WorldWideScience

Sample records for applied self-organizing systems

  1. Self-organizing urban transportation systems

    CERN Document Server

    Gershenson, Carlos

    2009-01-01

    Urban transportation is a complex phenomenon. Since many agents are constantly interacting in parallel, it is difficult to predict the future state of a transportation system. Because of this, optimization techniques tend to give obsolete solutions, as the problem changes before it can be optimized. An alternative lies in seeking adaptive solutions. This adaptation can be achieved with self-organization. In a self-organizing transportation system, the elements of the system follow local rules to achieve a global solution. Like this, when the problem changes the system can adapt by itself to the new configuration. In this chapter, I will review recent, current, and future work on self-organizing transportation systems. Self-organizing traffic lights have proven to improve traffic flow considerably over traditional methods. In public transportation systems, simple rules are being explored to prevent the "equal headway instability" phenomenon. The methods we have used can be also applied to other urban transport...

  2. Self-organization of Dynamic Distributed Computational Systems Applying Principles of Integrative Activity of Brain Neuronal Assemblies

    OpenAIRE

    Eugene Burmakin; Fingelkurts, Alexander A.; Fingelkurts, Andrew A

    2009-01-01

    This paper presents a method for self-organization of the distributed systems operating in a dynamic context. We propose the use of a simple biologically (cognitive neuroscience) inspired method for system configuration that allows allocating most of the computational load to off-line in order to improve the scalability property of the system. The method proposed has less computational burden at runtime than traditional system adaptation approaches.

  3. Self-organization in social tagging systems

    OpenAIRE

    Liu C; Yeung C.H.; Zhang Z.-K.

    2011-01-01

    Individuals often imitate each other to fall into the typical group, leading to a self-organized state of typical behaviors in a community. In this paper, we model self-organization in social tagging systems and illustrate the underlying interaction and dynamics. Specifically, we introduce a model in which individuals adjust their own tagging tendency to imitate the average tagging tendency. We found that when users are of low confidence, they tend to imitate others and lead to a self-organiz...

  4. Complex Systems and Self-organization Modelling

    CERN Document Server

    Bertelle, Cyrille; Kadri-Dahmani, Hakima

    2009-01-01

    The concern of this book is the use of emergent computing and self-organization modelling within various applications of complex systems. The authors focus their attention both on the innovative concepts and implementations in order to model self-organizations, but also on the relevant applicative domains in which they can be used efficiently. This book is the outcome of a workshop meeting within ESM 2006 (Eurosis), held in Toulouse, France in October 2006.

  5. Self-organization in social tagging systems

    CERN Document Server

    Liu, Chuang; Zhang, Zi-Ke

    2011-01-01

    Individuals often imitate each other to fall into the typical group, leading to a self-organized state of typical behaviors in a community. In this paper, we model self-organization in social tagging systems and illustrate the underlying interaction and dynamics. Specifically, we introduce a model in which individuals adjust their own tagging tendency to imitate the average tagging tendency. We found that when users are of low confidence, they tend to imitate others and lead to a self-organized state with active tagging. On the other hand, when users are of high confidence and are stubborn for changes, tagging becomes inactive. We observe a phase transition at a critical level of user confidence when the system changes from one regime to the other. The distributions of post length obtained from the model are compared to real data which show good agreements.

  6. Hierarchical Self-organization of Complex Systems

    Institute of Scientific and Technical Information of China (English)

    CHAI Li-he; WEN Dong-sheng

    2004-01-01

    Researches on organization and structure in complex systems are academic and industrial fronts in modern sciences. Though many theories are tentatively proposed to analyze complex systems, we still lack a rigorous theory on them. Complex systems possess various degrees of freedom, which means that they should exhibit all kinds of structures. However, complex systems often show similar patterns and structures. Then the question arises why such similar structures appear in all kinds of complex systems. The paper outlines a theory on freedom degree compression and the existence of hierarchical self-organization for all complex systems is found. It is freedom degree compression and hierarchical self-organization that are responsible for the existence of these similar patterns or structures observed in the complex systems.

  7. Femtocell Systems with Self Organization Capabilities

    OpenAIRE

    Galindo-Serrano, Ana; Giupponi, Lorenza

    2011-01-01

    In this paper we present a self-organization technique to manage interference in femtocell networks. We model femtocells as a multiagent system implementing a form of Reinforcement Learning (RL) known as Q-Learning (QL) to solve the aggregated interference problem originated due to the macro-femtocell systems coexistence. We discuss this approach and propose a modification in order to solve some of the potential implementation limits of the QL algorithm. In order to achieve a more accurate en...

  8. Self-Organization of Complex Systems

    OpenAIRE

    Paczuski, Maya; Bak, Per

    1999-01-01

    The basic laws of physics are simple, so why is the world complex? The theory of self-organized criticality posits that complex behavior in nature emerges from the dynamics of extended, dissipative systems that evolve through a sequence of meta-stable states into a critical state, with long range spatial and temporal correlations. Minor disturbances lead to intermittent events of all sizes. These events organize the system into a complex state that cannot be reduced to a few degrees of freedo...

  9. Toward Self-Organizing Search Systems

    Science.gov (United States)

    Barton, Stanislav; Dohnal, Vlastislav; Sedmidubsky, Jan; Zezula, Pavel

    The huge amount of images, videos, and music clips produced everyday by various digital devices must be processed. Firstly, this kind of data calls for content-based search or similarity search rather than keyword-based or text-based search. Secondly, new scalable and efficient methods capable of storing and querying such data must be developed. Although many distributed approaches exist, one of the most suitable and flexible is provided by self-organizing systems. These systems exhibit high resistance to failures in dynamically changing environments. In this chapter, we propose a general three-layer model for designing and implementing a self-organizing system that aims at searching in multimedia data. This model gives a developer guidelines about what component must be implemented, and how they should behave. The usability of this model is illustrated on a system called Metric Social Network. The architecture of this system is based on the social network theory that is utilized for establishing links between nodes. The system's properties are verified by organizing and searching in 10 million images.

  10. Control of self-organizing nonlinear systems

    CERN Document Server

    Klapp, Sabine; Hövel, Philipp

    2016-01-01

    The book summarizes the state-of-the-art of research on control of self-organizing nonlinear systems with contributions from leading international experts in the field. The first focus concerns recent methodological developments including control of networks and of noisy and time-delayed systems. As a second focus, the book features emerging concepts of application including control of quantum systems, soft condensed matter, and biological systems. Special topics reflecting the active research in the field are the analysis and control of chimera states in classical networks and in quantum systems, the mathematical treatment of multiscale systems, the control of colloidal and quantum transport, the control of epidemics and of neural network dynamics.

  11. Self-organization in complex systems as decision making

    CERN Document Server

    Yukalov, V I

    2014-01-01

    The idea is advanced that self-organization in complex systems can be treated as decision making (as it is performed by humans) and, vice versa, decision making is nothing but a kind of self-organization in the decision maker nervous systems. A mathematical formulation is suggested based on the definition of probabilities of system states, whose particular cases characterize the probabilities of structures, patterns, scenarios, or prospects. In this general framework, it is shown that the mathematical structures of self-organization and of decision making are identical. This makes it clear how self-organization can be seen as an endogenous decision making process and, reciprocally, decision making occurs via an endogenous self-organization. The approach is illustrated by phase transitions in large statistical systems, crossovers in small statistical systems, evolutions and revolutions in social and biological systems, structural self-organization in dynamical systems, and by the probabilistic formulation of c...

  12. Bifurcation and "self-organization" of a system

    Science.gov (United States)

    Aldabergenov, M.; Balakaeva, G.

    2016-04-01

    Triangulation of a multicomponent system was shown on example of the CaO-SiO2-H2O system. "The Gibbs function normalized to the total number of electrons" was applied in order to reflect all the possible transformations of components of the system at non-equilibrium as well as at equilibrium conditions. The bifurcation points of the system are located at the each intersection of the line connected compositions of the interacting components and the stable secant line. It was shown the possibility of the "self-organization" processes which is based on the exchange as well as that reactions.

  13. Functional self-organization in complex systems

    Energy Technology Data Exchange (ETDEWEB)

    Fontana, W. (Los Alamos National Lab., NM (USA) Santa Fe Inst., NM (USA))

    1990-01-01

    A novel approach to functional self-organization is presented. It consists of a universe generated by a formal language that defines objects (=programs), their meaning (=functions), and their interactions (=composition). Results obtained so far are briefly discussed. 17 refs., 5 figs.

  14. Scintillation detectors as self organized critical systems?

    International Nuclear Information System (INIS)

    Complete text of publication follows. Recently we have constructed a 312 element scintillation detector (SD) system for nuclear physics experiments. Both manufacture and the quality test were carried out under well controlled conditions. One of the main issues during manufacture was the uniformity of performance of the elements. Performance is determined by the signal amplitude delivered (a product of light creation, collection and detection) and the resolution (dispersion of amplitude). It is the mean and the standard deviation of these two parameters, which can be used to characterize the quality of the detector system. More careful analysis of the amplitude and resolution data, taken with 5.5 MeV particles, in addition, reveals fundamental features of scintillation detectors. Those, familiar with electrical noises, easily recognize from the time order series of data (Fig.a,b) the presence of 1/fα or flicker noise. This can be confirmed by Fourier analysis, which provides the spectral density distribution of the fluctuations, resulting in α = 1.85 ± 0.05 for amplitude and resolution alike (Fig.c). For resolution, however, at higher frequencies there is a transition to white noise. It is well known that 1/fα noise has been observed in several systems having temporal, spatial or spatiotemporal degrees of freedom. Earlier examples are electric current in conductors, rotation of Earth, flow of rivers, heartbeat, stock exchange price indices, etc., recent ones are DNA sequence, human cognition, prime numbers, dynamic images, etc., and now scintillation detectors. Despite extensive research, no universal theory for this ubiquitous phenomenon yet exists. One successful explanation, self organized criticality (SOC), seems, however to fit to our case. Systems, with SOC are characterised by strong interdependence between their constituents. This dynamics results in collective behavior which cannot be understood by studying individual constituents in isolation. They

  15. The concept of self-organizing systems. Why bother?

    Science.gov (United States)

    Elverfeldt, Kirsten v.; Embleton-Hamann, Christine; Slaymaker, Olav

    2016-04-01

    Complexity theory and the concept of self-organizing systems provide a rather challenging conceptual framework for explaining earth systems change. Self-organization - understood as the aggregate processes internal to an environmental system that lead to a distinctive spatial or temporal organization - reduces the possibility of implicating a specific process as being causal, and it poses some restrictions on the idea that external drivers cause a system to change. The concept of self-organizing systems suggests that many phenomena result from an orchestration of different mechanisms, so that no causal role can be assigned to an individual factor or process. The idea that system change can be due to system-internal processes of self-organization thus proves a huge challenge to earth system research, especially in the context of global environmental change. In order to understand the concept's implications for the Earth Sciences, we need to know the characteristics of self-organizing systems and how to discern self-organizing systems. Within the talk, we aim firstly at characterizing self-organizing systems, and secondly at highlighting the advantages and difficulties of the concept within earth system sciences. The presentation concludes that: - The concept of self-organizing systems proves especially fruitful for small-scale earth surface systems. Beach cusps and patterned ground are only two of several other prime examples of self-organizing earth surface systems. They display characteristics of self-organization like (i) system-wide order from local interactions, (ii) symmetry breaking, (iii) distributed control, (iv) robustness and resilience, (v) nonlinearity and feedbacks, (vi) organizational closure, (vii) adaptation, and (viii) variation and selection. - It is comparatively easy to discern self-organization in small-scale systems, but to adapt the concept to larger scale systems relevant to global environmental change research is more difficult: Self-organizing

  16. Self-Organizing and Optimal Control for Nonlinear Systems

    OpenAIRE

    Dong, Wenjie

    2009-01-01

    Vehicle formation control is one of important research topics in transportation. Control of uncertain nonlinear systems is one of fundamental problems in vehicle control. In this dissertation, we consider this fundamental control problem. Specially, we considered self-organizing based tracking control of uncertain nonaffine systems and optimal control of uncertain nonlinear systems. In tracking control of nonaffine systems, a self-organizing on-line approximation based controller is proposed ...

  17. Self-Organization in Embedded Real-Time Systems

    CERN Document Server

    Brinkschulte, Uwe; Rettberg, Achim

    2013-01-01

    This book describes the emerging field of self-organizing, multicore, distributed and real-time embedded systemsSelf-organization of both hardware and software can be a key technique to handle the growing complexity of modern computing systems. Distributed systems running hundreds of tasks on dozens of processors, each equipped with multiple cores, requires self-organization principles to ensure efficient and reliable operation. This book addresses various, so-called Self-X features such as self-configuration, self-optimization, self-adaptation, self-healing and self-protection. Presents open components for embedded real-time adaptive and self-organizing applications; Describes innovative techniques in: scheduling, memory management, quality of service, communications supporting organic real-time applications; Covers multi-/many-core embedded systems supporting real-time adaptive systems and power-aware, adaptive hardware and software systems; Includes case studies of open embedded real-time self-organizi...

  18. SELF-ORGANIZATION IN COMPLEX SYSTEMS AS DECISION MAKING

    OpenAIRE

    Yukalov, V. I.; Sornette, D.

    2014-01-01

    The idea is advanced that self-organization in complex systems can be treated as decision making (as it is performed by humans) and, vice versa, decision making is nothing but a kind of self-organization in the decision maker nervous systems. A mathematical formulation is suggested based on the definition of probabilities of system states, whose particular cases characterize the probabilities of structures, patterns, scenarios, or prospects. In this general framework, it is shown that the mat...

  19. Self-Organized Characteristics of the International System

    OpenAIRE

    Piepers, Ingo

    2007-01-01

    Various self-organized characteristics of the international system can be identified with the help of a complexity science perspective. The perspective discussed in this article is based on various complexity science concepts and theories, and concepts related to ecology and ecosystems. It can be argued that the Great Power war dynamics of the international system in Europe during the period 1480-1945, showed self-organized critical (SOC) characteristics, resulting in a punctuated equilibrium...

  20. Self-Organized Criticality in a Transient System

    OpenAIRE

    Norrelykke, Simon F.; Per Bak

    2000-01-01

    A simple model economy with locally interacting producers and consumers is introduced. When driven by extremal dynamics, the model self-organizes {\\em not} to an attractor state, but to an asymptote, on which the economy has a constant rate of deflation, is critical, and exhibits avalanches of activity with power-law distributed sizes. This example demonstrates that self-organized critical behavior occurs in a larger class of systems than so far considered: systems not driven to an attractive...

  1. A quantitative measure, mechanism and attractor for self-organization in networked complex systems

    CERN Document Server

    Georgiev, Georgi Yordanov

    2012-01-01

    Quantity of organization in complex networks here is measured as the inverse of the average sum of physical actions of all elements per unit motion multiplied by the Planck's constant. The meaning of quantity of organization is the inverse of the number of quanta of action per one unit motion of an element. This definition can be applied to the organization of any complex system. Systems self-organize to decrease the average action per element per unit motion. This lowest action state is the attractor for the continuous self-organization and evolution of a dynamical complex system. Constraints increase this average action and constraint minimization by the elements is a basic mechanism for action minimization. Increase of quantity of elements in a network, leads to faster constraint minimization through grouping, decrease of average action per element and motion and therefore accelerated rate of self-organization. Progressive development, as self-organization, is a process of minimization of action.

  2. Research on Corporate Social Responsibility of Supply Chain System Based on the Self-organization Theory

    OpenAIRE

    Baoying Wang

    2013-01-01

    In this study, the characteristics of supply chain system are analyzed based on the Self-organization theory from the angle of view of supply chain system. The mathematical models when the system fulfilling social responsibility including self-organization evolution model and self-organization function model are developed to discuss the formation and function of self-organization in supply chain system and coordination. Some basic conditions and tactics about self-organization establishment a...

  3. Self-organization and collective behaviour in complex systems

    OpenAIRE

    Editors

    2014-01-01

    It is our great honour to present the CMP special issue devoted to self-organization and collective behaviour in complex systems. A complex system is a system whose emergent properties are not simple sums of the properties of its components. Since complex systems involve cooperative behaviour of many interconnected components, the field of statistical physics provides a perfect conceptual and mathematical framework for their quantitative understanding. Critical phenomena and complexity have c...

  4. Self-Organized Cooperative Criticality in Coupled Complex Systems

    OpenAIRE

    Liu, Lei; Hu, Fei

    2013-01-01

    We show that the coupled complex systems can evolve into a new kind of self-organized critical state where each subsystem is not critical, however, they cooperate to be critical. This criticality is different from the classical BTW criticality where the single system itself evolves into a critical state. We also find that the outflows can be accumulated in the coupled systems. This will lead to the emergency of spatiotemporal intermittency in the critical state.

  5. Waiting-time statistics of self-organized-criticality systems

    International Nuclear Information System (INIS)

    It is argued that a system governed by self-organized-criticality (SOC) dynamics can lack Poisson waiting-time statistics not only when the experimental resolution lies within the self-similar scale range but also if the system is slowly driven in a correlated way. This result thus suggests that waiting time statistics cannot be used as a necessary test for SOC behavior in real physical systems

  6. Self-Organizing OFDMA System for Broadband Communication

    Science.gov (United States)

    Roy, Aloke (Inventor); Anandappan, Thanga (Inventor); Malve, Sharath Babu (Inventor)

    2016-01-01

    Systems and methods for a self-organizing OFDMA system for broadband communication are provided. In certain embodiments a communication node for a self organizing network comprises a communication interface configured to transmit data to and receive data from a plurality of nodes; and a processing unit configured to execute computer readable instructions. Further, computer readable instructions direct the processing unit to identify a sub-region within a cell, wherein the communication node is located in the sub-region; and transmit at least one data frame, wherein the data from the communication node is transmitted at a particular time and frequency as defined within the at least one data frame, where the time and frequency are associated with the sub-region.

  7. Self-Organized Fission Control for Flocking System

    OpenAIRE

    Mingyong Liu; Panpan Yang; Xiaokang Lei; Yang Li

    2015-01-01

    This paper studies the self-organized fission control problem for flocking system. Motivated by the fission behavior of biological flocks, information coupling degree (ICD) is firstly designed to represent the interaction intensity between individuals. Then, from the information transfer perspective, a “maximum-ICD” based pairwise interaction rule is proposed to realize the directional information propagation within the flock. Together with the “separation/alignment/cohesion” rules, a self-or...

  8. Strain relaxation and self-organization phenomena in heteroepitaxial systems

    DEFF Research Database (Denmark)

    Shiryaev, Sergey Y; Hansen, J. Lundsgaard; Larsen, A. Nylandsted; Jensen, Flemming; Petersen, Jon Wulff

    1995-01-01

    process is characterized by dissipation of large amounts of the elastic internal energy accumulated during film growth and takes place far away from thermodynamic equilibrium. These results strongly suggest that the dislocation patterning in graded layers involves self-organization of dislocation......The plastic behavior of strained, compositionally graded Si1-xGex alloy layers grown on Si substrates has been studied by a combination of optical, atomic force, and transmission electron microscopy. Formation of ordered patterns of misfit dislocations has been found in films grown at low (similar...... populations. Striking analogies between the Seeger-Frank treatment of dislocation ordering in solids and the model of self-adjustment of misfit dislocations are elaborated. The graded Si1-xGex/Si system will be shown to constitute a convenient model case for studying self-organization in crystalline material....

  9. Advances in applied self-organizing systems

    CERN Document Server

    Prokopenko, Mikhail

    2013-01-01

    This book is the perfect introduction for anyone wanting to create sophisticated Windows 8 apps for the first time.Assuming only a basic knowledge of HTML and CSS we'll walk you through the development process using C# and VB. The book will familiarize you with the tools you'll need to use in order to make the most of Windows' stunning new features. You'll discover how to take advantage of the built-in functionality to create high quality user experiences.

  10. Critical phase transitions made self-organized : a dynamical system feedback mechanism for self-organized criticality

    OpenAIRE

    Sornette, Didier

    1992-01-01

    According to Kadanoff, self-organized criticality (SOC) implies the operation of a feedback mechanism that ensures a steady state in which the system is marginally stable against a disturbance. Here, we extend this idea and propose a picture according to which SOC relies on a non-linear feedback of the order parameter on the control parameter(s), the amplitude of this feedback being tuned by the spatial correlation length ξ. The self-organized nature of the criticality stems from the fact tha...

  11. SOTM: A SELF ORGANIZED TRUST MANAGEMENT SYSTEM FOR VANET

    Directory of Open Access Journals (Sweden)

    Amel Ltif

    2016-12-01

    Full Text Available Security and trust management in Vehicular Adhoc NETworks (VANET is a crucial research domain which is the scope of many researches and domains. Although, the majority of the proposed trust management systems for VANET are based on specific road infrastructure, which may not be present in all the roads. Therefore, road security should be managed by vehicles themselves. In this paper, we propose a new Self Organized Trust Management system (SOTM. This system has the responsibility to cut with the spread of false warnings in the network through four principal components: cooperation, trust management, communication and security.

  12. Research on Corporate Social Responsibility of Supply Chain System Based on the Self-organization Theory

    Directory of Open Access Journals (Sweden)

    Baoying Wang

    2013-03-01

    Full Text Available In this study, the characteristics of supply chain system are analyzed based on the Self-organization theory from the angle of view of supply chain system. The mathematical models when the system fulfilling social responsibility including self-organization evolution model and self-organization function model are developed to discuss the formation and function of self-organization in supply chain system and coordination. Some basic conditions and tactics about self-organization establishment and good function in fulfilling social responsibility are put forward in order to promote the system’s social responsibility performance

  13. On self-organized criticality in nonconserving systems

    International Nuclear Information System (INIS)

    Two models with nonconserving dynamics and slow continuous deterministic driving, a stick-slip model (SSM) of earthquake dynamics and a toy forest-fire model (FFM), have recently been argued to show numerical evidence of self-organized criticality (generic, scale-invariant steady states). To determine whether the observed criticality is indeed generic, we study these models as a function of a parameter γ which was implicitly tuned to a special value, γ=1, in their original definitions. In both cases, the maximum Lyapunov exponent vanishes at γ=1. We find that the FFM does not exhibit self-organized criticality for any γ, including γ=1; nor does the SSM with periodic boundary conditions. Both models show evidence of macroscopic periodic oscillations in time for some range of γ values. We suggest that such oscillations may provide a mechanism for the generation of scale-invariant structure in nonconserving systems, and, in particular, that they underlie the criticality previously observed in the SSM with open boundary conditions

  14. COMPLEX SYSTEM SELF-ORGANIZATION AND BOUNDARY OF ITS PERCEPTION

    Directory of Open Access Journals (Sweden)

    DUBROV Ju. I.

    2016-04-01

    Full Text Available Stipulations. The term “complex system” (CS is rather frequently utilized, therefore, we will take an effort to give a detailed explanation of what is understood by this term. In order to do that, we will not cite a variety of interpretations existing for this term, instead, we are intended to give a notion to this term that would provide for a more visual interpretation. Basic problem statement. Using the abovementioned Stipulation and Hypotheses it is necessary to determine a quality criterion of a self-organizing system functioning as well as to give its formal description. Certain SC subclasses. In order to detect qualitative peculiarities of the considered model the following numerical investigations were conducted. In a new equilibrium state we obtain an absolutely new evolvable system that again, with the change of a load parameter, initiates the process of its development similar. Facts confirming presence of information perception boundary (IPB with self-organizing systems. Given analysis shows that any system, capable of perceiving information, possesses its own IPB. This fact comes well enough to an agreement with data that prove the possibilities of self-organization on the basis of the existing principles of physics and biology. According to the abovementioned it can be concluded that the task of a qualitative survey of evolvable system may lie in determination of its IPB, depending on determining parameters, such as quantity and quality of information coming into the system as well as speed rate of its organization. Such survey is aimed at the description of all possible bifurcations, plotting of a range of bifurcation set at a range with various type of phase portraits and to indicate a phase portrait corresponding to every range with IPB domain. Using the words of great I.P. Pavlov “all types of life, from the simplest to the most complex organisms, including human, is a long line of ever complicating to the highest degree

  15. Self-Organizing Maps-based ocean currents forecasting system

    Science.gov (United States)

    Vilibić, Ivica; Šepić, Jadranka; Mihanović, Hrvoje; Kalinić, Hrvoje; Cosoli, Simone; Janeković, Ivica; Žagar, Nedjeljka; Jesenko, Blaž; Tudor, Martina; Dadić, Vlado; Ivanković, Damir

    2016-03-01

    An ocean surface currents forecasting system, based on a Self-Organizing Maps (SOM) neural network algorithm, high-frequency (HF) ocean radar measurements and numerical weather prediction (NWP) products, has been developed for a coastal area of the northern Adriatic and compared with operational ROMS-derived surface currents. The two systems differ significantly in architecture and algorithms, being based on either unsupervised learning techniques or ocean physics. To compare performance of the two methods, their forecasting skills were tested on independent datasets. The SOM-based forecasting system has a slightly better forecasting skill, especially during strong wind conditions, with potential for further improvement when data sets of higher quality and longer duration are used for training.

  16. Self-Organizing Maps-based ocean currents forecasting system.

    Science.gov (United States)

    Vilibić, Ivica; Šepić, Jadranka; Mihanović, Hrvoje; Kalinić, Hrvoje; Cosoli, Simone; Janeković, Ivica; Žagar, Nedjeljka; Jesenko, Blaž; Tudor, Martina; Dadić, Vlado; Ivanković, Damir

    2016-01-01

    An ocean surface currents forecasting system, based on a Self-Organizing Maps (SOM) neural network algorithm, high-frequency (HF) ocean radar measurements and numerical weather prediction (NWP) products, has been developed for a coastal area of the northern Adriatic and compared with operational ROMS-derived surface currents. The two systems differ significantly in architecture and algorithms, being based on either unsupervised learning techniques or ocean physics. To compare performance of the two methods, their forecasting skills were tested on independent datasets. The SOM-based forecasting system has a slightly better forecasting skill, especially during strong wind conditions, with potential for further improvement when data sets of higher quality and longer duration are used for training. PMID:26979129

  17. Dynamic scaling: Distinguishing self-organized from generically critical systems

    International Nuclear Information System (INIS)

    The dynamic scaling approach separates nonequilibrium critical phenomena into two distinct categories: (a) those that are ''generically'' critical due to symmetry and (b) those that are self-organized critical. This phenomenological approach is demonstrated in the context of interface growth and depinning, where the surface width obeys the scaling form W(L,s0,s0+s) =(s/Ld)βF(s0/LD,s/LD). The quantity L is the linear system size, s0 is the total motion of the interface, and s is the amount of growth separating two configurations. In case (b) the function F has a nontrivial dependence on s0/LD reflecting a diverging correlation length, while in case (a) it does not

  18. Intrusion Detection System using Self Organizing Map: A Survey

    Directory of Open Access Journals (Sweden)

    Kruti Choksi

    2014-12-01

    Full Text Available Due to usage of computer every field, Network Security is the major concerned in today’s scenario. Every year the number of users and speed of network is increasing, along with it online fraud or security threats are also increasing. Every day a new attack is generated to harm the system or network. It is necessary to protect the system or networks from various threats by using Intrusion Detection System which can detect “known” as well as “unknown” attack and generate alerts if any unusual behavior in the traffic. There are various approaches for IDS, but in this paper, survey is focused on IDS using Self Organizing Map. SOM is unsupervised, fast conversion and automatic clustering algorithm which is able to handle novelty detection. The main objective of the survey is to find and address the current challenges of SOM. Our survey shows that the existing IDS based on SOM have poor detection rate for U2R and R2L attacks. To improve it, proper normalization technique should be used. During the survey we also found that HSOM and GHSOM are advance model of SOM which have their own unique feature for better performance of IDS. GHSOM is efficient due to its low computation time. This survey is beneficial to design and develop efficient SOM based IDS having less computation time and better detection rate.

  19. Sleep dynamics: A self-organized critical system

    Science.gov (United States)

    Comte, J. C.; Ravassard, P.; Salin, P. A.

    2006-05-01

    In psychiatric and neurological diseases, sleep is often perturbed. Moreover, recent works on humans and animals tend to show that sleep plays a strong role in memory processes. Reciprocally, sleep dynamics following a learning task is modified [Hubert , Nature (London) 02663, 1 (2004), Peigneux , Neuron 44, 535 (2004)]. However, sleep analysis in humans and animals is often limited to the total sleep and wake duration quantification. These two parameters are not fully able to characterize the sleep dynamics. In mammals sleep presents a complex organization with an alternation of slow wave sleep (SWS) and paradoxical sleep (PS) episodes. Moreover, it has been shown recently that these sleep episodes are frequently interrupted by micro-arousal (without awakening). We present here a detailed analysis of the basal sleep properties emerging from the mechanisms underlying the vigilance states alternation in an animal model. These properties present a self-organized critical system signature and reveal the existence of two W, two SWS, and a PS structure exhibiting a criticality as met in sand piles. We propose a theoretical model of the sleep dynamics based on several interacting neuronal populations. This new model of sleep dynamics presents the same properties as experimentally observed, and explains the variability of the collected data. This experimental and theoretical study suggests that sleep dynamics shares several common features with critical systems.

  20. Self-organized relaxation in a collisionless gravitating system.

    Science.gov (United States)

    Sota, Yasuhide; Iguchi, Osamu; Tashiro, Tohru; Morikawa, Masahiro

    2008-05-01

    We propose the self-organized relaxation process which drives a collisionless self-gravitating system to the equilibrium state satisfying local virial (LV) relation. During the violent relaxation process, particles can move widely within the time interval as short as a few free-fall times, because of the effective potential oscillations. Since such particle movement causes further potential oscillations, it is expected that the system approaches the critical state where such particle activities, which we call gravitational fugacity, is independent of the local position as much as possible. Here we demonstrate that gravitational fugacity can be described as the functional of the LV ratio, which means that the LV ratio is a key ingredient estimating the particle activities against gravitational potential. We also demonstrate that the LV relation is attained if the LV ratio exceeds the critical value b=1 everywhere in the bound region during the violent relaxation process. The local region which does not meet this criterion can be trapped into the presaturated state. However, small phase-space perturbation can bring the inactive part into the LV critical state. PMID:18643036

  1. Self-organized criticality in deterministic systems with disorder

    OpenAIRE

    Rios, Paolo De Los; Valleriani, Angelo; Vega, Jose Luis

    1997-01-01

    Using the Bak-Sneppen model of biological evolution as our paradigm, we investigate in which cases noise can be substituted with a deterministic signal without destroying Self-Organized Criticality (SOC). If the deterministic signal is chaotic the universality class is preserved; some non-universal features, such as the threshold, depend on the time correlation of the signal. We also show that, if the signal introduced is periodic, SOC is preserved but in a different universality class, as lo...

  2. An artificial hormone system for self-organization of networked nodes

    OpenAIRE

    Trumler, Wolfgang; Thiemann, Tobias; Ungerer, Theo

    2006-01-01

    The rising complexity of distributed computer systems give reason to investigate self-organization mechanism to build systems that are self-managing in the sense of Autonomic and Organic Computing. In this paper we propose the Artificial Hormone System (AHS) as a general approach to build self-organizing systems based on networked nodes. The Artificial Hormone System implements a similar information exchange between networked nodes like the human hormone system does between cells. The arti...

  3. Initial Evidence for Self-Organized Criticality in Electric Power System Blackouts

    International Nuclear Information System (INIS)

    We examine correlations in a time series of electric power system blackout sizes using scaled window variance analysis and R/S statistics. The data shows some evidence of long time correlations and has Hurst exponent near 0.7. Large blackouts tend to correlate with further large blackouts after a long time interval. Similar effects are also observed in many other complex systems exhibiting self-organized criticality. We discuss this initial evidence and possible explanations for self-organized criticality in power systems blackouts. Self-organized criticality, if fully confirmed in power systems, would suggest new approaches to understanding and possibly controlling blackouts

  4. Self-organization in the Earth climate system versus Milankovitch-Berger astronomical cycles

    CERN Document Server

    Maslov, Lev A

    2014-01-01

    The Late Pleistocene Antarctic temperature variation curve is decomposed into two parts: cyclic and stochastic. These two parts represent different but tightly interconnected processes and also represent two different types of self-organization of the Earth climate system. The self-organization in the cyclic component is the non-linear auto-oscillation reaction of the Earth climate system, as a whole, to the input of solar radiation. The self-organization in the stochastic component is a nonlinear critical process, taking energy from, and fluctuating around the cyclic component of the temperature variations. The system of ODEs is written to model the cyclic part of the temperature variation, and the multifractal spectrum of the stochastic part of the temperature variation is calculated. The Earth climate can be characterized as an open, complex, self-organized dynamical system with nonlinear reaction to the input of solar radiation.

  5. Magnetic reconnection and self-organized plasma systems

    International Nuclear Information System (INIS)

    In this paper the recent results from the Magnetic Reconnection Experiment (MRX) at PPPL are discussed along with their relationship to observations from solar flares, the magnetosphere, and current carrying pinch discharges such as tokamaks, reversed field pinches, spheromaks and field reversed configurations. It is found that the reconnection speed decreases as the angle of merging field lines decreases, consistent with the well-established observation in the dayside magnetosphere. This observation can also provide a qualitative interpretation of a generally observed trend in pinch plasmas, namely that magnetic field diffuses (or reconnects) faster when magnetic shear is larger. A recently conceived research project, SPIRIT (Self-organized Plasma with Induction, Reconnection, and Injection Techniques), will also be discussed. (author)

  6. A Macroscopic Description of Self-Organized Criticality Systems and Astrophysical Applications

    CERN Document Server

    Aschwanden, Markus J

    2013-01-01

    We suggest a generalized definition of self-organized criticality (SOC) systems: SOC is a critical state of a nonlinear energy dissipation system that is slowly and continuously driven towards a critical value of a system-wide instability threshold, producing scale-free, fractal-diffusive, and intermittent avalanches with powerlaw-like size distributions. We develop here a macroscopic description of SOC systems that provides an equivalent description of the complex microscopic fine structure, in terms of fractal-diffusive transport (FD-SOC). Quantitative values for the size distributions of SOC parameters (length scales $L$, time scales $T$, fluxes $F$, and energies $E$) are derived from first principles, using the scale-free probability theorem, $N(L) dL \\propto L^{-d}$, for Euclidean space dimension $d$. We apply this model to astrophysical SOC systems, such as lunar craters, the asteroid belt, Saturn ring particles, magnetospheric substorms, radiation belt electrons, solar flares, stellar flares, pulsar gl...

  7. Combining Self-organizing Feature Map with Support Vector Regression Based on Expert System

    Institute of Scientific and Technical Information of China (English)

    WANGLing; MUZhi-Chun; GUOHui

    2005-01-01

    A new approach is proposed to model nonlinear dynamic systems by combining SOM(self-organizing feature map) with support vector regression (SVR) based on expert system. The whole system has a two-stage neural network architecture. In the first stage SOM is used as a clustering algorithm to partition the whole input space into several disjointed regions. A hierarchical architecture is adopted in the partition to avoid the problem of predetermining the number of partitioned regions. Then, in the second stage, multiple SVR, also called SVR experts, that best fit each partitioned region by the combination of different kernel function of SVR and promote the configuration and tuning of SVR. Finally, to apply this new approach to time-series prediction problems based on the Mackey-Glass differential equation and Santa Fe data, the results show that SVR experts has effective improvement in the generalization performance in comparison with the single SVR model.

  8. Thermal noise induced stochastic resonance in self organizing Fe nanoparticle system

    International Nuclear Information System (INIS)

    The natural world is replete with examples of multistable systems, known to respond to periodic modulations and produce a signal that exhibits resonance with noise amplitude. This is a concept not demonstrated in pure materials, which involve a measured physical property. In a thermoremanent magnetization experiment with a common magnetic material, Fe, in the nanoparticulate form, we establish how magnetization in a system of dilute spins during dissipation of stored magnetic energy breaks up into spontaneous oscillatory behavior. Starting at 175 K and aided by temperature (stochastic noise) the oscillation amplitude goes through a maximum reminiscent of stochastic resonance. Our observation of thermal noise induced coherent resonance is due to intrinsic self-organizing magnetic dynamics of the Fe nanoparticle system without applying any external periodic force. These results yield new possibilities in the design of magnetic materials and a platform to understand stochastic interference and phase synchronization in neural activity, as models for neural communication. (paper)

  9. Computational Genetic Regulatory Networks Evolvable, Self-organizing Systems

    CERN Document Server

    Knabe, Johannes F

    2013-01-01

    Genetic Regulatory Networks (GRNs) in biological organisms are primary engines for cells to enact their engagements with environments, via incessant, continually active coupling. In differentiated multicellular organisms, tremendous complexity has arisen in the course of evolution of life on earth. Engineering and science have so far achieved no working system that can compare with this complexity, depth and scope of organization. Abstracting the dynamics of genetic regulatory control to a computational framework in which artificial GRNs in artificial simulated cells differentiate while connected in a changing topology, it is possible to apply Darwinian evolution in silico to study the capacity of such developmental/differentiated GRNs to evolve. In this volume an evolutionary GRN paradigm is investigated for its evolvability and robustness in models of biological clocks, in simple differentiated multicellularity, and in evolving artificial developing 'organisms' which grow and express an ontogeny starting fr...

  10. Self-organization in Complex Systems The Past, Present, and Future of Synergetics : International Symposium

    CERN Document Server

    Pelster, Axel

    2016-01-01

    This proceedings volume contains talks and poster presentations from the International Symposium "Self-Organization in Complex Systems: The Past, Present, and Future of Synergetics", which took place at Hanse-Wissenschaftskolleg, an Institute of Advanced Studies, in Delmenhorst, Germany, during the period November 13 - 16, 2012. The Symposium was organized in honour of Hermann Haken, who celebrated his 85th birthday in 2012. With his fundamental theory of Synergetics he had laid the mathematical-physical basis for describing and analyzing self-organization processes in a diversity of fields of research. The quest for common and universal principles of self-organization in complex systems was clearly covered by the wide range of interdisciplinary topics reported during the Symposium. These extended from complexity in classical systems and quantum systems over self-organisation in neuroscience even to the physics of finance. Moreover, by combining a historical view with a present status report the Symposium con...

  11. Self-organization leads to supraoptimal performance in public transportation systems.

    Directory of Open Access Journals (Sweden)

    Carlos Gershenson

    Full Text Available The performance of public transportation systems affects a large part of the population. Current theory assumes that passengers are served optimally when vehicles arrive at stations with regular intervals. In this paper, it is shown that self-organization can improve the performance of public transportation systems beyond the theoretical optimum by responding adaptively to local conditions. This is possible because of a "slower-is-faster" effect, where passengers wait more time at stations but total travel times are reduced. The proposed self-organizing method uses "antipheromones" to regulate headways, which are inspired by the stigmergy (communication via environment of some ant colonies.

  12. Self-organization leads to supraoptimal performance in public transportation systems.

    Science.gov (United States)

    Gershenson, Carlos

    2011-01-01

    The performance of public transportation systems affects a large part of the population. Current theory assumes that passengers are served optimally when vehicles arrive at stations with regular intervals. In this paper, it is shown that self-organization can improve the performance of public transportation systems beyond the theoretical optimum by responding adaptively to local conditions. This is possible because of a "slower-is-faster" effect, where passengers wait more time at stations but total travel times are reduced. The proposed self-organizing method uses "antipheromones" to regulate headways, which are inspired by the stigmergy (communication via environment) of some ant colonies. PMID:21738674

  13. APPLYING PRINCIPAL COMPONENT ANALYSIS, MULTILAYER PERCEPTRON AND SELF-ORGANIZING MAPS FOR OPTICAL CHARACTER RECOGNITION

    Directory of Open Access Journals (Sweden)

    Khuat Thanh Tung

    2016-11-01

    Full Text Available Optical Character Recognition plays an important role in data storage and data mining when the number of documents stored as images is increasing. It is expected to find the ways to convert images of typewritten or printed text into machine-encoded text effectively in order to support for the process of information handling effectively. In this paper, therefore, the techniques which are being used to convert image into editable text in the computer such as principal component analysis, multilayer perceptron network, self-organizing maps, and improved multilayer neural network using principal component analysis are experimented. The obtained results indicated the effectiveness and feasibility of the proposed methods.

  14. Self-organizing method for collaboration in multi-robot system on basis of balance principle

    Institute of Scientific and Technical Information of China (English)

    Yangbin DONA; Jinping JIANG; Yan HE

    2008-01-01

    By analyzing the operation characteristics of two subtasks that have resource dependency on each other, this paper demonstrates the impact of progress relation between the two subtasks on the whole task's progress, and then puts forward a self-organizing prin-ciple called balance principle that keeps the individual profit between robots equal. Furthermore, an algorithm is designed for adjusting subtask selection on the basis of this principle. Simulation shows the validity of the algorithm on self-organizing task allocation in a multi-robot system.

  15. Assessment of hydrothermal processes associated with Proterozoic mineral systems in Finland using self-organizing maps.

    Science.gov (United States)

    Lerssi, J.; Sorjonen-Ward, P.; Fraser, S. J.; Ruotsalainen, A.

    2009-04-01

    An increasingly urgent challenge in mineral system analysis is to extract relevant information from diverse datasets, and to effectively discriminate between "hydrothermal noise" and alteration and structures that may relate to significant mineralization potential. The interpretation of geophysical data is notorious for the problem of ambiguity in defining source dimensions and geometry. An additional issue, which also applies to geochemical and hyperspectral datasets, in terrain that has been overprinted by several tectonic, metamorphic and hydrothermal events, is that while anomalies represent the sum of geological processes affecting an area, we are usually interesting in extracting the signals diagnostic of a mineralizing event. Spatial analysis using weights of evidence, fuzzy logic and neural networks have been widely applied to mineral prospectivity assessment in recent years. Here however, we present an alternative, albeit complementary approach, based on the concept of self-organizing maps [1], in which natural patterns in large, unstructured datasets are derived, correlated and readily visualized, provides an alternative approach to analysis of geophysical and geochemical anomalies and integration with other geological data. We have applied SiroSOM software to airborne and ground magnetic, EM and radiometric data for two mutually adjacent areas in eastern Finland that have superficially similar structural architecture and geophysical expression, yet differ significantly in terms of mineral system character: (1) the Outokumpu Cu-Co-Zn-Ni system, hosted by metamorphosed serpentinites and their hydrothermal derivatives, which are usually highly magnetic due to both magnetite and pyrrhotite; (2) the Hammaslahti Cu-Zn system, hosted by coarse-clastic turbidites intercalated with mafic volcanics and graphitic pelites having characteristically intense magnetic and EM responses. Although the initial stage of the analysis is unsupervised, ongoing iteration and

  16. Storage Balancing in Self-organizing Multimedia Delivery Systems

    CERN Document Server

    Sobe, Anita; Böszörmenyi, Laszlo

    2011-01-01

    Many of the current bio-inspired delivery networks set their focus on search, e.g., by using artificial ants. If the network size and, therefore, the search space gets too large, the users experience high delays until the requested content can be consumed. In previous work, we proposed different replication strategies to reduce the search space. In this report we further evaluate measures for storage load balancing, because peers are most likely limited in space. We periodically apply clean-ups if a certain storage level is reached. For our evaluations we combine the already introduced replication measures with least recently used (LRU), least frequently used (LFU) and a hormone-based clean-up. The goal is to elaborate a combination that leads to low delays while the replica utilization is high.

  17. Distributed Self-Organizing Intelligent Control For Dendritic Robotic Systems

    Science.gov (United States)

    Chen, Alexander Y. K.

    1990-02-01

    A new control methodology is presented to effectively operate a robotic system with redundant degrees of freedom. The utilized Decomposed Optimization Technique (DOT) is part of the AISP (An Intelligent Spatial Planner) development. DOT considers the robotic system as several connected subsystems with locally distributed intelligence. Each subsystem has certain degrees of freedom to pursue local optimum state. The resulting parallel distributed processing architecture presents a flexible structure to accommodate sophisticated manipulators with higher level of difficulty. The employed robot dynamics model for each subsystem is generically simple such that the corresponded read-time control scheme can incorporate self-correction mechanism in parameter identification.

  18. Self-organized criticality in a sheared granular stick-slip system

    International Nuclear Information System (INIS)

    We present an analysis of results obtained from a mechanical apparatus consisting of an annular plate shearing over a granular bed. The size, energy dissipation, and duration of slips in the system exhibit power-law distributions and a 1/f2 power spectrum, in accordance with self-organized criticality. We draw similarities with earthquakes

  19. Self-organization in a model of economic system with scale invariant interactions

    Science.gov (United States)

    Pis`mak, Yu. M.

    2001-10-01

    The method of constructing the local scale invariant stochastic models is proposed. The possible extension of minimal scale-invariant interaction principle for stochastic systems is formulated. A simple scale invariant model that possesses an economical interpretation is considered. Essential characteristics of its self-organization mechanisms are discussed.

  20. Measures of Context-Awareness for Self-Organizing Systems

    OpenAIRE

    Olaru, Andrei; Gratie, Cristian; Adina Magda FLOREA

    2009-01-01

    International audience The plethora of interconnected devices that surrounds modern people has yet to work together as a whole. An intelligent environment must sense and react to the actions of people, but to that end a large quantity of information must be exchanged throughout the system. Under realistic conditions, it is impossible to control and coordinate the exchange of information in a centralised way. Solving this problem involves key concepts like self-organisation, emergent behavi...

  1. A macroscopic description of a generalized self-organized criticality system: Astrophysical applications

    International Nuclear Information System (INIS)

    We suggest a generalized definition of self-organized criticality (SOC) systems: SOC is a critical state of a nonlinear energy dissipation system that is slowly and continuously driven toward a critical value of a system-wide instability threshold, producing scale-free, fractal-diffusive, and intermittent avalanches with power law-like size distributions. We develop here a macroscopic description of SOC systems that provides an equivalent description of the complex microscopic fine structure, in terms of fractal-diffusive transport (FD-SOC). Quantitative values for the size distributions of SOC parameters (length scales L, time scales T, waiting times Δt, fluxes F, and fluences or energies E) are derived from first principles, using the scale-free probability conjecture, N(L)dL∝L –d, for Euclidean space dimension d. We apply this model to astrophysical SOC systems, such as lunar craters, the asteroid belt, Saturn ring particles, magnetospheric substorms, radiation belt electrons, solar flares, stellar flares, pulsar glitches, soft gamma-ray repeaters, black-hole objects, blazars, and cosmic rays. The FD-SOC model predicts correctly the size distributions of 8 out of these 12 astrophysical phenomena, and indicates non-standard scaling laws and measurement biases for the others.

  2. On the Computational Power of Spiking Neural P Systems with Self-Organization.

    Science.gov (United States)

    Wang, Xun; Song, Tao; Gong, Faming; Zheng, Pan

    2016-01-01

    Neural-like computing models are versatile computing mechanisms in the field of artificial intelligence. Spiking neural P systems (SN P systems for short) are one of the recently developed spiking neural network models inspired by the way neurons communicate. The communications among neurons are essentially achieved by spikes, i. e. short electrical pulses. In terms of motivation, SN P systems fall into the third generation of neural network models. In this study, a novel variant of SN P systems, namely SN P systems with self-organization, is introduced, and the computational power of the system is investigated and evaluated. It is proved that SN P systems with self-organization are capable of computing and accept the family of sets of Turing computable natural numbers. Moreover, with 87 neurons the system can compute any Turing computable recursive function, thus achieves Turing universality. These results demonstrate promising initiatives to solve an open problem arisen by Gh Păun. PMID:27283843

  3. On the Computational Power of Spiking Neural P Systems with Self-Organization

    Science.gov (United States)

    Wang, Xun; Song, Tao; Gong, Faming; Zheng, Pan

    2016-01-01

    Neural-like computing models are versatile computing mechanisms in the field of artificial intelligence. Spiking neural P systems (SN P systems for short) are one of the recently developed spiking neural network models inspired by the way neurons communicate. The communications among neurons are essentially achieved by spikes, i. e. short electrical pulses. In terms of motivation, SN P systems fall into the third generation of neural network models. In this study, a novel variant of SN P systems, namely SN P systems with self-organization, is introduced, and the computational power of the system is investigated and evaluated. It is proved that SN P systems with self-organization are capable of computing and accept the family of sets of Turing computable natural numbers. Moreover, with 87 neurons the system can compute any Turing computable recursive function, thus achieves Turing universality. These results demonstrate promising initiatives to solve an open problem arisen by Gh Păun. PMID:27283843

  4. The system of molecular-genetic triggers as self--organizing computing system

    Directory of Open Access Journals (Sweden)

    A. Profir

    2001-05-01

    Full Text Available In this paper is shown, that the system of molecular-genetic triggers can solve the SAT problem. The molecular-genetic trigger represents the self-organizing structure and has attractors. The signal from one attractor is transmitted to other attractor, from the first level to the second level of the system. Molecular-genetic triggers work separately. The system of molecular-genetic triggers represents an example of parallel computing system. Suppose, that the system can receive two types of signals. In the first case, the system switches with the help of signals of a molecular nature (concentration of activators x1, x>sub>2, x3, x4. In the second case, the signals of wave nature of a resonant frequency can be utilized. It is possible to show, that the molecular--genetic system, can recognize images encoded by 2-dimensional vectors. Thus, the cells can be considered as parallel self-organizing system producing, receiving and transmitting the information.

  5. Dynamics of self-organization of ramified patterns in an electromechanical system

    Science.gov (United States)

    Jun, Joseph

    We study the dynamcal self-organization of conducting particles into ramified tree networks when subjected to strong electric fields. We find that for a general class of initial configurations of particles that the trees grow in three stages: (I) strand formation, (II) boundary connection, and (III) geometric expansion. We show that graph theoretical measures like the average adjacency of particles clearly delineate the three growth stages. Additionally, we find that each particle becomes one of three species of particles, depending on the number of connections each particle makes with neighboring; this process occurs on a relatively short time scale. We find that the numbers of each kind of species is statistically robust across different experiments that have similar numbers of particles. We numerically explore the electrodynamic properties of the system, including the overall resistance; we find that this quantity scales non-linearly with the number of particles in the network. We qualitatively investigate the effects of the initial configuration of particles, and we find that the initial conditions strongly influence the final form of the networks, e.g. their topological structure. To understand how the geometrical arrangement of particles influences the steady-state topology of the system, we generate artificial trees using experimental data to seed our algorithms. By applying graph theory to the system, we attempt to predict the topological structure of the experimental trees. To accomplish this, we use three algorithms: (1) random, (2) minimal spanning, and (3) propagating front. We compare the results of the different algorithms and find that the minimal spanning tree algorithm reproduces the best match to the statistics of the experimental trees. In the experiments described above, we explore the dynamics of how tree structures self-organize in the system. We are also interested, more generally, in how the detailed structure of ramified patterns affects

  6. Evaluating Connection Resilience for Self-Organized Distributed Cyber-Physical Systems

    OpenAIRE

    Heck, Henner; Kieselmann, Olga; Wacker, Arno

    2016-01-01

    Self-organizing cyber-physical systems are expected to become increasingly important in the context of Industry 4.0 automation as well as in everyday scenarios. Resilient communication is crucial for such systems. In general, this can be achieved with redundant communication paths. Mathematically, the amount of redundant paths is expressed with the network connectivity. A high network connectivity is required for collaboration and system-wide self-adaptation even when nodes fail or get compro...

