WorldWideScience

Sample records for applied type thin

  1. Ferromagnetic Liquid Thin Films Under Applied Field

    OpenAIRE

    Banerjee, S.; Widom, M.

    1999-01-01

    Theoretical calculations, computer simulations and experiments indicate the possible existence of a ferromagnetic liquid state, although definitive experimental evidence is lacking. Should such a state exist, demagnetization effects would force a nontrivial magnetization texture. Since liquid droplets are deformable, the droplet shape is coupled with the magnetization texture. In a thin-film geometry in zero applied field, the droplet has a circular shape and a rotating magnetization texture ...

  2. Thin, applied surfacing for improving skid resistance of concrete pavements

    Science.gov (United States)

    Scholer, C. F.

    1980-12-01

    The use of select aggregate in a thin wearing surface of portland cement mortar to prolone or restore a concrete pavement's ability to develop high friction was accomplished. Two fine aggregates, blast furnace slag and lightweight expanded shale were found to exhibit skid resistance greater than the other aggregates evaluated. The British polishing wheel was used in the laboratory evaluation of aggregate to simulate wear. The need for a method of restoring friction to a worn, but otherwise sound concrete pavement led to a field evaluation of several different techniques for placing a very thin overlay. The successful method was a broomed, very thin layer of mortar, 3 mm thick.

  3. Thin-film limit formalism applied to surface defect absorption

    Czech Academy of Sciences Publication Activity Database

    Holovský, Jakub; Ballif, C.

    2014-01-01

    Roč. 22, č. 25 (2014), s. 31466-31472. ISSN 1094-4087 R&D Projects: GA MŠk 7E12029; GA ČR(CZ) GA14-05053S EU Projects: European Commission(XE) 283501 - FAST TRACK Institutional support: RVO:68378271 Keywords : optical properties * absorption * thin films Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.488, year: 2014

  4. General Applied Theory of Micropolar thin Elastic Shells

    OpenAIRE

    Sargsyan S.H.

    2011-01-01

    In the present paper on the basis of asymptotically confirmed hypotheses method, depending on the values of physical size-less parameters, there are constructed general applied two-dimensional theories of micropolar shells with independent rotation, constraint rotation, and with “small shift rigidity”. Transverse shift and related deformation are completely taken into account in constructing the mentioned theories.

  5. Applying the Notion of Metaphor Types to Enhance Counseling Protocols

    Science.gov (United States)

    Tay, Dennis

    2012-01-01

    This article introduces the notion of metaphor types to show how the more nuanced aspects of metaphor theory can be applied to counseling practice. The author suggests that metaphor types can enhance existing interview protocols designed to help clients expand the source domain imagery of their metaphors and "bridge back" the expanded imagery to…

  6. Geometric photovoltaics applied to amorphous silicon thin film solar cells

    Science.gov (United States)

    Kirkpatrick, Timothy

    Geometrically generalized analytical expressions for device transport are derived from first principles for a photovoltaic junction. Subsequently, conventional planar and unconventional coaxial and hemispherical photovoltaic architectures are applied to detail the device physics of the junction based on their respective geometry. For the conventional planar cell, the one-dimensional transport equations governing carrier dynamics are recovered. For the unconventional coaxial and hemispherical junction designs, new multi-dimensional transport equations are revealed. Physical effects such as carrier generation and recombination are compared for each cell architecture, providing insight as to how non-planar junctions may potentially enable greater energy conversion efficiencies. Numerical simulations are performed for arrays of vertically aligned, nanostructured coaxial and hemispherical amorphous silicon solar cells and results are compared to those from simulations performed for the standard planar junction. Results indicate that fundamental physical changes in the spatial dependence of the energy band profile across the intrinsic region of an amorphous silicon p-i-n junction manifest as an increase in recombination current for non-planar photovoltaic architectures. Despite an increase in recombination current, however, the coaxial architecture still appears to be able to surpass the efficiency predicted for the planar geometry, due to the geometry of the junction leading to a decoupling of optics and electronics.

  7. Applied Models of Static Deformation of Anisotropic Micropolar Elastic Thin Bars

    OpenAIRE

    Alvajyan Sh. I.; Sargsyan S.H.

    2011-01-01

    In this paper, using the method of hypothesis, which has an asymptotic study, two dimension boundary problem of micropolar elasticity theory for an anisotropic surrounding in a thin rectangular aria is reduced to the applied one-dimensional problem and, depending on the values of the dimensionless physical parameters used to construct general models of micropolar anisotropic elastic thin bars with free rotation, with constrained rotation, ''with small shift rigidity'', in which fully takes in...

  8. Thermoelectric properties and micro-structure characteristics of annealed N-type bismuth telluride thin film

    International Nuclear Information System (INIS)

    N-type bismuth telluride (Bi2Te3) thermoelectric thin films were deposited by co-sputtering simple substance Te and Bi targets. The deposited films were annealed under various temperatures. The composition ratio, micro-structure and thermoelectric properties of the prepared films were systematically investigated by energy dispersive spectrometer, X-ray diffraction, four-probe method and Seebeck coefficient measurement system. When the annealing temperature is 400 °C, the stoichiometric N-type Bi2Te3 film is achieved, which has a maximum thermoelectric power factor of 0.821 × 10−3 W m−1 K−2. Furthermore, the dependence of Seebeck coefficient, electrical conductivity and power factor of the stoichiometric N-type Bi2Te3 film annealed at film 400 °C on the applied temperature ranging from 25 °C to 315 °C was investigated. The results show that a highest power factor of 3.288 × 10−3 W m−1 K−2 is obtained at the applied temperature of 275 °C. The structural and thermoelectric properties of the deposited bismuth telluride thin films are greatly improved by annealing and the Seebeck coefficient, electrical conductivity and power factor increase with the applied temperature rising, which are helpful and could be guidance for preparing the high-performance thin film thermoelectric materials for thermoelectric application.

  9. Amorphous and microcrystalline silicon applied in very thin tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schicho, Sandra

    2011-07-28

    wider band gap of the intrinsic absorber and window-p-type doped material was achieved. Higher opencircuit voltages were observed using such materials. Two different types of high band gap amorphous absorber layers with the associated p-doped layers were implemented into very thin tandem cells. An elongation of the light path in the absorber material, which is usually accomplished by using textured front contacts and back reflectors, is crucial for the performance of very thin tandem cells. Periodically patterned aluminum plates, which had shown very good light trapping properties for {mu}c-Si:H single junction solar cells, were suggested as substrates for very thin tandem cells. In comparison to tandem cells on standard substrates, higher short-circuit current densities and quantum efficiencies were observed on Al that indicated good light trapping. However, tandem cells on aluminum plates exhibited much lower open-circuit voltages. Raman measurements revealed a higher crystallinity and compressive stress in the microcrystalline bottom cells deposited on aluminum plates compared to cells deposited on standard substrates under the same deposition conditions. The silane concentration that is applied for the deposition of {mu}c-Si:H influences the crystalline volume fraction in a way that under otherwise constant deposition conditions lower values lead to higher crystalline volume fractions. By means of a sample series for which different silane concentrations were applied the orientation of the cubic silicon crystals and the appearance of stacking faults or twinning in the microcrystalline layers were investigated depending on silane concentration and crystalline volume fraction. For these studies, Raman spectroscopy with two different excitation lasers and X-ray diffraction in Bragg-Brentano and Grazing Incidence geometry were carried out. No preferential orientation of the silicon crystals in the investigated materials was detected by asymmetrical Grazing Incidence XRD

  10. Evaluation of failure behavior of a pipe containing circumferential notch-type wall thinning

    International Nuclear Information System (INIS)

    In order to evaluate a failure behavior of pipe with notch-type wall thinning, the present study performed full-scale pipe tests using the 102mm, schedule 80 pipe specimen simulated notch-and circular-type thinning defects. The pipe tests were conducted under the conditions of both monotonic and cyclic bending moment at a constant internal pressure of 10 MPa. From the results of experiment, the failure mode, load carrying capacity, deformation ability, and fatigue life of a notch-type wall thinned pipe were investigated, and they were compared with those of a circular-type wall thinned pipe. The failure mode of notched pipe was similar to that of circular-type thinned pipe under the monotonic bending load. Under the cyclic bending load, however, the mode was clearly distinguished with variation in the shape of wall thinning. The load carrying capacity of a pipe containing notch-type wall thinning was about the same or slightly lower than that of a pipe containing circular-type wall thinning when the thinning area was subjected to tensile stress, whereas it was higher than that of a pipe containing circular-type thinning defect when the thinning area was subjected to compressive stress. On the other hand, the deformation ability and fatigue life of a notch-type wall thinned pipe was lower than those of a circular-type wall thinned pipe

  11. Kinematic and dynamic vortices in a thin film driven by an applied current and magnetic field

    OpenAIRE

    Hari, Lydia Peres; Rubinstein, Jacob; Sternberg, Peter

    2013-01-01

    Using a Ginzburg-Landau model, we study the vortex behavior of a rectangular thin film superconductor subjected to an applied current fed into a portion of the sides and an applied magnetic field directed orthogonal to the film. Through a center manifold reduction we develop a rigorous bifurcation theory for the appearance of periodic solutions in certain parameter regimes near the normal state. The leading order dynamics yield in particular a motion law for kinematic vortices moving up and d...

  12. Amorphous and microcrystalline silicon applied in very thin tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schicho, Sandra

    2011-07-28

    wider band gap of the intrinsic absorber and window-p-type doped material was achieved. Higher opencircuit voltages were observed using such materials. Two different types of high band gap amorphous absorber layers with the associated p-doped layers were implemented into very thin tandem cells. An elongation of the light path in the absorber material, which is usually accomplished by using textured front contacts and back reflectors, is crucial for the performance of very thin tandem cells. Periodically patterned aluminum plates, which had shown very good light trapping properties for {mu}c-Si:H single junction solar cells, were suggested as substrates for very thin tandem cells. In comparison to tandem cells on standard substrates, higher short-circuit current densities and quantum efficiencies were observed on Al that indicated good light trapping. However, tandem cells on aluminum plates exhibited much lower open-circuit voltages. Raman measurements revealed a higher crystallinity and compressive stress in the microcrystalline bottom cells deposited on aluminum plates compared to cells deposited on standard substrates under the same deposition conditions. The silane concentration that is applied for the deposition of {mu}c-Si:H influences the crystalline volume fraction in a way that under otherwise constant deposition conditions lower values lead to higher crystalline volume fractions. By means of a sample series for which different silane concentrations were applied the orientation of the cubic silicon crystals and the appearance of stacking faults or twinning in the microcrystalline layers were investigated depending on silane concentration and crystalline volume fraction. For these studies, Raman spectroscopy with two different excitation lasers and X-ray diffraction in Bragg-Brentano and Grazing Incidence geometry were carried out. No preferential orientation of the silicon crystals in the investigated materials was detected by asymmetrical Grazing Incidence XRD

  13. Artificial intelligence applied to fuel management in BWR type reactors

    International Nuclear Information System (INIS)

    In this work two techniques of artificial intelligence, neural networks and genetic algorithms were applied to a practical problem of nuclear fuel management; the determination of the optimal fuel reload for a BWR type reactor. This is an important problem in the design of the operation cycle of the reactor. As a result of the application of these techniques, comparable or even better reloads proposals than those given by expert companies in the subject were obtained. Additionally, two other simpler problems in reactor physics were solved: the determination of the axial power profile and the prediction of the value of some variables of interest at the end of the operation cycle of the reactor. Neural networks and genetic algorithms have been applied to solve many problems of engineering because of their versatility but they have been rarely used in the area of fuel management. The results obtained in this thesis indicates the convenience of undertaking further work on this area and suggest the application of these techniques of artificial intelligence to the solution of other problems in nuclear reactor physics. (Author)

  14. Magnesium-doped Cuprous Oxide (Mg:Cu2O) thin films as a transparent p-type semiconductor oxide

    OpenAIRE

    Avelas Resende, João; Nguyen, Ngoc Duy; Deschanvres, Jean-Luc; Jimenez, Carmen

    2015-01-01

    Oxide electronics is an important emerging area, notably for the development of transparent thin film transistors (TFTs) and other complex electronic circuits. The successful application of n-type oxides to TFTs has motivated the interest in p-type oxide based semiconductors, also to be applied to TFTs or to complementary metal-oxide semiconductor (CMOS) technology. However, until now there is a lack of p-type oxide semiconductors with performance similar to that of n-type oxide. Among the di...

  15. Novel p-Type Conductive Semiconductor Nanocrystalline Film as the Back Electrode for High-Performance Thin Film Solar Cells.

    Science.gov (United States)

    Zhang, Ming-Jian; Lin, Qinxian; Yang, Xiaoyang; Mei, Zongwei; Liang, Jun; Lin, Yuan; Pan, Feng

    2016-02-10

    Thin film solar cells, due to the low cost, high efficiency, long-term stability, and consumer applications, have been widely applied for harvesting green energy. All of these thin film solar cells generally adopt various metal thin films as the back electrode, like Mo, Au, Ni, Ag, Al, graphite, and so forth. When they contact with p-type layer, it always produces a Schottky contact with a high contact potential barrier, which greatly affects the cell performance. In this work, we report for the first time to find an appropriate p-type conductive semiconductor film, digenite Cu9S5 nanocrystalline film, as the back electrode for CdTe solar cells as the model device. Its low sheet resistance (16.6 Ω/sq) could compare to that of the commercial TCO films (6-30 Ω/sq), like FTO, ITO, and AZO. Different from the traditonal metal back electrode, it produces a successive gradient-doping region by the controllable Cu diffusion, which greatly reduces the contact potential barrier. Remarkably, it achieved a comparable power conversion efficiency (PCE, 11.3%) with the traditional metal back electrode (Cu/Au thin films, 11.4%) in CdTe cells and a higher PCE (13.8%) with the help of the Au assistant film. We believe it could also act as the back electrode for other thin film solar cells (α-Si, CuInS2, CIGSe, CZTS, etc.), for their performance improvement. PMID:26736028

  16. Thin-film type Li-ion battery, using a polyethylene separator grafted with glycidyl methacrylate

    International Nuclear Information System (INIS)

    For the improvement of organic electrolyte holding ability, the hydrophobic surface of a porous polyethylene (PE)-membrane separator was modified by grafting a hydrophilic monomer, glycidyl methacrylate (GMA), PE-g-GMA, by using electron beam technology, and applied to a thin film type Li-ion battery to elucidate the effect of a surface modification of a PE membrane separator on the cyclic life of Li-ion batteries. The Li-ion battery using the PE-g-GMA membrane separator showed a better cycle life than that of the unmodified PE membrane separator, indicating that the surface hydrophilicity of the PE membrane separator improved the electrolyte holding capability between the electrodes in the Li-ion cell and prevented the electrolyte leakage

  17. Recovery of 15N-labelled fertilizers applied to bromegrass on a thin black chernozem soil

    International Nuclear Information System (INIS)

    The availability of N fertilizers on established grass stands is a function of such processes as immobilization, gaseous loss, leaching and position of applied N. A field experiment was conducted on a Thin Black Chernozem soil at Crossfield, Alberta to determine the effect of source, time and method of application on the recovery of 15N-labelled fertilizers applied to smooth bromegrass (Bromus inermis Leyss.). The treatments included two sources of N [urea and ammonium nitrate (AN)], four application times (early autumn, late autumn, early spring and late spring) and two methods of placement (surface-broadcast and subsurface banding). In most cases the 15N recovery in soil did not differ much between urea and AN. However, when urea was surface-broadcast, there was, on average, 10.2% less 15N recovery in plants than AN. The N recovery for late spring > early spring > late autumn = early autumn. When urea was banded 4 cm deep into the soil, N recovery in plants increased significantly compared with its surface-broadcast application. However, this was not observed when the source of N was AN. Banding generally increased the amount of immobilized N present in the soil and N recovery. We concluded that the N recovery in plants and in plants plus soil was less for urea than for AN and was less with autumn broadcast N application than with spring broadcast application. (author). 23 refs., 3 tabs

  18. Molecular Thin Films: a New Type of Magnetic Switch

    OpenAIRE

    Heutz, S. M.; Mitra, C.; Wu, W.; Fisher, A J; Kerridge, A.; Stoneham, A. M.; Harker, A. H.; Gardener, J; Tseng, Hsiang-Han; Jones, T. S.; Renner, C.; Aeppli, G.

    2008-01-01

    The design and fabrication of materials that exhibit both semiconducting and magnetic properties for spintronics and quantum computing has proven difficult. Important starting points are high-purity thin films as well as fundamental theoretical understanding of the magnetism. Here we show that small molecules have great potential in this area, due to ease of insertion of localised spins in organic frameworks and both chemical and structural purity. In particular, we demonstrate that archetypa...

  19. Thin films of perovskite-type complex oxides

    Directory of Open Access Journals (Sweden)

    Hanns-Ulrich Habermeier

    2007-10-01

    Full Text Available Complex oxides represent a class of materials with a plethora of fascinating, intrinsic physical functionalities. The intriguing interplay of charge, spin, and orbital ordering in these systems superimposed by lattice effects opens a scientifically rewarding playground for both fundamental and application-oriented research. In particular, the possibility of externally modifying the properties of thin-film complex oxides by epitaxial strain or artificial boundaries, and thus potentially generating novel properties at the interfaces between films, opens a new perspective. Here, the development of physical vapor deposition based preparation technologies for complex oxide thin films is reviewed, with examples taken from current research in high-temperature superconducting cuprates, magnetically ordered manganites, and Na–cobaltates. It covers the main trends of in situ process and growth control to fabricate single-crystal, single-layer thin films, heterostructures, and superlattices. Furthermore, using the combination of ferromagnetic and superconducting oxides as a case study, the emerging field of engineering the electronic structure at the interface, and thus design of new functionalities, is highlighted.

  20. Effects of applied voltage on the properties of anodic zirconia thin film on (100) silicon

    International Nuclear Information System (INIS)

    The formation of thin zirconium dioxide (ZrO2) film by anodisation of 150 nm thick zirconium (Zr) film on n-type silicon (Si) was investigated. Anodisation was performed in 1 M NaOH (pH 14) at six different voltages ranging from 5 V to 60 V. All anodisation processes were done for 15 min at room temperature in the bath with constant stirring. At lower voltages (5 V and 10 V), the anodised films are crystalline with high temperature cubic or tetragonal ZrO2 phases. For films anodised at voltages > 20 V, monoclinic ZrO2 appears along with the tetragonal or cubic ZrO2. The monoclinic phases exist mostly at the top part of the oxide with more tetragonal or cubic ZrO2 nearer to the oxide/substrate interface. For samples anodised above 40 V, the oxide cracks severely and delaminates from the substrate with the degree of delamination more severe as the anodisation voltages were increased to 60 V. At these voltages, the high temperature phases are no longer stabilised leading to the phase transformation to monoclinic ZrO2. Anodisation at 20 V is therefore thought as an adequate voltage for the formation of relatively smooth oxide. This oxide has a root-mean-square value of 0.55 nm, no cracks and reveals the highest breakdown voltage. - Highlights: ► 150 nm zirconium films on silicon were anodised to form thin zirconia film. ► Crystalline ZrO2 films formed with predominantly tetragonal or cubic phases. ► Duplex ZrO2 layer with tetragonal or cubic oxide near the oxide/substrate interface.

  1. Edge-type Josephson junctions in narrow thin-film strips

    Science.gov (United States)

    Moshe, Maayan; Kogan, V. G.; Mints, R. G.

    2008-07-01

    We study the field dependence of the maximum current Im(H) in narrow edge-type thin-film Josephson junctions. We calculate Im(H) within nonlocal Josephson electrodynamics taking into account the stray fields. These fields affect the difference of phases of the order parameter across the junction and therefore the tunneling currents. We find that the phase difference along the junction is proportional to the applied field, depends on the junction geometry, but is independent of the Josephson critical current density, i.e., it is universal. An explicit formula for this universal function is derived and used to calculate Im(H) . It is shown that the maxima of Im(H)∝1/H and the zeros of Im(H) are equidistant only in high fields. We find that the spacing between the zeros is proportional to 1/w2 , where w is the width of the junction. The general approach is applied to calculate Im(H) for a superconducting quantum interference device (SQUID) with two narrow edge-type junctions.

  2. The Movable Type Method Applied to Protein-Ligand Binding

    Science.gov (United States)

    Zheng, Zheng; Ucisik, Melek N.; Merz, Kenneth M.

    2013-01-01

    Accurately computing the free energy for biological processes like protein folding or protein-ligand association remains a challenging problem. Both describing the complex intermolecular forces involved and sampling the requisite configuration space make understanding these processes innately difficult. Herein, we address the sampling problem using a novel methodology we term “movable type”. Conceptually it can be understood by analogy with the evolution of printing and, hence, the name movable type. For example, a common approach to the study of protein-ligand complexation involves taking a database of intact drug-like molecules and exhaustively docking them into a binding pocket. This is reminiscent of early woodblock printing where each page had to be laboriously created prior to printing a book. However, printing evolved to an approach where a database of symbols (letters, numerals, etc.) was created and then assembled using a movable type system, which allowed for the creation of all possible combinations of symbols on a given page, thereby, revolutionizing the dissemination of knowledge. Our movable type (MT) method involves the identification of all atom pairs seen in protein-ligand complexes and then creating two databases: one with their associated pairwise distant dependent energies and another associated with the probability of how these pairs can combine in terms of bonds, angles, dihedrals and non-bonded interactions. Combining these two databases coupled with the principles of statistical mechanics allows us to accurately estimate binding free energies as well as the pose of a ligand in a receptor. This method, by its mathematical construction, samples all of configuration space of a selected region (the protein active site here) in one shot without resorting to brute force sampling schemes involving Monte Carlo, genetic algorithms or molecular dynamics simulations making the methodology extremely efficient. Importantly, this method explores the

  3. Comparing n- and p-type polycrystalline silicon absorbers in thin-film solar cells

    International Nuclear Information System (INIS)

    We have investigated fine grained polycrystalline silicon thin films grown by direct chemical vapor deposition on oxidized silicon substrates. More specifically, we analyze the influence of the doping type on the properties of this model polycrystalline silicon material. This includes an investigation of defect passivation and benchmarking of minority carrier properties. In our investigation, we use a variety of characterization techniques to probe the properties of the investigated polycrystalline silicon thin films, including Fourier Transform Photoelectron Spectroscopy, Electron Spin Resonance, Conductivity Activation, and Suns-Voc measurements. Amphoteric silicon dangling bond defects are identified as the most prominent defect type present in these layers. They are the primary recombination center in the relatively lowly doped polysilicon thin films at the heart of the current investigation. In contrast with the case of solar cells based on Czochralski silicon or multicrystalline silicon wafers, we conclude that no benefit is found to be associated with the use of n-type dopants over p-type dopants in the active absorber of the investigated polycrystalline silicon thin-film solar cells. - Highlights: • Comparison of n- and p-type absorbers for thin-film poly-Si solar cells • Extensive characterization of the investigated layers' characteristics • Literature review pertaining the use of n-type and p-type dopants in silicon

  4. Comparing n- and p-type polycrystalline silicon absorbers in thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Deckers, J. [imec, Kapeldreef 75, B-3001 Heverlee, Leuven (Belgium); ESAT, KU Leuven, Kardinaal Mercierlaan 94, B-3001 Heverlee, Leuven (Belgium); Bourgeois, E. [Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); IMOMEC, IMEC vzw, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); Jivanescu, M. [Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200D, B-3001 Heverlee, Leuven (Belgium); Abass, A. [Photonics Research Group (INTEC), Ghent University-imec, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); Van Gestel, D.; Van Nieuwenhuysen, K.; Douhard, B. [imec, Kapeldreef 75, B-3001 Heverlee, Leuven (Belgium); D' Haen, J.; Nesladek, M.; Manca, J. [Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); IMOMEC, IMEC vzw, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); Gordon, I.; Bender, H. [imec, Kapeldreef 75, B-3001 Heverlee, Leuven (Belgium); Stesmans, A. [Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200D, B-3001 Heverlee, Leuven (Belgium); Mertens, R.; Poortmans, J. [imec, Kapeldreef 75, B-3001 Heverlee, Leuven (Belgium); ESAT, KU Leuven, Kardinaal Mercierlaan 94, B-3001 Heverlee, Leuven (Belgium)

    2015-03-31

    We have investigated fine grained polycrystalline silicon thin films grown by direct chemical vapor deposition on oxidized silicon substrates. More specifically, we analyze the influence of the doping type on the properties of this model polycrystalline silicon material. This includes an investigation of defect passivation and benchmarking of minority carrier properties. In our investigation, we use a variety of characterization techniques to probe the properties of the investigated polycrystalline silicon thin films, including Fourier Transform Photoelectron Spectroscopy, Electron Spin Resonance, Conductivity Activation, and Suns-Voc measurements. Amphoteric silicon dangling bond defects are identified as the most prominent defect type present in these layers. They are the primary recombination center in the relatively lowly doped polysilicon thin films at the heart of the current investigation. In contrast with the case of solar cells based on Czochralski silicon or multicrystalline silicon wafers, we conclude that no benefit is found to be associated with the use of n-type dopants over p-type dopants in the active absorber of the investigated polycrystalline silicon thin-film solar cells. - Highlights: • Comparison of n- and p-type absorbers for thin-film poly-Si solar cells • Extensive characterization of the investigated layers' characteristics • Literature review pertaining the use of n-type and p-type dopants in silicon.

  5. Solution viscosity adjustable phloroglucinolcarboxylic acid/formaldehyde applied in extremely thin shell fusion target fabrication

    International Nuclear Information System (INIS)

    Capsuliform fusion target was prepared by using the OO/W/OI emulsion process. Phloroglucinolcarboxylic acid / formaldehyde (PF) is expected to be used as the water phase (W) solution which then gelates to be the shell of the capsule. The density of the shell should be low to obtain high laser gain. Phloroglucinolcarboxylic acid had addition and condensation reaction with formaldehyde under basic condition to form linear polymer first. The nano-scale linear polymers were then linked via noncovalent interactions, such as hydrogen bonding, van der Waals, to continue the gelation process. The type and amount of the base catalyst used in the reaction can affect the polymerization of PF, including the gelation rate and gelation concentration. By changing the basic condition of the reaction, the proper viscosity of 9x10-5 for capsuliform target fabrication was reached and extremely thin gel shell thickness of 17μm with low polymer concentration of 26.3mg/cm3 was obtained

  6. A chip-type thin-layer electrochemical cell coupled with capillary electrophoresis for online separation of electrode reaction products

    Energy Technology Data Exchange (ETDEWEB)

    He, Jian-Bo, E-mail: jbhe@hfut.edu.cn; Cui, Ting; Zhang, Wen-Wen; Deng, Ning

    2013-07-05

    Graphical abstract: -- Highlights: •A new coupling of thin-layer electrolysis with capillary electrophoresis (CE). •Rapid electrolysis, direct sampling followed by online CE separation. •At least 13 products of quercetin oxidation were separated. •Thermodynamic and kinetic parameters were determined from CE peak areas. -- Abstract: A coupling technique of thin-layer electrolysis with high-performance capillary electrophoresis/UV–vis technique(EC/HPCE/UV–vis) is developed for online separation and determination of electrode reaction products. A chip-type thin-layer electrolytic (CTE) cell was designed and fabricated, which contains a capillary channel and a background electrolyte reservoir, allowing rapid electrolysis, direct sampling and online electrophoretic separation. This chip-type setup was characterized based on an electrophoresis expression of Nernst equation that was applied to the redox equilibrium of o-tolidine at different potentials. The utility of the method was demonstrated by separating and determining the electro-oxidation products of quercetin in different pH media. Two main products were always found in the studied time, potential and pH ranges. The variety of products increased not only with increasing potential but also with increasing pH value, and in total, at least 13 products were observed in the electropherograms. This work illustrates a novel example of capillary electrophoresis used online with thin-layer electrolysis to separate and detect electrode reaction products.

  7. A chip-type thin-layer electrochemical cell coupled with capillary electrophoresis for online separation of electrode reaction products

    International Nuclear Information System (INIS)

    Graphical abstract: -- Highlights: •A new coupling of thin-layer electrolysis with capillary electrophoresis (CE). •Rapid electrolysis, direct sampling followed by online CE separation. •At least 13 products of quercetin oxidation were separated. •Thermodynamic and kinetic parameters were determined from CE peak areas. -- Abstract: A coupling technique of thin-layer electrolysis with high-performance capillary electrophoresis/UV–vis technique(EC/HPCE/UV–vis) is developed for online separation and determination of electrode reaction products. A chip-type thin-layer electrolytic (CTE) cell was designed and fabricated, which contains a capillary channel and a background electrolyte reservoir, allowing rapid electrolysis, direct sampling and online electrophoretic separation. This chip-type setup was characterized based on an electrophoresis expression of Nernst equation that was applied to the redox equilibrium of o-tolidine at different potentials. The utility of the method was demonstrated by separating and determining the electro-oxidation products of quercetin in different pH media. Two main products were always found in the studied time, potential and pH ranges. The variety of products increased not only with increasing potential but also with increasing pH value, and in total, at least 13 products were observed in the electropherograms. This work illustrates a novel example of capillary electrophoresis used online with thin-layer electrolysis to separate and detect electrode reaction products

  8. A Reinforcement Plate for Partially Thinned Pressure Vessel Designed to Measure the Thickness of Vessel Wall Applying Ultrasonic Technique

    International Nuclear Information System (INIS)

    It is very hard to preserve the wall thickness of the vessel because of the erosion or corrosion as time goes by. Therefore, the wall thicknesses of heaters in power plants are periodically measured using ultrasonic test. If the integrity of the wall thickness is estimated not to secure, the reinforcement plate is welled on the thinned area of the vessel. The overlay weld of the reinforcement plate on the thinned vessel is normally the fillet welding. As shown by the references, the reinforcement plate with adequate thickness does its role very well before the vessel wall is perforated due to thinning. However, the integrity of shell cannot insure because the weldment is directly applied by the shell side pressure to after the vessel wall is perforated. Therefore, it is needed to measure the thickness of thinned area under the reinforcement plate continuously for preserving integrity and planning the fabrication of replacement vessel. It is impossible to apply the ultrasonic thickness measurement technique after the reinforcement plate is welded on the shell. In this paper new reinforcement plate, which makes it possible to measure the wall thickness under the reinforcement plate applying the ultrasonic technique, is introduced. A method to evaluate the structural integrity of a fillet weldment for the reinforcement plate welded on a pressure vessel is introduced in this paper. Moreover, new reinforcement plate, which makes it possible to measure the wall thickness of pressure vessels under the reinforcement plate applying the ultrasonic technique, is introduced

  9. On a Yamabe type problem on three dimensional thin annulus

    International Nuclear Information System (INIS)

    We consider the problem: (Pε,):- Δuε=uε5, uε > 0 in Aε; uε = 0 on ∂Aε, where {Aε is part of R3,ε > 0} is a family of bounded annulus shaped domains such that Aε, becomes 'thin' as ε → 0. We show that, for any given constant C > 0, there exists ε0 > 0 such that for any ε 0, the problem (Pε) has no solution uε, whose energy, ∫Aε vertical bar ∇uε vertical bar2, is less than C. Such a result extends to dimension three a result previously known in higher dimensions. Although the strategy to prove this result is the same as in higher dimensions, we need a more careful and delicate blow up analysis of asymptotic profiles of solutions uε when ε → 0. (author)

  10. High-Quality Solution-Processed Silicon Oxide Gate Dielectric Applied on Indium Oxide Based Thin-Film Transistors.

    Science.gov (United States)

    Jaehnike, Felix; Pham, Duy Vu; Anselmann, Ralf; Bock, Claudia; Kunze, Ulrich

    2015-07-01

    A silicon oxide gate dielectric was synthesized by a facile sol-gel reaction and applied to solution-processed indium oxide based thin-film transistors (TFTs). The SiOx sol-gel was spin-coated on highly doped silicon substrates and converted to a dense dielectric film with a smooth surface at a maximum processing temperature of T = 350 °C. The synthesis was systematically improved, so that the solution-processed silicon oxide finally achieved comparable break downfield strength (7 MV/cm) and leakage current densities (<10 nA/cm(2) at 1 MV/cm) to thermally grown silicon dioxide (SiO2). The good quality of the dielectric layer was successfully proven in bottom-gate, bottom-contact metal oxide TFTs and compared to reference TFTs with thermally grown SiO2. Both transistor types have field-effect mobility values as high as 28 cm(2)/(Vs) with an on/off current ratio of 10(8), subthreshold swings of 0.30 and 0.37 V/dec, respectively, and a threshold voltage close to zero. The good device performance could be attributed to the smooth dielectric/semiconductor interface and low interface trap density. Thus, the sol-gel-derived SiO2 is a promising candidate for a high-quality dielectric layer on many substrates and high-performance large-area applications. PMID:26039187

  11. Hydrocarbon group-type analysis by thin layer chromatography and scanning densitometry

    Energy Technology Data Exchange (ETDEWEB)

    Membrado, L.; Cebolla, V.L.; Matt, M.; Galvez, E.M.; Domingo, M.P.; Vela, J.; Beregovtsova, N. [CSIC, Zaragoza (Spain)

    2002-07-01

    Hydrocarbon group-type analysis (HGTA) is a common technique for characterization of complex mixtures derived from raw materials such as coal, petroleum, or biomass. In these and other, related, samples, trying to achieve extensive separation of all the components would be very difficult at least, and most of the relevant properties of the samples can be related to the amounts of the different types of hydrocarbon. Groups of interest depend mainly on the nature of the sample, and some kind of liquid chromatography is usually involved in the most common HGTA methods. Thin-layer chromatography (TLC) can nowadays usually be used instead of HPLC, resulting in several advantages in terms of speed, cost, and general convenience. Detection and quantification of the different peaks might involve the use of special equipment, e.g. in TLC-flame ionization detection (FID) methods, although it can also be accomplished by means of UV and fluorescence scanning densitometry. This paper describes a series of TLC-based HGTA methods developed for coal-, biomass-, and petroleum-derived products that give a reasonably general overview of the possibilities of TLC applied to HGTA.

  12. Simulation of low rigidity part machining applied to thin-walled structures

    OpenAIRE

    Arnaud, Lionel; Gonzalo, Oscar; Seguy, Sébastien; Jauregi, Haritz; Peigné, Grégoire

    2011-01-01

    The aim of this study is to evaluate the modelling of machining vibrations of thin-walled aluminium work- pieces at high productivity rate. The use of numerical simulation is generally aimed at giving optimal cutting conditions for the precision and the surface finish needed. The proposed modelling includes all the ingredients needed for real productive machining of thin-walled parts. It has been tested with a specially designed machining test with high cutting engagement and taking into acco...

  13. Perovskite type nanopowders and thin films obtained by chemical methods

    Directory of Open Access Journals (Sweden)

    Viktor Fruth

    2010-09-01

    Full Text Available The review presents the contribution of the authors, to the preparation of two types of perovskites, namely BiFeO3 and LaCoO3, by innovative methods. The studied perovskites were obtained as powders, films and sintered bodies. Their complex structural and morphological characterization is also presented. The obtained results have underlined the important influence of the method of preparation on the properties of the synthesized perovskites.

  14. Ac susceptibility components of a current-carrying thin type-II superconducting annulus

    International Nuclear Information System (INIS)

    Highlights: • The real and imaginary parts of magnetic susceptibility of a superconducting annulus in a perpendicular field are studied. • The calculations are done in the absence and the presence of a transport radial current. • The comparison shows that by applying a radial current, the imaginary part of susceptibility increases. • The variations of imaginary part with respect to the real part of susceptibility are also studied. • By applying a radial current, the imaginary part decreases when the aspect ratio is increased. - Abstract: By assuming a spatial dependence on the sheet-current density, we have investigated the real (χ′) and imaginary parts (χ″) of the susceptibility of a thin type-II superconducting annulus (with the inner and outer radii a and b, respectively) in the absence and also in the presence of a radial transport current, using the Bean critical state model in which the critical current density is assumed to be independent of the local magnetic field. The results of our calculations on the components of the magnetic susceptibilities in two cases and for the different aspect ratios are compared with each other. The comparison shows that by applying a radial current to the sample, the imaginary part of the susceptibility is increased. We have studied the variations of the χ″ with respect to χ′ for a several aspect ratios. We also found that when a transport radial current is passed through the washer, by increasing the aspect ratio a/b in the parametric plot of χ″ vs. χ′, the imaginary part decreases and the peak of χ″ decreases in magnitude but shifted towards χ″ = 0

  15. Damage measurement for molybdenum thin using reflection-type digital holography

    International Nuclear Information System (INIS)

    In the fabrication of electronic circuits used in electronic products, molybdenum thin films are deposited on semiconductors to prevent oxidation. During the deposition, the presence of a particle or dust at the interface between the thin film and substrate causes the decrease of adhesion, performance, and life cycle. In this study, a damage measurement targeting two kinds of glass substrate, with and without particles, was performed in order to measure the change in the molybdenum thin film deposition area in the presence of a particle. Clean and dirty molybdenum thin film specimens were fabricated and directly deposited on a substrate using the sputtering method, and a reflection-type digital holographic interferometer was configured for measuring the damage. Reflection-type digital holography has several advantages; e.g., the configuration of the interferometer is simple, the measurement range can be varied depending on the magnification of a microscopic lens, and the measuring time is short. The results confirm that reflection-type digital holography is useful for the measurement of the damage and defects of thin films.

  16. Damage measurement for molybdenum thin using reflection-type digital holography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyeong Suk; Jung, Hyun Il; Shin, Ju Yeop; Ma, Hye Joon; Jung, Hyun Chul [Chsoun University, Gwangju (Korea, Republic of); Kwon, Ik Hwan; Hong, Chung Ki [Dept. of Physics, POSTECH, Pohang (Korea, Republic of); Yang, Seung Pill [Dept. of Ophthalmic Optics Engineering, Donga Injae University, Youngam (Korea, Republic of)

    2015-04-15

    In the fabrication of electronic circuits used in electronic products, molybdenum thin films are deposited on semiconductors to prevent oxidation. During the deposition, the presence of a particle or dust at the interface between the thin film and substrate causes the decrease of adhesion, performance, and life cycle. In this study, a damage measurement targeting two kinds of glass substrate, with and without particles, was performed in order to measure the change in the molybdenum thin film deposition area in the presence of a particle. Clean and dirty molybdenum thin film specimens were fabricated and directly deposited on a substrate using the sputtering method, and a reflection-type digital holographic interferometer was configured for measuring the damage. Reflection-type digital holography has several advantages; e.g., the configuration of the interferometer is simple, the measurement range can be varied depending on the magnification of a microscopic lens, and the measuring time is short. The results confirm that reflection-type digital holography is useful for the measurement of the damage and defects of thin films.

  17. Thin film type 248-nm bottom antireflective coatings

    Science.gov (United States)

    Enomoto, Tomoyuki; Nakayama, Keisuke; Mizusawa, Kenichi; Nakajima, Yasuyuki; Yoon, Sangwoong; Kim, Yong-Hoon; Kim, Young-Ho; Chung, Hoesik; Chon, Sang Mun

    2003-06-01

    A frequent problem encountered by photoresists during the manufacturing of semiconductor device is that activating radiation is reflected back into the photoresist by the substrate. So, it is necessary that the light reflection is reduced from the substrate. One approach to reduce the light reflection is the use of bottom anti-reflective coating (BARC) applied to the substrate beneath the photoresist layer. The BARC technology has been utilized for a few years to minimize the reflectivity. As the chip size is reduced to sub 0.13-micron, the photoresist thickness has to decrease with the aspect ratio being less than 3.0. Therefore, new Organic BARC is strongly required which has the minimum reflectivity with thinner BARC thickness and higher etch selectivity towards resist. SAMSUNG Electronics has developed the advanced Organic BARC with Nissan Chemical Industries, Ltd. and Brewer Science, Inc. for achieving the above purpose. As a result, the suitable high performance SNAC2002 series KrF Organic BARCs were developed. Using CF4 gas as etchant, the plasma etch rate of SNAC2002 series is about 1.4 times higher than that of conventional KrF resists and 1.25 times higher than the existing product. The SNAC2002 series can minimize the substrate reflectivity at below 40nm BARC thickness, shows excellent litho performance and coating properties.

  18. Cell Growth on Different Types of Ultrananocrystalline Diamond Thin Films

    Directory of Open Access Journals (Sweden)

    Orlando Auciello

    2012-08-01

    Full Text Available Unique functional materials provide a platform as scaffolds for cell/tissue regeneration. Investigation of cell-materials’ chemical and biological interactions will enable the application of more functional materials in the area of bioengineering, which provides a pathway to the novel treatment for patients who suffer from tissue/organ damage and face the limitation of donation sources. Many studies have been made into tissue/organ regeneration. Development of new substrate materials as platforms for cell/tissue regeneration is a key research area. Studies discussed in this paper focus on the investigation of novel ultrananocrystalline diamond (UNCD films as substrate/scaffold materials for developmental biology. Specially designed quartz dishes have been coated with different types of UNCD films and cells were subsequently seeded on those films. Results showed the cells’ growth on UNCD-coated culture dishes are similar to cell culture dishes with little retardation, indicating that UNCD films have no or little inhibition on cell proliferation and are potentially appealing as substrate/scaffold materials. The mechanisms of cell adhesion on UNCD surfaces are proposed based on the experimental results. The comparisons of cell cultures on diamond-powder-seeded culture dishes and on UNCD-coated dishes with matrix-assisted laser desorption/ionization—time-of-flight mass spectroscopy (MALDI-TOF MS and X-ray photoelectron spectroscopy (XPS analyses provided valuable data to support the mechanisms proposed to explain the adhesion and proliferation of cells on the surface of the UNCD platform.

  19. Simulation of fluid flow and solididification in the funnel type crystalizer of thin slab continuous cast

    Directory of Open Access Journals (Sweden)

    M.H. Zare

    2014-01-01

    Full Text Available The present work models the fluid flow and heat transfer with solidification of a steel in the funnel type mold region of a thin slab steel continuous caster.ªª In current modeling a turbulent fluid flow has been supposed and used K-ɛ model in order to anticipate the heat transfer distribution in mold region. To consider the solidification effects on fluid flow and solid crust, the Darci model was applied, also for outlet heat flow measurement a simple method was used. The fluid flowresults indicate a special flow pattern in the caster for a tetra-furcated nozzle. revealed to have two large downward and upward recirculation zones with a classic double-roll and two small vortices generated by the upward flow from the upper ports of the submerged entry nozzle. Heat transfer results indicate that increasing the continuous casting velocity and reducing submergence depth would lead to reduction in the thichness of the solidified shell while decrease the surface freezingFinally achieved the optimum condition related to heat transfer phenomena and surface distribution

  20. Applying the Behavioral Economics Principle of Unit Price to DRO Schedule Thinning

    Science.gov (United States)

    Roane, Henry S.; Falcomata, Terry S.; Fisher, Wayne W.

    2007-01-01

    Within the context of behavioral economics, the ratio of response requirements to reinforcer magnitude is called "unit price." In this investigation, we yoked increases in reinforcer magnitude with increases in intervals of differential reinforcement of other behavior (DRO) to thin DRO intervals to a terminal value. (Contains 1 figure.)

  1. New Transmission Condition Accounting For Diffusion Anisotropy In Thin Layers Applied To Diffusion MRI

    OpenAIRE

    Caubet, Fabien; Haddar, Houssem; Li, Jing-Rebecca; Nguyen, Dang

    2014-01-01

    The Bloch-Torrey Partial Differential Equation (PDE) can be used to model the diffusion Magnetic Resonance Imaging (dMRI) signal in biological tissue. In this paper, we derive an Anisotropic Diffusion Transmission Condition (ADTC) for the Bloch-Torrey PDE that accounts for anisotropic diffusion inside thin layers. Such diffusion occurs, for example, in the myelin sheath surrounding the axons of neurons. This ADTC can be interpreted as an asymptotic model of order two with respect to the layer...

  2. P-Type Conduction of ZnO Thin Film by Codoping Technique

    International Nuclear Information System (INIS)

    Aluminium and zinc target were co-sputtered on silicon (111) substrates using DC magnetron sputtering in the pure argon atmosphere. These films were then underwent the thermal annealing in different ratios of nitrogen and oxygen for 1 hour to form thin oxide films. P-type conduction in ZnO thin films have been realized by the Al-N codoping method, whereby the lowest resistivity of 3.41x10-3 Ω·cm and the highest carrier concentration of 1.54x1022 cm-3 was achieved for sample prepared at annealed temperature of 300 deg. C

  3. Critical phase transition temperatures of 1-3 type multiferroic composite thin films

    International Nuclear Information System (INIS)

    The critical phase transition temperatures of the ferroelectric (FE) phase and the ferromagnetic (FM) phase in epitaxial 1-3 type multiferroic thin films were obtained based on the thermodynamic model. Analytic expressions of the para-ferro transition temperatures were derived as functions of the volume fraction of the FM phase by considering the effect of the coupled elastic stresses arising from the FE/FM and the film/substrate interfaces. Our results show that the critical temperatures are significantly affected by the induced stresses and can be controlled by adjusting the volume fractions of the different phases within the thin film

  4. Critical phase transition temperatures of 1-3 type multiferroic composite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lu Xiaoyan [Electro-Optics Technology Center, Harbin Institute of Technology, Harbin 150001 (China); Wang Biao [Electro-Optics Technology Center, Harbin Institute of Technology, Harbin 150001 (China); Zheng Yue [Electro-Optics Technology Center, Harbin Institute of Technology, Harbin 150001 (China); Ryba, Earle [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2007-03-21

    The critical phase transition temperatures of the ferroelectric (FE) phase and the ferromagnetic (FM) phase in epitaxial 1-3 type multiferroic thin films were obtained based on the thermodynamic model. Analytic expressions of the para-ferro transition temperatures were derived as functions of the volume fraction of the FM phase by considering the effect of the coupled elastic stresses arising from the FE/FM and the film/substrate interfaces. Our results show that the critical temperatures are significantly affected by the induced stresses and can be controlled by adjusting the volume fractions of the different phases within the thin film.

  5. P-type thin films transistors with solution-deposited lead sulfide films as semiconductor

    International Nuclear Information System (INIS)

    In this paper we demonstrate p-type thin film transistors fabricated with lead sulfide (PbS) as semiconductor deposited by chemical bath deposition methods. Crystallinity and morphology of the resulting PbS films were characterized using X-ray diffraction, atomic force microscopy and scanning electron microscopy. Devices were fabricated using photolithographic processes in a bottom gate configuration with Au as source and drain top contacts. Field effect mobility for as-fabricated devices was ∼ 0.09 cm2 V−1 s−1 whereas the mobility for devices annealed at 150 °C/h in forming gas increased up to ∼ 0.14 cm2 V−1 s−1. Besides the thermal annealing, the entire fabrications process was maintained below 100 °C. The electrical performance of the PbS-thin film transistors was studied before and after the 150 °C anneal as well as a function of the PbS active layer thicknesses. - Highlights: ► Thin film transistors with PbS as semiconductor deposited by chemical bath deposition. ► Photolithography-based thin film transistors with PbS films at low temperatures. ► Electron mobility for anneal-PbS devices of ∼ 0.14 cm2 V−1 s−1. ► Highest mobility reported in thin film transistors with PbS as the semiconductor.

  6. Texture-Etched SnO2 Glasses Applied to Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Bing-Rui Wu

    2014-01-01

    Full Text Available Transparent electrodes of tin dioxide (SnO2 on glasses were further wet-etched in the diluted HCl:Cr solution to obtain larger surface roughness and better light-scattering characteristic for thin-film solar cell applications. The process parameters in terms of HCl/Cr mixture ratio, etching temperature, and etching time have been investigated. After etching process, the surface roughness, transmission haze, and sheet resistance of SnO2 glasses were measured. It was found that the etching rate was increased with the additions in etchant concentration of Cr and etching temperature. The optimum texture-etching parameters were 0.15 wt.% Cr in 49% HCl, temperature of 90°C, and time of 30 sec. Moreover, silicon thin-film solar cells with the p-i-n structure were fabricated on the textured SnO2 glasses using hot-wire chemical vapor deposition. By optimizing the texture-etching process, the cell efficiency was increased from 4.04% to 4.39%, resulting from the increment of short-circuit current density from 14.14 to 15.58 mA/cm2. This improvement in cell performances can be ascribed to the light-scattering effect induced by surface texturization of SnO2.

  7. Phenomenological theory of 1-3 type multiferroic composite thin film: thickness effect

    International Nuclear Information System (INIS)

    The effect of thickness on the para-ferro-phase transition temperatures, the spontaneous polarization and magnetization and hysteresis loops of 1-3 type multiferroic composite thin films was studied in the framework of Landau phenomenological theory. We took into account the electrostrictive and magnetostrictive effects, misfit strains induced from the interfaces of ferroelectric/ferromagnetic portions and film/substrate. Butterfly loops under external fields were also simulated.

  8. Phenomenological theory of 1-3 type multiferroic composite thin film: thickness effect

    Energy Technology Data Exchange (ETDEWEB)

    Lu Xiaoyan; Wang Biao; Zheng Yue [School of Astronautics, Harbin Institute of Technology, Harbin 150001 (China); Ryba, Earle [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802 (United States)], E-mail: wangbiao@mail.sysu.edu.cn

    2009-01-07

    The effect of thickness on the para-ferro-phase transition temperatures, the spontaneous polarization and magnetization and hysteresis loops of 1-3 type multiferroic composite thin films was studied in the framework of Landau phenomenological theory. We took into account the electrostrictive and magnetostrictive effects, misfit strains induced from the interfaces of ferroelectric/ferromagnetic portions and film/substrate. Butterfly loops under external fields were also simulated.

  9. MUSIC-type imaging of a thin penetrable inclusion from its multi-static response matrix

    International Nuclear Information System (INIS)

    The imaging of a thin inclusion, with dielectric and/or magnetic contrasts with respect to the embedding homogeneous medium, is investigated. A MUSIC-type algorithm operating at a single time-harmonic frequency is developed in order to map the inclusion (that is, to retrieve its supporting curve) from scattered field data collected within the multi-static response matrix. Numerical experiments carried out for several types of inclusions (dielectric and/or magnetic ones, straight or curved ones), mostly single inclusions and also two of them close by as a straightforward extension, illustrate the pros and cons of the proposed imaging method

  10. Preparation and recording characteristics of granular-type perpendicular magnetic recording media with thin intermediate layer

    International Nuclear Information System (INIS)

    Granular-type media with thin Ru intermediate layer were prepared on a highly oriented high-Bs FeCo soft underlayer (SUL). A CoPt-TiO2 recording layer on a Ru intermediate layer of only 2 nm had high-crystal orientation, high Hc of 6.5 kOe, and a high squareness ratio (SQ) of 0.99. The magnetic property of the SUL was also good. The recording performance was measured for the media with different Ru intermediate thicknesses by using a single-pole-type (SPT) head. The media had large reproduced output even for the Ru intermediate layer thickness of 2 nm

  11. How Thin Is Foil? Applying Density to Find the Thickness of Aluminum Foil

    Science.gov (United States)

    Concannon, James P.

    2011-01-01

    In this activity, I show how high school students apply their knowledge of density to solve an unknown variable, such as thickness. Students leave this activity with a better understanding of density, the knowledge that density is a characteristic property of a given substance, and the ways density can be measured. (Contains 4 figures and 1 table.)

  12. P-type thin films transistors with solution-deposited lead sulfide films as semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo-Castillo, A.; Salas-Villasenor, A.; Mejia, I. [Department of Materials Science and Engineering, The University of Texas at Dallas. 800 West Campbell Rd, Richardson, TX 75083 (United States); Aguirre-Tostado, S. [Centro de Investigacion en Materiales Avanzados, S. C. Alianza Norte 202, Parque de Investigacion e Innovacion Tecnologica, Apodaca, Nuevo Leon, C.P. 666000 (Mexico); Gnade, B.E. [Department of Materials Science and Engineering, University of Texas at Dallas. 800 West Campbell Rd, Richardson, TX 75083 (United States); Quevedo-Lopez, M.A., E-mail: mxq071000@utdallas.edu [Department of Materials Science and Engineering, University of Texas at Dallas. 800 West Campbell Rd, Richardson, TX 75083 (United States)

    2012-01-31

    In this paper we demonstrate p-type thin film transistors fabricated with lead sulfide (PbS) as semiconductor deposited by chemical bath deposition methods. Crystallinity and morphology of the resulting PbS films were characterized using X-ray diffraction, atomic force microscopy and scanning electron microscopy. Devices were fabricated using photolithographic processes in a bottom gate configuration with Au as source and drain top contacts. Field effect mobility for as-fabricated devices was {approx} 0.09 cm{sup 2} V{sup -1} s{sup -1} whereas the mobility for devices annealed at 150 Degree-Sign C/h in forming gas increased up to {approx} 0.14 cm{sup 2} V{sup -1} s{sup -1}. Besides the thermal annealing, the entire fabrications process was maintained below 100 Degree-Sign C. The electrical performance of the PbS-thin film transistors was studied before and after the 150 Degree-Sign C anneal as well as a function of the PbS active layer thicknesses. - Highlights: Black-Right-Pointing-Pointer Thin film transistors with PbS as semiconductor deposited by chemical bath deposition. Black-Right-Pointing-Pointer Photolithography-based thin film transistors with PbS films at low temperatures. Black-Right-Pointing-Pointer Electron mobility for anneal-PbS devices of {approx} 0.14 cm{sup 2} V{sup -1} s{sup -1}. Black-Right-Pointing-Pointer Highest mobility reported in thin film transistors with PbS as the semiconductor.

  13. Chemical synthesis of p-type nanocrystalline copper selenide thin films for heterojunction solar cells

    International Nuclear Information System (INIS)

    Nanocrystalline thin films of copper selenide have been grown on glass and tin doped-indium oxide substrates using chemical method. At ambient temperature, golden films have been synthesized and annealed at 200 deg. C for 1 h and were examined for their structural, surface morphological and optical properties by means of X-ray diffraction (XRD), scanning electron microscopy and UV-vis spectrophotometry techniques, respectively. Cu2-xSe phase was confirmed by XRD pattern and spherical grains of 30 ± 4 - 40 ± 4 nm in size aggregated over about 130 ± 10 nm islands were seen by SEM images. Effect of annealing on crystallinity improvement, band edge shift and photoelectrochemical performance (under 80 mW/cm2 light intensity and in lithium iodide electrolyte) has been studied and reported. Observed p-type electrical conductivity in copper selenide thin films make it a suitable candidate for heterojunction solar cells

  14. Microhardness studies on thin carbon films grown on P-type, (100) silicon

    Science.gov (United States)

    Kolecki, J. C.

    1982-01-01

    A program to grow thin carbon films and investigate their physical and electrical properties is described. Characteristics of films grown by rf sputtering and vacuum arc deposition on p type, (100) silicon wafers are presented. Microhardness data were obtained from both the films and the silicon via the Vickers diamond indentation technique. These data show that the films are always harder than the silicon, even when the films are thin (of the order of 1000 A). Vacuum arc films were found to contain black carbon inclusions of the order of a few microns in size, and clusters of inclusions of the order of tens of microns. Transmission electron diffraction showed that the films being studied were amorphous in structure.

  15. Preparation of Thin Melanin-Type Films by Surface-Controlled Oxidation.

    Science.gov (United States)

    Salomäki, Mikko; Tupala, Matti; Parviainen, Timo; Leiro, Jarkko; Karonen, Maarit; Lukkari, Jukka

    2016-04-26

    The preparation of thin melanin films suitable for applications is challenging. In this work, we present a new alternative approach to thin melanin-type films using oxidative multilayers prepared by the sequential layer-by-layer deposition of cerium(IV) and inorganic polyphosphate. The interfacial reaction between cerium(IV) in the multilayer and 5,6-dihydroxyindole (DHI) in the adjacent aqueous solution leads to the formation of a thin uniform film. The oxidation of DHI by cerium(IV) proceeds via known melanin intermediates. We have characterized the formed DHI-melanin films using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), UV-vis spectroscopy, and spectroelectrochemistry. When a five-bilayer oxidative multilayer is used, the film is uniform with a thickness of ca. 10 nm. Its chemical composition, as determined using XPS, is typical for melanin. It is also redox active, and its oxidation occurs in two steps, which can be assigned to semiquinone and quinone formation within the indole structural motif. Oxidative multilayers can also oxidize dopamine, but the reaction stops at the dopamine quinone stage because of the limited amount of the multilayer-based oxidizing agent. However, dopamine oxidation by Ce(IV) was studied also in solution by UV-vis spectroscopy and mass spectrometry in order to verify the reaction mechanism and the final product. In solution, the oxidation of dopamine by cerium shows that the indole ring formation takes place already at low pH and that the mass spectrum of the final product is practically identical with that of commercial melanin. Therefore, layer-by-layer formed oxidative multilayers can be used to deposit functional melanin-type thin films on arbitrary substrates by a surface-controlled reaction. PMID:27049932

  16. Important physical parameters of Bi{sub 2}O{sub 3} thin films found by applying several models for optical data

    Energy Technology Data Exchange (ETDEWEB)

    Rusu, G.I.; Leontie, L. [Faculty of Physics, Al. I. Cuza Universiy, Iasi (Romania); Tigau, N. [Faculty of Sciences, Dunarea de Jos University, Galati (Romania); Condurache-Bota, S.

    2010-05-15

    Different optical parameters for thin solid films can be computed as functions of wavelength from the optical transmission and reflection spectra. Subsequently, several models can be tested on the obtained data, in order to check their validity with respect to the materials under study. Moreover, these models offer the possibility to estimate essential physical parameters. Such models are tested within this article for the refraction index and for the real part of the complex dielectric constant, for bismuth trioxide thin films deposited on glass substrates maintained at three different temperatures. Also, the model proposed by Tauc is applied for the absorption spectrum of the same films, in order to determine the type of electronic transition and to estimate the optical energy bandgap. It will be noticed that the optical parameters vary rather significantly with changing substrate temperature, while the structure of the films, as studied by means of X-ray diffractometry is almost insensitive to this change of deposition parameter. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Identification of thin elastic isotropic plate parameters applying Guided Wave Measurement and Artificial Neural Networks

    Science.gov (United States)

    Pabisek, Ewa; Waszczyszyn, Zenon

    2015-12-01

    A new hybrid computational system for material identification (HCSMI) is presented, developed for the identification of homogeneous, elastic, isotropic plate parameters. Attention is focused on the construction of dispersion curves, related to Lamb waves. The main idea of the system HCSMI lies in separation of two essential basic computational stages, corresponding to direct or inverse analyses. In the frame of the first stage an experimental dispersion curve DCexp is constructed, applying Guided Wave Measurement (GWM) technique. Then, in the other stage, corresponding to the inverse analysis, an Artificial Neural Network (ANN) is trained 'off line'. The substitution of results of the first stage, treated as inputs of the ANN, gives the values of identified plate parameters. In such a way no iteration is needed, unlike to the classical approach. In such an approach, the "distance" between the approximate experimental curves DCexp and dispersion curves DCnum obtained in the direct analysis, is iteratively minimized. Two case studies are presented, corresponding either to measurements in laboratory tests or those related to pseudo-experimental noisy data of computer simulations. The obtained results prove high numerical efficiency of HCSMI, applied to the identification of aluminum plate parameters.

  18. Consideration of BORAX-type reactivity accidents applied to research reactors

    International Nuclear Information System (INIS)

    Most of the research reactors discussed in this document are pool-type reactors in which the reactor vessel and some of the reactor coolant systems are located in a pool of water. These reactors generally use fuel in plate assemblies formed by a compact layer of uranium (or U3Si2) and aluminium particles, sandwiched between two thin layers of aluminium serving as cladding. The fuel melting process begins at 660 deg. C when the aluminium melts, while the uranium (or U3Si2) particles may remain solid. The accident that occurred in the American SL-1 reactor in 1961, together with tests carried out in the United States as of 1954 in the BORAX-1 reactor and then, in 1962, in the SPERT-1 reactor, showed that a sudden substantial addition of reactivity in this type of reactor could lead to explosive mechanisms caused by degradation, or even fast meltdown, of part of the reactor core. This is what is known as a 'BORAX-type' accident. The aim of this document is first to briefly recall the circumstances of the SL-1 reactor accident, the lessons learned, how this operational feedback has been factored into the design of various research reactors around the world and, second, to describe the approach taken by France with regard to this type of accident and how, led by IRSN, this approach has evolved in the last decade. (authors)

  19. Analysis of MUSIC-type imaging functional for single, thin electromagnetic inhomogeneity in limited-view inverse scattering problem

    Science.gov (United States)

    Ahn, Chi Young; Jeon, Kiwan; Park, Won-Kwang

    2015-06-01

    This study analyzes the well-known MUltiple SIgnal Classification (MUSIC) algorithm to identify unknown support of thin penetrable electromagnetic inhomogeneity from scattered field data collected within the so-called multi-static response matrix in limited-view inverse scattering problems. The mathematical theories of MUSIC are partially discovered, e.g., in the full-view problem, for an unknown target of dielectric contrast or a perfectly conducting crack with the Dirichlet boundary condition (Transverse Magnetic-TM polarization) and so on. Hence, we perform further research to analyze the MUSIC-type imaging functional and to certify some well-known but theoretically unexplained phenomena. For this purpose, we establish a relationship between the MUSIC imaging functional and an infinite series of Bessel functions of integer order of the first kind. This relationship is based on the rigorous asymptotic expansion formula in the existence of a thin inhomogeneity with a smooth supporting curve. Various results of numerical simulation are presented in order to support the identified structure of MUSIC. Although a priori information of the target is needed, we suggest a least condition of range of incident and observation directions to apply MUSIC in the limited-view problem.

  20. Fuselage Boundary Layer Ingestion Propulsion Applied to a Thin Haul Commuter Aircraft for Optimal Efficiency

    Science.gov (United States)

    Mikic, Gregor Veble; Stoll, Alex; Bevirt, JoeBen; Grah, Rok; Moore, Mark D.

    2016-01-01

    Theoretical and numerical aspects of aerodynamic efficiency of propulsion systems are studied. Focus is on types of propulsion that closely couples to the aerodynamics of the complete vehicle. We discuss the effects of local flow fields, which are affected both by conservative flow acceleration as well as total pressure losses, on the efficiency of boundary layer immersed propulsion devices. We introduce the concept of a boundary layer retardation turbine that helps reduce skin friction over the fuselage. We numerically investigate efficiency gains offered by boundary layer and wake interacting devices. We discuss the results in terms of a total energy consumption framework and show that efficiency gains offered depend on all the elements of the propulsion system.

  1. Pseudo-cubic thin-plate type Spline method for analyzing experimental data

    International Nuclear Information System (INIS)

    A mathematical tool, using pseudo-cubic thin-plate type Spline, has been developed for analysis of experimental data points. The main purpose is to obtain, without any a priori given model, a mathematical predictor with related uncertainties, usable at any point in the multidimensional parameter space. The smoothing parameter is determined by a generalized cross validation method. The residual standard deviation obtained is significantly smaller than that of a least square regression. An example of use is given with critical heat flux data, showing a significant decrease of the conception criterion (minimum allowable value of the DNB ratio). (author) 4 figs., 1 tab., 7 refs

  2. Studies on Thin Films of Antimony Vacuum Evaporated from a Knudsen-Type Source

    Directory of Open Access Journals (Sweden)

    K.L. Chaudhary

    2000-10-01

    Full Text Available A Knudsen-type evaporation source was used for the deposition of thin films of antimony to study their growth and microstructure under different rates of evaporation and substrate temperatures when vacuum evaporated onto air-cleaved KC1, mica, amorphous carbon and doped KCl substrates. The crystallisation of these films on exposure to an electron beam of moderate intensity inside the electron microscope was studied, and the orientations of the crystallised films wrt the substrate were established. It has been concluded that antimony films prepared by this source compare well with those prepared by other sources of vacuum evaporation.

  3. Properties of combined TiN and Pt thin films applied to gas sensing

    CERN Document Server

    Aabom, A E; Eriksson, M; Twesten, R D

    2002-01-01

    TiN was introduced as a part of the sensing layer of gas sensitive metal-insulator-semiconductor (MIS) devices. Three types of metallic gate layer structures deposited by magnetron sputtering were investigated: TiN, a double layer with Pt on top of TiN, and two-phase Pt-TiN films formed by co-sputtering. The homogeneity of the co-sputtered layer was strongly dependent on the substrate temperature during film growth, with segregation of Pt as a result of high temperature deposition. During the deposition conditions in this work, Pt and TiN appear to be immiscible, resulting in growth of films consisting of the two phases. Furthermore, surface oxidation of TiN and enhanced oxidation of TiN at the grain boundaries to Pt in both the as-deposited films after exposure to atmosphere at room temperature and the films subjected to MIS device processing and to gas response analyses at a temperature of 140 deg. C resulted in a three-phase TiN-TiO sub x -Pt system. A segregation of Pt to the growth surface was observed d...

