lambda/2$ ($\\sim \\unit[120]{ MHz}$ at FWHM) and $L = 3/2 \\lambda$, whereas for $L = \\lambda$ and $L =2\\lambda$ the spectrum broadens. At moderate laser intensities narrowband velocity selective optical pumping (VSOP) resonances appear at $L = \\lambda$ and $L=2\\lambda $ with the linewidth close to the natural one...

  8. A numerical study on the feasibility evaluation of a hybrid type superconducting fault current limiter applying thyristors

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seok Ho; Lee, Woo Seung; Lee, Ji Ho; Hwang, Young Jin; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of)


    Smart fault current controller (SFCC) proposed in our previous work consists of a power converter, a high temperature superconducting (HTS) DC reactor, thyristors, and a control unit [1]. SFCC can limit and control the current by adjusting firing angles of thyristors when a fault occurs. SFCC has complex structure because the HTS DC reactor generates the loss under AC. To use the DC reactor under AC, rectifier that consists of four thyristors is needed and it increases internal resistance of SFCC. For this reason, authors propose a hybrid type superconducting fault current limiter (SFCL). The hybrid type SFCL proposed in this paper consists of a non-inductive superconducting coil and two thyristors. To verify the feasibility of the proposed hybrid type SFCL, simulations about the interaction of the superconducting coil and thyristors are conducted when fault current flows in the superconducting coil. Authors expect that the hybrid type SFCL can control the magnitude of the fault current by adjusting the firing angles of thyristors after the superconducting coil limits the fault current at first peak.

  9. Variation in energy stored and dissipated in type-II superconductor in applied ac magnetic field with relative phase of two sinusoidal components of the field (United States)

    Janů, Zdeněk; Chagovets, Tymofiy


    We show that both the energy stored and dissipated by a system with hysteretic nonlinearity in an applied field varies with the relative phase of the sinusoidal components of the field, even if the magnitude of these components, and thus an effective value of the field, are kept constant. The explored system is a type-II superconductor in the critical state subjected to a time varying applied magnetic field. Complete analytical expressions for hysteresis loops, determined from basic physical phenomena, are known for this system. A theoretically predicted variation in the energy is in good agreement with our experimental measurements.

  10. Formation mechanism of Ruddlesden-Popper-type antiphase boundaries during the kinetically limited growth of Sr rich SrTiO3 thin films (United States)

    Xu, Chencheng; Du, Hongchu; van der Torren, Alexander J. H.; Aarts, Jan; Jia, Chun-Lin; Dittmann, Regina


    We elucidated the formation process for Ruddlesden-Popper-type defects during pulsed laser deposition of Sr rich SrTiO3 thin films by a combined analysis of in-situ atomic force microscopy, low energy electron diffraction and high resolution scanning transmission electron microscopy. At the early growth stage of 1.5 unit cells, the excess Sr results in the formation of SrO on the surface, resulting in a local termination change from TiO2 to SrO, thereby forming a Sr rich (2 × 2) surface reconstruction. With progressive SrTiO3 growth, islands with thermodynamically stable SrO rock-salt structure are formed, coexisting with TiO2 terminated islands. During the overgrowth of these thermodynamically stable islands, both lateral as well as vertical Ruddlesden-Popper-type anti-phase boundaries are formed, accommodating the Sr excess of the SrTiO3 film. We suggest the formation of thermodynamically stable SrO rock-salt structures as origin for the formation of Ruddlesden-Popper-type antiphase boundaries, which are as a result of kinetic limitations confined to certain regions on the surface.

  11. P-type ZnO thin films prepared by in situ oxidation of DC sputtered Zn{sub 3}N{sub 2}:Ga

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jun; Xue Shuwen; Shao Lexi, E-mail: [School of Physical Science and Technology, Zhanjiang Normal University, Zhanjiang 524048 (China)


    The feasibility of a new fabrication route for N and Ga codoped p-type ZnO thin films on glass substrates, consisting of DC sputtering deposition of Zn{sub 3}N{sub 2}:Ga precursors followed by in situ oxidation in high purity oxygen, has been studied. The effects of oxidation temperature on the structural, optical and electrical properties of the samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), optical transmittance and Hall effect measurements. The results were compared to a control film without Ga. XRD analyses revealed that the Zn{sub 3}N{sub 2} films entirely transformed into ZnO films after annealing Zn{sub 3}N{sub 2} films in oxygen over 500 {sup 0}C for 2 h. Hall effect measurements confirmed p-type conduction in N and Ga codoped ZnO films with a low resistivity of 19.8 {Omega} {center_dot} cm, a high hole concentration of 4.6 x 10{sup 18} cm{sup -3} and a Hall mobility of 0.7 cm{sup 2}/(V{center_dot}s). These results demonstrate a promising approach to fabricate low resistivity p-type ZnO with high hole concentration. (semiconductor materials)

  12. Selective Conversion from p-Type to n-Type of Printed Bottom-Gate Carbon Nanotube Thin-Film Transistors and Application in Complementary Metal-Oxide-Semiconductor Inverters. (United States)

    Xu, Qiqi; Zhao, Jianwen; Pecunia, Vincenzo; Xu, Wenya; Zhou, Chunshan; Dou, Junyan; Gu, Weibing; Lin, Jian; Mo, Lixin; Zhao, Yanfei; Cui, Zheng


    The fabrication of printed high-performance and environmentally stable n-type single-walled carbon nanotube (SWCNT) transistors and their integration into complementary (i.e., complementary metal-oxide-semiconductor, CMOS) circuits are widely recognized as key to achieving the full potential of carbon nanotube electronics. Here, we report a simple, efficient, and robust method to convert the polarity of SWCNT thin-film transistors (TFTs) using cheap and readily available ethanolamine as an electron doping agent. Printed p-type bottom-gate SWCNT TFTs can be selectively converted into n-type by deposition of ethanolamine inks on the transistor active region via aerosol jet printing. Resulted n-type TFTs show excellent electrical properties with an on/off ratio of 10(6), effective mobility up to 30 cm(2) V(-1) s(-1), small hysteresis, and small subthreshold swing (90-140 mV dec(-1)), which are superior compared to the original p-type SWCNT devices. The n-type SWCNT TFTs also show good stability in air, and any deterioration of performance due to shelf storage can be fully recovered by a short low-temperature annealing. The easy polarity conversion process allows construction of CMOS circuitry. As an example, CMOS inverters were fabricated using printed p-type and n-type TFTs and exhibited a large noise margin (50 and 103% of 1/2 Vdd = 1 V) and a voltage gain as high as 30 (at Vdd = 1 V). Additionally, the CMOS inverters show full rail-to-rail output voltage swing and low power dissipation (0.1 μW at Vdd = 1 V). The new method paves the way to construct fully functional complex CMOS circuitry by printed TFTs.

  13. Open triple-branched stent graft applied to patient of acute type a aortic dissection with Aberrant Right Subclavian Artery


    Guo, Changfa; Zhu, Kai; Xu, Demin; Wang, Chunsheng


    A 57-year-old Chinese male patient presented with Standford type A aortic dissection with an aberrant right subclavian artery (ARSA). At operation, the ascending aorta was replaced by a mono–branch vascular prosthesis with the branch bypassing to the ARSA; the triple-branched stent graft was inserted into the true lumen of the arch and proximal descending aorta (covering the origin of the ARSA) with each sidearm graft being positioned into the aortic branches; and then its proximal end was su...

  14. Nanoporous of W/WO{sub 3} thin film electrode grown by electrochemical anodization applied in the photoelectrocatalytic oxidation of the basic red 51 used in hair dye

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, Luciano E.; Zanoni, Maria Valnice B., E-mail: fraga@iq.unesp.b [Universidade Estadual Paulista (IQ/UNESP), Araraquara, SP (Brazil). Inst. de Quimica. Dept. de Quimica Analitica


    Self-organized W/WO{sub 3} nanoporous electrodes can be obtained by simple electrochemical anodization of W foil in 0.15 mol L{sup -1} NaF solution as the supporting electrolyte, applying a ramp potential of 0.2 V s{sup -1} until it reached 60 V, which was maintained for 2 h. The monoclinic form is majority in the highly ordered WO{sub 3} annealed at 450 deg C, obtaining a higher photoactivity when irradiated by visible light than by UV light. The electrode promotes complete discoloration of the investigated basic red 51 dye after 60 min of photoelectrocatalytic oxidation, on current density of 1.25 mA cm{sup -2} and irradiation on wavelength of 420-630 nm. In this condition it was obtained 63% of mineralization. Lower efficiency is obtained for the system irradiated by wavelength (280- 400 nm) when only 40% of total organic carbon removal is obtained and 120 min is required for complete discoloration. (author)

  15. Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe₂/MoS₂ van der Waals Heterostructures. (United States)

    Zhang, Kenan; Zhang, Tianning; Cheng, Guanghui; Li, Tianxin; Wang, Shuxia; Wei, Wei; Zhou, Xiaohao; Yu, Weiwei; Sun, Yan; Wang, Peng; Zhang, Dong; Zeng, Changgan; Wang, Xingjun; Hu, Weida; Fan, Hong Jin; Shen, Guozhen; Chen, Xin; Duan, Xiangfeng; Chang, Kai; Dai, Ning


    We demonstrate the type-II staggered band alignment in MoTe2/MoS2 van der Waals (vdW) heterostructures and an interlayer optical transition at ∼1.55 μm. The photoinduced charge separation between the MoTe2/MoS2 vdW heterostructure is verified by Kelvin probe force microscopy (KPFM) under illumination, density function theory (DFT) simulations and photoluminescence (PL) spectroscopy. Photoelectrical measurements of MoTe2/MoS2 vdW heterostructures show a distinct photocurrent response in the infrared regime (1550 nm). The creation of type-II vdW heterostructures with strong interlayer coupling could improve our fundamental understanding of the essential physics behind vdW heterostructures and help the design of next-generation infrared optoelectronics.

  16. Study on the turbulence model sensitivity for various cross-corrugated surfaces applied to matrix type heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Myung; Ha, Man Yeong; Son, Chang Min; Doo, Jeong Hoon; Min, June Kee [Pusan National University, Busan (Korea, Republic of)


    Diverse cross-corrugated surface geometries were considered to estimate the sensitivity of four variants of k-ε turbulence models (Low Reynolds, standard, RNG and realizable models). The cross-corrugated surfaces considered in this study are a conventional sinusoidal shape and two different asymmetric shapes. The numerical simulations using the steady incompressible Reynolds-averaged Navier Stokes (RANS) equations were carried out to obtain the steady solutions of the flow and thermal fields in the unitary cell of the heat exchanger matrix. In addition, the experimental test for the measurement of local convective heat transfer coefficients on the heat transfer surfaces was performed by means of the Transient liquid crystal (TLC) technique in order to compare the numerical results with the measured data. The features on detailed flow structure and corresponding heat transfer in the unitary cell of the matrix type heat exchanger are compared and analyzed against four different turbulence models considered in this study.

  17. A continuous time delay-difference type model (CTDDM) applied to stock assessment of the southern Atlantic albacore Thunnus alalunga (United States)

    Liao, Baochao; Liu, Qun; Zhang, Kui; Baset, Abdul; Memon, Aamir Mahmood; Memon, Khadim Hussain; Han, Yanan


    A continuous time delay-diff erence model (CTDDM) has been established that considers continuous time delays of biological processes. The southern Atlantic albacore ( Thunnus alalunga) stock is the one of the commercially important tuna population in the marine world. The age structured production model (ASPM) and the surplus production model (SPM) have already been used to assess the albacore stock. However, the ASPM requires detailed biological information and the SPM lacks the biological realism. In this study, we focus on applying a CTDDM to the southern Atlantic albacore ( T. alalunga) species, which provides an alternative method to assess this fishery. It is the first time that CTDDM has been provided for assessing the Atlantic albacore ( T. alalunga) fishery. CTDDM obtained the 80% confidence interval of MSY (maximum sustainable yield) of (21 510 t, 23 118t). The catch in 2011 (24 100 t) is higher than the MSY values and the relative fishing mortality ratio ( F 2011/ F MSY) is higher than 1.0. The results of CTDDM were analyzed to verify the proposed methodology and provide reference information for the sustainable management of the southern Atlantic albacore stock. The CTDDM treats the recruitment, the growth, and the mortality rates as all varying continuously over time and fills gaps between ASPM and SPM in this stock assessment.

  18. Flexocoupling impact on size effects of piezoresponse and conductance in mixed-type ferroelectric semiconductors under applied pressure (United States)

    Morozovska, Anna N.; Eliseev, Eugene A.; Genenko, Yuri A.; Vorotiahin, Ivan S.; Silibin, Maxim V.; Cao, Ye; Kim, Yunseok; Glinchuk, Maya D.; Kalinin, Sergei V.


    We explore the role of flexoelectric effect in functional properties of nanoscale ferroelectric films with mixed electronic-ionic conductivity. Using a coupled Ginzburg-Landau model, we calculate spontaneous polarization, effective piezoresponse, elastic strain and compliance, carrier concentration, and piezoconductance as a function of thickness and applied pressure. In the absence of flexoelectric coupling, the studied physical quantities manifest well-explored size-induced phase transitions, including transition to paraelectric phase below critical thickness. Similarly, in the absence of external pressure flexoelectric coupling affects properties of these films only weakly. However, the combined effect of flexoelectric coupling and external pressure induces polarizations at the film surfaces, which cause the electric built-in field that destroys the thickness-induced phase transition to paraelectric phase and induces the electretlike state with irreversible spontaneous polarization below critical thickness. Interestingly, the built-in field leads to noticeable increase of the average strain and elastic compliance in this thickness range. We further illustrate that the changes of the electron concentration by several orders of magnitude under positive or negative pressures can lead to the occurrence of high- or low-conductivity states, i.e., the nonvolatile piezoresistive switching, in which the swing can be controlled by the film thickness and flexoelectric coupling. The obtained theoretical results can be of fundamental interest for ferroic systems, and can provide a theoretical model for explanation of a set of recent experimental results on resistive switching and transient polar states in these systems.

  19. Evaluation of near-surface temperature, humidity, and equivalent temperature from regional climate models applied in type II downscaling (United States)

    Pryor, S. C.; Schoof, J. T.


    Atmosphere-surface interactions are important components of local and regional climates due to their key roles in dictating the surface energy balance and partitioning of energy transfer between sensible and latent heat. The degree to which regional climate models (RCMs) represent these processes with veracity is incompletely characterized, as is their ability to capture the drivers of, and magnitude of, equivalent temperature (Te). This leads to uncertainty in the simulation of near-surface temperature and humidity regimes and the extreme heat events of relevance to human health, in both the contemporary and possible future climate states. Reanalysis-nested RCM simulations are evaluated to determine the degree to which they represent the probability distributions of temperature (T), dew point temperature (Td), specific humidity (q) and Te over the central U.S., the conditional probabilities of Td|T, and the coupling of T, q, and Te to soil moisture and meridional moisture advection within the boundary layer (adv(Te)). Output from all RCMs exhibits discrepancies relative to observationally derived time series of near-surface T, q, Td, and Te, and use of a single layer for soil moisture by one of the RCMs does not appear to substantially degrade the simulations of near-surface T and q relative to RCMs that employ a four-layer soil model. Output from MM5I exhibits highest fidelity for the majority of skill metrics applied herein, and importantly most realistically simulates both the coupling of T and Td, and the expected relationships of boundary layer adv(Te) and soil moisture with near-surface T and q.

  20. Effect of applying bacterial inoculants containing different types of bacteria to corn silage on the performance of dairy cattle. (United States)

    Arriola, K G; Kim, S C; Staples, C R; Adesogan, A T


    This study examined the effect of applying different bacterial inoculants to corn silage at the time of ensiling on the performance of lactating dairy cows. Corn plants were harvested at 35% dry matter (DM), chopped, and ensiled in 2.4-m-wide bags after application of (1) no inoculant (CON); (2) Biotal Plus II (B2) containing Pediococcus pentosaceus and Propionibacteria freudenreichii; (3) Buchneri 40788 (BUC) containing Lactobacillus buchneri; or (4) Buchneri 500 (B500) containing Pediococcus pentosaceus and L. buchneri. All inoculants were supplied by Lallemand Animal Nutrition (Milwaukee, WI). Each of the 4 silages was included in separate total mixed rations consisting of 44% corn silage, 50% concentrate, and 6% alfalfa hay (DM basis). Fifty-two lactating Holstein cows were stratified according to milk production and parity and randomly assigned at 22 d in milk to the 4 dietary treatments. Cows were fed for ad libitum consumption and milked twice daily for 49 d. Dietary treatment did not affect intakes (kg/d) of DM (20.0), crude protein (CP; 3.7), neutral detergent fiber (NDF; 5.7), or acid detergent fiber (ADF; 3.6), or digestibility (%) of DM (73.9) or CP (72.4). However, NDF digestibility was lower in cows fed B2 compared with those fed other diets (45.3 vs. 53.0%). Consequently, cows fed B2 had lower digestible NDF intake (kg/d) than those fed other diets (2.5 vs. 3.0 kg/d). Dietary treatment did not affect milk yield (32.3 kg/d), efficiency of milk production (1.61), concentrations of milk fat (3.18%) and protein (2.79%), or yields of milk fat (1.03 kg/d) and protein (1.26 kg/d). Inoculant application to corn silage did not affect milk yield or feed intake of cows.

  1. Composition-induced structural, electrical, and magnetic phase transitions in AX-type mixed-valence cobalt oxynitride epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Jumpei; Oka, Daichi [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu, Kawasaki 213-0012 (Japan); Hirose, Yasushi, E-mail:; Yang, Chang; Fukumura, Tomoteru; Hasegawa, Tetsuya [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Nakao, Shoichiro [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Harayama, Isao; Sekiba, Daiichiro [University of Tsukuba Tandem Accelerator Complex (UTTAC), 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577 (Japan)


    Synthesis of mid- to late-transition metal oxynitrides is generally difficult by conventional thermal ammonolysis because of thermal instability. In this letter, we synthesized epitaxial thin films of AX-type phase-pure cobalt oxynitrides (CoO{sub x}N{sub y}) by using nitrogen-plasma-assisted pulsed laser deposition and investigated their structural, electrical, and magnetic properties. The CoO{sub x}N{sub y} thin films with 0 ≤ y/(x + y) ≤ 0.63 grown on MgO (100) substrates showed a structural phase transition from rock salt (RS) to zinc blend at the nitrogen content y/(x + y) ∼ 0.5. As the nitrogen content increased, the room-temperature electrical resistivity of the CoO{sub x}N{sub y} thin films monotonically decreased from the order of 10{sup 5} Ω cm to 10{sup −4} Ω cm. Furthermore, we observed an insulator-to-metal transition at y/(x + y) ∼ 0.34 in the RS-CoO{sub x}N{sub y} phase, which has not yet been reported in Co{sup 2+}/Co{sup 3+} mixed-valence cobalt oxides with octahedral coordination. The low resistivity in the RS-CoO{sub x}N{sub y} phase, on the 10{sup −3} Ω cm order, may have originated from the intermediate spin state of Co{sup 3+} stabilized by the lowered crystal field symmetry of the CoO{sub 6−n}N{sub n} octahedra (n = 1, 2,…5). Magnetization measurements suggested that a magnetic phase transition occurred in the RS-CoO{sub x}N{sub y} films during the insulator-to-metal transition. These results demonstrate that low-temperature epitaxial growth is a promising approach for exploring novel electronic functionalities in oxynitrides.

  2. Verification of BGA type FPGA logic applied to a control equipment with Safety Class using the special socket

    Energy Technology Data Exchange (ETDEWEB)

    Chung, YounHu; Yoo, Kwanwoo; Lee, Myeongkyun; Yun, Donghwa [PONUTech Co., Seoul (Korea, Republic of)


    This article aims to provide the verification method for BGA-type FPGA of Programmable Logic Controller (PLC) developed as Safety Class. The logic of FPGA in the control device with Safety Class is the circuit to control overall logic of PLC. This device converts to the different module from the input signals for both digital and analogue of the equipment in the field and outputs their data. In addition, it should perform the logical controls such as backplane communication control and data communication. We suggest acquiring method of the data signal with efficient logic using the socket in this article. Proposed test socket is made by simpler process than former one, and the process is done in batches by which cost can be reduces, and the test socket can be quickly produced in response to any request. Also, it is possible to reduce the wear by reducing the contact force of the ball phenomenon. The structure on the basis of silicon can be reduced the modification, and it has excellent linearity. At the logic verification, the operation that state data block is designed in the FPGA could be easily confirmed by using a socket.

  3. Applying multivariate clustering techniques to health data: the 4 types of healthcare utilization in the Paris metropolitan area.

    Directory of Open Access Journals (Sweden)

    Thomas Lefèvre

    Full Text Available Cost containment policies and the need to satisfy patients' health needs and care expectations provide major challenges to healthcare systems. Identification of homogeneous groups in terms of healthcare utilisation could lead to a better understanding of how to adjust healthcare provision to society and patient needs.This study used data from the third wave of the SIRS cohort study, a representative, population-based, socio-epidemiological study set up in 2005 in the Paris metropolitan area, France. The data were analysed using a cross-sectional design. In 2010, 3000 individuals were interviewed in their homes. Non-conventional multivariate clustering techniques were used to determine homogeneous user groups in data. Multinomial models assessed a wide range of potential associations between user characteristics and their pattern of healthcare utilisation.We identified four distinct patterns of healthcare use. Patterns of consumption and the socio-demographic characteristics of users differed qualitatively and quantitatively between these four profiles. Extensive and intensive use by older, wealthier and unhealthier people contrasted with narrow and parsimonious use by younger, socially deprived people and immigrants. Rare, intermittent use by young healthy men contrasted with regular targeted use by healthy and wealthy women.The use of an original technique of massive multivariate analysis allowed us to characterise different types of healthcare users, both in terms of resource utilisation and socio-demographic variables. This method would merit replication in different populations and healthcare systems.

  4. Fabrication of p-type CuO thin films using chemical bath deposition technique and their solar cell applications with Si nanowires (United States)

    Akgul, Funda Aksoy; Akgul, Guvenc


    Recently, CuO has attracted much interest owing to its suitable material properties, inexpensive fabrication cost and potential applications for optoelectronic devices. In this study, CuO thin films were deposited on glass substrates using chemical bath deposition technique and post-deposition annealing effect on the properties of the prepared samples were investigated. p-n heterojunction solar cells were then constructed by coating of p-type CuO films onto the vertically well-aligned n-type Si nanowires synthesized through MACE method. Photovoltaic performance of the fabricated devices were determined with current-voltage (I-V) measurements under AM 1.5 G illumination. The optimal short-circuit current density, open-circuit voltage, fill factor and power conversion efficiency were found to be 3.2 mA/cm-2, 337 mV, 37.9 and 0.45%, respectively. The observed performance clearly indicates that the investigated device structure could be a promising candidate for high-performance low-cost new-generation photovoltaic diodes.

  5. Solution-Processed Ambipolar Organic Thin-Film Transistors by Blending p- and n-Type Semiconductors: Solid Solution versus Microphase Separation. (United States)

    Xu, Xiaomin; Xiao, Ting; Gu, Xiao; Yang, Xuejin; Kershaw, Stephen V; Zhao, Ni; Xu, Jianbin; Miao, Qian


    Here, we report solid solution of p- and n-type organic semiconductors as a new type of p-n blend for solution-processed ambipolar organic thin film transistors (OTFTs). This study compares the solid-solution films of silylethynylated tetraazapentacene 1 (acceptor) and silylethynylated pentacene 2 (donor) with the microphase-separated films of 1 and 3, a heptagon-embedded analogue of 2. It is found that the solid solutions of (1)x(2)1-x function as ambipolar semiconductors, whose hole and electron mobilities are tunable by varying the ratio of 1 and 2 in the solid solution. The OTFTs of (1)0.5(2)0.5 exhibit relatively balanced hole and electron mobilities comparable to the highest values as reported for ambipolar OTFTs of stoichiometric donor-acceptor cocrystals and microphase-separated p-n bulk heterojunctions. The solid solution of (1)0.5(2)0.5 and the microphase-separated blend of 1:3 (0.5:0.5) in OTFTs exhibit different responses to light in terms of absorption and photoeffect of OTFTs because the donor and acceptor are mixed at molecular level with π-π stacking in the solid solution.

  6. Thermoelectric characterization and fabrication of nanostructured p-type Bi0.5Sb1.5Te3 and n-type Bi2Te3 thin film thermoelectric energy generator with an in-plane planar structure

    Directory of Open Access Journals (Sweden)

    No-Won Park


    Full Text Available This paper presents in-plane bismuth-telluride-based thermoelectric (TE energy generators fabricated using metal-shadow and radio-frequency sputtering methods at room temperature. The TE energy generators consist of four couples of 300-nm-thick nanostructured Bi2Te3 (n-BT and Bi0.5Sb1.5Te3 (p-BST thin films used as n-type and p-type materials, respectively, on a Si substrate for the p/n junctions of the TE energy generators. Furthermore, the effect of annealing treatment of both n-BT and p-BST thin films on the electrical and TE properties as well as the TE performance of the TE energy generators is discussed. By varying the temperature between the hot and cold junction legs of the n-BT/p-BST in-plane TE energy generators annealed at 200 °C, the maximum output voltage and power are determined to be ∼3.6 mV and ∼1.1 nW, respectively, at a temperature difference of 50 K. The output powers increased by ∼590% compared to that of the as-grown TE generator at a temperature difference of 90 K. This improvement in the TE performance is attributed to the enhancement of the electrical conductivity after heat treatment. From a numerical simulation conducted using a commercial software (COMSOL, we are confident that it plays a crucial role in determining the dimension (i.e., thickness of each leg and material properties of both n-BT and p-BST materials of the in-plane TE energy generators.

  7. Thermoelectric characterization and fabrication of nanostructured p-type Bi0.5Sb1.5Te3 and n-type Bi2Te3 thin film thermoelectric energy generator with an in-plane planar structure (United States)

    Park, No-Won; Park, Tae-Hyun; Ahn, Jay-Young; Kang, So-Hyeon; Lee, Won-Yong; Yoon, Young-Gui; Yoon, Soon-Gil; Lee, Sang-Kwon


    This paper presents in-plane bismuth-telluride-based thermoelectric (TE) energy generators fabricated using metal-shadow and radio-frequency sputtering methods at room temperature. The TE energy generators consist of four couples of 300-nm-thick nanostructured Bi2Te3 (n-BT) and Bi0.5Sb1.5Te3 (p-BST) thin films used as n-type and p-type materials, respectively, on a Si substrate for the p/n junctions of the TE energy generators. Furthermore, the effect of annealing treatment of both n-BT and p-BST thin films on the electrical and TE properties as well as the TE performance of the TE energy generators is discussed. By varying the temperature between the hot and cold junction legs of the n-BT/p-BST in-plane TE energy generators annealed at 200 °C, the maximum output voltage and power are determined to be ˜3.6 mV and ˜1.1 nW, respectively, at a temperature difference of 50 K. The output powers increased by ˜590% compared to that of the as-grown TE generator at a temperature difference of 90 K. This improvement in the TE performance is attributed to the enhancement of the electrical conductivity after heat treatment. From a numerical simulation conducted using a commercial software (COMSOL), we are confident that it plays a crucial role in determining the dimension (i.e., thickness of each leg) and material properties of both n-BT and p-BST materials of the in-plane TE energy generators.

  8. Suitability of thin-layer chromatography-flame ionization detection with regard to quantitative characterization of different fossil fuel products. II. Calibration methods concerning quantitative hydrocarbon-group type analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vela, J.; Membrado, L.; Cebolla, V.L.; Ferrando, A.C. [CSIC, Zaragoza (Spain). Inst. de Carboquimica, Dept. de Procesos Quimicos


    Time-consuming external standard-based calibration methods are usually performed for hydrocarbon group type analysis (HGTA) of fossil fuels, regardless of the instrumental chromatographic technique. HGTA of a broad variety of coal and petroleum products was performed using a modern thin-layer chromatography-flame ionization detection (TLC-FID) system and a rapid method based on internal normalization. Repeatability, linear intervals, and sample load ranges for quantitative application of this method are given, namely a heavy oil and its derived hydrocracked products, raw and chemically-modified petroleum asphaltenes, a coal-tar pitch, several coal extracts, and coal hydroliquefaction products. Results from external standard calibration and a normalization method (both obtained by TLC-FID) are in agreement, and they are validated using TLC-ultraviolet scanning. The use of the latter demonstrates that TLC-FID can also be applied to products such as coal extracts and hydroliquefaction products, despite these products being more volatile than petroleum asphaltenes or heavy oils. 14 refs., 3 figs., 5 tabs.

  9. The influence of clay type on reduction of water repellency by applied clays: a review of some West Australian work (United States)

    McKissock, I.; Walker, E. L.; Gilkes, R. J.; Carter, D. J.


    In Western Australia water repellency mostly occurs in soils with sandy texture; the severity of water repellency is influenced by very small changes in clay content. Additions of 1-2% clay can prevent water repellency and for some time clay amendments have been used by farmers to overcome water repellency. The aim of this study was to assess the effectiveness of clays in ameliorating water repellency. Clays were assessed for effectiveness in reducing water repellency by mixing with water repellent sands and measuring water drop penetration time (WDPT) on the resultant mixtures. WDPT was measured on the initial mixtures, a wetting and drying cycle was imposed and WDPT measured again. Two sets of clays were assessed: four simple clays containing kaolinite (2) or smectite (2) group minerals and a group of clayey subsoil materials which had been collected by farmers. For the simple clays, clay mineral type was the most significant factor in determining response. Kaolin was much more effective than smectite. Imposition of a wetting and drying cycle greatly reduced water repellency. The dominant exchangeable cation of the clays (sodium or calcium) had little effect on the ability of the clays to reduce water repellency. The factor that was most predictive of the effectiveness of clayey subsoils materials in reducing water repellency was texture: clay content ( r2=0.18) or clay+silt content ( r2=0.23). These properties were more predictive of water repellency values after the wetting and drying cycle treatment ( r2=0.36, r2=0.44). The proportion of the clay fraction that consisted of kaolinite was next most predictive in determining effectiveness which is again indicative of kaolin group minerals being more effective than smectite group minerals. The exchangeable sodium percentage and clay dispersibility had no systematic effect on the ability of these clays to reduce water repellency. These results provide a basis for developing a practical field procedure to enable

  10. Optical and Electrical Effects of p-type μc-SiOx:H in Thin-Film Silicon Solar Cells on Various Front Textures

    Directory of Open Access Journals (Sweden)

    Chao Zhang


    Full Text Available p-type hydrogenated microcrystalline silicon oxide (µc-SiOx:H was developed and implemented as a contact layer in hydrogenated amorphous silicon (a-Si:H single junction solar cells. Higher transparency, sufficient electrical conductivity, low ohmic contact to sputtered ZnO:Al, and tunable refractive index make p-type µc-SiOx:H a promising alternative to the commonly used p-type hydrogenated microcrystalline silicon (µc-Si:H contact layers. In this work, p-type µc-SiOx:H layers were fabricated with a conductivity of up to 10−2 S/cm and a Raman crystallinity of above 60%. Furthermore, we present p-type µc-SiOx:H films with a broad range of optical properties (2.1 eV < band gap E04<2.8 eV and 1.6 < refractive index n<2.6. These properties can be tuned by adapting deposition parameters, for example, the CO2/SiH4 deposition gas ratio. A conversion efficiency improvement of a-Si:H solar cells is achieved by applying p-type µc-SiOx:H contact layer compared to the standard p-type µc-Si:H contact layer. As another aspect, the influence of the front side texture on a-Si:H p-i-n solar cells with different p-type contact layers, µc-Si:H and µc-SiOx:H, is investigated. Furthermore, we discuss the correlation between the decrease of Voc and the cell surface area derived from AFM measurements.

  11. Effect of application rates and media types on nitrogen and surfactant removal in trickling filters applied to the post-treatment of effluents from UASB reactors

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, P. G. S. de; Taveres, F. v. F.; Chernicharo, C. A. I.


    Tricking filters are a very promising alternative for the post treatment of effluents from UASB reactors treating domestic sewage,especially in developing countries. Although a fair amount of information is already available regarding organic mater removal in this combined system, very little is known in relation to nitrogen and surfactant removal in trickling filters post-UASB reactors. Therefore, the purpose of this study was to evaluate and compare the effect evaluate and compare the effect of different application rates and packing media types on trickling filters applied to the post-treatment of effluents from UASB reactors, regarding the removal of ammonia nitrogen and surfactants. (Author)

  12. Thin film superconductor magnetic bearings (United States)

    Weinberger, Bernard R.


    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  13. Static and dynamic buckling of thin-walled plate structures

    CERN Document Server

    Kubiak, Tomasz


    This monograph deals with buckling and postbuckling behavior of thin plates and thin-walled structures with flat wall subjected to static and dynamic load. The investigations are carried out in elastic range. The basic assumption here is the  thin plate theory. This method is used to determination the buckling load and postbuckling analysis of thin-walled structures subjected to static and dynamic load. The book introduces two methods for static and dynamic buckling investigation which allow for a wider understanding of the phenomenon. Two different methods also can allow uncoupling of the phenomena occurring at the same time and attempt to estimate their impact on the final result. A general mathematical model, adopted in proposed analytical-numerical method, enables the consideration of all types of stability loss i.e.local, global and interactive forms of buckling. The applied numerical-numerical method includes adjacent of walls, shear-lag phenomenon and a deplanation of cross-sections.

  14. Lead free CH3NH3SnI3 perovskite thin-film with p-type semiconducting nature and metal-like conductivity (United States)

    Iefanova, Anastasiia; Adhikari, Nirmal; Dubey, Ashish; Khatiwada, Devendra; Qiao, Qiquan


    Lead free CH3NH3SnI3 perovskite thin film was prepared by low temperature solution processing and characterized using current sensing atomic force microscopy (CS-AFM). Analysis of electrical, optical, and optoelectrical properties reveals unique p-type semiconducting nature and metal like conductivity of this material. CH3NH3SnI3 film also showed a strong absorption in visible and near infrared spectrum with absorption onset of 1.3 eV. X-ray Diffraction analysis and scanning electron microscopy (SEM) confirmed a structure of this compound and uniform film formation. The morphology, film uniformity, light harvesting and electrical properties strongly depend on preparation method and precursor solution. CH3NH3SnI3 films prepared based on dimethylformamide (DMF) showed higher crystallinity and light harvesting capability compared to the film based on combination of dimethyl sulfoxide (DMSO) with gamma-butyrolactone (GBL). Local photocurrent mapping analysis showed that CH3NH3SnI3 can be used as an active layer and have a potential to fabricate lead free photovoltaic devices.

  15. Lead free CH3NH3SnI3 perovskite thin-film with p-type semiconducting nature and metal-like conductivity

    Directory of Open Access Journals (Sweden)

    Anastasiia Iefanova


    Full Text Available Lead free CH3NH3SnI3 perovskite thin film was prepared by low temperature solution processing and characterized using current sensing atomic force microscopy (CS-AFM. Analysis of electrical, optical, and optoelectrical properties reveals unique p-type semiconducting nature and metal like conductivity of this material. CH3NH3SnI3 film also showed a strong absorption in visible and near infrared spectrum with absorption onset of 1.3 eV. X-ray Diffraction analysis and scanning electron microscopy (SEM confirmed a structure of this compound and uniform film formation. The morphology, film uniformity, light harvesting and electrical properties strongly depend on preparation method and precursor solution. CH3NH3SnI3 films prepared based on dimethylformamide (DMF showed higher crystallinity and light harvesting capability compared to the film based on combination of dimethyl sulfoxide (DMSO with gamma-butyrolactone (GBL. Local photocurrent mapping analysis showed that CH3NH3SnI3 can be used as an active layer and have a potential to fabricate lead free photovoltaic devices.

  16. Beam delivery and pulse compression to sub-50 fs of a modelocked thin-disk laser in a gas-filled Kagome-type HC-PCF fiber. (United States)

    Emaury, Florian; Dutin, Coralie Fourcade; Saraceno, Clara J; Trant, Mathis; Heckl, Oliver H; Wang, Yang Y; Schriber, Cinia; Gerome, Frederic; Südmeyer, Thomas; Benabid, Fetah; Keller, Ursula


    We present two experiments confirming that hypocycloid Kagome-type hollow-core photonic crystal fibers (HC-PCFs) are excellent candidates for beam delivery of MW peak powers and pulse compression down to the sub-50 fs regime. We demonstrate temporal pulse compression of a 1030-nm Yb:YAG thin disk laser providing 860 fs, 1.9 µJ pulses at 3.9 MHz. Using a single-pass grating pulse compressor, we obtained a pulse duration of 48 fs (FWHM), a spectral bandwidth of 58 nm, and an average output power of 4.2 W with an overall power efficiency into the final polarized compressed pulse of 56%. The pulse energy was 1.1 µJ. This corresponds to a peak power of more than 10 MW and a compression factor of 18 taking into account the exact temporal pulse profile measured with a SHG FROG. The compressed pulses were close to the transform limit of 44 fs. Moreover, we present transmission of up to 97 µJ pulses at 10.5 ps through 10-cm long fiber, corresponding to more than twice the critical peak power for self-focusing in silica.

  17. Reduction in anisotropy of mechanical properties of coilable (α+β)-type titanium alloy thin sheet through simple heat treatment for use in next-generation aircraft applications

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, Masaaki, E-mail: [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Niinomi, Mitsuo; Hieda, Junko; Cho, Ken [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Nagasawa, Yuya [Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Konno, Takashi [Titanium Research and Development Section, Kobe Steel, Ltd., Takasago 676-8670 (Japan); Ito, Yoshinori [Materials Research Laboratory, Kobe Steel, Ltd., Kobe 651-2271 (Japan); Itsumi, Yoshio; Oyama, Hideto [Titanium Research and Development Section, Kobe Steel, Ltd., Takasago 676-8670 (Japan)


    In order to reduce the anisotropy of mechanical properties of a coilable thin sheet of (α+β)-type titanium alloy, Ti–4.5Al–2Mo–1.6V–0.5Fe–0.3Si–0.03C (Ti9), for use in aircraft applications, duplex heat treatments were examined. In each duplex heat treatment, the first heat treatment controls the volume fraction of the primary α phase and orientation of the acicular α phase in (α+β) two-phase area between the primary α grains, whereas the second heat treatment stabilizes the α and β phases. The microstructure of the Ti9 sheet after the duplex heat treatment was analyzed by optical microscopy, pole-figure measurement through X-ray diffraction, and electron backscatter diffraction. The mechanical properties of the duplex heat-treated Ti9 sheet were evaluated by tensile tests. The Ti9 sheet was heat treated to obtain two different types of microstructures. A microstructure consisting of acicular α phase in the β grains was obtained by a first heat treatment above the β transus (1273 K) followed by water quenching and a second heat treatment at 973 K. A microstructure consisting of equiaxed primary α grains and an (acicular α+β) two-phase area between the primary α grains was obtained by heating below the β transus (1123–1223 K) followed by water quenching and a second heat treatment at 973 K. The volume fraction of the primary α grains decreased and the volume fraction of the acicular α phase with 12 variants increased instead of increasing first heat-treatment temperature, suppressing the alignment of the c axis of the α lattice parallel to the transverse direction within the rolling plane (T-texture formation) as a result. Anisotropy of the tensile properties can be decreased by increasing the first heat-treatment temperature because the T texture was decreased.

  18. Thermoelectric properties of n-type Bi{sub 2}Te{sub 2.7}Se{sub 0.3} and p-type Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} thin films deposited by direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Bourgault, D. [Schneider-Electric France, 38TEC/T1, 37 quai Paul Louis Merlin, 38050 Grenoble Cedex 9 (France); Institut Neel/Centre National de la Recherche Scientifique, 25 Avenue des Martyrs, BP 166, 38042 Grenoble Cedex 9 (France)], E-mail:; Garampon, C. Giroud; Caillault, N.; Carbone, L.; Aymami, J.A. [Schneider-Electric France, 38TEC/T1, 37 quai Paul Louis Merlin, 38050 Grenoble Cedex 9 (France)


    n-type and p-type thermoelectric thin films have been deposited by direct current magnetron sputtering from n-type Bi{sub 2}Te{sub 2.7}Se{sub 0.3} and p-type Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} targets on glass and Al{sub 2}O{sub 3} substrates. X-ray diffraction and energy dispersive spectrometry combined with electrical measurements such as Seebeck coefficient and electrical resistivity were used for the thermoelectric thin films characterization. It was found that the composition of the sputtered thin films was close to the sputtering target stoichiometry for the tested deposition conditions and that the thin film composition did not seem to be the determinant parameter for the thermoelectrical properties. Indeed, the chamber pressure and plasma power have a greater influence on the thermoelectrical performances of the films. Annealing in Ar atmosphere (250 deg. C for n-type and 300 deg. C for p-type films) enhanced the film crystallization and yield power factors higher than 1 mW/K{sup 2} m.

  19. Transferability and Adhesion of Sol-Gel-Derived Crystalline TiO2 Thin Films to Different Types of Plastic Substrates. (United States)

    Amano, Natsumi; Takahashi, Mitsuru; Uchiyama, Hiroaki; Kozuka, Hiromitsu


    Anatase thin films were prepared on various plastic substrates by our recently developed sol-gel transfer technique. Polycarbonate (PC), poly(methyl methacrylate) (PMMA), polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polyether ether ketone (PEEK), and polyvinylidene chloride (PVDC) were employed as plastic substrates. A Si(100) substrate was first coated with a polyimide (PI)/polyvinylpyrrolidone (PVP) mixture layer, and an alkoxide-derived titania gel film was deposited on it by spin-coating. The resulting titania gel film was heated to 600 °C, during which the PI/PVP layer decomposed and the gel film was converted into a 60 nm thick anatase film. The anatase film was then transferred from the Si(100) substrate to the plastic substrate. This was achieved by heating the plastic/anatase/Si(100) stack in a near-infrared image furnace to 120-350 °C, depending on the type of plastic substrate, under unidirectional pressure. The anatase film cracked during transfer to PE, PP, PEEK, and PVDC substrates but did not crack during transfer to PC, PMMA, and PET substrates. The fraction of the total film area that was successfully transferred was assessed with the aid of image analysis. This fraction tended to be large for plastics with C═O and C-O groups and small for those without these groups. The film/substrate adhesion assessed by cross-cut tape tests also tended to be high for plastics with C═O and C-O groups and low for those without these groups. The adhesion to plastics without C═O or C-O groups could be enhanced and their transfer area fraction increased by oxidizing the native plastic surface by ultraviolet-ozone treatment prior to transfer.