  7. Self-organizing maps applied to two-phase flow on natural circulation loop studies

    International Nuclear Information System (INIS)

    Two-phase flow of liquid and gas is found in many closed circuits using natural circulation for cooling purposes. Natural circulation phenomenon is important on recent nuclear power plant projects for heat removal on 'loss of pump power' or 'plant shutdown' accidents. The accuracy of heat transfer estimation has been improved based on models that require precise prediction of pattern transitions of flow. Self-Organizing Maps are trained to digital images acquired on natural circulation flow instabilities. This technique will allow the selection of the more important characteristics associated with each flow pattern, enabling a better comprehension of each observed instability. This periodic flow oscillation behavior can be observed thoroughly in this facility due its glass-made tubes transparency. The Natural Circulation Facility (Circuito de Circulacao Natural - CCN) installed at Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN, is an experimental circuit designed to provide thermal hydraulic data related to one and two phase flow under natural circulation conditions. (author)

  8. Complexity and Self-Organized Criticality of Solid Earth System(Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The author puts forward the proposition of "Complexity and Self-Organized Criticality of Solid Earth System" in the light of: (1) the science of complexity studies the mechanisms of emergence of complexity and is the science of the 21st century, (2) the study of complexity of the earth system would be one of the growing points occupying a strategic position in the development of geosciences in the 21st century. By the proposition we try to cogitate from a new viewpoint the ancient yet ever-new solid earth system. The author abstracts the fundamental problem of the solid earth system from the essence of the generalized geological systems and processes which reads: "the complexity and self-organized criticality of the global nature, structure and dynamical behavior of the whole solid earth system emerging from the multiple coupling and superposition of non-linear interactions among the multicomponents of the earths material and the multiple generalized geological (geological, geophysical, and geochemical) processes". Starting from this cognizance the author proposes eight major themes and the methodology of researches on the complexity and self-organized criticality of the solid earth system.

  9. Complexity and Self-Organized Criticality of Solid Earth System(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The author puts forward the proposition of "Complexity and Self-Organized Criticality of Solid Earth System" in the light of: (1) the science of complexity studies the mechanisms of emergence of complexity and is the science of the 21st century, (2) the study of complexity of the earth system would be one of the growing points occupying a strategic position in the development of geosciences in the 21st century. By the proposition we try to cogitate from a new viewpoint the ancient yet ever-new solid earth system. The author abstracts the fundamental problem of the solid earth system from the essence of the generalized geological systems and processes which reads: "the complexity and self-organized criticality of the global nature, structure and dynamical behavior of the whole solid earth system emerging from the multiple coupling and superposition of non-linear interactions among the multicomponents of the earths material and the multiple generalized geological (geological, geophysical, and geochemical) processes". Starting from this cognizance, the author proposes eight major themes and the methodology of researches on the complexity and self-organized criticality of the solid earth system.

  10. Self-Organization Leads to Supraoptimal Performance in Public Transportation Systems

    OpenAIRE

    Carlos Gershenson

    2011-01-01

    The performance of public transportation systems affects a large part of the population. Current theory assumes that passengers are served optimally when vehicles arrive at stations with regular intervals. In this paper, it is shown that self-organization can improve the performance of public transportation systems beyond the theoretical optimum by responding adaptively to local conditions. This is possible because of a "slower-is-faster" effect, where passengers wait more time at stations bu...

  11. Simple model of self-organized biological evolution as completely integrable dissipative system

    OpenAIRE

    Pis'mak, Yu. M.

    1998-01-01

    The Bak-Sneppen model of self-organized biological evolution of an infinite ecosystem of randomly interacting species is represented in terms of an infinite set of variables which can be considered as an analog to the set of integrals of motion of completely integrable system. Each of this variables remains to be constant but its influence on the evolution process is restricted in time and after definite moment its value is excluded from description of the system dynamics.

  12. Information and Self-Organization A Macroscopic Approach to Complex Systems

    CERN Document Server

    Haken, Hermann

    2006-01-01

    This book presents the concepts needed to deal with self-organizing complex systems from a unifying point of view that uses macroscopic data. The various meanings of the concept "information" are discussed and a general formulation of the maximum information (entropy) principle is used. With the aid of results from synergetics, adequate objective constraints for a large class of self-organizing systems are formulated and examples are given from physics, life and computer science. The relationship to chaos theory is examined and it is further shown that, based on possibly scarce and noisy data, unbiased guesses about processes of complex systems can be made and the underlying deterministic and random forces determined. This allows for probabilistic predictions of processes, with applications to numerous fields in science, technology, medicine and economics. The extensions of the third edition are essentially devoted to an introduction to the meaning of information in the quantum context. Indeed, quantum inform...

  13. Reputation- and Trust-Based Systems for Wireless Self-organizing Networks

    CERN Document Server

    Sen, Jaydip

    2011-01-01

    Traditional approach of providing network security has been to borrow tools and mechanisms from cryptography. However, the conventional view of security based on cryptography alone is not sufficient for the defending against unique and novel types of misbehavior exhibited by nodes in wireless self-organizing networks such as mobile ad hoc networks and wireless sensor networks. Reputation-based frameworks, where nodes maintain reputation of other nodes and use it to evaluate their trustworthiness, are deployed to provide scalable, diverse and a generalized approach for countering different types of misbehavior resulting form malicious and selfish nodes in these networks. In this chapter, we present a comprehensive discussion on reputation and trust-based systems for wireless self-organizing networks. Different classes of reputation system are described along with their unique characteristics and working principles. A number of currently used reputation systems are critically reviewed and compared with respect ...

  14. Hybrid Societies: Challenges and Perspectives in the Design of Collective Behavior in Self-organizing Systems

    Directory of Open Access Journals (Sweden)

    Heiko eHamann

    2016-04-01

    Full Text Available Hybrid societies are self-organizing, collective systems composed of different components, for example, natural and artificial parts (bio-hybrid or human beings interacting with and through technical systems (socio-technical. Many different disciplines investigate methods and systems closely related to the design of hybrid societies. A~stronger collaboration between these disciplines could allow for re-use of methods and create significant synergies. We identify three main areas of challenges in the design of self-organizing hybrid societies. First, we identify the formalization challenge. There is an urgent need for a generic model that allows a description and comparison of collective hybrid societies. Second, we identify the system design challenge. Starting from the formal specification of the system, we need to develop an integrated design process. Third, we identify the challenge of interdisciplinarity. Current research on self-organizing hybrid societies stretches over many different fields and hence requires the re-use and synthesis of methods at intersections between disciplines. We then conclude by presenting our perspective for future approaches with high potential in this area.

  15. Self-organized criticality in glassy spin systems requires a diverging number of neighbors.

    Science.gov (United States)

    Andresen, Juan Carlos; Zhu, Zheng; Andrist, Ruben S; Katzgraber, Helmut G; Dobrosavljević, V; Zimanyi, Gergely T

    2013-08-30

    We investigate the conditions required for general spin systems with frustration and disorder to display self-organized criticality, a property which so far has been established only for the fully connected infinite-range Sherrington-Kirkpatrick Ising spin-glass model [Phys. Rev. Lett. 83, 1034 (1999)]. Here, we study both avalanche and magnetization jump distributions triggered by an external magnetic field, as well as internal field distributions in the short-range Edwards-Anderson Ising spin glass for various space dimensions between 2 and 8, as well as the fixed-connectivity mean-field Viana-Bray model. Our numerical results, obtained on systems of unprecedented size, demonstrate that self-organized criticality is recovered only in the strict limit of a diverging number of neighbors and is not a generic property of spin-glass models in finite space dimensions. PMID:24033067

  16. Information-driven self-organization: the dynamical system approach to autonomous robot behavior.

    Science.gov (United States)

    Ay, Nihat; Bernigau, Holger; Der, Ralf; Prokopenko, Mikhail

    2012-09-01

    In recent years, information theory has come into the focus of researchers interested in the sensorimotor dynamics of both robots and living beings. One root for these approaches is the idea that living beings are information processing systems and that the optimization of these processes should be an evolutionary advantage. Apart from these more fundamental questions, there is much interest recently in the question how a robot can be equipped with an internal drive for innovation or curiosity that may serve as a drive for an open-ended, self-determined development of the robot. The success of these approaches depends essentially on the choice of a convenient measure for the information. This article studies in some detail the use of the predictive information (PI), also called excess entropy or effective measure complexity, of the sensorimotor process. The PI of a process quantifies the total information of past experience that can be used for predicting future events. However, the application of information theoretic measures in robotics mostly is restricted to the case of a finite, discrete state-action space. This article aims at applying the PI in the dynamical systems approach to robot control. We study linear systems as a first step and derive exact results for the PI together with explicit learning rules for the parameters of the controller. Interestingly, these learning rules are of Hebbian nature and local in the sense that the synaptic update is given by the product of activities available directly at the pertinent synaptic ports. The general findings are exemplified by a number of case studies. In particular, in a two-dimensional system, designed at mimicking embodied systems with latent oscillatory locomotion patterns, it is shown that maximizing the PI means to recognize and amplify the latent modes of the robotic system. This and many other examples show that the learning rules derived from the maximum PI principle are a versatile tool for the self-organization

  17. Dynamic polarization random walk model and fishbone-like instability for self-organized critical systems

    International Nuclear Information System (INIS)

    We study the phenomenon of self-organized criticality (SOC) as a transport problem for electrically charged particles. A model for SOC based on the idea of a dynamic polarization response with random walks of the charge carriers gives critical exponents consistent with the results of numerical simulations of the traditional 'sandpile' SOC models, and stability properties, associated with the scaling of the control parameter versus distance to criticality. Relaxations of a supercritical system to SOC are stretched-exponential similar to the typically observed properties of non-Debye relaxation in disordered amorphous dielectrics. Overdriving the system near self-organized criticality is shown to have a destabilizing effect on the SOC state. This instability of the critical state constitutes a fascinating nonlinear system in which SOC and nonlocal properties can appear on an equal footing. The instability cycle is qualitatively similar to the internal kink ('fishbone') mode in a magnetically confined toroidal plasma where beams of energetic particles are injected at high power, and has serious implications for the functioning of complex systems. Theoretical analyses, presented here, are the basis for addressing the various patterns of self-organized critical behavior in connection with the strength of the driving. The results of this work also suggest a type of mixed behavior in which the typical multi-scale features due to SOC can coexist along with the global or coherent features as a consequence of the instability present. An example of this coexistence is speculated for the solar wind-magnetosphere interaction.

  18. Stochastic Resonance, Self-Organization and Information Dynamics in Multistable Systems

    Directory of Open Access Journals (Sweden)

    Grégoire Nicolis

    2016-05-01

    Full Text Available A class of complex self-organizing systems subjected to fluctuations of environmental or intrinsic origin and to nonequilibrium constraints in the form of an external periodic forcing is analyzed from the standpoint of information theory. Conditions under which the response of information entropy and related quantities to the nonequilibrium constraint can be optimized via a stochastic resonance-type mechanism are identified, and the role of key parameters is assessed.

  19. High Performance Work Systems as an Enabling Structure for Self-organized Learning Processes

    OpenAIRE

    Thomas Wallner; Martin Menrad

    2012-01-01

    High Performance Work Systems (HPWSs) as a new way of organizing work in general and of production work in particular provide an environment, where self-organized learning processes are enabled and fostered. In an extensive research project in 2 major Austrian manufacturing companies we currently investigate the applicability and the effects of HPWS including issues of learning and knowledge management. In this contribution we present the results of the first phase of this project discussing ...

  20. On Some Properties of the Sandpile Model of Self-Organized Critica Systems

    OpenAIRE

    Juan Carlos Chimal Eguía

    2004-01-01

    In this paper we analyze the sandpile model proposed by Bak, Tang and Wiesenfeld as the canonical example of self-organized critical systems. We find that the sandpile-model can reproduce staircase graphics and also that the distribution of large avalanches recurrence times in this model is log-normal. We also find that the slope of cumulative activity characterize a “province” of generation of avalanches in the same way as the seismic or evolutionary provinces do.

  1. Analysis of a Robust Reputation System for Self-Organized Networks

    OpenAIRE

    Mundiger, Jochen; Le Boudec, Jean-Yves

    2005-01-01

    Self-organized networks require some mechanism to ensure cooperation and fairness in the face of individual utility maximizing users and potential malicious attacks. Otherwise, network performance can be seriously deteriorated. One promising approach are decentralized reputation systems. However, these are vulnerable to users with an interest in passing on false information. Robustness against liars has not yet been analyzed in detail. In this paper, we provide a first step to the robustness ...

  2. Self-Organizing Robots

    CERN Document Server

    Murata, Satoshi

    2012-01-01

    It is man’s ongoing hope that a machine could somehow adapt to its environment by reorganizing itself. This is what the notion of self-organizing robots is based on. The theme of this book is to examine the feasibility of creating such robots within the limitations of current mechanical engineering. The topics comprise the following aspects of such a pursuit: the philosophy of design of self-organizing mechanical systems; self-organization in biological systems; the history of self-organizing mechanical systems; a case study of a self-assembling/self-repairing system as an autonomous distributed system; a self-organizing robot that can create its own shape and robotic motion; implementation and instrumentation of self-organizing robots; and the future of self-organizing robots. All topics are illustrated with many up-to-date examples, including those from the authors’ own work. The book does not require advanced knowledge of mathematics to be understood, and will be of great benefit to students in the rob...

  3. Improving Security for SCADA Sensor Networks with Reputation Systems and Self-Organizing Maps.

    Science.gov (United States)

    Moya, José M; Araujo, Alvaro; Banković, Zorana; de Goyeneche, Juan-Mariano; Vallejo, Juan Carlos; Malagón, Pedro; Villanueva, Daniel; Fraga, David; Romero, Elena; Blesa, Javier

    2009-01-01

    The reliable operation of modern infrastructures depends on computerized systems and Supervisory Control and Data Acquisition (SCADA) systems, which are also based on the data obtained from sensor networks. The inherent limitations of the sensor devices make them extremely vulnerable to cyberwarfare/cyberterrorism attacks. In this paper, we propose a reputation system enhanced with distributed agents, based on unsupervised learning algorithms (self-organizing maps), in order to achieve fault tolerance and enhanced resistance to previously unknown attacks. This approach has been extensively simulated and compared with previous proposals. PMID:22291569

  4. Improving Security for SCADA Sensor Networks with Reputation Systems and Self-Organizing Maps

    Directory of Open Access Journals (Sweden)

    Javier Blesa

    2009-11-01

    Full Text Available The reliable operation of modern infrastructures depends on computerized systems and Supervisory Control and Data Acquisition (SCADA systems, which are also based on the data obtained from sensor networks. The inherent limitations of the sensor devices make them extremely vulnerable to cyberwarfare/cyberterrorism attacks. In this paper, we propose a reputation system enhanced with distributed agents, based on unsupervised learning algorithms (self-organizing maps, in order to achieve fault tolerance and enhanced resistance to previously unknown attacks. This approach has been extensively simulated and compared with previous proposals.

  5. Modeling self-organized systems interacting with few individuals: from microscopic to macroscopic dynamics

    CERN Document Server

    Albi, Giacomo

    2012-01-01

    In nature self-organized systems as flock of birds, school of fishes or herd of sheeps have to deal with the presence of external agents such as predators or leaders which modify their internal dynamic. Such situations take into account a large number of individuals with their own social behavior which interact with a few number of other individuals acting as external point source forces. Starting from the microscopic description we derive the kinetic model through a mean-field limit and finally the macroscopic system through a suitable hydrodynamic limit.

  6. Firm Size, a Self-Organized Critical Phenomenon: Evidence from the Dynamical Systems Theory

    Science.gov (United States)

    Chandra, Akhilesh

    This research draws upon a recent innovation in the dynamical systems literature called the theory of self -organized criticality (SOC) (Bak, Tang, and Wiesenfeld 1988) to develop a computational model of a firm's size by relating its internal and the external sub-systems. As a holistic paradigm, the theory of SOC implies that a firm as a composite system of many degrees of freedom naturally evolves to a critical state in which a minor event starts a chain reaction that can affect either a part or the system as a whole. Thus, the global features of a firm cannot be understood by analyzing its individual parts separately. The causal framework builds upon a constant capital resource to support a volume of production at the existing level of efficiency. The critical size is defined as the production level at which the average product of a firm's factors of production attains its maximum value. The non -linearity is inferred by a change in the nature of relations at the border of criticality, between size and the two performance variables, viz., the operating efficiency and the financial efficiency. The effect of breaching the critical size is examined on the stock price reactions. Consistent with the theory of SOC, it is hypothesized that the temporal response of a firm breaching the level of critical size should behave as a flicker noise (1/f) process. The flicker noise is characterized by correlations extended over a wide range of time scales, indicating some sort of cooperative effect among a firm's degrees of freedom. It is further hypothesized that a firm's size evolves to a spatial structure with scale-invariant, self-similar (fractal) properties. The system is said to be self-organized inasmuch as it naturally evolves to the state of criticality without any detailed specifications of the initial conditions. In this respect, the critical state is an attractor of the firm's dynamics. Another set of hypotheses examines the relations between the size and the

  7. Cyclotron resonance in two-dimensional electron system with self-organized antidots

    CERN Document Server

    Suchalkin, S D; Zundel, M; Nachtwei, G; Klitzing, K V; Eberl, K

    2001-01-01

    The data on the experimental study on the cyclotron resonance in the two-dimensional electron system with the random scattering potential, conditioned by the massif of the AlInAs self-organized quantum islands, formed in the AlGaAs/GaAs heterotransition plane, are presented. The sharp narrowing of the cyclotron resonance with increase in the magnetic field, explained by the charge scattering peculiarities in the given potential is established. The obtained results suggest the strongly correlated electron state in the strong magnetic fields by the carriers concentrations lesser than the antidots concentrations

  8. Comment on "Self-organized criticality in living systems" by C Adami

    CERN Document Server

    Newman, M E J; Sneppen, K; Tozier, W A; Fraser, Simon M.; Sneppen, Kim; Tozier, William A.

    1997-01-01

    Following extensive numerical experiments, it has been suggested that the evolution of competing computer programs in artificial life simulations shows signs of being a self-organized critical process. The primary evidence for this claim comes from the distribution of the lifetimes of species in the simulations, which appears to follow a power law. We argue that, for a number of reasons, it is unlikely that the system is in fact at a critical point and suggest an alternative explanation for the power-law lifetime distribution.

  9. High Performance Work Systems as an Enabling Structure for Self-organized Learning Processes

    Directory of Open Access Journals (Sweden)

    Thomas Wallner

    2012-11-01

    Full Text Available High Performance Work Systems (HPWSs as a new way of organizing work in general and of production work in particular provide an environment, where self-organized learning processes are enabled and fostered. In an extensive research project in 2 major Austrian manufacturing companies we currently investigate the applicability and the effects of HPWS including issues of learning and knowledge management. In this contribution we present the results of the first phase of this project discussing early empirical findings of an exploratory nature.

  10. Self-organized criticality of power system faults and its application in adaptation to extreme climate

    Institute of Scientific and Technical Information of China (English)

    SU Sheng; LI YinHong; DUAN XianZhong

    2009-01-01

    This paper analyzes the statistics of faults in a transmission and distribution networks in central China, unveils long-term autocorrelation and power law distribution of power system faults, which indicates that power system fault has self-organized criticality (SOC) feature. The conclusion is consistent with the power systems data in 2008 with ice storm present. Since power systems cover large areas, climate is the key factor to its safety and stability. In-depth analysis shows that the SOC of atmosphere system contributes much to that of power system faults. Extreme climate will be more intense and frequent with global warming, it will have more and more impact upon power systems. The SOC feature of power system faults is utilized to develop approaches to facilitate power systems adaptation to climate varia-tion in an economical and efficient way.

  11. On power system blackout modeling and analysis based on self-organized criticality

    Institute of Scientific and Technical Information of China (English)

    MEI ShengWei; XUE AnCheng; ZHANG XueMin

    2008-01-01

    This paper makes a comprehensive survey on power system blackout modeling and analysis based on SOC (self-organized criticality). Firstly, a generalized SOC theory from the viewpoint of cybernetics is introduced. Then the evolution model of power system and its relative mathematical description, which serves as a concrete example of the proposed generalized SOC, are given. Secondly, five blackout models capturing various critical properties of power systems in different time-scales are listed. Finally, this paper analyzes SOC in power systems, such as, the revelation of criticalities of proposed models in both micro-scale and macro-scale which can be used to assess the security of power system, and cascading failures process.

  12. On power system blackout modeling and analysis based on self-organized criticality

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper makes a comprehensive survey on power system blackout modeling and analysis based on SOC (self-organized criticality). Firstly,a generalized SOC theory from the viewpoint of cybernetics is introduced. Then the evolution model of power system and its relative mathematical description,which serves as a concrete example of the proposed generalized SOC,are given. Secondly,five blackout models capturing various critical properties of power systems in different time-scales are listed. Finally,this paper analyzes SOC in power systems,such as,the revelation of criticalities of proposed models in both micro-scale and macro-scale which can be used to assess the security of power system,and cas-cading failures process.

  13. Self-Organized Collective Crystal-Like Formations of the Attractive/repulsive Swarming System

    Science.gov (United States)

    Tian, Wen-Qiang; Gao, Dan; Wang, Ying-Guan

    2014-01-01

    In this paper, an adaptive attractive/repulsive (A/R) swarming model is proposed to explore the role of self-organized formation in swarming systems. By defining the adjustable A/R range γi, which is affected by the localized steady state of agents, the standard collective crystal-like swarming formations are straightforwardly unfolded in different scale. Meanwhile, with numerical simulations and analyses, the results show that the adaptive A/R swarming model provides an effective solution to the current existing dilemma of the collective liquid-like formation with unexpected neighbor distances and the split crystal-like formation. The actual neighbor distance of the adaptive A/R model could converge to the expected neighbor distance as planned, based on the different settings of the expected neighbor distance and the A/R range. Moreover, such adjustable A/R swarming formations may find their potential applications such as the formation of self-organized multi-robots and unmanned aerial vehicles, the automatic networking of sensors, etc.

  14. Cytoskeletal actin networks in motile cells are critically self-organized systems synchronized by mechanical interactions.

    Science.gov (United States)

    Cardamone, Luca; Laio, Alessandro; Torre, Vincent; Shahapure, Rajesh; DeSimone, Antonio

    2011-08-23

    Growing networks of actin fibers are able to organize into compact, stiff two-dimensional structures inside lamellipodia of crawling cells. We put forward the hypothesis that the growing actin network is a critically self-organized system, in which long-range mechanical stresses arising from the interaction with the plasma membrane provide the selective pressure leading to organization. We show that a simple model based only on this principle reproduces the stochastic nature of lamellipodia protrusion (growth periods alternating with fast retractions) and several of the features observed in experiments: a growth velocity initially insensitive to the external force; the capability of the network to organize its orientation; a load-history-dependent growth velocity. Our model predicts that the spectrum of the time series of the height of a growing lamellipodium decays with the inverse of the frequency. This behavior is a well-known signature of self-organized criticality and is confirmed by unique optical tweezer measurements performed in vivo on neuronal growth cones. PMID:21825142

  15. Self-organizing maps of Kohonen (SOM) applied to multidimensional monitoring data of the IEA-R1 nuclear research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Affonso, Gustavo S.; Pereira, Iraci M.; Mesquita, Roberto N. de, E-mail: rnavarro@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Bueno, Elaine I., E-mail: ebueno@ifsp.gov.b [Instituto Federal de Educacao, Ciencia e Tecnologia de Sao Paulo (IFSP), SP (Brazil)

    2011-07-01

    Multivariate statistics comprise a set of statistical methods used in situations where many variables are database space subsets. Initially applied to human, social and biological sciences, these methods are being applied to many other areas such as education, geology, chemistry, physics, engineering, and many others. This spectra expansion was possible due to recent technological development of computation hardware and software that allows high and complex databases to be treated iteratively enabling further analysis. Following this trend, the neural networks called Self-Organizing Maps are turning into a powerful tool on visualization of implicit and unknown correlations in big sized database sets. Originally created by Kohonen in 1981, it was applied to speech recognition tasks. The SOM is being used as a comparative parameter to evaluate the performance of new multidimensional analysis methodologies. Most of methods require good variable input selection criteria and SOM has contributed to clustering, classification and prediction of multidimensional engineering process variables. This work proposes a method of applying SOM to a set of 58 IEA-R1 operational variables at IPEN research reactor which are monitored by a Data Acquisition System (DAS). This data set includes variables as temperature, flow mass rate, coolant level, nuclear radiation, nuclear power and control bars position. DAS enables the creation and storage of historical data which are used to contribute to Failure Detection and Monitoring System development. Results show good agreement with previous studies using other methods as GMDH and other predictive methods. (author)

  16. Self-organizing map (SOM) of space acceleration measurement system (SAMS) data

    Science.gov (United States)

    Sinha, A.; Smith, A. D.

    1999-01-01

    In this paper, space acceleration measurement system (SAMS) data have been classified using self-organizing map (SOM) networks without any supervision; i.e., no a priori knowledge is assumed regarding input patterns belonging to a certain class. Input patterns are created on the basis of power spectral densities of SAMS data. Results for SAMS data from STS-50 and STS-57 missions are presented. Following issues are discussed in details: impact of number of neurons, global ordering of SOM weight vectors, effectiveness of a SOM in data classification, and effects of shifting time windows in the generation of input patterns. The concept of 'cascade of SOM networks' is also developed and tested. It has been found that a SOM network can successfully classify SAMS data obtained during STS-50 and STS-57 missions.

  17. Self-Organized Bistability

    CERN Document Server

    di Santo, Serena; Vezzani, Alessandro; Muñoz, Miguel A

    2016-01-01

    Self-organized criticality elucidates the conditions under which physical and biological systems tune themselves to the edge of a second-order phase transition, with scale invariance. Motivated by the empirical observation of bimodal distributions of activity in neuroscience and other fields, we propose and analyze a theory for the self-organization to the point of phase-coexistence in systems exhibiting a first-order phase transition. It explains the emergence of regular avalanches with attributes of scale-invariance which coexist with huge anomalous ones, with realizations in many fields.

  18. Scaling laws and indications of self-organized criticality in urban systems

    International Nuclear Information System (INIS)

    Evolution of urban systems has been considered to exhibit some form of self-organized criticality (SOC) in the literature. This paper provides further mathematical foundations and empirical evidences to support the supposition. The hierarchical structure of systems of cities can be formulated as three exponential functions: the number law, the population size law, and the area law. These laws are identical in form to the Horton-Strahler laws of rivers and Gutenberg-Richter laws of earthquakes. From the exponential functions, three indications of SOC are also derived: the frequency-spectrum relation indicting the 1/f noise, the power laws indicating the fractal structure, and the Zipf's law indicating the rank-size distribution. These mathematical models form a set of scaling laws for urban systems, as demonstrated in the empirical study of the system of cities in China. The fact that the scaling laws of urban systems bear an analogy to those on rivers and earthquakes lends further support to the notion of possible SOC in urban systems

  19. Small Open Chemical Systems Theory: Its Implications to Darwinian Evolution Dynamics, Complex Self-Organization and Beyond

    International Nuclear Information System (INIS)

    The study of biological cells in terms of mesoscopic, nonequilibrium, nonlinear, stochastic dynamics of open chemical systems provides a paradigm for other complex, self-organizing systems with ultra-fast stochastic fluctuations, short-time deterministic nonlinear dynamics, and long-time evolutionary behavior with exponentially distributed rare events, discrete jumps among punctuated equilibria, and catastrophe. (general)

  20. Small Open Chemical Systems Theory and Its Implications to Darwinian Evolutionary Dynamics, Complex Self-Organization and Beyond

    OpenAIRE

    Qian, Hong

    2012-01-01

    The study of biological cells in terms of mesoscopic, nonequilibrium, nonlinear, stochastic dynamics of open chemical systems provides a paradigm for other complex, self-organizing systems with ultra-fast stochastic fluctuations, short-time deterministic nonlinear dynamics, and long-time evolutionary behavior with exponentially distributed rare events, discrete jumps among punctuated equilibria, and catastrophe.

  1. Modeling Physical Processes at the Nanoscale—Insight into Self-Organization of Small Systems (abstract)

    Science.gov (United States)

    Proykova, Ana

    2009-04-01

    Essential contributions have been made in the field of finite-size systems of ingredients interacting with potentials of various ranges. Theoretical simulations have revealed peculiar size effects on stability, ground state structure, phases, and phase transformation of systems confined in space and time. Models developed in the field of pure physics (atomic and molecular clusters) have been extended and successfully transferred to finite-size systems that seem very different—small-scale financial markets, autoimmune reactions, and social group reactions to advertisements. The models show that small-scale markets diverge unexpectedly fast as a result of small fluctuations; autoimmune reactions are sequences of two discontinuous phase transitions; and social groups possess critical behavior (social percolation) under the influence of an external field (advertisement). Some predicted size-dependent properties have been experimentally observed. These findings lead to the hypothesis that restrictions on an object's size determine the object's total internal (configuration) and external (environmental) interactions. Since phases are emergent phenomena produced by self-organization of a large number of particles, the occurrence of a phase in a system containing a small number of ingredients is remarkable.

  2. Self-organized criticality

    OpenAIRE

    Creutz, Michael

    1996-01-01

    I review the concept of self-organized criticality, wherein dissipative systems naturally drive themselves to a critical state with important phenomena occurring over a wide range of length and time scales. Several exact results are demonstrated for the Abelian sandpile.

  3. Self-organized criticality

    International Nuclear Information System (INIS)

    We show that certain extended dissipative dynamical systems naturally evolve into a critical state, with no characteristic time or length scales. The temporal ''fingerprint'' of the self-organized critical state is the presence of flicker noise or 1/f noise; its spatial signature is the emergence of scale-invariant (fractal) structure

  4. Evaluating ideal combinations of necktie and Y-shirt by self-organization map for the coordination system

    OpenAIRE

    Hoshino, Yoshinobu

    2010-01-01

    We investigated the impression of externals that Y shirt and the necktie gave the person. The data set to compose the self-organizing map of the result has been extracted. In this paper, we tested the proposing the coordination system that considers relativity about the image data and impressions to the coordination contrast.

  5. A self-organizing neural system for learning to recognize textured scenes.

    Science.gov (United States)

    Grossberg, S; Williamson, J R

    1999-04-01

    A self-organizing ARTEX model is developed to categorize and classify textured image regions. ARTEX specializes the FACADE model of how the visual cortex sees, and the ART model of how temporal and prefrontal cortices interact with the hippocampal system to learn visual recognition categories and their names. FACADE processing generates a vector of boundary and surface properties, notably texture and brightness properties, by utilizing multi-scale filtering, competition, and diffusive filling-in. Its context-sensitive local measures of textured scenes can be used to recognize scenic properties that gradually change across space, as well as abrupt texture boundaries. ART incrementally learns recognition categories that classify FACADE output vectors, class names of these categories, and their probabilities. Top-down expectations within ART encode learned prototypes that pay attention to expected visual features. When novel visual information creates a poor match with the best existing category prototype, a memory search selects a new category with which classify the novel data. ARTEX is compared with psychophysical data, and is bench marked on classification of natural textures and synthetic aperture radar images. It outperforms state-of-the-art systems that use rule-based, backpropagation, and K-nearest neighbor classifiers. PMID:10343850

  6. A New System for Clustering and Classification of Intrusion Detection System Alerts Using Self-Organizing Maps

    Directory of Open Access Journals (Sweden)

    Amir Azimi Alasti Ahrabi, Ahmad Habibizad Navin, Hadi Bahrbegi, Mir Kamal Mirnia, Mehdi Bahrbegi, Elnaz Safarzadeh & Ali Ebrahimi

    2011-08-01

    Full Text Available Intrusion Detection Systems (IDS allow to protect systems used byorganizations against threats that emerges network connectivity by increasing.The main drawbacks of IDS are the number of alerts generated and failing. Byusing Self-Organizing Map (SOM, a system is proposed to be able to classifyIDS alerts and to reduce false positives alerts. Also some alert filtering andcluster merging algorithm are introduce to improve the accuracy of the proposedsystem. By the experimental results on DARPA KDD cup 98 the system is able tocluster and classify alerts and causes reducing false positive alerts considerably.

  7. Application of Bayesian inference to the study of hierarchical organization in self-organized complex adaptive systems

    Science.gov (United States)

    Knuth, K. H.

    2001-05-01

    We consider the application of Bayesian inference to the study of self-organized structures in complex adaptive systems. In particular, we examine the distribution of elements, agents, or processes in systems dominated by hierarchical structure. We demonstrate that results obtained by Caianiello [1] on Hierarchical Modular Systems (HMS) can be found by applying Jaynes' Principle of Group Invariance [2] to a few key assumptions about our knowledge of hierarchical organization. Subsequent application of the Principle of Maximum Entropy allows inferences to be made about specific systems. The utility of the Bayesian method is considered by examining both successes and failures of the hierarchical model. We discuss how Caianiello's original statements suffer from the Mind Projection Fallacy [3] and we restate his assumptions thus widening the applicability of the HMS model. The relationship between inference and statistical physics, described by Jaynes [4], is reiterated with the expectation that this realization will aid the field of complex systems research by moving away from often inappropriate direct application of statistical mechanics to a more encompassing inferential methodology.

  8. ORAL LONG-ACTING PHARMACEUTICAL FORM OF INSULIN ON THE BASIS OF SELF-ORGANIZING KVASI-LIVING SYSTEM OF COMBINATORIAL PEPTIDES

    Directory of Open Access Journals (Sweden)

    Nosalskaya T.N.,

    2012-06-01

    Full Text Available The paper discusses the results of studies on physical and chemical properties of kvasi-living self-organizing insulin-based system, and on the effectiveness of its oral administration. The purpose of the studies was to modify positively charged amino acid residues into negatively charged residues of dicarboxylic acids. The process of bioorganic combinatorial synthesis produced more than 100 thousand fragments capable of self-organization in the insulin receptor. Self-organization is due to the fact that peptides were previously a part of the whole – namely, insulin molecule. These peptides had small size, and could be easily absorbed by intestines. They also had a long duration of circulation in blood and reacted with insulin receptor in a fashion similar to injected insulin. It is shown that a single oral application of such system leads to statistically significant and sustained reduction in blood glucose levels within 24 hours of application. The effect is observed in both cases: while taking the drug on an empty stomach, and with glucose and food load up to 7.11 mmol / L. A single dose of the drug led to a plateau of stable glucose levels and prevented hypoglycemia and glucose level jumps when applied to rats (control group. The kvasi-living system was obtained by partial proteolysis of recombinant insulin with pepsin, followed by partial modification of peptides with succinic anhydride

  9. A Unique Procedure to Identify Cell Surface Markers Through a Spherical Self-Organizing Map Applied to DNA Microarray Analysis

    Science.gov (United States)

    Sugii, Yuh; Kasai, Tomonari; Ikeda, Masashi; Vaidyanath, Arun; Kumon, Kazuki; Mizutani, Akifumi; Seno, Akimasa; Tokutaka, Heizo; Kudoh, Takayuki; Seno, Masaharu

    2016-01-01

    To identify cell-specific markers, we designed a DNA microarray platform with oligonucleotide probes for human membrane-anchored proteins. Human glioma cell lines were analyzed using microarray and compared with normal and fetal brain tissues. For the microarray analysis, we employed a spherical self-organizing map, which is a clustering method suitable for the conversion of multidimensional data into two-dimensional data and displays the relationship on a spherical surface. Based on the gene expression profile, the cell surface characteristics were successfully mirrored onto the spherical surface, thereby distinguishing normal brain tissue from the disease model based on the strength of gene expression. The clustered glioma-specific genes were further analyzed by polymerase chain reaction procedure and immunocytochemical staining of glioma cells. Our platform and the following procedure were successfully demonstrated to categorize the genes coding for cell surface proteins that are specific to glioma cells. Our assessment demonstrates that a spherical self-organizing map is a valuable tool for distinguishing cell surface markers and can be employed in marker discovery studies for the treatment of cancer. PMID:26966393

  10. Self-assembly and Self-organization Processes of Carbon Nanotubes in the Colloidal Systems

    OpenAIRE

    A.P. Kuzmenko; Thet Phyo Naing; Myo Min Than; Chan Nyein Aung; M.B. Dobromyslov; S.G. Emelyanov; L.M. Chervyakov

    2015-01-01

    The features and patterns of self-organization processes in the diffusion-limited conditions (method of drops) of carbon-containing compounds and carbon nanotubes have been studied. The results of the research influence of the substrate temperature and solvent on the formation of nanoscale fractal structures in sediments of colloidal solutions are provided.

  11. Self-assembly and Self-organization Processes of Carbon Nanotubes in the Colloidal Systems

    Directory of Open Access Journals (Sweden)

    A.P. Kuzmenko

    2015-12-01

    Full Text Available The features and patterns of self-organization processes in the diffusion-limited conditions (method of drops of carbon-containing compounds and carbon nanotubes have been studied. The results of the research influence of the substrate temperature and solvent on the formation of nanoscale fractal structures in sediments of colloidal solutions are provided.

  12. New epistemological foundations for cultural psychology: from an atomistic to a self-organizing view of living systems

    OpenAIRE

    Adele De Pascale

    2014-01-01

    An epistemological foundation for cultural psychology is essential to neuro- and behavioural sciences for the challenge psychological sciences must currently face: searching for an explanation of how a brain can become a mind and how individuals assign a sense to the world and their life. Biological systems are very likely determined by physical and chemical laws of spontaneous self-organization and endogenous constraints but, even if the major result of the Darwinian revolution is "the disco...

  13. Spatial self-organization in a multi-strain host–pathogen system

    International Nuclear Information System (INIS)

    We develop stochastic spatial epidemic models with the competition of two pathogenic strains. The dynamics resulting from different approaches are examined using both non-spatial and spatially explicit models. Our results show that pair approximation, well-mixed ordinary differential equations (ODEs), Gillespie-algorithm-based simulations and spatially explicit models give similar qualitative results. In particular, the temporal evolution of the spatial model can be successfully approximated by pair equations. Simulation results obtained from the spatially explicit model show that, first, mutation plays a major role in multi-strain coexistence, second, mild virulence remarkably decreases the coexistence domain of the parameter space and, third, large-scale self-organized spatial patterns emerge for a wide range of transmission and virulence parameter values, where spatial self-organized clusters reveal a power law behavior within the coexistence domain

  14. Patterns identification in supervisory systems of nuclear reactors installations and gas pipelines systems using self-organizing maps

    International Nuclear Information System (INIS)

    Self-Organizing Maps, SOM, of Kohonen were studied, implemented and tested with the aim of developing, for the energy branch, an effective tool especially for transient identification in nuclear reactors and for gas pipelines networks logistic supervision, by classifying operations and identifying transients or abnormalities. The digital system for the test was developed in Java platform, for the portability and scalability, and for belonging to free development platforms. The system, executed in personal computers, showed satisfactory results to aid in decision taking, by classifying IRIS (International Reactor Innovative and Secure) reactor operation conditions (data from simulator) and by classifying Southeast (owner: TRANSPETRO - Brazil) gas pipeline network. Various adaptations were needed for such business, as new topologies for the output layer of artificial neural network and particular preparation for the input data. (author)

  15. Self-organizing of critical state in granulated superconductors

    International Nuclear Information System (INIS)

    Critical state in granulated superconductors was studied on the basis of two mathematical models - the system of differential equations for calibration and invariant difference of phases and a simplified model describing the system of associated images and equivalent to the standard models to study self-organizing criticality. The critical state of granulated superconductors in all studied cases was shown to be self-organized. Besides, it is shown that the applied models are practically equivalent ones, that is they both show similar critical behavior and lead to coincidence of noncritical phenomena. For the first time one showed that the occurrence of self-organized critically within the system of nonlinear differential equations and its equivalence to self-organized critically in the standard models

  16. New epistemological foundations for cultural psychology: from an atomistic to a self-organizing view of living systems

    Directory of Open Access Journals (Sweden)

    Adele De Pascale

    2014-09-01

    Full Text Available An epistemological foundation for cultural psychology is essential to neuro- and behavioural sciences for the challenge psychological sciences must currently face: searching for an explanation of how a brain can become a mind and how individuals assign a sense to the world and their life. Biological systems are very likely determined by physical and chemical laws of spontaneous self-organization and endogenous constraints but, even if the major result of the Darwinian revolution is "the discovery that living species are their story", the modern synthesis of the evolution theory adopted only continuist and gradualist hypotheses. This nourished the analogy between the theory of natural selection and the theory of operant conditioning, thereby supporting empiricist associationism and the methodological positivism of behavioural and "classical" cognitive psychologists. Current scientific contributions provide evidence to the need for psychotherapy and psychopathology of a new epistemological approach in order to connect research stemming from animal models, up to the most abstract levels of personal meaning. The complex system oriented approach, here described, called "post-rationalism", shaped by a change initiated by evolutionary epistemology. The regulation of emotions initially develops within interpersonal relationships and evolves during both phylogeny and ontogeny, according to complex self-organization processes, leading to the acquisition of Self-organizing abilities and the construction of personal meaning. Endorsing the epistemological similarities of neo-Darwinism and behaviourism, and differentiating from this, the above mentioned approach, emphasises the fact that clinical and psycho-therapeutical practice must be founded on the laws of biological organisation: the ongoing activity of neurobiological systems, including the more abstract domains of thought and language.

  17. New epistemological foundations for cultural psychology: from an atomistic to a self-organizing view of living systems.

    Science.gov (United States)

    De Pascale, Adele

    2014-01-01

    An epistemological foundation for cultural psychology is essential to neuro- and behavioural sciences for the challenge psychological sciences must currently face: searching for an explanation of how a brain can become a mind and how individuals assign a sense to the world and their life. Biological systems are very likely determined by physical and chemical laws of spontaneous self-organization and endogenous constraints but, even if the major result of the Darwinian revolution is "the discovery that living species are their story", the modern synthesis of the evolution theory adopted only continuist and gradualist hypotheses. This nourished the analogy between the theory of natural selection and the theory of operant conditioning, thereby supporting empiricist associationism and the methodological positivism of behavioural and "classical" cognitive psychologists. Current scientific contributions provide evidence to the need for psychotherapy and psychopathology of a new epistemological approach in order to connect research stemming from animal models, up to the most abstract levels of personal meaning. The complex system oriented approach, here described, called "post-rationalism", shaped by a change initiated by evolutionary epistemology. The regulation of emotions initially develops within interpersonal relationships and evolves during both phylogeny and ontogeny, according to complex self-organization processes, leading to the acquisition of Self-organizing abilities and the construction of personal meaning. Endorsing the epistemological similarities of neo-Darwinism and behaviourism, and differentiating from this, the above mentioned approach, emphasises the fact that clinical and psycho-therapeutical practice must be founded on the laws of biological organisation: the ongoing activity of neurobiological systems, including the more abstract domains of thought and language. PMID:25292274

  18. A Pattern Analysis of Using Self-Organizing-Maps in a Unspoken Vowel Recognition System Based on Surface Electromyogram

    Science.gov (United States)

    Fukumoto, Hisao; Noguchi, Yusuke; Ohchi, Masashi; Furukawa, Tatsuya

    In this paper, we present some results of analysis on surface electromyogram (SEMG) using Self-Organizing -Maps (SOM) algorithm, which is one of the neural network algorithm, for unspoken vowel recognition system. Three pairs of electrodes were placed on facial muscles and SEMG signals were recorded. We have examined the classification of three pairs of the values of activity for each muscle using SOM algorithm. The SOM algorithm is also able to translate the multi-dimensional vectors of RMS values of SEMG signal into the two-dimensional map.

  19. Self-organized Learning Environments

    DEFF Research Database (Denmark)

    Dalsgaard, Christian; Mathiasen, Helle

    2007-01-01

    The purpose of the paper is to discuss the potentials of using a conference system in support of a project based university course. We use the concept of a self-organized learning environment to describe the shape of the course. In the paper we argue that educational technology, such as conference...... systems, has a potential to support students’ development of self-organized learning environments and facilitate self-governed activities in higher education. The paper is based on an empirical study of two project groups’ use of a conference system. The study showed that the students used the conference...... system actively. The two groups used the system in their own way to support their specific activities and ways of working. The paper concludes that self-organized learning environments can strengthen the development of students’ academic as well as social qualifications. Further, the paper identifies a...

  20. The Use of Self Organizing Map Method and Feature Selection in Image Database Classification System

    CERN Document Server

    Pratiwi, Dian

    2012-01-01

    This paper presents a technique in classifying the images into a number of classes or clusters desired by means of Self Organizing Map (SOM) Artificial Neural Network method. A number of 250 color images to be classified as previously done some processing, such as RGB to grayscale color conversion, color histogram, feature vector selection, and then classifying by the SOM Feature vector selection in this paper will use two methods, namely by PCA (Principal Component Analysis) and LSA (Latent Semantic Analysis) in which each of these methods would have taken the characteristic vector of 50, 100, and 150 from 256 initial feature vector into the process of color histogram. Then the selection will be processed into the SOM network to be classified into five classes using a learning rate of 0.5 and calculated accuracy. Classification of some of the test results showed that the highest percentage of accuracy obtained when using PCA and the selection of 100 feature vector that is equal to 88%, compared to when using...

  1. Evaluation of multilayer perceptron and self-organizing map neural network topologies applied on microstructure segmentation from metallographic images

    OpenAIRE

    de Albuquerque, Victor Hugo C.; Auzuir Ripardo de Alexandria; Paulo César Cortez; João Manuel R. S. Tavares

    2009-01-01

    Artificial neuronal networks have been used intensively in many domains to accomplish different computational tasks. One of these tasks is the segmentation of objects in images, like to segment microstructures from metallographic images, and for that goal several network topologies were proposed. This paper presents a comparative analysis between multilayer perceptron and selforganizing map topologies applied to segment microstructures from metallographic images. The multilayer perceptron neu...

  2. Stochastic Oscillation in Self-Organized Critical States of Small Systems: Sensitive Resting State in Neural Systems

    Science.gov (United States)

    Wang, Sheng-Jun; Ouyang, Guang; Guang, Jing; Zhang, Mingsha; Wong, K. Y. Michael; Zhou, Changsong

    2016-01-01

    Self-organized critical states (SOCs) and stochastic oscillations (SOs) are simultaneously observed in neural systems, which appears to be theoretically contradictory since SOCs are characterized by scale-free avalanche sizes but oscillations indicate typical scales. Here, we show that SOs can emerge in SOCs of small size systems due to temporal correlation between large avalanches at the finite-size cutoff, resulting from the accumulation-release process in SOCs. In contrast, the critical branching process without accumulation-release dynamics cannot exhibit oscillations. The reconciliation of SOCs and SOs is demonstrated both in the sandpile model and robustly in biologically plausible neuronal networks. The oscillations can be suppressed if external inputs eliminate the prominent slow accumulation process, providing a potential explanation of the widely studied Berger effect or event-related desynchronization in neural response. The features of neural oscillations and suppression are confirmed during task processing in monkey eye-movement experiments. Our results suggest that finite-size, columnar neural circuits may play an important role in generating neural oscillations around the critical states, potentially enabling functional advantages of both SOCs and oscillations for sensitive response to transient stimuli.

  3. Drift-or fluctuation-induced ordering and self-organization in driven many-particle systems

    International Nuclear Information System (INIS)

    According to empirical observations, some pattern formation phenomena in driven many-particle systems are more pronounced in the presence of a certain noise level. We investigate this phenomenon of fluctuation-driven ordering with a cellular-automaton model of interactive motion in space and find an optimal noise strength, while order breaks down at high(er) fluctuation levels. Additionally, we discuss the phenomenon of noise- and drift-induced self-organization in systems that would show disorder in the absence of fluctuations. In the future, related studies may have applications to the control of many-particle systems such as the efficient separation of particles. The rather general formulation of our model in the spirit of game theory may allow to shed some light on several different kinds of noise-induced ordering phenomena observed in physical, chemical, biological, and socio-economic systems (e.g., attractive and repulsive agglomeration, or segregation). (authors)

  4. Fractal-cluster theory and thermodynamic principles of the control and analysis for the self-organizing systems

    CERN Document Server

    Volov, V T

    2013-01-01

    The theory of resource distribution in self-organizing systems on the basis of the fractal-cluster method has been presented. This theory consists of two parts: determined and probable. The first part includes the static and dynamic criteria, the fractal-cluster dynamic equations which are based on the fractal-cluster correlations and Fibonacci's range characteristics. The second part of the one includes the foundations of the probable characteristics of the fractal-cluster system. This part includes the dynamic equations of the probable evolution of these systems. By using the numerical researches of these equations for the stationary case the random state field of the one in the phase space of the $D$, $H$, $F$ criteria have been obtained. For the socio-economical and biological systems this theory has been tested.

  5. An architectural approach to create self organizing control systems for practical autonomous robots

    Science.gov (United States)

    Greiner, Helen

    1991-01-01

    For practical industrial applications, the development of trainable robots is an important and immediate objective. Therefore, the developing of flexible intelligence directly applicable to training is emphasized. It is generally agreed upon by the AI community that the fusion of expert systems, neural networks, and conventionally programmed modules (e.g., a trajectory generator) is promising in the quest for autonomous robotic intelligence. Autonomous robot development is hindered by integration and architectural problems. Some obstacles towards the construction of more general robot control systems are as follows: (1) Growth problem; (2) Software generation; (3) Interaction with environment; (4) Reliability; and (5) Resource limitation. Neural networks can be successfully applied to some of these problems. However, current implementations of neural networks are hampered by the resource limitation problem and must be trained extensively to produce computationally accurate output. A generalization of conventional neural nets is proposed, and an architecture is offered in an attempt to address the above problems.

  6. Self-organization through random input by biological and machine systems - the pre-cognition sub-system

    International Nuclear Information System (INIS)

    We give an axiomatic prescription for self-organization in the brain and in intelligent machines through random input of data. This self-organization leads to the formation of pre-cognition long term memory (LTM) subsystem. By using the notions of p-equivalent and its negation instead of true and false in the predicate calculus and pre-cognition LTM, a method is proposed for pattern recognition which can also be utilized for studying relations between the genetic code and the observed properties of respective species. (author)

  7. Effect of Applied Potential on the Formation of Self-Organized TiO2 Nanotube Arrays and Its Photoelectrochemical Response

    Directory of Open Access Journals (Sweden)

    Chin Wei Lai

    2011-01-01

    Full Text Available Self-organized TiO2 nanotube arrays have been fabricated by anodization of Ti foil in an electrochemical bath consisting of 1 M of glycerol with 0.5 wt% of NH4F. The effects of applied potential on the resulting nanotubes were illustrated. Among all of the applied potentials, 30 V resulted in the highest uniformity and aspect ratio TiO2 nanotube arrays with the tube's length approximately 1 μm and pore's size of 85 nm. TiO2 nanotube arrays were amorphous in as-anodized condition. The anatase phase was observed after annealing at 400∘C in air atmosphere. The effect of crystallization and effective surface area of TiO2 nanotube arrays in connection with the photoelectrochemical response was reported. Photoelectrochemical response under illumination was enhanced by using the annealed TiO2 nanotube arrays which have larger effective surface area to promote more photoinduced electrons.