  4. Dual-bath electrodeposition of n-type Bi–Te/Bi–Se multilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Ken; Okuhata, Mitsuaki; Takashiri, Masayuki, E-mail: takashiri@tokai-u.jp

    2015-11-15

    N-type Bi–Te/Bi–Se multilayer thin films were prepared by dual-bath electrodeposition. We varied the number of layers from 2 to 10 while the total film thickness was maintained at approximately 1 μm. All the multilayer films displayed the X-ray diffraction peaks normally observed from individual Bi{sub 2}Te{sub 3} and Bi{sub 2}Se{sub 3} crystal structures, indicating that both phases coexist in the multilayer. The cross-section of the 10-layer Bi–Te/Bi–Se film was composed of stacked layers with nano-sized grains but the boundaries between the layers were not planar. The Seebeck coefficient was almost constant throughout the entire range of our experiment, but the electrical conductivity of the multilayer thin films increased significantly as the number of layers was increased. This may be because the electron mobility increases as the thickness of each layer is decreased. As a result of the increased electrical conductivity, the power factor also increased with the number of layers. The maximum power factor was 1.44 μW/(cm K{sup 2}) for the 10-layer Bi–Te/Bi–Se film, this was approximately 3 times higher than that of the 2-layer sample. - Highlights: • N-type Bi–Te/Bi–Se multilayer thin films were deposited by electrodeposition. • We employed a dual-bath electrodeposition process for preparing the multilayers. • The Bi–Te/Bi–Se film was composed of stacked layers with nano-sized grains. • The electrical conductivity increased as the number of layers was increased. • The power factor improved by 3 times as the number of layers was increased.

  5. Dual-bath electrodeposition of n-type Bi–Te/Bi–Se multilayer thin films

    International Nuclear Information System (INIS)

    N-type Bi–Te/Bi–Se multilayer thin films were prepared by dual-bath electrodeposition. We varied the number of layers from 2 to 10 while the total film thickness was maintained at approximately 1 μm. All the multilayer films displayed the X-ray diffraction peaks normally observed from individual Bi2Te3 and Bi2Se3 crystal structures, indicating that both phases coexist in the multilayer. The cross-section of the 10-layer Bi–Te/Bi–Se film was composed of stacked layers with nano-sized grains but the boundaries between the layers were not planar. The Seebeck coefficient was almost constant throughout the entire range of our experiment, but the electrical conductivity of the multilayer thin films increased significantly as the number of layers was increased. This may be because the electron mobility increases as the thickness of each layer is decreased. As a result of the increased electrical conductivity, the power factor also increased with the number of layers. The maximum power factor was 1.44 μW/(cm K2) for the 10-layer Bi–Te/Bi–Se film, this was approximately 3 times higher than that of the 2-layer sample. - Highlights: • N-type Bi–Te/Bi–Se multilayer thin films were deposited by electrodeposition. • We employed a dual-bath electrodeposition process for preparing the multilayers. • The Bi–Te/Bi–Se film was composed of stacked layers with nano-sized grains. • The electrical conductivity increased as the number of layers was increased. • The power factor improved by 3 times as the number of layers was increased

  6. Thermal test of noncombustible urethane for applying to type B packages for radioisotope

    International Nuclear Information System (INIS)

    The package to safely transport the radioisotope, which is produced from HANARO, has to be developed to establish the distribution system of the radioisotope from production to consumption. KAERI is developing the type B package for Ir-192 600 ci. The type B package must be able to endure from thermal condition of 800 .deg. C. However, it is very difficult that the polyurethane, which is used as shock absorber, is maintained less than 327 .deg. C that is melting point of lead used as shielding material. Therefore, the specimens, which are applied noncombustible urethane and fireproof materials, are made. The experimental estimation for thermal condition of 800 .deg. C was conducted

  7. Critical phenomena in dynamical Ising-typed thin films by effective-field theory

    International Nuclear Information System (INIS)

    The stationary state solutions of the Ising-typed thin films with different layers in the presence of an external oscillatory field are examined within the effective-field theory. The study focuses on the effects of external field frequency and amplitude on the overall behavior. Particular attention is paid on evolution of the special point with dynamic field frequency corresponding to critical temperature of the three-dimensional infinite bulk system where the surface and modified exchange parameters are of no importance. Some findings such as surface enhancement phenomenon and effect of thickness on the dynamic process are introduced together with some other well known characteristics. An attempt is made to explain the relations between the competing time scales (intrinsic microscopic relaxation time of the system and the time period of the external oscillatory field) and frequency dispersion of the critical temperature coordinate of the special point. - Highlights: • Dynamical ferromagnetic Ising-type thin films were examined. • Variation of dynamical order parameters with temperature was plotted. • The profiles of average magnetizations on each layer were presented. • Dynamic phase boundaries were plotted in related planes. • The frequency dispersion of the related coordinate of special point was propounded

  8. Thermal oxidation of Ni films for p-type thin-film transistors

    KAUST Repository

    Jiang, Jie

    2013-01-01

    p-Type nanocrystal NiO-based thin-film transistors (TFTs) are fabricated by simply oxidizing thin Ni films at temperatures as low as 400 °C. The highest field-effect mobility in a linear region and the current on-off ratio are found to be 5.2 cm2 V-1 s-1 and 2.2 × 103, respectively. X-ray diffraction, transmission electron microscopy and electrical performances of the TFTs with "top contact" and "bottom contact" channels suggest that the upper parts of the Ni films are clearly oxidized. In contrast, the lower parts in contact with the gate dielectric are partially oxidized to form a quasi-discontinuous Ni layer, which does not fully shield the gate electric field, but still conduct the source and drain current. This simple method for producing p-type TFTs may be promising for the next-generation oxide-based electronic applications. © 2013 the Owner Societies.

  9. Achievement report for fiscal 1997. Technological development for practical application of a solar energy power generation system/development of technology to manufacture thin film solar cells (development of technology to manufacture applied type thin film solar cells with new construction) (development of technology to manufacture micro light collection type solar cells); 1997 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Usumaku taiyo denchi no seizo gijutsu kaihatsu, oyogata shinkozo usumaku taiyo denchi no seizo gijutsu kaihatsu (micro shukogata taiyo denchi no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    These technological developments are intended to demonstrate module efficiency of a micro light collection type solar cell of 15% by fiscal 2000, and obtain prospect on the module manufacturing cost of 140 yen per watt. Discussions given during fiscal 1997 are as follows: development has been performed on a design method to decide construction of a non-tracking micro light collection type module; in the state of cells being integrated on the module, the cells are arranged minutely and discretely, whereas, with discussions on a method to form them and assessment of the optical system as the main objective, single crystal silicon solar cells with a size smaller than 5 mm were fabricated on a trial basis; problems of forming micro cells by using the wafer cutting process were clarified; micro cells operating on light collection were fabricated trially to extract technological problems in light collecting operation and discuss technical problems in mass production; and development was performed on an evaluation method to analyze the cells' light collecting operation, and discussions were given on a method to estimate power generation amount from the light collection type modules. (NEDO)

  10. Analytical Modeling of a Loop Heat Pipe with a Flat Evaporator by Applying Thin-Film Theory

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Eui Guk [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Boo, Joon Hong [Korea Aerospace University, Goyang (Korea, Republic of)

    2010-12-15

    A steady-state analytical model was presented for a loop heat pipe (LHP) with an evaporator that has a flat geometry. On the basis of a series of reviews of the relevant literature, a sequence of calculations was proposed to predict the temperatures and pressures at each important part of the LHP: the evaporator, liquid reservoir (compensation chamber), liquid line, vapor line, and condenser. The analysis of the evaporator, which is the only part in the LHP that has a capillary structure, was emphasized. Thin-film theory is applied to account for the pressure and temperature in the region adjacent to the liquid-vapor interface in the evaporator. The present study introduced a unique method to estimate the liquid temperature at the interface. Relative freedom was assumed in the configuration of a condenser with a simplified liquid-vapor interface. Our steady-state model was validated by experimental results available in the literature. The relative error was within 3% on the absolute temperature scale, and reasonable agreement was obtained.

  11. Analytical Modeling of a Loop Heat Pipe with a Flat Evaporator by Applying Thin-Film Theory

    International Nuclear Information System (INIS)

    A steady-state analytical model was presented for a loop heat pipe (LHP) with an evaporator that has a flat geometry. On the basis of a series of reviews of the relevant literature, a sequence of calculations was proposed to predict the temperatures and pressures at each important part of the LHP: the evaporator, liquid reservoir (compensation chamber), liquid line, vapor line, and condenser. The analysis of the evaporator, which is the only part in the LHP that has a capillary structure, was emphasized. Thin-film theory is applied to account for the pressure and temperature in the region adjacent to the liquid-vapor interface in the evaporator. The present study introduced a unique method to estimate the liquid temperature at the interface. Relative freedom was assumed in the configuration of a condenser with a simplified liquid-vapor interface. Our steady-state model was validated by experimental results available in the literature. The relative error was within 3% on the absolute temperature scale, and reasonable agreement was obtained

  12. The Phan-Thien and Tanner model applied to thin film spherical coordinates: applications for lubrication of hip joint replacement.

    Science.gov (United States)

    Tichy, John; Bou-Saïd, Benyebka

    2008-04-01

    The Phan-Thien and Tanner (PTT) model is one of the most widely used rheological models. It can properly describe the common characteristics of viscoelastic non-Newtonian fluids. There is evidence that synovial fluid in human joints, which also lubricates artificial joints, is viscoelastic. Modeling the geometry of the total hip replacement, the PTT model is applied in spherical coordinates for a thin confined fluid film. A modified Reynolds equation is developed for this geometry. Several simplified illustrative problems are solved. The effect of the edge boundary condition on load-carrying normal stress is discussed. Solutions are also obtained for a simple squeezing flow. The effect of both the relaxation time and the PTT shear parameter is to reduce the load relative to a Newtonian fluid with the same viscosity. This implies that the Newtonian model is not conservative and may overpredict the load capacity. The PTT theory is a good candidate model to use for joint replacement lubrication. It is well regarded and derivable from molecular considerations. The most important non-Newtonian characteristics can be described with only three primary material parameters. PMID:18412499

  13. Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number

    Science.gov (United States)

    Dellacherie, Stéphane

    2010-02-01

    We propose a theoretical framework to clearly explain the inaccuracy of Godunov type schemes applied to the compressible Euler system at low Mach number on a Cartesian mesh. In particular, we clearly explain why this inaccuracy problem concerns the 2D or 3D geometry and does not concern the 1D geometry. The theoretical arguments are based on the Hodge decomposition, on the fact that an appropriate well-prepared subspace is invariant for the linear wave equation and on the notion of first-order modified equation. This theoretical approach allows to propose a simple modification that can be applied to any colocated scheme of Godunov type or not in order to define a large class of colocated schemes accurate at low Mach number on any mesh. It also allows to justify colocated schemes that are accurate at low Mach number as, for example, the Roe-Turkel and the AUSM +-up schemes, and to find a link with a colocated incompressible scheme stabilized with a Brezzi-Pitkäranta type stabilization. Numerical results justify the theoretical arguments proposed in this paper.

  14. Electromechanical Breakdown of Barrier-Type Anodized Aluminum Oxide Thin Films Under High Electric Field Conditions

    Science.gov (United States)

    Chen, Jianwen; Yao, Manwen; Yao, Xi

    2016-02-01

    Barrier-type anodized aluminum oxide (AAO) thin films were formed on a polished aluminum substrate via electrochemical anodization in 0.1 mol/L aqueous solution of ammonium pentaborate. Electromechanical breakdown occurred under high electric field conditions as a result of the accumulation of mechanical stress in the film-substrate system by subjecting it to rapid thermal treatment. Before the breakdown event, the electricity of the films was transported in a highly nonlinear way. Immediately after the breakdown event, dramatic cracking of the films occurred, and the cracks expanded quickly to form a mesh-like dendrite network. The breakdown strength was significantly reduced because of the electromechanical coupling effect, and was only 34% of the self-healing breakdown strength of the AAO film.

  15. Intervalley transfer of electrons in ZnS-type thin film electroluminescent devices

    International Nuclear Information System (INIS)

    Based on calculation about intervalley scattering rates in ZnS, the intervalley transfer process in ZnS-type thin film electroluminescent devices is investigated through Monte Carlo simulation. The transient time of intervalley transfer is about 0.2-0.3 ps, it coincides with that of electron average energy. Intervalley distribution shifts to high valleys as the electric field increased. The electron kinetic energy distributions in different valleys are also gained. We propose that high valleys could store energies, which could prolong the decay of the electron average energy as the field is removed. These results could be used as a basic data on the study of electroluminescent process and the citation of valley parameters in analytic models should be carefully considered. (author)

  16. Friction characteristics of a new type of continuous rotary electro-hydraulic servomotor applied to simulator

    Institute of Scientific and Technical Information of China (English)

    CAO Jian; XU Hong-guang

    2008-01-01

    The principle of a new type of no-pulsation continuous rotary electro-hydraulic servomotor applied to simulators is introduced. LuGre friction model was analyzed. The identification method of LuGre parameters was proposed, and the measures to compensate the effect of friction forces were given. A friction torque model for the new rotary motor was proposed. The low-speed response and step response of the motor were studied experi-mentally. Experimental results proved that using friction compensation could eliminate stick-slip motion at the low speed, which makes the servomotor applicable to simulators.

  17. Performance Verification of the Lattice-type ECCS Sump Strainer to Prevent the Thin-bed effect

    International Nuclear Information System (INIS)

    In the event of a Loss of Coolant Accident (LOCA), a variety of debris could be generated under the post-LOCA conditions. The debris could block the Emergency Core Cooling System (ECCS) sump strainer, leading to a considerable head loss which in turn causes an abnormal ECCS and/or CS pump performance. The determination of strainer capacity is very important through the optimization of the head loss due to debris blockage. Especially, the thin-bed effect is a dominant factor to the design of the strainer. This paper presents experimental head loss data to confirm an advantage of an advanced lattice-type strainer for the thin-bed effect and is compared to the results of NUREG/CR-6224 head loss correlation. The thin-bed effect is a dominant design factor because the head loss could increase drastically by the lack of available voids in the debris bed for coolant to pass through it. Though this study, the lattice-type strainer to reduce or prevent the thin-bed effect has been designed. As the experimental data shows, there is no thin-bed effect in the present lattice-type strainer. It is expected that the required capacity of the strainer to maintain the function of ECCS will be significantly reduced by the lattice-type strainer of the present study

  18. New Evolutionary Algorithm Applying to a Type of Facility Location Problem

    Directory of Open Access Journals (Sweden)

    Wang Lai-Jun

    2009-01-01

    Full Text Available Mathematical model is built for solving a type of Facility Location Problem (FLP in this study first. Then, genetic algorithm using symbolic coding is proposed. Based on this GA, a new evolutionary algorithm is proposed using of the basic idea of Particle Swarm Optimization (PSO. Symbolic coding method is still used in the new algorithms, which makes the model scale decrescent and reflects its characteristics. But the selection operator and mutation operator are all abandoned here. Furthermore, a type of total probability crossover is performed and the evolutionary policy of particle swarm optimization is absorbed into the new algorithm, which reduces the complexity and enhance the efficiency greatly. The model and the algorithm have been applied to a government-funded traffic project. The process of constructing the evolutionary algorithm based on total probability crossover dispensed with any especial condition, so our algorithm is universal to all facility location problem.

  19. Fabrication of titanium nitride thin films by DC magneton sputtering on different types of substrates for coating applications

    International Nuclear Information System (INIS)

    Titanium nitride thin films (TiN) are fabricated by DC magneton sputtering on different types of substrates such as glass substrates, PET substrates, substrate alloy (AISI 304) and drill steel. In this work we study the effect of target-substrate distance, sputtering time and negative voltage to the crystal structure, mechanical and optical properties of the films. The properties of the thin films were studied by X-ray diffraction method Stylus, UV-Vis method and scanning electron microscopy. Results showed that the target-substrate distance, sputtering time and negative voltage affects the crystalline structure, mechanical and optical properties of the films. TiN films have been synthesized highly crystalline structure, crystal structure of thin films oriented along the surface lattice (111), (200) and (311). Besides TiN thin films also have high reflectance in the visible and infrared range, good adhesion, high chemical durability. (author)

  20. Air–water ‘tornado’-type microwave plasmas applied for sugarcane biomass treatment

    International Nuclear Information System (INIS)

    The production of cellulosic ethanol from sugarcane biomass is an attractive alternative to the use of fossil fuels. Pretreatment is needed to separate the cellulosic material, which is packed with hemicellulose and lignin in cell wall of sugarcane biomass. A microwave ‘tornado’-type air–water plasma source operating at 2.45 GHz and atmospheric pressure has been applied for this purpose. Samples of dry and wet biomass (∼2 g) have been exposed to the late afterglow plasma stream. The experiments demonstrate that the air–water highly reactive plasma environment provides a number of long-lived active species able to destroy the cellulosic wrapping. Scanning electron microscopy has been applied to analyse the morphological changes occurring due to plasma treatment. The effluent gas streams have been analysed by Fourier-transform infrared spectroscopy (FT-IR). Optical emission spectroscopy and FT-IR have been applied to determine the gas temperature in the discharge and late afterglow plasma zones, respectively. The optimal range of the operational parameters is discussed along with the main active species involved in the treatment process. Synergistic effects can result from the action of singlet O2(a 1Δg) oxygen, NO2, nitrous acid HNO2 and OH hydroxyl radical. (paper)

  1. Air-water ‘tornado’-type microwave plasmas applied for sugarcane biomass treatment

    Science.gov (United States)

    Bundaleska, N.; Tatarova, E.; Dias, F. M.; Lino da Silva, M.; Ferreira, C. M.; Amorim, J.

    2014-02-01

    The production of cellulosic ethanol from sugarcane biomass is an attractive alternative to the use of fossil fuels. Pretreatment is needed to separate the cellulosic material, which is packed with hemicellulose and lignin in cell wall of sugarcane biomass. A microwave ‘tornado’-type air-water plasma source operating at 2.45 GHz and atmospheric pressure has been applied for this purpose. Samples of dry and wet biomass (˜2 g) have been exposed to the late afterglow plasma stream. The experiments demonstrate that the air-water highly reactive plasma environment provides a number of long-lived active species able to destroy the cellulosic wrapping. Scanning electron microscopy has been applied to analyse the morphological changes occurring due to plasma treatment. The effluent gas streams have been analysed by Fourier-transform infrared spectroscopy (FT-IR). Optical emission spectroscopy and FT-IR have been applied to determine the gas temperature in the discharge and late afterglow plasma zones, respectively. The optimal range of the operational parameters is discussed along with the main active species involved in the treatment process. Synergistic effects can result from the action of singlet O2(a 1Δg) oxygen, NO2, nitrous acid HNO2 and OH hydroxyl radical.

  2. Realization of As-doped p-type ZnO thin films using sputter deposition

    International Nuclear Information System (INIS)

    Arsenic-doped p-type ZnO (p-ZnO:As) thin films were deposited by the magnetron sputtering technique. High-resolution low-temperature photoluminescence (PL) spectra of the films revealed emissions at 3.35 eV and 3.32 eV, representing the neutral-acceptor-bound exciton transition and the free electron to acceptor level transition. Electroluminescence spectra of the p–n diodes fabricated from the p-ZnO:As/n-GaN heterostructure showed UV emission at about 380 nm and yellowish visible lights centered at 600–650 nm, which resembled the PL spectrum of the ZnO:As layer. The p-type ZnO films with 1at% As grown at 500°C showed a hole concentration of 5 × 1012–7 × 1013 cm−3 after the deposition and 4 × 1014–1 × 1016 cm−3 after annealing at 600 °C in oxygen atmosphere. High-resolution x-ray photoelectron spectroscopy indicated that most of the As dopants occupy Zn sites within the ZnO:As films

  3. Ultra-doped n-type germanium thin films for sensing in the mid-infrared

    Science.gov (United States)

    Prucnal, Slawomir; Liu, Fang; Voelskow, Matthias; Vines, Lasse; Rebohle, Lars; Lang, Denny; Berencén, Yonder; Andric, Stefan; Boettger, Roman; Helm, Manfred; Zhou, Shengqiang; Skorupa, Wolfgang

    2016-06-01

    A key milestone for the next generation of high-performance multifunctional microelectronic devices is the monolithic integration of high-mobility materials with Si technology. The use of Ge instead of Si as a basic material in nanoelectronics would need homogeneous p- and n-type doping with high carrier densities. Here we use ion implantation followed by rear side flash-lamp annealing (r-FLA) for the fabrication of heavily doped n-type Ge with high mobility. This approach, in contrast to conventional annealing procedures, leads to the full recrystallization of Ge films and high P activation. In this way single crystalline Ge thin films free of defects with maximum attained carrier concentrations of 2.20 ± 0.11 × 1020 cm‑3 and carrier mobilities above 260 cm2/(V·s) were obtained. The obtained ultra-doped Ge films display a room-temperature plasma frequency above 1,850 cm‑1, which enables to exploit the plasmonic properties of Ge for sensing in the mid-infrared spectral range.

  4. Oxygen partial pressure dependent electrical conductivity type conversion of phosphorus-doped ZnO thin films

    International Nuclear Information System (INIS)

    In this study, the oxygen partial pressure dependent physical properties of phosphorous-doped ZnO thin films were investigated. All thin films, grown on Al2O3(0 0 0 1) substrates using pulsed laser deposition, exhibited (0 0 2) orientation regardless of the oxygen partial pressure. However, as the oxygen partial pressure increased, the degree of crystallinity and the concentration of oxygen vacancies in the films decreased. All the thin-film samples showed n-type characteristics except for a sample grown at 100 mTorr, which exhibited p-type characteristics. The optical band gap energy also changed with the oxygen partial pressure. The feasible microscopic mechanism of conductivity conversion is explained in terms of the lattice constant, crystallinity, and the relative roles of the substituted phosphorous in the Zn-site and/or oxygen vacancies depending on the oxygen partial pressure. (paper)

  5. Identification of the chemical inventory of different paint types applied in nuclear facilities

    International Nuclear Information System (INIS)

    The floors, concrete walls and many of the metal surfaces in nuclear power plant containments are coated with zinc primers or paint films to preserve the metal surfaces and simplify decontamination in the containment after the occurrence of a severe nuclear incident or accident. A chemical examination of paint films from different nuclear installations out of operation, as well as current operating ones, reveals that different types of paints are used whose composition can vary significantly. Results obtained for one type of paint at a certain nuclear site are in most cases unlikely to be comparable with sites painted with another type of paint. During normal operation and particularly during nuclear accidents, the paints will degrade under the high temperature, steam and irradiation influence. As paint and its degradation products can act as sources and depots for volatile iodine compounds, the type and aging conditions of the paint films will have a significant impact on the source term of the volatile fission product iodine. Thus, great care should be taken when extrapolating any results obtained for the interaction of radioactive iodine with one paint product to a different paint product. The main focus of the study is a comparison of the chemical profile of paint films applied in Swedish nuclear power plants. Teknopox Aqua V A, an epoxy paint recently used at Ringhals 2, and an emulsion paint used in the scrubber buildings of Ringhals 1-4 are compared with a paint film from Barsebaeck nuclear power plant unit 1 that had been aged under real reactor conditions for 20 years. In addition, two paint films, an emulsion and a gloss paint, used in an international nuclear fuel reprocessing facility, are compared with the paints from the Swedish nuclear power plants. (author)

  6. Effect of doping concentration on the conductivity and optical properties of p-type ZnO thin films

    Science.gov (United States)

    Pathak, Trilok Kumar; Kumar, Vinod; Swart, H. C.; Purohit, L. P.

    2016-01-01

    Nitrogen doped ZnO (NZO) thin films were synthesized on glass substrates by the sol-gel and spin coating method. Zinc acetate dihydrates and ammonium acetate were used as precursors for zinc and nitrogen, respectively. X-ray diffraction study showed that the thin films have a hexagonal wurtzite structure corresponding (002) peak for undoped and doped ZnO thin films. The transmittance of the films was above 80% and the band gap of the film varies from 3.21±0.03 eV for undoped and doped ZnO. The minimum resistivity of NZO thin films was obtained as 0.473 Ω cm for the 4 at% of nitrogen (N) doping with a mobility of 1.995 cm2/V s. The NZO thin films showed p-type conductivity at 2 and 3 at% of N doping. The AC conductivity measurements that were carried out in the frequency range 10 kHz to 0.1 MHz showed localized conduction in the NZO thin films. These highly transparent ZnO films can be used as a possible window layer in solar cells.

  7. Applied model of through-wall crack of coolant vessels of WWER-type reactors

    International Nuclear Information System (INIS)

    We propose an applied-model of Through-Wall Crack (TWC) for WWER-type units primary vessels. The model allows to simulate the main morphological parameters of real TWC, i.e. length, area of inlet and outlet openings, channel depth and small and large size unevenness of the crack surface. The model can be used for developing and improving the coolant-leak detectors for the primary circuit vessels of WWER-units. Also, it can be used for research of the coolant two-phase leakage phenomenon through narrow cracks/channels and thermo-physical processes in heat-insulation layer of the Main Coolant Piping (MCP) during the leak

  8. Study of p-type ZnO and MgZnO Thin Films for Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jianlin [University of California, Riverside

    2016-03-31

    This project on study of p-type ZnO and MgZnO thin films for solid state lighting was carried out by research group of Prof. Jianlin Liu of UCR during the four-year period between August 2011 and July 2015. Tremendous progress has been made on the proposed research. This final report summarizes the important findings.

  9. Flexible n-Type High-Performance Thermoelectric Thin Films of Poly(nickel-ethylenetetrathiolate) Prepared by an Electrochemical Method.

    Science.gov (United States)

    Sun, Yuanhui; Qiu, Lin; Tang, Liangpo; Geng, Hua; Wang, Hanfu; Zhang, Fengjiao; Huang, Dazhen; Xu, Wei; Yue, Peng; Guan, Ying-Shi; Jiao, Fei; Sun, Yimeng; Tang, Dawei; Di, Chong-An; Yi, Yuanping; Zhu, Daoben

    2016-05-01

    Flexible thin films of poly(nickel-ethylenetetrathiolate) prepared by an electrochemical method display promising n-type thermoelectric properties with the highest ZT value up to 0.3 at room temperature. Coexistence of high electrical conductivity and high Seebeck coefficient in this coordination polymer is attributed to its degenerate narrow-bandgap semiconductor behavior. PMID:26928813

  10. Raviart-Thomas-type sources adapted to applied EEG and MEG: implementation and results

    Science.gov (United States)

    Pursiainen, S.

    2012-06-01

    This paper studies numerically electroencephalography and magnetoencephalography (EEG and MEG), two non-invasive imaging modalities in which external measurements of the electric potential and the magnetic field are, respectively, utilized to reconstruct the primary current density (neuronal activity) of the human brain. The focus is on adapting a Raviart-Thomas-type source model to meet the needs of EEG and MEG applications. The goal is to construct a model that provides an accurate approximation of dipole source currents and can be flexibly applied to different reconstruction strategies as well as to realistic computation geometries. The finite element method is applied in the simulation of the data. Least-squares fit interpolation is used to establish Cartesian source directions, which guarantee that the recovered current field is minimally dependent on the underlying finite element mesh. Implementation is explained in detail and made accessible, e.g., by using quadrature-free formulae and the Gaussian one-point rule in numerical integration. Numerical results are presented concerning, for example, the iterative alternating sequential inverse algorithm as well as resolution, smoothness and local refinement of the finite element mesh. Both spherical and pseudo-realistic head models, as well as real MEG data, are utilized in the numerical experiments.

  11. Raviart–Thomas-type sources adapted to applied EEG and MEG: implementation and results

    International Nuclear Information System (INIS)

    This paper studies numerically electroencephalography and magnetoencephalography (EEG and MEG), two non-invasive imaging modalities in which external measurements of the electric potential and the magnetic field are, respectively, utilized to reconstruct the primary current density (neuronal activity) of the human brain. The focus is on adapting a Raviart–Thomas-type source model to meet the needs of EEG and MEG applications. The goal is to construct a model that provides an accurate approximation of dipole source currents and can be flexibly applied to different reconstruction strategies as well as to realistic computation geometries. The finite element method is applied in the simulation of the data. Least-squares fit interpolation is used to establish Cartesian source directions, which guarantee that the recovered current field is minimally dependent on the underlying finite element mesh. Implementation is explained in detail and made accessible, e.g., by using quadrature-free formulae and the Gaussian one-point rule in numerical integration. Numerical results are presented concerning, for example, the iterative alternating sequential inverse algorithm as well as resolution, smoothness and local refinement of the finite element mesh. Both spherical and pseudo-realistic head models, as well as real MEG data, are utilized in the numerical experiments. (paper)

  12. Impacts of Mastication: Soil Seed Bank Responses to a Forest Thinning Treatment in Three Colorado (USA) Conifer Forest Types

    OpenAIRE

    Akasha M. Faist; Heather Stone; Tripp, Erin A.

    2015-01-01

    Mastication is a forest fuel thinning treatment that involves chipping or shredding small trees and shrubs and depositing the material across the forest floor. By decreasing forest density mastication has been shown to lessen crown fire hazard, yet other impacts have only recently started to be studied. Our study evaluates how mastication treatments alter the density and composition of soil seed banks in three Colorado conifer forest types. The three forest types were (1) lodgepole pine, (2) ...

  13. Thin-film thickness profile measurement using a Mirau-type low-coherence interferometer

    International Nuclear Information System (INIS)

    White-light interferometry has been spotlighted for years in the field of microelectronics as a 3D profiling tool but its application was limited to only opaque surfaces. Recently many approaches using white-light extended sources have been performed to measure the top and bottom surfaces of a thin-film structure simultaneously. When the film thickness is less than the coherence length of the light source, two waves reflected from the top and bottom surfaces of the film overlap and the interference signal become more complicated than for an opaque surface. Thus, it is an essential issue to cleanly separate the film thickness and surface height information from the complex interferograms. In this paper, we describe a Mirau-type low-coherence interferometer for measurements of the film thickness and top surface height profile with a simple measurement procedure. Our proposed method is verified by simulating the measurement errors according to the film thickness and measuring a SiO2 patterned film structure. (paper)

  14. High performance p-type NiOx thin-film transistor by Sn doping

    Science.gov (United States)

    Lin, Tengda; Li, Xiuling; Jang, Jin

    2016-06-01

    Major obstacles towards power efficient complementary electronics employing oxide thin-film transistors (TFTs) lie in the lack of equivalent well performing p-channel devices. Here, we report a significant performance enhancement of solution-processed p-type nickel oxide (NiOx) TFTs by introducing Sn dopant. The Sn-doped NiOx (Sn-NiOx) TFTs annealed at 280 °C demonstrate substantially improved electrical performances with the increase in the on/off current ratio (Ion/Ioff) by ˜100 times, field-effect mobility (μlin) by ˜3 times, and the decrease in subthreshold swing by half, comparing with those of pristine NiOx TFTs. X-ray photoelectron spectroscopy and X-ray diffraction results confirm that Sn atoms tend to substitute Ni sites and induce more amorphous phase. A decrease in density of states in the gap of NiOx by Sn doping and the shift of Fermi level (EF) into the midgap lead to the improvements of TFT performances. As a result, Sn-NiOx can be a promising material for the next-generation, oxide-based electronics.

  15. Thin hybrid electrolyte based on garnet-type lithium-ion conductor Li7La3Zr2O12 for 12 V-class bipolar batteries

    Science.gov (United States)

    Yoshima, Kazuomi; Harada, Yasuhiro; Takami, Norio

    2016-01-01

    Thin hybrid electrolytes based on lithium-ion conducting ceramics with a few micrometers thickness have been studied in order to be practically applied to 12 V-class bipolar battery with liquid-free and separator-free. A cubic garnet-type Li7La3Zr2O12 (LLZ)-based hybrid electrolyte composed of LLZ particles coated with 4 wt% polyacrylonitrile (PAN)-based gel polymer electrolyte was prepared as the thin electrolyte layer, which reduced the internal resistance of LiMn0.8Fe0.2PO4(LMFP)/Li4Ti5O12(LTO) cells and enabled discharge at low temperatures. The conductivity of the LLZ-based hybrid electrolyte at 25°C was one order of magnitude higher than that of the LLZ solid electrolyte and comparable to that of the PAN-based gel polymer. The activation energy for ionic conductivity of the hybrid electrolyte was significantly smaller than that of the gel polymer electrolyte. The fabricated 12 V-class bipolar LMFP/LTO battery using the thin LLZ-based hybrid electrolyte layer exhibited good performance in terms of discharge rate capability, operating in the wide temperature range of -40°C to 80°C, and charge-discharge cycling comparable to those of conventional lithium-ion batteries.

  16. Comparison of transition temperature criteria applied for KLST and ISO-V type Charpy specimens

    International Nuclear Information System (INIS)

    A great deal of test data have been obtained on reactor pressure vessel steels using the standard Charpy-V test. Although more advanced test methods, based on elastic-plastic fracture mechanics, are both recommendable and already in use in the surveillance programmes of some nuclear power plants (NPPs), Charpy tests are still required, e.g., by regulatory guides. Besides the normal-size (ISO-V) Charpy specimen (10 x10 x 55 mm3), various types of sub-size specimens have been introduced. One standardised sub-size specimen being in use is the so-called KLST specimen, the size of which is 3 x 4 x 27 mm3 with 1 mm central notch (DIN50 115). So far the test data published for the KLST specimen, as well as sub-size specimens in general, is still limited. The results from small specimen testing are typically used for evaluating the fracture behaviour of the ISO-V Charpy specimen and if there are no test results available for the correlation, as there usually is not, a general correlation has to be applied to evaluate the fracture behaviour of the ISO-V specimen. The availability of a sub-size specimen depends therefore significantly on how reliably this relationship has been established. Impact test data measured with different specimens have been correlated using some appropriate criterion (or criteria) and since a total transition curve is normally measured, there are several ones available. The criterion can be a fixed energy or lateral expansion level describing the transition temperature or the level can be derived from the upper-shelf energy (USE). In general, the proposed criterion can be divided into two groups: those derived from the dimensions of the specimens and those derived empirically from experimental data. Test data measured with ISO-V and KLST-type Charpy specimens are discussed and the validity of two proposed, basically different transition temperature criteria and the resulting differences in the temperatures, that are inevitable because of the

  17. In situ growth of p and n-type graphene thin films and diodes by pulsed laser deposition

    KAUST Repository

    Sarath Kumar, S. R.

    2013-11-07

    We report the in situ growth of p and n-type graphene thin films by ultraviolet pulsed laser deposition in the presence of argon and nitrogen, respectively. Electron microscopy and Raman studies confirmed the growth, while temperature dependent electrical conductivity and Seebeck coefficient studies confirmed the polarity type of graphene films. Nitrogen doping at different sites of the honeycomb structure, responsible for n-type conduction, is identified using X-ray photoelectron spectroscopy, for films grown in nitrogen. A diode-like rectifying behavior is exhibited by p-n junction diodes fabricated using the graphene films.

  18. 20 CFR 422.505 - What types of applications and related forms are used to apply for retirement, survivors, and...

    Science.gov (United States)

    2010-04-01

    ... full retirement age who has an entitled child in his or her care and elects to receive reduced benefits... are used to apply for retirement, survivors, and disability insurance benefits? 422.505 Section 422... Related Forms § 422.505 What types of applications and related forms are used to apply for...

  19. Multilayer perceptron applied to the estimation of the influence of the solar spectral distribution on thin-film photovoltaic modules

    International Nuclear Information System (INIS)

    Highlights: • Multilayer perceptrons are used to simulate the I–V curve of thin-film PV modules. • APE from the spectral irradiance was added as an input variable to the network. • A self-organised map is used to select the curves used for training the network. • Curve error and maximum power error decrease when using this technique. • This method could provide accurate estimation of the output of a PV plant. - Abstract: In this paper, we propose the use of a methodology to characterise the electrical parameters of several thin-film photovoltaic module technologies. This methodology allows us to use not only solar irradiance and module temperature as classical models do, but also spectral distribution of solar radiation. The methodology is based on the use of neural network models. From all measured I–V curves of a module, a previous selection of them has been used in order to train the neural network model. This selection is performed using a Kohonen self-organising map fed with spectral data. This spectral information has been added as an input to the neural network itself. The results show that the incorporation of spectral measurements to simulate thin-film modules improves significantly both the fitting of the predicted I–V curve to the measured one and the peak power point estimation

  20. Electrochemical studies of iron/carbonates system applied to the formation of thin layers of siderite on inert substrates

    International Nuclear Information System (INIS)

    In order to understand the complex mechanisms of the reactions occurring, a methodology is developed. It is based on the use of compounds electrodeposited under the form of thin layers and which are used then as electrodes to study their interactions with the toxic species. It is in this framework that is studied the electrodeposition of siderite on inert substrates. At first, have been studied iron electrochemical systems in carbonated solutions. These studies have been carried out with classical electrochemical methods (cyclic voltametry, amperometry) coupled to in-situ measurements: quartz microbalance, pH. Different compounds have been obtained under the form of homogeneous and adherent thin layers. The analyses of these depositions, by different ex-situ characterizations (XRD, IR, SEM, EDS..) have revealed particularly the presence of siderite. Then, the influence of several experimental parameters (substrate, potential, medium composition, temperature) on the characteristics of siderite thin layers has been studied. From these experimental results, models have been proposed. (O.M.)

  1. Optical and low-temperature thermoelectric properties of phase-pure p-type InSe thin films

    International Nuclear Information System (INIS)

    Polycrystalline phase-pure p-type InSe thin films were deposited on glass substrates by reactive evaporation at an optimized substrate temperature of 473 ± 5 K and pressure of 10-5 mbar. The as-prepared InSe thin films were analyzed by X-ray diffractometry, energy-dispersive X-ray spectroscopy, atomic force microscopy, UV-Vis-NIR spectroscopy, electrical conductivity and Hall measurements. The lattice parameters, particle size, dislocation density, number of crystallites per unit area and the lattice strain of the prepared InSe thin films were calculated and found as a = 4.00 ± 0.002 Aa and c = 16.68 ± 0.002 Aa, 48 ± 2 nm, 4.34 x 1010 lines cm-2, 15.37 x 1010 cm-2 and 1.8 x 10-3, respectively. The as-deposited InSe thin films showed a direct allowed transition with an optical band gap of 1.35 ± 0.02 eV and high absorption coefficient of about 105 cm-1. The oscillator energy (Eo) and dispersion energy (Ed) were calculated using the single-oscillator Wemple and DiDomenico model. The p-type conductivity and photosensitivity of the as-prepared InSe thin films confirmed their potential application in photovoltaic devices. The mean free path, relaxation time, density of states, Fermi energy and effective mass of holes in the film were determined by correlating the results of thermopower and Hall measurements. The sudden and sharp increase in thermopower from 80 to 37 K was explained as due to the effect of phonon drag on charge carriers. (orig.)

  2. Isotropic damage model and serial/parallel mix theory applied to nonlinear analysis of ferrocement thin walls. Experimental and numerical analysis

    Directory of Open Access Journals (Sweden)

    Jairo A. Paredes

    2016-04-01

    Full Text Available Ferrocement thin walls are the structural elements that comprise the earthquake resistant system of dwellings built with this material. This article presents the results drawn from an experimental campaign carried out over full-scale precast ferrocement thin walls that were assessed under lateral static loading conditions. The tests allowed the identification of structural parameters and the evaluation of the performance of the walls under static loading conditions. Additionally, an isotropic damage model for modelling the mortar was applied, as well as the classic elasto-plastic theory for modelling the meshes and reinforcing bars. The ferrocement is considered as a composite material, thus the serial/parallel mix theory is used for modelling its mechanical behavior. In this work a methodology for the numerical analysis that allows modeling the nonlinear behavior exhibited by ferrocement walls under static loading conditions, as well as their potential use in earthquake resistant design, is proposed.

  3. Synthesis of fibrous reticulate nanocrystalline n-type MoBi2(Se1−xTex)5 thin films: Thermocooling applications

    International Nuclear Information System (INIS)

    Graphical abstract: Ostwald ripening: If small nucleus is close to a larger crystal, ions formed by particle dissolution of smaller crystal incorporated into larger crystal, and film formation takes place by ion by ion condensation. Display Omitted Highlights: ► Arrested Precipitation Technique is applied to deposit MoBi2(Se1−xTex)5. ► X-ray diffraction confirms the proper phase formation of material. ► MoBi2(Se1−xTex)5 exhibits an n-type semiconducting behavior. ► Good thermoelectric performance suggests future fantasy. -- Abstract: In the present investigation n-type MoBi2(Se1−xTex)5 nanocrystalline thin films with various compositions of Se and Te were successfully deposited on ultrasonically cleaned glass substrates using recently developed Arrested Precipitation Technique (APT). The effect of composition on optical, morphological, structural, electrical and thermocooling properties of MoBi2(Se1−xTex)5 were investigated using UV–vis–NIR Spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, X-ray diffractometer, thermoelectric power and thermocooling measurements. Thermoelectric properties including electrical conductivity (σ), Seeback coefficient (S) and figure of merit (ZT) were measured at 300 K. Our aim is to investigate thermocooling behavior in respect of variation in composition of Se and Te in MoBi2(Se1−xTex)5 thin films along with optostructural and optoelectric properties.

  4. Electrical and optical properties of p-type codoped ZnO thin films prepared by spin coating technique

    Science.gov (United States)

    Pathak, Trilok Kumar; Kumar, Vinod; Swart, H. C.; Purohit, L. P.

    2016-03-01

    Undoped, doped and codoped ZnO thin films were synthesized on glass substrates using a spin coating technique. Zinc acetate dihydrate, ammonium acetate and aluminum nitrate were used as precursor for zinc, nitrogen and aluminum, respectively. X-ray diffraction shows that the thin films have a hexagonal wurtzite structure for the undoped, doped and co-doped ZnO. The transmittance of the films was above 80% and the band gap of the film varied from 3.20 eV to 3.24 eV for undoped and doped ZnO. An energy band diagram to describe the photoluminescence from the thin films was also constructed. This diagram includes the various defect levels and possible quasi-Fermi levels. A minimum resistivity of 0.0834 Ω-cm was obtained for the N and Al codoped ZnO thin films with p-type carrier conductivity. These ZnO films can be used as a window layer in solar cells and in UV lasers.

  5. Study of nanoparticles TiO2 thin films on p-type silicon substrate using different alcoholic solvents

    Science.gov (United States)

    Muaz, A. K. M.; Hashim, U.; Arshad, M. K. Md.; Ruslinda, A. R.; Ayub, R. M.; Gopinath, Subash C. B.; Voon, C. H.; Liu, Wei-Wen; Foo, K. L.

    2016-07-01

    In this paper, sol-gel method spin coating technique is adopted to prepare nanoparticles titanium dioxide (TiO2) thin films. The prepared TiO2 sol was synthesized using titanium butoxide act as a precursor and subjected to deposited on the p-type silicon oxide (p-SiO2) and glass slide substrates under room temperature. The effect of different alcoholic solvents of methanol and ethanol on the structural, morphological, optical and electrical properties were systematically investigated. The coated TiO2 thin films were annealed in furnace at 773 K for 1 h. The structural properties of the TiO2 films were examined with X-ray Diffraction (XRD). From the XRD analysis, both solvents showing good crystallinity with anatase phase were the predominant structure. Atomic Force Microscopy (AFM) was employed to study the morphological of the thin films. The optical properties were investigated by Ultraviolet-visible (UV-Vis) spectroscopy were found that ethanol as a solvent give a higher optical transmittance if compare to the methanol solvent. The electrical properties of the nanoparticles TiO2 thin films were measured using two-point-probe technique.

  6. Effective Medium Theory Applied to Colloidal Solution of Gold Nanoparticles and Alternating Gold-Silica Multilayer Thin Film Composites

    International Nuclear Information System (INIS)

    Optical modeling of multilayer thin films constructed with oppositely charged nanoparticles help us to understand phenomenon such as surface plasmon resonance, absorbance, transmittance and reflectance. This work reports the application of Maxwell-Garnett effective medium theory in quasi-static limit to colloidal suspensions consisting of host material silica and the inclusion material -gold nanoparticles. Layer-by-layer deposition method was used to self-assemble these nanoparticles to build multilayer composite films. By varying the number and thickness of the layers and the size and spacing of the metal inclusion, a facilitative optical design is modeled to build multilayers of nanosized materials targeted for desired applications. (author)

  7. Fabrication of air-stable n-type carbon nanotube thin-film transistors on flexible substrates using bilayer dielectrics.

    Science.gov (United States)

    Li, Guanhong; Li, Qunqing; Jin, Yuanhao; Zhao, Yudan; Xiao, Xiaoyang; Jiang, Kaili; Wang, Jiaping; Fan, Shoushan

    2015-11-14

    Single-walled carbon nanotube (SWNT) thin-film transistors hold great potential for flexible electronics. However, fabrication of air-stable n-type devices by methods compatible with standard photolithography on flexible substrates is challenging. Here, we demonstrated that by using a bilayer dielectric structure of MgO and atomic layer deposited (ALD) Al2O3 or HfO2, air-stable n-type devices can be obtained. The mechanism for conduction type conversion was elucidated and attributed to the hole depletion in SWNT, the decrease of the trap state density by MgO assimilating adsorbed water molecules in the vicinity of SWNT, and the energy band bending because of the positive fixed charges in the ALD layer. The key advantage of the method is the relatively low temperature (120 or 90 °C) required here for the ALD process because we need not employ this step to totally remove the absorbates on the SWNTs. This advantage facilitates the integration of both p-type and n-type transistors through a simple lift off process and compact CMOS inverters were demonstrated. We also demonstrated that the doping of SWNTs in the channel plays a more important role than the Schottky barriers at the metal contacts in carbon nanotube thin-film transistors, unlike the situation in individual SWNT-based transistors. PMID:26451806

  8. Nanoparticles and Nanostructured Thin Films Based on Strong Polycations of Integral type

    Institute of Scientific and Technical Information of China (English)

    E. S. Dragan; M. Mihai; S. Schwarz

    2005-01-01

    @@ 1Introduction Nonstoichiometric interpolyelectrolyte complexes (NIPECs) as nanoparticles, on the one side, and nanostructured thin films with controlled architecture, deposited on some planar surfaces, on the other side,have been designed by eco-friendly techniques using strong polycations (PC) containing quaternary ammonium groups in the backbone and either strong polyanions or multicharged azo dyes.

  9. Applying the Transtheoretical Model to Investigate Behavioural Change in Type 2 Diabetic Patients

    Science.gov (United States)

    Lin, Shu-Ping; Wang, Ming-Jye

    2013-01-01

    Background: Long-term behaviour change in type 2 diabetic patients may provide effective glycemic control. Purpose: To investigate the key factors that promote behaviour change in diabetic subjects using the transtheoretical model. Methods: Subjects were selected by purposive sampling from type 2 diabetes outpatients. Self-administered…

  10. Room temperature electrical properties of solution derived p-type Cu2ZnSnS4 thin films

    Science.gov (United States)

    Gupta, Goutam Kumar; Dixit, Ambesh

    2016-05-01

    Electrical properties of solution processed Cu2ZnSnS4 (CZTS) compound semiconductor thin film structures on molybdenum (Mo) coated glass substrates are investigated using Mott-Schottky and Impedance spectroscopy measurements at room temperature. These measurements are carried out in sodium sulfate (Na2SO4) electrolytic medium at pH ~ 9.5. The inversion/depletion/accumulation regions are clearly observed in CZTS semiconductor -Na2SO4 electrolyte interface and measured flat band potential is ~ -0.27 V for CZTS thin film electrode. The positive slope of the depletion region confirms the intrinsic p-type characteristics of CZTS thinfilms with ~ 2.5× 1019 holes/m3. The high frequency impedance measurements showed ~ 30 Ohm electrolyte resistance for the investigated configuration.

  11. Nanograin-enhanced in-plane thermoelectric figure of merit in n-type SiGe thin films

    Science.gov (United States)

    Lu, Jianbiao; Guo, Ruiqiang; Huang, Baoling

    2016-04-01

    SiGe thin films are desirable candidates for many thermoelectric applications because of their low cost, low toxicity, and high compatibility with microelectronics fabrications. Currently, their applications are limited by their very poor thermoelectric performance. In this study, phosphorus-doped SiGe thin films with improved thermoelectric properties were grown using low pressure chemical vapor deposition, and the effects of different annealing treatments, doping concentration, composition, and temperature on their thermoelectric properties were explored. It is found that the segregation of phosphorus dopants plays an important role in grain growth and thermoelectric transport properties. The improved thermoelectric performance is mainly attributed to the significantly reduced in-plane thermal conductivity by the naturally formed nanograins. By adjusting the growth conditions, doping and post treatments, an in-plane ZT ˜ 0.16 at 300 K was obtained for the optimized n-type samples, which is even ˜50% higher than the record of bulk SiGe.

  12. Properties of thin N-type Yb0.14Co4Sb12 and P-type Ce0.09Fe0.67Co3.33Sb12 skutterudite layers prepared by laser ablation

    International Nuclear Information System (INIS)

    The properties of thin thermoelectric layers (about 60 nm in thickness) prepared by pulsed laser deposition are presented. Hot pressed targets were made from ''middle'' temperature range thermoelectric bulk materials with the potential high figure of merit ZT. P-type and N-type layers were prepared from Yb0.19Co4Sb12 and Ce0.1Fe0.7Co3.3Sb12 targets, respectively. The thin films were deposited on quartz glass substrates using KrF excimer laser. The individual layers were prepared by applying different laser beam energy densities (2 or 3 J cm-2) at several substrate temperatures (200, 250, or 300 deg. C). Crystallinity and composition of the layers were examined by x-ray diffraction and wavelength dispersive analysis, respectively. Homogeneity of Yb across a surface of the Yb filled film was explored by secondary ion mass spectrometry. The thermoelectric properties, the Seebeck coefficient, the electrical resistivity, and the power factor, for the best prepared P and N layer are presented in the temperature range from 300 to 500 K.

  13. Nanostructured p-type CZTS thin films prepared by a facile solution process for 3D p-n junction solar cells.

    Science.gov (United States)

    Park, Si-Nae; Sung, Shi-Joon; Sim, Jun-Hyoung; Yang, Kee-Jeong; Hwang, Dae-Kue; Kim, JunHo; Kim, Gee Yeong; Jo, William; Kim, Dae-Hwan; Kang, Jin-Kyu

    2015-07-01

    Nanoporous p-type semiconductor thin films prepared by a simple solution-based process with appropriate thermal treatment and three-dimensional (3D) p-n junction solar cells fabricated by depositing n-type semiconductor layers onto the nanoporous p-type thin films show considerable photovoltaic performance compared with conventional thin film p-n junction solar cells. Spin-coated p-type Cu2ZnSnS4 (CZTS) thin films prepared using metal chlorides and thiourea show unique nanoporous thin film morphology, which is composed of a cluster of CZTS nanograins of 50-500 nm, and the obvious 3D p-n junction structure is fabricated by the deposition of n-type CdS on the nanoporous CZTS thin films by chemical bath deposition. The photovoltaic properties of 3D p-n junction CZTS solar cells are predominantly affected by the scale of CZTS nanograins, which is easily controlled by the sulfurization temperature of CZTS precursor films. The scale of CZTS nanograins determines the minority carrier transportation within the 3D p-n junction between CZTS and CdS, which are closely related with the photocurrent of series resistance of 3D p-n junction solar cells. 3D p-n junction CZTS solar cells with nanograins below 100 nm show power conversion efficiency of 5.02%, which is comparable with conventional CZTS thin film solar cells. PMID:26061271

  14. Enhanced performance of CdS/CdTe thin-film devices through temperature profiling techniques applied to close-spaced sublimation deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xiaonan Li; Sheldon, P.; Moutinho, H.; Matson, R. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    The authors describe a methodology developed and applied to the close-spaced sublimation technique for thin-film CdTe deposition. The developed temperature profiles consisted of three discrete temperature segments, which the authors called the nucleation, plugging, and annealing temperatures. They have demonstrated that these temperature profiles can be used to grow large-grain material, plug pinholes, and improve CdS/CdTe photovoltaic device performance by about 15%. The improved material and device properties have been obtained while maintaining deposition temperatures compatible with commercially available substrates. This temperature profiling technique can be easily applied to a manufacturing environment by adjusting the temperature as a function of substrate position instead of time.

  15. A different type of reentrant behavior in superconductor/thin graphite film/superconductor Josephson junctions

    International Nuclear Information System (INIS)

    We experimentally studied current-voltage characteristics of superconductor/thin graphite film/superconductor Josephson junctions. A reentrant behavior in the differential conductance was observed at low bias voltages just above the structure due to supercurrent. The gate voltage dependence of the conductance peak shows that the origin of the reentrant behavior is different from that for the conventional reentrant behavior seen in a disordered normal metal coupled to a superconductor

  16. Infrared Vortex-State Electrodynamics in Type-II Superconducting Thin Films

    OpenAIRE

    Xi, Xiaoxiang; Park, J.-H.; Graf, D.; Carr, G. L.; Tanner, D. B.

    2013-01-01

    The vortex-state electrodynamics of s-wave superconductors has been studied by infrared spectroscopy. Far-infrared transmission and reflection spectra of superconducting NbTiN and NbN thin films were measured in a magnetic field perpendicular to the film surface, and the optical conductivity was extracted. The data show clear reduction of superconducting signature. We consider the vortex state as a two-component effective medium of normal cores embedded in a BCS superconductor. The spectral f...

  17. Consideration of BORAX-type reactivity accidents applied to research reactors; Prise en compte des accidents de type 'BORAX' pour les reacteurs de recherche

    Energy Technology Data Exchange (ETDEWEB)

    Couturier, Jean; Meignen, Renaud; Bourgois, Thierry; Biaut, Guillaume; Mireau, Jean-Pierre [Direction de la surete des reacteurs, Institut de Radioprotection et de Surete Nucleaire - IRSN, 31, avenue de la Division Leclerc, 92260 Fontenay-aux-Roses (France); Natta, Marc [Direction de la strategie, du developpement et des partenariats, Institut de Radioprotection et de Surete Nucleaire - IRSN, 31, avenue de la Division Leclerc, 92260 Fontenay-aux-Roses (France)

    2011-08-08

    Most of the research reactors discussed in this document are pool-type reactors in which the reactor vessel and some of the reactor coolant systems are located in a pool of water. These reactors generally use fuel in plate assemblies formed by a compact layer of uranium (or U{sub 3}Si{sub 2}) and aluminium particles, sandwiched between two thin layers of aluminium serving as cladding. The fuel melting process begins at 660 deg. C when the aluminium melts, while the uranium (or U{sub 3}Si{sub 2}) particles may remain solid. The accident that occurred in the American SL-1 reactor in 1961, together with tests carried out in the United States as of 1954 in the BORAX-1 reactor and then, in 1962, in the SPERT-1 reactor, showed that a sudden substantial addition of reactivity in this type of reactor could lead to explosive mechanisms caused by degradation, or even fast meltdown, of part of the reactor core. This is what is known as a 'BORAX-type' accident. The aim of this document is first to briefly recall the circumstances of the SL-1 reactor accident, the lessons learned, how this operational feedback has been factored into the design of various research reactors around the world and, second, to describe the approach taken by France with regard to this type of accident and how, led by IRSN, this approach has evolved in the last decade. (authors)

  18. Low power low temperature poly-Si thin-film transistor shift register with DC-type output driver

    Science.gov (United States)

    Song, Seok-Jeong; Kim, Byung Hoon; Jang, Jin; Nam, Hyoungsik

    2015-09-01

    This paper demonstrates a low power DC-type low temperature poly-Si (LTPS) thin-film transistor (TFT) shift register that consists of nine TFTs and one bootstrapping capacitor. The proposed circuit connects large size pull-up TFTs of output drivers to positive supply instead of alternating clock signals in order to reduce substantially the power consumption of clock drivers. The SPICE simulation ensures that the variable overlap intervals can be programmed by the delay between clock signals and the overall power consumption of a DC-type circuit can be reduced to 45% of an AC-type one for a full-HD display. The operation of a proposed structure is also verified with a fabricated 16-stage gate driver.

  19. INFLUENCES OF CASTING SPEED AND SEN DEPTH ON FLUID FLOW IN THE FUNNEL TYPE MOLD OF A THIN SLAB CASTER

    Institute of Scientific and Technical Information of China (English)

    B.W. Li; X.Y. Tian; E.G. Wang; J.C. He

    2007-01-01

    In recent years, thin slab continuous casting technology has been widely used to improve the quality of the product and to reduce the cost. One of the challenges faced by this technology is to design reasonable flow patterns, which strongly affect the surface and inner properties of the final slab in the mold. With the fixed scales and complex geometrical structures of nozzle and funnel type mold,a series of numerical simulations are made to analyze the flow patterns in melt steel using finite volume method based on structured body fitted coordinate grids. The CFD (computational fluid dynamics) package is validated first using one typical case described in previously published studies,and then it is developed to study the effect of operational parameters on fluid flow in thin slab caster.Two operational parameters, casting speed and SEN (submerged entry nozzle) depth, are mainly considered for numerical analysis. On the basis of present simulations, the reasonable SEN submergence depths corresponding to different casting speeds are suggested according to fluid flow characteristics like, flow jet impingement on the narrow side of the mold, flow speed of the melt steel beneath the meniscus and the recirculation region. This is the first stage of study on the numerical analysis of the whole thin slab casting process with electromagnetic brake.

  20. Sol-gel production of p-type ZnO thin film by using sodium doping

    Science.gov (United States)

    Bu, Ian Y. Y.

    2016-08-01

    In this study, ZnO:Na thin films doped with 1-5 at.% of Na were synthesized on glass substrates by the sol-gel deposition technique. The morphology and optoelectronic properties of the thin films were characterized by using the environmental scanning electron microscope (SEM), X-ray diffraction (XRD), UV-Vis spectroscopy and Hall effect measurements. The SEM images and XRD pattern both indicated a substantial change in the film structure as the Na content increases due to the oversupply of the OH- ions in the initial precursor solution. UV-Vis spectroscopy measurements revealed that the increase in Na doping resulted in the decreases of the optical transmittance and the optical band gap due to the formation recombination centers. Hall effect measurements confirmed that the ZnO:Na films doped with >2 at.% of Na are stable with p-type conduction behaviour. As a demonstration, a ZnO-based junction was fabricated using the synthesized ZnO:Na/ZnO thin films on indium tin oxide glass substrates.

  1. Spectral response curve models applied to forest cover-type discrimination

    Science.gov (United States)

    Hudson, W. D.; Lusch, D. P.

    1984-01-01

    The potential of remote sensing systems to provide a cost-effective inventory tool in the case of forest resources is currently of interest to a variety of natural resources management agencies. A number of studies have been performed regarding the use of Landsat data for mapping forest resources in Michigan. The present paper is concerned with current research, which has been directed toward the development and evaluation of computer-implemented classifications for the identification and characterization of coniferous forest types in Michigan's northern Lower Peninsula. Attention is given to the characteristic response curves from Landsat MSS data, spectral response curve models, and forest cover-type discrimination. It is found that spectral response curve models can be used to evaluate and explain the characteristic spectral responses of coniferous forest types on a snow-covered, winter Landsat scene.

  2. Diffusion of phosphorus and arsenic using ampoule-tube method on undoped ZnO thin films and electrical and optical properties of P-type ZnO thin films

    Science.gov (United States)

    So, Soon-Jin; Park, Choon-Bae

    2005-12-01

    To investigate ZnO thin films, which are in the spotlight of next generation short wavelength LEDs and semiconductor lasers, the ZnO thin films were deposited using RF sputtering system in this study. The substrate temperature and work pressure were set at 300 °C and 5.2 mTorr, respectively, in the sputtering process of ZnO thin films and ZnO 5N was used as the purity target. The thickness of ZnO thin films was about 2.1 μm at the time of SEM analysis after the sputtering process. Phosphorus (P) and arsenic (As) were diffused in an ampoule tube of below 5×10 -7 Torr into the undoped ZnO thin films sputtered by RF magnetron sputtering system. The doping sources of phosphorus and arsenic were Zn 3P 2 and ZnAs 2. The diffusion of these elements was performed at the temperatures of 500, 600, and 700 °C for 3 h. Diffusion process of the conductive ZnO thin films, which have n-type and p-type properties, has been discovered. The ZnO thin films in this study showed not only very high carrier concentration of above 10 17/cm 3 but also low resistivity of below 2.0×10 -2 Ω cm.

  3. p-Type Sb-Doped ZnO Thin Films Prepared with Filtered Vacuum Arc Deposition

    OpenAIRE

    David, T; Goldsmith, S.; Boxman, R. L.

    2005-01-01

    Thin p-type Sb-doped ZnO films were grown by filtered vacuum arc deposition (FVAD), on untreated glass samples. The arc cathode was prepared by dissolving Sb into molten Zn. The deposition was performed with 200 A arc current, running for 120-240 s in 0.426 Pa oxygen pressure. The film thickness was 330-500 nm. The aotmic concentration of Sb in the films was ~1.5%, whereas the O/Zn atomic concentration ratio was ~0.7. Sb incorporation into the polycrystalline ZnO matrix was concluded from XRD...

  4. Transmission Electron Microscope Studies of Thin Films of CdSe Vacuum Evaporated from Knudsen-Type Source

    Directory of Open Access Journals (Sweden)

    K. L. Chaudhary

    1998-07-01

    Full Text Available A Knudsen-type evaporation source was used for the vacuum deposition of thin films of CdSe to study their growth and microstructure on to air-cleaved KCI and mica substrates under different rates of evaporation and substrate temperatures. The conditions for the growth of epitaxial films of this material onto mica have also been established and their photoconducting properties evaluated. CdSe films prepared by this source retain their stoichiometry and compare well with those prepared by other sources of vacuum evaporation.

  5. RBF-Type Artificial Neural Network Model Applied in Alloy Design of Steels

    Institute of Scientific and Technical Information of China (English)

    YOU Wei; LIU Ya-xiu; BAI Bing-zhe; FANG Hong-sheng

    2008-01-01

    RBF model, a new type of artificial neural network model was developed to design the content of carbon in low-alloy engineering steels. The errors of the ANN model are. MSE 0. 052 1, MSRE 17. 85%, and VOF 1. 932 9. The results obtained are satisfactory. The method is a powerful aid for designing new steels.

  6. Hadron-therapy beam monitoring: Towards a new generation of ultra-thin p-type silicon strip detectors

    International Nuclear Information System (INIS)

    Hadron-therapy has gained increasing interest for cancer treatment especially within the last decade. System commissioning and quality assurance procedures impose to monitor the particle beam using 2D dose measurements. Nowadays, several monitoring systems exist for hadron-therapy but all show a relatively high influence on the beam properties: indeed, most devices consist of several layers of materials that degrade the beam through scattering and energy losses. For precise treatment purposes, ultra-thin silicon strip detectors are investigated in order to reduce this beam scattering. We assess the beam size increase provoked by the Multiple Coulomb Scattering when passing through Si, to derive a target thickness. Monte-Carlo based simulations show a characteristic scattering opening angle lower than 1 mrad for thicknesses below 20 μm. We then evaluated the fabrication process feasibility. We successfully thinned down silicon wafers to thicknesses lower than 10 μm over areas of several cm2. Strip detectors are presently being processed and they will tentatively be thinned down to 20 μm. Moreover, two-dimensional TCAD simulations were carried out to investigate the beam detector performances on p-type Si substrates. Additionally, thick and thin substrates have been compared thanks to electrical simulations. Reducing the pitch between the strips increases breakdown voltage, whereas leakage current is quite insensitive to strips geometrical configuration. The samples are to be characterized as soon as possible in one of the IBA hadron-therapy facilities. For hadron-therapy, this would represent a considerable step forward in terms of treatment precision. (authors)

  7. Experimental component Mode Synthesis Applied to the Solar Array Type Structure

    OpenAIRE

    Komatsu, Keiji; Sano, Masaaki; SANBONGI, Shigeo; Takashi Kai; TODA, Susumu; 小松, 敬治; 佐野, 政明; 三本木, 茂夫; 甲斐, 高志; 戸田, 勧

    1988-01-01

    A component mode synthesis technique based on experimentally determined modal parameters is presented in this paper. The test structure is a solar array type plate, which is divided into three parts, and four flexible connective parts. In the synthesis, the measured modes are approximated in polynomials to produce rotational degrees of freedom. The results sythesized are in good agreement with the test results obtained from a combined structure.

  8. New Type Regulating Valve Applied in Cooling System of Blast Furnace

    Institute of Scientific and Technical Information of China (English)

    HE Sheng-ping; ZOU De-yu; XU Gang; LU De-chang

    2004-01-01

    A new type regulating valve with the cooling mode of constant temperature difference water supply, temperature difference self-operated regulating valve, was introduced into blast furnace cooling system to overcome shortcomings of the cooling mode of constant flow rate water supply. The results show that the temperature difference between inlet and outlet water of cooling wall can be decreased greatly and steadily, and the water supply for blast furnace cooling can be reduced considerably.

  9. How the Principle of Risk Management Can Be Applied to Different Types of Projects?

    OpenAIRE

    Yuanyuan Zhang

    2009-01-01

    Project risk management is a process which combines the analysis and management of the risks with a project and the principles of risk management include two key points which are risk analysis and risk control and arrangement. The case studies clarify the principles of project risk management can be used in different types of projects, and also when doing risk management it should be followed by right steps, choosing the right analysis methods, quantifying the risks precisely and formulating ...