  20. Artificial intelligence applied to fuel management in BWR type reactors; Inteligencia artificial aplicada a la administracion de combustible en reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz S, J.J


    In this work two techniques of artificial intelligence, neural networks and genetic algorithms were applied to a practical problem of nuclear fuel management; the determination of the optimal fuel reload for a BWR type reactor. This is an important problem in the design of the operation cycle of the reactor. As a result of the application of these techniques, comparable or even better reloads proposals than those given by expert companies in the subject were obtained. Additionally, two other simpler problems in reactor physics were solved: the determination of the axial power profile and the prediction of the value of some variables of interest at the end of the operation cycle of the reactor. Neural networks and genetic algorithms have been applied to solve many problems of engineering because of their versatility but they have been rarely used in the area of fuel management. The results obtained in this thesis indicates the convenience of undertaking further work on this area and suggest the application of these techniques of artificial intelligence to the solution of other problems in nuclear reactor physics. (Author)

  1. Characterization and origin of the Taishanmiao aluminous A-type granites: implications for Early Cretaceous lithospheric thinning at the southern margin of the North China Craton (United States)

    Wang, Changming; Chen, Liang; Bagas, Leon; Lu, Yongjun; He, Xinyu; Lai, Xiangru


    Late Mesozoic magmatic rocks from the Taishanmiao Batholith were collected for LA-ICP-MS dating, Sr-Nd-Hf isotope systematics, and whole-rock major and trace element geochemistry to help understand the nature of collisional and extensional events along the southern margin of the North China Craton. The batholith consists of three texturally distinguishable phases of a 125 ± 1 Ma medium- to coarse-grained syenogranite, a 121 ± 1 Ma fine- to medium-grained syenogranite, and a 113 ± 1 Ma porphyritic monzogranite. Most of the units in the batholith are syenogranitic in composition with high levels of silica (70-78 wt% SiO2), alkalis (8.0-8.6 wt% Na2O + K2O), Fe* (FeOT/(FeOT + MgO) = 0.76-0.90), and depletion in CaO (0.34-1.37 wt%), MgO (0.12-0.52 wt%), TiO2 (0.09-0.40 wt%), and A/CNK (Al2O3/(Na2O + K2O + CaO)) molar ratios of 1.00-1.11. All samples have high proportions of Ga, Nb, Zr, Ga/Al, and REE, and depletions in Ba, Sr, Eu, and compatible elements, indicating that the batholith consists of A-type granites. The zircon saturation temperature for these units yields a mean value of 890 °C, and zircons with Early Cretaceous magmatic ages have ɛNd( t) values of -14.0 to -12.0, ɛHf( t) values ranging from -18.7 to -2.1, and corresponding Hf model ages of 2339-1282 Ma. These geochemical and isotopic characteristics allowed us to conclude that the primary magma for the Taishanmiao Batholith originated from partial melting of Precambrian crustal rocks in the medium-lower crust. However, the high Nb and Ta contents and low normalized Nb/Ta values for the Taishanmiao granites are due to fractionation in Nb- and Ta-rich amphibole (or biotite). It is further proposed that these aluminous A-type granites were generated in an extensional tectonic setting during the Early Cretaceous, which was induced by lithospheric thinning and asthenospheric upwelling beneath eastern China toward the Paleo-Pacific Plate.

  2. Scores of amino acid 0D-3D information as applied in cleavage site prediction and better specificity elucidation for human immunodeficiency virus type 1 protease

    Institute of Scientific and Technical Information of China (English)


    A new set of descriptors,namely score vectors of the zero dimension,one dimension,two dimensions and three dimensions(SZOTT),was derived from principle component analysis of a matrix of 1369 structural variables including 0D,1D,2D and 3D information for the 20 coded amino acids. SZOTT scales were then used in cleavage site prediction of human immunodeficiency virus type 1 protease. Linear discriminant analysis(LDA) and support vector machines(SVM) were applied to developing models to predict the cleavage sites. The results obtained by linear discriminant analysis(LDA) and support vector machines(SVM) are as follows. The Matthews correlation coefficients(MCC) by the resubstitution test,leave-one-out cross validation(LOOCV) and external validation are 0.879 and 0.911,0.849 and 0.901,0.822 and 0.846,respectively. The receiver operating characteristic(ROC) analysis showed that the SVM model possesses better simulative and predictive ability in comparison with the LDA model. Satisfactory results show that SZOTT descriptors can be further used to predict cleavage sites of human immunodeficiency virus type 1 protease.

  3. Scores of amino acid 0D-3D information as applied in cleavage site prediction and better specificity elucidation for human immunodeficiency virus type 1 protease

    Institute of Scientific and Technical Information of China (English)

    KANG LiFang; LIANG GuiZhao; SHU Mao; YANG ShanBin; LI ZhiLiang


    A new set of descriptors, namely score vectors of the zero dimension, one dimension, two dimensions and three dimensions (SZOTT), was derived from principle component analysis of a matrix of 1369 structural variables including 0D, 1D, 2D and 3D information for the 20 coded amino acids. SZOTT scales were then used in cleavage site prediction of human immunodeficiency virus type 1 protease. Linear discriminant analysis (LDA) and support vector machines (SVM) were applied to developing models to predict the cleavage sites. The results obtained by linear discriminant analysis (LDA) and support vector machines (SVM) are as follows. The Matthews correlation coefficients (MCC) by the resubstitution test, leave-one-out cross validation (LOOCV) and external validation are 0.879 and 0.911, 0.649 and 0.901, 0.822 and 0.846, respectively. The receiver operating characteristic (ROC) analysis showed that the SVM model possesses better simulative and predictive ability in comparison with the LDA model. Satisfactory results show that SZOTT descriptors can be further used to predict cleavage sites of human immunodeficiency virus type 1 protease.

  4. Epitaxial thin-film growth of Ruddlesden-Popper-type Ba{sub 3}Zr{sub 2}O{sub 7} from a BaZrO{sub 3} target by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Butt, Shariqa Hassan; Rafique, M.S.; Siraj, K.; Latif, A.; Afzal, Amina [University of Engineering and Technology, Laser and Optronics Centre, Department of Physics, Lahore (Pakistan); Awan, M.S. [Ibn-e-Sina Institute of Science and Technology (ISIT), Islamabad (Pakistan); Bashir, Shazia [Government College University, Centre for Advanced Studies in Physics, Lahore (Pakistan); Iqbal, Nida [Universiti Teknologi Malaysia, Medical Devices and Technology Group (MEDITEG), Faculty of Biosciences and Medical Engineering, Johor Bahru, Johor (Malaysia)


    Ruddlesden-Popper Ba{sub 3}Zr{sub 2}O{sub 7} thin films have been synthesized via pulsed laser deposition (PLD) technique. The optimization of deposition parameters in PLD enables the formation of thin film of metastable Ba{sub 3}Zr{sub 2}O{sub 7} phase from BaZrO{sub 3} target. In order to see the post-annealing effects on the structural and optical properties, the deposited Ba{sub 3}Zr{sub 2}O{sub 7} thin films were annealed at 500, 600 and 800 C. X-ray diffraction (XRD) reveals the formation of Ba{sub 3}Zr{sub 2}O{sub 7} phase with tetragonal structure. The changes in the surface of the deposited films were analysed by FE-SEM and AFM. The thin film post-annealed at 500 C exhibited the best structural, optical and surface properties. Furthermore, the chemical states and chemical composition of the films were determined by X-ray photoelectron spectroscopy (XPS) near the surface. The XPS results show that Ba, Zr and O exist mainly in the form of Ba{sub 3}Zr{sub 2}O{sub 7} Ruddlesden-Popper-type perovskite structure. (orig.)

  5. Controlling the Performance of P-type Cu2O/SnO Bilayer Thin-Film Transistors by Adjusting the Thickness of the Copper Oxide Layer

    KAUST Repository

    Al-Jawhari, Hala A.


    The effect of copper oxide layer thickness on the performance of Cu2O/SnO bilayer thin-film transistors was investigated. By using sputtered Cu2O films produced at an oxygen partial pressure, Opp, of 10% as the upper layer and 3% Opp SnO films as the lower layer we built a matrix of bottom-gate Cu2O/SnO bilayer thin-film transistors of different thickness. We found that the thickness of the Cu2O layer is of major importance in oxidation of the SnO layer underneath. The thicker the Cu2O layer, the more the underlying SnO layer is oxidized, and, hence, the more transistor mobility is enhanced at a specific temperature. Both device performance and the annealing temperature required could be adjusted by controlling the thickness of each layer of Cu2O/SnO bilayer thin-film transistors.

  6. Resistive switching in a (0 0 ℓ)-oriented GdK2Nb5O15 thin film with tetragonal tungsten bronze type structure (United States)

    Allouche, B.; Gagou, Y.; Fremy, M.-A.; Le Marrec, F.; El Marssi, M.


    We have grown a single oriented GdK2Nb5O15 ferroelectric thin film with tetragonal tungsten bronze (TTB) structure by pulsed laser deposition on SrRuO3/La0.5Sr0.5CoO3 bi-buffered MgO substrate. GKN thin film exhibits a single phase and (0 0 ℓ)-orientation with tall and narrow asperities. We study as the first time the resistive switching in a TTB thin film. Room temperature electrical properties were investigated in the capacitance shape, using Pt top electrodes, and revealed a significant current hysteresis making GdK2Nb5O15 as a potential candidate for resistive memory devices.

  7. Electrical Properties of Photodiode Ba0.25Sr0.75TiO3 (BST Thin Film Doped with Ferric Oxide on p-type Si (100 Substrate using Chemical Solution Deposition Method

    Directory of Open Access Journals (Sweden)



    Full Text Available In this paper we have grown pure Ba0.25Sr0.75TiO3 (BST and BST doped by Ferric Oxide Fe2O3 (BFST with doping variations of 5%, 10%, and 15% above type-p Silicon (100 substrate using the chemical solution deposition (CSD method with spin coating technique at rotation speed of 3000 rpm, for 30 seconds. BST thin film are made with a concentration of 1 M 2-methoxyethanol and annealing temperature of 850OC for the Si (100 substrate. Characterization of the thin film is performed for the electrical properties such as the current-voltage (I-V curve using Keithley model 2400 as well as dielectric constant, time constant, pyroelectric characteristics, and depth measurement. The results show that the thin film depth increases if the concentration of the Ferric Oxide doping increases. The I-V characterization shows that the BST and BFST thin film has photodiode properties. The dielectric constant increases with the addition of doping. The maximum dielectric constant value is obtained for 15 % doping concentration namely 83.1 for pure BST and 6.89, 11.1, 41.63 and 83.1, respectively for the Ferric Oxide doping based BST with concentration of 5%, 10%, and 15%. XRD spectra of 15 % of ferric oxide doped BST thin film tetragonal phase, we carried out the lattice constant were a = b = 4.203 Å; c = 4.214 Å; c/a ratio = 1.003

  8. Li-ion diffusion kinetics in LiCoPO{sub 4} thin films deposited on NASICON-type glass ceramic electrolytes by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Xie, J.; Imanishi, N.; Zhang, T.; Hirano, A.; Takeda, Y.; Yamamoto, O. [Department of Chemistry, Faculty of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507 (Japan)


    LiCoPO{sub 4} thin films were deposited on Li{sub 1+x+y}Al{sub x}Ti{sub 2-x}Si{sub y}P{sub 3-y}O{sub 12} (LATSP) solid electrolyte by radio frequency magnetron sputtering and were characterized by X-ray diffraction and scanning electron microscope. The films show a (1 1 1) preferred orientation upon annealing and are chemically stable with LATSP up to 600 C in air. An all-solid-state Li/PEO{sub 18}-Li(CF{sub 3}SO{sub 2}){sub 2}N/LATSP/LiCoPO{sub 4}/Au cell was fabricated to investigate the electrochemical performance and Li-ion chemical diffusion coefficients, D{sub Li}, of the LiCoPO{sub 4} thin films. The potential dependence of D{sub Li} values of the LiCoPO{sub 4} thin film was investigated by potentiostatic intermittent titration technique and was compared with those of the LiFePO{sub 4} thin film. These results showed that the intercalation mechanism of Li-ion in LiCoPO{sub 4} is different from that in LiFePO{sub 4}. (author)

  9. Combined effects of type 2 diabetes and hypertension associated with cortical thinning and impaired cerebrovascular reactivity relative to hypertension alone in older adults

    Directory of Open Access Journals (Sweden)

    Ekaterina Tchistiakova


    Conclusions: Individuals with T2DM and HTN showed decreased CVR and CThk compared to age-matched HTN controls. This study identifies brain regions that are impacted by the combined effects of comorbid T2DM and HTN conditions, with new evidence that the corresponding cortical thinning may contribute to cognitive decline.

  10. 超声喷雾热分解法制备p型氧化锌多晶薄膜%Preparation of p-type polycrystalline ZnO thin films by ultrasonic spray pyrolysis method

    Institute of Scientific and Technical Information of China (English)



    采用超声喷雾热分解法在玻璃衬底上以醋酸锌水溶液[Zn(CH3COO)2·2H2O]、醋酸铵(CH3COONH4)和硝酸铝[Al(NO3)3·9H2O]的混合溶液为前驱体生成了N-Al共掺P型氧化锌薄膜.考察了前驱体溶液浓度、载气流速、热解温度对实验结果的影响.用XRD和SEM测试手段对薄膜进行了晶体结构和表面形貌的表征,结果表明所制备的薄膜为六角纤锌矿结构的氧化锌薄膜,表面均匀,结构致密,具有强烈的呈c轴垂直于衬底的(002)择优取向.对薄膜进行了电学测试和光致发光性能测试,结果表明制备的薄膜为P型氧化锌薄膜,薄膜的光致发光明显具有氧化锌薄膜的特点.%p -type N -Al co-doped ZnO thin films were deposited on quartz glass substrates by ultrasonic spray pyrolysis method from a mixed aqueous solution of Zn ( CH3COO )2 · 2H2O, CH3 COONH4, and Al ( NO3 )3 · 9H2O. Effects of precursor solution concentration, flow rate of carrier gas, and pyrolysis temperature on the experiment result were studied.XRD and SEM were employed to characterize the crystalline structure and surface morphology of prepared ZnO thin films.Results indicated that the ZnO thin films belonged to hexagonal wurtzite structure,had a uniform surface, dense structure,and a strong preferred orientation( 002 )with the c axis perpendicular to the substrates. Photoluminescence performances and electrical properties of the thin films had been tested and the results indicated that the films were p - type ZnO thin films and their photoluminescence had obvious features of ZnO thin films.

  11. On the structural origins of ferroelectricity in HfO2 thin films (United States)

    Sang, Xiahan; Grimley, Everett D.; Schenk, Tony; Schroeder, Uwe; LeBeau, James M.


    Here, we present a structural study on the origin of ferroelectricity in Gd doped HfO2 thin films. We apply aberration corrected high-angle annular dark-field scanning transmission electron microscopy to directly determine the underlying lattice type using projected atom positions and measured lattice parameters. Furthermore, we apply nanoscale electron diffraction methods to visualize the crystal symmetry elements. Combined, the experimental results provide unambiguous evidence for the existence of a non-centrosymmetric orthorhombic phase that can support spontaneous polarization, resolving the origin of ferroelectricity in HfO2 thin films.

  12. Thinning factor distributions viewed through numerical models of continental extension (United States)

    Svartman Dias, Anna Eliza; Hayman, Nicholas W.; Lavier, Luc L.


    A long-standing question surrounding rifted margins concerns how the observed fault-restored extension in the upper crust is usually less than that calculated from subsidence models or from crustal thickness estimates, the so-called "extension discrepancy." Here we revisit this issue drawing on recently completed numerical results. We extract thinning profiles from four end-member geodynamic model rifts with varying width and asymmetry and propose tectonic models that best explain those results. We then relate the spatial and temporal evolution of upper to lower crustal thinning, or crustal depth-dependent thinning (DDT), and crustal thinning to mantle thinning, or lithospheric DDT, which are difficult to achieve in natural systems due to the lack of observations that constrain thinning at different stages between prerift extension and lithospheric breakup. Our results support the hypothesis that crustal DDT cannot be the main cause of the extension discrepancy, which may be overestimated because of the difficulty in recognizing distributed deformation, and polyphase and detachment faulting in seismic data. More importantly, the results support that lithospheric DDT is likely to dominate at specific stages of rift evolution because crustal and mantle thinning distributions are not always spatially coincident and at times are not even balanced by an equal magnitude of thinning in two dimensions. Moreover, either pure or simple shear models can apply at various points of time and space depending on the type of rift. Both DDT and pure/simple shear variations across space and time can result in observed complex fault geometries, uplift/subsidence, and thermal histories.

  13. Effect of Substrates Types on CO Gas Sensing of SnO2 Thin Film Prepared by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Sumanta Kumar Tripathy


    Full Text Available Tin oxide thin film was synthesized on glass and quartz substrate by sol-gel dip coating process taking tin (II chloride as precursor and methanol as solvent. XRD study confirmed the tetragonal rutile structure of SnO2. It was concluded that the transmission was higher and grain size was bigger in case of quartz than glass substrate from the study of optical characteristics by UV/VIS Spectrophotometer and SEM micrographs. CO gas sensing property of SnO2 thin film was studied and it was revealed that the sensitivity of SnO2 thin film grown on quartz substrate shows better performance than the film grown on glass substrate under the same conditions. Sensitivity of the film to CO gas was measured at different temperatures and was found to be highly sensitive at 220 C for glass substrate and 210 C for quartz substrate, at 50 ppm concentration. The result of change in conductivity of the sensors in presence of CO gas was also reported.

  14. Thin book

    DEFF Research Database (Denmark)

    En lille bog om teater og organisationer, med bidrag fra 19 teoretikere og praktikere, der deltog i en "Thin Book Summit" i Danmark i 2005. Bogen bidrager med en state-of-the-art antologi om forskellige former for samarbejde imellem teater og organisationer. Bogen fokuserer både på muligheder og...

  15. 分区域主动冷却薄片激光介质的理论和实验研究*%Theoretical and experimental research on district cooling for thin disk-type laser medium∗

    Institute of Scientific and Technical Information of China (English)

    母健; 冯国英; 杨火木; 唐淳; 周寿桓


      For the non-uniform pumping and cooling to the thin disk-type laser medium, the district cooling method for thin disk-type laser medium is proposed and examined both experimentally and theoretically. Based on heat conduction equation, the distributions of temperature and stress in end pumping thin disk-type laser medium with evenly cooling and district cooling are calculated. The results show that the tensile stresses on the edge of gain medium with evenly cooling are changed into the low values of compressive stresses for the case of district cooling, and the distribution of temperature in medium with district cooling is much more uniform than with evenly cooling, the ranges of temperature reduces about 86%, and this result is consistent well with the experimental result. The district cooling method could provide a new way of thermal management for thin disk-type laser.%  针对薄片激光介质抽运和温度分布不均匀的问题,设计了分区域主动冷却控制薄片激光器。根据热传导方程,对端面抽运方形薄片激光介质在均匀冷却和分区域主动冷却两种冷却方式下的温度和应力分布进行了模拟计算。结果显示:分区域主动冷却能使薄片介质横向温度分布趋于均匀,相对于均匀冷却时最大温差的改善率达到了约86%,介质边缘的张应力转变为低值压应力,有效地抑制了热应力炸裂。搭建了分区域主动冷却控制实验装置,并进行了验证实验,实验结果与模拟结果相符。为薄片激光器的热管理方式提供了新的思路。

  16. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nurhandoko, Bagus Endar B., E-mail:, E-mail: [Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Basic Science Center A 4" t" hfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia); Susilowati, E-mail:, E-mail: [Rock Fluid Imaging Lab., Bandung (Indonesia)


    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia.

  17. Jesus, psychological type and conflict: A study in biblical hermeneutics applying the reader perspective and SIFT approach to Mark 11:11–21

    Directory of Open Access Journals (Sweden)

    Leslie J. Francis


    Full Text Available The Marcan account of Jesus riding into Jerusalem on a donkey, cursing the fig tree and overturning the tables of the money changers in the temple provides a classic scriptural reference point for a Christian discussion of conflict. Drawing on psychological type theory and on the reader perspective proposed by the SIFT (sensing, intuition, feeling and thinking approach to biblical hermeneutics and liturgical preaching, this study tests the theory that different psychological types will interpret this classic passage differently. Data collected in two residential programmes concerned with Christianity and conflict from type-aware participants confirmed characteristic differences between the approaches of sensing types and intuitive types and between the approaches of thinking types and feeling types.

  18. Optimization of low cost, non toxic, earth abundant p-type Cu2SnS3 thin film for Photovoltaic application (United States)

    Chaudhari, J. J.; Patel, S.; Joshi, U. S.


    Cu2SnS3 (CTS) is one of promising candidate as an absorber material for thin film solar cell. Because of relatively higher prize of Indium and hazardous environmental impact of processing of Gallium, CTS is suitable alternative candidate to Cu2SnS3 (CIGS) based solar cell as its constituent elements such as copper, tin and sulphur are abundantly available in earth's crust. CTS is ternary semiconductor and its energy band gap is 1.5eV, which is perfectly matched with solar energy spectrum for maximum transfer of solar energy into electrical energy through photovoltaic action. The primary methods for the synthesis of CTS are Thermal evaporation, electrochemical, sputtering and wet chemical methods. Here in this paper we have optimized a low cost non-vacuum solution process method for the synthesis of CTS without any external sulfurization. The X-ray diffraction studies showed the formation of phase with the peaks corresponding to (112), (220) and (312) planes. Chemical Solution Deposition (CSD) for the synthesis of CTS is suitable for large area deposition and it includes several routes like solvothermal methods, direct liquid coating and nano ink based technique. The metal Chloride salts and thiourea is used as a source of sulphur to synthesize CTS solution and homogeneous thin films of CTS deposited on glass substrate using spin coating method. Use of abrasive solvent like hydrazine and hydrogen sulphide gas which are used to synthesize CTS thin film have detrimental effect on environment, we report eco friendly solvent based approach to synthesize CTS at low temperature 200 °C.

  19. Preparation of thin films, with base to precursor materials of type Cu-In-Se elaborated by electrodeposition for the solar cells elaboration; Preparacion de peliculas delgadas, con base a materiales precursores del tipo Cu-In-Se, elaboradas por electrodeposito para la elaboracion de celdas solares

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.M. [Centro de Investigaciones en Energia, Universidad Nacional Autonoma de Mexico. Av. Xochicalco s/n. 62580 Temixco, Morelos (Mexico)


    Thin films of chalcogenide compounds are promising because they have excellent optoelectronic characteristics to be applied in solar cells. In particular, CuInSe{sub 2} and Cd Te thin films have shown high solar to electrical conversion efficiency. However, this efficiency is limited by the method of preparation, in this case, physical vapor deposition techniques are used. In order to increase the area of deposition t is necessary to use chemical methods, for example, electrodeposition technique. In this paper, the preparation of Cu-In-Se precursors thin films by electrochemical method is reported. These precursors were used to build solar cells with 7.9 % of efficiency. (Author)

  20. Early impact of alternative thinning approaches on structure diversity and complexity at stand level in two beech forests in Italy

    Directory of Open Access Journals (Sweden)

    Claudia Becagli


    Full Text Available Stand structure, tree density as well as tree spatial pattern define natural dynamics and competition process. They are therefore parameters used to define any silvicultural management type. This work aims to report first data resulting from a silvicultural experiment in beech forests. The objective of the trial is testing the structure manipulation in terms of diversity and the reduction of inter-tree competition of different thinning approaches. Alternative thinning methods have been applied in two independent experimental sites located in the pre-Alps and Southern Apennines, in Italy. Specific goals were to: (i verify the impact early after thinning implementation on forest structure through a set of diversity and competition metrics resulting from a literature review; (ii the sensitivity of tested indexes to effectively detect thinning manipulation. Main result show the low sensitivity of stand structure indexes and the ability of competition metrics to detect thinning outcome.

  1. A Variational approach to thin film hydrodynamics of binary mixtures

    KAUST Repository

    Xu, Xinpeng


    In order to model the dynamics of thin films of mixtures, solutions, and suspensions, a thermodynamically consistent formulation is needed such that various coexisting dissipative processes with cross couplings can be correctly described in the presence of capillarity, wettability, and mixing effects. In the present work, we apply Onsager\\'s variational principle to the formulation of thin film hydrodynamics for binary fluid mixtures. We first derive the dynamic equations in two spatial dimensions, one along the substrate and the other normal to the substrate. Then, using long-wave asymptotics, we derive the thin film equations in one spatial dimension along the substrate. This enables us to establish the connection between the present variational approach and the gradient dynamics formulation for thin films. It is shown that for the mobility matrix in the gradient dynamics description, Onsager\\'s reciprocal symmetry is automatically preserved by the variational derivation. Furthermore, using local hydrodynamic variables, our variational approach is capable of introducing diffusive dissipation beyond the limit of dilute solute. Supplemented with a Flory-Huggins-type mixing free energy, our variational approach leads to a thin film model that treats solvent and solute in a symmetric manner. Our approach can be further generalized to include more complicated free energy and additional dissipative processes.

  2. Influence of film thickness and oxygen partial pressure on cation-defect-induced intrinsic ferromagnetic behavior in luminescent p-type Na-doped ZnO thin films. (United States)

    Ghosh, S; Khan, Gobinda Gopal; Varma, Shikha; Mandal, K


    In this article, we have investigated the effect of oxygen partial pressure (PO2) and film thickness on defect-induced room-temperature (RT) ferromagnetism (FM) of highly c-axis orientated p-type Na-doped ZnO thin films fabricated by pulse laser deposition (PLD) technique. We have found that the substitution of Na at Zn site (NaZn) can be effective to stabilize intrinsic ferromagnetic (FM) ordering in ZnO thin films with Curie temperature (TC) as high as 509 K. The saturation magnetization (MS) is found to decrease gradually with the increase in thickness of the films, whereas an increase in "MS" is observed with the increase in PO2 of the PLD chamber. The enhancement of ferromagnetic signature with increasing PO2 excludes the possibility of oxygen vacancy (VO) defects for the magnetic origin in Na-doped ZnO films. On the other hand, remarkable enhancement in the green emission (IG) are observed in the photoluminescence (PL) spectroscopic measurements due to Na-doping and that indicates the stabilization of considerable amount of Zn vacancy (VZn)-type defects in Na-doped ZnO films. Correlating the results of PL and X-ray photoelectron spectroscopy (XPS) studies with magnetic measurements we have found that VZn and Na substitutional (NaZn) defects are responsible for the hole-mediated FM in Na-doped ZnO films, which might be an effective candidate for modern spintronic technology.

  3. Photoconductivity of ZnTe thin films at elevated temperatures

    Indian Academy of Sciences (India)

    N Mazumdar; R Sarma; B K Sarma; H L Das


    Photoconductivity of thermally evaporated ZnTe thin films was studied at different elevated temperatures. A gap type cell configuration with Al electrodes on glass substrates was used. The conductivity was found to obey two distinct conduction mechanisms within the region of applied fields. At low fields the photoconduction is ohmic and at high fields it is of Poole–Frenkel type. With increase of ambient temperatures, the Poole–Frenkel conductivity regions were found to extend to lower fields. The temperature dependence of dark conductivity also was found to be of similar nature.

  4. 面指数测算在注射瘦脸美容中的应用%Application of Facial Index Measurement in Masseteric Injection of Botulinum Toxin Type A for Thin Face

    Institute of Scientific and Technical Information of China (English)

    李高峰; 谭军; 李波; 丁卫; 肖学敏; 刘东平


    [Objective] To explore the range of facial indices of beautiful facial forms in order to evaluate the efficacy of masseteric injection of botulinum toxin type A for thin face. [Methods] The orthophoria pictures of 50 beautiful female stars(control group) were downloaded from internet. The facial indices of these 50 beautiful female stars were calculated and compared with those of 20 cases with poor facial forms(observation group) who were treated with masseteric injection of botulinum toxin type A for thin face. The efficacy of masseteric injection of botulinum toxin type A for thin face and its effect on the facial indices were observed.[Results] Facial indices FWg/FWz and FH/FWz in control group were 0. 8209 ± 0. 0342 and 0. 8578 ± 0. 0342,respectively, and those in observation group were 0. 8787 ± 0. 0345 and 0. 8366 ± 0. 0185, respectively. The FWg/FWz in control group was significantly lower than that in observation group, while the FH/FWz in control group was higher than that in observation group. The FH/FWz in observation group after masseteric injection of botulinum toxin type A for thin face had no change, but FWg/FWz in observation group decreased significantly and inclined to that in control group. [Conclusion] Masseteric injection of botulinum toxin type Afor thin face is an effective method. Measuring facial index can be used to evaluate the efficacy of improving facial morphology.%[目的]寻求漂亮面型的面指数数值范围,以此评价注射瘦脸美容的效果.[方法]从互联网上下载50位漂亮女明星的面部正位图片(对照组),测算其面指数,并与临床上要求进行咬肌内注射A型肉毒毒素瘦脸美容的20例面型欠佳者的面指数(观察组)进行比较,观察注射瘦脸美容的效果及对面指数的影响.[结果]对照组面指数FWg/FWz和FH/FWz分别为0.8209±0.0342,0.8578±0.0342,观察组分别为0.8787±0.0345,0.8366±0.0185.对照组FWg/FWz显著低于观察组,但FH/FWz则高于观察组.

  5. 33 CFR 148.707 - What type of criteria will be used in an environmental review and how will they be applied? (United States)


    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false What type of criteria will be...: GENERAL Environmental Review Criteria for Deepwater Ports § 148.707 What type of criteria will be used in... phases of construction, operation, and decommissioning of the proposed location, and at least...

  6. Electron stimulated desorption of oxygen from, and subsequent type conversion of, thin-film p-CuInSe/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Matson, R.J.; Kazmerski, L.L.; Noufi, R.; Cahen, D.


    There are seemingly conflicting results from two sets of investigations in the literature concerning the electron stimulated desorption of oxygen incorporated into thin-film p-CuInSe/sub 2/ This has a direct bearing on the model for the role of oxygen in the important postdeposition oxygen treatment of CdS/CuInSe/sub 2/ solar cells, proposed in one of the published reports. By comparing the specific beam parameters of the scanning electron microscope (SEM)/ electron beam induced current (EBIC) versus scanning Auger microprobe (SAM) based studies and calculating charge density for the two cases, the SAM experiments are seen to support, rather than contradict, the results of the SEM/EBIC experiments. The evidence tying the addition and deletion of oxygen to changes in the electrical properties of the CuInSe/sub 2/ are then discussed.

  7. Effect of SiO2 addition on photocatalytic activity, water contact angle and mechanical stability of visible light activated TiO2 thin films applied on stainless steel by a sol gel method (United States)

    Momeni, Mansour; Saghafian, Hasan; Golestani-Fard, Farhad; Barati, Nastaran; Khanahmadi, Amirhossein


    Nanostructured N doped TiO2/20%SiO2 thin films were developed on steel surface via sol gel method using a painting airbrush. Thin films then were calcined at various temperatures in a range of 400-600 °C. The effect of SiO2 addition on phase composition and microstructural evolution of N doped TiO2 films were studied using XRD and FESEM. Optical properties, visible light photocatalytic activity, hydrophilic behavior, and mechanical behavior of the films were also investigated by DRS, methylene blue degradation, water contact angle measurements, and nanoscratch testing. Results indicated that the band gap energy of N doped TiO2/SiO2 was increased from 2.93 to 3.09 eV. Crack formation during calcination was also significantly promoted in the composite films. All composite films demonstrated weaker visible light photocatalytic activities and lower mechanical stability in comparison with N doped TiO2 films. Moreover, the N doped TiO2/SiO2 film calcined at 600 °C showed undesirable hydrophilic behavior with a water contact angle of 57° after 31 h of visible light irradiation. Outcomes of the present study reveal some different results to previous reports on TiO2/SiO2 films. In general, we believe the differences in substrate material as well as application in visible light are the main reasons for the above mentioned contradiction.

  8. Monitoring of monooctanoyl phosphatidylcholine synthesis by enzymatic acidolysis between soybean phosphatidylcholine and caprylic acid by thin-layer chromatography with a flame ionization detector

    DEFF Research Database (Denmark)

    Vikbjerg, Anders Falk; Mu, Huiling; Xu, Xuebing


    Thin-layer chromatography with flame ionization detector (TLC-FID) method was used for monitoring the production of structured phospholipids (ML-type: L-long chain fatty acids; M-medium chain fatty acids) by enzyme-catalyzed acidolysis between soybean phosphatidylcholine (PC) and caprylic acid....... It was found that the structured PC fractionated into 2-3 distinct bands on both plate thin layer chromatography (TLC) and Chromarod TLC. These 3 bands represented PC of LL-type, ML-type and MM-type, respectively. The TLC-FID method was applied in the present study to examine the influence of enzyme dosage...

  9. Biomimetic thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rieke, P.R.; Graff, G.E.; Campbell, A.A.; Bunker, B.C.; Baskaran, S.; Song, L.; Tarasevich, B.J.; Fryxell, G.E.


    Biological mineral deposition for the formation of bone, mollusk shell and other hard tissues provides materials scientists with illustrative materials processing strategies. This presentation will review the key features of biomineralization and how these features can be of technical importance. We have adapted existing knowledge of biomineralization to develop a unique method of depositing inorganic thin films and coating. Our approach to thin film deposition is to modify substrate surfaces to imitate the proteins found in nature that are responsible for controlling mineral deposition. These biomimetic surfaces control the nucleation and growth of the mineral from a supersaturated aqueous solution. This has many processing advantages including simple processing equipment, environmentally benign reagents, uniform coating of highly complex shapes, and enhanced adherence of coating. Many different types of metal oxide, hydroxide, sulfide and phosphate materials with useful mechanical, optical, electronic and biomedical properties can be deposited.

  10. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L


    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  11. Surface morphology of titanium nitride thin films synthesized by DC reactive magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Ţǎlu Ştefan


    Full Text Available In this paper the influence of temperature on the 3-D surface morphology of titanium nitride (TiN thin films synthesized by DC reactive magnetron sputtering has been analyzed. The 3-D morphology variation of TiN thin films grown on p-type Si (100 wafers was investigated at four different deposition temperatures (473 K, 573 K, 673 K, 773 K in order to evaluate the relation among the 3-D micro-textured surfaces. The 3-D surface morphology of TiN thin films was characterized by means of atomic force microscopy (AFM and fractal analysis applied to the AFM data. The 3-D surface morphology revealed the fractal geometry of TiN thin films at nanometer scale. The global scale properties of 3-D surface geometry were quantitatively estimated using the fractal dimensions D, determined by the morphological envelopes method. The fractal dimension D increased with the substrate temperature variation from 2.36 (at 473 K to 2.66 (at 673 K and then decreased to 2.33 (at 773 K. The fractal analysis in correlation with the averaged power spectral density (surface yielded better quantitative results of morphological changes in the TiN thin films caused by substrate temperature variations, which were more precise, detailed, coherent and reproducible. It can be inferred that fractal analysis can be easily applied for the investigation of morphology evolution of different film/substrate interface phases obtained using different thin-film technologies.

  12. Design, synthesis, and characterization of ladder-type molecules and polymers. Air-stable, solution-processable n-channel and ambipolar semiconductors for thin-film transistors via experiment and theory. (United States)

    Usta, Hakan; Risko, Chad; Wang, Zhiming; Huang, Hui; Deliomeroglu, Murat K; Zhukhovitskiy, Aleksandr; Facchetti, Antonio; Marks, Tobin J


    The design, synthesis, and characterization of new high-performance n-channel molecular/polymeric semiconductors that are solution-processable and air-stable is of great interest for the development of p-n junctions, bipolar transistors, and organic complementary circuitry (CMOS). While over the past two decades there have been many reports on n-channel materials, solution-processability and air-stability still remain as major challenges. We report here the synthesis and detailed characterization of a highly electron-deficient class of indeno[1,2-b]fluorene-6,12-dione, 2,2'-(indeno[1,2-b]fluorene-6,12-diylidene) dimalononitrile, bisindenofluorene-12,15-dione, and 2,2'-(bisindenofluorene-12,15-diylidene) dimalononitrile-based ladder-type building blocks (1-12) and their corresponding homo- and copolymers (P1-P14), and examine in detail the effects of core size, thiophene vs core regiochemistry, carbonyl vs dicyanovinylene functionality, and alkyl chain orientation on the physicochemical properties, thin film microstructures, and OFET device performance. New compounds are characterized by DSC, TGA, melting point, single-crystal X-ray diffraction (XRD), solution/thin film optical, PL, and cyclic voltammetry measurements to evaluate frontier molecular orbital energetics and intermolecular cohesive forces. Thin films are grown by vacuum deposition and spin-coating, and investigated by X-ray diffraction (XRD) and AFM. By tuning the HOMO/LUMO energetics of the present materials over a 1.1 eV range, p-type, n-type, or ambipolar charge transport characteristics can be observed, thus identifying the MO energetic windows governing majority carrier polarity and air stability. One of these systems, thiophene-terminated indenofluorenedicyanovinylene 10 exhibits an electron mobility of 0.16 cm(2)/V x s and an I(on)/I(off) ratio of 10(7)-10(8), one of the highest to date for a solution-cast air-stable n-channel semiconductor. Here we also report solution-processed ambipolar films

  13. Structural, electrical and optical properties of p-type transparent conducting SnO{sub 2}:Al film derived from thermal diffusion of Al/SnO{sub 2}/Al multilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J. [Key Laboratory of Silicate Materials Science and Engineering (Wuhan University of Technology), Ministry of Education, 122 Luoshi Road, Hongshan District, Wuhan, Hubei 430070 (China); Zhao, X.J., E-mail: [Key Laboratory of Silicate Materials Science and Engineering (Wuhan University of Technology), Ministry of Education, 122 Luoshi Road, Hongshan District, Wuhan, Hubei 430070 (China); Ni, J.M.; Tao, H.Z. [Key Laboratory of Silicate Materials Science and Engineering (Wuhan University of Technology), Ministry of Education, 122 Luoshi Road, Hongshan District, Wuhan, Hubei 430070 (China)


    Highly transparent, p-type conducting SnO{sub 2}:Al films derived from thermal diffusion of a sandwich structure Al/SnO{sub 2}/Al multilayer thin films deposited on quartz substrate have been prepared by direct current and radio-frequency magnetron sputtering using Al and SnO{sub 2} targets. The deposited films were annealed at various temperatures for different durations. The effect of thermal diffusing temperature and time on the structural, electrical and optical performances of SnO{sub 2}:Al films has been studied. X-ray diffraction results show that all p-type conducting films possessed polycrystalline SnO{sub 2} with tetragonal rutile structure. Hall-effect results indicate that 450 deg. C for 4 h were the optimum annealing parameters for p-type SnO{sub 2}:Al films, resulting in a relatively high hole concentration of 7.2 x 10{sup 18} cm{sup -3} and a low resistivity of 0.81 {Omega} cm. The transmission of the p-type SnO{sub 2}:Al films was above 80%.

  14. Solution-processed p-type copper(I) thiocyanate (CuSCN) for low-voltage flexible thin-film transistors and integrated inverter circuits (United States)

    Petti, Luisa; Pattanasattayavong, Pichaya; Lin, Yen-Hung; Münzenrieder, Niko; Cantarella, Giuseppe; Yaacobi-Gross, Nir; Yan, Feng; Tröster, Gerhard; Anthopoulos, Thomas D.


    We report on low operating voltage thin-film transistors (TFTs) and integrated inverters based on copper(I) thiocyanate (CuSCN) layers processed from solution at low temperature on free-standing plastic foils. As-fabricated coplanar bottom-gate and staggered top-gate TFTs exhibit hole-transporting characteristics with average mobility values of 0.0016 cm2 V-1 s-1 and 0.013 cm2 V-1 s-1, respectively, current on/off ratio in the range 102-104, and maximum operating voltages between -3.5 and -10 V, depending on the gate dielectric employed. The promising TFT characteristics enable fabrication of unipolar NOT gates on flexible free-standing plastic substrates with voltage gain of 3.4 at voltages as low as -3.5 V. Importantly, discrete CuSCN transistors and integrated logic inverters remain fully functional even when mechanically bent to a tensile radius of 4 mm, demonstrating the potential of the technology for flexible electronics.

  15. Deposition of n-Type Bi2Te3 Thin Films on Polyimide by Using RF Magnetron Co-Sputtering Method. (United States)

    Joo, Sung-Jae; Kim, Bong Seo; Min, Bok-Ki; Oh, Min Wook; Lee, Ji-Eun; Ryu, Byung Ki; Lee, Hee Woong; Park, Su Dong


    Bi2Te3 thermoelectric thin films were deposited on the flexible polyimide substrates by RF magnetron co-sputtering of a Bi and a Te targets. The influence of the substrate temperature and RF power on the microstructure, chemical composition, and the thermoelectric properties of the sputtered films was investigated by using scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and in-plane resistivity/Seebeck coefficient measurement. It was shown that the thermoelectric properties of the films depend sensitively on the Bi/Te chemical composition ratio and the substrate temperature, and the layered structure was clearly observed from the cross section of the (00L)-oriented, nearly stoichiometric Bi2Te3 films when the substrate temperature is higher than 250 °C. As-deposited Bi2Te3 films deposited at 300 °C show the highest power factor of 0.97 mW/K(2)m and the Seebeck coefficient of -193 μV/K at 32 °C, which also have (00L) preferred orientation and the layered structure. The durability of the Bi2Te3 films on polyimide against repeated bending was also tested by monitoring the film resistance, and it was concluded that the Bi2Te3 films are applicable reliably on the curved surfaces with the radius of curvature larger than 5 mm.

  16. Infrared Transition Moment Orientational Analysis on the Structural Organization of the Distinct Molecular Subunits in Thin Layers of a High Mobility n-Type Copolymer. (United States)

    Anton, Arthur Markus; Steyrleuthner, Robert; Kossack, Wilhelm; Neher, Dieter; Kremer, Friedrich


    The IR-based method of infrared transition moment orientational analysis (IR-TMOA) is employed to unravel molecular order in thin layers of the semiconducting polymer poly[N,N'-bis(2-octyldodecyl)-1,4,5,8-naphthalenediimide-2,6-diyl]-alt-5,5'-(2,2'-bithiophene) (P(NDI2OD-T2)). Structure-specific vibrational bands are analyzed in dependence on polarization and inclination of the sample with respect to the optical axis. By that the molecular order parameter tensor for the respective molecular moieties with regard to the sample coordinate system is deduced. Making use of the specificity of the IR spectral range, we are able to determine separately the orientation of atomistic planes defined through the naphthalenediimide (NDI) and bithiophene (T2) units relative to the substrate, and hence, relative to each other. A pronounced solvent effect is observed: While chlorobenzene causes the T2 planes to align preferentially parallel to the substrate at an angle of 29°, using a 1:1 chloronaphthalene:xylene mixture results in a reorientation of the T2 units from a face on into an edge on arrangement. In contrast the NDI unit remains unaffected. Additionally, for both solvents evidence is observed for the aggregation of chains in accord with recently published results obtained by UV-vis absorption spectroscopy.

  17. Relativistic models of thin disks immersed in a Robertson-Walker type spacetime Modelos relativistas de discos delgados inmersos en un espacio-tiempo tipo Robertson-Walker

    Directory of Open Access Journals (Sweden)

    Gonzalo García Reyes


    Full Text Available Using the well known “displace, cut and reflect” method used to generate disks from given solutions of Einstein field equations, we construct some relativistic models of time dependent thin disks of infinite extension made of a perfect fluid based on the Robertson-Walker metric. Two simple families of models of disks based on Robertson-Walker solutions admitting Matter and Ricci collineations are presented. We obtain disks that are in agreement with all the energy conditions.Usando el método de “desplazamiento, corte y reflexión” se construyen algunos modelos relativistas exactas de soluciones que representan discos delgados de extensión infinita, dependientes del tiempo y hechos de un fluido perfecto, basados en la métrica de Robertson-Walker. Se presentan dos familias simples de modelos de discos basados sobre el espacio tiempo de Robertson-Walker que admiten colineaciones de Ricci y de materia. Se obtienen modelos de discos que satisfacen todas las condiciones de energía.

  18. Solution-processed p-type copper(I) thiocyanate (CuSCN) for low-voltage flexible thin-film transistors and integrated inverter circuits

    KAUST Repository

    Petti, Luisa


    We report on low operating voltage thin-film transistors (TFTs) and integrated inverters based on copper(I) thiocyanate (CuSCN) layers processed from solution at low temperature on free-standing plastic foils. As-fabricated coplanar bottom-gate and staggered top-gate TFTs exhibit hole-transporting characteristics with average mobility values of 0.0016 cm2 V−1 s−1 and 0.013 cm2 V−1 s−1, respectively, current on/off ratio in the range 102–104, and maximum operating voltages between −3.5 and −10 V, depending on the gate dielectric employed. The promising TFT characteristics enable fabrication of unipolar NOT gates on flexible free-standing plastic substrates with voltage gain of 3.4 at voltages as low as −3.5 V. Importantly, discrete CuSCN transistors and integrated logic inverters remain fully functional even when mechanically bent to a tensile radius of 4 mm, demonstrating the potential of the technology for flexible electronics.