  8. Development and Evaluation of Sensor Concepts for Ageless Aerospace Vehicles: Report 6 - Development and Demonstration of a Self-Organizing Diagnostic System for Structural Health Monitoring

    Science.gov (United States)

    Batten, Adam; Edwards, Graeme; Gerasimov, Vadim; Hoschke, Nigel; Isaacs, Peter; Lewis, Chris; Moore, Richard; Oppolzer, Florien; Price, Don; Prokopenko, Mikhail; Scott, Andrew; Wang, Peter

    2010-01-01

    This report describes a significant advance in the capability of the CSIRO/NASA structural health monitoring Concept Demonstrator (CD). The main thrust of the work has been the development of a mobile robotic agent, and the hardware and software modifications and developments required to enable the demonstrator to operate as a single, self-organizing, multi-agent system. This single-robot system is seen as the forerunner of a system in which larger numbers of small robots perform inspection and repair tasks cooperatively, by self-organization. While the goal of demonstrating self-organized damage diagnosis was not fully achieved in the time available, much of the work required for the final element that enables the robot to point the video camera and transmit an image has been completed. A demonstration video of the CD and robotic systems operating will be made and forwarded to NASA.

  9. Controlling self-organizing dynamics on networks using models that self-organize.

    Science.gov (United States)

    Noël, Pierre-André; Brummitt, Charles D; D'Souza, Raissa M

    2013-08-16

    Controlling self-organizing systems is challenging because the system responds to the controller. Here, we develop a model that captures the essential self-organizing mechanisms of Bak-Tang-Wiesenfeld (BTW) sandpiles on networks, a self-organized critical (SOC) system. This model enables studying a simple control scheme that determines the frequency of cascades and that shapes systemic risk. We show that optimal strategies exist for generic cost functions and that controlling a subcritical system may drive it to criticality. This approach could enable controlling other self-organizing systems. PMID:23992086

  10. Intelligent surveillance system based on the self-organized feature mapping and RGB color plane threshold approach

    International Nuclear Information System (INIS)

    After about 10 years of technology development and closer international cooperation with the US, AECL and the IAEA, DUPIC project has come to the point where hot material was introduced in the DUPIC process and has been in normal use. DUPIC safeguards program has been conducted to support DUPIC fuel development study from the earliest stage of the research. The major safeguards technology involved here is to design and fabricate a neutron coincidence counting system for process accountability, and also an unattended continuous surveillance system. Unattended continuous surveillance systems result in large amounts of data, which require much time and effort to inspect. Therefore, it is necessary to develop software that automatically pinpoints and diagnoses the anomalies from the data. In this regard, this paper presents a novel concept of a continuous surveillance system that integrates visual surveillance and NDA data by the use of a neural networks based on the self-organized feature mapping. The integral part of the multi-sensory system and analytical paradigm may provide an effective technological alternative for safeguarding of high-level radioactive material handling facilities

  11. Systems biology beyond networks: generating order from disorder through self-organization

    OpenAIRE

    Saetzler, K.; Sonnenschein, C; Soto, A. M.

    2011-01-01

    Erwin Schrödinger pointed out in his 1944 book “What is Life” that one defining attribute of biological systems seems to be their tendency to generate order from disorder defying the second law of thermodynamics. Almost parallel to his findings, the science of complex systems was founded based on observations on physical and chemical systems showing that inanimate matter can exhibit complex structures although their interacting parts follow simple rules. This is explained by a process known a...

  12. A self organized holonic control for mechatronics complex systems: application to a robotized car park

    OpenAIRE

    Pujo, Patrick; Ounnar, Fouzia; Zanni, Cécilia

    2006-01-01

    International audience In this paper, we describe the two conditions so that a complex system, composed of several mechatronics machines, may be qualified as a mechatronics system. The first condition reflects the aptitude of these machines to work together without the intervention of a central decision system of higher hierarchical level. The second reflects their aptitude to manage their own behavior and to generate the tasks to be carried out in the context of their execution. A self or...

  13. Independent component analysis (ICA) and self-organizing map (SOM) approach to multidetection system for network intruders

    Science.gov (United States)

    Abdi, Abdi M.; Szu, Harold H.

    2003-04-01

    With the growing rate of interconnection among computer systems, network security is becoming a real challenge. Intrusion Detection System (IDS) is designed to protect the availability, confidentiality and integrity of critical network information systems. Today"s approach to network intrusion detection involves the use of rule-based expert systems to identify an indication of known attack or anomalies. However, these techniques are less successful in identifying today"s attacks. Hackers are perpetually inventing new and previously unanticipated techniques to compromise information infrastructure. This paper proposes a dynamic way of detecting network intruders on time serious data. The proposed approach consists of a two-step process. Firstly, obtaining an efficient multi-user detection method, employing the recently introduced complexity minimization approach as a generalization of a standard ICA. Secondly, we identified unsupervised learning neural network architecture based on Kohonen"s Self-Organizing Map for potential functional clustering. These two steps working together adaptively will provide a pseudo-real time novelty detection attribute to supplement the current intrusion detection statistical methodology.

  14. A real-time monitoring system of core support barrel vibration using FEM data and self-organizing neural networks

    International Nuclear Information System (INIS)

    In this work a core internal vibration monitoring system which is particularly concerned with the core support barrel (CSB) in ULJIN nuclear power plant unit 1 in Korea is developed. Flow induced vibration and aging processes in the reactor internals cause unsoundness of the internal structure. In particular, the loose-joined flange between the top of the CSB and the head of the vessel may result in core or fuel damage accidents. In order to improve the accuracy of the conventional CSB monitoring system, signals from the piezoelectric accelerometers are used in this work instead of those from the ex-core neutron detectors. This work consists of three parts: one is the development of a suitable tool for detecting the hold down spring broken accident or wearing out of the CSB using the Fuzzy ARTMAP (self-organizing neural network) technique; another is the generation of vibration signals to represent the abnormal states of the CSB by finite element method (FEM) analysis and mock-up experiments; the third is the development of a graphical man-machine interface for the practical use of the monitoring system. (orig.)

  15. Anomalously slow relaxation of the system of strongly interacting liquid clusters in a disordered nanoporous medium: Self-organized criticality

    Science.gov (United States)

    Borman, V. D.; Tronin, V. N.

    2016-09-01

    It has been shown that changes in the energy of a system of nonwetting liquid clusters confined in a random nanoporous medium in the process of relaxation can be written in the quasiparticle approximation in the form of the sum of the energies of local (metastable) configurations of liquid clusters interacting with clusters in the connected nearest pores. The energy spectrum and density of states of the local configuration have been calculated. It has been shown that the relaxation of the state of the system occurs through the scenario of self-organized criticality (SOC). The process is characterized by the expectation of a fluctuation necessary for overcoming a local energy barrier of the metastable state with the subsequent rapid hydrodynamic extrusion of the liquid under the action of the surface buoyancy forces of the nonwetting framework. In this case, the dependence of the interaction between local configurations on the number of filled pores belonging to the infinite percolation cluster of filled pores serves as an internal feedback initiating the SOC process. The calculations give a power-law time dependence of the relative volume of the confined liquid θ ∼t-α(α ∼ 0.1) . The developed model of the relaxation of the porous medium with the nonwetting liquid demonstrates possible mechanisms and scenarios of SOC for disordered atomic systems.

  16. A Novel Real-Time Coal Miner Localization and Tracking System Based on Self-Organized Sensor Networks

    Directory of Open Access Journals (Sweden)

    Wang Yang

    2010-01-01

    Full Text Available With the development of information technology, we envision that the key of improving coal mine safety is how to get real-time positions of miners. In this paper, we propose a prototype system for real-time coal miner localization and tracking based on self-organized sensor networks. The system is composed of hardware and software platform. We develop a set of localization hardware devices with the Safety Certificate of Approval for Mining Products include miner node, wired fixed access station, and base with optical port. On the software side, we develop a layered software architecture of node application, server management, and information dissemination and broadcasting. We also develop three key localization technologies: an underground localization algorithm using received signal strength indication- (RSSI- verifying algorithm to reduce the influence of the severe environment in a coal mine; a robust fault-tolerant localization mechanism to improve the inherent defect of instability of RSSI localization; an accurate localization algorithm based on Monte Carlo localization (MCL to adapt to the underground tunnel structure. In addition, we conduct an experimental evaluation based on a real prototype implementation using MICA2 motes. The results show that our system is more accurate and more adaptive in general than traditional localization algorithms.

  17. Self-organized criticality as a fundamental property of neural systems

    OpenAIRE

    Hesse, Janina; Gross, Thilo

    2014-01-01

    The neural criticality hypothesis states that the brain may be poised in a critical state at a boundary between different types of dynamics. Theoretical and experimental studies show that critical systems often exhibit optimal computational properties, suggesting the possibility that criticality has been evolutionarily selected as a useful trait for our nervous system. Evidence for criticality has been found in cell cultures, brain slices, and anesthetized animals. Yet, inconsistent results w...

  18. ANTIDS: Self-Organized Ant-based Clustering Model for Intrusion Detection System

    OpenAIRE

    Ramos, Vitorino; Abraham, Ajith

    2004-01-01

    Security of computers and the networks that connect them is increasingly becoming of great significance. Computer security is defined as the protection of computing systems against threats to confidentiality, integrity, and availability. There are two types of intruders: the external intruders who are unauthorized users of the machines they attack, and internal intruders, who have permission to access the system with some restrictions. Due to the fact that it is more and more improbable to a ...

  19. Parallelization of analyses using self-organizing maps with PVM

    Science.gov (United States)

    Lange, J. S.; Schönmeier, P.; Freiesleben, H.

    1997-02-01

    An analysis task applying self-organizing maps of the Kohonen type was parallelized using (a) ksh shell scripts and (b) the message parsing system PVM 3.1. The parallelization was performed on an IBM RS/6000 workstation cluster using ethernet as well as FDDi network adapters.

  20. Information and self-organization a macroscopic approach to complex systems

    CERN Document Server

    Haken, Hermann

    1988-01-01

    Complex systems are ubiquitous, and practically all branches of science ranging from physics through chemistry and biology to economics and sociology have to deal with them. In this book we wish to present concepts and methods for dealing with complex systems from a unifying point of view. Therefore it may be of inter­ est to graduate students, professors and research workers who are concerned with theoretical work in the above-mentioned fields. The basic idea for our unified ap­ proach sterns from that of synergetics. In order to find unifying principles we shall focus our attention on those situations where a complex system changes its macroscopic behavior qualitatively, or in other words, where it changes its macroscopic spatial, temporal or functional structure. Until now, the theory of synergetics has usually begun with a microscopic or mesoscopic description of a complex system. In this book we present an approach which starts out from macroscopic data. In particular we shall treat systems that acquir...

  1. Monitoring of Thermal Protection Systems Using Robust Self-Organizing Optical Fiber Sensing Networks

    Science.gov (United States)

    Richards, Lance

    2013-01-01

    The general aim of this work is to develop and demonstrate a prototype structural health monitoring system for thermal protection systems that incorporates piezoelectric acoustic emission (AE) sensors to detect the occurrence and location of damaging impacts, and an optical fiber Bragg grating (FBG) sensor network to evaluate the effect of detected damage on the thermal conductivity of the TPS material. Following detection of an impact, the TPS would be exposed to a heat source, possibly the sun, and the temperature distribution on the inner surface in the vicinity of the impact measured by the FBG network. A similar procedure could also be carried out as a screening test immediately prior to re-entry. The implications of any detected anomalies in the measured temperature distribution will be evaluated for their significance in relation to the performance of the TPS during re-entry. Such a robust TPS health monitoring system would ensure overall crew safety throughout the mission, especially during reentry

  2. Effects of Random Environment on a Self-Organized Critical System: Renormalization Group Analysis of a Continuous Model

    Science.gov (United States)

    Antonov, N. V.; Kakin, P. I.

    2016-02-01

    We study effects of the random fluid motion on a system in a self-organized critical state. The latter is described by the continuous stochastic model proposed by Hwa and Kardar [Phys. Rev. Lett. 62: 1813 (1989)]. The advecting velocity field is Gaussian, not correlated in time, with the pair correlation function of the form ∝ δ(t - t')/k⊥d-1+ξ , where k⊥ = |k⊥| and k⊥ is the component of the wave vector, perpendicular to a certain preferred direction - the d-dimensional generalization of the ensemble introduced by Avellaneda and Majda [Commun. Math. Phys. 131: 381 (1990)]. Using the field theoretic renormalization group we show that, depending on the relation between the exponent ξ and the spatial dimension d, the system reveals different types of large-scale, long-time scaling behaviour, associated with the three possible fixed points of the renormalization group equations. They correspond to ordinary diffusion, to passively advected scalar field (the nonlinearity of the Hwa-Kardar model is irrelevant) and to the "pure" Hwa-Kardar model (the advection is irrelevant). For the special case ξ = 2(4 - d)/3 both the nonlinearity and the advection are important. The corresponding critical exponents are found exactly for all these cases.

  3. Self-organized criticality as a fundamental property of neural systems.

    Science.gov (United States)

    Hesse, Janina; Gross, Thilo

    2014-01-01

    The neural criticality hypothesis states that the brain may be poised in a critical state at a boundary between different types of dynamics. Theoretical and experimental studies show that critical systems often exhibit optimal computational properties, suggesting the possibility that criticality has been evolutionarily selected as a useful trait for our nervous system. Evidence for criticality has been found in cell cultures, brain slices, and anesthetized animals. Yet, inconsistent results were reported for recordings in awake animals and humans, and current results point to open questions about the exact nature and mechanism of criticality, as well as its functional role. Therefore, the criticality hypothesis has remained a controversial proposition. Here, we provide an account of the mathematical and physical foundations of criticality. In the light of this conceptual framework, we then review and discuss recent experimental studies with the aim of identifying important next steps to be taken and connections to other fields that should be explored. PMID:25294989

  4. Self-organized criticality as a fundamental property of neural systems

    Directory of Open Access Journals (Sweden)

    Janina Hesse

    2014-09-01

    Full Text Available The neural criticality hypothesis states that the brain may be poised in a critical state at a boundary between different types of dynamics. Theoretical and experimental studies show that critical systems often exhibit optimal computational properties, suggesting the possibility that criticality has been evolutionarily selected as a useful trait for our nervous system. Evidence for criticality has been found in cell cultures, brain slices, and anesthetized animals. Yet, inconsistent results were reported for recordings in awake animals and humans, and current results point to open questions about the exact nature and mechanism of criticality, as well as its functional role. Therefore, the criticality hypothesis has remained a controversial proposition. Here, we provide an account of the mathematical and physical foundations of criticality. In the light of this conceptual framework, we then review and discuss recent experimental studies with the aim of identifying important next steps to be taken and connections to other fields that should be explored.

  5. Monitoring of Thermal Protection Systems and MMOD using Robust Self-Organizing Optical Fiber Sensing Networks

    Science.gov (United States)

    Richards, Lance

    2014-01-01

    The general aim of this work is to develop and demonstrate a prototype structural health monitoring system for thermal protection systems that incorporates piezoelectric acoustic emission (AE) sensors to detect the occurrence and location of damaging impacts, such as those from Micrometeoroid Orbital Debris (MMOD). The approach uses an optical fiber Bragg grating (FBG) sensor network to evaluate the effect of detected damage on the thermal conductivity of the TPS material. Following detection of an impact, the TPS would be exposed to a heat source, possibly the sun, and the temperature distribution on the inner surface in the vicinity of the impact measured by the FBG network. A similar procedure could also be carried out as a screening test immediately prior to re-entry. The implications of any detected anomalies in the measured temperature distribution will be evaluated for their significance in relation to the performance of the TPS during reentry. Such a robust TPS health monitoring system would ensure overall crew safety throughout the mission, especially during reentry.

  6. Self-organization principles result in robust control of flexible manufacturing systems

    DEFF Research Database (Denmark)

    problems with several autonomous robots and several targets are considered as model of flexible manufacturing systems. Each manufacturing target has to be served in a given time interval by one and only one robot and the total working costs have to be minimized (or total winnings maximized). A specifically...... adapting pattern formation principles to these problems either no feasibility is guaranteed or only unrealistic toy problems like one-step problems, i.e. no sequences of tasks, are treated. These limitations are overcome in the present work where sequential manufacturing tasks in logical order are fully...

  7. Autonomous agents and multi-agent systems explorations in learning, self-organization and adaptive computation

    CERN Document Server

    Liu, Jiming

    2001-01-01

    An autonomous agent is a computational system that acquires sensory data from its environment and decides by itself how to relate the external stimulus to its behaviors in order to attain certain goals. Responding to different stimuli received from its task environment, the agent may select and exhibit different behavioral patterns. The behavioral patterns may be carefully predefined or dynamically acquired by the agent based on some learning and adaptation mechanism(s). In order to achieve structural flexibility, reliability through redundancy, adaptability, and reconfigurability in real-worl

  8. Electrochemical studies of redox probes in self-organized lyotropic liquid crystalline systems

    Indian Academy of Sciences (India)

    P Suresh Kumar; V Lakshminarayanan

    2009-09-01

    Lyotropic liquid crystalline phases formed by surfactants are of special importance due to their close resemblance to biological systems. The redox reactions in such ordered media are of fundamental interest in understanding several complex processes occurring in the biological media, where the former can act as model systems. In this work, we have carried out the redox reactions of benzoquinone| hydroquinone, methyl viologen and ferrocenemethanol probes in a lyotropic hexagonal columnar phase (H1 phase) using cyclic voltammetry and electrochemical impedance spectroscopic studies. The liquid crystalline phase we have studied is made up of the non-ionic surfactant, Triton X-100 and water. Polarizing optical microscopic examination confirmed that the columnar hexagonal phase is retained even after the addition of redox probe as well as the supporting electrolyte. Our studies show a significant shift in the half-peak potentials of the redox probes in the H1 phase as compared to the solvent phase. The diffusion coefficient values for different redox probes in the H1 phase were also found to be significantly reduced when compared to the corresponding solvent media.

  9. Biologically-inspired approaches for self-organization, adaptation, and collaboration of heterogeneous autonomous systems

    Science.gov (United States)

    Steinberg, Marc

    2011-06-01

    This paper presents a selective survey of theoretical and experimental progress in the development of biologicallyinspired approaches for complex surveillance and reconnaissance problems with multiple, heterogeneous autonomous systems. The focus is on approaches that may address ISR problems that can quickly become mathematically intractable or otherwise impractical to implement using traditional optimization techniques as the size and complexity of the problem is increased. These problems require dealing with complex spatiotemporal objectives and constraints at a variety of levels from motion planning to task allocation. There is also a need to ensure solutions are reliable and robust to uncertainty and communications limitations. First, the paper will provide a short introduction to the current state of relevant biological research as relates to collective animal behavior. Second, the paper will describe research on largely decentralized, reactive, or swarm approaches that have been inspired by biological phenomena such as schools of fish, flocks of birds, ant colonies, and insect swarms. Next, the paper will discuss approaches towards more complex organizational and cooperative mechanisms in team and coalition behaviors in order to provide mission coverage of large, complex areas. Relevant team behavior may be derived from recent advances in understanding of the social and cooperative behaviors used for collaboration by tens of animals with higher-level cognitive abilities such as mammals and birds. Finally, the paper will briefly discuss challenges involved in user interaction with these types of systems.

  10. Selforganizology: A science that deals with self-organization

    OpenAIRE

    WenJun Zhang

    2013-01-01

    Self-organization is a universe mechanism in nature. In a self-organizing system, the system evolves spontaneously to form an order structure based on some compatible rules. Without external instructions and forces, the self-organizing system arises only from the interactions between the basic components of the system. Although numerous theories and methods were established to describe self-organization, there are still many problems in this area. We still lack of unified theories and thought...

  11. The sensorimotor loop as a dynamical system: How regular motion primitives may emerge from self-organized limit cycles

    CERN Document Server

    Sándor, Bulcsú; Martin, Laura; Gros, Claudius

    2016-01-01

    We investigate the sensorimotor loop of simple robots simulated within the LPZRobots environment from the point of view of dynamical systems theory. For a robot with a cylindrical shaped body and an actuator controlled by a single proprioceptual neuron we find various types of periodic motions in terms of stable limit cycles. These are self-organized in the sense, that the dynamics of the actuator kicks in only, for a certain range of parameters, when the barrel is already rolling, stopping otherwise. The stability of the resulting rolling motions terminates generally, as a function of the control parameters, at points where fold bifurcations of limit cycles occur. We find that several branches of motion types exist for the same parameters, in terms of the relative frequencies of the barrel and of the actuator, having each their respective basins of attractions in terms of initial conditions. For low drivings stable limit cycles describing periodic and drifting back-and-forth motions are found additionally. T...

  12. Use of an Evolutionary Inductive Self-organizing Network for Uncertain Nonlinear and Robotic Systems

    Directory of Open Access Journals (Sweden)

    Dong W. Kim

    2012-10-01

    Full Text Available We discuss a new design methodology for an inductive self‐organizing network using an evolutionary algorithm and its practical applications. The inductive self‐organizing network centres on the idea of a group method for data handling. The performances of this network depend strongly on the number of input variables available to the model and the number of input variables and type (order of the polynomials to each node. They must be fixed by the designer in advance before the architecture is constructed. So the trial and error method must be used with its heavy computation burden and low efficiency. Moreover it does not guarantee that the obtained model is the best one. In this paper, we propose an evolutionary inductive self‐organizing network to alleviate these problems. The order of the polynomial, the number of input variables and the optimum input variables are encoded as a chromosome and the fitness of each chromosome is computed. So the appropriate information for each node is evolved accordingly and tuned gradually throughout the genetic iterations. We can show that the proposed model is a sophisticated and versatile architecture which can construct models for limited data sets, as well as heavy complex robotic systems.

  13. Self-Organizing Tunnel Peers

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Tunneling is an important approach in IPv6 transition techniques. The tunnel broker model provides a way to build virtual IPv6 networks without manual configuration.However, neither it adapts performance variation on the IPv4 infrastructure,nor it is a scalable solution for a wide-area IPv6 networking environment. In this paper, a self-organizing tunnel peer (SOTP)model is presented. Tunnel peers are clustered in the SOTP system so that optimization is scalable. Four primitive operations related to cluster construction - arrest,release,division and death - endow the system with the nature of self-organization.Occurrence and behavior of the operations are decided by criteria on the IPv4 end-to-end performance; hence measurement is an indispensable component of the system. The metabolism of cluster relaxes the requirement to accuracy of measurement and optimization.

  14. Measuring the Complexity of Self-organizing Traffic Lights

    CERN Document Server

    Zubillaga, Dario; Aguilar, Luis Daniel; Zapotecatl, Jorge; Fernandez, Nelson; Aguilar, Jose; Rosenblueth, David A; Gershenson, Carlos

    2014-01-01

    We apply measures of complexity, emergence and self-organization to an abstract city traffic model for comparing a traditional traffic coordination method with a self-organizing method in two scenarios: cyclic boundaries and non-orientable boundaries. We show that the measures are useful to identify and characterize different dynamical phases. It becomes clear that different operation regimes are required for different traffic demands. Thus, not only traffic is a non-stationary problem, which requires controllers to adapt constantly. Controllers must also change drastically the complexity of their behavior depending on the demand. Based on our measures, we can say that the self-organizing method achieves an adaptability level comparable to a living system.

  15. Measuring the Complexity of Self-Organizing Traffic Lights

    Directory of Open Access Journals (Sweden)

    Darío Zubillaga

    2014-04-01

    Full Text Available We apply measures of complexity, emergence, and self-organization to an urban traffic model for comparing a traditional traffic-light coordination method with a self-organizing method in two scenarios: cyclic boundaries and non-orientable boundaries. We show that the measures are useful to identify and characterize different dynamical phases. It becomes clear that different operation regimes are required for different traffic demands. Thus, not only is traffic a non-stationary problem, requiring controllers to adapt constantly; controllers must also change drastically the complexity of their behavior depending on the demand. Based on our measures and extending Ashby’s law of requisite variety, we can say that the self-organizing method achieves an adaptability level comparable to that of a living system.

  16. Functional aspects of the EGF-induced MAP kinase cascade: a complex self-organizing system approach.

    Science.gov (United States)

    Kosmidis, Efstratios K; Moschou, Vasiliki; Ziogas, Georgios; Boukovinas, Ioannis; Albani, Maria; Laskaris, Nikolaos A

    2014-01-01

    The EGF-induced MAP kinase cascade is one of the most important and best characterized networks in intracellular signalling. It has a vital role in the development and maturation of living organisms. However, when deregulated, it is involved in the onset of a number of diseases. Based on a computational model describing a "surface" and an "internalized" parallel route, we use systems biology techniques to characterize aspects of the network's functional organization. We examine the re-organization of protein groups from low to high external stimulation, define functional groups of proteins within the network, determine the parameter best encoding for input intensity and predict the effect of protein removal to the system's output response. Extensive functional re-organization of proteins is observed in the lower end of stimulus concentrations. As we move to higher concentrations the variability is less pronounced. 6 functional groups have emerged from a consensus clustering approach, reflecting different dynamical aspects of the network. Mutual information investigation revealed that the maximum activation rate of the two output proteins best encodes for stimulus intensity. Removal of each protein of the network resulted in a range of graded effects, from complete silencing to intense activation. Our results provide a new "vista" of the EGF-induced MAP kinase cascade, from the perspective of complex self-organizing systems. Functional grouping of the proteins reveals an organizational scheme contrasting the current understanding of modular topology. The six identified groups may provide the means to experimentally follow the dynamics of this complex network. Also, the vulnerability analysis approach may be used for the development of novel therapeutic targets in the context of personalized medicine. PMID:25372488

  17. Towards Self-organizing Bureaucracies

    OpenAIRE

    Gershenson, Carlos

    2006-01-01

    This paper proposes self-organization as a method to improve the efficiency and adaptability of bureaucracies and similar social systems. Bureaucracies are described as networks of agents, where the main design principle is to reduce local "friction" to increase local and global "satisfaction". Following this principle, solutions are proposed for improving communication within bureaucracies, sensing public satisfaction, dynamic modification of hierarchies, and contextualization of procedures....

  18. SoS: self-organizing substrates

    OpenAIRE

    Datta, Anwitaman; Aberer, Karl

    2007-01-01

    Large-scale networked systems often, both by design or chance exhibit self-organizing properties. Understanding self-organization using tools from cybernetics, particularly modeling them as Markov processes is a first step towards a formal framework which can be used in (decentralized) systems research and design.Interesting aspects to look for include the time evolution of a system and to investigate if and when a system converges to some absorbing states or stabilizes into a dynamic (and st...

  19. A spiking neural network model of self-organized pattern recognition in the early mammalian olfactory system

    Directory of Open Access Journals (Sweden)

    Bernhard A. Kaplan

    2014-02-01

    Full Text Available Olfactory sensory information passes through several processing stages before an odor percept emerges. The question how the olfactory system learns to create odor representations linking those different levels and how it learns to connect and discriminate between them is largely unresolved. We present a large-scale network model with single and multi-compartmental Hodgkin-Huxley type model neurons representing olfactory receptor neurons (ORNs in the epithelium, periglomerular cells, mitral/tufted cells and granule cells in the olfactory bulb (OB, and three types of cortical cells in the piriform cortex (PC. Odor patterns are calculated based on affinities between ORNs and odor stimuli derived from physico-chemical descriptors of behaviorally relevant real-world odorants. The properties of ORNs were tuned to show saturated response curves with increasing concentration as seen in experiments. On the level of the OB we explored the possibility to use a fuzzy concentration interval code, which was implemented through dendro-dendritic inhibition leading to winner-take-all like dynamics between mitral/tufted cells belonging to the same glomerulus. The connectivity from mitral/tuftedcells to PC neurons was self-organized from a mutual information measure and by using a competitive Hebbian-Bayesian learning algorithm based on the response patterns of mitral/tufted cells to different odors yielding a distributed feed-forward projection to the PC. The PC was implemented as a modular attractor network with a recurrent connectivity that was likewiseorganized through Hebbian-Bayesian learning. We demonstrate the functionality of the model in a one-sniff-learning and recognition task on a set of 50 odorants. Furthermore, we study its robustness against noise on the receptor level and its ability to perform concentration invariant odor recognition. Moreover, we investigate the pattern completion capabilities of the system and rivalry dynamics for odor mixtures.

  20. Towards a theory of self-organization

    OpenAIRE

    Anceaume, Emmanuelle; Defago, Xavier; Gradinariu, Maria; Roy, Matthieu

    2006-01-01

    This paper aims at providing a rigorous definition of self-organization, one of the most desired properties for dynamic systems, such as peer-to-peer systems, sensor networks, cooperative robotics, or ad-hoc networks. We propose a framework in order to prove the self-organization of dynamic systems with respect to generic criteria (e.g., similarity, load balancing, geographical neighborhood, battery level) that can be composed in order to construct more complex criteria. We illustrate our the...

  1. Analyzing the Effectiveness of the Self-organized Public-Key Management System on MANETs under the Lack of Cooperation and the Impersonation Attacks

    Science.gov (United States)

    da Silva, Eduardo; Dos Santos, Aldri Luiz; Lima, Michele N.; Albini, Luiz Carlos Pessoa

    Among the key management schemes for MANETs, the Self-Organized Public-Key Management System (PGP-Like) is the main chaining-based key management scheme. It is fully self-organized and does not require any certificate authority. Two kinds of misbehavior attacks are considered to be great threats to PGP-Like: lack of cooperation and impersonation attacks. This work quantifies the impact of such attacks on the PGP-Like. Simulation results show that PGP-Like was able to maintain its effectiveness when submitted to the lack of cooperation attack, contradicting previously theoretical results. It correctly works even in the presence of more than 60% of misbehaving nodes, although the convergence time is affected with only 20% of misbehaving nodes. On the other hand, PGP-Like is completely vulnerable to the impersonation attack. Its functionality is affected with just 5% of misbehaving nodes, confirming previously theoretical results.

  2. Sandpile Models of Self-Organized Criticality

    OpenAIRE

    S. S. Manna

    1999-01-01

    Self-Organized Criticality is the emergence of long-ranged spatio-temporal correlations in non-equilibrium steady states of slowly driven systems without fine tuning of any control parameter. Sandpiles were proposed as prototypical examples of self-organized criticality. However, only some of the laboratory experiments looking for the evidence of criticality in sandpiles have reported a positive outcome. On the other hand a large number of theoretical models have been constructed that do show...

  3. Proof of non-invariance of magnetic helicity in ideal plasmas and a general theory of self-organization for open and dissipative dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Kondoh, Yoshiomi; Takahashi, Toshiki [Gunma Univ., Dept. of Electronic Engineering, Kiryu, Gunma (Japan); Dam, James W. Van [The Univ. of Texas at Austin, Inst. for Fusion Studies, Austin, Texas (United States)

    2002-04-01

    It is proved that the magnetic helicity is not invariant, even in an ideal plasma. A novel general theory is presented in which a variety of self-organized states in open and dissipative dynamical systems with various fluctuations can be found. This theory is based on the principle that the self-organized states must be those states for which the rate of change of global auto correlations for multiple dynamical field quantities, which depend on multidimensional mutually independent variables, is minimized. One of the important points of this theory is that the original generalized dynamic equations are embedded in the final equivalent definition for the self-organized states, and therefore the equations deduced from the final equivalent definition include all the time evolution characteristics of the dynamical system of interest. Since states derived from the Euler-Lagrange equations with the use of variational calculus have minimal rates of change of the global autocorrelations, they are most stable and unchangeable compared with other states. (author)

  4. Self-organizing networks

    DEFF Research Database (Denmark)

    Marchetti, Nicola; Prasad, Neeli R.; Johansson, Johan;

    2010-01-01

    In this paper, a general overview of Self-Organizing Networks (SON), and the rationale and state-of-the-art of wireless SON are first presented. The technical and business requirements are then briefly treated, and the research challenges within the field of SON are highlighted. Thereafter......, the relation between SON and Cognitive Networks (CN) is covered. At last, the application of Algorithmic Information Theory (AIT) as a possible theoretical tool to support SON in addressing the growing complexity of networks is discussed....

  5. Self-organization in irregular landscapes: Detecting autogenic interactions from field data using descriptive statistics and dynamical systems theory

    Science.gov (United States)

    Larsen, L.; Watts, D.; Khurana, A.; Anderson, J. L.; Xu, C.; Merritts, D. J.

    2015-12-01

    The classic signal of self-organization in nature is pattern formation. However, the interactions and feedbacks that organize depositional landscapes do not always result in regular or fractal patterns. How might we detect their existence and effects in these "irregular" landscapes? Emergent landscapes such as newly forming deltaic marshes or some restoration sites provide opportunities to study the autogenic processes that organize landscapes and their physical signatures. Here we describe a quest to understand autogenic vs. allogenic controls on landscape evolution in Big Spring Run, PA, a landscape undergoing restoration from bare-soil conditions to a target wet meadow landscape. The contemporary motivation for asking questions about autogenic vs. allogenic controls is to evaluate how important initial conditions or environmental controls may be for the attainment of management objectives. However, these questions can also inform interpretation of the sedimentary record by enabling researchers to separate signals that may have arisen through self-organization processes from those resulting from environmental perturbations. Over three years at Big Spring Run, we mapped the dynamic evolution of floodplain vegetation communities and distributions of abiotic variables and topography. We used principal component analysis and transition probability analysis to detect associative interactions between vegetation and geomorphic variables and convergent cross-mapping on lidar data to detect causal interactions between biomass and topography. Exploratory statistics revealed that plant communities with distinct morphologies exerted control on landscape evolution through stress divergence (i.e., channel initiation) and promoting the accumulation of fine sediment in channels. Together, these communities participated in a negative feedback that maintains low energy and multiple channels. Because of the spatially explicit nature of this feedback, causal interactions could not

  6. Patterns of the loop current system and regions of sea surface height variability in the eastern Gulf of Mexico revealed by the self-organizing maps

    Science.gov (United States)

    Liu, Yonggang; Weisberg, Robert H.; Vignudelli, Stefano; Mitchum, Gary T.

    2016-04-01

    The Self-Organizing Map (SOM), an unsupervised learning neural network, is employed to extract patterns evinced by the Loop Current (LC) system and to identify regions of sea surface height (SSH) variability in the eastern Gulf of Mexico (GoM) from 23 years (1993-2015) of altimetry data. Spatial patterns are characterized as different LC extensions and different stages in the process of LC eddy shedding. The temporal evolutions and the frequency of occurrences of these patterns are obtained, and the typical trajectories of the LC system progression on the SOM grid are investigated. For an elongated, northwest-extended, or west-positioned LC, it is common for the LC anticyclonic eddy (LCE) to separate and propagate into the western GoM, while an initially separated LCE in close proximity to the west Florida continental slope often reattaches to the LC and develops into an elongated LC, or reduces intensity locally before moving westward as a smaller eddy. Regions of differing SSH variations are also identified using the joint SOM-wavelet analysis. Along the general axis of the LC, SSH exhibits strong variability on time scales of 3 months to 2 years, also with energetic intraseasonal variations, which is consistent with the joint Empirical Orthogonal Function (EOF)-wavelet analysis. In the more peripheral regions, the SSH has a dominant seasonal variation that also projects across the coastal ocean. The SOM, when applied to both space and time domains of the same data, provides a powerful tool for diagnosing ocean processes from such different perspectives.

  7. 10th Workshop on Self-Organizing Maps

    CERN Document Server

    Schleif, Frank-Michael; Kaden, Marika; Lange, Mandy

    2014-01-01

    The book collects the scientific contributions presented at the 10th Workshop on Self-Organizing Maps (WSOM 2014) held at the University of Applied Sciences Mittweida, Mittweida (Germany, Saxony), on July 2–4, 2014. Starting with the first WSOM-workshop 1997 in Helsinki this workshop focuses on newest results in the field of supervised and unsupervised vector quantization like self-organizing maps for data mining and data classification.   This 10th WSOM brought together more than 50 researchers, experts and practitioners in the beautiful small town Mittweida in Saxony (Germany) nearby the mountains Erzgebirge to discuss new developments in the field of unsupervised self-organizing vector quantization systems and learning vector quantization approaches for classification. The book contains the accepted papers of the workshop after a careful review process as well as summaries of the invited talks.   Among these book chapters there are excellent examples of the use of self-organizing maps in agriculture, ...

  8. Risk-based fault detection using Self-Organizing Map

    International Nuclear Information System (INIS)

    The complexity of modern systems is increasing rapidly and the dominating relationships among system variables have become highly non-linear. This results in difficulty in the identification of a system's operating states. In turn, this difficulty affects the sensitivity of fault detection and imposes a challenge on ensuring the safety of operation. In recent years, Self-Organizing Maps has gained popularity in system monitoring as a robust non-linear dimensionality reduction tool. Self-Organizing Map is able to capture non-linear variations of the system. Therefore, it is sensitive to the change of a system's states leading to early detection of fault. In this paper, a new approach based on Self-Organizing Map is proposed to detect and assess the risk of fault. In addition, probabilistic analysis is applied to characterize the risk of fault into different levels according to the hazard potential to enable a refined monitoring of the system. The proposed approach is applied on two experimental systems. The results from both systems have shown high sensitivity of the proposed approach in detecting and identifying the root cause of faults. The refined monitoring facilitates the determination of the risk of fault and early deployment of remedial actions and safety measures to minimize the potential impact of fault. - Highlights: • A new approach based on Self-Organizing Map is proposed to detect faults. • Integration of fault detection with risk assessment methodology. • Fault risk characterization into different levels to enable focused system monitoring

  9. Self-organized behaviour of radio-frequency plasmoids

    International Nuclear Information System (INIS)

    As recent studies showed, well-located complex space charge configurations (CSCC) generated in plasma subjected to a sufficient strong external constraint exhibit a proper dynamics. A CSCC appears in HF plasma as a radio frequency plasmoid (RFP). Its self-consistence is ensured by a double layer (DL) self-assembled at its border. Under certain experimental conditions, the RFP reveals a proper dynamics, evidenced by periodic variations of the light emission and by a modulation of the HF field. Varying the amount of the energy injected in the HF discharge one can evidence the transition of the RFP between different states. We report experimental observations on the dynamics of the RFP depending on the external constraints applied to the HF discharge. A tentatively explanation of the RFP phenomenon from the viewpoint of a self-organisation phenomena in plasma is established. A generalized self-organization scenario based on experimental observations on the dynamics of a RFP is drawn. As a general rule of self-organization process, the major importance for the system evolution of energy pumping, anomalous entropy production and anomalous entropy expulsion processes and the relation between their rates are emphasized. The proposed scenario outlines the self-organization stages of CSCC bordered by DLs and can also describe the transitions to more elevated levels of self-organization. The backward transitions between these levels are also described. The scenario proposes an explanation of the dynamics of these structures, considering their behaviour as being periodic, intermittent or even chaotic. Taking into account the similarities between the RFP and CSCCs formed in DC plasma devices, we consider that the conclusions drawn and the proposed self-organization proposed could be applied to all CSCC bordered by DL. (authors)

  10. Self-organized criticality: sandpiles, singularities, and scaling.

    OpenAIRE

    Carlson, J M; Swindle, G H

    1995-01-01

    We present an overview of the statistical mechanics of self-organized criticality. We focus on the successes and failures of hydrodynamic description of transport, which consists of singular diffusion equations. When this description applies, it can predict the scaling features associated with these systems. We also identify a hard driving regime where singular diffusion hydrodynamics fails due to fluctuations and give an explicit criterion for when this failure occurs.

  11. Mapping self-organized criticality onto criticality

    CERN Document Server

    Sornette, D; Valrose, P; Sornette, Didier; Johansen, Anders; Valrose, Parc

    1994-01-01

    Abstract: We present a general conceptual framework for self-organized criticality (SOC), based on the recognition that it is nothing but the expression, ''unfolded'' in a suitable parameter space, of an underlying {\\em unstable} dynamical critical point. More precisely, SOC is shown to result from the tuning of the {\\em order parameter} to a vanishingly small, but {\\em positive} value, thus ensuring that the corresponding control parameter lies exactly at its critical value for the underlying transition. This clarifies the role and nature of the {\\em very slow driving rate} common to all systems exhibiting SOC. This mechanism is shown to apply to models of sandpiles, earthquakes, depinning, fractal growth and forest-fires, which have been proposed as examples of SOC.

  12. Quiet-time statistics: A tool to probe the dynamics of self-organized-criticality systems from within the strong overlapping regime

    International Nuclear Information System (INIS)

    A method is presented that allows one to obtain information about the underlying dynamics of a self-organized-criticality system even when the strong-overlapping or hydrodynamic regime (in which individual avalanches are no longer distinguishable) is the only one amenable of probing. The method is based on the analysis of the statistics of the lapses of time between activity bursts or quiet times. The case of a randomly driven running sandpile is used to illustrate the use and capabilities of this technique

  13. Applied Control Systems Design

    CERN Document Server

    Mahmoud, Magdi S

    2012-01-01

    Applied Control System Design examines several methods for building up systems models based on real experimental data from typical industrial processes and incorporating system identification techniques. The text takes a comparative approach to the models derived in this way judging their suitability for use in different systems and under different operational circumstances. A broad spectrum of control methods including various forms of filtering, feedback and feedforward control is applied to the models and the guidelines derived from the closed-loop responses are then composed into a concrete self-tested recipe to serve as a check-list for industrial engineers or control designers. System identification and control design are given equal weight in model derivation and testing to reflect their equality of importance in the proper design and optimization of high-performance control systems. Readers’ assimilation of the material discussed is assisted by the provision of problems and examples. Most of these e...

  14. Self-organization phenomena in plasma physics

    International Nuclear Information System (INIS)

    The self-assembling in nature and laboratory of structures in systems away from thermodynamic equilibrium is one of the problems that mostly fascinates the scientists working in all branches of science. In this context a substantial progress has been obtained by investigating the appearance of spatial and spatiotemporal patterns in plasma. These experiments revealed the presence of a scenario of self-organization able to suggest an answer to the central problem of the 'Science of Complexity', why matter transits spontaneously from a disordered into an ordered state? Based on this scenario of self-organization we present arguments proving the possibility to explain the challenging problems of nonequilibrium physics in general. These problems refer to: (i) genuine origin of phase transitions observed in gaseous conductors and semiconductors; (ii) the elucidation of the role played by self-organization in the simulation of oscillations; (iii) the physical basis of anomalous transport of matter and energy with special reference to the possibilities of improving the economical performance of fusion devices; (iv) the possibility to use self-confined gaseous space charged configurations as an alternative to the magnetically confined plasma used at present in fusion devices. In other branches of sciences, as for instance in Biology, the self-organization scenario reveals a new insight into a mechanism able to explain the appearance of the simplest possible space charge configuration able to evolve, under suitable conditions, into prebiotic structures. Referring to phenomena observed in nature, the same self-organization scenario suggests plausible answers to the appearance of ball lightening but also to the origin of the flickering phenomena observed in the light emission of the Sun and stars. For theory the described self-organization scenario offers a new physical basis for many problems of nonlinear science not solved yet and also a new model for the so-called 'self

  15. Quantum Hamiltonians and self-organized criticality

    International Nuclear Information System (INIS)

    The authors consider a stochastic particle model which has been proposed to exhibit the essential features of self-organized criticality. The master equation is reformulated as a one-dimensional quantum system of interacting bosons. The hydrodynamic behavior of the system is recovered as the classical limit of the quantum system, and the problem of fluctuations, important for the critical behavior, is discussed

  16. Functional Nanostructures and Dynamic Materials through Self-Organization

    Institute of Scientific and Technical Information of China (English)

    Jean-Marie; LEHN

    2007-01-01

    1 Results Supramolecular chemistry is actively exploring systems undergoing self-organization.The design of molecular information controlled,"programmed"and functional self-organizing systems provides an original approach to nanoscience and nanotechnology.The spontaneous but controlled generation of well-defined,functional molecular and supramolecular architectures of nanometric size through self-organization represents a means of performing programmed engineering and processing of functional nanostruct...

  17. Self-Organizing, Social and Adaptive Nature of Agile Information Systems Development Teams : Essays on Leadership and Learning

    OpenAIRE

    Gholami, Behnaz

    2015-01-01

    Information Systems Development (ISD) keeps changing and evolving rapidly in a huge variety of aspects, including the technologies that are developed, the methods that are applied, and the structures in which it is organized (Avison & Fitzgerald, 2006). Noticing the need for further understanding of adaptive outcomes such as learning and leadership in agile ISD teams, this research is divided into different phases. The first phase was the review of the literature on learning in the Informatio...

  18. Protein Folding and Self-Organized Criticality

    Science.gov (United States)

    Bajracharya, Arun; Murray, Joelle

    Proteins are known to fold into tertiary structures that determine their functionality in living organisms. However, the complex dynamics of protein folding and the way they consistently fold into the same structures is not fully understood. Self-organized criticality (SOC) has provided a framework for understanding complex systems in various systems (earthquakes, forest fires, financial markets, and epidemics) through scale invariance and the associated power law behavior. In this research, we use a simple hydrophobic-polar lattice-bound computational model to investigate self-organized criticality as a possible mechanism for generating complexity in protein folding.

  19. Self-organized criticality in quantum gravity

    International Nuclear Information System (INIS)

    We study a simple model of spin network evolution motivated by the hypothesis that the emergence of classical spacetime from a discrete microscopic dynamics may be a self-organized critical process. Self-organized critical systems are statistical systems that naturally evolve without fine tuning to critical states in which correlation functions are scale invariant. We study several rules for evolution of frozen spin networks in which the spins labeling the edges evolve on a fixed graph. We find evidence for a set of rules which behaves analogously to sand pile models in which a critical state emerges without fine tuning, in which some correlation functions become scale invariant

  20. Cellular automata and self-organized criticality

    OpenAIRE

    Creutz, Michael

    1996-01-01

    Cellular automata provide a fascinating class of dynamical systems capable of diverse complex behavior. These include simplified models for many phenomena seen in nature. Among other things, they provide insight into self-organized criticality, wherein dissipative systems naturally drive themselves to a critical state with important phenomena occurring over a wide range of length and time scales.

  1. Self-Organizing Multilayered Neural Networks of Optimal Complexity

    OpenAIRE

    Schetinin, V.

    2005-01-01

    The principles of self-organizing the neural networks of optimal complexity is considered under the unrepresentative learning set. The method of self-organizing the multi-layered neural networks is offered and used to train the logical neural networks which were applied to the medical diagnostics.

  2. Development of a Real-Time Thermal Performance Diagnostic Monitoring system Using Self-Organizing Neural Network for Kori-2 Nuclear Power Unit

    International Nuclear Information System (INIS)

    In this work, a PC-based thermal performance monitoring system is developed for the nuclear power plants. the system performs real-time thermal performance monitoring and diagnosis during plant operation. Specifically, a prototype for the Kori-2 nuclear power unit is developed and examined is very difficult because the system structure is highly complex and the components are very much inter-related. In this study, some major diagnostic performance parameters are selected in order to represent the thermal cycle effectively and to reduce the computing time. The Fuzzy ARTMAP, a self-organizing neural network, is used to recognize the characteristic pattern change of the performance parameters in abnormal situation. By examination, the algorithm is shown to be ale to detect abnormality and to identify the fault component or the change of system operation condition successfully. For the convenience of operators, a graphical user interface is also constructed in this work. 5 figs., 3 tabs., 11 refs. (Author)

  3. Anomalously slow relaxation of the system of liquid clusters in a disordered nanoporous medium according to the self-organized criticality scenario

    Science.gov (United States)

    Borman, V. D.; Tronin, V. N.; Byrkin, V. A.

    2016-04-01

    We propose a physical model of a relaxation of states of clusters of nonwetting liquid confined in a random nanoporous medium. The relaxation is occurred by the self-organized criticality (SOC) scenario. Process is characterized by waiting for fluctuation necessary for overcoming of a local energy barrier with the subsequent avalanche hydrodynamic extrusion of the liquid by surface forces of the nonwetting frame. The dependence of the interaction between local configurations on the number of filled pores belonging to the infinite percolation cluster of filled pores serves as an internal feedback initiating the SOC process. The calculations give a power-law time dependence of the relative volume θ of the confined liquid θ ∼t-ν (ν ∼ 0.2) as in the picture of relaxation in the mean field approximation. The model of the relaxation of the porous medium with the nonwetting liquid demonstrates possible mechanisms and scenarios of SOC for relaxation of other disordered systems.

  4. Requisite Variety, Autopoiesis, and Self-organization

    OpenAIRE

    Gershenson, Carlos

    2014-01-01

    Ashby's law of requisite variety states that a controller must have at least as much variety (complexity) as the controlled. Maturana and Varela proposed autopoiesis (self-production) to define living systems. Living systems also require to fulfill the law of requisite variety. A measure of autopoiesis has been proposed as the ratio between the complexity of a system and the complexity of its environment. Self-organization can be used as a concept to guide the design of systems towards higher...

  5. Self organized criticality - analytical calculations and open problems

    International Nuclear Information System (INIS)

    Some analytical calculations and results concerning self organized critical state in the sand pile-like cellular automate defined on the Bethe and square lattices are showed. The possibility of achieving a self organized critical state in nonconservative model system is discussed. (author)

  6. Self-organizing strategies for a column-store database

    NARCIS (Netherlands)

    M. Ivanova; M.L. Kersten; N. Nes

    2008-01-01

    Column-store database systems open new vistas for improved maintenance through self-organization. Individual columns are the focal point, which simplify balancing conflicting requirements. This work presents two workload-driven self-organizing techniques in a column-store, i.e. adaptive segmentation

  7. On Regional Tourism Cooperation System Based on Self-organization Theory%基于自组织理论的区域旅游合作系统研究

    Institute of Scientific and Technical Information of China (English)

    段圣奎

    2012-01-01

    Based on the self-organization theory,the paper,taking regional tourism cooperation as a system,analyzes the development of regional tourism cooperation system,studies the traits of self-organization,and explores the self-organization mechanism from three aspects of space natural growth,enterprise symbiosis collaboration and industrial cluster development.%以自组织理论为基础,将区域旅游合作作为一个整体系统,分析区域旅游合作系统发展过程,审视其所具有的自组织特性,从空间自然生长、企业共生协同、产业集群发展等三个方面深入探讨了区域旅游合作系统自组织机制。

  8. Information Driven Ecohydrologic Self-Organization

    Directory of Open Access Journals (Sweden)

    Benjamin L. Ruddell

    2010-09-01

    Full Text Available Variability plays an important role in the self-organized interaction between vegetation and its environment, yet the principles that characterize the role of the variability in these interactions remain elusive. To address this problem, we study the dependence between a number of variables measured at flux towers by quantifying the information flow between the different variables along with the associated time lag. By examining this network of feedback loops for seven ecosystems in different climate regions, we find that: (1 the feedback tends to maximize information production in the entire system, and the latter increases with increasing variability within the whole system; and (2 variables that participate in feedback exhibit moderated variability. Self-organization arises as a tradeoff where the ability of the total system to maximize information production through feedback is limited by moderate variability of the participating variables. This relationship between variability and information production leads to the emergence of ordered organization.