  10. Open-air type plasma chemical vaporization machining by applying pulse-width modulation control

    Science.gov (United States)

    Takeda, Yoshiki; Hata, Yuki; Endo, Katsuyoshi; Yamamura, Kazuya

    2014-03-01

    Photolithography techniques have been used to enable the low-cost and high-speed transfer of a pattern onto a silicon wafer. However, owing to the high integration of semiconductors, extreme ultraviolet will be increasingly used as the exposure light source and all optics must be reflective to focus light because the wavelength of the light will be so short that it cannot pass through a lens. The form accuracy of reflective optics affects the accuracy of transfer, and a flatness of less than 32 nm on a 6 inch photomask substrate is required according to the International Technology Roadmap for Semiconductors roadmap. Plasma chemical vaporization machining is an ultraprecise figuring technique that enables a form accuracy of nanometre order to be obtained. In our previous study, the removal volume was controlled by changing the scanning speed of the worktable. However, a discrepancy between the theoretical scanning speed and the actual scanning speed occurred owing to the inertia of the worktable when the change in speed was rapid. As an attempt to resolve this issue, we controlled the removal volume by controlling the electric power applied during plasma generation while maintaining a constant scanning speed. The methods that we adapted to control the applied electric power were amplitude-modulation (AM) control and pulse-width modulation (PWM) control. In this work, we evaluate the controllability of the material removal rate in the AM and PWM control modes.

  11. Open-air type plasma chemical vaporization machining by applying pulse-width modulation control

    International Nuclear Information System (INIS)

    Photolithography techniques have been used to enable the low-cost and high-speed transfer of a pattern onto a silicon wafer. However, owing to the high integration of semiconductors, extreme ultraviolet will be increasingly used as the exposure light source and all optics must be reflective to focus light because the wavelength of the light will be so short that it cannot pass through a lens. The form accuracy of reflective optics affects the accuracy of transfer, and a flatness of less than 32 nm on a 6 inch photomask substrate is required according to the International Technology Roadmap for Semiconductors roadmap. Plasma chemical vaporization machining is an ultraprecise figuring technique that enables a form accuracy of nanometre order to be obtained. In our previous study, the removal volume was controlled by changing the scanning speed of the worktable. However, a discrepancy between the theoretical scanning speed and the actual scanning speed occurred owing to the inertia of the worktable when the change in speed was rapid. As an attempt to resolve this issue, we controlled the removal volume by controlling the electric power applied during plasma generation while maintaining a constant scanning speed. The methods that we adapted to control the applied electric power were amplitude-modulation (AM) control and pulse-width modulation (PWM) control. In this work, we evaluate the controllability of the material removal rate in the AM and PWM control modes. (paper)

  12. Control of p- and n-type conductivities in P doped ZnO thin films by using radio-frequency sputtering

    International Nuclear Information System (INIS)

    The conduction type of P doped ZnO thin films using Zn3P2 dopant source can be controlled by adjusting the oxygen partial pressure by means of radio-frequency sputtering. Under an optimal oxygen partial pressure of 5%, p-type ZnO thin films were obtained with a hole concentration of 1.93x1016-3.84x1019 cm-3. Under a growth condition of extremely low oxygen partial pressure, P doped ZnO thin films exhibit n-type conduction with a hole concentration of 8.34x1017-3.1x1019 cm-3. This research not only achieved significant technical advance in the fabrication of p-type ZnO but also gained critical advance in fundamental understanding of the governing mechanism of p-type ZnO

  13. Ultra-thin ohmic contacts for p-type nitride light emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Raffetto, Mark; Bharathan, Jayesh; Haberern, Kevin; Bergmann, Michael; Emerson, David; Ibbetson, James; Li, Ting

    2014-06-24

    A flip-chip semiconductor based Light Emitting Device (LED) can include an n-type semiconductor substrate and an n-type GaN epi-layer on the substrate. A p-type GaN epi-layer can be on the n-type GaN epi-layer and a metal ohmic contact p-electrode can be on the p-type GaN epi-layer, where the metal ohmic contact p-electrode can have an average thickness less than about 25 .ANG.. A reflector can be on the metal ohmic contact p-electrode and a metal stack can be on the reflector. An n-electrode can be on the substrate opposite the n-type GaN epi-layer and a bonding pad can be on the n-electrode.

  14. P-type Cu2O/SnO bilayer thin film transistors processed at low temperatures

    KAUST Repository

    Al-Jawhari, Hala A.

    2013-10-09

    P-type Cu2O/SnO bilayer thin film transistors (TFTs) with tunable performance were fabricated using room temperature sputtered copper and tin oxides. Using Cu2O film as capping layer on top of a SnO film to control its stoichiometry, we have optimized the performance of the resulting bilayer transistor. A transistor with 10 nm/15 nm Cu2O to SnO thickness ratio (25 nm total thickness) showed the best performance using a maximum process temperature of 170 C. The bilayer transistor exhibited p-type behavior with field-effect mobility, on-to-off current ratio, and threshold voltage of 0.66 cm2 V-1 s-1, 1.5×10 2, and -5.2 V, respectively. The advantages of the bilayer structure relative to single layer transistor are discussed. © 2013 American Chemical Society.

  15. Applying music in a meaningful way in a sandbox type massive multiplayer online role playing game

    OpenAIRE

    Baldur Jóhann Baldursson

    2011-01-01

    This research is about the creation and use of music for the sandbox type of Massive Multiplayer Online Role Playing Games (MMORPG) — MMO for short. It takes on the history of music for video games and tries to shed light on what kind of a musical approach would suit best for MMO‘s. It then decides that some kind of a generative or automatic approach is required. The research goes on to look at couple of generative music systems that may serve as a model for a solution to this research, bo...

  16. Applied methods for mitigation of damage by stress corrosion in BWR type reactors

    International Nuclear Information System (INIS)

    The Boiling Water nuclear Reactors (BWR) have presented stress corrosion problems, mainly in components and pipes of the primary system, provoking negative impacts in the performance of energy generator plants, as well as the increasing in the radiation exposure to personnel involucred. This problem has caused development of research programs, which are guided to find solution alternatives for the phenomena control. Among results of greater relevance the control for the reactor water chemistry stands out particularly in the impurities concentration and oxidation of radiolysis products; as well as the supervision in the materials selection and the stresses levels reduction. The present work presents the methods which can be applied to diminish the problems of stress corrosion in BWR reactors. (Author)

  17. Effect of papain-based gel on type I collagen - spectroscopy applied for microstructural analysis

    Science.gov (United States)

    Júnior, Zenildo Santos Silva; Botta, Sergio Brossi; Ana, Patricia Aparecida; França, Cristiane Miranda; Fernandes, Kristianne Porta Santos; Mesquita-Ferrari, Raquel Agnelli; Deana, Alessandro; Bussadori, Sandra Kalil

    2015-01-01

    Considering the improvement of biomaterials that facilitate atraumatic restorative techniques in dentistry, a papain-based gel can be used in the chemomechanical removal of decayed dental tissue. However, there is no information regarding the influence of this gel on the structure of sound collagen. The aim of the present study was to investigate the adsorption of a papain-based gel (PapacarieTM) to collagen and determine collagen integrity after treatment. A pilot study was first performed with 10 samples of type I collagen membrane obtained from bovine Achilles deep tendon to compare the influence of hydration (Milli-Q water) on infrared bands of collagen. In a further experiment, 10 samples of type I collagen membrane were used to evaluate the effects of PapacarieTM on the collagen microstructure. All analyses were performed using the attenuated total reflectance technique of Fourier transform infrared (ATR-FTIR). The results demonstrated that the application of PapacarieTM does not lead to the degradation of collagen and this product can be safely used in minimally invasive dentistry. As the integrity of sound collagen is preserved after the application of the papain-based gel, this product is indicated for the selective removal of infected dentin, leaving the affected dentin intact and capable of re-mineralization. PMID:26101184

  18. Photogrammetry and photo interpretation applied to analyses of cloud cover, cloud type, and cloud motion

    Science.gov (United States)

    Larsen, P. A.

    1972-01-01

    A determination was made of the areal extent of terrain obscured by clouds and cloud shadows on a portion of an Apollo 9 photograph at the instant of exposure. This photogrammetrically determined area was then compared to the cloud coverage reported by surface weather observers at approximately the same time and location, as a check on result quality. Stereograms prepared from Apollo 9 vertical photographs, illustrating various percentages of cloud coverage, are presented to help provide a quantitative appreciation of the degradation of terrain photography by clouds and their attendant shadows. A scheme, developed for the U.S. Navy, utilizing pattern recognition techniques for determining cloud motion from sequences of satellite photographs, is summarized. Clouds, turbulence, haze, and solar altitude, four elements of our natural environment which affect aerial photographic missions, are each discussed in terms of their effects on imagery obtained by aerial photography. Data of a type useful to aerial photographic mission planners, expressing photographic ground coverage in terms of flying height above terrain and camera focal length, for a standard aerial photograph format, are provided. Two oblique orbital photographs taken during the Apollo 9 flight are shown, and photo-interpretations, discussing the cloud types imaged and certain visible geographical features, are provided.

  19. Isotropic damage model and serial/parallel mix theory applied to nonlinear analysis of ferrocement thin walls. Experimental and numerical analysis

    Directory of Open Access Journals (Sweden)

    Jairo A. Paredes

    2016-04-01

    Full Text Available Ferrocement thin walls are the structural elements that comprise the earthquake resistant system of dwellings built with this material. This article presents the results drawn from an experimental campaign carried out over full-scale precast ferrocement thin walls that were assessed under lateral static loading conditions. The tests allowed the identification of structural parameters and the evaluation of the performance of the walls under static loading conditions. Additionally, an isotropic damage model for modelling the mortar was applied, as well as the classic elasto-plastic theory for modelling the meshes and reinforcing bars. The ferrocement is considered as a composite material, thus the serial/parallel mix theory is used for modelling its mechanical behavior. In this work a methodology for the numerical analysis that allows modeling the nonlinear behavior exhibited by ferrocement walls under static loading conditions, as well as their potential use in earthquake resistant design, is proposed.

  20. Effect of Pressing Force Applied to a Rotor on Disk-Type Ultrasonic Motor Driven by Self-Oscillation

    Science.gov (United States)

    Kusakabe, Chiharu; Tomikawa, Yoshiro; Takahashi, Sadayuki; Takano, Takehiro

    1998-05-01

    In this paper the relationship between the pressing force applied to a rotor and the rotation characteristic of an ultrasonic motor driven by self-oscillation are discussed.The motor used here is an in-phase drive-type ultrasonic motor using two degenerate bending vibration modes of a disk.The picking-up electrical signal caused by self-oscillation is positively fed back into the piezoelectric ceramics for driving through an operational amplifier and a step-up transformer. The pressing force applied to a rotor was measured using a force gauge coupled to the shaft of the ultrasonic motor. As a result, it was confirmed that the selection of the picking-up position for the feedback signal is important for a stable starting and running of the disk-type ultrasonic motor driven by self-oscillation.

  1. Pinning effects on the vortex critical velocity in type-II superconducting thin films

    International Nuclear Information System (INIS)

    We study the influence of artificial pinning centers on the vortex critical velocity in Al thin films deposited on top of a periodic array of Permalloy (FeNi) square rings. We demonstrate that the field dependence of the flux flow velocity strongly depends on the particular magnetic state of the rings. In particular, we find that, even when the rings are in a flux closure state, i.e. with little stray field, the vortex critical velocity shows a non-monotonic magnetic field dependence. This behaviour is in sharp contrast with the results obtained in a reference plain film, with no rings underneath. A comparison with the intrinsic strong pinning Nb films previously studied, suggests an interpretation in terms of a channel-like motion of vortices, here induced by the artificial pinning structure.

  2. Ultra-thin ohmic contacts for p-type nitride light emitting devices

    Science.gov (United States)

    Raffetto, Mark; Bharathan, Jayesh; Haberern, Kevin; Bergmann, Michael; Emerson, David; Ibbetson, James; Li, Ting

    2012-01-03

    A semiconductor based Light Emitting Device (LED) can include a p-type nitride layer and a metal ohmic contact, on the p-type nitride layer. The metal ohmic contact can have an average thickness of less than about 25 .ANG. and a specific contact resistivity less than about 10.sup.-3 ohm-cm.sup.2.

  3. Study on a mobile-type magnetic separator applying high-Tc bulk superconductors

    International Nuclear Information System (INIS)

    We have developed a new water-treatment system that consists of a membrane separator and a magnetic separator that uses long high-Tc bulk superconductors (SCs) as permanent magnets. Basic tests were performed using a new prototype water-treatment system to verify the separator's ability to remove water bloom. Based on the test results, we design the mobile-type magnetic separator system. The designed magnetic separator system consists of three components; a pre-process unit, a rotating membrane separator and a magnetic separator. The capacity of the magnetic separator is 100 ton/day. Removal rate is 90% or more. It is thought that the system is compact and high efficiency

  4. Media matters for boys too! The role of specific magazine types and television programs in the drive for thinness and muscularity in adolescent boys.

    Science.gov (United States)

    Slater, Amy; Tiggemann, Marika

    2014-12-01

    This study examined the role of specific magazine types and television programs on drive for thinness and muscularity in adolescent boys. A sample of 182 adolescent boys with an average age of 15.2 years completed questionnaire measures of magazine and television consumption, drive for thinness and drive for muscularity. Different media genres showed varying relationships with drive for thinness and muscularity. Specifically, the consumption of men's magazines and the viewing of soap operas emerged as significant unique predictors of drive for thinness, with the consumption of men's magazines also offering unique prediction of drive for muscularity. A comprehensive approach that considers both type and genre of media is critical in increasing our understanding of the complex relationships between media exposure and disordered eating in adolescent boys. PMID:25462026

  5. CERREX Software Applied to a Research Reactor of the Generic Argonaut Type. Appendix IV

    International Nuclear Information System (INIS)

    This appendix presents the results of a cost calculation for the dismantling of a research reactor of the generic ARGONAUT type, performed using CERREX, and compares the results with a cost estimate obtained by the facility owners. The ARGONAUT reactor was first developed at the Argonne National Laboratories, USA. Typical roles and the main features of the ARGONAUT included: Participation in training activities in neutron flow and neutron activation analysis; Support for public research of irradiation of materials, implementation of analytical techniques using a neutron source and production of radioisotopes; Provision of similar services to companies under a contractual framework; A maximum power of 100 kW, with power typically between 1 and 100 W used for teaching purposes and up to 100 kW for irradiation. The reactor was dismantled between 2006 and 2008. The duration of the decommissioning site works estimated by the facility owners was 13 months, assuming 21 working days per month and 8 working hours per day (8 x 21 x 12 = 2016 working hours per year, see cell V2 in the 'ISDC' tab). Furthermore, the owners assumed six workers to be present on-site at any given time

  6. An approach to luminescence thermochronometer applied on Quartz from different rock types

    Science.gov (United States)

    Wu, T.; Chen, Y.; Jaiswal, M.

    2010-12-01

    Thermal ages (e.g. Fission tracks) play an important role for the understanding of the mountain building activities within the upper crust. In order to understand the uplift history of Taiwan, especially for low temperature part, present study explores the applicability of thermal ages of fairly low cooling temperature using luminescence dating method. Since the reliability of luminescence dating method is sample dependent, this study start with check signal intensity and relevant characteristics of luminescence from appropriate minerals e.g. quartz and feldspar. Samples for current studies were collected from Central Range of Taiwan. The sample locations are chosen in such a way that it covers the various altitudes within the Central Range and from two different rock types.1) cherty-marble and 2) meta-sandstone to get the rock dependent variation. Also, it has been observed that cherty-marble did not go under stress whereas meta-sandstone had undergone the stress. This study also compares the stress effect on luminescence signal as to provide true ages from the thermal effect alone. After that, the thermal ages are determined by conventional single aliquot regenerative-dose (SAR) protocol and isothermal Thermoluminescence (ITL) on mineral extract from the rocks. The luminescence signals measured using ITL has been confirmed from high-Temperature traps but conventional SAR protocol from relatively low-Temperature traps.

  7. Gradient-type modeling of the effects of plastic recovery and surface passivation in thin films

    Science.gov (United States)

    Liu, Jinxing; Kah Soh, Ai

    2016-08-01

    The elasto-plastic responses of thin films subjected to cyclic tension-compression loading and bending are studied, with a focus on Bauschinger and size effects. For this purpose, a model is established by incorporating plastic recovery into the strain gradient plasticity theory we proposed recently. Elastic and plastic parts of strain and strain gradient, which are determined by the elasto-plastic decomposition according to the associative rule, are assumed to have a degree of material-dependent reversibility. Based on the above assumption, a dislocation reversibility-dependent rule is built to describe evolutions of different deformation components under cyclic loadings. Furthermore, a simple strategy is provided to implement the passivated boundary effects by introducing a gradual change to relevant material parameters in the yield function. Based on this theory, both bulge and bending tests under cyclic loading conditions are investigated. By comparing the present predictions with the existing experimental data, it is found that the yield function is able to exhibit the size effect, the Bauschinger effect, the influence of surface passivation and the hysteresis-loop phenomenon. Thus, the proposed model is deemed helpful in studying plastic deformations of micron-scale films.

  8. Synthesis of organometallic hydroxides of titanium, vanadium, cobalt and chromium as precursors of thin films type MaOb

    International Nuclear Information System (INIS)

    This study shows the results obtained from a general objective that was the synthesis and characterization of precursors of thin films of metallic oxides, two different routes of synthesis have been practiced: route molecular precursors and route Sol-Gel technic. In the first route one of the objectives of the investigation is to obtain a molecular precursor of material type MaOb a route of synthesis have been tried proved that involves anhydrous chlorides of the transition metals and linked R that are alcoxides of metal such as silicon, titanium and zirconium. In the second route the general objective to create thin films of metallic oxide has been maintained but the way to resolve the problem has changed, not giving so much emphasis to the molecular precursors as it was originally presented (this due mainly to its instability and difficulty of synthesis), but being supported in the sun-gel chemistry. It was started a new synthesis line through the sun-gel chemistry that is more versatile and simplifies the process in the film formation

  9. Nanostructured p-type CZTS thin films prepared by a facile solution process for 3D p-n junction solar cells

    Science.gov (United States)

    Park, Si-Nae; Sung, Shi-Joon; Sim, Jun-Hyoung; Yang, Kee-Jeong; Hwang, Dae-Kue; Kim, Junho; Kim, Gee Yeong; Jo, William; Kim, Dae-Hwan; Kang, Jin-Kyu

    2015-06-01

    Nanoporous p-type semiconductor thin films prepared by a simple solution-based process with appropriate thermal treatment and three-dimensional (3D) p-n junction solar cells fabricated by depositing n-type semiconductor layers onto the nanoporous p-type thin films show considerable photovoltaic performance compared with conventional thin film p-n junction solar cells. Spin-coated p-type Cu2ZnSnS4 (CZTS) thin films prepared using metal chlorides and thiourea show unique nanoporous thin film morphology, which is composed of a cluster of CZTS nanograins of 50-500 nm, and the obvious 3D p-n junction structure is fabricated by the deposition of n-type CdS on the nanoporous CZTS thin films by chemical bath deposition. The photovoltaic properties of 3D p-n junction CZTS solar cells are predominantly affected by the scale of CZTS nanograins, which is easily controlled by the sulfurization temperature of CZTS precursor films. The scale of CZTS nanograins determines the minority carrier transportation within the 3D p-n junction between CZTS and CdS, which are closely related with the photocurrent of series resistance of 3D p-n junction solar cells. 3D p-n junction CZTS solar cells with nanograins below 100 nm show power conversion efficiency of 5.02%, which is comparable with conventional CZTS thin film solar cells.Nanoporous p-type semiconductor thin films prepared by a simple solution-based process with appropriate thermal treatment and three-dimensional (3D) p-n junction solar cells fabricated by depositing n-type semiconductor layers onto the nanoporous p-type thin films show considerable photovoltaic performance compared with conventional thin film p-n junction solar cells. Spin-coated p-type Cu2ZnSnS4 (CZTS) thin films prepared using metal chlorides and thiourea show unique nanoporous thin film morphology, which is composed of a cluster of CZTS nanograins of 50-500 nm, and the obvious 3D p-n junction structure is fabricated by the deposition of n-type CdS on the

  10. Fabrication and characterization of p+-i-p+ type organic thin film transistors with electrodes of highly doped polymer

    Science.gov (United States)

    Tadaki, Daisuke; Ma, Teng; Zhang, Jinyu; Iino, Shohei; Hirano-Iwata, Ayumi; Kimura, Yasuo; Rosenberg, Richard A.; Niwano, Michio

    2016-04-01

    Organic thin film transistors (OTFTs) have been explored because of their advantageous features such as light-weight, flexible, and large-area. For more practical application of organic electronic devices, it is very important to realize OTFTs that are composed only of organic materials. In this paper, we have fabricated p+-i-p+ type of OTFTs in which an intrinsic (i) regioregular poly (3-hexylthiophene) (P3HT) layer is used as the active layer and highly doped p-type (p+) P3HT is used as the source and drain electrodes. The 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) was used as the p-type dopant. A fabricating method of p+-i-p+ OTFTs has been developed by using SiO2 and aluminum films as capping layers for micro-scaled patterning of the p+-P3HT electrodes. The characteristics of the OTFTs were examined using the photoelectron spectroscopy and electrical measurements. We demonstrated that the fabricated p+-i-p+ OTFTs work with carrier injection through a built-in potential at p+/i interfaces. We found that the p+-i-p+ OTFTs exhibit better FET characteristics than the conventional P3HT-OTFT with metal (Au) electrodes, indicating that the influence of a carrier injection barrier at the interface between the electrode and the active layer was suppressed by replacing the metal electrodes with p+-P3HT layers.

  11. Ohmic contacts of Au and Ag metals to n-type GdN thin films

    Directory of Open Access Journals (Sweden)

    Felicia Ullstad

    2015-05-01

    Full Text Available The rare-earth nitrides appear as attractive alternatives to dilute ferromagnetic semiconductors for spintronics device applications. Most of them combine the properties of the ferromagnet and the semiconductor, an exceedingly rare combination. In this work we have grown n-type polycrystalline semiconducting GdN layers between pre-deposited contacts made of Cr/Au and Cr/Ag. The resistivity of the GdN layers ranges from 4.4×10-4 Ωcm to 3.1×10-2 Ωcm depending on the nitrogen pressure during the growth. The electrical properties of metal/n-type GdN/metal planar junctions are investigated as a function of the temperature. The current voltage characteristics of the junctions were linear for temperatures ranging from 300 K down to 5 K, suggesting an ohmic contact between the Au or Ag metal and the n-type GdN layer.

  12. A review of the mechanical stressors efficiency applied to the ultra-thin body & buried oxide fully depleted silicon on insulator technology

    Science.gov (United States)

    Morin, Pierre; Maitrejean, Sylvain; Allibert, Frederic; Augendre, Emmanuel; Liu, Qing; Loubet, Nicolas; Grenouillet, Laurent; Pofelski, Alexandre; Chen, Kangguo; Khakifirooz, Ali; Wacquez, Romain; Reboh, Shay; Bonnevialle, Aurore; le Royer, Cyrille; Morand, Yves; Kanyandekwe, Joel; Chanemougamme, Daniel; Mignot, Yann; Escarabajal, Yann; Lherron, Benoit; Chafik, Fadoua; Pilorget, Sonia; Caubet, Pierre; Vinet, Maud; Clement, Laurent; Desalvo, Barbara; Doris, Bruce; Kleemeier, Walter

    2016-03-01

    This paper reviews the different stressor techniques used in microelectronics, in the scope of the Ultra-Thin Body & Buried Oxide Fully-Depleted Silicon On Insulator technology (UTBB FD-SOI). We compare the mechanical efficiency of the various stressors and present the impact of device dimensions (active area, gate length and pitch) on their efficiency. Our study emphasizes the high efficiency, for the FD-SOI technology, of the intrinsically strained channels, compared to the traditional embedded raised source/drain and contact-etch stop liner. With these techniques FD-SOI technology has already demonstrated channel stress higher than 1.5 GPa for n type transistor and -2.3 GPa for the p type devices and we envision channel stress values up to ±3 GPa for n and p transistor channel, respectively. This performance is partly due to the mechanical configuration of intrinsically strained channels, in parallel mode rather than in serial mode as for the previous generation of stressors, which makes them less sensitive to the scaling of the contacted gate pitch. We also highlight another key element the high mechanical stability of the UTBB technology, related to the limited channel thickness (around 6 nm) which enables achieving highly stressed channel without substantial adaptation of the integration flows.

  13. Impedance spectroscopic investigation of the effect of thin azo-calix[4]arene film type on the cation sensitivity of the gold electrodes

    International Nuclear Information System (INIS)

    In this work, we report the impedance spectroscopic investigation of the effect of the thin film type on the selectivity of gold/azo-calix[4]arene electrodes. For this purpose, two C1 and C3 azo-calix[4]arene derivative molecules, used as thin films, are deposited by spin-coating process on the gold surface. These thin films were first studied using contact angle measurements. This revealed a less hydrophobic character for C3 thin film, which has been attributed to the presence of hydroxyl groups at the lower rim. The sensitivity study, by Electrochemical Impedance Spectroscopy (EIS), towards Cu2+ and Eu3+ cations, has showed that the C3 thin film is more sensitive and selective towards Eu3+ than C1. This best performance is due to the presence of two ester groups acting as clips and leading to more complexation stability. The EIS results were modeled by an appropriate equivalent circuit for the aim of elucidating electrical properties of thin films. This modeling has exposed that C3 thin film presents lower ionic conductivity and limited diffusion phenomenon at the interface. Highlights: → C1 and C3 azo-calix[4]arenes thin films are deposited on the gold surface. → The lower hydrophobicity for C3 was attributed to the presence of hydroxyl groups. → The C3 thin film is more sensitive and selective towards Eu3+ than C1 one. → This best performance is due to the presence of two ester groups acting as clips.

  14. Effect of type of load on stress analysis of thin-walled ducts

    Science.gov (United States)

    Min, J. B.; Aggarwal, P. K.

    1992-06-01

    The standard procedure for qualifying the design of duct (pipe) systems in the Space Shuttle Main Engine (SSME) has been fairly well defined. However, since pipe elbows are quite common and important in the SSME duct systems, a clear understanding of the detailed stress profile of the components is necessary for accurate structural and life assessments. This study was initiated to predict the stress profile at/near the tangent point along the cross section of the duct under various types of loads. Also, this study was further extended to understand the stiffening effect on stresses due to pressure at the tangent point. The intention of this study was to identify the importance of selecting proper locations for mounting strain gauges and to utilize the obtained results to anchor dynamic models for accurate structural and life assessments of the SSME ducts under a dynamic environment. The finite element method was utilized in this study.

  15. Control of p-type conduction in Mg doped monophase CuCrO2 thin layers

    Science.gov (United States)

    Chikoidze, E.; Boshta, M.; Gomaa, M.; Tchelidze, T.; Daraselia, D.; Japaridze, D.; Shengelaya, A.; Dumont, Y.; Neumann-Spallart, M.

    2016-05-01

    This work aims to clarify the origin of hole conduction in undoped and Mg-doped CuCrO2 oxide in order to have the possibility of controlling it by corresponding growth parameters. A chemical spray pyrolysis procedure for the deposition of p-type semiconductor thin films is described. The as-deposited films were amorphous. The formation of highly crystalline CuCrO2 and Mg-doped CuCrO2 films with a single phase delafossite structure was realized by annealing between 600 °C and 960 °C in a nitrogen atmosphere. The carrier concentration and the point defects of the samples are calculated by using the developed Kroger method of quasi-chemical reactions. p-type conductivity was predicted and observed in the undoped and Mg doped CuCrO2 sample, and with n ~ 1018 cm‑3 carrier concentrations for 4%Mg doping. The electrical resistivity for a 4% Mg doped sample was 1.4 Ω·cm with a Seebeck coefficient of  +130 μV K‑1 at 40 °C. By electroparamagnetic resonance spectroscopy Cr3+ and Cu2+ related defects were studied.

  16. 2D seismostratigraphic inversion applied to a thin reservoir characterization; Inversao sismoestratigrafica 2D aplicada a caracterizacao de um reservatorio delgado

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Antonio Carlos de Almeida

    1998-12-01

    The purpose of this work is to estimate thin reservoir properties even without counting on a good quality and a homogeneous database. Following a regional geological setting, well data such as logs, reports, cores had led to an interpretation of the depositional model in which the sandstone interval is inserted as an filling an incised valley system. This knowledge is essential to provide elements for a final work judgement. The main geological properties were then extracted from logs. The geophysical approach has counted on a 1D modeling of the main well acoustic parameters and a 2D Seismostratigraphic Inversion with a {alpha} priori acoustic impedance, which was able to enhance the frequency content of the original data. After the interpretation of the inverted data, seismic attributes were then extracted. A multivariate statistics was performed in order to establish which correlations between geological and seismic would be carried forward. An Ordinary Kriging was applied to the 2D seismic attributes. The External Drift Kriging was used to derive maps of the geological properties with the constraint of seismic variables. The final geological properties maps are similar in shape and coherent with the depositional model proposed. (author)

  17. p-type doping of MoS{sub 2} thin films using Nb

    Energy Technology Data Exchange (ETDEWEB)

    Laskar, Masihhur R.; Nath, Digbijoy N.; Lee, Edwin W.; Lee, Choong Hee; Yang, Zihao [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Ma, Lu; Wu, Yiying [Department of Chemistry, The Ohio State University, Columbus, Ohio 43210 (United States); Kent, Thomas [Department of Material Science and Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Mishra, Rohan [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Roldan, Manuel A. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department Fisica Aplicada III, Universidad Complutense de Madrid, Madrid 28040 (Spain); Idrobo, Juan-Carlos [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Pantelides, Sokrates T. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235 (United States); Pennycook, Stephen J. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Myers, Roberto C.; Rajan, Siddharth, E-mail: rajan.21@osu.edu [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Department of Material Science and Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)

    2014-03-03

    We report on the first demonstration of p-type doping in large area few-layer films of (0001)-oriented chemical vapor deposited MoS{sub 2}. Niobium was found to act as an efficient acceptor up to relatively high density in MoS{sub 2} films. For a hole density of 3.1 × 10{sup 20} cm{sup −3}, Hall mobility of 8.5 cm{sup 2} V{sup −1} s{sup −1} was determined, which matches well with the theoretically expected values. X-ray diffraction scans and Raman characterization indicated that the film had good out-of-plane crystalline quality. Absorption measurements showed that the doped sample had similar characteristics to high-quality undoped samples, with a clear absorption edge at 1.8 eV. Scanning transmission electron microscope imaging showed ordered crystalline nature of the Nb-doped MoS{sub 2} layers stacked in the [0001] direction. This demonstration of substitutional p-doping in large area epitaxial MoS{sub 2} could help in realizing a wide variety of electrical and opto-electronic devices based on layered metal dichalcogenides.

  18. p-type doping of MoS2 thin films using Nb

    International Nuclear Information System (INIS)

    We report on the first demonstration of p-type doping in large area few-layer films of (0001)-oriented chemical vapor deposited MoS2. Niobium was found to act as an efficient acceptor up to relatively high density in MoS2 films. For a hole density of 3.1 × 1020 cm−3, Hall mobility of 8.5 cm2 V−1 s−1 was determined, which matches well with the theoretically expected values. X-ray diffraction scans and Raman characterization indicated that the film had good out-of-plane crystalline quality. Absorption measurements showed that the doped sample had similar characteristics to high-quality undoped samples, with a clear absorption edge at 1.8 eV. Scanning transmission electron microscope imaging showed ordered crystalline nature of the Nb-doped MoS2 layers stacked in the [0001] direction. This demonstration of substitutional p-doping in large area epitaxial MoS2 could help in realizing a wide variety of electrical and opto-electronic devices based on layered metal dichalcogenides

  19. Fabrication of low-resistive p-type Al-N co-doped zinc oxide thin films by RF reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lu, H.-C., E-mail: hsinchun@mail.cgu.edu.t [Department of Chemical and Materials Engineering, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan (China); Lu, J.-L.; Lai, C.-Y. [Department of Chemical and Materials Engineering, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan (China); Wu, G.-M. [Green Technology Research Center, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan (China)

    2009-12-15

    p-Type aluminum-nitrogen (Al-N) co-doped zinc oxide (ZnO) thin films were deposited on glass substrate at 300 deg. C by RF reactive magnetron sputtering using an aluminum-doped zinc oxide (2.4 wt%Al{sub 2}O{sub 3}) target and N{sub 2} reactive gas. In addition, the effect of N{sub 2} reactive gas on the electrical and structural properties of Al-N co-doped ZnO thin films was also investigated. It was found that p-type Al-N co-doped ZnO thin films could be obtained only when the volume ratio of N{sub 2} in the N{sub 2}-containing Ar working gas exceeded 10%. p-Type Al-N co-doped ZnO thin films with a minimum resistivity of 0.141 OMEGA cm, a p-type carrier concentration of 5.84x1018 cm{sup -3}, and a Hall mobility of 3.68 cm{sup 2}/V s were obtained in this study when the volume ratio of N{sub 2} in the working gas was 30%.

  20. Enhancement of shell side forced convective heat transfer on the shell-tube type heat exchanger using thin plate-type supports

    International Nuclear Information System (INIS)

    The shell side heat transfer and pressure drop to water flowing counter were experimentally investigated on the basis of the overall heat transfer coefficient. The investigation was intended to identify ways to get higher performance for the cooler in a BWR nuclear power plant. The following three conclusions were reached in the study. (1) From estimated performance of the heat exchanger using the overall heat transfer coefficient based on the outside area of the tube K0, performance of this heat exchanger was enhanced 92% as compared with the measured performance of the conventional segmental heat exchanger. Assuming that the fouling factor is Rf = 8.6 x 10-2 m2K/kW, the former was enhanced about 23%. (2) The tube side pressure drop ΔPt = 20 kPa and the shell side pressure drop ΔPs = 70 kPa were obtained, and they were within the allowable value ΔPa = 80 kPa. The shell side pressure drop of the standard spacer could be decreased 20% as compared with that of the low pressure drop spacer. (3) The enhancement constant of heat transfer of the low pressure drop spacer with thin plate-type supports was about 1.2 times as large as that of the standard spacer. The heat exchanger with the low pressure drop spacer was about 1.6 times more compact than that using the standard spacer. (author)

  1. Zn-doped CuAlS2 transparent p-type conductive thin films deposited by pulsed plasma deposition

    International Nuclear Information System (INIS)

    CuAl0.90Zn0.10S2 thin films were deposited by pulsed plasma deposition. The dependence of structural, surface morphology, electrical, and optical properties of the films on substrate temperature was investigated. X-ray diffraction patterns reveal that the film be amorphous structure. The electrical properties are sensitive to the substrate temperature. A typical sample with conductivity of 50.9 S cm-1, carrier mobility of 3.13 cm2 V-1 s-1, carrier concentration of 1.41x1019 cm-3, and average transmission of 74% in visible range of 400-700 nm was obtained. A transparent p-CuAlS2:Zn/n-In2O3:W heterogeneous diode was also fabricated and exhibits rectifying current-voltage characteristics. The ratio of forward current to the reverse current exceeds 80 within the range of applied voltages of -3.0-+3.0 V and the turn-on voltage is approximately 0.5-0.8 V.

  2. The novel transparent sputtered p-type CuO thin films and Ag/p-CuO/n-Si Schottky diode applications

    Directory of Open Access Journals (Sweden)

    A. Tombak

    2015-01-01

    Full Text Available In the current paper, the physical properties and microelectronic parameters of direct current (DC sputtered p-type CuO film and diode have been investigated. The film of CuO as oxide and p-type semiconductor is grown onto glass and n-Si substrates by reactive DC sputtering at 250 °C. After deposition, a post-annealing procedure is applied at various temperatures in ambient. Through this research, several parameters are determined such structural, optical and electrical magnitudes. The thickness of CuO thin films goes from 122 to 254 nm. A (111-oriented cubic crystal structure is revealed by X-ray analysis. The grain size is roughly depending on the post-annealing temperature, it increases with temperature within the 144–285 nm range. The transmittance reaches 80% simultaneously in visible and infrared bands. The optical band gap is varied between 1.99 and 2.52 eV as a result of annealing temperature while the resistivity and the charge carrier mobility decrease with an increase in temperature from 135 to 14 Ω cm and 0.92 to 0.06 cm2/Vs, respectively. The surface of samples is homogenous, bright dots are visible when temperature reaches the highest value. As a diode, Ag/CuO/n-Si exhibits a non-ideal behavior and the ideality factor is about 3.5. By Norde method, the barrier height and the series resistance are extracted and found to be 0.96 V and 86.6 Ω respectively.

  3. A self-running standing wave-type bidirectional slider for the ultrasonically levitated thin linear stage.

    Science.gov (United States)

    Koyama, Daisuke; Takei, Hiroyuki; Nakamura, Kentaro; Ueha, Sadayuki

    2008-08-01

    A slider for a self-running standing wave-type, ultrasonically levitated, thin linear stage is discussed. The slider can be levitated and moved using acoustic radiation force and acoustic streaming. The slider has a simple configuration and consists of an aluminum vibrating plate and a piezoelectric zirconate titanate (PZT) element. The large asymmetric vibration distribution for the high thrust and levitation performance was obtained by adjusting the configuration determined by finite elemental analysis (FEA). As a preliminary step, the computed results of the sound pressure distribution in the 1-mm air gap by FEA was com pared with experimental results obtained using a fiber optic probe. The direction of the total driving force for the acoustic streaming in the small air gap was estimated by the sound pressure distribution calculated by FEA, and it was found that the direction of the acoustic streaming could be altered by controlling the vibration mode of the slider. The flexural standing wave could be generated along the vibrating plate near the frequencies predicted based on the FEA results. The slider could be levitated by the acoustic radiation force radiated from its own vibrating plate at several frequencies. The slider could be moved in the negative and positive directions at 68 kHz and 69 kHz, which correspond to the results computed by FEA, with the asymmetric vibration distribution of the slider's vibrating plate. Larger thrust could be obtained with the smaller levitation distance, and the maximum thrust was 19 mN. PMID:18986924

  4. The Optimum Fabrication Condition of p-Type Antimony Tin Oxide Thin Films Prepared by DC Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Huu Phuc Dang

    2016-01-01

    Full Text Available Transparent Sb-doped tin oxide (ATO thin films were fabricated on quartz glass substrates via a mixed (SnO2 + Sb2O3 ceramic target using direct current (DC magnetron sputtering in ambient Ar gas at a working pressure of 2 × 10−3 torr. X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, Hall-effect, and UV-vis spectra measurements were performed to characterize the deposited films. The substrate temperature of the films was investigated in two ways: (1 films were annealed in Ar ambient gas after being deposited at room temperature or (2 they were deposited directly at different temperatures. The first process for fabricating the ATO films was found to be easier than the second process. The deposited films showed p-type electrical properties, a polycrystalline tetragonal rutile structure, and their average transmittance was greater than 80% in the visible light range at the optimum annealing temperature of 500°C. The best electrical properties of the film were obtained on a 10 wt% Sb2O3-doped SnO2 target with a resistivity, hole concentration, and Hall mobility of 0.55 Ω·cm, 1.2 × 1019 cm−3, and 0.54 cm2V−1s−1, respectively.

  5. Recent progress in high performance and reliable n-type transition metal oxide-based thin film transistors

    International Nuclear Information System (INIS)

    This review gives an overview of the recent progress in vacuum-based n-type transition metal oxide (TMO) thin film transistors (TFTs). Several excellent review papers regarding metal oxide TFTs in terms of fundamental electron structure, device process and reliability have been published. In particular, the required field-effect mobility of TMO TFTs has been increasing rapidly to meet the demands of the ultra-high-resolution, large panel size and three dimensional visual effects as a megatrend of flat panel displays, such as liquid crystal displays, organic light emitting diodes and flexible displays. In this regard, the effects of the TMO composition on the performance of the resulting oxide TFTs has been reviewed, and classified into binary, ternary and quaternary composition systems. In addition, the new strategic approaches including zinc oxynitride materials, double channel structures, and composite structures have been proposed recently, and were not covered in detail in previous review papers. Special attention is given to the advanced device architecture of TMO TFTs, such as back-channel-etch and self-aligned coplanar structure, which is a key technology because of their advantages including low cost fabrication, high driving speed and unwanted visual artifact-free high quality imaging. The integration process and related issues, such as etching, post treatment, low ohmic contact and Cu interconnection, required for realizing these advanced architectures are also discussed. (invited review)

  6. An assessment of Raman spectroscopy to detect iodine deposited on thin oxide films formed on Type 316 stainless steel

    International Nuclear Information System (INIS)

    Iodine-131 is one of the most important volatile fission product elements with respect to radiobiological impact, and the characterisation of its chemical state and distribution on reactor surfaces is required for reactor safety assessments. To this end, duplicate samples of Type 316 (17%Cr/12%Ni) stainless steel oxidised in Co2/CH3I gas mixtures and previously characterised using X-ray photoelectron spectroscopy have been examined using Raman spectroscopy. The aim is to improve our understanding of the way in which iodine is distributed throughout the oxide scale and to identify its chemical state. In this report we present Raman spectra recorded from a series of stainless steel specimens together with spectra recorded from a number of standard iodine compounds. It is demonstrated that the technique is well suited as a fingerprint method of species identification, can differentiate between the chemical state of iodine as iodide and iodate and can analyse thin oxide films (5-50 nm). Identification of iodine deposits in these oxide films at concentrations of ≤1 At% was not achieved however, there being insufficient iodine present to distinguish any peaks present from the background signal. It is concluded that local concentrations of iodine in oxide inclusions of different composition/morphology on the steel surface does not occur to any extent. (author)

  7. Role of Grain Boundaries in the Coercivity of Magnetic Thin Films Investigated by a Two-Dimensional Ginzburg-Landau-Type Model

    Science.gov (United States)

    Iwano, Kaoru; Mitsumata, Chiharu; Ono, Kanta

    2016-07-01

    We investigate a two-dimensional Ginzburg-Landau-type model, with focus on grain boundaries that are prevalent in magnetic thin films with perpendicular magnetic anisotropy. The model covers four basic interactions, which are exchange, anisotropic, external, and dipole-dipole interactions, and describes magnetic thin films. Through numerical simulations for square grains, we find that there is a minimum grain-grain distance beyond which the interactions effectively vanish. Furthermore, we also find that magnetic reversals occur at the corners of grains and confirm that circular grains result in higher coercivity under similar packing ratio, because of the absence of corners.

  8. Antibacterial and barrier properties of oriented polymer films with ZnO thin films applied with atomic layer deposition at low temperatures

    International Nuclear Information System (INIS)

    Concerns on food safety, and need for high quality and extended shelf-life of packaged foods have promoted the development of antibacterial barrier packaging materials. Few articles have been available dealing with the barrier or antimicrobial properties of zinc oxide thin films deposited at low temperature with atomic layer deposition (ALD) onto commercial polymer films typically used for packaging purposes. The purpose of this paper was to study the properties of ZnO thin films compared to those of aluminum oxide. It was also possible to deposit ZnO thin films onto oriented polylactic acid and polypropylene films at relatively low temperatures using ozone instead of water as an oxidizing precursor for diethylzinc. Replacing water with ozone changed both the structure and the chemical composition of films deposited on silicon wafers. ZnO films deposited with ozone contained large grains covered and separated probably by a more amorphous and uniform layer. These thin films were also assumed to contain zinc salts of carboxylic acids. The barrier properties of a 25 nm ZnO thin film deposited with ozone at 100 °C were quite close to those obtained earlier with ALD Al2O3 of similar apparent thickness on similar polymer films. ZnO thin films deposited at low temperature indicated migration of antibacterial agent, while direct contact between ZnO and Al2O3 thin films and bacteria promoted antibacterial activity. - Highlights: • Thin films were grown from diethylzinc also with ozone instead of water at 70 and 100 °C. • ZnO films deposited with diethylzinc and ozone had different structures and chemistries. • Best barrier properties obtained with zinc oxide films close to those obtained with Al2O3 • Ozone as oxygen source provided better barrier properties at 100 °C than water. • Both aluminum and zinc oxide thin films showed antimicrobial activity against E. coli

  9. Optical and electrical properties of p-type AgInSn xS2-x (x = 0-0.04) thin films prepared by spray pyrolysis

    International Nuclear Information System (INIS)

    AgInSn xS2-x (x = 0-0.2) polycrystalline thin films were prepared by the spray pyrolysis technique. The samples were deposited on glass substrates at temperatures of 375 and 400 deg. C from alcoholic solutions comprising silver acetate, indium chloride, thiourea and tin chloride. All deposited films crystallized in the chalcopyrite structure of AgInS2. A p-type conductivity was detected in the Sn-doped samples deposited at 375 deg. C, otherwise they are n-type. The optical properties of AgInSn xS2-x (x 2. Low-temperature PL measurements revealed that Sn occupying an S-site could be the responsible defect for the p-type conductivity observed in AgInSn xS2-x (x < 2) thin films

  10. Comparative study on the annealing types on the properties of Cu2ZnSnS4 thin films and their application to solar cells

    Science.gov (United States)

    Hong, Chang Woo; Shin, Seung Wook; Gurav, K. V.; Vanalakar, S. A.; Yeo, Soo Jung; Yang, Han Seung; Yun, Jae Ho; Kim, Jin Hyeok

    2015-04-01

    Comparative studies on the properties of Cu2ZnSnS4 (CZTS) thin films and performance of CZTS thin film solar cells (TFSCs) prepared by different sulfurization types such as commerical furnace (CF) and rapid thermal annealing (RTA) systems have been investigated. The CZTS thin film prepared using CF showed the dense microstructure with many voids and secondary phases, while that prepared using RTA showed the dense microstructure without void and with some secondary phases. The RTA annealed CZTS TFSC have shown better performance than that prepared using CF. The best performance of CZTS TFSC using RTA was 1.9% efficiency (Voc: 505 mV, Jsc: 7.5 mA/cm2 and FF: 50.2%).

  11. P-type indium oxide thin film for the hole-transporting layer of organic solar cells

    International Nuclear Information System (INIS)

    Efficient organic solar cells (OSCs) based on regioregular of poly (3-hexylthiophene): fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester composites have been fabricated on fluorine-doped tin oxide coated glass substrates by using a sputtered indium oxide film as a hole-transporting layer (HTL). Optimized parameters for p-type In2O3 layer fabrication have been obtained through In2O3 layer sputtering temperature modulation. Based on this HTL, photovoltaic devices have been fabricated, and a power conversion efficiency up to 1.32% has been achieved. With the help of X-ray photoelectron spectroscopy and Hall-effect measurements, we conclude that the formation of In(OH)3/InOOH on the surface of In2O3 film could increase the electrical resistivity of films and affect the performance of OSC further. - Highlights: ► The p-type In2O3 films were fabricated using the magnetron sputtering method. ► The p-type In2O3 films have been applied to the hole-transporting layer. ► The formation of In(OH)3/InOOH affects the performance of organic solar cells.

  12. Removable Thin Films used for the Abatement and Mitigation of Beryllium

    International Nuclear Information System (INIS)

    The use of removable thin films for the abatement of hazardous particulates has many advantages. Removable thin films are designed to trap and fix particulates in the film's matrix by adhesion. Thin films can be applied to an existing contaminated area to fix and capture the particulates for removal. The nature of the removable thin films, after sufficient cure time, is such that it can typically be removed as one continuous entity. The removable thin films can be applied to almost any surface type with a high success rate of removal

  13. Effect of Li-doped concentration on the structure, optical and electrical properties of p-type ZnO thin films prepared by sol-gel method

    International Nuclear Information System (INIS)

    Li-doped ZnO thin films were deposited on n-type Si(1 0 0) substrates with sol-gel method. Then the deposited ones were analyzed in the X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that these films have polycrystalline wurtzite-structure and high c-axis preferred orientation. The analyses on the deposited thin films tested in the Hall measurements at room temperature show that these thin films are p-type electrical conductivity. The optimized results obtained at 15.0 at.% Li-doped concentration are 1.10 Ω cm in electrical resistivity, 10.70 cm2/V s in Hall mobility and 5.32 x 1018 cm-3 in hole concentration, respectively. The photoluminescence (PL) spectra show that these thin films have strong emission near ultraviolet (UV) and violet light. However, the defect-related deep level emission is weak in visible regions. The effects of Li-doping concentration on the structural, optical and electrical properties are discussed as well in this paper.

  14. Electrical properties and surface morphology of electron beam evaporated p-type silicon thin films on polyethylene terephthalate for solar cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Ang, P. C.; Ibrahim, K.; Pakhuruddin, M. Z. [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, Minden 11800 Penang (Malaysia)

    2015-04-24

    One way to realize low-cost thin film silicon (Si) solar cells fabrication is by depositing the films with high-deposition rate and manufacturing-compatible electron beam (e-beam) evaporation onto inexpensive foreign substrates such as glass or plastic. Most of the ongoing research is reported on e-beam evaporation of Si films on glass substrates to make polycrystalline solar cells but works combining both e-beam evaporation and plastic substrates are still scarce in the literature. This paper studies electrical properties and surface morphology of 1 µm electron beam evaporated Al-doped p-type silicon thin films on textured polyethylene terephthalate (PET) substrate for application as an absorber layer in solar cells. In this work, Si thin films with different doping concentrations (including an undoped reference) are prepared by e-beam evaporation. Energy dispersion X-ray (EDX) showed that the Si films are uniformly doped by Al dopant atoms. With increased Al/Si ratio, doping concentration increased while both resistivity and carrier mobility of the films showed opposite relationships. Root mean square (RMS) surface roughness increased. Overall, the Al-doped Si film with Al/Si ratio of 2% (doping concentration = 1.57×10{sup 16} atoms/cm{sup 3}) has been found to provide the optimum properties of a p-type absorber layer for fabrication of thin film Si solar cells on PET substrate.

  15. Modeling of the Partial Discharge Process in a Liquid Dielectric: Effect of Applied Voltage, Gap Distance, and Electrode Type

    Directory of Open Access Journals (Sweden)

    Tao Yuan

    2013-02-01

    Full Text Available The partial discharge (PD process in liquid dielectrics is influenced by several factors. Although the PD current contains the information representing the discharge process during the PD event, it is difficult to determine the detailed dynamics of what is happening in the bulk of the liquid. In this paper, a microscopic model describing the dynamics of the charge carriers is implemented. The model consists of drift-diffusion equations of electrons, positive and negative ions coupled with Poisson’s equation. The stochastic feature of PD events is included in the equation. First the model is validated through comparison between the calculated PD current and experimental data. Then experiments are conducted to study the effects of the amplitude of the applied voltage, gap distance and electrode type on the PD process. The PD currents under each condition are recorded. Simulations based on the model have been conducted to analyze the dynamics of the PD events under each condition, and thus explain the mechanism of how these factors influence the PD events. The space charge generated in the PD process is revealed as the main reason affecting the microscopic process of the PD events.

  16. Planning the City Logistics Terminal Location by Applying the Green p-Median Model and Type-2 Neurofuzzy Network.

    Science.gov (United States)

    Pamučar, Dragan; Vasin, Ljubislav; Atanasković, Predrag; Miličić, Milica

    2016-01-01

    The paper herein presents green p-median problem (GMP) which uses the adaptive type-2 neural network for the processing of environmental and sociological parameters including costs of logistics operators and demonstrates the influence of these parameters on planning the location for the city logistics terminal (CLT) within the discrete network. CLT shows direct effects on increment of traffic volume especially in urban areas, which further results in negative environmental effects such as air pollution and noise as well as increased number of urban populations suffering from bronchitis, asthma, and similar respiratory infections. By applying the green p-median model (GMM), negative effects on environment and health in urban areas caused by delivery vehicles may be reduced to minimum. This model creates real possibilities for making the proper investment decisions so as profitable investments may be realized in the field of transport infrastructure. The paper herein also includes testing of GMM in real conditions on four CLT locations in Belgrade City zone. PMID:27195005

  17. Planning the City Logistics Terminal Location by Applying the Green p-Median Model and Type-2 Neurofuzzy Network

    Directory of Open Access Journals (Sweden)

    Dragan Pamučar

    2016-01-01

    Full Text Available The paper herein presents green p-median problem (GMP which uses the adaptive type-2 neural network for the processing of environmental and sociological parameters including costs of logistics operators and demonstrates the influence of these parameters on planning the location for the city logistics terminal (CLT within the discrete network. CLT shows direct effects on increment of traffic volume especially in urban areas, which further results in negative environmental effects such as air pollution and noise as well as increased number of urban populations suffering from bronchitis, asthma, and similar respiratory infections. By applying the green p-median model (GMM, negative effects on environment and health in urban areas caused by delivery vehicles may be reduced to minimum. This model creates real possibilities for making the proper investment decisions so as profitable investments may be realized in the field of transport infrastructure. The paper herein also includes testing of GMM in real conditions on four CLT locations in Belgrade City zone.

  18. Planning the City Logistics Terminal Location by Applying the Green p-Median Model and Type-2 Neurofuzzy Network

    Science.gov (United States)

    Pamučar, Dragan; Vasin, Ljubislav; Atanasković, Predrag; Miličić, Milica

    2016-01-01

    The paper herein presents green p-median problem (GMP) which uses the adaptive type-2 neural network for the processing of environmental and sociological parameters including costs of logistics operators and demonstrates the influence of these parameters on planning the location for the city logistics terminal (CLT) within the discrete network. CLT shows direct effects on increment of traffic volume especially in urban areas, which further results in negative environmental effects such as air pollution and noise as well as increased number of urban populations suffering from bronchitis, asthma, and similar respiratory infections. By applying the green p-median model (GMM), negative effects on environment and health in urban areas caused by delivery vehicles may be reduced to minimum. This model creates real possibilities for making the proper investment decisions so as profitable investments may be realized in the field of transport infrastructure. The paper herein also includes testing of GMM in real conditions on four CLT locations in Belgrade City zone. PMID:27195005

  19. Mapping Plant Functional Types over Broad Mountainous Regions: A Hierarchical Soft Time-Space Classification Applied to the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Danlu Cai

    2014-04-01

    Full Text Available Research on global climate change requires plant functional type (PFT products. Although several PFT mapping procedures for remote sensing imagery are being used, none of them appears to be specifically designed to map and evaluate PFTs over broad mountainous areas which are highly relevant regions to identify and analyze the response of natural ecosystems. We present a methodology for generating soft classifications of PFTs from remotely sensed time series that are based on a hierarchical strategy by integrating time varying integrated NDVI and phenological information with topography: (i Temporal variability: a Fourier transform of a vegetation index (MODIS NDVI, 2006 to 2010. (ii Spatial partitioning: a primary image segmentation based on a small number of thresholds applied to the Fourier amplitude. (iii Classification by a supervised soft classification step is based on a normalized distance metric constructed from a subset of Fourier coefficients and complimentary altitude data from a digital elevation model. Applicability and effectiveness is tested for the eastern Tibetan Plateau. A classification nomenclature is determined from temporally stable pixels in the MCD12Q1 time series. Overall accuracy statistics of the resulting classification reveal a gain of about 7% from 64.4% compared to 57.7% by the MODIS PFT products.

  20. Thin films of Type 1 collagen for cell by cell analysis of morphology and tenascin-C promoter activity

    OpenAIRE

    Tona Alex; McDaniel Dennis; Elliott John T; Langenbach Kurt J; Plant Anne L

    2006-01-01

    Abstract Background The use of highly reproducible and spatiallyhomogeneous thin film matrices permits automated microscopy and quantitative determination of the response of hundreds of cells in a population. Using thin films of extracellular matrix proteins, we have quantified, on a cell-by-cell basis, phenotypic parameters of cells on different extracellular matrices. We have quantitatively examined the relationship between fibroblast morphology and activation of the promoter for the extrac...

  1. Metal dissolution and maximum stress during SCC process of ferritic (type 430) and austenitic (type 304 and type 316) stainless steels in acidic chloride solutions under constant applied stress

    International Nuclear Information System (INIS)

    By using a constant load method and inductive coupled plasma (ICP) spectrometer, the metal dissolution and maximum stress (σmair) of type 430 ferritic stainless, and type 304 and type 316 austenitic stainless steels during stress corrosion cracking (SCC) process were investigated under a constant applied stress condition in 0.82 kmol/m3 hydrochloric acid (HCl) and 0.82 kmol/m3 acidic chloride (pH 1.0) solutions. The σmair of the specimens interrupted at various elongations up to failure under the same constant applied stress condition was measured at room temperature and air atmosphere by using an Instron type tensile machine. The metal dissolution behaviour of the stainless steels changed at the transition time (tss) in the corrosion elongation curve; that is, the dissolution rate before tss was larger than that after tss. The σmair decreased gradually with increasing elongation, but showed a rapid small reduction at tss and then decreased with elongation with a sudden reduction around fracture. The results obtained were discussed in terms of the amount of metal ions per the number of cracks, selective dissolution, reduction in cross sectional area and so on

  2. Antibacterial and barrier properties of oriented polymer films with ZnO thin films applied with atomic layer deposition at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Vähä-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Pitkänen, Marja; Salo, Erkki; Kenttä, Eija [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Tanskanen, Anne, E-mail: Anne.Tanskanen@aalto.fi [Aalto University, School of Chemical Technology, Department of Chemistry, Laboratory of Inorganic Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Sajavaara, Timo, E-mail: timo.sajavaara@jyu.fi [University of Jyväskylä, Department of Physics, P.O. Box 35, FI-40014 Jyväskylä (Finland); Putkonen, Matti; Sievänen, Jenni; Sneck, Asko; Rättö, Marjaana [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Karppinen, Maarit, E-mail: Maarit.Karppinen@aalto.fi [Aalto University, School of Chemical Technology, Department of Chemistry, Laboratory of Inorganic Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Harlin, Ali [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland)

    2014-07-01

    Concerns on food safety, and need for high quality and extended shelf-life of packaged foods have promoted the development of antibacterial barrier packaging materials. Few articles have been available dealing with the barrier or antimicrobial properties of zinc oxide thin films deposited at low temperature with atomic layer deposition (ALD) onto commercial polymer films typically used for packaging purposes. The purpose of this paper was to study the properties of ZnO thin films compared to those of aluminum oxide. It was also possible to deposit ZnO thin films onto oriented polylactic acid and polypropylene films at relatively low temperatures using ozone instead of water as an oxidizing precursor for diethylzinc. Replacing water with ozone changed both the structure and the chemical composition of films deposited on silicon wafers. ZnO films deposited with ozone contained large grains covered and separated probably by a more amorphous and uniform layer. These thin films were also assumed to contain zinc salts of carboxylic acids. The barrier properties of a 25 nm ZnO thin film deposited with ozone at 100 °C were quite close to those obtained earlier with ALD Al{sub 2}O{sub 3} of similar apparent thickness on similar polymer films. ZnO thin films deposited at low temperature indicated migration of antibacterial agent, while direct contact between ZnO and Al{sub 2}O{sub 3} thin films and bacteria promoted antibacterial activity. - Highlights: • Thin films were grown from diethylzinc also with ozone instead of water at 70 and 100 °C. • ZnO films deposited with diethylzinc and ozone had different structures and chemistries. • Best barrier properties obtained with zinc oxide films close to those obtained with Al{sub 2}O{sub 3} • Ozone as oxygen source provided better barrier properties at 100 °C than water. • Both aluminum and zinc oxide thin films showed antimicrobial activity against E. coli.

  3. Nickel content effect on the microstructural, optical and electrical properties of p-type Mn{sub 3}O{sub 4} sprayed thin films

    Energy Technology Data Exchange (ETDEWEB)

    Larbi, T.; Haj Lakhdar, M.; Amara, A. [Unité de physique des dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Ouni, B., E-mail: Bachir.ouni@laposte.net [Unité de physique des dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Boukhachem, A. [Unité de physique des dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Mater, A. [Laboratoire de Physique des Matériaux, Faculte des Sciences de Bizerte, Carthage University (Tunisia); Amlouk, M. [Unité de physique des dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia)

    2015-03-25

    Highlights: • Proposing a simple technique for synthesizing Ni-doped Mn{sub 3}O{sub 4} thin films. • Outlining the complete correlation of several referred characterization means. • All samples exhibit p-type behavior at room temperature. • Improvement of electrical conductivity and transparency through Ni doping was observed. • Possibly use of these thin films as transparent p-type electrode. - Abstract: Nickel doped Mn{sub 3}O{sub 4} thin films have been prepared by the spray pyrolysis method on glass substrates at 350 °C. X-ray diffraction and Raman spectroscopy studies revealed that all deposited films were polycrystalline with tetragonal husmannite Mn{sub 3}O{sub 4} structure. From the reflectance and transmittance optical measurements, it is found that the direct band gap energy exhibits a red shift from 2.23 to 1.87 eV with Ni doping. On the other hand, the Hall measurements show that all films exhibit p-type conductivity and this character is reinforced when Ni content increases. Moreover, AC conductivity measurements lead to a power low (σ{sub AC} = Aω{sup s}). The dependence of both σ{sub AC} and s with temperature and frequency agrees well with the CBH model as suggested by Elliott.

  4. Magneto-optical study of the intermediate state in type-I superconductors: Effects of sample shape and applied current

    Energy Technology Data Exchange (ETDEWEB)

    Hoberg, Jacob Ray [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    The magnetic flux structures in the intermediate state of bulk, pinning-free Type-I superconductors are studied using a high resolution magneto-optical imaging technique. Unlike most previous studies, this work focuses on the pattern formation of the coexisting normal and superconducting phases in the intermediate state. The influence of various parameters such as sample shape, structure defects (pinning) and applied current are discussed in relation to two distinct topologies: flux tubes (closed topology) and laminar (open topology). Imaging and magnetization measurements performed on samples of different shapes (cones, hemispheres and slabs), show that contrary to previous beliefs, the tubular structure is the equilibrium topology, but it is unstable toward defects and flux motion. Moreover, the application of current into a sample with the geometric barrier can replace an established laminar structure with flux tubes. At very high currents, however, there exists a laminar 'stripe pattern.' Quantitative analysis of the mean tube diameter is shown to be in good agreement with the prediction proposed by Goren and Tinkham. This is the first time that this model has been confirmed experimentally. Further research into the flux tube phase shows a direct correlation with the current loop model proposed in the 1990's by Goldstein, Jackson and Dorsey. There also appears a range of flux tube density that results in a suprafroth structure, a well-formed polygonal mesh, which behaves according to the physics of foams, following standard statistical laws such as von Neumann and Lewis. The reaction of flux structures to a fast-ramped magnetic field was also studied. This provided an alignment of the structure not normally observed at slow ramp rates.

  5. Magneto-optical study of the intermediate state in type-I superconductors: Effects of sample shape and applied current

    International Nuclear Information System (INIS)

    The magnetic flux structures in the intermediate state of bulk, pinning-free Type-I superconductors are studied using a high resolution magneto-optical imaging technique. Unlike most previous studies, this work focuses on the pattern formation of the coexisting normal and superconducting phases in the intermediate state. The influence of various parameters such as sample shape, structure defects (pinning) and applied current are discussed in relation to two distinct topologies: flux tubes (closed topology) and laminar (open topology). Imaging and magnetization measurements performed on samples of different shapes (cones, hemispheres and slabs), show that contrary to previous beliefs, the tubular structure is the equilibrium topology, but it is unstable toward defects and flux motion. Moreover, the application of current into a sample with the geometric barrier can replace an established laminar structure with flux tubes. At very high currents, however, there exists a laminar 'stripe pattern.' Quantitative analysis of the mean tube diameter is shown to be in good agreement with the prediction proposed by Goren and Tinkham. This is the first time that this model has been confirmed experimentally. Further research into the flux tube phase shows a direct correlation with the current loop model proposed in the 1990's by Goldstein, Jackson and Dorsey. There also appears a range of flux tube density that results in a suprafroth structure, a well-formed polygonal mesh, which behaves according to the physics of foams, following standard statistical laws such as von Neumann and Lewis. The reaction of flux structures to a fast-ramped magnetic field was also studied. This provided an alignment of the structure not normally observed at slow ramp rates.

  6. CuS p- type thin film characterization deposited on Ti, ITO and glass substrates using spray pyrolysis deposition (SPD) for light emitting diode (LED) application

    Science.gov (United States)

    Sabah, Fayroz A.; Ahmed, Naser M.; Hassan, Z.; Rasheed, Hiba S.; Azzez, Shrook A.; Al-Hazim, Nabeel Z.

