WorldWideScience

Sample records for applied physics laboratory

  1. Space plasma physics at the Applied Physics Laboratory over the past half-century

    Science.gov (United States)

    Potemra, Thomas A.

    1992-01-01

    An overview is given of space-plasma experiments conducted at the Applied Physics Laboratory (APL) at Johns Hopkins University including observational campaigns and the instrumentation developed. Specific space-plasma experiments discussed include the study of the radiation environment in the Van Allen radiation belt with solid-state proton detectors. Also described are the 5E-1 satellites which acquired particle and magnetic-field data from earth orbit. The Triad satellite and its magnetometer system were developed for high-resolution studies of the earth's magnetic field, and APL contributions to NASA's Interplanetary Monitoring Platforms are listed. The review mentions the International Ultraviolet Explorer, the Atmosphere Explorer mission, and the Active Magnetic Particle Tracer Explorers mission. Other recent programs reviewed include a high-latitude satellite, contributions to the Voyager mission, and radar studies of space plasmas.

  2. Artificial Earth Satellites Designed and Fabricated by The Johns Hopkins University Applied Physics Laboratory. Revised

    Science.gov (United States)

    1978-07-01

    first gallium arsenide solar cell was orbited on ANNA-lB. The predicted sublimation rates of biphenyl, camphor , and napthalene were contirmed in the...orientation of the gravity gradient because of the thrust of subliming biphenyl at the end of the 100-foot boom. This resulted in a 25 dB reduction in the...SDO 1600 APPLIED PHYSICS LABORATORY LAUREL MARYLAND Solar cell experiments Subliming materials experiment 352-bit magnetic core shift register memory

  3. Background and applications of astrodynamics for space missions of the johns hopkins applied physics laboratory.

    Science.gov (United States)

    Dunham, David W; Farquhar, Robert W

    2004-05-01

    This paper describes astrodynamic techniques applied to develop special orbital designs for past and future space missions of the Applied Physics Laboratory (APL) of Johns Hopkins University, and background about those techniques. The paper does not describe the long history of low Earth-orbiting missions at APL, but rather concentrates on the astrodynamically more interesting high-altitude and interplanetary missions that APL has undertaken in recent years. The authors developed many of their techniques in preparation for, and during, the Third International Sun-Earth Explorer (ISEE-3) halo orbit mission while they worked for the Goddard Space Flight Center (GSFC) of NASA during the 1970s and 1980s. Later missions owed much to the ground breaking work of the trajectory designs for ISEE-3 (later known as the International Cometary Explorer, or ICE). This experience, and other new ideas, were applied to the APL near Earth asteroid rendezvous (NEAR) and comet nucleus tour (CONTOUR) discovery missions, as well as to APL's future MESSENGER, STEREO, and New Horizons missions. These will be described in the paper.

  4. Applied Neuroscience Laboratory Complex

    Data.gov (United States)

    Federal Laboratory Consortium — Located at WPAFB, Ohio, the Applied Neuroscience lab researches and develops technologies to optimize Airmen individual and team performance across all AF domains....

  5. Energy Programs at the Johns Hopkins University Applied Physics Laboratory, Quarterly Report, October-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-12-01

    The Johns Hopkins University Applied Physics Laboratory is engaged in developing energy resources, utilization concepts, and monitoring and storage methods. This Quarterly Report summarizes the work on the various tasks as of 31 December 1980. The Energy Quarterly Report is divided into five sections. The first, Geothermal Energy Development Planning and Technical Assistance, supported by the Department of Energy/Division of Geothermal Energy (DOE/DGE), contains reports on the progress of geothermal-related tasks on which effort was concentrated during the quarter. The second section, Operational Research, Hydroelectric Power Development, supported by the Department of Energy/Resource Applications (DOE/RA), contains a report on institutional problems for small-scale hydroelectric power development in the southeastern states and a list of documents published by APL in the hydroelectric program and in the geothermal program, above. The third section, Seismotectonic Investigations, contains an article on work on the geologic structure of the Danbury Quadrangle that is supported by the Reactor Safety Research Division of the Nuclear Regulatory Commission (NRC) and an in-house supported study on a new method for assessing earthquakes in intraplate regions. The fourth section, Energy Conversion and Storage Techniques, contains four articles. The first is an evaluation of the Einstein refrigerator, supported by independent IR and D funds. The second concerns fly-wheel technology development at APL supported by the Department of Energy, Division of Energy Storage (DOE/STOR). The third is a report on APL energy conservation efforts at its own buildings, and the fourth is an article on liquefied natural gas (LNG) safety evaluation, supported by the National Academy of Sciences. The fifth section explores the value of establishing an Energy Research Institute at The Johns Hopkins University.

  6. Physical Sciences Laboratory (PSL)

    Data.gov (United States)

    Federal Laboratory Consortium — PNNL's Physical Sciences Laboratory (PSL) houses 22 research laboratories for conducting a wide-range of research including catalyst formulation, chemical analysis,...

  7. Laboratory of Chemical Physics

    Data.gov (United States)

    Federal Laboratory Consortium — Current research in the Laboratory of Chemical Physics is primarily concerned with experimental, theoretical, and computational problems in the structure, dynamics,...

  8. Indirectly Funded Research and Exploratory Development at the Applied Physics Laboratory, Fiscal Year 1978.

    Science.gov (United States)

    1979-12-01

    properties in terms of the pertinent physical parameters. Flow separation and reattachment or modification of forced heat convection are examples of...algesia induced either from cutaneous injury or peripheral nerve injury. Approach The overall approach is to determine how controlled pain stimuli

  9. Physics Laboratory in UEC

    Science.gov (United States)

    Takada, Tohru; Nakamura, Jin; Suzuki, Masaru

    All the first-year students in the University of Electro-Communications (UEC) take "Basic Physics I", "Basic Physics II" and "Physics Laboratory" as required subjects; Basic Physics I and Basic Physics II are calculus-based physics of mechanics, wave and oscillation, thermal physics and electromagnetics. Physics Laboratory is designed mainly aiming at learning the skill of basic experimental technique and technical writing. Although 95% students have taken physics in the senior high school, they poorly understand it by connecting with experience, and it is difficult to learn Physics Laboratory in the university. For this reason, we introduced two ICT (Information and Communication Technology) systems of Physics Laboratory to support students'learning and staff's teaching. By using quantitative data obtained from the ICT systems, we can easily check understanding of physics contents in students, and can improve physics education.

  10. Princeton Plasma Physics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  11. Princeton Plasma Physics Laboratory:

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  12. Applied programs at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    This document overviews the areas of current research at Brookhaven National Laboratory. Technology transfer and the user facilities are discussed. Current topics are presented in the areas of applied physics, chemical science, material science, energy efficiency and conservation, environmental health and mathematics, biosystems and process science, oceanography, and nuclear energy. (GHH)

  13. Applied Impact Physics Research

    Science.gov (United States)

    Wickert, Matthias

    2013-06-01

    Applied impact physics research is based on the capability to examine impact processes for a wide range of impact conditions with respect to velocity as well as mass and shape of the projectile. For this reason, Fraunhofer EMI operates a large variety of launchers that address velocities up to ordnance velocities as single stage powder gun but which can also be operated as two-stage light gas guns achieving the regime of low earth orbital velocity. Thereby for projectile masses of up to 100 g hypervelocity impact phenomena up to 7.8 km/s can be addressed. Advanced optical diagnostic techniques like microsecond video are used as commercial systems but - since impact phenomena are mostly related with debris or dust - specialized diagnostics are developed in-house like x-ray cinematography and x-ray tomography. Selected topics of the field of applied impact physics will be presented like the interesting behavior of long rods penetrating low-density materials or experimental findings at hypervelocity for this class of materials as well as new x-ray diagnositic techniques.

  14. Biomedical research, development, and engineering at the Johns Hopkins University Applied Physics Laboratory. Annual report 1 October 1978-30 September 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    The Medical Institutions of The Johns Hopkins University and The Johns Hopkins University Applied Physics Laboratory have developed a vigorous collaborative program of biomedical research, development, and systems engineering. An important objective of the program is to apply the expertise in engineering, the physical sciences, and systems analysis acquired by APL in defense and space research and development to problems of medical research and health care delivery. This program has grown to include collaboration with many of the clinical and basic science departments of the medical divisions. Active collaborative projects exist in ophthalmology, neurosensory research and instrumentation development, cardiovascular systems, patient monitoring, therapeutic and rehabilitation systems, clinical information systems, and clinical engineering. This application of state-of-the-art technology has contributed to advances in many areas of basic medical research and in clinical diagnosis and therapy through improvement of instrumentation, techniques, and basic understanding.

  15. Applied building physics

    CERN Document Server

    Hens, Hugo S L C

    2012-01-01

    The energy crises of the 1970s, persisting moisture problems, complaints about sick buildings, thermal, visual and olfactory discomfort, and the move towards more sustainability in building construction have pushed Building Physics to the forefront of building innovation. The societal pressure to diminish energy consumption in buildings without impairing usability acted as a trigger to activate the whole notion of performance based design and construction. As with all engineering sciences, Building Physics is oriented towards application, which is why, after a first book on fundamentals this s

  16. Applied Physics Letters

    OpenAIRE

    Dong, Shuxiang; Bai, Feiming; Li, Jiefang; Viehland, Dwight D.

    2003-01-01

    An acoustic position sensor, based on a piezoelectric-sound-resonance cavity (PSRC), is reported in which a resonance acoustic field is used as the sensing mechanism. It has been discovered that an inserted object or an object motion in the sound radiation field results in changes in the resonance state of the PSRC. Experiments have demonstrated a high position resolution in the axial direction, and also good sensitivity in the transverse. (C) 2003 American Institute of Physics.

  17. State Key Laboratory of Applied Organic Chemistry

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@The State Key Laboratory of Applied Organic Chemistry (SKLAOC) was founded in 1987 with the approval of the State Planning Commission. Professor Liu Zhongli is the director of the Laboratory and Professor Zhang Lihe, an academician of the Chinese Academy of Sciences, is the chairman of its academic committee. There are 30 faculty members, among them 21 are professors, working in the Laboratory.

  18. Workshop applied antineutrino physics 2007

    Energy Technology Data Exchange (ETDEWEB)

    Akiri, T.; Andrieu, B.; Anjos, J.; Argyriades, J.; Barouch, G.; Bernstein, A.; Bersillon, O.; Besida, O.; Bowden, N.; Cabrera, A.; Calmet, D.; Collar, J.; Cribier, M.; Kerret, H. de; Meijer, R. de; Dudziak, F.; Enomoto, S.; Fallot, M.; Fioni, G.; Fiorentini, G.; Gale, Ph.; Georgadze, A.; Giot, L.; Gonin, M.; Guillon, B.; Henson, C.; Jonkmans, G.; Kanamaru, S.; Kawasaki, T.; Kornoukhov, V.; Lasserre, Th.; Learned, J.G.; Lefebvre, J.; Letourneau, A.; Lhillier, D.; Lindner, M.; Lund, J.; Mantovani, F.; Mcdonough, B.; Mention, G.; Monteith, A.; Motta, D.; Mueller, Th.; Oberauer, L.; Obolensky, M.; Odrzywolek, A.; Petcov, S.; Porta, A.; Queval, R.; Reinhold, B.; Reyna, D.; Ridikas, D.; Sadler, L.; Schoenert, St.; Sida, J.L.; Sinev, V.; Suekane, F.; Suvorov, Y.; Svoboda, R.; Tang, A.; Tolich, N.; Tolich, K.; Vanka, S.; Vignaud, D.; Volpe, Ch.; Wong, H

    2007-07-01

    The 'Applied Antineutrino Physics 2007' workshop is the fourth international meeting devoted to the opening of the neutrino physics to more applied fields, such as geophysics and geochemistry, nuclear industry, as well as the nonproliferation. This meeting highlights the world efforts already engaged to exploit the single characteristics of the neutrinos for the control of the production of plutonium in the civil nuclear power reactor. The potential industrial application of the measurement of the thermal power of the nuclear plants by the neutrinos is also approached. earth neutrinos were for the first time highlighted in 2002 by the KamLAND experiment. Several international efforts are currently underway to use earth neutrinos to reveal the interior of the Earth. This meeting is an opportunity to adapt the efforts of detection to the real needs of geophysicists and geochemists (sources of radiogenic heat, potassium in the court, feathers.) Finally more futuristic topics such as the detection of nuclear explosions, of low powers, are also discussed. This document gathers only the slides of the presentations.

  19. Applied Physics Division 1998 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Cecchini, M.; Crescentini, L; Ghezzi, L.; Kent, C.; Bottomei, M. [ENEA, Centro Ricerche Frascati, Frascati, RM (Italy). Applied physics Division

    1999-07-01

    This report outlines the 1998 research activities carried out by the Applied Physics Division of the Innovation Department of ENEA (Italian Agency for New Technologies, Energy and Environment). The fields addressed and discussed include: optical and electro-optical technologies (chaps. 1 and 2); accelerator technologies (chap. 3); diagnostic systems for science and engineering (chaps. 4 and 5); theory, modelling and computational methods (chaps. 6 and 7). The aim of the Applied Physics Division is to develop technologies and systems that can be directly applied by internal (ENEA) and external users in research (high-resolution spectroscopy, laser-generated soft-x-ray sources), production processes (laser material photoproduction, structural analysis), social, cultural and environmental sciences (laser remote sensing, modelling of ecosystems and population dynamics) and medicine (particle accelerator for radiotherapy). Most of the work in 1998 was performed by the division's laboratories at the Frascati, Casaccia and Bologna Research Centres of ENEA; some was done elsewhere in collaboration with other ENEA units, external laboratories and industries. A good share of the activities was carried out for international projects; in particular, the IV European Union Framework Program.

  20. Eagleworks Laboratories: Advanced Propulsion Physics Research

    Science.gov (United States)

    White, Harold; March, Paul; Williams, Nehemiah; ONeill, William

    2011-01-01

    NASA/JSC is implementing an advanced propulsion physics laboratory, informally known as "Eagleworks", to pursue propulsion technologies necessary to enable human exploration of the solar system over the next 50 years, and enabling interstellar spaceflight by the end of the century. This work directly supports the "Breakthrough Propulsion" objectives detailed in the NASA OCT TA02 In-space Propulsion Roadmap, and aligns with the #10 Top Technical Challenge identified in the report. Since the work being pursued by this laboratory is applied scientific research in the areas of the quantum vacuum, gravitation, nature of space-time, and other fundamental physical phenomenon, high fidelity testing facilities are needed. The lab will first implement a low-thrust torsion pendulum (physics and engineering models can be explored and understood in the lab to allow scaling to power levels pertinent for human spaceflight, 400kW SEP human missions to Mars may become a possibility, and at power levels of 2MW, 1-year transit to Neptune may also be possible. Additionally, the lab is implementing a warp field interferometer that will be able to measure spacetime disturbances down to 150nm. Recent work published by White [1] [2] [3] suggests that it may be possible to engineer spacetime creating conditions similar to what drives the expansion of the cosmos. Although the expected magnitude of the effect would be tiny, it may be a "Chicago pile" moment for this area of physics.

  1. Customized Laboratory Experience in Physical Chemistry

    Science.gov (United States)

    Castle, Karen J.; Rink, Stephanie M.

    2010-01-01

    A new physical chemistry laboratory experience has been designed for upper-level undergraduate chemistry majors. Students customize the first 10 weeks of their laboratory experience by choosing their own set of experiments (from a manual of choices) and setting their own laboratory schedule. There are several topics presented in the accompanying…

  2. Geoacoustic Physical Model Fabrication Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Fabricates three-dimensional rough surfaces (e.g., fractals, ripples) out of materials such as PVC or wax to simulate the roughness properties associated...

  3. Activities report in applied physics

    Science.gov (United States)

    Research concerning acoustics, heat, architecture, materials research, and (optical) instrumentation is presented; active noise control and acoustic path identification were investigated. Energy conservation, solar energy, and building physics activities were carried out. Ultraviolet absorbing glasses, glass fibers, sheet glass, and aluminium and silicon oxynitrides, were studied. Glass fiber based sensor and laser applications, and optical space-instrumentation are discussed. Signal processing, sensors, and integrated electronics applications were developed. Scale model experiments for flow induced noise and vibrations, caused by engines, ventilators, wind turbines, and propellers, were executed. A multispectral charge coupled device airborne scanner, with four modules (one for forward observations) is described. A ground radar, based on seismic exploration signal processing and used for the location of pipes, sewers and cables, was developed.

  4. Particle physics laboratory turns 50

    CERN Multimedia

    Berdik, Chris

    2004-01-01

    For a half-century, physicists from all over the world have sought out the most fundamental structures of the universe from deep beneath the mountains of Switzerland. On Saturday, the laboratory in which they did their work, CERN, capped off a year of celebrations for its 50th annviersary (½ page)

  5. New researchers for applied physics

    CERN Multimedia

    Rita Giuffredi, PicoSEC project

    2012-01-01

    On 12 September, thirteen PicoSEC researchers met in Lyon for the first time, at the project’s kick-off meeting. The meeting was the opportunity for them to get to know each other and start building a fruitful working and human relationship. A hard task awaits them: reaching the 200-picosecond-limit on time resolution in photon detectors.    The 13 researchers recruited for the PicoSEC project and the organizers of the project, September 2012. Photon detectors are used in many different fields ranging from high-energy physics calorimetry for the future generation of colliders to the photon time-of-flight technique for the next generation of PET scanners. Within the PicoSEC EU-funded Marie Curie Initial Training Network, 18 Early Stage Researchers and 4 Experienced Researchers are being trained to develop new detection techniques based on very fast scintillating crystals and photo detectors. In a multi-site project like PicoSEC, in which 11 institutes and companies from 6 ...

  6. Making Laboratories Count -- Better Integration of Laboratories in Physics Courses

    Science.gov (United States)

    Sizemore, Jim

    2011-10-01

    The quality of K-12 education leaves something to be desired and presents higher education faculty with the challenge of instructing under-prepared students. However, by their own admission, students from many institutions inform us that laboratory sections in science classes, including physics, consist mostly of showing up, going through the motions, and getting grades that boost their overall grade. This work presents laboratories that challenge students to take their laboratory work more seriously including specific rubrics enforcing SOLVE and Bloom's Taxonomy, pre-lab preparation work, and quizzes on pre-lab preparation. Early results are encouraging revealing greater student progress with better integration of laboratory with the rest of a complete physics course.

  7. Job cuts loom at National Physical Laboratory

    Science.gov (United States)

    Extance, Andy

    2016-09-01

    The UK's National Physical Laboratory (NPL) - the country's standards lab - is consulting on making up to 50 compulsory redundancies as it prepares to shift its research priorities towards quantum technologies and big data.

  8. Applied Physics Modules Selected for Automotive and Diesel Technologies.

    Science.gov (United States)

    Waring, Gene

    Designed for individualized use in an applied physics course in postsecondary vocational-technical education, this series of ten learning modules is equivalent to the content of a five-credit hour class in automotive technology or diesel technology. Almost all the modules contain technological application in the form of laboratory experiments or…

  9. Applying Telemedicine to Outpatient Physical Therapy

    OpenAIRE

    Jacobs, Joshua L.; Davis, Daniel C.

    2002-01-01

    Few studies have specifically addressed telemedicine applied to physical rehabilitation. This ongoing pilot study examines the role of Internet-based, World Wide Web electronic communication, including textual, audio, and video, over a HIPAA-compliant network configuration, to enhance patient care in an outpatient physical therapy rehabilitation setting. Areas that can benefit from telemedicine are targeted, and include communication between physical therapist and specialty therapist, between...

  10. Overview. Health Physics Laboratory. Section 10

    Energy Technology Data Exchange (ETDEWEB)

    Waligorski, M.P.R. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    The activities of the Health Physics Laboratory at the Niewodniczanski Institute of Nuclear Physics are presented and namely: research in the area of radiation physics and radiation protection of the employees of the Institute of Nuclear Physics, theoretical research concerns radiation detectors, radiation protection and studies of concepts of radiation protection and experimental research concerns solid state dosimetry. In this report, apart of the detail descriptions of mentioned activities, the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants are also given.

  11. "Strong interaction" for particle physics laboratories

    CERN Multimedia

    2003-01-01

    A new Web site pooling the communications resources of particle physics centres all over the world has just been launched. The official launching of the new particle physics website Interactions.org during the Lepton-Proton 2003 Conference at the American laboratory Fermilab was accompanied by music and a flurry of balloons. On the initiative of Fermilab, the site was created by a collaboration of communication teams from over fifteen of the world's particle physics laboratories, including KEK, SLAC, INFN, JINR and, of course, CERN, who pooled their efforts to develop the new tool. The spectacular launching of the new particle physics website Interactions.org at Fermilab on 12 August 2003. A real gateway to particle physics, the site not only contains all the latest news from the laboratories but also offers images, graphics and a video/animation link. In addition, it provides information about scientific policies, links to the universities, a very useful detailed glossary of particle physics and astrophysic...

  12. Quantum mechanics for applied physics and engineering

    CERN Document Server

    Fromhold, Albert T

    2011-01-01

    This excellent text, directed to upper-level undergraduates and graduate students in engineering and applied physics, introduces the fundamentals of quantum mechanics, emphasizing those aspects of quantum mechanics and quantum statistics essential to an understanding of solid-state theory. A heavy background in mathematics and physics is not required beyond basic courses in calculus, differential equations, and calculus-based elementary physics.The first three chapters introduce quantum mechanics (using the Schrödinger equations), quantum statistics, and the free-electron theory of metals. Ch

  13. Applied Anti-neutrino Physics 2013

    CERN Document Server

    2013-01-01

    This year, the 9th annual Applied Antineutrino Physics Workshop will be hosted by Sejong University, at the COEX conference center in Seoul South Korea. The workshop will be held on November 1(Friday) - 2(Saturday), 2013. Conveniently for many travelers, it takes place directly after and at the same venue as the 2013 IEEE Nuclear Science Symposium (http://www.nss-mic.org/2013/NSSMain.asp) Applied Antineutrino Physics describes an ensemble of experimental and theoretical efforts which aim to use the antineutrino signal from nuclear reactors, and from the Earth itself, in order to address practical problems in nonproliferation and geology respectively. Since the 2004 inception of these workshops, groups worldwide have made considerable advances in defining and expanding the field, garnering interest from the International Atomic Energy Agency (IAEA), which administers the worlds most important nonproliferation regime, and from the geology/geophysics community. This meeting will focus on the current activi...

  14. Global Conference on Applied Physics and Mathematics

    CERN Document Server

    2016-01-01

    The Global Conference on Applied Physics and Mathematics is organized by academics and researchers belonging to different scientific areas of the C3i/Polytechnic Institute of Portalegre (Portugal) and the University of Extremadura (Spain) with the technical support of ScienceKnow Conferences. The event has the objective of creating an international forum for academics, researchers and scientists from worldwide to discuss worldwide results and proposals regarding to the soundest issues related to Applied Physics and Mathematics. This event will include the participation of renowned keynote speakers, oral presentations, posters sessions and technical conferences related to the topics dealt with in the Scientific Program as well as an attractive social and cultural program. The papers will be published in the Proceedings e-books. The proceedings of the conference will be sent to possible indexing on Thomson Reuters (selective by Thomson Reuters, not all-inclusive) and Google Scholar. Those communications con...

  15. Pathways through applied and computational physics

    CERN Document Server

    Barbero, Nicolò; Palmisano, Carlo; Zosi, Gianfranco

    2014-01-01

    This book is intended for undergraduates and young researchers who wish to understand the role that different branches of physics and mathematics play in the execution of actual experiments. The unique feature of the book is that all the subjects addressed are strictly interconnected within the context of the execution of a single experiment with very high accuracy, namely the redetermination of the Avogadro constant NA, one of the fundamental physical constants. The authors illustrate how the basic laws of physics are applied to describe the behavior of the quantities involved in the measurement of NA and explain the mathematical reasoning and computational tools that have been exploited. It is emphasized that all these quantities, although pertaining to a specific experiment, are of wide and general interest. The book is organized into chapters covering the interaction of electromagnetic radiation with single crystals, linear elasticity and anisotropy, propagation of thermal energy, anti-vibration mounting ...

  16. Plasmas applied atomic collision physics, v.2

    CERN Document Server

    Barnett, C F

    1984-01-01

    Applied Atomic Collision Physics, Volume 2: Plasmas covers topics on magnetically confined plasmas. The book starts by providing the history of fusion research and describing the various approaches in both magnetically and inertially confined plasmas. The text then gives a general discussion of the basic concepts and properties in confinement and heating of a plasma. The theory of atomic collisions that result in excited quantum states, particularly highly ionized impurity atoms; and diverse diagnostic topics such as emission spectra, laser scattering, electron cyclotron emission, particle bea

  17. Comprehensive text book of applied physics

    CERN Document Server

    Kumar, Manoj

    2009-01-01

    ""This book is a comprehensive package for knowledge sharing on Applied Physics. The language of the book is simple and self explanatory, this will help the students to grasp the fundamentals of the subject easily. The book follows a to the point approach and lays stress on the understanding of the core concepts and sharpening the analytical ability of the students on the subject. The book covers wide range of multiple choice questions related to all the topics that is of a great help to the students appearing for competitive as well as state board examinations."

  18. Applied atomic and collision physics special topics

    CERN Document Server

    Massey, H S W; Bederson, Benjamin

    1982-01-01

    Applied Atomic Collision Physics, Volume 5: Special Topics deals with topics on applications of atomic collisions that were not covered in the first four volumes of the treatise. The book opens with a chapter on ultrasensitive chemical detectors. This is followed by separate chapters on lighting, magnetohydrodynamic electrical power generation, gas breakdown and high voltage insulating gases, thermionic energy converters, and charged particle detectors. Subsequent chapters deal with the operation of multiwire drift and proportional chambers and streamer chambers and their use in high energy p

  19. Long life to "The European Physical Journal - APPLIED PHYSICS"

    Science.gov (United States)

    Colliex, C.; Sauzade, M.

    1998-01-01

    We are happy to introduce you the first issue of the new "The European Physical Journal - Applied Physics". The aim of this initiative, which concretises the merging of two well-known French journals, "the Journal de Physique III" and "Microscopy, Microanalysis, Microstructures", is to initiate within a European perspective the basis of an international journal of Applied Physics. This creation accompanies the broader movement opened with the merging of the more than centennial publications namely, "Journal de Physique" and "Zeitschrift für Physik", in order to give birth to an attractive forum for all those involved in this field of activity, in the European physics community evidently but also all around the world. This journal covers a wide range of domains in materials science, optics, electronics and instrumentation in general: a more comprehensive list of topics is given on page A6.The journal is represented in a large number of countries thanks to our team of Associate Editors working in close collaboration with the central editorial offices: the one in Paris at the headquarters of the French Society of Microscopies is more specific for the authors submitting manuscripts involving all types of microscopies and analysis techniques together with their use for materials characterization, while the Orsay office is intended to process all the other types of papers. However you can also submit your manuscripts directly to any of the Associated Editors listed on the title page of the journal. With the support of the staff of EDP Sciences we will all devote our efforts to insure fast and high quality production."EPJ Applied Physics" will appear monthly. Submission is welcome electronically as well as in paper form; see the conditions reported on the previous pages.

  20. Applied nuclear physics group - activities report. 1977-1997; Grupo de fisica nuclear aplicada - relatorio de atividades. 1977-1997

    Energy Technology Data Exchange (ETDEWEB)

    Appoloni, Carlos Roberto

    1998-06-01

    This report presents the activities conducted by the Applied Nuclear Physics group of the Londrina State University - Applied Nuclear Physics Laboratory - Brazil, from the activities beginning (1977) up to the end of the year 1997.

  1. Laboratory studies in ultraviolet solar physics

    Science.gov (United States)

    Parkinson, W. H.; Kohl, J. L.; Gardner, L. D.; Raymond, J. C.; Smith, P. L.

    1991-01-01

    The research activity comprised the measurement of basic atomic processes and parameters which relate directly to the interpretation of solar ultraviolet observations and to the development of comprehensive models of the component structures of the solar atmosphere. The research was specifically directed towards providing the relevant atomic data needed to perform and to improve solar diagnostic techniques which probe active and quiet portions of the solar chromosphere, the transition zone, the inner corona, and the solar wind acceleration regions of the extended corona. The accuracy with which the physical conditions in these structures can be determined depends directly on the accuracy and completeness of the atomic and molecular data. These laboratory data are used to support the analysis programs of past and current solar observations (e.g., the Orbiting solar Observatories, the Solar Maximum Mission, the Skylab Apollo Telescope Mount, and the Naval Research Laboratory's rocket-borne High Resolution Telescope and Spectrograph). In addition, we attempted to anticipate the needs of future space-borne solar studies such as from the joint ESA/NASA Solar and Heliospheric Observatory (SOHO) spacecraft. Our laboratory activities stressed two categories of study: (1) the measurement of absolute rate coefficients for dielectronic recombination and electron impact excitation; and (2) the measurement of atomic transition probabilities for solar density diagnostics. A brief summary of the research activity is provided.

  2. Frontiers in Theoretical and Applied Physics

    CERN Document Server

    2017-01-01

    The aim of the conference is to provide a forum for physicists, astronomers, and space and material scientists from around the world to present the latest developments in the various dynamic fields of physics. Atomic, Molecular and Optical Physics, Condensed Matter Physics, Material Science and Nanophysics, Nuclear and High Energy Physics, Mathematical Physics, Astrophysics, Space and Planetary Physics

  3. Gauge concepts in theoretical applied physics

    Science.gov (United States)

    Tan, Seng Ghee; Jalil, Mansoor B. A.

    2016-01-01

    Gauge concept evolves in the course of nearly one century from Faraday’s rather obscure electrotonic state of matter to the physically significant Yang-Mills that underpin today’s standard model. As gauge theories improve, links are established with modern observations, e.g. in the Aharonov-Bohm effect, the Pancharatnam-Berry’s phase, superconductivity, and quantum Hall effects. In this century, emergent gauge theory is formulated in numerous fields of applied physics like topological insulators, spintronics, and graphene. We will show in this paper the application of gauge theory in two particularly useful spin-based phenomena, namely the spin orbit spin torque and the spin Hall effect. These are important fields of study in the engineering community due to great commercial interest in the technology of magnetic memory (MRAM), and magnetic field sensors. Both spin orbit torque and spin Hall perform magnetic switching at low power and high speed. Furthermore, spin Hall is also a promising source of pure spin current, as well as a reliable form of detection mechanism for the magnetic state of a material.

  4. Fusion programs in applied plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The objectives of the theoretical science program are: To support the interpretation of present experiments and predict the outcome of future planned experiments; to improve on existing models and codes and validate against experimental results; and to conduct theoretical physics development of advanced concepts with applications for DIII-D and future devices. Major accomplishments in FY91 include the corroboration between theory and experiment on MHD behavior in the second stable regime of operation on DIII-D, and the frequency and mode structure of toroidal Alfven eigenmodes in high beta, shaped plasmas. We have made significant advances in the development of the gyro-Landau fluid approach to turbulence simulation which more accurately models kinetic drive and damping mechanisms. Several theoretical models to explain the bifurcation phenomenon in L- to H-mode transition were proposed providing the theoretical basis for future experimental verification. The capabilities of new rf codes have been upgraded in response to the expanding needs of the rf experiments. Codes are being employed to plan for a fully non-inductive current drive experiment in a high beta, enhanced confinement regime. GA's experimental effort in Applied Physics encompasses two advanced diagnostics essential for the operation of future fusion experiments: Alpha particle diagnostic, and current and density profile diagnostics. This paper discusses research in all these topics.

  5. Atmospheric Cloud Physics Laboratory thermal control

    Science.gov (United States)

    Moses, J. L.; Fogal, G. L.; Scollon, T. R., Jr.

    1978-01-01

    The paper presents the development background and the present status of the Atmospheric Cloud Physics Laboratory (ACPL) thermal control capability. The ACPL, a Spacelab payload, is currently in the initial flight hardware development phase for a first flight scheduled in June 1981. The ACPL is intended as a facility for conducting a wide variety of cloud microphysics experimentation under zero gravity conditions. The cloud chambers, which are key elements of the ACPL, have stringent thermal requirements. Thus the expansion chamber inner walls must be uniform to within + or - 0.1 C during both steady-state and transient operation over a temperature range of +30 to -25 C. Design progression of the expansion chamber, from early in-house NASA-MSFC concepts (including test results of a prototype chamber) to a thermal control concept currently under development, is discussed.

  6. Virtual Laboratories in Physics with Autogenerated Parameters

    Science.gov (United States)

    Maksimov, M. A.; Monakhov, V. V.; Kozhedub, A. V.

    2015-09-01

    The paper is devoted to a virtual laboratory system, which in particular can be used to test knowledge through research. The participant can prefer which tools to operate and what actions should be taken. For the most of the tasks, there are copious ways to obtain the correct solution. One of the most important features of the system that distinguish this one among other simulation packages and educational systems is the pseudo-random physical parameter generation technique. The technique supports constraints and relationships between variables. As a result, it provides correctness and equal complexity of the generated task. The system can be very complex and is highly customizable by internal script system executed on server-side. The system is used as a part of distolymp Learning Management System with about 40 thousand participants per year.

  7. Laser based combustion laboratory at NTH/SINTEF applied thermodynamics

    Science.gov (United States)

    Tichy, F.; Bjoerge, T.

    1993-12-01

    During the SPUNG-program, a laser based laboratory has been built up at NTH/SINTEF Applied Thermodynamics by the funding from that program. The laser based laboratory consists of a Nd:YAG laser and an image intensifier electronic camera system. There are numerous different laser based techniques that can be used, using the laser based laboratory, but we have concentrated on laser induced fluorescence (LIF). By shaping the laser beam into a flat plane, 2D imaging of combustion radicals (OH, CH) and emission species (NO) are possible. This can give valuable information about flame structure, flame stabilization, turbulence scales and so on, but at the time being not quantitative concentrations.

  8. Applied Mathematical Methods in Theoretical Physics

    Science.gov (United States)

    Masujima, Michio

    2005-04-01

    All there is to know about functional analysis, integral equations and calculus of variations in a single volume. This advanced textbook is divided into two parts: The first on integral equations and the second on the calculus of variations. It begins with a short introduction to functional analysis, including a short review of complex analysis, before continuing a systematic discussion of different types of equations, such as Volterra integral equations, singular integral equations of Cauchy type, integral equations of the Fredholm type, with a special emphasis on Wiener-Hopf integral equations and Wiener-Hopf sum equations. After a few remarks on the historical development, the second part starts with an introduction to the calculus of variations and the relationship between integral equations and applications of the calculus of variations. It further covers applications of the calculus of variations developed in the second half of the 20th century in the fields of quantum mechanics, quantum statistical mechanics and quantum field theory. Throughout the book, the author presents over 150 problems and exercises -- many from such branches of physics as quantum mechanics, quantum statistical mechanics, and quantum field theory -- together with outlines of the solutions in each case. Detailed solutions are given, supplementing the materials discussed in the main text, allowing problems to be solved making direct use of the method illustrated. The original references are given for difficult problems. The result is complete coverage of the mathematical tools and techniques used by physicists and applied mathematicians Intended for senior undergraduates and first-year graduates in science and engineering, this is equally useful as a reference and self-study guide.

  9. Zero-gravity cloud physics laboratory: Experiment program definition and preliminary laboratory concept studies

    Science.gov (United States)

    Eaton, L. R.; Greco, E. V.

    1973-01-01

    The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.

  10. Raising environmental awareness through applied biochemistry laboratory experiments.

    Science.gov (United States)

    Salman Ashraf, S

    2013-01-01

    Our environment is under constant pressure and threat from various sources of pollution. Science students, in particular chemistry students, must not only be made aware of these issues, but also be taught that chemistry (and science) can provide solutions to such real-life issues. To this end, a newly developed biochemistry laboratory experiment is described that guides students to learn about the applicability of peroxidase enzymes to degrade organic dyes (as model pollutants) in simulated waste water. In addition to showing how enzymes can potentially be used for waste water remediation, various factors than can affect enzyme-based reactions such as pH, temperature, concentration of substrates/enzymes, and denaturants can also be tested. This "applied biotechnology" experiment was successfully implemented in an undergraduate biochemistry laboratory course to enhance students' learning of environmental issues as well important biochemistry concepts. Student survey confirmed that this laboratory experiment was successful in achieving the objectives of raising environmental awareness in students and illustrating the usefulness of chemistry in solving real-life problems. This experiment can be easily adopted in an introductory biochemistry laboratory course and taught as an inquiry-guided exercise.

  11. An instructional design for online college physics laboratories

    Science.gov (United States)

    Ruby, Gail G.

    Online learner-centered self-directed educational opportunities are growing in scope and acceptance across the academic curriculum because of the flexibility for the learner and cost-effectiveness for the institution. However the offering of online science courses and particularly physics instruction has lagged behind due to the challenge of re-creating the hands-on laboratory learning experience. This research examines the effectiveness of the design of a series of physics laboratory experiments for potential online delivery which provide learners with hands on experiences. Two groups of college physics learners conducted physics experiments inside and outside of the physical laboratory using instructions and equipment provided in a kit. Learning outcomes as determined by pretest, written laboratory report, and posttest assessments and learner reactions as determined by a questionnaire were utilized to compare both types of laboratory experiences. The research findings indicated learning outcomes achieved by learners outside of the physical laboratory were statistically greater than the equivalent face-to-face instruction. Evidence from learner reactions comparing both types of laboratory formats indicated learner preference for the online laboratory format. These results are an initial contribution to the design of an entire sequence of experiments that can be performed independently by online learners outside of the laboratory satisfying the laboratory requirement for the two semester college physics course.

  12. Methodology of students' professionally-applied physical training in universities

    Directory of Open Access Journals (Sweden)

    Pylypey L.P.

    2012-11-01

    Full Text Available Real system of physical education that exists in Ukraine is considered; the ineffectiveness of physical training of students for future life and production activities is shown. In modern conditions the structure of physiological requirements and working conditions is changing and, accordingly, there are additional requirements for professionally-applied physical training. The model of the educational process for credit-module system in high school is given. Theoretical and methodological reasoning of professionally-applied physical training methodology in university of economic profile is carried out. Management options for physical training of students are proposed. The systems of computer technology of professionally-applied physical training are considered.

  13. Applied physics: The virtues of tiling

    Science.gov (United States)

    Fratzl, Peter

    2014-12-01

    A cracked metal film on an elastic substrate has been shown to provide ultrahigh sensitivity in detecting mechanical vibrations. The result draws inspiration from principles of tiling that apply to many biological systems. See Letter p.222

  14. Applied Physics Education: PER focused on Physics-Intensive Careers

    Science.gov (United States)

    Zwickl, Benjamin

    2017-01-01

    Physics education research is moving beyond classroom learning to study the application of physics education within STEM jobs and PhD-level research. Workforce-related PER is vital to supporting physics departments as they educate students for a diverse range of careers. Results from an on-going study involving interviews with entry-level employees, academic researchers, and supervisors in STEM jobs describe the ways that mathematics, physics, and communication are needed for workplace success. Math and physics are often used for solving ill-structured problems that involve data analysis, computational modeling, or hands-on work. Communication and collaboration are utilized in leadership, sales, and as way to transfer information capital throughout the organization through documentation, emails, memos, and face-to-face discussions. While managers and advisors think a physics degree typically establishes technical competency, communication skills are vetted through interviews and developed on the job. Significant learning continues after graduation, showing the importance of cultivating self-directed learning habits and the critical role of employers as educators of specialized technical abilities through on-the-job training. Supported by NSF DGE-1432578.

  15. Alfred P. Gage and the Introductory Physics Laboratory

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2016-01-01

    This article is about a late 19th-century teacher of secondary school physics. I was originally interested in the apparatus that he sold. This led me to the physics books that he wrote, and these took me to his unusual ideas about ways to use laboratory time to introduce students to the phenomena of physics. More than 100 years later educational…

  16. Applying Physics to the Student's World

    Science.gov (United States)

    Blanton, Patricia

    2003-03-01

    It has been a challenging day. The electricity is off because snow and extreme winds have toppled trees into power lines all across my county. As I've been trying to devise a way to cook dinner, I've been thinking about how equipped we are to handle such emergencies. My husband, who has worked most of the day getting the portable generator going and figuring out how to hook up things to keep us warm and safe, made the comment, "You have to be a MacGyver if you are going to be a homeowner." I began wondering how well we are equipping our students with the ability to figure out how to make things work. We teach the physics principles so they can solve the "book problems," but are we helping them to understand the principles well enough to become real problem solvers? Are they prepared to handle situations when the "usual things" aren't working?

  17. Sandia National Laboratories shock thermodynamics applied research (STAR) facility

    Energy Technology Data Exchange (ETDEWEB)

    Asay, J.R.

    1981-08-01

    The Sandia National Laboratories Shock Thermodynamics Applied Research (STAR) Facility has recently consolidated three different guns and a variety of instrumentation capabilities into a single location. The guns available at the facility consist of a single-stage light gas gun, a single-stage propellant gun and a two-stage light gas gun, which cover a velocity range from 15 m/s to 8 km/s. Instrumentation available at the facility includes optical and microwave interferometry, time-resolved holography, fast x-radiography, framing and streak photography, fast multi-wavelength pyrometry, piezoelectric and piezoresistive gauges and computer data reduction. This report discusses the guns and instrumentation available at the facility and selected recent applications.

  18. Digital Signal Processing applied to Physical Signals

    CERN Document Server

    Alberto, Diego; Musa, L

    2011-01-01

    It is well known that many of the scientific and technological discoveries of the XXI century will depend on the capability of processing and understanding a huge quantity of data. With the advent of the digital era, a fully digital and automated treatment can be designed and performed. From data mining to data compression, from signal elaboration to noise reduction, a processing is essential to manage and enhance features of interest after every data acquisition (DAQ) session. In the near future, science will go towards interdisciplinary research. In this work there will be given an example of the application of signal processing to different fields of Physics from nuclear particle detectors to biomedical examinations. In Chapter 1 a brief description of the collaborations that allowed this thesis is given, together with a list of the publications co-produced by the author in these three years. The most important notations, definitions and acronyms used in the work are also provided. In Chapter 2, the last r...

  19. Applied nuclear physics in support of SBSS

    Energy Technology Data Exchange (ETDEWEB)

    Strottman, D.

    1995-10-01

    Since the advent of the 800-MeV proton linear accelerator over 3 decades ago, the facilities on the Clinton P. Anderson Meson Physics Facility (LAMPF) mesa have pioneered many developments that provide unique capabilities within the Department of Energy (DOE) complex and in the world. New technologies based on the use of the world`s most intense, medium-energy linac, LAMPF, are being developed. They include destruction of long-lived components of nuclear waste, plutonium burning, energy production, production of tritium, and experiments for the science-based stockpile stewardship (SBSS) program. The design, assessment, and safety analysis of potential facilities involve the understanding of complex combinations of nuclear processes, which in turn establish new requirements on nuclear data that transcend the traditional needs of the fission and fusion reactor communities. Other areas of technology such as neutron and proton therapy applications are also placing new requirements on nuclear data. The proposed Los Alamos Neutron Science Center (LANSCE) now under discussion combined with the appropriate instrumentation will have unique features and capabilities of which there were previously only aspirations.

  20. Physics and agriculture: applied optics to plant fertilization and breeding

    Science.gov (United States)

    Diomandé, K.; Soro, P. A.; Zoro, G. H.; Krou, V. A.

    2011-08-01

    The economy of Côte d'Ivoire rests on the agriculture. In order to contribute to the development of this agriculture, we have oriented our research field on applied optics to agriculture. Then, our research concerns mainly the Laser Induced chlorophyll fluorescence in plants. A simple laser-induced fluorescence set up has been designed and built at the Laboratory of Crystallography and Molecular Physics (LaCPM) at the University of Cocody (Abidjan, COTE D'IVOIRE). With this home set up we first have studied the fluorescence spectra of the "chlorophyll" to characterize the potassium deficiency in oil palm (Elaeis guineensis Jacq,). However, we found that the results differed for samples along terraced plots. The study of this phenomenon called "border effect", has enabled us to realize that sampling should be done after two rows of safety in each plot. We also applied the Laser Induced chlorophyll fluorescence technique to improve the plant breeding. For this, we have characterized the rubber tree seedlings in nurseries. And so we have highlighted those sensible to drought and resistant ones.

  1. Nuclear Physics Laboratory 1979 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Adelberger, E.G. (ed.)

    1979-07-01

    Research progress is reported in the following areas: astrophysics and cosmology, fundamental symmetries, nuclear structure, radiative capture, medium energy physics, heavy ion reactions, research by users and visitors, accelerator and ion source development, instrumentation and experimental techniques, and computers and computing. Publications are listed. (WHK)

  2. Nuclear Physics Laboratory 1980 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Adelberger, E.G. (ed.)

    1980-09-01

    Research progress is reported in the following areas: astrophysics and cosmology, fundamental symmetries, nuclear structure and reactions, radiative capture, medium energy physics, heavy ion reactions, research by outside users, accelerators and ion sources, instrumentation and experimental techniques, and computers and computing. Publications are listed. (WHK)

  3. Report of the Plasma Physics Laboratory

    Science.gov (United States)

    1982-03-01

    Theoretical and experimental work in plasma physics is summarized. Technological and engineering aspects of plasma experiments in the SPICA, TORTUR 2, and RINGBOOG 2 reactors are discussed with emphasis on screw pinch, turbulent heating, and gas blankets. The free boundary equilibrium in high beta Tokamak plasma, wave dynamics, and transport problems were investigated.