  19. Applied mathematics

    CERN Document Server

    Logan, J David


    Praise for the Third Edition"Future mathematicians, scientists, and engineers should find the book to be an excellent introductory text for coursework or self-study as well as worth its shelf space for reference." -MAA Reviews Applied Mathematics, Fourth Edition is a thoroughly updated and revised edition on the applications of modeling and analyzing natural, social, and technological processes. The book covers a wide range of key topics in mathematical methods and modeling and highlights the connections between mathematics and the applied and nat

  20. Applied Enzymology. (United States)

    Manoharan, Asha; Dreisbach, Joseph H.


    Describes some examples of chemical and industrial applications of enzymes. Includes a background, a discussion of structure and reactivity, enzymes as therapeutic agents, enzyme replacement, enzymes used in diagnosis, industrial applications of enzymes, and immobilizing enzymes. Concludes that applied enzymology is an important factor in…

  1. On milling of thin-wall conical and tubular workpieces (United States)

    Tsai, Mu-Ping; Tsai, Nan-Chyuan; Yeh, Cheng-Wei


    Thin-wall tubular-geometry workpieces have been widely applied in aircraft and medical industries. However, due to the special geometry of this kind of workpieces and induced poor machinability, the desired accuracy of machining tends to be greatly degraded, no matter what type of metal-cutting task such as milling, drilling or turning is undertaken. Though numerous research reports are available that the tool path can be planned on the basis of preset surface profile before actual milling operation is performed, it is still difficult to predict the real-time surface profile errors for peripheral milling of thin-wall tubular workpieces. Instead of relying on tool path planning, this research is focused on how to real-time formulate the appropriate applied cutting torque via feedback of spindle motor current. On the other hand, a few suitable cutting conditions which are able to prevent potential break/crack of thin-wall workpieces and enhance productivity but almost retain the same cutting quality is proposed in this research. To achieve this goal, estimated surface profile error on machined parts due to deflections caused by both tool and workpiece is studied at first. Traditionally, by adjusting cutting parameters such as feed rate or cut depth, the deflection of tool or workpiece can be expected not to exceed the specified limit. Instead, an effective feedback control loop is proposed by this work for applying real-time appropriate applied cutting torque to prevent potential break/crack of the thin-wall conical workpieces. The torque estimation approach by spindle motor current feedback and the corresponding fuzzy logic controller are employed. Compared with constant cutting torque during milling operation in tradition manner, it is observed that the time consumption of milling cycle by aid of the aforesaid fuzzy logic controller is greatly shortened while the resulted cutting accuracy upon finish of workpiece can be almost retained.

  2. Characterization of copper selenide thin film hole-injection layers deposited at room temperature for use with p-type organic semiconductors (United States)

    Hiramatsu, Hidenori; Koizumi, Ikue; Kim, Ki-Beom; Yanagi, Hiroshi; Kamiya, Toshio; Hirano, Masahiro; Matsunami, Noriaki; Hosono, Hideo


    Copper selenide, CuxSe(x ˜2), was examined as a hole-injection layer for low-temperature organic devices. Crystalline CuxSe films grown at room temperature with atomically flat surfaces exhibited metallic conduction with a high electrical conductivity of 4.5×103 S/cm, a hole concentration of 1.4×1022 cm-3, and a mobility of 2.0 cm2/(V s). Analysis of the free carrier absorption using the Drude model estimated the effective mass of a hole as 1.0me. Photoemission spectroscopy measurements of the interfaces between CuxSe and organic hole transport layers, N ,N'-bis(naphthalen-1-yl)-N ,N'-bis(phenyl) benzidine (NPB) and copper phthalocyanine (CuPc), verified that the hole-injection barriers of these interfaces (0.4 eV for NPB and 0.3 eV for CuPc) are smaller than that of a conventional indium tin oxide (ITO) hole-injection electrode/NPB interface (0.6 eV) but are comparable to that of an ITO electrode/CuPc interface (0.3 eV). Hole-only devices using the CuxSe layer as a hole-injection anode exhibited very low threshold voltages (0.4-0.5 V) and nearly Ohmic characteristics. The NPB layer on the CuxSe layer was found to be highly doped at 1017-1019 cm-3, probably due to copper diffusion, while the CuPc layer is nearly intrinsic with a doping concentration lower than 1015 cm-3. These results indicated that a CuxSe film combined with CuPc is a promising candidate for a low-voltage hole-injection anode or a buffer layer in low-temperature devices such as organic light-emitting diodes and thin film transistors.

  3. The role of the substrate material type in formation of laser induced periodical surface structures on ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zamfirescu, Marian, E-mail: [National Institute for Research and Development in Microtechnology, Str. Erou Iancu Nicolae 126A, 077190 Bucharest (Romania); National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, 077125 Magurele (Romania); Dinescu, Adrian; Danila, Mihai [National Institute for Research and Development in Microtechnology, Str. Erou Iancu Nicolae 126A, 077190 Bucharest (Romania); Socol, Gabriel; Radu, Catalina [National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, 077125 Magurele (Romania)


    Highlights: Black-Right-Pointing-Pointer LIPSS were produced by femtoseconds laser beam on ZnO films deposited by PLD. Black-Right-Pointing-Pointer The nanostructures morphology depends on substrate material. Black-Right-Pointing-Pointer The XRD measurements demonstrate the polycrystalline structure of the ZnO LIPSS. Black-Right-Pointing-Pointer Fused silica and c-Al{sub 2}O{sub 3} substrates are the most suitable for producing ZnO ripples. - Abstract: Laser induced periodical surface structures (LIPSS) are obtained on extended area of zinc oxide thin films by femtosecond laser pulses. The ZnO films deposited by pulsed laser deposition (PLD) technique were irradiated by femtosecond laser beam with 200 fs pulse duration, at 775 nm central wavelength and 2 kHz repetition rate. The irradiation conditions such as laser fluence and scanning speed were varied for each sample. The morphology and the crystalline structure of the LIPSS on ZnO films were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) for different substrates such as fused silica, crystalline SiO{sub 2}, MgO, Al{sub 2}O{sub 3}, or Si wafers with different crystal orientation. The LIPSS appear on all ZnO films, deposited on crystalline substrates, as well as on amorphous substrates. However, more irregular nanostructures, such as bifurcations or nanodroplets were observed on ZnO with MgO, and r-Al{sub 2}O{sub 3} substrates. The ZnO LIPSS are polycrystalline when fused silica, and SiO{sub 2} (0 0 0 1) substrates are used.

  4. Applied dynamics

    CERN Document Server

    Schiehlen, Werner


    Applied Dynamics is an important branch of engineering mechanics widely applied to mechanical and automotive engineering, aerospace and biomechanics as well as control engineering and mechatronics. The computational methods presented are based on common fundamentals. For this purpose analytical mechanics turns out to be very useful where D’Alembert’s principle in the Lagrangian formulation proves to be most efficient. The method of multibody systems, finite element systems and continuous systems are treated consistently. Thus, students get a much better understanding of dynamical phenomena, and engineers in design and development departments using computer codes may check the results more easily by choosing models of different complexity for vibration and stress analysis.

  5. The Applied Example of GBF Polymer Alloy Thin-walled Tube Cast-in-situ Concrete Hollow Floor%GBF高分子合金薄壁管现浇混凝土空心楼盖应用实例

    Institute of Scientific and Technical Information of China (English)



    在高层公共建筑中,GBF高分子合金薄壁管现浇混凝土空心楼盖得到了越来越广泛的应用。本文结合广州市某信息中心工程实例,介绍了该项目中现浇混凝土空心楼盖施工的要点、难点,并提出解决方法,确保了工程质量。%In public high-rise buildings, GBF polymer alloy thin-waled tube cast-in-place concrete holow floor has been widely used. In this paper, based on the example of an inf- ormation center project in Guangzhou City, the author intr- oduced the key points, difficulties of the project in the co- nstruction of the cast-in-situ concrete holow floor, put forward solutions to ensure the engineering quality.

  6. Effect of electronic self-care education and applying continues care on practice in type 2 diabetic patients; a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Mariam Khandan


    Full Text Available Background: The prevalence and complications of type2 diabetes showed that traditional educations are not effective. In this trial, we evaluated the effect of electronic self-care education and continue case in compare to the traditional training methods on the practice and fasting blood sugar of diabetic patients. Methods: 170 type 2 diabetic patients were randomly allocated into two groups and followed for three months. The control group received routine follow up and the intervention group received electronic education plus routine follow up. The baseline and post-follow-up FBS, BMI and Practice score were collected and analyzed based on intention to treat protocol.Results: The baseline and post-intervention practice score was 24.1 ± 7.1 vs. 32.2 ± 6.5 for the intervention and 24.5±11.6 vs. 25.4±6.3 for the control group. The mean FBS before and after education was 223.8± 77/2 vs. 167/5 ± 55/2 mg/dl in intervention and 175.2±76.5 vs. 208.3±76.5 mg/dl in control group. BMI decreased 1.23 kg/m2 in intervention group while its increased 0.55 kg/m2 in the control group (P<0.05 Conclusion: Electronic self-care education and continues care improved the practice, mean FBS and BMI of type 2 diabetic patients in the intervention group after training program.

  7. Applied methods for mitigation of damage by stress corrosion in BWR type reactors; Metodos aplicados para la mitigacion del dano por corrosion bajo esfuerzo en reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez C, R.; Diaz S, A.; Gachuz M, M.; Arganis J, C. [Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencia de Materiales, A.P. 18-1027, 11801 Mexico D.F. (Mexico)


    The Boiling Water nuclear Reactors (BWR) have presented stress corrosion problems, mainly in components and pipes of the primary system, provoking negative impacts in the performance of energy generator plants, as well as the increasing in the radiation exposure to personnel involucred. This problem has caused development of research programs, which are guided to find solution alternatives for the phenomena control. Among results of greater relevance the control for the reactor water chemistry stands out particularly in the impurities concentration and oxidation of radiolysis products; as well as the supervision in the materials selection and the stresses levels reduction. The present work presents the methods which can be applied to diminish the problems of stress corrosion in BWR reactors. (Author)

  8. Studies on dosimetric tests applying source irradiation force of Cs-137 for using in chambers for calibration and TLD type dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Laila Lorena X. [Pontificia Univ. Catolica de Goias (PUC-GO), Goiania, GO (Brazil). Dept. de Matematica, Fisica, Quimica e Engenharia de Alimentos; Barbosa, Rugles Cesar, E-mail: [Centro Regional de Ciencias Nucleares do Centro Oeste (CRCN-CO/CNEN-GO), Abadia de Goias, GO (Brazil). Laboratorio de Radioprotecao; Correa, Rosangela S., E-mail: [Centro Regional de Ciencias Nucleares do Centro Oeste (CRCN-CO/CNEN-GO), Abadia de Goias, GO (Brazil). Laboratorio de Imagens e Dosimetria


    The West Central region of Brazil does not have a basic infrastructure for research, development, training programs, and personnel dosimetry education. All of them applied to environmental, industrial and medical uses. Service deployment for irradiance of TLD, via {sup 137}Cs irradiator J. L. SHEPHERD model 28-8A (444 activity GBq) in CRCN-CO, it is necessary to introduce procedures for calibration of the radiator and other procedures related to dosimetry and calibration. Such procedures should be repeated periodically, as necessary to introduce techniques that make the service of the CRCN-CO a template, and that meet all standards requirements for radioprotection and operation of dosimetry and calibration. The objective of this work was to evaluate the radiation field of Cs-137, and the automatic system which systematizes the calibration procedures attached to a system control target for the radiator/calibration of monitors, and portable dosimeters. (author)

  9. Thin-film solar cell


    Metselaar, J.W.; Kuznetsov, V. I.


    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with the light-collecting surface. In this context, the relationships 45 < alpha < 135 degrees and 45 < beta < 135 degrees apply. The invention also relates to a panel provided with a plurality of such t...

  10. Studies of arsenic incorporation and P-type doping in epitaxial mercury cadmium telluride thin films grown by molecular beam epitaxy (United States)

    Zandian, Majid

    Doped layer semiconductor structures provide possibilities for novel electronic devices. Growth of Hg1-xCdxTe by molecular beam epitaxy (MBE) allows precise control over the doping profile and position of heterojunctions as well as structural properties of this ternary alloy. Even though n-type doping using indium is well established, little is known about p-type doping in this material system by MBE. Several elements such as Ag, Au, Sb, Bi and P have been previously used, however high diffusion coefficient and amphoteric behavior of these atoms in HgCdTe has restricted their use in heterojunction devices where control over doping profiles and concentrations is needed. We investigated arsenic incorporation efficiency as a function of As 4 flux and growth temperature. The sticking coefficient of As is substantially higher at lower growth temperature compared to growth at 190°C. For samples grown at 170°C, the etch pit density (EPD) is higher compared to p-type As doped samples grown at 190°C. Higher EPD is associated with columnar twin defects observed in transmission electron microscopy (TEM) studies of low growth temperature samples. Growth at low temperature of 170°C causes Hg rich condition promoting twin formation. Therefore, growth of p-type layers doped with As at low temperatures require optimization of II/VI flux ratio to eliminate columnar twin defects. It is possible to incorporate As at normal MBE growth temperature of 190°C but very high flux of As has to used to overcome low sticking coefficient of As at these temperatures. We proposed a mechanism for the activation of As involving Hg vacancies (VHg··) where Te is moved to a Hg vacancy, leaving behind a Te vacancy, which is then filled by an As atom. The Te that is now on a Hg site (i.e., Te antisite) migrates to the surface and leaves the crystal.

  11. Control of lightness and firmness of cold and reheated frankfurter-type sausages using different spectroscopic methods applied to raw batter. (United States)

    Egelandsdal, B; Dingstad, G I; Tøgersen, G; Hildrum, K I


    Muscle types and collagen, fat, and muscle protein minus collagen were varied in cooked frankfurter-type sausages made from beef and pork meat as well as pork backfat. The content of collagen was fixed at preset levels with pork rind. The amount of total muscle protein in the sausages varied between 5.9% and 11.9% and the fat between 16.1% and 22.1%. The collagen content varied between 1.3% and 4%. Spectroscopic measurements (near-infrared reflectance spectra 1100 to 2500 nm; front-face autofluorescence emission spectra 360 to 640 nm) on raw batters were used to predict the amounts of total muscle protein minus collagen, collagen, myoglobin, and fat (biochemical components), L* values from a Minolta chromameter, and firmness of cold (22 degrees C) and reheated sausages (60 degrees C). Lightness of sausages was most accurately determined from the batter data with a Minolta chromameter or the autofluorescence measurement system. Firmness of cold sausages could be described by the amounts of biochemical components plus the type of muscle used in the sausage. The 2nd-best approach was to use the shape of the near-infrared spectra to determine firmness. This was possible as the shape of near-infrared spectra depended on total protein content, and total protein content largely determined the firmness of cold sausages. If the sausages were reheated to 60 degrees C, near-infrared spectroscopy alone determined firmness of the sausages with a lower accuracy than a combined solution of fluorescence and near-infrared spectroscopy. The 2 spectroscopic techniques could thus be used to estimate the amount of biochemical components in sausages. Once these components were known, firmness could be calculated from a model between the amounts of biochemical components and firmness. For reheated sausages, as opposed to cold ones, there was a need to differentiate between collagen and the other muscle proteins in order to determine firmness. This was optimally achieved by using both

  12. Sloped implants applied to different types of jaw bone:A three-dimensional finite element analysis%倾斜种植应用于不同质量颌骨的三维有限元分析

    Institute of Scientific and Technical Information of China (English)

    夏琳; 张志宏; 刘红红; 杜双松; 冯昌乐; 韩倩; 陈佳


    24 different inclined angle implant models in different types of bone were established by using three-di-mensional finite element method, vertical loading 300N. The final analysis result was: with increase of implant tilt-ing angle in the same types of bone, the maximum stress and strain of both compact bone and cancellous bone rised gradully. However, when the same angle implant applied to different type of jaw, development trend of maximum stress and strain were:compact bone:Type Ⅳ > Type Ⅲ > Type Ⅱ > Type Ⅰ;cancellous bone:Type Ⅲ > Type Ⅳ> Type Ⅱ.%通过运用三维有限元方法建立Ⅰ~Ⅳ类骨质中种植体不同角度倾斜种植模型24个,垂直集中加载300 N。分析研究显示,在同一骨质中,随着种植体倾斜角度的增加,密质骨和松质骨中的最大应力及应变量均逐渐增大;而相同角度的种植体于不同质量的颌骨中时,最大应力发展趋势为:密质骨:Ⅳ类骨质>Ⅲ类骨质>Ⅱ类骨质>Ⅰ类骨质;松质骨:Ⅲ类骨质>Ⅳ类骨质>Ⅱ类骨质。

  13. Photoelectricalchemical characteristics of brush plated tin sulfide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, B.; Jayachandran, M. [Central Electrochemical Research Inst., Karaikudi (India); Sanjeeviraja, C. [Alagappa Univ., Karaikudi (India). Dept. of Physics


    Thin films of tin sulfide find wide applications in optoelectronic devices and window materials for heterojunction solar cells. Thin films of p-SnS were brush plated onto tin oxide coated glass substrates from aqueous solution containing SnCl{sub 2} and Na{sub 2}S{sub 2}O{sub 3}. Deposits have been characterized with XRD and SEM for structural analysis. Hot probe method showed invariably p-type nature for all the brush plated SnS films. The variation of space charge capacitance, C{sub sc} with applied potential, V, was recorded for the PEC cell with p-SnS/Fe{sup 3+}, Fe{sup 2+}/Pt system. The spectral response of the PEC cell formed with SnS photoelectrode was studied and reported. (author)

  14. Photoelectrochemical characteristics of brush plated tin sulfide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, B.; Jayachandran, M. [Central Electrochemical Research Institute, Karaikudi 630 006 (India); Sanjeeviraja, C. [Department of Physics, Alagappa University, Karaikudi 630 006 (India)


    Thin films of tin sulfide find wide applications in optoelectronic devices and window materials for heterojunction solar cells. Thin films of p-SnS were brush plated onto tin oxide coated glass substrates from aqueous solution containing SnCl{sub 2} and Na{sub 2}S{sub 2}O{sub 3}. Deposits have been characterized with XRD and SEM for structural analysis. Hot probe method showed invariably p-type nature for all the brush plated SnS films. The variation of space charge capacitance, C{sub sc}, with applied potential, V, was recorded for the PEC cell with p-SnS/Fe{sup 3+}, Fe{sup 2+}/Pt system. The spectral response of the PEC cell formed with SnS photoelectrode was studied and reported.

  15. Thin films for micro solid oxide fuel cells (United States)

    Beckel, D.; Bieberle-Hütter, A.; Harvey, A.; Infortuna, A.; Muecke, U. P.; Prestat, M.; Rupp, J. L. M.; Gauckler, L. J.

    Thin film deposition as applied to micro solid oxide fuel cell (μSOFC) fabrication is an emerging and highly active field of research that is attracting greater attention. This paper reviews thin film (thickness ≤1 μm) deposition techniques and components relevant to SOFCs including current research on nanocrystalline thin film electrolyte and thin-film-based model electrodes. Calculations showing the geometric limits of μSOFCs and first results towards fabrication of μSOFCs are also discussed.

  16. Phase Transition Phenomena in Ultra-Thin Ge2Sb2Te5 Film

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ting; LIU Bo; SONG Zhi-Tang; LIU Wei-Li; FENG Song-Lin; CHEN Bomy


    @@ We observe reversible phase transition phenomena in proto-type chalcogenide random access memory (C-RAM)devices adopting ultra-thin (12nm) Ge2Sb3 Te5 thin film. In this kind of proto-type device, the ultra-thin amorphous Ge2Sb2 Te5 thin film undergoes a crystallization process when a voltage is applied. The polycrystalline Ge2Sb3 Te5 remain unchanged when the voltage is below 0.6 V. A higher power is needed if the transition from polycrystalline to amorphous is expected. The re-amorphization process can be realized by applying a voltage higher than 0.7 V. The threshold voltage Vth and threshold electric field Eth of the transition from the polycrystalline state to the amorphous state in this proto-type device are ~0.7 V and ~ 5 × 105 V/cm, respectively. The programming voltage is significantly reduced compared to the values of C-RAM devices adopting a 200-nm-thick Ge2Sb2 Te5 inset.

  17. Central action of peripherally applied botulinum toxin type A on pain and dural protein extravasation in rat model of trigeminal neuropathy.

    Directory of Open Access Journals (Sweden)

    Boris Filipović

    Full Text Available BACKGROUND: Infraorbital nerve constriction (IoNC is an experimental model of trigeminal neuropathy. We investigated if IoNC is accompanied by dural extravasation and if botulinum toxin type A (BoNT/A can reduce pain and dural extravasation in this model. METHODOLOGY/PRINCIPAL FINDINGS: Rats which developed mechanical allodynia 14 days after the IoNC were injected with BoNT/A (3.5 U/kg into vibrissal pad. Allodynia was tested by von Frey filaments and dural extravasation was measured as colorimetric absorbance of Evans blue-plasma protein complexes. Presence of dural extravasation was also examined in orofacial formalin-induced pain. Unilateral IoNC, as well as formalin injection, produced bilateral dural extravasation. Single unilateral BoNT/A injection bilaterally reduced IoNC induced dural extravasation, as well as allodynia (lasting more than 2 weeks. Similarly, BoNT/A reduced formalin-induced pain and dural extravasation. Effects of BoNT/A on pain and dural extravasation in IoNC model were dependent on axonal transport through sensory neurons, as evidenced by colchicine injections (5 mM, 2 µl into the trigeminal ganglion completely preventing BoNT/A effects. CONCLUSIONS/SIGNIFICANCE: Two different types of pain, IoNC and formalin, are accompanied by dural extravasation. The lasting effect of a unilateral injection of BoNT/A in experimental animals suggests that BoNT/A might have a long-term beneficial effect in craniofacial pain associated with dural neurogenic inflammation. Bilateral effects of BoNT/A and dependence on retrograde axonal transport suggest a central site of its action.

  18. Wettability behavior of water droplet on organic-polluted fused quartz surfaces of pillar-type nanostructures applying molecular dynamics simulation (United States)

    Chen, Jiaxuan; Chen, Wenyang; Xie, Yajing; Wang, Zhiguo; Qin, Jianbo


    Molecular dynamics (MD) is applied to research the wettability behaviors of different scale of water clusters absorbed on organic-polluted fused quartz (FQ) surface and different surface structures. The wettability of water clusters is studied under the effect of organic pollutant. With the combined influence of pillar height and interval, the stair-step Wenzel-Cassie transition critical line is obtained by analyzing stable state of water clusters on different surface structures. The results also show that when interval of pillars and the height of pillars keep constant respectively, the changing rules are exactly the opposite and these are termed as the "waterfall" rules. The substrate models of water clusters at Cassie-Baxter state which are at the vicinity of critical line are chosen to analyze the relationship of HI (refers to the pillar height/interval) ratio and scale of water cluster. The study has found that there is a critical changing threshold in the wettability changing process. When the HI ratio keeps constant, the wettability decreases first and then increase as the size of cluster increases; on the contrary, when the size of cluster keeps constant, the wettability decreases and then increase with the decrease of HI ratio, but when the size of water cluster is close to the threshold the HI ratio has little effect on the wettability.

  19. Thin-Film Ceramic Thermocouples Fabricated and Tested (United States)

    Wrbanek, John D.; Fralick, Gustave C.; Farmer, Serene C.; Sayir, Ali; Gregory, Otto J.; Blaha, Charles A.


    The Sensors and Electronics Technology Branch of the NASA Glenn Research Center is developing thin-film-based sensors for surface measurement in propulsion system research. Thin-film sensors do not require special machining of the components on which they are mounted, and they are considerably thinner than wire- or foil-based sensors. One type of sensor being advanced is the thin-film thermocouple, specifically for applications in high-temperature combustion environments. Ceramics are being demonstrated as having the potential to meet the demands of thin-film thermocouples in advanced aerospace environments. The maximum-use temperature of noble metal thin-film thermocouples, 1500 C (2700 F), may not be adequate for components used in the increasingly harsh conditions of advanced aircraft and next-generation launch vehicles. Ceramic-based thermocouples are known for their high stability and robustness at temperatures exceeding 1500 C, but are typically in the form of bulky rods or probes. As part of ASTP, Glenn's Sensors and Electronics Technology Branch is leading an in-house effort to apply ceramics as thin-film thermocouples for extremely high-temperature applications as part of ASTP. Since the purity of the ceramics is crucial for the stability of the thermocouples, Glenn's Ceramics Branch and Case Western Reserve University are developing high-purity ceramic sputtering targets for fabricating high-temperature sensors. Glenn's Microsystems Fabrication Laboratory, supported by the Akima Corporation, is using these targets to fabricate thermocouple samples for testing. The first of the materials used were chromium silicide (CrSi) and tantalum carbide (TaC). These refractory materials are expected to survive temperatures in excess of 1500 C. Preliminary results indicate that the thermoelectric voltage output of a thin-film CrSi versus TaC thermocouple is 15 times that of the standard type R (platinum-rhodium versus platinum) thermocouple, producing 20 mV with a 200

  20. Embedment of anodized p-type Cu₂O thin films with CuO nanowires for improvement in photoelectrochemical stability. (United States)

    Wang, Peng; Ng, Yun Hau; Amal, Rose


    A highly stable p-type cuprous oxide (Cu2O) photoelectrode has been fabricated by direct anodization of the Cu foil, followed by a thermal treatment to introduce a protective layer of copper oxide (CuO) nanowires penetrating the surface of the Cu2O layer. The anodized Cu2O served as the seeding sites for the growth of CuO nanowires. The embedment of CuO nanowires within the Cu2O matrix enhanced the adhesion of the nanowires onto the Cu substrate. In addition, the presence of CuO nanowires on the outer layer of the composite film, in turn stabilized the Cu2O layer by passivating the redox activities of Cu2O when exposed to the environment. This nanostructured p-type Cu2O photoelectrode generated 360 μA cm(-2) of photocathodic current density upon visible light illumination and managed to retain its photocathodic current density after being used and kept for one month. The improvement in photoelectrochemical (PEC) stability by introducing a passive layer of CuO nanowires provides useful insights into the development of a Cu2O photoelectrode, as its stability remained as the main challenge.

  1. Investigation of L-cystine assisted Cu3BiS 3 synthesis for energetically and environmentally improved integration as thin-film solar cell p-type semiconductor absorber (United States)

    Viezbicke, Brian D.

    Solar photovoltaic energy technology is increasingly implemented in response to continuously growing global energy needs. While legacy technology utilizing silicon has captured much of the market, thin-film solar modules are projected to rise particularly in the U.S. production sector. Current materials utilized in production and deployment encounter resource and environmental impact constraints. This research investigates the viably controllable synthesis of multi-crystalline copper bismuth sulfide for potential use as an absorber layer in thin-film solar cells and early investigation of thin-film growth parameters which may enable a cost-effective route to full scale production of epitaxial copper bismuth sulfide films. The first step of this investigation has entailed a novel route for the solvo-thermally grown Cu3BiS 3 films facilitated by L-cystine as a sulfur donating and complexing agent. In the characterization of the nanoparticulate product UV-VIS spectra were analyzed via the Tauc method of bandgap interpolation. The validity of the Tauc method in application to polycrystalline films has been investigated and proven to be robust for the material class. This justifies the bandgap assessment of the subject material and provides support for wider use of the method. With the synthesis method established, the reaction was transferred to a custom built continuous flow reactor to explore this process and help understand its capabilities and limits with respect to producing single layers for an eventual photovoltaic cell stack. Though the published work has established novel chemistry, the need to deposit and/or grow a functional p-type layer for further characterization and eventual device incorporation is key to the material evolution. First evidence of continuous flow micro-reactor deposition of Cu3BiS3 has been shown with an array of resulting microstructures. The grown microstructures are evaluated with relevance to prior synthesis laboratory procedure and

  2. Emissions and distribution of methyl bromide in field beds applied at two rates and covered with two types of plastic mulches. (United States)

    Ou, Li-Tse; Thomas, John E; Allen, L Hartwell; Vu, Joseph C; Dickson, Donald W


    A field experiment was conducted to compare two plastic mulches and two application rates on surface emissions and subsurface distribution of methyl bromide (MBr) in field beds in Florida. Within 30 minutes after injection of MBr to 30 cm depth, MBr had diffused upward to soil surface in all beds covered with polyethylene film (PE) or virtually impermeable film (VIF) and applied at a high rate (392 kg/ha) and a low rate (196 kg/ha). Due to the highly permeable nature of PE, within 30 minutes after injection, MBr volatilized from the bed surfaces of the two PE-covered beds into the atmosphere. The amount of volatilization was greater for the high rate-treatment bed. On the other hand, volatilization of MBr from the bed surfaces of the two VIF-covered beds were negligible. Volatilization losses occurred from the edges of all the beds covered with PE or VIF and were greater from the high rate-treatment beds. Initial vertical diffusion of MBr in the subsurface of the beds covered with PE or VIF was mainly upward, as large concentrations of MBr were detected from near bed surfaces to 20 cm depth in these beds 30 minutes after injection and little or no MBr was found at 40 cm depth. The two VIF-covered beds exhibited greater MBr concentrations and longer resident times in the root zone (0.5-40 cm depth) than corresponding PE-covered beds. Concentrations of MBr in the root zone of the high rate-treatment beds were 3.6-6.1 times larger than the low rate-treatment beds during the first days after application. In conclusion, VIF promoted retention of MBr in the root zone and, if volatilization loss from bed edges can be blocked, volatilization loss from VIF-covered beds should be negligible.

  3. A type-specific nested PCR assay established and applied for investigation of HBV genotype and subgenotype in Chinese patients with chronic HBV infection

    Directory of Open Access Journals (Sweden)

    Nie Jing-Jing


    Full Text Available Abstract Background Many studies have suggested that hepatitis B virus (HBV genotypes show not only geographical distribution and race specificity, but also are associated with disease progression and response to interferon treatment. The objective of this study was to develop a nested polymerase chain reaction (nPCR assay for genotypes A-D and subgenotypes B1, B2, C1 and C2 of hepatitis B virus (HBV and to investigate the distribution characteristics of HBV genotypes/subgenotype in China. Methods After redesigning the primers and optimizing the reaction conditions using common Taq polymerase, the sensitivity, specificity and reproducibility of the method were evaluated using plasmids and serum samples. In total, 642 serum samples from patients with chronic HBV infection were applied to investigate the distribution of HBV genotype and subgenotype in China. Results The genotype and subgenotype could be identified when the HBV DNA load of a sample was ≥102.3 IU/mL. For the 639 successfully genotyped samples, the sequencing results of 130 randomly selected samples (20.3%, 130/639 were consistent with those of the nPCR method. The present study showed that HBV genotype B (11.2%, 72/642, C (68.2%, 438/642 and D (7.2%, 46/642 were circulating in China, while genotype C was the dominant strain except for western region where genotype D was the prevalent strain. The main subgenotypes of genotypes B and C were B2 (87.5%, 63/72 and C2 (92.9%, 407/438, respectively. Conclusions The low-cost nPCR method would be a useful tool for clinical and epidemiological investigation in the regions where genotypes A-D are predominant.

  4. Mixing Rules Formulation for a Kinetic Model of the Langmuir-Hinshelwood Semipredictive Type Applied to the Heterogeneous Photocatalytic Degradation of Multicomponent Mixtures

    Directory of Open Access Journals (Sweden)

    John Wilman Rodriguez-Acosta


    Full Text Available Mixing rules coupled to a semipredictive kinetic model of the Langmuir-Hinshelwood type were proposed to determine the behavior of the heterogeneous solar photodegradation with TiO2-P25 of multicomponent mixtures at pilot scale. The kinetic expressions were expressed in terms of the effective concentration of total organic carbon (xTOC. An expression was obtained in a generalized form which is a function of the mixing rules as a product of a global contribution of the reaction rate constant k′ and a mixing function fC. Kinetic parameters of the model were obtained using the Nelder and Mead (N-M algorithm. The kinetic model was validated with experimental data obtained from the degradation of binary mixtures of chlorinated compounds (DCA: dichloroacetic acid and 4-CP: 4-chlorophenol at different initial global concentration, using a CPC reactor at pilot scale. A simplex-lattice {2,3} design experiment was adopted to perform the runs.

  5. Effect of oxygen and ozone on p-type doping of ultra-thin WSe2 and MoSe2 field effect transistors. (United States)

    Wang, Shunfeng; Zhao, Weijie; Giustiniano, Francesco; Eda, Goki


    We report on the p-type doping effect of oxygen and ozone molecules on mono- and few-layer WSe2 and MoSe2 field effect transistors. We show that adsorption of oxygen and ozone under ambient conditions results in subtantial doping and corresponding enhancement in the hole conductivity of the devices. Ozone-induced doping is found to be rapid and efficient, saturating within minutes of exposure whereas oxygen-induced doping occurs over a period of days to reach the equivalent level of doping. Our observations reveal that the water adlayer on the material surface plays a crucial role in solubilizing oxygen and ozone and in forming a redox couple with a large chemical potential.

  6. Thinning increases climatic resilience of red pine (United States)

    Magruder, Matthew; Chhin, Sophan; Palik, Brian; Bradford, John B.


    Forest management techniques such as intermediate stand-tending practices (e.g., thinning) can promote climatic resiliency in forest stands by moderating tree competition. Residual trees gain increased access to environmental resources (i.e., soil moisture, light), which in turn has the potential to buffer trees from stressful climatic conditions. The influences of climate (temperature and precipitation) and forest management (thinning method and intensity) on the productivity of red pine (Pinus resinosa Ait.) in Michigan were examined to assess whether repeated thinning treatments were able to increase climatic resiliency (i.e., maintaining productivity and reduced sensitivity to climatic stress). The cumulative productivity of each thinning treatment was determined, and it was found that thinning from below to a residual basal area of 14 m2·ha−1 produced the largest average tree size but also the second lowest overall biomass per acre. On the other hand, the uncut control and the thinning from above to a residual basal area of 28 m2·ha−1 produced the smallest average tree size but also the greatest overall biomass per acre. Dendrochronological methods were used to quantify sensitivity of annual radial growth to monthly and seasonal climatic factors for each thinning treatment type. Climatic sensitivity was influenced by thinning method (i.e., thinning from below decreased sensitivity to climatic stress more than thinning from above) and by thinning intensity (i.e., more intense thinning led to a lower climatic sensitivity). Overall, thinning from below to a residual basal area of 21 m2·ha−1 represented a potentially beneficial compromise to maximize tree size, biomass per acre, and reduced sensitivity to climatic stress, and, thus, the highest level of climatic resilience.

  7. Microscopic thin film optical anisotropy imaging at the solid-liquid interface (United States)

    Miranda, Adelaide; De Beule, Pieter A. A.


    Optical anisotropy of thin films has been widely investigated through ellipsometry, whereby typically an optical signal is averaged over a ˜1 cm2 elliptical area that extends with increasing angle-of-incidence (AOI). Here, we report on spectroscopic imaging ellipsometry at the solid-liquid interface applied to a supported lipid bilayer (SLB). We detail how a differential spectrally resolved ellipsometry measurement, between samples with and without optically anisotropic thin film on an absorbing substrate, can be applied to recover in and out of plane refractive indices of the thin film with known film thickness, hence determining the thin film optical anisotropy. We also present how optimal wavelength and AOI settings can be determined ensuring low parameter cross correlation between the refractive indices to be determined from a differential measurement in Δ ellipsometry angle. Furthermore, we detail a Monte Carlo type analysis that allows one to determine the minimal required optical ellipsometry resolution to recover a given thin film anisotropy. We conclude by presenting a new setup for a spectroscopic imaging ellipsometry based on fiber supercontinuum laser technology, multi-wavelength diode system, and an improved liquid cell design, delivering a 5 ×-10 × ellipsometric noise reduction over state-of-the-art. We attribute this improvement to increased ellipsometer illumination power and a reduced light path in liquid through the use of a water dipping objective.

  8. Preparation and electrochemical characterization of spinel type Fe-Co{sub 3}O{sub 4} thin film electrodes in alkaline medium

    Energy Technology Data Exchange (ETDEWEB)

    Laouini, E.; Hamdani, M.; Douch, J.; Berghoute, Y. [Laboratoire de Chimie Physique, Faculte des Sciences, Universite Ibn Zohr, B.P. 8106/S Cite Dakhla, Agadir (Morocco); Pereira, M.I.S.; Mendonca, M.H. [Departamento de Quimica e Bioquimica, Centro Ciencias Moleculares e Materiais, Faculdade de Ciencias da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa (Portugal); Singh, R.N. [Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005 (India)


    Spinel type Fe-Co{sub 3}O{sub 4} (0, 5 and 10% of Fe) adherent and stable films have been prepared on stainless steel supports using the thermal decomposition method at 400 C. All the oxides prepared by this method produced the pure spinel phase. The electrochemical characterization of the catalytic films towards O{sub 2}-evolution has been made using cyclic voltammetry and ac impedance techniques. The data show that the partial replacement of Co-ion by Fe-ion in the cobalt cobaltite Co{sub 3}O{sub 4} leads to electrodes with lower surface areas. On the other hand, an enhancement of the electrocatalytic activity, towards the oxygen evolution, is confirmed by the values calculated for the corrected Tafel slopes. Values ranging from 71 to 44 mV were obtained for the pure and iron containing oxides. The reaction order with respect to OH{sup -} concentration was found to be {proportional_to}1 on pure and {proportional_to}2 on the substituted oxides. (author)

  9. Radio polarization maps of shell-type SNRs I. Effects of a random magnetic field component, and thin-shell models

    CERN Document Server

    Bandiera, Rino


    The maps of intensity and polarization of the radio synchrotron emission from shell-type supernova remnants (SNRs) contain a considerable amount of information, although of not easy interpretation. With the aim of deriving constraints on the 3-D spatial distribution of the emissivity, as well as on the structure of both ordered and random magnetic fields (MFs), we present here a scheme to model maps of the emission and polarization in SNRs. We first generalize the classical treatment of the synchrotron emission to the case in which the MF is composed by an ordered MF plus an isotropic random component, with arbitrary relative strengths. In the case of a power-law particle energy distribution, we derive analytic formulae that formally resemble those for the classical case. We also treat the case of a shock compression of a fully random upstream field and we predict that the polarization fraction in this case should be higher than typically measured in SNRs. We implement the above treatment into a code, which s...

  10. Applied combustion

    Energy Technology Data Exchange (ETDEWEB)



    From the title, the reader is led to expect a broad practical treatise on combustion and combustion devices. Remarkably, for a book of modest dimension, the author is able to deliver. The text is organized into 12 Chapters, broadly treating three major areas: combustion fundamentals -- introduction (Ch. 1), thermodynamics (Ch. 2), fluid mechanics (Ch. 7), and kinetics (Ch. 8); fuels -- coal, municipal solid waste, and other solid fuels (Ch. 4), liquid (Ch. 5) and gaseous (Ch. 6) fuels; and combustion devices -- fuel cells (Ch. 3), boilers (Ch. 4), Otto (Ch. 10), diesel (Ch. 11), and Wankel (Ch. 10) engines and gas turbines (Ch. 12). Although each topic could warrant a complete text on its own, the author addresses each of these major themes with reasonable thoroughness. Also, the book is well documented with a bibliography, references, a good index, and many helpful tables and appendices. In short, Applied Combustion does admirably fulfill the author`s goal for a wide engineering science introduction to the general subject of combustion.

  11. Deposition of Na–N dual acceptor doped p-type ZnO thin films and fabrication of p-ZnO:(Na, N)/n-ZnO:Eu homojunction

    Energy Technology Data Exchange (ETDEWEB)

    Swapna, R., E-mail:; Santhosh Kumar, M.C., E-mail:


    Highlights: • Low resistive and stable p-type ZnO films are fabricated by dual acceptor-doping. • The fabricated p-ZnO:(Na, N)/n-ZnO:Eu homojunction is characterized and discussed. • The fabricated ZnO homojunction shows good rectifying characteristics. • The fabricated ZnO homojunction is suitable for optoelectronic devices. -- Abstract: Sodium and nitrogen dual acceptor doped p-type ZnO (ZnO:(Na, N)) films have been prepared by spray pyrolysis technique at a substrate temperature of 623 K. The ZnO:(Na, N) films are grown at a fixed N doping concentration of 2 at.% and varying the nominal Na doping concentration from 0 to 8 at.%. The XRD results show that all the ZnO:(Na, N) films exhibited (0 0 2) preferential orientation. The EDX and elemental mapping analysis shows the presence and distribution of Zn, O, Na and N in the deposited films. The Hall measurement results demonstrate that the Na–N dual acceptor doped ZnO films show excellent p-type conduction. The p-type ZnO:(Na, N) films with comparatively low resistivity of 5.60 × 10{sup −2} Ω cm and relatively high carrier concentration of 3.15 × 10{sup 18} cm{sup −3} are obtained at 6 at.%. ZnO based homojunction is fabricated by depositing n-type layer (Eu doped ZnO) grown over the p-type layer ZnO:(Na, N). The current–voltage (I–V) characteristics measured from the two-layer structure show typical rectifying characteristics of p-n junction with a low turn on voltage of about 1.69 V. The ZnO:(Na, N) films exhibit a high transmittance (about >90%) and the average reflectance is 8.9% in the visible region. PL measurement shows near-band-edge (NBE) emission and deep-level (DL) emission in the ZnO:(Na, N) thin films.

  12. Computation of Heterojunction Parameters at Low Temperatures in Heterojunctions Comprised of n-Type β-FeSi2 Thin Films and p-Type Si(111 Substrates Grown by Radio Frequency Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Phongsaphak Sittimart


    Full Text Available In this study, n-type β-FeSi2/p-type Si heterojunctions, inside which n-type β-FeSi2 films were epitaxially grown on p-type Si(111 substrates, were created using radio frequency magnetron sputtering at a substrate temperature of 560°C and Ar pressure of 2.66×10-1 Pa. The heterojunctions were measured for forward and reverse dark current density-voltage curves as a function of temperature ranging from 300 down to 20 K for computation of heterojunction parameters using the thermionic emission (TE theory and Cheung’s and Norde’s methods. Computation using the TE theory showed that the values of ideality factor (n were 1.71 at 300 K and 16.83 at 20 K, while the barrier height (ϕb values were 0.59 eV at 300 K and 0.06 eV at 20 K. Both of the n and ϕb values computed using the TE theory were in agreement with those computed using Cheung’s and Norde’s methods. The values of series resistance (Rs computed at 300 K and 20 K by Norde’s method were 10.93 Ω and 0.15 MΩ, respectively, which agreed with the Rs values found through computation by Cheung’s method. The dramatic increment of Rs value at low temperatures was likely attributable to the increment of n value at low temperatures.

  13. Memory and Electrical Properties of (100-Oriented AlN Thin Films Prepared by Radio Frequency Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Maw-Shung Lee


    Full Text Available The (100-oriented aluminum nitride (AlN thin films were well deposited onto p-type Si substrate by radio frequency (RF magnetron sputtering method. The optimal deposition parameters were the RF power of 350 W, chamber pressure of 9 mTorr, and nitrogen concentration of 50%. Regarding the physical properties, the microstructure of as-deposited (002- and (100-oriented AlN thin films were obtained and compared by XRD patterns and TEM images. For electrical properties analysis, we found that the memory windows of (100-oriented AlN thin films are better than those of (002-oriented thin films. Besides, the interface and interaction between the silicon and (100-oriented AlN thin films was serious important problem. Finally, the current transport models of the as-deposited and annealed (100-oriented AlN thin films were also discussed. From the results, we suggested and investigated that large memory window of the annealed (100-oriented AlN thin films was induced by many dipoles and large electric field applied.