    2016-07-01

    The copper sulphide (CuS) thin films were grown with good adhesion by spray pyrolysis deposition (SPD) on Ti, ITO and glass substrates at 200 °C. The distance between nozzle and substrate is 30 cm. The composition was prepared by mixing copper chloride CuCl2.2H2O as a source of Cu2+ and sodium thiosulfate Na2S2O3.5H2O as a source of and S2-. Two concentrations (0.2 and 0.4 M) were used for each CuCl2 and Na2S2O3 to be prepared and then sprayed (20 ml). The process was started by spraying the solution for 3 seconds and after 10 seconds the cycle was repeated until the solution was sprayed completely on the hot substrates. The structural characteristics were studied using X-ray diffraction; they showed covellite CuS hexagonal crystal structure for 0.2 M concentration, and covellite CuS hexagonal crystal structure with two small peaks of chalcocite Cu2S hexagonal crystal structure for 0.4 M concentration. Also the surface and electrical characteristics were investigated using Field Emission Scanning Electron Microscopy (FESEM) and current source device, respectively. The surface study for the CuS thin films showed nanorods to be established for 0.2 M concentration and mix of nanorods and nanoplates for 0.4 M concentration. The electrical study showed ohmic behavior and low resistivity for these films. Hall Effect was measured for these thin films, it showed that all samples of CuS are p- type thin films and ensured that the resistivity for thin films of 0.2 M concentration was lower than that of 0.4 M concentration; and for the two concentrations CuS thin film deposited on ITO had the lowest resistivity. This leads to the result that the conductivity was high for CuS thin film deposited on ITO substrate, and the conductivity of the three thin films of 0.2 M concentration was higher than that of 0.4 M concentration.

  7. Epitaxial thin-film growth of Ruddlesden-Popper-type Ba3Zr2O7 from a BaZrO3 target by pulsed laser deposition

    Science.gov (United States)

    Butt, Shariqa Hassan; Rafique, M. S.; Siraj, K.; Latif, A.; Afzal, Amina; Awan, M. S.; Bashir, Shazia; Iqbal, Nida

    2016-07-01

    Ruddlesden-Popper Ba3Zr2O7 thin films have been synthesized via pulsed laser deposition (PLD) technique. The optimization of deposition parameters in PLD enables the formation of thin film of metastable Ba3Zr2O7 phase from BaZrO3 target. In order to see the post-annealing effects on the structural and optical properties, the deposited Ba3Zr2O7 thin films were annealed at 500, 600 and 800 °C. X-ray diffraction (XRD) reveals the formation of Ba3Zr2O7 phase with tetragonal structure. The changes in the surface of the deposited films were analysed by FE-SEM and AFM. The thin film post-annealed at 500 °C exhibited the best structural, optical and surface properties. Furthermore, the chemical states and chemical composition of the films were determined by X-ray photoelectron spectroscopy (XPS) near the surface. The XPS results show that Ba, Zr and O exist mainly in the form of Ba3Zr2O7 Ruddlesden-Popper-type perovskite structure.

  8. ESD robustness concern and optimization for high-voltage p-type LDMOS transistor with thin gate oxide used as the output driver

    International Nuclear Information System (INIS)

    The p-type lateral double-diffused MOS (pLDMOS) transistor with thin gate oxide has significant advantages when being used as a high side output driver in high-voltage ICs (HVICs), because it usually possesses larger current density compared with a device with thick gate oxide. However, in order to reduce the chip size, many HVICs do not have specialized output electrostatic discharge (ESD) protection cells, so the pLDMOS device is operated both as the output driver and the ESD protection structure. In this work, we have found that the ESD robustness of the pLDMOS with thin gate oxide is poor. As a result, this device is risky for those area-efficient HVICs. To solve the contradiction, the inner mechanism of the poor ESD robustness for the pLDMOS with thin gate oxide has been investigated. Moreover, an improved method, by adjusting the overlap length between the special p-well and the source p+ implantation region, has been presented. The experimental results show that the ESD robustness of the improved pLDMOS with thin gate oxide has been obviously increased, while the large current density can be also maintained. (paper)

  9. Nanotemplated lead telluride thin films

    OpenAIRE

    Li, Xiaohong; Nandhakumar, Iris S.; Attard, George S.; Markham, Matthew L.; Smith, David C.; Baumberg, Jeremy J.

    2009-01-01

    Direct lyotropic liquid crystalline templating has been successfully applied to produce nanostructured IV–VI semiconductor PbTe thin films by electrodeposition both on gold and n-type (100) silicon substrates. The PbTe films were characterized by transmission electron microscopy, X-ray diffraction and polarized optical microscopy and the results show that the films have a regular hexagonal nanoarchitecture with a high crystalline rock salt structure and exhibit strong birefringenc...

  10. Residual and intentional n-type doping of ZnO thin films grown by metal-organic vapor phase epitaxy on sapphire and ZnO substrates

    Science.gov (United States)

    Brochen, Stéphane; Lafossas, Matthieu; Robin, Ivan-Christophe; Ferret, Pierre; Gemain, Frédérique; Pernot, Julien; Feuillet, Guy

    2014-03-01

    ZnO epilayers usually exhibit high n-type residual doping which is one of the reasons behind the difficulties to dope this material p-type. In this work, we aimed at determining the nature of the involved impurities and their potential role as dopant in ZnO thin films grown by metalorganic vapor phase epitaxy (MOVPE) on sapphire and ZnO substrates. In both cases, secondary ion mass spectroscopy (SIMS) measurements give evidence for a strong diffusion of impurities from the substrate to the epilayer, especially for silicon and aluminum. In the case of samples grown on sapphire substrates, aluminum follows Fick's diffusion law on a wide growth temperature range (800-1000°C). Thus, the saturation solubility and the diffusion coefficient of aluminum in ZnO single crystals have been determined. Furthermore, the comparison between SIMS impurity and effective dopant concentrations determined by capacitance-voltage measurements highlights, on one hand a substitutional mechanism for aluminum diffusion, and on the other hand that silicon acts as a donor in ZnO and not as an amphoteric impurity. In addition, photoluminescence spectra exhibit excitonic recombinations at the same energy for aluminum and silicon, indicating that silicon behaves as an hydrogenic donor in ZnO. Based on these experimental observations, ZnO thin films with a controlled n-type doping in the 1016-1019cm-3 range have been carried out. These results show that MOVPE growth is fully compatible with the achievement of highly Al-doped n-type thin films, but also with the growth of materials with low residual doping, which is a crucial parameter to address ZnO p-type doping issues.

  11. Magnetization curves for thin films of layered type-II superconductors, Kolmogorov-Arnold-Moser theory, and the devil's staircase

    International Nuclear Information System (INIS)

    Magnetization curves for a thin-layered superconducting film in parallel magnetic field have been shown to become devil's staircases provided the superconducting layers are perpendicular to the film plane. The transition from an incomplete to a complete devil's staircase with decreasing temperature is predicted. A chain of vortices is described by the generalized Frenkel-Kontorova model

  12. Discharge amplified photo-emission from ultra-thin films applied to tuning work function of transparent electrodes in organic opto-electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Gentle, A.R. [Physics and Advanced Materials, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007 Australia (Australia); Smith, G.B., E-mail: g.smith@uts.edu.au [Physics and Advanced Materials, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007 Australia (Australia); Watkins, S.E. [CSIRO Materials Science and Engineering, Clayton South, Victoria 3169 (Australia)

    2013-11-15

    A novel photoemission technique utilising localised discharge amplification of photo-yield is reported. It enables fast, accurate measurement of work function and ionisation potential for ultra-thin buffer layers vacuum deposited onto single and multilayer transparent conducting electrodes for organic solar cells and OLED's. Work function in most traditional transparent electrodes has to be raised to maximise charge transfer while high transmittance and high conductance must be retained. Results are presented for a range of metal oxide buffers, which achieve this goal. This compact photo-yield spectroscopy tool with its fast turn-around has been a valuable development aid since ionisation potential can vary significantly as deposition conditions change slightly, and as ultra-thin films grow. It has also been useful in tracking the impact of different post deposition cleaning treatments along with some storage and transport protocols, which can adversely reduce ionisation potential and hence subsequent device performance.

  13. Discharge amplified photo-emission from ultra-thin films applied to tuning work function of transparent electrodes in organic opto-electronic devices

    International Nuclear Information System (INIS)

    A novel photoemission technique utilising localised discharge amplification of photo-yield is reported. It enables fast, accurate measurement of work function and ionisation potential for ultra-thin buffer layers vacuum deposited onto single and multilayer transparent conducting electrodes for organic solar cells and OLED's. Work function in most traditional transparent electrodes has to be raised to maximise charge transfer while high transmittance and high conductance must be retained. Results are presented for a range of metal oxide buffers, which achieve this goal. This compact photo-yield spectroscopy tool with its fast turn-around has been a valuable development aid since ionisation potential can vary significantly as deposition conditions change slightly, and as ultra-thin films grow. It has also been useful in tracking the impact of different post deposition cleaning treatments along with some storage and transport protocols, which can adversely reduce ionisation potential and hence subsequent device performance.

  14. High Performance Bottom-Gate-Type Amorphous InGaZnO Flexible Transparent Thin-Film Transistors Deposited on PET Substrates at Low Temperature

    Science.gov (United States)

    Lee, Hsin-Ying; Ye, Wan-Yi; Lin, Yung-Hao; Lou, Li-Ren; Lee, Ching-Ting

    2014-01-01

    The InGaZnO channel layer of bottom-gate-type flexible transparent thin-film transistors was deposited on polyethylene terephthalate substrates using a magnetron radio frequency cosputter system with a single InGaZnO target. The composition of the InGaZnO channel layer was controlled by sputtering at various Ar/O2 gas ratios. A 15-nm-thick SiO y insulator film was used to passivate the InGaZnO channel layer. Much better performances of the passivated devices were obtained, which verified the passivation function. To study the bending stability of the resulting flexible transparent thin-film transistors, a stress test with a bending radius of 1.17 cm for 1,500 s was carried out, which showed a variation in the effective filed-effect mobility and the threshold voltage of the unpassivated and passivated devices being maintained within 10 and 8%, respectively.

  15. Mixed-phase p-type silicon oxide containing silicon nanocrystals and its role in thin-film silicon solar cells

    Science.gov (United States)

    Cuony, P.; Marending, M.; Alexander, D. T. L.; Boccard, M.; Bugnon, G.; Despeisse, M.; Ballif, C.

    2010-11-01

    Lower absorption, lower refractive index, and tunable resistance are three advantages of amorphous silicon oxide containing nanocrystalline silicon grains (nc-SiOx) compared to microcrystalline silicon (μc-Si), when used as a p-type layer in μc-Si thin-film solar cells. We show that p-nc-SiOx with its particular nanostructure increases μc-Si cell efficiency by reducing reflection and parasitic absorption losses depending on the roughness of the front electrode. Furthermore, we demonstrate that the p-nc-SiOx reduces the detrimental effects of the roughness on the electrical characteristics, and significantly increases μc-Si and Micromorph cell efficiency on substrates until now considered too rough for thin-film silicon solar cells.

  16. Hydrogen plasma treatment of very thin p-type nanocrystalline Si films grown by RF-PECVD in the presence of B(CH33

    Directory of Open Access Journals (Sweden)

    Sergej Alexandrovich Filonovich, Hugo Águas, Tito Busani, António Vicente, Andreia Araújo, Diana Gaspar, Marcia Vilarigues, Joaquim Leitão, Elvira Fortunato and Rodrigo Martins

    2012-01-01

    Full Text Available We have characterized the structure and electrical properties of p-type nanocrystalline silicon films prepared by radio-frequency plasma-enhanced chemical vapor deposition and explored optimization methods of such layers for potential applications in thin-film solar cells. Particular attention was paid to the characterization of very thin (~20 nm films. The cross-sectional morphology of the layers was studied by fitting the ellipsometry spectra using a multilayer model. The results suggest that the crystallization process in a high-pressure growth regime is mostly realized through a subsurface mechanism in the absence of the incubation layer at the substrate-film interface. Hydrogen plasma treatment of a 22-nm-thick film improved its electrical properties (conductivity increased more than ten times owing to hydrogen insertion and Si structure rearrangements throughout the entire thickness of the film.

  17. Synthesis of TiN/a-Si3N4 thin film by using a Mather type dense plasma focus system

    Institute of Scientific and Technical Information of China (English)

    T.Hussain; R.Ahmad; N.Khalid; Z.A.Umar; A.Hussnain

    2013-01-01

    A 2.3 kJ Mather type pulsed plasma focus device was used for the synthesis of a TiN/a-Si3N4 thin film at room temperature.The film was characterized using X-ray diffraction (XRD),X-ray photoelectron spectroscopy (XPS),scanning electron microscopy (SEM),and atomic force microscopy (AFM).The XRD pattern confirms the growth of polycrystalline TiN thin film.The XPS results indicate that the synthesized film is non-stoichiometric and contains titanium nitride,silicon nitride,and a phase of silicon oxy-nitride.The SEM and AFM results reveal that the surface of the synthesized film is quite smooth with 0.59 nm roughness (root-mean-square).

  18. Applying microCT and 3D visualization to Jurassic silicified conifer seed cones: A virtual advantage over thin-sectioning 1

    OpenAIRE

    Gee, Carole T

    2013-01-01

    • Premise of the study: As an alternative to conventional thin-sectioning, which destroys fossil material, high-resolution X-ray computed tomography (also called microtomography or microCT) integrated with scientific visualization, three-dimensional (3D) image segmentation, size analysis, and computer animation is explored as a nondestructive method of imaging the internal anatomy of 150-million-year-old conifer seed cones from the Late Jurassic Morrison Formation, USA, and of recent and othe...

  19. Thin films of Type 1 collagen for cell by cell analysis of morphology and tenascin-C promoter activity

    Directory of Open Access Journals (Sweden)

    Tona Alex

    2006-03-01

    Full Text Available Abstract Background The use of highly reproducible and spatiallyhomogeneous thin film matrices permits automated microscopy and quantitative determination of the response of hundreds of cells in a population. Using thin films of extracellular matrix proteins, we have quantified, on a cell-by-cell basis, phenotypic parameters of cells on different extracellular matrices. We have quantitatively examined the relationship between fibroblast morphology and activation of the promoter for the extracellular matrix protein tenascin-C using a tenascin-C promoter-based GFP reporter construct. Results We find that when considering the average response from the population of cells, cell area correlates with tenascin-C promoter activity as has been previously suggested; however cell-by-cell analysis suggests that cell area and promoter activity are not tightly correlated within individual cells. Conclusion This study demonstrates how quantitative cell-by-cell analysis, facilitated by the use of thin films of extracellular matrix proteins, can provide insight into the relationship between phenotypic parameters.

  20. Methods of the professional-applied physical preparation of students of higher educational establishments of economic type

    Directory of Open Access Journals (Sweden)

    Maliar E.I.

    2010-11-01

    Full Text Available Is considered the directions of professionally-applied physical preparation of students with the prevailing use of facilities of football. Are presented the methods of professionally-applied physical preparation of students. It is indicated that application of method of the circular training is rendered by an assistance development of discipline, honesty, honesty, rational use of time. Underline, that in teaching it is necessary to provide a short cut to mastering of the planned knowledge, abilities and skills, improvement of physical qualities.

  1. Ring exciting thin layer method applied to the forced vibration test of the Hualien large scale soil-structure interactions (SSI) model

    International Nuclear Information System (INIS)

    The blind prediction and post-test correlation analyses are conducted on the forced vibration tests of the 1/4 scale reinforced concrete cylindrical containment model both before and after backfill. In the present paper described for the case after backfill, the ring exciting thin layer technique was introduced to account realistically for the axisymmetrical irregularity of the soil condition due to the backfill. The computed results demonstrated that the proposed method has a great potential for simulating the dynamic responses of the soil-structure system to the forced vibration. (author). 5 refs., 8 figs

  2. Preparation of La-modified PbTiO3 thin films on the oxide buffer layers with NaCl-type structure

    Science.gov (United States)

    Fujii, Satoru; Tomozawa, Atsushi; Fujii, Eiji; Torii, Hideo; Takayama, Ryoichi; Hirao, Takashi

    1994-09-01

    La-modified PbTiO3(PLT: Pb0.9La0.1Ti0.975O3) thin films by rf magnetron sputtering were prepared on the preferred (100)-oriented oxide buffer layers with NaCl-type structure, which were prepared by plasma-enhanced metalorganic chemical vapor deposition. Fused silica, (111)Si, soda-lime glass, and stainless steel were used as the substrates to prepare the oxide buffer layers. The c-axis and a-axis preferred oriented PLT thin films were obtained on the buffer layer, independent of the kind of substrate. Further, highly c-axis oriented PLT thin films were obtained when the substrate had a large thermal expansion coefficient. Significant pyroelectric currents were detected without a poling treatment. The NiCr/PLT/(100)Pt/(100)MgO/stainless steel structure had a dielectric constant of 250, a dielectric loss factor tan δ of 0.8%, and a pyroelectric coefficient of 3.8×10-4 C/m2 K.

  3. P-type semiconducting gas sensing behavior of nanoporous rf sputtered CaCu3Ti4O12 thin films

    International Nuclear Information System (INIS)

    The fabrication of nanoporous sputtered CaCu3Ti4O12 thin films with high gas sensitivity is reported in this work. The porous microstructure and the nanocrystalline nature of the material promoted the diffusion of the atmosphere into the film, shortening the response time of the samples. Behaving as p-type semiconductor, the material presents enhanced sensitivity even at low working temperatures. Impedance spectroscopy measurements were performed in order to investigate the mechanisms responsible for the performance of the devices

  4. Beam delivery and pulse compression to sub-50 fs of a modelocked thin disk laser in a gas-filled Kagome-type HC-PCF fiber

    OpenAIRE

    Emaury, Florian; Fourcade Dutin, Coralie; Saraceno, Clara J.; Trant, Mathis; Heckl, Olivier H; Wang, Yang Y; Schriber, Cinia; Gerome, Frederic; Südmeyer, Thomas; Benabid, Fetah; Keller, Ursula

    2014-01-01

    We present two experiments confirming that hypocycloid Kagome-type hollow-core photonic crystal fibers (HC-PCFs) are excellent candidates for beam delivery of MW peak powers and pulse compression down to the sub-50 fs regime. We demonstrate temporal pulse compression of a 1030-nm Yb:YAG thin disk laser providing 860 fs, 1.9 µJ pulses at 3.9 MHz. Using a single-pass grating pulse compressor, we obtained a pulse duration of 48 fs (FWHM), a spectral bandwidth of 58 nm, and an average output powe...

  5. Potentialities and practical limitations of absolute neutron dosimetry using thin films of uranium and thorium applied to the fission track dating

    CERN Document Server

    Bigazzi, G; Hadler-Neto, J C; Iunes, P J; Paulo, S R; Oddone, M; Osorio, A M A; Zúñiga, A G

    1999-01-01

    Neutron dosimetry using natural uranium and thorium thin films makes possible that mineral dating by the fission-track method can be accomplished, even when poor thermalized neutron facilities are employed. In this case, the contributions of the fissions of sup 2 sup 3 sup 5 U, sup 2 sup 3 sup 8 U and sup 2 sup 3 sup 2 Th induced by thermal, epithermal and fast neutrons to the population of tracks produced during irradiation are quantified through the combined use of natural uranium and thorium films. If the Th/U ratio of the sample is known, only one irradiation (where the sample and the films of uranium and thorium are present) is necessary to perform the dating. However, if that ratio is unknown, it can be determined through another irradiation where the mineral to be dated and both films are placed inside a cadmium box. Problems related with film manufacturing and calibration are discussed. Special attention is given to the utilization of thin films having very low uranium content. The problems faced sugg...

  6. Determination of electrical types in the P-doped ZnO thin films by the control of ambient gas flow

    International Nuclear Information System (INIS)

    Phosphorus (P)-doped ZnO thin films with amphoteric doping behavior were grown on c-sapphire substrates by radio frequency magnetron sputtering with various argon/oxygen gas ratios. Control of the electrical types in the P-doped ZnO films was achieved by varying the gas ratio without post-annealing. The P-doped ZnO films grown at a argon/oxygen ratio of 3/1 showed p-type conductivity with a hole concentration and hole mobility of 1.5 x 1017 cm-3 and 2.5 cm2/V s, respectively. X-ray diffraction showed that the ZnO (0 0 0 2) peak shifted to lower angle due to the positioning of P3- ions with a larger ionic radius in the O2- sites. This indicates that a p-type mechanism was due to the substitutional PO. The low-temperature photoluminescence of the p-type ZnO films showed p-type related neutral acceptor-bound exciton emission. The p-ZnO/n-Si heterojunction light emitting diode showed typical rectification behavior, which confirmed the p-type characteristics of the ZnO films in the as-deposited status, despite the deep-level related electroluminescence emission.

  7. Properties of double-layered Ga-doped Al-zinc-oxide/titanium-doped indium-tin-oxide thin films prepared by dc magnetron sputtering applied for Si-based thin film solar cells

    International Nuclear Information System (INIS)

    In this article, Ga-doped Al-zinc-oxide (GAZO)/titanium-doped indium-tin-oxide (ITIO) bi-layer films were deposited onto glass substrates by direct current (dc) magnetron sputtering. The bottom ITIO film, with a thickness of 200 nm, was sputtered onto the glass substrate. The ITIO film was post-annealed at 350 deg. C for 10-120 min as a seed layer. The effect of post-annealing conditions on the morphologies, electrical, and optical properties of ITIO films was investigated. A GAZO layer with a thickness of 1200 nm was continuously sputtered onto the ITIO bottom layer. The results show that the properties of the GAZO/ITIO films were strongly dependent on the post-annealed conditions. The spectral haze (Tdiffuse/Ttotal) of the GAZO/ITIO bi-layer films increases upon increasing the post-annealing time. The haze and resistivity of the GAZO/ITIO bi-layer films were improved with the post-annealed process. After optimizing the deposition and annealing parameters, the GAZO/ITIO bi-layer film has an average transmittance of 83.20% at the 400-800 nm wavelengths, a maximum haze of 16%, and the lowest resistivity of 1.04 x 10-3Ω cm. Finally, the GAZO/ITIO bi-layer films, as a front electrode for silicon-based thin film solar cells, obtained a maximum efficiency of 7.10%. These encouraging experimental results have potential applications in GAZO/ITIO bi-layer film deposition by in-line sputtering without the wet-etching process and enable the production of highly efficient, low-cost thin film solar cells.

  8. Resistivity transitions in applied magnetic fields in epitaxial thin films of Fe- and Zn-doped YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Epitaxial c-axis-oriented thin films of Fe- or Zn-doped YBa2Cu3O7-δ have been grown on (001) LaAlO3 substrates by pulsed excimer laser ablation. Adequate substitutional incorporation of Fe atoms required optimal choice of oxygen pressure during deposition as well as a postsynthesis annealing treatment at 550 degree C. Zn incorporation did not require such special processing conditions. The resistivity transitions for such high-quality well-characterized films were studied at different magnetic fields up to 5 T. Analysis of Tc depression and change in dHc2/dT at Tc has been made in terms of the possible changes in the density of states at the Fermi level, contributions of the exchange field, magnetization field, and nonmagnetic scattering. Estimates of the activation energy [U0(H)] for vortex motion have also been made

  9. A novel p-type and metallic dual-functional Cu-Al2O3 ultra-thin layer as the back electrode enabling high performance of thin film solar cells.

    Science.gov (United States)

    Lin, Qinxian; Su, Yantao; Zhang, Ming-Jian; Yang, Xiaoyang; Yuan, Sheng; Hu, Jiangtao; Lin, Yuan; Liang, Jun; Pan, Feng

    2016-09-14

    Increasing the open-circuit voltage (Voc) along with the fill factor (FF) is pivotal for the performance improvement of solar cells. In this work, we report the design and construction of a new structure of CdS/CdTe/Al2O3/Cu using the atomic layer deposition (ALD) method, and then we control Cu diffusion through the Al2O3 atomic layer into the CdTe layer. Surprisingly, this generates a novel p-type and metallic dual-functional Cu-Al2O3 atomic layer. Due to this dual-functional character of the Cu-Al2O3 layer, an efficiency improvement of 2% in comparison with the standard cell was observed. This novel dual-functional back contact structure could also be introduced into other thin film solar cells for their efficiency improvement. PMID:27384986

  10. Composite growth model applied to human oral and pharyngeal structures and identifying the contribution of growth types.

    Science.gov (United States)

    Wang, Yuan; Chung, Moo K; Vorperian, Houri K

    2013-11-13

    The growth patterns of different anatomic structures in the human body vary in terms of growth amount over time, growth rate and growth periods. The oral and pharyngeal structures, also known as vocal tract structures, are housed in the craniofacial complex where the cranium/brain follows a distinct neural growth pattern, and the face follows a distinct somatic or skeletal growth pattern. Thus, it is reasonable to expect the oral and pharyngeal structures to follow a combined or mixed growth pattern. Existing parametric growth models are limited in that they are mainly focused on modeling one particular type of growth pattern. In this paper, we propose a novel composite growth model using neural and somatic baseline curves to fit the combined growth pattern of select vocal tract structures. The method can also determine the overall percent contribution of each of the growth types. PMID:24226094

  11. A cluster randomised pragmatic trial applying Self-determination theory to type 2 diabetes care in general practice

    DEFF Research Database (Denmark)

    Juul, Lise; Maindal, Helle T; Zoffmann, Vibeke;

    2011-01-01

    BACKGROUND: Treatment recommendations for prevention of type 2 diabetes complications often require radical and life-long health behaviour changes. Observational studies based on Self-determination theory (SDT) propose substantial factors for the maintenance of behaviour changes and concomitant......, and well-being among a diabetes population, 2) the actual intervention to a level of detail that allows its replication, and 3) the connection between SDT recommendations for health care-provider behaviour and the content of the training course. METHODS/DESIGN: The study is a cluster...... intervention will be assessed on the diabetes populations with regard to well-being (PAID, SF-12), HbA1c- and cholesterol-levels, perceived autonomy support (HCCQ), type of motivation (TSRQ), and perceived competence for diabetes care (PCD) 15-21 months after the core course; the completion of the second...

  12. Chemical bath deposition of photosensitive CdS and CdSe thin films and their conversion to n-type for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Nair, M.T.S.; Nair, P.K. [Univ. Nacional Autonoma de Mexico, Morelos (Mexico). Lab. de Energia Solar; Zingaro, R.A.; Meyers, E.A. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemistry

    1995-12-31

    Methods for preparing good quality CdS and CdSe thin films of 0.1--0.7 {micro}m thickness from solutions at 24--50 C containing citratocadmium(II) ions and thiourea (for CdS) or N,N-dimethyl selenourea (for CdSe) are presented. The as prepared CdS thin films are photosensitive showing photo- to dark-conductivity ratio (S) of > 10{sup 6} under AM-2 illumination. Annealing of these films at 400--450 C for a few minutes converts them to n-type through partial conversion of the films to non stoichiometric CdO. In the case of CdSe, such annealing improves the photosensitivity of the films from S = 10 (as prepared) to > 10{sup 7} (after annealing) under AM-2 illumination. Either film can be converted to n-type with dark conductivities of > 1 {Omega}{sup {minus}1} cm{sup {minus}1} and S = 1 to 10 under AM-2 illumination using a post deposition treatment in dilute (0.01--0.05 M) HgCl{sub 2} solution followed by heating at 200 C.

  13. Comparison of thin-section CT and pathological findings in small solid-density type pulmonary adenocarcinoma: Prognostic factors from CT findings

    International Nuclear Information System (INIS)

    Objective: We divided pulmonary adenocarcinoma of ≤20 mm into air-containing and solid-density types based on a percentage reduction of the maximum tumor diameter in the mediastinal window image compared to the area in the lung window image on thin-section (TS) CT of ≥50% (air-containing type) and <50% (solid-density type). No relapse occurred in patients with air-containing type. The prognosis of solid-density type may be poor even when the tumor size is 20 mm or smaller. We investigated whether CT findings for these tumors could serve as prognostic factors. Methods: The subjects were 105 patients with solid-density type pulmonary adenocarcinoma that was identified on TSCT and found to have a diameter of 20 mm or smaller after surgical resection during the period from April 1997 to November 2004. Notches, air bronchogram, pleural retraction, spiculation, venous involvement, and ground glass opacity were examined on TSCT, and their associations with pathological findings (i.e., pleural invasion, lymphatic permeation, vascular invasion, lymph node metastasis, and Noguchi's classification) and relapse were investigated using chi-square test and Cox proportional hazards model. Results: The incidence of relapse was significantly higher in cases with notches. The incidence of notches increased with tumor growth and notches were frequent in Noguchi type D tumors, reflecting poorly differentiated adenocarcinoma. Lymphatic permeation and type D cases were independent factors associated with a poor prognosis using Cox proportional hazards model. Conclusions: TSCT findings may be useful for prediction of the prognosis of solid-density type pulmonary adenocarcinoma.

  14. Synthesis of fibrous reticulate nanocrystalline n-type MoBi{sub 2}(Se{sub 1−x}Te{sub x}){sub 5} thin films: Thermocooling applications

    Energy Technology Data Exchange (ETDEWEB)

    Salunkhe, Manauti M.; Kharade, Rohini R.; Kharade, Suvarta D. [Materials Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416004 (India); Mali, Sawanta S.; Patil, P.S. [Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (India); Bhosale, P.N., E-mail: p_n_bhosale@rediffmail.com [Materials Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416004 (India)

    2012-11-15

    Graphical abstract: Ostwald ripening: If small nucleus is close to a larger crystal, ions formed by particle dissolution of smaller crystal incorporated into larger crystal, and film formation takes place by ion by ion condensation. Display Omitted Highlights: ► Arrested Precipitation Technique is applied to deposit MoBi{sub 2}(Se{sub 1−x}Te{sub x}){sub 5}. ► X-ray diffraction confirms the proper phase formation of material. ► MoBi{sub 2}(Se{sub 1−x}Te{sub x}){sub 5} exhibits an n-type semiconducting behavior. ► Good thermoelectric performance suggests future fantasy. -- Abstract: In the present investigation n-type MoBi{sub 2}(Se{sub 1−x}Te{sub x}){sub 5} nanocrystalline thin films with various compositions of Se and Te were successfully deposited on ultrasonically cleaned glass substrates using recently developed Arrested Precipitation Technique (APT). The effect of composition on optical, morphological, structural, electrical and thermocooling properties of MoBi{sub 2}(Se{sub 1−x}Te{sub x}){sub 5} were investigated using UV–vis–NIR Spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, X-ray diffractometer, thermoelectric power and thermocooling measurements. Thermoelectric properties including electrical conductivity (σ), Seeback coefficient (S) and figure of merit (ZT) were measured at 300 K. Our aim is to investigate thermocooling behavior in respect of variation in composition of Se and Te in MoBi{sub 2}(Se{sub 1−x}Te{sub x}){sub 5} thin films along with optostructural and optoelectric properties.

  15. The n-type conduction of indium-doped Cu2O thin films fabricated by direct current magnetron co-sputtering

    International Nuclear Information System (INIS)

    Indium-doped Cu2O thin films were fabricated on K9 glass substrates by direct current magnetron co-sputtering in an atmosphere of Ar and O2. Metallic copper and indium disks were used as the targets. X-ray diffraction showed that the diffraction peaks could only be indexed to simple cubic Cu2O, with no other phases detected. Indium atoms exist as In3+ in Cu2O. Ultraviolet-visible spectroscopy showed that the transmittance of the samples was relatively high and that indium doping increased the optical band gaps. The Hall effect measurement showed that the samples were n-type semiconductors at room temperature. The Seebeck effect test showed that the films were n-type semiconductors near or over room temperature (<400 K), changing to p-type at relatively high temperatures. The conduction by the samples in the temperature range of the n-type was due to thermal band conduction and the donor energy level was estimated to be 620.2–713.8 meV below the conduction band. The theoretical calculation showed that indium doping can raise the Fermi energy level of Cu2O and, therefore, lead to n-type conduction

  16. Studies of zinc-blende type MnAs thin films grown on InP(001) substrates by XRD

    Science.gov (United States)

    Oomae, H.; Irizawa, S.; Jinbo, Y.; Toyota, H.; Kambayashi, T.; Uchitomi, N.

    2013-09-01

    The detailed crystalline structure of molecular beam epitaxially grown MnAs thin films on InP(001) substrate has been investigated using high resolution X-ray diffraction techniques. Reciprocal space mapping of the MnAs/InP(001) samples indicates that the MnAs has a cubic zinc-blende (zb) structure with the epitaxial relationship zb-MnAs[110]|InP[110]. The lattice constant of zb-MnAs is ˜6.06 Å. The MnAs lattice is relaxed and is mosaic-like likely due to large lattice mismatch between the film and InP substrate. The isotropic nature of the magnetic properties supported our conjecture that the MnAs epitaxial film under study has indeed a cubic structure.

  17. Low-field tunnel-type magnetoresistance properties of polycrystalline and epitaxial La sub 0 sub . sub 6 sub 7 Sr sub 0 sub . sub 3 sub 3 MnO sub 3 thin films

    CERN Document Server

    Shim, I B; Choi, S Y

    2000-01-01

    The low-field tunnel-type magnetoresistance (TMB) properties of sol-gel derived polycrystalline and epitaxial La sub 0 sub . sub 6 sub 7 Sr sub 0 sub . sub 3 sub 3 MnO sub 3 (LSMO) thin films were investigated. The polycrystalline thin films were fabricated on Si (100) with a thermally oxidized SiO sub 2 layer while the epitaxial thin films were grown on LaAlO sub 3 (001) single-crystal substrates. The epitaxial thin films displayed both typical intrinsic colossal magnetoresistance (CMR) and abnormal extrinsic tunnel-type magnetoresistance behaviors. Tunnel-type MR ratio as high as 0.4% were observed in the polycrystalline thin films at a field of 120 Oe at room temperature (300 K) whereas the ratios were less than 0.1% for the epitaxial films in the same field range. The low-field tunnel-type MR of polycrystalline LSMO/SiO sub 2 ?Si (100) thin films originated from the behaviors of the grain-boundary properties.

  18. Transport properties of YBa2Cu3O7-δ thin films near the critical state with no applied magnetic field

    International Nuclear Information System (INIS)

    Transport measurements carried out on twinned YBa2Cu3O7-δ films are compared to the predictions of a previously proposed model suggesting that the vortices move along the films twin boundaries that behave as rows of Josephson weak links [P. Bernstein, J.F. Hamet, J. Appl. Phys. 95 (2004) 2569]. The obtained results suggest that, except if the films are very thin, the twin boundaries consist of superimposed rows of weak links with mean height, d-bars, whose mean length along the TBs is an universal function of T/Tc, the reduced temperature. This conclusion yields a general expression for the critical surface current density of the films as a function of T/Tc and of the number of superimposed weak links rows, while the critical current density depends on d-bars. A comparison of the measurements reported by various authors shows that the nature of the substrate and the growth technique have both a strong effect on d-bars. The existence of superimposed weak links rows is attributed to extended defects generated by Y2O3 inclusions

  19. Transport properties of YBa 2Cu 3O 7-δ thin films near the critical state with no applied magnetic field

    Science.gov (United States)

    Bernstein, P.; Hamet, J. F.; Thimont, Y.

    2008-02-01

    Transport measurements carried out on twinned YBa 2Cu 3O 7-δ films are compared to the predictions of a previously proposed model suggesting that the vortices move along the films twin boundaries that behave as rows of Josephson weak links [P. Bernstein, J.F. Hamet, J. Appl. Phys. 95 (2004) 2569]. The obtained results suggest that, except if the films are very thin, the twin boundaries consist of superimposed rows of weak links with mean height, d, whose mean length along the TBs is an universal function of T/ Tc, the reduced temperature. This conclusion yields a general expression for the critical surface current density of the films as a function of T/ Tc and of the number of superimposed weak links rows, while the critical current density depends on d. A comparison of the measurements reported by various authors shows that the nature of the substrate and the growth technique have both a strong effect on d. The existence of superimposed weak links rows is attributed to extended defects generated by Y 2O 3 inclusions.

  20. Applying Central Composite Design and Response Surface Methodology to Optimize Growth and Biomass Production of Haemophilus influenzae Type b

    Science.gov (United States)

    Momen, Seyed Bahman; Siadat, Seyed Davar; Akbari, Neda; Ranjbar, Bijan; Khajeh, Khosro

    2016-01-01

    Background Haemophilus influenzae type b (Hib) is the leading cause of bacterial meningitis, otitis media, pneumonia, cellulitis, bacteremia, and septic arthritis in infants and young children. The Hib capsule contains the major virulence factor, and is composed of polyribosyl ribitol phosphate (PRP) that can induce immune system response. Vaccines consisting of Hib capsular polysaccharide (PRP) conjugated to a carrier protein are effective in the prevention of the infections. However, due to costly processes in PRP production, these vaccines are too expensive. Objectives To enhance biomass, in this research we focused on optimizing Hib growth with respect to physical factors such as pH, temperature, and agitation by using a response surface methodology (RSM). Materials and Methods We employed a central composite design (CCD) and a response surface methodology to determine the optimum cultivation conditions for growth and biomass production of H. influenzae type b. The treatment factors investigated were initial pH, agitation, and temperature, using shaking flasks. After Hib cultivation and determination of dry biomass, analysis of experimental data was performed by the RSM-CCD. Results The model showed that temperature and pH had an interactive effect on Hib biomass production. The dry biomass produced in shaking flasks was about 5470 mg/L, which was under an initial pH of 8.5, at 250 rpm and 35° C. Conclusions We found CCD and RSM very effective in optimizing Hib culture conditions, and Hib biomass production was greatly influenced by pH and incubation temperature. Therefore, optimization of the growth factors to maximize Hib production can lead to 1) an increase in bacterial biomass and PRP productions, 2) lower vaccine prices, 3) vaccination of more susceptible populations, and 4) lower risk of Hib infections.

  1. Economic evaluation of four types of dry/wet cooling applied to the 5-MWe Raft River geothermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Bamberger, J.A.; Allemann, R.T.

    1982-07-01

    A cost study is described which compared the economics of four dry/wet cooling systems to use at the existing Raft River Geothermal Plant. The results apply only at this site and should not be generalized without due consideration of the complete geothermal cycle. These systems are: the Binary Cooling Tower, evaporative condenser, Combin-aire, and a metal fin-tube dry cooling tower with deluge augmentation. The systems were evaluated using cooled, treated geothermal fluid instead of ground or surface water in the cooling loops. All comparisons were performed on the basis of a common plant site - the Raft River 5 MWe geothermal plant in Idaho. The Binary Cooling Tower and the Combin-aire cooling system were designed assuming the use of the isobutane/water surface condenser currently installed at the Raft River Plant. The other two systems had the isobutane ducted to the evaporative condensers. Capital credit was not given to the system employing the direct condensing process. The cost of the systems were estimated from designs provided by the vendors. The levelized energy cost range for each cooling system is listed below. The levelized energy cost reflects the incremental cost of the cooling system for the life of the plant. The estimates are presented in 1981 dollars.

  2. Effect of applied potential on changes in solution chemistry inside crevices on type 304L stainless steel and Alloy 825

    International Nuclear Information System (INIS)

    The changes in the pH, chloride concentration, and potential inside a rectangular crevice of metal against polymethyl methacrylate (PMMA) are monitored using microelectrodes as a function of time and externally applied potential. It is found that the environment inside the crevice is altered within the experimental time frame only when the external potential is maintained above a certain value. When the external potential exceeds a certain value, there is an incubation period followed by a rapid increase in the current density which is succeeded by a decrease in pH and the potential inside the crevice. The current density also decreases rapidly upon reversal of the external potential, while a significant reversal of pH occurs over a much longer period of time. The kinetics of these changes in the environment is a function of crevice tightness. A decrease in crevice gap results in a greater decrease in pH. The changes in chloride concentration are much more modest, perhaps due to the formation of chloride complexes which can not be detected by the Ag/AgCl microelectrode. Presence of chromium depletion on the surface of alloy 825 in the crevice results in a more rapid decrease in pH even when the surface is rougher. These observations are explained in terms of crevice corrosion nucleation in small zones of narrow gap between the peaks of surface asperities which then propagate laterally to adjoining zones of wider gaps between the peaks and valleys of the asperities

  3. A continuous time delay-difference type model (CTDDM) applied to stock assessment of the southern Atlantic albacore Thunnus alalunga

    Science.gov (United States)

    Liao, Baochao; Liu, Qun; Zhang, Kui; Baset, Abdul; Memon, Aamir Mahmood; Memon, Khadim Hussain; Han, Yanan

    2016-09-01

    A continuous time delay-diff erence model (CTDDM) has been established that considers continuous time delays of biological processes. The southern Atlantic albacore ( Thunnus alalunga) stock is the one of the commercially important tuna population in the marine world. The age structured production model (ASPM) and the surplus production model (SPM) have already been used to assess the albacore stock. However, the ASPM requires detailed biological information and the SPM lacks the biological realism. In this study, we focus on applying a CTDDM to the southern Atlantic albacore ( T. alalunga) species, which provides an alternative method to assess this fishery. It is the first time that CTDDM has been provided for assessing the Atlantic albacore ( T. alalunga) fishery. CTDDM obtained the 80% confidence interval of MSY (maximum sustainable yield) of (21 510 t, 23 118t). The catch in 2011 (24 100 t) is higher than the MSY values and the relative fishing mortality ratio ( F 2011/ F MSY) is higher than 1.0. The results of CTDDM were analyzed to verify the proposed methodology and provide reference information for the sustainable management of the southern Atlantic albacore stock. The CTDDM treats the recruitment, the growth, and the mortality rates as all varying continuously over time and fills gaps between ASPM and SPM in this stock assessment.

  4. A continuous time delay-difference type model (CTDDM) applied to stock assessment of the southern Atlantic albacore Thunnus alalunga

    Science.gov (United States)

    Liao, Baochao; Liu, Qun; Zhang, Kui; Baset, Abdul; Memon, Aamir Mahmood; Memon, Khadim Hussain; Han, Yanan

    2016-01-01

    A continuous time delay-diff erence model (CTDDM) has been established that considers continuous time delays of biological processes. The southern Atlantic albacore (Thunnus alalunga) stock is the one of the commercially important tuna population in the marine world. The age structured production model (ASPM) and the surplus production model (SPM) have already been used to assess the albacore stock. However, the ASPM requires detailed biological information and the SPM lacks the biological realism. In this study, we focus on applying a CTDDM to the southern Atlantic albacore (T. alalunga) species, which provides an alternative method to assess this fishery. It is the first time that CTDDM has been provided for assessing the Atlantic albacore (T. alalunga) fishery. CTDDM obtained the 80% confidence interval of MSY (maximum sustainable yield) of (21 510 t, 23 118t). The catch in 2011 (24 100 t) is higher than the MSY values and the relative fishing mortality ratio (F 2011/F MSY) is higher than 1.0. The results of CTDDM were analyzed to verify the proposed methodology and provide reference information for the sustainable management of the southern Atlantic albacore stock. The CTDDM treats the recruitment, the growth, and the mortality rates as all varying continuously over time and fills gaps between ASPM and SPM in this stock assessment.

  5. Composition-induced structural, electrical, and magnetic phase transitions in AX-type mixed-valence cobalt oxynitride epitaxial thin films

    International Nuclear Information System (INIS)

    Synthesis of mid- to late-transition metal oxynitrides is generally difficult by conventional thermal ammonolysis because of thermal instability. In this letter, we synthesized epitaxial thin films of AX-type phase-pure cobalt oxynitrides (CoOxNy) by using nitrogen-plasma-assisted pulsed laser deposition and investigated their structural, electrical, and magnetic properties. The CoOxNy thin films with 0 ≤ y/(x + y) ≤ 0.63 grown on MgO (100) substrates showed a structural phase transition from rock salt (RS) to zinc blend at the nitrogen content y/(x + y) ∼ 0.5. As the nitrogen content increased, the room-temperature electrical resistivity of the CoOxNy thin films monotonically decreased from the order of 105 Ω cm to 10−4 Ω cm. Furthermore, we observed an insulator-to-metal transition at y/(x + y) ∼ 0.34 in the RS-CoOxNy phase, which has not yet been reported in Co2+/Co3+ mixed-valence cobalt oxides with octahedral coordination. The low resistivity in the RS-CoOxNy phase, on the 10−3 Ω cm order, may have originated from the intermediate spin state of Co3+ stabilized by the lowered crystal field symmetry of the CoO6−nNn octahedra (n = 1, 2,…5). Magnetization measurements suggested that a magnetic phase transition occurred in the RS-CoOxNy films during the insulator-to-metal transition. These results demonstrate that low-temperature epitaxial growth is a promising approach for exploring novel electronic functionalities in oxynitrides

  6. Measuring the structure of thin soft matter films under confinement: A surface-force type apparatus for neutron reflection, based on a flexible membrane approach

    International Nuclear Information System (INIS)

    A unique surface force type apparatus that allows the investigation of a confined thin film using neutron reflection is described. The central feature of the setup consists of a solid substrate (silicon) and a flexible polymer membrane (Melinex®). We show that inflation of the membrane against the solid surface provides close and even contact between the interfaces over a large surface area. Both heavy water and air can be completely squeezed out from between the flexible film and the solid substrate, leaving them in molecular contact. The strength of confinement is controlled by the pressure used to inflate the membrane. Dust provides a small problem for this approach as it can get trapped between membrane and substrate to prevent a small part of the membrane from making good contact with the substrate. This results in the measured neutron reflectivity containing a small component of an unwanted reflection, between 10% and 20% at low confining pressures (1 bar) and between 1% and 5% at high confining pressures (5 bar). However, we show that this extra signal does not prevent good and clear information on the structure of thin films being extracted from the neutron reflectivity. The effects of confinement are illustrated with data from a poly(vinyl pyrollidone) gel layer in water, a polyelectrolyte multilayer in water, and with data from a stack of supported lipid-bilayers swollen with D2O vapor. The data demonstrates the potential of this apparatus to provide information on the structure of thin films under confinement for a known confining pressure.

  7. Evaluation of near-surface temperature, humidity, and equivalent temperature from regional climate models applied in type II downscaling

    Science.gov (United States)

    Pryor, S. C.; Schoof, J. T.

    2016-04-01

    Atmosphere-surface interactions are important components of local and regional climates due to their key roles in dictating the surface energy balance and partitioning of energy transfer between sensible and latent heat. The degree to which regional climate models (RCMs) represent these processes with veracity is incompletely characterized, as is their ability to capture the drivers of, and magnitude of, equivalent temperature (Te). This leads to uncertainty in the simulation of near-surface temperature and humidity regimes and the extreme heat events of relevance to human health, in both the contemporary and possible future climate states. Reanalysis-nested RCM simulations are evaluated to determine the degree to which they represent the probability distributions of temperature (T), dew point temperature (Td), specific humidity (q) and Te over the central U.S., the conditional probabilities of Td|T, and the coupling of T, q, and Te to soil moisture and meridional moisture advection within the boundary layer (adv(Te)). Output from all RCMs exhibits discrepancies relative to observationally derived time series of near-surface T, q, Td, and Te, and use of a single layer for soil moisture by one of the RCMs does not appear to substantially degrade the simulations of near-surface T and q relative to RCMs that employ a four-layer soil model. Output from MM5I exhibits highest fidelity for the majority of skill metrics applied herein, and importantly most realistically simulates both the coupling of T and Td, and the expected relationships of boundary layer adv(Te) and soil moisture with near-surface T and q.

  8. Effect of applying bacterial inoculants containing different types of bacteria to corn silage on the performance of dairy cattle.

    Science.gov (United States)

    Arriola, K G; Kim, S C; Staples, C R; Adesogan, A T

    2011-08-01

    This study examined the effect of applying different bacterial inoculants to corn silage at the time of ensiling on the performance of lactating dairy cows. Corn plants were harvested at 35% dry matter (DM), chopped, and ensiled in 2.4-m-wide bags after application of (1) no inoculant (CON); (2) Biotal Plus II (B2) containing Pediococcus pentosaceus and Propionibacteria freudenreichii; (3) Buchneri 40788 (BUC) containing Lactobacillus buchneri; or (4) Buchneri 500 (B500) containing Pediococcus pentosaceus and L. buchneri. All inoculants were supplied by Lallemand Animal Nutrition (Milwaukee, WI). Each of the 4 silages was included in separate total mixed rations consisting of 44% corn silage, 50% concentrate, and 6% alfalfa hay (DM basis). Fifty-two lactating Holstein cows were stratified according to milk production and parity and randomly assigned at 22 d in milk to the 4 dietary treatments. Cows were fed for ad libitum consumption and milked twice daily for 49 d. Dietary treatment did not affect intakes (kg/d) of DM (20.0), crude protein (CP; 3.7), neutral detergent fiber (NDF; 5.7), or acid detergent fiber (ADF; 3.6), or digestibility (%) of DM (73.9) or CP (72.4). However, NDF digestibility was lower in cows fed B2 compared with those fed other diets (45.3 vs. 53.0%). Consequently, cows fed B2 had lower digestible NDF intake (kg/d) than those fed other diets (2.5 vs. 3.0 kg/d). Dietary treatment did not affect milk yield (32.3 kg/d), efficiency of milk production (1.61), concentrations of milk fat (3.18%) and protein (2.79%), or yields of milk fat (1.03 kg/d) and protein (1.26 kg/d). Inoculant application to corn silage did not affect milk yield or feed intake of cows. PMID:21787933

  9. Applying multivariate clustering techniques to health data: the 4 types of healthcare utilization in the Paris metropolitan area.

    Directory of Open Access Journals (Sweden)

    Thomas Lefèvre

    Full Text Available Cost containment policies and the need to satisfy patients' health needs and care expectations provide major challenges to healthcare systems. Identification of homogeneous groups in terms of healthcare utilisation could lead to a better understanding of how to adjust healthcare provision to society and patient needs.This study used data from the third wave of the SIRS cohort study, a representative, population-based, socio-epidemiological study set up in 2005 in the Paris metropolitan area, France. The data were analysed using a cross-sectional design. In 2010, 3000 individuals were interviewed in their homes. Non-conventional multivariate clustering techniques were used to determine homogeneous user groups in data. Multinomial models assessed a wide range of potential associations between user characteristics and their pattern of healthcare utilisation.We identified four distinct patterns of healthcare use. Patterns of consumption and the socio-demographic characteristics of users differed qualitatively and quantitatively between these four profiles. Extensive and intensive use by older, wealthier and unhealthier people contrasted with narrow and parsimonious use by younger, socially deprived people and immigrants. Rare, intermittent use by young healthy men contrasted with regular targeted use by healthy and wealthy women.The use of an original technique of massive multivariate analysis allowed us to characterise different types of healthcare users, both in terms of resource utilisation and socio-demographic variables. This method would merit replication in different populations and healthcare systems.

  10. Collapse and revival of a Dicke-type coherent narrowing in potassium vapor confined in a nanometric thin cell

    Science.gov (United States)

    Sargsyan, Armen; Pashayan-Leroy, Yevgenya; Leroy, Claude; Sarkisyan, David

    2016-04-01

    A nanometer-thin cell (in the direction of laser beam propagation) has been elaborated with the thickness of the atomic vapor column varying smoothly in the range of L=50-1500 {nm}. The cell allows one to study the behavior of the resonance absorption over the D 1 line of potassium atoms by varying the laser intensity and the cell thickness (from L=λ /2 to L=2λ with the step λ /2 where λ =770 {nm} is the resonant wavelength of the laser). It is shown that despite the huge Doppler broadening (\\gt 0.9 {GHz} at the cell temperature 170{}\\circ {{C}}), at low laser intensities a narrowing of the resonance absorption spectrum is observed for L=λ /2 (∼ 120 {MHz} at FWHM) and L=3/2λ , whereas for L=λ and L=2λ the spectrum broadens. At moderate laser intensities narrowband velocity selective optical pumping (VSOP) resonances appear at L=λ and L=2λ with the linewidth close to the natural one. A comparison with saturated absorption spectra obtained in a 1.4 cm-sized K cell is presented. The developed theoretical model well describes the experiment.

  11. Collapse and revival of a Dicke-type coherent narrowing in potassium vapor confined in a nanometric-thin cell

    CERN Document Server

    Sargsyan, A; Leroy, C; Sarkisyan, D

    2015-01-01

    A nanometer-thin-cell (in the direction of laser beam propagation) has been elaborated with the thickness of the atomic vapor column varying smoothly in the range of $L = \\unit[50-1500]{nm}$. The cell allows one to study the behavior of the resonance absorption over the $D_1$ line of potassium atoms by varying the laser intensity and the cell thickness from $L = \\lambda / 2$ to $L = 2 \\lambda$ with the step $\\lambda/2$ ($\\lambda =\\unit[770]{nm}$ is the resonant wavelength of the laser). It is shown that despite the huge Doppler broadening ($>\\unit[0.9]{GHz}$ at the cell temperature $\\unit[170]{^{\\circ}C}$), at low laser intensities a narrowing of the resonance absorption spectrum is observed for $L = \\lambda/2$ ($\\sim \\unit[120]{ MHz}$ at FWHM) and $L = 3/2 \\lambda$, whereas for $L = \\lambda$ and $L =2\\lambda$ the spectrum broadens. At moderate laser intensities narrowband velocity selective optical pumping (VSOP) resonances appear at $L = \\lambda$ and $L=2\\lambda $ with the linewidth close to the natural one...

  12. Formation of p-type ZnMgO thin films by In-N codoping method

    International Nuclear Information System (INIS)

    In-N codoped ZnMgO films have been prepared on glass substrates by direct current reactive magnetron sputtering. The p-type conduction could be obtained in ZnMgO films by adjusting the N2O partial pressures. The lowest resistivity was found to be 4.6 Ω cm for the p-type ZnMgO film deposited under an optimized N2O partial pressure of 2.3 mTorr, with a Hall mobility of 1.4 cm2/V s and a hole concentration of 9.6 x 1017 cm-3 at room temperature. The films were of good crystal quality with a high c-axis orientation of wurtzite ZnO structure. The presence of In-N bonds was identified by X-ray photoelectron spectroscopy, which may enhance the nitrogen incorporation and respond for the realization of good p-type behavior in In-N codoped ZnMgO films. Furthermore, the ZnMgO-based p-n homojunction was fabricated by deposition of an In-doped n-type ZnMgO layer on an In-N codoped p-type ZnMgO layer. The p-n homostructural diode exhibits electrical rectification behavior of a typical p-n junction.

  13. The optimization of a solar collector of the Fiat-Thin box type with a fixed reflector

    OpenAIRE

    Trung, Ha Dang; Quan, Nguyen

    2015-01-01

    A new design of solar collector has been investigated which uses a reflector of the fixed type. Both collector and mirror are of the non-tracking type, so the absorbed solar energy depends on the incident angle of the solar beam and the collector-mirror arrangement. A high water temperature and a maximum in the absorbed radiation can be reached by selecting an optimal dimension ratio for the collector and reflector. The research has shown that reasonable dimension ratio of 1.7 to 3 can result...

  14. Low temperature (< 100 °C) deposited P-type cuprous oxide thin films: Importance of controlled oxygen and deposition energy

    International Nuclear Information System (INIS)

    With the emergence of transparent electronics, there has been considerable advancement in n-type transparent semiconducting oxide (TSO) materials, such as ZnO, InGaZnO, and InSnO. Comparatively, the availability of p-type TSO materials is more scarce and the available materials are less mature. The development of p-type semiconductors is one of the key technologies needed to push transparent electronics and systems to the next frontier, particularly for implementing p–n junctions for solar cells and p-type transistors for complementary logic/circuits applications. Cuprous oxide (Cu2O) is one of the most promising candidates for p-type TSO materials. This paper reports the deposition of Cu2O thin films without substrate heating using a high deposition rate reactive sputtering technique, called high target utilisation sputtering (HiTUS). This technique allows independent control of the remote plasma density and the ion energy, thus providing finer control of the film properties and microstructure as well as reducing film stress. The effect of deposition parameters, including oxygen flow rate, plasma power and target power, on the properties of Cu2O films are reported. It is known from previously published work that the formation of pure Cu2O film is often difficult, due to the more ready formation or co-formation of cupric oxide (CuO). From our investigation, we established two key concurrent criteria needed for attaining Cu2O thin films (as opposed to CuO or mixed phase CuO/Cu2O films). First, the oxygen flow rate must be kept low to avoid over-oxidation of Cu2O to CuO and to ensure a non-oxidised/non-poisoned metallic copper target in the reactive sputtering environment. Secondly, the energy of the sputtered copper species must be kept low as higher reaction energy tends to favour the formation of CuO. The unique design of the HiTUS system enables the provision of a high density of low energy sputtered copper radicals/ions, and when combined with a controlled

  15. Effects of thin heavily Mg-doped GaN capping layer on ohmic contact formation of p-type GaN

    International Nuclear Information System (INIS)

    The growth condition of thin heavily Mg-doped GaN capping layer and its effect on ohmic contact formation of p-type GaN were investigated. It is confirmed that the excessive Mg doping can effectively enhance the Ni/Au contact to p-GaN after annealing at 550 °C. When the flow rate ratio between Mg and Ga gas sources is 6.4% and the layer width is 25 nm, the capping layer grown at 850 °C exhibits the best ohmic contact properties with respect to the specific contact resistivity (ρc). This temperature is much lower than the conventional growth temperature of Mg-doped GaN, suggesting that the deep-level-defect induced band may play an important role in the conduction of capping layer. (paper)

  16. Hysteretic dependence of magnetic flux density on primary AC current in flat-type inductive fault current limiter with YBCO thin film discs

    International Nuclear Information System (INIS)

    This paper focuses on a flat-type inductive superconducting FCL (FIS-FCL) consisting of a pancake coil and a YBCO thin layer disc. AC current injection experiments and magnetic field analysis were carried out for two kinds of FIS-FCL, single-disc model and double-discs model. In the former, the pancake coil was putted on the YBCO disc. In the latter, the pancake coil was sandwiched with two YBCO discs. The double-discs model cancels out the magnetic flux density more effectively than the single-disc model. In the double-discs model, the superconducting state period is longer than in the single-disc model. Thus, it may be concluded that the double-discs model is considered to be suitable for FIS-FCL.

  17. Scaling characteristics of depletion type, fully transparent amorphous indium-gallium-zinc-oxide thin-film transistors and inverters following Ar plasma treatment

    Science.gov (United States)

    Kim, Joonwoo; Jeong, Soon Moon; Jeong, Jaewook

    2015-11-01

    We fabricated depletion type, transparent amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) and inverters with an Ar plasma treatment and analyzed their scaling characteristics with channel lengths ranging from 2 to 100 µm. The improvement of the field-effect mobility of a-IGZO TFTs is apparent only for short channel lengths. There is also an unexpected side effect of the Ar plasma treatment, which introduces back-channel interfacial states and induces a positive shift in the threshold voltage of a-IGZO TFTs. The resulting increase in the field-effect mobility and the positive shift in the threshold voltage of each TFT increase the differential gain up to 3 times and the positive shift in the transient point of the transparent inverters.

  18. Enhancement of Spectral Response in μc-Si1-xGex:H Thin-Film Solar Cells with a-Si:H/μc-Si:H P-Type Window Layers

    Directory of Open Access Journals (Sweden)

    Yen-Tang Huang

    2015-01-01

    Full Text Available The hydrogenated amorphous silicon (a-Si:H/hydrogenated microcrystalline silicon (μc-Si:H double p-type window layer has been developed and applied for improving microcrystalline silicon-germanium p-i-n single-junction thin-film solar cells deposited on textured SnO2:F-coated glass substrates. The substrates of SnO2:F, SnO2:F/μc-Si:H(p, and SnO2:F/a-Si:H(p were exposed to H2 plasma to investigate the property change. Our results showed that capping a thin layer of a-Si:H(p on SnO2:F can minimize the Sn reduction during the deposition process which had H2-containing plasma. Optical measurement has also revealed that a-Si:H(p capped SnO2:F glass had a higher optical transmittance. When the 20 nm μc-Si:H(p layer was replaced by a 3 nm a-Si:H(p/17 nm μc-Si:H(p double window layer in the cell, the conversion efficiency (η and the short-circuit current density (JSC were increased by 16.6% and 16.4%, respectively. Compared to the standard cell with the 20 nm μc-Si:H(p window layer, an improved conversion efficiency of 6.19% can be obtained for the cell having a-Si:H(p/μc-Si:H(p window layer, with VOC = 490 mV, JSC = 19.50 mA/cm2, and FF = 64.83%.

  19. Growth of epitaxial p-type ZnO thin films by codoping of Ga and N

    International Nuclear Information System (INIS)

    Codoping of Ga and N was utilized to realize p-type conduction in ZnO films using rf magnetron sputtering. The films obtained at 550 deg. C on sapphire showed resistivity and hole concentrations of 38 Ω cm and 3.9x1017 cm-3, respectively. ZnO films also showed a p-type behavior on p-Si with better electrical properties. ZnO homojunctions synthesized by in situ deposition of Ga-N codoped p-ZnO layer on Ga doped n-ZnO layer showed clear p-n diode characteristics. Low temperature photoluminescence spectra of codoped films also revealed a dominant peak at 3.12 eV. The codoped films showed a dense columnar structure with a c-axis preferred orientation

  20. Nanoporous of W/WO{sub 3} thin film electrode grown by electrochemical anodization applied in the photoelectrocatalytic oxidation of the basic red 51 used in hair dye

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, Luciano E.; Zanoni, Maria Valnice B., E-mail: fraga@iq.unesp.b [Universidade Estadual Paulista (IQ/UNESP), Araraquara, SP (Brazil). Inst. de Quimica. Dept. de Quimica Analitica

    2011-07-01

    Self-organized W/WO{sub 3} nanoporous electrodes can be obtained by simple electrochemical anodization of W foil in 0.15 mol L{sup -1} NaF solution as the supporting electrolyte, applying a ramp potential of 0.2 V s{sup -1} until it reached 60 V, which was maintained for 2 h. The monoclinic form is majority in the highly ordered WO{sub 3} annealed at 450 deg C, obtaining a higher photoactivity when irradiated by visible light than by UV light. The electrode promotes complete discoloration of the investigated basic red 51 dye after 60 min of photoelectrocatalytic oxidation, on current density of 1.25 mA cm{sup -2} and irradiation on wavelength of 420-630 nm. In this condition it was obtained 63% of mineralization. Lower efficiency is obtained for the system irradiated by wavelength (280- 400 nm) when only 40% of total organic carbon removal is obtained and 120 min is required for complete discoloration. (author)

  1. Electrodeposition and photoelectrochemical properties of p-type BiOIαCl1-α nanoplatelet thin films

    International Nuclear Information System (INIS)

    Graphical abstract: In this paper, a series of BiOIαCl1-α solid solution electrodes were successfully prepared through a simple electrodeposition method. It is interestingly found that all prepared electrodes exhibited p-type conductivity, and the BiOIαCl1-α solid solution showed the best photoelectrochemical activity at α = 0.5 due to the balance between the level of conduction band and the light absorption ability of solid solutions. -- Highlights: •A series of BiOIαCl1-α solid solution electrode were successfully prepared through a simple electrodeposition method. •All prepared BiOIαCl1-α electrodes exhibited p-type conductivity. •The BiOIαCl1-α solid solution showed the best photoelectrochemical activity at α = 0.5. -- Abstract: In this paper, a series of BiOIαCl1-α solid solution electrodes were successfully prepared through a simple electrodeposition method. The obtained electrodes were characterized by X-ray diffraction, scanning electron microscopy, UV–vis diffuse reflectance spectroscopy and photocurrent response. We found that all prepared electrodes exhibited p-type conductivity in accordance with reports employing other deposition strategies. What's more, the BiOIαCl1-α solid solution showed the best photoelectrochemical activity at α = 0.5 due to the balance between the level of conduction band and the light absorption ability of solid solutions. Finally, wet photovoltaic cells with p-BiOI0.5Cl0.5 and n-TiO2 nanotube array electrodes were also constructed

  2. Altered 5-HT2A Receptor Binding after Recovery from Bulimia-Type Anorexia Nervosa: Relationships to Harm Avoidance and Drive for Thinness

    OpenAIRE

    Bailer, Ursula F.; Price, Julie C.; Meltzer, Carolyn C.; Mathis, Chester A.; Frank, Guido K.; Weissfeld, Lisa; McConaha, Claire W; Henry, Shannan E; Brooks-Achenbach, Sarah; Barbarich, Nicole C; Kaye, Walter H.

    2004-01-01

    Several lines of evidence suggest that a disturbance of serotonin neuronal pathways may contribute to the pathogenesis of anorexia nervosa (AN) and bulimia nervosa (BN). This study applied positron emission tomography (PET) to investigate the brain serotonin 2A (5-HT2A) receptor, which could contribute to disturbances of appetite and behavior in AN and BN. To avoid the confounding effects of malnutrition, we studied 10 women recovered from bulimia-type AN (REC AN–BN, >1 year normal weight, re...