  4. Soft Spin Physics at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Raffaella De Vita

    2004-10-01

    An extensive experimental program to study spin physics at low and moderate four-momentum transfer, Q{sup 2}, is in progress at Jefferson Lab. In this regime, soft processes as resonance excitation and higher twist contribution play a dominant role and the measurement of spin observables is a fundamental tool to understand such phenomena and identify the relevant degrees of freedom. In these proceedings I will describe the ongoing experimental program and I will discuss preliminary and final results.

  5. Worlds largest particle physics laboratory selects Proxim Wireless Mesh

    CERN Multimedia

    2007-01-01

    "Proxim Wireless has announced that the European Organization for Nuclear Research (CERN), the world's largest particle physics laboratory and the birthplace of the World Wide Web, is using it's ORiNOCO AP-4000 mesh access points to extend the range of the laboratory's Wi-Fi network and to provide continuous monitoring of the lab's calorimeters" (1/2 page)

  6. THE EMPLOYMENT OF COMPUTER TECHNOLOGIES IN LABORATORY COURSE ON PHYSICS

    Directory of Open Access Journals (Sweden)

    Liudmyla M. Nakonechna

    2010-08-01

    Full Text Available Present paper considers the questions on development of conceptually new virtual physical laboratory, the employment of which into secondary education schools will allow to check the theoretical knowledge of students before laboratory work and to acquire the modern methods and skills of experiment.

  7. Laboratory plasma physics experiments using merging supersonic plasma jets

    CERN Document Server

    Hsu, S C; Merritt, E C; Adams, C S; Dunn, J P; Brockington, S; Case, A; Gilmore, M; Lynn, A G; Messer, S J; Witherspoon, F D

    2014-01-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven rail guns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: $n_e\\approx n_i \\sim 10^{16}$ cm$^{-3}$, $T_e \\approx T_i \\approx 1.4$ eV, $V_{\\rm jet}\\approx 30$-100 km/s, mean charge $\\bar{Z}\\approx 1$, sonic Mach number $M_s\\equiv V_{\\rm jet}/C_s>10$, jet diameter $=5$ cm, and jet length $\\approx 20$ cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.

  8. Plasma physics and environmental perturbation laboratory. Volume 1: Executive summary

    Science.gov (United States)

    1973-01-01

    Space physics and plasma physics experiments that can be performed from the space shuttle were identified. Potential experiment concepts were analyzed to derive requirements for a spaceborne experiment facility. The laboratory, known as the Plasma Physics and Environmental Perturbation Laboratory consists of a 33-foot pallet of instruments connected to a 25-foot pressurized control module. Two 50-meter booms, two subsatellites, a high power transmitter, a multipurpose accelerator array, a set of deployable canisters, and a gimbaled instrument platform are the primary systems deployed from the pallet. The pressurized module contains all the control and display equipment required to conduct the experiments, and life support and power subsystems.

  9. APPLICATION OF INTERACTIVE ONLINE SIMULATIONS IN THE PHYSICS LABORATORY ACTIVITIES

    Directory of Open Access Journals (Sweden)

    Nina P. Dementievska

    2013-09-01

    Full Text Available Physics teachers should have professional competences, aimed at the use of online technologies associated with physical experiments. Lack of teaching materials for teachers in Ukrainian language leads to the use of virtual laboratories and computer simulations by traditional methods of education, not by the latest innovative modern educational technology, which may limit their use and greatly reduce their effectiveness. Ukrainian teaching literature has practically no information about the assessment of competencies, research skills of students for the laboratory activities. The aim of the article is to describe some components of instructional design for the Web site with simulations in school physical experiments and their evaluation.

  10. PHYSICAL CONCEPT APPLIED TO SPACE OBSERVATION BY LANDASAT 7 TM

    Directory of Open Access Journals (Sweden)

    C TOUMIAT

    2015-06-01

    Full Text Available Physical concept has been applied to space observation by using images and data of LANDASAT 7 in order to  to extract quantitative information  about the studied areas facilitate . The final product should respect a norm in presenting a list of physical indicators or minimal reference classes.

  11. Organization of professional and applied physical training and applied specifically oriented undergraduate students of forestry professions

    Directory of Open Access Journals (Sweden)

    Martirosova T.A.

    2012-11-01

    Full Text Available The questions of the use of facilities are examined professionally-applied physical preparation of students. The necessity of more rapid and high-quality mastering of certain labour abilities and skills, increase of the labour productivity, prophylaxis of professional diseases is marked. It is marked that forms and facilities of physical education of students of forestry specialities are determined features professionally-labour to activity of this industry. Employments of the special applied orientation are plugged in itself: theoretical employments, practical employments, sports and fitness measures, individual independent professionally-applied physical exercises, special applied types of sport. The features of forming professionally of important qualities of future specialist are certain in the process of physical education in the institute of higher.

  12. A Comprehensive Assessment Strategy for Physics Laboratory Courses

    CERN Document Server

    Khaparde, Rajesh B

    2013-01-01

    The objective of physics laboratory training is to develop, in students, a variety of important cognitive and psycho-motor abilities related to experimental physics. These include conceptual understanding, procedural understanding, experimental skills and the experimental problem solving ability. It has been noted that strategies adopted for the assessment of what students learn and develop through a laboratory course are often inconsistent with the objectives of the laboratory courses. The author has developed a comprehensive assessment strategy which can be used at the school, college and university level. The strategy is based on four tools of assessment, namely, test on conceptual understanding, test on procedural understanding, an experimental test, and the continuous assessment. The relative weightage for each of the four tools depends on the level and emphasis of the laboratory course. The four tools of assessment, with respect to the type of questions, design, grading schemes, administration of each t...

  13. Physical and virtual laboratories in science and engineering education.

    Science.gov (United States)

    de Jong, Ton; Linn, Marcia C; Zacharia, Zacharias C

    2013-04-19

    The world needs young people who are skillful in and enthusiastic about science and who view science as their future career field. Ensuring that we will have such young people requires initiatives that engage students in interesting and motivating science experiences. Today, students can investigate scientific phenomena using the tools, data collection techniques, models, and theories of science in physical laboratories that support interactions with the material world or in virtual laboratories that take advantage of simulations. Here, we review a selection of the literature to contrast the value of physical and virtual investigations and to offer recommendations for combining the two to strengthen science learning.

  14. Evaluation of a multiple goal revision of a physics laboratory

    Science.gov (United States)

    Bonham, Scott W.; Harper, Doug L.; Pauley, Lance

    2013-01-01

    This paper reports on the revision of the University Physics laboratory at Western Kentucky University. Multiple learning objectives were negotiated among faculty, and a curriculum was developed to address all of them. A full pilot was run in Spring 2012 with three experimental sections and two control sections. Data was collected using the Force and Motion Conceptual Evaluation, a self-efficacy survey, and performance on the laboratory final. Data from the pilot shows gains in conceptual understanding on certain topics, differences in a few laboratory skills, and improvement in technical writing ability as measured by both a writing sample and student perception.

  15. University of Washington, Nuclear Physics Laboratory annual report, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Nuclear Physics Laboratory of the University of Washington supports a broad program of experimental physics research. The current program includes in-house research using the local tandem Van de Graff and superconducting linac accelerators and non-accelerator research in double beta decay and gravitation as well as user-mode research at large accelerator and reactor facilities around the world. This book is divided into the following areas: nuclear astrophysics; neutrino physics; nucleus-nucleus reactions; fundamental symmetries and weak interactions; accelerator mass spectrometry; atomic and molecular clusters; ultra-relativistic heavy ion collisions; external users; electronics, computing, and detector infrastructure; Van de Graff, superconducting booster and ion sources; nuclear physics laboratory personnel; degrees granted for 1994--1995; and list of publications from 1994--1995.

  16. Identifying types of physical activity with a single accelerometer: Evaluating laboratory trained algorithms in daily life

    NARCIS (Netherlands)

    Cuba Gyllensten, I.; Bonomi, A.G.

    2011-01-01

    Accurate identification of physical activity types has been achieved in laboratory conditions using single-site accelerometers and classification algorithms. This methodology is then applied to free-living subjects to determine activity behaviour. This study aimed at analysing the reproducibility of

  17. Professional applied physical training of future specialists of agricultural production

    Directory of Open Access Journals (Sweden)

    Karabanov Y.A.

    2015-01-01

    Full Text Available Purpose : develop and experimentally prove the contents, methods and forms of physical training of future specialists of agricultural production. This takes into account advanced course of professional applied physical preparation means kettlebell sport. Material : The study involved 141 students. Duration of study is 5 years. Results : It was found that a significant increase in indicators of flexibility, strength, coordination abilities of students promoted the use of exercises using weights of different weights. Confirmed the legitimacy of the use of such means of physical education for the development of muscle strength of the upper body, back, legs, abdominals. These muscles are the most loaded in the performance of professional activities of mechanical engineers. Conclusions : The program meets the basic criteria for the formation of curriculum for physical education. The program promotes the development of professional applications of physical qualities, motor skills and improve physical performance of students.

  18. PHYSICAL PROPERTY MEASUREMENTS OF LABORATORY PREPARED SALTSTONE GROUT

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E.; Cozzi, A.; Edwards, T.

    2014-05-05

    The Saltstone Production Facility (SPF) built two new Saltstone Disposal Units (SDU), SDU 3 and SDU 5, in 2013. The variable frequency drive (VFD) for the grout transfer hose pump tripped due to high current demand by the motor during the initial radioactive saltstone transfer to SDU 5B on 12/5/2013. This was not observed during clean cap processing on July 5, 2013 to SDU 3A, which is a slightly longer distance from the SPF than is SDU 5B. Saltstone Design Authority (SDA) is evaluating the grout pump performance and capabilities to transfer the grout processed in SPF to SDU 3/5. To assist in this evaluation, grout physical properties are required. At this time, there are no rheological data from the actual SPF so the properties of laboratory prepared samples using simulated salt solution or Tank 50 salt solution will be measured. The physical properties of grout prepared in the laboratory with de-ionized water (DI) and salt solutions were obtained at 0.60 and 0.59 water to premix (W/P) ratios, respectively. The yield stress of the DI grout was greater than any salt grout. The plastic viscosity of the DI grout was lower than all of the salt grouts (including salt grout with admixture). When these physical data were used to determine the pressure drop and fluid horsepower for steady state conditions, the salt grouts without admixture addition required a higher pressure drop and higher fluid horsepower to transport. When 0.00076 g Daratard 17/g premix was added, both the pressure drop and fluid horsepower were below that of the DI grout. Higher concentrations of Daratard 17 further reduced the pressure drop and fluid horsepower. The uncertainty in the single point Bingham Plastic parameters is + 4% of the reported values and is the bounding uncertainty. Two different mechanical agitator mixing protocols were followed for the simulant salt grout, one having a total mixing time of three minutes and the other having a time of 10 minutes. The Bingham Plastic parameters

  19. 2nd Symposium on applied nuclear physics and innovative technologies

    CERN Document Server

    2014-01-01

    Symposium on Applied Nuclear Physics and Innovative Technologies will be held for the second time at Collegium Maius, the oldest building of the Jagiellonian University in Cracow, the same building where Nicolaus Copernicus has studied astronomy. Symposium is organized in the framework of the MPD programme carried out by the Foundation for Polish science based on the European Structural Funds. The aim of this conference is to gather together young scientists and experts in the field of applied and fundamental nuclear as well as particle physics. Aiming at interplay of fundamental and applied science the conference will be devoted to the following topics: * Medical imaging and radiotherapy * New materials and technologies in radiation detection * Fission, fusion and spallation processes * High-performance signal processing and data analysis * Tests of foundations of physics and search for a new kind of sub-atomic matter

  20. Raising Environmental Awareness through Applied Biochemistry Laboratory Experiments

    Science.gov (United States)

    Salman Ashraf, S.

    2013-01-01

    Our environment is under constant pressure and threat from various sources of pollution. Science students, in particular chemistry students, must not only be made aware of these issues, but also be taught that chemistry (and science) can provide solutions to such real-life issues. To this end, a newly developed biochemistry laboratory experiment…

  1. Multiprog Virtual Laboratory Applied to PLC Programming Learning

    Science.gov (United States)

    Shyr, Wen-Jye

    2010-01-01

    This study develops a Multiprog virtual laboratory for a mechatronics education designed to teach how to programme a programmable logic controller (PLC). The study was carried out with 34 students in the Department of Industry Education and Technology at National Changhua University of Education in Taiwan. In total, 17 students were assigned to…

  2. Applied problems of physical education students of economic specialties

    Directory of Open Access Journals (Sweden)

    Dubinskaya O.Y.

    2014-03-01

    Full Text Available Purpose : to analyze the problems of physical education students of economics in the context of professionally applied physical training. Material : analysis of Ukrainian and foreign publications on species means of improving professional-applied physical training of students in higher education. Results : It was found that the state system of physical education students is ineffective. It does not provide psychophysical and professional readiness of graduates for productive activities and later life. The system also needs constant improvement. A new approach to solving the problem of training to learn the adoption of practical importance of physical education. Also the formation of motivation by demonstrating a real need and usefulness of the proposed exercise. Such exercises should be differentiated, taking into account the health status and subsequent career expectations. Conclusion: it is proved that for an efficient system of training is necessary to use popular among students sports. It is also necessary to take into account the interests of students when choosing tools professionally applied physical training.

  3. Industrial safety and applied health physics. Annual report for 1977

    Energy Technology Data Exchange (ETDEWEB)

    Auxier, J.A.; Davis, D.M.

    1978-06-01

    Progress is reported on the following: radiation monitoring with regard to personnel monitoring and health physics instrumentation; environs surveillance with regard to atmospheric monitoring, water monitoring, radiation background measurements, and soil and grass samples; radiation and safety surveys with regard to laboratory operations monitoring, radiation incidents, and laundry monitoring; industrial safety and special projects with regard to accident analysis, disabling injuries, and safety awards. (HLW)

  4. Women in Physics: The Next Generation At Our National Laboratories

    Science.gov (United States)

    Krossa, Cheryl

    2001-04-01

    Just as a house must be built on a strong foundation, with each subsequent course of bricks placed upon those that went before, the advances of women in physics are built upon the accomplishments of those women who have gone before. How are we preparing for the next course of bricks? Where will the next generation of women in physics come from, and how are these women being prepared to take their place among your ranks? The United States Department of Energy is helping to mold the next generation of women in physics, in part, through the efforts of its fifteen national laboratories: Argonne, Brookhaven, Fermi, Idaho, Lawrence Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, Pacific Northwest, Princeton Plasma Physics, Sandia, National Energy Technology Laboratory, National Renewable Energy Laboratory, Stanford Linear Accelerator Center, and Thomas Jefferson National Accelerator Facility. This presentation will showcase some of the creative and innovative approaches these institutions are taking, from outreach to girls in elementary schools to executive appointments, to secure not only this nation's future, but that of women in physics.

  5. A pilot experience in physics laboratory for a professional school

    CERN Document Server

    Montalbano, Vera; Di Renzone, Simone; Frati, Serena

    2013-01-01

    The reform of the upper secondary school in Italy has recently introduced physics in the curricula of professional schools, in realities where it was previously absent. Many teachers, often with a temporary position, are obliged to teaching physics in schools where the absence of the laboratory is added to the lack of interest of students who feel this matter as very far from their personal interests and from the preparation for the work which could expect from a professional school. We report a leaning path for introducing students to the measurement of simple physical quantities, which continued with the study of some properties of matter (volume, mass, density) and ending with some elements of thermodynamics. Educational materials designed in order to involve students in an active learning, actions performed for improving the quality of laboratory experience and difficulties encountered are presented. Finally, we compare the active engagement of these students with a similar experience performed in a very ...

  6. Use of the Berkeley Physics Laboratory to Teach an Advanced Physics Course

    Science.gov (United States)

    Logan, James David

    1973-01-01

    Discusses a course, centered around 32 experiments taught for advanced students, designed to develop a laboratory strongly suggestive of contemporary research using relatively sophisticated apparatus. Its unique advantage lies in enriching advanced physics curriculum. (DF)

  7. ALPhA: The Advanced Laboratory Physics Association

    Science.gov (United States)

    Black, Eric; McCann, Lowell; Reichert, Jonathan; Spalding, Gabe; Essick, John; van Baak, David; Wonnell, Steve

    2011-03-01

    The Advanced Laboratory Physics Association (ALPhA) is a group of people with a shared interest in teaching physics labs at the advanced undergraduate or graduate level. ALPhA works closely with the American Physical Society (APS), the Optical Society of America (OSA), and the American Association of Physics Teachers (AAPT) to develop new methods for teaching modern experimental physics. In the summer of 2010 we initiated the ALPhA Immersion Program, a three-day short course where instructors visit a lab, do one or more of the local experiments (home-built or commercial) with the local instructor, and learn the experiments well enough to incorporate them into their own programs. These immersions were very well received, with attendees filling up all available slots. In this talk I will describe ALPhA and the Immersions Program and solicit input from the broader community.

  8. Time and Frequency Activities at the JHU Applied Physics Laboratory

    Science.gov (United States)

    2009-11-01

    Resolution Offset Generator  2 GPS Time Transfer Receivers Time and Frequency Dissemination  1 MHz, 5 MHz, 10 MHz, 100 MHz  1 PPS  IRIG ...B APL Local Time  IRIG -B UTC  Common View GPS Time Transfer •NIST, USNO, BIPM 41 st Annual Precise Time and Time Interval (PTTI) Meeting...MASER* CESIUM 3 MICROPHASE STEPPER 5 MHZ DISTRIBUTION APL TIMESCALE PROCESSOR PREDICTION ALGORITHM TIMECODE 1PPS & IRIG 8 CHANNEL GPS A

  9. METHODS OF EXPERIMENTAL VERIFICATION OF STEINER THEOREM IN PHYSICAL PRACTICUM AND LABORATORY WORK

    Directory of Open Access Journals (Sweden)

    Zharilkasin Iskakov

    2014-07-01

    Full Text Available In this paper, the technique of laboratory work on experimental verification of Steiner’s Theorem in laboratory conditions is developed. To do this, specially designed experimental device was used. The main part of such device is a simple physical pendulum, swinging freely about the axis of suspension, consisting of a cylindrical disc set on a thin rod. To determine the moment of inertia of cylindrical body about the axis of vibrations, property of a physical quantity additivity was used. When processing experimental results, functional approximation by a least squares method was applied; as a result, the empirical expression of Steiner’s Theorem was achieved. Results of experimental studies were very close to the results of theoretical calculations. Laboratory work can be easily repeated for a body of arbitrary shape. The methodology used can be recommended for physical practicum in universities as an effective and easy way of experimental verification of Steiner’s theorem.

  10. Applied Physics Modules Selected for Architectural and Civil Drafting Technologies.

    Science.gov (United States)

    Waring, Gene

    Designed for individualized use in an applied physics course in postsecondary vocational-technical education, this series of six learning modules is equivalent to the content of a three-credit hour class in surveying and drafting technology, architectural drafting technology, building construction technology, and civil engineering technology.…

  11. Laboratory plasma physics experiments using merging supersonic plasma jets

    OpenAIRE

    Hsu, S C; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A; Gilmore, M.; Lynn, A. G.; Messer, S. J.; Witherspoon, F. D.

    2014-01-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven rail guns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: $n_e\\approx n_i \\sim 10^{16}$ cm$^{-3}$, $T_e \\approx T_i \\approx 1.4$ eV, $V_{\\rm jet}\\approx 30$-100 km/s, mean charge $\\bar{Z}\\approx 1$...

  12. A Virtual Rock Physics Laboratory Through Visualized and Interactive Experiments

    Science.gov (United States)

    Vanorio, T.; Di Bonito, C.; Clark, A. C.

    2014-12-01

    As new scientific challenges demand more comprehensive and multidisciplinary investigations, laboratory experiments are not expected to become simpler and/or faster. Experimental investigation is an indispensable element of scientific inquiry and must play a central role in the way current and future generations of scientist make decisions. To turn the complexity of laboratory work (and that of rocks!) into dexterity, engagement, and expanded learning opportunities, we are building an interactive, virtual laboratory reproducing in form and function the Stanford Rock Physics Laboratory, at Stanford University. The objective is to combine lectures on laboratory techniques and an online repository of visualized experiments consisting of interactive, 3-D renderings of equipment used to measure properties central to the study of rock physics (e.g., how to saturate rocks, how to measure porosity, permeability, and elastic wave velocity). We use a game creation system together with 3-D computer graphics, and a narrative voice to guide the user through the different phases of the experimental protocol. The main advantage gained in employing computer graphics over video footage is that students can virtually open the instrument, single out its components, and assemble it. Most importantly, it helps describe the processes occurring within the rock. These latter cannot be tracked while simply recording the physical experiment, but computer animation can efficiently illustrate what happens inside rock samples (e.g., describing acoustic waves, and/or fluid flow through a porous rock under pressure within an opaque core-holder - Figure 1). The repository of visualized experiments will complement lectures on laboratory techniques and constitute an on-line course offered through the EdX platform at Stanford. This will provide a virtual laboratory for anyone, anywhere to facilitate teaching/learning of introductory laboratory classes in Geophysics and expand the number of courses

  13. Nuclear Physics Laboratory, University of Washington annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The Nuclear Physics Laboratory at the University of Washington in Seattle pursues a broad program of nuclear physics. These activities are conducted locally and at remote sites. The current programs include in-house research using the local tandem Van de Graaff and superconducting linac accelerators and non-accelerator research in solar neutrino physics at the Sudbury Neutrino Observatory in Canada and at SAGE in Russia, and gravitation as well as user-mode research at large accelerators and reactor facilities around the world. Summaries of the individual research projects are included. Areas of research covered are: fundamental symmetries, weak interactions and nuclear astrophysics; neutrino physics; nucleus-nucleus reactions; ultra-relativistic heavy ions; and atomic and molecular clusters.

  14. Advances in Measurement Technology at NIST's Physical Measurement Laboratory

    Science.gov (United States)

    Dehmer, Joseph

    2014-03-01

    The NIST mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology. The Physical Measurement Laboratory (PML) has responsibility for maintaining national standards for two dozen physical quantities needed for international trade; and, importantly, it carries out advanced research at the frontiers of measurement science to enable extending innovation into new realms and new markets. This talk will highlight advances being made across several sectors of technology; and it will describe how PML interacts with its many collaborators and clients in industry, government, and academe.

  15. Biological and Physical Space Research Laboratory 2002 Science Review

    Science.gov (United States)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  16. Condensed matter applied atomic collision physics, v.4

    CERN Document Server

    Datz, Sheldon

    1983-01-01

    Applied Atomic Collision Physics, Volume 4: Condensed Matter deals with the fundamental knowledge of collision processes in condensed media.The book focuses on the range of applications of atomic collisions in condensed matter, extending from effects on biological systems to the characterization and modification of solids. This volume begins with the description of some aspects of the physics involved in the production of ion beams. The radiation effects in biological and chemical systems, ion scattering and atomic diffraction, x-ray fluorescence analysis, and photoelectron and Auger spectrosc

  17. Gas lasers applied atomic collision physics, v.3

    CERN Document Server

    McDaniel, E W

    1982-01-01

    Applied Atomic Collision Physics, Volume 3: Gas Lasers describes the applications of atomic collision physics in the development of many types of gas lasers. Topics covered range from negative ion formation in gas lasers to high-pressure ion kinetics and relaxation of molecules exchanging vibrational energy. Ion-ion recombination in high-pressure plasmas is also discussed, along with electron-ion recombination in gas lasers and collision processes in chemical lasers.Comprised of 14 chapters, this volume begins with a historical summary of gas laser developments and an overview of the basic ope

  18. MIT Lincoln Laboratory: Physics and Technology in the National Interest

    Science.gov (United States)

    Ralston, Richard

    2001-03-01

    This year, MIT is celebrating the 50th anniversary of the founding of Lincoln Laboratory, which was formed at the request of the DoD with the initial goal of developing a national air defense system. In its 50 years, the Laboratory staff have made significant contributions in diverse areas including radar imaging, satellite communications, digital signal processing, computer science, semiconductor materials and solid state physics. The Laboratory has been true to its mission statement, which places strong emphasis on the application of advanced electronics to R&D in the national interest. Much of the technology is transitioned to U.S. industry for both government and commercial use. Annually more than 500 publications and meeting speeches are given, and cooperative developments with industry have targeted technology transitions ranging from next-generation photolithographic tools to microchip lasers. The Laboratory staff have been granted over 400 patents, and license to this intellectual property is at the core of many of the over 70 spin-off companies. MIT employs 2,300 people at Lincoln, including 1,200 professionals with degrees in physics, math, computer science, materials science and the engineering disciplines. Two-fifths of the professional staff are at the doctoral level; over two-thirds hold advanced degrees. This presentation will describe recent examples of research challenges for physicists in a multidisciplinary project-oriented environment.

  19. Revisions of Physical Geology Laboratory Courses to Increase the Level of Inquiry: Implications for Teaching and Learning

    Science.gov (United States)

    Grissom, April N.; Czajka, C. Douglas; McConnell, David A.

    2015-01-01

    The introductory physical geology laboratory courses taught at North Carolina State University aims to promote scientific thinking and learning through the use of scientific inquiry-based activities. A rubric describing five possible levels of inquiry was applied to characterize the laboratory activities in the course. Two rock and mineral…

  20. Princeton Plasma Physics Laboratory FY2003 Annual Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Editors: Carol A. Phillips; Anthony R. DeMeo

    2004-08-23

    The Princeton Plasma Physics Laboratory FY2003 Annual Highlights report provides a summary of the activities at the Laboratory for the fiscal year--1 October 2002 through 30 September 2003. The report includes the Laboratory's Mission and Vision Statements, a message ''From the Director,'' summaries of the research and engineering activities by project, and sections on Technology Transfer, the Graduate and Science Education Programs, Awards and Honors garnered by the Laboratory and the employees, and the Year in Pictures. There is also a listing of the Laboratory's publications for the year and a section of the abbreviations, acronyms, and symbols used throughout the report. In the PDF document, links have been created from the Table of Contents to each section. You can also return to the Table of Contents from the beginning page of each section. The PPPL Highlights for fiscal year 2003 is also available in hardcopy format. To obtain a copy e-mail Publications and Reports at: pub-reports@pppl.gov. Be sure to include your complete mailing address

  1. Model-Based Reasoning in the Upper-Division Physics Laboratory: Framework and Initial Results

    CERN Document Server

    Zwickl, Benjamin M; Finkelstein, Noah; Lewandowski, H J

    2014-01-01

    Constructing and using models are core scientific practices that have gained significant attention within K-12 and higher education. Although modeling is a broadly applicable process, within physics education, it has been preferentially applied to the iterative development of broadly applicable principles (e.g., Newton's laws of motion in introductory mechanics). We review and extend existing frameworks on modeling to develop a new framework that more naturally describes model-based reasoning in upper-division physics labs. A significant feature of the new framework is that measurement tools (in addition to the physical system being studied) are subjected to the process of modeling. Think-aloud interviews were used to document examples of model-based reasoning in the laboratory and refine the modeling framework. The interviews showed how students productively applied similar facets of modeling to the physical system and measurement tools: construction, prediction, interpretation of data, identification of mod...

  2. Applying the principles of augmented learning to photonics laboratory work

    Science.gov (United States)

    Fischer, U. H. P.; Haupt, Matthias; Reinboth, Christian; Just, Jens-Uwe

    2007-06-01

    Most modern communication systems are based on opto-electrical methods, wavelength division multiplex (WDM) being the most widespread. Likewise, the use of polymeric fibres (POF) as an optical transmission medium is expanding rapidly. Therefore, enabling students to understand how WDM and/or POF systems are designed and maintained is an important task of universities and vocational schools that offer education in photonics. In the current academic setting, theory is mostly being taught in the classroom, while students gain practical knowledge by performing lab experiments utilizing specialized teaching systems. In an ideal setting, students should perform such experiments with a high degree of autonomy. By applying the principles of augmented learning to photonics training, contemporary lab work can be brought closer to these ideal conditions. This paper introduces "OPTOTEACH", a new teaching system for photonics lab work, designed by Harz University and successfully released on the German market by HarzOptics. OPTOTEACH is the first POF-WDM teaching system, specifically designed to cover a multitude of lab experiments in the field of optical communication technology. It is illustrated, how this lab system is supplemented by a newly developed optical teaching software - "OPTOSOFT" - and how the combination of system and software creates a unique augmented learning environment. The paper details, how the didactic concept for the software was conceptualised and introduces the latest beta version. OPTOSOFT is specifically designed not only as an attachment to OPTOTEACH, it also allows students to rehearse various aspects of theoretical optics and experience a fully interactive and feature-rich self-learning environment. The paper further details the first experiences educators at Harz University have made working with the lab system as well as the teaching software. So far, the augmented learning concept was received mostly positive, although there is some potential

  3. Model-based reasoning in the physics laboratory: Framework and initial results

    Science.gov (United States)

    Zwickl, Benjamin M.; Hu, Dehui; Finkelstein, Noah; Lewandowski, H. J.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] We review and extend existing frameworks on modeling to develop a new framework that describes model-based reasoning in introductory and upper-division physics laboratories. Constructing and using models are core scientific practices that have gained significant attention within K-12 and higher education. Although modeling is a broadly applicable process, within physics education, it has been preferentially applied to the iterative development of broadly applicable principles (e.g., Newton's laws of motion in introductory mechanics). A significant feature of the new framework is that measurement tools (in addition to the physical system being studied) are subjected to the process of modeling. Think-aloud interviews were used to refine the framework and demonstrate its utility by documenting examples of model-based reasoning in the laboratory. When applied to the think-aloud interviews, the framework captures and differentiates students' model-based reasoning and helps identify areas of future research. The interviews showed how students productively applied similar facets of modeling to the physical system and measurement tools: construction, prediction, interpretation of data, identification of model limitations, and revision. Finally, we document students' challenges in explicitly articulating assumptions when constructing models of experimental systems and further challenges in model construction due to students' insufficient prior conceptual understanding. A modeling perspective reframes many of the seemingly arbitrary technical details of measurement tools and apparatus as an opportunity for authentic and engaging scientific sense making.

  4. Laboratory for Nuclear Science. High Energy Physics Program

    Energy Technology Data Exchange (ETDEWEB)

    Milner, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-07-30

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group are given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.

  5. Introduction to plasma physics with space, laboratory and astrophysical applications

    CERN Document Server

    Gurnett, Donald A

    2017-01-01

    Introducing basic principles of plasma physics and their applications to space, laboratory and astrophysical plasmas, this new edition provides updated material throughout. Topics covered include single-particle motions, kinetic theory, magnetohydrodynamics, small amplitude waves in hot and cold plasmas, and collisional effects. New additions include the ponderomotive force, tearing instabilities in resistive plasmas and the magnetorotational instability in accretion disks, charged particle acceleration by shocks, and a more in-depth look at nonlinear phenomena. A broad range of applications are explored: planetary magnetospheres and radiation belts, the confinement and stability of plasmas in fusion devices, the propagation of discontinuities and shock waves in the solar wind, and analysis of various types of plasma waves and instabilities that can occur in planetary magnetospheres and laboratory plasma devices. With step-by-step derivations and self-contained introductions to mathematical methods, this book...

  6. Developing an Attitude Scale towards Physics Laboratory: A Study on Validity and Reliability

    Directory of Open Access Journals (Sweden)

    Gülşah TANRIVERDİ

    2012-12-01

    Full Text Available The aim of the study is to reveal the results of a validity and reliability study for the attitude scale which is developed to assess the attitudes of first-year undergraduates in Teacher Training in Sciences department towards physics laboratories. At the first step of the study, students who attended Physics Laboratory-I course were asked for their views about physics laboratories. The first items of the scale on attitude were created in parallel to the teacher candidates’ views. The experimental group of the study consists of 118 primary school teacher candidate students at Faculty of Education in Kırıkkale University. As a result of the study on validity and reliability 27 attitude scale items were created 21 of which were positive and 6 of which were negative. This resulting attitude scale with 27 items was called "Attitude Scale Towards Physics Laboratories" (ASCTPL. Having made the factor analysis it was seen that the ASCTPL had 6 factors at total. The dimensions of these 6 factors were "Methods and Techniques Applied during the Course","Teacher's Attitude towards the Course", "Technical Opportunities in the Laboratories", "Associating the Course with Daily Life", "Students' Personal Attitudes towards the Course" and "Field Knowledge". The variant that the whole of the scale expressed was 59,143%, and Cornbach-Alpha coefficient of internal consistency was estimated α = 0,90. Considering the results, it can be concluded that the scale is both valid and reliable. Also, this five point Likert-type scale can be used to determine the attitudes of students at Teacher Training in Sciences department towards the physics laboratories.

  7. COGNITIVE PERFORMANCE LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory conducts basic and applied human research studies to characterize cognitive performance as influenced by militarily-relevant contextual and physical...

  8. Hygrothermal Numerical Simulation Tools Applied to Building Physics

    CERN Document Server

    Delgado, João M P Q; Ramos, Nuno M M; Freitas, Vasco Peixoto

    2013-01-01

    This book presents a critical review on the development and application of hygrothermal analysis methods to simulate the coupled transport processes of Heat, Air, and Moisture (HAM) transfer for one or multidimensional cases. During the past few decades there has been relevant development in this field of study and an increase in the professional use of tools that simulate some of the physical phenomena that are involved in Heat, Air and Moisture conditions in building components or elements. Although there is a significant amount of hygrothermal models referred in the literature, the vast majority of them are not easily available to the public outside the institutions where they were developed, which restricts the analysis of this book to only 14 hygrothermal modelling tools. The special features of this book are (a) a state-of-the-art of numerical simulation tools applied to building physics, (b) the boundary conditions importance, (c) the material properties, namely, experimental methods for the measuremen...

  9. Current Reactor Physics Benchmark Activities at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Margaret A. Marshall; Mackenzie L. Gorham; Joseph Christensen; James C. Turnbull; Kim Clark

    2011-11-01

    The International Reactor Physics Experiment Evaluation Project (IRPhEP) [1] and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) [2] were established to preserve integral reactor physics and criticality experiment data for present and future research. These valuable assets provide the basis for recording, developing, and validating our integral nuclear data, and experimental and computational methods. These projects are managed through the Idaho National Laboratory (INL) and the Organisation for Economic Co-operation and Development Nuclear Energy Agency (OECD-NEA). Staff and students at the Department of Energy - Idaho (DOE-ID) and INL are engaged in the development of benchmarks to support ongoing research activities. These benchmarks include reactors or assemblies that support Next Generation Nuclear Plant (NGNP) research, space nuclear Fission Surface Power System (FSPS) design validation, and currently operational facilities in Southeastern Idaho.

  10. Laboratory Experiments in Physics for Modern Astronomy With Comprehensive Development of the Physical Principles

    CERN Document Server

    Golden, Leslie

    2013-01-01

    This book presents experiments which will teach physics relevant to astronomy. The astronomer, as instructor, frequently faces this need when his college or university has no astronomy department and any astronomy course is taught in the physics department. The physicist, as instructor, will find this intellectually appealing when faced with teaching an introductory astronomy course. From these experiments, the student will acquire important analytical tools, learn physics appropriate to astronomy, and experience instrument calibration and the direct gathering and analysis of data. Experiments that can be performed in one laboratory session as well as semester-long observation projects are included. This textbook is aimed at undergraduate astronomy students.

  11. Natural hazard management high education: laboratory of hydrologic and hydraulic risk management and applied geomorphology

    Science.gov (United States)

    Giosa, L.; Margiotta, M. R.; Sdao, F.; Sole, A.; Albano, R.; Cappa, G.; Giammatteo, C.; Pagliuca, R.; Piccolo, G.; Statuto, D.

    2009-04-01

    The Environmental Engineering Faculty of University of Basilicata have higher-level course for students in the field of natural hazard. The curriculum provides expertise in the field of prediction, prevention and management of earthquake risk, hydrologic-hydraulic risk, and geomorphological risk. These skills will contribute to the training of specialists, as well as having a thorough knowledge of the genesis and the phenomenology of natural risks, know how to interpret, evaluate and monitor the dynamic of environment and of territory. In addition to basic training in the fields of mathematics and physics, the course of study provides specific lessons relating to seismic and structural dynamics of land, environmental and computational hydraulics, hydrology and applied hydrogeology. In particular in this course there are organized two connected examination arguments: Laboratory of hydrologic and hydraulic risk management and Applied geomorphology. These course foresee the development and resolution of natural hazard problems through the study of a real natural disaster. In the last year, the work project has regarded the collapse of two decantation basins of fluorspar, extracted from some mines in Stava Valley, 19 July 1985, northern Italy. During the development of the course, data and event information has been collected, a guided tour to the places of the disaster has been organized, and finally the application of mathematical models to simulate the disaster and analysis of the results has been carried out. The student work has been presented in a public workshop.

  12. Neutron physics at the JINR: 60 years of the I M Frank Laboratory of Neutron Physics

    Science.gov (United States)

    Lychagin, E. V.; Kozlenko, D. P.; Sedyshev, P. V.; Shvetsov, V. N.

    2016-03-01

    26 March 2016 marked 60 years since the Joint Institute for Nuclear Research was founded in 1956 and within which the Laboratory of Neutron Physics was established. Already four years later, in 1960, the world's first pulsed fast reactor (known by its Russian acronym as IBR) operating in the periodic mode was put into operation, followed in 1984 by IBR-2. The research achievements over the last decade are summarized, the state-of-the-art laboratory hardware is discussed, and the prospects for the future are reviewed.

  13. Fast Magnetic Reconnection: Bridging Laboratory and Space Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Amitava [University New Hampshire- Durham

    2012-02-16

    Recent developments in experimental and theoretical studies of magnetic reconnection hold promise for providing solutions to outstanding problems in laboratory and space plasma physics. Examples include sawtooth crashes in tokamaks, substorms in the Earth’s Magnetosphere, eruptive solar flares, and more recently, fast reconnection in laser-produced high energy density plasmas. In each of these examples, a common and long-standing challenge has been to explain why fast reconnection proceeds rapidly from a relatively quiescent state. In this talk, we demonstrate the advantages of viewing these problems and their solutions from a common perspective. We focus on some recent, surprising discoveries regarding the role of secondary plasmoid instabilities of thin current sheets. Nonlinearly, these instabilities lead to fast reconnection rates that are very weakly dependent on the Lundquist number of the plasma.

  14. Open Guided Inquiry Laboratory in Physics Teacher Education

    Science.gov (United States)

    Nivalainen, Ville; Asikainen, Mervi A.; Hirvonen, Pekka E.

    2013-04-01

    This study has investigated the use of an open guided inquiry laboratory course in which a group of pre-service teachers planned and implemented practical work for school purposes. A total of 32 pre-service teachers (physics, mathematics, and chemistry majors) participated in the study. Each participant wrote a reflective essay after completing the course, and three pre-service teachers were interviewed four times during the course. The results show that the use of an open guided inquiry environment provides support for pre-service teachers to discover the limits of their understanding of subject matter knowledge, allowing them to construct knowledge in a different kind of environment from any they had possessed previously, and helping them to understand the possibilities of practical work in teaching. In the course of developing their competence in these aspects, pre-service teachers also gain an understanding of various aspects of teachers' knowledge.

  15. Underwater Laboratories for Astroparticle Physics and Deep Sea Science

    Directory of Open Access Journals (Sweden)

    P. Piattelli

    2006-06-01

    Full Text Available The exploration of deep sea environments is presently at the dawn of a new era: underwater laboratories, permanently installed on the sea floor and offering power and on-line data transmission links to the shore, will allow to continuously monitor oceanographical properties. An important boost in this direction has been provided by the high energy physics scientific community, that aims at the realization of an underwater detector for cosmic high energy neutrinos. Neutrinos are considered a very promising probe for high energy astrophysics and many indications suggest that some of the most energetic sources known in the universe could also be high energy neutrino sources. The expected neutrino fluxes indicate that a km3-scale detector must be realised to achieve this ambitious aim. The quest for the realization of such a detector in the Mediterranean Sea has already started.

  16. The uncertainty in physical measurements an introduction to data analysis in the physics laboratory

    CERN Document Server

    Fornasini, Paolo

    2008-01-01

    All measurements of physical quantities are affected by uncertainty. Understanding the origin of uncertainty, evaluating its extent and suitably taking it into account in data analysis is essential for assessing the degree of accuracy of phenomenological relationships and physical laws in both scientific research and technological applications. The Uncertainty in Physical Measurements: An Introduction to Data Analysis in the Physics Laboratory presents an introduction to uncertainty and to some of the most common procedures of data analysis. This book will serve the reader well by filling the gap between tutorial textbooks and highly specialized monographs. The book is divided into three parts. The first part is a phenomenological introduction to measurement and uncertainty: properties of instruments, different causes and corresponding expressions of uncertainty, histograms and distributions, and unified expression of uncertainty. The second part contains an introduction to probability theory, random variable...

  17. New Outreach Initiatives at the Princeton Plasma Physics Laboratory

    Science.gov (United States)

    Zwicker, Andrew; Dominguez, Arturo; Greco, Shannon; Ortiz, Deedee; Delooper, John

    2015-11-01

    In FY15, PPPL concentrated its efforts on a portfolio of outreach activities centered around plasma science and fusion energy that have the potential to reach a large audience and have a significant and measurable impact. The overall goal of these outreach activities is to expose the public (within New Jersey, the US and the world) to the Department of Energy's scientific endeavors and specifically to PPPL's research regarding fusion and plasma science. The projects include several new activities along with upgrades to existing ones. The new activities include the development of outreach demos for the plasma physics community and the upgrade of the Internet Plasma Physics Experience (IPPEX). Our first plasma demo is a low cost DC glow discharge, suitable for tours as well as for student laboratories (plasma breakdown, spectroscopy, probes). This has been field tested in a variety of classes and events. The upgrade to the IPPEX web site includes a new template and a new interactive virtual tokamak. Future work on IPPEX will provide users limited access to data from NSTX-U. Finally, our Young Women's Conference was expanded and improved. These and other new outreach activities will be presented.

  18. PROPHYLACTIC PHYSIOTHERAPY ELEMENTS APPLIED DURING THE PHYSICAL EDUCATION LESSONS OF NON-PHYSICAL EDUCATION STUDENTS

    Directory of Open Access Journals (Sweden)

    Marza Danila Danut Nicu

    2013-12-01

    Full Text Available This study aimed to improve the physical fitness of the non-physical education students by using prophylactic physiotherapy elements. The study tried to confirm the following hypothesis: If prophylactic physiotherapy is applied correctly to the non-physical education students, according to their assessed level of fitness, their health is improved, and a prevention of various disorders is achieved. Thirty students were comprised in the study (males and females, aged between 21 and 24; for 15 of them we created and applied an adapted program of aerobic exercises, over the course of the second semester of the academic year, 2012-2013. The other 15 subjects participated in the physical education classes, following the regular syllabus. The Ruffier and the Hettinger tests were applied to both groups of students, initially and finally. After the final tests, we observed that the students in the experimental group have improved their fitness after the application of the aerobic exercise programs, while the control group students remained at the same level.

  19. Software validation applied to spreadsheets used in laboratories working under ISO/IEC 17025

    Science.gov (United States)

    Banegas, J. M.; Orué, M. W.

    2016-07-01

    Several documents deal with software validation. Nevertheless, more are too complex to be applied to validate spreadsheets - surely the most used software in laboratories working under ISO/IEC 17025. The method proposed in this work is intended to be directly applied to validate spreadsheets. It includes a systematic way to document requirements, operational aspects regarding to validation, and a simple method to keep records of validation results and modifications history. This method is actually being used in an accredited calibration laboratory, showing to be practical and efficient.

  20. Applying Newton's Apple to Elementary Physical Education: An Interdisciplinary Approach

    Science.gov (United States)

    Gagen, Linda; Getchell, Nancy

    2008-01-01

    The NASPE standards for physical education programs stress that students should not only achieve competence in physical skills but also acquire and integrate the underlying concepts that can lead to effective movement. Physical educators can successfully embed these underlying concepts into the daily skill instruction and guided practice in their…

  1. Shock and Detonation Physics at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, David L [Los Alamos National Laboratory; Dattelbaum, Dana M [Los Alamos National Laboratory; Sheffield, Steve A [Los Alamos National Laboratory

    2012-08-22

    WX-9 serves the Laboratory and the Nation by delivering quality technical results, serving customers that include the Nuclear Weapons Program (DOE/NNSA), the Department of Defense, the Department of Homeland Security and other government agencies. The scientific expertise of the group encompasses equations-of-state, shock compression science, phase transformations, detonation physics including explosives initiation, detonation propagation, and reaction rates, spectroscopic methods and velocimetry, and detonation and equation-of-state theory. We are also internationally-recognized in ultra-fast laser shock methods and associated diagnostics, and are active in the area of ultra-sensitive explosives detection. The facility capital enabling the group to fulfill its missions include a number of laser systems, both for laser-driven shocks, and spectroscopic analysis, high pressure gas-driven guns and powder guns for high velocity plate impact experiments, explosively-driven techniques, static high pressure devices including diamond anvil cells and dilatometers coupled with spectroscopic probes, and machine shops and target fabrication facilities.