  14. Thin solid-lubricant films in space (United States)

    Roberts, E. W.

    Low-friction films of thickness as low as 1 micron, created through sputter-deposition of low shear strength materials, are required in spacecraft applications requiring low power dissipation, such as cryogenic devices, and low torque noise, such as precision-pointing mechanisms. Due to their thinness, these coatings can be applied to high precision-machined tribological components without compromising their functional accuracy. Attention is here given to the cases of thin solid films for ball bearings, gears, and journal bearings.

  15. Thin film bismuth iron oxides useful for piezoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy


    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.

  16. The origin of the ∼274 cm{sup −1} additional Raman mode induced by the incorporation of N dopants and a feasible route to achieve p-type ZnO:N thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ping [Key Laborat of Optoelectronic Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331 (China); Kong, Chunyang, E-mail: [Key Laborat of Optoelectronic Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331 (China); Li, Wanjun, E-mail: [Key Laborat of Optoelectronic Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331 (China); College of Physics, Chongqing University, Chongqing 401331 (China); Qin, Guoping [Key Laborat of Optoelectronic Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331 (China); College of Physics, Chongqing University, Chongqing 401331 (China); Xu, Qing; Zhang, Hong [Key Laborat of Optoelectronic Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331 (China); Ruan, Haibo [Research Center for Materials Interdisciplinary Sciences, Chongqing University of Arts and Sciences, Chongqing 402160 (China); Cui, Yuting [Key Laborat of Optoelectronic Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331 (China); Fang, Liang [College of Physics, Chongqing University, Chongqing 401331 (China)


    Highlights: • ZnO:N films were grown on quartz substrates by RF magnetron sputtering technique. • ZnO:N thin films exhibit anomalous variation of ∼274 cm{sup −1} Raman mode. • The origin of the ∼274 cm{sup −1} mode induced by N dopants is Zn{sub i}-related defects. • Choosing appropriate N{sub 2} flow rate and annealing are the key to achieve p-type ZnO:N. - Abstract: Nitrogen doped ZnO films (ZnO:N) were deposited on quartz glass substrates by radio-frequency magnetron sputtering technique with various N{sub 2} flow rate mixed with Ar. Raman measurements indicate that the intensity of ∼274 cm{sup −1} mode of ZnO:N films exhibits an anomalous variation, which neither depends on N{sub 2} flow rate nor on N{sub O} acceptor content based on X-ray photoelectron spectroscopy (XPS) analysis. Combined with defect formation energy calculations, it is demonstrated that the ∼274 cm{sup −1} mode is attributed to Zn{sub i} defects which can be increased by the incorporation of N{sub O} acceptors, but suppressed by the presence of (N{sub 2}){sub O} double donors. XPS and optical absorption spectra suggest that ZnO:N film prepared under specific N{sub 2} flow rate (Ar:N{sub 2} = 3:1), has high concentration of acceptor N{sub O} with shallow states and the absence of shallow donor (N{sub 2}){sub O} defects, could be most likely to achieve p-type conductivity. But, at the same time, such specific ZnO:N film is the presence of shallow donor Zn{sub i} defects bonded with N{sub O} acceptors. Performing density functional calculations in conjunction with the climbing image nudged elastic band method shows that Zn{sub i} could be dissociated from Zn{sub i}–N{sub O} complexes by post-annealing treatment and N{sub O} acceptors would be activated to p-type ZnO:N. This is confirmed by our further Hall investigation, indicating that p-type ZnO:N can be achieved by choosing appropriate post-annealing treatment.

  17. Local Probing of Magnetoelectric Coupling and Magnetoelastic Control of Switching in BiFeO3-CoFe2O4 Thin-Film Nanocomposite (United States)


    also result in an increase in the polarization of rhombohedral BFO, as verified by experi- ment25 and by first principles calculations.26 Thus, the...The collection of PFM under an applied variable magnetic field within a polycrystalline perovskite -spinel BiFeO3-CoFe2O4 (BFO-CFO) 0-3 type thin...magnetic field within a polycrystalline perovskite -spinel BiFeO3-CoFe2O4 (BFO-CFO) 0-3 type thin-film nanocomposite enables quantitative and

  18. Micromotors using magnetostrictive thin films (United States)

    Claeyssen, Frank; Le Letty, Ronan; Barillot, Francois; Betz, Jochen; MacKay, Ken; Givord, Dominique; Bouchilloux, Philippe


    This study deals with a micromotor based on the use of magnetostrictive thin films. This motor belongs to the category of the Standing Wave Ultrasonic Motors. The active part of the motor is the rotor, which is a 100 micrometers thick ring vibrating in a flexural mode. Teeth (300 micrometers high) are placed on special positions of the rotor and produce an oblique motion which can induce the relative motion of any object in contact with them. The magnetic excitation field is radial and uses the transverse coupling of the 4 micrometers thick magnetostrictive film. The film, deposited by sputtering on the ring, consists of layers of different rare-earth/iron alloys and was developed during a European Brite-Euram project. The finite element technique was used in order to design a prototype of the motor and to optimize the active rotor and the energizer coil. The prototype we built delivered a speed of 30 turns per minute with a torque of 2 (mu) N.m (without prestress applied on the rotor). Our experimental results show that the performance of this motor could easily be increased by a factor of 5. The main advantage of this motor is the fact that it is remotely powered and controlled. The excitation coil, which provides both power and control, can be placed away from the active rotor. Moreover, the rotor is completely wireless and is not connected to its support or to any other part. It is interesting to note that it would not be possible to build this type of motor using piezoelectric technology. Medical applications of magnetostrictive micromotors could be found for internal microdistributors of medication (the coil staying outside the body). Other applications include remote control micropositioning, micropositioning of optical components, and for the actuation of systems such as valves, electrical switches, and relays.

  19. High-conductivity SiO2-matrix B-doped Si-NC thin films by following ion-beam treatment (United States)

    Huang, Junjun; Wang, Weiyan; Yang, Jie; Tan, Yongzhen; Chen, Wei; Ge, Tianyu; Zhang, Yajun; Gao, Min; Chen, Zhenming


    In this work, further ion-beam was performed on SiO2-matrix B-doped Si-NC (SBC) thin films in order to enhance conductivity. The effect of ionbeam type on the electrical properties of SBC thin films was investigated systematically. The results indicated that the conductivities of SBC thin films were significantly improved by both argon and hydrogen ion-beam treatments, and the higher the hydrogen ion ratio, the higher the conductivity of SBC thin films. The conductivity of SBC thin films was increased from 1.82 × 10-6 S/cm to 3.2 × 10-3 S/cm with following hydrogen-ion-beam treatment. The change in conductivity of SBC thin films was most possibly resultant from the ion-beam treatment facilitating the formation of higher superficial order and lower defects. An alternative method was proposed to prepare high-conductivity SBC thin films, which may be applied to other heterogeneous thin films.

  20. Transfinite thin plate spline interpolation

    CERN Document Server

    Bejancu, Aurelian


    Duchon's method of thin plate splines defines a polyharmonic interpolant to scattered data values as the minimizer of a certain integral functional. For transfinite interpolation, i.e. interpolation of continuous data prescribed on curves or hypersurfaces, Kounchev has developed the method of polysplines, which are piecewise polyharmonic functions of fixed smoothness across the given hypersurfaces and satisfy some boundary conditions. Recently, Bejancu has introduced boundary conditions of Beppo Levi type to construct a semi-cardinal model for polyspline interpolation to data on an infinite set of parallel hyperplanes. The present paper proves that, for periodic data on a finite set of parallel hyperplanes, the polyspline interpolant satisfying Beppo Levi boundary conditions is in fact a thin plate spline, i.e. it minimizes a Duchon type functional.

  1. The effects of external stimuli on molecular organization in organic thin films by infrared spectroscopy (United States)

    Hietpas, Geoffrey David

    The study of organic thin films has been an active field of research for nearly 100 years. Two general types of organic thin film systems have received considerable attention. The first of these is the field of self-assembled monolayers (SAM's), where a reactive adsorbate is spontaneously organized at a substrate through ionic or covalent bonding. The second area is comprised of thin films of polymeric materials which may also be ordered and chemically attached like SAM's, but also includes disordered systems pinned by random attachment, and purely physisorbed films held by Van der Waals forces. The incentive for research on these systems has focused on potential improvements in applications such as biocompatable implants, lithographic masks or resists, chromatographic coatings, biosensors, and providing corrosion protection for the underlying substrate. For virtually any application, an organic thin film must remain stable such that its structure is either unaltered or reversibly changed in a manner that does not affect performance. In this thesis, the technique of infrared spectroscopy is applied to the study of thin film stability in response to external stimuli. Both polymer thin films (thickness < 0.5 mum) and SAM systems are studied, and chemical as well as mechanical methods of structural perturbation are explored. Taken together, the studies in this thesis demonstrate that organic thin films are fragile systems, often more susceptible to external perturbation than the bulk material. For any thin film system the substrate/film and film/air interfaces as well as the extremely small quantities of film material, all affect the adsorbate material in a manner not present to a significant extent in the bulk state. All of these variables are also potential sources of failure in the film. Therefore, any organic thin film system is sensitive to its immediate surroundings, and an externally applied chemical and mechanical stimuli may 'attack' this structure on several

  2. Applied longitudinal analysis

    CERN Document Server

    Fitzmaurice, Garrett M; Ware, James H


    Praise for the First Edition "". . . [this book] should be on the shelf of everyone interested in . . . longitudinal data analysis.""-Journal of the American Statistical Association   Features newly developed topics and applications of the analysis of longitudinal data Applied Longitudinal Analysis, Second Edition presents modern methods for analyzing data from longitudinal studies and now features the latest state-of-the-art techniques. The book emphasizes practical, rather than theoretical, aspects of methods for the analysis of diverse types of lo

  3. Thin film processes II

    CERN Document Server

    Kern, Werner


    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques.Key Features* Provides an all-new sequel to the 1978 classic, Thin Film Processes* Introduces new topics, and sever

  4. Pyrolyzed thin film carbon (United States)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)


    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.


    Institute of Scientific and Technical Information of China (English)

    何夕平; 王立虎; 刘必武


    Since March 15, 2011, the burning performance requirements of civil construction exterior insulation materials should be upto A-level. As a non-combustible inorganic material, the mineral wool panels with small thermal conductivity, high thermal insulation properties, good permeability, etc. are widely used in exterior insulation. However, because of high density, easy to deform and warp, mineral wool panels are mainly used for curtain walls, the thin plaster system applied in super high-rise building is extremely rare. Combining with project examples, based on theoretical calculations, it is described wind pressure, shear, the number of anchor bolts, and other problems when applying the thin plaster miner wool panels in super high-rise building exterior insulation. Then it is analysed the system's technical difficulties, proposed solutions, testing and project acceptance by entity meet the design requirements, which provides a reference for similar projects.%自2011年3月15日起,民用建筑外保温材料燃烧性能要求为A级。岩棉板作为无机不燃材料,具有导热系数小、保温性能高、透气性好等优点被广泛应用于外墙外保温建筑工程中。但由于岩棉板密度大,易变形和翘曲,主要在幕墙内使用,其薄抹灰系统在超高层建筑中应用极为少见。结合工程实例,阐述岩棉板薄抹灰系统在超高层建筑外保温中应用所遇到的抗风压、抗剪切、锚栓数量等问题,在理论计算的基础上,分析本系统的技术难点,提出解决办法,通过实体检测和工程验收符合设计要求,为类似工程提供借鉴。

  6. Aspects of Characterisation of Thin Coating Adhesion at the Nano-Scale

    Institute of Scientific and Technical Information of China (English)

    Jisheng E; Aiyang Zhang; Ben D. Beake


    In response to current development of materials in nano-science,characterisation of thin coating adhesion on a nano-scale becomes one of the most important research areas,as new coatings get ever thinner and more technologically advanced. With a review of technology and mechanisms of evaluating the adhesion failure of coatings,three techniques,nano impact ,nano-scratch and nano-indentation techniques ,for charactering the adhesion of thin coatings on a nano scale are described.Results of charactering the adhesion faliure of thin coatings using three different techniques indicate that the nano-scratch and nano-indentation techniques are very useful tools ,particularly in charactering the performance of thin coatings under nano-abra sive wear conditions. However,results from these types of tests cannot be easily applied to predict the performance of coatings whose are subject to nano-erosive wear,cyclic nano-fatigue or multiple nano-impacts during service. Instead,results of the new dynamic testing technique ,impact technique ,are found to correlate well with the coating performance under fatigue conditions,precisely because the impact test more closely simulates the actual contact (adhesion failure and wear)conditions of thin coatings occurring in nano-erosive/nano-fatigue/nano-impact wear.

  7. Thin-film solid-state proton NMR measurements using a synthetic mica substrate: Polymer blends (United States)

    VanderHart, David L.; Prabhu, Vivek M.; Lavery, Kristopher A.; Dennis, Cindi L.; Rao, Ashwin B.; Lin, Eric K.


    Solid-state proton nuclear magnetic resonance (NMR) measurements are performed successfully on polymer blend thin films through the use of synthetic mica as a substrate. When used as a substrate, synthetic fluorophlogopite mica with its proton-free, diamagnetic character, allows for adequate measurement sensitivity while minimally perturbing the proton thin-film spectra, especially relative to more commonly available natural micas. Specifically, we use multiple-pulse techniques in the presence of magic-angle spinning to measure the degree of mixing in two different polymer blend thin films, polystyrene/poly(xylylene ether) and poly(1-methyladamantyl methacrylate) (PMAdMA)/triphenylsulfonium perfluorobutanesulfonate (TPS-PFBS), spin-coated onto mica substrates. Our earlier studies had focused on bulk systems where NMR signals are stronger, but may not be representative of thin films of the same systems that are relevant to many applications such as photoresist formulations in the electronics industry. The superiority of synthetic over natural paramagnetic mica is demonstrated by the maintenance of resolution and spinning sideband intensities (relative to bulk samples) for the synthetic mica samples. In contrast, degraded resolution and large spinning sidebands are shown to typify spectra of the natural mica samples. This approach can be applied to many other proton measurements of solid thin films, thereby greatly extending the types of systems to be investigated. Magnetic susceptibility measurements are also reported for all micas used.

  8. Thermal behavior, structure formation and optical characteristics of nanostructured basic fuchsine thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zeyada, H.M. [Department of Physics, Faculty of Science at New Damietta, Damietta University, 34517, New Damietta (Egypt); Makhlouf, M.M., E-mail: [Department of Physics, Faculty of Science at New Damietta, Damietta University, 34517, New Damietta (Egypt); Department of Physics, Faculty of Applied Medical Sciences at Turabah Branch, Taif University, 21995 (Saudi Arabia); Department of Physics, Damietta Cancer Institute, Damietta (Egypt); Ismail, M.I.M.; Salama, A.A. [Department of Physics, Faculty of Science, Port Said University, Port Said (Egypt)


    Thin films of basic fuchsine, BF, are prepared by thermal evaporation technique. The data of thermal gravimetric analysis, TGA, showed that BF has a thermal stability up to the temperature of 265 °C. The structural characteristics of BF thin films are investigated by using X-ray diffraction, and atomic force microscope techniques. BF is polycrystalline in powder form; it becomes nanocrystallites in thin film condition. Annealing temperatures decreased crystallites size and influenced optical constants of BF films. Optical constants of BF films were estimated by using spectrophotometer measurements of transmittance and reflectance in the spectral range from 190 to 2500 nm. The dependence of absorption coefficient on the photon energy and annealing temperatures was determined and the analysis of the results showed that the optical transition in BF films is indirect allowed one. The onset and fundamental energy gap of BF thin films are 1.91 and 3.72 eV, respectively and they decrease by annealing temperatures. The optical dielectric constants and dispersion parameters of BF thin film are calculated and showed remarkable dependence on photon energy and annealing temperatures. - Graphical abstract: Display Omitted - Highlights: • Polycrystalline BF powder becomes nanocrystallites film upon thermal deposition. • BF has thermal stability up to 265 °C. • BF can be applied as optical filter material. • The type of electron transition is indirect allowed with E{sub g} of 1.91 eV. • Annealing temperatures influenced absorption and dispersion parameters of BF films.

  9. Ultimately Thin Metasurface Wave Plates

    CERN Document Server

    Keene, David; Durach, Maxim


    Optical properties of a metasurface which can be considered a monolayer of two classical uniaxial metamaterials, parallel-plate and nanorod arrays, are investigated. It is shown that such metasurface acts as an ultimately thin sub-50 nm wave plate. This is achieved via an interplay of epsilon-near-zero and epsilon-near-pole behavior along different axes in the plane of the metasurface allowing for extremely rapid phase difference accumulation in very thin metasurface layers. These effects are shown to not be disrupted by non-locality and can be applied to the design of ultrathin wave plates, Pancharatnam-Berry phase optical elements and plasmon-carrying optical torque wrench devices.

  10. Transformational Acoustics Applied to Scattering from a Thin Elastic Shell (United States)


    Equations (3.9) and (3.10), we derive: 0 = ∫∫ ∂B0 N̂dS = ∫∫ ∂B n̂·(J−1F)ds (3.11) Employing again the Gauss Theorem: 0 = ∫∫ ∂B n̂·(J−1F)ds = ∫∫∫ B ∇x·(J−1F...Moreover, we employ the definition of the stiffness matrix stated in [8] as the canonical expres- sion for a PM material: C = KQ⊗Q as a 4th order tensor...QT ) = C11 + C22 + C33. Inserting the canonical expression Equation (3.40) into the stress strain relationship Equation (3.24) where the stress are

  11. Plasma monitoring and PECVD process control in thin film silicon-based solar cell manufacturing

    Directory of Open Access Journals (Sweden)

    Gabriel Onno


    Full Text Available A key process in thin film silicon-based solar cell manufacturing is plasma enhanced chemical vapor deposition (PECVD of the active layers. The deposition process can be monitored in situ by plasma diagnostics. Three types of complementary diagnostics, namely optical emission spectroscopy, mass spectrometry and non-linear extended electron dynamics are applied to an industrial-type PECVD reactor. We investigated the influence of substrate and chamber wall temperature and chamber history on the PECVD process. The impact of chamber wall conditioning on the solar cell performance is demonstrated.

  12. Numerical analysis of residual stresses in preforms of stress applying part for PANDA-type polarization maintaining optical fibers in view of technological imperfections of the doped zone geometry (United States)

    Trufanov, Aleksandr N.; Trufanov, Nikolay A.; Semenov, Nikita V.


    The experimental data analysis of the stress applying rod section geometry for the PANDA-type polarization maintaining optical fiber has been performed. The dependencies of the change in the radial dimensions of the preform and the doping boundary on the angular coordinate have been obtained. The original algorithm of experimental data statistic analysis, which enables determination of the specimens' characteristic form of section, has been described. The influence of actual doped zone geometry on the residual stress fields formed during the stress rod preform fabrication has been investigated. It has been established that the deviation of the boundary between pure silica and the doped zone from the circular shape results in dissymmetry and local concentrations of the residual stress fields along the section, which can cause preforms destruction at high degrees of doping. The observed geometry deviations of up to 10% lead to the increase of the maximum stress intensity value by over 20%.

  13. Manipulating Josephson junctions in thin-films by nearby vortices

    Energy Technology Data Exchange (ETDEWEB)

    Kogan, V G; Mints, R G


    It is shown that a vortex trapped in one of the banks of a planar edge-type Josephson junction in a narrow thin-film superconducting strip can change drastically the dependence of the junction critical current on the applied field, I-c(H). When the vortex is placed at certain discrete positions in the strip middle, the pattern I-c(H) has zero at H = 0 instead of the traditional maximum of '0-type' junctions. The number of these positions is equal to the number of vortices trapped at the same location. When the junction-vortex separation exceeds similar to W, the strip width, I-c(H) is no longer sensitive to the vortex presence. The same is true for any separation if the vortex approaches the strip edges. (C) 2014 Elsevier B.V. All rights reserved.

  14. Near-field optical thin microcavity theory (United States)

    Wu, Jiu Hui; Hou, Jiejie


    The thin microcavity theory for near-field optics is proposed in this study. By applying the power flow theorem and the variable theorem,the bi-harmonic differential governing equation for electromagnetic field of a three-dimensional thin microcavity is derived for the first time. Then by using the Hankel transform, this governing equation is solved exactly and all the electromagnetic components inside and outside the microcavity can be obtained accurately. According to the above theory, the near-field optical diffraction from a subwavelength aperture embedded in a thin conducting film is investigated, and numerical computations are performed to illustrate the edge effect by an enhancement factor of 1.8 and the depolarization phenomenon of the near-field transmission in terms of the distance from the film surface. This thin microcavity theory is verified by the good agreement between our results and those in the previous literatures. The thin microcavity theory presented in the study should be useful in the possible applications of the thin microcavities in near-field optics and thin-film optics.

  15. Thinning in artificially regenerated young beech stands

    Directory of Open Access Journals (Sweden)

    Novák Jiří


    Full Text Available Although beech stands are usually regenerated naturally, an area of up to 5,000 ha year−1 is artificially regenerated by beech in the Czech Republic annually. Unfortunately, these stands often showed insufficient stand density and, consequently, lower quality of stems. Therefore, thinning methods developed for naturally regenerated beech stands are applicable with difficulties. The paper evaluates the data from two thinning experiments established in young artificially regenerated beech stands located in different growing conditions. In both experiments, thinning resulted in the lower amount of salvage cut in following years. Positive effect of thinning on periodic stand basal area increment and on periodic diameter increment of dominant trees was found in the beech stand located at middle elevations. On the other hand, thinning effects in mountain conditions were negligible. Thinning focusing on future stand quality cannot be commonly applied in artificially regenerated beech stands because of their worse initial quality and lower density. However, these stands show good growth and response to thinning, hence their management can be focused on maximising beech wood production.

  16. Paramedian forehead flap thinning using a flexible razor blade. (United States)

    Justiniano, Hilda; Edwards, Julia; Eisen, Daniel B


    Paramedian forehead flaps are sometimes required to resurface large or deep nasal defects. The flap often needs to be thinned to match the contour of the surrounding skin at the recipient site. We describe a technique to thin the distal potion of the paramedian forehead flap using a flexible razor blade, the Dermablade. Once familiar with it, this same technique may be applied to thin other interpolation flaps.

  17. Analysis and evaluation for practical application of photovoltaic power generation system. Research and development of elemental technologies for thin-type solar cells; Taiyoko hatsuden system jitsuyoka no tame no kaiseki hyoka. Usugata takessho taiyo denchi jitsuyoka no tame no kaiseki hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Sekikawa, T.; Shimokawa, R.; Yui, N.; Takato, H.; Takahashi, T.; Ishii, K.; Suzuki, E.; Nagai, K.; Kawanami, H.; Tanimoto, J.; Sakuta, H.; Iwata, Y.; Saito, N.; Koyama, K.; Sawada, S. [Electrotechnical Laboratory, Tsukuba (Japan)


    Described herein are the results of the FY1994 research program for analysis and evaluation for thin substrate polycrystalline solar cells. In order to analyze the structures of the grain boundaries in and interfaces with the cell substrate, and their effects on electrical activity, the photoluminescence (PL) measurement which enables spectroscopic analysis is applied to electromagnetically cast Si crystals. There are good correlations among PL luminous intensity, MBIC output and dislocation density for the grain boundary which contains many strains and serves as the dislocation source, because carriers in such a grain boundary easily disappear to reduce its luminous intensity at the band ends. Concrete scenarios for realizing thin-film silicon solar cells of high efficiency are presented, based on the analysis of the light-contained thin-film silicon solar cells of high output current, made in the previous year on a trial basis. An alumina substrate of high reflectivity is produced by the experiments of combining various devices. It is expected to realize high output current for the thin-film solar cells. 3 figs.

  18. Delamination of Compressed Thin Layers at Corners

    DEFF Research Database (Denmark)

    Sørensen, Kim Dalsten; Jensen, Henrik Myhre; Clausen, Johan


    An analysis of delamination for a thin elastic layer under compression, attached to a substrate at a corner is carried out. The analysis is performed by combining results from interface fracture mechanics and the theory of thin shells. In contrast with earlier results for delamination on a flat s...... results for the fracture mechanical properties have been obtained, and these are applied in a study of the effect of contacting crack faces. Special attention has been given to analyse conditions under which steady state propagation of buckling driven delamination takes place.......An analysis of delamination for a thin elastic layer under compression, attached to a substrate at a corner is carried out. The analysis is performed by combining results from interface fracture mechanics and the theory of thin shells. In contrast with earlier results for delamination on a flat...

  19. Design on Static VAR Generator of Beam Type Water Pump Applied to Coalbed Methane Mining%煤层气开采用游梁式抽水机静止无功发生器设计

    Institute of Scientific and Technical Information of China (English)

    白利军; 王振翀; 庄园; 王聪


    According to the power supply quality problems caused by the low power factor and high harmonic content of power distribution network for the beam type water pump applied to the coalbed methane mining area,a study on three level static VAR compensation technol-ogy was conducted.With an analysis on the causes of VAR and harmonics occurred in the power distribution network,based on diode-clamped three-level inverter,a topological structure of the static VAR generator and the voltage and current double-loop control tactics were designed and the three-level space vector pulse width modulation (SVPWM)tactics were simplified.Meanwhile,test prototype was built and applied to a production site of Lanyan Coal Bed Methane Company,Shanxi Jincheng Anthracite Mining Group.The production practice results showed that three level static VAR generator designed could effectively improve the power factor of power distribution net-work for beam type water pump applied to the coalbed methane mining and could effectively reduce the current harmonic content of the power distribution network,which could improve the power supply quality of the power distribution network.%针对应用于煤层气开采领域的游梁式抽水机配电网功率因数偏低且谐波含量较大导致的供电质量问题,进行了三电平静止无功补偿技术的研究。在分析了配电网无功、谐波产生原因的基础上,设计了基于二极管箝位型三电平逆变器的静止无功发生器拓扑结构和电压电流双闭环控制策略,简化了三电平空间矢量脉宽调制( SVPWM)策略,同时搭建了试验样机并应用于山西晋煤集团蓝焰煤层气公司生产现场。实践结果表明,电网平均功率因素提高到0.99,所设计的三电平静止无功发生器可有效提高游梁式抽水机配电网功率因数,同时有效降低配电网电流谐波含量,从而提高了配电网的供电质量。

  20. Teaching system for training material forming and engineering applied-type talents%材料成型及控制工程专业工程应用型实践教学体系构建

    Institute of Scientific and Technical Information of China (English)



    对材料成型及控制工程专业原有实践教学体系所存在的问题进行分析,在开展专业社会调查,掌握学科发展趋势基础上,剖析了该专业应用型人才工程应用能力结构以及素质和精神。以构建新体系为主线优化实践教学体系,建立了工程应用型实践教学体系。%The paper analyzes the problems of the origi- nal practice teaching system for the material forming and control engineering professionals. And the ability structure, quality and spirit of engineering application are dissected for the engineering application type tal- ents based on carrying out professional social investiga- tions and disciplinary trends. The original practice teaching system is optimized under the main line of building a new one. Finally, the practice teaching sys- tem of engineering applied type is established.

  1. 几种可应用于电动助力转向系统的应变式扭矩传感器%Some Strain Type Torque Sensors That Can be Applied to Electric Power Steering Systems

    Institute of Scientific and Technical Information of China (English)



    A torque sensor is a key component of an auto electric power Steering system (EPS) , and its output characteristics has a direct effect on the accuracy and stability of EPS output. The application principle, characteristics and use scope of sev-eral typical kinds of strain type torque sensors are introduced. Coupled with the research situation at home and abroad, the development trend of strain type torque sensors applied to EPS system is induced.%扭矩传感器是汽车电动助力转向系统(Electric Power Steering,EPS)的关键部件之一,其输出特性直接影响EPS的输出准确性和稳定性。介绍了几种典型应变式扭矩传感器的应用原理、特点和使用范围,结合国内外的研究概况,归纳出应用于EPS系统应变式扭矩传感器的发展趋势。

  2. 中医传统功法应用于2型糖尿病患者的研究进展%Research progress of traditional Chinese exercises applying to the patients with type 2 diabetes

    Institute of Scientific and Technical Information of China (English)

    沈意娜; 刘宇; 何巧


    本文对中医传统功法在2型糖尿病患者中的研究进展进行了综述。中医传统功法如八段锦、太极拳、五禽戏对2型糖尿病患者在血糖和糖化血红蛋白的控制方面都有积极的作用,其中对八段锦的研究最多,此功法还对2型糖尿病患者情绪、睡眠等方面有积极影响,但这些功法作用机制方面的研究少见。易筋经、六字诀应用于2型糖尿病患者的研究较少,可能与其功法的流传与普及度较低有关。由于中医传统功法种类繁多,其运动形式多种多样,因此需要制定运动指南,在运动强度、频率、时间等方面对患者进行指导。%The paper reviewed the research progress of traditional Chinese exercises applying in the patients with type 2 diabetes.Traditional Chinese exercises such as Baduanjin , Tai Chi, Wuqinxi have positive effect on controlling blood glucose and glycosylated hemoglobin of diabetic patients , and most studies focused on Baduanjin, which also had positive effect on mood , sleep and other aspects of type 2 diabetes.However, the studies on mechanism of these exercises were few .The research on Yijinjing and Liuzijue applied in the patients with type 2 diabetes were few , and it may be related to their unpopularity .Due to the wide range of traditional Chinese exercises and sports are in many forms , it is necessary to make a guideline to guide the patients in exercise intensity , frequency , time and other aspects .

  3. Applying an electron counting rule to screen prospective thermoelectric alloys: The thermoelectric properties of YCrB{sub 4} and Er{sub 3}CrB{sub 7}-type phases

    Energy Technology Data Exchange (ETDEWEB)

    Simonson, J.W., E-mail: jws9n@virginia.ed [Department of Physics, University of Virginia, 382 McCormick Rd., Charlottesville, VA 22904-4714 (United States); Poon, S.J. [Department of Physics, University of Virginia, 382 McCormick Rd., Charlottesville, VA 22904-4714 (United States)


    An electron counting rule, which was recently expanded to study molecular organometallics, boranes, and metallocenes, is utilized herein to predict the formation of a semiconducting gap or pseudo-gap in the density of states of deltahedral crystalline solids at or near the Fermi energy. It is suggested that this rule may be exploited to screen intermetallic compounds for prospective thermoelectric materials. The rule was applied to several structure types of known deltahedral boride and borocarbide compounds, and its predictions were compared to those of first principles electronic structure calculations when such were available in the literature or to published reports of transport properties. In addition, the rule has been used to predict the properties of several materials for which the electronic structure and properties have not hitherto been reported. In accordance with these predictions, layered ternary boride intermetallic compounds with structure types YCrB{sub 4} and Er{sub 3}CrB{sub 7} were synthesized, and the electrical resistivity and Seebeck coefficients of these alloys were measured from room temperature to 1100 K. Alloys of composition RMB{sub 4} (R = Y, Gd, Ho; M = Cr, Mo, W) were found to be n-type semiconductors and to exhibit thermopower up to {approx}70-115 {mu}V/K; the band gap was estimated to range from 0.17 to 0.28 eV, depending on composition. Undoped YCrB{sub 4} was measured to have a maximum power factor of 6.0 {mu}W/cm K{sup 2} at 500 K and Fe-doped YMoB{sub 4} of 2.4 {mu}W/cm K{sup 2} near 1000 K.

  4. Thin films of soft matter

    CERN Document Server

    Kalliadasis, Serafim


    A detailed overview and comprehensive analysis of the main theoretical and experimental advances on free surface thin film and jet flows of soft matter is given. At the theoretical front the book outlines the basic equations and boundary conditions and the derivation of low-dimensional models for the evolution of the free surface. Such models include long-wave expansions and equations of the boundary layer type and are analyzed via linear stability analysis, weakly nonlinear theories and strongly nonlinear analysis including construction of stationary periodic and solitary wave and similarity solutions. At the experimental front a variety of very recent experimental developments is outlined and the link between theory and experiments is illustrated. Such experiments include spreading drops and bubbles, imbibitions, singularity formation at interfaces and experimental characterization of thin films using atomic force microscopy, ellipsometry and contact angle measurements and analysis of patterns using Minkows...

  5. Simple model on collisionless thin-shell instability growth

    CERN Document Server

    Doria, Domenico; Dieckmann, Mark E


    The manuscript discusses a simple model on the Thin Shell Instability (TSI) growth phenomenon at early stage, by only imposing the fulfillment of conservation laws; and in particular just applying the laws of mass and linear momentum conservation, without taking into account the energy partitioning inside the thin shell.

  6. Low Temperature, High Energy Density Micro Thin Film Solid Oxide Fuel Cell Project (United States)

    National Aeronautics and Space Administration — A new type of solid oxide fuel cell based on thin film technology and ultra-thin electrolyte is being proposed to develop to realize major reductions in fuel cell...

  7. Study of frame type thin-film inductor based on closed magnetic circuit%基于闭合磁路的框式薄膜电感的研究

    Institute of Scientific and Technical Information of China (English)

    陈赵豪; 谢致薇; 杨元政; 何玉定; 陈先朝


    Three kinds of frame type thin film inductors were prepared by magnetron sputtering process. The special magnetic core inductor and the whole magnetic film inductor were designed and fabricated based on closed magnetic circuit, and the sandwich inductor was characteristic of the currently popular structure. The inductors were consisted of the lower magnetic core layer, the lower insulating layer (ingredients polyvinylidene chloride, thickness of 40μm), the coil, the magnetic film in the coil center, the upper insulating layer and the upper magnetic core layer, with different magnetic core structures. The equivalent inductance, stray capacitance, and loss factor of three kinds of inductor in 1–3 MHz frequency were compared. The results show that the special magnetic core inductor has a higher equivalent inductance, lower stray capacitance and higher power consumption than those of the other inductors.%通过磁控溅射工艺制备出三种框式薄膜电感,其中特殊磁芯电感、全磁膜电感为设计制作的具有闭合磁性回路的特殊薄膜电感,而三文治结构电感是目前流行的薄膜电感,这些电感均由下层磁芯层、下层绝缘层(聚偏二氯乙烯,厚度约为40μm)、线圈和线圈中心的磁膜、上层绝缘层和上层磁芯层组成,其差别在于磁芯结构不同。在1~3 MHz频率范围内,比较了三种电感的等效电感、寄生电容和损耗因子。结果表明:与三文治结构电感和全磁膜电感相比,特殊磁芯电感有较高的等效电感量和较小的寄生电容,但损耗较后两者高。

  8. Dawson型多金属氧酸盐-双氢氧化物超薄膜的合成%Synthesis of Layered Double Hydroxides Ultra Thin Films Functionalized with Dawson-Type Polyoxometalate

    Institute of Scientific and Technical Information of China (English)

    李丹峰; 王金萍


    通过层接层方法制备了基于剥离的锌钛双氢氧化物单层和典型的Dawson型多金属氧酸盐阴离子α-P2 W18 O6-62(P2W18)间作用的新型超薄膜.采用UV/DRS、XRD、FT-IR、ICP-AES和SEM方法对样品的结构和形貌进行了表征.结果表明,P2W18的结构在超薄膜中未发生改变,超薄膜的厚度在纳米范围,表面形貌完整有序均匀.以制备的超薄膜为光催化剂测试了对偶氮类染料刚果红(CR)的可见光催化降解活性.超薄膜表现出比纯Dawson型多金属氧酸盐阴离子高得多的催化活性,主要归因于剥离的锌钛双氢氧化物单层和金属氧酸盐阴离子的强化学作用对其可见光光响应能力的提高.%The novel ordered ultra thin films(UTFs)based on the hybrid assembly of exfoliated Zn-Ti layered double hydroxide(LDH)monolayer and typical Dawson-type polyoxometalate(POM)anionsα-P2 W18 O6-62(P2W18)were pre-pared by utilizing the layer by layer(LBL)technique. The UTFs were characterized by UV diffuse reflectance spec-tra(UV/DRS),X-ray diffraction(XRD),Fourier transform infrared spectra(FT-IR),inductively coupled plasma atomic emission spectrometry(ICP-AES),and scanning electron microscopy(SEM). The results indicate that the Dawson structures remained intact in the hybrid compositions,the thickness of the UTFs was within nano range, and the morphology was continuous and uniform. The visible light photocatalytic activitiesof the UTFs were tested in the degradation of aqueous azo dye Congo red(CR). The UTFs showed much higher photocatalytic activity than pure P2W18,which was mainly attributed to the improved response ability of P2W18to the visible light caused by the inter-action between exfoliated Zn-Ti-LDH monolayer and P2W18.

  9. Thermal Performance of Thin Type Radiant Floor Heating Combined with Fan-coil Heating%轻薄水地暖与分机盘管联合供暖热工性能研究

    Institute of Scientific and Technical Information of China (English)

    陈英杰; 李维; 陈立楠; 罗汉


    An experimental room was setted up for the heating system as research object, the heat source is air-source heat pump, the extreme is thin type radiant floor heating system combined with fan-coil heating system. The floor heating temperature and thermal performance under stable conditions are researched. The electricity consumption of fan-coil heating, radiant floor heating and radiant floor heating with fan-coil were analyzed through the data recorded by the meter. The value of the COP under three ways were compared after the calculation. Results indicate the indoor temperature response speed of the combined heating system is fast. Within the scope of the indoor temperature requirements, the average floor surface temperature is appropriate with less electricity consumption, the combined heating system is more energy-saving and more comfortable.%以空气源热泵为热源、风机盘管与地板辐射为末端的供暖系统作为研究对象,搭建了实验房间,对轻薄水地暖与风机盘管在供暖系统中的升温和稳定工况下的热工性能进行了实验研究,通过电表记录的数据比较了单开风盘连续运行、单开地板供暖连续运行、同时地板与风机盘管联合供暖各自的耗电量,通过计算比较了3种方式下的COP值,得出地板辐射与风机盘管联合供暖的室内温度响应速度快,在室内温度要求范围内,地板表面平均温度适宜、耗电量少,地板辐射与风机盘管联合供暖方式更节能、更舒适。

  10. Thin shells joining local cosmic string geometries

    Energy Technology Data Exchange (ETDEWEB)

    Eiroa, Ernesto F. [Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Rubin de Celis, Emilio; Simeone, Claudio [Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Ciudad Universitaria Pabellon I, IFIBA-CONICET, Buenos Aires (Argentina)


    In this article we present a theoretical construction of spacetimes with a thin shell that joins two different local cosmic string geometries. We study two types of global manifolds, one representing spacetimes with a thin shell surrounding a cosmic string or an empty region with Minkowski metric, and the other corresponding to wormholes which are not symmetric across the throat located at the shell. We analyze the stability of the static configurations under perturbations preserving the cylindrical symmetry. For both types of geometries we find that the static configurations can be stable for suitable values of the parameters. (orig.)

  11. Residual stresses of thin, short rectangular plates (United States)

    Andonian, A. T.; Danyluk, S.


    The analysis of the residual stresses in thin, short rectangular plates is presented. The analysis is used in conjunction with a shadow moire interferometry technique by which residual stresses are obtained over a large spatial area from a strain measurement. The technique and analysis are applied to a residual stress measurement of polycrystalline silicon sheet grown by the edge-defined film growth technique.

  12. Nonsymmetric Dynamical Thin-Shell Wormhole

    CERN Document Server

    Svitek, O


    The thin-shell wormhole created using the Darmois--Israel formalism applied to Robinson--Trautman family of spacetimes is presented. The stress energy tensor created on the throat is interpreted in terms of two dust streams and it is shown that asymptotically this wormhole settles to the Schwarzschild wormhole with throat on the horizon.

  13. Closed Type Solar System Applied in the Study of Individual Units%闭式太阳能系统应用于独立单元的研究

    Institute of Scientific and Technical Information of China (English)

    汪国庆; 王英; 徐克平; 洪映林; 范杞山


    目前,闭式太阳能系统一般应用于整体供热的大系统中,不应用于分散独立的单元中,探讨闭式太阳能系统应用于分散独立单元有较大的实际意义。在居民建筑顶面(或是南方位立面)安装太阳能聚热器、太阳能光伏板、小水泵,在卫生间、厨房等热水应用点安装热水保温箱,通过利用太阳能光伏板电能驱动水泵,对闭式太阳能系统进行强制循环,保证室内保温箱上部充满热水满足使用需求。实践证明闭式太阳能系统应用于独立单元能与建筑有机结合在一起,获得较协调的建筑视角效果,提高太阳能热水的利用效率,有效节约水资源,取得了良好的经济效率。%Currently,closed solar heating systems are generally used in large systems as a whole,does not apply to disperse a separate unit.It has an important practical significance to explore the closed solar system applied to dispersion independent unit.Solar poly heater,solar photovoltaic panels and small pumps are installed in the top of the building (or the south facade).In bathroom,kitchen and other hot water applications point,hot water incubator are installed.The closed type solar energy system is forced circulation by using solar energy photovoltaic panels power driven pumps.It can assure indoor incubator upper filled with hot water meets the requirements.It has been proved in practice that closed solar system can be applied to independent unit together with the construction closely.The coordination architecture perspective effected and the good economic efficiency are obtained by using the system.At the same time,the system can increase the efficiency of the use of solar energy hot water,save the water resource effectively.

  14. 'Active' Thin Sections

    NARCIS (Netherlands)

    De Rooij, M.R.; Bijen, J.M.J.M.


    Optical microscopy using thin sections has become more and more important over the last decade to study concrete. Unfortunately, this technique is not capable of studying actually hydrating cement paste. At Delft University of Technology a new technique has been developed using 'active' thin section

  15. 香蕉抹花、疏果、垫把及套袋技术在南宁市的应用研究%Applied research on flower-wiping, fruit-thinning, fruit-padding, and fruit-bagging techniques of banana

    Institute of Scientific and Technical Information of China (English)

    陆丹; 刘厚铭; 欧桂兰; 莫凯琳; 粟继军


    [Objective]Influences on banana production from applying the flower-wiping, fruit-thinning, fruit -padding, and fruit-bagging techniques were studied in order to obtain a standardized banana production technology for enhancing quality and increasing economical benefits, to improve the market competitiveness of banana. [ Method ] By using the field experimental method, banana experimental bases were selected in Nanning City. Then, according to different growth periods, the tested banana subjects underwent the comprehensive treatment techniques of flower-wiping, fruit-thinning, fruit-padding, and fruit-bagging. The resulting production yield, commodity fruit rate, fruit surface scratch index, and fruit surface mechanical injury index were analyzed and comprehensively compared. [ Result ]The cultivated bananas after "flower-wiping, fruit-thinning, fruit-padding, and fruit-bagging" comprehensive treatment produced an average commodity fruit rate of 98.91%, which increased by 3.21% compared with the control group bananas cultivated from traditional cultivation methods. The fruit surface mechanical injury index of the treated banana averaged to be 2.45% , which was 49.69% lower than that measured from the control group. The spotting rate of the treated banana averaged to be 2.29%, which was 66.69% lower than that measured from the control group. The fruit malformation rate of the treated banana averaged to be 0.69%, which was significantly better than that of the control group banana, which averaged to be 3.18%. From the treated banana, the level 1 fruit rate averaged to be 23.04% and the level 2 fruit rate averaged to be 58.12%, in contrast to the control group banana, which, in the corresponding rates, averaged to be 18.02% and 5.44%. [Conclusion]Applying the "flower-wiping, fruit-thinning, fruit-padding, and fruit-bagging" comprehensive treatment in cultivating banana could slightly increase the fruit production rate, effectively control the occurrences of mechanical

  16. Learning unit: Thin lenses (United States)

    Nita, L.-S.