  9. SELF-ORGANIZED CRITICALITY AND CELLULAR AUTOMATA

    Energy Technology Data Exchange (ETDEWEB)

    CREUTZ,M.

    2007-01-01

    Cellular automata provide a fascinating class of dynamical systems based on very simple rules of evolution yet capable of displaying highly complex behavior. These include simplified models for many phenomena seen in nature. Among other things, they provide insight into self-organized criticality, wherein dissipative systems naturally drive themselves to a critical state with important phenomena occurring over a wide range of length and the scales. This article begins with an overview of self-organized criticality. This is followed by a discussion of a few examples of simple cellular automaton systems, some of which may exhibit critical behavior. Finally, some of the fascinating exact mathematical properties of the Bak-Tang-Wiesenfeld sand-pile model [1] are discussed.

  10. Multidimensional earthquake frequency distributions consistent with self-organization of complex systems: The interdependence of magnitude, interevent time and interevent distance

    Science.gov (United States)

    Tzanis, A.; Vallianatos, F.

    2012-04-01

    It is well known that earthquake frequency is related to earthquake magnitude via a simple linear relationship of the form logN = a - bM, where N is the number of earthquakes in a specified time interval; this is the famous Gutenberg - Richter (G-R) law. The generally accepted interpretation of the G-R law is that it expresses the statistical behaviour of a fractal active tectonic grain (active faulting) - the relationship between the constant b and the fractal dimension of the tectonic grain has been demonstrated in various ways. The story told by the G-R law is, nevertheless, incomplete! It is now accepted that the active tectonic grain comprises a critical complex system, although it hasn't yet been established whether it is stationary (Self-Organized Critical), evolutionary (Self-Organizing Critical), or a time-varying blend of both. At any rate, critical systems are characterized by strong interactions between near and distant neighbours. This, in turn, implies that the self-organization of earthquake occurrence should be manifested by certain statistical behaviour of its temporal and spatial dependence. A measure of temporal dependence is the time lapsed between consecutive events above a magnitude threshold over a given area (interevent time). A measure of spatial dependence is the hypocentral distance between consecutive events above a magnitude threshold over a given area (interevent distance). The statistics of earthquake frequency - interevent times have been studied by several researchers, albeit frequently on the basis of different definition for the interevent time. The statistics of earthquake frequency - interevent distance is still terra incognita. Herein we present a multidimensional analysis of the statistical behaviour of frequency - magnitude - interevent time, frequency - magnitude - interevent distance and frequency - interevent time - interevent distance. We demonstrate that earthquake frequency is multiply related, not only to magnitude as

  11. Self-Organized Criticality Induced by Diversity

    OpenAIRE

    Corral, Álvaro; Pérez-Vicente, Conrado, 1962-; Díaz Guilera, Albert

    1997-01-01

    We have studied the collective behavior of a population of integrate-and-fire oscillators. We show that diversity, introduced in terms of a random distribution of natural periods, is the mechanism that permits one to observe self-organized criticality (SOC) in the long time regime. As diversity increases the system undergoes several transitions from a supercritical regime to a subcritical one, crossing the SOC region. Although there are resemblances with percolation, we give proofs that criti...

  12. Self-Organized Hydrodynamics with nonconstant velocity

    OpenAIRE

    Degond, Pierre; Henkes, Silke; Yu, Hui

    2016-01-01

    Motivated by recent experimental and computational results that show a motility-induced clustering transition in self-propelled particle systems, we study an individual model and its corresponding Self-Organized Hydrodynamic model for collective behaviour that incorporates a density-dependent velocity, as well as inter-particle alignment. The modal analysis of the hydrodynamic model elucidates the relationship between the stability of the equilibria and the changing velocity, and the formatio...

  13. Genetic information and self-organized criticality

    Science.gov (United States)

    Wills, P. R.; Marshall, J. M.; Smith, P. J.

    2004-12-01

    The numerical fitnesses of species defined in the Bak-Sneppen model of self-organized criticality are interpreted as binary strings. This allows new species to be generated by mutation of survivors. It is shown that selection in Bak-Sneppen systems defined on both uniform and random lattices produces genotypes in conformity with the Eigen criterion for the accumulation of genetic information in macromolecular sequences.

  14. Cellular organization by self-organization

    OpenAIRE

    Howard, Martin; Kruse, Karsten

    2005-01-01

    We use the oscillating Min proteins of Escherichia coli as a prototype system to illustrate the current state and potential of modeling protein dynamics in space and time. We demonstrate how a theoretical approach has led to striking new insights into the mechanisms of self-organization in bacterial cells and indicate how these ideas may be applicable to more complex structure formation in eukaryotic cells.

  15. Teamwork in Self-Organized Robot Colonies

    OpenAIRE

    Nouyan, Shervin; Groß, Roderich; Bonani, Michael; Mondada, F.; Dorigo, Marco

    2009-01-01

    Swarm robotics draws inspiration from decentralized self-organizing biological systems in general and from the collective behavior of social insects in particular. In social insect colonies, many tasks are performed by higher order group or team entities, whose task-solving capacities transcend those of the individual participants. In this paper, we investigate the emergence of such higher order entities. We report on an experimental study in which a team of physical robots performs a foragin...

  16. Some fractal aspects of Self-Organized Criticality

    OpenAIRE

    Cessac, B.

    2004-01-01

    The concept of Self-Organized Criticality (SOC) was proposed in an attempt to explain the widespread appearance of power-law in nature. It describes a mechanism in which a system reaches spontaneously a state where the characteristic events (avalanches) are distributed according to a power law. We present a dynamical systems approach to Self-Organized Criticality where the dynamics is described either in terms of Iterated Function Systems, or as a piecewise hyperbolic dynamical system of skew...

  17. The Plastic Glial-Synaptic Dynamics within the Neuropil: A Self-Organizing System Composed of Polyelectrolytes in Phase Transition

    Science.gov (United States)

    Fernandes de Lima, Vera Maura; Pereira, Alfredo

    2016-01-01

    Several explanations have been proposed to account for the mechanisms of neuroglial interactions involved in neural plasticity. We review experimental results addressing plastic nonlinear interactions between glial membranes and synaptic terminals. These results indicate the necessity of elaborating on a model based on the dynamics of hydroionic waves within the neuropil. These waves have been detected in a small scale experimental model of the central nervous system, the in vitro retina. We suggest that the brain, as the heart and kidney, is a system for which the state of water is functional. The use of nonlinear thermodynamics supports experiments at convenient biological spatiotemporal scales, while an understanding of the properties of ions and their interactions with water requires explanations based on quantum theories. In our approach, neural plasticity is seen as part of a larger process that encompasses higher brain functions; in this regard, hydroionic waves within the neuropil are considered to carry both physiological and cognitive functions. PMID:26949548

  18. The Plastic Glial-Synaptic Dynamics within the Neuropil: A Self-Organizing System Composed of Polyelectrolytes in Phase Transition

    Directory of Open Access Journals (Sweden)

    Vera Maura Fernandes de Lima

    2016-01-01

    Full Text Available Several explanations have been proposed to account for the mechanisms of neuroglial interactions involved in neural plasticity. We review experimental results addressing plastic nonlinear interactions between glial membranes and synaptic terminals. These results indicate the necessity of elaborating on a model based on the dynamics of hydroionic waves within the neuropil. These waves have been detected in a small scale experimental model of the central nervous system, the in vitro retina. We suggest that the brain, as the heart and kidney, is a system for which the state of water is functional. The use of nonlinear thermodynamics supports experiments at convenient biological spatiotemporal scales, while an understanding of the properties of ions and their interactions with water requires explanations based on quantum theories. In our approach, neural plasticity is seen as part of a larger process that encompasses higher brain functions; in this regard, hydroionic waves within the neuropil are considered to carry both physiological and cognitive functions.

  19. Functional Aspects of the EGF-Induced MAP Kinase Cascade: A Complex Self-Organizing System Approach

    OpenAIRE

    Kosmidis, Efstratios K; Moschou, Vasiliki; Ziogas, Georgios; Boukovinas, Ioannis; Albani, Maria; Laskaris, Nikolaos A.

    2014-01-01

    The EGF-induced MAP kinase cascade is one of the most important and best characterized networks in intracellular signalling. It has a vital role in the development and maturation of living organisms. However, when deregulated, it is involved in the onset of a number of diseases. Based on a computational model describing a “surface” and an “internalized” parallel route, we use systems biology techniques to characterize aspects of the network’s functional organization. We examine the re-organiz...

  20. Civil Society as a Self-Organizing Social System and the State: Some Objections to the Hegel Concept

    Directory of Open Access Journals (Sweden)

    Ludmila J. Grudtsina

    2014-03-01

    Full Text Available In the present article author attempts by using different scientific methods used in synergy, to propose an alternative formula to the formula of Hegelian distinction of civil society and state, that are not as different and competing with each other systems as well as the necessary elements to each other converge single social system. This scientific idea is presented in an arithmetic progression in civil society - "mass", next level - the civil society itself, realizing itself, advancing and increasingly, next level – the legal state (ideal for which to strive. In this case, the state will not be the term, but the result in the formula. In the conclusion, author concludes that one can not ignore responsibility of authorities, seeking in the modern world to create institutes of civil society. Taking into account that this generally positive process can be used as a special instrument of government, including the effective management of the objective processes in society, where the presence of democratic prerequisites, no matter how weak they are, civil society inevitably grows up.

  1. Self-Organized Criticality, Optimization and Biodiversity

    Science.gov (United States)

    Onody, Roberto N.; de Castro, Paulo A.

    By driving to extinction species that are less or poorly adapted, the Darwinian evolutionary theory is intrinsically an optimization theory. We investigate two optimization algorithms with such evolutionary characteristics: the Bak-Sneppen and the Extremal Optimization. By comparing their mean fitness in the steady state regime, we conclude that the Bak-Sneppen dynamics is more efficient than the Extremal Optimization if the parameter τ is in the interval [0, 0.86]. The determination of the spatial correlation and the probability distribution of the avalanches show that the Extremal Optimization dynamics does not lead the system into a critical self-organized state. Through a discrete form of the Bak-Sneppen model we argue that biodiversity is an essential prerequisite to preserve the self-organized criticality.

  2. Self-organization model for a cell system: Ferroelectric, ferroelastic, and magnetic states and related phase transitions

    International Nuclear Information System (INIS)

    A model is proposed to explain the stability, phase state transformations, and coexistence of different phases for fungi cell ensembles (in particular, dimorphism and linear-to-spiral structure transitions with the Earth's magnetic field screened). This model is based on (i) cell-connected soft polarization modes induced by charge compensation and related ferroelectric and ferroelastic phase transitions and (ii) intracell mobile orbit-spin-lattice clusters with competitive ferromagnetic-diamagnetic behavior and with orbitlattice and spin-lattice interactions. This model makes it possible to explain the structural and magnetic properties of the systems under consideration. In particular, the Lifshitz invariants in the free energy explain the formation of orbit-lattice and spin-lattice spiral and ring-type structures that are formed when the Earth's magnetic field is effectively screened. The model proposed is not restricted to mitochondria, containing orbit-spin-lattice clusters based on the Fe3+/Fe2+ states (considered here).

  3. Self-organization: Two's company, three's a crowd

    Science.gov (United States)

    Khan, Shahid M.; Molloy, Justin E.

    2015-10-01

    Real-time tracking of self-propelled biomolecules provides insight into the physical rules governing self-organization in complex living systems -- including evidence to suggest that their alignment requires multiple simultaneous interactions.

  4. Archetypes, complexes and self-organization.

    Science.gov (United States)

    Saunders, P; Skar, P

    2001-04-01

    There has always been confusion and disagreement about the nature of the terms archetype and complex in Jungian circles, not to mention non-Jungian ones. Another ongoing concern is whether Jung's concept of the archetype and complex can be justified in terms of current scientific research, most notably that of neurophysiologists and others interested in the brain and consciousness. This paper proposes a theory of the formation of complexes, namely, that they are created through self-organization within the brain/mind. Self-organization is a process typical of large complex systems, and is generally accepted to operate within the brain and to be important in its functioning. Examples of self-organization in biology are related to the psychic processes that form the complexes. It is then natural to define the archetype in terms of the complex, and the authors propose a definition of the archetype as an equivalence class of complexes. On this view, the archetype is an emergent property of the activity of the brain/mind, and is, appropriately, defined at the level at which it emerges. This definition is in line with the original development of Jung's ideas, in that he derived the concept of the archetype from his earlier discovery of the feeling-toned complex. PMID:11307698

  5. Crossover from Percolation to Self-Organized Criticality

    OpenAIRE

    Drossel, Barbara; Clar, Siegfried; Schwabl, Franz

    1994-01-01

    We include immunity against fire as a new parameter into the self-organized critical forest-fire model. When the immunity assumes a critical value, clusters of burnt trees are identical to percolation clusters of random bond percolation. As long as the immunity is below its critical value, the asymptotic critical exponents are those of the original self-organized critical model, i.e. the system performs a crossover from percolation to self-organized criticality. We present a scaling theory an...

  6. Analytical investigation of self-organized criticality in neural networks

    OpenAIRE

    Droste, Felix; Do, Anne-Ly; Gross, Thilo

    2013-01-01

    Dynamical criticality has been shown to enhance information processing in dynamical systems, and there is evidence for self-organized criticality in neural networks. A plausible mechanism for such self-organization is activity dependent synaptic plasticity. Here, we model neurons as discrete-state nodes on an adaptive network following stochastic dynamics. At a threshold connectivity, this system undergoes a dynamical phase transition at which persistent activity sets in. In a low dimensional...

  7. A simple self-organized swimmer driven by molecular motors

    CERN Document Server

    Gunther, Stefan; 10.1209/0295-5075/84/68002

    2009-01-01

    We investigate a self-organized swimmer at low Reynolds numbers. The microscopic swimmer is composed of three spheres that are connected by two identical active linker arms. Each linker arm contains molecular motors and elastic elements and can oscillate spontaneously. We find that such a system immersed in a viscous fluid can self-organize into a state of directed swimming. The swimmer provides a simple system to study important aspects of the swimming of micro-organisms.

  8. PARALLEL SELF-ORGANIZING MAP

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A new self-organizing map, parallel self-organizing map (PSOM), was proposed for information parallel processing purpose. In this model, there are two separate layers of neurons connected together,the number of neurons in both layer and connections between them is equal to the number of total elements of input signals, the weight updating is managed through a sequence of operations among some unitary transformation and operation matrixes, so the conventional repeated learning procedure was modified to learn just once and an algorithm was developed to realize this new learning method. With a typical classification example, the performance of PSOM demonstrated convergence results similar to Kohonen's model. Theoretic analysis and proofs also showed some interesting properties of PSOM. As it was pointed out, the contribution of such a network may not be so significant, but its parallel mode may be interesting for quantum computation.

  9. Applied systems theory

    CERN Document Server

    Dekkers, Rob

    2014-01-01

    Offering an up-to-date account of systems theories and its applications, this book provides a different way of resolving problems and addressing challenges in a swift and practical way, without losing overview and not having a grip on the details. From this perspective, it offers a different way of thinking in order to incorporate different perspectives and to consider multiple aspects of any given problem. Drawing examples from a wide range of disciplines, it also presents worked cases to illustrate the principles. The multidisciplinary perspective and the formal approach to modelling of syst

  10. Turbulent self-organized criticality

    OpenAIRE

    De Menech, Mario; Stella, Attilio L.

    2001-01-01

    In the prototype sandpile model of self-organized criticality time series obtained by decomposing avalanches into waves of toppling show intermittent fluctuations. The q-th moments of wave size differences possess local multiscaling and global simple scaling regimes analogous to those holding for velocity structure functions in fluid turbulence. The correspondence involves identity of a basic scaling relation and of the form of relevant probability distributions. The sandpile provides a quali...

  11. 'Self-Organizing' Friendship Networks

    OpenAIRE

    Frans N. Stokman; Zeggelink, Evelien P.H.

    1996-01-01

    We introduce principles of self-organization in a dynamic individual oriented model of the evolution of friendship networks. The main aim of the model is to explain the emergence of structure in a friendship network from an initial situation of mutual strangers. In contrast to the individual behavioral rules in previously developed models, we explicitly deal with the interplay between network dynamics and changing characteristics of individuals as a result of their friendships. Moreover, lear...

  12. Self-organized motion in anisotropic swarms

    Institute of Scientific and Technical Information of China (English)

    Tianguang CHU; Long WANG; Tongwen CHEN

    2003-01-01

    This paper considers an anisotropic swarm model with a class of attraction and repulsion functions. It is shown that the members of the swarm will aggregate and eventually form a cohesive cluster of finite size around the swarm center. Moreover,It is also proved that under certain conditions, the swarm system can be completely stable, i. e., every solution converges to the equilibrium points of the system. The model and results of this paper extend a recent work on isotropic swarms to more general cases and provide further insight into the effect of the interaction pattern on self-organized motion in a swarm system.

  13. Self-Organized Criticality Below The Glass Transition

    OpenAIRE

    Vollmayr-Lee, Katharina; Baker, Elizabeth A.

    2006-01-01

    We obtain evidence that the dynamics of glassy systems below the glass transition is characterized by self-organized criticality. Using molecular dynamics simulations of a model glass-former we identify clusters of cooperatively jumping particles. We find string-like clusters whose size is power-law distributed not only close to T_c but for ALL temperatures below T_c, indicating self-organized criticality which we interpret as a freezing in of critical behavior.

  14. Self Organization and Self Avoiding Limit Cycles

    OpenAIRE

    Hexner, Daniel; Levine, Dov

    2014-01-01

    A simple periodically driven system displaying rich behavior is introduced and studied. The system self-organizes into a mosaic of static ordered regions with three possible patterns, which are threaded by one-dimensional paths on which a small number of mobile particles travel. These trajectories are self-avoiding and non-intersecting, and their relationship to self-avoiding random walks is explored. Near $\\rho=0.5$ the distribution of path lengths becomes power-law like up to some cutoff le...

  15. 供应链复杂系统企业社会责任的自组织演化%Research on Self -organization Evolution of Supply Chain Complex SystemFulfilling Social Responsibility

    Institute of Scientific and Technical Information of China (English)

    王宝英

    2013-01-01

    Based on the Self -organization characteristics of supply chain complex system , the systematic dy-namics model is used to analyse the self -organization evolution when supply chain complex system fulfilling social responsibility .The research results find the self -organization evolution when supply chain complex system fulfilling social responsibility is related to the system ’ s flows,the degree of dependence among the upstream and downstream enterprises and external environment factors .The research demonstrates that every sub -system of supply chain complex system can produce synertistic effect through coordination and fulfill social responsibility better .%基于供应链复杂系统的自组织特征,运用系统动力学模型,对供应链复杂系统在履行社会责任时的自组织演化进行了分析。研究发现,供应链复杂系统履行社会责任的自组织演化与系统的流量、上下游企业的相互依赖程度以及外部环境因素相关。研究结果表明,供应链复杂系统的各子系统通过协作,产生协同效应,可以更好地履行社会责任。

  16. Comparative analysis of model behaviour for flood prediction purposes using Self-Organizing Maps

    OpenAIRE

    Herbst, M.; Casper, M.C.; Grundmann, J.; Buchholz, O.

    2009-01-01

    Distributed watershed models constitute a key component in flood forecasting systems. It is widely recognized that models because of their structural differences have varying capabilities of capturing different aspects of the system behaviour equally well. Of course, this also applies to the reproduction of peak discharges by a simulation model which is of particular interest regarding the flood forecasting problem. In our study we use a Self-Organizing Map (SOM) in comb...

  17. Comparative analysis of model behaviour for flood prediction purposes using Self-Organizing Maps

    OpenAIRE

    Herbst, M.; Casper, M.C.; Grundmann, J.; Buchholz, O.

    2009-01-01

    Distributed watershed models constitute a key component in flood forecasting systems. It is widely recognized that models because of their structural differences have varying capabilities of capturing different aspects of the system behaviour equally well. Of course, this also applies to the reproduction of peak discharges by a simulation model which is of particular interest regarding the flood forecasting problem.

    In our study we use a Self-Organizing Map (SOM) in combi...

  18. Complexity in plasma: From self-organization to geodynamo

    International Nuclear Information System (INIS)

    A central theme of open-quote open-quote Complexity close-quote close-quote is the question of the creation of ordered structure in nature (self-organization). The assertion is made that self-organization is governed by three key processes, i.e., energy pumping, entropy expulsion and nonlinearity. Extensive efforts have been done to confirm this assertion through computer simulations of plasmas. A system exhibits markedly different features in self-organization, depending on whether the energy pumping is instantaneous or continuous, or whether the produced entropy is expulsed or reserved. The nonlinearity acts to bring a nonequilibrium state into a bifurcation, thus resulting in a new structure along with an anomalous entropy production. As a practical application of our grand view of self-organization a preferential generation of a dipole magnetic field is successfully demonstrated. copyright 1996 American Institute of Physics

  19. Symbiotic intelligence: Self-organizing knowledge on distributed networks, driven by human interaction

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, N.; Joslyn, C.; Rocha, L.; Smith, S.; Kantor, M. [Los Alamos National Lab., NM (United States); Rasmussen, S. [Los Alamos National Lab., NM (United States)]|[Santa Fe Inst., NM (United States)

    1998-07-01

    This work addresses how human societies, and other diverse and distributed systems, solve collective challenges that are not approachable from the level of the individual, and how the Internet will change the way societies and organizations view problem solving. The authors apply the ideas developed in self-organizing systems to understand self-organization in informational systems. The simplest explanation as to why animals (for example, ants, wolves, and humans) are organized into societies is that these societies enhance the survival of the individuals which make up the populations. Individuals contribute to, as well as adapt to, these societies because they make life easier in one way or another, even though they may not always understand the process, either individually or collectively. Despite the lack of understanding of the how of the process, society during its existence as a species has changed significantly, from separate, small hunting tribes to a highly technological, globally integrated society. The authors combine this understanding of societal dynamics with self-organization on the Internet (the Net). The unique capability of the Net is that it combines, in a common medium, the entire human-technological system in both breadth and depth: breadth in the integration of heterogeneous systems of machines, information and people; and depth in the detailed capturing of the entire complexity of human use and creation of information. When the full diversity of societal dynamics is combined with the accuracy of communication on the Net, a phase transition is argued to occur in problem solving capability. Through conceptual examples, an experiment of collective decision making on the Net and a simulation showing the effect of noise and loss on collective decision making, the authors argue that the resulting symbiotic structure of humans and the Net will evolve as an alternative problem solving approach for groups, organizations and society. Self-organizing

  20. Self-Organized Network Flows

    CERN Document Server

    Helbing, D; Lämmer, S; Helbing, Dirk; Siegmeier, Jan; L\\"{a}mmer, Stefan

    2007-01-01

    A model for traffic flow in street networks or material flows in supply networks is presented, that takes into account the conservation of cars or materials and other significant features of traffic flows such as jam formation, spillovers, and load-dependent transportation times. Furthermore, conflicts or coordination problems of intersecting or merging flows are considered as well. Making assumptions regarding the permeability of the intersection as a function of the conflicting flows and the queue lengths, we find self-organized oscillations in the flows similar to the operation of traffic lights.

  1. Biologically inspired self-organizing networks

    Institute of Scientific and Technical Information of China (English)

    Naoki WAKAMIYA; Kenji LEIBNITZ; Masayuki MURATA

    2009-01-01

    Information networks are becoming more and more complex to accommodate a continuously increasing amount of traffic and networked devices, as well as having to cope with a growing diversity of operating environments and applications. Therefore, it is foreseeable that future information networks will frequently face unexpected problems, some of which could lead to the complete collapse of a network. To tackle this problem, recent attempts have been made to design novel network architectures which achieve a high level of scalability, adaptability, and robustness by taking inspiration from self-organizing biological systems. The objective of this paper is to discuss biologically inspired networking technologies.

  2. Self-Organized Control of Irregular or Perturbed Network Traffic

    CERN Document Server

    Helbing, D; Lebacque, J P; Helbing, Dirk; L\\"ammer, Stefan; Lebacque, Jean-Patrick

    2005-01-01

    We present a fluid-dynamic model for the simulation of urban traffic networks with road sections of different lengths and capacities. The model allows one to efficiently simulate the transitions between free and congested traffic, taking into account congestion-responsive traffic assignment and adaptive traffic control. We observe dynamic traffic patterns which significantly depend on the respective network topology. Synchronization is only one interesting example and implies the emergence of green waves. In this connection, we will discuss adaptive strategies of traffic light control which can considerably improve throughputs and travel times, using self-organization principles based on local interactions between vehicles and traffic lights. Similar adaptive control principles can be applied to other queueing networks such as production systems. In fact, we suggest to turn push operation of traffic systems into pull operation: By removing vehicles as fast as possible from the network, queuing effects can be ...

  3. Assessing self-organization of plant communities--A thermodynamic approach

    Science.gov (United States)

    Lin, H.; Cao, M.; Stoy, P.; Zhang, Y.

    2013-12-01

    Thermodynamics is a powerful tool for the study of system development and has the potential to be applied to studies of ecological complexity. Here, we develop a set of thermodynamic indicators including energy capture and energy dissipation to quantify plant community self-organization. The study ecosystems included a tropical seasonal rainforest, an artificial tropical rainforest, a rubber plantation, and two Chromolaena odorata (L.) R.M. King & H. Robinson communities aged 13 years and 1 year. The communities represent a complexity transect from primary vegetation, to transitional community, economic plantation, and fallows and are typical for Xishuangbanna, southwestern China. The indicators of ecosystem self-organization are sensitive to plant community type and seasonality, and demonstrate that the tropical seasonal rainforest is highly self-organized and plays an important role in local environmental stability via the land surface thermal regulation. The rubber plantation is at a very low level of self-organization as quantified by the thermodynamic indicators, especially during the dry season. The expansion of the area of rubber plantation and shrinkage of tropical seasonal rainforest would likely induce local surface warming and a larger daily temperature range.

  4. Spatial Self-Organization of Vegetation Subject to Climatic Stress—Insights from a System Dynamics—Individual-Based Hybrid Model

    Science.gov (United States)

    Vincenot, Christian E.; Carteni, Fabrizio; Mazzoleni, Stefano; Rietkerk, Max; Giannino, Francesco

    2016-01-01

    In simulation models of populations or communities, individual plants have often been obfuscated in favor of aggregated vegetation. This simplification comes with a loss of biological detail and a smoothing out of the demographic noise engendered by stochastic individual-scale processes and heterogeneities, which is significant among others when studying the viability of small populations facing challenging fluctuating environmental conditions. This consideration has motivated the development of precise plant-centered models. The accuracy gained in the representation of plant biology has then, however, often been balanced by the disappearance in models of important plant-soil interactions (esp. water dynamics) due to the inability of most individual-based frameworks to simulate complex continuous processes. In this study, we used a hybrid modeling approach, namely integrated System Dynamics (SD)—Individual-based (IB), to illustrate the importance of individual plant dynamics to explain spatial self-organization of vegetation in arid environments. We analyzed the behavior of this model under different parameter sets either related to individual plant properties (such as seed dispersal distance and reproductive age) or the environment (such as intensity and yearly distribution of precipitation events). While the results of this work confirmed the prevailing theory on vegetation patterning, they also revealed the importance therein of plant-level processes that cannot be rendered by reaction-diffusion models. Initial spatial distribution of plants, reproductive age, and average seed dispersal distance, by impacting patch size and vegetation aggregation, affected pattern formation and population survival under climatic variations. Besides, changes in precipitation regime altered the demographic structure and spatial organization of vegetation patches by affecting plants differentially depending on their age and biomass. Water availability influenced non

  5. Spatial Self-Organization of Vegetation Subject to Climatic Stress-Insights from a System Dynamics-Individual-Based Hybrid Model.

    Science.gov (United States)

    Vincenot, Christian E; Carteni, Fabrizio; Mazzoleni, Stefano; Rietkerk, Max; Giannino, Francesco

    2016-01-01

    In simulation models of populations or communities, individual plants have often been obfuscated in favor of aggregated vegetation. This simplification comes with a loss of biological detail and a smoothing out of the demographic noise engendered by stochastic individual-scale processes and heterogeneities, which is significant among others when studying the viability of small populations facing challenging fluctuating environmental conditions. This consideration has motivated the development of precise plant-centered models. The accuracy gained in the representation of plant biology has then, however, often been balanced by the disappearance in models of important plant-soil interactions (esp. water dynamics) due to the inability of most individual-based frameworks to simulate complex continuous processes. In this study, we used a hybrid modeling approach, namely integrated System Dynamics (SD)-Individual-based (IB), to illustrate the importance of individual plant dynamics to explain spatial self-organization of vegetation in arid environments. We analyzed the behavior of this model under different parameter sets either related to individual plant properties (such as seed dispersal distance and reproductive age) or the environment (such as intensity and yearly distribution of precipitation events). While the results of this work confirmed the prevailing theory on vegetation patterning, they also revealed the importance therein of plant-level processes that cannot be rendered by reaction-diffusion models. Initial spatial distribution of plants, reproductive age, and average seed dispersal distance, by impacting patch size and vegetation aggregation, affected pattern formation and population survival under climatic variations. Besides, changes in precipitation regime altered the demographic structure and spatial organization of vegetation patches by affecting plants differentially depending on their age and biomass. Water availability influenced non-linearly total

  6. Self-Organized Criticality in Solar Physics and Astrophysics

    CERN Document Server

    Aschwanden, Markus J

    2010-01-01

    The concept of "self-organized criticality" (SOC) has been introduced by Bak, Tang, and Wiesenfeld (1987) to describe the statistics of avalanches on the surface of a sandpile with a critical slope, which produces a scale-free powerlaw size distribution of avalanches. In the meantime, SOC behavior has been identified in many nonlinear dissipative systems that are driven to a critical state. On a most general level, SOC is the statistics of coherent nonlinear processes, in contrast to the Poisson statistics of incoherent random processes. The SOC concept has been applied to laboratory experiments (of rice or sand piles), to human activities (population growth, language, economy, traffic jams, wars), to biophysics, geophysics (earthquakes, landslides, forest fires), magnetospheric physics, solar physics (flares), stellar physics (flares, cataclysmic variables, accretion disks, black holes, pulsar glitches, gamma ray bursts), and to galactic physics and cosmology.

  7. Principle of typicity and power of self-organization in the provision of local public services. An overview of Spanish and Colombian legal systems

    Directory of Open Access Journals (Sweden)

    Jorge Iván Rincón Córdoba

    2011-12-01

    Full Text Available Recognized the particular autonomy of local authorities that should be exposed according to the extent of their legitimacy. Throughout this work, we develop the necessity to provide these authorities with the power to qualify a certain activity as a public service, and the subsequent selection of a management model (organizational model to satisfy them. As well as the apparent contradiction between this constitutional principle of self-organization power and the typical constitutional principle (understood as a result of the rule of law, both as a result of the arrangement of competencies between the legislative power and the local authorities.

  8. Self-organization in irradiated materials

    International Nuclear Information System (INIS)

    Full text: By the present time a great deal of experimental material concerning self-organization in irradiated materials is stored. It means that in different materials (single crystal and amorphous semiconductor, metals, polymers) during one process of irradiation with accelerated particles or energetic quanta the structure previously disordered can be reordered to the previous or different order. These processes are considered separately from the processes of radiation-stimulated ordering when the renewal of the structure occurs as the result of extra irradiation, sometimes accompanied with another influence (heating, lighting, application of mechanical tensions). The processes of reordering are divided into two basic classes: the reconstruction of crystalline structure (1) and the formation of space-ordered system (2). The processes of ordering are considered with the use of synergetic approach and are analyzed conformably to the concrete conditions of new order appearance process realization in order to reveal the self-organization factor's role. The concrete experimental results of investigating of the radiation ordering processes are analyzed for different materials: semiconductor, metals, inorganic dielectrics, polymers. The ordering processes are examined from the point of their possible use in the technology of creating nano-dimensional structures general and quantum-dimensional ones in particular

  9. Hierarchical organization versus self-organization

    OpenAIRE

    Busseniers, Evo

    2014-01-01

    In this paper we try to define the difference between hierarchical organization and self-organization. Organization is defined as a structure with a function. So we can define the difference between hierarchical organization and self-organization both on the structure as on the function. In the next two chapters these two definitions are given. For the structure we will use some existing definitions in graph theory, for the function we will use existing theory on (self-)organization. In the t...

  10. Self-Steered Self-Organization

    OpenAIRE

    Keijzer, Fred; Tschacher, W.; Dauwalder, J.P.

    2003-01-01

    Self-organization has become a well-established phenomenon in physics. It is now also propagated as an important phenomenon in psychology. What is the difference between these two forms of self-organization? One important way in which these two forms are distinguished is by the additional presence of some internal guiding force in the psychological case. Kelso in particular defends such a two-component view on self-organization. I will refer to this addition to mere physical self-organization...

  11. Handwritten digit recognition by adaptive-subspace self-organizing map (ASSOM).

    Science.gov (United States)

    Zhang, B; Fu, M; Yan, H; Jabri, M A

    1999-01-01

    The adaptive-subspace self-organizing map (ASSOM) proposed by Kohonen is a recent development in self-organizing map (SOM) computation. In this paper, we propose a method to realize ASSOM using a neural learning algorithm in nonlinear autoencoder networks. Our method has the advantage of numerical stability. We have applied our ASSOM model to build a modular classification system for handwritten digit recognition. Ten ASSOM modules are used to capture different features in the ten classes of digits. When a test digit is presented to all the modules, each module provides a reconstructed pattern and the system outputs a class label by comparing the ten reconstruction errors. Our experiments show promising results. For relatively small size modules, the classification accuracy reaches 99.3% on the training set and over 97% on the testing set. PMID:18252591

  12. Cusps, self-organization, and absorbing states.

    Science.gov (United States)

    Bonachela, Juan A; Alava, Mikko; Muñoz, Miguel A

    2009-05-01

    Elastic interfaces embedded in (quenched) random media exhibit metastability and stick-slip dynamics. These nontrivial dynamical features have been shown to be associated with cusp singularities of the coarse-grained disorder correlator. Here we show that annealed systems with many absorbing states and a conservation law but no quenched disorder exhibit identical cusps. On the other hand, similar nonconserved systems in the directed percolation class are also shown to exhibit cusps but of a different type. These results are obtained both by a recent method to explicitly measure disorder correlators and by defining an alternative new protocol inspired by self-organized criticality, which opens the door to easily accessible experimental realizations. PMID:19518401

  13. Brain basis of self: self-organization and lessons from dreaming

    OpenAIRE

    DavidKahn

    2013-01-01

    Through dreaming a different facet of the self is created as a result of a self-organizing process in the brain. Self-organization in biological systems often happens as an answer to an environmental change for which the existing system cannot cope; self-organization creates a system that can cope in the newly changed environment. In dreaming, self-organization serves the function of organizing disparate memories into a dream since the dreamer herself is not able to control how individual...

  14. 9th Workshop on Self-Organizing Maps

    CERN Document Server

    Príncipe, José; Zegers, Pablo

    2013-01-01

    Self-organizing maps (SOMs) were developed by Teuvo Kohonen in the early eighties. Since then more than 10,000 works have been based on SOMs. SOMs are unsupervised neural networks useful for clustering and visualization purposes. Many SOM applications have been developed in engineering and science, and other fields. This book contains refereed papers presented at the 9th Workshop on Self-Organizing Maps (WSOM 2012) held at the Universidad de Chile, Santiago, Chile, on December 12-14, 2012. The workshop brought together researchers and practitioners in the field of self-organizing systems. Among the book chapters there are excellent examples of the use of SOMs in agriculture, computer science, data visualization, health systems, economics, engineering, social sciences, text and image analysis, and time series analysis. Other chapters present the latest theoretical work on SOMs as well as Learning Vector Quantization (LVQ) methods.

  15. Self-organization of atoms coupled to a chiral reservoir

    CERN Document Server

    Eldredge, Zachary; Chang, Darrick; Gorshkov, Alexey V

    2016-01-01

    Tightly confined modes of light, as in optical nanofibers or photonic crystal waveguides, can lead to large optical coupling in atomic systems, which mediates long-range interactions between atoms. These one-dimensional systems can naturally possess couplings that are asymmetric between modes propagating in different directions. Strong long-range interaction among atoms via these modes can drive them to a self-organized periodic distribution. In this paper, we examine the self-organizing behavior of atoms in one dimension coupled to a chiral reservoir. We determine the solution to the equations of motion in different parameter regimes, relative to both the detuning of the pump laser that initializes the atomic dipole-dipole interactions and the degree of reservoir chirality. In addition, we calculate possible experimental signatures such as reflectivity from self-organized atoms and motional sidebands.

  16. Self-organization of atoms coupled to a chiral reservoir

    Science.gov (United States)

    Eldredge, Zachary; Jarzynski, Christopher; Chang, Darrick; Gorshkov, Alexey

    2016-05-01

    Tightly confined modes of light, as in optical nanofibers or photonics crystal waveguides, can lead to large optical coupling in atomic systems, which mediates long-range interactions between atoms. These one-dimensional systems can naturally possess couplings which are asymmetric between modes in different directions. In this poster, we examine the self-organizing behavior of atoms in one dimension coupled to a chiral reservoir. We determine the behavior of the self-organized solution to the equations of motion in different parameter regimes, relative to both the detuning of the pump laser and the degree of reservoir chirality. In addition to the spatial configuration of self-organized atoms, we calculate possible experimental signatures.

  17. Self-organizing Maps in Web Mining and Semantic Web

    OpenAIRE

    Chifu, Emil St.; Letia, Ioan Alfred

    2010-01-01

    This chapter presented several uses of the self-organizing maps in the context of web mining and the semantic web. The self-organizing maps constitute a powerful model for Web mining by defining a visual overview of a set of Web documents. A document SOM map is a semantically ordered spread of the documents in the set. Our SOM-based visualization system for document collections is a powerful information retrieval tool for browsing a set of Web documents. The system is especially useful when t...

  18. Self-organized criticality and urban development

    Directory of Open Access Journals (Sweden)

    Yichun Xie

    1998-01-01

    Full Text Available Urban society is undergoing as profound a spatial transformation as that associated with the emergence of the industrial city two centuries ago. To describe and measure this transition, we introduce a new theory based on the concept that large-scale, complex systems composed of many interacting elements, show a surprising degree of resilience to change, holding themselves at critical levels for long periods until conditions emerge which move the system, often abruptly, to a new threshold. This theory is called ‘self-organized criticality’; it is consistent with systems in which global patterns emerge from local action which is the hallmark of self-organization, and it is consistent with developments in system dynamics and their morphology which find expression in fractal geometry and weak chaos theory. We illustrate the theory using a unique space–time series of urban development for Buffalo, Western New York, which contains the locations of over one quarter of a million sites coded by their year of construction and dating back to 1773, some 60 years before the city began to develop. We measure the emergence and growth of the city using urban density functions from which measures of fractal dimension are used to construct growth paths of the way the city has grown to fill its region. These phase portraits suggest the existence of transitions between the frontier, the settled agricultural region, the centralized industrial city and the decentralized postindustrial city, and our analysis reveals that Buffalo has maintained itself at a critical threshold since the emergence of the automobile city some 70 years ago. Our implied speculation is: how long will this kind of urban form be maintained in the face of seemingly unstoppable technological change?

  19. Self-Steered Self-Organization

    NARCIS (Netherlands)

    Keijzer, Fred; Tschacher, W.; Dauwalder, J.P.

    2003-01-01

    Self-organization has become a well-established phenomenon in physics. It is now also propagated as an important phenomenon in psychology. What is the difference between these two forms of self-organization? One important way in which these two forms are distinguished is by the additional presence o

  20. A Self-organizing Cooperative Hunting by Swarm Robotic Systems Based on Loose-preference Rule%基于松散偏好规则的群体机器人系统自组织协作围捕

    Institute of Scientific and Technical Information of China (English)

    黄天云; 陈雪波; 徐望宝; 周自维; 任志勇

    2013-01-01

    针对群体机器人协作围捕,提出了一种基于松散偏好规则的自组织方法.首先给出了个体机器人的自由运动模型和围捕行为的数学描述.通过对围捕行为的分解,构造松散偏好规则来使个体机器人在自组织运动过程中相互协调最终形成理想的围捕队形.在此基础上,设计了个体自组织运动控制器.最后运用Lyapunov稳定性定理证明系统的稳定性.仿真和实验结果表明,本文给出的自组织方法对于群体机器人协作围捕是行之有效的.%A novel self-organizing approach to cooperative hunting by swarm robotic systems is put forward based on loose-preference rule. Firstly, an individual autonomous motion planning is presented, and the cooperative hunting behaviors are mathematically described. According to decomposition of hunting behaviors, a loose-preference rule is established for the individuals to form the ideal hunting formation during the self-organizing process by the interaction between the target and individuals. Then, we employ the proposed rule to design an autonomous motion controller of the individuals. Finally, the stability of self-organizing system is analyzed by Lyapunov stability criterion. Simulations and experiments demonstrate the feasibility and effectiveness of the proposed approach to cooperative hunting by swarm robotic systems.

  1. Modeling the Self-organized Critical Behavior of Earth's Plasma Sheet Reconnection Dynamics

    Science.gov (United States)

    Klimas, Alexander J.

    2006-01-01

    Analyses of Polar UVI auroral image data show that bright night-side high-latitude W emissions exhibit so many of the key properties of systems in self-organized criticality that an alternate interpretation has become virtually impossible. These analyses will be reviewed. It is now necessary to find and model the source of this behavior. We note that the most common models of self-organized criticality are numerical sandpiles. These are, at root, models that govern the transport of some quantity from a region where it is loaded to another where it is unloaded. Transport is enabled by the excitation of a local threshold instability; it is intermittent and bursty, and it exhibits a number of scale-free statistical properties. Searching for a system in the magnetosphere that is analogous and that, in addition, is known to produce auroral signatures, we focus on the reconnection dynamics of the magnetotail plasma sheet. In our previous work, a driven reconnection model has been constructed and has been under study. The transport of electromagnetic (primarily magnetic) energy carried by the Poynting flux into the reconnection region of the model has been examined. All of the analysis techniques (and more) that have been applied to the auroral image data have also been applied to this Poynting flux. New results will be presented showing that this model also exhibits so many of the key properties of systems in self-organized criticality that an alternate interpretation is implausible. A strong correlation between these key properties of the model and those of the auroral UV emissions will be demonstrated. We suggest that, in general, the driven reconnection model is an important step toward a realistic plasma physical model of self-organized criticality and we conclude, more specifically, that it is also a step in the right direction toward modeling the multiscale reconnection dynamics of the magnetotail.

  2. Modeling the Self-organized Critical Behavior of the Plasma Sheet Reconnection Dynamics

    Science.gov (United States)

    Klimas, Alex; Uritsky, Vadim; Baker, Daniel

    2006-01-01

    Analyses of Polar UVI auroral image data reviewed in our other presentation at this meeting (V. Uritsky, A. Klimas) show that bright night-side high-latitude UV emissions exhibit so many of the key properties of systems in self-organized criticality (SOC) that an alternate interpretation has become virtually impossible. It is now necessary to find and model the source of this behavior. We note that the most common models of self-organized criticality are numerical sandpiles. These are, at root, models that govern the transport of some quantity from a region where it is loaded to another where it is unloaded. Transport is enabled by the excitation of a local threshold instability; it is intermittent and bursty, and it exhibits a number of scale-free statistical properties. Searching for a system in the magnetosphere that is analogous and that, in addition, is known to produce auroral signatures, we focus on the reconnection dynamics of the plasma sheet. In our previous work, a driven reconnection model has been constructed and has been under study. The transport of electromagnetic (primarily magnetic) energy carried by the Poynting flux into the reconnection region of the model has been examined. All of the analysis techniques, and more, that have been applied to the auroral image data have also been applied to this Poynting flux. Here, we report new results showing that this model also exhibits so many of the key properties of systems in self-organized criticality that an alternate interpretation is implausible. Further, we find a strong correlation between these key properties of the model and those of the auroral UV emissions. We suggest that, in general, the driven reconnection model is an important step toward a realistic plasma physical model of self-organized criticality and we conclude, more specifically, that it is also a step in the right direction toward modeling the multiscale reconnection dynamics of the magnetotail.

  3. Clustering of the Self-Organizing Map based Approach in Induction Machine Rotor Faults Diagnostics

    Directory of Open Access Journals (Sweden)

    Ahmed TOUMI

    2009-12-01

    Full Text Available Self-Organizing Maps (SOM is an excellent method of analyzingmultidimensional data. The SOM based classification is attractive, due to itsunsupervised learning and topology preserving properties. In this paper, theperformance of the self-organizing methods is investigated in induction motorrotor fault detection and severity evaluation. The SOM is based on motor currentsignature analysis (MCSA. The agglomerative hierarchical algorithms using theWard’s method is applied to automatically dividing the map into interestinginterpretable groups of map units that correspond to clusters in the input data. Theresults obtained with this approach make it possible to detect a rotor bar fault justdirectly from the visualization results. The system is also able to estimate theextent of rotor faults.

  4. Formation of Self-Organized Anode Patterns in Arc Discharge Simulations

    CERN Document Server

    Trelles, Juan Pablo

    2013-01-01

    Pattern formation and self-organization are phenomena commonly observed experimentally in diverse types of plasma systems, including atmospheric-pressure electric arc discharges. However, numerical simulations reproducing anode pattern formation in arc discharges have proven exceedingly elusive. Time-dependent three-dimensional thermodynamic nonequilibrium simulations reveal the spontaneous formation of self-organized patterns of anode attachment spots in the free-burning arc, a canonical thermal plasma flow established by a constant DC current between an axi-symmetric electrodes configuration in the absence of external forcing. The number of spots, their size, and distribution within the pattern depend on the applied total current and on the resolution of the spatial discretization, whereas the main properties of the plasma flow, such as maximum temperatures, velocity, and voltage drop, depend only on the former. The sensibility of the solution to the spatial discretization stresses the computational require...

  5. Aging exponents in self-organized criticality

    International Nuclear Information System (INIS)

    In a recent Letter [Phys. Rev. Lett. 79, 889 (1997)] we demonstrated that the avalanches in the Bak-Sneppen model display aging behavior similar to glassy systems. Numerical results for temporal correlations show a broad distribution with two distinct regimes separated by a time scale that is related to the age of the avalanche. This dynamical breaking of time-translational invariance results in a previously unrecognized critical exponent r. Here we present results for r from extensive numerical simulations of self-organized critical models in d=1 and 2. We find rd=1=0.45±0.05 and rd=2=0.23±0.05 for the Bak-Sneppen model, and our results suggest r=1/4 for the analytically tractable multitrade model in both dimensions. copyright 1997 The American Physical Society

  6. Aging exponents in self-organized criticality

    Energy Technology Data Exchange (ETDEWEB)

    Boettcher, S. [Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta, Georgia 30314 (United States)]|[Center for Nonlinear Studies, MS-B258, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1997-12-01

    In a recent Letter [Phys. Rev. Lett. {bold 79}, 889 (1997)] we demonstrated that the avalanches in the Bak-Sneppen model display aging behavior similar to glassy systems. Numerical results for temporal correlations show a broad distribution with two distinct regimes separated by a time scale that is related to the age of the avalanche. This dynamical breaking of time-translational invariance results in a previously unrecognized critical exponent r. Here we present results for r from extensive numerical simulations of self-organized critical models in d=1 and 2. We find r{sub d=1}=0.45{plus_minus}0.05 and r{sub d=2}=0.23{plus_minus}0.05 for the Bak-Sneppen model, and our results suggest r=1/4 for the analytically tractable multitrade model in both dimensions. {copyright} {ital 1997} {ital The American Physical Society}

  7. Self-organized structures in soft confined thin films

    Indian Academy of Sciences (India)

    Ashutosh Sharma

    2005-10-01

    We present a mini-review of our recent work on spontaneous, self-organized creation of mesostructures in soft materials like thin films of polymeric liquids and elastic solids. These very small scale, highly confined systems are inherently unstable and thus self-organize into ordered structures which can be exploited for MEMS, sensors, opto-electronic devices and a host of other nanotechnology applications. In particular, mesomechanics requires incorporation of intermolecular interactions and surface tension forces, which are usually inconsequential in classical macroscale mechanics. We point to some experiments and quasi-continuum simulations of self-organized structures in thin soft films which are germane not only to nanotechnology, but also to a spectrum of classical issues such as adhesion/debonding, wetting, coatings, tribology and membranes.

  8. Critical percolation in self-organized media: A case study on random directed networks

    OpenAIRE

    Kamp, Christel; Bornholdt, Stefan

    2002-01-01

    A minimal model for self-organized critical percolation on directed graphs with activating and de-activating links is studied. Unlike classical self-organized criticality, the variables that determine criticality are separated from the dynamical variables of the system and evolve on a slower timescale, resulting in robust criticality. While activity of nodes percolates across the network, the network self-organizes through local adjustment of links according to the criterion that a link's adj...

  9. Information Measures of Complexity, Emergence, Self-organization, Homeostasis, and Autopoiesis

    OpenAIRE

    Fernandez, Nelson; Maldonado, Carlos; Gershenson, Carlos

    2013-01-01

    This chapter reviews measures of emergence, self-organization, complexity, homeostasis, and autopoiesis based on information theory. These measures are derived from proposed axioms and tested in two case studies: random Boolean networks and an Arctic lake ecosystem. Emergence is defined as the information a system or process produces. Self-organization is defined as the opposite of emergence, while complexity is defined as the balance between emergence and self-organization. Homeostasis refle...

  10. Complexity in plasma. A grand view of self-organization

    International Nuclear Information System (INIS)

    The central theme of the Complexity is the inquest of the creation of ordered structure in nature. Extensive computer simulations on plasmas have revealed that self-organization is governed by the three key processes, i.e. energy pumping, entropy expulsion and nonlinearity. A system exhibits characteristically different self-organization, depending on whether the energy pumping is instantaneous or continuous, or whether the produced entropy is expulsed or reserved. The nonlinearity acts to bring a nonequilibrium state into a bifurcation, thus resulting in a new structure along with an anomalous entropy production. (author)

  11. Self-Organization in Coupled Map Scale-Free Networks

    International Nuclear Information System (INIS)

    We study the self-organization of phase synchronization in coupled map scale-free networks with chaotic logistic map at each node and find that a variety of ordered spatiotemporal patterns emerge spontaneously in a regime of coupling strength. These ordered behaviours will change with the increase of the average links and are robust to both the system size and parameter mismatch. A heuristic theory is given to explain the mechanism of self-organization and to figure out the regime of coupling for the ordered spatiotemporal patterns

  12. Macroscopic and microscopic self-organization by nonlocal anisotropic interactions

    CERN Document Server

    Cristiani, Emiliano; Tosin, Andrea

    2009-01-01

    This paper is concerned with mathematical modeling of intelligent systems, such as human crowds and animal groups. In particular, the focus is on the emergence of different self-organized patterns from non-locality and anisotropy of the interactions among individuals. A mathematical technique by time-evolving measures is introduced to deal with both macroscopic and microscopic scales within a unified modeling framework. Then self-organization issues are investigated and numerically reproduced at the proper scale, according to the kind of agents under consideration.