  3. Highly-conformal p-type copper(I) oxide (Cu2O) thin films by atomic layer deposition using a fluorine-free amino-alkoxide precursor

    International Nuclear Information System (INIS)

    Highlights: • Atomic layer deposition (ALD) of Cu2O using a fluorine-free amino-alkoxide precursor. • The formation of pure and stoichiometric Cu2O thin film by ALD. • Remarkable step coverage at 25 nm trench (aspect ratio: 4.5) and 1.14-μm-high Si nanowires (aspect ratio: 7.6). • p-Type properties with a Hall mobility of 8.05 cm2/V s and optical band gap of 2.52 eV. - Abstract: A highly-conformal and stoichiometric p-type cuprous copper(I) oxide (Cu2O) thin films were grown using atomic layer deposition (ALD) by a fluorine-free amino-alkoxide Cu precursor, bis(1-dimethylamino-2-methyl-2-butoxy)copper (C14H32N2O2Cu), and water vapor (H2O). Among tested deposition temperatures ranging from 120 to 240 °C, a self-limited film growth was clearly confirmed for both precursor and reactant pulsing times at 140 °C. Between 140 and 160 °C, the process exhibited an almost constant growth rate of ∼0.013 nm/cycle and a negligible number of incubation cycles (approximately 6 cycles). The Cu2O films deposited at the optimal temperature (e.g. 140 °C) showed better properties in view of their crystallinity and roughness compared to the films deposited at higher temperatures. Rutherford backscattering spectrometry showed that the film deposited at 140 °C was almost stoichiometric (a ratio of Cu and O ∼2: 1.1) with negligible C and N impurities. X-ray photoelectron spectroscopy further revealed that Cu and O in the film mostly formed Cu2O bonding rather than CuO bonding. Plan-view transmission electron microscopy analysis showed formation of densely packed crystal grains with a cubic crystal structure of cuprous Cu2O. The step coverage of ALD-Cu2O film was remarkable, approximately 100%, over 1.14-μm-high Si nanowires with an aspect ratio (AR) of 7.6:1 and onto nano-trenches (top opening width: 25 nm) with an AR of 4.5:1. Spectroscopic ellipsometry was employed to determine optical constants, giving optical direct band gap of 2.52 eV. Finally, Hall measurement

  4. Composition-induced structural, electrical, and magnetic phase transitions in AX-type mixed-valence cobalt oxynitride epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Jumpei; Oka, Daichi [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu, Kawasaki 213-0012 (Japan); Hirose, Yasushi, E-mail: hirose@chem.s.u-tokyo.ac.jp; Yang, Chang; Fukumura, Tomoteru; Hasegawa, Tetsuya [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Nakao, Shoichiro [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Harayama, Isao; Sekiba, Daiichiro [University of Tsukuba Tandem Accelerator Complex (UTTAC), 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577 (Japan)

    2015-12-07

    Synthesis of mid- to late-transition metal oxynitrides is generally difficult by conventional thermal ammonolysis because of thermal instability. In this letter, we synthesized epitaxial thin films of AX-type phase-pure cobalt oxynitrides (CoO{sub x}N{sub y}) by using nitrogen-plasma-assisted pulsed laser deposition and investigated their structural, electrical, and magnetic properties. The CoO{sub x}N{sub y} thin films with 0 ≤ y/(x + y) ≤ 0.63 grown on MgO (100) substrates showed a structural phase transition from rock salt (RS) to zinc blend at the nitrogen content y/(x + y) ∼ 0.5. As the nitrogen content increased, the room-temperature electrical resistivity of the CoO{sub x}N{sub y} thin films monotonically decreased from the order of 10{sup 5} Ω cm to 10{sup −4} Ω cm. Furthermore, we observed an insulator-to-metal transition at y/(x + y) ∼ 0.34 in the RS-CoO{sub x}N{sub y} phase, which has not yet been reported in Co{sup 2+}/Co{sup 3+} mixed-valence cobalt oxides with octahedral coordination. The low resistivity in the RS-CoO{sub x}N{sub y} phase, on the 10{sup −3} Ω cm order, may have originated from the intermediate spin state of Co{sup 3+} stabilized by the lowered crystal field symmetry of the CoO{sub 6−n}N{sub n} octahedra (n = 1, 2,…5). Magnetization measurements suggested that a magnetic phase transition occurred in the RS-CoO{sub x}N{sub y} films during the insulator-to-metal transition. These results demonstrate that low-temperature epitaxial growth is a promising approach for exploring novel electronic functionalities in oxynitrides.

  5. Hot-wire chemical vapor deposition and characterization of p-type nanocrystalline Si films for thin film photovoltaic applications

    International Nuclear Information System (INIS)

    P-type nanocrystalline Si (p-nc-Si) films were deposited by hot-wire chemical vapor deposition (HWCVD) system using SiH4, B2H6, and H2 as reactants. The effect of H2 flow rate on the material properties of p-nc-Si films were investigated using Raman spectroscopy, X-ray diffractormeter, ultraviolet–visible-near infrared spectrophotometer, Fourier transform infrared spectroscopy, field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). Moreover, the electrical properties, such as carrier concentration, activation energy, dark conductivity, and Hall mobility, of p-nc-Si films were also measured. It was found that H2 flow rate played an important role in forming of p-nc-Si, decreasing the deposition rate, and increasing the crystallinity of p-nc-Si films. FESEM and TEM micrographs also showed the enhancement of crystallinity with adding H2 flow rate. Furthermore, the change of microstructure at various H2 flow rates was found to affect the electrical properties of p-nc-Si films. Details of the growth mechanism in p-nc-Si films will be discussed also. Moreover, the optimum p-nc-Si film was used as window layer in n-type crystalline Si heterojunction (HJ) solar cell. After the deposition parameters were optimized, the Si HJ solar cell with the open-circuit voltage of 0.58 V, short-circuit current density of 33.46 mA/cm2, fill factor of 64.44%, and the conversion efficiency of 12.5% could be obtained. - Highlights: ► p-nc-Si films prepared by hot-wire chemical vapor deposition. ► H2 flow rate had an important role in decreasing the deposition rate of p-nc-Si films. ► H2 flow rate had an important role in increasing the crystallinity of p-nc-Si films. ► Change of microstructure found to affect the electrical properties of p-nc-Si films. ► A simple Si heterojunction solar cell with a conversion efficiency of 12.5 % was achieved.

  6. Optical characterization of magnetron sputtered p-type ZnO thin films codoped with Ga and As

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jang-Ho; Seo, Ho-Yeon; Lee, Byung-Teak [Department of Materials Science and Engineering, Photonic and Electronic Thin Film Laboratory, Chonnam National University, Gwangju (Korea, Republic of); Jeong, Sang-Hun [Gwangju Center, Korea Basic Science Institute, Gwangju (Korea, Republic of)

    2012-02-15

    ZnO films codoped with Ga and As were characterized in detail. It was observed by I-V measurement that the films maintain p-type characteristics even when the Ga/As ratio is as high as 9. Low-temperature photoluminescence spectra revealed emissions at 3.36, 3.35, 3.30, and 3.22 eV, which were assigned to the D X, the A X, the two-electron-satellite D X, and the DAP transition, respectively. A PL peak also appeared at 3.34 eV in the case of Zn{sub 0.96}Ga{sub 0.03}As{sub 0.01}O and Zn{sub 0.90}Ga{sub 0.09}As{sub 0.01}O films. X-ray photoelectron spectroscopy indicated formation of Ga-As bonds with increasing Ga concentration, suggesting that the 3.34 eV peak is related to the Ga-As bonds. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Suitability of thin-layer chromatography-flame ionization detection with regard to quantitative characterization of different fossil fuel products. II. Calibration methods concerning quantitative hydrocarbon-group type analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vela, J.; Membrado, L.; Cebolla, V.L.; Ferrando, A.C. [CSIC, Zaragoza (Spain). Inst. de Carboquimica, Dept. de Procesos Quimicos

    1998-10-01

    Time-consuming external standard-based calibration methods are usually performed for hydrocarbon group type analysis (HGTA) of fossil fuels, regardless of the instrumental chromatographic technique. HGTA of a broad variety of coal and petroleum products was performed using a modern thin-layer chromatography-flame ionization detection (TLC-FID) system and a rapid method based on internal normalization. Repeatability, linear intervals, and sample load ranges for quantitative application of this method are given, namely a heavy oil and its derived hydrocracked products, raw and chemically-modified petroleum asphaltenes, a coal-tar pitch, several coal extracts, and coal hydroliquefaction products. Results from external standard calibration and a normalization method (both obtained by TLC-FID) are in agreement, and they are validated using TLC-ultraviolet scanning. The use of the latter demonstrates that TLC-FID can also be applied to products such as coal extracts and hydroliquefaction products, despite these products being more volatile than petroleum asphaltenes or heavy oils. 14 refs., 3 figs., 5 tabs.

  8. Optical and Electrical Effects of p-type μc-SiOx:H in Thin-Film Silicon Solar Cells on Various Front Textures

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2014-01-01

    Full Text Available p-type hydrogenated microcrystalline silicon oxide (µc-SiOx:H was developed and implemented as a contact layer in hydrogenated amorphous silicon (a-Si:H single junction solar cells. Higher transparency, sufficient electrical conductivity, low ohmic contact to sputtered ZnO:Al, and tunable refractive index make p-type µc-SiOx:H a promising alternative to the commonly used p-type hydrogenated microcrystalline silicon (µc-Si:H contact layers. In this work, p-type µc-SiOx:H layers were fabricated with a conductivity of up to 10−2 S/cm and a Raman crystallinity of above 60%. Furthermore, we present p-type µc-SiOx:H films with a broad range of optical properties (2.1 eV < band gap E04<2.8 eV and 1.6 < refractive index n<2.6. These properties can be tuned by adapting deposition parameters, for example, the CO2/SiH4 deposition gas ratio. A conversion efficiency improvement of a-Si:H solar cells is achieved by applying p-type µc-SiOx:H contact layer compared to the standard p-type µc-Si:H contact layer. As another aspect, the influence of the front side texture on a-Si:H p-i-n solar cells with different p-type contact layers, µc-Si:H and µc-SiOx:H, is investigated. Furthermore, we discuss the correlation between the decrease of Voc and the cell surface area derived from AFM measurements.

  9. Study on 3-dimensional base isolation system applying to new type power plant reactor: part 2 (hydraulic 3-dimensional base-isolation system)

    International Nuclear Information System (INIS)

    Three dimensional (3D) seismic isolation devices have been developed to use for the base isolation system of the heavy building like a nuclear reactor building. The developed seismic isolation system is composed of rolling seal type air springs and the hydraulic type springs with rocking suppression system for vertical base isolation device. In horizontal direction, the same laminated rubber bearings are used as horizontal isolation device for these systems. The performances and the applicability have already been evaluated by the technical feasibility tests and performance tests for each system. In this study, it was evaluated that the performance of the 3D base isolation system with rolling seal type air springs combined with hydraulic rocking suppression devices. In this paper, the results of performance tests for hydraulic rocking suppression system will be reported. A 1/7 scaled model of the 3D base isolation devices were manufactured and some performance test were executed for each device. For the hydraulic rocking suppression system, forced dynamic loading test was carried out in order to measure the frictional and oil flow resistance force on each cylinder. And the vibration table tests were carried out with supported weight of 228 MN in order to evaluate and to confirm the horizontal and vertical isolation performance, rocking suppression performance, and the applicability of the this seismic isolation system as the combined system. 4 rolling seal type air springs and 4 hydraulic load-carrying cylinders with rocking suppression devices supported the weight. As a result, the proposed system was verified that it could be applied to the actual nuclear power plant building to be target. (authors)

  10. Reliability in Short-Channel p-Type Polycrystalline Silicon Thin-Film Transistor under High Gate and Drain Bias Stress

    Science.gov (United States)

    Sung-Hwan Choi,; Sun-Jae Kim,; Yeon-Gon Mo,; Hye-Dong Kim,; Min-Koo Han,

    2010-03-01

    We have investigated the electrical characteristics of short-channel p-type excimer laser annealed (ELA) polycrystalline silicon (poly-Si) thin-film transistors (TFTs) under high gate and drain bias stress. We found that the threshold voltage of short-channel TFTs was significantly shifted in the negative direction owing to high gate and drain bias stress (Δ VTH = -2.08 V), whereas that of long-channel TFTs was rarely shifted in the negative direction (Δ VTH = -0.10 V). This negative shift of threshold voltage in the short-channel TFT may be attributed to interface state generation near the source junction and deep trap state creation near the drain junction between the poly-Si film and the gate insulator layer. It was also found that the gate-to-drain capacitance (CGD) characteristic of the stressed TFT severely stretched for the gate voltage below the flat band voltage VFB. The effects of high gate and drain bias stress are related to hot-hole-induced donor like interface state generation. The transfer characteristics of the forward and reverse modes after the high gate and drain bias stress also indicate that the interface state generation at the gate insulator/channel interface occurred near the source junction region.

  11. Relating Charge Transport, Contact Properties, and Recombination to Open-Circuit Voltage in Sandwich-Type Thin-Film Solar Cells

    Science.gov (United States)

    Sandberg, Oskar J.; Sundqvist, Anton; Nyman, Mathias; Österbacka, Ronald

    2016-04-01

    To avoid surface recombination at the contacts and ensure efficient charge collection and high open-circuit voltages (VOC) in organic bulk heterojunction and perovskite solar cells, selective contacts with optimized energy levels are needed. However, a detailed theoretical understanding of how the device performance is affected by surface recombination at the contacts is still lacking. In this work, the influence of surface recombination on the open-circuit voltage in sandwich-type solar cells, with optically thin active layers, is clarified using numerical simulations. Furthermore, analytical expressions are derived, directly relating VOC to relevant device parameters, such as surface recombination velocity (Sp), mobility, and active layer thickness. At large Sp, the surface recombination is determined by diffusion-limited transport in the bulk. By reducing Sp, thus increasing the charge selectivity of the electrode, the surface recombination is eventually reduced as the transport becomes limited by interface kinetics at the contact. Depending on the interplay between surface recombination and bulk recombination, and the properties of the contacts, different operating regimes are identified featuring different light ideality factors and thickness dependences.

  12. Beam delivery and pulse compression to sub-50 fs of a modelocked thin-disk laser in a gas-filled Kagome-type HC-PCF fiber.

    Science.gov (United States)

    Emaury, Florian; Dutin, Coralie Fourcade; Saraceno, Clara J; Trant, Mathis; Heckl, Oliver H; Wang, Yang Y; Schriber, Cinia; Gerome, Frederic; Südmeyer, Thomas; Benabid, Fetah; Keller, Ursula

    2013-02-25

    We present two experiments confirming that hypocycloid Kagome-type hollow-core photonic crystal fibers (HC-PCFs) are excellent candidates for beam delivery of MW peak powers and pulse compression down to the sub-50 fs regime. We demonstrate temporal pulse compression of a 1030-nm Yb:YAG thin disk laser providing 860 fs, 1.9 µJ pulses at 3.9 MHz. Using a single-pass grating pulse compressor, we obtained a pulse duration of 48 fs (FWHM), a spectral bandwidth of 58 nm, and an average output power of 4.2 W with an overall power efficiency into the final polarized compressed pulse of 56%. The pulse energy was 1.1 µJ. This corresponds to a peak power of more than 10 MW and a compression factor of 18 taking into account the exact temporal pulse profile measured with a SHG FROG. The compressed pulses were close to the transform limit of 44 fs. Moreover, we present transmission of up to 97 µJ pulses at 10.5 ps through 10-cm long fiber, corresponding to more than twice the critical peak power for self-focusing in silica. PMID:23482031

  13. Artificial intelligence applied to fuel management in BWR type reactors; Inteligencia artificial aplicada a la administracion de combustible en reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz S, J.J

    1998-10-01

    In this work two techniques of artificial intelligence, neural networks and genetic algorithms were applied to a practical problem of nuclear fuel management; the determination of the optimal fuel reload for a BWR type reactor. This is an important problem in the design of the operation cycle of the reactor. As a result of the application of these techniques, comparable or even better reloads proposals than those given by expert companies in the subject were obtained. Additionally, two other simpler problems in reactor physics were solved: the determination of the axial power profile and the prediction of the value of some variables of interest at the end of the operation cycle of the reactor. Neural networks and genetic algorithms have been applied to solve many problems of engineering because of their versatility but they have been rarely used in the area of fuel management. The results obtained in this thesis indicates the convenience of undertaking further work on this area and suggest the application of these techniques of artificial intelligence to the solution of other problems in nuclear reactor physics. (Author)

  14. Reduction in anisotropy of mechanical properties of coilable (α+β)-type titanium alloy thin sheet through simple heat treatment for use in next-generation aircraft applications

    International Nuclear Information System (INIS)

    In order to reduce the anisotropy of mechanical properties of a coilable thin sheet of (α+β)-type titanium alloy, Ti–4.5Al–2Mo–1.6V–0.5Fe–0.3Si–0.03C (Ti9), for use in aircraft applications, duplex heat treatments were examined. In each duplex heat treatment, the first heat treatment controls the volume fraction of the primary α phase and orientation of the acicular α phase in (α+β) two-phase area between the primary α grains, whereas the second heat treatment stabilizes the α and β phases. The microstructure of the Ti9 sheet after the duplex heat treatment was analyzed by optical microscopy, pole-figure measurement through X-ray diffraction, and electron backscatter diffraction. The mechanical properties of the duplex heat-treated Ti9 sheet were evaluated by tensile tests. The Ti9 sheet was heat treated to obtain two different types of microstructures. A microstructure consisting of acicular α phase in the β grains was obtained by a first heat treatment above the β transus (1273 K) followed by water quenching and a second heat treatment at 973 K. A microstructure consisting of equiaxed primary α grains and an (acicular α+β) two-phase area between the primary α grains was obtained by heating below the β transus (1123–1223 K) followed by water quenching and a second heat treatment at 973 K. The volume fraction of the primary α grains decreased and the volume fraction of the acicular α phase with 12 variants increased instead of increasing first heat-treatment temperature, suppressing the alignment of the c axis of the α lattice parallel to the transverse direction within the rolling plane (T-texture formation) as a result. Anisotropy of the tensile properties can be decreased by increasing the first heat-treatment temperature because the T texture was decreased

  15. Applying seminar-type teaching mode to practical forensic curriculum%研讨式教学在法医实践教学中的应用

    Institute of Scientific and Technical Information of China (English)

    张越; 陈阳; 余结根; 李朝品

    2012-01-01

    Objective: To verify the feasibility of applying seminar-type teaching mode to practical forensic curriculum. Methods: The undergraduates enrolled in 2005,2007 and 2008 were included and randomized into groups of experiment candidates ( seminar-type teaching mode ) and controls ( traditional teaching methods). Both groups were given the course on basis of criminal cases associated with criminal investigation planning, practice and formulating the judicial identification report for comparing the outcomes regarding theory examination, ability of innovative design, performance and judicial practice. Results: The students in experimental group worked better than their counterparts did ( P 0. 05 ) . Comprehensive assessment of the results suggested that students benefited a lot from seminary-type teaching mode. Conclusion: Seminar-type teaching mode involved in criminal case investigation is of great value to improve the performance of students majoring in forensic science.%目的:探讨在法医学实践教学中运用研讨式教学的可行性.方法:以2005级、2007级、2008级三届法医学本科学生为研究对象,随机分入研讨式实践教学组(实验组)、传统实验教学组(对照组),以刑事案例为内容,综合法医各学科的实验方案设计、实验操作考试、司法鉴定报告、专业理论考试方式,综合评定学生创新设计能力、动手操作能力、司法实践能力,分析比较两组教学效果.结果:除笔试部分成绩差异不明显外(P>0.05),实验组学生其余各项指标均明显高于对照组(P<0.01),综合评定结果显示,研讨式实践教学效果较好.结论:结合具体司法案例的研讨式实践教学模式,在法医学教学改革中具有重要价值.

  16. Quantitative determination of seven chemical constituents and chemo-type differentiation of chamomiles using high-performance thin-layer chromatography

    Science.gov (United States)

    Matricaria recutita L. (German Chamomile), Anthemis nobilis L. (Roman Chamomile) and Chrysanthemum morifolium Ramat are commonly used chamomiles. High performance thin layer chromatographic (HPTLC) method was developed for estimation of six flavonoids (rutin, luteolin-7-O-ß-glucoside, chamaemeloside...

  17. Thin film superconductor magnetic bearings

    Science.gov (United States)

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  18. Simultaneous Detection of Three Phosphodiesterase Type 5 Inhibitors and Eight of Their Analogs in Lifestyle Products and Screening for Adulterants by High-Performance Thin-Layer Chromatography.

    Science.gov (United States)

    Do, Tiên T K; Theocharis, Grigorios; Reich, Eike

    2015-01-01

    An HPTLC method is proposed to permit effective screening for the presence of three phosphodiesterase type 5 inhibitors (PDE5-Is; sildenafil, vardenafil, and tadalafil) and eight of their analogs (hydroxyacetildenafil, homosildenafil, thiohomosildenafil, acetildenafil, acetaminotadalafil, propoxyphenyl hydroxyhomosildenafil, hydroxyhomosildenafil, and hydroxythiohomosildenafil) in finished products, including tablets, capsules, chocolate, instant coffee, syrup, and chewing gum. For all the finished products, the same simple sample preparation may be applied: ultrasound-assisted extraction in 10 mL methanol for 30 min followed by centrifugation. The Rf values of individual HPTLC bands afford preliminary identification of potential PDE5-Is. Scanning densitometry capabilities enable comparison of the unknown UV spectra with those of known standard compounds and allow further structural insight. Mass spectrometric analysis of the material derived from individual zones supplies an additional degree of confidence. Significantly, the proposed screening technique allows focus on the already known PDE5 Is and provides a platform for isolation and chemical categorization of the newly-synthesized analogs. Furthermore, the scope could be expanded to other therapeutic categories (e.g., analgesics, antidiabetics, and anorexiants) that are occasionally coadulterated along with the PDE5-Is. The method was successfully applied to screening of 45 commercial lifestyle products. Of those, 31 products tested positive for at least one illegal component (sildenafil, tadalafil, propoxyphenyl hydroxyhomosildenafil, or dimethylsildenafil). PMID:26525240

  19. Optical, morphological properties and surface energy of the transparent Li4Ti5O12 (LTO) thin film as anode material for secondary type batteries

    Science.gov (United States)

    Özen, Soner; Şenay, Volkan; Pat, Suat; Korkmaz, Şadan

    2016-03-01

    LTO thin film was deposited for the first time on a glass microscope slide (MS) by RF magnetron sputtering technology. This method has been suitable for preparation of high-quality thin films. The surface properties of the produced film were determined by atomic force microscope (AFM). The surface of the produced film appeared smooth and homogeneous. LTO coated on MS had compact structure and low roughness. A UV-vis spectrophotometer was used to determine intensity of light passing through the samples. Thus, according to the results obtained the produced film was highly transparent. The refractive index of the LTO thin film was presented in a low MSE value by spectroscopic ellipsometry (SE) and it was about 1.5. The optical band gap (E g) was determined by the Tauc method. The produced LTO thin film exhibited a wide band gap semiconductor property with a band gap energy of about 2.95 eV. Finally, the surface free energy of the LTO thin film was calculated from the contact angle measurements using the Lewis acid-base, OWRK/Fowkes, Wu and Zisman methods.

  20. Effect of local wall thinning on the collapse behavior of pipe elbows subjected to a combined internal pressure and in-plane bending load

    International Nuclear Information System (INIS)

    The objective of this study was to investigate the effect of local wall thinning on the collapse behavior of pipe elbows subjected to a combined internal pressure and in-plane bending load. This study evaluated the global deformation behavior and collapse moment of the elbows, which contained various types of local wall-thinning defects at their intrados or extrados, using three-dimensional elastic-plastic finite element analysis. The analysis results showed that the global deformation behavior of locally wall-thinned elbows was largely governed by the mode of the bending and the elbow geometry rather than the wall-thinning parameters, except for elbows with considerably large and deep wall thinning that showed plastic instabilities induced by local buckling and plastic collapsing in the thinned area. The reduction in the collapse moment with wall-thinning depth was considerable when local buckling occurred in the thinned areas, whereas the effect of the thinning depth was small when ovalization occurred. The effects of the circumferential thinning angle and thinning length on the collapse moment of elbows were not major for shallow wall-thinning cases. For deeper wall-thinning cases, however, their effects were significant and the dependence of collapse moment on the axial thinning length was governed by the stress type applied to the wall-thinned area. Typically, the reduction in the collapse moment due to local wall thinning was clearer when the thinning defect was located at the intrados rather than the extrados, and it was apparent for elbows with larger bend radius

  1. Annealing effects on the structural and electrical transport properties of n-type Bi2Te2.7Se0.3 thin films deposited by flash evaporation

    International Nuclear Information System (INIS)

    N-type Bi2Te2.7Se0.3 thermoelectric thin films with thickness 800 nm have been deposited on glass substrates by flash evaporation method at 473 K. Annealing effects on the thermoelectric properties of Bi2Te2.7Se0.3 thin films were examined in the temperature range 373-573 K. The structures, morphology and chemical composition of the thin films were characterized by X-ray diffraction, field emission scanning electron microscope and energy dispersive X-ray spectroscopy, respectively. Thermoelectric properties of the thin films have been evaluated by measurements of the electrical resistivity and Seebeck coefficient at 300 K. The Hall coefficients were measured at room temperature by the Van der Pauw method. The carrier concentration and mobility were calculated from the Hall coefficient. The films thickness of the annealed samples was measured by ellipsometer. When annealed at 473 K, the electrical resistivity and Seebeck coefficient are 2.7 mΩ cm and -180 μV/K, respectively. The maximum of thermoelectric power factor is enhanced to 12 μW/cm K2.

  2. Controlling the Performance of P-type Cu2O/SnO Bilayer Thin-Film Transistors by Adjusting the Thickness of the Copper Oxide Layer

    KAUST Repository

    Al-Jawhari, Hala A.

    2014-11-11

    The effect of copper oxide layer thickness on the performance of Cu2O/SnO bilayer thin-film transistors was investigated. By using sputtered Cu2O films produced at an oxygen partial pressure, Opp, of 10% as the upper layer and 3% Opp SnO films as the lower layer we built a matrix of bottom-gate Cu2O/SnO bilayer thin-film transistors of different thickness. We found that the thickness of the Cu2O layer is of major importance in oxidation of the SnO layer underneath. The thicker the Cu2O layer, the more the underlying SnO layer is oxidized, and, hence, the more transistor mobility is enhanced at a specific temperature. Both device performance and the annealing temperature required could be adjusted by controlling the thickness of each layer of Cu2O/SnO bilayer thin-film transistors.

  3. Crystal quality and electrical properties of p-type GaN thin film on Si(111 substrate by metal-organic chemical vapor deposition MOCVD

    Directory of Open Access Journals (Sweden)

    G.M. Wu

    2007-09-01

    . According to the experimental data, the optimal growth temperature was 1000°C. After the annealing process, the FWHM of p-GaN was lowered to 617 arcsec.Originality/value: Determination of crystal quality and electrical properties of p-type GaN thin film on Si(111 substrate by metal-organic chemical vapor deposition MOCVD.

  4. 2,6-Bis(benzo[b]thiophen-2-yl-3,7-dipentadecyltetrathienoacene (DBT-TTAR2 as an Alternative of Highly Soluble p-type Organic Semiconductor for Organic Thin Film Transistor (OTFT Application

    Directory of Open Access Journals (Sweden)

    Mery B. Supriadi

    2013-03-01

    Full Text Available A new compound of organic semiconductor based on tetrathienoacene (TTA derivatives, DBT-TTAR2 was synthesized and characterized. The corporation of dibenzo[b,d]thiophene (DBT group and alkyl substituent in both ends of TTA core have a significant effect on their π-π molecular conjugation length, energy gaps value and solubility properties. DBT-TTAR2 is fabricated as p-type organic semiconductor of organic thin film transistor (OTFT by solution process at Industrial Technology Research Institute, Taiwan. A good optical, electrochemical, and thermal properties of DBT-TTAR2 showed that its exhibits a better performance as highly soluble p-type organic semiconductor.

  5. A new method of designing multilayer optical thin film coatings

    International Nuclear Information System (INIS)

    A new method of designing multilayer optical thin film coatings is developed using a new optimization technique. Results obtained demonstrate that the method of damped least squares with indirect reflection derivatives give better and efficient designs compared to other known optimization methods. Many constraints and boundary conditions compatible to the available experimental facilities are incorporated in the method which enables it to give practically realizable designs. The method is successfully applied to design and develop indigenously various types of multilayer optical thin film coatings for different high power laser applications. (author). 20 refs., 5 figs., 3 tabs

  6. Development of a new type of SiGe thin strain relaxed buffer based on the incorporation of a carbon-containing layer

    International Nuclear Information System (INIS)

    We describe a new technique for the fabrication of a thin strain relaxed buffer (TSRB). This method is based on the incorporation of carbon during the epitaxial growth of a thin constant composition Si0.78Ge0.22 layer. An annealing step is carried out after growth in order to increase the relaxation and therefore the stability of the buffer. This method allows to prepare smooth and defect free TSRBs with 91% relaxation. First Hall mobility measurements at 77 K of strained silicon on top of the TSRB (single side modulation doped structure) show promising electron mobility value of 18,500 cm2/(V s)

  7. Structural, electrical, optical and magnetic properties of p-type Cu(Cr{sub 1−x}Mn{sub x})O{sub 2} thin films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiaoshan; Lin, Fangting, E-mail: nounou7@163.com; Shi, Wangzhou; Liu, Aiyun

    2014-11-25

    Highlights: • First study on Cu(Cr{sub 1−x}Mn{sub x})O{sub 2} DMS thin films prepared by pulsed laser deposition. • Thin films show relatively balanced electrical, optical and magnetic properties. • p-Type conductivity is ∼3 orders of magnitude higher than literature values. • All thin films exhibit a comparatively high transparency in the visible range. • Ferromagnetism comes from the Mn{sup 3+}–O–Mn{sup 4+} and Mn{sup 3+}–O–Cr{sup 3+} double-exchanges. - Abstract: Cu(Cr{sub 1−x}Mn{sub x})O{sub 2} delafossite thin films (0 ⩽ x ⩽ 15 at.%), with a c-axis quasi-epitaxial orientation, were prepared by pulsed laser deposition. The effects of Mn content on microstructure and physical properties were investigated. Both the variation of lattice constant c and X-ray photoelectron spectroscopy reveal that the Mn ions substitute for Cr{sup 3+} as Mn{sup 3+} and Mn{sup 4+}. The proportion of Mn{sup 4+} is gradually increased with the Mn doping, leading to the changes of hole density and mobility. As a result, the p-type conductivity is decreased at first and then increased. The conduction mechanism is thermal activation between 130 and 300 K. It is indicated that the PLD method and the Mn{sup 3+}–O–Mn{sup 4+} and Mn{sup 3+}–O–Cr{sup 3+} double-exchange interactions are favorable to the high hole density and mobility, respectively. Meanwhile, the double-exchange interactions produce the near-room-temperature ferromagnetism. The saturation magnetization and Curie temperature are gradually increased with the Mn content. For optical properties, all thin films have a comparatively high transmittance for visible light, with the highest value 70% for x = 15 at.% at the wavelength of 750 nm. As increasing the Mn content, the transparency and direct optical bandgap exhibit the similar trend as the hole density. With the relatively balanced electrical, magnetic and optical properties, these pulsed-laser-deposition-grown Cu(Cr{sub 1−x}Mn{sub x

  8. Two types of carbon nanocomposites: Graphite encapsulated iron nanoparticles and thin carbon nanotubes supported on thick carbon nanotubes, synthesized using PECVD

    International Nuclear Information System (INIS)

    In this work, graphite encapsulated Fe nanoparticles and thin carbon nanotubes (CNTs) supported on the pristine CNTs, respectively, were synthesized using plasma enhanced chemical vapor deposition via efficiently controlling the flow rate of discharging CH4 and H2 gas. The properties of the obtained hybrid materials were characterized with superconducting quantum interference and field emission measurements. The results showed that the encapsulated Fe nanoparticles had diameters ranging from 1 to 30 nm, and this hybrid nanocomposite exhibited a ferromagnetic behavior at room temperature. Thin CNTs with an average diameter of 6 nm were attached to the surface of the prepared CNTs, which exhibited a lower turn-on field and higher emission current density than the pristine CNTs. The Fe nanoparticles either encapsulated with graphite or used as catalyst for thin CNTs growth were all originated from the pyrolysis of ferrocene. - Graphical abstract: Graphite encapsulated Fe nanoparticles and thin carbon nanotubes supported on the pristine carbon nanotubes, respectively, were synthesized using plasma enhanced chemical vapor deposition.

  9. Combined effects of type 2 diabetes and hypertension associated with cortical thinning and impaired cerebrovascular reactivity relative to hypertension alone in older adults

    Directory of Open Access Journals (Sweden)

    Ekaterina Tchistiakova

    2014-01-01

    Conclusions: Individuals with T2DM and HTN showed decreased CVR and CThk compared to age-matched HTN controls. This study identifies brain regions that are impacted by the combined effects of comorbid T2DM and HTN conditions, with new evidence that the corresponding cortical thinning may contribute to cognitive decline.

  10. Characterization of amorphous p-type transparent CuFeO2 thin films prepared by radio frequency magnetron sputtering method at room temperature

    International Nuclear Information System (INIS)

    Amorphous CuFeO2 thin films were prepared on Al2O3 (001) substrates by radio-frequency magnetron sputtering method at room temperature. Various oxygen partial pressures PO in the sputtering gas ambient (9.1%, 11.1% and 13.0%) were used in the deposition experiments. X-ray photoelectron spectroscopy analysis convinced the chemical state of Cu+ and Fe3+ in the films, and the chemical compositions of the thin films are close to the stoichiometry of CuFeO2. The content of oxygen composition increased systematically with increasing PO. From the optical transmission spectra, only one absorption edge could be observed during 200–1200 nm for all the films with a band gap around 3.25 eV. This result is different from the polycrystalline CuFeO2 films which have 3 absorption edges in the range of 200–1200 nm. This interesting result indicates that amorphous CuFeO2 thin films have much different electronic energy band with polycrystalline ones. The resistivity of the films first decreases and then increases with increasing PO. The minimum resistivity of 4.2 Ω cm with optical transmittance of 47% at 600 nm is obtained for the film deposited in PO = 11.1%. - Highlights: • Amorphous CuFeO2 thin films have been prepared at room temperature. • The resistivity of film deposited at oxygen partial pressure of 11.1% is 4.2 Ω cm. • Amorphous CuFeO2 thin films have a band gap of 3.25 eV

  11. In situ measurement of corrosion of type 316L stainless steel in 553 K pure water via the electrical resistance of a thin wire

    International Nuclear Information System (INIS)

    A system for the in situ monitoring of corrosion depth via electrical resistance measurements was applied to study the corrosion rate of type 316L stainless steel at 553 K in pure water. Corrosion depth was measured using a 50 μm diameter wire probe mounted axially in the tube. Measurements were in good agreement with literature data for both the hydrogen water chemistry (HWC) condition and the normal water chemistry (NWC) condition. Oxide film analyses by scanning electron microscopy and laser Raman spectroscopy on the wire probe and the tube showed no effects from shape of the test specimens or the application of electric current. Corrosion kinetics was evaluated by fitting equations to the measurements. Data for the HWC condition could be fitted by a two-step logarithmic-parabolic law. A single-step logarithmic law fitted data for the NWC condition. Changes in corrosion rate by the water chemistry changes were readily detected with the technique. Corrosion depth change could be observed for the water chemistry change from the NWC condition to the HWC condition with electrochemical corrosion potential (ECP) of -0.56 V vs. standard hydrogen electrode, which is lower than the ECP that the phase of iron oxide changes from α-Fe2O3 to Fe3O4. (author)

  12. Effect of Substrates Types on CO Gas Sensing of SnO2 Thin Film Prepared by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Sumanta Kumar Tripathy

    2014-01-01

    Full Text Available Tin oxide thin film was synthesized on glass and quartz substrate by sol-gel dip coating process taking tin (II chloride as precursor and methanol as solvent. XRD study confirmed the tetragonal rutile structure of SnO2. It was concluded that the transmission was higher and grain size was bigger in case of quartz than glass substrate from the study of optical characteristics by UV/VIS Spectrophotometer and SEM micrographs. CO gas sensing property of SnO2 thin film was studied and it was revealed that the sensitivity of SnO2 thin film grown on quartz substrate shows better performance than the film grown on glass substrate under the same conditions. Sensitivity of the film to CO gas was measured at different temperatures and was found to be highly sensitive at 220 C for glass substrate and 210 C for quartz substrate, at 50 ppm concentration. The result of change in conductivity of the sensors in presence of CO gas was also reported.

  13. Thin film temperature sensor

    Science.gov (United States)

    Grant, H. P.; Przybyszewski, J. S.

    1980-01-01

    Thin film surface temperature sensors were developed. The sensors were made of platinum-platinum/10 percent rhodium thermocouples with associated thin film-to-lead wire connections and sputtered on aluminum oxide coated simulated turbine blades for testing. Tests included exposure to vibration, low velocity hydrocarbon hot gas flow to 1250 K, and furnace calibrations. Thermal electromotive force was typically two percent below standard type S thermocouples. Mean time to failure was 42 hours at a hot gas flow temperature of 1250 K and an average of 15 cycles to room temperature. Failures were mainly due to separation of the platinum thin film from the aluminum oxide surface. Several techniques to improve the adhesion of the platinum are discussed.

  14. Applied Electromagnetics

    International Nuclear Information System (INIS)

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics

  15. Raman spectroscopy of dip-coated and spin-coated sol-gel TiO.sub.2./sub. thin films on different types of glass substrates

    Czech Academy of Sciences Publication Activity Database

    Kment, Š.; Gregora, Ivan; Kmentová, Hana; Novotná, P.; Hubička, Zdeněk; Krýsa, J.; Sajdl, P.; Dejneka, Alexandr; Brunclíková, M.; Jastrabík, Lubomír; Hrabovský, M.

    2012-01-01

    Roč. 63, č. 3 (2012), s. 294-306. ISSN 0928-0707 R&D Projects: GA ČR GAP108/12/1941; GA ČR GAP108/12/2104; GA TA ČR TA01010517 Institutional support: RVO:68378271 ; RVO:67985858 Keywords : TiO 2 thin films * Raman mapping * sol-gel * dip-coating * spin-coating * glass substrate Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.660, year: 2012

  16. Electrical compensation by Ga vacancies in Ga2O3 thin films

    International Nuclear Information System (INIS)

    The authors have applied positron annihilation spectroscopy to study the vacancy defects in undoped and Si-doped Ga2O3 thin films. The results show that Ga vacancies are formed efficiently during metal-organic vapor phase epitaxy growth of Ga2O3 thin films. Their concentrations are high enough to fully account for the electrical compensation of Si doping. This is in clear contrast to another n-type transparent semiconducting oxide In2O3, where recent results show that n-type conductivity is not limited by cation vacancies but by other intrinsic defects such as Oi

  17. Thin films

    International Nuclear Information System (INIS)

    This volume is a compilation of papers presented at the 1990 Spring Meeting of the Materials Research Society in a symposium entitled Thin Films: Stresses and Mechanical Properties II. As indicated by the title, the symposium was the second in a series, the first of which was held at the Fall Meeting in 1988. The importance of thin film mechanical properties is now recognized to the extent that basic characterization techniques such as microindentation and thin film stress measurement are performed routinely, and new characterization techniques are being developed on a daily basis. Many of the papers in the symposium dealt with the developments in these characterization methods and their application to a broad spectrum of materials such as compositionally modulated structures, ion implanted materials, optical coatings, and the numerous metals, ceramics and organics used in semiconductor device manufacture

  18. Thin Places

    OpenAIRE

    Lockwood, Sandra Elizabeth

    2013-01-01

    This inquiry into the three great quests of the twentieth century–the South Pole, Mount Everest, and the Moon–examines our motivations to venture into these sublime, yet life-taking places. The Thin Place was once the destination of the religious pilgrim seeking transcendence in an extreme environment. In our age, the Thin Place quest has morphed into a challenge to evolve beyond the confines of our own physiology; through human ingenuity and invention, we reach places not meant to accommod...

  19. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  20. Influence of film thickness and oxygen partial pressure on cation-defect-induced intrinsic ferromagnetic behavior in luminescent p-type Na-doped ZnO thin films.

    Science.gov (United States)

    Ghosh, S; Khan, Gobinda Gopal; Varma, Shikha; Mandal, K

    2013-04-10

    In this article, we have investigated the effect of oxygen partial pressure (PO2) and film thickness on defect-induced room-temperature (RT) ferromagnetism (FM) of highly c-axis orientated p-type Na-doped ZnO thin films fabricated by pulse laser deposition (PLD) technique. We have found that the substitution of Na at Zn site (NaZn) can be effective to stabilize intrinsic ferromagnetic (FM) ordering in ZnO thin films with Curie temperature (TC) as high as 509 K. The saturation magnetization (MS) is found to decrease gradually with the increase in thickness of the films, whereas an increase in "MS" is observed with the increase in PO2 of the PLD chamber. The enhancement of ferromagnetic signature with increasing PO2 excludes the possibility of oxygen vacancy (VO) defects for the magnetic origin in Na-doped ZnO films. On the other hand, remarkable enhancement in the green emission (IG) are observed in the photoluminescence (PL) spectroscopic measurements due to Na-doping and that indicates the stabilization of considerable amount of Zn vacancy (VZn)-type defects in Na-doped ZnO films. Correlating the results of PL and X-ray photoelectron spectroscopy (XPS) studies with magnetic measurements we have found that VZn and Na substitutional (NaZn) defects are responsible for the hole-mediated FM in Na-doped ZnO films, which might be an effective candidate for modern spintronic technology. PMID:23461478

  1. Efficiency enhancement using a Zn1‑ x Ge x -O thin film as an n-type window layer in Cu2O-based heterojunction solar cells

    Science.gov (United States)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2016-05-01

    Efficiency enhancement was achieved in Cu2O-based heterojunction solar cells fabricated with a zinc–germanium-oxide (Zn1‑ x Ge x -O) thin film as the n-type window layer and a p-type Na-doped Cu2O (Cu2O:Na) sheet prepared by thermally oxidizing Cu sheets. The Ge content (x) dependence of the obtained photovoltaic properties of the heterojunction solar cells is mainly explained by the conduction band discontinuity that results from the electron affinity difference between Zn1‑ x Ge x -O and Cu2O:Na. The optimal value of x in Zn1‑ x Ge x -O thin films prepared by pulsed laser deposition was observed to be 0.62. An efficiency of 8.1% was obtained in a MgF2/Al-doped ZnO/Zn0.38Ge0.62-O/Cu2O:Na heterojunction solar cell.

  2. Preparation of thin films, with base to precursor materials of type Cu-In-Se elaborated by electrodeposition for the solar cells elaboration; Preparacion de peliculas delgadas, con base a materiales precursores del tipo Cu-In-Se, elaboradas por electrodeposito para la elaboracion de celdas solares

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.M. [Centro de Investigaciones en Energia, Universidad Nacional Autonoma de Mexico. Av. Xochicalco s/n. 62580 Temixco, Morelos (Mexico)

    1999-11-01

    Thin films of chalcogenide compounds are promising because they have excellent optoelectronic characteristics to be applied in solar cells. In particular, CuInSe{sub 2} and Cd Te thin films have shown high solar to electrical conversion efficiency. However, this efficiency is limited by the method of preparation, in this case, physical vapor deposition techniques are used. In order to increase the area of deposition t is necessary to use chemical methods, for example, electrodeposition technique. In this paper, the preparation of Cu-In-Se precursors thin films by electrochemical method is reported. These precursors were used to build solar cells with 7.9 % of efficiency. (Author)

  3. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    International Nuclear Information System (INIS)

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia

  4. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nurhandoko, Bagus Endar B., E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com [Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Basic Science Center A 4" t" hfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia); Susilowati, E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com [Rock Fluid Imaging Lab., Bandung (Indonesia)

    2015-04-16

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia.

  5. Long-Term Behaviors of the OPC Concrete with Fly-ash and Type V Concrete Applied on Reactor Containment Building

    International Nuclear Information System (INIS)

    The prestressed concrete has been used extensively in the construction of Reactor Containment Buildings (RCBs) in Korea in order to strengthen the RCBs and at the same time, prevent the release of radiation due to the Design Basis Accident and Design Basis Earthquake. It is well known that the prestressed concrete loses its prestressing force over the age, and the shrinkage and creep of the concrete significantly contributes to these long term prestressing losses. In this study, an evaluations of long term behaviors of the concrete such as creep and shrinkage have been performed for two types of concretes : Ordinary Portland Cement containing fly-ash used for the Shin- Kori 1 and 2 NPP and Type V cement used for the Ul- Chin 5 and 6 NPP

  6. Applying the expanding photosphere and standardized candle methods to Type II-Plateau supernovae at cosmologically significant redshifts . The distance to SN 2013eq

    Science.gov (United States)

    Gall, E. E. E.; Kotak, R.; Leibundgut, B.; Taubenberger, S.; Hillebrandt, W.; Kromer, M.

    2016-08-01

    Based on optical imaging and spectroscopy of the Type II-Plateau SN 2013eq, we present a comparative study of commonly used distance determination methods based on Type II supernovae. The occurrence of SN 2013eq in the Hubble flow (z = 0.041 ± 0.001) prompted us to investigate the implications of the difference between "angular" and "luminosity" distances within the framework of the expanding photosphere method (EPM) that relies upon a relation between flux and angular size to yield a distance. Following a re-derivation of the basic equations of the EPM for SNe at non-negligible redshifts, we conclude that the EPM results in an angular distance. The observed flux should be converted into the SN rest frame and the angular size, θ, has to be corrected by a factor of (1 + z)2. Alternatively, the EPM angular distance can be converted to a luminosity distance by implementing a modification of the angular size. For SN 2013eq, we find EPM luminosity distances of DL = 151 ± 18 Mpc and DL = 164 ± 20 Mpc by making use of different sets of dilution factors taken from the literature. Application of the standardized candle method for Type II-P SNe results in an independent luminosity distance estimate (DL = 168 ± 16 Mpc) that is consistent with the EPM estimate. Spectra of SN 2013eq are available in the Weizmann Interactive Supernova data REPository (WISeREP): http://wiserep.weizmann.ac.il

  7. Thin book

    DEFF Research Database (Denmark)

    En lille bog om teater og organisationer, med bidrag fra 19 teoretikere og praktikere, der deltog i en "Thin Book Summit" i Danmark i 2005. Bogen bidrager med en state-of-the-art antologi om forskellige former for samarbejde imellem teater og organisationer. Bogen fokuserer både på muligheder og...

  8. Thin Films

    Czech Academy of Sciences Publication Activity Database

    Šolcová, Olga

    Maribor: Univerza v Mariboru, 2013. [Nanofuture. Maribor (SI), 03.02.2013-07.02.2013] R&D Projects: GA TA ČR TA01020804 Institutional support: RVO:67985858 Keywords : sol-gel methods * thin films * nannomaterials Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  9. Applied Stratigraphy

    Science.gov (United States)

    Lucas, Spencer G.

    Stratigraphy is a cornerstone of the Earth sciences. The study of layered rocks, especially their age determination and correlation, which are integral parts of stratigraphy, are key to fields as diverse as geoarchaeology and tectonics. In the Anglophile history of geology, in the early 1800s, the untutored English surveyor William Smith was the first practical stratigrapher, constructing a geological map of England based on his own applied stratigraphy. Smith has, thus, been seen as the first “industrial stratigrapher,” and practical applications of stratigraphy have since been essential to most of the extractive industries from mining to petroleum. Indeed, gasoline is in your automobile because of a tremendous use of applied stratigraphy in oil exploration, especially during the latter half of the twentieth century. Applied stratigraphy, thus, is a subject of broad interest to Earth scientists.

  10. Applied mathematics

    CERN Document Server

    Logan, J David

    2013-01-01

    Praise for the Third Edition"Future mathematicians, scientists, and engineers should find the book to be an excellent introductory text for coursework or self-study as well as worth its shelf space for reference." -MAA Reviews Applied Mathematics, Fourth Edition is a thoroughly updated and revised edition on the applications of modeling and analyzing natural, social, and technological processes. The book covers a wide range of key topics in mathematical methods and modeling and highlights the connections between mathematics and the applied and nat

  11. Tipologia facial aplicada à Fonoaudiologia: revisão de literatura Facial types applied to Speech-Language Pathology: literature review

    Directory of Open Access Journals (Sweden)

    Rossana Ribeiro Ramires

    2010-01-01

    Full Text Available A face humana, com suas estruturas ósseas e musculares, apresenta características próprias e peculiares. Pode ser classificada em três tipos básicos, os quais têm relação com a variação do formato e da configuração craniofacial, tanto no sentido vertical como no horizontal e influenciam diretamente a oclusão dentária, harmonia facial, musculatura orofacial e funções estomatognáticas. Por essa razão, diagnosticar o tipo facial é importante para a clínica fonoaudiólogica. O objetivo deste estudo foi realizar uma revisão de literatura relacionada às características dos tipos faciais e apresentar as pesquisas e os estudos mais recentes sobre o tema. Para atingir tal meta, fez-se um levantamento bibliográfico nas bases de dados LILACS, SciELO, Web of Science e Google Acadêmico, além de livros, dissertações e teses sobre o assunto dos últimos dez anos. Várias pesquisas em campo comprovaram algumas características dos tipos faciais encontradas, principalmente, em referências mais antigas. Alguns aspectos, porém, foram controversos ao se comparar os tipos faciais como a atividade eletromiográfica do músculo masseter, modo respiratório e o comprimento do lábio superior e do filtro. Pôde-se constatar que conhecer o tipo facial e correlacioná-lo às funções estomatognáticas, musculatura e oclusão é um fator importante para a prática clínica, mas o profissional deve ser flexível ao comparar as características do paciente com a literatura. Dessa forma, pode-se evitar determinar uma anormalidade ou atipia quando não for o caso, e ocorrer apenas uma variabilidade ou adaptação.The human face, with its bone and muscular structures, present singular and peculiar characteristics. It may be classified in three basic types, which are related with shape variation and craniofacial configuration, both vertically and horizontally, influencing directly the dental occlusion, facial harmony, orofacial muscles and

  12. Effect of impeller type and agitation on the performance of pilot scale ASBR and AnSBBR applied to sanitary wastewater treatment.

    Science.gov (United States)

    de Novaes, Luciano Farias; Saratt, Bruna Luckmann; Rodrigues, José Alberto Domingues; Ratusznei, Suzana Maria; de Moraes, Deovaldo; Ribeiro, Rogers; Zaiat, Marcelo; Foresti, Eugenio

    2010-08-01

    The objective of this work was to assess the effect of agitation rate and impeller type in two mechanically stirred sequencing batch reactors: one containing granulated biomass (denominated ASBR) and the other immobilized biomass on polyurethane foam (denominated AnSBBR). Each configuration, with total volume of 1 m(3), treated 0.65 m(3) sanitary wastewater at ambient temperature in 8-h cycles. Three impeller types were assessed for each reactor configuration: flat-blade turbine impeller, 45 degrees -inclined-blade turbine impeller and helix impeller, as well as two agitation rates: 40 and 80 rpm, resulting in a combination of six experimental conditions. In addition, the ASBR was also operated at 20 rpm with a flat-blade turbine impeller and the AnSBBR was operated with a draft tube and helix impeller at 80 and 120 rpm. To quantify how impeller type and agitation rate relate to substrate consumption rate, results obtained during monitoring at the end of the cycle, as well as the time profiles during a cycle were analyzed. Increasing agitation rate from 40 rpm to 80 rpm in the AnSBBR improved substrate consumption rate whereas in the ASBR this increase destabilized the system, likely due to granule rupture caused by the higher agitation. The AnSBBR showed highest solids and substrate removal, highest kinetic constant and highest alkalinity production when using a helix impeller, 80 rpm, and no draft tube. The best condition for the ASBR was achieved with a flat-blade turbine impeller at 20 rpm. The presence of the draft tube in the AnSBBR did not show significant improvement in reactor efficiency. Furthermore, power consumption studies in these pilot scale reactors showed that power transfer required to improve mass transfer might be technically and economically feasible. PMID:20363066

  13. Applying Novel Genome-Wide Linkage Strategies to Search for Loci Influencing Type 2 Diabetes and Adult Height in American Samoa

    OpenAIRE

    Åberg, Karolina; Sun, Guangyun; Smelser, Diane; Indugula, Subba Rao; Tsai, Hui-Ju; Steele, Matthew S.; TUITELE, JOHN; Deka, Ranjan; McGarvey, Stephen T.; Weeks, Daniel E.

    2008-01-01

    Type 2 diabetes mellitus (T2DM) is a common complex phenotype that by the year 2010 is predicted to affect 221 million people globally. In the present study we performed a genome-wide linkage scan using the allele-sharing statistic Sall implemented in Allegro and a novel two-dimensional genome-wide strategy implemented in Merloc that searches for pairwise interaction between genetic markers located on different chromosomes linked to T2DM. In addition, we used a robust score statistic from the...

  14. Applied methods for mitigation of damage by stress corrosion in BWR type reactors; Metodos aplicados para la mitigacion del dano por corrosion bajo esfuerzo en reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez C, R.; Diaz S, A.; Gachuz M, M.; Arganis J, C. [Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencia de Materiales, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    The Boiling Water nuclear Reactors (BWR) have presented stress corrosion problems, mainly in components and pipes of the primary system, provoking negative impacts in the performance of energy generator plants, as well as the increasing in the radiation exposure to personnel involucred. This problem has caused development of research programs, which are guided to find solution alternatives for the phenomena control. Among results of greater relevance the control for the reactor water chemistry stands out particularly in the impurities concentration and oxidation of radiolysis products; as well as the supervision in the materials selection and the stresses levels reduction. The present work presents the methods which can be applied to diminish the problems of stress corrosion in BWR reactors. (Author)

  15. Applying the expanding photosphere and standardized candle methods to Type II-Plateau supernovae at cosmologically significant redshifts: the distance to SN 2013eq

    CERN Document Server

    Gall, E E E; Leibundgut, B; Taubenberger, S; Hillebrandt, W; Kromer, M

    2016-01-01

    Based on optical imaging and spectroscopy of the Type II-Plateau SN 2013eq, we present a comparative study of commonly used distance determination methods based on Type II supernovae. The occurrence of SN 2013eq in the Hubble flow (z = 0.041 +/- 0.001) prompted us to investigate the implications of the difference between "angular" and "luminosity" distances within the framework of the expanding photosphere method (EPM) that relies upon a relation between flux and angular size to yield a distance. Following a re-derivation of the basic equations of the EPM for SNe at non-negligible redshifts, we conclude that the EPM results in an angular distance. The observed flux should be converted into the SN rest frame and the angular size, theta, has to be corrected by a factor of (1+z)^2. Alternatively, the EPM angular distance can be converted to a luminosity distance by implementing a modification of the angular size. For SN 2013eq, we find EPM luminosity distances of D_L = 151 +/- 18 Mpc and D_L = 164 +/- 20 Mpc by ...

  16. Applied mineralogy

    Energy Technology Data Exchange (ETDEWEB)

    Park, W.C.; Hausen, D.M.; Hagni, R.D. (eds.)

    1985-01-01

    A conference on applied mineralogy was held and figures were presented under the following headings: methodology (including image analysis); ore genesis; exploration; beneficiations (including precious metals); process mineralogy - low and high temperatures; and medical science applications. Two papers have been abstracted separately.

  17. Photoconductivity of ZnTe thin films at elevated temperatures

    Indian Academy of Sciences (India)

    N Mazumdar; R Sarma; B K Sarma; H L Das

    2006-02-01

    Photoconductivity of thermally evaporated ZnTe thin films was studied at different elevated temperatures. A gap type cell configuration with Al electrodes on glass substrates was used. The conductivity was found to obey two distinct conduction mechanisms within the region of applied fields. At low fields the photoconduction is ohmic and at high fields it is of Poole–Frenkel type. With increase of ambient temperatures, the Poole–Frenkel conductivity regions were found to extend to lower fields. The temperature dependence of dark conductivity also was found to be of similar nature.

  18. Combined effects of type 2 diabetes and hypertension associated with cortical thinning and impaired cerebrovascular reactivity relative to hypertension alone in older adults

    OpenAIRE

    Ekaterina Tchistiakova; Nicole D Anderson; Greenwood, Carol E.; MacIntosh, Bradley J.

    2014-01-01

    Objective: Type 2 diabetes mellitus is characterized by metabolic dysregulation in the form of hyperglycemia and insulin resistance and can have a profound impact on brain structure and vasculature. The primary aim of this study was to identify brain regions where the combined effects of type 2 diabetes and hypertension on brain health exceed those of hypertension alone. A secondary objective was to test whether vascular impairment and structural brain measures in this population are associat...

  19. Research on Loading Attachment of One Set Coke Dry Quenching System Applied to Various Types of Coke Ovens%适应不同型式焦炉干熄焦系统装入装置的研制

    Institute of Scientific and Technical Information of China (English)

    侯建锋; 赫占坤; 王涛

    2013-01-01

    Designs of the coke-loading connector and the seal mechanism of one set coke dry quenching applied to various types of coke ovens have been described respectively .Successful research on loading attachment of one set coke dry quenching applied to various types of coke ovens could reduce initial investment of the device and implement energy saving and consumption reducing .%  介绍了不同焦炉炉型,不同型式焦罐共用一套干熄焦的装焦连接装置的设计,以及装焦密封机构的设计。不同型式焦炉干熄焦共用一套装入装置的研制成功,可以减少设备前期投入,节能降耗。

  20. A Variational approach to thin film hydrodynamics of binary mixtures

    KAUST Repository

    Xu, Xinpeng

    2015-02-04

    In order to model the dynamics of thin films of mixtures, solutions, and suspensions, a thermodynamically consistent formulation is needed such that various coexisting dissipative processes with cross couplings can be correctly described in the presence of capillarity, wettability, and mixing effects. In the present work, we apply Onsager\\'s variational principle to the formulation of thin film hydrodynamics for binary fluid mixtures. We first derive the dynamic equations in two spatial dimensions, one along the substrate and the other normal to the substrate. Then, using long-wave asymptotics, we derive the thin film equations in one spatial dimension along the substrate. This enables us to establish the connection between the present variational approach and the gradient dynamics formulation for thin films. It is shown that for the mobility matrix in the gradient dynamics description, Onsager\\'s reciprocal symmetry is automatically preserved by the variational derivation. Furthermore, using local hydrodynamic variables, our variational approach is capable of introducing diffusive dissipation beyond the limit of dilute solute. Supplemented with a Flory-Huggins-type mixing free energy, our variational approach leads to a thin film model that treats solvent and solute in a symmetric manner. Our approach can be further generalized to include more complicated free energy and additional dissipative processes.

  1. Modelling the sensitivity of infrared emissivity of magnetic thin films to giant magnetoresistance

    Energy Technology Data Exchange (ETDEWEB)

    Stirk, S.M. [Department of Physics, University of York, York YO10 5DD (United Kingdom)], E-mail: stewart.stirk@awe.co.uk; Thompson, S.M.; Matthew, J.A.D. [Department of Physics, University of York, York YO10 5DD (United Kingdom)

    2009-03-15

    The correlation between emissivity and giant magnetoresistance (GMR) in magnetic thin films is investigated at infrared (IR) wavelengths using a thin-film model of emissivity. The sensitivity of emissivity to GMR is shown to depend upon film thickness, and agrees excellently with bulk-material results for films thicker than the material skin depth. However, for films thinner than the skin depth the sensitivity to GMR is shown to weaken. In addition, at mid-to-far IR wavelengths the spectral dependence of the correlation is investigated using a modified Drude-type expression for the refractive index combined with the thin-film model. This is applied to a multilayered GMR material, and the sensitivity of emissivity to GMR is shown to have a similar spectral dependence to that of the magnetorefractive effect. An analytical interpretation in terms of skin depth is also developed at long wavelengths, and shown to agree excellently with thin-film simulations.

  2. Applied dynamics

    CERN Document Server

    Schiehlen, Werner

    2014-01-01

    Applied Dynamics is an important branch of engineering mechanics widely applied to mechanical and automotive engineering, aerospace and biomechanics as well as control engineering and mechatronics. The computational methods presented are based on common fundamentals. For this purpose analytical mechanics turns out to be very useful where D’Alembert’s principle in the Lagrangian formulation proves to be most efficient. The method of multibody systems, finite element systems and continuous systems are treated consistently. Thus, students get a much better understanding of dynamical phenomena, and engineers in design and development departments using computer codes may check the results more easily by choosing models of different complexity for vibration and stress analysis.

  3. Applied optics

    International Nuclear Information System (INIS)

    The 1988 progress report, of the Applied Optics laboratory, of the (Polytechnic School, France), is presented. The optical fiber activities are focused on the development of an optical gyrometer, containing a resonance cavity. The following domains are included, in the research program: the infrared laser physics, the laser sources, the semiconductor physics, the multiple-photon ionization and the nonlinear optics. Investigations on the biomedical, the biological and biophysical domains are carried out. The published papers and the congress communications are listed

  4. Engineering interface-type resistive switching in BiFeO3 thin film switches by Ti implantation of bottom electrodes.

    Science.gov (United States)

    You, Tiangui; Ou, Xin; Niu, Gang; Bärwolf, Florian; Li, Guodong; Du, Nan; Bürger, Danilo; Skorupa, Ilona; Jia, Qi; Yu, Wenjie; Wang, Xi; Schmidt, Oliver G; Schmidt, Heidemarie

    2015-01-01

    BiFeO3 based MIM structures with Ti-implanted Pt bottom electrodes and Au top electrodes have been fabricated on Sapphire substrates. The resulting metal-insulator-metal (MIM) structures show bipolar resistive switching without an electroforming process. It is evidenced that during the BiFeO3 thin film growth Ti diffuses into the BiFeO3 layer. The diffused Ti effectively traps and releases oxygen vacancies and consequently stabilizes the resistive switching in BiFeO3 MIM structures. Therefore, using Ti implantation of the bottom electrode, the retention performance can be greatly improved with increasing Ti fluence. For the used raster-scanned Ti implantation the lateral Ti distribution is not homogeneous enough and endurance slightly degrades with Ti fluence. The local resistive switching investigated by current sensing atomic force microscopy suggests the capability of down-scaling the resistive switching cell to one BiFeO3 grain size by local Ti implantation of the bottom electrode. PMID:26692104

  5. 液基膜式薄层细胞学技术进展%Advance of liquid polyimides type thin layer cytology technology

    Institute of Scientific and Technical Information of China (English)

    马福军; 王占红; 刘海波; 刘铁军

    2011-01-01

    @@ 液基膜式薄层细胞学技术是正在探索的一项新技术,它是将细胞收集在保存液中,利用计算机控制的自动化技术制备薄层细胞涂片.其中较有代表性的是在制片中采用了微孔薄膜过滤方法的TCT技术.1996-05美国食品及药物管理局(FDA)批准把此法用于临床.1999 年被引入国内,也称TCT (ThinPrep Cytology Test) 检测.现在TCT技术已被广泛应用于宫颈癌的筛查工作中,因其具有背景干净,没有血细胞及炎细胞干扰,细胞保存完好,结构清晰等特点,亦被用于体腔积液、尿液、纤维支气管刷片、细针穿刺细胞学等其他脱落细胞学检查中[1-4].为了提高对TCT 的认识,笔者特作综述如下.

  6. Relativistic models of thin disks immersed in a Robertson-Walker type spacetime Modelos relativistas de discos delgados inmersos en un espacio-tiempo tipo Robertson-Walker

    Directory of Open Access Journals (Sweden)

    Gonzalo García Reyes

    2013-11-01

    Full Text Available Using the well known “displace, cut and reflect” method used to generate disks from given solutions of Einstein field equations, we construct some relativistic models of time dependent thin disks of infinite extension made of a perfect fluid based on the Robertson-Walker metric. Two simple families of models of disks based on Robertson-Walker solutions admitting Matter and Ricci collineations are presented. We obtain disks that are in agreement with all the energy conditions.Usando el método de “desplazamiento, corte y reflexión” se construyen algunos modelos relativistas exactas de soluciones que representan discos delgados de extensión infinita, dependientes del tiempo y hechos de un fluido perfecto, basados en la métrica de Robertson-Walker. Se presentan dos familias simples de modelos de discos basados sobre el espacio tiempo de Robertson-Walker que admiten colineaciones de Ricci y de materia. Se obtienen modelos de discos que satisfacen todas las condiciones de energía.

  7. Infrared Transition Moment Orientational Analysis on the Structural Organization of the Distinct Molecular Subunits in Thin Layers of a High Mobility n-Type Copolymer.