  2. Oral Anatomy Laboratory Examinations in a Physical Therapy Program

    Science.gov (United States)

    Fabrizio, Philip A.

    2013-01-01

    The process of creating and administering traditional tagged anatomy laboratory examinations is time consuming for instructors and limits laboratory access for students. Depending on class size and the number of class, sections, creating, administering, and breaking down a tagged laboratory examination may involve one to two eight-hour days.…

  3. Applying Transtheoretical Model to Promote Physical Activities Among Women

    OpenAIRE

    2015-01-01

    Background: Physical activity is one of the most important indicators of health in communities but different studies conducted in the provinces of Iran showed that inactivity is prevalent, especially among women. Objectives: Inadequate regular physical activities among women, the importance of education in promoting the physical activities, and lack of studies on the women using transtheoretical model, persuaded us to conduct this study with the aim of determining the application of transtheo...

  4. Computational physics and applied mathematics capability review June 8-10, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Stephen R [Los Alamos National Laboratory

    2010-01-01

    Los Alamos National Laboratory will review its Computational Physics and Applied Mathematics (CPAM) capabilities in 2010. The goals of capability reviews are to assess the quality of science, technology, and engineering (STE) performed by the capability, evaluate the integration of this capability across the Laboratory and within the scientific community, examine the relevance of this capability to the Laboratory's programs, and provide advice on the current and future directions of this capability. This is the first such review for CPAM, which has a long and unique history at the Laboratory, starting from the inception of the Laboratory in 1943. The CPAM capability covers an extremely broad technical area at Los Alamos, encompassing a wide array of disciplines, research topics, and organizations. A vast array of technical disciplines and activities are included in this capability, from general numerical modeling, to coupled multi-physics simulations, to detailed domain science activities in mathematics, methods, and algorithms. The CPAM capability involves over 12 different technical divisions and a majority of our programmatic and scientific activities. To make this large scope tractable, the CPAM capability is broken into the following six technical 'themes.' These themes represent technical slices through the CPAM capability and collect critical core competencies of the Laboratory, each of which contributes to the capability (and each of which is divided into multiple additional elements in the detailed descriptions of the themes in subsequent sections), as follows. Theme 1: Computational Fluid Dynamics - This theme speaks to the vast array of scientific capabilities for the simulation of fluids under shocks, low-speed flow, and turbulent conditions - which are key, historical, and fundamental strengths of the Laboratory. Theme 2: Partial Differential Equations - The technical scope of this theme is the applied mathematics and numerical solution

  5. Applying Laban's Movement Framework in Elementary Physical Education

    Science.gov (United States)

    Langton, Terence W.

    2007-01-01

    This article recommends raising the bar in elementary physical education by using Laban's movement framework to develop curriculum content in the areas of games, gymnastics, and dance (with physical fitness concepts blended in) in order to help students achieve the NASPE content standards. The movement framework can permeate and unify an…

  6. Activities for the Promotion of Gender Equality in Japan—Japan Society of Applied Physics

    Science.gov (United States)

    Kodate, Kashiko; Tanaka, Kazuo

    2005-10-01

    Since 1946, the Japan Society of Applied Physics (JSAP) has strived to promote research and development in applied physics for benefits beyond national boundaries. Activities of JSAP involve multidisciplinary fields, from physics and engineering to life sciences. Of its 23,000 members, 48% are from industry, 29% from academia, and about 7% from semi-autonomous national research laboratories. Its large industrial membership is one of the distinctive features of JSAP. In preparation for the First IUPAP International Conference on Women in Physics (Paris, 2002), JSAP members took the first step under the strong leadership of then-JSAP President Toshio Goto, setting up the Committee for the Promotion Equal Participation of Men and Women in Science and Technology. Equality rather than women's advancement is highlighted to further development in science and technology. Attention is also paid to balancing the number of researchers from different age groups and affiliations. The committee has 22 members: 12 female and 10 male; 7 from corporations, 12 from universities, and 3 from semi-autonomous national research institutes. Its main activities are to organize symposia and meetings, conduct surveys among JSAP members, and provide child-care facilities at meetings and conferences. In 2002 the Japan Physics Society and the Chemical Society of Japan jointly created the Japan Inter-Society Liaison Association for the Promotion of Equal Participation of Men and Women in Science and Engineering. Membership has grown to 44 societies (of which 19 are observers) ranging from mathematics, information, and life sciences to civil engineering. Joint activities across sectors and empower the whole. The Gender Equality Bureau in the Cabinet Office recently launched a large-scale project called "Challenge Campaign" to encourage girls to major in natural science and engineering, which JSAP is co-sponsoring.

  7. Ernest Orlando Berkeley National Laboratory - Fundamental and applied research on lean premixed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Robert K.

    1999-07-07

    Ernest Orland Lawrence Berkeley National Laboratory (Berkeley Lab) is the oldest of America's national laboratories and has been a leader in science and engineering technology for more than 65 years, serving as a powerful resource to meet Us national needs. As a multi-program Department of Energy laboratory, Berkeley Lab is dedicated to performing leading edge research in the biological, physical, materials, chemical, energy, environmental and computing sciences. Ernest Orlando Lawrence, the Lab's founder and the first of its nine Nobel prize winners, invented the cyclotron, which led to a Golden Age of particle physics and revolutionary discoveries about the nature of the universe. To this day, the Lab remains a world center for accelerator and detector innovation and design. The Lab is the birthplace of nuclear medicine and the cradle of invention for medical imaging. In the field of heart disease, Lab researchers were the first to isolate lipoproteins and the first to determine that the ratio of high density to low density lipoproteins is a strong indicator of heart disease risk. The demise of the dinosaurs--the revelation that they had been killed off by a massive comet or asteroid that had slammed into the Earth--was a theory developed here. The invention of the chemical laser, the unlocking of the secrets of photosynthesis--this is a short preview of the legacy of this Laboratory.

  8. Physical Activity and Wellness: Applied Learning through Collaboration

    Science.gov (United States)

    Long, Lynn Hunt; Franzidis, Alexia

    2015-01-01

    This article describes how two university professors teamed up to initiate a university-sponsored physical activity and wellness expo in an effort to promote an authentic and transformative learning experience for preservice students.

  9. World's particle physics laboratories join to create new communication resource

    CERN Multimedia

    2003-01-01

    "The worldwide particle physics community today (August 12) launched Interactions.org, a new global, Web-based resource developed to provide news, high-quality imagery, video and other tools for communicating the science of particle physics" (1 page).

  10. Applying Transtheoretical Model to Promote Physical Activities Among Women

    Science.gov (United States)

    Pirzadeh, Asiyeh; Mostafavi, Firoozeh; Ghofranipour, Fazllolah; Feizi, Awat

    2015-01-01

    Background: Physical activity is one of the most important indicators of health in communities but different studies conducted in the provinces of Iran showed that inactivity is prevalent, especially among women. Objectives: Inadequate regular physical activities among women, the importance of education in promoting the physical activities, and lack of studies on the women using transtheoretical model, persuaded us to conduct this study with the aim of determining the application of transtheoretical model in promoting the physical activities among women of Isfahan. Materials and Methods: This research was a quasi-experimental study which was conducted on 141 women residing in Isfahan, Iran. They were randomly divided into case and control groups. In addition to the demographic information, their physical activities and the constructs of the transtheoretical model (stages of change, processes of change, decisional balance, and self-efficacy) were measured at 3 time points; preintervention, 3 months, and 6 months after intervention. Finally, the obtained data were analyzed through t test and repeated measures ANOVA test using SPSS version 16. Results: The results showed that education based on the transtheoretical model significantly increased physical activities in 2 aspects of intensive physical activities and walking, in the case group over the time. Also, a high percentage of people have shown progress during the stages of change, the mean of the constructs of processes of change, as well as pros and cons. On the whole, a significant difference was observed over the time in the case group (P < 0.01). Conclusions: This study showed that interventions based on the transtheoretical model can promote the physical activity behavior among women. PMID:26834796

  11. Developing Technical Writing Skills in the Physical Chemistry Laboratory: A Progressive Approach Employing Peer Review

    Science.gov (United States)

    Gragson, Derek E.; Hagen, John P.

    2010-01-01

    Writing formal "journal-style" lab reports is often one of the requirements chemistry and biochemistry students encounter in the physical chemistry laboratory. Helping students improve their technical writing skills is the primary reason this type of writing is a requirement in the physical chemistry laboratory. Developing these skills is an…

  12. Neighborhood Design, Physical Activity, and Wellbeing: Applying the Walkability Model.

    Science.gov (United States)

    Zuniga-Teran, Adriana A; Orr, Barron J; Gimblett, Randy H; Chalfoun, Nader V; Guertin, David P; Marsh, Stuart E

    2017-01-13

    Neighborhood design affects lifestyle physical activity, and ultimately human wellbeing. There are, however, a limited number of studies that examine neighborhood design types. In this research, we examine four types of neighborhood designs: traditional development, suburban development, enclosed community, and cluster housing development, and assess their level of walkability and their effects on physical activity and wellbeing. We examine significant associations through a questionnaire (n = 486) distributed in Tucson, Arizona using the Walkability Model. Among the tested neighborhood design types, traditional development showed significant associations and the highest value for walkability, as well as for each of the two types of walking (recreation and transportation) representing physical activity. Suburban development showed significant associations and the highest mean values for mental health and wellbeing. Cluster housing showed significant associations and the highest mean value for social interactions with neighbors and for perceived safety from crime. Enclosed community did not obtain the highest means for any wellbeing benefit. The Walkability Model proved useful in identifying the walkability categories associated with physical activity and perceived crime. For example, the experience category was strongly and inversely associated with perceived crime. This study provides empirical evidence of the importance of including vegetation, particularly trees, throughout neighborhoods in order to increase physical activity and wellbeing. Likewise, the results suggest that regular maintenance is an important strategy to improve mental health and overall wellbeing in cities.

  13. The Rhetoric of Physics: AN Ethnography of the Research and Writing Processes in a Physics Laboratory.

    Science.gov (United States)

    Graves, Heather Ann Brodie

    1992-01-01

    This dissertation explores the extent to which rhetoric plays a role in the research and writing processes of physicists. It seeks to join the on-going conversation in the rhetoric of inquiry about the ways in which rhetorical forces shape all knowledge systems. Based on data collected during a six-month ethnography in a thin films laboratory, this study argues that these physicists use rhetoric in all stages of the knowledge creation process. After following the experimental process through all its stages from the inception of an experiment through to publication, this study maps out the types of heuristic devices employed by the physicists as they analyzed, interpreted, and presented their research data in a persuasive scientific article. In light of the insights gained from studying the dynamic interactions between physicists, this dissertation also comments on the theoretical and philosophical debates under discussion in the rhetoric of inquiry and the rhetoric of science. It examines current theories of language (as expressed by rhetoricians, critical theorists, and the physicists in this laboratory) to explore the relationship between reality and language, the role that rhetoric plays in knowledge creation in physics, and the ways in which reality and knowledge may be socially constructed. It concludes that these physicists use rhetorical invention strategies to interpret and present their data. It also argues that scientific knowledge is subject to rhetorical forces because it deals with contingent affairs--phenomena about which scientists advance propositions which appear to be true but about which there is no way to gain absolute certainty or truth. Finally, it concludes that rhetoric both is and is not epistemic in the physics research studied here, and it argues that instead of asking "Is rhetoric epistemic?" perhaps we might shift our attention to inquiring "When is rhetoric epistemic?".

  14. Assessment Results Following Inquiry and Traditional Physics Laboratory Activities

    Science.gov (United States)

    Bryan, Joel Arthur

    2006-01-01

    Preservice elementary teachers in a conceptual physics course were given multiple resources to use during several inquiry activities in order to investigate how materials were chosen, used, and valued. These students performed significantly better on assessment items related to the inquiry physics activities than on items related to traditional…

  15. Nuclear physics with neutrons - fundamental and applied researches

    CERN Document Server

    Furman, V I

    2001-01-01

    The investigations in the field of the nuclear neutron physics in JINR are discussed briefly. The following problems are considered: realization of the project of a new source of resonance neutrons (IREN); development and testing the new perspective techniques for experiments at IREN; studying the symmetry breaking in fundamental interactions in nuclei and obtaining the actual technological nuclear data. The neutron energy is in the range of 10 sup - sup 9 eV-10 MeV

  16. Teaching students to apply multiple physical modeling methods

    NARCIS (Netherlands)

    Wiegers, T.; Verlinden, J.C.; Vergeest, J.S.M.

    2014-01-01

    Design students should be able to explore a variety of shapes before elaborating one particular shape. Current modelling courses don’t address this issue. We developed the course Rapid Modelling, which teaches students to explore multiple shape models in a short time, applying different methods and

  17. The Impact of Physics Laboratory on Students Offering Physics in Ethiope West Local Government Area of Delta State

    Science.gov (United States)

    Godwin, Oluwasegun; Adrian, Ohwofosirai; Johnbull, Emagbetere

    2015-01-01

    The impact of Physics laboratory on students was carried out among senior secondary school students offering Physics in Ethiope West Local Government Area of Delta State using descriptive survey. Five public schools were random-even samplying technique was adopted for precision. Fifty questionnaires were distributed to students in each school,…

  18. Optimization of Curvilinear Tracing Applied to Solar Physics and Biophysics

    Directory of Open Access Journals (Sweden)

    Markus J. Aschwanden

    2013-07-01

    Full Text Available We developed an automated pattern recognition code that is particularly well suited to extract one-dimensional curvilinear features from two-dimensional digital images. A former version of this Oriented Coronal Curved Loop Tracing (OCCULT code was applied to spacecraft images of magnetic loops in the solar corona, recorded with the NASA spacecraft, Transition Region And Coronal Explorer (TRACE, in extreme ultra-violet wavelengths. Here, we apply an advanced version of this code (OCCULT-2, also, to similar images from the Solar Dynamics Observatory (SDO, to chromospheric H-α images obtained with the Swedish Solar Telescope (SST and to microscopy images of microtubule filaments in live cells in biophysics. We provide a full analytical description of the code, optimize the control parameters and compare the automated tracing with visual/manual methods. The traced structures differ by up to 16 orders of magnitude in size, which demonstrates the universality of the tracing algorithm.

  19. Solid-State NMR Spectroscopy for the Physical Chemistry Laboratory

    Science.gov (United States)

    Kinnun, Jacob J.; Leftin, Avigdor; Brown, Michael F.

    2013-01-01

    Solid-state nuclear magnetic resonance (NMR) spectroscopy finds growing application to inorganic and organic materials, biological samples, polymers, proteins, and cellular membranes. However, this technique is often neither included in laboratory curricula nor typically covered in undergraduate courses. On the other hand, spectroscopy and…

  20. Research on applying physical chaos generator to spacecraft information security

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The effectiveness of a short-length message extension method based on physical chaos generator was analyzed and the entropy of the extended message was calculated in this paper.The analysis demon-strated that with the mentioned method the entropy of short-length messages,which are repeatedly used in spacecraft data systems,is obviously increased,and the security of transmission is enhanced as well.This paper also presented an improvement of the protocol for secret key agreement presented by M.J.Gander and U.M.Maurer.Instead of depending on characteristics of communication channel,this method takes advantage of the random data produced by physical chaos generator to preset the initial parameters of the procedure on both sides of communication,so that the procedure and quantity of cipher key can be precisely controlled.This method can be used to cipher key management of se-cure communication between long life-span spacecraft and ground system.

  1. Research on applying physical chaos generator to spacecraft information security

    Institute of Scientific and Technical Information of China (English)

    ZHAO HePing

    2009-01-01

    Academy of Space Technology, Beijing 100094, China (small: zhpcast@ hotmail.com) The effectiveness of a short-length message extension method based on physical chaos generator was analyzed and the entropy of the extended message was calculated in this paper. The analysis demon-strated that with the mentioned method the entropy of short-length messages, which are repeatedly used in spacecraft data systems, is obviously increased, and the security of transmission is enhanced as well. This paper also presented an improvement of the protocol for secret key agreement presented by M. J. Gander and U. M. Maurer. Instead of depending on characteristics of communication channel,this method takes advantage of the random data produced by physical chaos generator to preset the initial parameters of the procedure on both sides of communication, so that the procedure and quantity of cipher key can be precisely controlled. This method can be used to cipher key management of se-cure communication between long life-span spacecraft and ground system.

  2. Industrial safety and applied health physics. Annual report for 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    Information is reported in sections entitled: radiation monitoring; Environmental Management Program; radiation and safety surveys; industrial safety and special projects; Office of Operational Safety; and training, lectures, publications, and professional activities. There were no external or internal exposures to personnel which exceeded the standards for radiation protection as defined in DOE Manual Chapter 0524. Only 35 employees received whole body dose equivalents of 10 mSv (1 rem) or greater. There were no releases of gaseous waste from the Laboratory which were of a level that required an incident report to DOE. There were no releases of liquid radioactive waste from the Laboratory which were of a level that required an incident report to DOE. The quantity of those radionuclides of primary concern in the Clinch River, based on the concentration measured at White Oak Dam and the dilution afforded by the Clinch River, averaged 0.16 percent of the concentration guide. The average background level at the Perimeter Air Monitoring (PAM) stations during 1980 was 9.0 ..mu..rad/h (0.090 ..mu..Gy/h). Soil samples were collected at all perimeter and remote monitoring stations and analyzed for eleven radionuclides including plutonium and uranium. Plutonium-239 content ranged from 0.37 Bq/kg (0.01 pCi/g) to 1.5 Bq/kg (0.04 pCi/g), and the uranium-235 content ranged from 0.7 Bq/kg (0.02 pCi/g) to 16 Bq/kg (0.43 pCi/g). Grass samples were collected at all perimeter and remote monitoring stations and analyzed for twelve radionuclides including plutonium and uranium. Plutonium-239 content ranged from 0.04 Bq/kg (0.001 pCi/g) to 0.07 Bq/kg (0.002 pCi/g), and the uranium-235 content ranged from 0.37 Bq/kg (0.01 pCi/g) to 12 Bq/kg (0.33 pCi/g).

  3. Applied physics of external radiation exposure dosimetry and radiation protection

    CERN Document Server

    Antoni, Rodolphe

    2017-01-01

    This book describes the interaction of living matter with photons, neutrons, charged particles, electrons and ions. The authors are specialists in the field of radiation protection. The book synthesizes many years of experiments with external radiation exposure in the fields of dosimetry and radiation shielding in medical, industrial and research fields. It presents the basic physical concepts including dosimetry and offers a number of tools to be used by students, engineers and technicians to assess the radiological risk and the means to avoid them by calculating the appropriate shields. The theory of radiation interaction in matter is presented together with empirical formulas and abacus. Numerous numerical applications are treated to illustrate the different topics. The state of the art in radiation protection and dosimetry is presented in detail, especially in the field of simulation codes for external exposure to radiation, medical projects and advanced research. Moreover, important data spread in differ...

  4. Three step double layers in the laboratory. [plasma physics

    Science.gov (United States)

    Bailey, Andrew, III; Hershkowitz, Noah

    1988-01-01

    A new class of stationary double layer structure, with three or more distinct steps, is demonstrated in the laboratory. A large monotonic potential increase results from a series of smaller double layers. In many respects, these double layer structures resemble those inferred from satellite measurements of auroral double layers. This new class of double layer appears to depend on turbulence for its existence and to be a hybrid structure, intermediate between anomalous resistivity and BGK double layers.

  5. Nuclear Physics Laboratory annual report, University of Washington April 1992

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, John G.; Ramirez, Maria G.

    1992-01-01

    This report contains short discusses on topics in the following areas: astrophysics; giant resonances and photonuclear reactions; nucleus-nucleus reactions; fundamental symmetries; accelerator mass spectrometry; medium energy nuclear physics; ultra-relativistic heavy ion collisions; cluster fusion; instrumentation; van de graaff accelerators and ion sources; and computer data acquisition systems. (LSP)

  6. Nuclear Physics Laboratory annual report, University of Washington April 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    This report contains short discusses on topics in the following areas: astrophysics; giant resonances and photonuclear reactions; nucleus-nucleus reactions; fundamental symmetries; accelerator mass spectrometry; medium energy nuclear physics; ultra-relativistic heavy ion collisions; cluster fusion; instrumentation; van de graaff accelerators and ion sources; and computer data acquisition systems. (LSP)

  7. Structure Modeling and Validation applied to Source Physics Experiments (SPEs)

    Science.gov (United States)

    Larmat, C. S.; Rowe, C. A.; Patton, H. J.

    2012-12-01

    The U. S. Department of Energy's Source Physics Experiments (SPEs) comprise a series of small chemical explosions used to develop a better understanding of seismic energy generation and wave propagation for low-yield explosions. In particular, we anticipate improved understanding of the processes through which shear waves are generated by the explosion source. Three tests, 100, 1000 and 1000 kg yields respectively, were detonated in the same emplacement hole and recorded on the same networks of ground motion sensors in the granites of Climax Stock at the Nevada National Security Site. We present results for the analysis and modeling of seismic waveforms recorded close-in on five linear geophone lines extending radially from ground zero, having offsets from 100 to 2000 m and station spacing of 100 m. These records exhibit azimuthal variations of P-wave arrival times, and phase velocity, spreading and attenuation properties of high-frequency Rg waves. We construct a 1D seismic body-wave model starting from a refraction analysis of P-waves and adjusting to address time-domain and frequency-domain dispersion measurements of Rg waves between 2 and 9 Hz. The shallowest part of the structure we address using the arrival times recorded by near-field accelerometers residing within 200 m of the shot hole. We additionally perform a 2D modeling study with the Spectral Element Method (SEM) to investigate which structural features are most responsible for the observed variations, in particular anomalously weak amplitude decay in some directions of this topographically complicated locality. We find that a near-surface, thin, weathered layer of varying thickness and low wave speeds plays a major role on the observed waveforms. We anticipate performing full 3D modeling of the seismic near-field through analysis and validation of waveforms on the 5 radial receiver arrays.

  8. A Novel Approach to Encourage Students Independent Thinking in the Physics Laboratory

    CERN Document Server

    Khaparde, Rajesh B

    2013-01-01

    The objectives of physics laboratory courses include fostering conceptual understanding and development of several important cognitive, psycho-motor, attitudinal and affective abilities. In most of the Indian colleges and universities (and probably at many other places all over the world) the usual practice of performing a set of experiments, in a cook-book mode, seldom helps students achieve the objectives of the physics laboratory courses and develop the abilities and skills required to become a successful experimental physicist. This paper describes the details of an instructional approach designed and being followed by the author for a past few years, to encourage students independent thinking in the physics laboratory. This instructional approach encourages students active participation, independent thinking and offers an opportunity to learn how to think scientifically during traditional physics laboratory courses without major curriculum and content changes. Here, guided problem solving approach is ado...

  9. A Physics Laboratory Course Designed Using Problem-Based Learning for Prospective Physics Teachers

    Science.gov (United States)

    Ünal, Cezmi; Özdemir, Ömer Faruk

    2013-01-01

    In general, laboratories are exercises with a primary focus on the verification of established laws and principles, or on the discovery of objectively knowable facts. In laboratories, students gather data without comprehending the meaning of their actions. The cognitive demand of laboratory tasks is reduced to a minimal level. To prevent these…

  10. Plasma Physics An Introduction to Laboratory, Space, and Fusion Plasmas

    CERN Document Server

    Piel, Alexander

    2010-01-01

    Plasma Physics gives a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The new fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a brief introduction to plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple and emphasizes the underlying concepts. T...

  11. Addition of a Project-Based Component to a Conventional Expository Physical Chemistry Laboratory

    Science.gov (United States)

    Tsaparlis, Georgios; Gorezi, Marianna

    2007-01-01

    Students should enjoy their laboratory classes and for this purpose a project-based activity is added to a conventional physical chemistry laboratory. Students were given project work instead of conventional experiment and then they had to make progress in the project according to instructions and then carry out experiments related to the project.

  12. Physical and Chemical Properties of the Copper-Alanine System: An Advanced Laboratory Project

    Science.gov (United States)

    Farrell, John J.

    1977-01-01

    An integrated physical-analytical-inorganic chemistry laboratory procedure for use with undergraduate biology majors is described. The procedure requires five to six laboratory periods and includes acid-base standardizations, potentiometric determinations, computer usage, spectrophotometric determinations of crystal-field splitting…

  13. Writing Material in Chemical Physics Research: The Laboratory Notebook as Locus of Technical and Textual Integration

    Science.gov (United States)

    Wickman, Chad

    2010-01-01

    This article, drawing on ethnographic study in a chemical physics research facility, explores how notebooks are used and produced in the conduct of laboratory science. Data include written field notes of laboratory activity; visual documentation of "in situ" writing processes; analysis of inscriptions, texts, and material artifacts produced in the…

  14. Students' Assessment of Interactive Distance Experimentation in Nuclear Reactor Physics Laboratory Education

    Science.gov (United States)

    Malkawi, Salaheddin; Al-Araidah, Omar

    2013-01-01

    Laboratory experiments develop students' skills in dealing with laboratory instruments and physical processes with the objective of reinforcing the understanding of the investigated subject. In nuclear engineering, where research reactors play a vital role in the practical education of students, the high cost and long construction time of research…

  15. Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 6, Physical testing

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    This volume contains the interim change notice for physical testing. Covered are: properties of solutions, slurries, and sludges; rheological measurement with cone/plate viscometer; % solids determination; particle size distribution by laser scanning; penetration resistance of radioactive waste; operation of differential scanning calorimeter, thermogravimetric analyzer, and high temperature DTA and DSC; sodium rod for sodium bonded fuel; filling SP-100 fuel capsules; sodium filling of BEATRIX-II type capsules; removal of alkali metals with ammonia; specific gravity of highly radioactive solutions; bulk density of radioactive granular solids; purification of Li by hot gettering/filtration; and Li filling of MOTA capsules.

  16. Open-Ended versus Guided Laboratory Activities: Impact on Students' Beliefs about Experimental Physics

    Science.gov (United States)

    Wilcox, Bethany R.; Lewandowski, H. J.

    2016-01-01

    Improving students' understanding of the nature of experimental physics is often an explicit or implicit goal of undergraduate laboratory physics courses. However, lab activities in traditional lab courses are typically characterized by highly structured, guided labs that often do not require or encourage students to engage authentically in the…

  17. Investigation of a Chaotic Double Pendulum in the Basic Level Physics Teaching Laboratory

    Science.gov (United States)

    Vanko, Peter

    2007-01-01

    First-year physics students at the Technical University of Budapest carry out a wide range of measurements in the Basic Level Physics Teaching Laboratory. One of the most exciting experiments is the investigation of a chaotic double pendulum by a V-scope, a powerful three-dimensional motion tracking system. After a brief introduction to the…

  18. Open-ended versus guided laboratory activities: Impact on students' beliefs about experimental physics

    CERN Document Server

    Wilcox, Bethany R

    2016-01-01

    Improving students' understanding of the nature of experimental physics is often an explicit or implicit goal of undergraduate laboratory physics courses. However, lab activities in traditional lab courses are typically characterized by highly structured, guided labs that often do not require or encourage students to engage authentically in the process of experimental physics. Alternatively, open-ended laboratory activities can provide a more authentic learning environment by, for example, allowing students to exercise greater autonomy in what and how physical phenomena are investigated. Engaging in authentic practices may be a critical part of improving students' beliefs around the nature of experimental physics. Here, we investigate the impact of open-ended activities in undergraduate lab courses on students' epistemologies and expectations about the nature of experimental physics, as well as their confidence and affect, as measured by the Colorado Learning Attitudes about Science Survey for Experimental Ph...

  19. Needs analysis and project schedule for the Los Alamos National Laboratory (LANL) Health Physics Analysis Laboratory (HPAL) upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Rhea, T.A.; Rucker, T.L. [Science Applications International Corp., Oak Ridge, TN (United States); Stafford, M.W. [NUS Corp., Aiken, SC (US)

    1990-09-28

    This report is a needs assessment and project schedule for the Health Physics Analysis Laboratory (HPAL) upgrade project at Los Alamos National Laboratory (LANL). After reviewing current and projected HPAL operations, two custom-developed laboratory information management systems (LIMS) for similar facilities were reviewed; four commercially available LIMS products were also evaluated. This project is motivated by new regulations for radiation protection and training and by increased emphasis on quality assurance (QA). HPAL data are used to: protect the health of radiation workers; document contamination levels for transportation of radioactive materials and for release of materials to the public for uncontrolled use; and verify compliance with environmental emission regulations. Phase 1 of the HPAL upgrade project concentrates on four types of counting instruments which support in excess of 90% of the sample workload at the existing central laboratories. Phase 2 is a refinement phase and also integrates summary-level databases on the central Health, Safety, and Environment (HSE) VAX. Phase 3 incorporates additional instrument types and integrates satellite laboratories into the HPAL LIMS. Phase 1 will be a multi-year, multimillion dollar project. The temptation to approach the upgrade of the HPAL program in a piece meal fashion should be avoided. This is a major project, with clearly-defined goals and priorities, and should be approached as such. Major programmatic and operational impacts will be felt throughout HSE as a result of this upgrade, so effective coordination with key customer contacts will be critical.

  20. Astrochemistry Lecture and Laboratory Courses at the University of Illinois: Applied Spectroscopy

    Science.gov (United States)

    Woon, David E.; McCall, Benjamin J.

    2016-06-01

    The Department of Chemistry at the University of Illinois at Urbana-Champaign offers two courses in astrochemistry, one lecture (Chem 450) and one laboratory (Chem 451). Both courses present the opportunity for advanced undergraduate and graduate students to learn about various spectroscopic concepts as they are applied toward an exotic subject, astrochemistry. In the lecture course, each student devotes a substantial fraction of the course work to one of the known astromolecules, building a wiki page for it during the semester, presenting a brief oral description about it in class, and then finally writing a paper about it. The course covers electronic, vibrational, and rotational spectroscopy, along with Einstein coefficients, line widths, and the interpretation of actual astronomical spectra. It also covers relevant reactions and reaction networks. Students learn to use pgopher for modeling rotational spectra. The lab course focuses on the methylidyne radical (CH). It begins with its chemistry and spectroscopy and then moves on to laboratory study of its electronic spectrum as observed in a butane flame and then collected with the university's 12" f/15 Brashear refracting telescope in the campus observatory built in 1896. Students learn to use IGOR to reduce CCD data.

  1. New Discoveries in Cosmology and Fundamental Physics through Advances in Laboratory Astrophysics

    CERN Document Server

    Brickhouse, AAS WGLA: Nancy; Drake, Paul; Federman, Steven; Ferland, Gary; Frank, Adam; Herbst, Eric; Olive, Keith; Salama, Farid; Savin, Daniel Wolf; Ziurys, Lucy

    2009-01-01

    As the Cosmology and Fundamental Physics (CFP) panel is fully aware, the next decade will see major advances in our understanding of these areas of research. To quote from their charge, these advances will occur in studies of the early universe, the microwave background, the reionization and galaxy formation up to virialization of protogalaxies, large scale structure, the intergalactic medium, the determination of cosmological parameters, dark matter, dark energy, tests of gravity, astronomically determined physical constants, and high energy physics using astronomical messengers. Central to the progress in these areas are the corresponding advances in laboratory astrophysics which are required for fully realizing the CFP scientific opportunities within the decade 2010-2020. Laboratory astrophysics comprises both theoretical and experimental studies of the underlying physics which produce the observed astrophysical processes. The 5 areas of laboratory astrophysics which we have identified as relevant to the C...

  2. Physical laboratory at the center of the Galaxy

    CERN Document Server

    Dokuchaev, V I

    2015-01-01

    We review the physical processes that occur at the center of the Galaxy and that are related to the supermassive black hole Sgr A* residing there. The discovery of high-velocity S0 stars orbiting Sgr A* for the first time allowed measuring the mass of this supermassive black hole, the closest one to us, with a 10\\% accuracy, with the result $M_h=(4.1\\pm0.4)\\times 10^6M_\\odot$. Further monitoring can potentially discover the Newtonian precession of the S0 star orbits in the gravitational field of the black hole due to invisible distributed matter. This will yield the "weight" of the elusive dark matter concentrated there and provide new information for the identification of dark matter particles. The weak accretion activity of the "dormant quasar" at the Galactic center occasionally shows up as quasiperiodic X-ray and near-IR oscillations with mean periods of $11$ and $19$ min. These oscillations can possibly be interpreted as related to the rotation frequency of the Sgr A* event horizon and to the latitude os...

  3. Study of Local Reconnection Physics in a Laboratory Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hantao Ji; Troy Carter; Scott Hsu; Masaaki Yamada

    2001-06-11

    A short review of physics results obtained in the Magnetic Reconnection Experiment (MRX) is given with an emphasis on the local features of magnetic reconnection in a controlled environment. Stable two-dimensional current sheets are formed and sustained by induction using two internal coils. The observed reconnection rates are found to be quantitatively consistent with a generalized Sweet-Parker model which incorporates compressibility, unbalanced upstream-downstream pressure, and the effective resistivity. The latter is significantly enhanced over its classical values in the low collisionality regime. Strong local ion heating is measured by an optical probe during the reconnection process, and at least half of the increased ion energy must be due to nonclassical processes, consistent with the resistivity enhancement. Characteristics of high-frequency electrostatic and electromagnetic fluctuations detected in the current sheet suggest presence of the lower-hybrid-drift-like waves with significant magnetic components. The detailed structures of the current sheet are measured and compared with Harris theory and two-fluid theory.

  4. The Development of Attitude ScaleFor Physics Laboratory and The Assesment of Pre-Service Teachers’ Attitudes Towards Physics Laboratory

    Directory of Open Access Journals (Sweden)

    Hasret NUHOĞLU

    2004-12-01

    Full Text Available The aim of this study is to develop a reliable and valid attitude scale in order to assess primary science preservice teachers’ attitudes towards physics laboratory. The attitude factors were developed by comparing existing attitudes scales and discussing with experts on the field. The sample related to the development phase of the scale consists of 318 science pre-service teachers studying in the Department of primary science education at the Faculty of education, Kırsehir at Gazi University. There are 19 positive and 17 negative attitude factors in the scale. The Cronbach-Alpha internal integrity coefficient of the final version of the scale was found to be 0.8930 after factor analysis was carried out. Science pre- service teachers’ attitudes towards physics laboratory were explored by a five point Likert scale. The data were analyzed by SPSS software and were evaluated at their attitudes towards physicslaboratory.

  5. Applying the Theory of Planned Behavior to Physical Activity: The Moderating Role of Mental Toughness.

    Science.gov (United States)

    Hannan, Thomas E; Moffitt, Robyn L; Neumann, David L; Thomas, Patrick R

    2015-10-01

    This study explored whether mental toughness, the capacity to maintain performance under pressure, moderated the relation between physical activity intentions and subsequent behavior. Participants (N = 117) completed the Mental Toughness Index and a theory of planned behavior questionnaire. Seven days later, physical activity was assessed using the International Physical Activity Questionnaire. Attitudes, subjective norms, and perceived behavioral control explained substantial variance (63.1%) in physical activity intentions. Intentions also significantly predicted physical activity behavior. The simple slopes analyses for the moderation effect revealed a nonsignificant intention-behavior relation at low levels of mental toughness. However, intentions were significantly and positively related to physical activity when mental toughness was moderate or high, suggesting that the development of a mentally tough mindset may reduce the gap between behavior and physical activity intention. Future research is needed to confirm these findings and apply them in the design of mental toughness interventions to facilitate physical activity engagement.

  6. Learning Difficulty in Applying Notion of Vector in Physics among "A" Level Students in Singapore.

    Science.gov (United States)

    Chia, Teck-Chee

    Many high school and college students experience serious difficulties in understanding as well as applying fundamental concepts in physics. The study reported in this paper focused on the difficulties in learning about vectors in physics and strategies for making the teaching of vectors more interesting and meaningful for students. Specifically,…

  7. Applying Mathematics to Physics and Engineering: Symbolic Forms of the Integral

    Science.gov (United States)

    Jones, Steven Robert

    2010-01-01

    A perception exists that physics and engineering students experience difficulty in applying mathematics to physics and engineering coursework. While some curricular projects aim to improve calculus instruction for these students, it is important to specify where calculus curriculum and instructional practice could be enhanced by examining the…

  8. Flipped Classroom Adapted to the ARCS Model of Motivation and Applied to a Physics Course

    Science.gov (United States)

    Asiksoy, Gülsüm; Özdamli, Fezile

    2016-01-01

    This study aims to determine the effect on the achievement, motivation and self-sufficiency of students of the flipped classroom approach adapted to Keller's ARCS (Attention, Relevance, Confidence and Satisfaction) motivation model and applied to a physics course. The study involved 66 students divided into two classes of a physics course. The…

  9. 21 CFR 111.15 - What sanitation requirements apply to your physical plant and grounds?

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false What sanitation requirements apply to your... Plant and Grounds § 111.15 What sanitation requirements apply to your physical plant and grounds? (a...) Sanitation supervisors. You must assign one or more employees to supervise overall sanitation. Each of...

  10. Measurements @ Sub-Mm Spectroscopy Laboratory of Bologna: Rotational Spectroscopy Applied to Atmospheric Studies

    Science.gov (United States)

    Puzzarini, Cristina

    2016-06-01

    The physico-chemistry of the Earth's atmosphere has been one of the main subjects of studies over last years. In particular, the composition of the atmosphere is indeed very important to understand chemical processes linked to depletion of stratospheric ozone and greenhouse effect. The vertical concentration profiles of atmospheric gases can be provided by remote sensing measurements, but they require the accurate knowledge of the parameters involved: line positions, transition intensities, pressure-broadened half-widths, pressure-induced frequency shifts and their temperature dependence. In particular, the collisional broadening parameters have a crucial influence on the accuracy of spectra calculations and on reduction of remote sensing data. Rotational spectroscopy, thanks to its intrinsic high resolution, is a powerful tool for providing most of the information mentioned above: accurate or even very accurate rotational transition frequencies, accurate spectroscopic as well as hyperfine parameters, accurate pressure-broadening coefficients and their temperature dependence. With respect to collisional phenomena and line shape analysis studies, by applying the source frequency modulation technique it has been found that rotational spectroscopy may provide very good results: not only this technique does not produce uncontrollable instrumental distortions or broadenings, but also, having an high sensitivity, it is particularly suitable for this kind of investigations. A number of examples will be presented to illustrate the work carried out at the Laboratory of Millimeter/submillimeter-wave Spectroscopy of Bologna in the field of atmospheric studies.

  11. The Development and Testing of Laboratory Performance Tasks for the Assessment of Achievement in High School Physics.

    Science.gov (United States)

    Boorman, Joan Marie

    The quest to stem "the rising tide of mediocrity" described in A Nation at Risk has prompted a myriad of changes in secondary science instruction. Appropriate assessments of these changes in curriculum are crucial to a meaningful evaluation of their effectiveness. Because the nature of many of the improvements has been to engage students in higher order thinking skills, simple paper and pencil tests are often inconclusive evaluation measures. Research has shown a more definitive assessment of a student's ability to apply higher order thinking skills is possible with tests of performance in problem-solving tasks in a science laboratory. The Physics Laboratory Skills Test (PLST) was developed as a prototype assessment instrument for evaluation of student ability to perform a range of process skills in the high school physics laboratory setting. The PLST included seven different items based on topics presented in a typical high school physics course. Each item constituted a separate laboratory performance test and was completed by individual students in a 40 minute class period. A sample of 219 physics students from rural, urban, public, and private schools in NY and PA were tested with the PLST in May 1990. Results of this study show that the PLST has usability, validity, and reliability as an assessment of basic skills (measuring and reporting) and higher order skills (planning and analysis). Participating teachers determined the PLST to be an appropriate and useful tool in evaluating individual student abilities. Content validity was established via evaluation by 'expert' high school physics teachers. The Pearson Correlation Coefficient was used to verify construct validity (r =.49) and inter-rater reliability (r =.81). The Cronbach Coefficient Alpha, which was used to determine internal consistency of each item, yielded strong positive results for the PLST. The outcomes of this study will be of particular interest to curriculum developers and classroom teachers

  12. A gender analysis of secondary school physics textbooks and laboratory manuals

    Science.gov (United States)

    Kostas, Nancy Ann

    Secondary school physics textbooks and laboratory manuals were evaluated for gender balance. The textbooks and manuals evaluated were all current editions available at the time of the study with copyrights of 1988 to 1992. Illustrations, drawings and photographs were judged gender balanced based on the number of men and women, boys and girls shown in both active and passive roles. Illustrations, drawings and photographs were also evaluated by the number of male and female scientists identified by name. The curricular content of the textbooks was analyzed for gender balance by three criteria: the number of named male and female scientists whose accomplishments were described in the text; the number of careers assigned to men and women; and the number of verbal analogies assigned to girls interests, boys interests or neutral interests. The laboratory activities in the manuals were categorized as demonstrations, experiments and observations. Three of each of these types of activities from each manual were analyzed for skills and motivating factors important to girls as identified by Potter and Rosser (1992). Data were analyzed by use of descriptive statistics of frequencies, means and chi-square goodness of fit. The.05 level of significance was applied to all analyses based upon an expected frequency of 50 - 50 percentage of men and women and a 4.5 percent for women scientists to 95.5 percent for men scientists. The findings were as follows. None of the textbooks had a balance of men/women, boys/girls in the illustrations, drawings and photographs. The Hewitt (Scott-Foresman, 1989) textbook was the only textbook with no significant difference. Using the expected frequency for male and female scientists, two textbooks were gender balanced for illustrations, drawings and photographs while all textbooks were gender balanced for described accomplishments of scientists. The Hewitt (Scott Foresman, 1989) textbook had the only gender balanced representation of careers

  13. Can we build a more efficient airplane? Using applied questions to teach physics

    Science.gov (United States)

    Bhatia, Aatish

    2014-03-01

    For students and for the science-interested public, applied questions can serve as a hook to learn introductory physics. Can we radically improve the energy efficiency of modern day aircraft? Are solar planes like the Solar Impulse the future of travel? How do migratory birds like the alpine swift fly nonstop for nearly seven months? Using examples from aeronautical engineering and biology, I'll discuss how undergraduate physics can shed light on these questions about transport, and place fundamental constraints on the flight properties of flying machines, whether birds or planes. Education research has shown that learners are likely to forget vast content knowledge unless they get to apply this knowledge to novel and unfamiliar situations. By applying physics to real-life problems, students can learn to build and apply quantitative models, making use of skills such as order of magnitude estimates, dimensional analysis, and reasoning about uncertainty. This applied skillset allows students to transfer their knowledge outside the classroom, and helps build connections between traditionally distinct content areas. I'll also describe the results of an education experiment at Rutgers University where my colleagues and I redesigned a 100+ student introductory physics course for social science and humanities majors to address applied questions such as evaluating the energy cost of transport, and asking whether the United States could obtain all its energy from renewable sources.

  14. Computer Based Learning in an Undergraduate Physics Laboratory: Interfacing and Instrument Control Using Matlab

    Science.gov (United States)

    Sharp, J. S.; Glover, P. M.; Moseley, W.

    2007-01-01

    In this paper we describe the recent changes to the curriculum of the second year practical laboratory course in the School of Physics and Astronomy at the University of Nottingham. In particular, we describe how Matlab has been implemented as a teaching tool and discuss both its pedagogical advantages and disadvantages in teaching undergraduate…

  15. Measurement of the Compressibility Factor of Gases: A Physical Chemistry Laboratory Experiment

    Science.gov (United States)

    Varberg, Thomas D.; Bendelsmith, Andrew J.; Kuwata, Keith T.

    2011-01-01

    In this article, we describe an experiment for the undergraduate physical chemistry laboratory in which students measure the compressibility factor of two gases, helium and carbon dioxide, as a function of pressure at constant temperature. The experimental apparatus is relatively inexpensive to construct and is described and diagrammed in detail.…

  16. A Stopped-Flow Kinetics Experiment for the Physical Chemistry Laboratory Using Noncorrosive Reagents

    Science.gov (United States)

    Prigodich, Richard V.

    2014-01-01

    Stopped-flow kinetics techniques are important to the study of rapid chemical and biochemical reactions. Incorporation of a stopped-flow kinetics experiment into the physical chemistry laboratory curriculum would therefore be an instructive addition. However, the usual reactions studied in such exercises employ a corrosive reagent that can over…

  17. Thermodynamic Exploration of Eosin-Lysozyme Binding: A Physical Chemistry and Biochemistry Laboratory Experiment

    Science.gov (United States)

    Huisman, Andrew J.; Hartsell, Lydia R.; Krueger, Brent P.; Pikaart, Michael J.