    Learning unit: Thin lenses "Why objects seen through lenses are sometimes upright and sometimes reversed" Nita Laura Simona National College of Arts and Crafts "Constantin Brancusi", Craiova, Romania 1. GEOMETRIC OPTICS. 13 hours Introduction (models, axioms, principles, conventions) 1. Thin lenses (Types of lenses. Defining elements. Path of light rays through lenses. Image formation. Required physical quantities. Lens formulas). 2. Lens systems (Non-collated lenses. Focalless systems). 3. Human eye (Functioning as an optical system. Sight defects and their corrections). 4. Optical instruments (Characteristics exemplified by a magnifying glass. Paths of light rays through a simplified photo camera. Path of light rays through a classical microscope) (Physics curriculum for the IXth grade/ 2011). This scenario exposes a learning unit based on experimental sequences (defining specific competencies), as a succession of lessons started by noticing a problem whose solution assumes the setup of an experiment under laboratory conditions. Progressive learning of theme objectives are realised with sequential experimental steps. The central cognitive process is the induction or the generalization (development of new knowledge based on observation of examples or counterexamples of the concept to be learnt). Pupil interest in theme objectives is triggered by problem-situations, for example: "In order to better see small objects I need a magnifying glass. But when using a magnifier, small object images are sometimes seen upright and sometimes seen reversed!" Along the way, pupils' reasoning will converge to the idea: "The image of an object through a lens depends on the relative distances among object, lens, and observer". Associated learning model: EXPERIMENT Specific competencies: derived from the experiment model, in agreement with the following learning unit steps I. Evoking - Anticipation: Size of the problem, formulation of hypotheses and planning of experiment. II

  17. Research and Exploration of Computer Applied-Type Talents Training Mode in the Private University%民办高校计算机应用型人才培养模式研究与探索

    Institute of Scientific and Technical Information of China (English)



    Chinese higher education has been focused on developing basic scientific research and teaching expertise, but doesn't pay enough atten-tion to how to meet the needs of industrial and mining enterprises. According to characteristics of the non-governmental institutions, com-bining network engineering specialty in application-oriented research and exploration on the mode of talent cultivation. Proposes reforma-tion of computer applied-type talents cultivation and practice of talent training model of architecture, links teaching system and teaching reformation of the basic framework and method.%我国高等教育一直侧重于培养基础科学研究和教学专门人才,对如何适应工矿企业的需要没有给予足够的重视。根据民办高校的特点,结合在网络工程专业应用型人才培养模式上的研究与探索,提出计算机专业培养应用型人才的改革思路、人才培养模式总体结构、实践环节教学体系基本框架及教学改革的方式方法。

  18. Preprint of the results of `the publicly applied proposal type and hi-tech (emphasized) field research and development in fiscal 1995`; `1995 nendo teian kobogata saisentan (juten) bun`ya kenkyu kaihatsu` seika hokokukai yokoshu

    Energy Technology Data Exchange (ETDEWEB)



    The preprint was prepared of a report meeting for the results of `the publicly applied proposal type and hi-tech (emphasized) field research and development in fiscal 1995` to be held in Tokyo during February 12 to 14, 1997. In the meeting, a lecture titled `The system of fundamental researches and its execution` is to be given as a special lecture and the following are as general lectures: `Energy/environmental technology and next generation catalysts,` ` The present and outlook of surgery in the 21st century - computer surgery,` The present situation of education and research related to the design of digital integrated systems,` and `The present and future of research and development of a new carbon material, fullerene.` Research reports were prepared by field as follows: 73 papers in the new material technology field, 46 in the bio-technology field, 36 in the electronics/information technology field, 8 in the mechanical system technology field, 8 in the human life engineering technology field, 23 in the medical/welfare equipment technology field, 5 in the resource technology field, 17 in the energy/environment technology field.

  19. Magnetoelectric thin film composites with interdigital electrodes (United States)

    Piorra, A.; Jahns, R.; Teliban, I.; Gugat, J. L.; Gerken, M.; Knöchel, R.; Quandt, E.


    Magnetoelectric (ME) thin film composites on silicon cantilevers are fabricated using Pb(Zr0.52Ti0.45)O3 (PZT) films with interdigital transducer electrodes on the top side and FeCoSiB amorphous magnetostrictive thin films on the backside. These composites without any direct interface between the piezoelectric and magnetostrictive phase are superior to conventional plate capacitor-type thin film ME composites. A limit of detection of 2.6 pT/Hz1/2 at the mechanical resonance is determined which corresponds to an improvement of a factor of approximately 2.8 compared to the best plate type sensor using AlN as the piezoelectric phase and even a factor of approximately 4 for a PZT plate capacitor.

  20. Magnetically actuated peel test for thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ostrowicki, G.T.; Sitaraman, S.K., E-mail:


    Delamination along thin film interfaces is a prevalent failure mechanism in microelectronic, photonic, microelectromechanical systems, and other engineering applications. Current interfacial fracture test techniques specific to thin films are limited by either sophisticated mechanical fixturing, physical contact near the crack tip, or complicated stress fields. Moreover, these techniques are generally not suitable for investigating fatigue crack propagation under cyclical loading. Thus, a fixtureless and noncontact experimental test technique with potential for fatigue loading is proposed and implemented to study interfacial fracture toughness for thin film systems. The proposed test incorporates permanent magnets surface mounted onto micro-fabricated released thin film structures. An applied external magnetic field induces noncontact loading to initiate delamination along the interface between the thin film and underlying substrate. Characterization of the critical peel force and peel angle is accomplished through in situ deflection measurements, from which the fracture toughness can be inferred. The test method was used to obtain interfacial fracture strength of 0.8-1.9 J/m{sup 2} for 1.5-1.7 {mu}m electroplated copper on natively oxidized silicon substrates. - Highlights: Black-Right-Pointing-Pointer Non-contact magnetic actuation test for interfacial fracture characterization. Black-Right-Pointing-Pointer Applied load is determined through voltage applied to the driving electromagnet. Black-Right-Pointing-Pointer Displacement and delamination propagation is measured using an optical profiler. Black-Right-Pointing-Pointer Critical peel force and peel angle is measured for electroplated Cu thin-film on Si. Black-Right-Pointing-Pointer The measured interfacial fracture energy of Cu/Si interface is 0.8-1.9 J/m{sup 2}.

  1. Effects of strain on the magnetic and transport properties of the epitaxial La0.5Ca0.5MnO3 thin films (United States)

    Zarifi, M.; Kameli, P.; Ehsani, M. H.; Ahmadvand, H.; Salamati, H.


    The epitaxial strain can considerably modify the physical properties of thin films compared to the bulk. This paper reports the effects of substrate-induced strain on La0.5Ca0.5MnO3 (LCMO) thin films, grown on (100) SrTiO3 (STO) and LaAlO3 (LAO) substrates by pulsed laser deposition technique. Transport and magnetic properties were found to be strongly dependent on strain type. It is also shown that compressive (tensile) strain leads to the increase (decrease) in the magnetization of the films. Moreover, it was observed that all LCMO films deposited on both LAO and STO substrates behave as an insulator, but LCMO/LAO thin films with compressive strain have lower resistivity than LCMO/STO thin films with tensile strain. Applying magnetic field to LCMO/STO thin films with thickness of 25 and 50 nm leads to very small change in the resistivity, while the effects of magnetic field on the sample with thickness of 125 nm leads to an insulator-metal transition. For LCMO/LAO thin films, the magnetic field has a strong impact on the resistivity of samples. The results show that the magnetoresistance (MR) is enhanced by increasing film thickness for LCMO/LAO samples, due to the relatively stronger phase separation. For LCMO/STO thin films MR is drastically decreased by reduction of film thickness, which is attributed to the enhancement of the charge-orbital order (CO-O) accompanying the complex spin order (the so-called CE type). The changes of the antiferromagnetic structure from the CE to C type and the enhancement of the CE type could be attributed to the in-plane compressive and tensile strain, respectively.

  2. Thin Film & Deposition Systems (Windows) (United States)

    Federal Laboratory Consortium — Coating Lab: Contains chambers for growing thin film window coatings. Plasma Applications Coating Lab: Contains chambers for growing thin film window coatings. Solar...

  3. Role of ferrite and phosphorus plus sulphur in the crack sensitivity of autogenously welded type 309 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Jr., F. J.


    A study on autogenous welding of Type 309 thin stainless steel sheet was made after experiencing cracking difficulties on several commercial heats. A relationship exists between the sum of the phosphorus plus sulfur, the ferrite control of the weld metal, and the crack sensitivity of autogenously made welds. A new simple weld test for thin-gage sheet is utilized for studying the susceptibility to cracking. A chemistry modification is suggested to alleviate possible weld cracking when autogenously welding this grade. The principles of crack sensitivity prediction could apply to other austenitic stainless steel types where chemistry limits are such that ferrite is possible.

  4. Tools to Synthesize the Learning of Thin Films (United States)

    Rojas, Roberto; Fuster, Gonzalo; Slusarenko, Viktor


    After a review of textbooks written for undergraduate courses in physics, we have found that discussions on thin films are mostly incomplete. They consider the reflected and not the transmitted light for two instead of the four types of thin films. In this work, we complement the discussion in elementary textbooks, by analysing the phase…

  5. Tailoring the textured surface of porous nanostructured NiO thin films for the detection of pollutant gases

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R., E-mail: [CNR-INO SENSOR Lab., Via Branze 35, 25133 Brescia (Italy); University of Brescia, Dept. of Information Engineering, Via Valotti, 9, 25133 Brescia (Italy); Baratto, C.; Faglia, G.; Sberveglieri, G. [CNR-INO SENSOR Lab., Via Branze 35, 25133 Brescia (Italy); University of Brescia, Dept. of Information Engineering, Via Valotti, 9, 25133 Brescia (Italy); Bontempi, E.; Borgese, L. [INSTM and Chemistry for Technologies Laboratory, University of Brescia, Department of Mechanical and Industrial Engineering, Via Branze, 38, 25133 Brescia (Italy)


    In the present article, an experimental approach to detect pollutant gases in presence of humidity was applied for gas sensors based on p-type NiO thin films. NiO thin films were deposited by radio frequency magnetron sputtering in inert atmosphere using a NiO target. Thin films were investigated by scanning electron microscopy to observe their surface morphology. Crystal structure and vibrational study were investigated by X-ray diffraction and micro-Raman spectroscopy, respectively. It was observed that deposition temperature played a crucial role in the structural and surface morphology of NiO thin films. Sensing response of the nanostructured thin films to reducing and oxidizing gas was studied as a function of gas concentration and operating temperature. A double digit (12.3) response was observed towards ozone at 200 °C, while maximum response to ethanol and acetone was recorded at 400 °C. A correlation was established between sensing response and crystalline dimension for ozone sensing. The result showed that NiO thin films can be used as p-type metal oxide material for the fabrication of solid state gas sensors to detect low concentrations of ozone (70 ppb). - Highlights: • Nickel oxide phase was confirmed by X-ray diffraction. • Raman signal of nickel oxide was recorded by micro-Raman spectroscopy. • Best sensing response was recorded for 70 ppb ozone at 200 °C working temperature. • Sensing response towards ozone increases as the crystalline dimension decreases. • Nickel oxide is a p-type oxide material.

  6. Degradation analysis of thin film photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Radue, C., E-mail: [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Dyk, E.E. van [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)


    Five thin film photovoltaic modules were deployed outdoors under open circuit conditions after a thorough indoor evaluation. Two technology types were investigated: amorphous silicon (a-Si:H) and copper indium gallium diselenide (CIGS). Two 14 W a-Si:H modules, labelled Si-1 and Si-2, were investigated. Both exhibited degradation, initially due to the well-known light-induced degradation described by Staebler and Wronski [Applied Physics Letters 31 (4) (1977) 292], and thereafter due to other degradation modes such as cell degradation. The various degradation modes contributing to the degradation of the a-Si:H modules will be discussed. The initial maximum power output (P{sub MAX}) of Si-1 was 9.92 W, with the initial light-induced degradation for Si-1 approx30% and a total degradation of approx42%. For Si-2 the initial P{sub MAX} was 7.93 W, with initial light-induced degradation of approx10% and a total degradation of approx17%. Three CIGS modules were investigated: two 20 W modules labelled CIGS-1 and CIGS-2, and a 40 W module labelled CIGS-3. CIGS-2 exhibited stable performance while CIGS-1 and CIGS-3 exhibited degradation. CIGS is known to be stable over long periods of time, and thus the possible reasons for the degradation of the two modules are discussed.

  7. Micro-sensor thin-film anemometer (United States)

    Sheplak, Mark (Inventor); McGinley, Catherine B. (Inventor); Spina, Eric F. (Inventor); Stephens, Ralph M. (Inventor); Hopson, Jr., Purnell (Inventor); Cruz, Vincent B. (Inventor)


    A device for measuring turbulence in high-speed flows is provided which includes a micro-sensor thin-film probe. The probe is formed from a single crystal of aluminum oxide having a half-wedge shaped portion. The tip of the half-wedge is rounded and has a thin-film sensor attached along the stagnation line. The bottom surface of the half-wedge is tilted upward to relieve shock induced disturbances created by the curved tip of the half-wedge. The sensor is applied using a microphotolithography technique.


    Directory of Open Access Journals (Sweden)

    S. N. Omkar


    Full Text Available In the recent years many approaches have been made that uses computer vision algorithms to interpret sign language. This endeavour is yet another approach to accomplish interpretation of human hand gestures. The first step of this work is background subtraction which achieved by the Euclidean distance threshold method. Thinning algorithm is then applied to obtain a thinned image of the human hand for further analysis. The different feature points which include terminating points and curved edges are extracted for the recognition of the different signs. The input for the project is taken from video data of a human hand gesturing all the signs of the American Sign Language.

  9. Interaction of ultra-short laser pulses with CIGS and CZTSe thin films (United States)

    Gečys, P.; Markauskas, E.; Dudutis, J.; Račiukaitis, G.


    The thin-film solar cell technologies based on complex quaternary chalcopyrite and kesterite materials are becoming more attractive due to their potential for low production costs and optimal spectral performance. As in all thin-film technologies, high efficiency of small cells might be maintained with the transition to larger areas when small segments are interconnected in series to reduce photocurrent and related ohmic losses in thin films. Interconnect formation is based on the three scribing steps, and the use of a laser is here crucial for performance of the device. We present our simulation and experimental results on the ablation process investigations in complex CuIn1- x Ga x Se2 (CIGS) and Cu2ZnSn(S,Se)4 (CZTSe) cell's films using ultra-short pulsed infrared (~1 μm) lasers which can be applied to the damage-free front-side scribing processes. Two types of processes were investigated—direct laser ablation of ZnO:Al/CIGS films with a variable pulse duration of a femtosecond laser and the laser-induced material removal with a picosecond laser in the ZnO:Al/CZTSe structure. It has been found that the pulse energy and the number of laser pulses have a significantly stronger effect on the ablation quality in ZnO:Al/CIGS thin films rather than the laser pulse duration. For the thin-film scribing applications, it is very important to carefully select the processing parameters and use of ultra-short femtosecond pulses does not have a significant advantage compared to picosecond laser pulses. Investigations with the ZnO:Al/CZTSe thin films showed that process of the absorber layer removal was triggered by a micro-explosive effect induced by high pressure of sublimated material due to a rapid temperature increase at the molybdenum-CZTSe interface.

  10. Biomimetic thin film synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graff, G.L.; Campbell, A.A.; Gordon, N.R.


    The purpose of this program is to develop a new process for forming thin film coatings and to demonstrate that the biomimetic thin film technology developed at PNL is useful for industrial applications. In the biomimetic process, mineral deposition from aqueous solution is controlled by organic functional groups attached to the underlying substrate surface. The coatings process is simple, benign, inexpensive, energy efficient, and particularly suited for temperature sensitive substrate materials (such as polymers). In addition, biomimetic thin films can be deposited uniformly on complex shaped and porous substrates providing a unique capability over more traditional line-of-sight methods.

  11. Dielectric Scattering Patterns for Efficient Light Trapping in Thin-Film Solar Cells. (United States)

    van Lare, Claire; Lenzmann, Frank; Verschuuren, Marc A; Polman, Albert


    We demonstrate an effective light trapping geometry for thin-film solar cells that is composed of dielectric light scattering nanocavities at the interface between the metal back contact and the semiconductor absorber layer. The geometry is based on resonant Mie scattering. It avoids the Ohmic losses found in metallic (plasmonic) nanopatterns, and the dielectric scatterers are well compatible with nearly all types of thin-film solar cells, including cells produced using high temperature processes. The external quantum efficiency of thin-film a-Si:H solar cells grown on top of a nanopatterned Al-doped ZnO, made using soft imprint lithography, is strongly enhanced in the 550-800 nm spectral band by the dielectric nanoscatterers. Numerical simulations are in good agreement with experimental data and show that resonant light scattering from both the AZO nanostructures and the embedded Si nanostructures are important. The results are generic and can be applied on nearly all thin-film solar cells.

  12. Photocatalytic Activity of Nanostructured Titanium Dioxide Thin Films

    Directory of Open Access Journals (Sweden)

    Zdenek Michalcik


    Full Text Available The aim of this paper is to investigate the properties and photocatalytic activity of nanostructured TiO2 layers. The glancing angle deposition method with DC sputtering at low temperature was applied for deposition of the layers with various columnar structures. The thin-film structure and surface morphology were analyzed by XRD, SEM, and AFM analyses. The photocatalytic activity of the films was determined by the rate constant of the decomposition of the Acid Orange 7. In dependence on the glancing angle deposition parameters, three types of columnar structures were obtained. The films feature anatase/rutile and/or amorphous structures depending on the film architecture and deposition method. All the films give the evidence of the photocatalytic activity, even those without proved anatase or rutile structure presence. The impact of columnar boundary in perspective of the photocatalytic activity of nanostructured TiO2 layers was discussed as the possible factor supporting the photocatalytic activity.

  13. Thin Solid Oxide Cell

    DEFF Research Database (Denmark)


    The present invention relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material, at least one metal and a catalyst...... material, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same. The present invention also relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous...... cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material and a catalyst material, wherein the electrolyte material is doper zirconia, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same...

  14. Thin film device applications

    CERN Document Server

    Kaur, Inderjeet


    Two-dimensional materials created ab initio by the process of condensation of atoms, molecules, or ions, called thin films, have unique properties significantly different from the corresponding bulk materials as a result of their physical dimensions, geometry, nonequilibrium microstructure, and metallurgy. Further, these characteristic features of thin films can be drasti­ cally modified and tailored to obtain the desired and required physical characteristics. These features form the basis of development of a host of extraordinary active and passive thin film device applications in the last two decades. On the one extreme, these applications are in the submicron dimensions in such areas as very large scale integration (VLSI), Josephson junction quantum interference devices, magnetic bubbles, and integrated optics. On the other extreme, large-area thin films are being used as selective coatings for solar thermal conversion, solar cells for photovoltaic conver­ sion, and protection and passivating layers. Ind...

  15. Ceramic Composite Thin Films (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)


    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  16. Study on the beam quality of diode pumped Yb:YAG thin disk laser and the intracavity frequency doubling in V-type resonator%二极管泵浦Yb:YAG Thin Disk激光器光束质量及V型腔腔内倍频的研究

    Institute of Scientific and Technical Information of China (English)

    单欣岩; 魏晓羽; 吴念乐; 李师群


    ThinDisk激光器由于其独特的设计可以同时获得高转换效率和光束质量.对Yb:YAG ThinDisk激光器中泵浦光斑与腔模的耦合对光束质量的影响作了分析,并在普通直腔和V型腔的实验中分别获得M2=1.15,13.69 W和M2=1.12,13.85 W的1030 nm激光输出,还在V型腔中进行了腔内倍频的实验研究.

  17. Multifractal characteristics of titanium nitride thin films

    Directory of Open Access Journals (Sweden)

    Ţălu Ştefan


    Full Text Available The study presents a multi-scale microstructural characterization of three-dimensional (3-D micro-textured surface of titanium nitride (TiN thin films prepared by reactive DC magnetron sputtering in correlation with substrate temperature variation. Topographical characterization of the surfaces, obtained by atomic force microscopy (AFM analysis, was realized by an innovative multifractal method which may be applied for AFM data. The surface micromorphology demonstrates that the multifractal geometry of TiN thin films can be characterized at nanometer scale by the generalized dimensions Dq and the singularity spectrum f(α. Furthermore, to improve the 3-D surface characterization according with ISO 25178-2:2012, the most relevant 3-D surface roughness parameters were calculated. To quantify the 3-D nanostructure surface of TiN thin films a multifractal approach was developed and validated, which can be used for the characterization of topographical changes due to the substrate temperature variation.

  18. Multifunctional thin film surface

    Energy Technology Data Exchange (ETDEWEB)

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.


    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  19. Electrical Switching of Perovskite Thin-Film Resistors (United States)

    Liu, Shangqing; Wu, Juan; Ignatiev, Alex


    Electronic devices that exploit electrical switching of physical properties of thin films of perovskite materials (especially colossal magnetoresistive materials) have been invented. Unlike some related prior devices, these devices function at room temperature and do not depend on externally applied magnetic fields. Devices of this type can be designed to function as sensors (exhibiting varying electrical resistance in response to varying temperature, magnetic field, electric field, and/or mechanical pressure) and as elements of electronic memories. The underlying principle is that the application of one or more short electrical pulse(s) can induce a reversible, irreversible, or partly reversible change in the electrical, thermal, mechanical, and magnetic properties of a thin perovskite film. The energy in the pulse must be large enough to induce the desired change but not so large as to destroy the film. Depending on the requirements of a specific application, the pulse(s) can have any of a large variety of waveforms (e.g., square, triangular, or sine) and be of positive, negative, or alternating polarity. In some applications, it could be necessary to use multiple pulses to induce successive incremental physical changes. In one class of applications, electrical pulses of suitable shapes, sizes, and polarities are applied to vary the detection sensitivities of sensors. Another class of applications arises in electronic circuits in which certain resistance values are required to be variable: Incorporating the affected resistors into devices of the present type makes it possible to control their resistances electrically over wide ranges, and the lifetimes of electrically variable resistors exceed those of conventional mechanically variable resistors. Another and potentially the most important class of applications is that of resistance-based nonvolatile-memory devices, such as a resistance random access memory (RRAM) described in the immediately following article

  20. N型Bi2Te2.5Se0.5热电薄膜的电阻率与膜厚和温度的关系%Thickness and Temperature Dependence of Electrical Resistivity of n-type Bi2Te2.5Se0.5 Thermoelectric Thin Films

    Institute of Scientific and Technical Information of China (English)

    段兴凯; 杨君友; 朱文; 肖承京


    N-type Bi2Te2.5 Se0.5 thermoelectric thin films with thickness in the range 50-400nm have been deposited by flash evaporation method on glass substrates at 473K. The structure, composition and morphology of the deposited thin films were carried out by Xray diffraction (XRD), energy-dispersive X-ray analysis (EDXA) and field emission scanning electron microscope (FE-SEM) respectively.The thickness and temperature dependence of electrical resistivity of the thin films were studied in the temperature range 300-350K.%在玻璃衬底上通过瞬间蒸发法沉积了厚度为50-400nm的N型Bi2.5Se0.5热电薄膜,沉积温度为473K.采用XRD、EDXA和FESEM技术分别对薄膜的相结构、组成和表面形貌进行了分析研究,在300-350K的温度范围内,研究了薄膜的电阻率与膜厚和温度的相互关系.

  1. Applied ALARA techniques

    Energy Technology Data Exchange (ETDEWEB)

    Waggoner, L.O.


    The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work.

  2. Zinc oxide integrated area efficient high output low power wavy channel thin film transistor

    KAUST Repository

    Hanna, A. N.


    We report an atomic layer deposition based zinc oxide channel material integrated thin film transistor using wavy channel architecture allowing expansion of the transistor width in the vertical direction using the fin type features. The experimental devices show area efficiency, higher normalized output current, and relatively lower power consumption compared to the planar architecture. This performance gain is attributed to the increased device width and an enhanced applied electric field due to the architecture when compared to a back gated planar device with the same process conditions.

  3. Large thin adaptive x-ray mirrors (United States)

    Doel, Peter; Atkins, Carolyn; Thompson, Samantha; Brooks, David; Yao, Jun; Feldman, Charlotte; Willingale, Richard; Button, Tim; Zhang, Dou; James, Ady


    This paper describes the progress made in a proof of concept study and recent results of a research program into large active x-ray mirrors that is part of the UK Smart X-ray Optics project. The ultimate aim is to apply the techniques of active/adaptive optics to the next generation of nested shell astronomical X-ray space telescopes. A variety of deformable mirror technologies are currently available, the most promising of which for active X-ray mirrors are probably unimorph and bimorph piezoelectric mirrors. In this type of mirror one or more sheets of piezoelectric material are bonded to or coated with a passive reflective layer. On the back or between the piezoceramic layer/layers are series of electrodes. Application of an electric field causes the piezoelectric material to undergo local deformation thus changing the mirror shape. Starting in 2005 a proof of concept active mirror research program has been undertaken. This work included modelling and development of actively controlled thin shell mirrors. Finite element models of piezo-electric actuated mirrors have been developed and verified against experimental test systems. This has included the modelling and test of piezo-electric hexagonal unimorph segments. Various actuator types and low shrinkage conductive bonding methods have been investigated and laboratory tests of the use of piezo-electric actuators to adjust the form of an XMM-Newton space telescope engineering model mirror shell have been conducted and show that movement of the optics at the required level is achievable. Promising technological approaches have been identified including moulded piezo-ceramics and piezo-electrics fibre bundles.

  4. Breaking through with Thin-Client Technologies: A Cost Effective Approach for Academic Libraries. (United States)

    Elbaz, Sohair W.; Stewart, Christofer

    This paper provides an overview of thin-client/server computing in higher education. Thin-clients are like PCs in appearance, but they do not house hard drives or localized operating systems and cannot function without being connected to a server. Two types of thin-clients are described: the Network Computer (NC) and the Windows Terminal (WT).…

  5. Superior light trapping in thin film silicon solar cells through nano imprint lithography

    Energy Technology Data Exchange (ETDEWEB)

    Soppe, W.J.; Dorenkamper, M.S.; Schropp, R.E.I.; Pex, P.P.A.C.


    ECN and partners have developed a fabrication process based on nanoimprint lithography (NIL) of textures for light trapping in thin film solar cells such as thin-film silicon, OPV, CIGS and CdTe. The process can be applied in roll-to-roll mode when using a foil substrate or in roll-to-plate mode when using a glass substrate. The lacquer also serves as an electrically insulating layer for cells if steel foil is used as substrate, to enable monolithic series interconnection. In this paper we will show the superior light trapping in thin film silicon solar cells made on steel foil with nanotextured back contacts. We have made single junction a-Si and {mu}c-Si and a-Si/{mu}c-Si tandem cells, where we applied several types of nano-imprints with random and periodic structures. We will show that the nano-imprinted back contact enables more than 30% increase of current in comparison with non-textured back contacts and that optimized periodic textures outperform state-of-the-art random textures. For a-Si cells we obtained Jsc of 18 mA/cm{sup 2} and for {mu}c-Si cells more than 24 mA/cm{sup 2}. Tandem cells with a total Si absorber layer thickness of only 1350 nm have an initial efficiency of 11%.

  6. Comparison between HTS nonlinearities in patterned and unpatterned thin films (United States)

    Mateu, Jordi; Collado, Carlos; O'Callaghan, Juan M.; Universitat Politecnica de Catalunya Team


    High Temperature Superconductor (HTS) materials exhibit a surface impedance dependence on the applied field. This behavior still remains not yet fully understood. To overcome this, many experiments have been carried out through the last decade. In general, the experimental work has been done measuring intermodulation products in patterned devices since most of practical devices are based on patterned structures. In this case the nonlinearities might come from many causes -- HTS properties, possible damage due to patterning, shape of resonator, etc.--, which need to be characterized. This raises the question of how representative of HTS properties are the experiments performed on patterned samples. To address this, we propose such a procedure, which is based on obtaining parameters describing the HTS nonlinearities from intermodulation measurements made on unpatterned and patterned thin films. As example, we have characterized the nonlinearities in a one side 10x10 mm^2 YBCO on MgO thin film by measuring the intermodulation products with a rutile-loaded cavity operating at TE_011 mode and a coplanar half-wave resonator. The intermodulation data in both type of measurements can be fitted using closed-form expressions and numerical techniques with identical nonlinear parameters of the HTS.

  7. Planar Thinned Arrays: Optimization and Subarray Based Adaptive Processing

    Directory of Open Access Journals (Sweden)

    P. Lombardo


    Full Text Available A new approach is presented for the optimized design of a planar thinned array; the proposed strategy works with single antenna elements or with small sets of different subarray types, properly located on a planar surface. The optimization approach is based on the maximization of an objective function accounting for side lobe level and considering a fixed number of active elements/subarrays. The proposed technique is suitable for different shapes of the desired output array, allowing the achievement of the desired directivity properties on the corresponding antenna pattern. The use of subarrays with a limited number of different shapes is relevant for industrial production, which would benefit from reduced design and manufacturing costs. The resulting modularity allows scalable antenna designs for different applications. Moreover, subarrays can be arranged in a set of subapertures, each connected to an independent receiving channel. Therefore, adaptive processing techniques could be applied to cope with and mitigate clutter echoes and external electromagnetic interferences. The performance of adaptive techniques with subapertures taken from the optimized thinned array is evaluated against assigned clutter and jamming scenarios and compared to the performance achievable considering a subarray based filled array with the same number of active elements.

  8. T-type feedback network applied in resonance frequency locking of resonator fiber optic gyro%T型反馈网络在谐振式光纤陀螺频率锁定中的应用

    Institute of Scientific and Technical Information of China (English)

    李圣昆; 郑永秋; 安盼龙; 李小枫; 陈浩; 焦新泉; 刘俊; 闫树斌


    谐振式光纤陀螺(R-FOG)的频率锁定是陀螺信号检测的关键技术,尤其在长时间的测试中,谐振频率的锁定稳定度决定了陀螺的输出性能。根据光纤环形谐振腔的传输理论,分析了其谐振特性及其一次谐波特性;搭建了R-FOG测试系统,采用正弦波相位调制解调技术实现谐振谱线一次谐波的输出;在分析由运算放大器构成的传统模拟比例积分(PI)电路的漂移误差源的基础上,给出了可以有效抑制漂移误差的T型反馈网络,应用到谐振式光纤陀螺的谐振频率锁定中,得到了较好的锁定效果,经Allan方差分析,谐振频率长时间(4000 s)的锁定稳定度优于9×10-12。%For resonator fiber optic gyro ( R-FOG ) , resonance frequency locking is a key technique at detecting the gyro signal . The stability of resonance frequency locking determines the output performance of the gyro , especially in the long-term test . According to the transmission theory of fiber ring resonator ( FRR ) , the resonance characteristics and the first harmonic were analyzed; the R-FOG system was set up . The first harmonic demodulation signal derive from the experiments using the sine wave phase modulation technique; the drift errors of traditional analog proportional -integral PI consisting of operational amplifiers were analyzed . On this basis , T-type feedback network was applied in resonance frequency locking of R-FOG . The drift error was suppressed effectively and better result was obtained. The stability of resonance frequency locking for 4 000 s is superior to 9 ×10-12 by Allan variance analysis.

  9. Thermodynamic Analysis of a New Type of Gas Turbine Cycle Applying Methane Reforming Technology%应用甲烷重整技术的燃气轮机新循环热力学分析

    Institute of Scientific and Technical Information of China (English)

    唐强; 张晓琴; 侯世锋; 阳绪东


    提出了应用甲烷重整技术的新型燃气轮机循环,建立新型燃气轮机循环系统的工作流程,并通过平衡常数的计算来分析燃烧室的反应平衡,研究了燃气轮机循环热效率的变化.结果表明:甲烷发生吸热的重整反应对甲烷燃烧的消耗量有影响;在相同燃料量的条件下,新循环与简单循环相比,热效率得到大幅提高;由于重整反应生成的混合气体组分中多了CO和H2气体,使得混合气体平均比定压热容增大;随着燃烧室出口温度T3的升高,新循环甲烷平衡的转化率逐渐增大,随着压比的增大,转化率逐渐降低.%A new type of gas turbine cycle applying methane reforming technology is being proposed,for which process a mathematical model is built up.The reaction equilibrium in combustion chamber is then analyzed based on equilibrium constant calculation,so as to study the variation law of thermal efficiency of the gas turbine cycle.Results show that the endothermic reaction of methane reforming influences the amount of combusted methane;in the same conditions of fuel flow,compared with simple cycle,the thermal efficiency of new system increases significantly;due to additional existence of CO and H2 in the gas mixture of new system,the average specific heat rises;the methane conversion rate goes up gradually with rising outlet temperature T3 of combustion chamber,and reduces with increasing pressure ratio ε.


    Institute of Scientific and Technical Information of China (English)

    Li Jing; Yang Xuan; Yu Jianping


    Common tools based on landmarks in medical image elastic registration are Thin Plate Spline (TPS) and Compact Support Radial Basis Function (CSRBF). TPS forces the corresponding landmarks to exactly match each other and minimizes the bending energy of the whole image. However,in real application, such scheme would deform the image globally when deformation is only local.CSRBF needs manually determine the support size, although its deformation is limited local. Therefore,to limit the effect of the deformation, new Compact Support Thin Plate Spline algorithm (CSTPS) is approached, analyzed and applied. Such new approach gains optimal mutual information, which shows its registration result satisfactory. The experiments also show it can apply in both local and global elastic registration.

  11. Visible light laser voltage probing on thinned substrates

    Energy Technology Data Exchange (ETDEWEB)

    Beutler, Joshua; Clement, John Joseph; Miller, Mary A.; Stevens, Jeffrey; Cole, Jr., Edward I.


    The various technologies presented herein relate to utilizing visible light in conjunction with a thinned structure to enable characterization of operation of one or more features included in an integrated circuit (IC). Short wavelength illumination (e.g., visible light) is applied to thinned samples (e.g., ultra-thinned samples) to achieve a spatial resolution for laser voltage probing (LVP) analysis to be performed on smaller technology node silicon-on-insulator (SOI) and bulk devices. Thinning of a semiconductor material included in the IC (e.g., backside material) can be controlled such that the thinned semiconductor material has sufficient thickness to enable operation of one or more features comprising the IC during LVP investigation.

  12. Newtech - Comparison of three 1 kW thin-film solar cell installations; Newtech. Vergleich 3 x 1 kWp Duennschichtzellenanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Renken, C.; Haeberlin, H.


    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of tests made on 3 types of thin-film solar cells by the photovoltaics laboratory at the University of Applied Science in Burgdorf, Switzerland. The three 1-kW{sub p} installations are all mounted on the flat roof of an industrial building and deliver the power produced to the local electricity utility. The thin-film technologies tested are described. These include copper-indium-diselenide (CIS) cells, amorphous silicon tandem cells and amorphous silicon triple cells. The measurement equipment used is described and the results obtained are discussed. These showed that the CIS cells had the highest annual specific yield and that the triple cells had a relatively high performance ratio at low irradiance levels. The performance of the thin-film modules is also compared to that of conventional, crystalline modules installed at a nearby location.

  13. MOF-on-MOF heteroepitaxy: perfectly oriented [Zn2(ndc)2(dabco)]n grown on [Cu2(ndc)2(dabco)]n thin films. (United States)

    Shekhah, O; Hirai, K; Wang, H; Uehara, H; Kondo, M; Diring, S; Zacher, D; Fischer, R A; Sakata, O; Kitagawa, S; Furukawa, S; Wöll, C


    We report the successful heteroepitaxial growth of perfectly oriented hybrid MOF thin films. By employing step-by-step liquid-phase epitaxy (LPE), [Zn(2)(ndc)(2)(dabco)](n) was grown on [Cu(2)(ndc)(2)(dabco)](n), thus demonstrating that the MOF-on-MOF deposition scheme developed for powdered microcrystalline MOF materials can also be applied in connection with LPE for MOF thin films or multilayers. The deposition was monitored by surface plasmon resonance (SPR) spectroscopy, the resulting MOF heterostructures were characterized using IR spectroscopy and different types of X-ray diffraction (XRD)-based techniques. The results suggest that the LPE method is a promising way to fabricate and grow MOF heterostructures, and also demonstrates the potential of [Cu(2)(ndc)(2)(dabco)](n) MOF thin films as substrates for the LPE-based growth of different MOFs on top.

  14. Surface morphology of thin films polyoxadiazoles


    J. Weszka; M.M. Szindler; M. Chwastek-Ogierman; BRUMA M.; P. Jarka; Tomiczek, B.


    urpose: The purpose of this paper was to analyse the surface morphology of thin films polyoxadiazoles. Design/methodology/approach: SSix different polymers which belong to the group of polyoxadiazoles were dissolved in the solvent NMP. Each of these polymer was deposited on a glass substrate and a spin coating method was applied with a spin speed of 1000, 2000 and 3000 rev/min. Changes in surface topography and roughness were observed. An atomic force microscope AFM Park System has been used....

  15. Biomimetic thin film deposition (United States)

    Rieke, P. C.; Campbell, A. A.; Tarasevich, B. J.; Fryxell, G. E.; Bentjen, S. B.


    Surfaces derivatized with organic functional groups were used to promote the deposition of thin films of inorganic minerals. These derivatized surfaces were designed to mimic the nucleation proteins that control mineral deposition during formation of bone, shell, and other hard tissues in living organisms. By the use of derivatized substrates control was obtained over the phase of mineral deposited, the orientation of the crystal lattice and the location of deposition. These features are of considerable importance in many technically important thin films, coatings, and composite materials. Methods of derivatizing surfaces are considered and examples of controlled mineral deposition are presented.

  16. Thin film ceramic thermocouples (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)


    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  17. Novel wide band gap materials for highly efficient thin film tandem solar cells. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Brian E.; Connor, Stephen T.; Peters, Craig H.


    thin films using a mixture of solution and physical vapor deposition processing, but these films lacked the p-type doping levels that are required to make decent solar cells. Over the course of the project PLANT PV was able to fabricate efficient CIGS solar cells (8.7%) but could not achieve equivalent performance using AIGS. During the nine-month grant PLANT PV set up a variety of thin film characterization tools (e.g. drive-level capacitance profiling) at the Molecular Foundry, a Department of Energy User Facility, that are now available to both industrial and academic researchers via the grant process. PLANT PV was also able to develop the back end processing of thin film solar cells at Lawrence Berkeley National Labs to achieve 8.7% efficient CIGS solar cells. This processing development will be applied to other types of thin film PV cells at the Lawrence Berkeley National Labs. While PLANT PV was able to study AIGS film growth and optoelectronic properties we concluded that AIGS produced using these methods would have a limited efficiency and would not be commercially feasible. PLANT PV did not apply for the Phase II of this grant.

  18. Essays in applied microeconomics (United States)

    Wang, Xiaoting

    In this dissertation I use Microeconomic theory to study firms' behavior. Chapter One introduces the motivations and main findings of this dissertation. Chapter Two studies the issue of information provision through advertisement when markets are segmented and consumers' price information is incomplete. Firms compete in prices and advertising strategies for consumers with transportation costs. High advertising costs contribute to market segmentation. Low advertising costs promote price competition among firms and improves consumer welfare. Chapter Three also investigates market power as a result of consumers' switching costs. A potential entrant can offer a new product bundled with an existing product to compensate consumers for their switching cost. If the primary market is competitive, bundling simply plays the role of price discrimination, and it does not dominate unbundled sales in the process of entry. If the entrant has market power in the primary market, then bundling also plays the role of leveraging market power and it dominates unbundled sales. The market for electric power generation has been opened to competition in recent years. Chapter Four looks at issues involved in the deregulated electricity market. By comparing the performance of the competitive market with the social optimum, we identify the conditions under which market equilibrium generates socially efficient levels of electric power. Chapter Two to Four investigate the strategic behavior among firms. Chapter Five studies the interaction between firms and unemployed workers in a frictional labor market. We set up an asymmetric job auction model, where two types of workers apply for two types of job openings by bidding in auctions and firms hire the applicant offering them the most profits. The job auction model internalizes the determination of the share of surplus from a match, therefore endogenously generates incentives for an efficient division of the matching surplus. Microeconomic

  19. Surface nanopatterning of Al/Ti multilayer thin films and Al single layer by a low-fluence UV femtosecond laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Kovačević, Aleksander G., E-mail: [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Beograd (Serbia); Petrović, Suzana [Institute of Nuclear Sciences “Vinča”, University of Belgrade, PO Box 522, 11001 Belgrade (Serbia); Bokić, Bojana [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Beograd (Serbia); Gaković, Biljana [Institute of Nuclear Sciences “Vinča”, University of Belgrade, PO Box 522, 11001 Belgrade (Serbia); Bokorov, Miloš T. [Center for Electron Microscopy, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad (Serbia); Vasić, Borislav; Gajić, Radoš [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Beograd (Serbia); Trtica, Milan [Institute of Nuclear Sciences “Vinča”, University of Belgrade, PO Box 522, 11001 Belgrade (Serbia); Jelenković, Branislav M. [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Beograd (Serbia)


    Highlights: • Femtosecond laser beam was applied to multilayer Al/Ti and single layer Al thin film. • The evolution of laser induced periodic surface structures and its causes is explained. • The structures remained stable after great number of pulses. • The different outcomes of the two cases (single and multilayer) have been explained in the light of the presence of the Ti underlayer. - Abstract: The effects of UV femtosecond laser beam with 76 MHz repetition rate on two types of thin films on Si substrate – the Al single layer thin film, and the multilayered thin film consisted of five Al/Ti bilayers (total thickness 130 nm) – were studied. The surface modification of the target was done by low fluences and different irradiation times, not exceeding ∼300 s. Nanopatterns in the form of femtosecond-laser induced periodic surface structures (fs-LIPSS) with periodicity of <315 nm and height of ∼45 nm were registered upon irradiation of the thin films. It was shown that: (i) the fs-LIPSS evolve from ruffles similar to high spatial frequency LIPSS (HSFL) into a low spatial frequency LIPSS (LSFL) if a certain threshold of the fluence is met, (ii) the number of LSFL increases with the exposition time and (iii) the LSFL remain stable even after long exposure times. We achieved high-quality highly-controllable fabrication of periodic structures on the surface of nanosized multilayer films with high-repetition-rate low-fluence femtosecond laser pulses. Compared to the Al single layer, the presence of the Ti underlayer in the Al/Ti multilayer thin film enabled more efficient heat transmittance through the Al/Ti interface away from the interaction zone which caused the reduction of the ablation effects leading to the formation of more regular LIPSS. The different outcomes of interactions with multi and single layer thin films lead to the conclusion that the behavior of the LIPSS is due to thin film structure.

  20. Magnetic shielding performance of superconducting YBCO thin film in a multilayer device structure

    Energy Technology Data Exchange (ETDEWEB)

    Uzun, Y., E-mail:; Avci, I.