    Science.gov (United States)

    Anton, Arthur Markus; Steyrleuthner, Robert; Kossack, Wilhelm; Neher, Dieter; Kremer, Friedrich

    2015-05-13

    The IR-based method of infrared transition moment orientational analysis (IR-TMOA) is employed to unravel molecular order in thin layers of the semiconducting polymer poly[N,N'-bis(2-octyldodecyl)-1,4,5,8-naphthalenediimide-2,6-diyl]-alt-5,5'-(2,2'-bithiophene) (P(NDI2OD-T2)). Structure-specific vibrational bands are analyzed in dependence on polarization and inclination of the sample with respect to the optical axis. By that the molecular order parameter tensor for the respective molecular moieties with regard to the sample coordinate system is deduced. Making use of the specificity of the IR spectral range, we are able to determine separately the orientation of atomistic planes defined through the naphthalenediimide (NDI) and bithiophene (T2) units relative to the substrate, and hence, relative to each other. A pronounced solvent effect is observed: While chlorobenzene causes the T2 planes to align preferentially parallel to the substrate at an angle of 29°, using a 1:1 chloronaphthalene:xylene mixture results in a reorientation of the T2 units from a face on into an edge on arrangement. In contrast the NDI unit remains unaffected. Additionally, for both solvents evidence is observed for the aggregation of chains in accord with recently published results obtained by UV-vis absorption spectroscopy. PMID:25892664

  8. Mixing Rules Formulation for a Kinetic Model of the Langmuir-Hinshelwood Semipredictive Type Applied to the Heterogeneous Photocatalytic Degradation of Multicomponent Mixtures

    Directory of Open Access Journals (Sweden)

    John Wilman Rodriguez-Acosta

    2014-01-01

    Full Text Available Mixing rules coupled to a semipredictive kinetic model of the Langmuir-Hinshelwood type were proposed to determine the behavior of the heterogeneous solar photodegradation with TiO2-P25 of multicomponent mixtures at pilot scale. The kinetic expressions were expressed in terms of the effective concentration of total organic carbon (xTOC. An expression was obtained in a generalized form which is a function of the mixing rules as a product of a global contribution of the reaction rate constant k′ and a mixing function fC. Kinetic parameters of the model were obtained using the Nelder and Mead (N-M algorithm. The kinetic model was validated with experimental data obtained from the degradation of binary mixtures of chlorinated compounds (DCA: dichloroacetic acid and 4-CP: 4-chlorophenol at different initial global concentration, using a CPC reactor at pilot scale. A simplex-lattice {2,3} design experiment was adopted to perform the runs.

  9. Surface morphology of titanium nitride thin films synthesized by DC reactive magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Ţǎlu Ştefan

    2015-03-01

    Full Text Available In this paper the influence of temperature on the 3-D surface morphology of titanium nitride (TiN thin films synthesized by DC reactive magnetron sputtering has been analyzed. The 3-D morphology variation of TiN thin films grown on p-type Si (100 wafers was investigated at four different deposition temperatures (473 K, 573 K, 673 K, 773 K in order to evaluate the relation among the 3-D micro-textured surfaces. The 3-D surface morphology of TiN thin films was characterized by means of atomic force microscopy (AFM and fractal analysis applied to the AFM data. The 3-D surface morphology revealed the fractal geometry of TiN thin films at nanometer scale. The global scale properties of 3-D surface geometry were quantitatively estimated using the fractal dimensions D, determined by the morphological envelopes method. The fractal dimension D increased with the substrate temperature variation from 2.36 (at 473 K to 2.66 (at 673 K and then decreased to 2.33 (at 773 K. The fractal analysis in correlation with the averaged power spectral density (surface yielded better quantitative results of morphological changes in the TiN thin films caused by substrate temperature variations, which were more precise, detailed, coherent and reproducible. It can be inferred that fractal analysis can be easily applied for the investigation of morphology evolution of different film/substrate interface phases obtained using different thin-film technologies.

  10. Biomimetic thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rieke, P.R.; Graff, G.E.; Campbell, A.A.; Bunker, B.C.; Baskaran, S.; Song, L.; Tarasevich, B.J.; Fryxell, G.E.

    1995-09-01

    Biological mineral deposition for the formation of bone, mollusk shell and other hard tissues provides materials scientists with illustrative materials processing strategies. This presentation will review the key features of biomineralization and how these features can be of technical importance. We have adapted existing knowledge of biomineralization to develop a unique method of depositing inorganic thin films and coating. Our approach to thin film deposition is to modify substrate surfaces to imitate the proteins found in nature that are responsible for controlling mineral deposition. These biomimetic surfaces control the nucleation and growth of the mineral from a supersaturated aqueous solution. This has many processing advantages including simple processing equipment, environmentally benign reagents, uniform coating of highly complex shapes, and enhanced adherence of coating. Many different types of metal oxide, hydroxide, sulfide and phosphate materials with useful mechanical, optical, electronic and biomedical properties can be deposited.

  11. Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures.

    Science.gov (United States)

    Zhang, Kenan; Zhang, Tianning; Cheng, Guanghui; Li, Tianxin; Wang, Shuxia; Wei, Wei; Zhou, Xiaohao; Yu, Weiwei; Sun, Yan; Wang, Peng; Zhang, Dong; Zeng, Changgan; Wang, Xingjun; Hu, Weida; Fan, Hong Jin; Shen, Guozhen; Chen, Xin; Duan, Xiangfeng; Chang, Kai; Dai, Ning

    2016-03-22

    We demonstrate the type-II staggered band alignment in MoTe2/MoS2 van der Waals (vdW) heterostructures and an interlayer optical transition at ∼1.55 μm. The photoinduced charge separation between the MoTe2/MoS2 vdW heterostructure is verified by Kelvin probe force microscopy (KPFM) under illumination, density function theory (DFT) simulations and photoluminescence (PL) spectroscopy. Photoelectrical measurements of MoTe2/MoS2 vdW heterostructures show a distinct photocurrent response in the infrared regime (1550 nm). The creation of type-II vdW heterostructures with strong interlayer coupling could improve our fundamental understanding of the essential physics behind vdW heterostructures and help the design of next-generation infrared optoelectronics. PMID:26950255

  12. Preparation of p-type Na-doped Cu2O by electrodeposition for a p-n homojunction thin film solar cell

    Science.gov (United States)

    Elfadill, Nezar G.; Hashim, M. R.; Chahrour, Khaled M.; Mohammed, S. A.

    2016-06-01

    In this work, a method of enhancing the electrical properties of the electrodeposited p-type Cu2O film is described. Sodium doped Cu2O was achieved by adding sodium aluminate complex solution to the electrodeposition alkaline Cu (II) lactate electrolyte. The optimal Na content [Na at% atomic ratio] incorporated in the Cu2O film was found to be approximately 1.34 at.%. The XPS result shows that the binding energy at 1072.4 ± 0.2 eV corresponds to the presence of sodium in sodium oxide. The optimized resistivity and the hole concentration were approximately 291 Ω cm and 2.13 × 1018 cm3, respectively. A Cu2O p-n homojunction solar cell with 2.05% efficiency was fabricated using a Cl-doped n-type Cu2O film and an optimized Na-doped Cu2O film.

  13. Chemical Bath Deposition of p-Type Transparent, Highly Conducting (CuS)x:(ZnS)1-x Nanocomposite Thin Films and Fabrication of Si Heterojunction Solar Cells.

    Science.gov (United States)

    Xu, Xiaojie; Bullock, James; Schelhas, Laura T; Stutz, Elias Z; Fonseca, Jose J; Hettick, Mark; Pool, Vanessa L; Tai, Kong Fai; Toney, Michael F; Fang, Xiaosheng; Javey, Ali; Wong, Lydia Helena; Ager, Joel W

    2016-03-01

    P-type transparent conducting films of nanocrystalline (CuS)x:(ZnS)1-x were synthesized by facile and low-cost chemical bath deposition. Wide angle X-ray scattering (WAXS) and high resolution transmission electron microscopy (HRTEM) were used to evaluate the nanocomposite structure, which consists of sub-5 nm crystallites of sphalerite ZnS and covellite CuS. Film transparency can be controlled by tuning the size of the nanocrystallites, which is achieved by adjusting the concentration of the complexing agent during growth; optimal films have optical transmission above 70% in the visible range of the spectrum. The hole conductivity increases with the fraction of the covellite phase and can be as high as 1000 S cm(-1), which is higher than most reported p-type transparent materials and approaches that of n-type transparent materials such as indium tin oxide (ITO) and aluminum doped zinc oxide (AZO) synthesized at a similar temperature. Heterojunction p-(CuS)x:(ZnS)1-x/n-Si solar cells were fabricated with the nanocomposite film serving as a hole-selective contact. Under 1 sun illumination, an open circuit voltage of 535 mV was observed. This value compares favorably to other emerging heterojunction Si solar cells which use a low temperature process to fabricate the contact, such as single-walled carbon nanotube/Si (370-530 mV) and graphene/Si (360-552 mV). PMID:26855162

  14. Investigation of Intrinsic Electrical Characteristics and Contact Effects in p-Type Tin Monoxide Thin-Film Transistors Using Gated-Four-Probe Measurements.

    Science.gov (United States)

    Han, Young-Joon; Choi, Yong-Jin; Jeong, Hoon; Kwon, Hyuck-In

    2015-10-01

    We investigate the intrinsic electrical characteristics and source/drain parasitic resistance in p-type SnO TFTs fabricated using Ni electrodes based on the gated-four-probe method. Because of the relatively high work function and inexpensive price, Ni has been most frequently used as the source/drain electrode materials in p-type SnO TFTs. However, our experimental data shows that the width normalized parasitic resistances of SnO TFT with Ni electrodes are around one to three orders of magnitude higher than those in the representative n-type oxide TFT, amorphous indium- gallium-zinc oxide TFT, and are comparable with those in amorphous silicon TFTs with Mo electrodes. This result implies that the electrical performance of the short channel SnO TFT can be dominated by the source/drain parasitic resistances. The intrinsic field-effect mobility extracted without being influenced by source/drain parasitic resistance was ~2.0 cm2/Vs, which is around twice the extrinsic field-effect mobility obtained from the conventional transconductance method. The large contact resistance is believed to be mainly caused from the heterogeneous electronic energy-level mismatch between the SnO and Ni electrodes. PMID:26726376

  15. Thin CVD Coating Protects Titanium Aluminide Alloys

    Science.gov (United States)

    Clark, Ronald; Wallace, Terryl; Cunnington, George; Robinson, John

    1994-01-01

    Feasibility of using very thin CVD coatings to provide both protection against oxidation and surfaces of low catalytic activity for thin metallic heat-shield materials demonstrated. Use of aluminum in compositions increases emittances of coatings and reduces transport of oxygen through coatings to substrates. Coatings light in weight and applied to foil-gauge materials with minimum weight penalties.

  16. Applied geodesy

    International Nuclear Information System (INIS)

    This volume is based on the proceedings of the CERN Accelerator School's course on Applied Geodesy for Particle Accelerators held in April 1986. The purpose was to record and disseminate the knowledge gained in recent years on the geodesy of accelerators and other large systems. The latest methods for positioning equipment to sub-millimetric accuracy in deep underground tunnels several tens of kilometers long are described, as well as such sophisticated techniques as the Navstar Global Positioning System and the Terrameter. Automation of better known instruments such as the gyroscope and Distinvar is also treated along with the highly evolved treatment of components in a modern accelerator. Use of the methods described can be of great benefit in many areas of research and industrial geodesy such as surveying, nautical and aeronautical engineering, astronomical radio-interferometry, metrology of large components, deformation studies, etc

  17. Applied mathematics

    International Nuclear Information System (INIS)

    The 1988 progress report of the Applied Mathematics center (Polytechnic School, France), is presented. The research fields of the Center are the scientific calculus, the probabilities and statistics and the video image synthesis. The research topics developed are: the analysis of numerical methods, the mathematical analysis of the physics and mechanics fundamental models, the numerical solution of complex models related to the industrial problems, the stochastic calculus and the brownian movement, the stochastic partial differential equations, the identification of the adaptive filtering parameters, the discrete element systems, statistics, the stochastic control and the development, the image synthesis techniques for education and research programs. The published papers, the congress communications and the thesis are listed

  18. Asymmetric GaAs n-type double δ-doped quantum wells as a source of intersubband-related nonlinear optical response: Effects of an applied electric field

    International Nuclear Information System (INIS)

    In this work, the conduction band electron states and the associated intersubband-related linear and nonlinear optical absorption coefficient and relative refractive index change are calculated for an asymmetric double n-type δ-doped quantum well in a GaAs-matrix. The effects of an external applied static electric field are included. Values of the two-dimensional impurities density (N2d) of each single δ-doped quantum well are taken to vary within the range of 1.0×1012 to 7.0×1012 cm−2, consistent with the experimental data growth regime. The optical responses are reported as a function of the δ-doped impurities density and the applied electric field. It is shown that single electron states and the related optical quantities are significantly affected by the structural asymmetry of the double δ-doped quantum well system. In addition, a brief comparison with the free-carrier-related optical response is presented. -- Highlights: • Nonlinear optics in asymmetric double n-type δ-doped quantum well in a GaAs-matrix. • The system is considered under external applied electric field in growth direction. • The 2D impurity density is consistent with the experimental data growth regime. • The optical quantities are significantly affected by the structural asymmetry of the system

  19. Asymmetric GaAs n-type double δ-doped quantum wells as a source of intersubband-related nonlinear optical response: Effects of an applied electric field

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Magdaleno, K.A.; Martínez-Orozco, J.C.; Rodríguez-Vargas, I. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calz. Solidaridad Esq. Paseo a La Bufa S/N. C.P. 98060 Zacatecas (Mexico); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Física Teórica y Aplicada, Escuela de Ingeniería de Antioquia, AA 7516 Medellín (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2014-03-15

    In this work, the conduction band electron states and the associated intersubband-related linear and nonlinear optical absorption coefficient and relative refractive index change are calculated for an asymmetric double n-type δ-doped quantum well in a GaAs-matrix. The effects of an external applied static electric field are included. Values of the two-dimensional impurities density (N{sub 2d}) of each single δ-doped quantum well are taken to vary within the range of 1.0×10{sup 12} to 7.0×10{sup 12} cm{sup −2}, consistent with the experimental data growth regime. The optical responses are reported as a function of the δ-doped impurities density and the applied electric field. It is shown that single electron states and the related optical quantities are significantly affected by the structural asymmetry of the double δ-doped quantum well system. In addition, a brief comparison with the free-carrier-related optical response is presented. -- Highlights: • Nonlinear optics in asymmetric double n-type δ-doped quantum well in a GaAs-matrix. • The system is considered under external applied electric field in growth direction. • The 2D impurity density is consistent with the experimental data growth regime. • The optical quantities are significantly affected by the structural asymmetry of the system.

  20. Effect of the product type, of the amount of applied sunscreen product and the level of protection in the UVB range on the level of protection achieved in the UVA range.

    Science.gov (United States)

    Couteau, C; Diarra, H; Coiffard, L

    2016-03-16

    Using a topical product is part of the overall strategy for skin cancer prevention. The level of protection attainable when using commercial products is indicated by the Sun Protection Factor (SPF) value, in use everywhere. This value reflects the level of protection primarily in the UVB range. However, UVA radiation also has deleterious effects on the skin, and it is essential to prevent it, which is why products must offer a wide spectrum of protection. Tests conducted in vivo, before any marketing, are done by applying the studied product at a rate of 2.0 mg cm(-2), while users, in practice, only use 1.0-1.5 mg cm(-2). We now know that this reduction in the amount of applied product greatly affects the SPF. To complete the state of knowledge in this area, we sought to evaluate the effect of a decrease in the amount of applied sunscreen product by studying sunscreen creams and oils on the level of protection attainable in the UVA range. We have shown that the PF-UVA is divided by a factor of 2.2, on average, when the amount of applied product is reduced by half, with differences depending on the product type under consideration (cream or oil) and depending on the SPF of the preparation. PMID:26806467

  1. Thin film scintillators

    Science.gov (United States)

    McDonald, Warren; McKinney, George; Tzolov, Marian

    2015-03-01

    Scintillating materials convert energy flux (particles or electromagnetic waves) into light with spectral characteristic matching a subsequent light detector. Commercial scintillators such as yttrium aluminum garnet (YAG) and yttrium aluminum perovskite (YAP) are commonly used. These are inefficient at lower energies due to the conductive coating present on their top surface, which is needed to avoid charging. We hypothesize that nano-structured thin film scintillators will outperform the commercial scintillators at low electron energies. We have developed alternative thin film scintillators, zinc tungstate and zinc oxide, which show promise for higher sensitivity to lower energy electrons since they are inherently conductive. Zinc tungstate films exhibit photoluminescence quantum efficiency of 74%. Cathodoluminescence spectroscopy was applied in transmission and reflection geometries. The comparison between the thin films and the YAG and YAP commercial scintillators shows much higher light output from the zinc tungstate and zinc oxide at electron energies less than 5 keV. Our films were integrated in a backscattered electron detector. This detector delivers better images than an identical detector with commercial YAG scintillator at low electron energies. Dr. Nicholas Barbi from PulseTor LLC, Dr. Anura Goonewardene, NSF Grants: #0806660, #1058829, #0923047.

  2. Impact of thermal oxygen annealing on the properties of tin oxide films and characteristics of p-type thin-film transistors

    Science.gov (United States)

    Zhong, Chia-Wen; Lin, Horng-Chih; Liu, Kou-Chen; Huang, Tiao-Yuan

    2016-01-01

    In this work, we study the properties of tin oxide films, which were annealed in oxygen ambient for various periods. The as-deposited tin oxides are tin-dominant and, from the Hall measurements, they are of the n-type with high electron concentrations (>1019 cm-3) and would change to the p-type when the oxygen annealing is sufficiently long. We have also found that changes in the structure and crystallinity of the channel layer can be clearly observed by X-ray diffraction analysis and optical microscopy. On the basis of the observations, a physical scheme is proposed to describe the evolution of the electrical performance of oxygen-annealed devices. A hole mobility of 3.24 cm2 V-1 s-1, a subthreshold swing of 0.43 V/dec, a threshold voltage of 1.4 V, and an on/off current ratio larger than 103 are obtained as the channel is transformed into SnO.

  3. The effect of a flat-plate-type obstacle on the thin liquid film accompanied by a high speed gas flow

    International Nuclear Information System (INIS)

    A flatplate-type obstacle, which simulates a grid-type spacer in a nuclear reactor, is set in an air-water cocurrent stratified flow to investigate liquid film breakdown occurring near the obstacle. We made detailed visual observations and measurements of the velocity profile of the air flow and the axial distributions of liquid film thickness and static pressure near the obstacle. Experimental parameters were the inclination of the rectangular duct, the configuration of the obstacle, i.e., with and without a projection and a hole, which is bored in order to delay the onset of dry patch formation near the obstacle and the gap between the plate and the lower-wall surface. The results show that the plate itself does not promote dry patch formation but the projection, even if it is in contact with the wall surface at only one point, has a strong effect on the liquid film breakdown. In general the film breakdown occurs in front of the projection in a wide range of flow conditions due to the leading edge down-wash of the stream and due also to the rejection of water by gravitational force in the case of the upward flow in the inclined duct. By setting a hole in or in front of the projection the occurrence of the dry patch formation is delayed. (author)

  4. Applying radiation

    International Nuclear Information System (INIS)

    The invention discloses a method and apparatus for applying radiation by producing X-rays of a selected spectrum and intensity and directing them to a desired location. Radiant energy is directed from a laser onto a target to produce such X-rays at the target, which is so positioned adjacent to the desired location as to emit the X-rays toward the desired location; or such X-rays are produced in a region away from the desired location, and are channeled to the desired location. The radiant energy directing means may be shaped (as with bends; adjustable, if desired) to circumvent any obstruction between the laser and the target. Similarly, the X-ray channeling means may be shaped (as with fixed or adjustable bends) to circumvent any obstruction between the region where the X-rays are produced and the desired location. For producing a radiograph in a living organism the X-rays are provided in a short pulse to avoid any blurring of the radiograph from movement of or in the organism. For altering tissue in a living organism the selected spectrum and intensity are such as to affect substantially the tissue in a preselected volume without injuring nearby tissue. Typically, the selected spectrum comprises the range of about 0.1 to 100 keV, and the intensity is selected to provide about 100 to 1000 rads at the desired location. The X-rays may be produced by stimulated emission thereof, typically in a single direction

  5. On milling of thin-wall conical and tubular workpieces

    Science.gov (United States)

    Tsai, Mu-Ping; Tsai, Nan-Chyuan; Yeh, Cheng-Wei

    2016-05-01

    Thin-wall tubular-geometry workpieces have been widely applied in aircraft and medical industries. However, due to the special geometry of this kind of workpieces and induced poor machinability, the desired accuracy of machining tends to be greatly degraded, no matter what type of metal-cutting task such as milling, drilling or turning is undertaken. Though numerous research reports are available that the tool path can be planned on the basis of preset surface profile before actual milling operation is performed, it is still difficult to predict the real-time surface profile errors for peripheral milling of thin-wall tubular workpieces. Instead of relying on tool path planning, this research is focused on how to real-time formulate the appropriate applied cutting torque via feedback of spindle motor current. On the other hand, a few suitable cutting conditions which are able to prevent potential break/crack of thin-wall workpieces and enhance productivity but almost retain the same cutting quality is proposed in this research. To achieve this goal, estimated surface profile error on machined parts due to deflections caused by both tool and workpiece is studied at first. Traditionally, by adjusting cutting parameters such as feed rate or cut depth, the deflection of tool or workpiece can be expected not to exceed the specified limit. Instead, an effective feedback control loop is proposed by this work for applying real-time appropriate applied cutting torque to prevent potential break/crack of the thin-wall conical workpieces. The torque estimation approach by spindle motor current feedback and the corresponding fuzzy logic controller are employed. Compared with constant cutting torque during milling operation in tradition manner, it is observed that the time consumption of milling cycle by aid of the aforesaid fuzzy logic controller is greatly shortened while the resulted cutting accuracy upon finish of workpiece can be almost retained.

  6. Radio frequency plasma deposited boron doped high conductivity p-type nano crystalline silicon oxide thin film for solar cell window layer

    International Nuclear Information System (INIS)

    Wide band gap p-type nano crystalline silicon oxide (p-nc-SiO:H) window layer is useful for multi junction solar cells. We prepared such a material by using high hydrogen dilution and low plasma power that shows high optical gap as well as high conductivity. By varying CO2 flow rates of from 0.3 to 2.5 sccm we obtained the films with crystallite volume fraction (Xc) ranging from 43.7% to 4.5%, while by decreasing the plasma power density from 426, to 28 mW/cm2 the Xc was observed to increase from 14.0% to 45.8%. At a high plasma power the hydrogen dilution did not show significant change in film properties. The electrical conductivity and activation energy was observed to be favorable at low plasma power density, which was 3.4 × 10−2 S cm−1 and 0.102 eV respectively at 28 mW/cm2 plasma power density. It is expected that at a low plasma power a large number of SiH3 radicals actively take part in film deposition, leading to an improved film properties. Solar cells fabricated with the selected p-nc-SiO:H, shows improved short wavelength response of the quantum efficiency, indicating the advantage of using such p-type materials. The optical gap of these p-nc-SiO:H films were in the range of 1.784 to 2.130 eV. - Highlights: • Highly conducting p-type nc-SiO:H films were prepared. • Dark conductivity of 3.4 × 10−2 S cm−1 and activation energy 0.102 eV were obtained. • SiH4, CO2, H2, B2H6, PH3 source gases were used for solar cell fabrication. • Improved blue response of the quantum efficiency of the cell was observed

  7. Investigation of L-cystine assisted Cu3BiS 3 synthesis for energetically and environmentally improved integration as thin-film solar cell p-type semiconductor absorber

    Science.gov (United States)

    Viezbicke, Brian D.

    Solar photovoltaic energy technology is increasingly implemented in response to continuously growing global energy needs. While legacy technology utilizing silicon has captured much of the market, thin-film solar modules are projected to rise particularly in the U.S. production sector. Current materials utilized in production and deployment encounter resource and environmental impact constraints. This research investigates the viably controllable synthesis of multi-crystalline copper bismuth sulfide for potential use as an absorber layer in thin-film solar cells and early investigation of thin-film growth parameters which may enable a cost-effective route to full scale production of epitaxial copper bismuth sulfide films. The first step of this investigation has entailed a novel route for the solvo-thermally grown Cu3BiS 3 films facilitated by L-cystine as a sulfur donating and complexing agent. In the characterization of the nanoparticulate product UV-VIS spectra were analyzed via the Tauc method of bandgap interpolation. The validity of the Tauc method in application to polycrystalline films has been investigated and proven to be robust for the material class. This justifies the bandgap assessment of the subject material and provides support for wider use of the method. With the synthesis method established, the reaction was transferred to a custom built continuous flow reactor to explore this process and help understand its capabilities and limits with respect to producing single layers for an eventual photovoltaic cell stack. Though the published work has established novel chemistry, the need to deposit and/or grow a functional p-type layer for further characterization and eventual device incorporation is key to the material evolution. First evidence of continuous flow micro-reactor deposition of Cu3BiS3 has been shown with an array of resulting microstructures. The grown microstructures are evaluated with relevance to prior synthesis laboratory procedure and

  8. Electrical and optical characteristics of Au/PbS/n-6H-SiC structures prepared by electrodeposition of PbS thin film on n-type 6H-SiC substrate

    Energy Technology Data Exchange (ETDEWEB)

    Guelen, Y. [Department of Physics, Faculty of Sciences, Ataturk University, 25240 Erzurum (Turkey); Alanyalioglu, M. [Department of Chemistry, Faculty of Sciences, Ataturk University, 25240 Erzurum (Turkey); Ejderha, K. [Department of Physics, Faculty of Sciences and Arts, Bingoel University, Bingoel (Turkey); Nuhoglu, C. [Department of Physics, Faculty of Sciences, Ataturk University, 25240 Erzurum (Turkey); Turut, A., E-mail: aturut@atauni.edu.tr [Department of Physics, Faculty of Sciences, Ataturk University, 25240 Erzurum (Turkey)

    2011-02-10

    Research highlights: > The diffraction profile of the PbS thin film from XRD experiments has been extracted. > An optical energy band gap value of the PbS film was obtained from the optical absorption spectra. > The Au/PbS/n-6H-SiC Schottky diodes have been formed. > The Schottky barrier height increase has been succeeded by the PbS interlayer. - Abstract: To realize Schottky barrier height (SBH) modification in the Au/n-6H-SiC Schottky diodes, lead sulfide (PbS) thin films were grown on n-6H-SiC by electrodeposition method. At first, XRD experiments were performed to investigate the crystal structure of the PbS film electrodeposited on n-6H-SiC. It has been deduced from the diffraction profile that the PbS thin film has a crystal structure more strongly oriented along the [2 0 0] direction. An optical energy band gap value of 1.42 eV for the PbS film was obtained from its optical absorption spectra. Then, we have prepared Au/PbS/n-6H-SiC Schottky barrier diodes (SBDs) with interface layer and reference Au/n-6H-SiC/Ni SBDs. The SBH enhancement has been succeeded by the PbS interlayer, influencing the space charge region of the SiC. The SBH values of 1.03 and 0.97 eV for the samples with and without the interfacial PbS layer were obtained from the forward bias current-voltage (I-V) characteristics. The SBH increase in the Au/PbS/n-6H-SiC SBD with the interfacial PbS layer has been attributed to the fact that the interface states contain a net negative interface charge in metal/n-type semiconductor contact due to the presence of the interfacial PbS layer.

  9. Electrical and optical characteristics of Au/PbS/n-6H-SiC structures prepared by electrodeposition of PbS thin film on n-type 6H-SiC substrate

    International Nuclear Information System (INIS)

    Research highlights: → The diffraction profile of the PbS thin film from XRD experiments has been extracted. → An optical energy band gap value of the PbS film was obtained from the optical absorption spectra. → The Au/PbS/n-6H-SiC Schottky diodes have been formed. → The Schottky barrier height increase has been succeeded by the PbS interlayer. - Abstract: To realize Schottky barrier height (SBH) modification in the Au/n-6H-SiC Schottky diodes, lead sulfide (PbS) thin films were grown on n-6H-SiC by electrodeposition method. At first, XRD experiments were performed to investigate the crystal structure of the PbS film electrodeposited on n-6H-SiC. It has been deduced from the diffraction profile that the PbS thin film has a crystal structure more strongly oriented along the [2 0 0] direction. An optical energy band gap value of 1.42 eV for the PbS film was obtained from its optical absorption spectra. Then, we have prepared Au/PbS/n-6H-SiC Schottky barrier diodes (SBDs) with interface layer and reference Au/n-6H-SiC/Ni SBDs. The SBH enhancement has been succeeded by the PbS interlayer, influencing the space charge region of the SiC. The SBH values of 1.03 and 0.97 eV for the samples with and without the interfacial PbS layer were obtained from the forward bias current-voltage (I-V) characteristics. The SBH increase in the Au/PbS/n-6H-SiC SBD with the interfacial PbS layer has been attributed to the fact that the interface states contain a net negative interface charge in metal/n-type semiconductor contact due to the presence of the interfacial PbS layer.

  10. Optical Sensing Circuit Using Low-Temperature Polycrystalline Silicon p-Type Thin-Film Transistors and p-Intrinsic-Metal Diode for Active Matrix Displays with Optical Input Functions

    Science.gov (United States)

    Lim, Han-Sin; Kwon, Oh-Kyong

    2009-03-01

    An optical sensing circuit composed of low-temperature polycrystalline silicon (LTPS) p-type thin-film transistors (TFTs) and a p-intrinsic-metal (p-i-m) diode is proposed for image scanning and touch sensing functions. Because it is a very difficult challenge to integrate both display pixels and optical sensing circuits into the restricted pixel area, the number of additional devices and control signal lines must be minimized. Therefore, two p-type TFTs, one p-i-m diode, one capacitor, and one signal line are added to display pixel for the proposed optical sensing circuit. Active matrix liquid crystal display (AMLCD) and active matrix organic light-emitting diode (AMOLED) pixels with the proposed optical sensing circuit have image scanning and touch sensing functions, respectively. Through the measurement of the proposed circuit under the condition of incident light varying from 0 to 10,000 lx, we verified that the dynamic and output ranges of the proposed circuit are 30 dB and 1.5 V, respectively.

  11. Photovoltaics. Thin future?

    International Nuclear Information System (INIS)

    Since the year 2000, Germany has operated a tariff system to encourage development of renewable energy sources and one of the results has been an increase in the country's PV market from 12 MWp in 1999 to 600 MWp in 2005. Other states have followed the German example and details are given. But, many of these other states operate a capping programme that restricts growth. At present, Germany has by far the greatest share of both the world and the European markets.Trends for small-scale and residential PV systems for Europe and trends in large-scale systems in Europe are discussed and the key differences highlighted. The future impact of the higher efficiency thin-film modules on low-efficiency crystalline modules is discussed. Not only will the thin film types be cheaper, they will also offer reductions on the BOS (balance-of-system) level by about the year 2010. The reasons why the BOS cost savings in large-scale systems are higher than for roof-top systems is explained. In southern Europe, thin film modules have the additional benefit of a low power temperature factor and therefore a higher yield per kWp

  12. Radio polarization maps of shell-type supernova remnants - I. Effects of a random magnetic field component and thin-shell models

    Science.gov (United States)

    Bandiera, R.; Petruk, O.

    2016-06-01

    The maps of intensity and polarization of the radio synchrotron emission from shell-type supernova remnants (SNRs) contain a considerable amount of information, although of not easy interpretation. With the aim of deriving constraints on the 3D spatial distribution of the emissivity, as well as on the structure of both ordered and random magnetic fields (MFs), we present here a scheme to model maps of the emission and polarization in SNRs. We first generalize the classical treatment of the synchrotron emission to the case in which the MF is composed of an ordered MF plus an isotropic random component, with arbitrary relative strengths. For a power-law particle energy distribution, we derive analytic formulae that formally resemble those for the classical case. We also treat the shock compression of a fully random upstream field and we predict that the polarization fraction in this case should be higher than typically measured in SNRs. We implement the above treatment into a code, which simulates the observed polarized emission of an emitting shell, taking into account also the effect of the internal Faraday rotation. Finally, we show simulated maps for different orientations with respect to the observer, levels of the turbulent MF component, Faraday rotation levels, distributions of the emissivity (either barrel-shaped or limited to polar caps) and geometries for the ordered MF component (either tangential to the shell or radial). Their analysis allows us to outline properties useful for the interpretation of radio intensity and polarization maps.

  13. Low resistivity contact on n-type Ge using low work-function Yb with a thin TiO2 interfacial layer

    Science.gov (United States)

    Dev, Sachin; Remesh, Nayana; Rawal, Yaksh; Manik, Prashanth Paramahans; Wood, Bingxi; Lodha, Saurabh

    2016-03-01

    This work demonstrates the benefit of a lower contact barrier height, and hence reduced contact resistivity (ρc), using a low work-function metal (Yb) in unpinned metal-interfacial layer-semiconductor (MIS) contacts on n-type Ge. Fermi-level unpinning in MIS contacts on n-Ge is first established by introducing a 2 nm TiO2-x interfacial layer between various contact metals (Yb, Ti, Ni, Pt) and n-Ge. Further, Yb/TiO2-x/n-Ge MIS contact diodes exhibit higher current densities (up to 100×) and lower effective contact barrier height (up to 30%) versus Ti/TiO2-x control devices over a wide range of TiO2-x thickness (1-5 nm). Finally, low work-function Yb combined with doped TiO2-x having a low conduction band offset with Ge and high substrate doping (n+-Ge: 2.5 ×1019 cm-3) is shown to result in an ultra-low ρc value of 1.4 × 10-8 Ω cm2, 10 × lower than Ti/TiO2-x control devices.

  14. Radio polarization maps of shell-type SNRs I. Effects of a random magnetic field component, and thin-shell models

    CERN Document Server

    Bandiera, Rino

    2016-01-01

    The maps of intensity and polarization of the radio synchrotron emission from shell-type supernova remnants (SNRs) contain a considerable amount of information, although of not easy interpretation. With the aim of deriving constraints on the 3-D spatial distribution of the emissivity, as well as on the structure of both ordered and random magnetic fields (MFs), we present here a scheme to model maps of the emission and polarization in SNRs. We first generalize the classical treatment of the synchrotron emission to the case in which the MF is composed by an ordered MF plus an isotropic random component, with arbitrary relative strengths. In the case of a power-law particle energy distribution, we derive analytic formulae that formally resemble those for the classical case. We also treat the case of a shock compression of a fully random upstream field and we predict that the polarization fraction in this case should be higher than typically measured in SNRs. We implement the above treatment into a code, which s...

  15. 超大体积薄壁渡槽施工温控技术及其应用%Temperature Control Technology and Applied Research of Large Volume Thin-wall Aqueduct

    Institute of Scientific and Technical Information of China (English)

    蒋俊峰

    2014-01-01

    Aqueduct engineering is an important link in the south-north water diversion project. The concrete crack control is particularly important because of the characteristic of the aqueduct thin-wall structure. In order to better preferably guide pro-duction and avoid quality problems of engineering, it was needed to analyze and research the mechanism of cracks and rea-sons by combining with the actual construction process strictly control the cracks in mass concrete and aqueduct project con-struction process of hydration heat simulation. Then, the paper was discussed taking heat preservation, water cooling, pouring and dismantles time and anti-cracking measures. Finally, the paper was purposefully put forward effective crack control scheme and measures, which improved the quality of engineering, guiding the project construction and achieved the an-ti-cracking goal of during the construction.%渡槽工程为南水北调工程的一个重要环节,由于渡槽薄壁结构的特点,其混凝土裂缝控制变得尤为重要。为了更好地指导生产,避免工程出现质量问题,需要结合实际施工过程,对大体积混凝土及裂缝需要严格控制的渡槽工程进行施工过程的水化热仿真分析,研究裂缝的机理及产生的原因。对采取保温、通水冷却、浇筑时间及拆模时间等防裂措施进行探讨,有针对性地提出行之有效的温控防裂方案和措施,提高工程质量,指导了工程施工,达到渡槽混凝土施工期防裂的目的。

  16. Efficient and ultrafast formation of long-lived charge-transfer exciton state in atomically thin cadmium selenide/cadmium telluride type-II heteronanosheets.

    Science.gov (United States)

    Wu, Kaifeng; Li, Qiuyang; Jia, Yanyan; McBride, James R; Xie, Zhao-xiong; Lian, Tianquan

    2015-01-27

    Colloidal cadmium chalcogenide nanosheets with atomically precise thickness of a few atomic layers and size of 10-100 nm are two-dimensional (2D) quantum well materials with strong and precise quantum confinement in the thickness direction. Despite their many advantageous properties, excitons in these and other 2D metal chalcogenide materials are short-lived due to large radiative and nonradiative recombination rates, hindering their applications as light harvesting and charge separation/transport materials for solar energy conversion. We showed that these problems could be overcome in type-II CdSe/CdTe core/crown heteronanosheets (with CdTe crown laterally extending on the CdSe nanosheet core). Photoluminesence excitation measurement revealed that nearly all excitons generated in the CdSe and CdTe domains localized to the CdSe/CdTe interface to form long-lived charge transfer excitons (with electrons in the CdSe domain and hole in the CdTe domain). By ultrafast transient absorption spectroscopy, we showed that the efficient exciton localization efficiency could be attributed to ultrafast exciton localization (0.64 ± 0.07 ps), which was facilitated by large in-plane exciton mobility in these 2D materials and competed effectively with exiton trapping at the CdSe or CdTe domains. The spatial separation of electrons and holes across the CdSe/CdTe heterojunction effectively suppressed radiative and nonradiative recombination processes, leading to a long-lived charge transfer exciton state with a half-life of ∼ 41.7 ± 2.5 ns, ∼ 30 times longer than core-only CdSe nanosheets. PMID:25548944

  17. Resistive transitions under applied fields in oriented thin films of Y0.6Pr0.4Ba2Cu3O7: Evidence for conventional three-dimensional behavior

    International Nuclear Information System (INIS)

    We report a detailed study of the resistive transitions in oriented films of Y0.6Pr0.4Ba2Cu3O7 (PYBCO) under applied fields. Our analysis shows a more conventional three-dimensional behavior, with no giant flux-creep effects, and a considerable increase in the coherence length as compared to that of Y1Ba2Cu3O7 (YBCO), both in the in-plane and out-of-plane directions. This large increase cannot be explained by just the magnetic pair breaking supposedly responsible for the decrease in the critical temperature. It is proposed that the extended 4f wave functions of the Pr atoms lead to a strong coupling between CuO plane, thus removing the van Hove singularity responsible for the anomalously short coherence length in YBCO

  18. Applied longitudinal analysis

    CERN Document Server

    Fitzmaurice, Garrett M; Ware, James H

    2012-01-01

    Praise for the First Edition "". . . [this book] should be on the shelf of everyone interested in . . . longitudinal data analysis.""-Journal of the American Statistical Association   Features newly developed topics and applications of the analysis of longitudinal data Applied Longitudinal Analysis, Second Edition presents modern methods for analyzing data from longitudinal studies and now features the latest state-of-the-art techniques. The book emphasizes practical, rather than theoretical, aspects of methods for the analysis of diverse types of lo

  19. Microscopic thin film optical anisotropy imaging at the solid-liquid interface

    Science.gov (United States)

    Miranda, Adelaide; De Beule, Pieter A. A.

    2016-04-01

    Optical anisotropy of thin films has been widely investigated through ellipsometry, whereby typically an optical signal is averaged over a ˜1 cm2 elliptical area that extends with increasing angle-of-incidence (AOI). Here, we report on spectroscopic imaging ellipsometry at the solid-liquid interface applied to a supported lipid bilayer (SLB). We detail how a differential spectrally resolved ellipsometry measurement, between samples with and without optically anisotropic thin film on an absorbing substrate, can be applied to recover in and out of plane refractive indices of the thin film with known film thickness, hence determining the thin film optical anisotropy. We also present how optimal wavelength and AOI settings can be determined ensuring low parameter cross correlation between the refractive indices to be determined from a differential measurement in Δ ellipsometry angle. Furthermore, we detail a Monte Carlo type analysis that allows one to determine the minimal required optical ellipsometry resolution to recover a given thin film anisotropy. We conclude by presenting a new setup for a spectroscopic imaging ellipsometry based on fiber supercontinuum laser technology, multi-wavelength diode system, and an improved liquid cell design, delivering a 5 ×-10 × ellipsometric noise reduction over state-of-the-art. We attribute this improvement to increased ellipsometer illumination power and a reduced light path in liquid through the use of a water dipping objective.

  20. Numerical analysis of residual stresses in preforms of stress applying part for PANDA-type polarization maintaining optical fibers in view of technological imperfections of the doped zone geometry

    Science.gov (United States)

    Trufanov, Aleksandr N.; Trufanov, Nikolay A.; Semenov, Nikita V.

    2016-09-01

    The experimental data analysis of the stress applying rod section geometry for the PANDA-type polarization maintaining optical fiber has been performed. The dependencies of the change in the radial dimensions of the preform and the doping boundary on the angular coordinate have been obtained. The original algorithm of experimental data statistic analysis, which enables determination of the specimens' characteristic form of section, has been described. The influence of actual doped zone geometry on the residual stress fields formed during the stress rod preform fabrication has been investigated. It has been established that the deviation of the boundary between pure silica and the doped zone from the circular shape results in dissymmetry and local concentrations of the residual stress fields along the section, which can cause preforms destruction at high degrees of doping. The observed geometry deviations of up to 10% lead to the increase of the maximum stress intensity value by over 20%.

  1. [Obesity and thinness in painting].

    Science.gov (United States)

    Schüller Pérez, Amador

    2004-01-01

    The obesity, serious frequenty sanitary problem, cause of complications that effects to the expectation of life, with aesthetic repercussion and with an increase in the last decades. Admitted the obesity android, gynoide, central or abdominal, wide aesthetic repercussion and physiopathologic like hyperdislipemias, metabolic alterations (diabetes mellitus, etc...), arterial hypertension, column arthrosis and outlying. Ethiopathologics co-factors, sedentariness, genotypic predisposition, endocrine alterations and of the leptina secretion. Illustrative cases of obesity in the painting of those that characteristic models are exposed, from slight grades to intense affecting to both genders. The thinness counterpoint of the obesity, multicausal process, less frequent than the obesity with aesthetic and psychological repercussion. It is the formed aesthetic thinness to the diverse types physiopathologic, without forgetting the constitutional and family form and the anorexy, the serial ones to disasters, wars, famines, etc..., the mystic thinness of saints and ascetics, and the serial one to consuming processes. PMID:15997591

  2. Highly-conformal p-type copper(I) oxide (Cu{sub 2}O) thin films by atomic layer deposition using a fluorine-free amino-alkoxide precursor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hangil; Lee, Min Young [School of Materials Science and Engineering, Yeungnam University, 214-1, Dae-dong, Gyeongsan-si 712-749 (Korea, Republic of); Kim, Soo-Hyun, E-mail: soohyun@ynu.ac.kr [School of Materials Science and Engineering, Yeungnam University, 214-1, Dae-dong, Gyeongsan-si 712-749 (Korea, Republic of); Bae, So Ik [Global Frontier R& D Center for Hybrid Interface Materials, Busan 609-735 (Korea, Republic of); Ko, Kyung Yong; Kim, Hyungjun [School of Electrical Engineering, Yonsei University, 50 Yonsei-Ro. Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Kwon, Kyeong-Woo; Hwang, Jin-Ha [Department of Materials Science & Engineering, Hongik University, Seoul 121-791 (Korea, Republic of); Lee, Do-Joong [School of Engineering, Brown University, Providence, RI 02912 (United States)

    2015-09-15

    Highlights: • Atomic layer deposition (ALD) of Cu{sub 2}O using a fluorine-free amino-alkoxide precursor. • The formation of pure and stoichiometric Cu{sub 2}O thin film by ALD. • Remarkable step coverage at 25 nm trench (aspect ratio: 4.5) and 1.14-μm-high Si nanowires (aspect ratio: 7.6). • p-Type properties with a Hall mobility of 8.05 cm{sup 2}/V s and optical band gap of 2.52 eV. - Abstract: A highly-conformal and stoichiometric p-type cuprous copper(I) oxide (Cu{sub 2}O) thin films were grown using atomic layer deposition (ALD) by a fluorine-free amino-alkoxide Cu precursor, bis(1-dimethylamino-2-methyl-2-butoxy)copper (C{sub 14}H{sub 32}N{sub 2}O{sub 2}Cu), and water vapor (H{sub 2}O). Among tested deposition temperatures ranging from 120 to 240 °C, a self-limited film growth was clearly confirmed for both precursor and reactant pulsing times at 140 °C. Between 140 and 160 °C, the process exhibited an almost constant growth rate of ∼0.013 nm/cycle and a negligible number of incubation cycles (approximately 6 cycles). The Cu{sub 2}O films deposited at the optimal temperature (e.g. 140 °C) showed better properties in view of their crystallinity and roughness compared to the films deposited at higher temperatures. Rutherford backscattering spectrometry showed that the film deposited at 140 °C was almost stoichiometric (a ratio of Cu and O ∼2: 1.1) with negligible C and N impurities. X-ray photoelectron spectroscopy further revealed that Cu and O in the film mostly formed Cu{sub 2}O bonding rather than CuO bonding. Plan-view transmission electron microscopy analysis showed formation of densely packed crystal grains with a cubic crystal structure of cuprous Cu{sub 2}O. The step coverage of ALD-Cu{sub 2}O film was remarkable, approximately 100%, over 1.14-μm-high Si nanowires with an aspect ratio (AR) of 7.6:1 and onto nano-trenches (top opening width: 25 nm) with an AR of 4.5:1. Spectroscopic ellipsometry was employed to determine optical

  3. Physics of thin films

    Energy Technology Data Exchange (ETDEWEB)

    Francombe, M.H. (Dept. of Physics, Univ. of Pittsburgh, Pittsburgh, PA (US)); Vossen, J.L. (John Vossen Associates, Technical and Scientific Consulting, Bridgewater, NJ (US))

    1992-01-01

    This book of Physics of Thin Films emphasizes two main technical themes. The first is essentially an extension of the topical thrust on Thin Films for Advance Electronic Devices, developed in Volume 15 of this series. The second deals primarily with the physical and mechanical behavior of films and the influence of these in relation to various applications. The first of the four articles in this volume, by Neelkanth G. Dhere, discusses high-transition-temperature (T{sub c}) superconducting films. Since their discovery in 1986, both world-wide research activity and published literature on high-T{sub c} oxide films have exploded at a phenomenal rate. In his treatment, the author presents an effective survey of the already vast literature on this subject, discusses the numerous techniques under development for the growth of these perovskite-related complex oxides, and describes their key properties and applications. In particular, factors affecting the epitaxial structure, critical current capability, and microwave conductivity in Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O based film compositions are evaluated in relation to their use at 77K. An overview of potential applications in a variety of microwave devices, wide-band optical detectors, SQUID-type high-sensitivity magnetometers, etc., is included.

  4. Physics of thin films

    International Nuclear Information System (INIS)

    This book of Physics of Thin Films emphasizes two main technical themes. The first is essentially an extension of the topical thrust on Thin Films for Advance Electronic Devices, developed in Volume 15 of this series. The second deals primarily with the physical and mechanical behavior of films and the influence of these in relation to various applications. The first of the four articles in this volume, by Neelkanth G. Dhere, discusses high-transition-temperature (Tc) superconducting films. Since their discovery in 1986, both world-wide research activity and published literature on high-Tc oxide films have exploded at a phenomenal rate. In his treatment, the author presents an effective survey of the already vast literature on this subject, discusses the numerous techniques under development for the growth of these perovskite-related complex oxides, and describes their key properties and applications. In particular, factors affecting the epitaxial structure, critical current capability, and microwave conductivity in Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O based film compositions are evaluated in relation to their use at 77K. An overview of potential applications in a variety of microwave devices, wide-band optical detectors, SQUID-type high-sensitivity magnetometers, etc., is included

  5. Thin film bismuth iron oxides useful for piezoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy

    2016-05-31

    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.

  6. Closed Type Solar System Applied in the Study of Individual Units%闭式太阳能系统应用于独立单元的研究

    Institute of Scientific and Technical Information of China (English)

    汪国庆; 王英; 徐克平; 洪映林; 范杞山

    2014-01-01

    目前,闭式太阳能系统一般应用于整体供热的大系统中,不应用于分散独立的单元中,探讨闭式太阳能系统应用于分散独立单元有较大的实际意义。在居民建筑顶面(或是南方位立面)安装太阳能聚热器、太阳能光伏板、小水泵,在卫生间、厨房等热水应用点安装热水保温箱,通过利用太阳能光伏板电能驱动水泵,对闭式太阳能系统进行强制循环,保证室内保温箱上部充满热水满足使用需求。实践证明闭式太阳能系统应用于独立单元能与建筑有机结合在一起,获得较协调的建筑视角效果,提高太阳能热水的利用效率,有效节约水资源,取得了良好的经济效率。%Currently,closed solar heating systems are generally used in large systems as a whole,does not apply to disperse a separate unit.It has an important practical significance to explore the closed solar system applied to dispersion independent unit.Solar poly heater,solar photovoltaic panels and small pumps are installed in the top of the building (or the south facade).In bathroom,kitchen and other hot water applications point,hot water incubator are installed.The closed type solar energy system is forced circulation by using solar energy photovoltaic panels power driven pumps.It can assure indoor incubator upper filled with hot water meets the requirements.It has been proved in practice that closed solar system can be applied to independent unit together with the construction closely.The coordination architecture perspective effected and the good economic efficiency are obtained by using the system.At the same time,the system can increase the efficiency of the use of solar energy hot water,save the water resource effectively.

  7. Applying the pre-intentional phase of the Health Action Process Approach (HAPA) Model to investigate factors associated with intention on consistent condom use with various types of female sex partners among males who inject drugs in China.

    Science.gov (United States)

    Tsui, Hi Yi; Lau, Joseph T F; Wang, Zixin; Gross, Danielle L; Wu, Anise M S; Cao, Wangnan; Gu, Jing; Li, Suning

    2016-09-01

    Both drug injection and sexual transmission are the primary drivers of the HIV epidemic in China. This study investigated the prevalence and associated factors of intention of consistent condom use during sexual intercourse with female regular partners (RP), non-regular partners (NRP) and sex workers (FSW) among male people who inject drugs (PWID)in China. A total of 529 male non-institutionalized PWID aged 18-45 years with negative/unknown HIV status were recruited by multiple methods in Dazhou and Hengyang, China. The constructs of the pre-intention phase of the Health Action Process Approach (HAPA) Model, including partner-specific HIV risk perception, condom use positive outcome expectancies, condom use negative outcome expectancies, and self-efficacy of condom use, were assessed. The prevalence of behavioral intention of consistent condom use with RP, NRP, and FSW was 32.1%, 49.1%, and 63.6%, respectively. In multivariate stepwise analysis, conditional risk perception of HIV transmission via unprotected sex with RP/NRP/FSW was associated with intention of consistent condom use with these types of female sex partners (multivariate odds ratio (ORm) = 3.25-7.06). Condom use negative outcome expectancies were associated with intention of consistent condom use with RP and NRP (ORm = 0.30-0.46), while condom use self-efficacy was associated with intention of consistent condom use with RP and FSW in the next six months (ORm = 2.24-3.81). Male PWID are at high risk of HIV transmission through sexual behaviors. The pre-intention phase of the HAPA model may be applied to plan interventions to increase behavioral intention of consistent condom use with various types of female partners. Such interventions are warranted. PMID:26882352

  8. Failure mechanisms in thin rubber sheet composites under static solicitation

    Directory of Open Access Journals (Sweden)

    E. Bayraktar

    2007-03-01

    Full Text Available Purpose: Mechanical behaviour and damage mechanisms in thin rubber sheet composites were investigated under static solicitation at room temperature. Two types of rubber are used in this study; Natural rubber, NR vulcanised and reinforced by carbon black and Synthetic rubber (styrene-butadiene-rubber, SBR.Design/methodology/approach: A comprehensive study has been carried out in order to identify a threshold criterion for the damage mechanism to explain a tearing criterion for the concept of tearing energy of the elastomers and also to give a detail for the damage mechanism depending on the loading conditions. A typical type of specimen geometry of thin sheet rubber composite materials was studied under static tensile tests conducted on the smooth and notched specimens with variable depths. In this way, the effects of the plane stress on the damage mechanism are characterized depending on the rubber materials.Findings: Damage mechanisms during tensile test have been described for both of rubber types and the criteria which characterize the tearing resistance, characteristic energy for tearing (T was explained. Damage in the specimens were evaluated just at the beginning of the tearing by means of the observations in the scanning electron microscopy (SEM.Practical implications: A tearing criterion was suggested in the case of simple tension conditions by assuming large strain. In the next step of this study, a finite element analysis (FEA will be applied under the same conditions of this part in order to obtain the agreement between experimental and FEA results.Originality/value: This study propses a threshold criterion for the damage just at the beginning of the tearing for thin sheet rubber composites and gives a detail discussion for explaining the damage mechanisms by SEM results. This type of study gives many facilities for the sake of simplicity in industrial application.

  9. Basic thin film processing for high-Tc superconductors

    International Nuclear Information System (INIS)

    Much attention has been paid for the thin films of perovskite-type oxides especially for the thin films of the high-Tc superconducting ceramics. Historically the thin films of the perovskite-type oxides have been studied as a basic research for ferroelectric materials. Thin films of BaTiO3 and PbTiO3 were tried to deposited and there ferroelectricity was evaluated. Recently this kind of perovskite thin films, including PZT (PbTiO3-PbZrO3) and PLZT [(Pb, La) (Zr, T)O3] have been studied in relation to the synthesis of thin film dielectrics, pyroelectrics, piezoelectrics, electro-optic materials, and acousto-optic materials. Thin films of BPB (BaPbO3- BaBiO3) were studied as oxide superconductors. At present the thin films of the rare-earth high-Tc superconductors of LSC (La1-xSrxCuO4) and YBC (YBa2Cu3O7-δ) have been successfully synthesized owing to the previous studies on the ferroelectric thin films of the perovskite- type oxides. Similar to the rare-earth high-Tc superconductors thin films of the rare-earth-free high-Tc superconductors of BSCC (Bi-Sr-Ca-Cu-O)9 and TBCC (Tl- Ba-Ca-Cu-O)10 system have been synthesized. In this section the basic processes for the fabrication of the high- Tc perovskite superconducting thin films are described

  10. Preprint of the results of `the publicly applied proposal type and hi-tech (emphasized) field research and development in fiscal 1995`; `1995 nendo teian kobogata saisentan (juten) bun`ya kenkyu kaihatsu` seika hokokukai yokoshu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The preprint was prepared of a report meeting for the results of `the publicly applied proposal type and hi-tech (emphasized) field research and development in fiscal 1995` to be held in Tokyo during February 12 to 14, 1997. In the meeting, a lecture titled `The system of fundamental researches and its execution` is to be given as a special lecture and the following are as general lectures: `Energy/environmental technology and next generation catalysts,` ` The present and outlook of surgery in the 21st century - computer surgery,` The present situation of education and research related to the design of digital integrated systems,` and `The present and future of research and development of a new carbon material, fullerene.` Research reports were prepared by field as follows: 73 papers in the new material technology field, 46 in the bio-technology field, 36 in the electronics/information technology field, 8 in the mechanical system technology field, 8 in the human life engineering technology field, 23 in the medical/welfare equipment technology field, 5 in the resource technology field, 17 in the energy/environment technology field.

  11. Weakly superconducting, thin-film structures as radiation detectors.

    Science.gov (United States)

    Kirschman, R. K.

    1972-01-01

    Measurements were taken with weakly superconducting quantum structures of the Notarys-Mercereau type, representing a thin superconductor film with a short region that is weakened in the sense that its transition temperature is lower than in the remaining portion of the film. The structure acts as a superconducting relaxation oscillator in which the supercurrent increases with time until the critical current of the weakened section is attained, at which moment the supercurrent decays and the cycle repeats. Under applied radiation, a series of constant-voltage steps appears in the current-voltage curve, and the size of the steps varies periodically with the amplitude of applied radiation. Measurements of the response characteristics were made in the frequency range of 10 to 450 MHz.

  12. Plasma monitoring and PECVD process control in thin film silicon-based solar cell manufacturing

    Directory of Open Access Journals (Sweden)

    Gabriel Onno

    2014-02-01

    Full Text Available A key process in thin film silicon-based solar cell manufacturing is plasma enhanced chemical vapor deposition (PECVD of the active layers. The deposition process can be monitored in situ by plasma diagnostics. Three types of complementary diagnostics, namely optical emission spectroscopy, mass spectrometry and non-linear extended electron dynamics are applied to an industrial-type PECVD reactor. We investigated the influence of substrate and chamber wall temperature and chamber history on the PECVD process. The impact of chamber wall conditioning on the solar cell performance is demonstrated.

  13. Study on Brazil law type twinning in amethyst from Bahia (Brazil) by the X-ray topography and polarized light

    International Nuclear Information System (INIS)

    Brazil law type twinning is very common in quartz. Generally is not observed in normal petrographic thin section but it is possible to study this kind of twinning under polarized light in thicker sections. X-ray topography will be another powerfull method to study and it was applied for the amethytst of the Mina Cabeluda of the state of Bahia. (author)

  14. Aspects of Characterisation of Thin Coating Adhesion at the Nano-Scale

    Institute of Scientific and Technical Information of China (English)

    Jisheng E; Aiyang Zhang; Ben D. Beake

    2002-01-01

    In response to current development of materials in nano-science,characterisation of thin coating adhesion on a nano-scale becomes one of the most important research areas,as new coatings get ever thinner and more technologically advanced. With a review of technology and mechanisms of evaluating the adhesion failure of coatings,three techniques,nano impact ,nano-scratch and nano-indentation techniques ,for charactering the adhesion of thin coatings on a nano scale are described.Results of charactering the adhesion faliure of thin coatings using three different techniques indicate that the nano-scratch and nano-indentation techniques are very useful tools ,particularly in charactering the performance of thin coatings under nano-abra sive wear conditions. However,results from these types of tests cannot be easily applied to predict the performance of coatings whose are subject to nano-erosive wear,cyclic nano-fatigue or multiple nano-impacts during service. Instead,results of the new dynamic testing technique ,impact technique ,are found to correlate well with the coating performance under fatigue conditions,precisely because the impact test more closely simulates the actual contact (adhesion failure and wear)conditions of thin coatings occurring in nano-erosive/nano-fatigue/nano-impact wear.

  15. Thermal behavior, structure formation and optical characteristics of nanostructured basic fuchsine thin films

    International Nuclear Information System (INIS)

    Thin films of basic fuchsine, BF, are prepared by thermal evaporation technique. The data of thermal gravimetric analysis, TGA, showed that BF has a thermal stability up to the temperature of 265 °C. The structural characteristics of BF thin films are investigated by using X-ray diffraction, and atomic force microscope techniques. BF is polycrystalline in powder form; it becomes nanocrystallites in thin film condition. Annealing temperatures decreased crystallites size and influenced optical constants of BF films. Optical constants of BF films were estimated by using spectrophotometer measurements of transmittance and reflectance in the spectral range from 190 to 2500 nm. The dependence of absorption coefficient on the photon energy and annealing temperatures was determined and the analysis of the results showed that the optical transition in BF films is indirect allowed one. The onset and fundamental energy gap of BF thin films are 1.91 and 3.72 eV, respectively and they decrease by annealing temperatures. The optical dielectric constants and dispersion parameters of BF thin film are calculated and showed remarkable dependence on photon energy and annealing temperatures. - Graphical abstract: Display Omitted - Highlights: • Polycrystalline BF powder becomes nanocrystallites film upon thermal deposition. • BF has thermal stability up to 265 °C. • BF can be applied as optical filter material. • The type of electron transition is indirect allowed with Eg of 1.91 eV. • Annealing temperatures influenced absorption and dispersion parameters of BF films

  16. Thermal behavior, structure formation and optical characteristics of nanostructured basic fuchsine thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zeyada, H.M. [Department of Physics, Faculty of Science at New Damietta, Damietta University, 34517, New Damietta (Egypt); Makhlouf, M.M., E-mail: m_makhlof@hotmail.com [Department of Physics, Faculty of Science at New Damietta, Damietta University, 34517, New Damietta (Egypt); Department of Physics, Faculty of Applied Medical Sciences at Turabah Branch, Taif University, 21995 (Saudi Arabia); Department of Physics, Damietta Cancer Institute, Damietta (Egypt); Ismail, M.I.M.; Salama, A.A. [Department of Physics, Faculty of Science, Port Said University, Port Said (Egypt)

    2015-08-01

    Thin films of basic fuchsine, BF, are prepared by thermal evaporation technique. The data of thermal gravimetric analysis, TGA, showed that BF has a thermal stability up to the temperature of 265 °C. The structural characteristics of BF thin films are investigated by using X-ray diffraction, and atomic force microscope techniques. BF is polycrystalline in powder form; it becomes nanocrystallites in thin film condition. Annealing temperatures decreased crystallites size and influenced optical constants of BF films. Optical constants of BF films were estimated by using spectrophotometer measurements of transmittance and reflectance in the spectral range from 190 to 2500 nm. The dependence of absorption coefficient on the photon energy and annealing temperatures was determined and the analysis of the results showed that the optical transition in BF films is indirect allowed one. The onset and fundamental energy gap of BF thin films are 1.91 and 3.72 eV, respectively and they decrease by annealing temperatures. The optical dielectric constants and dispersion parameters of BF thin film are calculated and showed remarkable dependence on photon energy and annealing temperatures. - Graphical abstract: Display Omitted - Highlights: • Polycrystalline BF powder becomes nanocrystallites film upon thermal deposition. • BF has thermal stability up to 265 °C. • BF can be applied as optical filter material. • The type of electron transition is indirect allowed with E{sub g} of 1.91 eV. • Annealing temperatures influenced absorption and dispersion parameters of BF films.

  17. Electrical compensation by Ga vacancies in Ga{sub 2}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Korhonen, E.; Tuomisto, F. [Department of Applied Physics, Aalto University, 00076 Aalto (Finland); Gogova, D.; Wagner, G.; Baldini, M.; Galazka, Z.; Schewski, R.; Albrecht, M. [Leibniz Institute for Crystal Growth, 12489 Berlin (Germany)

    2015-06-15

    The authors have applied positron annihilation spectroscopy to study the vacancy defects in undoped and Si-doped Ga{sub 2}O{sub 3} thin films. The results show that Ga vacancies are formed efficiently during metal-organic vapor phase epitaxy growth of Ga{sub 2}O{sub 3} thin films. Their concentrations are high enough to fully account for the electrical compensation of Si doping. This is in clear contrast to another n-type transparent semiconducting oxide In{sub 2}O{sub 3}, where recent results show that n-type conductivity is not limited by cation vacancies but by other intrinsic defects such as O{sub i}.

  18. Pyrolyzed thin film carbon

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  19. Thin film processes II

    CERN Document Server

    Kern, Werner

    1991-01-01

    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques.Key Features* Provides an all-new sequel to the 1978 classic, Thin Film Processes* Introduces new topics, and sever

  20. Calorimetry of epitaxial thin films.

    Science.gov (United States)

    Cooke, David W; Hellman, F; Groves, J R; Clemens, B M; Moyerman, S; Fullerton, E E

    2011-02-01

    Thin film growth allows for the manipulation of material on the nanoscale, making possible the creation of metastable phases not seen in the bulk. Heat capacity provides a direct way of measuring thermodynamic properties of these new materials, but traditional bulk calorimetric techniques are inappropriate for such a small amount of material. Microcalorimetry and nanocalorimetry techniques exist for the measurements of thin films but rely on an amorphous membrane platform, limiting the types of films which can be measured. In the current work, ion-beam-assisted deposition is used to provide a biaxially oriented MgO template on a suspended membrane microcalorimeter in order to measure the specific heat of epitaxial thin films. Synchrotron x-ray diffraction showed the biaxial order of the MgO template. X-ray diffraction was also used to prove the high quality of epitaxy of a film grown onto this MgO template. The contribution of the MgO layer to the total heat capacity was measured to be just 6.5% of the total addenda contribution. The heat capacity of a Fe(.49)Rh(.51) film grown epitaxially onto the device was measured, comparing favorably to literature data on bulk crystals. This shows the viability of the MgO∕SiN(x)-membrane-based microcalorimeter as a way of measuring the thermodynamic properties of epitaxial thin films. PMID:21361612

  1. Dawson型多金属氧酸盐-双氢氧化物超薄膜的合成%Synthesis of Layered Double Hydroxides Ultra Thin Films Functionalized with Dawson-Type Polyoxometalate

    Institute of Scientific and Technical Information of China (English)

    李丹峰; 王金萍

    2016-01-01

    通过层接层方法制备了基于剥离的锌钛双氢氧化物单层和典型的Dawson型多金属氧酸盐阴离子α-P2 W18 O6-62(P2W18)间作用的新型超薄膜.采用UV/DRS、XRD、FT-IR、ICP-AES和SEM方法对样品的结构和形貌进行了表征.结果表明,P2W18的结构在超薄膜中未发生改变,超薄膜的厚度在纳米范围,表面形貌完整有序均匀.以制备的超薄膜为光催化剂测试了对偶氮类染料刚果红(CR)的可见光催化降解活性.超薄膜表现出比纯Dawson型多金属氧酸盐阴离子高得多的催化活性,主要归因于剥离的锌钛双氢氧化物单层和金属氧酸盐阴离子的强化学作用对其可见光光响应能力的提高.%The novel ordered ultra thin films(UTFs)based on the hybrid assembly of exfoliated Zn-Ti layered double hydroxide(LDH)monolayer and typical Dawson-type polyoxometalate(POM)anionsα-P2 W18 O6-62(P2W18)were pre-pared by utilizing the layer by layer(LBL)technique. The UTFs were characterized by UV diffuse reflectance spec-tra(UV/DRS),X-ray diffraction(XRD),Fourier transform infrared spectra(FT-IR),inductively coupled plasma atomic emission spectrometry(ICP-AES),and scanning electron microscopy(SEM). The results indicate that the Dawson structures remained intact in the hybrid compositions,the thickness of the UTFs was within nano range, and the morphology was continuous and uniform. The visible light photocatalytic activitiesof the UTFs were tested in the degradation of aqueous azo dye Congo red(CR). The UTFs showed much higher photocatalytic activity than pure P2W18,which was mainly attributed to the improved response ability of P2W18to the visible light caused by the inter-action between exfoliated Zn-Ti-LDH monolayer and P2W18.