    2010-01-01

    We developed a modular pair of experiments for use in the undergraduate physical chemistry and biochemistry laboratories. Both experiments examine the thermodynamics of the binding of a small molecule, eosin Y, to the protein lysozyme. The assay for binding is the quenching of lysozyme fluorescence by eosin through resonant energy transfer. In…

  18. Model-Based Reasoning in the Physics Laboratory: Framework and Initial Results

    Science.gov (United States)

    Zwickl, Benjamin M.; Hu, Dehui; Finkelstein, Noah; Lewandowski, H. J.

    2015-01-01

    We review and extend existing frameworks on modeling to develop a new framework that describes model-based reasoning in introductory and upper-division physics laboratories. Constructing and using models are core scientific practices that have gained significant attention within K-12 and higher education. Although modeling is a broadly applicable…

  19. Lysozyme Thermal Denaturation and Self-Interaction: Four Integrated Thermodynamic Experiments for the Physical Chemistry Laboratory

    Science.gov (United States)

    Schwinefus, Jeffrey J.; Schaefle, Nathaniel J.; Muth, Gregory W.; Miessler, Gary L.; Clark, Christopher A.

    2008-01-01

    As part of an effort to infuse our physical chemistry laboratory with biologically relevant, investigative experiments, we detail four integrated thermodynamic experiments that characterize the denaturation (or unfolding) and self-interaction of hen egg white lysozyme as a function of pH and ionic strength. Students first use Protein Explorer to…

  20. A Laboratory Exercise Using a Physical Model for Demonstrating Countercurrent Heat Exchange

    Science.gov (United States)

    Loudon, Catherine; Davis-Berg, Elizabeth C.; Botz, Jason T.

    2012-01-01

    A physical model was used in a laboratory exercise to teach students about countercurrent exchange mechanisms. Countercurrent exchange is the transport of heat or chemicals between fluids moving in opposite directions separated by a permeable barrier (such as blood within adjacent blood vessels flowing in opposite directions). Greater exchange of…

  1. Data Analysis and Graphing in an Introductory Physics Laboratory: Spreadsheet versus Statistics Suite

    Science.gov (United States)

    Peterlin, Primoz

    2010-01-01

    Two methods of data analysis are compared: spreadsheet software and a statistics software suite. Their use is compared analysing data collected in three selected experiments taken from an introductory physics laboratory, which include a linear dependence, a nonlinear dependence and a histogram. The merits of each method are compared. (Contains 7…

  2. X-Ray Diffraction of Intermetallic Compounds: A Physical Chemistry Laboratory Experiment

    Science.gov (United States)

    Varberg, Thomas D.; Skakuj, Kacper

    2015-01-01

    Here we describe an experiment for the undergraduate physical chemistry laboratory in which students synthesize the intermetallic compounds AlNi and AlNi3 and study them by X-ray diffractometry. The compounds are synthesized in a simple one-step reaction occurring in the solid state. Powder X-ray diffractograms are recorded for the two compounds…

  3. Learning in Physics by Doing Laboratory Work: Towards a New Conceptual Framework

    Science.gov (United States)

    Danielsson, Anna Teresia; Linder, Cedric

    2009-01-01

    Drawing on a study that explores university students' experiences of doing laboratory work in physics, this article outlines a proposed conceptual framework for extending the exploration of the gendered experience of learning. In this framework situated cognition and post-structural gender theory are merged together. By drawing on data that aim at…

  4. Teaching a Chemistry MOOC with a Virtual Laboratory: Lessons Learned from an Introductory Physical Chemistry Course

    Science.gov (United States)

    O'Malley, Patrick J.; Agger, Jonathan R.; Anderson, Michael W.

    2015-01-01

    An analysis is presented of the experience and lessons learned of running a MOOC in introductory physical chemistry. The course was unique in allowing students to conduct experimental measurements using a virtual laboratory constructed using video and simulations. A breakdown of the student background and motivation for taking the course is…

  5. Experimenting with Impacts in a Conceptual Physics or Descriptive Astronomy Laboratory

    Science.gov (United States)

    LoPresto, Michael C.

    2016-01-01

    What follows is a description of the procedure for and results of a simple experiment on the formation of impact craters designed for the laboratory portions of lower mathematical-level general education science courses such as conceptual physics or descriptive astronomy. The experiment provides necessary experience with data collection and…

  6. Perceptions among Occupational and Physical Therapy Students of a Nontraditional Methodology for Teaching Laboratory Gross Anatomy

    Science.gov (United States)

    Thomas, K. Jackson; Denham, Bryan E.; Dinolfo, John D.

    2011-01-01

    This pilot study was designed to assess the perceptions of physical therapy (PT) and occupational therapy (OT) students regarding the use of computer-assisted pedagogy and prosection-oriented communications in the laboratory component of a human anatomy course at a comprehensive health sciences university in the southeastern United States. The…

  7. Accelerator-based techniques for the support of senior-level undergraduate physics laboratories

    Science.gov (United States)

    Williams, J. R.; Clark, J. C.; Isaacs-Smith, T.

    2001-07-01

    Approximately three years ago, Auburn University replaced its aging Dynamitron accelerator with a new 2MV tandem machine (Pelletron) manufactured by the National Electrostatics Corporation (NEC). This new machine is maintained and operated for the University by Physics Department personnel, and the accelerator supports a wide variety of materials modification/analysis studies. Computer software is available that allows the NEC Pelletron to be operated from a remote location, and an Internet link has been established between the Accelerator Laboratory and the Upper-Level Undergraduate Teaching Laboratory in the Physics Department. Additional software supplied by Canberra Industries has also been used to create a second Internet link that allows live-time data acquisition in the Teaching Laboratory. Our senior-level undergraduates and first-year graduate students perform a number of experiments related to radiation detection and measurement as well as several standard accelerator-based experiments that have been added recently. These laboratory exercises will be described, and the procedures used to establish the Internet links between our Teaching Laboratory and the Accelerator Laboratory will be discussed.

  8. Twenty years of space radiation physics at the BNL AGS and NASA Space Radiation Laboratory.

    Science.gov (United States)

    Miller, J; Zeitlin, C

    2016-06-01

    Highly ionizing atomic nuclei HZE in the GCR will be a significant source of radiation exposure for humans on extended missions outside low Earth orbit. Accelerators such as the LBNL Bevalac and the BNL AGS, designed decades ago for fundamental nuclear and particle physics research, subsequently found use as sources of GCR-like particles for ground-based physics and biology research relevant to space flight. The NASA Space Radiation Laboratory at BNL was constructed specifically for space radiation research. Here we review some of the space-related physics results obtained over the first 20 years of NASA-sponsored research at Brookhaven.

  9. FOREWORD: International Scientific Seminars on "Fundamental and Applied Problems of Photonics and Condensed Matter Physics"

    Science.gov (United States)

    Yurchenko, Stanislav; Ryzhii, Viktor

    2015-01-01

    International Scientific Seminars ''Fundamental and Applied Problems of Photonics and Condensed Matter Physics'' were held in Bauman Moscow State Technical University (BMSTU) in May - June 2014. The idea of the Seminars was to organize a series of meetings between young scientists and discuss actual problems and the latest results in Photonics and Condensed Matter Physics. There were eight Sessions: Modern Problems of Condensed Matter Physics; Laser Physics; Spectroscopy of Condensed Matter; Terahertz Optical Technology; Optical Signals Processing; Physics of Optical Strong Correlated Systems; Complex Dusty Plasma Physics; Biomediacal Applications of Photonics. Seminars were organized by the young group of scientists and students from Research and Educational Center ''Photonics and Infrared Technology'' at BMSTU. It brought a significant contribution to the development of youth science in the field of Physics and Photonics in Russia. More than 100 young scientists and students participated in the Seminars in spring - summer 2014. The International Scientific Seminars were supported by the Russian Foundation for Basic Research (grant # 14-08-06030-g). This volume contains proceedings of the International Scientific Seminars ''Fundamental and Applied Problems of Photonics and Condensed Matter Physics''. Stanislav Yurchenko and Viktor Ryzhii Bauman Moscow State Technical University

  10. Dannie Heineman Prize for Mathematical Physics: Applying mathematical techniques to solve important problems in quantum theory

    Science.gov (United States)

    Bender, Carl

    2017-01-01

    The theory of complex variables is extremely useful because it helps to explain the mathematical behavior of functions of a real variable. Complex variable theory also provides insight into the nature of physical theories. For example, it provides a simple and beautiful picture of quantization and it explains the underlying reason for the divergence of perturbation theory. By using complex-variable methods one can generalize conventional Hermitian quantum theories into the complex domain. The result is a new class of parity-time-symmetric (PT-symmetric) theories whose remarkable physical properties have been studied and verified in many recent laboratory experiments.

  11. Zero-gravity cloud physics laboratory: Candidate experiments definition and preliminary concept studies

    Science.gov (United States)

    Eaton, L. R.; Greco, R. V.; Hollinden, A. B.

    1973-01-01

    The candidate definition studies on the zero-g cloud physics laboratory are covered. This laboratory will be an independent self-contained shuttle sortie payload. Several critical technology areas have been identified and studied to assure proper consideration in terms of engineering requirements for the final design. Areas include chambers, gas and particle generators, environmental controls, motion controls, change controls, observational techniques, and composition controls. This unique laboratory will allow studies to be performed without mechanical, aerodynamics, electrical, or other type techniques to support the object under study. This report also covers the candidate experiment definitions, chambers and experiment classes, laboratory concepts and plans, special supporting studies, early flight opportunities and payload planning data for overall shuttle payload requirements assessments.

  12. In the physics class: university physics students' enactment of class and gender in the context of laboratory work

    Science.gov (United States)

    Danielsson, Anna T.

    2014-06-01

    This article explores how the doing of social class and gender can intersect with the learning of science, through case studies of two male, working-class university students' constitutions of identities as physics students. In doing so, I challenge the taken-for-granted notion that male physics students have an unproblematic relation to their chosen discipline, and nuance the picture of how working-class students relate to higher education by the explicit focus on one disciplinary culture. Working from the perspective of situated learning theory, the interviews with the two male students were analysed for how they negotiated the practice of the physics student laboratory and their own classed and gendered participation in this practice. By drawing on the heterogeneity of the practice of physics the two students were able to use the practical and technological aspects of physics as a gateway into the discipline. However, this is not to say that their participation in physics was completely frictionless. The students were both engaged in a continuous negotiation of how skills they had learned to value in the background may or may not be compatible with the ones they perceived to be valued in the university physicist community.

  13. Computational physics and applied mathematics capability review June 8-10, 2010 (Advance materials to committee members)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Stephen R [Los Alamos National Laboratory

    2010-01-01

    Los Alamos National Laboratory will review its Computational Physics and Applied Mathematics (CPAM) capabilities in 2010. The goals of capability reviews are to assess the quality of science, technology, and engineering (STE) performed by the capability, evaluate the integration of this capability across the Laboratory and within the scientific community, examine the relevance of this capability to the Laboratory's programs, and provide advice on the current and future directions of this capability. This is the first such review for CPAM, which has a long and unique history at the laboratory, starting from the inception of the Laboratory in 1943. The CPAM capability covers an extremely broad technical area at Los Alamos, encompassing a wide array of disciplines, research topics, and organizations. A vast array of technical disciplines and activities are included in this capability, from general numerical modeling, to coupled mUlti-physics simulations, to detailed domain science activities in mathematics, methods, and algorithms. The CPAM capability involves over 12 different technical divisions and a majority of our programmatic and scientific activities. To make this large scope tractable, the CPAM capability is broken into the following six technical 'themes.' These themes represent technical slices through the CP AM capability and collect critical core competencies of the Laboratory, each of which contributes to the capability (and each of which is divided into multiple additional elements in the detailed descriptions of the themes in subsequent sections): (1) Computational Fluid Dynamics - This theme speaks to the vast array of scientific capabilities for the simulation of fluids under shocks, low-speed flow, and turbulent conditions - which are key, historical, and fundamental strengths of the laboratory; (2) Partial Differential Equations - The technical scope of this theme is the applied mathematics and numerical solution of partial

  14. The factorial structure of professionally-applied physical fitness of students of railway specialties

    Directory of Open Access Journals (Sweden)

    Anzhelika Yefremova

    2017-02-01

    Full Text Available Purpose: to define the factorial structure of professionally-applied physical fitness of students – future electrical engineers of railway transport. Material & Methods: analysis and synthesis of references, questioning, anthropometry, testing, functional tests, and methods of mathematical statistics (the factorial analysis with application of the computer program "SPSS 17.0". 50 students (young men of Ukrainian state railway university participated in the research. Results: the ratio of means of physical culture which are expedient to use for the optimization of professionally-applied physical training of future specialists of the railway branch is defined. Conclusions: the factorial analysis allowed to distribute means of physical education as follows: physical exercises which are directed to the increase in physical working capacity and overall physical fitness – about 40%; exercises on the development of power qualities – 25%; exercises on the development of high-speed and power endurance – 15%; means which are allocated for the improvement of functions of attention and kinetic sensitivity – 10%; exercises which are directed to the increase in special working capacity – 10%.

  15. Development and Implications of Technology in Reform-Based Physics Laboratories

    Science.gov (United States)

    Chen, Sufen; Lo, Hao-Chang; Lin, Jing-Wen; Liang, Jyh-Chong; Chang, Hsin-Yi; Hwang, Fu-Kwun; Chiou, Guo-Li; Wu, Ying-Tien; Lee, Silvia Wen-Yu; Wu, Hsin-Kai; Wang, Chia-Yu; Tsai, Chin-Chung

    2012-01-01

    Technology has been widely involved in science research. Researchers are now applying it to science education in an attempt to bring students' science activities closer to authentic science activities. The present study synthesizes the research to discuss the development of technology-enhanced laboratories and how technology may contribute to…

  16. A multivariate assessment of the effect of the laboratory homework component of a microcomputer-based laboratory for a college freshman physics course

    Science.gov (United States)

    Ramlo, Susan E.

    Microcomputer-based laboratories (MBLs) have been defined as software that uses an electronic probe to collect information about a physical system and then converts that information into graphical systems in real-time. Realtime Physics Laboratories (RTP) are an example of laboratories that combine the use of MBLs with collaboration and guided-inquiry. RTP Mechanics Laboratories include both laboratory activities and laboratory homework for the first semester of college freshman physics courses. Prior research has investigated the effectiveness of the RTP laboratories as a package (laboratory activities with laboratory homework). In this study, an experimental-treatment had students complete both the RTP laboratory activity and the associated laboratory homework during the same laboratory period. Observations of this treatment indicated that students primarily consulted the laboratory instructor and referred to their completed laboratory activity while completing the homework in their collaborative groups. In the control-treatment, students completed the laboratory homework outside the laboratory period. Measures of force and motion conceptual understanding included the Force and Motion Conceptual Understanding (FMCE), a 47 multiple-choice question test. Analyses of the FMCE indicated that it is both a reliable and a valid measure of force and motion conceptual understanding. A distinct, five-factor structure for the FMCE post-test answers reflected specific concepts related to force and motion. However, the three FMCE pretest factors were less distinct. Analysis of the experimental-treatment, compared to a control-treatment, included multiple regression analysis with covariates of age, prior physics-classroom experience, and the three FMCE pretest factors. Criterion variables included each of the five post-test factors, the total laboratory homework score, and a group of seven exam questions. The results were all positive, in favor of the experimental

  17. Discourse Patterns at Laboratory Practices and the Co-Construction of Knowledge by Applying SDIS-GSEQ

    Science.gov (United States)

    Carrillo, Edgardo Ruiz; González, José Luis Cruz; Martínez, Samuel Meraz; Sánchez, Luisa Bravo

    2015-01-01

    The purpose of this study is to analyze the discourse through IRE (Intervention-Response-Evaluation) in the co-construction of knowledge of Biology students during laboratory practices by applying the SDIS-GSEQ software to assess IRE discourse patterns developed during the same. The study group consisted of second semester students of the…

  18. GLYCOHEMOGLOBIN - COMPARISON OF 12 ANALYTICAL METHODS, APPLIED TO LYOPHILIZED HEMOLYSATES BY 101 LABORATORIES IN AN EXTERNAL QUALITY ASSURANCE PROGRAM

    NARCIS (Netherlands)

    WEYKAMP, CW; PENDERS, TJ; MUSKIET, FAJ; VANDERSLIK, W

    1993-01-01

    Stable lyophilized ethylenediaminetetra-acetic acid (EDTA)-blood haemolysates were applied in an external quality assurance programme (SKZL, The Netherlands) for glycohaemoglobin assays in 101 laboratories using 12 methods. The mean intralaboratory day-to-day coefficient of variation (CV), calculate

  19. 40 CFR Appendix G to Subpart A of... - UNEP Recommendations for Conditions Applied to Exemption for Essential Laboratory and Analytical...

    Science.gov (United States)

    2010-07-01

    ... Applied to Exemption for Essential Laboratory and Analytical Uses G Appendix G to Subpart A of Part 82... STRATOSPHERIC OZONE Production and Consumption Controls Pt. 82, Subpt. A, App. G Appendix G to Subpart A of Part.... The provisions of Appendix G, paragraphs (1), (2), (3), and (4), regarding purity, mixing,...

  20. Mercury speciation comparison. Brooks applied laboratories and eurofins frontier global sciences

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, W. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-12-16

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences (FGS), Inc. in Bothell, WA on behalf of the Savannah River Remediation (SRR) Mercury Program Team.

  1. 13 CFR 123.200 - Am I eligible to apply for a physical disaster business loan?

    Science.gov (United States)

    2010-01-01

    ..., corporation, limited liability company, or other legal entity recognized under State law. Your business' size... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Am I eligible to apply for a physical disaster business loan? 123.200 Section 123.200 Business Credit and Assistance SMALL...

  2. The Investigation of Physical Performance Status of Visually and Hearing Impaired Applying Judo Training Program

    Science.gov (United States)

    Karakoc, Onder

    2016-01-01

    It was aimed to investigate the physical performances of visually and hearing impaired doing judo training in this study. 32 male athletes, who were doing judo training, volunteer and, visually and hearing impaired, participated in this study. The investigation was applied to visually impaired (N = 12, mean ± SD; age: 25.75 ± 3.55 years, height:…

  3. Experimental determination of the Boltzmann constant: An undergraduate laboratory exercise for molecular physics or physical chemistry

    Science.gov (United States)

    Campbell, H. M.; Boardman, B. M.; DeVore, T. C.; Havey, D. K.

    2012-12-01

    This article describes an undergraduate laboratory exercise that uses optical spectroscopy to determine the magnitude and the uncertainty of the Boltzmann constant kb. The more accurate approach uses photoacoustic spectroscopy to measure the Doppler-broadened line profile of individual spectral lines of N2O to extract kb. Measurements and estimates of the uncertainties in the quantities needed to calculate kb from the line profiles are then used to estimate the uncertainty in kb. This experiment is unusual in that it uses advanced laser-based spectroscopy techniques to emphasize standard practices of uncertainty analysis. The core instrumentation is modular and relatively affordable; it requires a tunable single-mode laser, photoreceiver, optical cell, and vacuum pump. If this instrumentation is not available, an alternate approach can be performed which uses the intensity of each rotational transition of an infrared band to measure kb. Although there is more uncertainty using the alternate approach, low concentrations of CO2, DCl, or N2O give reasonable results for the magnitude of kb. Student assessment results indicate retention and mastery of the concept of combined measurement uncertainty.

  4. Development of Matlab GUI educational software to assist a laboratory of physical optics

    Science.gov (United States)

    Fernández, Elena; Fuentes, Rosa; García, Celia; Pascual, Inmaculada

    2014-07-01

    Physical optics is one of the subjects in the Grade of Optics and Optometry in Spanish universities. The students who come to this degree often have difficulties to understand subjects that are related to physics. For this reason, the aim of this work is to develop optics simulation software that provides a virtual laboratory for studying the effects of different aspects of physical optics phenomena. This software can let optical undergraduates simulate many optical systems for a better understanding of the practical competences associated with the theoretical concepts studied in class. This interactive environment unifies the information that brings the manual of the practices, provides the visualization of the physical phenomena and allows users to vary the values of the parameters that come into play to check its effect. So, this virtual tool is the perfect complement to learning more about the practices developed in the laboratory. This software will be developed through the choices which have the Matlab to generate Graphical User Interfaces or GUIs. A set of knobs, buttons and handles will be included in the GUI's in order to control the parameters of the different physics phenomena. Graphics can also be inserted in the GUIs to show the behavior of such phenomena. Specifically, by using this software, the student is able to analyze the behaviour of the transmittance and reflectance of the TE and TM modes, the polarized light through of the Malus'Law or degree of polarization.

  5. Applying Total Physical Response(TPR)Theory to Teaching Chinese Children English

    Institute of Scientific and Technical Information of China (English)

    张院院

    2015-01-01

    Now it has become a fashion in our society that young learners aged from 6 or even younger participate in foreign language learning.With the Second Language Acquisition theories,it is believed that learning a foreign language from the childhood can facilitate the learning.Children need a teaching method which conforms to their psychological and physical characteristics.American psychologist James Asher develops Total Physical Response,which advocates leaning through physical actions.He believes that children should learn a foreign language happily and confidently,just like the process of acquiring their mother tongue.However,Total Physical Response can not be applied effectively in the teaching process due to children’s instincts and characteristics.If there is a way or strategy which takes advantage of children’s characteristics and control their behavior in class,the teaching results would be more satisfying.

  6. Applying Total Physical Response(TPR)Theory to Teaching Chinese Children English

    Institute of Scientific and Technical Information of China (English)

    张院院

    2015-01-01

    [Abstrac]Now it has become a fashion in our society that young learners aged from 6 or even younger participate in foreign language learning.With the Second Language Acquisition theories, it is believed that learning a foreign language from the childhood can facilitate the learning.Children need a teaching method which conforms to their psychological and physical characteristics.American psychologist James Asher develops Total Physical Response, which advocates leaning through physical actions.He believes that children should learn a foreign language happily and confidently, just like the process of acquiring their mother tongue.However, Total Physical Response can not be applied effectively in the teaching process due to children's instincts and characteristics.If there is a way or strategy which takes advantage of children's characteristics and control their behavior in class, the teaching results would be more satisfying.

  7. Physical therapy with newborns and infants: applying concepts of phenomenology and synactive theory to guide interventions.

    Science.gov (United States)

    Blanchard, Yvette; Øberg, Gunn Kristin

    2015-01-01

    Physical therapy involving newborns and young infants is a specialized area of practice reserved for therapists who have advanced training and the competence to help newborns, young infants and their families meet their goals. Beginning at birth, infants apply a significant amount of effort to actively participate in and shape their world. Infants make their intentions and requests for support known through their behaviors during social and physical therapy encounters. The therapeutic encounter viewed from the infant's perspective has received limited attention in the physical therapy literature. The purpose of this article is to discuss concepts related to phenomenology and synactive theory that are relevant to physical therapy with newborns and young infants during the first few months of life after birth.

  8. Princeton Plasma Physics Laboratory. Annual report, October 1, 1989--September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  9. Princeton University, Plasma Physics Laboratory annual report, October 1, 1988--September 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    This report contains discussions on the following topics: principal parameters achieved in experimental devices (FY89); tokamak fusion test reactor; compact ignition tokamak; princeton beta experiment- modification; current drive experiment; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for (FY89); graduate education: plasma physics; graduate education: plasma science and technology; and Princeton Plasmas Physics Laboratory Reports (FY89).

  10. Princeton University, Plasma Physics Laboratory annual report, October 1, 1988--September 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    This report contains discussions on the following topics: principal parameters achieved in experimental devices (FY89); tokamak fusion test reactor; compact ignition tokamak; princeton beta experiment- modification; current drive experiment; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for (FY89); graduate education: plasma physics; graduate education: plasma science and technology; and Princeton Plasmas Physics Laboratory Reports (FY89).

  11. Conditions for building a community of practice in an advanced physics laboratory

    CERN Document Server

    Irving, Paul W

    2013-01-01

    In this paper we explore the theory of communities of practice in the context of a physics college course and in particular the classroom environment of an advanced laboratory. We introduce the idea of elements of a classroom community being able to provide students with the opportunity to have an accelerated trajectory towards being a more central participant of the community of practice of physicists. This opportunity is a result of structural features of the course and a primary instructional choice which result in the development of a learning community with several elements that encourage students to engage in more authentic practices of a physicist. A jump in accountable disciplinary knowledge is also explored as a motivation for enculturation into the community of practice of physicists. In the advanced laboratory what students are being assessed on as counting as physics is significantly different and so they need to assimilate in order to succeed.

  12. Plasma physics and environmental perturbation laboratory. [magnetospheric experiments from space shuttle

    Science.gov (United States)

    Vogl, J. L.

    1973-01-01

    Current work aimed at identifying the active magnetospheric experiments that can be performed from the Space Shuttle, and designing a laboratory to carry out these experiments is described. The laboratory, known as the PPEPL (Plasma Physics and Environmental Perturbation Laboratory) consists of 35-ft pallet of instruments connected to a 25-ft pressurized control module. The systems deployed from the pallet are two 50-m booms, two subsatellites, a high-power transmitter, a multipurpose accelerator, a set of deployable canisters, and a gimbaled instrument platform. Missions are planned to last seven days, during which two scientists will carry out experiments from within the pressurized module. The type of experiments to be performed are outlined.

  13. Modernization of physical protection educational laboratories in the National Research Nuclear University MEPhI

    Science.gov (United States)

    Geraskin, N. I.; Krasnoborodko, A. A.

    2017-01-01

    Non-proliferation of nuclear materials includes, in addition to accounting and control, the Physical Protection (PP) of one. The paper considers the experience by MEPhI in application the practical educational in the area of PP technical systems. The following aspects are discussed in the paper: specific features graduate program in nuclear security area; overview of the practical course curricula in the special laboratory.

  14. An investigation into the effectiveness of problem-based learning in a physical chemistry laboratory course

    Science.gov (United States)

    Gürses, Ahmet; Açıkyıldız, Metin; Doğar, Çetin; Sözbilir, Mustafa

    2007-04-01

    The aim of this study was to investigate the effectiveness of a problem-based learning (PBL) approach in a physical chemistry laboratory course. The parameters investigated were students’ attitudes towards a chemistry laboratory course, scientific process skills of students and their academic achievement. The design of the study was one group pre-test post-test. Four experiments, covering the topics adsorption, viscosity, surface tension and conductivity were performed using a PBL approach in the fall semester of the 2003/04 academic year at Kazim Karabekir Education Faculty of Atatürk University. Each experiment was done over a three week period. A total of 40 students, 18 male and 22 female, participated in the study. Students took the Physical Chemistry Laboratory Concept Test (PCLCT), Attitudes towards Chemistry Laboratory (ATCL) questionnaire and Science Process Skills Test (SPST) as pre and post-tests. In addition, the effectiveness of the PBL approach was also determined through four different scales; Scales Specific to Students’ Views of PBL. A statistically significant difference between the students’ academic achievement and scientific process skills at p

  15. {sup 7}Be radioactive beam production at CIRCE and its utilization in basic and applied physics

    Energy Technology Data Exchange (ETDEWEB)

    Limata, Benedicta Normanna [Sezione di Napoli, INFN, Ed. G, Via Cintia, Napoli 80126 (Italy)], E-mail: limata@na.infn.it; Gialanella, Lucio; Leva, Antonino Di [Sezione di Napoli, INFN, Ed. G, Via Cintia, Napoli 80126 (Italy); Cesare, Nicola De [Sezione di Napoli, INFN, Ed. G, Via Cintia, Napoli 80126 (Italy); Dipartimento di Scienze della Vita, II Universita di Napoli, Via Vivaldi 43, Caserta 81100 (Italy); D' Onofrio, Antonio [Sezione di Napoli, INFN, Ed. G, Via Cintia, Napoli 80126 (Italy); Dipartimento di Scienze Ambientali, II Universita di Napoli, Via Vivaldi 43, Caserta 81100 (Italy); Gyurky, G. [ATOMKI, POB 51, Debrecen H-4001 (Hungary); Rolfs, Claus [Institut fuer Experimentalphysik III, RuhrUniversitaet, Universitatetstrasse 150, Bochum D-44780 (Germany); Romano, Mario [Sezione di Napoli, INFN, Ed. G, Via Cintia, Napoli 80126 (Italy); Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, Ed. G Via Cintia, Napoli 80126 (Italy); Rogalla, Detlef [Institut fuer Experimentalphysik III, RuhrUniversitaet, Universitatetstrasse 150, Bochum D-44780 (Germany); Rossi, Cesare; Russo, Michele [DIME, Universita di Napoli Federico II, Via Claudio, Napoli 80126 (Italy); Somorjai, Endre [ATOMKI, POB 51, Debrecen H-4001 (Hungary); Terrasi, Filippo [Sezione di Napoli, INFN, Ed. G, Via Cintia, Napoli 80126 (Italy); Dipartimento di Scienze Ambientali, II Universita di Napoli, Via Vivaldi 43, Caserta 81100 (Italy)

    2008-05-15

    A pure {sup 7}Be beam with an energy E = 1-8 MeV is available for nuclear and applied physics at the 3 MV Pelletron tandem accelerator CIRCE in Caserta. The beam is produced using an offline technique. Typical analyzed beam intensities are about 2 ppA, using cathodes with an activity of the order of 200 MBq. The {sup 7}Be implantation has been used for both fundamental nuclear physics and applied physics. In particular, different metals have been implanted with {sup 7}Be in order to study the influence of the chemical composition and of the number of quasi-free electrons of the host material on the {sup 7}Be half-life. In the field of applied physics, the {sup 7}Be implantation turns out to be very interesting for wear measurement. In fact, in this case {sup 7}Be is used as a depth-sensitive tracer. The continuous detection of the sample activity during the wear allows a high sensitivity measurement of wearing speed. The {sup 7}Be beam production at CIRCE, the implantation procedure and the results obtained from the {sup 7}Be half-life measurements and the wear characterization of implanted steel samples are described.

  16. Effects of the Physical Laboratory versus the Virtual Laboratory in Teaching Simple Electric Circuits on Conceptual Achievement and Attitudes Towards the Subject

    Science.gov (United States)

    Tekbiyik, Ahmet; Ercan, Orhan

    2015-01-01

    Current study examined the effects of virtual and physical laboratory practices on students' conceptual achievement in the subject of electricity and their attitudes towards simple electric circuits. Two groups (virtual and physical) selected through simple random sampling was taught with web-aided material called "Electricity in Our…

  17. Labels discover physics: the development of new labelling methods as a promising research field for applied physics

    CERN Document Server

    Sparavigna, Amelia

    2008-01-01

    Labels and tags are accompanying us in almost each moment of our life and everywhere we are going, in the form of electronic keys or money, or simply as labels on products we are buying in shops and markets. The label diffusion, rapidly increasing for logistic reasons in the actual global market, carries huge amount of information but it is demanding security and anti-fraud systems. The first crucial point, for the consumer and producer safety, is to ensure the authenticity of the labelled products with systems against counterfeiting and piracy. Recent anti-fraud techniques are based on a sophisticated use of physical effects, from holograms till magnetic resonance or tunnel transitions between atomic sublevels. In this paper we will discuss labels and anti-fraud technologies as a new and very promising research field for applied physics.

  18. Microfluidic Gel Electrophoresis in the Undergraduate Laboratory Applied to Food Analysis

    Science.gov (United States)

    Chao, Tzu-Chiao; Bhattacharya, Sanchari; Ros, Alexandra

    2012-01-01

    A microfluidics-based laboratory experiment for the analysis of DNA fragments in an analytical undergraduate course is presented. The experiment is set within the context of food species identification via amplified DNA fragments. The students are provided with berry samples from which they extract DNA and perform polymerase chain reaction (PCR)…

  19. Computational Chemistry Laboratory: Calculating the Energy Content of Food Applied to a Real-Life Problem

    Science.gov (United States)

    Barbiric, Dora; Tribe, Lorena; Soriano, Rosario

    2015-01-01

    In this laboratory, students calculated the nutritional value of common foods to assess the energy content needed to answer an everyday life application; for example, how many kilometers can an average person run with the energy provided by 100 g (3.5 oz) of beef? The optimized geometries and the formation enthalpies of the nutritional components…

  20. Quantitative seismic interpretation: Applying rock physics tools to reduce interpretation risk

    Institute of Scientific and Technical Information of China (English)

    Yong Chen

    2007-01-01

    @@ Seismic data analysis is one of the key technologies for characterizing reservoirs and monitoring subsurface pore fluids. While there have been great advances in 3D seismic data processing, the quantitative interpretation of the seismic data for rock properties still poses many challenges. This book demonstrates how rock physics can be applied to predict reservoir parameters, such as lithologies and pore fluids, from seismically derived attributes, as well as how the multidisciplinary combination of rock physics models with seismic data, sedimentological information, and stochastic techniques can lead to more powerful results than can be obtained from a single technique.

  1. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    Virginia Finley

    2001-04-20

    The results of the 1999 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1999. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality--an alternative energy source. 1999 marked the first year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. The 1999 performance of the Princeton Plasma Physics Laboratory was rated ''outstanding'' by the U.S. Department of Energy in the Laboratory Appraisal report issued early in 2000. The report cited the Laboratory's consistently excellent scientific and technological achievements, its successful management practices, and included high marks in a host of other areas including environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary

  2. TEQUILA—The use of a structured pre-lecture programme in physics for first-year applied science students

    Science.gov (United States)

    Searle, Peter; Legge, Katherine

    1997-03-01

    Many students find the transition from secondary to tertiary education difficult. White et al. (1) have considered some of the difficulties encountered by Australian students that include the change from a small personal secondary school to a large impersonal university, as well as the shift in responsibility for learning from teacher to student. The teaching strategy outlined in this paper was designed to address the latter issue by encouraging new university students to take more responsibility for their own learning. The students considered in the study were enrolled in Physics 110, a one semester non-calculus unit that is part of the Applied Science degree at La Trobe University, Bendigo, and covers a basic introduction to mechanics, SHM and wave motion, fluids and heat. The authors were the teacher/researchers for the subject, presenting both the classroom and laboratory sections to 32 students in 1995 and 14 students in 1996. All students enrolled in Physics 110 had completed Year 12 Physics (or equivalent) at secondary school.

  3. Measurement of the magnetic field of small magnets with a smartphone: a very economical laboratory practice for introductory physics courses

    Science.gov (United States)

    Arribas, Enrique; Escobar, Isabel; Suarez, Carmen P.; Najera, Alberto; Beléndez, Augusto

    2015-11-01

    In this work, we propose an inexpensive laboratory practice for an introductory physics course laboratory for any grade of science and engineering study. This practice was very well received by our students, where a smartphone (iOS, Android, or Windows) is used together with mini magnets (similar to those used on refrigerator doors), a 20 cm long school rule, a paper, and a free application (app) that needs to be downloaded and installed that measures magnetic fields using the smartphone’s magnetic field sensor or magnetometer. The apps we have used are: Magnetometer (iOS), Magnetometer Metal Detector, and Physics Toolbox Magnetometer (Android). Nothing else is needed. Cost of this practice: free. The main purpose of the practice is that students determine the dependence of the component x of the magnetic field produced by different magnets (including ring magnets and sphere magnets). We obtained that the dependency of the magnetic field with the distance is of the form x-3, in total agreement with the theoretical analysis. The secondary objective is to apply the technique of least squares fit to obtain this exponent and the magnetic moment of the magnets, with the corresponding absolute error.

  4. Understanding the Oldest White Dwarfs: Atmospheres of Cool WDs as Extreme Physics Laboratories

    CERN Document Server

    Kowalski, Piotr M

    2010-01-01

    Reliable modeling of the atmospheres of cool white dwarfs is crucial for understanding the atmospheric evolution of these stars and for accurate white dwarfs cosmochronology. Over the last decade {\\it ab initio} modeling entered many research fields and has been successful in predicting properties of various materials under extreme conditions. In many cases the investigated physical regimes are difficult or even impossible to access by experimental methods, and first principles quantum mechanical calculations are the only tools available for investigation. Using modern methods of computational chemistry and physics we investigate the atmospheres of helium-rich, old white dwarfs. Such atmospheres reach extreme, fluid like densities (up to grams per cm$^3$) and represent an excellent laboratory for high temperature and pressure physics and chemistry. We show our results for the stability and opacity of $\\rm H^-$ and $\\rm C_2$ in dense helium and the implications of our work for understanding cool white dwarfs.

  5. Understanding the Oldest White Dwarfs: Atmospheres of Cool WDs as Extreme Physics Laboratories

    Science.gov (United States)

    Kowalski, Piotr M.

    2010-11-01

    Reliable modeling of the atmospheres of cool white dwarfs is crucial for understanding the atmospheric evolution of these stars and for accurate white dwarfs cosmochronology. Over the last decade ab initio modeling entered many research fields and has been successful in predicting properties of various materials under extreme conditions. In many cases the investigated physical regimes are difficult or even impossible to access by experimental methods, and first principles quantum mechanical calculations are the only tools available for investigation. Using modern methods of computational chemistry and physics we investigate the atmospheres of helium-rich, old white dwarfs. Such atmospheres reach extreme, fluid like densities (up to grams per cm3) and represent an excellent laboratory for high temperature and pressure physics and chemistry. We show our results for the stability and opacity of H- and C2 in dense helium and the implications of our work for understanding cool white dwarfs.

  6. Analysis Methods for Water Quality Evaluation, Applied in Environmental Laboratory, ICIA

    Directory of Open Access Journals (Sweden)

    ROMAN Cecilia

    2009-08-01

    Full Text Available Due to human activities, global scale pollution of the environment has increased significantly in the last twocenturies. In the last decades, it was acknowledged that population health is strictly connected with environment quality.As the influence of anthropogenic factors on water sources quality increased, the water quality assessment has a rolethat’s become more and more important. Laboratory for Environment Analysis (LAM from Research Institute forAnalytical Instrumentation is accredited according to the SR EN ISO/CEI 17025:2005, by Romanian AccreditationAssociation and has all the required resourced for quality analysis of environmental samples. Analytical techniquesused in the Laboratory for Environment Analysis for water quality determination are: Gas Chromatography, LiquidChromatography, Ion Chromatography, Flame or Furnace Atomic Absorption Spectrometry, Inductively CoupledOptical Emission Spectrometry, UV/VIS Spectrophotometry, pHmetry, Potentiometry, Conductometry, Titrimetry andGravimetry.

  7. PREFACE: 1st International Conference in Applied Physics and Materials Science

    Science.gov (United States)

    2015-06-01

    We are delighted to come up with thirty two (32) contributed research papers in these proceedings, focusing on Materials Science and Applied Physics as an output of the 2013 International Conference in Applied Physics and Materials Science (ICAMS2013) held on October 22-24, 2013 at the Ateneo de Davao University, Davao City, Philippines. The conference was set to provide a high level of international forum and had brought together leading academic scientists, industry professionals, researchers and scholars from universities, industries and government agencies who have shared their experiences, research results and discussed the practical challenges encountered and the solutions adopted as well as the advances in the fields of Applied Physics and Materials Science. This conference has provided a wide opportunity to establish multidisciplinary collaborations with local and foreign experts. ICAMS2013, held concurrently with 15th Samahang Pisika ng Visayas at Mindanao (SPVM) National Physics Conference and 2013 International Meeting for Complex Systems, was organized by the Samahang Pisika ng Visayas at Mindanao (Physics Society of Visayas and Mindanao) based in MSU-Iligan Institute of Technology, Iligan City, Philippines. The international flavor of converging budding researchers and experts on Materials Science and Applied Physics was the first to be organized in the 19 years of SPVM operation in the Philippines. We highlighted ICAMS2013 gathering by the motivating presence of Dr. Stuart Parkin, a British Physicist, as one of our conference's plenary speakers. Equal measures of gratitude were also due to all other plenary speakers, Dr. Elizabeth Taylor of Institute of Physics (IOP) in London, Dr. Surya Raghu of Advanced Fluidics in Maryland, USA and Prof. Hitoshi Miyata of Niigata University, Japan, Prof. Djulia Onggo of Institut Teknologi Bandung, Indonesia, and Dr. Hironori Katagiri of Nagaoka National College of Technology, Japan. The warm hospitality of the host

  8. Utility subroutine package used by Applied Physics Division export codes. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C.H.; Derstine, K.L.; Henryson, H. II; Hosteny, R.P.; Toppel, B.J.

    1983-04-01

    This report describes the current state of the utility subroutine package used with codes being developed by the staff of the Applied Physics Division. The package provides a variety of useful functions for BCD input processing, dynamic core-storage allocation and managemnt, binary I/0 and data manipulation. The routines were written to conform to coding standards which facilitate the exchange of programs between different computers.

  9. Quantification of Soil Physical Properties by Using X-Ray Computerized Tomography (CT) and Standard Laboratory (STD) Methods

    Energy Technology Data Exchange (ETDEWEB)

    Maria Ambert Sanchez

    2003-12-12

    The implementation of x-ray computerized tomography (CT) on agricultural soils has been used in this research to quantify soil physical properties to be compared with standard laboratory (STD) methods. The overall research objective was to more accurately quantify soil physical properties for long-term management systems. Two field studies were conducted at Iowa State University's Northeast Research and Demonstration Farm near Nashua, IA using two different soil management strategies. The first field study was conducted in 1999 using continuous corn crop rotation for soil under chisel plow with no-till treatments. The second study was conducted in 2001 and on soybean crop rotation for the same soil but under chisel plow and no-till practices with wheel track and no-wheel track compaction treatments induced by a tractor-manure wagon. In addition, saturated hydraulic (K{sub s}) conductivity and the convection-dispersion (CDE) model were also applied using long-term soil management systems only during 2001. The results obtained for the 1999 field study revealed no significant differences between treatments and laboratory methods, but significant differences were found at deeper depths of the soil column for tillage treatments. The results for standard laboratory procedure versus CT method showed significant differences at deeper depths for the chisel plow treatment and at the second lower depth for no-till treatment for both laboratory methods. The macroporosity distribution experiment showed significant differences at the two lower depths between tillage practices. Bulk density and percent porosity had significant differences at the two lower depths of the soil column. The results obtained for the 2001 field study showed no significant differences between tillage practices and compaction practices for both laboratory methods, but significant differences between tillage practices with wheel track and no-wheel compaction treatments were found along the soil

  10. Applied physical education and search of innovative forms of teaching students

    Directory of Open Access Journals (Sweden)

    Pavlov V.I.

    2015-12-01

    Full Text Available Objective: to analyze the effectiveness of Internet technologies for learning, assessment and control of the development of theoretical material in the process of physical education of students. Material and Methods. The study involved 453 people: in the study group — 235 students; in the control group — 218 respondents. The method of research is the statistical analysis of performance testing. Results. The academic program, information technology training process and score-rating system of evaluation and control of theoretical preparation of students in the discipline "Applied physical training" have been developed. Conclusion. Proven remote information technology of professional theoretical training of future professionals, and score-rating system of knowledge evaluation are an objective tool for monitoring the preparation of students in physical education.

  11. Instrumentation for Applied Physics and Industrial Applications: Applications of Detectors in Technology, Medicine and Other Fields

    CERN Document Server

    Hillemanns, H

    2011-01-01

    Instrumentation for Applied Physics and Industrial Applications in 'Applications of Detectors in Technology, Medicine and Other Fields', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B2: Detectors for Particles and Radiation. Part 2: Systems and Applications'. This document is part of Part 2 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Section '7.3 Instrumentation for Applied Physics and Industrial Applications' of Chapter '7 Applications of Detectors in Technology; Medicine and Other Fields' with the content: 7.3 Instrumentation for Applied Physics and Industrial Applications 7.3.1 Applications of HEP Detectors 7.3.2 Fast Micro- and Nanoelectronics for Particle Detector Readout 7.3.2.1 Fast Counting Mode Front End Electronics 7.3.2.2 NINO,...

  12. Physics Division Argonne National Laboratory description of the programs and facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K.J. [ed.

    1999-05-24

    The ANL Physics Division traces its roots to nuclear physics research at the University of Chicago around the time of the second world war. Following the move from the University of Chicago out to the present Argonne site and the formation of Argonne National Laboratory: the Physics Division has had a tradition of research into fundamental aspects of nuclear and atomic physics. Initially, the emphasis was on areas such as neutron physics, mass spectrometry, and theoretical studies of the nuclear shell model. Maria Goeppert Maier was an employee in the Physics Division during the time she did her Nobel-Prize-winning work on the nuclear shell model. These interests diversified and at the present time the research addresses a wide range of current problems in nuclear and atomic physics. The major emphasis of the current experimental nuclear physics research is in heavy-ion physics, centered around the ATLAS facility (Argonne Tandem-Linac Accelerator System) with its new injector providing intense, energetic ion beams over the fill mass range up to uranium. ATLAS is a designated National User Facility and is based on superconducting radio-frequency technology developed in the Physics Division. A small program continues in accelerator development. In addition, the Division has a strong program in medium-energy nuclear physics carried out at a variety of major national and international facilities. The nuclear theory research in the Division spans a wide range of interests including nuclear dynamics with subnucleonic degrees of freedom, dynamics of many-nucleon systems, nuclear structure, and heavy-ion interactions. This research makes contact with experimental research programs in intermediate-energy and heavy-ion physics, both within the Division and on the national and international scale. The Physics Division traditionally has strong connections with the nation's universities. We have many visiting faculty members and we encourage students to participate in our

  13. Zero-Gravity Atmospheric Cloud Physics Experiment Laboratory engineering concepts/design tradeoffs. Volume 1: Study results

    Science.gov (United States)

    Greco, R. V.; Eaton, L. R.; Wilkinson, H. C.