  13. 5G heterogeneous networks self-organizing and optimization

    CERN Document Server

    Rong, Bo; Kadoch, Michel; Sun, Songlin; Li, Wenjing

    2016-01-01

    This SpringerBrief provides state-of-the-art technical reviews on self-organizing and optimization in 5G systems. It covers the latest research results from physical-layer channel modeling to software defined network (SDN) architecture. This book focuses on the cutting-edge wireless technologies such as heterogeneous networks (HetNets), self-organizing network (SON), smart low power node (LPN), 3D-MIMO, and more. It will help researchers from both the academic and industrial worlds to better understand the technical momentum of 5G key technologies.

  14. Quantum-coherence driven self-organized criticality and non-equilibrium light localization

    Science.gov (United States)

    Jha, Pankaj; Tsakmakidis, Kosmas; Wang, Yuan; Zhang, Xiang

    In its 28 years since its introduction in 1987, self-organized criticality (SOC) has had a major impact across a broad range of seemingly dissimilar fields of science. However, until now, it has primarily been applied to classical systems, and it remains a fundamental open question whether the theory also finds a place in complex systems driven by quantum coherence (QC). Here, on the basis of a many-body quantum-field theory and corroborating Maxwell-Bloch-Langevin computations, we report on the first example of fractal SOC driven, in the nano-world, by quantum coherence. We show that a quantum-coherently controlled active nano-plasmonic heterostructure allows, in the regime where the light speed is very close to zero, for the phase-synchronization in space of a continuous ensemble of nano-optical oscillators, giving rise to a fundamentally new kind of non-equilibrium light localization. We observe all hallmarks of SOC in this quantum many-body photonic nano-system of interacting heavy bosons, and we identify two critical points, one signifying the onset of spontaneous spatial self-organization, followed in time by another one that signifies the onset of activity. Our analysis reveals a quantum-coherence driven self-organized double-critical property in photonics and a new type of robust light localization, far out of thermodynamic and optical equilibria, with a broad range of potential applications in nano-optics and condensed-matter photonics.

  15. Research on the Higher Education System Development Based on Self-organization Theory%自组织理论视野下的高等教育系统发展研究

    Institute of Scientific and Technical Information of China (English)

    李政; 吕慈仙

    2012-01-01

    In this thesis,the restructuring and development of higher education is regarded as System development mechanism.We tried to use several self-organization theories,based on the industry characteristics and practical problems of higher education system,to study the real terms,Objectives and means of the evolution and development on self-organization.Some corresponding countermeasures will be proposed in order to facilitate the sustained and rapid development of China's higher education system.%当前高等教育正处于由层次转型向内涵转型的过渡时期,如何真正实现从形式到实质的转型就成为高等教育系统以及各所高校发展进程中一个亟待解决的问题,在自组织理论视域下,这一问题可以转化为一个特殊的系统发展机制问题。本文分析了高等教育系统的自组织特性及其发展原理,提出了自组织理论视野下高等教育系统发展的若干思路。

  16. Self-Organized Criticality in Quark-Hadron Phase Transition

    OpenAIRE

    Hwa, Rudolph C.; Pan, Jicai

    1995-01-01

    The problem of clusters growth in quark-hadron phase transition in heavy-ion collision is investigated by cellular automata. The system is found to exhibit self-organized criticality with the distribution of cluster sizes having universal scaling behavior.

  17. Self-Organization of the Neuron Collective of Optimal Complexity

    OpenAIRE

    Schetinin, V.; Kostunin, A.

    2005-01-01

    The optimal complexity of neural networks is achieved when the self-organization principles is used to eliminate the contradictions existing in accordance with the K. Godel theorem about incompleteness of the systems based on axiomatics. The principle of S. Beer exterior addition the Heuristic Group Method of Data Handling by A. Ivakhnenko realized is used.

  18. The Design and Reliability Analysis of the Self-organizing Fault-tolerant System%自组织容错系统的设计及其可靠性分析

    Institute of Scientific and Technical Information of China (English)

    巨政权; 满梦华; 原亮

    2012-01-01

    以生物神经系统的容错机理为基础,借鉴传统的人工神经网络的构建方式,结合电子电路的构造特点,提出了一种自组织神经网络模型,构建了自组织容错系统,并对构建的容错系统建立可靠性模型.通过可靠性分析发现,对于同功能不同拓扑的承载电路,当其占用神经元越少、在各层上分布越均匀时,其可靠性越高.%The self-organizing neural networks model was proposed based on the fault-tolerant mechanism of the biological nervous system,the structure characteristic of the traditional artificial neural network and the electronic circuit,and then the self-organizing Fault-tolerant System and its reliability model were constructed.Through dependability analyzed,we found that the fewer the cell in the circuit,and the more evenly to distribute on every floor,the higher of its dependability.

  19. Self-Organized Criticality in Particle Production

    OpenAIRE

    Paramonov, A.; Rostovtsev, A.

    2002-01-01

    Self-Organized Criticality paradigm is a plausible picture for hadron production. A power-law behavior of hadron transverse momentum spectra and an approximate scaling observed for different hadrons in high energy hadronic collisions are discussed.

  20. Self-organized topology of recurrence-based complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui, E-mail: huiyang@usf.edu; Liu, Gang [Complex Systems Monitoring, Modeling and Analysis Laboratory, University of South Florida, Tampa, Florida 33620 (United States)

    2013-12-15

    With the rapid technological advancement, network is almost everywhere in our daily life. Network theory leads to a new way to investigate the dynamics of complex systems. As a result, many methods are proposed to construct a network from nonlinear time series, including the partition of state space, visibility graph, nearest neighbors, and recurrence approaches. However, most previous works focus on deriving the adjacency matrix to represent the complex network and extract new network-theoretic measures. Although the adjacency matrix provides connectivity information of nodes and edges, the network geometry can take variable forms. The research objective of this article is to develop a self-organizing approach to derive the steady geometric structure of a network from the adjacency matrix. We simulate the recurrence network as a physical system by treating the edges as springs and the nodes as electrically charged particles. Then, force-directed algorithms are developed to automatically organize the network geometry by minimizing the system energy. Further, a set of experiments were designed to investigate important factors (i.e., dynamical systems, network construction methods, force-model parameter, nonhomogeneous distribution) affecting this self-organizing process. Interestingly, experimental results show that the self-organized geometry recovers the attractor of a dynamical system that produced the adjacency matrix. This research addresses a question, i.e., “what is the self-organizing geometry of a recurrence network?” and provides a new way to reproduce the attractor or time series from the recurrence plot. As a result, novel network-theoretic measures (e.g., average path length and proximity ratio) can be achieved based on actual node-to-node distances in the self-organized network topology. The paper brings the physical models into the recurrence analysis and discloses the spatial geometry of recurrence networks.

  1. Self-organized topology of recurrence-based complex networks

    International Nuclear Information System (INIS)

    With the rapid technological advancement, network is almost everywhere in our daily life. Network theory leads to a new way to investigate the dynamics of complex systems. As a result, many methods are proposed to construct a network from nonlinear time series, including the partition of state space, visibility graph, nearest neighbors, and recurrence approaches. However, most previous works focus on deriving the adjacency matrix to represent the complex network and extract new network-theoretic measures. Although the adjacency matrix provides connectivity information of nodes and edges, the network geometry can take variable forms. The research objective of this article is to develop a self-organizing approach to derive the steady geometric structure of a network from the adjacency matrix. We simulate the recurrence network as a physical system by treating the edges as springs and the nodes as electrically charged particles. Then, force-directed algorithms are developed to automatically organize the network geometry by minimizing the system energy. Further, a set of experiments were designed to investigate important factors (i.e., dynamical systems, network construction methods, force-model parameter, nonhomogeneous distribution) affecting this self-organizing process. Interestingly, experimental results show that the self-organized geometry recovers the attractor of a dynamical system that produced the adjacency matrix. This research addresses a question, i.e., “what is the self-organizing geometry of a recurrence network?” and provides a new way to reproduce the attractor or time series from the recurrence plot. As a result, novel network-theoretic measures (e.g., average path length and proximity ratio) can be achieved based on actual node-to-node distances in the self-organized network topology. The paper brings the physical models into the recurrence analysis and discloses the spatial geometry of recurrence networks

  2. Singularity spectrum of self-organized criticality

    OpenAIRE

    E Canessa

    1992-01-01

    I introduce a simple continuous probability theory based on the Ginzburg-Landau equation that provides for the first time a common analytical basis to relate and describe the main features of two seemingly different phenomena of condensed-matter physics, namely self-organized criticality and multifractality. Numerical support is given by a comparison with reported simulation data. Within the theory the origin of self-organized critical phenomena is analysed in terms of a nonlinear singularity...

  3. Self-organization on surfaces: foreword

    OpenAIRE

    Fruchart, Olivier

    2005-01-01

    Foreword of the Editor to Special Issue on Self-organization on surfaces International audience After decades of work, the growth of continuous thin films, i.e., two-dimensional structures, is progressively becoming a technological issue more than a field of fundamental research. Incidentally self-organization of nanostructures on surfaces is now an important field of research, i.e., structures of dimensionality one or zero, with a steep rise of attention in the past five years. Whereas...

  4. Perception and self-organized instability

    OpenAIRE

    Friston, Karl,; Breakspear, Michael; Deco, Gustavo

    2012-01-01

    This paper considers state-dependent dynamics that mediate perception in the brain. In particular, it considers the formal basis of self-organized instabilities that enable perceptual transitions during Bayes-optimal perception. The basic phenomena we consider are perceptual transitions that lead to conscious ignition (Dehaene and Changeux, 2011) and how they depend on dynamical instabilities that underlie chaotic itinerancy (Breakspear, 2001; Tsuda, 2001) and self-organized criticality (Begg...

  5. String tightening as a self-organizing phenomenon.

    Science.gov (United States)

    Banerjee, Bonny

    2007-09-01

    The phenomenon of self-organization has been of special interest to the neural network community throughout the last couple of decades. In this paper, we study a variant of the self-organizing map (SOM) that models the phenomenon of self-organization of the particles forming a string when the string is tightened from one or both of its ends. The proposed variant, called the string tightening self-organizing neural network (STON), can be used to solve certain practical problems, such as computation of shortest homotopic paths, smoothing paths to avoid sharp turns, computation of convex hull, etc. These problems are of considerable interest in computational geometry, robotics path-planning, artificial intelligence (AI) (diagrammatic reasoning), very large scale integration (VLSI) routing, and geographical information systems. Given a set of obstacles and a string with two fixed terminal points in a 2-D space, the STON model continuously tightens the given string until the unique shortest configuration in terms of the Euclidean metric is reached. The STON minimizes the total length of a string on convergence by dynamically creating and selecting feature vectors in a competitive manner. Proof of correctness of this anytime algorithm and experimental results obtained by its deployment have been presented in the paper. PMID:18220194

  6. Self-organizing maps and galaxy evolution

    Science.gov (United States)

    Beland, Jacques

    Artificial Neural Networks (ANN) have been applied to many areas of research. These techniques use a series of object attributes and can be trained to recognize different classes of objects. The Self-Organizing Map (SOM) is an unsupervised machine learning technique which has been shown to be successful in the mapping of high-dimensional data into a 2D representation referred to as a map. These maps are easier to interpret and aid in the classification of data. In this work, the existing algorithms for the SOM have been extended to generate 3D maps. The higher dimensionality of the map provides for more information to be made available to the interpretation of classifications. The effectiveness of the implementation was verified using three separate standard datasets. Results from these investigations supported the expectation that a 3D SOM would result in a more effective classifier. The 3D SOM algorithm was then applied to an analysis of galaxy morphology classifications. It is postulated that the morphology of a galaxy relates directly to how it will evolve over time. In this work, the Spectral Energy Distribution (SED) will be used as a source for galaxy attributes. The SED data was extracted from the NASA Extragalactic Database (NED). The data was grouped into sample sets of matching frequencies and the 3D SOM application was applied as a morphological classifier. It was shown that the SOMs created were effective as an unsupervised machine learning technique to classify galaxies based solely on their SED. Morphological predictions for a number of galaxies were shown to be in agreement with classifications obtained from new observations in NED.

  7. Self-organized criticality in evolution of nuclear fuel microstructure

    International Nuclear Information System (INIS)

    Nuclear fuel microstructure has major influence on the fission product release from nuclear fuel matrix. Here we present the self-organized criticality model applied to describe the evolution of nuclear fuel microstructure. It is shown that the behavior of fuel bubbles is similar to that of species in natural ecosystems and their evolution can be characterized as an avalanche process. Modelled bubble size distribution for different fuel burnups is in good agreement with the experimental data. (author)

  8. Scaling and self-organized criticality in proteins I

    OpenAIRE

    J. C. Phillips

    2009-01-01

    The complexity of proteins is substantially simplified by regarding them as archetypical examples of self-organized criticality (SOC). To test this idea and elaborate on it, this article applies the Moret–Zebende SOC hydrophobicity scale to the large-scale scaffold repeat protein of the HEAT superfamily, PR65/A. Hydrophobic plasticity is defined and used to identify docking platforms and hinges from repeat sequences alone. The difference between the MZ scale and conventional hydrophobicity sc...

  9. Grey self-organizing map based intrusion detection

    Institute of Scientific and Technical Information of China (English)

    王春东; 虞鹤峰; 王怀彬

    2009-01-01

    Grey self-organizing map(GSOM) model is proposed and applied in the detection of intrusion.Through the improvement of the weight adjustment using the GRC(grey relational coefficient),the training results of SOM get better.In the detection of deny of service(DOS) attacks,this model can consider the relativity of the data set of DOS attacks.Finally,the experiments on the DOS data set confirm their validities and feasibilities over this GSOM model.

  10. Self-Organization in Disaster Resilient Heterogeneous Small Cell Networks

    OpenAIRE

    Zhang, Haijun; Jiang, Chunxiao; Hu, Rose Qingyang; Qian, Yi

    2015-01-01

    Heterogeneous small cell networks with overlay femtocells and macrocell is a promising solution for future heterogeneous wireless cellular communications. However, great resilience is needed in heterogeneous small cells in case of accidents, attacks and natural disasters. In this article, we first describe the network architecture of disaster resilient heterogeneous small cell networks (DRHSCNs), where several self-organization inspired approaches are applied. Based on the proposed resilient ...

  11. THEORETICAL BASES OF PEDAGOGICAL MAINTENANCE OF SCHOOL STUDENTS’ SELF- ORGANIZATION

    Directory of Open Access Journals (Sweden)

    Komova O. V.

    2015-12-01

    Full Text Available The theoretical elements of pedagogical maintenance of school students’ self-organization are considered in the article, as new forms of organization of educational process. We research the problem of pedagogical maintenance in psychological and pedagogical literature. There is a definition of this concept. The author thinks that the process of quality’s improvement of school students’ independent activity and their selforganization is not good developed. It is necessary to investigate this process. The problem of school students’ self-organization is described in pedagogic. There is a structure of a motivational and self - organizational basis of educational activity. This structure consists of certain stages. The first, it is a concentration of attention on an educational situation. The second, it is a pupils’ orientation in activity. The third, it has to define the purpose. The fourth, these are the ways to achievement of the purpose (performance of educational actions. Then it is a control and correction of educational actions. The last, it is an assessment (self-assessment of the received result. The pedagogical maintenance of self - organization and elements of the chosen structure makes the main contents of research in system of additional education. The author allocates levels of management of selforganization of school students. There is a definition of pedagogical maintenance of self-organization of school students. There is a conclusion that mastering skills of self-organization and self-control it not only pledge of a successful organization of educational activity, but also successful existence and selfrealization in modern society

  12. Applied computation and security systems

    CERN Document Server

    Saeed, Khalid; Choudhury, Sankhayan; Chaki, Nabendu

    2015-01-01

    This book contains the extended version of the works that have been presented and discussed in the First International Doctoral Symposium on Applied Computation and Security Systems (ACSS 2014) held during April 18-20, 2014 in Kolkata, India. The symposium has been jointly organized by the AGH University of Science & Technology, Cracow, Poland and University of Calcutta, India. The Volume I of this double-volume book contains fourteen high quality book chapters in three different parts. Part 1 is on Pattern Recognition and it presents four chapters. Part 2 is on Imaging and Healthcare Applications contains four more book chapters. The Part 3 of this volume is on Wireless Sensor Networking and it includes as many as six chapters. Volume II of the book has three Parts presenting a total of eleven chapters in it. Part 4 consists of five excellent chapters on Software Engineering ranging from cloud service design to transactional memory. Part 5 in Volume II is on Cryptography with two book...

  13. Non-Taylor magnetohydrodynamic self-organization

    International Nuclear Information System (INIS)

    A self-organization process in a plasma with a finite pressure is investigated by means of a three-dimensional magnetohydrodynamic simulation. It is demonstrated that a non-Taylor finite β self-organized state is realized in which a perpendicular component of the electric current is generated and the force-free(parallel) current decreases until they reach to almost the same level. The self-organized state is described by an MHD force-balance relation, namely, jperpendicular = B x ∇p/B·B and jparallel = μB where μ is not a constant, and the pressure structure resembles the structure of the toroidal magnetic field intensity. Unless an anomalous perpendicular thermal conduction arises, the plasma cannot relax to a Taylor state but to a non-Taylor (non-force-free) self-organized state. This state becomes more prominent for a weaker resistivity condition. The non-Taylor state has a rather universal property, for example, independence of the initial β value. Another remarkable finding is that the Taylor's conjecture of helicity conservation is, in a strict sense, not valid. The helicity dissipation occurs and its rate slows down critically in accordance with the stepwise relaxation of the magnetic energy. It is confirmed that the driven magnetic reconnection caused by the nonlinearly excited plasma kink flows plays the leading role in all of these key features of the non-Taylor self-organization. (author)

  14. Renormalization group and instantons in stochastic nonlinear dynamics, from self-organized criticality to thermonuclear reactors

    International Nuclear Information System (INIS)

    Stochastic counterparts of nonlinear dynamics are studied by means of nonperturbative functional methods developed in the framework of quantum field theory (QFT). In particular, we discuss fully developed turbulence, including leading corrections on possible compressibility of fluids, transport through porous media, theory of waterspouts and tsunami waves, stochastic magnetohydrodynamics, turbulent transport in crossed fields, self-organized criticality, and dynamics of accelerated wrinkled flame fronts advancing in a wide canal. This report would be of interest to the broad auditorium of physicists and applied mathematicians, with a background in nonperturbative QFT methods or nonlinear dynamical systems, having an interest in both methodological developments and interdisciplinary applications. (author)

  15. Sonification of a Network's Self-Organized Criticality

    OpenAIRE

    Vickers, Paul; Laing, Chris; Fairfax, Tom

    2014-01-01

    Communication networks involve the transmission and reception of large volumes of data. Research indicates that network traffic volumes will continue to increase. These traffic volumes will be unprecedented and the behaviour of global information infrastructures when dealing with these data volumes is unknown. It has been shown that complex systems (including computer networks) exhibit self-organized criticality under certain conditions. Given the possibility in such systems of a sudden and s...

  16. On the Nature and Shape of Tubulin Trails: Implications on Microtubule Self-Organization

    CERN Document Server

    Glade, Nicolas

    2012-01-01

    Microtubules, major elements of the cell skeleton are, most of the time, well organized in vivo, but they can also show self-organizing behaviors in time and/or space in purified solutions in vitro. Theoretical studies and models based on the concepts of collective dynamics in complex systems, reaction-diffusion processes and emergent phenomena were proposed to explain some of these behaviors. In the particular case of microtubule spatial self-organization, it has been advanced that microtubules could behave like ants, self-organizing by 'talking to each other' by way of hypothetic (because never observed) concentrated chemical trails of tubulin that are expected to be released by their disassembling ends. Deterministic models based on this idea yielded indeed like-looking spatio-temporal self-organizing behaviors. Nevertheless the question remains of whether microscopic tubulin trails produced by individual or bundles of several microtubules are intense enough to allow microtubule self-organization at a macr...

  17. Analytical investigation of self-organized criticality in neural networks.

    Science.gov (United States)

    Droste, Felix; Do, Anne-Ly; Gross, Thilo

    2013-01-01

    Dynamical criticality has been shown to enhance information processing in dynamical systems, and there is evidence for self-organized criticality in neural networks. A plausible mechanism for such self-organization is activity-dependent synaptic plasticity. Here, we model neurons as discrete-state nodes on an adaptive network following stochastic dynamics. At a threshold connectivity, this system undergoes a dynamical phase transition at which persistent activity sets in. In a low-dimensional representation of the macroscopic dynamics, this corresponds to a transcritical bifurcation. We show analytically that adding activity-dependent rewiring rules, inspired by homeostatic plasticity, leads to the emergence of an attractive steady state at criticality and present numerical evidence for the system's evolution to such a state. PMID:22977096

  18. An Energy-Efficient Routing and Self-Organization Algorithm in Wireless Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    LIU Li-feng; ZOU Shi-hong; ZHANG Lei; CHENG Shi-duan

    2005-01-01

    Energy efficiency is the most important goal in wireless sensor network routing and self-organization algorithms. To achieve this goal, our paper first presents a distributed energy-aware routing algorithm Nearest to Theoretical Point(NTP). Then it applies NTP to self-organization of sensor networks to form an energy-efficient self-organization algorithm Shortest Path Tree-NTP(SPT-NTP). Theoretic analysis and simulation show that NTP and SPT-NTP can ensure less network energy consumption than other related algorithms.

  19. Natural hazards and self-organized criticality

    International Nuclear Information System (INIS)

    Several natural hazards exhibit power-law behavior on their frequency-size distributions. Self-organized criticality has become a promising candidate that could offer a more in-depth understanding of the origin of temporal and spatial scaling in dissipative nonequilibrium systems. The outcomes of this thesis are presented in three scientific papers followed by a concluding summary and an appendix.In paper (A) we present a semi-phenomenological approach to explain the complex scaling behavior of the Drossel-Schwabl forest-fire model (DS-FFM) in two dimensions. We derive the scaling exponent solely from the scaling exponent of the clusters' accessible perimeter. Furthermore, the unusual transition to an exponential decay is explained both qualitatively and quantitatively. The exponential decay itself could be reproduced at least qualitatively. In paper (B) we extend the DS-FFM towards anthropogenic ignition factors. The main outcomes are an increase of the scaling exponent with decreasing lightning probability as well as a splitting of the partial frequency-size distributions of lightning induced and man made fires. Lightning is identified as the dominant mechanism in the regime of the largest fires. The results could be validated through an analysis of the Canadian Large Fire Database.In paper (C) we obtain an almost complete theory of the Olami-Feder-Christensen (OFC) model's complex spatio-temporal behavior. Synchronization pushes the system towards a critical state and generates the Gutenberg-Richter law. Desynchronization prevents the system from becoming overcritical and generates foreshocks and aftershocks. Our approach also provides a simple explanation of Omori's law. Beyond this, it explains the phenomena of foreshock migration and aftershock diffusion and the occurrence of large earthquakes without any foreshocks. A novel integer algorithm for the numerics is presented in appendix (A).(author)

  20. How nature works the science of self-organized criticality

    CERN Document Server

    Bak, Per

    1996-01-01

    This is an acclaimed book intended for the general reader who is interested in science. The author is a physicist who is well-known for his development of the property called "self-organized criticality", a property or phenomenon that lies at the heart of large dynamical systems. It can be used to analyse systems that are complicated, and which are part of the new science of complexity. It is a unifying concept that can be used to study phenomena in fields as diverse as economics, astronomy, the earth sciences, and physics. The author discusses his discovery of self-organized criticality; its relation to the world of classical physics; computer simulations and experiments which aid scientists' understanding of the property; and the relation of the subject to popular areas such as fractal geometry and power laws; cellular automata, and a wide range of practical applications.

  1. Database mining applied to central nervous system (CNS) activity.

    Science.gov (United States)

    Pintore, M; Taboureau, O; Ros, F; Chrétien, J R

    2001-04-01

    A data set of 389 compounds, active in the central nervous system (CNS) and divided into eight classes according to the receptor type, was extracted from the RBI database and analyzed by Self-Organizing Maps (SOM), also known as Kohonen Artificial Neural Networks. This method gives a 2D representation of the distribution of the compounds in the hyperspace derived from their molecular descriptors. As SOM belongs to the category of unsupervised techniques, it has to be combined with another method in order to generate classification models with predictive ability. The fuzzy clustering (FC) approach seems to be particularly suitable to delineate clusters in a rational way from SOM and to get an automatic objective map interpretation. Maps derived by SOM showed specific regions associated with a unique receptor type and zones in which two or more activity classes are nested. Then, the modeling ability of the proposed SOM/FC Hybrid System tools applied simultaneously to eight activity classes was validated after dividing the 389 compounds into a training set and a test set, including 259 and 130 molecules, respectively. The proper experimental activity class, among the eight possible ones, was predicted simultaneously and correctly for 81% of the test set compounds. PMID:11461760

  2. Self-organized criticality in single-neuron excitability.

    Science.gov (United States)

    Gal, Asaf; Marom, Shimon

    2013-12-01

    We present experimental and theoretical arguments, at the single-neuron level, suggesting that neuronal response fluctuations reflect a process that positions the neuron near a transition point that separates excitable and unexcitable phases. This view is supported by the dynamical properties of the system as observed in experiments on isolated cultured cortical neurons, as well as by a theoretical mapping between the constructs of self-organized criticality and membrane excitability biophysics. PMID:24483496

  3. Self-organized criticality in single-neuron excitability

    OpenAIRE

    Gal A.; Marom S.

    2013-01-01

    We present experimental and theoretical arguments, at the single neuron level, suggesting that neuronal response fluctuations reflect a process that positions the neuron near a transition point that separates excitable and unexcitable phases. This view is supported by the dynamical properties of the system as observed in experiments on isolated cultured cortical neurons, as well as by a theoretical mapping between the constructs of self organized criticality and membrane excitability biophysics.

  4. Self-Organized Criticality model for Brain Plasticity

    OpenAIRE

    De Arcangelis, Lucilla; Perrone-Capano, Carla; Herrmann, Hans J.

    2006-01-01

    Networks of living neurons exhibit an avalanche mode of activity, experimentally found in organotypic cultures. Here we present a model based on self-organized criticality and taking into account brain plasticity, which is able to reproduce the spectrum of electroencephalograms (EEG). The model consists in an electrical network with threshold firing and activity-dependent synapse strenghts. The system exhibits an avalanche activity power law distributed. The analysis of the power spectra of t...

  5. Self-Organized Criticality Driven by Deterministic Rules

    OpenAIRE

    Rios, Paolo De Los; Valleriani, Angelo; Vega, José Luis

    1997-01-01

    We have investigated the essential ingredients allowing a system to show Self Organized Criticality (SOC) in its collective behavior. Using the Bak-Sneppen model of biological evolution as our paradigm, we show that the random microscopic rules of update can be effectively substituted with a chaotic map without changing the universality class. Using periodic maps SOC is preserved, but in a different universality class, as long as the spectrum of frequencies is broad enough.

  6. Context, Specificity, and Self-Organization in Auxin Response

    OpenAIRE

    Del Bianco, Marta; Kepinski, Stefan

    2011-01-01

    Auxin is a simple molecule with a remarkable ability to control plant growth, differentiation, and morphogenesis. The mechanistic basis for this versatility appears to stem from the highly complex nature of the networks regulating auxin metabolism, transport and response. These heavily feedback-regulated and inter-dependent mechanisms are complicated in structure and complex in operation giving rise to a system with self-organizing properties capable of generating highly context-specific resp...

  7. Electron as Spatiotemporal Complexity due to Self-Organized Criticality

    OpenAIRE

    Ta-chung, Meng

    2001-01-01

    The electron, which has been pictured as an elementary particle ever since J.J. Thomson's e/m-measurement in 1897, and the relativistic motion of which is described by the Dirac equation, is discussed in the light of the recent progress made in Science of Complex Systems. Theoretical arguments and experimental evidences are presented which show that such an electron exhibits characteristic properties of spatiotemporal complexities due to Self-Organized Criticality (SOC). This implies in parti...

  8. Crystal self-organization in microclines from granitic pegmatites

    OpenAIRE

    Sánchez Muñoz, Luis; García Guinea, Javier; Beny, J. M.; Rouer, Olivier; Correcher, Virgilio; Moura, Odulio J. M. de

    2007-01-01

    Microclines from granitic pegmatites are complex crystals formed in evolutionary open systems during the subsolidus stage. Si/Al ordering governed by local charge distribution acts in synergy with long-range elastic interactions, producing transformation avalanches due to positive feedback relationship between the two forces. Global crystal self-organization results if atomic ordering is catalyzed by water species and simultaneously lattice is stimulated by shear stress. In this case, coalesc...

  9. Empirical analysis of Android logs using self-organizing maps

    OpenAIRE

    Finickel, Eric; Lahmadi, Abdelkader; Beck, Frederic; Festor, Olivier

    2014-01-01

    In this paper, we present an empirical analysis of the logs generated by the logging system available in Android environments. The logs are mainly related to the execution of the different components of applications and services running on an Android device. We have analysed the logs using self organizing maps where our goal is to establish behavioural fingerprints of Android applications. Each fingerprint is build using information available in logs and related to the structure of an applica...

  10. From self-organized to extended criticality

    Directory of Open Access Journals (Sweden)

    PaoloAllegrini

    2012-04-01

    Full Text Available We address the issue of criticality that is attracting the attention of an increasing number of neurophysiologists. Our main purpose is to establish the specific nature of some dynamical processes that although physically different, are usually termed as "critical", and we focus on those characterized by the cooperative interaction of many units. We notice that the term "criticality" has been adopted to denote both noise-induced phase transitions and Self-Organized Criticality (SOC with no clear connection with the traditional phase transitions, namely the transformation of a thermodynamic system from one state of matter to another. We notice the recent attractive proposal of extended criticality advocated by Bailly and Longo, which is realized through a wide set of critical points rather than emerging as a singularity from a unique value of the control parameter. We study a set of cooperatively firing neurons and we show that for an extended set of interaction couplings the system exhibits a form of temporal complexity similar to that emerging at criticality from ordinary phase transitions. This extended criticality regime is characterized by three main properties: i In the ideal limiting case of infinitely large time period, temporal complexity corresponds to Mittag-Leffler complexity; ii For large values of the interaction coupling the periodic nature of the process becomes predominant while maintaining to some extent, in the intermediate time asymptotic region, the signature of complexity; iii Focusing our attention on firing neuron avalanches, we find two of the popular SOC properties, namely the power indexes 2 and 1.5 respectively for time length and for the intensity of the avalanches. We derive the conclusion that SOC emerges from extended criticality, thereby explaining the experimental observation of Plenz and Beggs: avalanches occur in time with surprisingly regularity, in apparent conflict with he temporal complexity of physical

  11. From self-organized to extended criticality.

    Science.gov (United States)

    Lovecchio, Elisa; Allegrini, Paolo; Geneston, Elvis; West, Bruce J; Grigolini, Paolo

    2012-01-01

    We address the issue of criticality that is attracting the attention of an increasing number of neurophysiologists. Our main purpose is to establish the specific nature of some dynamical processes that although physically different, are usually termed as "critical," and we focus on those characterized by the cooperative interaction of many units. We notice that the term "criticality" has been adopted to denote both noise-induced phase transitions and Self-Organized Criticality (SOC) with no clear connection with the traditional phase transitions, namely the transformation of a thermodynamic system from one state of matter to another. We notice the recent attractive proposal of extended criticality advocated by Bailly and Longo, which is realized through a wide set of critical points rather than emerging as a singularity from a unique value of the control parameter. We study a set of cooperatively firing neurons and we show that for an extended set of interaction couplings the system exhibits a form of temporal complexity similar to that emerging at criticality from ordinary phase transitions. This extended criticality regime is characterized by three main properties: (i) In the ideal limiting case of infinitely large time period, temporal complexity corresponds to Mittag-Leffler complexity; (ii) For large values of the interaction coupling the periodic nature of the process becomes predominant while maintaining to some extent, in the intermediate time asymptotic region, the signature of complexity; (iii) Focusing our attention on firing neuron avalanches, we find two of the popular SOC properties, namely the power indexes 2 and 1.5 respectively for time length and for the intensity of the avalanches. We derive the main conclusion that SOC emerges from extended criticality, thereby explaining the experimental observation of Plenz and Beggs: avalanches occur in time with surprisingly regularity, in apparent conflict with the temporal complexity of physical critical

  12. Self-organized critical pinball machine

    DEFF Research Database (Denmark)

    Flyvbjerg, H.

    2004-01-01

    The nature of self-organized criticality (SOC) is pin-pointed with a simple mechanical model: a pinball machine. Its phase space is fully parameterized by two integer variables, one describing the state of an on-going game, the other describing the state of the machine. This is the simplest...

  13. Designing Self-Organized Contextualized Feedback Loops

    NARCIS (Netherlands)

    Kalz, Marco

    2013-01-01

    Kalz, M. (2013). Designing Self-Organized Contextualized Feedback Loops. In D. Whitelock, W. Warburton, G. Wills, & L. Gilbert (Eds.), International Conference on Computer Assisted Assessment (CAA 2013). July, 9-10, 2013, University of Southampton, Southampton, UK. http://caaconference.com.

  14. Self-organization in circular shear layers

    DEFF Research Database (Denmark)

    Bergeron, K.; Coutsias, E.A.; Lynov, Jens-Peter;

    1996-01-01

    Experiments on forced circular shear layers performed in both magnetized plasmas and in rotating fluids reveal qualitatively similar self-organization processes leading to the formation of patterns of coherent vortical structures with varying complexity. In this paper results are presented from...

  15. Self-organized criticality in fragmenting

    DEFF Research Database (Denmark)

    Oddershede, L.; Dimon, P.; Bohr, J.

    1993-01-01

    The measured mass distributions of fragments from 26 fractured objects of gypsum, soap, stearic paraffin, and potato show evidence of obeying scaling laws; this suggests the possibility of self-organized criticality in fragmenting. The probability of finding a fragment scales inversely to a power...

  16. Guided self-organization inception

    CERN Document Server

    2014-01-01

    Is it possible to guide the process of self-organisation towards specific patterns and outcomes?  Wouldn’t this be self-contradictory?   After all, a self-organising process assumes a transition into a more organised form, or towards a more structured functionality, in the absence of centralised control.  Then how can we place the guiding elements so that they do not override rich choices potentially discoverable by an uncontrolled process?  This book presents different approaches to resolving this paradox.  In doing so, the presented studies address a broad range of phenomena, ranging from autopoietic systems to morphological computation, and from small-world networks to information cascades in swarms.  A large variety of methods is employed, from spontaneous symmetry breaking to information dynamics to evolutionary algorithms, creating a rich spectrum reflecting this emerging field. Demonstrating several foundational theories and frameworks, as well as innovative practical implementations, Guided S...

  17. Self-organization via active exploration in robotic applications

    Science.gov (United States)

    Ogmen, H.; Prakash, R. V.

    1992-01-01

    We describe a neural network based robotic system. Unlike traditional robotic systems, our approach focussed on non-stationary problems. We indicate that self-organization capability is necessary for any system to operate successfully in a non-stationary environment. We suggest that self-organization should be based on an active exploration process. We investigated neural architectures having novelty sensitivity, selective attention, reinforcement learning, habit formation, flexible criteria categorization properties and analyzed the resulting behavior (consisting of an intelligent initiation of exploration) by computer simulations. While various computer vision researchers acknowledged recently the importance of active processes (Swain and Stricker, 1991), the proposed approaches within the new framework still suffer from a lack of self-organization (Aloimonos and Bandyopadhyay, 1987; Bajcsy, 1988). A self-organizing, neural network based robot (MAVIN) has been recently proposed (Baloch and Waxman, 1991). This robot has the capability of position, size rotation invariant pattern categorization, recognition and pavlovian conditioning. Our robot does not have initially invariant processing properties. The reason for this is the emphasis we put on active exploration. We maintain the point of view that such invariant properties emerge from an internalization of exploratory sensory-motor activity. Rather than coding the equilibria of such mental capabilities, we are seeking to capture its dynamics to understand on the one hand how the emergence of such invariances is possible and on the other hand the dynamics that lead to these invariances. The second point is crucial for an adaptive robot to acquire new invariances in non-stationary environments, as demonstrated by the inverting glass experiments of Helmholtz. We will introduce Pavlovian conditioning circuits in our future work for the precise objective of achieving the generation, coordination, and internalization

  18. Self-organization theory based on autocorrelations and demonstrations by simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kondoh, Yoshiomi; Yamaguchi, Masanori; Yokozuka, Katsuhisa [Gunma Univ., Kiryu (Japan). Faculty of Engineering

    1997-12-31

    A general theory of self-organization based on autocorrelations is presented. The general theory is applied to compressible resistive MHD plasmas. It is shown by 3D MHD simulations that the self-organized relaxed state depends on the spatial profile of resistivity. It is also shown by 3D MHD simulations that although there is no magnetic helicity injection, the toroidal current J{sub z} is actually induced by the process of relaxation without helicity invariance. (author)

  19. Innovative Mechanism of Rural Organization Based on Self-Organization

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The paper analyzes the basic situation of the formation of innovative rural organizations with the form of self-organization;reveals the features of self-organization,including the four aspects of openness of rural organization,innovation of rural organization far away from equilibrium,the non-linear response mechanism of rural organization innovation and the random rise and fall of rural organization innovation.The evolution mechanism of rural organization innovation is revealed according to the growth stage,the ideal stage,the decline and the fall stage.The paper probes into the basic restriction mechanism of the self-organization evaluation of rural organization from three aspects,including target recognition,path dependence and knowledge sharing.The basic measures on cultivating the innovative mechanism of rural organization are put forward.Firstly,constructing the dissipative structure of rural organization innovation;secondly,cultivating the dynamic study capability of rural organization innovation system;thirdly,selecting the step-by-step evolution strategy of rural organization innovation system.

  20. Applied systems analysis. No. 22

    International Nuclear Information System (INIS)

    Based on a detailed analysis of demands in the area Cologne/Frankfurt, the amount of the system products for this region were ascertained, which under consideration of technical conditions and entrepreneurial aspects seemed to be disposable at cost equality with competative energy supplies. Based on these data, the technical components of the system, location and piping were fixed and first- and operating costs were determined. For a judgement of the economics, the key numbers, cash value, internal rate of interest and cost recovery rate were determined from the difference of costs between the nuclear long distance energy system and alternative facilities. Furthermore specific production cost, associated prices and contribution margin were presented for each product. (orig.)

  1. Study on self organized criticality of China power grid blackouts

    International Nuclear Information System (INIS)

    Based on the complex system theory and the concept of self organized criticality (SOC) theory, the mechanism of China power grid blackout is studied by analyzing the blackout data in the China power system from 1981 to 2002. The probability distribution functions of various measures of blackout size have a power tail. The analysis of scaled window variance and rescaled range statistics of the time series show moderate long time correlations. The blackout data seem consistent with SOC; the results obtained show that SOC dynamics may play an important role in the dynamics of power systems blackouts. It would be possible to propose novel approaches for understanding and controlling power systems blackouts

  2. Pseudo-self-organized topological phases in glassy selenides for IR photonics

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O. [Lviv Institute of Materials of Scientific Research Company ' ' Carat' ' 202, Stryjska str., 79031 Lviv (Ukraine); Institute of Physics of Jan Dlugosz University 13/15, al. Armii Krajowej, 42201 Czestochowa (Poland); Golovchak, R. [Lviv Institute of Materials of Scientific Research Company ' ' Carat' ' 202, Stryjska str., 79031 Lviv (Ukraine)

    2011-09-15

    Network-forming cluster approach is applied to As-Se and Ge-Se glasses to justify their tendency to self-organization. It is shown that reversibility windows determined by temperature-modulated differential scanning calorimetry using short-term aged or as-prepared samples do not necessary coincide with self-organized phase in these materials. The obtained results testify also pseudo-self-organization phenomenon in Ge-Se glasses: over-constrained outrigger raft structural units built of two edge- and four corner-shared tetrahedra are interconnected via optimally-constrained {identical_to}Ge-Se-Se-Ge{identical_to} bridges within the range of compositions identified previously as self-organized phase by temperature modulated differential scanning calorimetry technique. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Collective Classification of Textual Documents by Guided Self-Organization in T-Cell Cross-Regulation Dynamics

    CERN Document Server

    Abi-Haidar, Alaa; 10.1007/s12065-011-0052-5

    2011-01-01

    We present and study an agent-based model of T-Cell cross-regulation in the adaptive immune system, which we apply to binary classification. Our method expands an existing analytical model of T-cell cross-regulation (Carneiro et al. in Immunol Rev 216(1):48-68, 2007) that was used to study the self-organizing dynamics of a single population of T-Cells in interaction with an idealized antigen presenting cell capable of presenting a single antigen. With agent-based modeling we are able to study the self-organizing dynamics of multiple populations of distinct T-cells which interact via antigen presenting cells that present hundreds of distinct antigens. Moreover, we show that such self-organizing dynamics can be guided to produce an effective binary classification of antigens, which is competitive with existing machine learning methods when applied to biomedical text classification. More specifically, here we test our model on a dataset of publicly available full-text biomedical articles provided by the BioCreat...

  4. Turbulence vs Self-organized criticality: A hybrid approach, with implications for substorm dynamics of the magnetosphere

    Science.gov (United States)

    Milovanov, Alexander

    Plasmas in astrophysics, cosmical geophysics, and laboratory plasmas are often found in far-from-equilibrium dynamical state usually described as ``turbulence". It has been argued and discussed in the literature that the typical signatures of turbulent systems including power-law power spectral density and the scale-free statistics of fluctuating observable quantities can more or less successfully be reproduced by complex systems in the state of self-organized criticality (SOC). An obvious distinction between the theoretical concepts of turbulence and SOC has not been obtained, though (for the challenges that lie ahead, and current scientific debate, see the recently announced book on ``Self-Organized Criticality Systems" - available in open access from Open Academic Press, http://www.openacademicpress.de/). Here we discuss these issues further and show that the behavior crucially depends on the type of boundary conditions, feedback mechanisms, and the role of nonlinearity. We then apply this approach to the dynamics of Earth's geomagnetic tail and propose a hybrid model of ``turbulent" current sheet, which explicitly takes into account the self-organization processes taking place. The model yields the slope of magnetic fluctuation spectra in the near-Earth stretched magnetotail prior to the substorm below the characteristic frequency turnover scales posed by convection. A comparison between the model theoretical predictions and the available data of in situ satellite observations is given.

  5. Self-organized defensive behavior in honeybees

    OpenAIRE

    Millor, J.; Pham-Delegue, M; Deneubourg, J. L.; Camazine, S

    1999-01-01

    We investigated the defensive behavior of honeybees under controlled experimental conditions. During an attack on two identical targets, the spatial distribution of stings varied as a function of the total number of stings, evincing the classic “pitchfork bifurcation” phenomenon of nonlinear dynamics. The experimental results support a model of defensive behavior based on a self-organizing mechanism. The model helps to explain several of the characteristic features of the honeybee defensive r...

  6. Hybrid Self Organizing Map for Overlapping Clusters

    OpenAIRE

    M.N.M. Sap; Ehsan Mohebi

    2008-01-01

    The Kohonen self organizing map is an excellent tool in exploratoryphase of data mining and pattern recognition. The SOM is a popular tool that maps high dimensional space into a small number of dimensions by placing similar elements close together, forming clusters. Recently researchers found that to capture the uncertainty involved in cluster analysis, it is not necessary to have crisp boundaries in some clustering operations. In this paper to overcomethe uncertainty, a two-level clustering...

  7. Self-Organized Criticality and earthquakes

    OpenAIRE

    Caruso, F.; Pluchino, A.; Latora, V.; Rapisarda, A; Vinciguerra, S.

    2007-01-01

    We discuss recent results on a new analysis regarding models showing Self-Organized Criticality (SOC), and in particular on the OFC one. We show that Probability Density Functions (PDFs) for the avalanche size differences at different times have fat tails with a q-Gaussian shape. This behavior does not depend on the time interval adopted and it is also found when considering energy differences between real earthquakes.

  8. Self-Organized Criticality and earthquakes

    International Nuclear Information System (INIS)

    We discuss recent results on a new analysis regarding models showing Self-Organized Criticality (SOC), and in particular on the OFC one. We show that Probability Density Functions (PDFs) for the avalanche size differences at different times have fat tails with a q-Gaussian shape. This behavior does not depend on the time interval adopted and it is also found when considering energy differences between real earthquakes

  9. Mapping Self-Organized Criticality onto Criticality

    OpenAIRE

    Sornette, Didier; Johansen, Anders; Dornic, Ivan

    1995-01-01

    We present a general conceptual framework for self-organized criticality (SOC), based on the recognition that it is nothing but the expression, ''unfolded'' in a suitable parameter space, of an underlying {\\em unstable} dynamical critical point. More precisely, SOC is shown to result from the tuning of the {\\em order parameter} to a vanishingly small, but {\\em positive} value, thus ensuring that the corresponding control parameter lies exactly at its critical value for the underlying transiti...

  10. From self-organized to extended criticality

    OpenAIRE

    PaoloAllegrini; ElisaLovecchio; ElvisGeneston; BruceJWest

    2012-01-01

    We address the issue of criticality that is attracting the attention of an increasing number of neurophysiologists. Our main purpose is to establish the specific nature of some dynamical processes that although physically different, are usually termed as "critical", and we focus on those characterized by the cooperative interaction of many units. We notice that the term "criticality" has been adopted to denote both noise-induced phase transitions and Self-Organized Critic...

  11. Self-Organized Critical Directed Percolation

    OpenAIRE

    Maslov, Sergei; Zhang, Yi-Cheng

    1996-01-01

    We introduce and study a dynamic transport model exhibiting Self-Organized Criticality. The novel concepts of our model are the probabilistic propagation of activity and unbiased random repartition of energy among the active site and its nearest neighbors. For space dimensionality $d\\geq 2$ we argue that the model is related to $d+1$ dimensional directed percolation, with time interpreted as the preferred direction.

  12. Always-optimally-coordinated candidate selection algorithm for peer-to-peer files sharing system in mobile self-organized networks

    Institute of Scientific and Technical Information of China (English)

    Li Xi; Ji Hong; Zheng Ruiming; Li Ting

    2009-01-01

    In order to improve the performance of peer-to-peer files sharing system under mobile distributed environments, a novel always-optimally-coordinated (AOC) criterion and corresponding candidate selection algorithm are proposed in this paper. Compared with the traditional min-hops criterion, the new approach introduces a fuzzy knowledge combination theory to investigate several important factors that influence files transfer success rate and efficiency. Whereas the min-hops based protocols only ask the nearest candidate peer for desired files, the selection algorithm based on AOC comprehensively considers users' preference and network requirements with flexible balancing rules. Furthermore, its advantage also expresses in the independence of specified resource discovering protocols, allowing for scalability. The simulation results show that when using the AOC based peer selection algorithm, system performance is much better than the min-hops scheme, with files successful transfer rate improved more than 50% and transfer time reduced at least 20%.

  13. Pattern classification and recognition of invertebrate functional groups using self-organizing neural networks.

    Science.gov (United States)

    Zhang, WenJun

    2007-07-01

    Self-organizing neural networks can be used to mimic non-linear systems. The main objective of this study is to make pattern classification and recognition on sampling information using two self-organizing neural network models. Invertebrate functional groups sampled in the irrigated rice field were classified and recognized using one-dimensional self-organizing map and self-organizing competitive learning neural networks. Comparisons between neural network models, distance (similarity) measures, and number of neurons were conducted. The results showed that self-organizing map and self-organizing competitive learning neural network models were effective in pattern classification and recognition of sampling information. Overall the performance of one-dimensional self-organizing map neural network was better than self-organizing competitive learning neural network. The number of neurons could determine the number of classes in the classification. Different neural network models with various distance (similarity) measures yielded similar classifications. Some differences, dependent upon the specific network structure, would be found. The pattern of an unrecognized functional group was recognized with the self-organizing neural network. A relative consistent classification indicated that the following invertebrate functional groups, terrestrial blood sucker; terrestrial flyer; tourist (nonpredatory species with no known functional role other than as prey in ecosystem); gall former; collector (gather, deposit feeder); predator and parasitoid; leaf miner; idiobiont (acarine ectoparasitoid), were classified into the same group, and the following invertebrate functional groups, external plant feeder; terrestrial crawler, walker, jumper or hunter; neustonic (water surface) swimmer (semi-aquatic), were classified into another group. It was concluded that reliable conclusions could be drawn from comparisons of different neural network models that use different distance

  14. 循环知识流视角下自组织系统知识转移模式研究%Based on the Cycle of Knowledge Flow Knowledge Transfer Pattern Research Self-organization System

    Institute of Scientific and Technical Information of China (English)

    张树中

    2012-01-01

    This paper discusses on knowledge transfer of basic elements and expounds the connotation of concept.Using physics research method,elaboration of knowledge flow motion principle,it points out that the essence of knowledge transfer is knowledge nodes passed between energy interaction and transformation,the knowledge in self-organizing knowledge nodes transfer between cycle flow.In the process of knowledge transfer knowledge flow expansion is also accompanied by end phenomenon.At present the knowledge flow expansion far outweighs the knowledge flow end content and speed,making human knowledge content in the continuous and expansion.Numerous cycles of knowledge flow interweaving network,the network interaction constitutes knowledge field.Analogy of field theory in physics sets knowledge field space dimension,on basis of which to build self-organizing system model of knowledge transfer.%探讨知识转移的基本构成要素,阐述相关概念的基本内涵。采用物理学的研究方法,通过对知识流运动原理的阐述,指出知识转移的本质就是知识节点之间通过能量的相互作用与转换,使知识在自组织系统知识节点间的循环转移流动。在自组织系统知识转移的过程中伴随有知识流扩张与终结的现象,目前知识流扩张的内容和速度远大于知识流终结的内容和速度,使人类社会的知识在内容上不断的积累与扩张。无数条循环知识流相互交织构成网络,这些网络之间相互作用形成知识场。类比物理学中的场理论设定自组织系统知识场的空间构成维度,并依此构建自组织系统的知识转移模型。

  15. Perception and self-organized instability.

    Science.gov (United States)

    Friston, Karl; Breakspear, Michael; Deco, Gustavo

    2012-01-01

    This paper considers state-dependent dynamics that mediate perception in the brain. In particular, it considers the formal basis of self-organized instabilities that enable perceptual transitions during Bayes-optimal perception. The basic phenomena we consider are perceptual transitions that lead to conscious ignition (Dehaene and Changeux, 2011) and how they depend on dynamical instabilities that underlie chaotic itinerancy (Breakspear, 2001; Tsuda, 2001) and self-organized criticality (Beggs and Plenz, 2003; Plenz and Thiagarajan, 2007; Shew et al., 2011). Our approach is based on a dynamical formulation of perception as approximate Bayesian inference, in terms of variational free energy minimization. This formulation suggests that perception has an inherent tendency to induce dynamical instabilities (critical slowing) that enable the brain to respond sensitively to sensory perturbations. We briefly review the dynamics of perception, in terms of generalized Bayesian filtering and free energy minimization, present a formal conjecture about self-organized instability and then test this conjecture, using neuronal (numerical) simulations of perceptual categorization. PMID:22783185

  16. THE STRESS RESISTANCE OF STUDENTS. THE PARADIGM OF SUBJECT PERSONALITY SELF- ORGANIZATION

    Directory of Open Access Journals (Sweden)

    Sergey I. Dyakov

    2016-01-01

    Full Text Available The aim of the investigation is to consider a problem of stress resistance of students in the context of subject self-organization of the personality. Methods. The following methods of research are used: questioning; psychological and diagnostic tests «Tolerance of Uncertainty» (NTN and «Personal Factors of Decisions» (PFD by T. V. Kornilova; original experimental experiences – «Coding», a technique of a self-assessment (scaling and «A locus control». While data processing the methods of mathematical statistics (SPSS 12 package – the correlation analysis of Pearson and the factorial analysis with rotation use a component by «verimax» method are applied. Results and scientific novelty. Types of subjectivity and strategy of stress resistance are allocated. The nature and a role of the emotional and stressful mechanism having information and semantic properties in its basis are disclosed. Communication of irresponsible mechanisms of mentality with the sphere of consciousness in the context of subjectivity of the personality is shown. Mechanisms of emotional and rational self-control of system of mental self-organization of the person are presented. The statistical and qualitative data opening communications between properties of subjectivity and stress resistance of the personality are empirically obtained. Variation of the relations and also types of subjectivity and stress resistance emphasized based on the results of the presented research. Original (author’s methods of studying of subjectivity and factors of stress resistance are presented. Practical significance. The revealed factors of subject self-organization reveal the stress-producing directions of the environment and the relation of the personality to situations of changes and uncertainty: and also indicate subject properties of resistance to stress which need to be developed to increase the level of health of students, to reduce risk of deviance and delinquency of

  17. Cluster self-organization of silicate and germanate systems: Invariant suprapolyhedral cluster precursors and self-assembly of the crystal structures of Li,TR silicates (germanates)

    International Nuclear Information System (INIS)

    The initial stages of formation of suprapolyhedral clusters (containing polyhedra of different types) in an evolving chemical system are considered. The suprapolyhedral clusters of the chain and cyclic types are used for modeling two-dimensional periodic structures. The developed model is used to search for cluster precursors in the structures of Li,TR silicates (germanates) of the known structure types. The complete threedimensional reconstruction of the self-assembly of Li,TR silicates (germanates) is performed using computer methods (with the TOPOS program package) according to the following scheme: cluster precursor → primary chain → microlayer → microframework (supraprecursor) → ... framework. Two types of invariant cyclic cluster precursors composed of the TR polyhedra linked by tetrahedra and the TR polyhedra joined by diorthotetrahedra are identified in five and two structures, respectively. It is revealed that the lithium atoms are located at the centers of all clusters. New types of two-dimensional nets with a hierarchical structure formed as a result of the packing of cyclic four-, six-, and eight-node clusters are described.