    Highlights: • A multilayer structure was fabricated in the form of YBCO/STO/YBCO. • Bottom layer was used as a magnetic shield. • The top layer was patterned as a microbridge. • Magnetic shielding performance of the bottom layer onto the microbridge was tested. • I{sub c} of the microbridge was kept constant under the various magnetic fields. - Abstract: Magnetic shielding performance of superconducting YBaCu{sub 2}O{sub 7−x} (YBCO) thin film on an YBCO microbridge was analyzed in a multilayer structure. A sandwich type multilayer structure was fabricated onto a single crystal (1 0 0) SrTiO{sub 3} (STO) substrate in the form of YBCO/STO/YBCO by depositing a thin STO interlayer in between two YBCO layers. The top YBCO was patterned as 20 μm width meander-type microbridges and the bottom layer YBCO was used as magnetic shield. YBCO and STO thin films were deposited by dc and rf magnetron sputtering respectively, and the patterning was performed by using standard photolithography and wet etching. In order to enhance long-term stability of the final device, an additional STO thin film was deposited onto the device as an encapsulation layer. Electrical and magnetic characterizations of the YBCO thin film layers were carried out by means of ac magnetic susceptibility (χ–T) and resistance vs. temperature (R–T) measurements. The current–voltage (I–V) measurements were performed on the microbridges at 77 K by observing the shielding performance of the bottom YBCO layer under various applied magnetic fields. The results were compared with that of a same-type single layer YBCO device without a shielding layer. The zero field critical current value of the single layer 20 μm wide YBCO device was measured as 30 mA and decreased down to 20 mA as the field increased up to 100 mT. The same measurements on the multilayer device showed that the critical current values remained almost constant around 27 mA as the applied field increased.

  1. On Ginzburg-Landau Vortices of Superconducting Thin Films

    Institute of Scientific and Technical Information of China (English)

    Shi Jin DING; Qiang DU


    In this paper, we discuss the vortex structure of the superconducting thin films placed in a magnetic field. We show that the global minimizer of the functional modelling the superconducting thin films has a bounded number of vortices when the applied magnetic field hex < Hc1 + K log |log ε|where Hc1 is the lower critical field of the film obtained by Ding and Du in SIAM J. Math. Anal.,2002. The locations of the vortices are also given.

  2. Nitrogen incorporation in sputter deposited molybdenum nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stöber, Laura, E-mail:; Patocka, Florian, E-mail:; Schneider, Michael, E-mail:; Schmid, Ulrich, E-mail: [Institute of Sensor and Actuator Systems, TU Wien, Gußhausstraße 27-29, A-1040 Vienna (Austria); Konrath, Jens Peter, E-mail:; Haberl, Verena, E-mail: [Infineon Technologies Austria AG, Siemensstraße 2, 9500 Villach (Austria)


    In this paper, the authors report on the high temperature performance of sputter deposited molybdenum (Mo) and molybdenum nitride (Mo{sub 2}N) thin films. Various argon and nitrogen gas compositions are applied for thin film synthetization, and the amount of nitrogen incorporation is determined by Auger measurements. Furthermore, effusion measurements identifying the binding conditions of the nitrogen in the thin film are performed up to 1000 °C. These results are in excellent agreement with film stress and scanning electron microscope analyses, both indicating stable film properties up to annealing temperatures of 500 °C.

  3. Photo-electrochemical studies of chemically deposited nanocrystalline meso-porous n-type TiO2 thin films for dye-sensitized solar cell (DSSC) using simple synthesized azo dye (United States)

    Ezema, C. G.; Nwanya, A. C.; Ezema, B. E.; Patil, B. H.; Bulakhe, R. N.; Ukoha, P. O.; Lokhande, C. D.; Maaza, Malik; Ezema, Fabian I.


    Nanocrystalline titanium dioxide (TiO2) thin films were deposited by successive ionic layer adsorption and reaction method onto fluorine doped tin oxide coated glass substrate at room temperature (300 K). Titanium trichloride and sodium hydroxide were used as cationic and anionic sources, respectively. The as-deposited and annealed films were characterized for structural, morphological, optical, electrical and wettability properties. The photoelectrochemical study of TiO2 sensitized with a laboratory synthesized organic dye (azo) was evaluated in the polyiodide electrolyte at 40 mW cm-2 light illumination intensity. The photovoltaic characteristics show a fill factor of 0.24 and solar conversion efficiency value of 0.032 % for a TiO2 thickness of 0.96 µm as compared to efficiency of 0.014 % for rose Bengal of the same thickness.

  4. Cation disorder and epitaxial strain modulated Drude-Smith type terahertz conductivity and Hall-carrier switching in Ca1-x Ce x RuO3 thin films (United States)

    Das, Sarmistha; Eswara Phanindra, V.; Santhosh Kumar, K.; Agarwal, Piyush; Dhaker, K. C.; Rana, D. S.


    The CaRuO3 is a non-Fermi liquid pseudo-cubic perovskite with a magnetic ground state on the verge of phase transition and it lies in the vicinity of the quantum critical point. To understand the sensitivity of its ground state, the effects of subtle aliovalent chemical disorder on the static and high frequency dynamic conductivity in the coherently strained structures were explored. The Ce-doped Ca1-x Ce x RuO3 (0  ⩽  x  ⩽  0.1) thin films were deposited on LaAlO3 (1 0 0) and SrTiO3 (1 0 0) substrates and studies for low-energy terahertz (THz) carrier dynamics, dc transport and Hall effect. These compositions exhibited a very effective and unusual Hall-carrier switching in both compressive and tensile strain induced epitaxial thin films. The dc resistivity depicts a switching from a non-Fermi liquid to a Fermi liquid behavior without any magnetic phase transition. A discernible and gradual crossover from Drude to Drude-Smith THz dynamic optical conductivity was observed while traversing from pure to 10% Ce-doped CaRuO3 films. Overall, a nearly Fermi liquid behavior, effective carrier switching and unusual features in THz conductivity, were all novel features realized for the first time in physically and/or chemically modified CaRuO3. These new phases highlight the novel subtleties and versatility of the systems lying near the quantum critical point.

  5. Thin Wall Iron Castings

    Energy Technology Data Exchange (ETDEWEB)

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka


    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  6. Thin Lens Ray Tracing. (United States)

    Gatland, Ian R.


    Proposes a ray tracing approach to thin lens analysis based on a vector form of Snell's law for paraxial rays as an alternative to the usual approach in introductory physics courses. The ray tracing approach accommodates skew rays and thus provides a complete analysis. (Author/KHR)

  7. Thin supported silica membranes

    NARCIS (Netherlands)

    Zivkovic, Tijana


    This thesis discusses several transport-related aspects relevant for the application of thin supported silica membranes for gas separation and nanofiltration. The influence of support geometry on overall membrane performance is investigated. Planar (i.e., flat plate), tubular, and multichannel suppo

  8. Thin films for material engineering (United States)

    Wasa, Kiyotaka


    Thin films are defined as two-dimensional materials formed by condensing one by one atomic/molecular/ionic species of matter in contrast to bulk three-dimensional sintered ceramics. They are grown through atomic collisional chemical reaction on a substrate surface. Thin film growth processes are fascinating for developing innovative exotic materials. On the basis of my long research on sputtering deposition, this paper firstly describes the kinetic energy effect of sputtered adatoms on thin film growth and discusses on a possibility of room-temperature growth of cubic diamond crystallites and the perovskite thin films of binary compound PbTiO3. Secondly, high-performance sputtered ferroelectric thin films with extraordinary excellent crystallinity compatible with MBE deposited thin films are described in relation to a possible application for thin-film MEMS. Finally, the present thin-film technologies are discussed in terms of a future material science and engineering.

  9. Thin film metal-oxides

    CERN Document Server

    Ramanathan, Shriram


    Presents an account of the fundamental structure-property relations in oxide thin films. This title discusses the functional properties of thin film oxides in the context of applications in the electronics and renewable energy technologies.

  10. Modern Thin-Layer Chromatography. (United States)

    Poole, Colin F.; Poole, Salwa K.


    Some of the important modern developments of thin-layer chromatography are introduced. Discussed are the theory and instrumentation of thin-layer chromatography including multidimensional and multimodal techniques. Lists 53 references. (CW)

  11. n型有序多孔硅基氧化钨室温气敏性能研究%Gas-sensing properties at room temperature for the sensors based on tungsten oxide thin films sputtered on n-type ordered porous silicon∗

    Institute of Scientific and Technical Information of China (English)

    胡明; 刘青林; 贾丁立; 李明达


    n-type porous silicons are prepared by the electrochemical corrosion method, on which tungsten oxide thin films with different thickness values are sputtered using DC reactive magnetron sputtering. The structures of ordered porous silicons and tungsten oxide thin films are characterized using field emission scanning electron microscope, which show that the pores are pillared and ordered and the thin films cover the porous layer loosely with many pores open to ambient air. The X-ray diffraction characterization indicates that the lattice structure of tungsten oxide thin film is mainly triclinic polycrystalline. The gas-sensing properties at room temperature for both ordered porous silicon and composite structure are studied, which indicate that the latter is much more sensitive to nitrogen dioxide than the former. And there is a critical spurting time of WO3 thin film, which in our case is 10 min. The sensing mechanism of composite structure is discussed and the probable explanation for the improvement of sensitivity to NO2 is the formation of hetero-junctions between the ordered porous silicon layer and the WO3 thin film. In addition, there exists an inversion layer on the surface of the WO3 thin film, which causes the anomalous resistance to change during the gas sensing measurements.%  利用电化学腐蚀方法制备了n型有序多孔硅,并以此为基底用直流磁控溅射法在其表面溅射不同厚度的氧化钨薄膜。利用X射线和扫描电子显微镜表征了材料的成分和结构,结果表明,多孔硅的孔呈柱形有序分布,溅射10 min的WO3薄膜是多晶结构,比较松散地覆盖在整个多孔硅的表面。分别测试了多孔硅和多孔硅基氧化钨在室温条件下对二氧化氮的气敏性能,结果表明,相对于多孔硅,多孔硅基氧化钨薄膜对二氧化氮的气敏性能显著提高。对多孔硅基氧化钨复合结构的气敏机理分析认为,多孔硅和氧化钨薄膜复合形成

  12. Nanotwin hardening in a cubic chromium oxide thin film

    Directory of Open Access Journals (Sweden)

    Kazuma Suzuki


    Full Text Available NaCl-type (B1 chromium oxide (CrO has been expected to have a high hardness value and does not exist as an equilibrium phase. We report a B1-based Cr0.67O thin film with a thickness of 144 nm prepared by pulsed laser deposition as an epitaxial thin film on a MgO single crystal. The thin film contained a number of stacking faults and had a nanotwinned structure composed of B1 with disordered vacancies and corundum structures. The Cr0.67O thin film had a high indentation hardness value of 44 GPa, making it the hardest oxide thin film reported to date.

  13. Strong thin membrane structure. [solar sails (United States)

    Frazer, R. E. (Inventor)


    A continuous process is described for producing strong lightweight structures for use as solar sails for spacecraft propulsion by radiation pressure. A thin reflective coating, such as aluminum, is applied to a rotating cylinder. A nylon mesh, applied over the aluminum coating, is then coated with a polymerizing material such as a para-xylylene monomer gas to polymerize as a film bound to the mesh and the aluminum. An emissivity increasing material such as chromium or silicon monoxide is applied to the polymer film to disperse such material colloidally into the growing polymer film, or to the final polymer film. The resulting membrane structure is then removed from the cylinder. Alternately, the membrane structure can be formed by etching a substrate in the form of an organic film such as a polymide, or a metal foil, to remove material from the substrate and reduce its thickness. A thin reflective coating (aluminum) is applied on one side of the substrate, and an emissivity increasing coating is applied on the reverse side of the substrate.

  14. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco


    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  15. Characterization of the Mechanical and Electromechanical Properties of Carbon Nanotube-Latex Thin Films (United States)

    Wang, Long

    The safe, reliable, and efficient operation of structural systems can be undermined by various damage modes. To identify and respond to structural damage in a timely fashion, technologies for structural health monitoring (SHM) have been extensively studied and widely applied in practice. In this context, strain sensors play a crucial role in evaluating structural performance, as they can provide insights about internal stresses within structural components. As compared to conventional rigid and locally implemented strain sensors, piezoresistive nanostructured materials provide considerable opportunities for developing flexible, light-weight, and densely distributed sensors or "sensing skins." Although many types of nanomaterial-based strain sensors have been fabricated, most of them rely on complicated and expensive manufacturing procedures, which hinder their large-scale applications. To address the aforementioned limitations, this thesis proposes the development, optimization, and characterization of a type of spray-fabricated carbon nanotube (CNT)-based thin film strain sensor. By using spray coating or airbrushing, thin films can be coated and readily applied onto large structural surfaces. It was found that the mechanical and electrical properties of the nanocomposite films could be optimized by modifying CNT concentrations and conducting post-fabrication annealing. Overall, the CNT nanocomposite films possess favorable mechanical properties as well as stable and reversible electromechanical properties, rendering them promising candidates as strain sensors suitable for SHM applications.

  16. Synchrotron X-Ray Diffraction Analysis of Meteorites in Thin Section: Preliminary Results (United States)

    Treiman, A. H.; Lanzirotti, A.; Xirouchakis, D.


    X-ray diffraction is the pre-eminent technique for mineral identification and structure determination, but is difficult to apply to grains in thin section, the standard meteorite preparation. Bright focused X-ray beams from synchrotrons have been used extensively in mineralogy and have been applied to extraterrestrial particles. The intensity and small spot size achievable in synchrotron X-ray beams makes them useful for study of materials in thin sections. Here, we describe Synchrotron X-ray Diffraction (SXRD) in thin section as done at the National Synchrotron Light Source, and cite examples of its value for studies of meteorites in thin section.

  17. MOF thin films: existing and future applications. (United States)

    Shekhah, O; Liu, J; Fischer, R A; Wöll, Ch


    The applications and potentials of thin film coatings of metal-organic frameworks (MOFs) supported on various substrates are discussed in this critical review. Because the demand for fabricating such porous coatings is rather obvious, in the past years several synthesis schemes have been developed for the preparation of thin porous MOF films. Interestingly, although this is an emerging field seeing a rapid development a number of different applications on MOF films were either already demonstrated or have been proposed. This review focuses on the fabrication of continuous, thin porous films, either supported on solid substrates or as free-standing membranes. The availability of such two-dimensional types of porous coatings opened the door for a number of new perspectives for functionalizing surfaces. Also for the porous materials themselves, the availability of a solid support to which the MOF-films are rigidly (in a mechanical sense) anchored provides access to applications not available for the typical MOF powders with particle sizes of a few μm. We will also address some of the potential and applications of thin films in different fields like luminescence, QCM-based sensors, optoelectronics, gas separation and catalysis. A separate chapter has been devoted to the delamination of MOF thin films and discusses the potential to use them as free-standing membranes or as nano-containers. The review also demonstrates the possibility of using MOF thin films as model systems for detailed studies on MOF-related phenomena, e.g. adsorption and diffusion of small molecules into MOFs as well as the formation mechanism of MOFs (101 references).

  18. Effect of Initial Bulk Material Composition on Thermoelectric Properties of Bi2Te3 Thin Films (United States)

    Budnik, A. V.; Rogacheva, E. I.; Pinegin, V. I.; Sipatov, A. Yu.; Fedorov, A. G.


    V2VI3 compounds and solid solutions based on them are known to be the best low-temperature thermoelectric (TE) materials. The predicted possibility of enhancement of the TE figure of merit in two-dimensional (2D) structures has stimulated studies of the properties of these materials in the thin-film state. The goal of the present work is to study the dependences of the Seebeck coefficient S, electrical conductivity σ, Hall coefficient R H, charge carrier mobility μ H, and TE power factor P = S 2 σ of Bi2Te3 thin films on the composition of the initial bulk material used for preparing them. Thin films with thickness d = 200 nm to 250 nm were grown by thermal evaporation in vacuum of stoichiometric Bi2Te3 crystals (60.0 at.% Te) and of crystals with 62.8 at.% Te onto glass substrates at temperatures T S of 320 K to 500 K. It was established that the conductivity type of the initial material is reproduced in films fairly well. For both materials, an increase in T S leads to an increase in the thin-film structural perfection, better correspondence between the film composition and that of the initial material, and increase in S, R H, μ H, σ, and P. The room-temperature maximum values of P for the films grown from crystals with 60.0 at.% and 62.8 at.% Te are P = 7.5 × 10-4 W/K2 m and 35 × 10-4 W/K2 m, respectively. Thus, by using Bi2Te3 crystals with different stoichiometry as initial materials, one can control the conductivity type and TE parameters of the films, applying a simple and low-cost method of thermal evaporation from a single source.

  19. Characteristics of heat transfer fouling of thin stillage using model thin stillage and evaporator concentrates (United States)

    Challa, Ravi Kumar

    , fiber and minerals, simulated thin stillage was prepared with carbohydrate mixtures and tested for fouling rates. Induction period, maximum fouling resistance and mean fouling rates were determined. Two experiments were performed with two varieties of starch, waxy and high amylose and short chain carbohydrates, corn syrup solids and glucose. Interaction effects of glucose with starch varieties were studied. In the first experiment, short chain carbohydrates individual and interaction effects with starch were studied. For mixtures prepared from glucose and corn syrup solids, no fouling was observed. Mixtures prepared from starch, a long glucose polymer, showed marked fouling. Corn syrup solids and glucose addition to pure starch decreased the mean fouling rates and maximum fouling resistances. Between corn syrup solids and glucose, starch fouling rates were reduced with addition of glucose. Induction periods of pure mixtures of either glucose or corn syrup solids were longer than the test period (5 h). Pure starch mixture had no induction period. Maximum fouling resistance was higher for mixtures with higher concentration of longer polymers. Waxy starch had a longer induction period than high amylose starch. Maximum fouling resistance was higher for waxy than high amylose starch. Addition of glucose to waxy or high amylose starch increased induction period of mixtures longer than 5 h test period. It appears that the bulk fluid temperature plays an important role on carbohydrate mixture fouling rates. Higher bulk fluid temperatures increased the initial fouling rates of the carbohydrate mixtures. Carbohydrate type, depending on the polymer length, influenced the deposit formation. Longer chain carbohydrate, starch, had higher fouling rates compared to shorter carbohydrates such as glucose and corn syrup solids. For insoluble carbohydrate mixtures, fouling was severe. As carbohydrate solubility increased with bulk fluid temperature, surface reaction increased at probe

  20. Atomic Structure Control of Silica Thin Films on Pt(111)

    KAUST Repository

    Crampton, Andrew S


    Metal oxide thin films grown on metal single crystals are commonly used to model heterogeneous catalyst supports. The structure and properties of thin silicon dioxide films grown on metal single crystals have only recently been thoroughly characterized and their spectral properties well established. We report the successful growth of a three- dimensional, vitreous silicon dioxide thin film on the Pt(111) surface and reproduce the closed bilayer structure previously reported. The confirmation of the three dimensional nature of the film is unequivocally shown by the infrared absorption band at 1252 cm−1. Temperature programmed desorption was used to show that this three-dimensional thin film covers the Pt(111) surface to such an extent that its application as a catalyst support for clusters/nanoparticles is possible. The growth of a three-dimensional film was seen to be directly correlated with the amount of oxygen present on the surface after the silicon evaporation process. This excess of oxygen is tentatively attributed to atomic oxygen being generated in the evaporator. The identification of atomic oxygen as a necessary building block for the formation of a three-dimensional thin film opens up new possibilities for thin film growth on metal supports, whereby simply changing the type of oxygen enables thin films with different atomic structures to be synthesized. This is a novel approach to tune the synthesis parameters of thin films to grow a specific structure and expands the options for modeling common amorphous silica supports under ultra high vacuum conditions.

  1. [Spectral emissivity of thin films]. (United States)

    Zhong, D


    In this paper, the contribution of multiple reflections in thin film to the spectral emissivity of thin films of low absorption is discussed. The expression of emissivity of thin films derived here is related to the thin film thickness d and the optical constants n(lambda) and k(lambda). It is shown that in the special case d-->infinity the emissivity of thin films is equivalent to that of the bulk material. Realistic numerical and more precise general numerical results for the dependence of the emissivity on d, n(lambda) and k(lambda) are given.

  2. Debt Financing and Thin-Capitalization: Case Study in Slovenia

    Directory of Open Access Journals (Sweden)

    Lidija Hauptman


    Full Text Available Since each form of financing provides a different level of security and risk, companies are often faced with a dilemma, which equity to debt ratio to choose in financial structure. In order to avoid overexploitation of certain types of debt financing, tax legislation defines a thin capitalization rule. In this paper we present, how the relationship between equity and debt financing has changed in the period 1997–2012 and how the thin capitalization rules affected this relationship in the selected parent companies in Slovenia. The analysis reveals that the proportion of debt financing increased before and after the introduction of thin capitalization rules throughout the period.

  3. Structure of Thin Irreducible Modules of a Q-polynomial Distance-Regular Graph

    CERN Document Server

    Cerzo, Diana R


    Let Gamma be a Q-polynomial distance-regular graph with vertex set X, diameter D geq 3 and adjacency matrix A. Fix x in X and let A*=A*(x) be the corresponding dual adjacency matrix. Recall that the Terwilliger algebra T=T(x) is the subalgebra of Mat_X(C) generated by A and A*. Let W denote a thin irreducible T-module. It is known that the action of A and A* on W induces a linear algebraic object known as a Leonard pair. Over the past decade, many results have been obtained concerning Leonard pairs. In this paper, these results will be applied to obtain a detailed description of W. In particular, we give a description of W in terms of its intersection numbers, dual intersection numbers and parameter array. Finally, we apply our results to the case in which Gamma has q-Racah type or classical parameters.

  4. Electrodeposition of ZnO thin films on n-Si(100)

    Energy Technology Data Exchange (ETDEWEB)

    Dalchiele, E.A.; Giorgi, P.; Marotti, R.E. [Facultad de Ingenieria, Instituto de Fisica, Herrera y Reissig 565, C.C. 30, 11000 Montevideo (Uruguay); Martin, F.; Ramos-Barrado, J.R.; Ayouci, R.; Leinen, D. [Laboratorio de Materiales y Superficie, Unidad asociada al CSIC, Departamento de Fisica Aplicada and Ingenieria Quimica, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga (Spain)


    In this study, ZnO thin films have been deposited onto monocrystalline n-type Si(100) by electrodeposition at different applied potentials. XRD shows a preferential orientation (0002) that increases when the applied cathodic potential increases. The XPS analysis presents a Zn/O composition close to stoichiometric. SEM micrographs show a compact structure with localized platelets with a grain size of about 10{mu}m. However, crystallite size determined by the Scherrer method shows a size close to 2.50x10{sup -2}{mu}m, then the grains can be considered as clusters of crystallites. Optical measurements were made on samples deposited on ITO/glass through the same procedures giving a band gap of 3.3eV in agreement with the reported values for ZnO at room temperature.

  5. Thin film superfluid optomechanics

    CERN Document Server

    Baker, Christopher G; McAuslan, David L; Sachkou, Yauhen; He, Xin; Bowen, Warwick P


    Excitations in superfluid helium represent attractive mechanical degrees of freedom for cavity optomechanics schemes. Here we numerically and analytically investigate the properties of optomechanical resonators formed by thin films of superfluid $^4$He covering micrometer-scale whispering gallery mode cavities. We predict that through proper optimization of the interaction between film and optical field, large optomechanical coupling rates $g_0>2\\pi \\times 100$ kHz and single photon cooperativities $C_0>10$ are achievable. Our analytical model reveals the unconventional behaviour of these thin films, such as thicker and heavier films exhibiting smaller effective mass and larger zero point motion. The optomechanical system outlined here provides access to unusual regimes such as $g_0>\\Omega_M$ and opens the prospect of laser cooling a liquid into its quantum ground state.


    Directory of Open Access Journals (Sweden)

    Miroslav RADOVANOVIC


    Full Text Available Laser cutting machines are used for precise contour cutting thin sheet. In industrial application nowadays various types and construction of laser cutting machines can be met. For contour cutting 3-D thin sheet parts laser cutting machines with rotation movements and laser robots are used. Laser generates the light beam, that presents a tool in working process. Application of laser cutting machines made possible good quality of products, flexibility of production and enlargement of economy

  7. Thin, Lightweight Solar Cell (United States)

    Brandhorst, Henry W., Jr.; Weinberg, Irving


    Improved design for thin, lightweight solar photovoltaic cells with front contacts reduces degradation of electrical output under exposure to energetic charged particles (protons and electrons). Increases ability of cells to maintain structural integrity under exposure to ultraviolet radiation by eliminating ultraviolet-degradable adhesives used to retain cover glasses. Interdigitated front contacts and front junctions formed on semiconductor substrate. Mating contacts formed on back surface of cover glass. Cover glass and substrate electrostatically bonded together.

  8. Thin film processes

    CERN Document Server

    Vossen, John L


    Remarkable advances have been made in recent years in the science and technology of thin film processes for deposition and etching. It is the purpose of this book to bring together tutorial reviews of selected filmdeposition and etching processes from a process viewpoint. Emphasis is placed on the practical use of the processes to provide working guidelines for their implementation, a guide to the literature, and an overview of each process.

  9. Stoichiometry and thickness dependence of superconducting properties of niobium nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Beebe, Melissa R., E-mail:; Beringer, Douglas B.; Burton, Matthew C.; Yang, Kaida; Lukaszew, R. Alejandra [Department of Physics, The College of William & Mary, Small Hall, 300 Ukrop Way, Williamsburg, Virginia 23185 (United States)


    The current technology used in linear particle accelerators is based on superconducting radio frequency (SRF) cavities fabricated from bulk niobium (Nb), which have smaller surface resistance and therefore dissipate less energy than traditional nonsuperconducting copper cavities. Using bulk Nb for the cavities has several advantages, which are discussed elsewhere; however, such SRF cavities have a material-dependent accelerating gradient limit. In order to overcome this fundamental limit, a multilayered coating has been proposed using layers of insulating and superconducting material applied to the interior surface of the cavity. The key to this multilayered model is to use superconducting thin films to exploit the potential field enhancement when these films are thinner than their London penetration depth. Such field enhancement has been demonstrated in MgB{sub 2} thin films; here, the authors consider films of another type-II superconductor, niobium nitride (NbN). The authors present their work correlating stoichiometry and superconducting properties in NbN thin films and discuss the thickness dependence of their superconducting properties, which is important for their potential use in the proposed multilayer structure. While there are some previous studies on the relationship between stoichiometry and critical temperature T{sub C}, the authors are the first to report on the correlation between stoichiometry and the lower critical field H{sub C1}.

  10. Comprehensive characterization of all-solid-state thin films commercial microbatteries by Electrochemical Impedance Spectroscopy (United States)

    Larfaillou, S.; Guy-Bouyssou, D.; le Cras, F.; Franger, S.


    Constant miniaturization of electronic devices opens the way to the development of thin film microbatteries (TFB). For this type of devices, the use of an all-solid-state thin film technology has many advantages over conventional lithium cells. These microbatteries are thin, bendable and can be produced with a customizable shape for integration in microelectronic devices. Moreover, without liquid electrolyte, they are safer. With the aim to support the industrial production of these TFBs, adequate tools for understanding the electrochemical behavior of the complete microbattery and the identification of their possible failures that can occur have to be developed. In this context, the Electrochemical Impedance Spectroscopy seems to be a good compromise for cells characterization. Widely used for the characterization of liquid electrolyte-based batteries, this technique has been less applied to all solid state batteries, mainly because of the difficulty to work with a two-electrode system. There has been no comprehensive study deeply explaining the impedance evolution during the entire life of a microbattery. In this paper, physical characterizations of individual active materials and aging experiments have been performed in order to undoubtedly assign each EIS contributions, and to propose a more comprehensive electrical model for this family of commercial all-solid-state microbatteries.

  11. Atomically thin layers of B-N-C-O with tunable composition. (United States)

    Ozturk, Birol; de-Luna-Bugallo, Andres; Panaitescu, Eugen; Chiaramonti, Ann N; Liu, Fangze; Vargas, Anthony; Jiang, Xueping; Kharche, Neerav; Yavuzcetin, Ozgur; Alnaji, Majed; Ford, Matthew J; Lok, Jay; Zhao, Yongyi; King, Nicholas; Dhar, Nibir K; Dubey, Madan; Nayak, Saroj K; Sridhar, Srinivas; Kar, Swastik


    In recent times, atomically thin alloys of boron, nitrogen, and carbon have generated significant excitement as a composition-tunable two-dimensional (2D) material that demonstrates rich physics as well as application potentials. The possibility of tunably incorporating oxygen, a group VI element, into the honeycomb sp(2)-type 2D-BNC lattice is an intriguing idea from both fundamental and applied perspectives. We present the first report on an atomically thin quaternary alloy of boron, nitrogen, carbon, and oxygen (2D-BNCO). Our experiments suggest, and density functional theory (DFT) calculations corroborate, stable configurations of a honeycomb 2D-BNCO lattice. We observe micrometer-scale 2D-BNCO domains within a graphene-rich 2D-BNC matrix, and are able to control the area coverage and relative composition of these domains by varying the oxygen content in the growth setup. Macroscopic samples comprising 2D-BNCO domains in a graphene-rich 2D-BNC matrix show graphene-like gate-modulated electronic transport with mobility exceeding 500 cm(2) V(-1) s(-1), and Arrhenius-like activated temperature dependence. Spin-polarized DFT calculations for nanoscale 2D-BNCO patches predict magnetic ground states originating from the B atoms closest to the O atoms and sizable (0.6 eV thin platform.

  12. 鼓式取皮机的切取技巧在瘢痕松解植皮中应用%The technology of Drum Type Skin Taking Machine Drum applied in the scar tissues resecting and skin grafting

    Institute of Scientific and Technical Information of China (English)

    曾光伟; 李玉梅; 何俊俊; 杨明勇


    目的:鼓式取皮机的应用技巧在临床应用.方法:40例患者存在颌颈或腘窝瘢痕增生挛缩畸形并切除松解,鼓式取皮机切取的中厚皮片移植矫正.结果:鼓式取皮机的应用技巧能够获取精确中厚皮片且移植成活良好.结论:鼓式取皮机的应用技巧实施,能够提供精确的中厚皮片;皮片移植的临床治疗效果良好.%Objective The application techniques of Drum Type Skin Taking Machine in acquisition the appropriate thick skin grafting in clinical applications.Methods 40 cases of patients with scar proliferation of jaw or neck with scar excision and relax,Drum Type Skin Taking Machine take the appropriate thick skin in correction with skin grafting.Results The application techniques of Drum Type Skin Taking Machine can obtain the accurate appropriate thick skin,the skin survived well after grafting.Conclusion Drum Type Skin Taking Machine can provide the accurate appropriate thick skin in the skin grafting with good clinical outcomes.

  13. Transparent conducting oxide layers for thin film silicon solar cells

    NARCIS (Netherlands)

    Rath, J.K.; Liu, Y.; de Jong, M.M.; de Wild, J.; Schuttauf, J.A.; Brinza, M.; Schropp, R.E.I.


    Texture etching of ZnO:1%Al layers using diluted HCl solution provides excellent TCOs with crater type surface features for the front contact of superstrate type of thin film silicon solar cells. The texture etched ZnO:Al definitely gives superior performance than Asahi SnO2:F TCO in case of nanocry

  14. Perspectives on Applied Ethics



    Applied ethics is a growing, interdisciplinary field dealing with ethical problems in different areas of society. It includes for instance social and political ethics, computer ethics, medical ethics, bioethics, envi-ronmental ethics, business ethics, and it also relates to different forms of professional ethics. From the perspective of ethics, applied ethics is a specialisation in one area of ethics. From the perspective of social practice applying eth-ics is to focus on ethical aspects and ...

  15. Advances in Applied Mechanics



    Advances in Applied Mechanics draws together recent significant advances in various topics in applied mechanics. Published since 1948, Advances in Applied Mechanics aims to provide authoritative review articles on topics in the mechanical sciences, primarily of interest to scientists and engineers working in the various branches of mechanics, but also of interest to the many who use the results of investigations in mechanics in various application areas, such as aerospace, chemical, civil, en...

  16. Applied Neuroscience Laboratory Complex (United States)

    Federal Laboratory Consortium — Located at WPAFB, Ohio, the Applied Neuroscience lab researches and develops technologies to optimize Airmen individual and team performance across all AF domains....

  17. Tailoring electronic structure of polyazomethines thin films

    Directory of Open Access Journals (Sweden)

    J. Weszka


    Full Text Available Purpose: The aim of this work is to show how electronic properties of polyazomethine thin films deposited by chemical vapor deposition method (CVD can be tailored by manipulating technological parameters of pristine films preparation as well as modifying them while the as-prepared films put into iodine atmosphere.Design/methodology/approach: The recent achievements in the field of designing and preparation methods to be used while preparing polymer photovoltaic solar cells or optoelectronic devices.Findings: The method used allow for pure pristine polymer thin films to be prtepared without any unintentional doping taking place during prepoaration methods. This is a method based on polycondensation process, where polymer chain developing is running directly due to chemical reaction between molecules of bifunctional monomers. The method applied to prepare thin films of polyazomethines takes advantage of monomer transporting by mreans of neutral transport agent as pure argon is.Research limitations/implications: The main disadvantage of alternately conjugated polymers seems to be quite low mobility of charge carrier that is expected to be a consequence of their backbone being built up of sp2 hybridized carbon and nitrogen atoms. Varying technological conditions towards increasing reagents mass transport to the substrate is expected to give such polyazomethine thin films organization that phenylene rin stacking can result in special π electron systems rather than linear ones as it is the case.Originality/value: Our results supply with original possibilities which can be useful in ooking for good polymer materials for optoelectronic and photovoltaic applications. These results have been gained on polyazomethine thin films but their being isoelectronic counterpart to widely used poly p-phenylene vinylene may be very convenient to develop high efficiency polymer solar cells

  18. Thin Silicon MEMS Contact-Stress Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Kotovsky, J; Tooker, A; Horsley, D


    This thin, MEMS contact-stress (CS) sensor continuously and accurately measures time-varying, solid interface loads in embedded systems over tens of thousands of load cycles. Unlike all other interface load sensors, the CS sensor is extremely thin (< 150 {micro}m), provides accurate, high-speed measurements, and exhibits good stability over time with no loss of calibration with load cycling. The silicon CS sensor, 5 mm{sup 2} and 65 {micro}m thick, has piezoresistive traces doped within a load-sensitive diaphragm. The novel package utilizes several layers of flexible polyimide to mechanically and electrically isolate the sensor from the environment, transmit normal applied loads to the diaphragm, and maintain uniform thickness. The CS sensors have a highly linear output in the load range tested (0-2.4 MPa) with an average accuracy of {+-} 1.5%.

  19. Thermal conductivity of nanoscale thin nickel films

    Institute of Scientific and Technical Information of China (English)

    YUAN Shiping; JIANG Peixue


    The inhomogeneous non-equilibrium molecular dynamics (NEMD) scheme is applied to model phonon heat conduction in thin nickel films. The electronic contribution to the thermal conductivity of the film is deduced from the electrical conductivity through the use of the Wiedemann-Franz law. At the average temperature of T = 300 K, which is lower than the Debye temperature ()D = 450 K,the results show that in a film thickness range of about 1-11 nm, the calculated cross-plane thermal conductivity decreases almost linearly with the decreasing film thickness, exhibiting a remarkable reduction compared with the bulk value. The electrical and thermal conductivities are anisotropic in thin nickel films for the thickness under about 10 nm. The phonon mean free path is estimated and the size effect on the thermal conductivity is attributed to the reduction of the phonon mean free path according to the kinetic theory.

  20. 轻型模板在铁路隧道斜切式洞门中的应用%Light Template Applied in Brim Chamfered Type Portal Part of Railway Tunnel

    Institute of Scientific and Technical Information of China (English)



    With the upgrading of the railway speed, more and more tunnels are needed to set brim chamfered type portal part as buffer structure in order to reduce and mitigate the aerodynamic effect generated by trains running in a tunnel. But the construction technique is complex. It’ s difficult to locate formwork and construct. This paper, combined with the engi⁃neering example, described in detail the construction technique of brim chamfered type portal part, and put forward the fea⁃sibility that light materials such as bamboo plywood used in the construction of chamfered type portal part.%随着铁路时速的提升,为降低及缓解列车在隧道内运行时产生的空气动力学效应,越来越多的隧道均需要设置帽檐斜切式缓冲结构作为洞门。但帽檐斜切式洞门施工技术复杂,立模定位困难,施工难度大。本文结合工程实例,详细阐述了帽檐斜切式洞门的施工技术,并提出采用竹胶板等轻型材料施工斜切式洞门的可行性。

  1. Apparent Oxygen Uphill Diffusion in La0.8Sr0.2MnO3 Thin Films upon Cathodic Polarization. (United States)

    Huber, Tobias M; Navickas, Edvinas; Friedbacher, Gernot; Hutter, Herbert; Fleig, Jürgen


    The impact of cathodic bias on oxygen transport in La0.8Sr0.2MnO3 (LSM) thin films was investigated. Columnar-grown LSM thin films with different microstructures were deposited by pulsed laser deposition. (18)O tracer experiments were performed on thin film microelectrodes with an applied cathodic bias of -300 or -450 mV, and the microelectrodes were subsequently analyzed by time-of-flight secondary ion mass spectrometry. The (18)O concentration in the cathodically polarized LSM microelectrodes was strongly increased relative to that in the thermally annealed film (without bias). Most remarkable, however, was the appearance of a pronounced (18)O fraction maximum in the center of the films. This strongly depended on the applied bias and on the microstructure of the LSM thin layers. The unusual shape of the (18)O depth profiles was caused by a combination of Wagner-Hebb-type stoichiometry polarization of the LSM bulk, fast grain boundary transport and voltage-induced modification of the oxygen incorporation kinetics.

  2. Stress in Thin Films; Diffraction Elastic Constants and Grain Interaction

    Institute of Scientific and Technical Information of China (English)


    Untextured bulk polycrystals usually possess macroscopically isotropic elastic properties whereas for most thin films transverse isotropy is expected, owing to the limited dimensionality. The usually applied models for the calculation of elastic constants of polycrystals from single crystal elastic constants (so-called grain interaction models) erroneously predict macroscopic isotropy for an (untextured) thin film. This paper presents a summary of recent work where it has been demonstrated for the first time by X-ray diffraction analysis of stresses in thin films that elastic grain interaction can lead to macroscopically elastically anisotropic behaviour (shown by non-linear sin2ψ plots). A new grain interaction model, predicting the macroscopically anisotropic behaviour of thin films, is proposed.

  3. Thermoviscoelastic dynamic response for a composite material thin narrow strip

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Hong Liang; Qi, Li-Li; Liu, Hai-Bo [Hunan University, Changsha (China)


    Based on von Karman nonlinear strain-displacement relationships and classical thin plate theory, a list of nonlinear dynamic equilibrium equations for a viscoelastic composite material thin narrow strip under thermal and mechanic loads are deduced. According to the material constitutive relationship and the relaxation modulus in the form of the Prony series, combing with the Newmark method and the Newton-cotes integration method, a new numerical algorithm for direct solving the whole problem in the time domain is established. By applying this numerical algorithm, the viscoelastic composite material thin narrow strip as the research subject is analyzed systematically, and its rich dynamical behaviors are revealed comprehensively. To verify the accuracy of the present work, a comparison is made with previously published results. Finally, the viscoelastic composite material thin narrow strip under harmonic excitation load and impact load are discussed in detail, and many valuable thermoviscoelastic dynamic characteristics are revealed.

  4. A versatile platform for magnetostriction measurements in thin films (United States)

    Pernpeintner, M.; Holländer, R. B.; Seitner, M. J.; Weig, E. M.; Gross, R.; Goennenwein, S. T. B.; Huebl, H.


    We present a versatile nanomechanical sensing platform for the investigation of magnetostriction in thin films. It is based on a doubly clamped silicon nitride nanobeam resonator covered with a thin magnetostrictive film. Changing the magnetization direction within the film plane by an applied magnetic field generates a magnetoelastic stress and thus changes the resonance frequency of the nanobeam. A measurement of the resulting resonance frequency shift, e.g., by optical interferometry, allows to quantitatively determine the magnetostriction constants of the thin film. In a proof-of-principle experiment, we determine the magnetostriction constants of a 10 nm thick polycrystalline cobalt film, showing very good agreement with literature values. The presented technique aims, in particular, for the precise measurement of magnetostriction in a variety of (conducting and insulating) thin films, which can be deposited by, e.g., electron beam deposition, thermal evaporation, or sputtering.

  5. Polyelectrolyte Coacervates Deposited as High Gas Barrier Thin Films. (United States)

    Haile, Merid; Sarwar, Owais; Henderson, Robert; Smith, Ryan; Grunlan, Jaime C


    Multilayer coatings consisting of oppositely charged polyelectrolytes have proven to be extraordinarily effective oxygen barriers but require many processing steps to fabricate. In an effort to prepare high oxygen barrier thin films more quickly, a polyelectrolyte complex coacervate composed of polyethylenimine and polyacrylic acid is prepared. The coacervate fluid is applied as a thin film using a rod coating process. With humidity and thermal post-treatment, a 2 µm thin film reduces the oxygen transmission rate of 0.127 mm poly(ethylene terephthalate) by two orders of magnitude, rivalling conventional oxygen barrier technologies. These films are fabricated in ambient conditions using low-cost, water-based solutions, providing a tremendous opportunity for single-step deposition of polymeric high barrier thin films.

  6. Advances in targetry with thin diamond-like carbon foils

    CERN Document Server

    Liechtenstein, V K; Olshanski, E D; Repnow, R; Levin, J; Hellborg, R; Persson, P; Schenkel, T


    Thin and stable diamond-like carbon (DLC) foils, which were fabricated at the Kurchatov Institute by sputter deposition, have proved recently to be advantageous for stripping and secondary electron timing of high energy heavy ions in a number of accelerator experiments. This resulted in expanding applications of these DLC foils which necessitated further development efforts directed toward the following applications of DLC targetry: (i) thin stripper foils for lower energy tandem accelerators, (ii) enlarged (up to 66 mm in diameter) stop foils for improved time-of-flight elastic recoil detection ion beam analysis, and (iii) ultra-thin (about 0.6 mu g/cm sup 2) DLC foils for some fundamental and applied physics experiments. Along with the fabrication of thin DLC stripper foils for tandem accelerators, much thicker (up to 200 mu g/cm sup 2) foils for post-stripping of heavy-ion beams in higher energy linacs, are within reach.

  7. Light waves in thin films and integrated optics. (United States)

    Tien, P K


    Integrated optics is a far-reaching attempt to apply thin-film technology to optical circuits and devices, and, by using methods of integrated circuitry, to achieve a better and more economical optical system. The specific topics discussed here are physics of light waves in thin films, materials and losses involved, methods of couplings light beam into and out of a thin film, and nonlinear interactions in waveguide structures. The purpose of this paper is to review in some detail the important development of this new and fascinating field, and to caution the reader that the technology involved is difficult because of the smallness and perfection demanded by thin-film optical devices.

  8. What are applied ethics? (United States)

    Allhoff, Fritz


    This paper explores the relationships that various applied ethics bear to each other, both in particular disciplines and more generally. The introductory section lays out the challenge of coming up with such an account and, drawing a parallel with the philosophy of science, offers that applied ethics may either be unified or disunified. The second section develops one simple account through which applied ethics are unified, vis-à-vis ethical theory. However, this is not taken to be a satisfying answer, for reasons explained. In the third section, specific applied ethics are explored: biomedical ethics; business ethics; environmental ethics; and neuroethics. These are chosen not to be comprehensive, but rather for their traditions or other illustrative purposes. The final section draws together the results of the preceding analysis and defends a disunity conception of applied ethics.

  9. Possibilities of working thick brown coal seams in the Stara Jama mine of Zenica mines by sublevel working methods applying self-advancing Westfalia-Luenen powered supports, type B. S. 2. 1 and I. B. S. 2. 2

    Energy Technology Data Exchange (ETDEWEB)

    Bijelic, V.; Ivkovic, M.; Slijepcevic, S.; Krizan, D.