    1974-01-01

    The work is summarized which was accomplished from January 1974 to October 1974 for the Zero-Gravity Atmospheric Cloud Physics Laboratory. The definition and development of an atmospheric cloud physics laboratory and the selection and delineation of candidate experiments that require the unique environment of zero gravity or near zero gravity are reported. The experiment program and the laboratory concept for a Spacelab payload to perform cloud microphysics research are defined. This multimission laboratory is planned to be available to the entire scientific community to utilize in furthering the basic understanding of cloud microphysical processes and phenomenon, thereby contributing to improved weather prediction and ultimately to provide beneficial weather control and modification.

  14. Energy programs at The Johns Hopkins University Applied Physics Laboratory. Quarterly report, January--March 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-01

    Work on developing energy resources, utilization concepts, and storage methods is summarized and divided into three sections. The first, Geothermal Energy Development Planning, contains reports on the progress of those geothermal-related tasks where effort was concentrated during the quarter. The tasks include an ongoing Atlantic Coastal Plain Geothermal Energy Market Survey, the Delmarva Geothermal Development Prospectus, Evaluation of Federal Strategies for Hydrothermal Developments, and comments on limited tasks performed in support of the major tasks. The second section, Operational Research, Hydroelectric Power Development, includes reports on a method for quantifying institutional constraints and on institutional and regulatory restraints in New Jersey. The third section, Energy Conservation and Storage Techniques, contains a report on flywheel development.

  15. A Learning Evaluation for an Immersive Virtual Laboratory for Technical Training Applied into a Welding Workshop

    Science.gov (United States)

    Torres, Francisco; Neira Tovar, Leticia A.; del Rio, Marta Sylvia

    2017-01-01

    This study aims to explore the results of welding virtual training performance, designed using a learning model based on cognitive and usability techniques, applying an immersive concept focused on person attention. Moreover, it also intended to demonstrate that exits a moderating effect of performance improvement when the user experience is taken…

  16. Audiovisual physics reports: students' video production as a strategy for the didactic laboratory

    Science.gov (United States)

    Vinicius Pereira, Marcus; de Souza Barros, Susana; de Rezende Filho, Luiz Augusto C.; Fauth, Leduc Hermeto de A.

    2012-01-01

    Constant technological advancement has facilitated access to digital cameras and cell phones. Involving students in a video production project can work as a motivating aspect to make them active and reflective in their learning, intellectually engaged in a recursive process. This project was implemented in high school level physics laboratory classes resulting in 22 videos which are considered as audiovisual reports and analysed under two components: theoretical and experimental. This kind of project allows the students to spontaneously use features such as music, pictures, dramatization, animations, etc, even when the didactic laboratory may not be the place where aesthetic and cultural dimensions are generally developed. This could be due to the fact that digital media are more legitimately used as cultural tools than as teaching strategies.

  17. Studies of high energy density physics and laboratory astrophysics driven by intense lasers

    Science.gov (United States)

    Zhang, J.

    2016-10-01

    Laser plasmas are capable of creating unique physical conditions with extreme high energy density, which are not only closely relevant to inertial fusion energy studies, but also to laboratory simulation of some astrophysical processes. In this paper, we highlight some recent progress made by our research teams. The first part is about directional hot electron beam generation and transport for fast ignition of inertial confinement fusion, as well as a new scheme of fast ignition by use of a strong external DC magnetic field. The second part concerns laboratory modeling of some astrophysical phenomena, including 1) studies of the topological structure of magnetic reconnection/annihilation that relates closely to geomagnetic substorms, loop-top X-ray source and mass ejection in solar flares, and 2) magnetic field generation and evolution in collisionless shock formation.

  18. Combining the arts: an applied critical thinking approach in the skills laboratory.

    Science.gov (United States)

    Peterson, M J; Bechtel, G A

    2000-01-01

    The quality of care that nurses provide to patients is strongly influenced by the nurses' ability to think critically and to solve problems. In response to the dynamic changes in healthcare and rapid technological advancements, nursing educators must prepare nursing students to meet the challenges. Baccalaureate nursing students must be taught to utilize critical thinking skills for problem solving during the application of the nursing process. Nursing students who use critical thinking skills will provide high quality and efficient patient care in the acute care and community settings. During the simulated laboratory experience, incorporating creative teaching strategies to promote critical thinking and enhance problem-solving skills can enable nursing graduates to enter the workforce feeling confident and competent.

  19. The Southern Hemisphere Hunt for Dark Matter at the Stawell Underground Physics Laboratory

    CERN Document Server

    Urquijo, Phillip

    2016-01-01

    I report on the Stawell Underground Physics Laboratory (SUPL), a new facility to be built in 2016, located 1 km below the surface in western Victoria, Australia. I will discuss the status of the proposed SABRE experiment, which will be comprised of a pair of high purity 50-60 kg NaI crystal detectors with active veto shielding to be located in labs in the Northern and Southern Hemispheres respectively. I also discuss projects beyond SABRE, including directional dark matter detectors, which will be used to determine the origin of any true dark matter signals.

  20. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for Calendar Year 1992

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L.; Wieczorek, M.A.

    1994-03-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY92. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health.

  1. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L.; Stencel, J.R.

    1992-11-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY91. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health.

  2. Experimenting with impacts in a conceptual physics or descriptive astronomy laboratory

    Science.gov (United States)

    LoPresto, Michael C.

    2016-07-01

    What follows is a description of the procedure for and results of a simple experiment on the formation of impact craters designed for the laboratory portions of lower mathematical-level general education science courses such as conceptual physics or descriptive astronomy. The experiment provides necessary experience with data collection and analysis as well as practice with quantitative skills such as measurement and calculation in a manner that does not exceed the mathematical scope of the courses while, due to its hands-on nature and interesting topic, remaining engaging.

  3. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1998

    Energy Technology Data Exchange (ETDEWEB)

    V. Finley

    2000-03-06

    The results of the 1998 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the US Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1998. One significant initiative is the Integrated Safety Management (ISM) program that embraces environment, safety, and health principles as one.

  4. A Study to Maximize the Learning Experience in the Physical Chemistry Laboratory

    Science.gov (United States)

    1979-01-01

    udy to Maximize the Le arnin g Exper ience Z449"g/DISSERTATION 0 in the Physical Chemistry Laboratory 6. PERFORMING O%4G. REPORT NUMBER 7j’O.* HORa ) 8...apparent that all digits actually obtained by measurement are significant. 4) The significance of a zero in calculations involving measured numbers is...truly an adventure in frustration. Is zero a measured digit, or does it serve merely to locate the decimal point? Zero is significant only if it is a

  5. Towson University's Professional Science Master's Program in Applied Physics: The first 5 years

    Science.gov (United States)

    Kolagani, Rajeswari

    It is a well-established fact that the scientific knowledge and skills acquired in the process of obtaining a degree in physics meet the needs of a variety of positions in multiple science and technology sectors. However, in addition to scientific competence, challenging careers often call for skills in advanced communication, leadership and team functions. The professional science master's degree, which has been nick-named as the `Science MBA', aims at providing science graduates an edge both in terms of employability and earning levels by imparting such skills. Our Professional Science Master's Program in Applied Physics is designed to develop these `plus' skills through multiple avenues. In addition to advanced courses in Applied Physics, the curriculum includes graduate courses in project management, business and technical writing, together with research and internship components. I will discuss our experience and lessons learned over the 5 years since the inception of the program in 2010. The author acknowledges support from the Elkins Professorship of the University System of Maryland.

  6. Argonne National Laboratory, High Energy Physics Division: Semiannual report of research activities, July 1, 1986-December 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This paper discusses the research activity of the High Energy Physics Division at the Argonne National Laboratory for the period, July 1986-December 1986. Some of the topics included in this report are: high resolution spectrometers, computational physics, spin physics, string theories, lattice gauge theory, proton decay, symmetry breaking, heavy flavor production, massive lepton pair production, collider physics, field theories, proton sources, and facility development. (LSP)

  7. Radiological, physical, and chemical characterization of transuranic wastes stored at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01

    This document provides radiological, physical and chemical characterization data for transuranic radioactive wastes and transuranic radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program (PSPI). Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 139 waste streams which represent an estimated total volume of 39,380{sup 3} corresponding to a total mass of approximately 19,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats Plant generated waste forms stored at the INEL are provided to assist in facility design specification.

  8. Institute of Geophysics and Planetary Physics at Lawrence Livermore National Laboratory: 1986 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Max, C.E. (ed.)

    1987-07-01

    The purpose of the Institute of Geophysics and Planetary Physics (IGPP) at LLNL is to enrich the opportunities of University of California campus researchers by making available to them some of the Laboratory's unique facilities and expertise, and to broaden the scientific horizon of LLNL researchers by encouraging collaborative or interdisciplinary work with other UC scientists. The IGPP continues to emphasize three fields of research - geoscience, astrophysics, and high-pressure physics - each administered by a corresponding IGPP Research Center. Each Research Center coordinates the mini-grant work in its field, and also works with the appropriate LLNL programs and departments, which frequently can provide supplementary funding and facilities for IGPP projects. 62 refs., 18 figs., 2 tabs.

  9. FY93 Princeton Plasma Physics Laboratory. Annual report, October 1, 1992--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This is the annual report from the Princeton Plasma Physics Laboratory for the period October 1, 1992 to September 30, 1993. The report describes work done on TFTR during the year, as well as preparatory to beginning of D-T operations. Design work is ongoing on the Tokamak Physics Experiment (TPX) which is to test very long pulse operations of tokamak type devices. PBX has come back on line with additional ion-Bernstein power and lower-hybrid current drive. The theoretical program is also described, as well as other small scale programs, and the growing effort in collaboration on international design projects on ITER and future collaborations at a larger scale.

  10. Argonne National Laboratory High Energy Physics Division semiannual report of research activities, January 1, 1989--June 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    This paper discuss the following areas on High Energy Physics at Argonne National Laboratory: experimental program; theory program; experimental facilities research; accelerator research and development; and SSC detector research and development.

  11. Institute of Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, 1996 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Ryerson, F. J., Institute of Geophysics and Planetary Physics

    1998-03-23

    The Institute of Geophysics and Planetary Physics (IGPP) is a Multicampus Research Unit of the University of California (UC). IGPP was founded in 1946 at UC Los Angeles with a charter to further research in the earth and planetary sciences and in related fields. The Institute now has branches at UC campuses in Los Angeles, San Diego, and Riverside, and at Los Alamos and Lawrence Livermore national laboratories. The University-wide IGPP has played an important role in establishing interdisciplinary research in the earth and planetary sciences. For example, IGPP was instrumental in founding the fields of physical oceanography and space physics, which at the time fell between the cracks of established university departments. Because of its multicampus orientation, IGPP has sponsored important interinstitutional consortia in the earth and planetary sciences. Each of the five branches has a somewhat different intellectual emphasis as a result of the interplay between strengths of campus departments and Laboratory programs. The IGPP branch at Lawrence Livermore National Laboratory (LLNL) was approved by the Regents of the University of California in 1982. IGPP-LLNL emphasizes research in seismology, geochemistry, cosmochemistry, and astrophysics. It provides a venue for studying the fundamental aspects of these fields, thereby complementing LLNL programs that pursue applications of these disciplines in national security and energy research. IGPP-LLNL is directed by Charles Alcock and was originally organized into three centers: Geosciences, stressing seismology; High-Pressure Physics, stressing experiments using the two-stage light-gas gun at LLNL; and Astrophysics, stressing theoretical and computational astrophysics. In 1994, the activities of the Center for High-Pressure Physics were merged with those of the Center for Geosciences. The Center for Geosciences, headed by Frederick Ryerson, focuses on research in geophysics and geochemistry. The Astrophysics Research

  12. Institute of Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, 1996 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Ryerson, F. J., Institute of Geophysics and Planetary Physics

    1998-03-23

    The Institute of Geophysics and Planetary Physics (IGPP) is a Multicampus Research Unit of the University of California (UC). IGPP was founded in 1946 at UC Los Angeles with a charter to further research in the earth and planetary sciences and in related fields. The Institute now has branches at UC campuses in Los Angeles, San Diego, and Riverside, and at Los Alamos and Lawrence Livermore national laboratories. The University-wide IGPP has played an important role in establishing interdisciplinary research in the earth and planetary sciences. For example, IGPP was instrumental in founding the fields of physical oceanography and space physics, which at the time fell between the cracks of established university departments. Because of its multicampus orientation, IGPP has sponsored important interinstitutional consortia in the earth and planetary sciences. Each of the five branches has a somewhat different intellectual emphasis as a result of the interplay between strengths of campus departments and Laboratory programs. The IGPP branch at Lawrence Livermore National Laboratory (LLNL) was approved by the Regents of the University of California in 1982. IGPP-LLNL emphasizes research in seismology, geochemistry, cosmochemistry, and astrophysics. It provides a venue for studying the fundamental aspects of these fields, thereby complementing LLNL programs that pursue applications of these disciplines in national security and energy research. IGPP-LLNL is directed by Charles Alcock and was originally organized into three centers: Geosciences, stressing seismology; High-Pressure Physics, stressing experiments using the two-stage light-gas gun at LLNL; and Astrophysics, stressing theoretical and computational astrophysics. In 1994, the activities of the Center for High-Pressure Physics were merged with those of the Center for Geosciences. The Center for Geosciences, headed by Frederick Ryerson, focuses on research in geophysics and geochemistry. The Astrophysics Research

  13. Advanced lasers laser physics and technology for applied and fundamental science

    CERN Document Server

    Sukhoivanov, Igor

    2015-01-01

    Presenting a blend of applied and fundamental research in highly interdisciplinary subjects of rapidly developing areas, this book contains contributions on the frontiers and hot topics of laser physics, laser technology and laser engineering, and covers a wide range of laser topics, from all-optical signal processing and chaotic optical communication to production of superwicking surfaces, correction of extremely high-power beams, and generation of ultrabroadband spectra. It presents both review-type contributions and well researched and documented case studies, and is intended for graduate students, young scientist, and emeritus scientist working/studying in laser physics, optoelectronics, optics, photonics, and adjacent areas. The book contains both experimental and theoretical studies, as well as combinations of these two, which is known to be a most useful and interesting form of reporting scientific results, allowing students to really learn from each contribution. The book contains over 130 illustratio...

  14. Mössbauer spectrometry applied to the study of laboratory samples made of iron gall ink

    Science.gov (United States)

    Burgaud, C.; Rouchon, V.; Refait, P.; Wattiaux, A.

    2008-07-01

    Iron gall inks consist of a mixture of vitriol, gall nut extracts and gum arabic. The association of the iron(II) sulphate present in vitriols, and the carboxyphenolic acids present in gall nut extracts leads to the formation of dark coloured iron-based precipitates. In order to evaluate the percentage of iron used in the formation of these precipitates, transmission Mössbauer spectroscopy (MS) measurements were performed on laboratory made inks at room temperature. These were completed by X-ray diffraction (XRD), and Raman spectroscopy measurements. The samples consisted of several solutions of iron(II) sulphate, gallic acid and gum arabic. After evaporation, the residues were analysed. Up to eight different Mössbauer signatures were detected, most of them correlated to iron sulphates. The Mössbauer signature of the iron gall precipitate was also isolated. It is not distinctly defined and may overlap with the signatures of iron(III) hydroxy-sulphates, such as jarosite or copiapite. Raman spectrometry then proved to be a useful complementary technique for the identification of the precipitate.

  15. Moessbauer spectrometry applied to the study of laboratory samples made of iron gall ink

    Energy Technology Data Exchange (ETDEWEB)

    Burgaud, C. [Centre de Recherche pour la Conservation des Collections, MNHN, CNRS, MCC, 36 rue Geoffroy Saint Hilaire, CP 21, Paris (France); Universite de La Rochelle, LEMMA, Batiment Marie Curie, La Rochelle Cedex 01 (France); Rouchon, V. [Centre de Recherche pour la Conservation des Collections, MNHN, CNRS, MCC, 36 rue Geoffroy Saint Hilaire, CP 21, Paris (France); Refait, P. [Universite de La Rochelle, LEMMA, Batiment Marie Curie, La Rochelle Cedex 01 (France); Wattiaux, A. [Universite de Bordeaux 1, Institut de Chimie de la Matiere Condensee de Bordeaux, CNRS, Pessac Cedex (France)

    2008-07-15

    Iron gall inks consist of a mixture of vitriol, gall nut extracts and gum arabic. The association of the iron(II) sulphate present in vitriols, and the carboxyphenolic acids present in gall nut extracts leads to the formation of dark coloured iron-based precipitates. In order to evaluate the percentage of iron used in the formation of these precipitates, transmission Moessbauer spectroscopy (MS) measurements were performed on laboratory made inks at room temperature. These were completed by X-ray diffraction (XRD), and Raman spectroscopy measurements. The samples consisted of several solutions of iron(II) sulphate, gallic acid and gum arabic. After evaporation, the residues were analysed. Up to eight different Moessbauer signatures were detected, most of them correlated to iron sulphates. The Moessbauer signature of the iron gall precipitate was also isolated. It is not distinctly defined and may overlap with the signatures of iron(III) hydroxy-sulphates, such as jarosite or copiapite. Raman spectrometry then proved to be a useful complementary technique for the identification of the precipitate. (orig.)

  16. Environmental epidemiology applied to urban atmospheric pollution: a contribution from the Experimental Air Pollution Laboratory (LPAE

    Directory of Open Access Journals (Sweden)

    André Paulo Afonso de

    2000-01-01

    Full Text Available Systematic investigation on the effects of human exposure to environmental pollution using scientific methodology only began in the 20th century as a consequence of several environmental accidents followed by an unexpected mortality increase above expected mortality and as a result of observational epidemiological and toxicological studies conducted on animals in developed countries. This article reports the experience of the Experimental Air Pollution Laboratory at the School of Medicine, University of São Paulo, concerning the respiratory system and pathophysiological mechanisms involved in responses to exposure to pollution using toxicological and experimental procedures, complemented by observational epidemiological studies conducted in the city of São Paulo. It also describes these epidemiological studies, pointing out that air pollution is harmful to public health, not only among susceptible groups but also in the general population, even when the concentration of pollutants is below the limits set by environmental legislation. The study provides valuable information to support the political and economic decision-making processes aimed at preserving the environment and enhancing quality of life.

  17. Applied Physics of Carbon Nanotubes Fundamentals of Theory, Optics and Transport Devices

    CERN Document Server

    Rotkin, Slava V

    2005-01-01

    The book describes the state-of-the-art in fundamental, applied and device physics of nanotubes, including fabrication, manipulation and characterization for device applications; optics of nanotubes; transport and electromechanical devices and fundamentals of theory for applications. This information is critical to the field of nanoscience since nanotubes have the potential to become a very significant electronic material for decades to come. The book will benefit all all readers interested in the application of nanotubes, either in their theoretical foundations or in newly developed characterization tools that may enable practical device fabrication.

  18. The effect of introducing computers into an introductory physics problem-solving laboratory

    Science.gov (United States)

    McCullough, Laura Ellen

    2000-10-01

    Computers are appearing in every type of classroom across the country. Yet they often appear without benefit of studying their effects. The research that is available on computer use in classrooms has found mixed results, and often ignores the theoretical and instructional contexts of the computer in the classroom. The University of Minnesota's physics department employs a cooperative-group problem solving pedagogy, based on a cognitive apprenticeship instructional model, in its calculus-based introductory physics course. This study was designed to determine possible negative effects of introducing a computerized data-acquisition and analysis tool into this pedagogy as a problem-solving tool for students to use in laboratory. To determine the effects of the computer tool, two quasi-experimental treatment groups were selected. The computer-tool group (N = 170) used a tool, designed for this study (VideoTool), to collect and analyze motion data in the laboratory. The control group (N = 170) used traditional non-computer equipment (spark tapes and Polaroid(TM) film). The curriculum was kept as similar as possible for the two groups. During the ten week academic quarter, groups were examined for effects on performance on conceptual tests and grades, attitudes towards the laboratory and the laboratory tools, and behaviors within cooperative groups. Possible interactions with gender were also examined. Few differences were found between the control and computer-tool groups. The control group received slightly higher scores on one conceptual test, but this difference was not educationally significant. The computer-tool group had slightly more positive attitudes towards using the computer tool than their counterparts had towards the traditional tools. The computer-tool group also perceived that they spoke more frequently about physics misunderstandings, while the control group felt that they discussed equipment difficulties more often. This perceptual difference interacted

  19. RADBALL TECHNOLOGY TESTING IN THE SAVANNAH RIVER SITE HEALTH PHYSICS INSTRUMENT CALIBRATION LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.

    2010-07-08

    The United Kingdom's National Nuclear Laboratory (NNL) has developed a radiation-mapping device that can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. The device, known as RadBall{trademark}, consists of a colander-like outer collimator that houses a radiation-sensitive polymer sphere. The collimator has over two hundred small holes; thus, specific areas of the polymer sphere are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner that produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation data provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. The RadBallTM technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and facilities of the Savannah River National Laboratory (SRNL). This paper summarizes the tests completed at SRNL Health Physics Instrument Calibration Laboratory (HPICL).

  20. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L. and Levine, J.D.

    1999-01-10

    The results of the 1997 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. During Calendar Year 1997, PPPL's Tokamak Fusion Test Reactor (TFTR) completed fifteen years of fusion experiments begun in 1982. Over the course of three and half years of deuterium-tritium (D-T) plasma experiments, PPPL set a world record of 10.7 million watts of controlled fusion power, more than 700 tritium shots pulsed into the reactor vessel generating more than 5.6 x 1020 neutron and 1.6 gigajoules of fusion energy and researchers studied plasma science experimental data, which included "enhanced reverse shear techniques." As TFTR was completing its historic operations, PPPL participated with the Oak Ridge National Laboratory, Columbia University, and the University of Washington (Seattle) in a collaboration effort to design the National Spherical Torus Experiment (NSTX). This next device, NSTX, is located in the former TFTR Hot Cell on D site, and it is designed to be a smaller and more economical torus fusion reactor. Construction of this device began in late 1997, and first plasma in scheduled for early 1999. For 1997, the U.S. Department of Energy in its Laboratory Appraisal report rated the overall performance of Princeton Plasma Physics Laboratory as "excellent." The report cited the Laboratory's consistently excellent scientific and technological achievements and its successful management practices, which included high marks for environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey

  1. The dynamics of laterally variable subductions: laboratory models applied to the Hellenides

    Directory of Open Access Journals (Sweden)

    B. Guillaume

    2013-04-01

    Full Text Available We design three-dimensional dynamically self-consistent laboratory models of subduction to analyze the relationships between overriding plate deformation and subduction dynamics in the upper mantle. We investigate the effects of the subduction of a lithosphere of laterally variable buoyancy on the temporal evolution of trench kinematics and shape, horizontal flow at the top of the asthenosphere, dynamic topography and deformation of the overriding plate. The interface between the two units, analogue to a trench-perpendicular tear fault between a negatively buoyant oceanic plate and positively buoyant continental one, is either fully-coupled or shear-stress free. Differential rates of trench retreat, in excess of 6 cm yr−1 between the two units, trigger a more vigorous mantle flow above the oceanic slab unit than above the continental slab unit. The resulting asymmetrical sublithospheric flow shears the overriding plate in front of the tear fault, and deformation gradually switches from extension to transtension through time. The consistency between our models results and geological observations suggests that the Late Cenozoic deformation of the Aegean domain, including the formation of the North Aegean Trough and Central Hellenic Shear zone, results from the spatial variations in the buoyancy of the subducting lithosphere. In particular, the lateral changes of the subduction regime caused by the Early Pliocene subduction of the old oceanic Ionian plate redesigned mantle flow and excited an increasingly vigorous dextral shear underneath the overriding plate. The models suggest that it is the inception of the Kefalonia Fault that caused the transition between an extension dominated tectonic regime to transtension, in the North Aegean, Mainland Greece and Peloponnese. The subduction of the tear fault may also have helped the propagation of the North Anatolian Fault into the Aegean domain.

  2. Response of Triatoma infestans to pour-on cypermethrin applied to chickens under laboratory conditions

    Directory of Open Access Journals (Sweden)

    Ivana Amelotti

    2009-05-01

    Full Text Available This article reports the effects of a pour-on formulation of cypermethrin (6% active ingredient applied to chickens exposed to Triatoma infestans, the main vector of Chagas disease in rural houses of the Gran Chaco Region of South America. This study was designed as a completely random experiment with three experimental groups and five replicates. Third instar nymphs were fed on chickens treated with 0, 1 and 2 cc of the formulation. Nymphs were allowed to feed on the chickens at different time intervals after the insecticide application. Third-instar nymphs fed on treated chickens showed a higher mortality, took less blood during feeding and had a lower moulting rate. The mortality rate was highest seven days after the insecticide solution application and blood intake was affected until 30 days after the application of the solution.

  3. A novel straightness measurement system applied to the position monitoring of large Particle Physics Detectors

    CERN Document Server

    Goudard, R; Ribeiro, R; Klumb, F

    1999-01-01

    The Compact Muon Solenoid experiment, CMS, is one of the two general purpose experiments foreseen to operate at the Large Hadron Collider, LHC, at CERN, the European Laboratory for Particle Physics. The experiment aims to study very high energy collisions of proton beams. Investigation of the most fundamental properties of matter, in particular the study of the nature of the electroweak symmetry breaking and the origin of mass, is the experiment scope. The central Tracking System, a six meter long cylinder with 2.4 m diameter, will play a major role in all physics searches of the CMS experiment. Its performance depends upon the intrinsic detector performance, on the stability of the supporting structure and on the overall survey, alignment and position monitoring system. The proposed position monitoring system is based on a novel lens-less laser straightness measurement method able to detect deviations from a nominal position of all structural elements of the Central Tracking system. It is based on the recipr...

  4. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1994

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L.; Wieczorek, M.A. [eds.

    1996-02-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY94. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs that were undertaken in 1994. The objective of the Annual Site Environmental Report is to document evidence that PPPL`s environmental protection programs adequately protect the environment and the public health. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 195 1. The long-range goal of the US Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. In 1994, PPPL had one of its two large tokamak devices in operation-the Tokamak Fusion Test Reactor (TFTR). The Princeton Beta Experiment-Modification or PBX-M completed its modifications and upgrades and resumed operation in November 1991 and operated periodically during 1992 and 1993; it did not operate in 1994 for funding reasons. In December 1993, TFTR began conducting the deuterium-tritium (D-T) experiments and set new records by producing over ten @on watts of energy in 1994. The engineering design phase of the Tokamak Physics Experiment (T?X), which replaced the cancelled Burning Plasma Experiment in 1992 as PPPL`s next machine, began in 1993 with the planned start up set for the year 2001. In December 1994, the Environmental Assessment (EA) for the TFTR Shutdown and Removal (S&R) and TPX was submitted to the regulatory agencies, and a finding of no significant impact (FONSI) was issued by DOE for these projects.

  5. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1993

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L.; Wiezcorek, M.A.

    1995-01-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY93. The report is prepared to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs that were undertaken in 1993. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. In 1993, PPPL had both of its two large tokamak devices in operation; the Tokamak Fusion Test Reactor (TFTR) and the Princeton Beta Experiment-Modification (PBX-M). PBX-M completed its modifications and upgrades and resumed operation in November 1991. TFTR began the deuterium-tritium (D-T) experiments in December 1993 and set new records by producing over six million watts of energy. The engineering design phase of the Tokamak Physics Experiment (TPX), which replaced the cancelled Burning Plasma Experiment in 1992 as PPPL`s next machine, began in 1993 with the planned start up set for the year 2001. In 1993, the Environmental Assessment (EA) for the TFRR Shutdown and Removal (S&R) and TPX was prepared for submittal to the regulatory agencies.

  6. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 4: Physical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Braby, L.A.

    1994-08-01

    Part 4 of the Pacific Northwest Laboratory Annual Report for 1993 to the DOE Office of Energy Research includes those programs funded under the title ``Physical and Technological Research.`` The Field Task Program Studies reported in this document are grouped by budget category. Attention is focused on the following subject areas: dosimetry research; and radiological and chemical physics.

  7. Bioremediation Approaches in a Laboratory Activity for the Industrial Biotechnology and Applied Microbiology (IBAM Course

    Directory of Open Access Journals (Sweden)

    L. Raiger Iustman

    2013-03-01

    Full Text Available Industrial Biotechnology and Applied Microbiology is an optional 128h-course for Chemistry and Biology students at the Faculty of Sciences, University of Buenos Aires, Argentina. This course is usually attended by 25 students, working in teams of two. The curriculum, with 8 lab exercises, includes an oil bioremediation practice covering an insight of bioremediation processes: the influence of pollutants on autochthonous microbiota, biodegrader isolation and biosurfactant production for bioavailability understanding. The experimental steps are: (A evaluation of microbial tolerance to pollutants by constructing pristine soil microcosms contaminated with diesel or xylene and (B isolation of degraders and biosurfactant production analysis. To check microbial tolerance, microcosms are incubated during one week at 25-28ºC. Samples are collected at 0, 4 and every 48 h for CFU/g soil testing. An initial decrease of total CFU/g related to toxicity is noticed. At the end of the experiment, a recovery of the CFU number is observed, evidencing enrichment in biodegraders. Some colonies from the CFU counting plates are streaked in M9-agar with diesel as sole carbon source. After a week, isolates are inoculated on M9-Broth supplemented with diesel to induce biosurfactant production. Surface tension and Emulsification Index are measured in culture supernatants to visualize tensioactive effect of bacterial products. Besides the improvement in the good microbiological practices, the students show enthusiasm in different aspects, depending on their own interests. While biology students explore and learn new concepts on solubility, emulsions and bioavailability, chemistry students show curiosity in bacterial behavior and manipulation of microorganisms for environmental benefits.

  8. Improving Financial Management via Contemplation: Novel Interventions and Findings in Laboratory and Applied Settings.

    Science.gov (United States)

    Harkin, Ben

    2017-01-01

    The present research tackles two main areas of financial mismanagement, namely avoiding debt-related information and underestimating expenditure. We draw upon research which has shown that inviting people to think about reasons for avoiding something actually serves to reduce the likelihood that they will then avoid it, and potentially improves what they know about it. Therefore, in three studies we investigated if prompting participants to contemplate their debt (Studies 1 and 2) and expenditure (Study 3) would decrease avoidance of debt-related information and improve estimates of expenditure, respectively. Conform to our expectations prompting contemplation via questionnaire (Study 1) and video (Study 2) reduced avoidance of debt-related information. In other words, contemplation reduced the likelihood that people would avoid viewing their risk of debt. The success of prompting contemplation via video offers a new and important addition to the literature on contemplation, which has previously focused on using the traditional questionnaire format. In Study 3 we observed that contemplation improved the estimates of expenditure that loan applicants at a credit union provided. Specifically, contemplation resulted in participants providing larger and more detailed accounts of their expenditure, and increased the agreement between staff and clients for the number of expenditure items provided by the clients. In sum, these findings suggest that contemplation in the context of the above financial decision-making is a robust intervention, as it was effective for different types of interventions (questionnaire and video), behaviors (avoidance of debt-related information and improving estimates of expenditure), and samples (students and university staff; Studies 1 and 2 and loan applicants at a credit union; Study 3). We discuss the theoretical, policy and applied impact of these findings, and highlight limitations and considerations for future research.

  9. Improving Financial Management via Contemplation: Novel Interventions and Findings in Laboratory and Applied Settings

    Science.gov (United States)

    Harkin, Ben

    2017-01-01

    The present research tackles two main areas of financial mismanagement, namely avoiding debt-related information and underestimating expenditure. We draw upon research which has shown that inviting people to think about reasons for avoiding something actually serves to reduce the likelihood that they will then avoid it, and potentially improves what they know about it. Therefore, in three studies we investigated if prompting participants to contemplate their debt (Studies 1 and 2) and expenditure (Study 3) would decrease avoidance of debt-related information and improve estimates of expenditure, respectively. Conform to our expectations prompting contemplation via questionnaire (Study 1) and video (Study 2) reduced avoidance of debt-related information. In other words, contemplation reduced the likelihood that people would avoid viewing their risk of debt. The success of prompting contemplation via video offers a new and important addition to the literature on contemplation, which has previously focused on using the traditional questionnaire format. In Study 3 we observed that contemplation improved the estimates of expenditure that loan applicants at a credit union provided. Specifically, contemplation resulted in participants providing larger and more detailed accounts of their expenditure, and increased the agreement between staff and clients for the number of expenditure items provided by the clients. In sum, these findings suggest that contemplation in the context of the above financial decision-making is a robust intervention, as it was effective for different types of interventions (questionnaire and video), behaviors (avoidance of debt-related information and improving estimates of expenditure), and samples (students and university staff; Studies 1 and 2 and loan applicants at a credit union; Study 3). We discuss the theoretical, policy and applied impact of these findings, and highlight limitations and considerations for future research. PMID:28326053

  10. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1996

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Levine; V.L. Finley

    1998-03-01

    The results of the 1996 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the US Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. During Calendar Year 1996, PPPL's Tokamak Fusion Test Reactor (TFTR) continued to conduct fusion experiments. Having set a world record on November 2, 1994, by achieving approximately 10.7 million watts of controlled fusion power during the deuterium-tritium (D-T) plasma experiments, researchers turned their attention to studying plasma science experiments, which included ''enhanced reverse shear techniques.'' Since November 1993, more than 700 tritium-fueled experiments were conducted, which generated more than 4 x 10(superscript 20) neutrons and 1.4 gigajoules of fusion energy. In 1996, the overall performance of Princeton Plasma Physics Laboratory was rated ''excellent'' by the US Department of Energy in the Laboratory Appraisal report issued in early 1997. The report cited the Laboratory's consistently excellent scientific and technological achievements and its successful management practices, which included high marks for environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of nonradiological contaminants, mainly volatile organic compounds (components of degreasing solvents) and petroleum hydrocarbons (past leaks of releases of diesel fuel from underground storage tanks). Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and

  11. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Virginia L. Finley

    2002-04-22

    The results of the 2000 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2000. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality -- an alternative energy source. The year 2000 marked the second year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion power plants. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. In 2000, PPPL's radiological environmental monitoring program measured tritium in the air at on-site and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations with limits set by the Environmental Protection Agency (EPA). Also included in PPPL's radiological environmental monitoring program, are precipitation, surface

  12. Some recent advances of shock wave physics research at the Laboratory for Shock Wave and Detonation Physics Research

    CERN Document Server

    Jing Fu Qian

    2002-01-01

    Progress made in recent years on three topics that have been investigated at the Laboratory for Shock Wave and Detonation Physics Research are presented in this report. (1) A new equation of state (EOS) has been derived which can be used from a standard state to predict state variable change along an isobaric path. Good agreements between calculations for some representative metals using this new EOS and experiments have been found, covering a wide range from hundreds of MPa to hundreds of GPa and from ambient temperature to tens of thousands of GPa. (2) An empirical relation of Y/G = constant (Y is yield strength, G is shear modulus) at HT-HP has been reinvestigated and confirmed by shock wave experiment. 93W alloy was chosen as a model material. The advantage of this relation is that it is beneficial to formulate a kind of simplified constitutive equation for metallic solids under shock loading, and thus to faithfully describe the behaviours of shocked solids through hydrodynamic simulations. (3) An attempt...

  13. The Impact of Internet Virtual Physics Laboratory Instruction on the Achievement in Physics, Science Process Skills and Computer Attitudes of 10th-Grade Students

    Science.gov (United States)

    Yang, Kun-Yuan; Heh, Jia-Sheng

    2007-10-01

    The purpose of this study was to investigate and compare the impact of Internet Virtual Physics Laboratory (IVPL) instruction with traditional laboratory instruction in physics academic achievement, performance of science process skills, and computer attitudes of tenth grade students. One-hundred and fifty students from four classes at one private senior high school in Taoyuan Country, Taiwan, R.O.C. were sampled. All four classes contained 75 students who were equally divided into an experimental group and a control group. The pre-test results indicated that the students' entry-level physics academic achievement, science process skills, and computer attitudes were equal for both groups. On the post-test, the experimental group achieved significantly higher mean scores in physics academic achievement and science process skills. There was no significant difference in computer attitudes between the groups. We concluded that the IVPL had potential to help tenth graders improve their physics academic achievement and science process skills.

  14. Temperature effects on ash physical and chemical properties. A laboratory study.

    Science.gov (United States)

    Pereira, Paulo; Úbeda, Xavier; Martin, Deborah

    2010-05-01

    Fire temperatures have different impacts on ash physical and chemical properties that depend mainly of the specie affected and time of exposition. In a real prescribed or wildland fire, the temperatures produce ash with different characteristics. Know the impacts of a specific temperature or a gradient on a certain element and specie is very difficult in real fires, especially in wildland fires, where temperatures achieve higher values and the burning conditions are not controlled. Hence, laboratory studies revealed to be an excellent methodology to understand the effects of fire temperatures in ash physical and chemical. The aim of this study is study the effects of a temperature gradient (150, 200, 250, 300, 350, 400, 450, 500 and 550°C) on ash physical and chemical properties. For this study we collected litter of Quercus suber, Pinus pinea and Pinus pinaster in a plot located in Portugal. The selected species are the most common in the ecosystem. We submitted samples to the mentioned temperatures throughout a time of two hours and we analysed several parameters, namely, Loss on Ignition (LOI%), ash colour - through the Croma Value (CV) observed in Munsell color chart - CaCO3, Total Nitrogen (TN), Total Carbon (TC), C/N ratio, ash pH, Electrical Conductivity (EC), extractable Calcium (Ca2+), Magnesium (Mg2+), Sodium (Na+), Potassium (K+), Aluminium (Al3+), Manganese (Mn2+), Iron (Fe2+), Zinc (Zn2+), Total Phosphorous (TP), Sulphur (S) and Silica (SiO2). Since we considered many elements, in order to obtain a better explanation of all dataset, we applied a Factorial Analysis (FA), based on the correlation matrix and the Factors were extracted according to the Principle Components method. To obtain a better relation between the variables with a specific Factor we rotated the matrix according to the VARIMAX NORMALIZED method. FA identified 5 Factors that explained a total of 95% of the variance. We retained in each Factor the variables that presented an eigenvalue

  15. Simulating the photometric study of pulsating white dwarf stars in the physics laboratory

    CERN Document Server

    Chote, Paul

    2015-01-01

    We have designed a realistic simulation of astronomical observing using a relatively low-cost commercial CCD camera and a microcontroller-based circuit that drives LEDs inside a light-tight box with time-varying intensities. As part of a laboratory experiment, students can acquire sequences of images using the camera, and then perform data analysis using a language such as MATLAB or Python to: (a) extract the intensity of the imaged LEDs, (b) perform basic calibrations on the time-series data, and (c) convert their data into the frequency domain where they can then identify the frequency structure. The primary focus is on studying light curves produced by the pulsating white dwarf stars. The exercise provides an introduction to CCD observing, a framework for teaching concepts in numerical data analysis and Fourier techniques, and connections with the physics of white dwarf stars.

  16. Astrophysical black holes as natural laboratories for fundamental physics and strong-field gravity

    CERN Document Server

    Berti, Emanuele

    2013-01-01

    Astrophysical tests of general relativity belong to two categories: 1) "internal", i.e. consistency tests within the theory (for example, tests that astrophysical black holes are indeed described by the Kerr solution and its perturbations), or 2) "external", i.e. tests of the many proposed extensions of the theory. I review some ways in which astrophysical black holes can be used as natural laboratories for both "internal" and "external" tests of general relativity. The examples provided here (ringdown tests of the black hole "no-hair" theorem, bosonic superradiant instabilities in rotating black holes and gravitational-wave tests of massive scalar-tensor theories) are shamelessly biased towards recent research by myself and my collaborators. Hopefully this colloquial introduction aimed mainly at astrophysicists will convince skeptics (if there are any) that space-based detectors will be crucial to study fundamental physics through gravitational-wave observations.

  17. Exploring viscous damping in undergraduate Physics laboratory using electromagnetically coupled oscillators

    CERN Document Server

    Jayaprasad, N; Bhalerao, M; Sengupta, Anand S; Majumder, Barun

    2013-01-01

    We design a low-cost, electromagnetically coupled, simple harmonic oscillator and demonstrate free, damped and forced oscillations in an under-graduate (UG) Physics laboratory. It consists of a spring-magnet system that can oscillate inside a cylinder around which copper coils are wound. Such demonstrations can compliment the traditional way in which a Waves & Oscillations course is taught and offers a richer pedagogical experience for students. We also show that with minimal modifications, it can be used to probe the magnitude of viscous damping forces in liquids by analyzing the oscillations of an immersed magnet. Finally, we propose some student activities to explore non-linear damping effects and their characterization using this apparatus.

  18. Analysis of Radiation Impact on White Mice through Radiation Dose Mapping in Medical Physics Laboratory

    Science.gov (United States)

    Sutikno, Madnasri; Susilo; Arya Wijayanti, Riza

    2016-08-01

    A study about X-ray radiation impact on the white mice through radiation dose mapping in Medical Physic Laboratory is already done. The purpose of this research is to determine the minimum distance of radiologist to X-ray instrument through treatment on the white mice. The radiation exposure doses are measured on the some points in the distance from radiation source between 30 cm up to 80 with interval of 30 cm. The impact of radiation exposure on the white mice and the effects of radiation measurement in different directions are investigated. It is founded that minimum distance of radiation worker to radiation source is 180 cm and X-ray has decreased leukocyte number and haemoglobin and has increased thrombocyte number in the blood of white mice.

  19. Upgrade of detectors of neutron instruments at Neutron Physics Laboratory in Řež

    Science.gov (United States)

    Litvinenko, E. I.; Ryukhtin, V.; Bogdzel, A. A.; Churakov, A. V.; Farkas, G.; Hervoches, Ch.; Lukas, P.; Pilch, J.; Saroun, J.; Strunz, P.; Zhuravlev, V. V.

    2017-01-01

    Three neutron instruments at the Neutron Physics Laboratory (NPL) in Řež near Prague - small-angle scattering (SANS) MAUD, strain scanner SPN-100 and strain diffractometer TKSN-400 - have been modernized recently with new 2D position-sensitive detectors (PSDs) from JINR, Dubna. Here we report on the progress made in relation to the possibilities of the diffractometers due to the improved performance of the detectors. The first part of the paper is dedicated to a detailed description of the hardware and software of the PSDs, as well as its integration with the in-house experimental control software. Then practical examples of neutron scattering experiments for each of the upgraded facilities are presented.

  20. Raw data for 'Spin-on doping of germanium-on-insulator wafers for monolithic light sources on silicon'. Published by Japanese Journal of Applied Physics (JJAP). Copyright 2015 The Japan Society of Applied Physics.

    OpenAIRE

    Al-Attili, Abdelrahman; Kako, Satoshi; Husain, Muhammad; Gardes, Frederic; Arimoto, Hideo; Higashitarumizu, Naoki; Iwamoto, Satoshi; Arakawa, Yasuhiko; Ishikawa, Yasuhiko; Saito, Shinichi

    2015-01-01

    This dataset contains the raw data for spin-on doping experiments of Ge-on-insulator wafers for light emission purposes. Summary of this dataset in the form of figures were published Japanese Journal of Applied Physics (JJAP). Copyright 2015 The Japan Society of Applied Physics.\\ud Citation:\\ud Abdelrahman Zaher Al-Attili, Satoshi Kako, Muhammad K. Husain, Frederic Y. Gardes, Hideo Arimoto, Naoki Higashitarumizu, Satoshi Iwamoto, Yasuhiko Arakawa, Yasuhiko Ishikawa, and Shinichi Saito. "Spin-...

  1. Raw data for 'Spin-on doping of germanium-on-insulator wafers for monolithic light sources on silicon'. Published by Japanese Journal of Applied Physics (JJAP). Copyright 2015 The Japan Society of Applied Physics.

    OpenAIRE

    Al-Attili, Abdelrahman; Kako, Satoshi; Husain, Muhammad; Gardes, Frederic; Arimoto, Hideo; Higashitarumizu, Naoki; Iwamoto, Satoshi; Arakawa, Yasuhiko; Ishikawa, Yasuhiko; Saito, Shinichi

    2015-01-01

    This dataset contains the raw data for spin-on doping experiments of Ge-on-insulator wafers for light emission purposes. Summary of this dataset in the form of figures were published Japanese Journal of Applied Physics (JJAP). Copyright 2015 The Japan Society of Applied Physics. Citation: Abdelrahman Zaher Al-Attili, Satoshi Kako, Muhammad K. Husain, Frederic Y. Gardes, Hideo Arimoto, Naoki Higashitarumizu, Satoshi Iwamoto, Yasuhiko Arakawa, Yasuhiko Ishikawa, and Shinichi Saito. "Spin-...