  18. Self-organization of domain growth in the Ising model with impurities

    DEFF Research Database (Denmark)

    Andersen, Jørgen Vitting; Mouritsen, Ole G.

    1992-01-01

    cascade of spin flips at the domain boundaries. We have analyzed the lifetime and size distribution functions for the avalanches and related the results to the general phenomena of self-organized criticality and to recent experiments on cellular magnetic domain patterns in magnetic garnet films. Our...... results suggest that the self-organized state in this system appears to be subcritical, in agreement with a recent theory....

  19. Self organization of wireless sensor networks using ultra-wideband radios

    Science.gov (United States)

    Dowla, Farid U.; Nekoogar, Franak; Spiridon, Alex

    2009-06-16

    A novel UWB communications method and system that provides self-organization for wireless sensor networks is introduced. The self-organization is in terms of scalability, power conservation, channel estimation, and node synchronization in wireless sensor networks. The UWB receiver in the present invention adds two new tasks to conventional TR receivers. The two additional units are SNR enhancing unit and timing acquisition and tracking unit.

  20. Avalanches properties in a self-organized critical transport model

    International Nuclear Information System (INIS)

    We have proposed a one-dimensional transport model based on critical-gradient fluctuation dynamics to describe some of the properties of plasma turbulence induced transport. This model has the characteristic properties of a self-organized critical (SOC) system. In this model, the flux is self-regulated by the stability properties of the fluctuations. A high-gradient edge region emerges where transport dynamics is close to marginal stability. The core remains at the subcritical gradient that is typical of a SOC system. Avalanches are quasi-periodic events triggered mostly near the edge region. (author)

  1. Scaling and regeneration of self-organized patterns.

    Science.gov (United States)

    Werner, Steffen; Stückemann, Tom; Beirán Amigo, Manuel; Rink, Jochen C; Jülicher, Frank; Friedrich, Benjamin M

    2015-04-01

    Biological patterns generated during development and regeneration often scale with organism size. Some organisms, e.g., flatworms, can regenerate a rescaled body plan from tissue fragments of varying sizes. Inspired by these examples, we introduce a generalization of Turing patterns that is self-organized and self-scaling. A feedback loop involving diffusing expander molecules regulates the reaction rates of a Turing system, thereby adjusting pattern length scales proportional to system size. Our model captures essential features of body plan regeneration in flatworms as observed in experiments. PMID:25884138

  2. Self-organization and self-avoiding limit cycles

    Science.gov (United States)

    Hexner, D.; Levine, D.

    2015-02-01

    A simple periodically driven system displaying rich behavior is introduced and studied. The system self-organizes into a mosaic of static ordered regions with three possible patterns, which are threaded by one-dimensional paths on which a small number of mobile particles travel. These trajectories are self-avoiding and non-intersecting, and their relationship to self-avoiding random walks is explored. Near ρ=0.5 the distribution of path lengths becomes power-law-like up to some cutoff length, suggesting a possible critical state.

  3. Multistability and self-organization in disordered SQUID metamaterials

    International Nuclear Information System (INIS)

    Planar arrays of magnetoinductively coupled rf SQUIDs (Superconducting QUantum Interference Devices) belong to the emergent class of superconducting metamaterials that encompass the Josephson effect. These SQUID-based metamaterials acquire their electromagnetic properties from the resonant characteristics of their constitutive elements, i.e., the individual rf SQUIDs. In its simplest version, an rf SQUID consists of a superconducting ring interrupted by a Josephson junction. We investigate numerically the response of a two-dimensional rf SQUID metamaterial with respect to the driving frequency of an externally applied alternating magnetic field in the presence of disorder arising from critical current fluctuations of the Josephson elements; in effect, the resonance frequencies of individual SQUIDs are distributed randomly around a mean value. Bistability is observed in the current amplitude–frequency curves both in ordered and disordered SQUID metamaterials; moreover, bistability is favored by disorder through the improvement of synchronization between SQUID oscillators. Relatively weak disorder widens significantly the bistability region by helping the system to self-organize and leads to nearly homogeneous states that change smoothly with varying driving frequency. Also, the total current of the metamaterial is enhanced, compared with that of uncoupled SQUIDs, through the synergetic action of coupling and synchronization. The existence of simultaneously stable states that provide either high or low total current, allows the metamaterial to exhibit different magnetic responses that correspond to different values of the effective magnetic permeability. At low power of the incident field, high current amplitude states exhibit extreme diamagnetic properties corresponding to negative magnetic permeability in a narrow frequency interval. (paper)

  4. Active system monitoring applied on wind turbines

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad; Parbo, Henrik;

    2009-01-01

    A concept for active system monitoring (ASM) applied on wind turbines is presented in this paper. The concept is based on an injection of a small periodic auxiliary signal in the system. An investigation of the signature from the auxiliary input in residual (error) signals can then be applied for...

  5. Ice Shape Characterization Using Self-Organizing Maps

    Science.gov (United States)

    McClain, Stephen T.; Tino, Peter; Kreeger, Richard E.

    2011-01-01

    A method for characterizing ice shapes using a self-organizing map (SOM) technique is presented. Self-organizing maps are neural-network techniques for representing noisy, multi-dimensional data aligned along a lower-dimensional and possibly nonlinear manifold. For a large set of noisy data, each element of a finite set of codebook vectors is iteratively moved in the direction of the data closest to the winner codebook vector. Through successive iterations, the codebook vectors begin to align with the trends of the higher-dimensional data. In information processing, the intent of SOM methods is to transmit the codebook vectors, which contains far fewer elements and requires much less memory or bandwidth, than the original noisy data set. When applied to airfoil ice accretion shapes, the properties of the codebook vectors and the statistical nature of the SOM methods allows for a quantitative comparison of experimentally measured mean or average ice shapes to ice shapes predicted using computer codes such as LEWICE. The nature of the codebook vectors also enables grid generation and surface roughness descriptions for use with the discrete-element roughness approach. In the present study, SOM characterizations are applied to a rime ice shape, a glaze ice shape at an angle of attack, a bi-modal glaze ice shape, and a multi-horn glaze ice shape. Improvements and future explorations will be discussed.

  6. Stochastic models for plant microtubule self-organization and structure.

    Science.gov (United States)

    Eren, Ezgi C; Dixit, Ram; Gautam, Natarajan

    2015-12-01

    One of the key enablers of shape and growth in plant cells is the cortical microtubule (CMT) system, which is a polymer array that forms an appropriately-structured scaffolding in each cell. Plant biologists have shown that stochastic dynamics and simple rules of interactions between CMTs can lead to a coaligned CMT array structure. However, the mechanisms and conditions that cause CMT arrays to become organized are not well understood. It is prohibitively time-consuming to use actual plants to study the effect of various genetic mutations and environmental conditions on CMT self-organization. In fact, even computer simulations with multiple replications are not fast enough due to the spatio-temporal complexity of the system. To redress this shortcoming, we develop analytical models and methods for expeditiously computing CMT system metrics that are related to self-organization and array structure. In particular, we formulate a mean-field model to derive sufficient conditions for the organization to occur. We show that growth-prone dynamics itself is sufficient to lead to organization in presence of interactions in the system. In addition, for such systems, we develop predictive methods for estimation of system metrics such as expected average length and number of CMTs over time, using a stochastic fluid-flow model, transient analysis, and approximation algorithms tailored to our problem. We illustrate the effectiveness of our approach through numerical test instances and discuss biological insights. PMID:25700800

  7. Do earthquakes exhibit self-organized criticality?

    International Nuclear Information System (INIS)

    If earthquakes are phenomena of self-organized criticality (SOC), statistical characteristics of the earthquake time series should be invariant after the sequence of events in an earthquake catalog are randomly rearranged. In this Letter we argue that earthquakes are unlikely phenomena of SOC because our analysis of the Southern California Earthquake Catalog shows that the first-return-time probability PM(T) is apparently changed after the time series is rearranged. This suggests that the SOC theory should not be used to oppose the efforts of earthquake prediction

  8. Self-organized criticality in superferromagnets

    International Nuclear Information System (INIS)

    Superferromagnetic structures are studied accounting for quantum fluctuations due to the discrete level structure and disorder within the randomly jumping interacting moments model. The occurrence of self-organized criticality is found to indicate an existence of spinodal regions and critical points in magnetic state equation and phase diagram. The magnetodynamics show jerky behaviour displayed as erratic stochastic discontinuities for magnetic induction. Magnetic noise correlations are proposed as model-independent analytical tools employed in order to specify, quantify and analyse magnetic structure and origin of superferromagnetism.

  9. Self-organization phenomena in plasma physics

    International Nuclear Information System (INIS)

    Experimental investigations of the appearance of ordered spatial and spatiotemporal patterns in plasma have revealed the existence of a self-organization scenario able to suggest and answer the central problem of the Science of Complexity; why matter spontaneously undergoes transitions from a disordered to an ordered state? In this paper we present new arguments justifying the opinion that such a scenario offers a new insight into phenomena long ago studied by gas discharge physicists. Their understanding requires a paradigmatic shift in plasma physics, and very probably, also in other branches of physics as well as in chemistry and biology. (authors)

  10. Self-organized criticality in particle transport governed by ionization

    International Nuclear Information System (INIS)

    The turbulent particle transport is analyzed as a self-organized system driven by ionization. The region characterized by a gradient comparable to the critical gradient is found to extend over three times the neutral penetration depth. As observed in experiments, the density fluctuations peak inside the plasma while the relative density fluctuations increase monotonously to the plasma boundary. The time average macroscopic transport exhibits two distinct diffusion regimes associated to inward pinch velocities. These regimes correspond to trapping or passing of avalanches of states with sub- or super-critical gradients. These two regimes are localized in the regions with super-and sub-critical average gradients respectively. (orig.)

  11. Aging in a Model of Self-Organized Criticality

    International Nuclear Information System (INIS)

    Temporal autocorrelation functions for avalanches in the Bak-Sneppen model display aging behavior similar to glassy systems. Numerical simulations show that they decay as power laws with two distinct regimes separated by a time scale which is the waiting time, or age, of the avalanche. Thus, time-translational invariance is dynamically broken. The critical exponent of the initial decay is that of the familiar stationary dynamics while a new critical exponent for the late-time behavior appears. This new exponent characterizes a nonstationary regime that has not been previously considered in the context of self-organized criticality. copyright 1997 The American Physical Society

  12. Self-organized critical behavior in pinned flux lattices

    International Nuclear Information System (INIS)

    We study the response of pinned fluxed lattices, under small perturbations in the driving force, below and close to the pinning-depinning transition. For driving Lorentz forces below Fc (the depinning force at which the whole flux lattice slides), the system has instabilities against small force increases, with a power-law distribution characteristic of self-organized criticality. Specifically, D(d)∼d-1,3, where d is the displacement of a flux line after a very small force increase. We also study the initial stages of the motion of the lattice once the driving force overcomes the pinning forces

  13. E-pile model of self-organized criticality

    OpenAIRE

    Milovanov, Alexander V.; Rasmussen, Jens Juul; Rypdal, Kristoffer

    2007-01-01

    The concept of percolation is combined with a self-consistent treatment of the interaction between the dynamics on a lattice and the external drive. Such a treatment can provide a mechanism by which the system evolves to criticality without fine tuning, thus offering a route to self-organized criticality (SOC) which in many cases is more natural than the weak random drive combined with boundary loss/dissipation as used in standard sand-pile formulations. We introduce a new metaphor, the e-pil...

  14. Self-organized percolation in multi-layered structures

    International Nuclear Information System (INIS)

    We present a self-organized model for the growth of two- and three-dimensional percolation clusters in multi-layered structures. Anisotropy in the medium is modeled by randomly allocating layers of different physical properties. A controlling mechanism for the growing aggregate perimeter is introduced in such a manner that the system self-tunes to a stationary regime that corresponds to the percolation threshold. The critical probability for infinite growth is studied as a function of the anisotropy of the medium

  15. Aging in a Model of Self-Organized Criticality

    Energy Technology Data Exchange (ETDEWEB)

    Boettcher, S. [Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta, Georgia 30314 (United States); Boettcher, S. [Department of Physics and Astronomy, The University of Oklahoma, Norman, Oklahoma 73019-0225 (United States); Boettcher, S. [Center for Nonlinear Studies, MS-B258, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Paczuski, M. [Department of Physics, University of Houston, Houston, Texas 77204-5506 (United States)

    1997-08-01

    Temporal autocorrelation functions for avalanches in the Bak-Sneppen model display aging behavior similar to glassy systems. Numerical simulations show that they decay as power laws with two distinct regimes separated by a time scale which is the waiting time, or age, of the avalanche. Thus, time-translational invariance is dynamically broken. The critical exponent of the initial decay is that of the familiar stationary dynamics while a new critical exponent for the late-time behavior appears. This new exponent characterizes a nonstationary regime that has not been previously considered in the context of self-organized criticality. {copyright} {ital 1997} {ital The American Physical Society}

  16. Self-Organization in Coupled Map Scale-Free Networks

    Institute of Scientific and Technical Information of China (English)

    LIANG Xiao-Ming; L(U) Hua-ping; LIU Zong-Hua

    2008-01-01

    We study the self-organization of phase synchronization in coupled map scale-free networks with chaotic logistic map at each node and find that a variety of ordered spatiotemporal patterns emerge spontaneously in a regime of coupling strength.These ordered behaviours will change with the increase of the average links and are robust to both the system size and parameter mismatch.A heuristic theory is given to explain the mechanism of serf-organization and to figure out the regime of coupling for the ordered spatiotemporal patterns.

  17. Java Parallel Implementations of Kohonen Self-Organizing Feature Maps

    Institute of Scientific and Technical Information of China (English)

    YANG Shang-ming; HU Jie

    2004-01-01

    The Kohonen self-organizing map (SOM) is an important tool to find a mapping from high-dimensional space to low dimensional space. The time a SOM requires increases with the number of neurons. A parallel implementation of the algorithm can make it faster. This paper investigates the most recent parallel algorithms on SOMs. Using Java network programming utilities, improved parallel and distributed system are set up to simulate these algorithms. From the simulations, we conclude that those algorithms form good feature maps.

  18. Self-Organization of Blood Pressure Regulation: Clinical Evidence.

    Science.gov (United States)

    Fortrat, Jacques-Olivier; Gharib, Claude

    2016-01-01

    The pathogenesis of vasovagal syncope has remained elusive despite many efforts to identify an underlying dysfunction. Catastrophe theory explains the spontaneous occurrence of sudden events in some mathematically complex systems known as self-organized systems poised at criticality. These systems universally exhibit a power law initially described in earthquake occurrence: the Gutenberg Richter law. The magnitude plotted against the total number of earthquakes of at least this magnitude draw a straight line on log-log graph. We hypothesized that vasovagal syncope is a catastrophe occurring spontaneously in the cardiovascular system. We counted the number and magnitude (number of beats) of vasovagal reactions (simultaneous decreases in both blood pressure and heart rate on consecutive beats) in 24 patients with vasovagal symptoms during a head-up tilt test and 24 paired patients with no symptoms during the test. For each patient, we checked whether vasovagal reaction occurrence followed the Gutenberg Richter law. The occurrence followed the Gutenberg Richter law in 43 patients (correlation coefficient |r| = 0.986 ± 0.001, mean ± SEM) out of 48, with no difference between patients with and without symptoms. We demonstrated that vasovagal syncope matches a catastrophe model occurring in a self-organized cardiovascular complex system poised at criticality. This is a new vision of cardiovascular regulation and its related disorders. PMID:27065881

  19. 基于自组织小波小脑模型关节控制器的不确定非线性系统鲁棒自适应终端滑模控制%A robust adaptive integral terminal sliding mode control for uncertain nonlinear systems using self-organizing wavelet cerebella model articulation controller

    Institute of Scientific and Technical Information of China (English)

    张强; 于宏亮; 许德智; 于美娟

    2016-01-01

    针对一类不确定非线性系统的跟踪控制问题,在考虑建模误差、参数不确定和外部干扰情况下,以良好的跟踪性能及强鲁棒性为目标,提出基于自组织小脑模型(self-organizing wavelet cerebellar model articulation controller, SOWCMAC)的鲁棒自适应积分末端(terminal)滑模控制策略。首先,将小脑模型、自组织神经网络和小波函数各自优势相结合,给出一种SOWCMAC,以保证干扰估计方法具有快速学习能力和更好的泛化能力。其次,设计两种改进的terminal滑模面构造方法,并分别给出各自的收敛时间。然后,基于SOWCMAC和改进的积分terminal滑模面,给出不确定非线性系统鲁棒自适应非奇异terminal控制器的设计过程,其中通过构造自适应鲁棒项抑制干扰估计误差对系统跟踪性能的影响,并利用Lyapunov理论证明闭环系统的稳定性。最后,将该方法应用于近空间飞行器姿态的控制仿真实验,结果表明所提出方法有效性。%We propose a robust adaptive integral terminal sliding mode control method using self-organizing wavelet cerebella model articulation controller (SOWCMAC) for a class of uncertain nonlinear systems with modeling error, parameter uncertainty and external disturbances to achieve the desired tracking performance and strong robustness. Firstly, we make use of the advantages of cerebella model articulation controller, self-organizing neural networks and wavelet function in developing the SOWCMAC to ensure the fast learning ability and desirable generalization ability. Next, we design two kinds of improved integral terminal sliding surfaces and express their convergence time in the analytical form. With the SOWCMAC and improved integral terminal sliding surfaces, we develop the robust adaptive nonsingular terminal controller for the uncertain nonlinear systems. The adaptive robust term can offset the impact of the approximation errors for the system. The stability of

  20. Non-Equilibrium Nanoscale Self-Organization

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Michael J

    2006-03-09

    Self-organized one- and two-dimensional arrays of nanoscale surface features ("ripples" and "dots") sometimes form spontaneously on initially flat surfaces eroded by a directed ion beam in a process called "sputter patterning". Experiments on this sputter patterning process with focused and unfocused ion beams, combined with theoretical advances, have been responsible for a number of scientific advances. Particularly noteworthy are (i) the discovery of propagative, rather than dissipative, behavior under some ion erosion conditions, permitting a pattern to be fabricated at a large length scale and propagated over large distances while maintaining, or even sharpening, the sharpest features; (ii) the first demonstration of guided self-organization of sputter patterns, along with the observation that defect density is minimized when the spacing between boundaries is near an integer times the natural spatial period; and (iii) the discovery of metastability of smooth surfaces, which contradicts the nearly universally accepted linear stability theory that predicts that any surface is linearly unstable to sinusoidal perturbations of some wave vector.

  1. POWER LAW DISTRIBUTION AND SELF-ORGANIZED CRITICALITY OF DISPERSED PARTICLES

    Institute of Scientific and Technical Information of China (English)

    Degang Ma; Lihe Chai

    2005-01-01

    Research on particulate characteristics has been an important frontier in physics and chemistry during the past decades. It has however been mostly focused on granular materials with short-range interactions. In this work, it was found that the power law of particle size distribution applied to the long-range interacting system of floating dust in air,from which we deduced that self-organized criticality might hold for floating dust just as granular materials with short-range interactions. This feature may reveal underlying kinetic mechanisms, important in dispersed particle systems.In industry, power law of size distribution of dispersed particles can be used to investigate the change of dust size, and the power law parameter could be taken as an important index for dust separation.

  2. Cluster self-organization of inorganic crystal-forming systems: Templated nanocluster precursors and self-assembly of framework MT structures of A/B,Zr silicates (A = Na, K; B = Ca, Sr)

    International Nuclear Information System (INIS)

    The basic concepts that are used to describe crystallization as a phenomenon of the hierarchical (cluster) self-organization of a chemical system are considered. The templation of theoretically possible nan-ocluster precursors composed of M octahedra and T tetrahedra by atoms of (A) alkaline and (B) alkaline earth metals is considered for the first time. A relationship between the A/B,M,T composition of templated nanocluster precursors with the composition of A/B,M silicates is established. The model that is developed is used to search for nanocluster precursors in framework MT structures of A/B,Zr silicates. Computer methods (TOPOS 4.0 program package) were used to perform complete 3D reconstruction of the self-assembly of all (four) structural types of A/B,Zr silicates (A = Na, K; B = Ca, Sr) with frameworks of the MT2O7 type: nan-ocluster precursor S30-primary chain S31-microlayer S32-microframework S33. The invariant type of mono-cyclic nanocluster precursor M2T4 (with the point symmetries 1-bar and 2), stabilized by one or two template cations (A and B), is determined. Bifurcations of the paths of evolution at the S31 level (structural branching point) are established for the self-assembly of the following frameworks: MT-1 in CaZrSi2O7 (gittinsite, C2), MT-2 in SrZrSi2O7 (P21/c); MT-3 in Na2ZrSi2O7 (parakeldyshite,), K2ZrSi2O7 (khibinskite, P21/b), and K2ZrGe2O7 (C2/c); and MT-4 in Na2ZrSi2O7 (H2O)(C2/c), Na3ScSi2O7 (Pbnm), and K3ScSi2O7 (P63/mmc).

  3. Self-Organized Criticality: Self-Organized Complexity? The Disorder and ``Simple Complexity'' of Power Law Distributions

    OpenAIRE

    Shiner, J S

    1999-01-01

    The disorder and a simple convex measure of complexity are studied for rank ordered power law distributions, indicative of criticality, in the case where the total number of ranks is large. It is found that a power law distribution may produce a high level of complexity only for a restricted range of system size (as measured by the total number of ranks), with the range depending on the exponent of the distribution. Similar results are found for disorder. Self-organized criticality thus does ...

  4. Self-organization in magnetic flux ropes

    Science.gov (United States)

    Lukin, Vyacheslav S.

    2014-06-01

    This cross-disciplinary special issue on 'Self-organization in magnetic flux ropes' follows in the footsteps of another collection of manuscripts dedicated to the subject of magnetic flux ropes, a volume on 'Physics of magnetic flux ropes' published in the American Geophysical Union's Geophysical Monograph Series in 1990 [1]. Twenty-four years later, this special issue, composed of invited original contributions highlighting ongoing research on the physics of magnetic flux ropes in astrophysical, space and laboratory plasmas, can be considered an update on our state of understanding of this fundamental constituent of any magnetized plasma. Furthermore, by inviting contributions from research groups focused on the study of the origins and properties of magnetic flux ropes in a variety of different environments, we have attempted to underline both the diversity of and the commonalities among magnetic flux ropes throughout the solar system and, indeed, the universe. So, what is a magnetic flux rope? The answer will undoubtedly depend on whom you ask. A flux rope can be as narrow as a few Larmor radii and as wide as the Sun (see, e.g., the contributions by Heli Hietala et al and by Angelous Vourlidas). As described below by Ward Manchester IV et al , they can stretch from the Sun to the Earth in the form of interplanetary coronal mass ejections. Or, as in the Swarthmore Spheromak Experiment described by David Schaffner et al , they can fit into a meter-long laboratory device tended by college students. They can be helical and line-tied (see, e.g., Walter Gekelman et al or J Sears et al ), or toroidal and periodic (see, e.g., John O'Bryan et al or Philippa Browning et al ). They can form in the low plasma beta environment of the solar corona (Tibor Török et al ), the order unity beta plasmas of the solar wind (Stefan Eriksson et al ) and the plasma pressure dominated stellar convection zones (Nicholas Nelson and Mark Miesch). In this special issue, Setthivoine You

  5. SELF-ORGANIZED SEMANTIC FEATURE EVOLUTION FOR AXIOMATIC DESIGN

    Institute of Scientific and Technical Information of China (English)

    HAO He; FENG Yixiong; TAN Jianrong; XUE Yang

    2008-01-01

    Aiming at the problem existing in the computer aided design process that how to express the design intents with high-level engineering terminologies, a mechanical product self-organized semantic feature evolution technology for axiomatic design is proposed, so that the constraint relations between mechanical parts could be expressed in a semantic form which is more suitable for designers. By describing the evolution rules for semantic constraint information, the abstract expression of design semantics in mechanical product evolution process is realized and the constraint relations between parts are mapped to the geometric level from the semantic level; With semantic feature relation graph, the abstract semantic description, the semantic relative structure and the semantic constraint information are linked together; And the methods of semantic feature self-organized evolution are classified. Finally, combining a design example of domestic high-speed elevator, how to apply the theory to practical product development is illustrated and this method and its validity is described and verified. According to the study results, the designers are able to represent the design intents at an advanced semantic level in a more intuitional and natural way and the automation, recursion and visualization for mechanical product axiomatic design are also realized.

  6. A self-organizing CMAC network with gray credit assignment.

    Science.gov (United States)

    Yeh, Ming-Feng; Chang, Kuang-Chiung

    2006-06-01

    This paper attempts to incorporate the structure of the cerebellar-model-articulation-controller (CMAC) network into the Kohonen layer of the self-organizing map (SOM) to construct a self-organizing CMAC (SOCMAC) network. The proposed SOCMAC network can perform the function of an SOM and can distribute the learning error into the memory contents of all addressed hypercubes as a CMAC. The learning of the SOCMAC is in an unsupervised manner. The neighborhood region of the SOCMAC is implicit in the structure of a two-dimensional CMAC network and needs not be defined in advance. Based on gray relational analysis, a credit-assignment technique for SOCMAC learning is introduced to hasten the overall learning process. This paper also analyzes the convergence properties of the SOCMAC. It is shown that under the proposed updating rule, both the memory contents and the state outputs of the SOCMAC converge almost surely. The SOCMAC is applied to solve both data-clustering and data-classification problems, and simulation results show that the proposed network achieves better performance than other known SOMs. PMID:16761815

  7. Applied Systems Analysis: A Genetic Approach

    OpenAIRE

    Majone, G.

    1980-01-01

    The International Institute for Applied Systems Analysis is preparing a "Handbook of Systems Analysis," which will appear in three volumes: Volume 1, "Overview," is aimed at a widely varied audience of producers and users of systems analysis; Volume 2, "Methods," is aimed at systems analysts who need basic knowledge of methods in which they are not expert; the volume contains introductory overviews of such methods; Volume 3, "Cases," contains descriptions of actual systems analyses that illus...

  8. Growth and self-organization of SiGe nanostructures

    International Nuclear Information System (INIS)

    Many recent advances in microelectronics would not have been possible without the development of strain induced nanodevices and bandgap engineering, in particular concerning the common SiGe system. In this context, a huge amount of literature has been devoted to the growth and self-organization of strained nanostructures. However, even if an overall picture has been drawn out, the confrontation between theories and experiments is still, under various aspects, not fully satisfactory. The objective of this review is to present a state-of-the-art of theoretical concepts and experimental results on the spontaneous formation and self-organization of SiGe quantum dots on silicon substrates. The goal is to give a comprehensive overview of the main experimental results on the growth and long time evolution of these dots together with their morphological, structural and compositional properties. We also aim at describing the basis of the commonly used thermodynamic and kinetic models and their recent refinements. The review covers the thermodynamic theory for different levels of elastic strain, but focuses also on the growth dynamics of SiGe quantum dots in several experimental circumstances. The strain driven kinetically promoted instability, which is the main form of instability encountered in the epitaxy of SiGe nanostructures at low strain, is described. Recent developments on its continuum description based on a non-linear analysis particularly useful for studying self-organization and coarsening are described together with other theoretical frameworks. The kinetic evolution of the elastic relaxation, island morphology and film composition are also extensively addressed. Theoretical issues concerning the formation of ordered island arrays on a pre-patterned substrate, which is governed both by equilibrium ordering and kinetically-controlled ordering, are also reported in connection with the experimental results for the fabrication technology of ordered arrays of Si

  9. Dynamic speckle image segmentation using self-organizing maps

    Science.gov (United States)

    Pra, Ana L. Dai; Meschino, Gustavo J.; Guzmán, Marcelo N.; Scandurra, Adriana G.; González, Mariela A.; Weber, Christian; Trivi, Marcelo; Rabal, Héctor; Passoni, Lucía I.

    2016-08-01

    The aim of this work is to build a computational model able to automatically identify, after training, dynamic speckle pattern regions with similar properties. The process is carried out using a set of descriptors applied to the intensity variations with time in every pixel of a speckle image sequence. An image obtained by projecting a self-organized map is converted into regions of similar activity that can be easily distinguished. We propose a general procedure that could be applied to numerous situations. As examples we show different situations: (a) an activity test in a simplified situation; (b) a non-biological example and (c) biological active specimens. The results obtained are encouraging; they significantly improve upon those obtained using a single descriptor and will eventually permit automatic quantitative assessment.

  10. 25 Years of Self-Organized Criticality: Solar and Astrophysics

    CERN Document Server

    Aschwanden, Markus J; Dimitropoulou, Michaila; Georgoulis, Manolis; Hergarten, Stefan; MdAteer, James; Milovanov, Alexander V; Mineshige, Shin; Morales, Laura; Nishizuka, Naoto; Pruessner, Gunnar; Sanchez, Raul; Sharma, Surja; Strugarek, Antoine; Uritsky, Vadim

    2014-01-01

    Shortly after the seminal paper {\\sl "Self-Organized Criticality: An explanation of 1/f noise"} by Bak, Tang, and Wiesenfeld (1987), the idea has been applied to solar physics, in {\\sl "Avalanches and the Distribution of Solar Flares"} by Lu and Hamilton (1991). In the following years, an inspiring cross-fertilization from complexity theory to solar and astrophysics took place, where the SOC concept was initially applied to solar flares, stellar flares, and magnetospheric substorms, and later extended to the radiation belt, the heliosphere, lunar craters, the asteroid belt, the Saturn ring, pulsar glitches, soft X-ray repeaters, blazars, black-hole objects, cosmic rays, and boson clouds. The application of SOC concepts has been performed by numerical cellular automaton simulations, by analytical calculations of statistical (powerlaw-like) distributions based on physical scaling laws, and by observational tests of theoretically predicted size distributions and waiting time distributions. Attempts have been und...

  11. Self-organization of network dynamics into local quantized states

    Science.gov (United States)

    Nicolaides, Christos; Juanes, Ruben; Cueto-Felgueroso, Luis

    2016-02-01

    Self-organization and pattern formation in network-organized systems emerges from the collective activation and interaction of many interconnected units. A striking feature of these non-equilibrium structures is that they are often localized and robust: only a small subset of the nodes, or cell assembly, is activated. Understanding the role of cell assemblies as basic functional units in neural networks and socio-technical systems emerges as a fundamental challenge in network theory. A key open question is how these elementary building blocks emerge, and how they operate, linking structure and function in complex networks. Here we show that a network analogue of the Swift-Hohenberg continuum model—a minimal-ingredients model of nodal activation and interaction within a complex network—is able to produce a complex suite of localized patterns. Hence, the spontaneous formation of robust operational cell assemblies in complex networks can be explained as the result of self-organization, even in the absence of synaptic reinforcements.

  12. Critical phase transitions made self-organized: proposed experiments

    International Nuclear Information System (INIS)

    In Sornette, a scenario for self-organized critically (SOC) has been proposed according to which SOC relies on a non-linear feedback of the order parameter on the control parameter(s), the amplitude of this feedback being tuned by the spatial correlation length ξ. Implementing such a feedback mechanism, it is possible in principle to convert standard ''unstable'' critical phase transitions into self-organized critical dynamics. Here, we analyze this idea in more detail and suggest to couple a standard experiment on critical phenomena with sime probing radiation or some electronic feedback using a microprocessor or analog device which pushed the temperature or analog control parameter to that value where the susceptibility, the correlation length or the inverse of the decay rate is maximal. The practical realization of the feedback thus corresponds to an optimization of the response of the system under the action of a probe or a disturbance. We discuss liquid-vapor and binary demixion critical points, and briefly the He4 superfluid transition, magnetic systems, and superfluid transitions. (orig.)

  13. Self-organization of network dynamics into local quantized states

    CERN Document Server

    Nicolaides, Christos; Cueto-Felgueroso, Luis

    2015-01-01

    Self-organization and pattern formation in network-organized systems emerges from the collective activation and interaction of many interconnected units. A striking feature of these non-equilibrium structures is that they are often localized and robust: only a small subset of the nodes, or cell assembly, is activated. Understanding the role of cell assemblies as basic functional units in neural networks and socio-technical systems emerges as a fundamental challenge in network theory. A key open question is how these elementary building blocks emerge, and how they operate, linking structure and function in complex networks. Here we show that a network analogue of the Swift-Hohenberg continuum model---a minimal-ingredients model of nodal activation and interaction within a complex network---is able to produce a complex suite of localized patterns. Hence, the spontaneous formation of robust operational cell assemblies in complex networks can be explained as the result of self-organization, even in the absence of...

  14. The quality management system applied at PRPN

    International Nuclear Information System (INIS)

    The ISO 9001-2000 is an International standard for quality management systems. The application of this quality management system is for guaranteeing that the organizations products will fulfill requirements set by its customers. Here the steps taken to apply the quality management system at PRPN are expounded in five main parts, namely quality management system, responsibilities of the management, resources, product realization, measurement, analysis and repair. (author)

  15. Hybrid systems for virtual screening: interest of fuzzy clustering applied to olfaction.

    Science.gov (United States)

    Ros, F; Audouze, K; Pintore, M; Chrétien, J R

    2000-01-01

    Kohonen neural networks, also known as Self Organizing Map (SOM), offer a useful 2D representation of the compound distribution inside a large chemical database. This distribution results from the compound organization in a molecular diversity hyperspace derived from a large set of molecular descriptors. Fuzzy techniques based on the "concept of partial truth" reveal to be also a valuable tool for the direct exploitation of chemical databases or SOM. In such cases a fuzzy clustering algorithm is used. In this paper, a complete hybrid system, combining SOM and fuzzy clustering, is applied. As example, a series of olfactory compounds was selected. The complexity of such information is that a same compound may exhibit different odors. It is shown how fuzzy logic helps to have a better understanding of the organization of the compounds. These hybrid systems, using simultaneously SOM and fuzzy clustering, are foreseen as powerful tools for "virtual pre-screening". PMID:10969876

  16. Hybrid Self Organizing Map for Overlapping Clusters

    Directory of Open Access Journals (Sweden)

    M.N.M. Sap

    2008-12-01

    Full Text Available The Kohonen self organizing map is an excellent tool in exploratoryphase of data mining and pattern recognition. The SOM is a popular tool that maps high dimensional space into a small number of dimensions by placing similar elements close together, forming clusters. Recently researchers found that to capture the uncertainty involved in cluster analysis, it is not necessary to have crisp boundaries in some clustering operations. In this paper to overcomethe uncertainty, a two-level clustering algorithm based on SOM which employs the rough set theory is proposed. The two-level stage Rough SOM (first using SOM to produce the prototypes that are then clustered in the second stage is found to perform well and more accurate compared with the proposed crisp clustering method (Incremental SOM and reduces the errors.

  17. Landslides, sandpiles, and self-organized criticality

    Directory of Open Access Journals (Sweden)

    S. Hergarten

    2003-01-01

    Full Text Available Power-law distributions of landslides and rockfalls observed under various conditions suggest a relationship of mass movements to self-organized criticality (SOC. The exponents of the distributions show a considerable variability, but neither a unique correlation to the geological or climatic situation nor to the triggering mechanism has been found. Comparing the observed size distributions with models of SOC may help to understand the origin of the variation in the exponent and finally help to distinguish the governing components in long-term landslide dynamics. However, the three most widespread SOC models either overestimate the number of large events drastically or cannot be consistently related to the physics of mass movements. Introducing the process of time-dependent weakening on a long time scale brings the results closer to the observed statistics, so that time-dependent weakening may play a major part in the long-term dynamics of mass movements.

  18. Feedback, Lineages and Self-Organizing Morphogenesis.

    Directory of Open Access Journals (Sweden)

    Sameeran Kunche

    2016-03-01

    Full Text Available Feedback regulation of cell lineage progression plays an important role in tissue size homeostasis, but whether such feedback also plays an important role in tissue morphogenesis has yet to be explored. Here we use mathematical modeling to show that a particular feedback architecture in which both positive and negative diffusible signals act on stem and/or progenitor cells leads to the appearance of bistable or bi-modal growth behaviors, ultrasensitivity to external growth cues, local growth-driven budding, self-sustaining elongation, and the triggering of self-organization in the form of lamellar fingers. Such behaviors arise not through regulation of cell cycle speeds, but through the control of stem or progenitor self-renewal. Even though the spatial patterns that arise in this setting are the result of interactions between diffusible factors with antagonistic effects, morphogenesis is not the consequence of Turing-type instabilities.

  19. Self-organizing physical fields and gravity

    International Nuclear Information System (INIS)

    It is shown that the Theory of Self-Organizing Physical Fields provides the adequate and consistent consideration of the gravitational phenomena. The general conclusion lies in the fact that the essence of gravidynamics is the new field concept of time and the general covariant law of energy conservation which in particular means that dark energy is simply the energy of the gravitational field. From the natural geometrical laws of gravidynamics the dynamical equations of the gravitational field are derived. Two exact solutions of these equations are obtained. One of them represents a shock gravitational wave and the other represents the Universe filled up with the gravitational energy only. These solutions are compared with the Schwarzschild and Friedmann solutions in the Einstein general theory of relativity

  20. Giddens' "structuration," Luhmann's "self-organization," and the operationalization of the dynamics of meaning

    CERN Document Server

    Leydesdorff, Loet

    2009-01-01

    Luhmann's social systems theory and Giddens' structuration theory of action share an emphasis on reflexivity, but focus on meaning along a divide between inter-human communication and intentful action as two different systems of reference. Recombining these two theories, simulations of interaction, organization, and self-organization of intentional communication can be distinguished by using algorithms from the computation of anticipatory systems. The self-organizing and organizing layers remain rooted in the double contingency of the human encounter which provides the variation. Organization and self-organization of communication are reflexive upon and therefore reconstructive of each other. Using mutual information in three dimensions, the imprint of meaning processing in the modeling system on the historical organization of uncertainty in the modeled system can be measured. This is shown empirically in the case of intellectual organization as "structurating" structure in the textual domain of scientific ar...

  1. Thermodynamic Laws Applied to Economic Systems

    Science.gov (United States)

    González, José Villacís

    2009-01-01

    Economic activity in its different manifestations--production, exchange, consumption and, particularly, information on quantities and prices--generates and transfers energy. As a result, we can apply to it the basic laws of thermodynamics. These laws are applicable within a system, i.e., in a country or between systems and countries. To these…

  2. System Applies Polymer Powder To Filament Tow

    Science.gov (United States)

    Baucom, Robert M.; Snoha, John J.; Marchello, Joseph M.

    1993-01-01

    Polymer powder applied uniformly and in continuous manner. Powder-coating system applies dry polymer powder to continuous fiber tow. Unique filament-spreading technique, combined with precise control of tension on fibers in system, ensures uniform application of polymer powder to web of spread filaments. Fiber tows impregnated with dry polymer powders ("towpregs") produced for preform-weaving and composite-material-molding applications. System and process valuable to prepreg industry, for production of flexible filament-windable tows and high-temperature polymer prepregs.

  3. A NEW RECOGNITION TECHNIQUE NAMED SOMP BASED ON PALMPRINT USING NEURAL NETWORK BASED SELF ORGANIZING MAPS

    Directory of Open Access Journals (Sweden)

    A. S. Raja

    2012-08-01

    Full Text Available The word biometrics refers to the use of physiological or biological characteristics of human to recognize and verify the identity of an individual. Palmprint has become a new class of human biometrics for passive identification with uniqueness and stability. This is considered to be reliable due to the lack of expressions and the lesser effect of aging. In this manuscript a new Palmprint based biometric system based on neural networks self organizing maps (SOM is presented. The method is named as SOMP. The paper shows that the proposed SOMP method improves the performance and robustness of recognition. The proposed method is applied to a variety of datasets and the results are shown.

  4. Taming Self-Organization Dynamics to Dramatically Control Porous Architectures.

    Science.gov (United States)

    Daly, Ronan; Sader, John E; Boland, John J

    2016-03-22

    We demonstrate templating of functional materials with unexpected and intricate micro- and nanostructures by controlling the condensation, packing, and evaporation of water droplets on a polymer solution. Spontaneous evaporation of a polymer solution induces cooling of the liquid surface and water microdroplet condensation from the ambient vapor. These droplets pack together and act as a template to imprint an entangled polymer film. This breath figure (BF) phenomenon is an example of self-organization that involves the long-range ordering of droplets. Equilibrium-based analysis provides many insights into contact angles and drop stability of individual drops, but the BF phenomenon remains poorly understood thus far, preventing translation to real applications. Here we investigate the dynamics of this phenomenon to separate out the competing influences and then introduce a modulation scheme to ultimately manipulate the water vapor-liquid equilibrium independently from the solvent evaporation. This approach to BF control provides insights into the mechanism, a rationale for microstructure design, and evidence for the benefits of dynamical control of self-organization systems. We finally present dramatically different porous architectures from this approach reminiscent of microscale Petri dishes, conical flasks, and test tubes. PMID:26828573

  5. Correlated earthquakes in a self-organized model

    Directory of Open Access Journals (Sweden)

    M. Baiesi

    2009-03-01

    Full Text Available Motivated by the fact that empirical time series of earthquakes exhibit long-range correlations in space and time and the Gutenberg-Richter distribution of magnitudes, we propose a simple fault model that can account for these types of scale-invariance. It is an avalanching process that displays power-laws in the event sizes, in the epicenter distances as well as in the waiting-time distributions, and also aftershock rates obeying a generalized Omori law. We thus confirm that there is a relation between temporal and spatial clustering of the activity in this kind of models. The fluctuating boundaries of possible slipping areas show that the size of the largest possible earthquake is not always maximal, and the average correlation length is a fraction of the system size. This suggests that there is a concrete alternative to the extreme interpretation of self-organized criticality as a process in which every small event can cascade to an arbitrary large one: the new picture includes fluctuating domains of coherent stress field as part of the global self-organization. Moreover, this picture can be more easily compared with other scenarios discussing fluctuating correlations lengths in seismicity.

  6. Adaptive self-organization in a realistic neural network model

    Science.gov (United States)

    Meisel, Christian; Gross, Thilo

    2009-12-01

    Information processing in complex systems is often found to be maximally efficient close to critical states associated with phase transitions. It is therefore conceivable that also neural information processing operates close to criticality. This is further supported by the observation of power-law distributions, which are a hallmark of phase transitions. An important open question is how neural networks could remain close to a critical point while undergoing a continual change in the course of development, adaptation, learning, and more. An influential contribution was made by Bornholdt and Rohlf, introducing a generic mechanism of robust self-organized criticality in adaptive networks. Here, we address the question whether this mechanism is relevant for real neural networks. We show in a realistic model that spike-time-dependent synaptic plasticity can self-organize neural networks robustly toward criticality. Our model reproduces several empirical observations and makes testable predictions on the distribution of synaptic strength, relating them to the critical state of the network. These results suggest that the interplay between dynamics and topology may be essential for neural information processing.

  7. Self-organization of multivalent counterions in polyelectrolyte brushes

    Science.gov (United States)

    Wu, Jianzhong

    2013-03-01

    The structure and interfacial properties of a polyelectrolyte brush (PEB) depend on a broad range of parameters such as the polymer charge and grafting density, counterion valence, salt concentration, and solvent conditions. These properties are of fundamental importance in technological applications of PEBs including colloid stabilization, surface modification and lubrication, and in functioning of biological systems such as genome packaging in single-strand DNA/RNA viruses. Despite intensive studies by experiments, molecular simulations, and myriad analytical methods including scaling analyses, self-consistent-field theory, and most recently density functional theory, the behavior of PEBs in the presence of multivalent counterions remains poorly understood. In this talk, I will present a density functional method for polyelectrolyte brushes and discuss self-organization of multivalent counterions within highly charged polyelectrolyte brushes. The counterion-mediated attraction between polyions leads to a first-order phase transition similar to that for a neutral brush in a poor solvent. The self-organization of multivalent counterions results in a wavelike electrostatic potential and charge density that oscillate between positive and negative values.

  8. Self-organized criticality and plasma fluctuation dynamics

    International Nuclear Information System (INIS)

    Characteristic self-organized criticality (SOC) dynamics can explain some of the properties of transport in magnetically confined plasmas, and offers a new perspective on how plasma simulations should be carried out. To understand the implication of SOC dynamics in magnetically confined plasmas, new analysis techniques have been developed and applied to the results of numerical simulations. These studies have provided the basis for the application of these techniques to fluctuation data from several confinement devices, including tokamaks, stellarators, and reversed field pinches. The results of the analysis reveal the self-similar character of the edge plasma fluctuations and the existence of long-range time correlations that are consistent with SOC dynamics. (author)

  9. Brain Basis of Self: Self-Organization and Lessons from Dreaming

    Directory of Open Access Journals (Sweden)

    DavidKahn

    2013-07-01

    Full Text Available Through dreaming a different facet of the self is created as a result of a self-organizing process in the brain. Self-organization in biological systems often happens as an answer to an environmental change for which the existing system cannot cope; self-organization creates a system that can cope in the newly changed environment. In dreaming, self-organization serves the function of organizing disparate memories into a dream since the dreamer herself is not able to control how individual memories become weaved into a dream. The self-organized dream provides, thereby, a wide repertoire of experiences; this expanded repertoire of experience results in an expansion of the self beyond that obtainable when awake. Since expression of the self is associated with activity in specific areas of the brain, the article also discusses the brain basis of the self by reviewing studies of brain injured patients, discussing brain imaging studies in normal brain functioning when focused, when daydreaming and when asleep and dreaming.

  10. Brain basis of self: self-organization and lessons from dreaming.

    Science.gov (United States)

    Kahn, David

    2013-01-01

    Through dreaming, a different facet of the self is created as a result of a self-organizing process in the brain. Self-organization in biological systems often happens as an answer to an environmental change for which the existing system cannot cope; self-organization creates a system that can cope in the newly changed environment. In dreaming, self-organization serves the function of organizing disparate memories into a dream since the dreamer herself is not able to control how individual memories become weaved into a dream. The self-organized dream provides, thereby, a wide repertoire of experiences; this expanded repertoire of experience results in an expansion of the self beyond that obtainable when awake. Since expression of the self is associated with activity in specific areas of the brain, the article also discusses the brain basis of the self by reviewing studies of brain injured patients, discussing brain imaging studies in normal brain functioning when focused, when daydreaming and when asleep and dreaming. PMID:23882232

  11. Observation of Self-Organized Criticality Near the Superfluid Transition in 4He

    International Nuclear Information System (INIS)

    We report on an experimental observation of self-organized criticality in 4He very close to its superfluid transition. A constant temperature gradient, independent of the heat flux Q through the sample, is created along a vertical column of 4He by applying heat to the top of the column. This constant temperature gradient equals the gravity-induced gradient in the superfluid transition temperature, indicating that the thermal conductivity of the sample has self-organized. The closeness to criticality in this state is the same throughout most of the sample, and it depends only on Q. copyright 1997 The American Physical Society

  12. Morphological self-organizing feature map neural network with applications to automatic target recognition

    Institute of Scientific and Technical Information of China (English)

    Shijun Zhang; Zhongliang Jing; Jianxun Li

    2005-01-01

    @@ The rotation invariant feature of the target is obtained using the multi-direction feature extraction property of the steerable filter. Combining the morphological operation top-hat transform with the self-organizing feature map neural network, the adaptive topological region is selected. Using the erosion operation, the topological region shrinkage is achieved. The steerable filter based morphological self-organizing feature map neural network is applied to automatic target recognition of binary standard patterns and realworld infrared sequence images. Compared with Hamming network and morphological shared-weight networks respectively, the higher recognition correct rate, robust adaptability, quick training, and better generalization of the proposed method are achieved.

  13. Self-organized criticality in simple model of evolution: exact description of scaling laws

    International Nuclear Information System (INIS)

    The the simplest version of the Bak-Sneppen model of self-organized biological evolution with random interaction structure is considered. It's dynamics is described in the framework of master equation. The master equations can be solved exactly both for infinite system and for finite one. The equation for pair correlation function are solved exactly for infinite system. The dynamical regime of self-organized criticality in this model appears to be similar to one of completely integrable systems. Analysis of main characteristics of dynamics take it possible to revive most essential feature of dynamics (Author)

  14. Applied mathematics analysis of the multibody systems

    Science.gov (United States)

    Sahin, H.; Kar, A. K.; Tacgin, E.