  2. Ultimately Thin Metasurface Wave Plates

    CERN Document Server

    Keene, David; Durach, Maxim

    2015-01-01

    Optical properties of a metasurface which can be considered a monolayer of two classical uniaxial metamaterials, parallel-plate and nanorod arrays, are investigated. It is shown that such metasurface acts as an ultimately thin sub-50 nm wave plate. This is achieved via an interplay of epsilon-near-zero and epsilon-near-pole behavior along different axes in the plane of the metasurface allowing for extremely rapid phase difference accumulation in very thin metasurface layers. These effects are shown to not be disrupted by non-locality and can be applied to the design of ultrathin wave plates, Pancharatnam-Berry phase optical elements and plasmon-carrying optical torque wrench devices.

  3. [Ultra-thin transnasal esophagogastroduodenoscopy].

    Science.gov (United States)

    Kawai, Takashi; Yamamoto, Kei; Fukuzawa, Mari; Sakai, Yoshihiro; Moriyasu, Fuminori

    2010-07-01

    It is reported that ultra-thin transnasal esophagogastroduodenoscopy (TN-EGD) reduces pharyngeal discomfort and is more tolerable for the patients. Ultra-thin transnasal endoscopy has been reported as inferior to transoral conventional EGD (TO-EGD) in terms of image quality, suction, air insufflation and lens washing, due to the smaller endoscope caliber. TN-EGD should be conducted slowly, with short distance observation, and also with image-enhanced endoscopy. With reference to image-enhanced endoscopy, chromoendoscopy method (indigocarmine) is suitable for gastric neoplasm, on the other hand optical digital method (NBI) and digital method (i-scan, FICE) is suitable for esophageal neoplasm. TN-EGD is applied in various gastrointestinal (GI) procedures such as percutaneous endoscopic gastrostomy, nasoenteric feeding tube placement, endoscopic retrograde cholangiopancreaticography with nasobiliary drainage, long intestinal tube placement in small bowel obstruction, esophageal manometry. PMID:20662204

  4. Thinning in artificially regenerated young beech stands

    Directory of Open Access Journals (Sweden)

    Novák Jiří

    2015-12-01

    Full Text Available Although beech stands are usually regenerated naturally, an area of up to 5,000 ha year−1 is artificially regenerated by beech in the Czech Republic annually. Unfortunately, these stands often showed insufficient stand density and, consequently, lower quality of stems. Therefore, thinning methods developed for naturally regenerated beech stands are applicable with difficulties. The paper evaluates the data from two thinning experiments established in young artificially regenerated beech stands located in different growing conditions. In both experiments, thinning resulted in the lower amount of salvage cut in following years. Positive effect of thinning on periodic stand basal area increment and on periodic diameter increment of dominant trees was found in the beech stand located at middle elevations. On the other hand, thinning effects in mountain conditions were negligible. Thinning focusing on future stand quality cannot be commonly applied in artificially regenerated beech stands because of their worse initial quality and lower density. However, these stands show good growth and response to thinning, hence their management can be focused on maximising beech wood production.

  5. Study on pipe wall thinning management based on reliability assessment

    International Nuclear Information System (INIS)

    Pipe wall thinning is sporadically detected in ferritic steel piping in Japanese BWR plants. The suitability for continued service of wall thinning pipe is basically evaluated by using the 'Rules on pipe wall thinning management for BWR power plants.' The probabilistic fracture mechanics (PFM) analysis was performed in order to confirm the failure probability applied the rule. Based on the result, the issues of the rule which should be solved ware clarified. (author)

  6. Conical thin shell wormhole from global monopole: A theoretical construction

    OpenAIRE

    Rahaman, F.; Kalam, M.; Rahman, K. A.

    2008-01-01

    By applying 'Darmois-Israel formalism', we establish a new class of thin shell wormhole in the context of global monopole resulting from the breaking of a global O(3) symmetry. Since global monopole is asymptotically conical (no longer asymptotically flat), we call it as conical thin shell wormhole. Different characteristics of this conical thin shell wormhole, namely, time evolution of the throat, stability, total amount of exotic matter have been discussed.

  7. An evaluation of failure behavior of pipe with local wall thinning by pipe experiment

    International Nuclear Information System (INIS)

    To understand failure behavior of pipe thinned by flow accelerated corrosion, in this study, the pipe failure tests were performed on 102mm-Sch.80 carbon steel pipe with various local wall thinning shapes, and the failure mode, load carrying capacity, and deformability were investigated. The tests were conducted under loading conditions of 4-points bending and internal pressure. The experimental results showed that the failure mode of thinned pipe depended on magnitude of internal pressure and thinning length as well as loading direction and thinning depth and angle. The variation in load carrying capacity and deformability of thinned pipe with thinning length was determined by stress type appled to the thinning area and circumferential thinning angle. Also, the effect of internal pressure on failure behavior was dependent on failure mode of thinned pipe, and it promoted crack occurrence and mitigated local buckling at thinned area

  8. SNP typing on the NanoChip electronic microarray

    DEFF Research Database (Denmark)

    Børsting, Claus; Sanchez Sanchez, Juan Jose; Morling, Niels

    2005-01-01

    We describe a single nucleotide polymorphism (SNP) typing protocol developed for the NanoChip electronic microarray. The NanoChip array consists of 100 electrodes covered by a thin hydrogel layer containing streptavidin. An electric currency can be applied to one, several, or all electrodes at the...... the bound DNA. Base stacking between the short reporter and the longer stabilizer oligo stabilizes the binding of a matching reporter, whereas the binding of a reporter carrying a mismatch in the SNP position will be relatively weak. Thermal stringency is applied to the NanoChip array according to a...

  9. Epitaxially grown crystalline silicon thin-film solar cells reaching 16.5% efficiency with basic cell process

    International Nuclear Information System (INIS)

    We report about the current performance of crystalline silicon thin-film (cSiTF) solar cells that are a very attractive alternative to conventional wafer-based silicon solar cells if sufficiently high cell efficiencies are achieved at acceptable cost of production. Applying a standard cell process (diffused POCl3 emitter, front contacts by photolithography, no surface texture) to thin-films deposited with a lab-type reactor, specifically designed for high-throughput photovoltaic applications, on highly-doped Cz substrates we routinely obtain efficiencies above 16%. On 1 Ω cm FZ material substrates we reach efficiencies up to 18.0%, which is among the highest thin-film efficiencies ever reported. Additionally, a comparison to microelectronic-grade epitaxially grown cSiTF material underlines the excellent electrical quality of the epitaxial layers deposited.

  10. Thin films of soft matter

    CERN Document Server

    Kalliadasis, Serafim

    2007-01-01

    A detailed overview and comprehensive analysis of the main theoretical and experimental advances on free surface thin film and jet flows of soft matter is given. At the theoretical front the book outlines the basic equations and boundary conditions and the derivation of low-dimensional models for the evolution of the free surface. Such models include long-wave expansions and equations of the boundary layer type and are analyzed via linear stability analysis, weakly nonlinear theories and strongly nonlinear analysis including construction of stationary periodic and solitary wave and similarity solutions. At the experimental front a variety of very recent experimental developments is outlined and the link between theory and experiments is illustrated. Such experiments include spreading drops and bubbles, imbibitions, singularity formation at interfaces and experimental characterization of thin films using atomic force microscopy, ellipsometry and contact angle measurements and analysis of patterns using Minkows...

  11. Low Temperature, High Energy Density Micro Thin Film Solid Oxide Fuel Cell Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new type of solid oxide fuel cell based on thin film technology and ultra-thin electrolyte is being proposed to develop to realize major reductions in fuel cell...

  12. Tank wall thinning -- Process and programs

    International Nuclear Information System (INIS)

    In-service thinning of tank walls has occurred in the power industry and can pose a significant risk to plant safety and dependability. Appropriate respect for the energy stored in a high-pressure drain tank warrants a careful consideration of this possibility and appropriate action in order to assure the adequate safety margins against leakage or rupture. Although it has not proven to be a widespread problem, several cases of wall thinning and at least one recent tank rupture has highlighted this issue in recent years, particularly in nuclear power plants. However, the problem is not new or unique to the nuclear power industry. Severe wall thinning in deaerator tanks has been frequently identified at fossil-fueled power plants. There are many mechanisms which can contribute to tank wall thinning. Considerations for a specific tank are dictated by the system operating conditions, tank geometry, and construction material. Thinning mechanisms which have been identified include: Erosion/Corrosion Impingement Erosion Cavitation Erosion General Corrosion Galvanic Corrosion Microbial-induced Corrosion of course there are many other possible types of material degradation, many of which are characterized by pitting and cracking. This paper specifically addresses wall thinning induced by Erosion/Corrosion (also called Flow-Accelerated Corrosion) and Impingement Erosion of tanks in a power plant steam cycle. Many of the considerations presented are applicable to other types of vessels, such as moisture separators and heat exchangers

  13. Analyzing the management and disturbance in European forest based on self-thinning theory

    Science.gov (United States)

    Yan, Y.; Gielen, B.; Schelhaas, M.; Mohren, F.; Luyssaert, S.; Janssens, I. A.

    2012-04-01

    There is increasing awareness that natural and anthropogenic disturbance in forests affects exchange of CO2, H2O and energy between the ecosystem and the atmosphere. Consequently quantification of land use and disturbance intensity is one of the next steps needed to improve our understanding of the carbon cycle, its interactions with the atmosphere and its main drivers at local as well as at global level. The conventional NPP-based approaches to quantify the intensity of land management are limited because they lack a sound ecological basis. Here we apply a new way of characterising the degree of management and disturbance in forests using the self- thinning theory and observations of diameter at breast height and stand density. We used plot level information on dominant tree species, diameter at breast height, stand density and soil type from the French national forest inventory from 2005 to 2010. Stand density and diameter at breast height were used to parameterize the intercept of the self-thinning relationship and combined with theoretical slope to obtain an upper boundary for stand productivity given its density. Subsequently, we tested the sensitivity of the self-thinning relationship for tree species, soil type, climate and other environmental characteristics. We could find statistical differences in the self-thinning relationship between species and soil types, mainly due to the large uncertainty of the parameter estimates. Deviation from the theoretical self-thinning line defined as DBH=αN-3/4, was used as a proxy for disturbances, allowing to make spatially explicit maps of forest disturbance over France. The same framework was used to quantify the density-DBH trajectory of even-aged stand management of beech and oak over France. These trajectories will be used as a driver of forest management in the land surface model ORCHIDEE.

  14. Thin shells joining local cosmic string geometries

    CERN Document Server

    Eiroa, Ernesto F; Simeone, Claudio

    2016-01-01

    In this article we present a theoretical construction of spacetimes with a thin shell that joins two different local cosmic string geometries. We study two types of global manifolds, one representing spacetimes with a standard thin shell and the other corresponding to wormholes which are not symmetric across the throat located at the shell. We analyze the stability of the static configurations under perturbations preserving the cylindrical symmetry. For both types of geometries we find that the static configurations can be stable for suitable values of the parameters.

  15. Applied ALARA techniques

    International Nuclear Information System (INIS)

    The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work

  16. Definitions of Line Pattern and Thinning Algorithms for Digital Pictures

    OpenAIRE

    TSURUOKA, Shinji; Kimura, Fumitaka; Miyake, Yasuji; Yokoi, Shigeki; 鶴岡, 信治; 木村, 文隆; 三宅, 康二; 横井, 茂樹

    1992-01-01

    The explicit definitions of two types of line patterns are introduced using the connectivity number and the number of 1-pixels in the 8-neighbor, and then parallel and sequential thinning algorithms for binary and grey-level images are proposed. Thinned images are one pixel thick and topologically equivalent to the original images. By a character recognition experiment, there thinning algorithms obtain the better result than other two representative algorithms in the form of the result images...

  17. Nonsymmetric Dynamical Thin-Shell Wormhole

    CERN Document Server

    Svitek, O

    2016-01-01

    The thin-shell wormhole created using the Darmois--Israel formalism applied to Robinson--Trautman family of spacetimes is presented. The stress energy tensor created on the throat is interpreted in terms of two dust streams and it is shown that asymptotically this wormhole settles to the Schwarzschild wormhole with throat on the horizon.

  18. Corrections to the thin wall approximation in general relativity

    Science.gov (United States)

    Garfinkle, David; Gregory, Ruth

    1989-01-01

    The question is considered whether the thin wall formalism of Israel applies to the gravitating domain walls of a lambda phi(exp 4) theory. The coupled Einstein-scalar equations that describe the thick gravitating wall are expanded in powers of the thickness of the wall. The solutions of the zeroth order equations reproduce the results of the usual Israel thin wall approximation for domain walls. The solutions of the first order equations provide corrections to the expressions for the stress-energy of the wall and to the Israel thin wall equations. The modified thin wall equations are then used to treat the motion of spherical and planar domain walls.

  19. Highly Oscillating Thin Obstacles

    CERN Document Server

    Lee, Ki-ahm; Yoo, Minha

    2012-01-01

    The focus of this paper is on a thin obstacle problem where the obstacle is defined on the intersection between a hyper-plane $\\Gamma$ in $\\mathbb{R}^n$ and a periodic perforation $\\mathcal{T}_\\varepsilon$ of $\\mathbb{R}^n$, depending on a small parameter $\\varepsilon>0$. As $\\varepsilon\\to 0$, it is crucial to estimate the frequency of intersections and to determine this number locally. This is done using strong tools from uniform distribution. By employing classical estimates for the discrepancy of sequences of type $\\{k\\alpha\\}_{k=1}^\\infty$, $\\alpha\\in\\R$, we are able to extract rather precise information about the set $\\Gamma\\cap\\mathcal{T}_\\varepsilon$. As $\\varepsilon\\to0$, we determine the limit $u$ of the solution $u_\\varepsilon$ to the obstacle problem in the perforated domain, in terms of a limit equation it solves. We obtain the typical "strange term" behaviour for the limit problem, but with a different constant taking into account the contribution of all different intersections, that we call the...

  20. Electrodeposition of nanostructured CoNi thin films and their anomalous infrared properties

    International Nuclear Information System (INIS)

    Different composition, thickness and structure of CoNi thin films supported on glassy carbon were prepared by electrochemical codeposition. Potential step method was applied to prepare CoNi thin films with different composition which was controlled by varying the concentration ratio of Co2+/Ni2+ (x:y) in the deposition solution, thus this type of CoNi thin film was defined as CoNi(x:y). Nevertheless, CoNi thin films with different thickness and structure (denoted as CoNi(n)) were synthesized in a fixed Co2+/Ni2+ solution under cyclic voltammetric conditions by varying the cyclic numbers (n) within a defined potential range. AES and EDS analysis revealed that the atomic ratio of Co/Ni in the film (including both outer and inner layer) was in good accordance with the initial Co2+/Ni2+ ratio. XRD investigation indicated that the CoNi(20:0) and CoNi(15:5) thin films were hexagonal closed-packed (hcp) structure, however, the CoNi(10:10), CoNi(5:15) and CoNi(0:20) thin films were face centered cubic (fcc) structure. SEM studies demonstrated that the CoNi(x:y) thin films were uniformly composed of irregular nanoparticles. In the case of CoNi(n), with n increasing, the structure of nanoparticles inside the CoNi thin films underwent a transition from imperfectly spherical particles to multiform particles, and finally to irregular polyhedral particles, accompany with an increase of average size. In situ FTIR reflection spectroscopic studies demonstrated that the mainly chemisorbed CO species (COad) on CoNi(x:y) surfaces were transferred from linearly bonded CO (COL) to bridge bonded CO (COB) as a function of the content of Ni and the crystal phase structure of CoNi thin films. CoNi(x:y) and CoNi(n) thin films all exhibited anomalous IR properties, corresponding respectively to abnormal IR effects (AIREs), Fano-like IR effects and surface-enhanced IR absorption effects. AIREs characterized mostly with inversion of IR band was found on CoNi(x:y), CoNi(4), CoNi(8) thin films

  1. Learning unit: Thin lenses

    Science.gov (United States)

    Nita, L.-S.

    2012-04-01

    Learning unit: Thin lenses "Why objects seen through lenses are sometimes upright and sometimes reversed" Nita Laura Simona National College of Arts and Crafts "Constantin Brancusi", Craiova, Romania 1. GEOMETRIC OPTICS. 13 hours Introduction (models, axioms, principles, conventions) 1. Thin lenses (Types of lenses. Defining elements. Path of light rays through lenses. Image formation. Required physical quantities. Lens formulas). 2. Lens systems (Non-collated lenses. Focalless systems). 3. Human eye (Functioning as an optical system. Sight defects and their corrections). 4. Optical instruments (Characteristics exemplified by a magnifying glass. Paths of light rays through a simplified photo camera. Path of light rays through a classical microscope) (Physics curriculum for the IXth grade/ 2011). This scenario exposes a learning unit based on experimental sequences (defining specific competencies), as a succession of lessons started by noticing a problem whose solution assumes the setup of an experiment under laboratory conditions. Progressive learning of theme objectives are realised with sequential experimental steps. The central cognitive process is the induction or the generalization (development of new knowledge based on observation of examples or counterexamples of the concept to be learnt). Pupil interest in theme objectives is triggered by problem-situations, for example: "In order to better see small objects I need a magnifying glass. But when using a magnifier, small object images are sometimes seen upright and sometimes seen reversed!" Along the way, pupils' reasoning will converge to the idea: "The image of an object through a lens depends on the relative distances among object, lens, and observer". Associated learning model: EXPERIMENT Specific competencies: derived from the experiment model, in agreement with the following learning unit steps I. Evoking - Anticipation: Size of the problem, formulation of hypotheses and planning of experiment. II

  2. Ultrasonic thickness measurement criteria in thinned pipe management program

    International Nuclear Information System (INIS)

    Credibility of thickness data is very important in the thinned pipe management program. This report presents following criteria; thickness measurement for each pipe component type, wear and wear rate calculation, and remaining service life assessment of thinned pipe component. And, the necessary items should be contained in the inspection report are presented

  3. Degradation analysis of thin film photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Radue, C., E-mail: chantelle.radue@nmmu.ac.z [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Dyk, E.E. van [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2009-12-01

    Five thin film photovoltaic modules were deployed outdoors under open circuit conditions after a thorough indoor evaluation. Two technology types were investigated: amorphous silicon (a-Si:H) and copper indium gallium diselenide (CIGS). Two 14 W a-Si:H modules, labelled Si-1 and Si-2, were investigated. Both exhibited degradation, initially due to the well-known light-induced degradation described by Staebler and Wronski [Applied Physics Letters 31 (4) (1977) 292], and thereafter due to other degradation modes such as cell degradation. The various degradation modes contributing to the degradation of the a-Si:H modules will be discussed. The initial maximum power output (P{sub MAX}) of Si-1 was 9.92 W, with the initial light-induced degradation for Si-1 approx30% and a total degradation of approx42%. For Si-2 the initial P{sub MAX} was 7.93 W, with initial light-induced degradation of approx10% and a total degradation of approx17%. Three CIGS modules were investigated: two 20 W modules labelled CIGS-1 and CIGS-2, and a 40 W module labelled CIGS-3. CIGS-2 exhibited stable performance while CIGS-1 and CIGS-3 exhibited degradation. CIGS is known to be stable over long periods of time, and thus the possible reasons for the degradation of the two modules are discussed.

  4. Degradation analysis of thin film photovoltaic modules

    International Nuclear Information System (INIS)

    Five thin film photovoltaic modules were deployed outdoors under open circuit conditions after a thorough indoor evaluation. Two technology types were investigated: amorphous silicon (a-Si:H) and copper indium gallium diselenide (CIGS). Two 14 W a-Si:H modules, labelled Si-1 and Si-2, were investigated. Both exhibited degradation, initially due to the well-known light-induced degradation described by Staebler and Wronski [Applied Physics Letters 31 (4) (1977) 292], and thereafter due to other degradation modes such as cell degradation. The various degradation modes contributing to the degradation of the a-Si:H modules will be discussed. The initial maximum power output (PMAX) of Si-1 was 9.92 W, with the initial light-induced degradation for Si-1 ∼30% and a total degradation of ∼42%. For Si-2 the initial PMAX was 7.93 W, with initial light-induced degradation of ∼10% and a total degradation of ∼17%. Three CIGS modules were investigated: two 20 W modules labelled CIGS-1 and CIGS-2, and a 40 W module labelled CIGS-3. CIGS-2 exhibited stable performance while CIGS-1 and CIGS-3 exhibited degradation. CIGS is known to be stable over long periods of time, and thus the possible reasons for the degradation of the two modules are discussed.

  5. Magnetically actuated peel test for thin films

    International Nuclear Information System (INIS)

    Delamination along thin film interfaces is a prevalent failure mechanism in microelectronic, photonic, microelectromechanical systems, and other engineering applications. Current interfacial fracture test techniques specific to thin films are limited by either sophisticated mechanical fixturing, physical contact near the crack tip, or complicated stress fields. Moreover, these techniques are generally not suitable for investigating fatigue crack propagation under cyclical loading. Thus, a fixtureless and noncontact experimental test technique with potential for fatigue loading is proposed and implemented to study interfacial fracture toughness for thin film systems. The proposed test incorporates permanent magnets surface mounted onto micro-fabricated released thin film structures. An applied external magnetic field induces noncontact loading to initiate delamination along the interface between the thin film and underlying substrate. Characterization of the critical peel force and peel angle is accomplished through in situ deflection measurements, from which the fracture toughness can be inferred. The test method was used to obtain interfacial fracture strength of 0.8-1.9 J/m2 for 1.5-1.7 μm electroplated copper on natively oxidized silicon substrates. - Highlights: ► Non-contact magnetic actuation test for interfacial fracture characterization. ► Applied load is determined through voltage applied to the driving electromagnet. ► Displacement and delamination propagation is measured using an optical profiler. ► Critical peel force and peel angle is measured for electroplated Cu thin-film on Si. ► The measured interfacial fracture energy of Cu/Si interface is 0.8-1.9 J/m2.

  6. Effect of the Process Parameters on the Formability, Microstructure, and Mechanical Properties of Thin Plates Fabricated by Rheology Forging Process with Electromagnetic Stirring Method

    Science.gov (United States)

    Jin, Chul Kyu; Jang, Chang Hyun; Kang, Chung Gil

    2014-01-01

    A thin plate (150 × 150 × 1.2 mm) with embedded corrugation is fabricated using the rheoforming method. Semisolid slurry is created using the electromagnetic stirring (EMS) system, and the thin plate is made with the forging die at the 200-ton hydraulic press. The cross sections and microstructures of the slurry with and without stirring are examined. To investigate the effect of the process parameters on the formability, microstructure, and mechanical properties of thin plate the slurry is subjected to 16 types of condition for the forging experiment. The 16 types included the following conditions: Whether the EMS is applied or not, three fractions of the solid phase at 35, 45 and 55 pct; two compression velocities at 30 and 300 mm s-1; and four different compression pressures—100, 150, 200 and 250 MPa. The thin plate's formability is enhanced at higher punch velocity for compressing the slurry, and fine solid particles are uniformly distributed, which in turn, enhances the plate's mechanical properties. The pressure between 150 and 200 MPa is an appropriate condition to form thin plates. A thin plate without defects can be created when the slurry at 35 pct of the solid fraction (f s) was applied at the compression velocity of 300 mm s-1 and 150 MPa of pressure. The surface state of thin plate is excellent with 220 MPa of tensile strength and 13.5 pct of elongation. The primary particles are fine over the entire plate, and there are no liquid segregation-related defects.

  7. Interaction of ultra-short laser pulses with CIGS and CZTSe thin films

    Science.gov (United States)

    Gečys, P.; Markauskas, E.; Dudutis, J.; Račiukaitis, G.

    2014-01-01

    The thin-film solar cell technologies based on complex quaternary chalcopyrite and kesterite materials are becoming more attractive due to their potential for low production costs and optimal spectral performance. As in all thin-film technologies, high efficiency of small cells might be maintained with the transition to larger areas when small segments are interconnected in series to reduce photocurrent and related ohmic losses in thin films. Interconnect formation is based on the three scribing steps, and the use of a laser is here crucial for performance of the device. We present our simulation and experimental results on the ablation process investigations in complex CuIn1- x Ga x Se2 (CIGS) and Cu2ZnSn(S,Se)4 (CZTSe) cell's films using ultra-short pulsed infrared (~1 μm) lasers which can be applied to the damage-free front-side scribing processes. Two types of processes were investigated—direct laser ablation of ZnO:Al/CIGS films with a variable pulse duration of a femtosecond laser and the laser-induced material removal with a picosecond laser in the ZnO:Al/CZTSe structure. It has been found that the pulse energy and the number of laser pulses have a significantly stronger effect on the ablation quality in ZnO:Al/CIGS thin films rather than the laser pulse duration. For the thin-film scribing applications, it is very important to carefully select the processing parameters and use of ultra-short femtosecond pulses does not have a significant advantage compared to picosecond laser pulses. Investigations with the ZnO:Al/CZTSe thin films showed that process of the absorber layer removal was triggered by a micro-explosive effect induced by high pressure of sublimated material due to a rapid temperature increase at the molybdenum-CZTSe interface.

  8. Evaluation of local wall thinning of piping with a model based on liquid droplet impingement accelerated corrosion

    International Nuclear Information System (INIS)

    Local wall thinning identified at steam pipe of nuclear power plants is mainly led by the interaction of liquid droplets in steam flow and pipe wall, which can be divided into two types, one is mechanical effect oriented and the other is corrosion effect oriented. For higher droplet collision velocity than 200 m/s, wall thinning rate is determined mainly by erosion (LDI (mechanical)), while for lower velocity, it is determined by corrosion process (LDI (corrosion)). The flow pattern of liquid droplets was calculated firstly, and then, their collision velocity was determined. For LDI (mechanical) evaluation, Heymann's formula for droplet induced erosion was applied, while for LDI (corrosion) evaluation, the frequency of oxide film rupture due to droplet collision was calculated and then FAC evaluation methods based on the coupled model of static electrochemical analysis and dynamic oxide layer growth analysis were applied for corrosion calculation. (author)

  9. Stability analysis of dynamic thin shells

    CERN Document Server

    Lobo, F S N; Lobo, Francisco S. N.; Crawford, Paulo

    2005-01-01

    We analyze the stability of generic spherically symmetric thin shells to linearized perturbations around static solutions. We include the momentum flux term in the conservation identity, deduced from the ''ADM'' constraint and the Lanczos equations. Following the Ishak-Lake analysis, we deduce a master equation which dictates the stable equilibrium configurations. Considering the transparency condition, we study the stability of thin shells around black holes, showing that our analysis is in agreement with previous results. Applying the analysis to traversable wormhole geometries, by considering specific choices for the form function, we deduce stability regions, and find that the latter may be significantly increased by considering appropriate choices for the redshift function.

  10. Thin Films Made Fast and Modified Fast

    International Nuclear Information System (INIS)

    Thin films are playing a more and more important role for technological applications and there are many aspects of materials surface processing and thin film production, ranging from simple heat treatments to ion implantation or laser surface treatments. These methods are often very complicated, involving many basic processes and they have to be optimized for the desired application. Nuclear methods, especially Moessbauer spectroscopy, can be successfully applied for this task and some examples will be presented for laser-beam and ion-beam based processes.

  11. Stability analysis of dynamic thin shells

    International Nuclear Information System (INIS)

    We analyse the stability of generic spherically symmetric thin shells to linearized perturbations around static solutions. We include the momentum flux term in the conservation identity, deduced from the 'ADM' constraint and the Lanczos equations. Following the Ishak-Lake analysis, we deduce a master equation which dictates the stable equilibrium configurations. Considering the transparency condition, we study the stability of thin shells around black holes, showing that our analysis is in agreement with previous results. Applying the analysis to traversable wormhole geometries, by considering specific choices for the form function, we deduce stability regions and find that the latter may be significantly increased by considering appropriate choices for the redshift function

  12. SIGN LANGUAGE RECOGNITION USING THINNING ALGORITHM

    Directory of Open Access Journals (Sweden)

    S. N. Omkar

    2011-08-01

    Full Text Available In the recent years many approaches have been made that uses computer vision algorithms to interpret sign language. This endeavour is yet another approach to accomplish interpretation of human hand gestures. The first step of this work is background subtraction which achieved by the Euclidean distance threshold method. Thinning algorithm is then applied to obtain a thinned image of the human hand for further analysis. The different feature points which include terminating points and curved edges are extracted for the recognition of the different signs. The input for the project is taken from video data of a human hand gesturing all the signs of the American Sign Language.

  13. New exact solutions for free vibrations of rectangular thin plates by symplectic dual method

    Institute of Scientific and Technical Information of China (English)

    Yufeng Xing; Bo Liu

    2009-01-01

    The separation of variables is employed to solve Hamiltonian dual form of eigenvalue problem for transverse free vibrations of thin plates, and formulation of the natural mode in closed form is performed. The closed-form natural mode satisfies the governing equation of the eigenvalue problem of thin plate exactly and is applicable for any types of boundary conditions. With all combinations of simplysupported (S) and clamped (C) boundary conditions applied to the natural mode, the mode shapes are obtained uniquely and two eigenvalue equations are derived with respect to two spatial coordinates, with the aid of which the normal modes and frequencies are solved exactly. It was believed that the exact eigensolutions for cases SSCC, SCCC and CCCC were unable to be obtained, however, they are successfully found in this paper. Comparisons between the present results and the FEM results validate the present exact solutions, which can thus be taken as the benchmark for verifying different approximate approaches.

  14. Essays in applied microeconomics

    Science.gov (United States)

    Wang, Xiaoting

    In this dissertation I use Microeconomic theory to study firms' behavior. Chapter One introduces the motivations and main findings of this dissertation. Chapter Two studies the issue of information provision through advertisement when markets are segmented and consumers' price information is incomplete. Firms compete in prices and advertising strategies for consumers with transportation costs. High advertising costs contribute to market segmentation. Low advertising costs promote price competition among firms and improves consumer welfare. Chapter Three also investigates market power as a result of consumers' switching costs. A potential entrant can offer a new product bundled with an existing product to compensate consumers for their switching cost. If the primary market is competitive, bundling simply plays the role of price discrimination, and it does not dominate unbundled sales in the process of entry. If the entrant has market power in the primary market, then bundling also plays the role of leveraging market power and it dominates unbundled sales. The market for electric power generation has been opened to competition in recent years. Chapter Four looks at issues involved in the deregulated electricity market. By comparing the performance of the competitive market with the social optimum, we identify the conditions under which market equilibrium generates socially efficient levels of electric power. Chapter Two to Four investigate the strategic behavior among firms. Chapter Five studies the interaction between firms and unemployed workers in a frictional labor market. We set up an asymmetric job auction model, where two types of workers apply for two types of job openings by bidding in auctions and firms hire the applicant offering them the most profits. The job auction model internalizes the determination of the share of surplus from a match, therefore endogenously generates incentives for an efficient division of the matching surplus. Microeconomic

  15. A ferroelectric transparent thin-film transistor

    NARCIS (Netherlands)

    Prins, MWJ; GrosseHolz, KO; Muller, G; Cillessen, JFM; Giesbers, JB; Weening, RP; Wolf, RM

    1996-01-01

    Operation is demonstrated of a field-effect transistor made of transparant oxidic thin films, showing an intrinsic memory function due to the usage of a ferroelectric insulator. The device consists of a high mobility Sb-doped n-type SnO2 semiconductor layer, PbZr0.2Ti0.8Os3 as a ferroelectric insula

  16. Mechanical characterization on ion irradiated thin surface layer by nanoindentation technique with inverse analysis

    International Nuclear Information System (INIS)

    A nanoindentation technique combined with an inverse analysis using a finite element method (FEM) was applied to examine the influence of ion-irradiation on the mechanical properties of the thin surface layer. A disk specimen of type-316 austenitic stainless was irradiated in single and dual ion beam modes at a temperature of 200degC. A nanoindentation testing was carried out for the ion irradiated specimen surface using a Berkovich-shaped diamond indenter. The depth from the specimen surface and load (load/depth curve) were measured continuously during loading and unloading. There is little effect or He+ ion implantation on the yield stress of the Ni3+ ion irradiated thin layer. The constitutive equation of the ion irradiated thin layer was evaluated through the nanoindentation technique combined with the inverse analysis. Using the evaluated constitutive equation, the nominal stress-elongation curve of the neutron-irradiated sheet specimen at the equivalent dpa to the ion irradiated disk specimens was calculated by FEM. The obtained curve coincided adequately with the experimental curve given by tensile testing. As a result, the proposed technique was confirmed to be available for the mechanical characterization on the ion irradiated thin layer. (author)

  17. Comparison between analytical and numerical method for estimating the thermal lensing effect in the end-pumped solid states lasers and apply the results to designing of which type lasers

    International Nuclear Information System (INIS)

    At this working it was used from analytical and numerical (FEM) methods for calculation of thermal lensing effect in the end-pumped solid state lasers rods. These results were applied to designing and realization of an Nd:YVO4 and a Cr4+: YAG laser. The results shown that for direct cut crystals, two methods almost obtained the same results and one can use from analytical method results (that usually obtain very easy) for estimation of thermal lensing effect for designing of the end-pumped solid state lasers and apply for realization of them

  18. Biomimetic thin film synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graff, G.L.; Campbell, A.A.; Gordon, N.R.

    1995-05-01

    The purpose of this program is to develop a new process for forming thin film coatings and to demonstrate that the biomimetic thin film technology developed at PNL is useful for industrial applications. In the biomimetic process, mineral deposition from aqueous solution is controlled by organic functional groups attached to the underlying substrate surface. The coatings process is simple, benign, inexpensive, energy efficient, and particularly suited for temperature sensitive substrate materials (such as polymers). In addition, biomimetic thin films can be deposited uniformly on complex shaped and porous substrates providing a unique capability over more traditional line-of-sight methods.

  19. Thinning Invariant Partition Structures

    CERN Document Server

    Starr, Shannon

    2011-01-01

    A partition structure is a random point process on $[0,1]$ whose points sum to 1, almost surely. In the case that there are infinitely many points to begin with, we consider a thinning action by: first, removing points independently, such that each point survives with probability $p>0$; and, secondly, rescaling the remaining points by an overall factor to normalize the sum again to 1. We prove that the partition structures which are "thinning divisible" for a sequence of $p$'s converging to 0 are mixtures of the Poisson-Kingman partition structures. We also consider the property of being "thinning invariant" for all $p \\in (0,1)$.

  20. Electrical Switching of Perovskite Thin-Film Resistors

    Science.gov (United States)

    Liu, Shangqing; Wu, Juan; Ignatiev, Alex

    2010-01-01

    Electronic devices that exploit electrical switching of physical properties of thin films of perovskite materials (especially colossal magnetoresistive materials) have been invented. Unlike some related prior devices, these devices function at room temperature and do not depend on externally applied magnetic fields. Devices of this type can be designed to function as sensors (exhibiting varying electrical resistance in response to varying temperature, magnetic field, electric field, and/or mechanical pressure) and as elements of electronic memories. The underlying principle is that the application of one or more short electrical pulse(s) can induce a reversible, irreversible, or partly reversible change in the electrical, thermal, mechanical, and magnetic properties of a thin perovskite film. The energy in the pulse must be large enough to induce the desired change but not so large as to destroy the film. Depending on the requirements of a specific application, the pulse(s) can have any of a large variety of waveforms (e.g., square, triangular, or sine) and be of positive, negative, or alternating polarity. In some applications, it could be necessary to use multiple pulses to induce successive incremental physical changes. In one class of applications, electrical pulses of suitable shapes, sizes, and polarities are applied to vary the detection sensitivities of sensors. Another class of applications arises in electronic circuits in which certain resistance values are required to be variable: Incorporating the affected resistors into devices of the present type makes it possible to control their resistances electrically over wide ranges, and the lifetimes of electrically variable resistors exceed those of conventional mechanically variable resistors. Another and potentially the most important class of applications is that of resistance-based nonvolatile-memory devices, such as a resistance random access memory (RRAM) described in the immediately following article

  1. Monitoring of monooctanoyl phosphatidylcholine synthesis by enzymatic acidolysis between soybean phosphatidylcholine and caprylic acid by thin-layer chromatography with a flame ionization detector

    DEFF Research Database (Denmark)

    Vikbjerg, Anders Falk; Mu, Huiling; Xu, Xuebing

    2005-01-01

    dosage, reaction temperature, solvent amount, reaction time, and substrate ratio (mol/mol caprylic acid/PC) on formation of ML-type PC in batch reactor with Thermomyces lanuginosa lipase as the catalyst. The formation of ML-type PC was dependent on all parameters examined except for substrate ratio. ML......-type PC content increased with increasing enzyme dosage, reaction temperature, solvent amount, and reaction time. Substrate ratio had no significant effect on the formation of ML-type PC within the tested range (3-15 mol/mol). The formation of MM-type PC was observed in some experiments, indicating that...... was found that the structured PC fractionated into 2-3 distinct bands on both plate thin layer chromatography (TLC) and Chromarod TLC. These 3 bands represented PC of LL-type, ML-type and MM-type, respectively. The TLC-FID method was applied in the present study to examine the influence of enzyme...

  2. Zinc oxide integrated area efficient high output low power wavy channel thin film transistor

    KAUST Repository

    Hanna, A. N.

    2013-11-26

    We report an atomic layer deposition based zinc oxide channel material integrated thin film transistor using wavy channel architecture allowing expansion of the transistor width in the vertical direction using the fin type features. The experimental devices show area efficiency, higher normalized output current, and relatively lower power consumption compared to the planar architecture. This performance gain is attributed to the increased device width and an enhanced applied electric field due to the architecture when compared to a back gated planar device with the same process conditions.

  3. Study of atmospheric pressure chemical vapor deposition by using a double discharge system for SiOx thin-film deposition with a HMDS/Ar/He/O2 gas mixture

    International Nuclear Information System (INIS)

    SiOx thin films were deposited at atmospheric pressure by using a double discharge system composed of a remote-type dielectric barrier discharge (DBD) formed above the substrate and a direct-type DBD formed by applying an AC power to the substrate with a gas mixture of hexamethyldisilazane (HMDS)/O2/He/Ar. Instead of using a single DBD, the use of the double discharge system not only showed higher SiOx thin film deposition rates but also produced fewer impurities in the deposited SiOx thin film. The improvement was partially related to the increased gas dissociation near the substrate through the direct-type DBD and to the remote-type DBD. A 7-kV, 30-kHz AC voltage was applied to the remote-type DBD and a 5-kV, 20-kHz AC voltage was applied to the direct-type DBD, with a gas mixture of HMDS (400 sccm)/O2 (20 slm)/He (5 slm)/Ar (3 slm). As a result, a SiOx deposition rate of 58.29 nm/scan could be obtained while moving the substrate at a speed of 0.25 meter/min.

  4. Effects of high-energy proton irradiation on the density and Hall mobility of majority carriers in single crystalline n-type CuInSe2 thin films

    International Nuclear Information System (INIS)

    Proton irradiation effects in CuInSe2 (CIS) thin films have been investigated as a function of proton energy (0.38, 1 and 3 MeV). Single crystalline n-CIS thin films were prepared by radio frequency sputtering. The electrical properties of as-grown and irradiated samples were measured. The typical electron concentration and Hall mobility in as-grown samples were 4 x 1016 cm-3 and 120 cm2/Vs, respectively. After 0.38 and 1MeV proton irradiation, both of the electron concentration and Hall mobility were decreased as the fluence exceeded 1 x 1013 cm-2, but for 3 MeV proton irradiation, they were decreased over the fluence of 1 x 1014 cm-2. The damage by high-energy proton irradiation was lower than that by low-energy proton irradiation. The carrier removal rate with proton fluence was estimated about from 1800 to 300 cm-1as proton energy was changed from 0.38 to 3 MeV. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Fluorinated copper-phthalocyanine-based n-type organic field-effect transistors with a polycarbonate gate insulator

    International Nuclear Information System (INIS)

    Fluorinated copper-phthalocyanine (F16CuPc) thin films were prepared by using a vacuum evaporation technique and were applied to n-type organic field-effect transistors (OFETs) as active channel layers combined with a spin-coated polycarbonate thin-film gate insulator. The output characteristics of the resulting n-type OFET devices with bottom-gate/bottom-contact structures were investigated to evaluate the performances such as the field effect mobility (μFE), the on/off current ratio (Ion/off), and the threshold voltage (Vth). A relatively high field effect mobility of 6.0 x 10-3 cm2/Vs was obtained for the n-type semiconductor under atmospheric conditions with an on/off current ratio of 1 x 104 and a threshold voltage of 5 V. The electron mobility of the n-type semiconductor was found to depend strongly on the growth temperature of the F16CuPc thin films. X-ray diffraction profiles showed that the crystallinity and the orientation of the F16CuPc on a polycarbonate thin film were enhanced with increasing growth temperature. Atomic force microscopy studies revealed various surface morphologies of the active layer. The field effect mobility of the F16CuPc-OFET was closely related to the crystallinity and the orientation of the F16CuPc thin film.

  6. Matérn thinned Cox processes

    DEFF Research Database (Denmark)

    Andersen, Ina Trolle; Hahn, Ute

    2016-01-01

    A class of spatial point process models that combine short range repulsion with medium range clustering is introduced. The model is motivated by patterns of centres of non-overlapping spherical cells in biological tissue which tend to have a clustering behaviour. Such a combination of clustering...... and hard core behaviour can be achieved by applying a dependent Matérn thinning to a Cox process. An exact formula for the intensity of a Matérn thinned shot noise Cox process is derived from the Palm distribution. For the more general class of Matérn thinned Cox processes, formulae for the intensity...... and second-order characteristics are established using the conditional Poisson assumption. These formulae include more complicated integrals for which approximations are suggested to simplify calculations. An example from pathology illustrates the applicability of the models....

  7. Matérn thinned Cox processes

    DEFF Research Database (Denmark)

    Andersen, Ina Trolle; Hahn, Ute

    A new class of spatial point process models that combines short range repulsion with medium range clustering is introduced. The model is motivated by patterns of centres of non-overlapping spherical cells in biological tissue which tend to have a clustering behaviour. Such a combination...... of clustering and hard core behaviour can be achieved by applying a dependent Matérn thinning to a Cox process. An exact formula for the intensity of a Matérn thinned shot noise Cox process is derived from the Palm distribution. For the more general class of Matérn thinned Cox processes, formulae...... for the intensity and second-order characteristics are established using the conditional Poisson assumption. These formulae include more complicated integrals for which approximations are suggested to simplify calculations. An example from pathology illustrates the applicability of the models....

  8. Multifractal characteristics of titanium nitride thin films

    Directory of Open Access Journals (Sweden)

    Ţălu Ştefan

    2015-09-01

    Full Text Available The study presents a multi-scale microstructural characterization of three-dimensional (3-D micro-textured surface of titanium nitride (TiN thin films prepared by reactive DC magnetron sputtering in correlation with substrate temperature variation. Topographical characterization of the surfaces, obtained by atomic force microscopy (AFM analysis, was realized by an innovative multifractal method which may be applied for AFM data. The surface micromorphology demonstrates that the multifractal geometry of TiN thin films can be characterized at nanometer scale by the generalized dimensions Dq and the singularity spectrum f(α. Furthermore, to improve the 3-D surface characterization according with ISO 25178-2:2012, the most relevant 3-D surface roughness parameters were calculated. To quantify the 3-D nanostructure surface of TiN thin films a multifractal approach was developed and validated, which can be used for the characterization of topographical changes due to the substrate temperature variation.

  9. Large thin adaptive x-ray mirrors

    Science.gov (United States)

    Doel, Peter; Atkins, Carolyn; Thompson, Samantha; Brooks, David; Yao, Jun; Feldman, Charlotte; Willingale, Richard; Button, Tim; Zhang, Dou; James, Ady

    2007-09-01

    This paper describes the progress made in a proof of concept study and recent results of a research program into large active x-ray mirrors that is part of the UK Smart X-ray Optics project. The ultimate aim is to apply the techniques of active/adaptive optics to the next generation of nested shell astronomical X-ray space telescopes. A variety of deformable mirror technologies are currently available, the most promising of which for active X-ray mirrors are probably unimorph and bimorph piezoelectric mirrors. In this type of mirror one or more sheets of piezoelectric material are bonded to or coated with a passive reflective layer. On the back or between the piezoceramic layer/layers are series of electrodes. Application of an electric field causes the piezoelectric material to undergo local deformation thus changing the mirror shape. Starting in 2005 a proof of concept active mirror research program has been undertaken. This work included modelling and development of actively controlled thin shell mirrors. Finite element models of piezo-electric actuated mirrors have been developed and verified against experimental test systems. This has included the modelling and test of piezo-electric hexagonal unimorph segments. Various actuator types and low shrinkage conductive bonding methods have been investigated and laboratory tests of the use of piezo-electric actuators to adjust the form of an XMM-Newton space telescope engineering model mirror shell have been conducted and show that movement of the optics at the required level is achievable. Promising technological approaches have been identified including moulded piezo-ceramics and piezo-electrics fibre bundles.

  10. Ceramic Composite Thin Films

    Science.gov (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  11. Thin Solid Oxide Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material, at least one metal and a catalyst...... material, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same. The present invention also relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous...... cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material and a catalyst material, wherein the electrolyte material is doper zirconia, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same. The...

  12. Thin film device applications

    CERN Document Server

    Kaur, Inderjeet

    1983-01-01

    Two-dimensional materials created ab initio by the process of condensation of atoms, molecules, or ions, called thin films, have unique properties significantly different from the corresponding bulk materials as a result of their physical dimensions, geometry, nonequilibrium microstructure, and metallurgy. Further, these characteristic features of thin films can be drasti­ cally modified and tailored to obtain the desired and required physical characteristics. These features form the basis of development of a host of extraordinary active and passive thin film device applications in the last two decades. On the one extreme, these applications are in the submicron dimensions in such areas as very large scale integration (VLSI), Josephson junction quantum interference devices, magnetic bubbles, and integrated optics. On the other extreme, large-area thin films are being used as selective coatings for solar thermal conversion, solar cells for photovoltaic conver­ sion, and protection and passivating layers. Ind...

  13. Surface morphology of thin films polyoxadiazoles

    Directory of Open Access Journals (Sweden)

    J. Weszka

    2011-12-01

    Full Text Available urpose: The purpose of this paper was to analyse the surface morphology of thin films polyoxadiazoles. Design/methodology/approach: SSix different polymers which belong to the group of polyoxadiazoles were dissolved in the solvent NMP. Each of these polymer was deposited on a glass substrate and a spin coating method was applied with a spin speed of 1000, 2000 and 3000 rev/min. Changes in surface topography and roughness were observed. An atomic force microscope AFM Park System has been used. Photos have been taken in noncontact mode while observing an area of 10 x 10 microns.Findings: The analysis of images has confirmed that the quality of thin films depends upon the used polymers. It was also observed that the parameters of the spin coating method have significant effect on the morphology and the surface roughness. The speed of the spin has got a strong impact on the topography of the thin films obtained.Research limitations/implications: The morphology of polyoxadiazoles thin films has been described. This paper include description how the spin speed influences the morphology of polymer thin films. In order to use a polymer thin film in photovoltaics or optoelectronics it must have a uniform thickness and a low surface roughness. Further research, in which the optical properties of thin films are investigated, is strongly recommended.Practical implications: Conductive polymers may find applications in photovoltaics or optoelectronics. It is important to study this group of material engineering and to find a new use for them. Materials from which thin films are made of will have an impact on the properties and characteristics of electronics devices in which they are be applied.Originality/value: The value of this paper is defining the optimal parameters of spin-coating technology for six polyoxadiazoles. The results allow the choosing optimal parameters of the deposition process. Spin coating is a very good method to obtain thin films which

  14. Capillarity driven spreading of circular drops of shear-thinning fluid

    OpenAIRE

    Betelu, S. I.; Fontelos, M. A.

    2004-01-01

    We investigate the spreading of thin, circular liquid drops of power-law rheology. We derive the equation of motion using the thin film approximation, construct source-type similarity solutions and compute the spreading rate, aparent contact angles and height profiles. In contrast with the spreading of newtonian liquids, the contact line paradox does not arise for shear thinning fluids.

  15. Thin silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R.B.; Bacon, C.; DiReda, V.; Ford, D.H.; Ingram, A.E.; Cotter, J.; Hughes-Lampros, T.; Rand, J.A.; Ruffins, T.R.; Barnett, A.M. [Astro Power Inc., Solar Park, Newark, DE (United States)

    1992-12-01

    The silicon-film design achieves high performance by using a dun silicon layer and incorporating light trapping. Optimally designed thin crystalline solar cells (<50 microns thick) have performance advantages over conventional thick devices. The high-performance silicon-film design employs a metallurgical barrier between the low-cost substrate and the thin silicon layer. Light trapping properties of silicon-film on ceramic solar cells are presented and analyzed. Recent advances in process development are described here.

  16. Chemical thinning affects yield and return flowering in 'Jubileu' peach

    Directory of Open Access Journals (Sweden)

    Marcos Antônio Giovanaz

    2016-06-01

    Full Text Available ABSTRACT Peach hand thinning improves fruit quality; however, it requires a high demand of labor and increases production costs. The objective of this study was to evaluate the effect of growth regulators applied at post-flowering as an alternative to hand thinning of peaches. The experiment was conducted with peach cultivar Jubileu, in 2012. The treatments consisted of no thinning, hand thinning 45 days after full bloom (DAFB, ethephon (85 and 120 mg L-1, benzyladenine (BA (400 mg L-1, and BA plus gibberellic acid (GA4 + 7 (400 mg L-1 applied 40 DAFB. BA-treated plants were not different from non-thinned plants, had excessive load, and smaller diameter fruit. Treatment with ethephon at 120 mg L-1 resulted in excessive thinning and decreased yield in comparison with other treatments. Plants treated with 85 mg L-1 ethephon and BA + AG4 + 7 (400 mg L-1 had fruit abscission, crop load, production per plant and fruit diameter similar to hand-thinned plants. In 2013, an increased number of flower buds was observed in treatments with ethephon and also reduction of this trait in BA and BA + GA4 + 7 applications. Ethephon at 85 mg L-1 can be an alternative of chemical thinning in 'Jubileu' peaches, without compromising the return of flower bud numbers in the next crop.

  17. Ferroelectric thin films

    International Nuclear Information System (INIS)

    The area of ferroelectric thin films has expanded rapidly recently with the advent of high quality multi-oxide deposition technology. Advances in thin film quality has resulted in the realization of new technologies not achievable through classical bulk ceramic processing techniques. An example of this progress is the co-processing of ferroelectric thin films with standard semiconductor silicon and GaAs integrated circuits for radiation hard, non-volatile memory products. While the development of this class of products is still embryonic, the forecasted market potential is rapidly out distancing the combined developmental effort. Historically the greatest use of bulk ferroelectric material has been in sensor technology, utilizing the pyroelectric and piezoelectric properties of the material. By comparison, a relatively small development effort has been reported for ferroelectric thin film senor technology, a field sure to provide exciting advances in the future. The papers in this proceedings volume were presented at the first symposium dedicated to the field of ferroelectric thin films held by the Materials Research Society at the Spring 1990 Meeting in San Francisco, CA, April 16-20, 1990. The symposium was designed to provide a comprehensive tutorial covering the newest advances of ferroelectric thin films, including material systems, new deposition techniques and physical, electrical and electro-optic characterization

  18. Manipulating Josephson junctions in thin-films by nearby vortices

    International Nuclear Information System (INIS)

    Highlights: • Vortex located in a bank of a planar Josephson junction changes its character. • Vortex located at some discreet positions in thin strip bank suppresses to zero the zero-field current. • The number of these positions is equal to the number of vortices trapped. • Critical current-field patterns are strongly affected by the vortex position. - Abstract: It is shown that a vortex trapped in one of the banks of a planar edge-type Josephson junction in a narrow thin-film superconducting strip can change drastically the dependence of the junction critical current on the applied field, Ic(H). When the vortex is placed at certain discrete positions in the strip middle, the pattern Ic(H) has zero at H=0 instead of the traditional maximum of ‘0-type’ junctions. The number of these positions is equal to the number of vortices trapped at the same location. When the junction–vortex separation exceeds ∼W, the strip width, Ic(H) is no longer sensitive to the vortex presence. The same is true for any separation if the vortex approaches the strip edges

  19. Thin-film Josephson junctions with alternating critical current density

    Science.gov (United States)

    Moshe, Maayan; Kogan, V. G.; Mints, R. G.

    2009-01-01

    We study the field dependence of the maximum current Im(H) in narrow edge-type thin-film Josephson junctions with alternating critical current density. Im(H) is evaluated within nonlocal Josephson electrodynamics taking into account the stray fields that affect the difference of the order-parameter phases across the junction and therefore the tunneling currents. We find that the phase difference along the junction is proportional to the applied field, depends on the junction geometry, but is independent of the Josephson critical current density gc , i.e., it is universal. An explicit form for this universal function is derived for small currents through junctions of the width W≪Λ , the Pearl length. The result is used to calculate Im(H) . It is shown that the maxima of Im(H)∝1/H and the zeros of Im(H) are equidistant but only in high fields. We find that the spacing between zeros is proportional to 1/W2 . The general approach is applied to calculate Im(H) for a superconducting quantum interference device with two narrow edge-type junctions. If gc changes sign periodically or randomly, as it does in grain boundaries of high- Tc materials and superconductor-ferromagnet-superconductor heterostructures, Im(H) not only acquires the major side peaks, but due to nonlocality the following peaks decay much slower than in bulk junctions.

  20. Photo-electrochemical studies of chemically deposited nanocrystalline meso-porous n-type TiO2 thin films for dye-sensitized solar cell (DSSC) using simple synthesized azo dye

    Science.gov (United States)

    Ezema, C. G.; Nwanya, A. C.; Ezema, B. E.; Patil, B. H.; Bulakhe, R. N.; Ukoha, P. O.; Lokhande, C. D.; Maaza, Malik; Ezema, Fabian I.

    2016-04-01

    Nanocrystalline titanium dioxide (TiO2) thin films were deposited by successive ionic layer adsorption and reaction method onto fluorine doped tin oxide coated glass substrate at room temperature (300 K). Titanium trichloride and sodium hydroxide were used as cationic and anionic sources, respectively. The as-deposited and annealed films were characterized for structural, morphological, optical, electrical and wettability properties. The photoelectrochemical study of TiO2 sensitized with a laboratory synthesized organic dye (azo) was evaluated in the polyiodide electrolyte at 40 mW cm-2 light illumination intensity. The photovoltaic characteristics show a fill factor of 0.24 and solar conversion efficiency value of 0.032 % for a TiO2 thickness of 0.96 µm as compared to efficiency of 0.014 % for rose Bengal of the same thickness.

  1. Geostatistics applied to uranium mineral

    International Nuclear Information System (INIS)

    The concepts of geostatistics are particularly introduced in the field of regionalized variables theory in order to apply them to the reserves estimation problem, since through this theory we can study the structural characteristics of the variable under consideration. So, before the starting of mine works we might suggest the geostatistic study of the deposit, in order to obtain an estimation of the reserves. Finally, a geostatistic study of the sedimentary type uranium deposit, called ''La Coma'', is realized

  2. Textured surface boron-doped ZnO transparent conductive oxides on polyethylene terephthalate substrates for Si-based thin film solar cells

    International Nuclear Information System (INIS)

    Textured surface boron-doped zinc oxide (ZnO:B) thin films were directly grown via low pressure metal organic chemical vapor deposition (LP-MOCVD) on polyethylene terephthalate (PET) flexible substrates at low temperatures and high-efficiency flexible polymer silicon (Si) based thin film solar cells were obtained. High purity diethylzinc and water vapors were used as source materials, and diborane was used as an n-type dopant gas. P-i-n silicon layers were fabricated at ∼ 398 K by plasma enhanced chemical vapor deposition. These textured surface ZnO:B thin films on PET substrates (PET/ZnO:B) exhibit rough pyramid-like morphology with high transparencies (T ∼ 80%) and excellent electrical properties (Rs ∼ 10 Ω at d ∼ 1500 nm). Finally, the PET/ZnO:B thin films were applied in flexible p-i-n type silicon thin film solar cells (device structure: PET/ZnO:B/p-i-n a-Si:H/Al) with a high conversion efficiency of 6.32% (short-circuit current density JSC = 10.62 mA/cm2, open-circuit voltage VOC = 0.93 V and fill factor = 64%).

  3. Applied Research of Techniques for Bridge Plate-Type Rubber Pad Bearing Inspecting%梁桥板式橡胶支座检查技术应用研究

    Institute of Scientific and Technical Information of China (English)

    李云峰; 王彤

    2009-01-01

    The paper analyzes reasons for hang in the air of bridge plate-type rubber pad bearing,introduces the bridge support inspecting mirror and inspecting instrument,which provide valid method for the inspection of erection quality of plate-type rubber pad bearing in the process of bridge construction and the inspection of bridge support in the process of bridge investigation.%分析了桥梁板式橡胶支座脱空现象产生的原因,介绍了桥梁支座检查镜和检查仪的设计与应用,为桥梁施工过程对板式橡胶支座安装质量检查和桥梁调查过程中对支座的检查提供了有效方法.

  4. Thin-film solar cells. Duennschichtsolarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Bloss, W.H.; Pfisterer, F.; Schock, H.W. (Stuttgart Univ. (Germany, F.R.). Inst. fuer Physikalische Elektronik)

    1990-01-01

    The authors present the state of the art in research and development, technology, production and marketing, and of the prospects of thin-film solar cells. Thin-film solar cells most used at present are based on amorphous silicon and on the compound semiconductors CuInSe{sub 2} and CdTe. Efficiencies in excess 12% have been achieved (14.1% with CuInSe{sub 2}). Stability is the main problem with amorphous silicon. Thin-film solar cells made from compound semiconductors do not have this problem, though their cost-effective series production needs to be shown still. The development potential of the three types mentioned will be ca. 30% in terms of efficiency: in terms of production cost, it is estimated with some certainty to be able to reach the baseline of 1 DM/Watt peak output (W{sub p}). (orig.).

  5. Investigation of Self Assembled Monolayers (SAM) Applied on Si(100) Surfaces by Atomic Force Microscopy

    International Nuclear Information System (INIS)

    Miniaturization of analytical instrumentation in a molecular and nanometer level has technologically significant. The fabrication of nanopatterns with high resolution SPM nanolithograpy may be applied on atomically flat surfaces. Self Assembled-Monolayers (SAMs) are well-ordered two dimensional molecular assemblies formed by a strong adsorption of an active surfactant on a solid surface. In this study, SAM organic thin film method is applied on silicon surfaces. We used various cleaning procedures such as chemical cleaning, ion beam treatment, on p-type Si(1OO) surfaces. SAMs films were produced from bipolar amphiphiles, Octadecylamine ODA-HCl, 1,12-diaminododecane (DAD) and n-tridecylamine (TDA) molecules on Si wafers. Contact mode scanning method and roughness analysis on the scan images were utilized on the SAM coated and uncoated surfaces by Atomic Force Microscopy

  6. Advances in Applied Mechanics

    OpenAIRE

    2014-01-01

    Advances in Applied Mechanics draws together recent significant advances in various topics in applied mechanics. Published since 1948, Advances in Applied Mechanics aims to provide authoritative review articles on topics in the mechanical sciences, primarily of interest to scientists and engineers working in the various branches of mechanics, but also of interest to the many who use the results of investigations in mechanics in various application areas, such as aerospace, chemical, civil, en...

  7. Perspectives on Applied Ethics

    OpenAIRE

    2007-01-01

    Applied ethics is a growing, interdisciplinary field dealing with ethical problems in different areas of society. It includes for instance social and political ethics, computer ethics, medical ethics, bioethics, envi-ronmental ethics, business ethics, and it also relates to different forms of professional ethics. From the perspective of ethics, applied ethics is a specialisation in one area of ethics. From the perspective of social practice applying eth-ics is to focus on ethical aspects and ...

  8. 基于Tabu搜索的贝叶斯网络在烟叶香型评价中的应用%APPLYING TABU SEARCH-BASED BAYESIAN NETWORK IN APPRAISING AROMA TYPES OF TOBACCO

    Institute of Scientific and Technical Information of China (English)

    李丽华; 丁香乾; 贺英; 王伟

    2012-01-01

    The appraisal of aroma types of tobacco usually depends on olfaction, the veracity of its result is sometimes hard to be guaranteed. In view of this, sensory evaluation models have been constructed at home and abroad by using BP neural network or other methods, but they are inefficient in recognition. According to the relationship between chemical composition and the aroma types of tobacco, the recognition model of tobacco aroma types has been constructed by using Tabu search-based Bayesian network. Experimental results showed that it can attain a better Bayesian network structure, and has higher training efficiency and better accuracy in classification compared with BP neural network or other methods.%烟叶香型通常是靠人的嗅觉评定的,评定结果的准确性往往难以保证.针对该问题,国内外建立了BP神经网络等感官评估模型,但识别效率不高.根据烟叶中化学成分与烟叶香型关系,使用基于Tabu搜索的贝叶斯网络建立烟叶香型识别模型.实验结果表明,使用该方法能得到较好的贝叶斯网络结构,与BP神经网络等方法相比训练效率更高,分类的结果也更加准确.

  9. Applied Neuroscience Laboratory Complex

    Data.gov (United States)

    Federal Laboratory Consortium — Located at WPAFB, Ohio, the Applied Neuroscience lab researches and develops technologies to optimize Airmen individual and team performance across all AF domains....

  10. Novel wide band gap materials for highly efficient thin film tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Brian E. Hardin, Stephen T. Connor, Craig H. Peters

    2012-06-11

    mixture of solution and physical vapor deposition processing, but these films lacked the p-type doping levels that are required to make decent solar cells. Over the course of the project PLANT PV was able to fabricate efficient CIGS solar cells (8.7%) but could not achieve equivalent performance using AIGS. During the nine-month grant PLANT PV set up a variety of thin film characterization tools (e.g. drive-level capacitance profiling) at the Molecular Foundry, a Department of Energy User Facility, that are now available to both industrial and academic researchers via the grant process. PLANT PV was also able to develop the back end processing of thin film solar cells at Lawrence Berkeley National Labs to achieve 8.7% efficient CIGS solar cells. This processing development will be applied to other types of thin film PV cells at the Lawrence Berkeley National Labs. While PLANT PV was able to study AIGS film growth and optoelectronic properties we concluded that AIGS produced using these methods would have a limited efficiency and would not be commercially feasible. PLANT PV did not apply for the Phase II of this grant.

  11. In-Situ phase and texture characterization of solution deposited PZT thin films during crystallization

    International Nuclear Information System (INIS)

    diffraction patterns were acquired with a 1s acquisition time using a MAR SX-165 CCD detector during crystallization. The sample to detector distance and the tilt rotations of the detector were determined in Fit2D(copyright) by using Al2O3 as the calibrant. These corrections were applied to the patterns when binning the data into radial (2θ) and azimuthal bins. The texture observed in the thin film was qualitatively analyzed by fitting the intensity peaks along the azimuthal direction with a gaussian profile function to obtain the integrated intensity of the peaks. Data analysis and peak fitting was done using the curve fitting toolbox in MATLAB(copyright). A fluorite-type phase was observed to form before the perovskite phase for all ramp rates. PtxPb is a transient intermetallic formed due to the interaction of the thin film and the bottom electrode during crystallization. Ramp rate was observed to significantly affect the amount of PtxPb observed in the thin films during crystallization. Ramp rate was also observed to affect the final texture obtained in the thin films. These results will be discussed in the poster in view of the current understanding of these materials.

  12. Surface morphology of thin films polyoxadiazoles

    OpenAIRE

    J. Weszka; M.M. Szindler; M. Chwastek-Ogierman; M. Bruma; P. Jarka; Tomiczek, B.

    2011-01-01

    urpose: The purpose of this paper was to analyse the surface morphology of thin films polyoxadiazoles. Design/methodology/approach: SSix different polymers which belong to the group of polyoxadiazoles were dissolved in the solvent NMP. Each of these polymer was deposited on a glass substrate and a spin coating method was applied with a spin speed of 1000, 2000 and 3000 rev/min. Changes in surface topography and roughness were observed. An atomic force microscope AFM Park System has been used....