  2. Environmental Survey preliminary report, Princeton Plasma Physics Laboratory, Princeton, New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    1989-05-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), conducted June 13 through 17, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Team members are being provided by private contractors. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with PPPL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at PPPL, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environment problems identified during its on-site activities. The S A plan is being developed by the Idaho National Engineering Laboratory. When completed, the S A results will be incorporated into the PPPL Survey findings for inclusion in the Environmental Survey Summary Report. 70 refs., 17 figs., 21 tabs.

  3. ATR-FTIR Spectroscopy in the Undergraduate Chemistry Laboratory: Part II--A Physical Chemistry Laboratory Experiment on Surface Adsorption

    Science.gov (United States)

    Schuttlefield, Jennifer D.; Larsen, Sarah C.; Grassian, Vicki H.

    2008-01-01

    Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy is a useful technique for measuring the infrared spectra of solids and liquids as well as probing adsorption on particle surfaces. The use of FTIR-ATR spectroscopy in organic and inorganic chemistry laboratory courses as well as in undergraduate research was presented…

  4. Fusion programs in applied plasma physics. Final report, fiscal years 1989--1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The objectives of the theoretical science program are: To support the interpretation of present experiments and predict the outcome of future planned experiments; to improve on existing models and codes and validate against experimental results; and to conduct theoretical physics development of advanced concepts with applications for DIII-D and future devices. Major accomplishments in FY91 include the corroboration between theory and experiment on MHD behavior in the second stable regime of operation on DIII-D, and the frequency and mode structure of toroidal Alfven eigenmodes in high beta, shaped plasmas. We have made significant advances in the development of the gyro-Landau fluid approach to turbulence simulation which more accurately models kinetic drive and damping mechanisms. Several theoretical models to explain the bifurcation phenomenon in L- to H-mode transition were proposed providing the theoretical basis for future experimental verification. The capabilities of new rf codes have been upgraded in response to the expanding needs of the rf experiments. Codes are being employed to plan for a fully non-inductive current drive experiment in a high beta, enhanced confinement regime. GA`s experimental effort in Applied Physics encompasses two advanced diagnostics essential for the operation of future fusion experiments: Alpha particle diagnostic, and current and density profile diagnostics. This paper discusses research in all these topics.

  5. A study of social interaction and teamwork in reformed physics laboratories

    Science.gov (United States)

    Gresser, Paul W.

    It is widely accepted that, for many students, learning can be accomplished most effectively through social interaction with peers, and there have been many successes in using the group environment to improve learning in a variety of classroom settings. What is not well understood, however, are the dynamics of student groups, specifically how the students collectively apprehend the subject matter and share the mental workload. This research examines recent developments of theoretical tools for describing the cognitive states of individual students: associational patterns such as epistemic games and cultural structures such as epistemological framing. Observing small group interaction in authentic classroom situations (labs, tutorials, problem solving) suggests that these tools could be effective in describing these interactions. Though conventional wisdom tells us that groups may succeed where individuals fail, there are many reasons why group work may also run into difficulties, such as a lack or imbalance of knowledge, an inappropriate mix of learning styles, or a destructive power arrangement. This research explores whether or not inconsistent epistemological framing among group members can also be a cause of group failure. Case studies of group interaction in the laboratory reveal evidence of successful groups employing common framing, and unsuccessful groups failing from lack of a shared frame. This study was conducted in a large introductory algebra-based physics course at the University of Maryland, College Park, in a laboratory designed specifically to foster increased student interaction and cooperation. Videotape studies of this environment reveal that productive lab groups coordinate their efforts through a number of locally coherent knowledge-building activities, which are described through the framework of epistemic games. The existence of these epistemic games makes it possible for many students to participate in cognitive activities without a

  6. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    Virginia L. Finley

    2004-04-07

    The purpose of this report is to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of the Princeton Plasma Physics Laboratory's (PPPL) operations. The results of the 2001 environmental surveillance and monitoring program for PPPL are presented and discussed. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2001. PPPL has engaged in fusion energy research since 1951. The vision of the Laboratory is to create innovations to make fusion power a practical reality--a clean, alternative energy source. The Year 2001 marked the third year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. In 2001, PPPL's radiological environmental monitoring program measured tritium in the air at on- and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations; also included in PPPL's radiological environmental monitoring program, are water monitoring--precipitation, ground-, surface-, and waste-waters. PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the D-site stack; the data are presented in this report. Groundwater monitoring

  7. Learning evaluation of interference and diffraction of light in physics laboratory

    Directory of Open Access Journals (Sweden)

    Silvia Bravo

    2016-08-01

    Full Text Available This paper presents the results of an investigation referred to the learning of interference and diffraction of light in the context of a physic laboratory, through the application of a didactic proposal with students from an undergraduate course in physics. The design of the experimental activities has taken into account the difficulties reported by educational research, as well as the contribution of the Vergnaud conceptual fields theory, Ausubel meaningful learning theory and Vigotsky sociolinguistics theory. The research was focused in the study of students cognitive development during the implementation of the didactic proposal and the assessment of it through the skills development. A methodological qualitative approach was used, in an interpretative perspective, with a research-action design, where the researcher acts as a teacher while he collects the data. Researcher's field notes have been used in a complementarily, audio recordings of group interactions, video recordings of students’ teamwork, group reports about the individual activities and assessments. The results obtained from the analysis of the content of the registers and the interpretation from the theory of conceptual fields show an evolution in the students’ schemes. Their initials schemes, which were focused on ray optics, evolve to schemes focused on the wave model. The results obtained from the group reports and from the individual assessment show that all the students have managed to develop most skills raised as learning objectives in the didactic proposal.

  8. Target Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — [Part of the ATLAS user facility.] The Physics Division operates a target development laboratory that produces targets and foils of various thickness and substrates,...

  9. Laboratory activities and physics learning at high school: an exploratory study in portuguese settings

    Directory of Open Access Journals (Sweden)

    Margarida Saraiva-Neves

    2006-12-01

    Full Text Available In this paper we present findings of an exploratory study, included in a wider investigation which intends to promote meaningful learning of physics concepts, based on experimental work and supported by metacognition tools. The aim of this research was to recognize promoting learning situations in Physics lab. Interviews and questionnaires were applied to teachers and students from four Lisbon high schools. Results show that lab work in physics has a low frequency and, generally, has a demonstration format. Both teachers and students recognize potentialities of lab work to promote learning. Learning is poor when students just observe and/or accomplish commands. Both teachers and students consider the relation theory/experimentation and students doing themselves as fundamental to achieve better learning. In addition to pointing out several problems concerning lab work, teachers envisage it in a very traditional way. So, innovative strategies and methodologies, such as computer use and open-ended problems, pointed by research in science investigation as promoting learning, are left aside.

  10. Assessing students' learning outcomes, self-efficacy and attitudes toward the integration of virtual science laboratory in general physics

    Science.gov (United States)

    Ghatty, Sundara L.

    Over the past decade, there has been a dramatic rise in online delivery of higher education in the United States. Recent developments in web technology and access to the internet have led to a vast increase in online courses. For people who work during the day and whose complicated lives prevent them from taking courses on campus, online courses are the only alternatives by which they may achieve their goals in education. The laboratory courses are the major requirements for college and university students who want to pursue degree and certification programs in science. It is noted that there is a lack of laboratory courses in online physics courses. The present study addressed the effectiveness of a virtual science laboratory in physics instruction in terms of learning outcomes, attitudes, and self-efficacy of students in a Historically Black University College. The study included fifty-eight students (36 male and 22 female) of different science majors who were enrolled in a general physics laboratory course. They were divided into virtual and traditional groups. Three experiments were selected from the syllabus. The traditional group performed one experiment in a traditional laboratory, while the virtual group performed the same experiment in a virtual laboratory. For the second experiment, the use of laboratories by both groups was exchanged. Learner's Assessment Test (LAT), Attitudes Toward Physics Laboratories (ATPL), and Self-Efficacy Survey (SES) instruments were used. Additionally, quantitative methods such as an independent t-test, a paired t-test, and correlation statistics were used to analyze the data. The results of the first experiment indicated the learning outcomes were higher in the Virtual Laboratory than in the traditional laboratory, whereas there was no significant difference in learning outcomes with either type of lab instruction. However, significant self-efficacy gains were observed. Students expressed positive attitudes in terms of liking

  11. Shock Thermodynamic Applied Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Shock Thermodynamic Applied Research Facility (STAR) facility, within Sandia’s Solid Dynamic Physics Department, is one of a few institutions in the world with...

  12. Shock Thermodynamic Applied Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Shock Thermodynamic Applied Research Facility (STAR) facility, within Sandia’s Solid Dynamic Physics Department, is one of a few institutions in the world with a...

  13. Methods of the professional-applied physical preparation of students of higher educational establishments of economic type

    Directory of Open Access Journals (Sweden)

    Maliar E.I.

    2010-11-01

    Full Text Available Is considered the directions of professionally-applied physical preparation of students with the prevailing use of facilities of football. Are presented the methods of professionally-applied physical preparation of students. It is indicated that application of method of the circular training is rendered by an assistance development of discipline, honesty, honesty, rational use of time. Underline, that in teaching it is necessary to provide a short cut to mastering of the planned knowledge, abilities and skills, improvement of physical qualities.

  14. The physics of non-volcanic tremor: insights from laboratory-scale earthquakes

    Science.gov (United States)

    di Toro, G.; Meredith, P.

    2012-04-01

    Due to his extensive early experience in field structural geology, Luigi Burlini's experimental research was always aimed at using laboratory techniques and simulations to improve our understanding of the physics of natural rock deformation. Here we present an example of collaborative work from the later part of his scientific career in which the main goal was unravelling the physics of non-volcanic tremor in subduction zones. This was achieved by deforming typical source rocks (serpentinites) under conditions (300 MPa and 600oC) that approach those expected in nature (up to 1 GPa and 500oC). The main technical challenge was to capture deformation-induced microseismicity (in the form of acoustic emissions) released under such extreme conditions by means of in-situ transducers designed to work at only modest temperatures (up to 200oC). The main scientific challenges were (1) to link the acoustic emission output to specific physical processes, such as cracking, fluid flow or fluid-crack interactions, by means of waveform and microstructural analysis; and (2) to extrapolate the laboratory acoustic emission signals (kHz to MHz frequency) associated with mm to cm-scale processes, to natural seismicity (0.1-1 Hz frequency) associated with km-scale rock volumes by means of frequency scaling (Aki and Richards, 1980). Episodic tremor and slip (ETS) has been correlated with rupture phenomena in subducting oceanic lithosphere at 30 to 45 km depth, where high Vp/Vs ratios, suggestive of high-fluid pressure, have also been observed. ETS, by accommodating slip in the down-dip portion of the subduction zone, may trigger megathrust earthquakes up-dip in the locked section. In our experiments we measured the output of acoustic emissions during heating of serpentinite samples to beyond their equilibrium dehydration temperature. Experiments were performed on cores samples 15 mm in diameter by 30 mm long under hydrostatic stresses of 200 or 300 MPa in a Paterson high

  15. Nuclear Physics Laboratory, University of Colorado technical progress report, 1976 and proposal for continuation of contract

    Energy Technology Data Exchange (ETDEWEB)

    1976-11-01

    This report summarizes the work carried out at the Nuclear Physics Laboratory of the University of Colorado during the period November 1, 1975 to November 1, 1976. The low energy nuclear physics section is dominated by light-ion reaction studies which span a wide range. These include both two-neutron and two-proton transfer reactions, charge exchange and inelastic scattering, as well as single nucleon transfer reactions. The nuclei studied vary widely in their mass and characteristics. These reaction studies have been aided by the multi-use scattering chamber which now allows the energy-loss-spectrometer beam preparation system (beam swinger) to shift from charged particle studies to neutron time-of-flight studies with a minimum loss of time. The intermediate energy section reflects the increase in activity accompanying the arrival of LAMPF data and the initiation of (p,d) studies at the Indiana separated-sector cyclotron. The nucleon removal results provided by the ..pi.. beam at EPICS previous to completion of the spectrometer have shown that nuclear effects dominate this process, so that the widely used free interaction picture is inadequate. The section entitled ''Other Activities'' reveals continuing activities in new applications of nuclear techniques to problems in medicine and biology. Reactions important to astrophysics continue to be investigated and our trace-element program remains at a high level of activity. The theoretical section reports new progress in understanding magnitudes of two-step reactions by inclusion of finite-range effects. A new finite-range program which is fast and economical has been completed. Intermediate energy results include calculations of ..pi..-..gamma.. angular correlations, low energy ..pi..-nucleus interactions, as well as (p,d) and nucleon scattering calculations for intermediate energies.

  16. Virtual earthquake engineering laboratory with physics-based degrading materials on parallel computers

    Science.gov (United States)

    Cho, In Ho

    For the last few decades, we have obtained tremendous insight into underlying microscopic mechanisms of degrading quasi-brittle materials from persistent and near-saintly efforts in laboratories, and at the same time we have seen unprecedented evolution in computational technology such as massively parallel computers. Thus, time is ripe to embark on a novel approach to settle unanswered questions, especially for the earthquake engineering community, by harmoniously combining the microphysics mechanisms with advanced parallel computing technology. To begin with, it should be stressed that we placed a great deal of emphasis on preserving clear meaning and physical counterparts of all the microscopic material models proposed herein, since it is directly tied to the belief that by doing so, the more physical mechanisms we incorporate, the better prediction we can obtain. We departed from reviewing representative microscopic analysis methodologies, selecting out "fixed-type" multidirectional smeared crack model as the base framework for nonlinear quasi-brittle materials, since it is widely believed to best retain the physical nature of actual cracks. Microscopic stress functions are proposed by integrating well-received existing models to update normal stresses on the crack surfaces (three orthogonal surfaces are allowed to initiate herein) under cyclic loading. Unlike the normal stress update, special attention had to be paid to the shear stress update on the crack surfaces, due primarily to the well-known pathological nature of the fixed-type smeared crack model---spurious large stress transfer over the open crack under nonproportional loading. In hopes of exploiting physical mechanism to resolve this deleterious nature of the fixed crack model, a tribology-inspired three-dimensional (3d) interlocking mechanism has been proposed. Following the main trend of tribology (i.e., the science and engineering of interacting surfaces), we introduced the base fabric of solid

  17. Development of the negative ion source at the National Laboratory for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Akira [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1997-02-01

    On formation of direct high frequency chopped negative hydrogen ion beam from surface forming type negative hydrogen ion source, incident acceleration due to proton synchrotron was tried for a forming experiment and its application. By overlapping a high frequency pulse onto a bias DC voltage of convertor electrode, control of formation of negative hydrogen ion with high speed RF pulse of 2 MHz could be realized. And, incidence into 12 GeV proton accelerator to catch RF particles with waiting bucket system due to booster synchrotron, was effective for control of longitudinal emittance in the booster synchrotron. As a result, controls of the beam width and shape emitted from the booster synchrotron were possible. On application of high speed chopped negative hydrogen ion beam to accelerator, improvement of beam capture efficiency to the accelerated RF bucket, control of longitudinal emittance of accelerated beam, beam measurement at incidence into the accelerator and so forth were conducted. In this paper, results of the high speed chopped beam formation experiment using surface plasma forming type negative ion source and application of high speed beam chopping method synchronized with high frequency pulse at the National Laboratory of High Energy Physics are described. (G.K.)

  18. John H. Williams Laboratory of Nuclear Physics, University of Minnesota annual report, 1976

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This report summarizes the work done at the Williams Laboratory of the University of Minnesota during the period from August 1975 through 1976. The major part of this report describes recent results and work in progress in the nuclear physics research program. Work involving beams of light ions and light element targets is followed by work using heavier targets and then the experiments using beams of oxygen and fluorine ions. This heavy ion work occupies a larger portion of our program than in previous reports. The investigation of L-subshell ionization cross sections for heavy element targets and the studies of hyperfine splitting and isotope shifts are briefly described. The improved operation of the tandem Van de Graaff resulting from the installation of a new set of acceleration tubes and other modifications is discussed. The current state of the testing of an on-line mass spectrometer and the installation of a source producing a beam of tritons is described. The final sections of this report list personnel, degrees granted, and publications of the staff. Separate indexing has been prepared for 10 sections of this report for appearance in ERA.

  19. An Overview of Science Education and Outreach Activities at the Princeton Plasma Physics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    J. DeLooper; A. DeMeo; P. Lucas; A. Post-Zwicker; C. Phillips; C. Ritter; J. Morgan; P. Wieser; A. Percival; E. Starkman; G. Czechowicz

    2000-11-07

    The U. S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) has an energetic science education program and outreach effort. This overview describes the components of the programs and evaluates the changes that have occurred in this effort during the last several years. Efforts have been expanded to reach more students, as well as the public in general. The primary goal is to inform the public regarding the fusion and plasma research at PPPL and to excite students so that they can appreciate science and technology. A student's interest in science can be raised by tours, summer research experiences, in-classroom presentations, plasma expos, teacher workshops and web-based materials. The ultimate result of this effort is a better-informed public, as well as an increase in the number of women and minorities who choose science as a vocation. Measuring the results is difficult, but current metrics are reviewed. The science education and outreach programs are supported by a de dicated core group of individuals and supplemented by other members of the PPPL staff and consultants who perform various outreach and educational activities.

  20. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1990

    Energy Technology Data Exchange (ETDEWEB)

    Stencel, J.R.; Finley, V.L.

    1991-12-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory for CY90. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health. The PPPL has engaged in fusion energy research since 1951 and in 1990 had one of its two large tokamak devices in operation: namely, the Tokamak Fusion Test Reactor. The Princeton Beta Experiment-Modification is undergoing new modifications and upgrades for future operation. A new machine, the Burning Plasma Experiment -- formerly called the Compact Ignition Tokamak -- is under conceptual design, and it is awaiting the approval of its draft Environmental Assessment report by DOE Headquarters. This report is required under the National Environmental Policy Act. The long-range goal of the US Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. 59 refs., 39 figs., 45 tabs.

  1. Laboratory Performance Evaluation of Physical and Mechanical Road Base Construction Properties

    Directory of Open Access Journals (Sweden)

    Mojtaba Shojaei Baghini

    2015-05-01

    Full Text Available Road-bases are quarry materials, which are used in the construction of road pavements. They comprised a combination of coarse and fine crushed materials, which when placed and compacted at the correct moisture, form a stiff layer. For soil aggregates materials to be used correctly in road construction, it is necessary to know their properties. In addition, road-base material characterizations are needed to design an adequate pavement structure for expected traffics load. This study aims to evaluate the effects of the physical, chemical and mechanical behaviors of soil aggregate as granular road base materials in order to provide rudimentary understanding of roads based materials on mechanistic-empirical pavement design and analysis using experimental laboratory tests. These tests were performed in accordance with American Society for Testing and Materials (ASTM and British Standards (BS on fine and coarse soil aggregates along with base aggregate used in pavements. The results show that the optimum moisture content, maximum dry density and plasticity index have significant influence on the behavior of these materials.

  2. Using an Advanced Computational Laboratory Experiment to Extend and Deepen Physical Chemistry Students' Understanding of Atomic Structure

    Science.gov (United States)

    Hoffman, Gary G.

    2015-01-01

    A computational laboratory experiment is described, which involves the advanced study of an atomic system. The students use concepts and techniques typically covered in a physical chemistry course but extend those concepts and techniques to more complex situations. The students get a chance to explore the study of atomic states and perform…

  3. Physics Laboratory Investigation of Vocational High School Field Stone and Concrete Construction Techniques in the Central Java Province (Indonesia)

    Science.gov (United States)

    Purwandari, Ristiana Dyah

    2015-01-01

    The investigation aims in this study were to uncover the observations of infrastructures and physics laboratory in vocational high school for Stone and Concrete Construction Techniques Expertise Field or Teknik Konstruksi Batu dan Beton (TKBB)'s in Purwokerto Central Java Province, mapping the Vocational High School or Sekolah Menengah Kejuruan…

  4. Applying decision trial and evaluation laboratory as a decision tool for effective safety management system in aviation transport

    Directory of Open Access Journals (Sweden)

    Ifeanyichukwu Ebubechukwu Onyegiri

    2016-10-01

    Full Text Available In recent years, in the aviation industry, the weak engineering controls and lapses associated with safety management systems (SMSs are responsible for the seemingly unprecedented disasters. A previous study has confirmed the difficulties experienced by safety managers with SMSs and the need to direct research to this area of investigation for more insights and progress in the evaluation and maintenance of SMSs in the aviation industry. The purpose of this work is to examine the application of Decision Trial and Evaluation Laboratory (DEMATEL to the aviation industry in developing countries with illustration using the Nigerian aviation survey data for the validation of the method. The advantage of the procedure over other decision making methods is in its ability to apply feedback in its decision making. It also affords us the opportunity of breaking down the complex aviation SMS components and elements which are multi-variate in nature through the analysis of the contributions of the diverse system criteria from the perspective of cause and effects, which in turn yields easier and yet more effective aviation transportation accident pre-corrective actions. In this work, six revised components of an SMS were identified and DEMATEL was applied to obtain their direct and indirect impacts and influences on the overall SMS performance. Data collection was by the survey questionnaire, which served as the initial direct-relation matrix, coded in Matlab software for establishing the impact relation map (IRM. The IRM was then plotted in MS Excel spread-sheet software. From our results, safety structure and regulation has the highest impact level on an SMS with a corresponding positive relation level value. In conclusion, the results agree with those of previous researchers that used grey relational analysis. Thus, DEMATEL serves as a great tool and resource for the safety manager.

  5. How can we improve problem-solving in undergraduate biology? Applying lessons from 30 years of physics education research

    CERN Document Server

    Hoskinson, Anne-Marie; Knight, Jennifer K

    2012-01-01

    Modern biological problems are complex. If students are to successfully grapple with such problems as scientists and citizens, they need to have practiced solving authentic, complex problems during their undergraduate years. Physics education researchers have investigated student problem-solving for the last three decades. Although the surface features and content of biology problems differ from physics problems, teachers of both sciences want students to learn to explain patterns and processes in the natural world and to make predictions about system behaviors. After surveying literature on problem-solving in physics and biology, we propose how biology education researchers could apply research-supported pedagogical techniques from physics to enhance biology students' problem-solving. First, we characterize the problems that biology students are typically asked to solve. We then describe the development of research-validated physics problem-solving curricula. Finally, we propose how biology scholars can appl...

  6. Princeton Plasma Physics Laboratory - 1995 Highlights. Fiscal Year 1995, 1 October 1994--30 September 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The purpose of this Highlights Report is to present a brief overview of the Laboratory`s significant research accomplishments during the fiscal year 1995. The activities covered in this report include advances on the large projects, such as the discovery of the Enhanced Reversed Shear mode on the TFTR and the engineering design developments in the International Thermonuclear Experimental Reactor project, as well as the significant progress made in plasma theory, small-scale experiments, technology transfer, graduate education, and the Laboratory`s outreach program in science education.

  7. POOLkits: Applying Object Oriented Principles from Software Engineering to Physics Object Oriented Learning -- Preliminary Concepts

    Science.gov (United States)

    Kassebaum, Thomas; Aubrecht, Gordon

    2012-04-01

    Object-oriented development depends upon the creation of generic pieces that can be built into more complex parts. In physics, we begin teaching basic principles and then develop more complex systems, a fertile environment to develop learning objects. Each learning object consists of observable quantities, such as the physical properties of a block of wood, and operators that act on the object, such as force. Additionally, each object can also include an assessment operator that evaluates the impact of the learning object on student comprehension. The physics object-oriented learning kits (POOLkits) will be developed to enhance student understanding of physics concepts, as well as, build a framework for developing a software object based on the physics concept. A POOLkit can be extended, similar to the concept of extending classes in object-oriented programming, as physics knowledge expands. The expectation for these POOLkits would be to provide physics students with a solid foundation in the first principles to be able to derive more complex formulae and have the understanding of the process with a secondary benefit of enhancing the object-oriented programming capabilities of physics students.

  8. Brief Report: The Theory of Planned Behaviour Applied to Physical Activity in Young People Who Smoke

    Science.gov (United States)

    Everson, Emma S.; Daley, Amanda J.; Ussher, Michael

    2007-01-01

    It has been hypothesised that physical activity may be useful as a smoking cessation intervention for young adults. In order to inform such interventions, this study evaluated the theory of planned behaviour (TPB) for understanding physical activity behaviour in young smokers. Regular smokers aged 16-19 years (N=124), self-reported physical…

  9. Common Covert Chemical and Physical Hazards in School Science Laboratories. Part 2.

    Science.gov (United States)

    Roy, Ken

    2000-01-01

    Explains that mercury is a dangerous substance to use in school science laboratories and gives several examples of mercury poisoning. Lists some precautions that should be taken in case of mercury spillage in the lab. Advocates using non-mercury laboratory equipment and limiting student access to mercury to prevent dangerous situations. (YDS)

  10. Using Live Tissue Laboratories to Promote Clinical Reasoning in Doctor of Physical Therapy Students

    Science.gov (United States)

    Moore, W. Allen; Noonan, Ann Cassidy

    2010-01-01

    Recently, the use of animal laboratories has decreased in medical and basic science programs due to lack of trained faculty members, student concerns about animal welfare, and the increased availability of inexpensive alternatives such as computer simulations and videos. Animal laboratories, however, have several advantages over alternative forms…

  11. Study of author’s applied physical training program for military officers-graduates of reserve officers’ departments

    Directory of Open Access Journals (Sweden)

    Yavorskyy A.I.

    2016-02-01

    Full Text Available Urpose: to test effectiveness of applied physical training program for military officers, called up to military service after graduation from reserve officers’ departments. Material: the research was conducted on the base of Educational center 184 from June 2014 to December 2015. In the research 80 military officers participated (n=30 - graduates of military higher educational establishments; n=26, n=24 - graduates of reserve officers’ departments of 22-27 years’ age. Results: we fulfilled analysis of military officers’ physical fitness by exercises, which characterize general physical fitness and military applied skills (100 meters’ run, chin ups, 3000 meters’ run, passing obstacles course, grenade throws for distance and for accuracy, 5 km march-rush. We worked out the program, the essence of which implies ensuring of physical fitness and acceleration of reserve officers-graduates’ adaptation to professional (combat functioning. Conclusions: it was proved that implementation of the author’s program influenced positively on perfection of general physical qualities and military applied skills of military officers-graduated of reserve officers’ departments (р<0.05-0.001.

  12. Answer First: Applying the Heuristic-Analytic Theory of Reasoning to Examine Student Intuitive Thinking in the Context of Physics

    Science.gov (United States)

    Kryjevskaia, Mila; Stetzer, MacKenzie R.; Grosz, Nathaniel

    2014-01-01

    We have applied the heuristic-analytic theory of reasoning to interpret inconsistencies in student reasoning approaches to physics problems. This study was motivated by an emerging body of evidence that suggests that student conceptual and reasoning competence demonstrated on one task often fails to be exhibited on another. Indeed, even after…

  13. 13 CFR 123.201 - When am I not eligible to apply for a physical disaster business loan?

    Science.gov (United States)

    2010-01-01

    ... business in the business area; (6) Your implementation of decisions adopted and at least partially... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false When am I not eligible to apply for a physical disaster business loan? 123.201 Section 123.201 Business Credit and Assistance...

  14. Physics Lectures and Laboratories. A Model To Improve Preservice Elementary Science Teacher Development. Volume II.

    Science.gov (United States)

    Dresser, Miles

    A group of scientists and science educators has developed and pilot tested an integrated physical science program designed for preservice elementary school teachers. This document includes the syllabus and class materials for the Physics block of the physical science courses developed by the group. Included are diagrams, lecture notes, homework…

  15. Predicting Factors Associated with Regular Physical Activity among College Students: Applying BASNEF Model

    Directory of Open Access Journals (Sweden)

    B. Moeini

    2011-10-01

    Full Text Available Introduction & Objective: One of the important problems in modern society is people's sedentary life style. The aim of this study was to determine factors associated with regular physical activity among college students based on BASNEF model.Materials & Methods: This study was a cross-sectional study carried out on 400 students in Hamadan University of Medical Sciences. Based on the assignment among different schools, classified sampling method was chosen for data gathering using a questionnaire in three parts including: demographic information, constructs of BASNEF model, and standard international physical activity questionnaire (IPAQ. Data were analyzed by SPSS-13, and using appropriate statistical tests (Chi-square, T-test and regression. Results: Based on the results, 271 students(67.8 % had low, 124 (31% moderate ,and 5 (1.2% vigorous physical activity. There was a significant relationship (c2=6.739, df= 1, P= 0.034 between their residence and physical activity and students living in dormitory were reported to have higher level of physical activity. Behavioral intention and enabling factors from the constructs of BASNEF model were the best predictors for having physical activity in students (OR=1.215, P = 0.000 and (OR=1.119, P= 0.000 respectively.Conclusion: With regard to the fact that majority of the students did not engage in enough physical activity and enabling factors were the most effective predictors for having regular physical activity in them, it seems that providing sports facilities can promote physical activity among the students.(Sci J Hamadan Univ Med Sci 2011;18(3:70-76

  16. Setting up the photoluminescence laboratory at ISOLDE & Perturbed Angular Correlation spectroscopy for BIO physics experiments using radioactive ions

    CERN Document Server

    Savva, Giannis

    2016-01-01

    The proposed project I was assigned was to set up the photoluminescence (PL) laboratory at ISOLDE, under the supervision of Karl Johnston. My first week at CERN coincided with the run of a BIO physics experiment using radioactive Hg(II) ions in which I also participated under the supervision of Stavroula Pallada. This gave me the opportunity to work in two projects during my stay at CERN and in the present report I describe briefly my contribution to them.

  17. Institute of Geophysics and Planetary Physics (IGPP), Lawrence Livermore National Laboratory (LLNL): Quinquennial report, November 14-15, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Tweed, J.

    1996-10-01

    This Quinquennial Review Report of the Lawrence Livermore National Laboratory (LLNL) branch of the Institute for Geophysics and Planetary Physics (IGPP) provides an overview of IGPP-LLNL, its mission, and research highlights of current scientific activities. This report also presents an overview of the University Collaborative Research Program (UCRP), a summary of the UCRP Fiscal Year 1997 proposal process and the project selection list, a funding summary for 1993-1996, seminars presented, and scientific publications. 2 figs., 3 tabs.

  18. Developing the learning physical science curriculum: Adapting a small enrollment, laboratory and discussion based physical science course for large enrollments

    Science.gov (United States)

    Goldberg, Fred; Price, Edward; Robinson, Stephen; Boyd-Harlow, Danielle; McKean, Michael

    2012-06-01

    We report on the adaptation of the small enrollment, lab and discussion based physical science course, Physical Science and Everyday Thinking (PSET), for a large-enrollment, lecture-style setting. Like PSET, the new Learning Physical Science (LEPS) curriculum was designed around specific principles based on research on learning to meet the needs of nonscience students, especially prospective and practicing elementary and middle school teachers. We describe the structure of the two curricula and the adaptation process, including a detailed comparison of similar activities from the two curricula and a case study of a LEPS classroom implementation. In LEPS, short instructor-guided lessons replace lengthier small group activities, and movies, rather than hands-on investigations, provide the evidence used to support and test ideas. LEPS promotes student peer interaction as an important part of sense making via “clicker” questions, rather than small group and whole class discussions typical of PSET. Examples of student dialog indicate that this format is capable of generating substantive student discussion and successfully enacting the design principles. Field-test data show similar student content learning gains with the two curricula. Nevertheless, because of classroom constraints, some important practices of science that were an integral part of PSET were not included in LEPS.

  19. Industrial Safety and Applied Health Physics Division, annual report for 1982

    Energy Technology Data Exchange (ETDEWEB)

    1983-12-01

    Activities during the past year are summarized for the Health Physics Department, the Environmental Management Department, and the Safety Department. The Health Physics Department conducts radiation and safety surveys, provides personnel monitoring services for both external and internal radiation, and procures, services, and calibrates appropriate portable and stationary health physics instruments. The Environmental Management Department insures that the activities of the various organizations within ORNL are carried out in a responsible and safe manner. This responsibility involves the measurement, field monitoring, and evaluation of the amounts of radionuclides and hazardous materials released to the environment and the control of hazardous materials used within ORNL. The department also collaborates in the design of ORNL Facilities to help reduce the level of materials released to the environment. The Safety Department is responsible for maintaining a high level of staff safety. This includes aspects of both operational and industrial safety and also coordinates the activities of the Director's Safety Review Committee. (ACR)

  20. 2015 Final Reports from the Los Alamos National Laboratory Computational Physics Student Summer Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Runnels, Scott Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Caldwell, Wendy [Arizona State Univ., Mesa, AZ (United States); Brown, Barton Jed [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pederson, Clark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Justin [Univ. of California, Santa Cruz, CA (United States); Burrill, Daniel [Univ. of Vermont, Burlington, VT (United States); Feinblum, David [Univ. of California, Irvine, CA (United States); Hyde, David [SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Levick, Nathan [Univ. of New Mexico, Albuquerque, NM (United States); Lyngaas, Isaac [Florida State Univ., Tallahassee, FL (United States); Maeng, Brad [Univ. of Michigan, Ann Arbor, MI (United States); Reed, Richard LeRoy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sarno-Smith, Lois [Univ. of Michigan, Ann Arbor, MI (United States); Shohet, Gil [Univ. of Illinois, Urbana-Champaign, IL (United States); Skarda, Jinhie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stevens, Josey [Missouri Univ. of Science and Technology, Rolla, MO (United States); Zeppetello, Lucas [Columbia Univ., New York, NY (United States); Grossman-Ponemon, Benjamin [Stanford Univ., CA (United States); Bottini, Joseph Larkin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Loudon, Tyson Shane [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); VanGessel, Francis Gilbert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nagaraj, Sriram [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Price, Jacob [Univ. of Washington, Seattle, WA (United States)

    2015-10-15

    The two primary purposes of LANL’s Computational Physics Student Summer Workshop are (1) To educate graduate and exceptional undergraduate students in the challenges and applications of computational physics of interest to LANL, and (2) Entice their interest toward those challenges. Computational physics is emerging as a discipline in its own right, combining expertise in mathematics, physics, and computer science. The mathematical aspects focus on numerical methods for solving equations on the computer as well as developing test problems with analytical solutions. The physics aspects are very broad, ranging from low-temperature material modeling to extremely high temperature plasma physics, radiation transport and neutron transport. The computer science issues are concerned with matching numerical algorithms to emerging architectures and maintaining the quality of extremely large codes built to perform multi-physics calculations. Although graduate programs associated with computational physics are emerging, it is apparent that the pool of U.S. citizens in this multi-disciplinary field is relatively small and is typically not focused on the aspects that are of primary interest to LANL. Furthermore, more structured foundations for LANL interaction with universities in computational physics is needed; historically interactions rely heavily on individuals’ personalities and personal contacts. Thus a tertiary purpose of the Summer Workshop is to build an educational network of LANL researchers, university professors, and emerging students to advance the field and LANL’s involvement in it. This report includes both the background for the program and the reports from the students.

  1. 2016 Final Reports from the Los Alamos National Laboratory Computational Physics Student Summer Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Runnels, Scott Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bachrach, Harrison Ian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carlson, Nils [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Collier, Angela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dumas, William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fankell, Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ferris, Natalie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gonzalez, Francisco [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Griffith, Alec [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Guston, Brandon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kenyon, Connor [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Benson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mookerjee, Adaleena [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parkinson, Christian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Peck, Hailee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Peters, Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poondla, Yasvanth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rogers, Brandon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shaffer, Nathaniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trettel, Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Valaitis, Sonata Mae [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Venzke, Joel Aaron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Black, Mason [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Demircan, Samet [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holladay, Robert Tyler [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-22

    The two primary purposes of LANL’s Computational Physics Student Summer Workshop are (1) To educate graduate and exceptional undergraduate students in the challenges and applications of computational physics of interest to LANL, and (2) Entice their interest toward those challenges. Computational physics is emerging as a discipline in its own right, combining expertise in mathematics, physics, and computer science. The mathematical aspects focus on numerical methods for solving equations on the computer as well as developing test problems with analytical solutions. The physics aspects are very broad, ranging from low-temperature material modeling to extremely high temperature plasma physics, radiation transport and neutron transport. The computer science issues are concerned with matching numerical algorithms to emerging architectures and maintaining the quality of extremely large codes built to perform multi-physics calculations. Although graduate programs associated with computational physics are emerging, it is apparent that the pool of U.S. citizens in this multi-disciplinary field is relatively small and is typically not focused on the aspects that are of primary interest to LANL. Furthermore, more structured foundations for LANL interaction with universities in computational physics is needed; historically interactions rely heavily on individuals’ personalities and personal contacts. Thus a tertiary purpose of the Summer Workshop is to build an educational network of LANL researchers, university professors, and emerging students to advance the field and LANL’s involvement in it.

  2. Evaluation of physical and mental health of sexual assault cases applied to forensic medicine department

    Directory of Open Access Journals (Sweden)

    Mustafa Korkmaz

    2014-12-01

    Full Text Available Objective: In the present study, to assess the sexual assault victims considering sociodemographic and forensic psychiatry who were examined by our Board of Physical and Mental Health was aimed. Methods: The cases who were examined in Board of Physical and Mental Health in Forensic medicine Department of Dicle University, Faculty of Medicine were assessed retrospectively in terms of age, gender, marital status, education level, relation of the victim with the accused, presence of penetration and disruption of physical and mental health. Results: Among 258 cases, who referred to our board, 196 were female and 62 were male. The age range of the victims was 2 to 50 and average age was detected as 13.1 ± 5.9 years. It was determined that 227 (88% cases were under 18 years and 31 cases (12% were above 18 years. Vaginal and anal penetration was claimed in 48 and 61 cases, respectively; oral + anal penetration was claimed in 11 cases; both vaginal and oral penetration was claimed in two cases. Among 258 cases, 144 cases had no physical and mental disruption; 49 cases were diagnosed with mental and physical health disruption and 65 cases were followed by issuing a preliminary report. Conclusion: As a result of our study any significant relation is not found between impairment in psychological health and sex, marital status, educational level of the victim, age groups, the age difference between the victim and the defendant. Therefore, it is understood that either men or women, married or single, educated or uneducated people are affected emotionally as bad as from sexual assault. This supports the idea that, especially in cases that any findings cannot be obtained with genital and physical examination, psychological evaluation may be important.

  3. Professional-applied physical training students by means of field hockey

    Directory of Open Access Journals (Sweden)

    Pylypey L.P.

    2010-01-01

    Full Text Available Description of the modern crisis state of health and physical preparedness of graduating students of higher institutes is resulted. Most graduating students can not high-quality work on a production. Not efficiency of the existent system of physical education is rotined in the institutes of higher. The terms of intensification of educational process are considered. Efficiency and forming actuality is investigational for the students of motivation to the select kind of sport (field hockey. The stages of introduction of innovative approaches, new credit-module technologies in the river-bed of the Bologna system are presented.

  4. The Design Process of Physical Security as Applied to a U.S. Border Point of Entry

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, G.G.

    1998-10-26

    This paper describes the design process of physical security as applied to a U.S. Border Port of Entry (PoE). Included in this paper are descriptions of the elements that compose U.S. border security. The physical security design will describe the various elements that make up the process as well as the considerations that must be taken into account when dealing with system integration of those elements. The distinctions between preventing unlawful entry and exit of illegal contraband will be emphasized.

  5. Physical aspects and determination of evaporation in deserts applying remote sensing techniques

    NARCIS (Netherlands)

    Menenti, M.

    1984-01-01

    In the deserts of the world groundwater losses by evaporation are shown to be a very important and almost unknown quantity in the water balance of aquifers present.After establishing a new combination formula to calculate actual evaporation from within the soil, the evaporational soil physical aspec

  6. Low-Cost Educational Robotics Applied to Physics Teaching in Brazil

    Science.gov (United States)

    Souza, Marcos A. M.; Duarte, José R. R.

    2015-01-01

    In this paper, we propose some of the strategies and methodologies for teaching high-school physics topics through an educational robotics show. This exhibition was part of a set of actions promoted by a Brazilian government program of incentive for teaching activities, whose primary focus is the training of teachers, the improvement of teaching…

  7. The Comparison of Physical Education and Sports Lessons Applied in Education Systems of Turkey and Kosovo

    Science.gov (United States)

    Hergüner, Gülten; Önal, Ayse; Berisha, Milaim; Yaman, Menzure Sibel

    2016-01-01

    This study was conducted in order to compare and determine the differences between the syllabuses, class hours, subject topics, contents and acquirements of Physical Education and Sports Lessons in primary, middle and high schools in Turkey and Kosovo. This is an international comparative education study in which the aim is to reveal the…

  8. Open web system of Virtual labs for nuclear and applied physics

    Science.gov (United States)

    Saldikov, I. S.; Afanasyev, V. V.; Petrov, V. I.; Ternovykh, M. Yu

    2017-01-01

    An example of virtual lab work on unique experimental equipment is presented. The virtual lab work is software based on a model of real equipment. Virtual labs can be used for educational process in nuclear safety and analysis field. As an example it includes the virtual lab called “Experimental determination of the material parameter depending on the pitch of a uranium-water lattice”. This paper included general description of this lab. A description of a database on the support of laboratory work on unique experimental equipment which is included this work, its concept development are also presented.

  9. Physical Properties of Ambient and Laboratory-Generated Secondary Organic Aerosol

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Rachel E.; Neu, Alexander; Epstein, Scott A.; MacMillan, Amanda; Wang, Bingbing; Kelly, Stephen T.; Nizkorodov, Sergey; Laskin, Alexander; Moffet, Ryan C.; Gilles, Mary K.

    2014-06-17

    The size and thickness of organic aerosol particles collected by impaction in five field campaigns were compared to those of laboratory generated secondary organic aerosols (SOA). Scanning transmission x-ray microscopy (STXM) was used to measure the total carbon absorbance (TCA) by individual particles as a function of their projection areas on the substrate. Because they flatten less upon impaction, particles with higher viscosity and surface tension can be identified by a steeper slope on a plot of TCA vs. size. The slopes of the ambient data are statistically similar indicating a small range of average viscosities and surface tensions across five field campaigns. Steeper slopes were observed for the plots corresponding to ambient particles, while smaller slopes were indicative of the laboratory generated SOA. This comparison indicates that ambient organic particles have higher viscosities and surface tensions than those typically generated in laboratory SOA studies.

  10. How can we improve problem solving in undergraduate biology? Applying lessons from 30 years of physics education research.

    Science.gov (United States)

    Hoskinson, A-M; Caballero, M D; Knight, J K

    2013-06-01

    If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research.

  11. Applying cognitive developmental psychology to middle school physics learning: The rule assessment method

    Science.gov (United States)

    Hallinen, Nicole R.; Chi, Min; Chin, Doris B.; Prempeh, Joe; Blair, Kristen P.; Schwartz, Daniel L.

    2013-01-01

    Cognitive developmental psychology often describes children's growing qualitative understanding of the physical world. Physics educators may be able to use the relevant methods to advantage for characterizing changes in students' qualitative reasoning. Siegler developed the "rule assessment" method for characterizing levels of qualitative understanding for two factor situations (e.g., volume and mass for density). The method assigns children to rule levels that correspond to the degree they notice and coordinate the two factors. Here, we provide a brief tutorial plus a demonstration of how we have used this method to evaluate instructional outcomes with middle-school students who learned about torque, projectile motion, and collisions using different instructional methods with simulations.

  12. The first dozen years of the history of ITEP Theoretical Physics Laboratory

    CERN Document Server

    Ioffe, B L

    2012-01-01

    The theoretical investigations at ITEP in the years 1945-1958 are reviewed. There are exposed the most important theoretical results, obtained in the following branches of physics: 1) the theory of nuclear reactors on thermal neutrons; 2) the hydrogen bomb project ("Tube" in USSR and "Classical Super" in USA); 3) radiation theory; ~4) low temperature physics; 5) quantum electrodynamics and quantum field theories; 6) parity violation in weak interactions, the theory of $\\beta$-decay and other weak processes; 7) strong interaction and nuclear physics. To the review are added the English translations of few papers, originally published in Russian, but unknown (or almost unknown) to Western readers.

  13. The first dozen years of the history of ITEP Theoretical Physics Laboratory

    Science.gov (United States)

    Ioffe, B. L.

    2013-01-01

    The theoretical investigations at ITEP in the years 1945 - 1958 are reviewed. There are exposed the most important theoretical results, obtained in the following branches of physics: (1) the theory of nuclear reactors on thermal neutrons; (2) the hydrogen bomb project ("Tube" in USSR and "Classical Super" in USA); (3) radiation theory; (4) low temperature physics; (5) quantum electrodynamics and quantum field theories; (6) parity violation in weak interactions, the theory of β-decay and other weak processes; (7) strong interaction and nuclear physics. To the review are added the English translations of a few papers, originally published in Russian, but unknown (or almost unknown) to Western readers.