    2012-08-01

    A methodology is developed for the analysis of the multibody systems that is applied on the vehicle as a case study. The previous study emphasizes the derivation of the multibody dynamics equations of motion for bogie [2]. In this work, we have developed a guide-way for the analysis of the dynamical behavior of the multibody systems for mainly validation, verification of the realistic mathematical model and partly for the design of the alternative optimum vehicle parameters.

  15. Applied Energy Systems - Rudimentary Fluid Mechanics

    OpenAIRE

    McGovern, Jim

    2014-01-01

    This is a compact textbook for a module addressing rudimentary fluid mechanics within the context of applied energy systems. It is at an introductory level for engineers or technologists. The book does not attempt to cover the principles of fluid mechanics comprehensively. Rather, it provides a practical but theoretically sound foundation, linked to two key areas: hydrostatic power transmission systems and the flow of fluids through pipes and fittings. This selection allows the two areas to b...

  16. Experimental investigation of multiple self-organized structures in plasma

    International Nuclear Information System (INIS)

    Complex space charge configuration emerges by self-organization in front of an electrode immersed in plasma when its potential is increased at a certain critical value. Consisting from a nucleus protected from the surrounding plasma by an electrical double layer, the complexity reveals an internal structure and behaviour which remind us primitive organisms. Thus the complexity is not static but stationary open system in which continuous decay is constantly compensated by substance and energy from the surrounding plasma. Endowed with a special kind of memory the complexity can work as an intelligent multifunctional system and consequently it is also able to perform innovations after selective interaction with an environment in evolution. Additionally, the complexity is able to replicate by division. (authors)

  17. Self Organized Criticality as a new paradigm of sleep regulation

    Science.gov (United States)

    Ivanov, Plamen Ch.; Bartsch, Ronny P.

    2012-02-01

    Humans and animals often exhibit brief awakenings from sleep (arousals), which are traditionally viewed as random disruptions of sleep caused by external stimuli or pathologic perturbations. However, our recent findings show that arousals exhibit complex temporal organization and scale-invariant behavior, characterized by a power-law probability distribution for their durations, while sleep stage durations exhibit exponential behavior. The co-existence of both scale-invariant and exponential processes generated by a single regulatory mechanism has not been observed in physiological systems until now. Such co-existence resembles the dynamical features of non-equilibrium systems exhibiting self-organized criticality (SOC). Our empirical analysis and modeling approaches based on modern concepts from statistical physics indicate that arousals are an integral part of sleep regulation and may be necessary to maintain and regulate healthy sleep by releasing accumulated excitations in the regulatory neuronal networks, following a SOC-type temporal organization.

  18. Self-Organization of Mobile Populations in Cyclic Competition

    CERN Document Server

    Reichenbach, Tobias; Frey, Erwin

    2008-01-01

    The formation of out-of-equilibrium patterns is a characteristic feature of spatially-extended, biodiverse, ecological systems. Intriguing examples are provided by cyclic competition of species, as metaphorically described by the `rock-paper-scissors' game. Both experimentally and theoretically, such non-transitive interactions have been found to induce self-organization of static individuals into noisy, irregular clusters. However, a profound understanding and characterization of such patterns is still lacking. Here, we theoretically investigate the influence of individuals' mobility on the spatial structures emerging in rock-paper-scissors games. We devise a quantitative approach to analyze the spatial patterns self-forming in the course of the stochastic time evolution. For a paradigmatic model originally introduced by May and Leonard, within an interacting particle approach, we demonstrate that the system's behavior - in the proper continuum limit - is aptly captured by a set of stochastic partial differe...

  19. From aromaticity to self-organized criticality in graphene.

    Science.gov (United States)

    Zubarev, Dmitry Yu; Frenklach, Michael; Lester, William A

    2012-09-21

    The unique properties of graphene are rooted in its peculiar electronic structure where effects of electron delocalization are pivotal. We show that the traditional view of delocalization as formation of a local or global aromatic bonding framework has to be expanded in this case. A modification of the π-electron system of a finite-size graphene substrate results in a scale-invariant response in the relaxation of interatomic distances and reveals self-organized criticality as a mode of delocalized bonding. Graphene is shown to belong to a diverse class of finite-size extended systems with simple local interactions where complexity emerges spontaneously under very general conditions that can be a critical factor controlling observable properties such as chemical activity, electron transport, and spin-polarization. PMID:22872129

  20. Pest Clustering With Self Organizing Map for Rice Productivity

    Directory of Open Access Journals (Sweden)

    Shafaatunnur Hasan

    2010-07-01

    Full Text Available Rice, Oryza sativa, also known as paddy rice is produced by atleast 95 countries around the globe with China and India are thelargest producers of rice in the world; while Thailand, Vietnam andAmerica are the largest world rice exporters. To sustain riceproductivity, advance agriculture technologies have always beendeployed to increase the productivity of this food grain. This is due tothe pressure for high productivity and plant pests’ attacks.Geographical Information Systems (GIS and Global PositioningSystems (GPS have been used for variable rate application ofpesticides, herbicide and fertilizers in Precision Agricultureapplications. However, due to the weather uncertainties that affectthe rice growth, intelligent solutions have been integrated in currentpest management practices. Therefore, this study presents intelligentsolutions by implementing spatial analysis and Kohonen SelfOrganizing Map (SOM to cluster types of pests for betteragricultural rice pest management in Malaysia.

  1. Self-organization in a simple brain model

    Energy Technology Data Exchange (ETDEWEB)

    Stassinopoulos, D.; Bak, P. [Brookhaven National Lab., Upton, NY (United States). Dept. of Physics; Alstroem, P. [Niels Bohr Inst., Copenhagen (Denmark). Dept. of Physics

    1994-03-10

    Simulations on a simple model of the brain are presented. The model consists of a set of randomly connected neurons. Inputs and outputs are also connected randomly to a subset of neurons. For each input there is a set of output neurons which must fire in order to achieve success. A signal giving information as to whether or not the action was successful is fed back to the brain from the environment. The connections between firing neurons are strengthened or weakened according to whether or not the action was successful. The system learns, through a self-organization process, to react intelligently to input signals, i.e. it learns to quickly select the correct output for each input. If part of the network is damaged, the system relearns the correct response after a training period.

  2. A self-organized model for network evolution. Coupling network evolution and extremal dynamics

    Science.gov (United States)

    Caldarelli, G.; Capocci, A.; Garlaschelli, D.

    2008-08-01

    Here we provide a detailed analysis, along with some extensions and additonal investigations, of a recently proposed [1] self-organized model for the evolution of complex networks. Vertices of the network are characterized by a fitness variable evolving through an extremal dynamics process, as in the Bak-Sneppen [2] model representing a prototype of Self-Organized Criticality. The network topology is in turn shaped by the fitness variable itself, as in the fitness network model [3]. The system self-organizes to a nontrivial state, characterized by a power-law decay of dynamical and topological quantities above a critical threshold. The interplay between topology and dynamics in the system is the key ingredient leading to an unexpected behaviour of these quantities.

  3. Revisit to the helicity and the extended generalized self-organization theory

    Energy Technology Data Exchange (ETDEWEB)

    Kondoh, Y.; Takahashi, T. [Gunma Univ., Dept. of Electric Engineering, Kiryu, Gunma (Japan); Momota, H. [Univ. of Illinois at Urban-Champaign, Illinois (United States)

    2001-07-01

    It is clarified that the ''helicity conservation law'' is never ''the conservation equation of the helicity K itself'', but is merely ''the time change rate equation of K''. It is shown that since the total helicity K can never be conserved in the real experimental systems, the conjecture of the total helicity invariance is not physically available to real magnetized plasmas. With the use of auto-correlations for physical quantities, a novel extended generalized self-organization theory is presented, that neither based on the variational principle nor the energy principle. The self-organized states of every quantities may be realized during their own phases, and the dynamical system may evolve repeatedly out of phases self-organizations among quantities, depending on boundary conditions and input powers. (author)

  4. A self-organized critical transport model based on critical-gradient fluctuation dynamics

    International Nuclear Information System (INIS)

    A one-dimensional transport model based on critical-gradient fluctuation dynamics is presented. This model has the characteristic properties of a self-organized critical (SOC) system. As the source increases and for an input flux above a threshold value, a dynamical transition spontaneously takes place. A high-gradient edge region forms. The width of this region increases with increasing value of the particle source. Transport dynamics in this edge region self-organizes to be very close to marginal stability, while the core remains at the subcritical gradient that is typical of a SOC system

  5. Self-Organized Bistability Associated with First-Order Phase Transitions

    Science.gov (United States)

    di Santo, Serena; Burioni, Raffaella; Vezzani, Alessandro; Muñoz, Miguel A.

    2016-06-01

    Self-organized criticality elucidates the conditions under which physical and biological systems tune themselves to the edge of a second-order phase transition, with scale invariance. Motivated by the empirical observation of bimodal distributions of activity in neuroscience and other fields, we propose and analyze a theory for the self-organization to the point of phase coexistence in systems exhibiting a first-order phase transition. It explains the emergence of regular avalanches with attributes of scale invariance that coexist with huge anomalous ones, with realizations in many fields.

  6. Self-organized complex space charge configurations at the origin of flicker noise

    International Nuclear Information System (INIS)

    Based on experimental results obtained from a plasma diode we explain the fluctuations of the voltage supported by a non-linear gaseous conductor by the dynamical behavior of spatiotemporal patterns, in the form of moving double layers, formed after self-organization. Such phenomena appear when the system is subjected to an external constraint that creates and maintains a local gradient of electron kinetic energy. The described phenomenology suggests a plausible explanation for the appearance of flicker noise also in other physical systems, as for example semiconductors and, implicitly, offers a new model for the so-called self-organized criticality concept

  7. Complexity and Information: Measuring Emergence, Self-organization, and Homeostasis at Multiple Scales

    CERN Document Server

    Gershenson, Carlos

    2012-01-01

    Concepts used in the scientific study of complex systems have become so widespread that their use and abuse has led to ambiguity and confusion in their meaning. In this paper we use information theory to provide abstract and concise measures of complexity, emergence, self-organization, and homeostasis. The purpose is to clarify the meaning of these concepts with the aid of the proposed formal measures. In a simplified version of the measures (focussing on the information produced by a system), emergence becomes the opposite of self-organization, while complexity represents their balance. We use computational experiments on random Boolean networks and elementary cellular automata to illustrate our measures at multiple scales.

  8. Applying Product Configuration Systems in Engineering Companies

    DEFF Research Database (Denmark)

    Ladeby, Klaes Rohde

    engineering companies?” Product configuration systems are a fairly young field of research, and the literature used in this project is presented in chapter 2. Chapter 3 begins with a discussion of the scientific point of view, and develops the research questions are by an investigation into shortcomings and......This Ph.D. thesis looks into the application of configuration systems in engineering companies, and how configuration systems can be used to support business processes in engineering companies. Often the motivation stated by researchers and practitioners is, that a configuration project is a......,133 books apply. Type it in on Google scholar and 8,580,000 homepages apply3. Obviously, strategy is an important subject. However, the subject also seems to be difficult to perceive. Although this thesis is not about strategy, or strategizing, I would like to pursue the definition of strategy one step...

  9. Self-Organized Discrimination of Resources

    Science.gov (United States)

    Campo, Alexandre; Garnier, Simon; Dédriche, Olivier; Zekkri, Mouhcine; Dorigo, Marco

    2011-01-01

    When selecting a resource to exploit, an insect colony must take into account at least two constraints: the resource must be abundant enough to sustain the whole group, but not too large to limit exploitation costs, and risks of conflicts with other colonies. Following recent results on cockroaches and ants, we introduce here a behavioral mechanism that satisfies these two constraints. Individuals simply modulate their probability to switch to another resource as a function of the local density of conspecifics locally detected. As a result, the individuals gather at the smallest resource that can host the whole group, hence reducing competition and exploitation costs while fulfilling the overall group's needs. Our analysis reveals that the group becomes better at discriminating between similar resources as it grows in size. Also, the discrimination mechanism is flexible and the group readily switches to a better suited resource as it appears in the environment. The collective decision emerges through the self-organization of individuals, that is, in absence of any centralized control. It also requires a minimal individual cognitive investment, making the proposed mechanism likely to occur in other social species and suitable for the development of distributed decision making tools. PMID:21625643

  10. Emergence, Self-Organization and Prime Numbers

    Science.gov (United States)

    Berezin, Alexander A.

    1998-04-01

    Pattern of primes (PP) is critical for dynamics of universal emergence, self-organization and complexity ascendance [1-3]. Due to gradual logarithmic dilution of primes (prime number theorem), PP gives only base envelop for above effects. More informative are full factorizational spectra (FS) of all intermediate composites. Tower exponential mappings like f(N) = 10(N)10 with (N) indicating N vertical arrows [4] lead to infinite fractal-like hierarchy of integer trails; say, FS of intervals between f(N) and f(N+1). This allows FAPP-infinite informational content of PP and FS be "used" as catalyzer of emergence dynamics. This is "Platonic pressure effect" (physical embodiments of PP and FS). Said effect may provide more direct picture for cosmogenesis than traditional quantum tunneling ("Big Bang") and/or inflationary scenarios. Furthermore, we can speculate that metrics of (Mega)universe at tower exponential scales becomes asymptotically Euclidean (multi or infinitely dimensional), due to unchangability of PP and FS. - [1] Arnold Arnold, "The Corrupted Sciences", Paladin (Harper Collins), 1992; [2] Peter Plichta, "God's Secret Formula: Deciphering the Riddle of the Universe and the Prime Number Code", Element, 1997; [3] Alexander Berezin, URAM Journal, 20, 72 (1997); [4] Donald E. Knuth, Science, 194, 1235, 17 Dec 1976. abstract.

  11. Self-organization and the selection of pinwheel density in visual cortical development

    International Nuclear Information System (INIS)

    Self-organization of neural circuitry is an appealing framework for understanding cortical development, yet its applicability remains unconfirmed. Models for the self-organization of neural circuits have been proposed, but experimentally testable predictions of these models have been less clear. The visual cortex contains a large number of topological point defects, called pinwheels, which are detectable in experiments and therefore in principle well suited for testing predictions of self-organization empirically. Here, we analytically calculate the density of pinwheels predicted by a pattern formation model of visual cortical development. An important factor controlling the density of pinwheels in this model appears to be the presence of non-local long-range interactions, a property which distinguishes cortical circuits from many non-living systems in which self-organization has been studied. We show that in the limit where the range of these interactions is infinite, the average pinwheel density converges to π. Moreover, an average pinwheel density close to this value is robustly selected even for intermediate interaction ranges, a regime arguably covering interaction ranges in a wide range of different species. In conclusion, our paper provides the first direct theoretical demonstration and analysis of pinwheel density selection in models of cortical self-organization and suggests quantitatively probing this type of prediction in future high-precision experiments

  12. Formation And Maintenance of Self-Organizing Wireless Networks

    Science.gov (United States)

    Scott, Keith; Bambos, Nicholas

    1997-01-01

    There are numerous military, commercial, and scientific applications for mobile wireless networks which are able to self-Organize without recousre to any pre-existing infrastructure. We present the Self Organizing Wireless Adaptive Network protocol, a distributed networking protocol capable of managing such networks.

  13. Multi-agent cooperative systems applied to precision applications

    International Nuclear Information System (INIS)

    Regulatory agencies are imposing limits and constraints to protect the operator and/or the environment. While generally necessary, these controls also tend to increase cost and decrease efficiency and productivity. Intelligent computer systems can be made to perform these hazardous tasks with greater efficiency and precision without danger to the operators. The Idaho national Engineering and Environmental Laboratory and the Center for Self-Organizing and Intelligent Systems at Utah State University have developed a series of autonomous all-terrain multi-agent systems capable of performing automated tasks within hazardous environments. This paper discusses the development and application of cooperative small-scale and large-scale robots for use in various activities associated with radiologically contaminated areas, prescription farming, and unexploded ordinances

  14. Empowered by Wireless Communication: Self-Organizing Traffic Collectives

    CERN Document Server

    Fekete, Sándor P; Wegener, Axel; Hellbrück, Horst; Fischer, Stefan

    2010-01-01

    In recent years, tremendous progress has been made in understanding the dynamics of vehicle traffic flow and traffic congestion by interpreting traffic as a multi-particle system. This helps to explain the onset and persistence of many undesired phenomena, e.g., traffic jams. It also reflects the apparent helplessness of drivers in traffic, who feel like passive particles that are pushed around by exterior forces; one of the crucial aspects is the inability to communicate and coordinate with other traffic participants. We present distributed methods for solving these fundamental problems, employing modern wireless, ad-hoc, multi-hop networks. The underlying idea is to use these capabilities as the basis for self-organizing methods for coordinating data collection and processing, recognizing traffic phenomena, and changing their structure by coordinated behavior. The overall objective is a multi-level approach that reaches from protocols for local wireless communication, data dissemination, pattern recognition...

  15. The physical principles underpinning self-organization in plants

    CERN Document Server

    Turner, Philip

    2016-01-01

    We present evidence based theory for the emergence of plant structure in which CO2 is not only the source of carbon for plant growth, but also plays a critical role as a source of charge (ionization), with charge density dictating plant structures at a wide range of scales. As levels of charge density increase beyond a critical point, dis- sipative systems lead to the emergence of macroscopic quantum processes analogous with high temperature super conductivity and coherent random lasing. The assembly of molecules into larger, ordered structures operates within charge-induced coherent bosonic fields acting as a structuring force in competition with exterior potentials. Within these processes many of the phenomena associated with standard quantum theory are recovered, including quantization, non-dissipation, self-organization, confinement, structuration conditioned by the environment, environmental fluctuations leading to macroscopic quantum decoherence and evolutionary time described by a time dependent Schrod...

  16. Self-organized internal architectures of chiral micro-particles

    International Nuclear Information System (INIS)

    The internal architecture of polymeric self-assembled chiral micro-particles is studied by exploring the effect of the chirality, of the particle sizes, and of the interface/surface properties in the ordering of the helicoidal planes. The experimental investigations, performed by means of different microscopy techniques, show that the polymeric beads, resulting from light induced polymerization of cholesteric liquid crystal droplets, preserve both the spherical shape and the internal self-organized structures. The method used to create the micro-particles with controlled internal chiral architectures presents great flexibility providing several advantages connected to the acquired optical and photonics capabilities and allowing to envisage novel strategies for the development of chiral colloidal systems and materials

  17. Fingerprint Image Segmentation Using Haar Wavelet and Self Organizing Map

    Directory of Open Access Journals (Sweden)

    Sri Suwarno

    2013-10-01

    Full Text Available Fingerprint image segmentation is one of the important preprocessing steps in Automatic Fingerprint Identification Systems (AFIS. Segmentation separates image background from image foreground, removing unnecessary information from the image. This paper proposes a new fingerprint segmentation method using Haar wavelet and Kohonen’s Self Organizing Map (SOM. Fingerprint image was decomposed using 2D Haar wavelet in two levels. To generate features vectors, the decomposed image was divided into nonoverlapping blocks of 2x2 pixels and converted into four elements vectors. These vectors were then fed into SOM network that grouped them into foreground and background clusters. Finally, blocks in the background area were removed based on indexes of blocks in the background cluster. From the research that has been carried out, we conclude that the proposed method is effective to segment background from fingerprint images.

  18. Self-Organized Criticality Model for Brain Plasticity

    Science.gov (United States)

    de Arcangelis, Lucilla; Perrone-Capano, Carla; Herrmann, Hans J.

    2006-01-01

    Networks of living neurons exhibit an avalanche mode of activity, experimentally found in organotypic cultures. Here we present a model that is based on self-organized criticality and takes into account brain plasticity, which is able to reproduce the spectrum of electroencephalograms (EEG). The model consists of an electrical network with threshold firing and activity-dependent synapse strengths. The system exhibits an avalanche activity in a power-law distribution. The analysis of the power spectra of the electrical signal reproduces very robustly the power-law behavior with the exponent 0.8, experimentally measured in EEG spectra. The same value of the exponent is found on small-world lattices and for leaky neurons, indicating that universality holds for a wide class of brain models.

  19. Hierarchical self-organization of cytoskeletal active networks

    CERN Document Server

    Gordon, Daniel; Keasar, Chen; Farago, Oded

    2012-01-01

    The structural reorganization of the actin cytoskeleton is facilitated through the action of motor proteins that crosslink the actin filaments and transport them relative to each other. Here, we present a combined experimental-computational study that probes the dynamic evolution of mixtures of actin filaments and clusters of myosin motors. While on small spatial and temporal scales the system behaves in a very noisy manner, on larger scales it evolves into several well distinct patterns such as bundles, asters, and networks. These patterns are characterized by junctions with high connectivity, whose formation is possible due to the organization of the motors in "oligoclusters" (intermediate-size aggregates). The simulations reveal that the self-organization process proceeds through a series of hierarchical steps, starting from local microscopic moves and ranging up to the macroscopic large scales where the steady-state structures are formed. Our results shed light into the mechanisms involved in processes li...

  20. Electron as Spatiotemporal Complexity due to Self-Organized Criticality

    CERN Document Server

    Ta Chung Meng

    2001-01-01

    The electron, which has been pictured as an elementary particle ever since J.J. Thomson's e/m-measurement in 1897, and the relativistic motion of which is described by the Dirac equation, is discussed in the light of the recent progress made in Science of Complex Systems. Theoretical arguments and experimental evidences are presented which show that such an electron exhibits characteristic properties of spatiotemporal complexities due to Self-Organized Criticality (SOC). This implies in particular that, conceptually and logically, it is neither possible nor meaningful to identify such an object with an ordinary particle, which by definition is something that has a fixed mass (size), a fixed lifetime, and a fixed structure.

  1. Self-Organized Criticality and Mass Extinction in Evolutionary Algorithms

    DEFF Research Database (Denmark)

    Krink, Thiemo; Thomsen, Rene

    2001-01-01

    niches after mass extinction events. Furthermore, paleontological studies have shown that there is a power law relationship between the frequency of species extinction events and the sue of the extinction impact. Power law relationships of this kind are typical for complex systems, which operate...... at a critical state between chaos and order, known as self-organized criticality (SOC). Based on this background, we used SOC to control the size of spatial extinction zones in a diffusion model. The SOC selection process was easy to implement and implied only negligible computational costs. Our results show...... that the SOC spatial extinction model clearly outperforms simple evolutionary algorithms (EAs) and the difffision model (CGA). Further, our results support the biological hypothesis that mass extinctions might play an important role in evolution. However, the success of simple EAs indicates that evolution...

  2. Experimental econophysics: Complexity, self-organization, and emergent properties

    Science.gov (United States)

    Huang, J. P.

    2015-03-01

    Experimental econophysics is concerned with statistical physics of humans in the laboratory, and it is based on controlled human experiments developed by physicists to study some problems related to economics or finance. It relies on controlled human experiments in the laboratory together with agent-based modeling (for computer simulations and/or analytical theory), with an attempt to reveal the general cause-effect relationship between specific conditions and emergent properties of real economic/financial markets (a kind of complex adaptive systems). Here I review the latest progress in the field, namely, stylized facts, herd behavior, contrarian behavior, spontaneous cooperation, partial information, and risk management. Also, I highlight the connections between such progress and other topics of traditional statistical physics. The main theme of the review is to show diverse emergent properties of the laboratory markets, originating from self-organization due to the nonlinear interactions among heterogeneous humans or agents (complexity).

  3. Color Image Segmentation using Kohonen Self-Organizing Map (SOM

    Directory of Open Access Journals (Sweden)

    I Komang Ariana

    2014-05-01

    Full Text Available Color image segmentation using Kohonen Self-Organizing Map (SOM, is proposed in this study. RGB color space is used as input in the process of clustering by SOM. Measurement of the distance between weight vector and input vector in learning and recognition stages in SOM method, uses Normalized Euclidean Distance. Then, the validity of clustering result is tested by Davies-Bouldin Index (DBI and Validity Measure (VM to determine the most optimal number of cluster. The clustering result, according to the most optimal number of cluster, then is processed with spatial operations. Spatial operations are used to eliminate noise and small regions which are formed from the clustering result. This system allows segmentation process become automatic and unsupervised. The segmentation results are close to human perception.

  4. Self-organized criticality of liquefaction in saturated granules

    Institute of Scientific and Technical Information of China (English)

    吴爱祥; 孙业志; 李青松

    2003-01-01

    Utilizing the dissipative structure theory, the evolutionary process of vibrating liquefaction in saturatedgranules was analyzed. When the irreversible force increases to some degree, the system will be in a state far fromequilibrium, and the new structure probably occurs. According to synergetics, the equation of liquefaction evolutionwas deduced, and the evolutionary process was analyzed by dynamics. The evolutionary process of vibrating lique-faction is a process in which the period doubling accesses to chaos, and the fluctuation is the original driving force ofsystem evolution. The liquefaction process was also analyzed by fractal geometry. The steady process of vibratingliquefaction obeys the scaling form, and shows self-organized criticality in the course of vibration. With the incre-ment of the recurrence number, the stress of saturated granules will decrease rapidly or lose completely, and thestrain will increase rapidly, so that the granules can not sustain load and the "avalanche" phenomenon takes place.

  5. Self-organized intermittent plastic flow in bulk metallic glasses

    International Nuclear Information System (INIS)

    Under stress, bulk metallic glasses irreversibly deform through shear banding processes that manifest as serrated flow behavior. These serration events exhibit a shock-and-aftershock, earthquake-like behavior. Statistical analysis shows that the shear avalanches can self-organize to a critical state (SOC). In analogy to the smooth macroscopic-scale crystalline plasticity that arises from the spatio-temporal averages of disruptive earthquake-like events at the nanometer scale, shear avalanches in glassy metals are another model system that can be used to study SOC behavior. With our understanding of SOC behavior, we further demonstrate how to enhance the plasticity of glassy (brittle) materials. It is expected that the findings can be extended to other glassy or brittle materials.

  6. Pathways to self-organization: crystallization via nucleation and growth

    CERN Document Server

    Jungblut, Swetlana

    2016-01-01

    Crystallization, a prototypical self-organization process during which a disordered state spontaneously transforms into a crystal characterized by a regular arrangement of its building blocks, usually proceeds by nucleation and growth. In the initial stages of the transformation, a localized nucleus of the new phase forms in the old one due to a random fluctuation. Most of these nuclei disappear after a short time, but rarely a crystalline embryo may reach a critical size after which further growth becomes thermodynamically favorable and the entire system is converted into the new phase. In these lecture notes, we will discuss several theoretical concepts and computational methods to study crystallization. More specifically, we will address the rare event problem arising in the simulation of nucleation processes and explain how to calculate nucleation rates accurately. Particular attention is directed towards discussing statistical tools to analyze crystallization trajectories and identify the transition mech...

  7. Emergence, self-organization and morphogenesis in biological structures.

    Science.gov (United States)

    Dobrescu, R; Purcarea, V I

    2011-01-01

    The paper discusses the connection between emergence, pattern formation and nonlinear dynamics, focusing on the similarity between discrete patterns and fractal structures, and then describes different solutions to model reaction-diffusion systems as representative processes in morphogenesis. A specific example is the diffusion limited aggregation growth process, illustrated by the simulation of the evolution of a bacterial colony that shows the roles of instability and sensitivity in non-equilibrium pattern formation. Based on this particular case, it is shown how self-organization could be achieved from non-organized agglomeration of separate entities, in a region of space. We conclude with some brief remarks about universality, predictability and long-term prospects for this field of research. PMID:21505578

  8. Development of Innovation: a Systematic Self-organization Approach

    OpenAIRE

    Geseleva Natalya V.

    2012-01-01

    The article considers the key elements of the research of synergistic concept on the socio-economic systems. The usefulness of the systematic self-organization approach to the analysis of innovation processes because of their nonlinearity, stochasticity, ambiguity is grounded. The development cycle of innovation, the dynamics of their change and realization the targeted implementation of innovation are investigated.В статье рассмотрены ключевые элементы синергетической концепции исследования ...

  9. Self-organized criticality and interacting soft gluons in deep-inelastic electron-proton scattering

    OpenAIRE

    Boros, C; Ta-chung, Meng; Rittel, R.; Yang, Zhang

    1997-01-01

    It is suggested that the colorless systems of interacting soft-gluons in large-rapidity-gap events are open dynamical complex systems in which self-organized criticality and BTW-clusters play an important role. Theoretical arguments and experimental evidences supporting such a statistical approach to deep-inelastic scattering are presented.

  10. Entropy in the Bak-Sneppen Model for Self-Organized Criticality

    Science.gov (United States)

    Yang, Chun-Bin

    2003-03-01

    The distributions of fitness on the sites of one- and two-dimensional lattices are studied for the nearest-neighbour Bak-Sneppen model on self-organized criticality. The distributions show complicated behaviour showing that the system is far from equilibrium. By introducing the ``energy'' of a site, the entropy flow from the system to its environment is investigated.

  11. Optimal alarm system applied in coffee rust

    Directory of Open Access Journals (Sweden)

    Luciene Resende Gonçalves

    2014-02-01

    Full Text Available Alarm systems have very great utility in detecting and warning of catastrophes. This methodology was applied via TARSO model with Bayesian estimation, serving as a forecasting mechanism for coffee rust disease. The coffee culture is very susceptible to this disease causing several records of incidence in most cultivated crops. Researches involving this limiting factor for production are intense and frequent, indicating environmental factors as responsible for the epidemics spread, which does not occur if these factors are not favorable. The fitting type used by the a posteriori probability, allows the system to be updated each time point. The methodology was applied to the rust index series in the presence of the average temperature series. Thus, it is possible to verify the alarm resulted or in a high catastrophe detection in points at which the catastrophe has not occurred, or in the low detections if the point was already in the catastrophe state.

  12. Intelligent Self-Organized Robust Control Design based on Quantum/Soft Computing Technologies and Kansei Engineering

    Directory of Open Access Journals (Sweden)

    S.V. Ulyanov

    2013-10-01

    Full Text Available System of systems engineering technology describes the possibility of ill-defined (autonomous or hierarchically connected dynamic control system design that includes human decision making in unpredicted (unforeseen control situations. Kansei/Affective Engineering technology and its toolkit include qualitative description of human being emotion, instinct and intuition that are used effectively in design processes of smart/wise robotics and intelligent mechatronics. In presented report the way how these technologies can be married using new types of unconventional computational intelligence is described. System analysis of interrelations between these two important technologies is discussed. The solution of an important problem as robust intelligent control system design based on quantum knowledge base self-organization in unpredicted control situations and information risk is proposed. The background of applied unconventional computational intelligence is soft and quantum computing technologies. Applications of the developed approach in robust integrated fuzzy intelligent control systems are considered using concrete Benchmarks.

  13. Corporate competition: A self-organized network

    CERN Document Server

    Braha, Dan; Bar-Yam, Yaneer

    2011-01-01

    A substantial number of studies have extended the work on universal properties in physical systems to complex networks in social, biological, and technological systems. In this paper, we present a complex networks perspective on interfirm organizational networks by mapping, analyzing and modeling the spatial structure of a large interfirm competition network across a variety of sectors and industries within the United States. We propose two micro-dynamic models that are able to reproduce empirically observed characteristics of competition networks as a natural outcome of a minimal set of general mechanisms governing the formation of competition networks. Both models, which utilize different approaches yet apply common principles to network formation give comparable results. There is an asymmetry between companies that are considered competitors, and companies that consider others as their competitors. All companies only consider a small number of other companies as competitors; however, there are a few compan...

  14. A Signature of Self-Organized Criticality in the HT-6M Edge Plasma Turbulence

    Institute of Scientific and Technical Information of China (English)

    WANG Wen-Hao; YU Chang-Xuan; WEN Yi-Zhi; XU Yu-Hong; LING Bi-Li; GONG Xian-Zu; LIU Bao-Hua; WAN Bao-Nian

    2001-01-01

    ower spectra of electron density and floating potential fluctuations in the velocity shear layer of the HT-6M edge region have been measured and analysed. All the spectra have three distinct frequency regions with the spectral decay indices typical of self-organized criticality systems (0, -1 and -4) when Doppler shift effects induced by the plasma E × B flow velocity have been taken into account. These results are consistent with the predictions of the self-organized criticality models, which may be an indication of edge plasma turbulence in the HT-6M tokamak evolving into a critical state independent of local plasma parameters.

  15. The origin of power-law distributions in self-organized criticality

    OpenAIRE

    Yang, C. B.

    2004-01-01

    The origin of power-law distributions in self-organized criticality is investigated by treating the variation of the number of active sites in the system as a stochastic process. An avalanche is then regarded as a first-return random walk process in a one-dimensional lattice. Power law distributions of the lifetime and spatial size are found when the random walk is unbiased with equal probability to move in opposite directions. This shows that power-law distributions in self-organized critica...

  16. A Modeling substorm Dynamics of the Magnetosphere Using Self-Organized Criticality Approach

    Science.gov (United States)

    Bolzan, Mauricio; Rosa, Reinaldo

    2016-07-01

    Responses of Earth magnetic field during substorms exhibits a number of characteristics features such as the power-law spectra of fluctuations on different scales and signatures of low effective dimensions. Due the magnetosphere are constantly out-equilibrium their behavior is similar to real sandpiles during substorms, features of self-organized criticality (SOC) systems. Thus, in this work we presented a simple mathematical model to AE-index based on self-organizing sandpile mentioned by Uritsky and Pudovkin (1998), but we input the dissipation process inside the model. The statistical and multifractal tools to characterization of dynamical processes was used.

  17. Self-organization in patch pattern dynamics along the climatic gradient of the Judean lowland in central Israel

    Energy Technology Data Exchange (ETDEWEB)

    Shoshany, M.

    2009-07-01

    The role of Self-organization in the formation, evolution and recovery of natural systems from organismic to global scale cannot be over-estimated. Many of these systems represent a type of patch pattern dynamic behavior where patches are created, spread, expanded, aggregated, dissected and dissolved in parallel, forming myriad patterns through their evolution. Self-organization concern the functioning of intrinsic mechanisms which intrinsically regulate pattern changes leading these systems toward order following phases of disturbance or structural transformation (e.g., from herbaceous ecosystem to shrub lands). The aim of this paper is to present a new approach of Converging Self-Organization (CSO) coupling between information from geo simulated self-organization and remote sensing data. (Author) 4 refs.

  18. Self-organizing change? On drivers, causes and global environmental change

    Science.gov (United States)

    von Elverfeldt, Kirsten; Embleton-Hamann, Christine; Slaymaker, Olav

    2016-01-01

    Within global environmental change research, certain external drivers generally are assumed to cause the environmental system to change. The most commonly considered drivers are relief, sea level, hydroclimate, and/or people. However, complexity theory and self-organizing systems provide a very different framework and means of explanation. Self-organization - understood as the aggregate processes internal to an environmental system that lead to a distinctive spatial, temporal, or other organization - reduces the possibility of implicating a specific process as being causal. The principle of equifinality, whereby two or more different drivers can generate the same form, has long been recognized within a process-response framework, as well as the concept of divergence, which states that similar causes or processes result in different effects. Both ideas differ from self-organization in that they (i) deal with drivers external to the system and (ii) imply concrete cause-and-effect relations that might be difficult to discern. The assumption is, however, that careful study will eventually lead to the true causes and processes. Studies of self-organization deal with the ways in which internal processes interact and may drive a system toward an instability threshold, the so-called bifurcation point. At this point, the system develops by chance and no single external or internal cause for the change can be defined. For research into environmental change this is a crucial theory for two reasons:

  19. Plant introduction system applying virtual reality

    International Nuclear Information System (INIS)

    We developed the prototype of the introduction system for nuclear power plant applying 3D-CAD data and the virtual reality (V.R) technologies. For the purpose of the public acceptance (PA), the use of the V.R technologies, such as CG stereographic, will be interesting for the public. Also, it is very important to introduce the components of the plant in detail, which will become easy by using the 3D-CAD data of the nuclear plant. We made a prototype system for introducing the main portion of the nuclear power plant, such as main control room, containment vessel or turbine building, applying CG stereographic by plant 3D data and artificial voice guidance for the explanations. We have exhibited this system in two local festivals at the plant sites. It has been efficient for creating plant scene by using 3D-CAD from the viewpoint of cost, and stereographic has been much attractive to the resident. The detail scenario must be investigated from the viewpoint of PA effect. Also the performance of the graphics workstation should be increased to promote the quality of the CG movie. But we think that this system will have much effective by its novelty and flexibility. (author)

  20. Self-Organized Filaments in Dielectric Barrier Discharge in Air at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    DONG Li-Fang; LI Xue-Chen; YINZeng-Qian; QIAN Sheng-Fa; OUYANG Ji-Ting; WANG Long

    2001-01-01

    The self-organized filament pattern created by dielectric barrier discharges in air at atmospheric pressure is investigated experimentally. The density and dimension of filament are analysed quantitatively. The experimental results show that the distance between neighbouring filaments decreases with the increased applied voltage or with the decreased width of the gas gap. Also, the diameter of the filament decreases with the increased applied voltages or with the decreased width of the gas gap.

  1. Self-organization theories and environmental management: The case of South Moresby, Canada

    Science.gov (United States)

    Grzybowski, Alex G. S.; Slocombe, D. Scott

    1988-07-01

    This article presents a new approach to the analysis and management of large-scale societal problems with complex ecological, economic, and social dimensions. The approach is based on the theory of self-organizing systems—complex, open, far-from-equilibrium systems with nonlinear dynamics. A brief overview and comparison of different self-organization theories (synergetics, self-organization theory, hypercycles, and autopoiesis) is presented in order to isolate the key characteristics of such systems. The approach is used to develop an analysis of the landuse controversy in the South Moresby area of the Queen Charlotte Islands, British Columbia, Canada. Critical variables are identified for each subsystem and classified by spatial and temporal scale, and discussed in terms of information content and internal/external origin. Eradication of sea otters, introduction of black-tailed deer, impacts of large-scale clearcut logging, sustainability of the coastal forest industry, and changing relations between native peoples and governments are discussed in detail to illustrate the system dynamics of the South Moresby “sociobiophysical” system. Finally, implications of the self-organizing sociobiophysical system view for regional analysis and management are identified.

  2. Negotiation and Design for the Self-Organizing City. Gaming as a method for Urban Design

    Directory of Open Access Journals (Sweden)

    Ekim Tan

    2014-08-01

    Full Text Available An understanding of cities as open systems whose agents act on them simultaneously from below and above, influencing urban processes by their interaction with them and with each other, is replacing the simplistic debate on urban participation which asks whether cities should be organized bottom-up or top-down. This conceptualization of cities as complex systems calls for new collaborative city-making methods: a combination of collaborative planning (which already embraces various agencies and derives decision-making from negotiations between them and collaborative design (existing methods rely on rule-based iterative processes which control spatial outcomes. While current collaborative planning methods are open and interactive, they fail to simulate realistic power negotiations in the evolution of the physical environments they plan; collaborative design methods fall short in modelling the decision-making mechanisms of the physical environments they control. This research is dedicated to building an open negotiation and design method for cities as self-organizing systems that bridges this gap.Gaming as a tool for knowledge creation and negotiation serves as an interface between the more abstract decision-making and material city-making. Rarely involved in the creation of our environment, it has the unexplored potential of combining the socio-spatial dimensions of self-organizing urban processes. Diverse agents, the collaborations and conflicts within and between interest groups, and the parameters provided by topological data can all be combined in an operational form in gaming: potentially a great unifier of multiple stakeholder negotiations and individual design aspirations through which to generate popularly informed policies or design.The simple language and rules of games will allow jargon-free communication between stakeholders, experts and non-experts alike. The interactive and iterative nature of city gaming encourages the development of

  3. Applied Information Systems Research Program Workshop

    Science.gov (United States)

    1991-01-01

    The first Applied Information Systems Research Program (AISRP) Workshop provided the impetus for several groups involved in information systems to review current activities. The objectives of the workshop included: (1) to provide an open forum for interaction and discussion of information systems; (2) to promote understanding by initiating a dialogue with the intended benefactors of the program, the scientific user community, and discuss options for improving their support; (3) create an advocacy in having science users and investigators of the program meet together and establish the basis for direction and growth; and (4) support the future of the program by building collaborations and interaction to encourage an investigator working group approach for conducting the program.

  4. The Applied Mathematics for Power Systems (AMPS)

    Energy Technology Data Exchange (ETDEWEB)

    Chertkov, Michael [Los Alamos National Laboratory

    2012-07-24

    Increased deployment of new technologies, e.g., renewable generation and electric vehicles, is rapidly transforming electrical power networks by crossing previously distinct spatiotemporal scales and invalidating many traditional approaches for designing, analyzing, and operating power grids. This trend is expected to accelerate over the coming years, bringing the disruptive challenge of complexity, but also opportunities to deliver unprecedented efficiency and reliability. Our Applied Mathematics for Power Systems (AMPS) Center will discover, enable, and solve emerging mathematics challenges arising in power systems and, more generally, in complex engineered networks. We will develop foundational applied mathematics resulting in rigorous algorithms and simulation toolboxes for modern and future engineered networks. The AMPS Center deconstruction/reconstruction approach 'deconstructs' complex networks into sub-problems within non-separable spatiotemporal scales, a missing step in 20th century modeling of engineered networks. These sub-problems are addressed within the appropriate AMPS foundational pillar - complex systems, control theory, and optimization theory - and merged or 'reconstructed' at their boundaries into more general mathematical descriptions of complex engineered networks where important new questions are formulated and attacked. These two steps, iterated multiple times, will bridge the growing chasm between the legacy power grid and its future as a complex engineered network.

  5. Applying usability heuristics to radiotherapy systems

    International Nuclear Information System (INIS)

    Background and purpose: Heuristic evaluations have been used to evaluate safety of medical devices by identifying and assessing usability issues. Since radiotherapy treatment delivery systems often consist of multiple complex user-interfaces, a heuristic evaluation was conducted to assess the potential safety issues of such a system. Material and methods: A heuristic evaluation was conducted to evaluate the treatment delivery system at Princess Margaret Hospital (Toronto, Canada). Two independent evaluators identified usability issues with the user-interfaces and rated the severity of each issue. Results: The evaluators identified 75 usability issues in total. Eighteen of them were rated as high severity, indicating the potential to have a major impact on patient safety. A majority of issues were found on the record and verify system, and many were associated with the patient setup process. While the hospital has processes in place to ensure patient safety, recommendations were developed to further mitigate the risks of potential consequences. Conclusions: Heuristic evaluation is an efficient and inexpensive method that can be successfully applied to radiotherapy delivery systems to identify usability issues and improve patient safety. Although this study was conducted only at one site, the findings may have broad implications for the design of these systems.

  6. Terahertz spectroscopy applied to food model systems

    DEFF Research Database (Denmark)

    Møller, Uffe

    Water plays a crucial role in the quality of food. Apart from the natural water content of a food product, the state of that water is very important. Water can be found integrated into the biological material or it can be added during production of the product. Currently it is difficult to differ...... differentiate between these types of water in subsequent quality controls. This thesis describes terahertz time-domain spectroscopy applied on aqueous food model systems, with particular focus on ethanol-water mixtures and confined water pools in inverse micelles....

  7. Wiener filter applied to a neutrongraphic system

    International Nuclear Information System (INIS)

    The randon characteristics of the image formation process influence the spatial image obtained in a neutrongraphy. Several methods can be used to optimize this image, though estimation of the noise added to the original signal. This work deals with the optimal filtering technique, using Wiener's filter. A simulation is made, where the signal (spatial resolution function) has a Lorentz's form, and ten kinds of random noise with increasing R.M.S. are generated and individually added to the original signal. Wiener's filter is applied to different noise amplitudes and the behaviour of the spatial resolution function for our system is also analysed. (Author)

  8. Self-Organized Criticality and Synchronization in the Forest-Fire Model

    OpenAIRE

    Drossel, Barbara

    1995-01-01

    Depending on the rule for tree growth, the forest-fire model shows either self-organized criticality with rule-dependent exponents, or synchronization, or an intermediate behavior. This is shown analytically for the one-dimensional system, but holds evidently also in higher dimensions.

  9. Self-organized criticality: An explanation of the 1/f noise

    International Nuclear Information System (INIS)

    We show that dynamical systems with spatial degrees of freedom naturally evolve into a self-organized critical point. Flicker noise, or 1/f noise, can be identified with the dynamics of the critical state. This picture also yields insight into the origin of fractal objects

  10. Self-organized critical models without local particle conservation laws on superlattices

    International Nuclear Information System (INIS)

    We consider simple examples of self-organized critical systems on one-dimensional superlattices without local particle conservation laws. The set of all recurrence states are also found in these examples using a method similar to the burning algorithm. (author)

  11. Self-organized spectrum chunk selection algorithm for Local Area LTE-Advanced

    DEFF Research Database (Denmark)

    Kumar, Sanjay; Wang, Yuanye; Marchetti, Nicola

    2010-01-01

    This paper presents a self organized spectrum chunk selection algorithm in order to minimize the mutual intercell interference among Home Node Bs (HeNBs), aiming to improve the system throughput performance compared to the existing frequency reuse one scheme. The proposed algorithm is useful in L...

  12. 25 Years of Self-Organized Criticality: Solar and Astrophysics

    Science.gov (United States)

    Aschwanden, Markus J.; Crosby, Norma B.; Dimitropoulou, Michaila; Georgoulis, Manolis K.; Hergarten, Stefan; McAteer, James; Milovanov, Alexander V.; Mineshige, Shin; Morales, Laura; Nishizuka, Naoto; Pruessner, Gunnar; Sanchez, Raul; Sharma, A. Surja; Strugarek, Antoine; Uritsky, Vadim

    2016-01-01

    Shortly after the seminal paper "Self-Organized Criticality: An explanation of 1/ f noise" by Bak et al. (1987), the idea has been applied to solar physics, in "Avalanches and the Distribution of Solar Flares" by Lu and Hamilton (1991). In the following years, an inspiring cross-fertilization from complexity theory to solar and astrophysics took place, where the SOC concept was initially applied to solar flares, stellar flares, and magnetospheric substorms, and later extended to the radiation belt, the heliosphere, lunar craters, the asteroid belt, the Saturn ring, pulsar glitches, soft X-ray repeaters, blazars, black-hole objects, cosmic rays, and boson clouds. The application of SOC concepts has been performed by numerical cellular automaton simulations, by analytical calculations of statistical (powerlaw-like) distributions based on physical scaling laws, and by observational tests of theoretically predicted size distributions and waiting time distributions. Attempts have been undertaken to import physical models into the numerical SOC toy models, such as the discretization of magneto-hydrodynamics (MHD) processes. The novel applications stimulated also vigorous debates about the discrimination between SOC models, SOC-like, and non-SOC processes, such as phase transitions, turbulence, random-walk diffusion, percolation, branching processes, network theory, chaos theory, fractality, multi-scale, and other complexity phenomena. We review SOC studies from the last 25 years and highlight new trends, open questions, and future challenges, as discussed during two recent ISSI workshops on this theme.

  13. Global consensus theorem and self-organized criticality: unifying principles for understanding self-organization, swarm intelligence and mechanisms of carcinogenesis.

    Science.gov (United States)

    Rosenfeld, Simon

    2013-01-01

    Complex biological systems manifest a large variety of emergent phenomena among which prominent roles belong to self-organization and swarm intelligence. Generally, each level in a biological hierarchy possesses its own systemic properties and requires its own way of observation, conceptualization, and modeling. In this work, an attempt is made to outline general guiding principles in exploration of a wide range of seemingly dissimilar phenomena observed in large communities of individuals devoid of any personal intelligence and interacting with each other through simple stimulus-response rules. Mathematically, these guiding principles are well captured by the Global Consensus Theorem (GCT) equally applicable to neural networks and to Lotka-Volterra population dynamics. Universality of the mechanistic principles outlined by GCT allows for a unified approach to such diverse systems as biological networks, communities of social insects, robotic communities, microbial communities, communities of somatic cells, social networks and many other systems. Another cluster of universal laws governing the self-organization in large communities of locally interacting individuals is built around the principle of self-organized criticality (SOC). The GCT and SOC, separately or in combination, provide a conceptual basis for understanding the phenomena of self-organization occurring in large communities without involvement of a supervisory authority, without system-wide informational infrastructure, and without mapping of general plan of action onto cognitive/behavioral faculties of its individual members. Cancer onset and proliferation serves as an important example of application of these conceptual approaches. In this paper, the point of view is put forward that apparently irreconcilable contradictions between two opposing theories of carcinogenesis, that is, the Somatic Mutation Theory and the Tissue Organization Field Theory, may be resolved using the systemic approaches

  14. Self-Organized Criticality in Astrophysics The Statistics of Nonlinear Processes in the Universe

    CERN Document Server

    Aschwanden, Markus

    2011-01-01

    The concept of ‘self-organized criticality’ (SOC) has been applied to a variety of problems, ranging from population growth and traffic jams to earthquakes, landslides and forest fires. The technique is now being applied to a wide range of phenomena in astrophysics, such as planetary magnetospheres, solar flares, cataclysmic variable stars, accretion disks, black holes and gamma-ray bursts, and also to phenomena in galactic physics and cosmology. Self-organized Criticality in Astrophysics introduces the concept of SOC and shows that, due to its universality and ubiquity, it is a law of nature. The theoretical framework and specific physical models are described, together with a range of applications in various aspects of astrophyics. The mathematical techniques, including the statistics of random processes, time series analysis, time scale and waiting time distributions, are presented and the results are applied to specific observations of astrophysical phenomena.

  15. The influence of local- and landscape-scale processes on spatial self-organization in estuarine ecosystems

    OpenAIRE

    van de Koppel, Johan; Bouma, Tjeerd J.; Herman, Peter M. J.

    2012-01-01

    Complexity theory proposes that spatial self-organization, the process whereby small-scale, localized interactions among the components of a system generate complex spatial structures at large spatial scales, explains the formation of autogenic spatial patterns in ecosystems. We question this premise by reviewing three estuarine ecosystems – mussel beds, mudflats and salt marshes – where self-organization has been put forward to explain spatial patterns. Our review highlights that these self-...

  16. A Multi Agent Architecture to Support Self-organizing Material Handling

    OpenAIRE

    Rocha, Andre; Ribeiro, Luis; Barata, José

    2014-01-01

    Part 4: Self-organizing Manufacturing Systems International audience Emerging market conditions press current shop floors hard. Mass customization implies that manufacturing system have to be extremely dynamic when handling variety and batch size. Hence, the ability to quickly reconfigure the system is paramount. This involves both the stations that carry out the production processes and the transport system. Traditionally system reconfiguration issues have been approached from a optimi...

  17. Distinguishing volcanic lithology using Self-Organizing Map

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Self-Organizing Map is an unsupervised learning algorithm. It has the ability of self-organization,self-learning and side associative thinking. Based on the principle it can identified the complex volcanic lithology. According to the logging data of the volcanic rock samples, the SOM will be trained, The SOM training results were analyzed in order to choose optimally parameters of the network. Through identifying the logging data of volcanic formations, the result shows that the map can achieve good application effects.

  18. Self-organized criticality and interface depinning transitions

    OpenAIRE

    Lauritsen, K. B.; Alava, M. J.