    This paper describes the properties of 9 exploitable coal seams of Zenica colliery. Two of them have been intensively exploited over many years. It outlines the development of working methods from room and pillar up to fully mechanized longwall mining. As final result of the efforts made in order to improve the productivity of longwall mining a modified type of Westfalia-Luenen self-advancing powered support is described. The results achieved with this support are shown in a table. (9 refs.) (In Serbo-Croatian).

  10. Carbon Superatom Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Canning, A. [Cray Research, PSE, EPFL, 1015 Lausanne (Switzerland); Canning, A.; Galli, G. [Institut Romand de Recherche Numerique en Physique des Materiaux (IRRMA), IN-Ecublens, 1015 Lausanne (Switzerland); Kim, J. [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)


    We report on quantum molecular dynamics simulations of C{sub 28} deposition on a semiconducting surface. Our results show that under certain deposition conditions C{sub 28} {close_quote}s act as building blocks on a nanometer scale to form a thin film of nearly defect-free molecules. The C{sub 28} {close_quote}s behave as carbon superatoms, with the majority of them being threefold or fourfold coordinated, similar to carbon atoms in amorphous systems. The microscopic structure of the deposited film supports recent suggestions about the stability of a new form of carbon, the hyperdiamond solid. {copyright} {ital 1997} {ital The American Physical Society}

  11. "If Only I Were Thin Like Her, Maybe I Could Be Happy Like Her": The Self-Implications of Associating a Thin Female Ideal with Life Success (United States)

    Evans, Peggy Chin


    Women often feel dissatisfied with their appearance after comparing themselves to other females who epitomize the thin-ideal standard of beauty. The current study posits that women associate a thin-ideal female body type with positive life-success, and that it may be this psychological link that drives feelings of negativity toward the self after…

  12. Study of back reflectors for thin film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, H.; Mai, Y. [Baoding Tianwei Solarfilms Co., Ltd., Baoding 071051 (China); Wan, M. [Department of Chemistry and Material Science, Hunan Institute of Humanities, Science and Technology, Loudi 417000 (China); Gao, J.; Wang, Y.; He, T.; Feng, Y.; Yin, J.; Du, J.; Wang, J.; Sun, R. [Baoding Tianwei Solarfilms Co., Ltd., Baoding 071051 (China); Huang, Y., E-mail: [Baoding Tianwei Solarfilms Co., Ltd., Baoding 071051 (China)


    In this study, the reflection properties of transparent conductive oxide (TCO) films i.e. aluminum doped zinc oxide (ZnO:Al) and boron doped zinc oxide (ZnO:B) films plus aluminum (Al) films or white polyvinyl butyral (PVB) foils, which are usually used as the combined back reflectors of thin film silicon solar cells, are investigated. Sputtered ZnO:Al films were etched in diluted hydrochloric acid (1%) to achieve rough surface structures while textured ZnO:B films were directly prepared by a low pressure chemical vapor deposition technique. It is found that the rough TCO/Al reflectors show a low total reflection, which is mainly due to the parasitic absorption by the surface plasmons at the rough TCO/Al interfaces as well as the absorption in the TCO films. Differently, the rough TCO/white PVB foil reflectors display a slightly high light reflection regardless of the influence of the rough interface without the excitation of surface plasmons. Thus, the TCO/white PVB foil back reflectors could be a good candidate with respect to light utilization when they are applied in thin film silicon solar cells. - Highlights: • White polyvinyl butyral and transparent conductive oxide materials are used. • The reflection properties of TCO/Al and TCO/white PVB foil reflectors are studied. • The ZnO:Al and ZnO:B films are used as two types of TCO materials. • TCO/white PVB foil reflector shows a high reflection compared to TCO/Al reflector.

  13. PLD-grown thin film saturable absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Tellkamp, Friedjof


    The subject of this thesis is the preparation and characterization of thin films made of oxidic dielectrics which may find their application as saturable absorber in passively Q-switched lasers. The solely process applied for fabrication of the thin films was the pulsed laser deposition (PLD) which stands out against other processes by its flexibility considering the composition of the systems to be investigated. Within the scope of this thesis the applied saturable absorbers can be divided into two fundamentally different kinds of functional principles: On the one hand, saturable absorption can be achieved by ions embedded in a host medium. Most commonly applied bulk crystals are certain garnets like YAG (Y{sub 3}Al{sub 5}O{sub 12}) or the spinel forsterite (Mg{sub 2}SiO{sub 4}), in each case with chromium as dopant. Either of these media was investigated in terms of their behavior as PLD-grown saturable absorber. Moreover, experiments with Mg{sub 2}GeO{sub 4}, Ca{sub 2}GeO{sub 4}, Sc{sub 2}O{sub 3}, and further garnets like YSAG or GSGG took place. The absorption coefficients of the grown films of Cr{sup 4+}:YAG were determined by spectroscopic investigations to be one to two orders of magnitude higher compared to commercially available saturable absorbers. For the first time, passive Q-switching of a Nd:YAG laser at 1064 nm with Cr{sup 4+}:YAG thin films could be realized as well as with Cr:Sc{sub 2}O{sub 3} thin films. On the other hand, the desirable effect of saturable absorption can also be generated by quantum well structures. For this purpose, several layer system like YAG/LuAG, Cu{sub 2}O/MgO, and ZnO/corumdum were investigated. It turned out that layer systems with indium oxide (In{sub 2}O{sub 3}) did not only grew in an excellent way but also showed up a behavior regarding their photo luminescence which cannot be explained by classical considerations. The observed luminescence at roughly 3 eV (410 nm) was assumed to be of excitonic nature and its

  14. Using Organic Light-Emitting Electrochemical Thin-Film Devices to Teach Materials Science (United States)

    Sevian, Hannah; Muller, Sean; Rudmann, Hartmut; Rubner, Michael F.


    Materials science can be taught by applying organic light-emitting electrochemical thin-film devices and in this method students were allowed to make a light-emitting device by spin coating a thin film containing ruthenium (II) complex ions onto a glass slide. Through this laboratory method students are provided with the opportunity to learn about…

  15. Study of the leakage field of magnetic force microscopy thin-film tips using electron holography

    NARCIS (Netherlands)

    Frost, B.G.; Hulst, van N.F.; Lunedei, E.; Matteucci, G.; Rikkers, E.


    Electron holography is applied for the study of the leakage field of thin-film ferromagnetic tips used as probes in magnetic force microscopy. We used commercially available pyramidal tips covered o­n o­ne face with a thin NiCo film, which were then placed in a high external magnetic field directed

  16. Nucleation and growth of thin films of rod-like conjugated molecules

    NARCIS (Netherlands)

    Hlawacek, G.; Teichert, C.


    Thin films formed from small molecules are rapidly gaining importance in different technological fields. To explain their growth, methods developed for zero-dimensional atoms as the film-forming particles are applied. However, in organic thin-film growth the dimensionality of the building blocks com

  17. Ultra-thin multilayer capacitors.

    Energy Technology Data Exchange (ETDEWEB)

    Renk, Timothy Jerome; Monson, Todd C.


    The fabrication of ultra-thin lanthanum-doped lead zirconium titanate (PLZT) multilayer ceramic capacitors (MLCCs) using a high-power pulsed ion beam was studied. The deposition experiments were conducted on the RHEPP-1 facility at Sandia National Laboratories. The goal of this work was to increase the energy density of ceramic capacitors through the formation of a multilayer device with excellent materials properties, dielectric constant, and standoff voltage. For successful device construction, there are a number of challenging requirements including achieving correct stoichiometric and crystallographic composition of the deposited PLZT, as well as the creation of a defect free homogenous film. This report details some success in satisfying these requirements, although 900 C temperatures were necessary for PLZT perovskite phase formation. These temperatures were applied to a previously deposited multi-layer film which was then post-annealed to this temperature. The film exhibited mechanical distress attributable to differences in the coefficient of thermal expansion (CTE) of the various layers. This caused significant defects in the deposited films that led to shorts across devices. A follow-on single layer deposition without post-anneal produced smooth layers with good interface behavior, but without the perovskite phase formation. These issues will need to be addressed in order for ion beam deposited MLCCs to become a viable technology. It is possible that future in-situ heating during deposition may address both the CTE issue, and result in lowered processing temperatures, which in turn could raise the probability of successful MLCC formation.

  18. Handbook of thin film technology

    CERN Document Server

    Frey, Hartmut


    “Handbook of Thin Film Technology” covers all aspects of coatings preparation, characterization and applications. Different deposition techniques based on vacuum and plasma processes are presented. Methods of surface and thin film analysis including coating thickness, structural, optical, electrical, mechanical and magnetic properties of films are detailed described. The several applications of thin coatings and a special chapter focusing on nanoparticle-based films can be found in this handbook. A complete reference for students and professionals interested in the science and technology of thin films.

  19. Mesothelioma Applied Research Foundation (United States)

    ... Percentage Donations Tribute Wall Other Giving/Fundraising Opportunities Bitcoin Donation Form FAQs Speak with Mary Hesdorffer, Nurse ... Percentage Donations Tribute Wall Other Giving/Fundraising Opportunities Bitcoin Donation Form FAQs © 2017 Mesothelioma Applied Research Foundation, ...

  20. Applied eye tracking research

    NARCIS (Netherlands)

    Jarodzka, Halszka


    Jarodzka, H. (2010, 12 November). Applied eye tracking research. Presentation and Labtour for Vereniging Gewone Leden in oprichting (VGL i.o.), Heerlen, The Netherlands: Open University of the Netherlands.

  1. Phase field simulation of domain switching dynamics in multiaxial lead zirconate titanate thin films (United States)

    Britson, Jason

    in agreement with previously reported experimental results. Modeling results also showed that built in electric fields and long range strains around the ferroelastic domains were responsible for the observed property changes. During switching embedded ferroelastic domains were shown to arrest 180° ferroelectric switching by forming partially stabilized charged 90° domain walls in which the local bound charge was accommodated by substantial broadening of the domain wall. This led to the charged interface remaining stable over a modest range of applied biases and necessitated a larger switching bias than required far from the ferroelastic domain. This result may explain previously observed experimental difficulty poling PZT thin films around ferroelastic domain structures. Ferroelastic domains were then modeled around misfit dislocations in coherent thin films to better quantify interactions between two common types of elastic defects. Isolated misfit dislocations relieving compressive strain in the thin film were found to locally stabilize ferroelastic domains due to the creation of in-plane tensile stresses around the dislocations. Ferroelastic domains in thinner films extended completely to the free surface of the thin film, while in films with larger thicknesses only small, wedge-shaped domains were observed. The transition between the two domain structures with film thickness is shown to be well reproduced with transmission electron microscopy results. Calculations of the total free energy and its derivatives in the system show the transition has the characteristics of a first order transition at the critical thickness. These results show how dislocations may stabilize the wide range of observed domain structures based on the local stress environment around the dislocation. Dynamic responses of ferroelastic domains around dislocations were found to be reduced through elastic interactions. Inclusions of dislocations near the substrate interface reduced both the

  2. Computer and Applied Ethics


    越智, 貢


    With this essay I treat some problems raised by the new developments in science and technology, that is, those about Computer Ethics to show how and how far Applied Ethics differs from traditional ethics. I take up backgrounds on which Computer Ethics rests, particularly historical conditions of morality. Differences of conditions in time and space explain how Computer Ethics and Applied Ethics are not any traditional ethics in concrete cases. But I also investigate the normative rea...

  3. Fabrication of solution processed 3D nanostructured CuInGaS₂ thin film solar cells. (United States)

    Chu, Van Ben; Cho, Jin Woo; Park, Se Jin; Hwang, Yun Jeong; Park, Hoo Keun; Do, Young Rag; Min, Byoung Koun


    In this study we demonstrate the fabrication of CuInGaS₂ (CIGS) thin film solar cells with a three-dimensional (3D) nanostructure based on indium tin oxide (ITO) nanorod films and precursor solutions (Cu, In and Ga nitrates in alcohol). To obtain solution processed 3D nanostructured CIGS thin film solar cells, two different precursor solutions were applied to complete gap filling in ITO nanorods and achieve the desirable absorber film thickness. Specifically, a coating of precursor solution without polymer binder material was first applied to fill the gap between ITO nanorods followed by deposition of the second precursor solution in the presence of a binder to generate an absorber film thickness of ∼1.3 μm. A solar cell device with a (Al, Ni)/AZO/i-ZnO/CdS/CIGS/ITO nanorod/glass structure was constructed using the CIGS film, and the highest power conversion efficiency was measured to be ∼6.3% at standard irradiation conditions, which was 22.5% higher than the planar type of CIGS solar cell on ITO substrate fabricated using the same precursor solutions.

  4. Cultivating mental health professionals of applied type on basis of society needs%应用型精神卫生人才培养模式及其成效

    Institute of Scientific and Technical Information of China (English)

    崔光成; 刘吉成


    齐齐哈尔医学院开办精神医学专业已经有近30年的历史.长期以来,以面向基层培养应用型高级精神卫生人才为目标,充分利用地方优质的精神卫生医疗资源,采用独具特色的"专才"培养模式,学生专业思想稳定,临床实践能力强,人才培养质量高,受到了政府的充分肯定和用人单位的欢迎.%It has been 30 years history of running psychiatric medicine major in Qiqihar Medical U-niversity. For a long time, we regard facing the basic unit and training applied advanced mental health tal-ents as our own training objective, utilize the high-quality medical resources of mental health in the local and adopt the training model of the distinctive "specialized talents". The students' professional thoughts are steady and their abilities of clinical practice are strong. The quality of personnel cultivation is fully con-firmed by the government and gets welcomed by the employing unit.

  5. Transient vibration of thin viscoelastic orthotropic plates

    Institute of Scientific and Technical Information of China (English)

    J. Soukup; F. Vale(s); J. Volek; J. Sko(c)ilas


    This article deals with solutions of transient vibration of a rectangular viscoelastic orthotropic thin 2D plate for particular deformation models according to Flügge and Timoshenko-Mindlin. The linear model, a general standard viscoelastic body, of the rheologic properties of a viscoelastic material was applied. The time and coordinate curves of the basic quantities displacement, rotation, velocity, stress and deformation are compared. The results obtained by an approximate analytic method are compared with numerical results for 3D plate generated by FEM application and with experimental investigation.

  6. A particular thin-shell wormhole (United States)

    Övgün, A.; Sakalli, I.


    Using a black hole with scalar hair, we construct a scalar thin-shell wormhole ( TSW) in 2+1 dimensions by applying the Visser cut and paste technique. The surface stress, which is concentrated at the wormhole throat, is determined using the Darmois-Israel formalism. Using various gas models, we analyze the stability of the TSW. The stability region is changed by tuning the parameters l and u. We note that the obtained TSW originating from a black hole with scalar hair could be more stable with a particular value of the parameter l, but it still requires exotic matter.

  7. Vortex motion in YBCO thin films (United States)

    Shapiro, V.; Verdyan, A.; Lapsker, I.; Azoulay, J.


    Hall resistivity measurements as function of temperature in the vicinity of Tc were carried out on a thin films YBCO superconductors. A sign reversal of Hall voltage with external magnetic field applied along c axis have been observed upon crossing Tc. Hall voltage in the mixed state was found to be insensitive to the external magnetic field inversion. These effects are discussed and explained in terms of vortex motion under the influence of Magnus force balanced by large damping force. It is argued that in this model the flux-line velocity has component opposite to the superfluid current direction thus yielding a negative Hall voltage.


    Institute of Scientific and Technical Information of China (English)



    The global bifurcations and chaos of a simply supported rectangular thin plate with parametric excitation are analyzed. The formulas of the thin plate are derived by yon Karman type equation and Galerkin's approach. The method of multiple scales is used to obtain the averaged equations. Based on the averaged equations, the theory of the normal form is used to give the explicit expressions of the normal form associated with a double zero and a pair of pure imaginary eigenvalues by Maple program. On the basis of the normal form, a global bifurcation analysis of the parametrically excited recta ngular thin plate is given by the global perturbation method developed by Kovacic and Wiggins. The chaotic motion of thin plate is also found by numerical simulation.

  9. Manufacturing of glassy thin shell for adaptive optics: results achieved (United States)

    Poutriquet, F.; Rinchet, A.; Carel, J.-L.; Leplan, H.; Ruch, E.; Geyl, R.; Marque, G.


    Glassy thin shells are key components for the development of adaptive optics and are part of future & innovative projects such as ELT. However, manufacturing thin shells is a real challenge. Even though optical requirements for the front face - or optical face - are relaxed compared to conventional passive mirrors, requirements concerning thickness uniformity are difficult to achieve. In addition, process has to be completely re-defined as thin mirror generates new manufacturing issues. In particular, scratches and digs requirement is more difficult as this could weaken the shell, handling is also an important issue due to the fragility of the mirror. Sagem, through REOSC program, has recently manufactured different types of thin shells in the frame of European projects: E-ELT M4 prototypes and VLT Deformable Secondary Mirror (VLT DSM).

  10. Investigation on Silicon Thin Film Solar Cells

    Institute of Scientific and Technical Information of China (English)


    The preparation, current status and trends are investigated for silicon thin film solar cells. The advantages and disadvantages of amorphous silicon thin film, polycrystalline silicon thin film and mono-crystalline silicon thin film solar cells are compared. The future development trends are pointed out. It is found that polycrystalline silicon thin film solar cells will be more promising for application with great potential.

  11. Physical Vapor Deposition of Thin Films (United States)

    Mahan, John E.


    A unified treatment of the theories, data, and technologies underlying physical vapor deposition methods With electronic, optical, and magnetic coating technologies increasingly dominating manufacturing in the high-tech industries, there is a growing need for expertise in physical vapor deposition of thin films. This important new work provides researchers and engineers in this field with the information they need to tackle thin film processes in the real world. Presenting a cohesive, thoroughly developed treatment of both fundamental and applied topics, Physical Vapor Deposition of Thin Films incorporates many critical results from across the literature as it imparts a working knowledge of a variety of present-day techniques. Numerous worked examples, extensive references, and more than 100 illustrations and photographs accompany coverage of: * Thermal evaporation, sputtering, and pulsed laser deposition techniques * Key theories and phenomena, including the kinetic theory of gases, adsorption and condensation, high-vacuum pumping dynamics, and sputtering discharges * Trends in sputter yield data and a new simplified collisional model of sputter yield for pure element targets * Quantitative models for film deposition rate, thickness profiles, and thermalization of the sputtered beam

  12. 原子层沉积Al2O3薄膜钝化n型单晶硅表面的研究%n-type Crystalline Si Surface Passivated by Al2O3 Thin Films Synthesized by Atomic Layer Deposition

    Institute of Scientific and Technical Information of China (English)

    李想; 颜钟惠; 刘阳辉; 竺立强


    以三甲基铝(TMA)和水为反应源,采用原子层沉积(ALD)技术在n型单晶硅表面沉积15 nm、30 nm和100 nm的Al2O3薄膜,并对样品进行快速退火(RTA)处理.采用少子寿命测试仪测试样品的有效少子寿命,获得了表面复合速率(SRV),通过X射线光电子能谱(XPS)分析了薄膜的化学成分,在此基础上研究了薄膜厚度及退火条件对钝化效果的影响,并分析了钝化机理.结果表明:ALD技术制备的Al2O3薄膜经退火后可使n型单晶硅SRV值降低到7 cm/s,表面钝化效果显著.%A12O3 thin films with the thickness of 15 ran, 30 nm and 100 nm were synthesized by thermal atomic layer deposition (ALD) using A1(CH3 )3 and H2O as sources. The surface passivation of n-type monocrystalline silicon was studied. After receiving rapid thermal annealing, the impact of film thickness and annealing conditions on the passivation performance was investigated. The passivation mechanism was analyzed through characterizing the effective minority carrier lifetime, surface recombination velocities and X-ray photoelectron spectroscopy (XPS). It is shown that a high level surface passivation was addressed by post-deposition annealed AI2O3 thin films with an effective surface recombination velocity of 7 cm/s.

  13. Josephson effects and microwave response of hts thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gallop, J.C.; Radcliffe, W.J.; Langham, C.D. (National Physical Lab., Teddington (UK)); Sobolewski, R.; Kula, W.; Gierlowski, P. (Inst. of Physics, Polish Academy of Sciences, Warszawa (Poland))


    The response of thin films YBCO and BSCCO to microwave fields has been investigated. Some unexpected features have been observed and an explanation is given in terms of a robust fluxon lattice whose motion is correlated with the applied microwave field. (orig.).

  14. FEM Analysis on Electromagnetic Processing of Thin Metal Sheets

    Directory of Open Access Journals (Sweden)

    PASCA Sorin


    Full Text Available Based on finite element analysis, this paper investigates a possible new technology for electromagnetic processing of thin metal sheets, in order to improve the productivity, especially on automated manufacturing lines. This technology consists of induction heating process followed by magnetoforming process, both applied to metal sheet, using the same tool coil for both processes.

  15. Penetration dynamics of AP8 in thin ceramic tiles

    NARCIS (Netherlands)

    Abadjieva, E.; Khoe, Y.S.


    The interaction of thin ceramic tiles with AP8 (WC core, 7,62 mm) at 1000 m/s velocity has been studied experimentally and numerically. “Thin” ceramic tiles refers here to ratio of the tile thickness (t) to the projectile diameter, (d), t/d@ 1, as they are both in the same order. The method applied

  16. Fire performance of basalt FRP mesh reinforced HPC thin plates

    DEFF Research Database (Denmark)

    Hulin, Thomas; Hodicky, Kamil; Schmidt, Jacob Wittrup;


    An experimental program was carried out to investigate the influence of basalt FRP (BFRP) reinforcing mesh on the fire behaviour of thin high performance concrete (HPC) plates applied to sandwich elements. Samples with BFRP mesh were compared to samples with no mesh, samples with steel mesh...

  17. Applied Research of a New Type of Phase-Locking in Single-Phase System%新型锁相技术在单相系统中的应用研究

    Institute of Scientific and Technical Information of China (English)

    陈自强; 黄守道; 曾智波; 熊山


    研究电源稳压控制系统,单相锁相技术在系统中有着重要的应用,基于瞬时无功理论的传统单相锁相环中存在延时和动态响应差等问题,针对上述问题,将改进瞬时无功理论运用在单相锁相环中.通过对两种模型分别进行理论分析和在MATLAB上建模对比,进行仿真表明,改进后的模型很好地解决了延时问题,且具有动态响应快,稳态滤波效果好,实时跟踪性和抗畸变能力强等特点,并验证了与理论分析的一致性,为工程实践提供了新的设计依据.%Single-phase phase-locked in single-phase system has important applications. The traditional singlephase phase-locked loop(PIL) based on the instantaneous reactive power theory has the problems such as. delay and poor dynamic response, this article applies modified instantaneous reactive power theory to single-phase phaselocked loop. After a detailed theoretical analysis and MATLAB modeling contrast, the final simulation shows that he improved model can solve the problem of delay perfectly and it takes the characteristics of quick dynamic response,good effect of steady-state filtering, effective ability of real-time tracking and anti-distortion and so on. Therefore,the the correcmess and the feasibility of the theory have been confirmed and a new design for the project practice has been provided.

  18. Preparation of Cu{sub 2}ZnSnS{sub 4} thin films by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Su Zhenghua; Yan Chang; Sun Kaiwen; Han Zili [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Liu Fangyang, E-mail: [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Liu Jin [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Lai Yanqing, E-mail: [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Li Jie; Liu Yexiang [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China)


    Earth-abundant Cu{sub 2}ZnSnS{sub 4} is a promising alternative photovoltaic material which has been examined as absorber layer of thin film solar cells. In this study, Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films have been successfully fabricated by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction (SILAR) method. The prepared CZTS thin films have been characterized by X-ray diffraction, energy dispersive spectrometer, Raman spectroscopy, UV-vis spectroscopy, Hall effect measurements and photoelectrochemical tests. Results reveal that the thin films have kesterite structured Cu{sub 2}ZnSnS{sub 4} and the p-type conductivity with a carrier concentration in the order of 10{sup 18} cm{sup -3} and an optical band gap of 1.5 eV, which are suitable for applications in thin film solar cells.

  19. Preparation of Cu2ZnSnS4 thin films by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction method (United States)

    Su, Zhenghua; Yan, Chang; Sun, Kaiwen; Han, Zili; Liu, Fangyang; Liu, Jin; Lai, Yanqing; Li, Jie; Liu, Yexiang


    Earth-abundant Cu2ZnSnS4 is a promising alternative photovoltaic material which has been examined as absorber layer of thin film solar cells. In this study, Cu2ZnSnS4 (CZTS) thin films have been successfully fabricated by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction (SILAR) method. The prepared CZTS thin films have been characterized by X-ray diffraction, energy dispersive spectrometer, Raman spectroscopy, UV-vis spectroscopy, Hall effect measurements and photoelectrochemical tests. Results reveal that the thin films have kesterite structured Cu2ZnSnS4 and the p-type conductivity with a carrier concentration in the order of 1018 cm-3 and an optical band gap of 1.5 eV, which are suitable for applications in thin film solar cells.

  20. Biomass conversion and expansion factors are afected by thinning

    Directory of Open Access Journals (Sweden)

    Teresa Duque Enes


    Full Text Available Aim of the study: The objective of this paper is to investigate the use of Biomass Conversion and Expansion Factors (BCEFs in maritime pine (Pinus pinaster Ait. stands subjected to thinning.Area of the study: The study area refers to different ecosystems of maritime pine stands inNorthern Portugal.Material and methods: The study is supported by time data series and cross sectional data collected in permanent plots established in the North of Portugal. An assessment of BCEF values for the aboveground compartments and for total was completed for each studied stand. Identification of key variables affecting the value of the BCEFs in time and with thinning was conducted using correlation analysis. Predictive models for estimation of the BCEFs values in time and after thinning were developed using nonlinear regression analysis.Research highlights: For periods of undisturbed growth, the results show an allometric relationship between the BCEFs, the dominant height and the mean diameter. Management practices such as thinning also influence the factors. Estimates of the ratio change before and after thinning depend on thinning severity and thinning type. The developed models allow estimating the biomass of the stands, for the aboveground compartments and for total, based on information of stand characteristics and of thinning descriptors. These estimates can be used to assess the forest dry wood stocks to be used for pulp, bioenergy or other purposes, as well as the biomass quantification to support the evaluation of the net primary productivity.Keywords: carbon; softwood; thinning; volume; wood energy; maritime pine.

  1. Synthesis and Characterization of Thin Film Lithium-Ion Batteries Using Polymer Electrolytes (United States)

    Maranchi, Jeffrey P.; Kumta, Prashant N.; Hepp, Aloysius F.; Raffaelle, Ryne P.


    The present paper describes the integration of thin film electrodes with polymer electrolytes to form a complete thin film lithium-ion battery. Thin film batteries of the type, LiCoO2 [PAN, EC, PC, LiN(CF3SO2)2] SnO2 have been fabricated. The results of the synthesis and characterization studies will be presented and discussed.

  2. Tribological thin films on steel rolling element bearing surfaces (United States)

    Evans, Ryan David

    Tribological thin films are of interest to designers and end-users of friction management and load transmission components such as steel rolling element bearings. This study sought to reveal new information about the properties and formation of such films, spanning the scope of their technical evolution from natural oxide films, to antiwear films from lubricant additives, and finally engineered nanocomposite metal carbide/amorphous hydrocarbon (MC/a-C:H) films. Transmission electron microscopy (TEM) was performed on the near-surface material (depth gear oil additives. Site-specific thinning of cross-section cone surface sections for TEM analyses was conducted using the focused ion beam milling technique. Two types of oxide surface films were characterized for the cones tested in mineral oil only, each one corresponding to a different lubrication severity. Continuous and adherent antiwear films were found on the cone surfaces tested with lubricant additives, and their composition depended on the lubrication conditions. A sharp interface separated the antiwear film and base steel. Various TEM analytical techniques were used to study the segregation of elements throughout the film volume. The properties of nanocomposite tantalum carbide/amorphous hydrocarbon (TaC/a-C:H) thin films depend sensitively on reactive magnetron sputtering deposition process conditions. TaC/a-C:H film growth was studied as a function of three deposition parameters in designed experiments: acetylene flow rate, applied d.c. bias voltage, and substrate carousel rotation rate. Empirical models were developed for the following film characteristics to identify process-property trend relationships: Ta/C atomic ratio, hydrogen content, film thickness. TaC crystallite size, Raman spectrum, compressive stress, hardness, and elastic modules. TEM measurements revealed the film base structure consisted of equiaxed cubic B1-TaC crystallites (< 5 nm) suspended in an a-C:H matrix. At the nanometer-scale, the

  3. Hans Wolter - a pioneer of applied optics

    CERN Document Server

    Schrimpf, Andreas


    Applied optics was one of the major topics Hans Walter was engaged in during his scientific life. He contributed to the understanding of optical properties of thin films, which could be used to design coating layers to improve the properties of optical and other surfaces. He developed the theoretical description of the basic principles of phase-contrast, schlieren and interference optics applied to enhance low contrast details and to increase the resolution in studies of biological samples. And last, but not least, Hans Wolter proposed an optical system of two grazing--incidence mirrors for use in an X--ray imaging microscope. A microscope using such an optics never was put into practice, but the optical design turned out to be well suited for telescopes.

  4. Effect of Lock-in Frequency on Wall-Thinned Defects Detection Using IR Thermography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwae Hwan; Kim, Ju Hyun; Na, Man Gyun; Kim, Jin Weon; Jung, Hyun Cheol; Kim, Kyeong Suk [Chosun University, Gwangju (Korea, Republic of)


    Recently, various inspection techniques for improving the safety of nuclear power plants (NPPs) are being studied. Wall-thinned defect of the pipe are a major cause of reducing the NPP integrity. The purpose of this study was to detect the wall-thinned defects of Nuclear Power Plant (NPP) pipes using the lock-in infrared (IR) thermography method. When using the technique of lock-in IR thermography to detect wall-thinned defects of the pipe, it is very important to select the appropriate lock-in frequency. In this study, we applied a cooling and heating method for detecting wall-thinned defects of the pipe of NPPs.

  5. Epitaxy, thin films and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Jagd Christensen, Morten


    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au) 14 tabs.; 58 ills., 96 refs.

  6. Thin Film Inorganic Electrochemical Systems. (United States)


    determined that thin film cathodes of LiCoO2 can be readily performed by either spray pyrolysis or spin coating . These cathodes are We have also determined that thin film anodes of Li4Ti5O12 can be prepared by spray pyrolysis or spin coating . These anodes are also

  7. Thin lenses of asymmetric power

    Directory of Open Access Journals (Sweden)

    W. F. Harris


    Full Text Available It is generally supposed that thin systems, including refracting surfaces and thin lenses, have powers that are necessarily symmetric.  In other words they have powers which can be represented assymmetric dioptric power matrices and in the familar spherocylindrical form used in optometry and ophthalmology.  This paper shows that this is not correct and that it is indeed possible for a thin system to have a power that is not symmetric and which cannot be expressed in spherocylindrical form.  Thin systems of asymmetric power are illustratedby means of a thin lens that is modelled with small prisms and is chosen to have a dioptric power ma-trix that is antisymmetric.  Similar models can be devised for a thin system whose dioptric power matrix is any  2 2 ×  matrix.  Thus any power, symmetric, asymmetric or antisymmetric, is possible for a thin system.  In this sense our understanding of the power of thin systems is now complete.

  8. Applied chemical engineering thermodynamics

    CERN Document Server

    Tassios, Dimitrios P


    Applied Chemical Engineering Thermodynamics provides the undergraduate and graduate student of chemical engineering with the basic knowledge, the methodology and the references he needs to apply it in industrial practice. Thus, in addition to the classical topics of the laws of thermodynamics,pure component and mixture thermodynamic properties as well as phase and chemical equilibria the reader will find: - history of thermodynamics - energy conservation - internmolecular forces and molecular thermodynamics - cubic equations of state - statistical mechanics. A great number of calculated problems with solutions and an appendix with numerous tables of numbers of practical importance are extremely helpful for applied calculations. The computer programs on the included disk help the student to become familiar with the typical methods used in industry for volumetric and vapor-liquid equilibria calculations.


    Richmond, Stephen H


    The question of how to place psychoanalysis in relation to science has been debated since the beginning of psychoanalysis and continues to this day. The author argues that psychoanalysis is best viewed as a form of applied art (also termed applied aesthetics) in parallel to medicine as applied science. This postulate draws on a functional definition of modernity as involving the differentiation of the value spheres of science, art, and religion. The validity criteria for each of the value spheres are discussed. Freud is examined, drawing on Habermas, and seen to have erred by claiming that the psychoanalytic method is a form of science. Implications for clinical and metapsychological issues in psychoanalysis are discussed.

  10. Applied Literature for Healing,

    Directory of Open Access Journals (Sweden)

    Susanna Marie Anderson


    Full Text Available In this qualitative research study interviews conducted with elite participants serve to reveal the underlying elements that unite the richly diverse emerging field of Applied Literature. The basic interpretative qualitative method included a thematic analysis of data from the interviews yielding numerous common elements that were then distilled into key themes that elucidated the beneficial effects of engaging consciously with literature. These themes included developing a stronger sense of self in balance with an increasing connection with community; providing a safe container to engage challenging and potentially overwhelming issues from a stance of empowered action; and fostering a healing space for creativity. The findings provide grounds for uniting the work being done in a range of helping professions into a cohesive field of Applied Literature, which offers effective tools for healing, transformation and empowerment. Keywords: Applied Literature, Bibliotherapy, Poetry Therapy, Arts in Corrections, Arts in Medicine

  11. Selective inorganic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T. [Sandia National Laboratories, Albuquerque, NM (United States)] [and others


    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  12. Thin EFG octagons (United States)

    Kalejs, J. P.


    This report describes work to advance the manufacturing line capabilities in crystal growth and laser cutting of Mobil Solar's unique edge-defined film-fed growth (EFG) octagon technology and to reduce the manufacturing costs of 10 cm x 10 cm polycrystalline silicon EFG wafers. The report summarizes the significant technical improvements in EFG technology achieved in the first 6 months of the PVMaT Phase 2 and the success in meeting program milestones. Technical results are reported for each of the three main pregrain areas: Task 5 -- Thin octagon growth (crystal growth) to reduce the thickness of the octagon to 200 microns; Task 6 -- Laser cutting-to improve the laser cutting process so as to produce wafers with decreased laser cutting damage at increased wafer throughput rates; and Task 7 -- Process control and product specification to implement advanced strategies in crystal growth process control and productivity designed to increase wafer yields.

  13. Thin film interconnect processes (United States)

    Malik, Farid

    Interconnects and associated photolithography and etching processes play a dominant role in the feature shrinkage of electronic devices. Most interconnects are fabricated by use of thin film processing techniques. Planarization of dielectrics and novel metal deposition methods are the focus of current investigations. Spin-on glass, polyimides, etch-back, bias-sputtered quartz, and plasma-enhanced conformal films are being used to obtain planarized dielectrics over which metal films can be reliably deposited. Recent trends have been towards chemical vapor depositions of metals and refractory metal silicides. Interconnects of the future will be used in conjunction with planarized dielectric layers. Reliability of devices will depend to a large extent on the quality of the interconnects.

  14. Polyimide Aerogel Thin Films (United States)

    Meador, Mary Ann; Guo, Haiquan


    Polyimide aerogels have been crosslinked through multifunctional amines. This invention builds on "Polyimide Aerogels With Three-Dimensional Cross-Linked Structure," and may be considered as a continuation of that invention, which results in a polyimide aerogel with a flexible, formable form. Gels formed from polyamic acid solutions, end-capped with anhydrides, and cross-linked with the multifunctional amines, are chemically imidized and dried using supercritical CO2 extraction to give aerogels having density around 0.1 to 0.3 g/cubic cm. The aerogels are 80 to 95% porous, and have high surface areas (200 to 600 sq m/g) and low thermal conductivity (as low as 14 mW/m-K at room temperature). Notably, the cross-linked polyimide aerogels have higher modulus than polymer-reinforced silica aerogels of similar density, and can be fabricated as both monoliths and thin films.

  15. Applied mathematics made simple

    CERN Document Server

    Murphy, Patrick


    Applied Mathematics: Made Simple provides an elementary study of the three main branches of classical applied mathematics: statics, hydrostatics, and dynamics. The book begins with discussion of the concepts of mechanics, parallel forces and rigid bodies, kinematics, motion with uniform acceleration in a straight line, and Newton's law of motion. Separate chapters cover vector algebra and coplanar motion, relative motion, projectiles, friction, and rigid bodies in equilibrium under the action of coplanar forces. The final chapters deal with machines and hydrostatics. The standard and conte

  16. Introduction to applied thermodynamics

    CERN Document Server

    Helsdon, R M; Walker, G E


    Introduction to Applied Thermodynamics is an introductory text on applied thermodynamics and covers topics ranging from energy and temperature to reversibility and entropy, the first and second laws of thermodynamics, and the properties of ideal gases. Standard air cycles and the thermodynamic properties of pure substances are also discussed, together with gas compressors, combustion, and psychrometry. This volume is comprised of 16 chapters and begins with an overview of the concept of energy as well as the macroscopic and molecular approaches to thermodynamics. The following chapters focus o

  17. Retransmission Steganography Applied

    CERN Document Server

    Mazurczyk, Wojciech; Szczypiorski, Krzysztof


    This paper presents experimental results of the implementation of network steganography method called RSTEG (Retransmission Steganography). The main idea of RSTEG is to not acknowledge a successfully received packet to intentionally invoke retransmission. The retransmitted packet carries a steganogram instead of user data in the payload field. RSTEG can be applied to many network protocols that utilize retransmissions. We present experimental results for RSTEG applied to TCP (Transmission Control Protocol) as TCP is the most popular network protocol which ensures reliable data transfer. The main aim of the performed experiments was to estimate RSTEG steganographic bandwidth and detectability by observing its influence on the network retransmission level.

  18. On applying cognitive psychology. (United States)

    Baddeley, Alan


    Recent attempts to assess the practical impact of scientific research prompted my own reflections on over 40 years worth of combining basic and applied cognitive psychology. Examples are drawn principally from the study of memory disorders, but also include applications to the assessment of attention, reading, and intelligence. The most striking conclusion concerns the many years it typically takes to go from an initial study, to the final practical outcome. Although the complexity and sheer timescale involved make external evaluation problematic, the combination of practical satisfaction and theoretical stimulation make the attempt to combine basic and applied research very rewarding.

  19. Applied Electromagnetism and Materials

    CERN Document Server

    Moliton, André


    Applied Electromagnetism and Materials picks up where the author's Basic Electromagnetism and Materials left off by presenting practical and relevant technological information about electromagnetic material properties and their applications. This book is aimed at senior undergraduate and graduate students as well as researchers in materials science and is the product of many years of teaching basic and applied electromagnetism. Topics range from the spectroscopy and characterization of dielectrics and semiconductors, to non-linear effects and electromagnetic cavities, to ion-beam applications in materials science.

  20. Applied Astronomy: Asteroid Prospecting (United States)

    Elvis, M.


    In the age of asteroid mining the ability to find promising ore-bearing bodies will be valuable. This will give rise to a new discipline- "Applied Astronomy". Just as most geologists work in industry, not in academia, the same will be true of astronomers. Just how rare or common ore-rich asteroids are likely to be, and the skills needed to assay their value, are discussed here, with an emphasis on remote - telescopic - methods. Also considered are the resources needed to conduct extensive surveys of asteroids for prospecting purposes, and the cost and timescale involved. The longer-term need for applied astronomers is also covered.

  1. Thinning factors influence on custom-made mouthguards thermoforming. (United States)

    Kojima, Ichiro; Takeda, Tomotaka; Nakajima, Kazunori; Narimatsu, Keishiro; Konno, Michiyo; Ozawa, Takamitsu; Ishigami, Keiichi


    The aim of this study was to clarify and quantify factors influencing thinning during a thermoforming using a special simulation model that has three different flat surfaces such as 0 degree, 45 degree and 90 degree against a pressurizing force. Air pressure type samples were made by EVA and acrylic resin blank. Vacuum type samples were also made by EVA. Thickness gauge was employed to measure the thickness. As results, pressure forming showed significantly larger thinning at 45 and 90 degree surfaces and smaller thinning at 0 degree surface, 36% in thinning rate by vacuum forming and 66% by the pressure forming at 90 degree surface, and 17% and 20% at 45 degree surface, and 11% and 2% at 0 degree surfaces. Thinning was increased with the increase in distance from the centre in 0 degree surface and increased with the decrease in height in the vertical surface significantly. The air pressure, the material thickness in EVA (Drufosoft) and difference in material colour did not affect thinning rate. An acrylic resin material showed approximately 10% smaller thinning than EVA (Drufosoft). To retain enough thickness of 3 mm on 90 degree surface corresponding to an incisal labial aspect for pressure laminate type, over 55% reduction is taken into consideration and at least two 3-mm-thickness materials should be laminated. 0 degree surface showed at most 2 % reduction in pressure lamination; post thermoforming occlusal thickness became almost 6 mm with a usual 3 mm plus 3 mm lamination. Therefore, careful occlusal adjustment in an actual mouthguard fabrication to achieve an appropriate 2 mm thickness on this surface should be requested.

  2. The religion of thinness

    Directory of Open Access Journals (Sweden)

    Michelle Lelwica


    Full Text Available This paper examines the almost religious-like devotion of especially women in pursuing the goal of a thinner body. The quest for a slender body is analysed as a ‘cultural religion’, which the author calls the ‘Religion of Thinness’. The analysis revolves around four observations. The first is that for many women in the US today, the quest for a slender body serves what has historically been a ‘religious’ function: providing a sense of purpose that orients and gives meaning to their lives, especially in times of suffering and uncertainty. Second, this quest has many features in common with traditional religions, including beliefs, myths, rituals, moral codes, and sacred images—all of which encourage women to find ‘salvation’ (i.e., happiness and well-being through the pursuit of a ‘better’ (i.e., thinner body.Third, this secular faith draws so many adherents in large part because it appeals to and addresses what might be referred to as spiritual needs—including the need for a sense of purpose, inspiration, security, virtue, love, and well-being—even though it shortchanges these needs, and, in the long run, fails to deliver the salvation it promises. Fourth, a number of traditional religious ideas, paradigms and motifs tacit­ly inform and support the Religion of Thinness. More specifically, its soteri­ology resurrects and recycles the misogynist, anti-body, other-worldly, and exclusivist aspects of patriarchal religion. Ultimately, the analysis is not only critical of the Religion of Thinness; it also raises suspicions about any clear-cut divisions between ‘religion’, ‘culture’, and ‘the body’. In fact, examining the functions, features, and ideologies embedded in this secular devotion gives us insight into the constitutive role of the body in the production and apprehension of religious and cultural meanings.

  3. Nonlinear optical thin films (United States)

    Leslie, Thomas M.


    A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film

  4. Effects of thinning on stand structure and tree stability in an afforested oriental beech (Fagus orientalis Lipsky) stand in northeast Turkey

    Institute of Scientific and Technical Information of China (English)

    Zafer Yucesan; Sevilay O zc¸elik; Ercan Oktan


    We studied relationships between stand structure and stand stability according to thinning intensity in an afforested oriental beech stand. Various thinning intensities were applied in sample stands. We sampled eight plots in stands that were lightly thinned, eight plots in heavily thinned stands and eight plots in unthinned stands as a control. Height and diameter distributions of the stands were measured to assess stand structure. We quantified individual tree stability and collective stability. Heavy thinning during the first thin-ning operation damaged the storied structure of the stand in thicket stage and affected collective structuring ability. While most control plots had multi-storied stands, after light and heavy thinning two-storied structure became more common. Large gaps occurred in the canopy after heavy thinning. On average, nine tree collectives were formed per sampling plot in the untreated stand, seven collectives after thinning in 2008 and four collectives after thinning in 2009. Stable trees accounted for 17%of trees in control plots, 24%in lightly thinned plots, and 15%in heavily thinned plots. Collective stability values were 83%in control plots, 82%in lightly thinned plots and 36%in heavily thinned plots. We conclude that it is necessary to retain collective structuring capacity during thinning operations for sustaining stand stability.