  14. Applied physical education and search of innovative forms of teaching students

    OpenAIRE

    Pavlov V.I.; Aleshkina O.Yu.

    2015-01-01

    Objective: to analyze the effectiveness of Internet technologies for learning, assessment and control of the development of theoretical material in the process of physical education of students. Material and Methods. The study involved 453 people: in the study group — 235 students; in the control group — 218 respondents. The method of research is the statistical analysis of performance testing. Results. The academic program, information technology training process and score-rating system of e...

  15. Study of author’s applied physical training program for military officers-graduates of reserve officers’ departments

    OpenAIRE

    Yavorskyy A.I.

    2016-01-01

    Urpose: to test effectiveness of applied physical training program for military officers, called up to military service after graduation from reserve officers’ departments. Material: the research was conducted on the base of Educational center 184 from June 2014 to December 2015. In the research 80 military officers participated (n=30 - graduates of military higher educational establishments; n=26, n=24 - graduates of reserve officers’ departments) of 22-27 years’ age. Results: we fulfilled a...

  16. Organizational methods conditions of formation of motivation at corresponding pedagogical skills to professional-applied physical training

    Directory of Open Access Journals (Sweden)

    Victorya Tsybul’ska

    2014-12-01

    Full Text Available Purpose: to develop organizational and methodological conditions of formation and motivation of students to determine their effectiveness. Materials and Methods: the study was conducted by third year student of the correspondence department of the Faculty of Primary Education (53 people. We used the following methods: survey of theoretical knowledge, motor tests, evaluation methods of physical health (G. Apanasenko, psychological methods of training motivation (T. Ilyina, motivation to succeed (T. Elers, rapid diagnosis empathy (I. Yusupova, methods of mathematical statistics. Results: the factors that affect the state of professionally-applied physical fitness of students of the correspondence department of the Faculty of Primary Education. Conclusions: the proposed organizational and methodological conditions activation independent of external students is the basis for providing in centives for self-study educational materials, improving theoretical knowledge in the field of physical education, increased motor activity through various forms of regular exercise.

  17. Neurocognitive performance and physical function do not change with physical-cognitive-mindfulness training in female laboratory technicians with chronic musculoskeletal pain

    DEFF Research Database (Denmark)

    Jay, Kenneth; Brandt, Mikkel; Schraefel, M. C.;

    2016-01-01

    nervous system vital signs neurocognitive assessment battery, for example, Psychomotoer Speed 1.9 (-1.0 to 4.7), Reaction Time -4.0 (-19.5 to 11.6), Complex Attention -0.3 (-1.9 to 1.4), and Executive Function -0.2 (-3.5 to 3.0). Similarly, we found no change in maximal voluntary isometric strength -0...... allocated 112 female laboratory technicians with chronic upper limb pain to group-based PCMT at the worksite or a reference group for 10 weeks. Neurocognitive performance was measured by the computerized central nervous system vital signs neurocognitive assessment battery. Physical function was assessed...

  18. The Rolling with Slipping Experiment in the Virtual Physics Laboratory--Context-Based Teaching Material

    Science.gov (United States)

    Maidana, Nora L.; da Fonseca, Monaliza; Barros, Suelen F.; Vanin, Vito R.

    2016-01-01

    The Virtual Laboratory was created as a complementary educational activity, with the aim of working abstract concepts from an experimental point of view. In this work, the motion of a ring rolling and slipping in front of a grid printed panel was recorded. The frames separated from this video received a time code, and the resulting set of images…

  19. The european Laboratory for particle physics uses a new documental system created by a UGR researcher

    CERN Multimedia

    Ruiz, Antonio

    2006-01-01

    "The growing digitalization of traditional libraries and the increase of scientific production, like in the fields of high energies physics, have leaded to consider the manual indexing systems to be obsolete, as they are unviable in practice." (1 page)

  20. FOOTWEAR PERFORMANCE LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory provides biomechanical and physical analyses for both military and commercial footwear. The laboratory contains equipment that is integral to the us...

  1. Conceptual and Laboratory Exercise to Apply Newton’s Second Law to a System of Many Forces

    Science.gov (United States)

    2012-01-01

    laboratory. Figure 1. Sketch of the setup for the classroom exercise. Classroom exercise Begin with the following problem that groups of 2–3 students...getting closer to the extramural interests of many students, the free rolling (coasting) of vehicles (such as bicycles [14] or cars [15]) can be measured

  2. Optimization of Curvi-Linear Tracing Applied to Solar Physics and Biophysics

    CERN Document Server

    Aschwanden, Markus J; Katrukha, Eugene A

    2013-01-01

    We developed an automated pattern recognition code that is particularly well suited to extract one-dimensional curvi-linear features from two-dimensional digital images. A former version of this {\\sl Oriented Coronal CUrved Loop Tracing (OCCULT)} code was applied to spacecraft images of magnetic loops in the solar corona, recorded with the NASA spacecraft {\\sl Transition Region And Coronal Explorer (TRACE)} in extreme ultra-violet wavelengths. Here we apply an advanced version of this code ({\\sl OCCULT-2}) also to similar images from the {\\sl Solar Dynamics Observatory (SDO)}, to chromospheric H-$\\alpha$ images obtained with the {\\sl Swedish Solar Telescope (SST)}, and to microscopy images of microtubule filaments in live cells in biophysics. We provide a full analytical description of the code, optimize the control parameters, and compare the automated tracing with visual/manual methods. The traced structures differ by up to 16 orders of magnitude in size, which demonstrates the universality of the tracing a...

  3. Molecular biology applied to the laboratory diagnosis of bacterial endophthalmitis Biologia molecular aplicada ao diagnóstico laboratorial de endoftalmite bacteriana

    Directory of Open Access Journals (Sweden)

    Paulo José Martins Bispo

    2009-10-01

    Full Text Available Bacterial endophthalmitis is a serious but uncommon intraocular infection which frequently results in vision loss. Early diagnosis and appropriate therapy are associated with better visual outcome. Conventional microbiological methods are currently used for microbiological characterization of eyes with suspected endophthalmitis. However, the sensitivity of bacterial detection from aqueous and vitreous humor using microbiology techniques is poor, and time-consuming to confirm the results. The application of molecular methods enhances significantly laboratory confirmation of bacterial endophthalmitis, demanding a shorter time to draw a definitive result and thereby promoting the early initiation of a more specific therapy to limit the empirical or unnecessary use of broad-spectrum antibiotics. PCR-based techniques, including post-PCR methods such RFLP, DNA probe hybridization and DNA sequencing have been successfully used for the diagnostic elucidation of clinically suspected bacterial endophthalmitis cases, showing promising application in the routine practice of ocular microbiology laboratories.Endoftalmite bacteriana é uma infecção intraocular grave, mas de baixa frequência, podendo resultar em grande prejuízo visual. O diagnóstico precoce e a rápida instituição de terapia adequada estão associadas a um melhor prognóstico da doença. Os métodos microbiológicos convencionais são utilizados rotineiramente para caracterização microbiológica de olhos com suspeita de endoftalmite. No entanto, a sensibilidade de detecção bacteriana em amostras de humor aquoso e vítreo utilizando técnicas microbiológicas é baixa, além de demandar um maior tempo para a confirmação dos resultados. A utilização de métodos moleculares aumenta significativamente os casos de endoftalmite bacteriana confirmados laboratorialmente, com tempo menor para a liberação de um resultado definitivo, auxiliando assim a instituição precoce de uma terapia

  4. Educational Robotics of low cost applied to Physics Teaching in Brazil

    CERN Document Server

    Souza, Marcos A M

    2014-01-01

    In this paper we propose strategies and methodologies of teaching topics in high school physics, through a show of Educational Robotics. The Exhibition was part of a set of actions promoted by a brazilian government program of incentive for teaching activities (PIBID) and whose primary focus is the training of teachers, improvement of teaching in public schools, dissemination of science and formation of new scientists and researchers. By means of workshops, banners and prototyping of robotics, we are able to create a connection between the study areas and their surrounding, making learning meaningful and accessible for the students involved and contributing to their cognitive development.

  5. Tissue engineering bioreactor systems for applying physical and electrical stimulations to cells.

    Science.gov (United States)

    Jin, GyuHyun; Yang, Gi-Hoon; Kim, GeunHyung

    2015-05-01

    Bioreactor systems in tissue engineering applications provide various types of stimulation to mimic the tissues in vitro and in vivo. Various bioreactors have been designed to induce high cellular activities, including initial cell attachment, cell growth, and differentiation. Although cell-stimulation processes exert mostly positive effects on cellular responses, in some cases such stimulation can also have a negative effect on cultured cells. In this review, we discuss various types of bioreactor and the positive and negative effects of stimulation (physical, chemical, and electrical) on various cultured cell types.

  6. State Key Laboratory of Catalysis Dalian Institute of Chemical Physics, China

    Institute of Scientific and Technical Information of China (English)

    Can Li

    2002-01-01

    @@ I. Introduction The State Key Laboratory of Catalysis (SKLC)was founded in 1987 as one of the first state key labo-ratories in China. The current director of the SKLC isProfessor Can Li (the previous directors were Profes-sor Xiexian Guo and Professor Yide Xu). ProfessorLiwu Lin chairs the Academic Committee, which iscomposed of 15 distinguished Chinese catalytic scien-tists. In addition, the SKLC appoints internationallyknown scientists in the field of catalysis to its Inter-national Advisory Committee. There are about 35permanent staff members including professors, tech-nicians, and administrators, over 80 Ph.D. and M.S.graduate students and 10 post-doctoral fellows.

  7. The physics and chemistry of dusty plasmas: A laboratory and theoretical investigation

    Science.gov (United States)

    Whipple, E. C.

    1986-01-01

    Theoretical work on dusty plasmas was conducted in three areas: collective effects in a dusty plasma, the role of dusty plasmas in cometary atmospheres, and the role of dusty plasmas in planetary atmospheres (particularly in the ring systems of the giant planets). Laboratory investigations consisted of studies of dust/plasma interactions and stimulated molecular excitation and infrared emission by charged dust grains. Also included is a list of current publications.

  8. Pacific Northwest Laboratory Annual Report for 1987 to the DOE Office of Energy Research: Part 4, Physical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Toburen, L.H.

    1988-06-01

    This 1987 annual report from Pacific Northwest Laboratory describes research in environment, health, and safety conducted during fiscal year 1987. The report again consists of five parts, each in a separate volume. Part 4 includes those programs funded under the title ''Physical and Technological Research.'' The Field Task Program Studies reports in this document are grouped by budget category and each section is introduced by an abstract that indicates the Field Task Proposal/Agreement reported in that section.

  9. Pacific Northwest Laboratory: Annual report for 1986 to the DOE Office of Energy Research: Part 4, Physical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Toburen, L.H.

    1987-02-01

    This 1986 annual report from Pacific Northwest Laboratory describes research in environment, health, and safety conducted during fiscal year 1986. The report again consists of five parts, each in a separate volume. Part 4 includes those programs funded under the title ''Physical and Technological Research.'' The Field Task Program Studies reports in this document are grouped by budget category and each section is introduced by an abstract that indicates the Field Task Proposal/Agreement reported in that section. These reports only briefly indicate progress made during 1985.

  10. Pacific Northwest Laboratory, annual report for 1983 to the DOE Office of Energy Research. Part 4. Physical sciences

    Energy Technology Data Exchange (ETDEWEB)

    1984-02-01

    Part 4 of the Pacific Northwest Laboratory Annual Report for 1983 to the Office of Energy Research, includes those programs funded under the title Physical and Technological Research. The Field Task Program Studies reports in this document are grouped under the subheadings and each section is introduced by a divider page that indicates the Field Task Agreement reported in that section. These reports only briefly indicate progress made during 1983. The reader should contact the principal investigators named or examine the publications cited for more details.

  11. Pacific Northwest Laboratory annual report for 1985 to the DOE Office of Energy Research. Part 4. Physical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Toburen, L.H.

    1986-02-01

    Part 4 of the Pacific Northwest Laboratory Annual Report for 1985 to the DOE Office of Energy Research includes those programs funded under the title ''Physical and Technological Research.'' The Field Task Program Studies reports in this document are grouped by budget category and each section is introduced by an abstract that indicates the Field Task Proposal/Agreement reported in that section. These reports only briefly indicate progress made during 1985. The reader should contact the principal investigators named or examine the publications cited for more details.

  12. Final definition and preliminary design study for the initial atmospheric cloud physics laboratory, a Spacelab mission payload

    Science.gov (United States)

    1976-01-01

    The following areas related to the final definition and preliminary design study of the initial atmospheric cloud physics laboratory (ACPL) were covered: (1) proposal organization, personnel, schedule, and project management, (2) proposed configurations, (3) study objectives, (4) ACPL experiment program listing and description, (5) mission/flight flexibility and modularity/commonality, (6) study plan, and (7) description of following tasks: requirement analysis and definition task flow, systems analysis and trade studies, subsystem analysis and trade studies, specifications and interface control documents, preliminary design task flow, work breakdown structure, programmatic analysis and planning, and project costs. Finally, an overview of the scientific requirements was presented.

  13. Bruno Rossi and Cosmic Rays: From Earth laboratories to Physics in Space

    CERN Document Server

    Bonolis, Luisa

    2011-01-01

    Rossi's career paralleled the evolution of cosmic-ray physics. Starting from the early 1930s his pioneering work on the nature and behavior of cosmic rays led to fundamental contributions in the field of experimental cosmic-ray physics and laid the foundation for high-energy particle physics. After the war, under his leadership the Cosmic Ray group at MIT investigated the properties of the primary cosmic rays elucidating the processes involved in their propagation through the atmosphere, and measuring the unstable particles generated in the interactions with matter. When accelerators came to dominate particle physics, Rossi's attention focused on the new opportunities for exploratory investigations made possible by the availability of space vehicles. He initiated a research program which led to the first in situ measurements of the density, speed and direction of the solar wind at the boundary of Earth's magnetosphere and inspired the search for extra-solar X-ray sources resulting in the detection of what rev...

  14. Gender Gaps and Gendered Action in a First-Year Physics Laboratory

    Science.gov (United States)

    Day, James; Stang, Jared B.; Holmes, N. G.; Kumar, Dhaneesh; Bonn, D. A.

    2016-01-01

    It is established that male students outperform female students on almost all commonly used physics concept inventories. However, there is significant variation in the factors that contribute to the gap, as well as the direction in which they influence it. It is presently unknown if such a gender gap exists on the relatively new Concise Data…

  15. Linear Dichroism of Cyanine Dyes in Stretched Polyvinyl Alcohol Films: A Physical Chemistry Laboratory Experiment.

    Science.gov (United States)

    Natarajan, L. V.; And Others

    1983-01-01

    Provides background information, procedures, and results of an undergraduate physical chemistry experiment on the polarization of absorption spectra of cyanine dyes in stretched polyvinyl alcohol films. The experiment gives a simple demonstration of the concept of linear dichromism and the validity of the TEM method used in the analyses. (JN)

  16. Audiovisual Physics Reports: Students' Video Production as a Strategy for the Didactic Laboratory

    Science.gov (United States)

    Pereira, Marcus Vinicius; de Souza Barros, Susana; de Rezende Filho, Luiz Augusto C.; de A. Fauth, Leduc Hermeto

    2012-01-01

    Constant technological advancement has facilitated access to digital cameras and cell phones. Involving students in a video production project can work as a motivating aspect to make them active and reflective in their learning, intellectually engaged in a recursive process. This project was implemented in high school level physics laboratory…

  17. Anxieties, Preferences, Expectations and Opinions of Pre-Service Teachers Related to Physics Laboratory

    Science.gov (United States)

    Berber, Nilufer Cerit

    2013-01-01

    Science anxiety, which is one of the affective dimensions in science learning, is one of the factors affecting success in Science and has been studied for 35 years. The existence of considerable negative attitudes towards Physics courses, which is one of the basic branches of Science, is a fact. This research has been designed to identify the…

  18. Radiological, physical, and chemical characterization of low-level alpha contaminated wastes stored at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01

    This document provides radiological, physical, and chemical characterization data for low-level alpha-contaminated radioactive and low-level alpha-contaminated radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program. Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 97 waste streams which represent an estimated total volume of 25,450 m 3 corresponding to a total mass of approximately 12,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats-generated waste forms stored at the INEL are provided to assist in facility design specification.

  19. Argonne National Laboratory Physics Division annual report, January--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K.J. [ed.

    1997-08-01

    The past year has seen several of the Physics Division`s new research projects reach major milestones with first successful experiments and results: the atomic physics station in the Basic Energy Sciences Research Center at the Argonne Advanced Photon Source was used in first high-energy, high-brilliance x-ray studies in atomic and molecular physics; the Short Orbit Spectrometer in Hall C at the Thomas Jefferson National Accelerator (TJNAF) Facility that the Argonne medium energy nuclear physics group was responsible for, was used extensively in the first round of experiments at TJNAF; at ATLAS, several new beams of radioactive isotopes were developed and used in studies of nuclear physics and nuclear astrophysics; the new ECR ion source at ATLAS was completed and first commissioning tests indicate excellent performance characteristics; Quantum Monte Carlo calculations of mass-8 nuclei were performed for the first time with realistic nucleon-nucleon interactions using state-of-the-art computers, including Argonne`s massively parallel IBM SP. At the same time other future projects are well under way: preparations for the move of Gammasphere to ATLAS in September 1997 have progressed as planned. These new efforts are imbedded in, or flowing from, the vibrant ongoing research program described in some detail in this report: nuclear structure and reactions with heavy ions; measurements of reactions of astrophysical interest; studies of nucleon and sub-nucleon structures using leptonic probes at intermediate and high energies; atomic and molecular structure with high-energy x-rays. The experimental efforts are being complemented with efforts in theory, from QCD to nucleon-meson systems to structure and reactions of nuclei. Finally, the operation of ATLAS as a national users facility has achieved a new milestone, with 5,800 hours beam on target for experiments during the past fiscal year.

  20. Calculating structural and geometrical parameters by laboratory experiments and X-Ray microtomography: a comparative study applied to a limestone sample

    Directory of Open Access Journals (Sweden)

    L. Luquot

    2015-11-01

    Full Text Available The aim of this study is to compare the structural, geometrical and transport parameters of a limestone rock sample determined by X-ray microtomography (XMT images and laboratory experiments. Total and effective porosity, surface-to-volume ratio, pore size distribution, permeability, tortuosity and effective diffusion coefficient have been estimated. Sensitivity analyses of the segmentation parameters have been performed. The limestone rock sample studied here have been characterized using both approaches before and after a reactive percolation experiment. Strong dissolution process occured during the percolation, promoting a wormhole formation. This strong heterogeneity formed after the percolation step allows to apply our methodology to two different samples and enhance the use of experimental techniques or XMT images depending on the rock heterogeneity. We established that for most of the parameters calculated here, the values obtained by computing XMT images are in agreement with the classical laboratory measurements. We demonstrated that the computational porosity is more informative than the laboratory one. We observed that pore size distributions obtained by XMT images and laboratory experiments are slightly different but complementary. Regarding the effective diffusion coefficient, we concluded that both approaches are valuable and give similar results. Nevertheless, we wrapped up that computing XMT images to determine transport, geometrical and petrophysical parameters provides similar results than the one measured at the laboratory but with much shorter durations.

  1. New instruments for soil physics class: Improving the laboratory and field seminars

    Science.gov (United States)

    Klipa, Vladimir; Jankovec, Jakub; Snehota, Michal

    2014-05-01

    Teaching soil science and soil physics is an important part of the curriculum of many programs with focus on technical and natural sciences. Courses of soil science and namely soil physics have a long tradition at the faculty of Civil Engineering of the Czech Technical University in Prague. Students receive the theoretical foundations about soil classification, soil physics, soil chemistry and soil hydraulic characteristics in the course. In practical seminars students perform measurements of physical, hydraulic and chemical characteristics of soils, thus a comprehensive survey of soil is done in the given site. So far, students had the opportunity to use old, manually operated instrumentation. The project aims to improve the attractiveness of soil physics course and to extend the practical skills of students by introducing new tasks and by involving modern automated equipment. New instruments were purchased with the support of the Ministry of Education, Youth and Sports of the Czech Republic under the project FRVS No. 1162/2013 G1. Specifically, two tensiometers T8 with multi-functional handheld read-out unit (UMS, GmbH) and manual Mini Disk Infiltrometer (Decagon Devices, Inc.) were purchased and incorporated into the course. In addition, newly designed MultiDisk the automated mini disk Infiltrometer (CTU in Prague) and combined temperature and soil moisture TDT sensor TMS 2 (TOMST®, s.r.o.), were made freely available for soil physics classes and included into the courses. Online tutorials and instructional videos were developed. Detailed multimedia teaching materials were introduced so that students are able to work more independently. Students will practice operating the digital tensiometer T8 with integrated temperature sensor and manual Mini Disk Infiltrometer (diameter disk: 4.4 cm, suction range: 0.5 to 7.0 cm of suction) and MultiDisk the automated mini disk Infiltrometer (see Klipa et al., EGU2014-7230) and combined temperature and soil moisture TDT

  2. Virtual dosimetry applied to the physical security of a nuclear installation

    Energy Technology Data Exchange (ETDEWEB)

    Santo, Andre Cotelli do E.; Mol, Antonio C.A.; Machado, Daniel M.; Chelles, Daniel R.; Goncalves, Deise G.S., E-mail: cotelli.andre@gmail.com, E-mail: mol@ien.gov.br, E-mail: machado.mol@gmail.com, E-mail: daniel.chelles@gmail.com, E-mail: deise.galvao@gmail.com [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    An important activity to be held in radiation protection is the location of radioactive sources. The present work was devoted to the development of a virtual dosimetry tool for locating and detecting such sources. To this end, was created a three-dimensional virtual model of the Instituto de Engenharia Nuclear - IEN, endowed with virtual characters (avatars), capable of move and interact with the environment, radiation detectors (fixed and mobile) and radioactive sources. Aiming to assist in planning physical security of nuclear installations, the tool developed allows the detection simulation of individuals carrying radioactive sources through detectors installed at strategic points of the site. In addition, it is possible to detect and locate sources by handling portable detectors, operated by characters within the virtual environment. The results obtained show the behavior of the radiation detectors on continuous profile of radioactive sources, allowing calculate the dose rate at any position of the virtual environment. Thus, this work can assist in the training of security officers, as well as in evaluating the radiological safety of the nuclear site. (author)

  3. Cross-flow turbines: progress report on physical and numerical model studies at large laboratory scale

    Science.gov (United States)

    Wosnik, Martin; Bachant, Peter

    2016-11-01

    Cross-flow turbines show potential in marine hydrokinetic (MHK) applications. A research focus is on accurately predicting device performance and wake evolution to improve turbine array layouts for maximizing overall power output, i.e., minimizing wake interference, or taking advantage of constructive wake interaction. Experiments were carried with large laboratory-scale cross-flow turbines D O (1 m) using a turbine test bed in a large cross-section tow tank, designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. Several turbines of varying solidity were employed, including the UNH Reference Vertical Axis Turbine (RVAT) and a 1:6 scale model of the DOE-Sandia Reference Model 2 (RM2) turbine. To improve parameterization in array simulations, an actuator line model (ALM) was developed to provide a computationally feasible method for simulating full turbine arrays inside Navier-Stokes models. Results are presented for the simulation of performance and wake dynamics of cross-flow turbines and compared with experiments and body-fitted mesh, blade-resolving CFD. Supported by NSF-CBET Grant 1150797, Sandia National Laboratories.

  4. The physical significance of modons: Laboratory experiments and general integral constraints

    Science.gov (United States)

    Flierl, Glenn R.; Stern, Melvin E.; Whitehead, John A.

    1983-11-01

    A barotropic jet emerging from a point source in a rotating fluid is deflected to the right (northern hemisphere) and starts to accumulate in an anticyclonic vortex. This gives rise to a cyclonic neighbor, and the dipole (modon) then propagates away from the source in a circular path. A modification of Batchelor's (1967) solution, which takes into account the different strenghts of the anticyclonic-cyclonic pair, is able to account for the path curvature. The experiment shows that highly organized modons can be realized in the laboratory with rather nondescript forcing. The ß-effect (not noticeably present in the experiment) should enhance the realizability of these structures in geophysical flows. Therefore, it is suggested that the modon model captures certain essential features of geophysical eddies. This is based on a derived theorem which shows that any slowly varying (not necessarily uniformly propagating) and isolated disturbance on the beta plane must have zero net relative angular momentum, so that the dipole is the simplest dynamically consistent representation of such a disturbance. Some interesting aspects of two-dimensional turbulence in a rotating fluid are also indicated by the laboratory esperiments and by the general integral theorems presented.

  5. Princeton Plasma Physics Laboratory annual report, October 1, 1991--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This report discusses the following topics: Principal parameters achieved in experimental devices for fiscal year 1992; tokamak fusion test reactor; princeton beta experiment-modification; current drive experiment-upgrade; tokamak physics experiment/steady-state advanced tokamak; international thermonuclear experimental reactor; international collaboration; x-ray laser studies; plasma processing: Deposition and etching of thin films; pure electron plasma experiments; theoretical studies; tokamak modeling; high-field magnet project; engineering department; environment, safety, and health and quality assurance; technology transfer; office of human resources and administration; PPPL invention disclosures for fiscal year 1992; office of resource management; graduate education: plasma physics; graduate education: program in plasma science and technology; and science education program.

  6. Kinetics and Photochemistry of Ruthenium Bisbipyridine Diacetonitrile Complexes: An Interdisciplinary Inorganic and Physical Chemistry Laboratory Exercise

    Science.gov (United States)

    Rapp, Teresa L.; Phillips, Susan R.; Dmochowski, Ivan J.

    2016-01-01

    The study of ruthenium polypyridyl complexes can be widely applied across disciplines in the undergraduate curriculum. Ruthenium photochemistry has advanced many fields including dye-sensitized solar cells, photoredox catalysis, lightdriven water oxidation, and biological electron transfer. Equally promising are ruthenium polypyridyl complexes…

  7. Determining the Transference Number of H[superscript +](aq) by a Modified Moving Boundary Method: A Directed Study for the Undergraduate Physical Chemistry Laboratory

    Science.gov (United States)

    Dabke, Rajeev B.; Gebeyehu, Zewdu; Padelford, Jonathan

    2012-01-01

    A directed study for the undergraduate physical chemistry laboratory for determining the transference number of H[superscript +](aq) using a modified moving boundary method is presented. The laboratory study combines Faraday's laws of electrolysis with mole ratios and the perfect gas equation. The volume of hydrogen gas produced at the cathode is…

  8. Determining the Quantum Efficiency for Activation of an Organometallic Photoinitiator for Cationic Polymerization: An Experiment for the Physical or Inorganic Chemistry Laboratory

    Science.gov (United States)

    Hayes, David M.; Mahar, Maura; Schnabel, R. Chris; Shah, Paras; Lees, Alistair J.; Jakubek, Vladimir

    2007-01-01

    We present a new laboratory experiment on the photochemistry of organometallic [eta][superscript 5],[eta][superscript 6]-mixed-sandwich compounds, which is suitable for both the physical chemistry and inorganic chemistry laboratory. Specifically, students use 1,10-phenanthroline to trap the intermediate formed when…

  9. COMPARISON OF ANTHROPOMETRIC CHARACTERISTICS IN SUBJECTS APPLIED FOR DEPARTMENT OF PHYSICAL EDUCATION AND SPORTS

    Directory of Open Access Journals (Sweden)

    Yıldız YAPRAK

    2009-08-01

    Full Text Available The aim of this study was to determined of general profile of young subjects and compared the anthropometrıc characteristics and body composition of different sports groups who entering special skills examination for Physical Education and Sports High School. 304 subjets (88 female, 216 male were participated in this study (Male: age: 20.76 ± 2.18 years, height: 174.40 ± 6.46 cm, weight: 66.18 ± 7.20 kg, Female: age: 20.19 ± 2.18 years, height: 161.24 ± 5.83 cm, weight: 52.39 ± 5.59 kg. Various anthropometric measurements (diameters, circumferences and skinfold thickness were taken from which different anthropometric indices were calculated (body mass index, Scelic index and Grant index. For data analysis, SPSS 11.0 packet pragramme was used. The comparisons were made using One-way ANOVA test. The level of significance was set at p<0.05. The analisys of variance showed that there were statistically significant differences (p<0.00 between in groups in the view point of anthropometric measurements such as height, weight, waist circumference, hip circumference, thigh circumference, calf circumference, ankle circumference, thigh length, calf length, foot length, abdomen skinfold and body fat.We found significant differences all of this parameters in male basketball players and female volleyball players.As a result of this study of young male and female who entering the exam of special abilities of the morphological features vary significantly according to the sports branch that creates these differences in men basketball players and in women volleyball players.

  10. Tearing mode physics studies applying the dynamic ergodic divertor on TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Koslowski, H R [Forschungszentrum Juelich GmbH, Institut fuer Plasmaphysik, Association EURATOM-FZ Juelich, D-52425 Juelich (Germany); Westerhof, E [FOM-Institute for Plasmaphysics ' Rijnhuizen' , Association EURATOM-FOM, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Bock, M de [FOM-Institute for Plasmaphysics ' Rijnhuizen' , Association EURATOM-FOM, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Classen, I [FOM-Institute for Plasmaphysics ' Rijnhuizen' , Association EURATOM-FOM, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Jaspers, R [FOM-Institute for Plasmaphysics ' Rijnhuizen' , Association EURATOM-FOM, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Kikuchi, Y [Forschungszentrum Juelich GmbH, Institut fuer Plasmaphysik, Association EURATOM-FZ Juelich, D-52425 Juelich (Germany); Kraemer-Flecken, A [Forschungszentrum Juelich GmbH, Institut fuer Plasmaphysik, Association EURATOM-FZ Juelich, D-52425 Juelich (Germany); Lazaros, A [FOM-Institute for Plasmaphysics ' Rijnhuizen' , Association EURATOM-FOM, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Liang, Y [Forschungszentrum Juelich GmbH, Institut fuer Plasmaphysik, Association EURATOM-FZ Juelich, D-52425 Juelich (Germany); Loewenbrueck, K [Forschungszentrum Juelich GmbH, Institut fuer Plasmaphysik, Association EURATOM-FZ Juelich, D-52425 Juelich (Germany); Varshney, S [FOM-Institute for Plasmaphysics ' Rijnhuizen' , Association EURATOM-FOM, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Hellermann, M von [FOM-Institute for Plasmaphysics ' Rijnhuizen' , Association EURATOM-FOM, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Wolf, R [Forschungszentrum Juelich GmbH, Institut fuer Plasmaphysik, Association EURATOM-FZ Juelich, D-52425 Juelich (Germany); Zimmermann, O [Forschungszentrum Juelich GmbH, Institut fuer Plasmaphysik, Association EURATOM-FZ Juelich, D-52425 Juelich (Germany)

    2006-12-15

    The dynamic ergodic divertor (DED) on the TEXTOR tokamak allows for the reproducible destabilization of the m/n = 2/1 tearing mode which is phase locked to the external static or rotating perturbation field. In combination with its flexible heating systems (co- and counter-neutral beam injection, ion cyclotron resonance heating, electron cyclotron resonance heating (ECRH) with steerable launcher) dedicated experiments to study the mode onset, properties of large islands and mode stabilization can be performed. The dependence of the mode excitation threshold (field penetration) on the plasma rotation shows a resonance character, with minimum threshold when the external perturbation frequency matches the MHD frequency of the 2/1 mode. Mode stabilization by ECRH heating shows that for the TEXTOR plasma heating is more effective than the current drive in O-point. Extrapolation to ITER yields a significant contribution to the mode suppression originating from the temperature increase within the island. Alfven-like modes, which have been previously identified in the vicinity of large islands on FTU (Buratti et al 2005 Nuclear Fusion 45 1446), are found to be created already before island formation above a certain threshold of the externally applied perturbation field.

  11. Observations and Modeling of Long Negative Laboratory Discharges: Identifying the Physics Important to an Electrical Spark in Air

    Energy Technology Data Exchange (ETDEWEB)

    Biagi, C J; Uman, M A

    2011-12-13

    There are relatively few reports in the literature focusing on negative laboratory leaders. Most of the reports focus exclusively on the simpler positive laboratory leader that is more commonly encountered in high voltage engineering [Gorin et al., 1976; Les Renardieres Group, 1977; Gallimberti, 1979; Domens et al., 1994; Bazelyan and Raizer 1998]. The physics of the long, negative leader and its positive counterpart are similar; the two differ primarily in their extension mechanisms [Bazelyan and Raizer, 1998]. Long negative sparks extend primarily by an intermittent process termed a 'step' that requires the development of secondary leader channels separated in space from the primary leader channel. Long positive sparks typically extend continuously, although, under proper conditions, their extension can be temporarily halted and begun again, and this is sometimes viewed as a stepping process. However, it is emphasized that the nature of positive leader stepping is not like that of negative leader stepping. There are several key observational studies of the propagation of long, negative-polarity laboratory sparks in air that have aided in the understanding of the stepping mechanisms exhibited by such sparks [e.g., Gorin et al., 1976; Les Renardieres Group, 1981; Ortega et al., 1994; Reess et al., 1995; Bazelyan and Raizer, 1998; Gallimberti et al., 2002]. These reports are reviewed below in Section 2, with emphasis placed on the stepping mechanism (the space stem, pilot, and space leader). Then, in Section 3, reports pertaining to modeling of long negative leaders are summarized.

  12. RadBall{sup TM} Technology Testing in the Savannah River Site's Health Physics Instrument Calibration Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, Eduardo B; Foley, Trevor Q; Jannik, G Timothy; Harpring, Larry J; Gordon, John R; Blessing, Ronald; Coleman, J Rusty; Holmes, Christopher J; Oldham, Mark; Adamovics, John; Stanley, Steven J, E-mail: Eduardo.Farfan@srnl.doe.go

    2010-11-01

    The UK's National Nuclear Laboratory (NNL) has developed a radiation-mapping device that can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. The device, known as RadBall{sup TM}, consists of a colander-like outer collimator that houses a radiation-sensitive polymer sphere. The collimator has over two hundred small holes; thus, specific areas of the polymer sphere are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner that produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation data provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. The RadBall{sup TM} technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the UK and facilities of the Savannah River National Laboratory (SRNL). This paper summarizes the tests completed at SRNL Health Physics Instrument Calibration Laboratory (HPICL).

  13. Data Processing and Programming Applied to an Environmental Radioactivity Laboratory; Desarrollo Informatico Aplicado a un Laboratorio de Radiactividad Ambiental

    Energy Technology Data Exchange (ETDEWEB)

    Trinidad, J.A.; Gasco, C.; Palacios, M.A.

    2009-07-01

    This report is the original research work presented for the attainment of the author master degree and its main objective has been the resolution -by means of friendly programming- of some of the observed problems in the environmental radioactivity laboratory belonging to the Department of Radiological Surveillance and Environmental Radioactivity from CIEMAT. The software has been developed in Visual Basic for applications in Excel files and it solves by macro orders three of the detected problems: a) calculation of characteristic limits for the measurements of the beta total and beta rest activity concentrations according to standards MARLAP, ISO and UNE and the comparison of the three results b) Pb-210 and Po-210 decontamination factor determination in the ultra-low level Am-241 analysis in air samples by alpha spectrometry and c) comparison of two analytical techniques for measuring Pb-210 in air ( direct-by gamma spectrometry- and indirect -by radiochemical separation and alpha spectrometry). The organization processes of the different excel files implied in the subroutines, calculations and required formulae are explained graphically for its comprehension. The advantage of using this kind of programmes is based on their versatility and the ease for obtaining data that lately are required by tables that can be modified as time goes by and the laboratory gets more data with the special applications for describing a method (Pb-210 decontamination factors for americium analysis in air) or comparing temporal series of Pb-210 data analysed by different methods (Pb-210 in air). (Author)

  14. Hanford Laboratories monthly activities report, December 1963

    Energy Technology Data Exchange (ETDEWEB)

    1964-01-15

    The monthly report for the Hanford Laboratories Operation, December 1963. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics, and programming operations are discussed.

  15. Hanford Laboratories monthly activities report, July 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-08-14

    This is the monthly report for the Hanford Laboratories Operation, July 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

  16. Hanford Laboratories monthly activities report, April 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-05-15

    This is the monthly report for the Hanford Laboratories Operation, April 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

  17. Hanford Laboratories monthly activities report, October 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-11-16

    The monthly report for the Hanford Laboratories Operation, October 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics operations are discussed.

  18. Hanford Laboratories monthly activities report, May 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-06-15

    This is the monthly report for the Hanford Laboratories Operation, May 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

  19. Hanford Laboratories monthly activities report, March 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-04-15

    The monthly report for the Hanford Laboratories Operation, March 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics operation, and programming operations are discussed.

  20. Hanford Laboratories monthly activities report, January 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-02-14

    This is the monthly report for the Hanford Laboratories Operation, January 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

  1. Hanford Laboratories monthly activities report, May 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-06-14

    The monthly report for the Hanford Laboratories Operation, May 1963. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics, and programming operation are discussed.

  2. Hanford Laboratories monthly activities report, April, 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-05-15

    This is the monthly report for the Hanford Laboratories Operation, April, 1963. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology financial activities, biology operation, physics and instrumentation research, employee relations, applied mathematics operation, programming, and radiation protection operation discussed.

  3. Hanford Laboratories monthly activities report, February 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-03-16

    This is the monthly report for the Hanford Laboratories Operation, February, 1964. Reactor fuels, chemistry, dosimetry, separation process, reactor technology financial activities, biology operation, physics and instrumentation research, employee relations, applied mathematics, programming, and radiation protection are discussed.

  4. Hanford Laboratories monthly activities report, September 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-10-15

    The monthly report for the Hanford Laboratories Operation, September 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics operations are discussed.

  5. Hanford Laboratories monthly activities report, August 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-09-15

    The monthly report for the Hanford Laboratories Operation, August 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics, and programming operations are discussed.

  6. Attending to experimental physics practices and lifelong learning skills in an introductory laboratory course

    Science.gov (United States)

    Gandhi, Punit R.; Livezey, Jesse A.; Zaniewski, Anna M.; Reinholz, Daniel L.; Dounas-Frazer, Dimitri R.

    2016-09-01

    We have designed an introductory laboratory course that engaged first-year undergraduate students in two complementary types of iteration: (1) iterative improvement of experiments through cycles of modeling systems, designing experiments, analyzing data, and refining models and designs; and (2) iterative improvement of self through cycles of reflecting on progress, soliciting feedback, and implementing changes to study habits and habits of mind. The course consisted of three major activities: a thermal expansion activity, which spanned the first half of the semester; final research projects, which spanned the second half of the semester; and guided student reflections, which took place throughout the duration of the course. We describe our curricular designs and report examples of student work that demonstrate students' iterative improvements in multiple contexts.

  7. Sensory and instrumental evaluation of physical characteristics of laboratory -made chocolate

    Directory of Open Access Journals (Sweden)

    Jovanović Olga Lj.

    2002-01-01

    Full Text Available Sensory evaluation of chocolate, as a complex multicompound system, is one of the ways to define and control its physico-chemical characteristics, i.e. quality. Chocolate quality depends on structure and ingredients percentage that influence its appearance, taste and behaviour in the production processes and storage. The aim of this work was to compare certain quality factors of laboratory-made chocolate with added emulsifier-blooming inhibitor, determinated by sensory and instrumental analyses. Sensory evaluation of chocolate samples was made according to ISO 6685:1985 method (total score system. This ISO standard method was supplemented with QDA method for determination of mouth feel. The results of colour sensory evaluation showed good agreement with whiteness obtained on a MOM Colour 100 instrument by Hunter system evaluation. This showed that the sensory analysis, in comparison with instrumental determination of some quality factors, is an objective method.

  8. Small scale magnetosphere: Laboratory experiment, physical model and Hall MHD simulation

    CERN Document Server

    Shaikhislamov, I F; Zakharov, Yu P; Boyarintsev, E L; Melekhov, A V; Posukh, V G; Ponomarenko, A G

    2011-01-01

    A problem of magnetosphere formation on ion inertia scale around weakly magnetized bodies is investigated by means of laboratory experiment, analytical analysis and 2.5D Hall MHD simulation. Experimental evidence of specific magnetic field generated by the Hall term is presented. Direct comparison of regimes with small and large ion inertia length revealed striking differences in measured magnetopause position and plasma stand off distance. Analytical model is presented, which explains such basic features of mini-magnetosphere observed in previous kinetic simulations as disappearance of bow shock and plasma stopping at Stoermer particle limit instead of pressure balance distance. Numerical simulation is found to be in a good agreement with experiments and analytical model. It gives detailed spatial structure of Hall field and reveals that while ions penetrate deep inside mini-magnetosphere electrons overflow around it along magnetopause boundary.

  9. Incorporating learning goals about modeling into an upper-division physics laboratory experiment

    Science.gov (United States)

    Zwickl, Benjamin M.; Finkelstein, Noah; Lewandowski, H. J.

    2014-09-01

    Implementing a laboratory activity involves a complex interplay among learning goals, available resources, feedback about the existing course, best practices for teaching, and an overall philosophy about teaching labs. Building on our previous work, which described a process of transforming an entire lab course, we now turn our attention to how an individual lab activity on the polarization of light was redesigned to include a renewed emphasis on one broad learning goal: modeling. By using this common optics lab as a concrete case study of a broadly applicable approach, we highlight many aspects of the activity development and show how modeling is used to integrate sophisticated conceptual and quantitative reasoning into the experimental process through the various aspects of modeling: constructing models, making predictions, interpreting data, comparing measurements with predictions, and refining models. One significant outcome is a natural way to integrate an analysis and discussion of systematic error into a lab activity.

  10. P24 Plasma Physics Summer School 2012 Los Alamos National Laboratory Summer lecture series for students

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, Thomas P. [Los Alamos National Laboratory; Bauer, Bruno [Univ Nevada, Reno; Fernandez, Juan C. [Los Alamos National Laboratory; Daughton, William S. [Los Alamos National Laboratory; Flippo, Kirk A. [Los Alamos National Laboratory; Weber, Thomas [Los Alamos National Laboratory; Awe, Thomas J. [Los Alamos National Laboratory; Kim, Yong Ho [Los Alamos National Laboratory

    2012-09-07

    This report covers the 2012 LANL summer lecture series for students. The lectures were: (1) Tom Intrator, P24 LANL: Kick off, Introduction - What is a plasma; (2) Bruno Bauer, Univ. Nevada-Reno: Derivation of plasma fluid equations; (3) Juan Fernandez, P24 LANL Overview of research being done in p-24; (4) Tom Intrator, P24 LANL: Intro to dynamo, reconnection, shocks; (5) Bill Daughton X-CP6 LANL: Intro to computational particle in cell methods; (6) Kirk Flippo, P24 LANL: High energy density plasmas; (7) Thom Weber, P24 LANL: Energy crisis, fission, fusion, non carbon fuel cycles; (8) Tom Awe, Sandia National Laboratory: Magneto Inertial Fusion; and (9) Yongho Kim, P24 LANL: Industrial technologies.

  11. Laboratory measurements of physical, chemical, and optical characteristics of Lake Chicot sediment waters

    Science.gov (United States)

    Witte, W. G.; Whitlock, C. H.; Usry, J. W.; Morris, W. D.; Gurganus, E. A.

    1981-01-01

    Reflectance, chromaticity, diffuse attenuation, beam attenuation, and several other physical and chemical properties were measured for various water mixtures of lake bottom sediment. Mixture concentrations range from 5 ppm to 700 ppm by weight of total suspended solids in filtered deionized tap water. Upwelled reflectance is a nonlinear function of remote sensing wave lengths. Near-infrared wavelengths are useful for monitoring highly turbid waters with sediment concentrations above 100 ppm. It is found that both visible and near infrared wavelengths, beam attenuation correlates well with total suspended solids ranging over two orders of magnitude.

  12. Princeton University Plasma Physics Laboratory, Princeton, New Jersey. Annual report, October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    This report discusses the following topics: Principal parameters of experimental devices; Tokamak Fusion Test Reactor; Burning Plasma Experiment; Princeton Beta Experiment-Modification; Current Drive Experiment-Upgrade; International Thermonuclear Experimental Reactor; International Collaboration; X-Ray Laser Studies; Hyperthermal Atomic Beam Source; Pure Electron Plasma Experiments; Plasma Processing: Deposition and Etching of Thin Films; Theoretical Studies; Tokamak Modeling; Engineering Department; Environment, Safety, and Health and Quality Assurance; Technology Transfer; Office of Human Resources and Administration; PPPL Patent Invention Disclosures; Office of Resource Management; Graduate Education: Plasma Physics; Graduate Education: Program in Plasma Science and Technology; and Science Education Program.