  13. Qualification of the nuclear reactor core model DYN3D coupled to the thermohydraulic system code ATHLET, applied as an advanced tool for accident analysis of VVER-type reactors. Final report

    International Nuclear Information System (INIS)

    The nuclear reactor core model DYN3D with 3D neutron kinetics has been coupled to the thermohydraulic system code ATHLET. In the report, activities on qualification of the coupled code complex ATHLET-DYN3D as a validated tool for the accident analysis of russian VVER type reactors are described. That includes: - Contributions to the validation of the single codes ATHLET and DYN3D by the analysis of experiments on natural circulation behaviour in thermohydraulic test facilities and solution of benchmark tasks on reactivity initiated transients, - the acquisition and evaluation of measurement data on transients in nuclear power plants, the validation of ATHLET-DYN3D by calculating an accident with delayed scram and a pump trip in VVER plants, - the complementary improvement of the code DYN3D by extension of the neutron physical data base, implementation of an improved coolant mixing model, consideration of decay heat release and xenon transients, - the analysis of steam leak scenarios for VVER-440 type reactors with failure of different safety systems, investigation of different model options. The analyses showed, that with realistic coolant mixing modelling in the downcomer and the lower plenum, recriticality of the scramed reactor due to overcooling can be reached. The application of the code complex ATHLET-DYN3D in Czech Republic, Bulgaria and the Ukraine has been started. Future work comprises the verification of ATHLET-DYN3D with a DYN3D version for the square fuel element geometry of western PWR. (orig.)

  14. Magnetic shielding performance of superconducting YBCO thin film in a multilayer device structure

    International Nuclear Information System (INIS)

    Highlights: • A multilayer structure was fabricated in the form of YBCO/STO/YBCO. • Bottom layer was used as a magnetic shield. • The top layer was patterned as a microbridge. • Magnetic shielding performance of the bottom layer onto the microbridge was tested. • Ic of the microbridge was kept constant under the various magnetic fields. - Abstract: Magnetic shielding performance of superconducting YBaCu2O7−x (YBCO) thin film on an YBCO microbridge was analyzed in a multilayer structure. A sandwich type multilayer structure was fabricated onto a single crystal (1 0 0) SrTiO3 (STO) substrate in the form of YBCO/STO/YBCO by depositing a thin STO interlayer in between two YBCO layers. The top YBCO was patterned as 20 μm width meander-type microbridges and the bottom layer YBCO was used as magnetic shield. YBCO and STO thin films were deposited by dc and rf magnetron sputtering respectively, and the patterning was performed by using standard photolithography and wet etching. In order to enhance long-term stability of the final device, an additional STO thin film was deposited onto the device as an encapsulation layer. Electrical and magnetic characterizations of the YBCO thin film layers were carried out by means of ac magnetic susceptibility (χ–T) and resistance vs. temperature (R–T) measurements. The current–voltage (I–V) measurements were performed on the microbridges at 77 K by observing the shielding performance of the bottom YBCO layer under various applied magnetic fields. The results were compared with that of a same-type single layer YBCO device without a shielding layer. The zero field critical current value of the single layer 20 μm wide YBCO device was measured as 30 mA and decreased down to 20 mA as the field increased up to 100 mT. The same measurements on the multilayer device showed that the critical current values remained almost constant around 27 mA as the applied field increased

  15. Surface nanopatterning of Al/Ti multilayer thin films and Al single layer by a low-fluence UV femtosecond laser beam

    International Nuclear Information System (INIS)

    Highlights: • Femtosecond laser beam was applied to multilayer Al/Ti and single layer Al thin film. • The evolution of laser induced periodic surface structures and its causes is explained. • The structures remained stable after great number of pulses. • The different outcomes of the two cases (single and multilayer) have been explained in the light of the presence of the Ti underlayer. - Abstract: The effects of UV femtosecond laser beam with 76 MHz repetition rate on two types of thin films on Si substrate – the Al single layer thin film, and the multilayered thin film consisted of five Al/Ti bilayers (total thickness 130 nm) – were studied. The surface modification of the target was done by low fluences and different irradiation times, not exceeding ∼300 s. Nanopatterns in the form of femtosecond-laser induced periodic surface structures (fs-LIPSS) with periodicity of <315 nm and height of ∼45 nm were registered upon irradiation of the thin films. It was shown that: (i) the fs-LIPSS evolve from ruffles similar to high spatial frequency LIPSS (HSFL) into a low spatial frequency LIPSS (LSFL) if a certain threshold of the fluence is met, (ii) the number of LSFL increases with the exposition time and (iii) the LSFL remain stable even after long exposure times. We achieved high-quality highly-controllable fabrication of periodic structures on the surface of nanosized multilayer films with high-repetition-rate low-fluence femtosecond laser pulses. Compared to the Al single layer, the presence of the Ti underlayer in the Al/Ti multilayer thin film enabled more efficient heat transmittance through the Al/Ti interface away from the interaction zone which caused the reduction of the ablation effects leading to the formation of more regular LIPSS. The different outcomes of interactions with multi and single layer thin films lead to the conclusion that the behavior of the LIPSS is due to thin film structure

  16. Thin film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K; Ullal, H S

    1989-05-01

    Thin films are considered a potentially attractive technological approach to making cost-effective electricity by photovoltaics. Over the last twenty years, many have been investigated and some (cadmium telluride, copper indium diselenide, amorphous silicon) have become leading candidates for future large-scale commercialization. This paper surveys the past development of these key thin films and gives their status and future prospects. In all cases, significant progress toward cost-effective PV electricity has been made. If this progress continues, it appears that thin film PV could provide electricity that is competitive for summer daytime peaking power requirements by the middle of the 1990s; and electricity in a range that is competitive with fossil fuel costs (i.e., 6 cents/kilowatt-hour) should be available from PV around the turn of the century. 22 refs., 9 figs.

  17. Solid-state thin-film supercapacitor with ruthenium oxide and solid electrolyte thin films

    Science.gov (United States)

    Yoon, Y. S.; Cho, W. I.; Lim, J. H.; Choi, D. J.

    Direct current reactive sputtering deposition of ruthenium oxide thin films (bottom and top electrodes) at 400°C are performed to produce a solid-state thin-film supercapacitor (TFSC). The supercapacitor has a cell structure of RuO 2/Li 2.94PO 2.37N 0.75 (Lipon)/RuO 2/Pt. Radio frequency, reactive sputtering deposition of an Li 2.94PO 2.37N 0.75 electrolyte film is performed on the bottom RuO 2 film at room temperature to separate the bottom and top RuO 2 electrodes electrically. The stoichiometry of the RuO 2 thin film is investigated by Rutherford back-scattering spectrometry (RBS). X-ray diffraction (XRD) shows that the as-deposited RuO 2 thin film is an amorphous phase. Scanning electron microscopy (SEM) measurements reveal that the RuO 2/Lipon/RuO 2 hetero-interfaces have no inter-diffusion problems. Charge-discharge measurements with constant current at room temperature clearly reveal typical supercapacitor behaviour for a RuO 2/Lipon/RuO 2/Pt cell structure. Since the electrolyte thin film has low ionic mobility, the capacity and cycle performance are inferior to those of a bulk type of supercapacitor. These results indicate that a high performance, TFSC can be fabricated by a solid electrolyte thin film with high ionic conductivity.

  18. Applied Linguistics: Brazilian Perspectives

    Science.gov (United States)

    Cavalcanti, Marilda C.

    2004-01-01

    The aim of this paper is to present perspectives in Applied Linguistics (AL) against the background of a historical overview of the field in Brazil. I take the stance of looking at AL as a field of knowledge and as a professional area of research. This point of view directs my reflections towards research-based Applied Linguistics carried out from…

  19. Thin sums matroids and duality

    CERN Document Server

    Afzali, Hadi

    2012-01-01

    Thin sums matroids were introduced to extend the notion of representability to non-finitary matroids. We give a new criterion for testing when the thin sums construction gives a matroid. We show that thin sums matroids over thin families are precisely the duals of representable matroids (those arising from vector spaces). We also show that the class of tame thin sums matroids is closed under duality and under taking minors, by giving a new characterisation of the matroids in this class. Finally, we show that all the matroids naturally associated to an infinite graph are tame thin sums matroids.

  20. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  1. Thin films and nanomaterials

    International Nuclear Information System (INIS)

    The objective of this book is to disseminate the most recent research in Thin Films, Nanomaterials, Corrosion and Metallurgy presented at the International Conference on Advanced Materials (ICAM 2011) held in PSG College of Technology, Coimbatore, India during 12-16 December 2011. The book is a compilation of 113 chapters written by active researchers providing information and critical insights into the recent advancements that have taken place. Important new applications are possible today in the fields of microelectronics, opto-electronics, metallurgy and energy by the application of thin films on solid surfaces. Recent progress in high vacuum technology and new materials has a remarkable effect in thin film quality and cost. This has led to the development of new single or multi-layered thin film devices with diverse applications in a multitude of production areas, such as optics, thermal barrier coatings and wear protections, enhancing service life of tools and to protect materials against thermal and atmospheric influence. On the other hand, thin film process techniques and research are strongly related to the basic research activities in nano technology, an increasingly important field with countless opportunities for applications due to the emergence of new properties at the nanoscale level. Materials and structures that are designed and fabricated at the nano scale level, offer the potential to produce new devices and processes that may enhance efficiencies and reduce costs in many areas, as photovoltaic systems, hydrogen storage, fuel cells and solar thermal systems. In the book, the contributed papers are classified under two sections i) thin films and ii) nanomaterials. The thin film section includes single or multi layer conducting, insulating or semiconducting films synthesized by a wide variety of physical or chemical techniques and characterized or analyzed for different applications. The nanomaterials section deals with novel or exciting materials

  2. Effects of thinning intensities on transpiration and productivity of 50-year-old Pinus koraeinsis stands

    Science.gov (United States)

    Park, Juhan; Kim, Taekyu; Moon, Minkyu; Cho, Sungsik; Ryu, Daun; Kim, Hyun Seok

    2015-04-01

    This study investigated the effects of thinning intensities on stand transpiration and productivity of 50-year-old Korean pine forests for two years. Forest thinning, which removes some fraction of trees from stand, is widely conducted for reducing competition between remaining trees, improving tree productivity, reducing the risk of natural fire, and thus maintaining healthy forest. Forest thinning alters the microclimatic conditions such as radiation distribution within canopy, vapor pressure deficit, and amount of available soil water. These changes influence on the tree water use, and related productivity. Thinning was conducted on March, 2012 with two intensities (Control, Light-thinning (20%), and Heavy-thinning (40% of tree density)). Transpiration was estimated from sap flux density, which was measured with Granier-type thermal dissipation sensors. Tree diameter growth was measured with dendrometer, and converted to tree productivity using allometric equations developed specifically in our study sites. The climatic conditions showed little differences between two years. During the first growing season after thinning, stand transpiration was ca. 20% and 42% lower on light-thinning and heavy-thinning stand, respectively, even though sap flux density were higher in thinned stand. The difference in stand transpiration among treatments showed seasonal trends, so it was larger on summer when soil moisture was abundant due to monsoon, but was diminished on spring and autumn when soil moisture was limited. Tree-level productivity increased ca. 8% and 21% on light-thinning and heavy thinning stand, respectively. However, stand net primary production was ca. 20% lower on light-thinning stand, and ca. 31% on heavy-thinning stand. As a result, water use efficiency increased only in heavy-thinning stand. During the second growing season after thinning, stand transpiration was ca. 19% lower on light-thinning stand, and ca. 37% lower on heavy-thinning stand. The reduction

  3. Orthogonal Genetic Algorithm for Planar Thinned Array Designs

    OpenAIRE

    Li Zhang; Yong-Chang Jiao; Bo Chen; Hong Li

    2012-01-01

    An orthogonal genetic algorithm (OGA) is applied to optimize the planar thinned array with a minimum peak sidelobe level. The method is a genetic algorithm based on orthogonal design. A crossover operator formed by the orthogonal array and the factor analysis is employed to enhance the genetic algorithm for optimization. In order to evaluate the performance of the OGA, 20×10-element planar thinned arrays have been designed to minimize peak sidelobe level. The optimization results by the OGA a...

  4. Fabricating Thin-Film High-Temperature Thermoset Resins

    Science.gov (United States)

    Dickerson, G. E.; Long, E. R. J.; Kitts, R., G.

    1982-01-01

    To prepare an epoxy thin film, quantity of uncured epoxy to be cast placed in vacuum oven and heated to melting temperature. Vacuum of about 30 mm Hg is applied to deaerate epoxy charge. Pressure is cycled with each foaming until all air and excess volatiles are revoved. thermoset (cross-linked) resin is cast between thin, flexible, releasing substrate films. Films less than 0.025 mm in thickness are made routinely with this facility.

  5. Geometry of thin liquid sheet flows

    Science.gov (United States)

    Chubb, Donald L.; Calfo, Frederick D.; Mcconley, Marc W.; Mcmaster, Matthew S.; Afjeh, Abdollah A.

    1994-01-01

    Incompresible, thin sheet flows have been of research interest for many years. Those studies were mainly concerned with the stability of the flow in a surrounding gas. Squire was the first to carry out a linear, invicid stability analysis of sheet flow in air and compare the results with experiment. Dombrowski and Fraser did an experimental study of the disintegration of sheet flows using several viscous liquids. They also detected the formulation of holes in their sheet flows. Hagerty and Shea carried out an inviscid stability analysis and calculated growth rates with experimental values. They compared their calculated growth rates with experimental values. Taylor studied extensively the stability of thin liquid sheets both theoretically and experimentally. He showed that thin sheets in a vacuum are stable. Brown experimentally investigated thin liquid sheet flows as a method of application of thin films. Clark and Dumbrowski carried out second-order stability analysis for invicid sheet flows. Lin introduced viscosity into the linear stability analysis of thin sheet flows in a vacuum. Mansour and Chigier conducted an experimental study of the breakup of a sheet flow surrounded by high-speed air. Lin et al. did a linear stability analysis that included viscosity and a surrounding gas. Rangel and Sirignano carried out both a linear and nonlinear invisid stability analysis that applies for any density ratio between the sheet liquid and the surrounding gas. Now there is renewed interest in sheet flows because of their possible application as low mass radiating surfaces. The objective of this study is to investigate the fluid dynamics of sheet flows that are of interest for a space radiator system. Analytical expressions that govern the sheet geometry are compared with experimental results. Since a space radiator will operate in a vacuum, the analysis does not include any drag force on the sheet flow.

  6. Nitrogen incorporation in sputter deposited molybdenum nitride thin films

    International Nuclear Information System (INIS)

    In this paper, the authors report on the high temperature performance of sputter deposited molybdenum (Mo) and molybdenum nitride (Mo2N) thin films. Various argon and nitrogen gas compositions are applied for thin film synthetization, and the amount of nitrogen incorporation is determined by Auger measurements. Furthermore, effusion measurements identifying the binding conditions of the nitrogen in the thin film are performed up to 1000 °C. These results are in excellent agreement with film stress and scanning electron microscope analyses, both indicating stable film properties up to annealing temperatures of 500 °C

  7. Nitrogen incorporation in sputter deposited molybdenum nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stöber, Laura, E-mail: laura.stoeber@tuwien.ac.at; Patocka, Florian, E-mail: florian.patocka@tuwien.ac.at; Schneider, Michael, E-mail: michael.schneider@tuwien.ac.at; Schmid, Ulrich, E-mail: ulrich.e366.schmid@tuwien.ac.at [Institute of Sensor and Actuator Systems, TU Wien, Gußhausstraße 27-29, A-1040 Vienna (Austria); Konrath, Jens Peter, E-mail: jenspeter.konrath@infineon.com; Haberl, Verena, E-mail: verena.haberl@infineon.com [Infineon Technologies Austria AG, Siemensstraße 2, 9500 Villach (Austria)

    2016-03-15

    In this paper, the authors report on the high temperature performance of sputter deposited molybdenum (Mo) and molybdenum nitride (Mo{sub 2}N) thin films. Various argon and nitrogen gas compositions are applied for thin film synthetization, and the amount of nitrogen incorporation is determined by Auger measurements. Furthermore, effusion measurements identifying the binding conditions of the nitrogen in the thin film are performed up to 1000 °C. These results are in excellent agreement with film stress and scanning electron microscope analyses, both indicating stable film properties up to annealing temperatures of 500 °C.

  8. Fiscal 1998 achievement report on regional consortium research and development project. Venture business raising type regional consortium research and development - Small business creation base type (Development of high performance thin film manufacturing system for optical elements and electronic devices); 1998 nendo kogaku narabini denshi buhin'yo kosoku usumaku seizo sochi no kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-02-01

    In the development of a thin film manufacturing vacuum device, high-speed evacuation from atmospheric pressure to 7.0 times 10{sup -5}Pa is accomplished in approximately 80 minutes, and a high-efficiency large sputter gun and a 60rpm high-speed high-precision substrate holder rotating mechanism with rotation accuracy of {+-}1rpm are realized. In the development of optical thin films, film formation is accomplished using a rocking magnetron cathode and an effectively usable range of 62% is achieved in film thickness uniformity, which is 2.5 times as high as that by the conventional method. Using this device, the areas where materials fail to hit the target due to rocking are limited to the top and bottom corners. In the development of an ultrafine film resistor, a leakage field is designed by an electromagnetic field simulator, and a magnetron cathode is designed, with the erosion area (effective film formation range) approximately 2 times as large as that with the conventional cathode. The film thickness distribution is within {+-}5%, variation in the thin film resistor temperature coefficient is within {+-}5ppm/degrees C, and the deposition rate is 4nm/sec which is 4 times as high as that under the conventional method. The number of films is 8 times larger when formation is accomplished with the substrate holder kept in rotation. (NEDO)

  9. Cultivating mental health professionals of applied type on basis of society needs%应用型精神卫生人才培养模式及其成效

    Institute of Scientific and Technical Information of China (English)

    崔光成; 刘吉成

    2008-01-01

    齐齐哈尔医学院开办精神医学专业已经有近30年的历史.长期以来,以面向基层培养应用型高级精神卫生人才为目标,充分利用地方优质的精神卫生医疗资源,采用独具特色的"专才"培养模式,学生专业思想稳定,临床实践能力强,人才培养质量高,受到了政府的充分肯定和用人单位的欢迎.%It has been 30 years history of running psychiatric medicine major in Qiqihar Medical U-niversity. For a long time, we regard facing the basic unit and training applied advanced mental health tal-ents as our own training objective, utilize the high-quality medical resources of mental health in the local and adopt the training model of the distinctive "specialized talents". The students' professional thoughts are steady and their abilities of clinical practice are strong. The quality of personnel cultivation is fully con-firmed by the government and gets welcomed by the employing unit.

  10. EXPERIMENTAL RESEARCH ON AXIAL COMPRESSION BEHAVIOR OF NEW-TYPE OF COLD-FORMED THIN-WALL STEEL FRAMING WALL STUDS%新型冷弯薄壁型钢墙体立柱轴压性能试验研究

    Institute of Scientific and Technical Information of China (English)

    刘斌; 郝际平; 赵淋伟; 李科龙; 钟炜辉; 赵秋利

    2014-01-01

    提出一种在冷弯薄壁型钢骨架中放置聚苯乙烯泡沫板,并在骨架外侧喷涂轻质保温物料的新型轻质组合墙体。通过对1根无墙板的冷弯薄壁型钢立柱和2根新型冷弯薄壁型钢墙体立柱的轴压性能进行足尺试验,研究其受力过程、承载能力和破坏模式,并将试验结果与按规范公式计算的极限承载力进行对比分析。研究结果表明:无墙板立柱的破坏模式为构件的整体屈曲;新型冷弯薄壁型钢墙体立柱的破坏现象为柱顶截面的局部受压屈服,保温物料对立柱的支承作用使新型墙体立柱的承载能力显著提高。按照规范中关于轴心受压杆件的强度和稳定计算公式得出的极限承载力与试验的破坏荷载较为吻合。%A new-type of light-weight wall , in which polystyrene foam plates are placed inside the cold-formed thin-wall steel frame and light thermal insulation material is sprayed outside the frame of the wall , was presented .Through the full-scale tests of one cold-formed thin-wall steel stud without sheathing and two new-type of cold-formed thin-wall steel framing wall studs under axial loading , the failure process , the bearing capacity and the failure mode were analyzed .The calculated value determined by the code and experimental data of this test were compared .The results show that the failure mode of the cold-formed thin-wall steel stud without sheathing is global buckling and that of the new-type of wall stud is local compressed yielding on the top of the stud .The bearing capacity of the new-type of wall stud is greatly increased owing to the support of thermal insulation material .The calculated values of the ultimate bearing capacity by the formula of calculating about strength and stability of axial compressive members in the code agree well with the experimental ultimate bearing loadings .

  11. Thin Concrete Barrel Vault

    NARCIS (Netherlands)

    Kamerling, M.W.

    2013-01-01

    The paper presents the structural design of a thin barrel vault constructed with Fusée Ceramique infill elements. The load transfer is analyzed and validated. For the structure composed of Fusée Ceramique elements, steel and concrete the stresses are calculated and compared to the stresses given in

  12. Protein Thin Film Machines

    OpenAIRE

    Federici, Stefania; Oliviero, Giulio; Hamad-Schifferli, Kimberly; Bergese, Paolo

    2010-01-01

    We report the first example of microcantilever beams that are reversibly driven by protein thin film machines fuelled by cycling the salt concentration of the surrounding solution. We also show that upon the same salinity stimulus the drive can be completely reversed in its direction by introducing a surface coating ligand. Experimental results are throughout discussed within a general yet simple thermodynamic model.

  13. Thin Wall Iron Castings

    Energy Technology Data Exchange (ETDEWEB)

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka

    2001-10-31

    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  14. Bimolecular recombination and complete photocurrent decay in metallophthalocyanine thin films

    Science.gov (United States)

    Noah, Ramsey S.

    Metallophthalocyanines (MPc) are a class of planar small molecule semiconductors that are of great interest due to their applications in organic solar cells. However, a thorough understanding of many of their charge transport properties, especially those related to trap states, is lacking. In previous works the increase of grain size in MPc thin films with higher substrate temperature during the thermal evaporation process was quantified. Here, we investigate the charge transport properties of phthalocyanine with varying grain sizes in five ways: 1) intensity-varied photocurrent measurements are used to study the order of recombination in zinc phthalocyanine (ZnPc) thin films; 2) the conduction dependence on oxygen doping in copper phthalocyanine (CuPc) and ZnPc is investigated through oxygen deprivation in a closed-cycle refrigerator; 3) the complete photocurrent decay in CuPc and ZnPc is explored; 4) the bandgap of CuPc and ZnPc is derived from wide temperature range (˜ 80K - 351K) resistance measurements; 5) thermally stimulated currents (TSC) in CuPc and ZnPc are induced using a modified Reber methodology. An explanation for oxygen doping in these type of thin films is presented and in addition to bimolecular recombination a second model is also applied to measurements of intensity-varied photocurrent. Our data suggest several interesting aspects of the charge transport properties in these organic semiconductors. Recombination may not be dominated by monomolecular processes but instead bimolecular. More amorphous (low deposition temperature) samples show a greater change in conductivity due to oxygen doping. The photocurrent of more crystalline samples decays more rapidly compared to amorphous samples, suggesting that deeper trap states are present in lower deposition temperature samples. The bandgap derived from temperature-varied resistance measurements is systematically low due to slow detrapping. Unlike TSC measurements in micrometer-thick organic films

  15. Thin film metal-oxides

    CERN Document Server

    Ramanathan, Shriram

    2009-01-01

    Presents an account of the fundamental structure-property relations in oxide thin films. This title discusses the functional properties of thin film oxides in the context of applications in the electronics and renewable energy technologies.

  16. Thin films for material engineering

    Science.gov (United States)

    Wasa, Kiyotaka

    2016-07-01

    Thin films are defined as two-dimensional materials formed by condensing one by one atomic/molecular/ionic species of matter in contrast to bulk three-dimensional sintered ceramics. They are grown through atomic collisional chemical reaction on a substrate surface. Thin film growth processes are fascinating for developing innovative exotic materials. On the basis of my long research on sputtering deposition, this paper firstly describes the kinetic energy effect of sputtered adatoms on thin film growth and discusses on a possibility of room-temperature growth of cubic diamond crystallites and the perovskite thin films of binary compound PbTiO3. Secondly, high-performance sputtered ferroelectric thin films with extraordinary excellent crystallinity compatible with MBE deposited thin films are described in relation to a possible application for thin-film MEMS. Finally, the present thin-film technologies are discussed in terms of a future material science and engineering.

  17. Mesothelioma Applied Research Foundation

    Science.gov (United States)

    ... Percentage Donations Tribute Wall Other Giving/Fundraising Opportunities Bitcoin Donation Form FAQs Help us raise awareness and ... Percentage Donations Tribute Wall Other Giving/Fundraising Opportunities Bitcoin Donation Form FAQs © 2013 Mesothelioma Applied Research Foundation, ...

  18. Applied Mathematics Seminar 1982

    International Nuclear Information System (INIS)

    This report contains the abstracts of the lectures delivered at 1982 Applied Mathematics Seminar of the DPD/LCC/CNPq and Colloquy on Applied Mathematics of LCC/CNPq. The Seminar comprised 36 conferences. Among these, 30 were presented by researchers associated to brazilian institutions, 9 of them to the LCC/CNPq, and the other 6 were given by visiting lecturers according to the following distribution: 4 from the USA, 1 from England and 1 from Venezuela. The 1981 Applied Mathematics Seminar was organized by Leon R. Sinay and Nelson do Valle Silva. The Colloquy on Applied Mathematics was held from october 1982 on, being organized by Ricardo S. Kubrusly and Leon R. Sinay. (Author)

  19. Handbook of Applied Analysis

    CERN Document Server

    Papageorgiou, Nikolaos S

    2009-01-01

    Offers an examination of important theoretical methods and procedures in applied analysis. This book details the important theoretical trends in nonlinear analysis and applications to different fields. It is suitable for those working on nonlinear analysis.

  20. Polycrystalline Mg2Si thin films: A theoretical investigation of their electronic transport properties

    International Nuclear Information System (INIS)

    The electronic structures and thermoelectric properties of a polycrystalline Mg2Si thin film have been investigated by first-principle density-functional theory (DFT) and Boltzmann transport theory calculations within the constant-relaxation time approximation. The polycrystalline thin film has been simulated by assembling three types of slabs each having the orientation (001), (110) or (111) with a thickness of about 18 Å. The effect of applying the relaxation procedure to the thin film induces disorder in the structure that has been ascertained by calculating radial distribution functions. For the calculations of the thermoelectric properties, the energy gap has been fixed at the experimental value of 0.74 eV. The thermoelectric properties, namely the Seebeck coefficient, the electrical conductivity and the power factor, have been determined at three temperatures of 350 K, 600 K and 900 K with respect to both the energy levels and the p-type and n-type doping levels. The best Seebeck coefficient is obtained at 350 K: the Syy component of the tensor amounts to about ±1000 μV K−1, depending on the type of charge carriers. However, the electrical conductivity is much too small which results in low values of the figure of merit ZT. Structure–property relationship correlations based on directional radial distribution functions allow us to tentatively draw some explanations regarding the anisotropy of the electrical conductivity. Finally, the low ZT values obtained for the polycrystalline Mg2Si thin film are paralleled with those recently reported in the literature for bulk chalcogenide glasses. - Graphical abstract: Structure of the polycrystalline thin film of Mg2Si. - Author-Highlights: • Polycrystalline Mg2Si film has been modelled by DFT approach. • Thermoelectric properties have been evaluated by semi-classical Boltzmann theory. • The structure was found to be slightly disordered after relaxation. • The highest value of Seebeck coefficient reaches

  1. Polycrystalline Mg{sub 2}Si thin films: A theoretical investigation of their electronic transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Balout, H. [MADIREL, Aix-Marseille University and CNRS, Avenue Normandie-Niemen, 13397 Marseille (France); Boulet, P., E-mail: pascal.boulet@univ-amu.fr [MADIREL, Aix-Marseille University and CNRS, Avenue Normandie-Niemen, 13397 Marseille (France); Record, M.-C. [IM2NP, Aix-Marseille University and CNRS, Avenue Normandie-Niemen, 13397 Marseille (France)

    2015-05-15

    The electronic structures and thermoelectric properties of a polycrystalline Mg{sub 2}Si thin film have been investigated by first-principle density-functional theory (DFT) and Boltzmann transport theory calculations within the constant-relaxation time approximation. The polycrystalline thin film has been simulated by assembling three types of slabs each having the orientation (001), (110) or (111) with a thickness of about 18 Å. The effect of applying the relaxation procedure to the thin film induces disorder in the structure that has been ascertained by calculating radial distribution functions. For the calculations of the thermoelectric properties, the energy gap has been fixed at the experimental value of 0.74 eV. The thermoelectric properties, namely the Seebeck coefficient, the electrical conductivity and the power factor, have been determined at three temperatures of 350 K, 600 K and 900 K with respect to both the energy levels and the p-type and n-type doping levels. The best Seebeck coefficient is obtained at 350 K: the S{sub yy} component of the tensor amounts to about ±1000 μV K{sup −1}, depending on the type of charge carriers. However, the electrical conductivity is much too small which results in low values of the figure of merit ZT. Structure–property relationship correlations based on directional radial distribution functions allow us to tentatively draw some explanations regarding the anisotropy of the electrical conductivity. Finally, the low ZT values obtained for the polycrystalline Mg{sub 2}Si thin film are paralleled with those recently reported in the literature for bulk chalcogenide glasses. - Graphical abstract: Structure of the polycrystalline thin film of Mg{sub 2}Si. - Author-Highlights: • Polycrystalline Mg{sub 2}Si film has been modelled by DFT approach. • Thermoelectric properties have been evaluated by semi-classical Boltzmann theory. • The structure was found to be slightly disordered after relaxation. • The highest

  2. Applying contemporary statistical techniques

    CERN Document Server

    Wilcox, Rand R

    2003-01-01

    Applying Contemporary Statistical Techniques explains why traditional statistical methods are often inadequate or outdated when applied to modern problems. Wilcox demonstrates how new and more powerful techniques address these problems far more effectively, making these modern robust methods understandable, practical, and easily accessible.* Assumes no previous training in statistics * Explains how and why modern statistical methods provide more accurate results than conventional methods* Covers the latest developments on multiple comparisons * Includes recent advanc

  3. Heterogeneity in Polymer Thin Films

    OpenAIRE

    Kanaya, Toshiji; Inoue, Rintaro; Nishida, Koji

    2011-01-01

    In the last two decades very extensive studies have been performed on polymer thin films to reveal very interesting but unusual properties. One of the most interesting findings is the decrease in glass transition temperature Tg with film thickness in polystyrene (PS) thin film supported on Si substrate. Another interesting finding is apparent negative thermal expansivity in glassy state for thin films below ∼25 nm. In order to understand the unusual properties of polymer thin films we have st...

  4. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  5. Thin film dynamics with surfactant phase transition

    OpenAIRE

    Köpf, M. H.; Gurevich, S. V.; Friedrich, R.

    2009-01-01

    A thin liquid film covered with an insoluble surfactant in the vicinity of a first-order phase transition is discussed. Within the lubrication approximation we derive two coupled equations to describe the height profile of the film and the surfactant density. Thermodynamics of the surfactant is incorporated via a Cahn-Hilliard type free-energy functional which can be chosen to describe a transition between two stable phases of different surfactant density. Within this model, a linear stabilit...

  6. Thermal conductivity of dielectric thin films

    International Nuclear Information System (INIS)

    A direct reading thermal comparator has been used to measure the thermal conductivity of dielectric thin film coatings. In the past, the thermal comparator has been used extensively to measure the thermal conductivity of bulk solids, liquids, and gases. The technique has been extended to thin film materials by making experimental improvements and by the application of an analytical heat flow model. Our technique also allows an estimation of the thermal resistance of the film/substrate interface which is shown to depend on the method of film deposition. The thermal conductivity of most thin films was found to be several orders of magnitude lower than that of the material in bulk form. This difference is attributed to structural disorder of materials deposited in thin film form. The experimentation to date has centered primarily on optical coating materials. These coatings, used to enhance the optical properties of components such as lenses and mirrors, are damaged by thermal loads applied in high-power laser applications. It has been widely postulated that there may be a correlation between the thermal conductivity and the damage threshold of these materials. 31 refs., 11 figs., 8 tabs

  7. Characteristics of heat transfer fouling of thin stillage using model thin stillage and evaporator concentrates

    Science.gov (United States)

    Challa, Ravi Kumar

    , fiber and minerals, simulated thin stillage was prepared with carbohydrate mixtures and tested for fouling rates. Induction period, maximum fouling resistance and mean fouling rates were determined. Two experiments were performed with two varieties of starch, waxy and high amylose and short chain carbohydrates, corn syrup solids and glucose. Interaction effects of glucose with starch varieties were studied. In the first experiment, short chain carbohydrates individual and interaction effects with starch were studied. For mixtures prepared from glucose and corn syrup solids, no fouling was observed. Mixtures prepared from starch, a long glucose polymer, showed marked fouling. Corn syrup solids and glucose addition to pure starch decreased the mean fouling rates and maximum fouling resistances. Between corn syrup solids and glucose, starch fouling rates were reduced with addition of glucose. Induction periods of pure mixtures of either glucose or corn syrup solids were longer than the test period (5 h). Pure starch mixture had no induction period. Maximum fouling resistance was higher for mixtures with higher concentration of longer polymers. Waxy starch had a longer induction period than high amylose starch. Maximum fouling resistance was higher for waxy than high amylose starch. Addition of glucose to waxy or high amylose starch increased induction period of mixtures longer than 5 h test period. It appears that the bulk fluid temperature plays an important role on carbohydrate mixture fouling rates. Higher bulk fluid temperatures increased the initial fouling rates of the carbohydrate mixtures. Carbohydrate type, depending on the polymer length, influenced the deposit formation. Longer chain carbohydrate, starch, had higher fouling rates compared to shorter carbohydrates such as glucose and corn syrup solids. For insoluble carbohydrate mixtures, fouling was severe. As carbohydrate solubility increased with bulk fluid temperature, surface reaction increased at probe

  8. Applied Research on New Types of High Capacity FACTS Devices in Northwest 750 kV Power Grid%西北750 kV电网大容量新型FACTS设备应用研究

    Institute of Scientific and Technical Information of China (English)

    左玉玺; 郑楠; 范克强; 王雅婷; 邢琳; 申洪; 郑彬; 李晶; 班连庚; 周勤勇; 李润秋

    2013-01-01

    In allusion to the control of reactive power and voltage during the large-scale transmission of power generated by new energy source base in Northwest China and to enhance the security and stability of power grid, it is planned to install multi sets of new types of high-capacity FACTS devices such as controlled shunt reactors (CSR) and static var compensators (SVC) in the second 750 kV transmission line to connect Xinjiang power grid with Northwest power grid. A technological scheme for the application of these FACTS devices is proposed and the steady-state voltage regulation effect of FACTS devices is analyzed in detail. Meanwhile, in the aspects of increasing power transmission capability of the grid-connecting channel and improving post-fault voltage recovery level, the enhancement effect of FACTS devices on power grid transient stability is researched. Finally, the influences of FACTS devices on electromagnetic transient are analyzed in the viewpoints of suppressing system overvoltage and secondary arc current.%  为解决西北新能源大规模外送系统的无功电压控制问题,提高电网的安全稳定性,在新疆与西北主网联网750 kV第二通道上规划装设多套可控电抗器和静止无功补偿器等大容量新型 FACTS 设备。为此提出了 FACTS 设备的技术应用方案,并对FACTS设备的稳态调压效果进行详细分析。同时从提升联网通道输电能力和提升故障后电压恢复水平2个方面研究了FACTS设备对系统暂态稳定性的提升作用。最后,从抑制系统过电压和潜供电流的角度,分析了FACTS设备对电磁暂态问题的影响。

  9. Radioisotope-applied measuring instruments

    International Nuclear Information System (INIS)

    Fuji Electric developed a new type detector for gamma thickness gauges, inner-mill housing gamma thickness gauges at hot plate mills and tube-wall thickness gauges at hot seamless tube mills. This detector attained much higher gamma counting and much lower drift than our former detectors. We plan to apply this detector to our new type thickness gauges and also renewal of now working thickness gauges at customer's site. In addition, we developed a soil mass measuring instrument for on-line measurement of cutting soil mass in a waste water tube in shield tunneling. This instrument is free from legal control and can be used in every field of civil engineering. (author)

  10. Atomic Structure Control of Silica Thin Films on Pt(111)

    KAUST Repository

    Crampton, Andrew S

    2015-05-27

    Metal oxide thin films grown on metal single crystals are commonly used to model heterogeneous catalyst supports. The structure and properties of thin silicon dioxide films grown on metal single crystals have only recently been thoroughly characterized and their spectral properties well established. We report the successful growth of a three- dimensional, vitreous silicon dioxide thin film on the Pt(111) surface and reproduce the closed bilayer structure previously reported. The confirmation of the three dimensional nature of the film is unequivocally shown by the infrared absorption band at 1252 cm−1. Temperature programmed desorption was used to show that this three-dimensional thin film covers the Pt(111) surface to such an extent that its application as a catalyst support for clusters/nanoparticles is possible. The growth of a three-dimensional film was seen to be directly correlated with the amount of oxygen present on the surface after the silicon evaporation process. This excess of oxygen is tentatively attributed to atomic oxygen being generated in the evaporator. The identification of atomic oxygen as a necessary building block for the formation of a three-dimensional thin film opens up new possibilities for thin film growth on metal supports, whereby simply changing the type of oxygen enables thin films with different atomic structures to be synthesized. This is a novel approach to tune the synthesis parameters of thin films to grow a specific structure and expands the options for modeling common amorphous silica supports under ultra high vacuum conditions.

  11. Rayleigh-Taylor Instability for viscous thin gas films: Application to Critical Heat Flux and Minimum Film Boiling

    International Nuclear Information System (INIS)

    Four types of Rayleigh-Taylor instability analyses have been applied to thin gas films. In particular, the Dispersion relation including phase change was derived based on the lubrication approximation. The evaporation effect was shown to be negligible to find the most dangerous wavelength and the most rapid growth rate. As a result, it was shown that λd = 2π√2σ/Δρg should be used for the most dangerous wavelength for thin vapor films. This value was used to modify the existing critical heat flux for saturated pool boiling on horizontal surfaces. The modified correlations showed good predictions in the wide rate of pressure. Moreover, the thin vapor film analysis correctly led to the expression for the vapor film thickness at minimum film boiling, which is consistent with the well-known existing correlation. The question raised in introduction is now answered. If the viscosity effect is neglected for thin gas films, the most dangerous wavelength and the most rapid growth rate are incorrectly predicted. Therefore, the viscous flow analysis must be performed than the inviscid flow analysis

  12. Differentiation of bacterial and non-bacterial community-acquired pneumonia by thin-section computed tomography

    International Nuclear Information System (INIS)

    Background and objective: The management of community-acquired pneumonia (CAP) depends, in part, on the identification of the causative agents. The objective of this study was to determine the potential of thin-section computed tomography (CT) in differentiating bacterial and non-bacterial pneumonia. Patients and methods: Thin-section CT studies were prospectively examined in hospitalized CAP patients within 2 days of admission, followed by retrospective assessment by two pulmonary radiologists. Thin-section CT findings on the pneumonias caused by each pathogen were examined, and two types of pneumonias were compared. Using multivariate logistic regression analyses, receiver operating characteristic (ROC) curves were produced. Results: Among 183 CAP episodes (181 patients, 125 men and 56 women, mean age ± S.D.: 61.1 ± 19.7) examined by thin-section CT, the etiologies of 125 were confirmed (94 bacterial pneumonia and 31 non-bacterial pneumonia). Centrilobular nodules were specific for non-bacterial pneumonia and airspace nodules were specific for bacterial pneumonia (specificities of 89% and 94%, respectively) when located in the outer lung areas. When centrilobular nodules were the principal finding, they were specific but lacked sensitivity for non-bacterial pneumonia (specificity 98% and sensitivity 23%). To distinguish the two types of pneumonias, centrilobular nodules, airspace nodules and lobular shadows were found to be important by multivariate analyses. ROC curve analysis discriminated bacterial pneumonia from non-bacterial pneumonia among patients without underlying lung diseases, yielding an optimal point with sensitivity and specificity of 86% and 79%, respectively, but was less effective when all patients were analyzed together (70% and 84%, respectively). Conclusion: Thin-section CT examination was applied for the differentiation of bacterial and non-bacterial pneumonias. Though showing some potential, this examination at the present time would not

  13. Thin Capitalization Rules and Entrepreneurial Capital Structure Decisions

    Directory of Open Access Journals (Sweden)

    Alexandra Maßbaum

    2009-12-01

    Full Text Available Tax planners often choose debt over equity financing. As this has led to increased corporate debt financing, many countries have introduced thin capitalization rules to secure their tax revenues. In a general capital structure model we analyze if thin capitalization rules affect dividend and financing decisions, and whether they can partially explain why corporations receive both debt and equity capital. We model the Belgian, German and Italian rules as examples. We find that the so-called Miller equilibrium and definite financing effects depend significantly on the underlying tax system. Further, our results are useful for the treasury to decide what thin capitalization type to implement.

  14. Debt Financing and Thin-Capitalization: Case Study in Slovenia

    Directory of Open Access Journals (Sweden)

    Lidija Hauptman

    2014-03-01

    Full Text Available Since each form of financing provides a different level of security and risk, companies are often faced with a dilemma, which equity to debt ratio to choose in financial structure. In order to avoid overexploitation of certain types of debt financing, tax legislation defines a thin capitalization rule. In this paper we present, how the relationship between equity and debt financing has changed in the period 1997–2012 and how the thin capitalization rules affected this relationship in the selected parent companies in Slovenia. The analysis reveals that the proportion of debt financing increased before and after the introduction of thin capitalization rules throughout the period.

  15. Vibration characteristics of thin rotating cylindrical shells with various boundary conditions

    Science.gov (United States)

    Sun, Shupeng; Chu, Shiming; Cao, Dengqing

    2012-08-01

    An analysis is presented for the vibration characteristics of thin rotating cylindrical shells with various boundary conditions by use of Fourier series expansion method. Based on Sanders' shell equations, the governing equations of motion which take into account the effects of centrifugal and Coriolis forces as well as the initial hoop tension due to rotating are derived. The displacement field is expressed as a product of Fourier series expressions which represents the axial modal displacements and trigonometric functions which represents the circumferential modal displacements. Stokes' transformation is employed to derive the derivatives of the Fourier series expressions. Then, through the process of formula derivation, an explicit expression of the exact frequency equation can be obtained for a thin rotating cylinder with classical boundary conditions of any type. Once the frequency equation has been determined, the frequencies are calculated numerically. To validate the present analysis, comparisons between the results of the present method and previous studies are performed and very good agreement is achieved. Finally, the method is applied to investigate the vibration characteristics of thin rotating cylindrical shells under various boundaries, and the results are presented.

  16. Comprehensive characterization of all-solid-state thin films commercial microbatteries by Electrochemical Impedance Spectroscopy

    Science.gov (United States)

    Larfaillou, S.; Guy-Bouyssou, D.; le Cras, F.; Franger, S.

    2016-07-01

    Constant miniaturization of electronic devices opens the way to the development of thin film microbatteries (TFB). For this type of devices, the use of an all-solid-state thin film technology has many advantages over conventional lithium cells. These microbatteries are thin, bendable and can be produced with a customizable shape for integration in microelectronic devices. Moreover, without liquid electrolyte, they are safer. With the aim to support the industrial production of these TFBs, adequate tools for understanding the electrochemical behavior of the complete microbattery and the identification of their possible failures that can occur have to be developed. In this context, the Electrochemical Impedance Spectroscopy seems to be a good compromise for cells characterization. Widely used for the characterization of liquid electrolyte-based batteries, this technique has been less applied to all solid state batteries, mainly because of the difficulty to work with a two-electrode system. There has been no comprehensive study deeply explaining the impedance evolution during the entire life of a microbattery. In this paper, physical characterizations of individual active materials and aging experiments have been performed in order to undoubtedly assign each EIS contributions, and to propose a more comprehensive electrical model for this family of commercial all-solid-state microbatteries.

  17. Stoichiometry and thickness dependence of superconducting properties of niobium nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Beebe, Melissa R., E-mail: mrbeebe@email.wm.edu; Beringer, Douglas B.; Burton, Matthew C.; Yang, Kaida; Lukaszew, R. Alejandra [Department of Physics, The College of William & Mary, Small Hall, 300 Ukrop Way, Williamsburg, Virginia 23185 (United States)

    2016-03-15

    The current technology used in linear particle accelerators is based on superconducting radio frequency (SRF) cavities fabricated from bulk niobium (Nb), which have smaller surface resistance and therefore dissipate less energy than traditional nonsuperconducting copper cavities. Using bulk Nb for the cavities has several advantages, which are discussed elsewhere; however, such SRF cavities have a material-dependent accelerating gradient limit. In order to overcome this fundamental limit, a multilayered coating has been proposed using layers of insulating and superconducting material applied to the interior surface of the cavity. The key to this multilayered model is to use superconducting thin films to exploit the potential field enhancement when these films are thinner than their London penetration depth. Such field enhancement has been demonstrated in MgB{sub 2} thin films; here, the authors consider films of another type-II superconductor, niobium nitride (NbN). The authors present their work correlating stoichiometry and superconducting properties in NbN thin films and discuss the thickness dependence of their superconducting properties, which is important for their potential use in the proposed multilayer structure. While there are some previous studies on the relationship between stoichiometry and critical temperature T{sub C}, the authors are the first to report on the correlation between stoichiometry and the lower critical field H{sub C1}.

  18. Stoichiometry and thickness dependence of superconducting properties of niobium nitride thin films

    International Nuclear Information System (INIS)

    The current technology used in linear particle accelerators is based on superconducting radio frequency (SRF) cavities fabricated from bulk niobium (Nb), which have smaller surface resistance and therefore dissipate less energy than traditional nonsuperconducting copper cavities. Using bulk Nb for the cavities has several advantages, which are discussed elsewhere; however, such SRF cavities have a material-dependent accelerating gradient limit. In order to overcome this fundamental limit, a multilayered coating has been proposed using layers of insulating and superconducting material applied to the interior surface of the cavity. The key to this multilayered model is to use superconducting thin films to exploit the potential field enhancement when these films are thinner than their London penetration depth. Such field enhancement has been demonstrated in MgB2 thin films; here, the authors consider films of another type-II superconductor, niobium nitride (NbN). The authors present their work correlating stoichiometry and superconducting properties in NbN thin films and discuss the thickness dependence of their superconducting properties, which is important for their potential use in the proposed multilayer structure. While there are some previous studies on the relationship between stoichiometry and critical temperature TC, the authors are the first to report on the correlation between stoichiometry and the lower critical field HC1

  19. Characterization of Thin Film Dissolution in Water with in Situ Monitoring of Film Thickness Using Reflectometry.

    Science.gov (United States)

    Yersak, Alexander S; Lewis, Ryan J; Tran, Jenny; Lee, Yung C

    2016-07-13

    Reflectometry was implemented as an in situ thickness measurement technique for rapid characterization of the dissolution dynamics of thin film protective barriers in elevated water temperatures above 100 °C. Using this technique, multiple types of coatings were simultaneously evaluated in days rather than years. This technique enabled the uninterrupted characterization of dissolution rates for different coating deposition temperatures, postdeposition annealing conditions, and locations on the coating surfaces. Atomic layer deposition (ALD) SiO2 and wet thermally grown SiO2 (wtg-SiO2) thin films were demonstrated to be dissolution-predictable barriers for the protection of metals such as copper. A ∼49% reduction in dissolution rate was achieved for ALD SiO2 films by increasing the deposition temperatures from 150 to 300 °C. ALD SiO2 deposited at 300 °C and followed by annealing in an inert N2 environment at 1065 °C resulted in a further ∼51% reduction in dissolution rate compared with the nonannealed sample. ALD SiO2 dissolution rates were thus lowered to values of wtg-SiO2 in water by the combination of increasing the deposition temperature and postdeposition annealing. Thin metal films, such as copper, without a SiO2 barrier corroded at an expected ∼1-2 nm/day rate when immersed in room temperature water. This measurement technique can be applied to any optically transparent coating. PMID:27308723

  20. Debt Financing and Thin-Capitalization: Case Study in Slovenia

    OpenAIRE

    Lidija Hauptman; Saso Tic

    2014-01-01

    Since each form of financing provides a different level of security and risk, companies are often faced with a dilemma, which equity to debt ratio to choose in financial structure. In order to avoid overexploitation of certain types of debt financing, tax legislation defines a thin capitalization rule. In this paper we present, how the relationship between equity and debt financing has changed in the period 1997–2012 and how the thin capitalization rules affected this relationship in the sele...

  1. Effects of pre-commercial thinning on growth and reproduction in post-fire regeneration of Pinus halepensis Mill

    OpenAIRE

    Ruano, Irene; Rodríguez García, Encarna; Bravo Oviedo, Felipe

    2013-01-01

    Excessive recruitment in post-fire regeneration of Pinus halepensis can require pre-commercial thinning. The 1994 Moratalla fire (Spain) and the thinning applied there since 2004 provided good conditions for testing pre-commercial thinning effectiveness. Aims To analyse pre-commercial thinning effects on tree size, reproductive potential, stem biomass and annual growth in 15-year-old saplings. Methods Twenty nine circular plots (5 m radius) were established based on (1) years si...

  2. Structural, optical and electrochemical properties of TiO2 thin films grown by APCVD method

    International Nuclear Information System (INIS)

    Atmospheric pressure chemical vapor deposition (APCVD) of TiO2 thin films has been achieved onto glass and onto ITO-coated glass substrates, from the reaction of TiCl4 with ethyl acetate (EtOAc). The effect of the synthesis temperature on the optical, structural and electrochemical properties was studied through spectral transmittance, X-ray diffraction (XRD) and electrochemical impedance spectroscopy (EIS) measurements. It was established that the TiO2 films deposited onto glass substrate, at temperatures greater than 400 deg. C grown with rutile type tetragonal structure, whereas the TiO2 films deposited onto ITO-coated glass substrate grown with anatase type structure. EIS was applied as suitable method to determine the charge transfer resistance in the electrolyte/TiO2 interface, typically found in dye-sensitized solar cells.

  3. Thin Film Microbatteries

    International Nuclear Information System (INIS)

    Thin film batteries are built layer by layer by vapor deposition. The resulting battery is formed of parallel plates, much as an ordinary battery construction, just much thinner. The figure (Fig. 1) shows an example of a thin film battery layout where films are deposited symmetrically onto both sides of a supporting substrate. The full stack of films is only 10 to 15 (micro)m thick, but including the support at least doubles the overall battery thickness. When the support is thin, the entire battery can be flexible. At least six companies have commercialized or are very close to commercializing such all-solid-state thin film batteries and market research predicts a growing market and a variety of applications including sensors, RFID tags, and smarter cards. In principle with a large deposition system, a thin film battery might cover a square meter, but in practice, most development is targeting individual cells with active areas less than 25 cm2. For very small battery areas, 2, microfabrication processes have been developed. Typically the assembled batteries have capacities from 0.1 to 5 mAh. The operation of a thin film battery is depicted in the schematic diagram (Fig. 2). Very simply, when the battery is allowed to discharge, a Li+ ion migrates from the anode to the cathode film by diffusing through the solid electrolyte. When the anode and cathode reactions are reversible, as for an intercalation compound or alloy, the battery can be recharged by reversing the current. The difference in the electrochemical potential of the lithium determines the cell voltage. Most of the thin films used in current commercial variations of this thin film battery are deposited in vacuum chambers by RF and DC magnetron sputtering and by thermal evaporation onto unheated substrates. In addition, many publications report exploring a variety of other physical and chemical vapor deposition processes, such as pulsed laser deposition, electron cyclotron resonance sputtering, and

  4. Applied Literature for Healing,

    Directory of Open Access Journals (Sweden)

    Susanna Marie Anderson

    2014-11-01

    Full Text Available In this qualitative research study interviews conducted with elite participants serve to reveal the underlying elements that unite the richly diverse emerging field of Applied Literature. The basic interpretative qualitative method included a thematic analysis of data from the interviews yielding numerous common elements that were then distilled into key themes that elucidated the beneficial effects of engaging consciously with literature. These themes included developing a stronger sense of self in balance with an increasing connection with community; providing a safe container to engage challenging and potentially overwhelming issues from a stance of empowered action; and fostering a healing space for creativity. The findings provide grounds for uniting the work being done in a range of helping professions into a cohesive field of Applied Literature, which offers effective tools for healing, transformation and empowerment.Keywords: Applied Literature, Bibliotherapy, Poetry Therapy, Arts in Corrections, Arts in Medicine

  5. PSYCHOANALYSIS AS APPLIED AESTHETICS.

    Science.gov (United States)

    Richmond, Stephen H

    2016-07-01

    The question of how to place psychoanalysis in relation to science has been debated since the beginning of psychoanalysis and continues to this day. The author argues that psychoanalysis is best viewed as a form of applied art (also termed applied aesthetics) in parallel to medicine as applied science. This postulate draws on a functional definition of modernity as involving the differentiation of the value spheres of science, art, and religion. The validity criteria for each of the value spheres are discussed. Freud is examined, drawing on Habermas, and seen to have erred by claiming that the psychoanalytic method is a form of science. Implications for clinical and metapsychological issues in psychoanalysis are discussed. PMID:27428582

  6. Applied chemical engineering thermodynamics

    CERN Document Server

    Tassios, Dimitrios P

    1993-01-01

    Applied Chemical Engineering Thermodynamics provides the undergraduate and graduate student of chemical engineering with the basic knowledge, the methodology and the references he needs to apply it in industrial practice. Thus, in addition to the classical topics of the laws of thermodynamics,pure component and mixture thermodynamic properties as well as phase and chemical equilibria the reader will find: - history of thermodynamics - energy conservation - internmolecular forces and molecular thermodynamics - cubic equations of state - statistical mechanics. A great number of calculated problems with solutions and an appendix with numerous tables of numbers of practical importance are extremely helpful for applied calculations. The computer programs on the included disk help the student to become familiar with the typical methods used in industry for volumetric and vapor-liquid equilibria calculations.

  7. Thin Layer Drying Kinetics of of Roselle

    Directory of Open Access Journals (Sweden)

    Suherman

    2012-02-01

    Full Text Available This study was performed to determine the most appropriate thin layer drying model and the effective moisture diffusivity of Roselle (Hibiscus sabdariffa. Roselle with an Initial Moisture Content (IMC of 85%, on wet basis (wb was dried in a conventional tray dryer at temperatures of 40, 50 and 60ºC. The drying data were fitted to eleven thin layer models and a thin layer model for the roselle calyx was developed by regressing the coefficients of the best fit model. The newton model was most adequate model for describing the thin layer drying kinetics of the roselle calyx. The drying constant was found to vary linearly with temperature. Also, effective diffusivity was evaluated by using Fick’s second law, which varied from 1.405 x 10-10 to 2.283 x 10-10 m2/s. The dependence of moisture diffusivity on temperature was described by Arrhenius type equation. The diffusivity constant D0 activation energy Ea could be, respectively, estimated as 4.5 x 10-7 m2/s and 21.02 kJ/gmol.

  8. Introduction to applied thermodynamics

    CERN Document Server

    Helsdon, R M; Walker, G E

    1965-01-01

    Introduction to Applied Thermodynamics is an introductory text on applied thermodynamics and covers topics ranging from energy and temperature to reversibility and entropy, the first and second laws of thermodynamics, and the properties of ideal gases. Standard air cycles and the thermodynamic properties of pure substances are also discussed, together with gas compressors, combustion, and psychrometry. This volume is comprised of 16 chapters and begins with an overview of the concept of energy as well as the macroscopic and molecular approaches to thermodynamics. The following chapters focus o

  9. Applied statistics with SPSS

    CERN Document Server

    Huizingh, Eelko K R E

    2007-01-01

    Accessibly written and easy to use, Applied Statistics Using SPSS is an all-in-one self-study guide to SPSS and do-it-yourself guide to statistics. Based around the needs of undergraduate students embarking on their own research project, the text's self-help style is designed to boost the skills and confidence of those that will need to use SPSS in the course of doing their research project. The book is pedagogically well developed and contains many screen dumps and exercises, glossary terms and worked examples. Divided into two parts, Applied Statistics Using SPSS covers :

  10. Applied mathematics made simple

    CERN Document Server

    Murphy, Patrick

    1982-01-01

    Applied Mathematics: Made Simple provides an elementary study of the three main branches of classical applied mathematics: statics, hydrostatics, and dynamics. The book begins with discussion of the concepts of mechanics, parallel forces and rigid bodies, kinematics, motion with uniform acceleration in a straight line, and Newton's law of motion. Separate chapters cover vector algebra and coplanar motion, relative motion, projectiles, friction, and rigid bodies in equilibrium under the action of coplanar forces. The final chapters deal with machines and hydrostatics. The standard and conte

  11. Retransmission Steganography Applied

    CERN Document Server

    Mazurczyk, Wojciech; Szczypiorski, Krzysztof

    2010-01-01

    This paper presents experimental results of the implementation of network steganography method called RSTEG (Retransmission Steganography). The main idea of RSTEG is to not acknowledge a successfully received packet to intentionally invoke retransmission. The retransmitted packet carries a steganogram instead of user data in the payload field. RSTEG can be applied to many network protocols that utilize retransmissions. We present experimental results for RSTEG applied to TCP (Transmission Control Protocol) as TCP is the most popular network protocol which ensures reliable data transfer. The main aim of the performed experiments was to estimate RSTEG steganographic bandwidth and detectability by observing its influence on the network retransmission level.

  12. Thin film processes

    CERN Document Server

    Vossen, John L

    1978-01-01

    Remarkable advances have been made in recent years in the science and technology of thin film processes for deposition and etching. It is the purpose of this book to bring together tutorial reviews of selected filmdeposition and etching processes from a process viewpoint. Emphasis is placed on the practical use of the processes to provide working guidelines for their implementation, a guide to the literature, and an overview of each process.

  13. Evaporated VOx Thin Films

    Science.gov (United States)

    Stapinski, Tomasz; Leja, E.

    1989-03-01

    VOx thin films on glass were obtained by thermal evaporation of V205, powder. The structural investigations were carried out with the use of X-ray diffractometer. The electrical properties of the film were examined by means of temperature measurements of resistivity for the samples heat-treated in various conditions. Optical transmission and reflection spectra of VOX films of various composition showed the influence of the heat treatment.

  14. Thin shell model revisited

    CERN Document Server

    Gao, Sijie

    2014-01-01

    We reconsider some fundamental problems of the thin shell model. First, we point out that the "cut and paste" construction does not guarantee a well-defined manifold because there is no overlap of coordinates across the shell. When one requires that the spacetime metric across the thin shell is continuous, it also provides a way to specify the tangent space and the manifold. Other authors have shown that this specification leads to the conservation laws when shells collide. On the other hand, the well-known areal radius $r$ seems to be a perfect coordinate covering all regions of a spherically symmetric spacetime. However, we show by simple but rigorous arguments that $r$ fails to be a coordinate covering a neighborhood of the thin shell if the metric across the shell is continuous. When two spherical shells collide and merge into one, we show that it is possible that $r$ remains to be a good coordinate and the conservation laws hold. To make this happen, different spacetime regions divided by the shells must...

  15. Stability analysis of dynamic thin shells

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, Francisco S N; Crawford, Paulo [Centro de Astronomia e AstroFisica da Universidade de Lisboa, Campo Grande, Ed. C8 1749-016 Lisbon (Portugal)

    2005-11-21

    We analyse the stability of generic spherically symmetric thin shells to linearized perturbations around static solutions. We include the momentum flux term in the conservation identity, deduced from the 'ADM' constraint and the Lanczos equations. Following the Ishak-Lake analysis, we deduce a master equation which dictates the stable equilibrium configurations. Considering the transparency condition, we study the stability of thin shells around black holes, showing that our analysis is in agreement with previous results. Applying the analysis to traversable wormhole geometries, by considering specific choices for the form function, we deduce stability regions and find that the latter may be significantly increased by considering appropriate choices for the redshift function.

  16. Thermal conductivity of nanoscale thin nickel films

    Institute of Scientific and Technical Information of China (English)

    YUAN Shiping; JIANG Peixue

    2005-01-01

    The inhomogeneous non-equilibrium molecular dynamics (NEMD) scheme is applied to model phonon heat conduction in thin nickel films. The electronic contribution to the thermal conductivity of the film is deduced from the electrical conductivity through the use of the Wiedemann-Franz law. At the average temperature of T = 300 K, which is lower than the Debye temperature ()D = 450 K,the results show that in a film thickness range of about 1-11 nm, the calculated cross-plane thermal conductivity decreases almost linearly with the decreasing film thickness, exhibiting a remarkable reduction compared with the bulk value. The electrical and thermal conductivities are anisotropic in thin nickel films for the thickness under about 10 nm. The phonon mean free path is estimated and the size effect on the thermal conductivity is attributed to the reduction of the phonon mean free path according to the kinetic theory.

  17. Analysis on the interfacial properties of transparent conducting oxide and hydrogenated p-type amorphous silicon carbide layers in p–i–n amorphous silicon thin film solar cell structure

    International Nuclear Information System (INIS)

    Quantitative estimation of the specific contact resistivity and energy barrier at the interface between transparent conducting oxide (TCO) and hydrogenated p-type amorphous silicon carbide (a-Si1−xCx:H(p)) was carried out by inserting an interfacial buffer layer of hydrogenated p-type microcrystalline silicon (μc-Si:H(p)) or hydrogenated p-type amorphous silicon (a-Si:H(p)). In addition, superstrate configuration p–i–n hydrogenated amorphous silicon (a-Si:H) solar cells were fabricated by plasma enhanced chemical vapor deposition to investigate the effect of the inserted buffer layer on the solar cell device. Ultraviolet photoelectron spectroscopy was employed to measure the work functions of the TCO and a-Si1−xCx:H(p) layers and to allow direct calculations of the energy barriers at the interfaces. Especially interface structures were compared with/without a buffer which is either highly doped μc-Si:H(p) layer or low doped a-Si:H(p) layer, to improve the contact properties of aluminum-doped zinc oxide and a-Si1−xCx:H(p). Out of the two buffers, the superior contact properties of μc-Si:H(p) buffer could be expected due to its higher conductivity and slightly lower specific contact resistivity. However, the overall solar cell conversion efficiencies were almost the same for both of the buffered structures and the resultant similar efficiencies were attributed to the difference between the fill factors of the solar cells. The effects of the energy barrier heights of the two buffered structures and their influence on solar cell device performances were intensively investigated and discussed with comparisons. - Highlights: ► Decrease of fill factor due to high contact resistance of Al:ZnO/a-SiC:H(p) interface. ► Insertion of buffer layer (μc-Si or a-Si) between Al:ZnO and p-layer for comparison. ► μc-Si:H(p) buffer with high conductivity has better fill factor but higher barrier. ► a-Si:H(p) buffer with low conductivity forms lower barrier and

  18. Tailoring electronic structure of polyazomethines thin films

    Directory of Open Access Journals (Sweden)

    J. Weszka

    2010-09-01

    Full Text Available Purpose: The aim of this work is to show how electronic properties of polyazomethine thin films deposited by chemical vapor deposition method (CVD can be tailored by manipulating technological parameters of pristine films preparation as well as modifying them while the as-prepared films put into iodine atmosphere.Design/methodology/approach: The recent achievements in the field of designing and preparation methods to be used while preparing polymer photovoltaic solar cells or optoelectronic devices.Findings: The method used allow for pure pristine polymer thin films to be prtepared without any unintentional doping taking place during prepoaration methods. This is a method based on polycondensation process, where polymer chain developing is running directly due to chemical reaction between molecules of bifunctional monomers. The method applied to prepare thin films of polyazomethines takes advantage of monomer transporting by mreans of neutral transport agent as pure argon is.Research limitations/implications: The main disadvantage of alternately conjugated polymers seems to be quite low mobility of charge carrier that is expected to be a consequence of their backbone being built up of sp2 hybridized carbon and nitrogen atoms. Varying technological conditions towards increasing reagents mass transport to the substrate is expected to give such polyazomethine thin films organization that phenylene rin stacking can result in special π electron systems rather than linear ones as it is the case.Originality/value: Our results supply with original possibilities which can be useful in ooking for good polymer materials for optoelectronic and photovoltaic applications. These results have been gained on polyazomethine thin films but their being isoelectronic counterpart to widely used poly p-phenylene vinylene may be very convenient to develop high efficiency polymer solar cells

  19. Applying Mathematical Processes (AMP)

    Science.gov (United States)

    Kathotia, Vinay

    2011-01-01

    This article provides insights into the "Applying Mathematical Processes" resources, developed by the Nuffield Foundation. It features Nuffield AMP activities--and related ones from Bowland Maths--that were designed to support the teaching and assessment of key processes in mathematics--representing a situation mathematically, analysing,…

  20. Applied Behavior Analysis

    Science.gov (United States)

    Szapacs, Cindy

    2006-01-01

    Teaching strategies that work for typically developing children often do not work for those diagnosed with an autism spectrum disorder. However, teaching strategies that work for children with autism do work for typically developing children. In this article, the author explains how the principles and concepts of Applied Behavior Analysis can be…