  5. Pipe Wall Thinning Evaluation through the Arrival Time Delay of A0 Lamb Wave Using Magnetostrictive Patch Transducers

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seung Hyun; Kwon, Hyu Sang; Ahn, Bong Young; Lee, Seung Seok [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)


    Guided wave technology is advantageous for fast inspection of pipe wall thinning since the guided wave propagates long distance. In this investigation, the method to evaluate gradual wall thinning in a pipe based on the arrival time delay with magnetostrictive patch transducers is presented. Low frequency A0 Lamb waves were generated and measured by the present transducer and it was applied to arrival time delay measurement experiments on a test pipe having gradual wall thinnings artificially manufactured. From experiments, consistent results that wall thinning increases the arrival time delay of A0 waves were obtained. Consequently, the feasibility of the magnetostrictive patch transducers to evaluate wall thinning was verified

  6. 西北750 kV电网大容量新型FACTS设备应用研究%Applied Research on New Types of High Capacity FACTS Devices in Northwest 750 kV Power Grid

    Institute of Scientific and Technical Information of China (English)

    左玉玺; 郑楠; 范克强; 王雅婷; 邢琳; 申洪; 郑彬; 李晶; 班连庚; 周勤勇; 李润秋


      为解决西北新能源大规模外送系统的无功电压控制问题,提高电网的安全稳定性,在新疆与西北主网联网750 kV第二通道上规划装设多套可控电抗器和静止无功补偿器等大容量新型 FACTS 设备。为此提出了 FACTS 设备的技术应用方案,并对FACTS设备的稳态调压效果进行详细分析。同时从提升联网通道输电能力和提升故障后电压恢复水平2个方面研究了FACTS设备对系统暂态稳定性的提升作用。最后,从抑制系统过电压和潜供电流的角度,分析了FACTS设备对电磁暂态问题的影响。%In allusion to the control of reactive power and voltage during the large-scale transmission of power generated by new energy source base in Northwest China and to enhance the security and stability of power grid, it is planned to install multi sets of new types of high-capacity FACTS devices such as controlled shunt reactors (CSR) and static var compensators (SVC) in the second 750 kV transmission line to connect Xinjiang power grid with Northwest power grid. A technological scheme for the application of these FACTS devices is proposed and the steady-state voltage regulation effect of FACTS devices is analyzed in detail. Meanwhile, in the aspects of increasing power transmission capability of the grid-connecting channel and improving post-fault voltage recovery level, the enhancement effect of FACTS devices on power grid transient stability is researched. Finally, the influences of FACTS devices on electromagnetic transient are analyzed in the viewpoints of suppressing system overvoltage and secondary arc current.

  7. Applied anatomy of modified anterolateral approach for type C fractures of the distal femur%改良股前外侧入路治疗股骨远端C型骨折的应用解剖

    Institute of Scientific and Technical Information of China (English)

    骆松; 戴闽; 张斌; 戴江华; 聂涛; 邱平


    Objective To provide anatomic basis for treating type C fractures of the distal femur by the modified anterolateral approach of the thigh.Methods Main anterolateral muscles,ligaments were observed on 12 lower limbs of adult cadavers; the modified anterolateral approach was used,and the vessels and nerves related to the posterolateral approach were measured.Results The modified anterolateral approach could fully expose the distal femur without risk of injuring the important nerves and vessels.What's more,it did not affectthe iliotibial band and could attenuate the damage to the quadriceps femoris,which could cffectivelyprotectthe extensor mechanism of the knee joint.Conclusions The treatment of the fracture of the distal femur by the modified anterolateral approach is safe,less traumatic and and greater in is worth of further promotion.%目的 为改良股前外侧入路治疗股骨远端C型骨折提供解剖学基础.方法 福尔马林防腐成人下肢标本12例,解剖观察大腿下段前外侧的主要肌肉、韧带的分布;采用改良前外侧手术入路,测量该入路相关的神经、血管走行特点.结果 改良股前外侧入路可充分显露股骨远端,不损伤重要神经血管,不损伤髂胫束并减少了对股四头肌的损伤,有效地保护了伸膝装置.结论 改良股前外侧入路治疗股骨远端C型骨折具有安全,损伤较小,暴露充分等优点,有一定的推广价值.

  8. Functionalized carbon nanotubes in ZnO thin films for photoinactivation of bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Akhavan, O. [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran (Iran, Islamic Republic of); Azimirad, R., E-mail: [Malek-Ashtar University of Technology, Tehran (Iran, Islamic Republic of); Safa, S. [Department of Nanotechnology, Faculty of Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of)


    Highlights: {yields} Unfunctionalized and functionalized MWCNT/ZnO thin films were synthesized by sol-gel method. {yields} Zn-O-C carbonaceous bonds formed in the functionalized MWCNT/ZnO thin films. {yields} The functionalized MWCNT/ZnO had stronger photoinactivation of the bacteria than the unfunctionalize type. {yields} 10 wt% functionalized MWCNT content had the optimum antibacterial property. - Abstract: Two types of unfunctionalized and functionalized multi-wall carbon nanotubes (MWCNTs) were prepared to be applied in fabrication of MWCNT-ZnO nanocomposite thin films with various MWCNT contents. X-ray photoelectron spectroscopy indicated formation of functional groups on surface of the functionalized MWCNTs in the MWCNT-ZnO nanocomposite. Formation of the effective carbonaceous bonds between the ZnO and the MWCNTs was also investigated through photoinactivation of Escherichia coli bacteria on surface of the both unfunctionalized and functionalized MWCNT-ZnO nanocomposites. The functionalized MWCNT-ZnO nanocomposites showed significantly stronger photoinactivation of the bacteria than the unfunctionalized ones, for all of the various MWCNT contents (from 2 to 30 wt%). While the functionalized MWCNT-ZnO nanocomposites with the optimum MWCNT content of 10 wt% inactivated whole of the bacteria after 10 min UV-visible light irradiation, the unfunctionalized ones could inactivate only 63% of the bacteria under the same conditions. The significant enhancement of the photoinactivation of the bacteria onto the surface of the functionalized MWCNT-ZnO nanocomposites was assigned to charge transfer through Zn-O-C bands formed between the Zn atoms of the ZnO film and oxygen atoms of the carboxylic functional groups of the functionalized MWCNTs.

  9. Photophysical properties of Alq3 thin films (United States)

    Zawadzka, A.; Płóciennik, P.; Strzelecki, J.; Łukasiak, Z.; Sahraoui, B.


    This work contains investigation results of the photophysical properties of aluminum (III) tris(8-hydroxyquinoline) thin films. The Alq3 thin films were successfully fabricated by Physical Vapor Deposition technique. The films were grown on transparent: (quartz and glass) and semiconductor (n-type silica) substrates kept at room temperature during the deposition process. Selected films were annealed after fabrication in ambient atmosphere for 12 h at the temperature equal to 100 °C and 150 °C. Morphology of the films was investigated by AFM technique. Photophysical properties were characterized via photoluminescence, transmission, second and third harmonic generation measurements. The thin films exhibit high structural quality regardless of the annealing process, but the stability of the film can be improved by using an appropriate temperature during the annealing process. Photoluminescence of Alq3 films obtained in air were efficient and stable. The measurements of transmission, SHG and THG spectra allowed us to determine optical constant of the films. We find that the photophysical properties were strictly connected with the morphology and the annealing process significantly changes the structural properties of the films.

  10. Africa and Applied Linguistics. (United States)

    Makoni, Sinfree, Ed.; Meinhof, Ulrike H., Ed.


    This collection of articles includes: "Introducing Applied Linguistics in Africa" (Sinfree Makoni and Ulrike H. Meinhof); "Language Ideology and Politics: A Critical Appraisal of French as Second Official Language in Nigeria" (Tope Omoniyi); "The Democratisation of Indigenous Languages: The Case of Malawi" (Themba…

  11. Applying Literature to ELT

    Institute of Scientific and Technical Information of China (English)



    Literature is no longer a frightening word to English language learner. Interactive teaching methods and attractive activities can help motivating Chinese university English learners. This essay will first elaborate the reasons to use literature in ELT ( English Language Teaching) class and how to apply literature to ELT class.

  12. Essays on Applied Microeconomics (United States)

    Mejia Mantilla, Carolina


    Each chapter of this dissertation studies a different question within the field of Applied Microeconomics. The first chapter examines the mid- and long-term effects of the 1998 Asian Crisis on the educational attainment of Indonesian children ages 6 to 18, at the time of the crisis. The effects are identified as deviations from a linear trend for…

  13. Applied Statistics with SPSS (United States)

    Huizingh, Eelko K. R. E.


    Accessibly written and easy to use, "Applied Statistics Using SPSS" is an all-in-one self-study guide to SPSS and do-it-yourself guide to statistics. What is unique about Eelko Huizingh's approach is that this book is based around the needs of undergraduate students embarking on their own research project, and its self-help style is designed to…

  14. Two interpretations on thin-shell instantons

    CERN Document Server

    Chen, Pisin; Yeom, Dong-han


    For O(4)-symmetric instantons, there are two complementary interpretations for their analytic continuations. One is the nothing-to-something interpretation, where the initial and the final hypersurfaces are disconnected by Euclidean manifolds. The other is the something-to-something interpretation, introduced by Brown and Weinberg, where the initial and the final hypersurfaces are connected by the Euclidean manifold. These interpretations have their own pros and cons and hence these are complementary. In this paper, we consider analytic continuations of thin-shell instantons that have less symmetry, i.e., the spherical symmetry. When we consider the Farhi-Guth-Guven/Fischler-Morgan-Polchinski tunneling, the something-to-something interpretation has been used in the usual literature. On the other hand, we can apply the nothing-to-something interpretation with some limited conditions. We argue that even for both interpretations, we can give the consistent decay rate. As we apply and interpret following the noth...

  15. Plant thin cell layers: update and perspectives

    Directory of Open Access Journals (Sweden)

    Teixeira da Silva Jaime A.


    Full Text Available Thin cell layers (TCLs are small and versatile explants for the in vitro culture of plants. At face value, their morphogenic productivity may appear to be less than conventional explants, but once the plant growth correction factor and geometric factor have been applied, the true (potential productivity exceeds that of a conventional explant. It is for this reason that for almost 45 years, TCLs have been applied to the in vitro culture of almost 90 species or hybrids, mainly ornamentals and orchids, but also to field and vegetable crops and medicinal plants. Focusing on 12 new studies that have emerged in the recent past (2013-2015, this paper brings promise to other horticultural species that could benefit from the use of TCLs.

  16. Back diffusion from thin low permeability zones. (United States)

    Yang, Minjune; Annable, Michael D; Jawitz, James W


    Aquitards can serve as long-term contaminant sources to aquifers when contaminant mass diffuses from the aquitard following aquifer source mass depletion. This study describes analytical and experimental approaches to understand reactive and nonreactive solute transport in a thin aquitard bounded by an adjacent aquifer. A series of well-controlled laboratory experiments were conducted in a two-dimensional flow chamber to quantify solute diffusion from a high-permeability sand into and subsequently out of kaolinite clay layers of vertical thickness 15 mm, 20 mm, and 60 mm. One-dimensional analytical solutions were developed for diffusion in a finite aquitard with mass exchange with an adjacent aquifer using the method of images. The analytical solutions showed very good agreement with measured breakthrough curves and aquitard concentration distributions measured in situ by light reflection visualization. Solutes with low retardation accumulated more stored mass with greater penetration distance in the aquitard compared to high-retardation solutes. However, because the duration of aquitard mass release was much longer, high-retardation solutes have a greater long-term back diffusion risk. The error associated with applying a semi-infinite domain analytical solution to a finite diffusion domain increases as a function of the system relative diffusion length scale, suggesting that the solutions using image sources should be applied in cases with rapid solute diffusion and/or thin clay layers. The solutions presented here can be extended to multilayer aquifer/low-permeability systems to assess the significance of back diffusion from thin layers.

  17. Methods for fabricating thin film III-V compound solar cell (United States)

    Pan, Noren; Hillier, Glen; Vu, Duy Phach; Tatavarti, Rao; Youtsey, Christopher; McCallum, David; Martin, Genevieve


    The present invention utilizes epitaxial lift-off in which a sacrificial layer is included in the epitaxial growth between the substrate and a thin film III-V compound solar cell. To provide support for the thin film III-V compound solar cell in absence of the substrate, a backing layer is applied to a surface of the thin film III-V compound solar cell before it is separated from the substrate. To separate the thin film III-V compound solar cell from the substrate, the sacrificial layer is removed as part of the epitaxial lift-off. Once the substrate is separated from the thin film III-V compound solar cell, the substrate may then be reused in the formation of another thin film III-V compound solar cell.

  18. Asymptoticaly Confirmed Hypoteses Metod for the Construction of Micropolar and Classical Theories of Elastic Thin Shells

    Directory of Open Access Journals (Sweden)

    Sargsyan S.H.


    Full Text Available In the present paper, the system of equations of three-dimensional micropolar theory of elasticity, written down for thin shell as singularly perturbed with small geometric parameter system, is analyzed asymptotically: the internal iteration process and boundary layers are constructed, their interaction is studied, boundary conditions are obtained for each of them. Then, the main specific properties of the asymptotic solution accepting as hypotheses, general applied theory of micropolar elastic thin shells is constructed and it is shown that the constructed theory is asymptotically correct. Passing from the micropolar theory of thin shells to the classical theory, it is shown, that this applied classical theory of thin shells, when transverse shifts are taken into account, is asymptotically correct theory in relation to the other corrected theories of thin shells.

  19. Pyroelectric coupling in thin film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Karpov, Victor G.; Shvydka, Diana [Department of Physics and Astronomy, University of Toledo, OH (United States)


    We propose a theory of thin film photovoltaics in which one of the polycrystalline films is made of a pyroelectric material grains such as CdS. That film is shown to generate strong polarization improving the device open circuit voltage. Implications and supporting facts for the major photovoltaic types based on CdTe and CuIn(Ga)Se{sub 2} absorber layers are discussed. Band diagram of a pyroelectric (CdS) based PV junction. Arrows represent the charge carrier photo-generation. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Study of iron mononitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tayal, Akhil, E-mail:; Gupta, Mukul, E-mail:; Phase, D. M., E-mail:; Reddy, V. R., E-mail:; Gupta, Ajay, E-mail: [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore,-452001 (India)


    In this work we have studied the crystal structural and local ordering of iron and nitrogen in iron mononitride thin films prepared using dc magnetron sputtering at sputtering power of 100W and 500W. The films were sputtered using pure nitrogen to enhance the reactivity of nitrogen with iron. The x-ray diffraction (XRD), conversion electron Mössbauer spectroscopy (CEMS) and soft x-ray absorption spectroscopy (SXAS) studies shows that the film crystallizes in ZnS-type crystal structure.

  1. Band alignment measurements at heterojunction interfaces in layered thin film solar cells & thermoelectrics (United States)

    Fang, Fang


    Public awareness of the increasing energy crisis and the related serious environmental concerns has led to a significantly growing demand for alternative clean and renewable energy resources. Thin film are widely applied in multiple renewable energy devices owing to the reduced amount of raw materials and increase flexibility of choosing from low-cost candidates, which translates directly into reduced capital cost. This is a key driving force to make renewable technology competitive in the energy market. This thesis is focused on the measurement of energy level alignments at interfaces of thin film structures for renewable energy applications. There are two primary foci: II -VI semiconductor ZnSe/ZnTe thin film solar cells and Bi2Te3/Sb2Te3 thin film structures for thermoelectric applications. In both cases, the electronic structure and energy band alignment at interfaces usually controls the carrier transport behavior and determines the quality of the device. High-resolution photoemission spectroscopy (lab-based XPS & synchrotron-based UPS) was used to investigate the chemical and electronic properties of epitaxial Bi2Te3 and Sb2Te3 thin films, in order to validate the anticipated band alignment at interfaces in Bi 2Te3/Sb2Te3 superlattices as one favoring electron-transmission. A simple, thorough two-step treatment of a chemical etching in dilute hydrochloric acid solution and a subsequent annealing at ˜150°C under ultra-high vacuum environment is established to remove the surface oxides completely. It is an essential step to ensure the measurements on electronic states are acquired on stoichimetric, oxide-free clean surface of Bi 2Te3 and Sb2Te3 films. The direct measurement of valence band offsets (VBO) at a real Sb 2Te3/Bi2Te3 interface is designed based on the Kraut model; a special stacking film structure is prepared intentionally: sufficiently thin Sb2Te3 film on top of Bi2Te 3 that photoelectrons from both of them are collected simultaneously. From a

  2. Process for the production of thin layers, preferably for a photovoltaic cell

    NARCIS (Netherlands)

    Nanu, M.; Meester, B.; Goossens, A.; Schoonman, J.


    The invention is directed to a process for the production of a thin layer, preferably for a photovoltaic cell, which cell has at least a first contact layer, a p-type semiconductor layer, an n-type semiconductor layer, or a combined p-type/n-type semiconductor layer, and a second contact layer, said

  3. Domain Selectivity in BiFeO3 Thin Films by Modified Substrate Termination

    NARCIS (Netherlands)

    Solmaz, Alim; Huijben, Mark; Koster, Gertjan; Egoavil, Ricardo; Gauquelin, Nicolas; Van Tendeloo, Gustaaf; Verbeeck, Jo; Noheda, Beatriz; Rijnders, Guus


    Ferroelectric domain formation is an essential feature in ferroelectric thin films. These domains and domain walls can be manipulated depending on the growth conditions. In rhombohedral BiFeO3 thin films, the ordering of the domains and the presence of specific types of domain walls play a crucial r

  4. Raman spectroscopy of optical properties in CdS thin films

    Directory of Open Access Journals (Sweden)

    Trajić J.


    Full Text Available Properties of CdS thin films were investigated applying atomic force microscopy (AFM and Raman spectroscopy. CdS thin films were prepared by using thermal evaporation technique under base pressure 2 x 10-5 torr. The quality of these films was investigated by AFM spectroscopy. We apply Raman scattering to investigate optical properties of CdS thin films, and reveal existence of surface optical phonon (SOP mode at 297 cm-1. Effective permittivity of mixture were modeled by Maxwell - Garnet approximation. [Projekat Ministarstva nauke Republike Srbije, br. 45003

  5. Method of Forming Micro-Sensor Thin-Film Anemometer (United States)

    Sheplak, Mark (Inventor); McGinley, Catherine B. (Inventor); Spina, Eric F. (Inventor); Stephens, Ralph M. (Inventor); Hopson, Purnell, Jr. (Inventor); Cruz, Vincent B. (Inventor)


    A device for measuring turbulence in high-speed flows is provided which includes a micro- sensor thin-film probe. The probe is formed from a single crystal of aluminum oxide having a 14 deg half-wedge shaped portion. The tip of the half-wedge is rounded and has a thin-film sensor attached along the stagnation line. The bottom surface of the half-wedge is tilted upward to relieve shock induced disturbances created by the curved tip of the half-wedge. The sensor is applied using a microphotolithography technique.

  6. YBCO thin films in ac and dc films

    CERN Document Server

    Shahzada, S


    We report studies on the dc magnetization of YBCO thin films in simultaneously applied dc and ac fields. The effect of the ac fields is to decrease the irreversible magnetization drastically leading to complete collapse of the hysteresis loops for relatively small ac fields (250e). The magnitude of the decrease depends on the component of the ac field parallel to the c-axis. The decrease is non-linear with ac amplitude and is explained in the framework of the critical state response of ultra thin films in perpendicular geometry. The ac fields increase the relaxation rapidly at short times while the long time response appears unaffected. (author)

  7. Design of anisotropic reflector with birefringent thin films

    Institute of Scientific and Technical Information of China (English)

    Jianguo Wang; Kui Yi; Jianda Shao; Zhengxiu Fan


    A novel design for dielectric anisotropic mirrors with birefringent thin films for normal incidence is presented. This mirror consists of a stack of quarter-wave biaxial layers. The biaxial anisotropic layers can be fabricated by oblique deposition. The reflectance is different for two linear polarizations of light incidence on the mirrors. As a numerical example, the design is carried out on glass with TiO2 and ZrO2. These thin films could be applied to anisotropic reflective devices for lasers.

  8. Characterization of Sucrose Thin Films for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    S. L. Iconaru


    Full Text Available Sucrose is a natural osmolyte accumulated in the cells of organisms as they adapt to environmental stress. In vitro sucrose increases protein stability and forces partially unfolded structures to refold. Thin films of sucrose (C12H22O11 were deposited on thin cut glass substrates by the thermal evaporation technique (P∼10−5 torr. Characteristics of thin films were put into evidence by Fourier Transform Infrared Spectroscopy (FTIR, X-ray Photoelectron Spectroscopy (XPS, scanning electron microscopy (SEM, and differential thermal analysis and thermal gravimetric analysis (TG/DTA. The experimental results confirm a uniform deposition of an adherent layer. In this paper we present a part of the characteristics of sucrose thin films deposited on glass in medium vacuum conditions, as a part of a culture medium for osteoblast cells. Osteoblast cells were used to determine proliferation, viability, and cytotoxicity interactions with sucrose powder and sucrose thin films. The osteoblast cells have been provided from the American Type Culture Collection (ATCC Centre. The outcome of this study demonstrated the effectiveness of sucrose thin films as a possible nontoxic agent for biomedical applications.

  9. Host thin films incorporating nanoparticles (United States)

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  10. Applied Control Systems Design

    CERN Document Server

    Mahmoud, Magdi S


    Applied Control System Design examines several methods for building up systems models based on real experimental data from typical industrial processes and incorporating system identification techniques. The text takes a comparative approach to the models derived in this way judging their suitability for use in different systems and under different operational circumstances. A broad spectrum of control methods including various forms of filtering, feedback and feedforward control is applied to the models and the guidelines derived from the closed-loop responses are then composed into a concrete self-tested recipe to serve as a check-list for industrial engineers or control designers. System identification and control design are given equal weight in model derivation and testing to reflect their equality of importance in the proper design and optimization of high-performance control systems. Readers’ assimilation of the material discussed is assisted by the provision of problems and examples. Most of these e...

  11. Applied statistics for economists

    CERN Document Server

    Lewis, Margaret


    This book is an undergraduate text that introduces students to commonly-used statistical methods in economics. Using examples based on contemporary economic issues and readily-available data, it not only explains the mechanics of the various methods, it also guides students to connect statistical results to detailed economic interpretations. Because the goal is for students to be able to apply the statistical methods presented, online sources for economic data and directions for performing each task in Excel are also included.

  12. Applied Economics in Teaching

    Institute of Scientific and Technical Information of China (English)



    This paper explains some plain phenomena in teaching and class management with an economic view. Some basic economic principles mentioned therein are: everything has its opportunity cost; the marginal utility of consumption of any kind is diminishing; Game theory is everywhere. By applying the economic theories to teaching, it is of great help for teachers to understand the students' behavior and thus improve the teaching effectiveness and efficiency.

  13. Methods of applied mathematics

    CERN Document Server

    Hildebrand, Francis B


    This invaluable book offers engineers and physicists working knowledge of a number of mathematical facts and techniques not commonly treated in courses in advanced calculus, but nevertheless extremely useful when applied to typical problems in many different fields. It deals principally with linear algebraic equations, quadratic and Hermitian forms, operations with vectors and matrices, the calculus of variations, and the formulations and theory of linear integral equations. Annotated problems and exercises accompany each chapter.

  14. Thin Film Photovoltaic Cells on Flexible Substrates Integrated with Energy Storage (United States)


    Synthesis of CZTS thin films using TBDS as a sulfur source Thin film solar cells based on Cu(In,Ga)(S,Se)2 and CdTe have demonstrated significant...efficient ones at the laboratory level and have demonstrated efficincies in the range of-20% [3]. However, both CIGS and CdTe based thin film solar...11/2011 2. REPORT TYPE Quarterly 3. DATES COVERED (From - To) 01/09/2011 to 30/11/2011 4. TITLE AND SUBTITLE Thin Film Photovoltaic Cells on

  15. Homogenization studies for optical sensors based on sculptured thin films


    Jamaian, Siti Suhana


    In this thesis we investigate theoretically various types of sculptured thin film (STF) envisioned as platforms for optical sensing. A STF consists of an array of parallel nanowires which can be grown on a substrate using vapour deposition techniques. Typically, each nanowire has a diameter in the range from ~ 10-300 nmwhile the film thickness is ~

  16. SNP typing on the NanoChip electronic microarray

    DEFF Research Database (Denmark)

    Børsting, Claus; Sanchez Sanchez, Juan Jose; Morling, Niels


    We describe a single nucleotide polymorphism (SNP) typing protocol developed for the NanoChip electronic microarray. The NanoChip array consists of 100 electrodes covered by a thin hydrogel layer containing streptavidin. An electric currency can be applied to one, several, or all electrodes...... at the same time according to a loading protocol generated by the user. Biotinylated deoxyribonucleic acid (DNA) is directed to the pad(s) via the electronic field(s) and bound to streptavidin in the hydrogel layer. Subsequently, fluorescently labeled reporter oligos and a stabilizer oligo are hybridized...... to the bound DNA. Base stacking between the short reporter and the longer stabilizer oligo stabilizes the binding of a matching reporter, whereas the binding of a reporter carrying a mismatch in the SNP position will be relatively weak. Thermal stringency is applied to the NanoChip array according to a reader...

  17. Chiral atomically thin films (United States)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong


    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm-1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  18. Computation of macro-fiber composite integrated thin-walled smart structures (United States)

    Zhang, S. Q.; Zhang, S. Y.; Chen, M.; Bai, J.; Li, J.


    Due to high flexibility, reliability, and strong actuation forces, piezo fiber based composite smart material, macro-fiber composite (MFC), is increasingly applied in various fields for vibration suppression, shape control, and health monitoring. The complexity arrangement of MFC materials makes them difficult in numerical simulations. This paper develops a linear electro-mechanically coupled finite element (FE) model for composite laminated thin-walled smart structures bonded with MFC patches considering arbitrary piezo fiber orientation. Two types of MFCs are considered, namely, MFC-d31 in which the d 31 effect dominates the actuation forces, and MFC-d33 which mainly uses the d 33 effect. The proposed FE model is validated by static analysis of an MFC bonded smart plate.

  19. Modelling of the influence of charges trapped in the oxide on the I(Vg) characteristics of metal ultra-thin oxide semiconductor structures (United States)

    Aziz, A.; Kassmi, K.; Kassmi, Ka; Olivie, F.


    This paper deals with the theoretical and experimental influences of the charge trapped in the oxide of metal/ultra-thin oxide/semiconductor structures. It focuses on the two characteristics current-voltage I(Vg) and voltage-charges injected Vg(Qinj) (Vg is the voltage applied, Qinj is the injected charge) when the conduction is of the Fowler-Nordheim type. The charge is trapped in the thin oxide after injection of a constant current at high field (>12 MV cm-1) from the metal (in accumulation regime: Vg position shifts exponentially towards the injecting electrode. These results enable us to draw conclusions on the instability of the trapped charge. Indeed the increase in the charges injected causes the movement of the charge centroid towards the cathode.

  20. An amorphous LiCo{sub 1/3}Mn{sub 1/3}Ni{sub 1/3}O{sub 2} thin film deposited on NASICON-type electrolyte for all-solid-state Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xie, J. [Department of Chemistry, Faculty of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507 (Japan); Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Imanishi, N.; Zhang, T.; Hirano, A.; Takeda, Y.; Yamamoto, O. [Department of Chemistry, Faculty of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507 (Japan)


    Amorphous LiCo{sub 1/3}Mn{sub 1/3}Ni{sub 1/3}O{sub 2} thin films were deposited on the NASICON-type Li-ion conducting glass ceramics, Li{sub 1+x+y}Al{sub x}Ti{sub 2-x}Si{sub y}P{sub 3-y}O{sub 12} (LATSP), by radio frequency (RF) magnetron sputtering below 130 C. The amorphous films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The Li/PEO{sub 18}-Li(CF{sub 3}SO{sub 2}){sub 2}N/LATSP/LiCo{sub 1/3}Mn{sub 1/3}Ni{sub 1/3}O{sub 2}/Au all-solid-state cells were fabricated to investigate the electrochemical performance of the amorphous films. It was found that the low-temperature deposited amorphous cathode film shows a high discharge voltage and a high discharge capacity of around 130 mAh g{sup -1}. (author)

  1. Computers in Some Branches of Applied Physiology .

    Directory of Open Access Journals (Sweden)

    S.S. Verma


    Full Text Available This paper reviews the applications of computers in the evaluation of different types of problems occuring in some branches of applied physiology. The recent applications of computers to perform advanced multivariate regression analysis for developing regression models in applied physiology are also highlighted. The regression models are practical significance for screening personnel in defence services, mines, industrial works, sports and the like.

  2. Survey of potential-induced degradation in thin-film modules (United States)

    Hacke, Peter; Terwilliger, Kent; Glick, Stephen H.; Perrin, Greg; Kurtz, Sarah R.


    CdTe and CIGS type modules were tested for potential-­-induced degradation with positive and negative 1,000 V bias applied to the active cell circuit in an 85°C, 85% relative humidity environmental chamber. Both CdTe module types tested exhibited degradation under negative bias. I-­-V curve data indicated the first module type was affected sequentially by shunting followed by a recovery and then by series resistance losses; the second was affected by recombination losses. The first type showed transparent conductive oxide delamination from the glass after about 750 h of stress testing in the environmental chamber and exhibited power degradation within five weeks in field tests with -­-1,000 V system voltage. Performance of CIGS modules differed depending on the technology generation. Under negative bias, the older module design showed an initial 12% (relative) improvement, possibly because of the influx of sodium ions that has been reported to benefit the electrical properties, followed by severe degradation with continued stress testing. The newer design CIGS module exhibited the best stability of the four thin-­-film module types tested with a total loss of 9.5 % (relative) power drop after 3,100 h of test with negative voltage bias, but not clearly by system voltage stress effects considering similar behavior by a sister module in-­-chamber in open-­-circuit condition. Relative rates of current leakage-­-to-­-ground between chamber tests and modules placed outdoors under system voltage stress are compared to extrapolate anticipated coulombs transferred for given extents of degradation of the module power. This analysis correctly placed which module type failed in the field first, but overestimated the time to failure. The performance of modules at 85°C with dark current Imp applied through the cell circuit are discussed with respect to stand-­-alone fielded modules biased to near their maximum power point with load resistors.

  3. Embedded polytypes in Bi2Sr2-xLaxCuO6 thin films grown by laser ablation (United States)

    Cancellieri, C.; Lin, P. H.; Ariosa, D.; Pavuna, D.


    We investigate the presence of secondary phases in La-doped Bi-2201 thin films grown by laser ablation. The cation ratios in the target material, the oxygen pressure, and the substrate temperature during the deposition are the main parameters determining the presence of diluted intergrowth and/or polytype aggregates. A statistical model of random intergrowth is used to analyze the x-ray diffraction (XRD) anomalies caused by hidden defects and to characterize the latter. A detailed structural XRD refinement on oriented aggregates allows us to identify the guest phase as a Bi deficient phase, Bi-1201. The occurrence of this particular embedded polytype is accompanied by a global Bi deficiency introduced in the films by the growing process and/or by the annealing treatment. The presence of La favors the Bi-1201 formation mostly as La-rich c -axis oriented aggregates. Bi excess in the target material improves considerably the crystallographic structure of Bi-2201, avoids intergrowth formation, but does not prevent the phase separation of Bi-1201 in La-doped thin films. We also investigate the influence of the deposition parameters on the type of intergrowth as well as their variation with La doping. This work introduces a specific methodology for optimizing the growth of thin films grown by laser ablation, which applies to layered oxides that admit polytypes with close formation enthalpies in their phase diagram.

  4. Production of biologically inert Teflon thin layers on the surface of allergenic metal objects by pulsed laser deposition technology (United States)

    Hopp, B.; Smausz, T.; Kresz, N.; Nagy, P. M.; Juhász, A.; Ignácz, F.; Márton, Z.

    Allergic-type diseases are current nowadays, and they are frequently caused by certain metals. We demonstrated that the metal objects can be covered by Teflon protective thin layers using a pulsed laser deposition procedure. An ArF excimer laser beam was focused onto the surface of pressed PTFE powder pellets; the applied fluences were 7.5-7.7 J/cm2. Teflon films were deposited on fourteen-carat gold, silver and titanium plates. The number of ablating pulses was 10000. Post-annealing of the films was carried out in atmospheric air at oven temperatures between 320 and 500 °C. The thickness of the thin layers was around 5 μm. The prepared films were granular without heat treatment or after annealing at a temperature below 340 °C. At 360 °C a crystalline, contiguous, smooth, very compact and pinhole-free thin layer was produced; a melted and re-solidified morphology was observed above 420 °C. The adhesion strength between the Teflon films and the metal substrates was determined. This could exceed 1-4 MPa depending on the treatment temperature. It was proved that the prepared Teflon layers can be suitable for prevention of contact between the human body and allergen metals and so for avoidance of metal allergy.

  5. Different collagen types define two types of idiopathic epiretinal membranes


    Kritzenberger, Michaela; Junglas, Benjamin; Framme, Carsten; Helbig, Horst; Gabel, Veit-Peter; Fuchshofer, Rudolf; Ernst R. Tamm; Hillenkamp, Jost


    Abstract Aims: To identify differences in extracellular matrix contents between idiopathic epiretinal membranes (IEM) of cellophane macular reflex (CMRM) or preretinal macular fibrosis (PMFM) type. Methods and results: IEM were analyzed by light and quantitative transmission electron microscopy, immunohistochemistry, and Western blotting. Substantial differences between CMRM and PMFM were observed regarding the nature of extracellular fibrils. In CMRM, the fibrils were thin with...

  6. Applied linear regression

    CERN Document Server

    Weisberg, Sanford


    Master linear regression techniques with a new edition of a classic text Reviews of the Second Edition: ""I found it enjoyable reading and so full of interesting material that even the well-informed reader will probably find something new . . . a necessity for all of those who do linear regression."" -Technometrics, February 1987 ""Overall, I feel that the book is a valuable addition to the now considerable list of texts on applied linear regression. It should be a strong contender as the leading text for a first serious course in regression analysis."" -American Scientist, May-June 1987

  7. SIFT applied to CBIR

    Directory of Open Access Journals (Sweden)



    Full Text Available Content-Based Image Retrieval (CBIR is a challenging task. Common approaches use only low-level features. Notwithstanding, such CBIR solutions fail on capturing some local features representing the details and nuances of scenes. Many techniques in image processing and computer vision can capture these scene semantics. Among them, the Scale Invariant Features Transform~(SIFT has been widely used in a lot of applications. This approach relies on the choice of several parameters which directly impact its effectiveness when applied to retrieve images. In this paper, we discuss the results obtained in several experiments proposed to evaluate the application of the SIFT in CBIR tasks.

  8. Applying Popper's Probability

    CERN Document Server

    Whiting, Alan B


    Professor Sir Karl Popper (1902-1994) was one of the most influential philosophers of science of the twentieth century, best known for his doctrine of falsifiability. His axiomatic formulation of probability, however, is unknown to current scientists, though it is championed by several current philosophers of science as superior to the familiar version. Applying his system to problems identified by himself and his supporters, it is shown that it does not have some features he intended and does not solve the problems they have identified.

  9. Applied energy an introduction

    CERN Document Server

    Abdullah, Mohammad Omar


    Introduction to Applied EnergyGeneral IntroductionEnergy and Power BasicsEnergy EquationEnergy Generation SystemsEnergy Storage and MethodsEnergy Efficiencies and LossesEnergy industry and Energy Applications in Small -Medium Enterprises (SME) industriesEnergy IndustryEnergy-Intensive industryEnergy Applications in SME Energy industriesEnergy Sources and SupplyEnergy SourcesEnergy Supply and Energy DemandEnergy Flow Visualization and Sankey DiagramEnergy Management and AnalysisEnergy AuditsEnergy Use and Fuel Consumption StudyEnergy Life-Cycle AnalysisEnergy and EnvironmentEnergy Pollutants, S

  10. Applied linear regression

    CERN Document Server

    Weisberg, Sanford


    Praise for the Third Edition ""...this is an excellent book which could easily be used as a course text...""-International Statistical Institute The Fourth Edition of Applied Linear Regression provides a thorough update of the basic theory and methodology of linear regression modeling. Demonstrating the practical applications of linear regression analysis techniques, the Fourth Edition uses interesting, real-world exercises and examples. Stressing central concepts such as model building, understanding parameters, assessing fit and reliability, and drawing conclusions, the new edition illus

  11. Applied impulsive mathematical models

    CERN Document Server

    Stamova, Ivanka


    Using the theory of impulsive differential equations, this book focuses on mathematical models which reflect current research in biology, population dynamics, neural networks and economics. The authors provide the basic background from the fundamental theory and give a systematic exposition of recent results related to the qualitative analysis of impulsive mathematical models. Consisting of six chapters, the book presents many applicable techniques, making them available in a single source easily accessible to researchers interested in mathematical models and their applications. Serving as a valuable reference, this text is addressed to a wide audience of professionals, including mathematicians, applied researchers and practitioners.

  12. Applied Semantic Web Technologies

    CERN Document Server

    Sugumaran, Vijayan


    The rapid advancement of semantic web technologies, along with the fact that they are at various levels of maturity, has left many practitioners confused about the current state of these technologies. Focusing on the most mature technologies, Applied Semantic Web Technologies integrates theory with case studies to illustrate the history, current state, and future direction of the semantic web. It maintains an emphasis on real-world applications and examines the technical and practical issues related to the use of semantic technologies in intelligent information management. The book starts with

  13. Applied Chaos Control (United States)

    Spano, Mark


    The publication by Ott, Grebogi and Yorke(E. Ott, C. Grebogi and J. A. Yorke, Phys. Rev. Lett. 64, 1196 (1990).) of their theory of chaos control in 1990 led to an explosion of experimental work applying their theory to mechanical systems and electronic circuits, lasers and chemical reactors, and heart and brain tissue, to name only a few. In this talk the basics of chaos control as implemented in a simple mechanical system will be described, as well as extensions of the method to biological applications. Finally, current advances in the field, including the maintenance of chaos and the control of high dimensional chaos, will be discussed.

  14. Applied complex variables

    CERN Document Server

    Dettman, John W


    Analytic function theory is a traditional subject going back to Cauchy and Riemann in the 19th century. Once the exclusive province of advanced mathematics students, its applications have proven vital to today's physicists and engineers. In this highly regarded work, Professor John W. Dettman offers a clear, well-organized overview of the subject and various applications - making the often-perplexing study of analytic functions of complex variables more accessible to a wider audience. The first half of Applied Complex Variables, designed for sequential study, is a step-by-step treatment of fun

  15. Applied logistic regression

    CERN Document Server

    Hosmer, David W; Sturdivant, Rodney X


     A new edition of the definitive guide to logistic regression modeling for health science and other applications This thoroughly expanded Third Edition provides an easily accessible introduction to the logistic regression (LR) model and highlights the power of this model by examining the relationship between a dichotomous outcome and a set of covariables. Applied Logistic Regression, Third Edition emphasizes applications in the health sciences and handpicks topics that best suit the use of modern statistical software. The book provides readers with state-of-

  16. Mechanics of fragmentation of crocodile skin and other thin films (United States)

    Qin, Zhao; Pugno, Nicola M.; Buehler, Markus J.


    Fragmentation of thin layers of materials is mediated by a network of cracks on its surface. It is commonly seen in dehydrated paintings or asphalt pavements and even in graphene or other two-dimensional materials, but is also observed in the characteristic polygonal pattern on a crocodile's head. Here, we build a simple mechanical model of a thin film and investigate the generation and development of fragmentation patterns as the material is exposed to various modes of deformation. We find that the characteristic size of fragmentation, defined by the mean diameter of polygons, is strictly governed by mechanical properties of the film material. Our result demonstrates that skin fragmentation on the head of crocodiles is dominated by that it features a small ratio between the fracture energy and Young's modulus, and the patterns agree well with experimental observations. Understanding this mechanics-driven process could be applied to improve the lifetime and reliability of thin film coatings by mimicking crocodile skin.

  17. Mechanics of Thin Strip Steering in Hot Rolling (United States)

    Jiang, Zhengyi; Tieu, Kiet A.


    The hot rolling of thin strip can result in several problems in hot rolling, for instance, the control of strip steering, strip shape and flatness and surface roughness etc. Therefore, the hot rolling of thin strip brings out a requirement of innovative technologies such as the extended control of shape and flatness, steering control and reduction of load by roll gap lubrication. In this paper, the authors focus on the analysis of thin strip snaking movement, as well as solve the related problems such as the shape and flatness due to a larger reduction applied when the strip is thinner. A finite element method was used to simulate this nonsymmetricity rolling considering the non-uniform reduction along the strip width. The calculated spread is compared with the measured values obtained from the rolling mill in laboratory and the friction effect is also discussed.

  18. Platonic scattering cancellation for bending waves in a thin plate

    KAUST Repository

    Farhat, Mohamed


    We propose an ultra-thin elastic cloak to control the scattering of bending waves in isotropic heterogeneous thin plates. The cloak design makes use of the scattering cancellation technique applied, for the first time, to the biharmonic operator describing the propagation of bending waves in thin plates. We first analyze scattering from hard and soft cylindrical objects in the quasistatic limit, then we prove that the scattering of bending waves from an object in the near and far-field regions can be suppressed significantly by covering it with a suitably designed coating. Beyond camouflaging, these findings may have potential applications in protection of buildings from earthquakes and isolating structures from vibrations in the motor vehicle industry.

  19. Magnetic Phases of Sputter Deposited Thin-Film Erbium (United States)

    Witt, J. D. S.; Cooper, J. F. K.; Satchell, N.; Kinane, C. J.; Curran, P. J.; Bending, S. J.; Langridge, S.; Heyderman, L. J.; Burnell, G.


    We present a detailed structural and magnetic characterization of sputter deposited thin film erbium, determined by x-ray diffraction, transport measurements, magnetometry and neutron diffraction. This provides information on the onset and change of the magnetic state as a function of temperature and applied magnetic field. Many of the features of bulk material are reproduced. Also of interest is the identification of a conical magnetic state which repeats with a wavevector parallel to the c axis τc = 4/17 in units of the reciprocal lattice parameter c*, which is a state not observed in any other thin film or bulk measurements. The data from the various techniques are combined to construct magnetic field, temperature (H, T)–phase diagrams for the 200 nm-thick Er sample that serves as a foundation for future exploitation of this complex magnetic thin film system.

  20. Mechanics of fragmentation of crocodile skin and other thin films. (United States)

    Qin, Zhao; Pugno, Nicola M; Buehler, Markus J


    Fragmentation of thin layers of materials is mediated by a network of cracks on its surface. It is commonly seen in dehydrated paintings or asphalt pavements and even in graphene or other two-dimensional materials, but is also observed in the characteristic polygonal pattern on a crocodile's head. Here, we build a simple mechanical model of a thin film and investigate the generation and development of fragmentation patterns as the material is exposed to various modes of deformation. We find that the characteristic size of fragmentation, defined by the mean diameter of polygons, is strictly governed by mechanical properties of the film material. Our result demonstrates that skin fragmentation on the head of crocodiles is dominated by that it features a small ratio between the fracture energy and Young's modulus, and the patterns agree well with experimental observations. Understanding this mechanics-driven process could be applied to improve the lifetime and reliability of thin film coatings by mimicking crocodile skin.