    1999-01-01

    We discuss the relation between self-organized criticality and depinning transitions by mapping sandpile models to equations that describe driven interfaces in random media. This equivalence yields a continuum description and gives insight about various ways of reaching the depinning critical point: slow drive (self-organized criticality), fixed density simulations, tuning the interface velocity (extremal drive criticality), or tuning the driving force. We obtain a scaling relation for the co...

  19. Dimension of branching processes and self-organized criticality

    International Nuclear Information System (INIS)

    Branching processes and their application as a model of self-organized criticality are briefly reviewed. The critical dimension for this model is calculated. The differences between our result and similar ones on polymers and percolation are explained. We discuss semiquantitatively why the critical dimension of a model of self-organized criticality that includes the oscillation of the sandpile around its critical value would be different, perhaps even infinite. Finally, we conjecture that our mathematical results are more general than they seem

  20. Macroscopic models of collective motion and self-organization

    OpenAIRE

    Degond, Pierre; Frouvelle, Amic; Liu, Jian-guo; Motsch, Sébastien; Navoret, Laurent

    2013-01-01

    International audience In this paper, we review recent developments on the derivation and properties of macroscopic models of collective motion and self-organization. The starting point is a model of self-propelled particles interacting with its neighbors through alignment. We successively derive a mean-field model and its hydrodynamic limit. The resulting macroscopic model is the Self-Organized Hydrodynamics (SOH). We review the available existence results and known properties of the SOH ...

  1. Self-organized supramolecules of π-conjugated rodlike polymers

    OpenAIRE

    Knaapila, Matti

    2004-01-01

    This thesis concerns fundamental self-organized aspects in π-conjugated polymers. Self-organization is the central issue in nanotechnology of soft condensed matter. The thesis focuses on the design and control of supramolecular hairy-rodlike molecules which are characterized by a thermotropic and preferentially aligned nanoscale structure. The major emphasis is on polypyridine, polyaniline, and polyfluorene. Because of their rodlike chain the formation of supramolecules is nontrivial. The und...

  2. Extending Particle Swarm Optimisers with Self-Organized Criticality

    DEFF Research Database (Denmark)

    Løvbjerg, Morten; Krink, Thiemo

    Particle swarm optimisers (PSOs) show potential in function optimisation, but still have room for improvement. Self-organized criticality (SOC) can help control the PSO and add diversity. Extending the PSO with SOC seems promising reaching faster convergence and better solutions.......Particle swarm optimisers (PSOs) show potential in function optimisation, but still have room for improvement. Self-organized criticality (SOC) can help control the PSO and add diversity. Extending the PSO with SOC seems promising reaching faster convergence and better solutions....

  3. Clustering analysis of malware behavior using Self Organizing Map

    DEFF Research Database (Denmark)

    Pirscoveanu, Radu-Stefan; Stevanovic, Matija; Pedersen, Jens Myrup

    2016-01-01

    For the time being, malware behavioral classification is performed by means of Anti-Virus (AV) generated labels. The paper investigates the inconsistencies associated with current practices by evaluating the identified differences between current vendors. In this paper we rely on Self Organizing...... accurate results based on the clusters created by competitive and cooperative algorithms like Self Organizing Map that better describe the behavioral profile of malware....

  4. Self-assembly, self-organization and division of labour

    OpenAIRE

    Sendova-Franks, A. B.

    1999-01-01

    The prospect of generic principles of biological organization being uncovered through the increasingly broad use of the concepts of 'self-assembly' and 'self-organization' in biology will only be fulfilled if students of different levels of biological organization use the same terms with the same meanings. We consider the different ways the terms 'self-assembly' and 'self-organization' have been used, from studies of molecules to studies of animal societies. By linking 'self-assembly' and 'se...

  5. Multi-sensory integration by constrained self-organization

    OpenAIRE

    Lefort, Mathieu; Boniface, Yann; Girau, Bernard

    2010-01-01

    We develop on a model for multi-sensory integration to perform sensorimotor tasks. The aim of the model is to provide missing modality recall and generalization using cortico-inspired mechanisms. The architecture consists in several multilevel cortical maps with a generic structure. Each map has to self organize with a continuous, decentralized and unsupervised learning which provides robustness and adaptability. These self-organizations are constrained by the multi modal context to obtain mu...

  6. Self-Organization in Integrated Conservation and Development Initiatives

    OpenAIRE

    2007-01-01

    This paper uses a cooking metaphor to explore key elements (i.e., ingredients for a great meal) that contribute to self-organization processes in the context of successful community-based conservation (CBC) or integrated conservation and development projects (ICDP). We pose two major questions: (1) What are the key factors that drive peoples' and/or organizations' willingness to take responsibilities and to act? (2) What contributes to community self-organization? In other words, how conserva...

  7. Innovative Mechanism of Rural Organization Based on Self-Organization

    OpenAIRE

    Wang, Xing jin; Gao, Bing

    2011-01-01

    The paper analyzes the basic situation for the formation of innovative rural organizations with the form of self-organization; revels the features of self-organization, including the four aspects of openness of rural organization, innovation of rural organization is far away from equilibrium, the non-linear response mechanism of rural organization innovation and the random rise and fall of rural organization innovation. The evolution mechanism of rural organization innovation is reveled accor...

  8. Marketing Channel Sustainable Development on Self-organization

    OpenAIRE

    Jinfu Wang

    2009-01-01

    Marketing channel plays a key role for the success of an enterprise in gaining competitive edge, markets demanding agility and quick market responsiveness which represent complex phenomena in global competition. To discover the behavior and mechanism of organization, nowadays, more and more people have paid attention to the complexity theory such as self-organization, dissipative structure theory, synergetic theory, etc. The paper introduces the concept of self-organization theories and marke...

  9. Effect of prediction on the self-organization of pedestrian counter flow

    International Nuclear Information System (INIS)

    Pedestrians may predict the behavior of others and then adjust their movement accordingly to avoid potential conflicts in advance. Motivated by this fact, we propose a predictive control theory-based pedestrian counter flow model, which describes the predictive mechanism underlying pedestrian self-organization phenomena. In this model, a pedestrian will make in-advance-avoid behavior based on the estimation of future moving gain within a given predictive length to reduce potential conflicts. The future gain in the present model is affected by three factors, i.e. the predictive length, the smooth degree of entrance and the influential area of coming pedestrians. Simulation results of the model show that increasing predictive length has a remarkable effect on reducing conflicts, improving pedestrian velocity, smoothing pedestrian movement and stabilizing the self-organized lanes. When enlarging the influential area of coming pedestrians, pedestrians tend to aggregate to the formed self-organized lanes, which makes the lanes wider and the lane number reduced. Interestingly, moderate enlargement (of the influential area) will reduce conflicts significantly, while excessive enlargement will lead to an increase in conflicts. We also discuss the predictive effect toward the smooth degree of entrance. When there are some formed self-organized lanes in the system, the effect is significant, and it will make the lanes more regular and stable, while when the existing lanes are unstable, the effect has little impact on the system. (paper)

  10. Self-organized ignition of a tokamak plasma

    International Nuclear Information System (INIS)

    The continuous progress in the attainment of plasma parameters required for establishing nuclear fusion in magnetically confined plasmas as well as the prospect of feasible steady-state operation has instigated the interest in the physics of burning plasmas [1]. Aside from the required plasma current drive, fusion energy production with tokamaks demands particular attention to confinement and fuelling regimes in order to maintain the plasma density n and temperature T at favourable values matching with specific requirements such as the triple product nτET, where τE represents the plasma energy confinement time. The identification of state and parameter space regions capable of ignited fusion plasma operation is evidently crucial if significant energy gains are to be realized over longer periods. Examining the time-evolving state of tokamak fusion plasma in a parameter space spanned by the densities of plasma constituents and their temperatures has led to the formation of an ignition criterion [2] fundamentally different from the commonly used static patterns. The incorporation of non-stationary particle and energy balances into the analysis here, the application of a 'soft' Troyon beta limit [3], the consideration of actual fusion power deposition [4,5] and its effect of reducing τE are seen to significantly influence the fusion burn dynamics and to shape the ignition conditions. The presented investigation refers to a somewhat upgraded (to achieve ignition) ITER-like tokamak plasma and uses volume averages of locally varying quantities and processes. The resulting ignition criterion accounts for the dynamic evolution of a reacting plasma controlled by heating and fuel feeding. Interestingly, also self-organized ignition can be observed: a fusion plasma possessing a density and temperature above a distinct separatrix in the considered parameter phase space is seen to evolve - without external heating and hence practically by itself - towards an ignited stable

  11. Integrative Systems Biology Applied to Toxicology

    DEFF Research Database (Denmark)

    Kongsbak, Kristine Grønning

    that were in concordance with their effects in experimental animals. In project II, I profiled the effects on rat liver gene expression levels following exposure to a 14-chemical mixture ± the presence of an endocrine disrupting chemical. This project helped us shed light on the mechanism of action of......Humans are exposed to various chemical agents through food, cosmetics, pharmaceuticals and other sources. Exposure to chemicals is suspected of playing a main role in the development of some adverse health effects in humans. Additionally, European regulatory authorities have recognized the risk...... associated with combined exposure to multiple chemicals. Testing all possible combinations of the tens of thousands environmental chemicals is impractical. This PhD project was launched to apply existing computational systems biology methods to toxicological research. In this thesis, I present in three...

  12. Self-organized models of selectivity in calcium channels

    International Nuclear Information System (INIS)

    The role of flexibility in the selectivity of calcium channels is studied using a simple model with two parameters that accounts for the selectivity of calcium (and sodium) channels in many ionic solutions of different compositions and concentrations using two parameters with unchanging values. We compare the distribution of side chains (oxygens) and cations (Na+ and Ca2+) and integrated quantities. We compare the occupancies of cations Ca2+/Na+ and linearized conductance of Na+. The distributions show a strong dependence on the locations of fixed side chains and the flexibility of the side chains. Holding the side chains fixed at certain predetermined locations in the selectivity filter distorts the distribution of Ca2+ and Na+ in the selectivity filter. However, integrated quantities—occupancy and normalized conductance—are much less sensitive. Our results show that some flexibility of side chains is necessary to avoid obstruction of the ionic pathway by oxygen ions in 'unfortunate' fixed positions. When oxygen ions are mobile, they adjust 'automatically' and move 'out of the way', so they can accommodate the permeable cations in the selectivity filter. Structure is the computed consequence of the forces in this model. The structures are self-organized, at their free energy minimum. The relationship of ions and side chains varies with an ionic solution. Monte Carlo simulations are particularly well suited to compute induced-fit, self-organized structures because the simulations yield an ensemble of structures near their free energy minimum. The exact location and mobility of oxygen ions has little effect on the selectivity behavior of calcium channels. Seemingly, nature has chosen a robust mechanism to control selectivity in calcium channels: the first-order determinant of selectivity is the density of charge in the selectivity filter. The density is determined by filter volume along with the charge and excluded volume of

  13. Topology and structural self-organization in folded proteins

    Science.gov (United States)

    Lundgren, M.; Krokhotin, Andrey; Niemi, Antti J.

    2013-10-01

    Topological methods are indispensable in theoretical studies of particle physics, condensed matter physics, and gravity. These powerful techniques have also been applied to biological physics. For example, knowledge of DNA topology is pivotal to the understanding as to how living cells function. Here, the biophysical repertoire of topological methods is extended, with the aim to understand and characterize the global structure of a folded protein. For this, the elementary concept of winding number of a vector field on a plane is utilized to introduce a topological quantity called the folding index of a crystallographic protein. It is observed that in the case of high resolution protein crystals, the folding index, when evaluated over the entire length of the crystallized protein backbone, has a very clear and strong propensity towards integer values. The observation proposes that the way how a protein folds into its biologically active conformation is a structural self-organization process with a topological facet that relates to the concept of solitons. It is proposed that the folding index has a potential to become a useful tool for the global, topological characterization of the folding pathways.

  14. A conciliation mechanism for self-organizing dynamic small groups.

    Science.gov (United States)

    Ren, Minglun; Hu, Zhongfeng; Jain, Hemant

    2016-01-01

    A group of individuals, organizations or things in internet of things (IoT) often dynamically self-organizes in small groups to accomplish certain tasks. This is common in virtual organization, social networks and the evolving field of IoT. These small groups have different behavioral characteristics than large groups. Members individually have some requirements and contribute some resources to the group. The organization and operation of such a group requires dynamic identification of group requirements that can be fulfilled by available resources and is approved by the group. We apply design science methods to develop an artifact that helps in conciliation of collective requirements and resources of small groups while maintaining each member's satisfaction. The mechanism also supports dynamic conciliation as members leave and new members join the group. Each member's requirement is specified as an explicit/implicit objective that is feasible/not feasible based on resources available to the group and whether the requirement is in alignment with other members' objectives. We validate the artifact by using it for a manufacturing service group and simulating the change in collective group requirements and resources as group membership changes dynamically. PMID:27390641

  15. Sustained activity in hierarchical modular neural networks: self-organized criticality and oscillations

    Directory of Open Access Journals (Sweden)

    Sheng-Jun Wang

    2011-06-01

    Full Text Available Cerebral cortical brain networks possess a number of conspicuous features of structure and dynamics. First, these networks have an intricate, non-random organization. They are structured in a hierarchical modular fashion, from large-scale regions of the whole brain, via cortical areas and area subcompartments organized as structural and functional maps to cortical columns, and finally circuits made up of individual neurons. Second, the networks display self-organized sustained activity, which is persistent in the absence of external stimuli. At the systems level, such activity is characterized by complex rhythmical oscillations over a broadband background, while at the cellular level, neuronal discharges have been observed to display avalanches, indicating that cortical networks are at the state of self-organized criticality. We explored the relationship between hierarchical neural network organization and sustained dynamics using large-scale network modeling. It was shown that sparse random networks with balanced excitation and inhibition can sustain neural activity without external stimulation. We find that a hierarchical modular architecture can generate sustained activity better than random networks. Moreover, the system can simultaneously support rhythmical oscillations and self-organized criticality, which are not present in the respective random networks. The underlying mechanism is that each dense module cannot sustain activity on its own, but displays self-organized criticality in the presence of weak perturbations. The hierarchical modular networks provide the coupling among subsystems with self-organized criticality. These results imply that the hierarchical modular architecture of cortical networks plays an important role in shaping the ongoing spontaneous activity of the brain, potentially allowing the system to take advantage of both the sensitivityof critical state and predictability and timing of oscillations for efficient

  16. Actomyosin-based Self-organization of cell internalization during C. elegans gastrulation

    Directory of Open Access Journals (Sweden)

    Pohl Christian

    2012-11-01

    Full Text Available Abstract Background Gastrulation is a key transition in embryogenesis; it requires self-organized cellular coordination, which has to be both robust to allow efficient development and plastic to provide adaptability. Despite the conservation of gastrulation as a key event in Metazoan embryogenesis, the morphogenetic mechanisms of self-organization (how global order or coordination can arise from local interactions are poorly understood. Results We report a modular structure of cell internalization in Caenorhabditis elegans gastrulation that reveals mechanisms of self-organization. Cells that internalize during gastrulation show apical contractile flows, which are correlated with centripetal extensions from surrounding cells. These extensions converge to seal over the internalizing cells in the form of rosettes. This process represents a distinct mode of monolayer remodeling, with gradual extrusion of the internalizing cells and simultaneous tissue closure without an actin purse-string. We further report that this self-organizing module can adapt to severe topological alterations, providing evidence of scalability and plasticity of actomyosin-based patterning. Finally, we show that globally, the surface cell layer undergoes coplanar division to thin out and spread over the internalizing mass, which resembles epiboly. Conclusions The combination of coplanar division-based spreading and recurrent local modules for piecemeal internalization constitutes a system-level solution of gradual volume rearrangement under spatial constraint. Our results suggest that the mode of C. elegans gastrulation can be unified with the general notions of monolayer remodeling and with distinct cellular mechanisms of actomyosin-based morphogenesis.

  17. Self-Organizing Routing Protocol for Bluetooth Low Energy Sensor Networks

    OpenAIRE

    Haatanen, Marko

    2012-01-01

    Oulu University of Applied Sciences Information Technology and Telecommunications Author(s): Marko Haatanen Title of thesis: Self-Organizing Routing Protocol for Bluetooth Low Energy Sensor Networks Supervisor(s): Teemu Korpela Term and year when the thesis was submitted: Spring 2012 Number of pages: 37 One of the main reasons for starting this project was to learn how to utilize Bluetooth Low Energy technology. It was started on the side of a European Union funded projec...

  18. Evidence of a new form of self-organization in DBD Plasmas: the quincunx structure

    OpenAIRE

    Bernecker, B; Callegari, T; Boeuf, J P

    2011-01-01

    Abstract Self-organized, stable or dynamic, filamentary structures are known to form in dielectric barrier discharges (DBDs) operating in a glow regime. The common " classical " understanding of stable filamentary structures in DBDs is that a glow discharge filament forms at each half-cycle of the sinusoidal applied voltage at the same spatial location along the dielectric surface. The " memory " charges deposited by the previous filament on the dielectric surfaces are responsible for the ...

  19. Self-organizing maps could improve the classification of Spanish mutual funds

    OpenAIRE

    Moreno, David; Marco, Paulina; Olmeda, Ignacio

    2006-01-01

    In this paper, we apply nonlinear techniques (Self-Organizing Maps, k-nearest neighbors and the k-means algorithm) to evaluate the official Spanish mutual funds classification. The methodology that we propose allows us to identify which mutual funds are misclassified in the sense that they have historical performances which do not conform to the investment objectives established in their official category. According to this, we conclude that, on average, over 40% of mutual funds could be misc...

  20. A self-organized criticality model for ion temperature gradient mode driven turbulence in confined plasma

    International Nuclear Information System (INIS)

    A new self-organized criticality (SOC) model is introduced in the form of a cellular automaton (CA) for ion temperature gradient (ITG) mode driven turbulence in fusion plasmas. Main characteristics of the model are that it is constructed in terms of the actual physical variable, the ion temperature, and that the temporal evolution of the CA, which necessarily is in the form of rules, mimics actual physical processes as they are considered to be active in the system, i.e., a heating process and a local diffusive process that sets on if a threshold in the normalized ITG R/LT is exceeded. The model reaches the SOC state and yields ion temperature profiles of exponential shape, which exhibit very high stiffness, in that they basically are independent of the loading pattern applied. This implies that there is anomalous heat transport present in the system, despite the fact that diffusion at the local level is imposed to be of a normal kind. The distributions of the heat fluxes in the system and of the heat out-fluxes are of power-law shape. The basic properties of the model are in good qualitative agreement with experimental results.

  1. Self-organizing criticality and the method of automatic search of critical points

    International Nuclear Information System (INIS)

    We discuss the method of automatic search of critical point (MASCP) in the context of self-organizing criticality (SOC). The system analyzed is a contact process that presents a non-equilibrium phase transition between two states: active state and inactive state (the so-called absorbing state). The lattice sites represent infected and healthy individuals. We apply the technique MASCP to the propagation of epidemy in an unidimensional lattice at the criticality (space-domain). We take the technique MASCP to study SOC behavior. The time-series of density of infected individuals is analyzed using two complementary tools: Fourier analysis and detrended fluctuation analysis. We find numeric evidence that the time evolution that drives the system to the critical point in MASCP is not a SOC problem, but Gaussian noise. A SOC problem is characterized by an interaction-dominated system that goes spontaneously to the critical point. In fact MASCP goes by itself to a stationary point but it is not an interaction-dominated process, but a mean-field interaction process

  2. Multi-electrolyte-step anodic aluminum oxide method for the fabrication of self-organized nanochannel arrays

    Science.gov (United States)

    2012-01-01

    Nanochannel arrays were fabricated by the self-organized multi-electrolyte-step anodic aluminum oxide [AAO] method in this study. The anodization conditions used in the multi-electrolyte-step AAO method included a phosphoric acid solution as the electrolyte and an applied high voltage. There was a change in the phosphoric acid by the oxalic acid solution as the electrolyte and the applied low voltage. This method was used to produce self-organized nanochannel arrays with good regularity and circularity, meaning less power loss and processing time than with the multi-step AAO method. PMID:22333268

  3. Growth, collapse, and self-organized criticality in complex networks

    Science.gov (United States)

    Wang, Yafeng; Fan, Huawei; Lin, Weijie; Lai, Ying-Cheng; Wang, Xingang

    2016-04-01

    Network growth is ubiquitous in nature (e.g., biological networks) and technological systems (e.g., modern infrastructures). To understand how certain dynamical behaviors can or cannot persist as the underlying network grows is a problem of increasing importance in complex dynamical systems as well as sustainability science and engineering. We address the question of whether a complex network of nonlinear oscillators can maintain its synchronization stability as it expands. We find that a large scale avalanche over the entire network can be triggered in the sense that the individual nodal dynamics diverges from the synchronous state in a cascading manner within a relatively short time period. In particular, after an initial stage of linear growth, the network typically evolves into a critical state where the addition of a single new node can cause a group of nodes to lose synchronization, leading to synchronization collapse for the entire network. A statistical analysis reveals that the collapse size is approximately algebraically distributed, indicating the emergence of self-organized criticality. We demonstrate the generality of the phenomenon of synchronization collapse using a variety of complex network models, and uncover the underlying dynamical mechanism through an eigenvector analysis.

  4. 25 Years of Self-organized Criticality: Numerical Detection Methods

    Science.gov (United States)

    McAteer, R. T. James; Aschwanden, Markus J.; Dimitropoulou, Michaila; Georgoulis, Manolis K.; Pruessner, Gunnar; Morales, Laura; Ireland, Jack; Abramenko, Valentyna

    2016-01-01

    The detection and characterization of self-organized criticality (SOC), in both real and simulated data, has undergone many significant revisions over the past 25 years. The explosive advances in the many numerical methods available for detecting, discriminating, and ultimately testing, SOC have played a critical role in developing our understanding of how systems experience and exhibit SOC. In this article, methods of detecting SOC are reviewed; from correlations to complexity to critical quantities. A description of the basic autocorrelation method leads into a detailed analysis of application-oriented methods developed in the last 25 years. In the second half of this manuscript space-based, time-based and spatial-temporal methods are reviewed and the prevalence of power laws in nature is described, with an emphasis on event detection and characterization. The search for numerical methods to clearly and unambiguously detect SOC in data often leads us outside the comfort zone of our own disciplines—the answers to these questions are often obtained by studying the advances made in other fields of study. In addition, numerical detection methods often provide the optimum link between simulations and experiments in scientific research. We seek to explore this boundary where the rubber meets the road, to review this expanding field of research of numerical detection of SOC systems over the past 25 years, and to iterate forwards so as to provide some foresight and guidance into developing breakthroughs in this subject over the next quarter of a century.

  5. Computational Design of Photovoltaic Materials with Self Organized Nano Structures

    Science.gov (United States)

    Sato, Kazunori; Katayama-Yoshida, Hiroshi

    2013-03-01

    Chalcopyrite and II-VI semiconductors, such as Cu(In, Ga)Se2, Cu2ZnSn(S, Se)4 and Cd(S, Te), are one of the most promising materials for low cost photovoltaic solar-cells. In this paper, based on first-principles calculations, we propose that self-organized nano-structures in these compounds will enhance the conversion efficiency. Our calculations are based on the KKR-CPA-LDA with the self-interaction correction. We also use VASP package for calculating mixing energy and effective interactions of the systems by using the cluster expansion method. For phase separating systems, we simulate nano-structure formation by using the Monte Carlo method. It is expected that the photo-generated electron-hole pairs are efficiently separated by the type-II interface and then effectively transferred along the quasi-one-dimensional structures. Moreover, we can expect multiplication of generated carriers due to the multi-exciton effects in nano-structures.

  6. Optical fiber-applied radiation detection system

    International Nuclear Information System (INIS)

    A technique to measure radiation by using plastic scintillation fibers doped radiation fluorescent (scintillator) to plastic optical fiber for a radiation sensor, was developed. The technique contains some superiority such as high flexibility due to using fibers, relatively easy large area due to detecting portion of whole of fibers, and no electromagnetic noise effect due to optical radiation detection and signal transmission. Measurable to wide range of and continuous radiation distribution along optical fiber cable at a testing portion using scintillation fiber and flight time method, the optical fiber-applied radiation sensing system can effectively monitor space radiation dose or apparatus operation condition monitoring. And, a portable type scintillation optical fiber body surface pollution monitor can measure pollution concentration of radioactive materials attached onto body surface by arranging scintillation fiber processed to a plate with small size and flexibility around a man to be tested. Here were described on outline and fundamental properties of various application products using these plastic scintillation fiber. (G.K.)

  7. Self-organization of neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Clark, J.W.; Winston, J.V.; Rafelski, J.

    1984-05-14

    The plastic development of a neural-network model operating autonomously in discrete time is described by the temporal modification of interneuronal coupling strengths according to momentary neural activity. A simple algorithm (brainwashing) is found which, applied to nets with initially quasirandom connectivity, leads to model networks with properties conducive to the simulation of memory and learning phenomena. 18 references, 2 figures.

  8. Self-organization of neural networks

    Science.gov (United States)

    Clark, John W.; Winston, Jeffrey V.; Rafelski, Johann

    1984-05-01

    The plastic development of a neural-network model operating autonomously in discrete time is described by the temporal modification of interneuronal coupling strengths according to momentary neural activity. A simple algorithm (“brainwashing”) is found which, applied to nets with initially quasirandom connectivity, leads to model networks with properties conductive to the simulation of memory and learning phenomena.

  9. Wave extreme characterization using self-organizing maps

    Science.gov (United States)

    Barbariol, Francesco; Marcello Falcieri, Francesco; Scotton, Carlotta; Benetazzo, Alvise; Carniel, Sandro; Sclavo, Mauro

    2016-03-01

    The self-organizing map (SOM) technique is considered and extended to assess the extremes of a multivariate sea wave climate at a site. The main purpose is to obtain a more complete representation of the sea states, including the most severe states that otherwise would be missed by a SOM. Indeed, it is commonly recognized, and herein confirmed, that a SOM is a good regressor of a sample if the frequency of events is high (e.g., for low/moderate sea states), while a SOM fails if the frequency is low (e.g., for the most severe sea states). Therefore, we have considered a trivariate wave climate (composed by significant wave height, mean wave period and mean wave direction) collected continuously at the Acqua Alta oceanographic tower (northern Adriatic Sea, Italy) during the period 1979-2008. Three different strategies derived by SOM have been tested in order to capture the most extreme events. The first contemplates a pre-processing of the input data set aimed at reducing redundancies; the second, based on the post-processing of SOM outputs, consists in a two-step SOM where the first step is applied to the original data set, and the second step is applied on the events exceeding a given threshold. A complete graphical representation of the outcomes of a two-step SOM is proposed. Results suggest that the post-processing strategy is more effective than the pre-processing one in order to represent the wave climate extremes. An application of the proposed two-step approach is also provided, showing that a proper representation of the extreme wave climate leads to enhanced quantification of, for instance, the alongshore component of the wave energy flux in shallow water. Finally, the third strategy focuses on the peaks of the storms.

  10. Self-organization in three-dimensional compressible magnetohydrodynamic flow

    International Nuclear Information System (INIS)

    A three-dimensional self-organization process of a compressible dissipative plasma with a velocity-magnetic field correlation is investigated in detail by means of a variational method and a magnetohydrodynamic simulation. There are two types of relaxation, i.e., fast relaxation in which the cross helicity is not conserved, and slow relaxation in which the cross helicity is approximately conserved. In the slow relaxation case the cross helicity consists of two components with opposite sign which have almost the same amplitude in the large wavenumber region. In both cases the system approaches a high correlation state, dependent on the initial condition. These results are consistent with an observational data of the solar wind. Selective dissipation of magnetic energy, normal cascade of magnetic energy spectrum and inverse cascade of magnetic helicity spectrum are observed for the sub-Alfvenic flow case as was previously observed for the zero flow case. When the flow velocity is super-Alfvenic, the relaxation process is significantly altered from the zero flow case. (author)

  11. Regimes of self-organized criticality in the atmospheric convection

    CERN Document Server

    Spineanu, F; Palade, D

    2014-01-01

    Large scale organization in ensembles of events of atmospheric convection can be generated by the combined effect of forcing and of the interaction between the raising plumes and the environment. Here the "large scale" refers to the space extension that is larger or comparable with the basic resolved cell of a numerical weather prediction system. Under the action of external forcing like heating individual events of convection respond to the slow accumulation of vapor by a threshold-type dynamics. This is due to the a time-scale separation, between the slow drive and the fast convective response, expressed as the "quasi-equilibrium". When there is interaction between the convection plumes, the effect is a correlated response. We show that the correlated response have many of the characteristics of the self-organized criticality (SOC). It is suggested that from the SOC perspective, a description of the specific dynamics induced by "quasi-equilibrium" can be provided by models of "punctuated equilibrium". Indee...

  12. Self-organized network evolution coupled to extremal dynamics

    Science.gov (United States)

    Garlaschelli, Diego; Capocci, Andrea; Caldarelli, Guido

    2007-11-01

    The interplay between topology and dynamics in complex networks is a fundamental but widely unexplored problem. Here, we study this phenomenon on a prototype model in which the network is shaped by a dynamical variable. We couple the dynamics of the Bak-Sneppen evolution model with the rules of the so-called fitness network model for establishing the topology of a network; each vertex is assigned a `fitness', and the vertex with minimum fitness and its neighbours are updated in each iteration. At the same time, the links between the updated vertices and all other vertices are drawn anew with a fitness-dependent connection probability. We show analytically and numerically that the system self-organizes to a non-trivial state that differs from what is obtained when the two processes are decoupled. A power-law decay of dynamical and topological quantities above a threshold emerges spontaneously, as well as a feedback between different dynamical regimes and the underlying correlation and percolation properties of the network.

  13. Self-organizing maps based on limit cycle attractors.

    Science.gov (United States)

    Huang, Di-Wei; Gentili, Rodolphe J; Reggia, James A

    2015-03-01

    Recent efforts to develop large-scale brain and neurocognitive architectures have paid relatively little attention to the use of self-organizing maps (SOMs). Part of the reason for this is that most conventional SOMs use a static encoding representation: each input pattern or sequence is effectively represented as a fixed point activation pattern in the map layer, something that is inconsistent with the rhythmic oscillatory activity observed in the brain. Here we develop and study an alternative encoding scheme that instead uses sparsely-coded limit cycles to represent external input patterns/sequences. We establish conditions under which learned limit cycle representations arise reliably and dominate the dynamics in a SOM. These limit cycles tend to be relatively unique for different inputs, robust to perturbations, and fairly insensitive to timing. In spite of the continually changing activity in the map layer when a limit cycle representation is used, map formation continues to occur reliably. In a two-SOM architecture where each SOM represents a different sensory modality, we also show that after learning, limit cycles in one SOM can correctly evoke corresponding limit cycles in the other, and thus there is the potential for multi-SOM systems using limit cycles to work effectively as hetero-associative memories. While the results presented here are only first steps, they establish the viability of SOM models based on limit cycle activity patterns, and suggest that such models merit further study. PMID:25562568

  14. Powerlaws and Self-Organized Criticality in Theory and Nature

    CERN Document Server

    Markovic, Dimitrije

    2013-01-01

    Powerlaws and distributions with heavy tails are common features of many experimentally studied complex systems, like the distribution of the sizes of earthquakes and solar flares, or the duration of neuronal avalanches in the brain. It had been tempting to surmise that a single general concept may act as a unifying underlying generative mechanism, with the theory of self organized criticality being a weighty contender. On the theory side there has been, lively activity in developing new and extended models. Three classes of models have emerged. The first line of models is based on a separation between the time scales of drive and dissipation, and includes the original sandpile model and its extensions, like the dissipative earthquake model. Within this approach the steady state is close to criticality in terms of an absorbing phase transition. The second line of approach is based on external drives and internal dynamics competing on similar time scales and includes the coherent noise model, which has a non-c...

  15. Hierarchical self-organization of cytoskeletal active networks

    International Nuclear Information System (INIS)

    The structural reorganization of the actin cytoskeleton is facilitated through the action of motor proteins that crosslink the actin filaments and transport them relative to each other. Here, we present a combined experimental-computational study that probes the dynamic evolution of mixtures of actin filaments and clusters of myosin motors. While on small spatial and temporal scales the system behaves in a very noisy manner, on larger scales it evolves into several well distinct patterns such as bundles, asters and networks. These patterns are characterized by junctions with high connectivity, whose formation is possible due to the organization of the motors in ‘oligoclusters’ (intermediate-size aggregates). The simulations reveal that the self-organization process proceeds through a series of hierarchical steps, starting from local microscopic moves and ranging up to the macroscopic large scales where the steady-state structures are formed. Our results shed light on the mechanisms involved in processes such as cytokinesis and cellular contractility, where myosin motors organized in clusters operate cooperatively to induce the structural organization of cytoskeletal networks. (paper)

  16. Self-organized Criticality and Absorbing States: Lessons from the Ising Model

    OpenAIRE

    Pruessner, Gunnar; Peters, Ole

    2004-01-01

    We investigate a suggested path to self-organized criticality. Originally, this path was devised to "generate criticality" in systems displaying an absorbing-state phase transition, but closer examination of the mechanism reveals that it can be used for any continuous phase transition. We used the Ising model as well as the Manna model to demonstrate how the finite-size scaling exponents depend on the tuning of driving and dissipation rates with system size.Our findings limit the explanatory ...

  17. Self-Organized Hydrodynamics with congestion and path formation in crowds

    OpenAIRE

    Degond, Pierre; Hua, Jiale

    2012-01-01

    39 pages A continuum model for self-organized dynamics is numerically investigated. The model describes systems of particles subject to alignment interaction and short-range repulsion. It consists of a non-conservative hyperbolic system for the density and velocity orientation. Short-range repulsion is included through a singular pressure which becomes infinite at the jamming density. The singular limit of infinite pressure stiffness leads to phase transitions from compressible to incompre...

  18. Living Tissue Self-Regulation as a Self-Organization Phenomenon

    CERN Document Server

    Lubashevsky, Wassily; Mahnke, Reinhard

    2009-01-01

    Self-regulation of living tissue as an example of self-organization phenomena in hierarchical systems of biological, ecological, and social nature is under consideration. The characteristic feature of these systems is the absence of any governing center and, thereby, their self-regulation is based on a cooperative interaction of all the elements. The work develops a mathematical theory of a vascular network response to local effects on scales of individual units of peripheral circulation.

  19. Spatial cognitive dissonance and sociospatial emergence in a self-organizing city

    OpenAIRE

    Portugali, J.; I Benenson; I Omer

    1997-01-01

    By conceiving the city as a self-organizing system, we highlight and examine three interrelated phenomena of residential sociospatial segregation in a city: the gap which exists between intentions, preferences, and motives, on the one hand, and actual spatial behavior, on the other; the existence and role of local regions of instability within an otherwise stable urban system; and the conjunction between these two phenomena and the processes related to the emergence of new sociospatial entiti...

  20. Gravitational Fugacity as the seed of self-organized violent relaxaton process toward Local Virial relation

    OpenAIRE

    Sota, Yasuhide; Iguchi, Osamu; Tashiro, Tohru; Morikawa, Masahiro

    2007-01-01

    We propose the self-organized relaxation process which drives a collisionless self-gravitating system (SGS) to the equilibrium state satisfying local virial (LV) relation. During the violent relaxation process, particles can move widely within the time interval as short as a few free fall times, because of the effective potential oscillations. Since such particle movement causes further potential oscillations, it is expected that the system approaches the critical state where such particle ac...

  1. Laser Control of Self-Organization Process in Microscopic Region and Fabrication of Fine Microporous Structure

    Directory of Open Access Journals (Sweden)

    Yukimasa Matsumura

    2012-01-01

    Full Text Available We present a controlling technique of microporous structure by laser irradiation during self-organization process. Self-organization process is fabrication method of microstructure. Polymer solution was dropped on the substrate at high humid condition. Water in air appears dropping air temperature below the dew point. The honeycomb structure with regularly aligned pores on the film was fabricated by attaching water droplets onto the solution surface. We demonstrate that it was possible to prevent forming pores at the region of laser irradiation and flat surface was fabricated. We also demonstrated that a combination structure with two pore sizes and flat surface was produced by a single laser-pulse irradiation. Our method is a unique microfabrication processing technique that combines the advantages of bottom-up and top-down techniques. This method is a promising technique that can be applied to produce for photonic crystals, biological cell culturing, surface science and electronics fields, and so forth.

  2. Emergence of cooperation with self-organized criticality

    CERN Document Server

    Jeong, Hyeong-Chai

    2010-01-01

    Cooperation and self-organized criticality are two main keywords in current studies of evolution. We propose a generalized Bak-Sneppen model and provide a natural mechanism which accounts for both phenomena simultaneously. We use the prisoner's dilemma games to mimic the interactions among the species. Each species is identified by its cooperation probability and its fitness is given by the payoffs from the neighbors. The species with the least payoff is replaced by a new species with a random cooperation probability. When the neighbors of the least fit one are also replaced with a non-zero probability, a strong cooperation emerges. Bak-Sneppen process builds a self-organized structure so that the cooperation can emerge even in the parameter region where a uniform or random population decreases the number of cooperators. The emergence of cooperation is due to the same dynamical correlation which leads to self-organized criticality in replacement activities.

  3. Emergence of cooperation with self-organized criticality

    Science.gov (United States)

    Park, Sangmin; Jeong, Hyeong-Chai

    2012-02-01

    Cooperation and self-organized criticality are two main keywords in current studies of evolution. We propose a generalized Bak-Sneppen model and provide a natural mechanism which accounts for both phenomena simultaneously. We use the prisoner's dilemma games to mimic the interactions among the members in the population. Each member is identified by its cooperation probability, and its fitness is given by the payoffs from neighbors. The least fit member with the minimum payoff is replaced by a new member with a random cooperation probability. When the neighbors of the least fit one are also replaced with a non-zero probability, a strong cooperation emerges. The Bak-Sneppen process builds a self-organized structure so that the cooperation can emerge even in the parameter region where a uniform or random population decreases the number of cooperators. The emergence of cooperation is due to the same dynamical correlation that leads to self-organized criticality in replacement activities.

  4. Thought analysis on self-organization theories of MHD plasma

    International Nuclear Information System (INIS)

    A thought analysis on the self-organization theories of dissipative MHD plasma is presented to lead to three groups of theories that lead to the same relaxed state of ∇ x B = λB, in order to find an essential physical picture embedded in the self-organization phenomena due to nonlinear and dissipative processes. The self-organized relaxed state due to the dissipation by the Ohm loss is shown to be formulated generally as the state such that yields the minimum dissipation rate of global auto-and/or cross-correlations between two quantities in j, B, and A for their own instantaneous values of the global correlations. (author)

  5. Self-organization of physical fields and spin

    International Nuclear Information System (INIS)

    The subject of the present investigation is the laws of intrinsic self-organization of fundamental physical fields. In the framework of the Theory of Self-Organization the geometrical and physical nature of spin phenomena is uncovered. The key points are spin symmetry (the fundamental realization of the concept of geometrical internal symmetry) and the spinning field (space of defining representation of spin symmetry). It is shown that the essence of spin is the bipolar structure of spin symmetry induced by the gravitational potentials. The bipolar structure provides natural violation of spin symmetry and leads to spinstatics (theory of spinning field outside the time) and spindynamics. The equations of spinstatics and spindynamics are derived. It is shown that Sommerfeld's formula can be derived from the equations of spindynamics and hence the correspondence principle is valid. This means that the Theory of Self-Organization provides the new understanding of spin phenomena

  6. Modeling self-organization of communication and topology in Social Networks

    Science.gov (United States)

    Sneppen, Kim

    2007-03-01

    We introduce a model of self-organization of communication and topology in social networks with a feedback between different communication habits and the topology. To study this feedback, we let agents communicate to build a perception of a network and use this information to create strategic links. We observe a narrow distribution of links when the communication is low and a system with a broad distribution of links when the communication is high. We also analyze the outcome of chatting, cheating, and lying, as strategies to get better access to information in the network. Chatting, although only adopted by a few agents, gives a global gain in the system. Contrary, in a system with too many liars a global loss is inevitable. References: M. Rosvall and K. Sneppen. ``Modeling self-organization of communication and topology in social networks.'' Phys. Rev. E 74:16108 (2006)

  7. Self-Organized Criticality in Daily Incidence of Acute Myocardial Infarction

    CERN Document Server

    Selvam, A M; Mody, S M S

    1998-01-01

    Continuous periodogram power spectral analysis of daily incidence of acute myocardial infarction (AMI) reported at a leading hospital for cardiology in Pune, India for the two-year period June 1992 to May 1994 show that the power spectra follow the universal and unique inverse power law form of the statistical normal distribution. Inverse power law form for power spectra of space-time fluctuations are ubiquitous to dynamical systems in nature and have been identified as signatures of self-organized criticality. The unique quantification for self-organized criticality presented in this paper is shown to be intrinsic to quantumlike mechanics governing fractal space-time fluctuation patterns in dynamical systems. The results are consistent with El Naschie's concept of cantorian fractal spacetime characteristics for quantum systems.

  8. Least action and entropy considerations of self-organization in Benard cells

    Science.gov (United States)

    Georgiev, Georgi; Iannacchione, Germano

    We study self-organization in complex systems using first principles in physics. Our approach involves the principle of least action and the second law of thermodynamics. In far from equilibrium systems, energy gradients cause internal ordering to facilitate the dissipation of energy in the environment. This internal ordering decreases their internal entropy in order to obey the principle of least action, minimizing the product of time and energy for transport through the system. We are considering the connection between action and entropy decrease inside Benard cells in order to derive some general features of self-organization. We are developing mathematical treatment of this coupling and comparing it to results from experiments and simulations.

  9. Research on Reforming the Teaching Model of"DSP Ap-plication Technology" for Postgraduates by Applying Self-organizing Theory%应用自组织理论改革研究生“DSP应用技术”课程教学模式的研究

    Institute of Scientific and Technical Information of China (English)

    邓铭辉; 杨方; 康建新

    2015-01-01

    根据新时期高校教育教学的要求和研究生教育的需要,结合自组织学习理论,提出了在研究生“DSP应用技术”课程中的学习团队自组织研究,实现学生的团队学习,全面提升学生的创新竞争能力,实现教学模式的创新和改革,完善教学方法,实现教学目的。%In accordance with the requirements of college educa-tion and teaching as well as postgraduate education in the new period, combining with self-organizing theory, this paper propos-es the research on the self-organization of the learning team in"DSP Application Technology"for postgraduates, aiming to real-ize students' group learning, comprehensively improve students' innovation and competition ability, realize the innovation and re-form of teaching models, perfect teaching methods, and achieve teaching objectives.

  10. Self-Organized Structures in Magnetic Liquids

    DEFF Research Database (Denmark)

    Oddershede, Lene; Bohr, Jakob

    this case, the typical pattern consists mainly of columns; we have investigated how the size distribution of the columns, viewed from above, change as the fraction of ferrofluid in the cell is increased When increasing the fraction of ferrofluid, the number of columns remains approximately the same...... Veronoi cells is always between 5 and 6, and this number is approaching 6 as the fraction of ferrofluid is increased. The edge statistics give information about the spatial arrangement of the droplets. Finally, experiments have been carried out in which we focused on how the pattern depends on the applied...

  11. Self-Organized Structures in Magnetic Liquids

    DEFF Research Database (Denmark)

    Oddershede, Lene; Bohr, Jakob

    1996-01-01

    this case, the typical pattern consists mainly of columns; we have investigated how the size distribution of the columns, viewed from above, change as the fraction of ferrofluid in the cell is increased When increasing the fraction of ferrofluid, the number of columns remains approximately the same...... Veronoi cells is always between 5 and 6, and this number is approaching 6 as the fraction of ferrofluid is increased. The edge statistics give information about the spatial arrangement of the droplets. Finally, experiments have been carried out in which we focused on how the pattern depends on the applied...

  12. Self-Organizing Map Models of Language Acquisition

    Directory of Open Access Journals (Sweden)

    Ping eLi

    2013-11-01

    Full Text Available Connectionist models have had a profound impact on theories of language. While most early models were inspired by the classic PDP architecture, recent models of language have explored various other types of models, including self-organizing models for language acquisition. In this paper we aim at providing a review of the latter type of models, and highlight a number of simulation experiments that we have conducted based on these models. We show that self-organizing connectionist models can provide significant insights into long-standing debates in both monolingual and bilingual language development.

  13. Unsupervised learning via self-organization a dynamic approach

    CERN Document Server

    Kyan, Matthew; Jarrah, Kambiz; Guan, Ling

    2014-01-01

    To aid in intelligent data mining, this book introduces a new family of unsupervised algorithms that have a basis in self-organization, yet are free from many of the constraints typical of other well known self-organizing architectures. It then moves through a series of pertinent real world applications with regards to the processing of multimedia data from its role in generic image processing techniques such as the automated modeling and removal of impulse noise in digital images, to problems in digital asset management, and its various roles in feature extraction, visual enhancement, segmentation, and analysis of microbiological image data.

  14. Hepatitis B Diagnosis Using Logical Inference and Self-Organizing Map

    Directory of Open Access Journals (Sweden)

    G. S. Uttreshwar

    2008-01-01

    Full Text Available Despite all the standardization efforts made, medical diagnosis is still regarded as an art owing to the fact that that medical diagnosis requires an expertise in handling the uncertainty which is unavailable in today's computing machinery. Though artificial intelligence is not a new concept it has been widely recognized as a new technology in computer science. Numerous areas such as education, business, medical and manufacturing have made use of artificial intelligence. Problem statement: The proposed study investigated the potential of artificial intelligence techniques principally for medical applications. Neural network algorithms could possible provide an enhanced solution for medical problems. This study analyzed the application of artificial intelligence in conventional hepatitis B diagnosis. Approach: In this research, an intelligent system that worked on basis of logical inference utilized to make a decision on the type of hepatitis that is likely to appear for a patient, if it is hepatitis B or not. Then kohonen's self-organizing map network was applied to hepatitis data for predictions regarding the Hepatitis B which gives severity level on the patient. Results: SOM which is a class of unsupervised network was used as a classifier to predict the accuracy of Hepatitis B. Conclusion: We concluded that the proposed model gives faster and more accurate prediction of hepatitis B and it works as promising tool for predicting of routine hepatitis B from the clinical laboratory data.

  15. Content-based image retrieval using a signature graph and a self-organizing map

    Directory of Open Access Journals (Sweden)

    Van Thanh The

    2016-06-01

    Full Text Available In order to effectively retrieve a large database of images, a method of creating an image retrieval system CBIR (contentbased image retrieval is applied based on a binary index which aims to describe features of an image object of interest. This index is called the binary signature and builds input data for the problem of matching similar images. To extract the object of interest, we propose an image segmentation method on the basis of low-level visual features including the color and texture of the image. These features are extracted at each block of the image by the discrete wavelet frame transform and the appropriate color space. On the basis of a segmented image, we create a binary signature to describe the location, color and shape of the objects of interest. In order to match similar images, we provide a similarity measure between the images based on binary signatures. Then, we present a CBIR model which combines a signature graph and a self-organizing map to cluster and store similar images. To illustrate the proposed method, experiments on image databases are reported, including COREL,Wang and MSRDI.

  16. Fault detection of sensors in nuclear reactors using self-organizing maps

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Paulo Roberto; Tiago, Graziela Marchi [Instituto Federal de Educacao, Ciencia e Tecnologia de Sao Paulo (IFSP), Sao Paulo, SP (Brazil); Bueno, Elaine Inacio [Instituto Federal de Educacao, Ciencia e Tecnologia de Sao Paulo (IFSP), Guarulhos, SP (Brazil); Pereira, Iraci Martinez, E-mail: martinez@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    In this work a Fault Detection System was developed based on the self-organizing maps methodology. This method was applied to the IEA-R1 research reactor at IPEN using a database generated by a theoretical model of the reactor. The IEA-R1 research reactor is a pool type reactor of 5 MW, cooled and moderated by light water, and uses graphite and beryllium as reflector. The theoretical model was developed using the Matlab Guide toolbox. The equations are based in the IEA-R1 mass and energy inventory balance and physical as well as operational aspects are taken into consideration. In order to test the model ability for fault detection, faults were artificially produced. As the value of the maximum calibration error for special thermocouples is +- 0.5 deg C, it had been inserted faults in the sensor signals with the purpose to produce the database considered in this work. The results show a high percentage of correct classification, encouraging the use of the technique for this type of industrial application. (author)

  17. On Origin of Power-Law Distributions in Self-Organized Criticality from Random Walk Treatment

    International Nuclear Information System (INIS)

    The origin of power-law distributions in self-organized criticality is investigated by treating the variation of the number of active sites in the system as a stochastic process. An avalanche is then regarded as a first-return random walk process in a one-dimensional lattice. We assume that the variation of the number of active sites has three possibilities in each update: to increase by 1 with probability f1, to decrease by 1 with probability f2, or remain unchanged with probability 1-f1 -f2. This mimics the dynamics in the system. Power-law distributions of the lifetime are found when the random walk is unbiased with equal probability to move in opposite directions. This shows that power-law distributions in self-organized criticality may be caused by the balance of competitive interactions.

  18. Self Organized Criticality in an one dimensional magnetized grid. Application to GRB X-ray afterglows

    CERN Document Server

    Harko, Tiberiu; Stroia, Nicoleta

    2015-01-01

    A simplified one dimensional grid is used to model the evolution of magnetized plasma flow. We implement diffusion laws similar to those so-far used to model magnetic reconnection with Cellular Automata. As a novelty, we also explicitly superimpose a background flow. The aim is to numerically investigate the possibility that Self-Organized Criticality appears in a one dimensional magnetized flow. The cellular automaton's cells store information about the parameter relevant to the evolution of the system being modelled. Under the assumption that this parameter stands for the magnetic field, the magnetic energy released by one volume during one individual relaxation event is also computed. Our results show that indeed in this system Self-Organized Criticality is established. The possible applications of this model to the study of the X-ray afterglows of GRBs is also briefly considered.

  19. Self-organization processes and nanocluster formation in crystal lattices by low-energy ion irradiation

    International Nuclear Information System (INIS)

    The goal of this paper is to study self-organization processes that cause nanostructural evolution in nonlinear crystal media. The subjects of the investigation were nonlinear homogeneous and heterogeneous atom chains. The method of computer simulation was used to investigate the interaction between low-energy ions and crystal lattices. It was based on the conception of three-dimensional lattice as a nonlinear atom chain system. We showed that that in homogeneous atom chains critical energy needed for self-organization processes development is less than for nonlinear atom chain with already embedded clusters. The possibility of nanostructure formation was studied by a molecular dynamics method of nonlinear oscillations in atomic oscillator systems of crystal lattices after their low-energy ion irradiation. (authors)

  20. Self-organization of value and demand

    OpenAIRE

    Donangelo, R.; K. Sneppen

    1999-01-01

    We study the dynamics of exchange value in a system composed of many interacting agents. The simple model we propose exhibits cooperative emergence and collapse of global value for individual goods. We demonstrate that the demand that drives the value exhibits non Gaussian "fat tails" and typical fluctuations which grow with time interval with a Hurst exponent of 0.7.