  13. Measuring the impact of an instructional laboratory on the learning of introductory physics

    CERN Document Server

    Wieman, Carl

    2015-01-01

    We have analyzed the impact of taking an associated lab course on the scores on final exam questions in two large introductory physics courses. Approximately a third of the students who completed each course also took an accompanying instructional lab course. The lab courses were fairly conventional, although they focused on supporting the mastery of a subset of the introductory physics topics covered in the associated course. Performance between students who did and did not take the lab course was compared using final exam questions from the associated courses that related to concepts from the lab courses. The population of students who took the lab in each case was somewhat different from those who did not enroll in the lab course in terms of background and major. Those differences were taken into account by normalizing their performance on the lab-related questions with scores on the exam questions that did not involve material covered in the lab. When normalized in this way, the average score on lab-relat...

  14. Non-Lethal Defense III, Johns Hopkins Applied Physics Laboratory, Laurel, Maryland, February 25 & 26, 1998, Revised Agenda.

    Science.gov (United States)

    1998-02-26

    give up all together, looking elsewhere for easier entrance. The rigid foam process is based on two major chemical components - polyol and isocyanate ...applicable for universal usage. On paved non-porous surfaces, such as asphalt roadways or concrete runways, or on well-compacted soils these...Kevlar, or novel biomimetics of Kevlar based on spider silk. Asphalt is degraded by several strains of bacteria, leading to greatly reduced road surface

  15. Novel methods for physical mapping of the human genome applied to the long arm of chromosome 5. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, M.

    1991-12-01

    The object of our current grant is to develop novel methods for mapping of the human genome. The techniques to be assessed were: (1) three methods for the production of unique sequence clones from the region of interest; (2) novel methods for the production and separation of multi-megabase DNA fragments; (3) methods for the production of ``physical linking clones`` that contain rare restriction sites; (4) application of these methods and available resources to map the region of interest. Progress includes: In the first two years methods were developed for physical mapping and the production of arrayed clones; We have concentrated on developing rare- cleavage tools based or restriction endonucleases and methylases; We studied the effect of methylation on enzymes used for PFE mapping of the human genome; we characterized two new isoschizomers of rare cutting endonucleases; we developed a reliable way to produce partial digests of DNA in agarose plugs and applied it to the human genome; and we applied a method to double the apparent specificity of the ``rare-cutter`` endonucleases.

  16. Novel methods for physical mapping of the human genome applied to the long arm of chromosome 5

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, M.

    1991-12-01

    The object of our current grant is to develop novel methods for mapping of the human genome. The techniques to be assessed were: (1) three methods for the production of unique sequence clones from the region of interest; (2) novel methods for the production and separation of multi-megabase DNA fragments; (3) methods for the production of physical linking clones'' that contain rare restriction sites; (4) application of these methods and available resources to map the region of interest. Progress includes: In the first two years methods were developed for physical mapping and the production of arrayed clones; We have concentrated on developing rare- cleavage tools based or restriction endonucleases and methylases; We studied the effect of methylation on enzymes used for PFE mapping of the human genome; we characterized two new isoschizomers of rare cutting endonucleases; we developed a reliable way to produce partial digests of DNA in agarose plugs and applied it to the human genome; and we applied a method to double the apparent specificity of the rare-cutter'' endonucleases.

  17. Final Report - Los Alamos National Laboratory Compuational Physics Summer Student Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Lung, Tyler B. [Los Alamos National Laboratory; Roe, Phil [University of Michigan; Morgan, Nathaniel R. [Los Alamos National Laboratory

    2012-08-15

    The numerical solution of highly compressible, multi-material flows is an ongoing research area. These types of flows can be solved with a Lagrangian type mesh which moves with the material in a simulation to allow precise material interface tracking. Currently, researchers at Los Alamos National Laboratory and elsewhere are investigating cell-centered Lagrangian algorithms with the aim of producing methods that have second-order accuracy, preserve symmetry, and do not generate spurious vorticity. The new cell-centered algorithms solve a Riemann-like problem at the vertex of a cell. Professor Phil Roe at the University of Michigan has proposed a new struture for Lagrangian hydrodynamic algorithms that does not rely on the solution of the Riemann problem. The new approach utilizes Flux Corrected Transport (FCT) and it implements a form of vorticity control. The first step in the development of this method has been to construct an algorithm that solves the acoustic equations on an Eulerian mesh. The algorithm, which builds on the work of Morton and Roe [1], calculates fluxes at cell vertices, attains second-order accuracy using FCT, and has the special property of preserving vorticity. Results are presented that confirm the second order accuracy of the scheme and the vorticity preserving properties. The results are compared to the output produced by a MUSCL-Hancock algorithm. Some discussion of limiting methods for the FCT algorithm is also given.

  18. Gender gaps and gendered action in a first-year physics laboratory

    Science.gov (United States)

    Day, James; Stang, Jared B.; Holmes, N. G.; Kumar, Dhaneesh; Bonn, D. A.

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] It is established that male students outperform female students on almost all commonly used physics concept inventories. However, there is significant variation in the factors that contribute to the gap, as well as the direction in which they influence it. It is presently unknown if such a gender gap exists on the relatively new Concise Data Processing Assessment (CDPA) and, therefore, whether gendered actions in the teaching lab might influence—or be influenced by—the gender gap. To begin to get an estimates of the gap, its predictors, and its correlates, we have measured performance on the CDPA at the pretest and post-test level. We have also made observations of how students in mixed-gender partnerships divide their time in the lab. We find a gender gap on the CDPA that persists from pre- to post-test and that is as big as, if not bigger than, similar reported gaps. We also observe compelling differences in how students divide their time in the lab. In mixed-gender pairs, male students tend to monopolize the computer, female and male students tend to share the equipment equally, and female students tend to spend more time on other activities that are not the equipment or computer, such as writing or speaking to peers. We also find no correlation between computer use, when students are presumably working with their data, and performance on the CDPA post-test. In parallel to our analysis, we scrutinize some of the more commonly used approaches to similar data. We argue in favor of more explicitly checking the assumptions associated with the statistical methods that are used and improved reporting and contextualization of effect sizes. Ultimately, we claim no evidence that female students are less capable of learning than their male peers, and we suggest caution when using gain measures to draw conclusions about differences in science classroom performance across gender.

  19. Laboratory diagnostic outcome applying detection criteria recommended by the Scientific and Standardization Committee of the ISTH on Lupus Anticoagulant.

    Science.gov (United States)

    Chantarangkul, Veena; Biguzzi, Eugenia; Asti, Daniela; Palmucci, Claudia; Tripodi, Armando

    2013-07-01

    This study shows the diagnostic outcome of an APTT-based and two dRVVT-based commercial confirmatory integrated tests with the application of the recommendations by the Scientific and Standardization Committee (SSC) on Lupus anticoagulant (LA)/antiphospholipid syndrome (APS) of the International Society on Thrombosis and Haemostasis (ISTH) issued in 2009 concerning the cut-off values for the screening, mixing and confirmatory tests for the detection of LA and the mandatory need to perform mixing tests of patient plasma with pooled normal plasma. The study population included 565 patients collected from a large central coagulation laboratory, for which the attending physicians requested LA detection. One-hundred-six healthy subjects (HS) and 131 selected patients on oral anticoagulant therapy (OAT) were included as negative controls. The results suggest that the performance of mixing tests is indicated for those methods with relatively poor specificity, but is less needed for those methods with high specificity. Furthermore, the SSC recommendation to use normal mid-value (i.e. the 50th percentile of distribution of results from healthy subjects) as the cut-off to interpret results of confirmatory tests, showed a modest increase in LA detection rate (sensitivity) but at the expense of specificity, particularly in methods with low specificity.

  20. University of Colorado, Nuclear Physics Laboratory technical progress report, November 1, 1978-October 31, 1979. Report NPL-845. [Nuclear Physics Lab. , Univ. of Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    This report summarizes work carried out at the Nuclear Physics Laboratory of the University of Colorado from November 1, 1978 to October 31, 1979, under contract EY-76-C-02-0535.A003 between the University of Colorado and the United States Department of Energy. Experimental studies of light ion-induced reactions were performed with the AVF cyclotron, which continues each year to produce beams of yet higher quality. Charged-particle studies continued to emphasize use of the high-resolution spectrometer system, but some return to broad-range spectroscopic studies using solid state detectors also occurred. Neutron time-of-flight experiments used 9-meter and 30-meter flight paths. Neutron-gamma ray coincidence studies developed into a new and promising field. The new PDP 11/34 data acquisition system was of great value in allowing such multiparameter experiments. Smaller programs in nuclear astrophysics, plasma diagnostic development, and medical physics were also undertaken. Research activities based at other accelerators grew. Studies of future directions for light-ion accelerators, including work on intense pulsed ion sources, orbit dynamics, and storage rings, were greatly enlarged. 19 of the articles in this report were abstracted and indexed individually. Lists of publications and personnel conclude this report. (RWR)

  1. Laboratory investigations of the physics of steam flow in a porous medium

    Science.gov (United States)

    Herkelrath, W.N.; Moench, A.F.

    1982-01-01

    Experiments were carried out in the laboratory to test a theory of transient flow of pure steam in a uniform porous medium. This theory is used extensively in modeling pressure-transient behavior in vapor-dominated geothermal systems. Transient, superheated steam-flow experiments were run by bringing a cylinder of porous material to a uniform initial pressure, and then making a step increase in pressure at one end of the sample, while monitoring the pressure-transient breakthrough at the other end. It was found in experiments run at 100?, 125?, and 146?C that the time required for steam-pressure transients to propagate through an unconsolidated material containing sand, silt, and clay was 10 to 25 times longer than predicted by theory. It is hypothesized that the delay in the steam-pressure transient was caused by adsorption of steam in the porous sample. In order to account for steam adsorption, a sink term was included in the conservation of mass equation. In addition, energy transfer in the system has to be considered because latent heat is released when steam adsorption occurs, increasing the sample temperature by as much as 10?C. Finally, it was recognized that the steam pressure was a function of both the temperature and the amount of adsorption in the sample. For simplicity, this function was assumed to be in equilibrium adsorption isotherm, which was determined by experiment. By solving the modified mass and energy equations numerically, subject to the empirical adsorption isotherm relationship, excellent theoretical simulation of the experiments was achieved. The experiments support the hypothesis that adsorption of steam can strongly influence steam pressure-transient behavior in porous media; the results suggest that the modified steam-flow theory, which includes steam adsorption terms, should be used in modeling steam flow in vapor-dominated geothermal systems.

  2. Physical methods for intracellular delivery: practical aspects from laboratory use to industrial-scale processing.

    Science.gov (United States)

    Meacham, J Mark; Durvasula, Kiranmai; Degertekin, F Levent; Fedorov, Andrei G

    2014-02-01

    Effective intracellular delivery is a significant impediment to research and therapeutic applications at all processing scales. Physical delivery methods have long demonstrated the ability to deliver cargo molecules directly to the cytoplasm or nucleus, and the mechanisms underlying the most common approaches (microinjection, electroporation, and sonoporation) have been extensively investigated. In this review, we discuss established approaches, as well as emerging techniques (magnetofection, optoinjection, and combined modalities). In addition to operating principles and implementation strategies, we address applicability and limitations of various in vitro, ex vivo, and in vivo platforms. Importantly, we perform critical assessments regarding (1) treatment efficacy with diverse cell types and delivered cargo molecules, (2) suitability to different processing scales (from single cell to large populations), (3) suitability for automation/integration with existing workflows, and (4) multiplexing potential and flexibility/adaptability to enable rapid changeover between treatments of varied cell types. Existing techniques typically fall short in one or more of these criteria; however, introduction of micro-/nanotechnology concepts, as well as synergistic coupling of complementary method(s), can improve performance and applicability of a particular approach, overcoming barriers to practical implementation. For this reason, we emphasize these strategies in examining recent advances in development of delivery systems.

  3. The Tokamak Fusion Test Reactor decontamination and decommissioning project and the Tokamak Physics Experiment at the Princeton Plasma Physics Laboratory. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-05-27

    If the US is to meet the energy needs of the future, it is essential that new technologies emerge to compensate for dwindling supplies of fossil fuels and the eventual depletion of fissionable uranium used in present-day nuclear reactors. Fusion energy has the potential to become a major source of energy for the future. Power from fusion energy would provide a substantially reduced environmental impact as compared with other forms of energy generation. Since fusion utilizes no fossil fuels, there would be no release of chemical combustion products to the atmosphere. Additionally, there are no fission products formed to present handling and disposal problems, and runaway fuel reactions are impossible due to the small amounts of deuterium and tritium present. The purpose of the TPX Project is to support the development of the physics and technology to extend tokamak operation into the continuously operating (steady-state) regime, and to demonstrate advances in fundamental tokamak performance. The purpose of TFTR D&D is to ensure compliance with DOE Order 5820.2A ``Radioactive Waste Management`` and to remove environmental and health hazards posed by the TFTR in a non-operational mode. There are two proposed actions evaluated in this environmental assessment (EA). The actions are related because one must take place before the other can proceed. The proposed actions assessed in this EA are: the decontamination and decommissioning (D&D) of the Tokamak Fusion Test Reactor (TFTR); to be followed by the construction and operation of the Tokamak Physics Experiment (TPX). Both of these proposed actions would take place primarily within the TFTR Test Cell Complex at the Princeton Plasma Physics Laboratory (PPPL). The TFTR is located on ``D-site`` at the James Forrestal Campus of Princeton University in Plainsboro Township, Middlesex County, New Jersey, and is operated by PPPL under contract with the United States Department of Energy (DOE).

  4. Moving Liquids with Sound: The Physics of Acoustic Droplet Ejection for Robust Laboratory Automation in Life Sciences.

    Science.gov (United States)

    Hadimioglu, Babur; Stearns, Richard; Ellson, Richard

    2016-02-01

    Liquid handling instruments for life science applications based on droplet formation with focused acoustic energy or acoustic droplet ejection (ADE) were introduced commercially more than a decade ago. While the idea of "moving liquids with sound" was known in the 20th century, the development of precise methods for acoustic dispensing to aliquot life science materials in the laboratory began in earnest in the 21st century with the adaptation of the controlled "drop on demand" acoustic transfer of droplets from high-density microplates for high-throughput screening (HTS) applications. Robust ADE implementations for life science applications achieve excellent accuracy and precision by using acoustics first to sense the liquid characteristics relevant for its transfer, and then to actuate transfer of the liquid with customized application of sound energy to the given well and well fluid in the microplate. This article provides an overview of the physics behind ADE and its central role in both acoustical and rheological aspects of robust implementation of ADE in the life science laboratory and its broad range of ejectable materials.

  5. Applied Physics Letters

    OpenAIRE

    Korzhik, M. V.; Trower, W. P.

    1995-01-01

    We propose here a model of the scintillation from complex oxide single crystalsdoped with Ce3+ ions to explain the correlation observed between scintillation light yield and intrinsic luminescence of the matrix.

  6. Physical Properties of Ni2GeO4 Spinel Perturbed by Magnetic Dilution and Applied Pressure

    Science.gov (United States)

    Korobanik, Jory; Razavi, Fereidoon

    2014-03-01

    Geometrically frustrated magnetic systems have yielded an interesting and rich playground for physicists. Recently, a new disordered low temperature state was discovered in the frustrated pyrochlore type Ho2Ti2O7 which is termed spin ice. This phase is the magnetic analog to water ice with local spin disorder replacing proton disorder. Geometric frustration arises when nearest neighbor exchange interactions cannot be simultaneously satisfied resulting in large macroscopic degeneracy. This has the effect of suppressing Neel ordering temperature. This work seeks to understand the effects of applied pressure and magnetic dilution to the frustrated spinel Ni2GeO4. The parent material undergoes two closely spaced ordering events at T1 = 12.1K and T2 = 11.4K. Upon dilution a downward shift in the ordering temperatures is observed with a destruction of the lower T2 transition. Heat capacity, AC and DC magnetometry are used to probe the changes in physical properties.

  7. Answer first: Applying the heuristic-analytic theory of reasoning to examine student intuitive thinking in the context of physics

    Science.gov (United States)

    Kryjevskaia, Mila; Stetzer, MacKenzie R.; Grosz, Nathaniel

    2014-12-01

    We have applied the heuristic-analytic theory of reasoning to interpret inconsistencies in student reasoning approaches to physics problems. This study was motivated by an emerging body of evidence that suggests that student conceptual and reasoning competence demonstrated on one task often fails to be exhibited on another. Indeed, even after instruction specifically designed to address student conceptual and reasoning difficulties identified by rigorous research, many undergraduate physics students fail to build reasoning chains from fundamental principles even though they possess the required knowledge and skills to do so. Instead, they often rely on a variety of intuitive reasoning strategies. In this study, we developed and employed a methodology that allowed for the disentanglement of student conceptual understanding and reasoning approaches through the use of sequences of related questions. We have shown that the heuristic-analytic theory of reasoning can be used to account for, in a mechanistic fashion, the observed inconsistencies in student responses. In particular, we found that students tended to apply their correct ideas in a selective manner that supported a specific and likely anticipated conclusion while neglecting to employ the same ideas to refute an erroneous intuitive conclusion. The observed reasoning patterns were consistent with the heuristic-analytic theory, according to which reasoners develop a "first-impression" mental model and then construct an argument in support of the answer suggested by this model. We discuss implications for instruction and argue that efforts to improve student metacognition, which serves to regulate the interaction between intuitive and analytical reasoning, is likely to lead to improved student reasoning.

  8. Validity of actigraphs uniaxial and triaxial accelerometers for assessment of physical activity in adults in laboratory conditions

    Science.gov (United States)

    2013-01-01

    Background Few studies to date have directly compared the Actigraphs GT1M and the GT3X, it would be of tremendous value to know if these accelerometers give similar information about intensities of PA. Knowing if output is similar would have implications for cross-examination of studies. The purpose of the study was to assess the validity of the GT1M and the GT3X Actigraph accelerometers for the assessment of physical activity against oxygen consumption in laboratory conditions. Methods Forty-two college-aged participants aged 18-25 years wore the GT1M and the GT3X on their right hip during treadmill exercise at three different speeds, slow walking 4.8 km.h-1, fast walking 6.4 km.h-1, and running 9.7 km.h-1). Oxygen consumption was measured minute-by minute using a metabolic system. Bland-Altman plots were used to assess agreement between activity counts from the GT3X and GT1M, and correlations were assessed the ability of the accelerometers to assess physical activity. Results Bias for 4.8 km.h-1 was 2814.4 cpm (limits 1211.3 to 4417.4), for 6.4 km.h-1 was 3713.6 cpm (limits 1573.2 to 5854.0), and for 9.7 km.h-1 was−3811.2 cpm (limits 842.1 to 6780.3). Correlations between counts per minute for the GT1M and the GT3X were significantly correlated with VO2 (r = 0.881, p physical activity when compared to oxygen consumption. PMID:24279826

  9. Student motivation in a high school science laboratory: The impact of computers and other technologies on young adolescent physics students

    Science.gov (United States)

    Clark, Stephen Allan

    The impact of technology (including computers and probes, low friction carts, video camera, VCR's and electronic balances) on the motivation of adolescent science students was investigated using a naturalistic case study of college preparatory ninth grade physics classes at a comprehensive high school in the southeastern United States. The students were positively affected by the use of computer technology as compared to other "low tech" labs. The non-computer technologies had little motivational effect on the students. The most important motivational effect was the belief among the students that they could successfully operate the equipment and gather meaningful results. At times, the students spent more cognitive energy on performing the experiment than on learning the physics. This was especially true when microcomputer-based labs were used. When the technology led to results that were clear to the students and displayed in a manner that could be easily interpreted, they were generally receptive and motivated to persist at the task. Many students reported being especially motivated when a computer was used to gather the data because they "just liked computers." Furthermore, qualitative evidence suggested that they had learned the physics concept they were working on. This is in close agreement with the conceptual change model of learning in that students are most likely to change their prior conceptions when the new idea is plausible (the technology makes it so), intelligible (real time graphing, actual light rays), and fruitful (the new idea explains what they actually see). However, many of the microcomputer-based laboratory (MBL) activities and "high tech" labs were too unstructured, leaving students bewildered, confused and unmotivated. To achieve maximum motivational effects from the technology, it was necessary to reduce the cognitive demand on the students so they could concentrate on the data gathered rather than the operation of the equipment.

  10. School physics teacher class management, laboratory practice, student engagement, critical thinking, cooperative learning and use of simulations effects on student performance

    Science.gov (United States)

    Riaz, Muhammad

    The purpose of this study was to examine how simulations in physics class, class management, laboratory practice, student engagement, critical thinking, cooperative learning, and use of simulations predicted the percentage of students achieving a grade point average of B or higher and their academic performance as reported by teachers in secondary school physics classes. The target population consisted of secondary school physics teachers who were members of Science Technology, Engineeering and,Mathematics Teachers of New York City (STEMteachersNYC) and American Modeling Teachers Association (AMTA). They used simulations in their physics classes in the 2013 and 2014 school years. Subjects for this study were volunteers. A survey was constructed based on a literature review. Eighty-two physics teachers completed the survey about instructional practice in physics. All respondents were anonymous. Classroom management was the only predictor of the percent of students achieving a grade point average of B or higher in high school physics class. Cooperative learning, use of simulations, and student engagement were predictors of teacher's views of student academic performance in high school physics class. All other variables -- class management, laboratory practice, critical thinking, and teacher self-efficacy -- were not predictors of teacher's views of student academic performance in high school physics class. The implications of these findings were discussed and recommendations for physics teachers to improve student learning were presented.

  11. The effects of combined technics training on some physical strength and technical features that is applied to basketball players

    Directory of Open Access Journals (Sweden)

    Fatih Kılınç

    2011-01-01

    Full Text Available Normal 0 21 false false false TR X-NONE X-NONE MicrosoftInternetExplorer4 Aim, it is the research about the effects of  combined technics traınıng on some physical, strength and technical features  that is applied to basketball players who are in basic  technich  development . Method, twenty-five (n:25 male volunteers  attended to this research who are the students of primary school.Two group was formed. The  first group went into combined technics training (KTA n.13, age 9.7+/-0.4 year, height 142.7+/-5.8cm, body weight 34+/-5.2 kg, the second group went into normal technics training (NTA n.12, age 10.5+/-0.5 year, height 147.7+/-0.5 cm, body weight 38.1+/-0.7 kg it is organised like this. Measurement of the physical environment, vertical jump test, right-left hand gripping strength, back strength, the basic technich tests (dribbling,changing hands from behind, reverse,  right–left  tourniquet were done. Training was programmed to be in eight weeks, five days in a week and 1.5 hour. Two  tests were applied to the children before and after the training. Descriptive statistics and t-test  were performed from the data that was obtained through the research. Findings, among the test measurment results after training  important  differences were found between combined technical training group (KTA and normal technical training group (NTA in arm, double-leg vertical jump, left-right one foot vertical jump as well as  the technical tests such as (dribbling, changing hands behind, reverse, right-left tourniquet (p<0.05. Results, in terms of  technical development in basketball, combined technical group (KTA had a very important degree of development. Basketball players have also developed the technical testing of computer-aided analysis program can be a practical field conditions can be reported.

  12. Accessing Solar Irradiance Data via LISIRD, the Laboratory for Atmospheric and Space Physics Interactive Solar Irradiance Datacenter

    Science.gov (United States)

    Pankratz, C. K.; Wilson, A.; Snow, M. A.; Lindholm, D. M.; Woods, T. N.; Traver, T.; Woodraska, D.

    2015-12-01

    The LASP Interactive Solar Irradiance Datacenter, LISIRD, http://lasp.colorado.edu/lisird, allows the science community and the public to explore and access solar irradiance and related data sets using convenient, interactive or scriptable, standards-based interfaces. LISIRD's interactive plotting allows users to investigate and download irradiance data sets from a variety of sources, including space missions, ground observatories, and modeling efforts. LISIRD's programmatic interfaces allow software-level data retrievals and facilitate automation. This presentation will describe the current state of LISIRD, provide details of the data sets it serves, outline data access methods, identify key technologies in-use, and address other related aspects of serving spectral and other time series data. We continue to improve LISIRD by integrating new data sets, and also by advancing its data management and presentation capabilities to meet evolving best practices and community needs. LISIRD is hosted and operated by the Laboratory for Atmospheric and Space Physics, LASP, which has been a leader in Atmospheric and Heliophysics science for over 60 years. LASP makes a variety of space-based measurements of solar irradiance, which provide crucial input for research and modeling in solar-terrestrial interactions, space physics, planetary, atmospheric, and climate sciences. These data sets consist of fundamental measurements, composite data sets, solar indices, space weather products, and models. Current data sets available through LISIRD originate from the SORCE, SDO (EVE), UARS (SOLSTICE), TIMED (SEE), and SME space missions, as well as several other space and ground-based projects. LISIRD leverages several technologies to provide flexible and standards-based access to the data holdings available through LISIRD. This includes internet-accessible interfaces that permit data access in a variety of formats, data subsetting, as well as program-level access from data analysis

  13. Effect of applying static electric field on the physical parameters and dynamics of laser-induced plasma

    Directory of Open Access Journals (Sweden)

    Asmaa Elhassan

    2010-04-01

    Full Text Available In order to improve the performance of the LIBS technique – in particular its sensitivity, reproducibility and limit of detection – we studied the effect of applying a static electric field with different polarities on the emission spectra obtained in a typical LIBS set-up. The physical parameters of the laser-induced plasma, namely the electron density Ne and the plasma temperature Te, were studied under such circumstances. In addition to the spectroscopic analysis of the plasma plume emission, the laser-induced shock waves were exploited to monitor the probable changes in the plasma plume dynamics due to the application of the electric field. The study showed a pronounced enhancement in the signal-to-noise (S/N ratio of different Al, neutral and ionic lines under forward biasing voltage (negative target and positive electrode. On the other hand, a clear deterioration of the emission line intensities was observed under conditions of reversed polarity. This negative effect may be attributed to the reduction in electron-ion recombinations due to the stretched plasma plume. The plasma temperature showed a constant value in the average with the increasing electric field in both directions. This effect may be due to the fact that the measured values of Te were averaged over the whole plasma emission volume. The electron density was observed to decrease slightly in the case of forward biasing while no significant effect was noticed in the case of reversed biasing. This slight decrease in Ne can be interpreted in view of the increase in the rate of electron–ion recombinations due to the presence of the electric field. No appreciable effects of the applied electric field on the plasma dynamics were noticed.

  14. Morphological aspects and physical properties of enamel and dentine of Sus domesticus: A tooth model in laboratory research.

    Science.gov (United States)

    Fagundes, Nathalia Carolina Fernandes; Cardoso, Miquéias André Gomes; Miranda, Mayara Sabrina Luz; Silva, Raira de Brito; Teixeira, Francisco Bruno; Nogueira, Bárbara Catarina Lima; Nogueira, Brenna Magdalena Lima; de Melo, Sara Elisama Silva; da Costa, Natacha Malu Miranda; Lima, Rafael Rodrigues

    2015-11-01

    This study aims to describe and analyze morphological and physical properties of deciduous teeth of Sus domesticus. Ultrastructural analysis, mineral composition and microhardness of enamel and dentine tissues were performed on 10 skulls of S. domesticus. External anatomic characteristics and the internal anatomy of the teeth were also described. Data regarding microhardness and ultrastructural analysis were subjected to statistical tests. For ultrastructural analysis, we used the analysis of variance (ANOVA) with Tukey's post hoc (p≤0.05) test. In the analysis of microhardness, the difference between the enamel and dentine tissues was analyzed by a Student's t test. Values were expressed as mean with standard error. The results of ultrastructural analysis showed the presence of an enamel prism pattern. A dentinal tubule pattern was also observed, with a larger diameter in the pulp chamber and the cervical third, in comparison to middle and apical thirds. We observed an average microhardness of 259.2kgf/mm(2) for enamel and 55.17kgf/mm(2) for dentine. In porcine enamel and dentine, the chemical elements Ca and P showed the highest concentration. The analysis of internal anatomy revealed the presence of a simple root canal system and the occurrence of main canals in the roots. The observed features are compatible with the functional demand of these animals, following a pattern very similar to that seen in other groups of mammals, which can encourage the development of research using dental elements from the pig as a substitute for human teeth in laboratory research.

  15. Some physical displays of the space anisotropy relevant to the feasibility of its being detected at a laboratory

    CERN Document Server

    Bogoslovsky, George Yu

    2007-01-01

    The impact of local space anisotropy on the transverse Doppler effect is examined. Two types of laboratory experiments aimed at seeking and measuring the local space anisotropy are proposed. In terms of the conventional special relativity theory, which treats 3D space to be locally isotropic, the experiments are of the type of ``null-experiments''. In the first-type experiments, a feasible Doppler shift of frequency is measured by the M\\"ossbauer effect, with the M\\"ossbauer source and absorber being located at two identical and diametrically opposed distances from the center of a rapidly rotating rotor, while the $\\gamma$-quanta are recorded by two stationary and oppositely positioned proportional counters. Either of the counters records only those $\\gamma$-quanta that passed through the absorber at the moment of the passage of the latter near a counter. The second-type experiments are made using the latest radio physics techniques for generating monochromatic oscillations and for recording weak signals. The...

  16. Estimating the Analytical and Surface Enhancement Factors in Surface-Enhanced Raman Scattering (SERS): A Novel Physical Chemistry and Nanotechnology Laboratory Experiment

    Science.gov (United States)

    Pavel, Ioana E.; Alnajjar, Khadijeh S.; Monahan, Jennifer L.; Stahler, Adam; Hunter, Nora E.; Weaver, Kent M.; Baker, Joshua D.; Meyerhoefer, Allie J.; Dolson, David A.

    2012-01-01

    A novel laboratory experiment was successfully implemented for undergraduate and graduate students in physical chemistry and nanotechnology. The main goal of the experiment was to rigorously determine the surface-enhanced Raman scattering (SERS)-based sensing capabilities of colloidal silver nanoparticles (AgNPs). These were quantified by…

  17. Radiological and Environmental Research Division annual report. Fundamental molecular physics and chemistry, June 1975--September 1976. [Summaries of research activities at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-01-01

    A summary of research activities in the fundamental molecular physics and chemistry section at Argonne National Laboratory from July 1975 to September 1976 is presented. Of the 40 articles and abstracts given, 24 have been presented at conferences or have been published and will be separately abstracted. Abstracts of the remaining 16 items appear in this issue of ERA. (JFP)

  18. Using Mole Ratios of Electrolytic Products of Water for Analysis of Household Vinegar: An Experiment for the Undergraduate Physical Chemistry Laboratory

    Science.gov (United States)

    Dabke, Rajeev B.; Gebeyehu, Zewdu

    2012-01-01

    A simple 3-h physical chemistry undergraduate experiment for the quantitative analysis of acetic acid in household vinegar is presented. The laboratory experiment combines titration concept with electrolysis and an application of the gas laws. A vinegar sample was placed in the cathode compartment of the electrolysis cell. Electrolysis of water…

  19. Geophysical and physical measurements applied to characterize an area prone to quick clay landslides in SW Sweden

    Science.gov (United States)

    Salas-Romero, Silvia; Malehmir, Alireza; Snowball, Ian; Lougheed, Bryan C.; Hellqvist, Magnus

    2014-05-01

    The study of quick clay landslides in Nordic countries, such as Sweden and Norway, is wide and varied. However, the occurrence of catastrophes like those in Munkedal, Sweden, in 2006, demands a more complete characterization of these materials and their extensiveness. The objectives of this research are mainly focused on obtaining information about the properties and behavior of quick clays in an area prone to landslides in southwestern Sweden. Two fieldwork campaigns were carried out in 2011 and 2013, using methods such as 2D and 3D P-wave and S-wave seismic, geoelectrics, controlled-source and radio-magnetotellurics, ground gravity, as well as downhole geophysics (measuring fluid temperature and conductivity, gamma radiation, sonic velocity and resistivity) performed in three boreholes located in the study area. Drill cores recovered using the SONIC technique provided samples for paleontological information, as well as laboratory measurements of physical properties of the subsurface materials to a maximum subsurface depth of about 60 m. The laboratory measurements included grain size analysis, mineral magnetic properties, electric conductivity, pH, salinity, total dissolved solids, x-ray fluorescence (XRF), and a reconnaissance study of the fossil content. A correlation study of the downhole geophysical measurements, 2D seismic sections located at the intersection with the boreholes and the sample observations indicated that the presence of quick clays is associated with contacts with coarse-grained materials. Although the PVC casing of the boreholes interferes with the sonic and resistivity measurements, the perforated parts of the PVC casing show significant changes. The most important variations in magnetic susceptibility and conductivity mostly coincide with these coarse-grained layers, supporting the seismic data. Coarse-grained layers are characterized by enhanced magnetic susceptibility and conductivity. Grain size analysis results on subsamples from the

  20. Thermogravimetric Analysis Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Thermogravimetric Analysis Laboratory in Morgantown, WV, researchers study how chemical looping combustion (CLC) can be applied to fossil energy systems....

  1. Pushing the physics envelope Canada's new Perimeter Institute is planning to apply the risk-taking approach of venture capitalism to the pursuit of theoretical physics

    CERN Multimedia

    Spurgeon, D

    2001-01-01

    An highly successful business man has donated 100 million Canadian dollars to found the Perimeter Institue for Theoretical Physics. It is designed to attract young, innovative scientists to tackle some of the most difficult problems in physics such as quantum gravity and quantum information theory (1 page).

  2. Paperless Information Management System in the Applied Research Laboratory%信息无纸化管理系统在检验科的应用研究

    Institute of Scientific and Technical Information of China (English)

    于亮

    2015-01-01

    With the continuous improvement of the level of science and technology, the popularization of information technology, strengthen the hospital clinical laboratory paperless, information, becoming the main trend of the development of hospital. Bar code technology is more and more popular in today, the in the hospital information system has been widely used, and has a good appli-cation effect. In the hospital laboratory using full color information bar code information management system, can realize the test of paperless management, to improve the efficiency and quality of work has a positive significance. This paper focuses on the color information bar code label technology and paperless inspection process to be analyzed and elaborated information paperless man-agement system application process transformation and program optimization.%随着科学技术水平的不断提高,信息技术的不断普及,加强医院检验科的无纸化、信息化,成为了医院发展的主要趋势。条码技术在医院信息领域中得到了广泛应用,并且具有很好的应用效果。在医院检验科运用全信息彩色条码信息管理系统,能够实现检验科的无纸化管理,对提高工作效率与质量有着积极意义。该研究主要对全信息彩色条码标签技术及无纸化检验流程予以分析,阐述信息无纸化管理系统的应用流程改造及程序优化。

  3. PHYSICS

    CERN Multimedia

    P. Sphicas

    There have been three physics meetings since the last CMS week: “physics days” on March 27-29, the Physics/ Trigger week on April 23-27 and the most recent physics days on May 22-24. The main purpose of the March physics days was to finalize the list of “2007 analyses”, i.e. the few topics that the physics groups will concentrate on for the rest of this calendar year. The idea is to carry out a full physics exercise, with CMSSW, for select physics channels which test key features of the physics objects, or represent potential “day 1” physics topics that need to be addressed in advance. The list of these analyses was indeed completed and presented in the plenary meetings. As always, a significant amount of time was also spent in reviewing the status of the physics objects (reconstruction) as well as their usage in the High-Level Trigger (HLT). The major event of the past three months was the first “Physics/Trigger week” in Apri...

  4. Role of the Microcomputer-Based Laboratory Display in Supporting the Construction of New Understandings in Thermal Physics

    Science.gov (United States)

    Russell, David W.; Lucas, Keith B.; McRobbie, Campbell J.

    2004-01-01

    Teachers' failure to use the microcomputer-based laboratory (MBL) more widely may be a result of not recognizing its capacity to transform laboratory activities. This research aimed to increase understanding of how MBL activities designed to be consistent with a constructivist theory of learning support or constrain student construction of…

  5. Pacific Northwest Laboratory Annual Report for 1979 to the DOE Assistant Secretary for Environment Part 4 Physical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, J. M.

    1980-02-01

    This volume contains 63 articles on physical science activities in diverse areas, including coal, fission, radiation physics, geothermal resource development, oil shale and tar sand research, and multitechnology development.

  6. Students’ attitude to the possibility of applying modern information and communication technologies in the educational process in physical education

    Directory of Open Access Journals (Sweden)

    Ilnitskaya A.S.

    2014-03-01

    Full Text Available Purpose: to analyze the problem of the formation of students’ attitudes toward physical education classes and the application of information and communication technologies in physical education in higher education institutions. Material: in the survey participated 245 students. Results: it was found that according to students in physical education classes with the use of modern technologies are more efficient than traditional occupations (52% are more emotional nature, help to improve mood (28%, helps to provide students the latest up to date information relative health (26 % contribute to increased power consumption of an organism (8%. Conclusion: the need for the development and application of information and communication technologies and non-traditional forms of physical education to improve the effectiveness of the educational process in physical education in higher education institutions.

  7. Modern Infinitesimal Analysis Applied to the Physical Metric dS and a Theoretical Verification of a Time-dilation Conjecture

    OpenAIRE

    Robert A. Herrmann

    2008-01-01

    In this paper, the modern theory of infinitesimals is applied to the General Relativity metric dS and its geometric and physical meanings are rigorously investigated. Employing results obtained via the time-dependent Schrodinger equation, gravitational time-dilation expressions are obtained and are shown to be caused by gravitationally altered photon interactions with atomic structures.

  8. Effect of three different grip angles on physical parameters during laboratory test in handcycling in able-bodied participants

    Directory of Open Access Journals (Sweden)

    Thomas eAbel

    2015-11-01

    Full Text Available Introduction: Handcycling is a relatively new wheelchair sport that has gained increased popularity for people with lower limb disabilities. The aim of this study was to examine the effect of three different grip positions on physical parameters during handcycling in a laboratory setting.Methods: Twenty one able-bodied participants performed three maximum incremental handcycling tests until exhaustion, each with a different grip angle. The angle between the grip and the crank was randomly set at 90° (horizontal, 0° (vertical or 10° (diagonal. The initial load was 20 W and increased by 20 W each five minutes. In addition, participants performed a 20 s maximum effort.Results: The relative peak functional performance (W/kg, peak heart rate (bpm, associated lactate concentrations (mmol/l and peak oxygen uptake per kilogram body weight (ml.min-1.kg-1 for the different grip positions during the stage test were: (a Horizontal: 1.43 ± 0.21 W/kg, 170.14 ± 12.81 bpm, 9.54 ± 1.93 mmol/l, 30.86 ± 4.57 ml/kg; (b Vertical: 1.38 ± 0.20 W/kg, 171.81 ± 13.87 bpm, 9.91 ± 2.29 mmol/l, 29.75 ± 5.13 ml/kg; (c Diagonal: 1.40 ± 0.22 W/kg, 169.19 ± 13.31 bpm, 9.34 ± 2.36 mmol/l, 29.39 ± 4.70 ml/kg. Statistically significant (p <0.05 differences could only be found for lactate concentration between the vertical grip position and the other grips during submaximal handcycling. Conclusion: The orientation of three different grip angles made no difference to the peak load achieved during an incremental handcycling test and a 20 second maximum effort. At submaximal load, higher lactate concentrations were found when the vertical grip position was used, suggesting that this position may be less efficient than the alternative diagonal or horizontal grip positions.

  9. PHYSICS

    CERN Multimedia

    D. Acosta

    2010-01-01

    A remarkable amount of progress has been made in Physics since the last CMS Week in June given the exponential growth in the delivered LHC luminosity. The first major milestone was the delivery of a variety of results to the ICHEP international conference held in Paris this July. For this conference, CMS prepared 15 Physics Analysis Summaries on physics objects and 22 Summaries on new and interesting physics measurements that exploited the luminosity recorded by the CMS detector. The challenge was incorporating the largest batch of luminosity that was delivered only days before the conference (300 nb-1 total). The physics covered from this initial running period spanned hadron production measurements, jet production and properties, electroweak vector boson production, and even glimpses of the top quark. Since then, the accumulated integrated luminosity has increased by a factor of more than 100, and all groups have been working tremendously hard on analysing this dataset. The September Physics Week was held ...

  10. Measuring the Earth’s magnetic field dip angle using a smartphone-aided setup: a simple experiment for introductory physics laboratories

    Science.gov (United States)

    Arabasi, Sameer; Al-Taani, Hussein

    2017-03-01

    Measurement of the Earth’s magnetic field dip angle is a widely used experiment in most introductory physics laboratories. In this paper we propose a smartphone-aided setup that takes advantage of the smartphone’s magnetometer sensor to measure the Earth’s magnetic field dip angle. This set-up will help students visualize the vector nature of the Earth’s magnetic field, especially high school and first year college students who are not quite experienced with vectors. This set-up is affordable and easy to use and could be easily produced by any high school or college physics instructor.

  11. PHYSICS

    CERN Multimedia

    J. Incandela

    There have been numerous developments in the physics area since the September CMS week. The biggest single event was the Physics/Trigger week in the end of Octo¬ber, whereas in terms of ongoing activities the “2007 analyses” went into high gear. This was in parallel with participation in CSA07 by the physics groups. On the or¬ganizational side, the new conveners of the physics groups have been selected, and a new database for man¬aging physics analyses has been deployed. Physics/Trigger week The second Physics-Trigger week of 2007 took place during the week of October 22-26. The first half of the week was dedicated to working group meetings. The ple¬nary Joint Physics-Trigger meeting took place on Wednesday afternoon and focused on the activities of the new Trigger Studies Group (TSG) and trigger monitoring. Both the Physics and Trigger organizations are now focused on readiness for early data-taking. Thus, early trigger tables and preparations for calibr...

  12. PHYSICS

    CERN Multimedia

    P. Sphicas

    The CPT project came to an end in December 2006 and its original scope is now shared among three new areas, namely Computing, Offline and Physics. In the physics area the basic change with respect to the previous system (where the PRS groups were charged with detector and physics object reconstruction and physics analysis) was the split of the detector PRS groups (the old ECAL-egamma, HCAL-jetMET, Tracker-btau and Muons) into two groups each: a Detector Performance Group (DPG) and a Physics Object Group. The DPGs are now led by the Commissioning and Run Coordinator deputy (Darin Acosta) and will appear in the correspond¬ing column in CMS bulletins. On the physics side, the physics object groups are charged with the reconstruction of physics objects, the tuning of the simulation (in collaboration with the DPGs) to reproduce the data, the provision of code for the High-Level Trigger, the optimization of the algorithms involved for the different physics analyses (in collaboration with the analysis gr...

  13. AN ANALYSIS OF STUDENTS’ SKILL IN APPLYING THE PROBLEM SOLVING STRATEGY TO THE PHYSICS PROBLEM SETTLEMENT IN FACING AEC AS GLOBAL COMPETITION

    Directory of Open Access Journals (Sweden)

    A Halim

    2016-04-01

    Full Text Available The results of previous studies show that students of Physics Education (S1 and S2, FKIP Syiah Kuala University more than 50% do not understand the programs and roadmap of Pilar ASEAN Socio-Cultural Community as a part of the ASEAN Economic Community (AEC. The inference of those results to the implementation of learning physics and science education system needs to be implemented through a link and match learning model that can improve the ability to think critically and creatively, and students need to be trained to be problem solvers, not the problem makers.Based on these problems, through this research has been applied physics learning by using Problem Solving strategies on 25 students of Master of Physical Education and Science. At the end of the implementation study measured the ability of students to apply problem-solving strategies in accordance with Answer Sections of Problem Solving adopted from previous research. The results showed that the majority of students (78% are able to implement the stage I (Focus on Problem with a complete, almost all respondents (91% was only able to implement the stage II (Describe the Physics of about 40%, almost all respondents (91% can apply for the stage III (Plan The Solution approximately 80% of all respondents have been able to implement the stage IV (Excute the Plan perfectly, and all respondents have been able to apply the stage V (Evaluate the Answer completely. It is expected that all staff of teaching Science materials (Physics, they are recommended strongly to implement Problem Solving as an alternative strategy for preparing students to face global competition in the ASEAN Economic Community (AEC.

  14. The Design Process of Physical Security as Applied to a U.S. Border Port of Entry

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, G.G.

    1999-02-22

    This paper details the application of a standard physical security system design process to a US Border Port of Entry (PoE) for vehicle entry/exit. The physical security design methodology is described as well as the physical security similarities to facilities currently at a US Border PoE for vehicles. The physical security design process description includes the various elements that make up the methodologies well as the considerations that must be taken into account when dealing with system integration of those elements. The distinctions between preventing unlawful entry/exit of illegal contraband and personnel are described. The potential to enhance the functions of drug/contraband detection in the Pre-Primary Inspection area through the application of emerging technologies are also addressed.

  15. PHYSICS

    CERN Multimedia

    Submitted by

    Physics Week: plenary meeting on physics groups plans for startup (14–15 May 2008) The Physics Objects (POG) and Physics Analysis (PAG) Groups presented their latest developments at the plenary meeting during the Physics Week. In the presentations particular attention was given to startup plans and readiness for data-taking. Many results based on the recent cosmic run were shown. A special Workshop on SUSY, described in a separate section, took place the day before the plenary. At the meeting, we had also two special DPG presentations on “Tracker and Muon alignment with CRAFT” (Ernesto Migliore) and “Calorimeter studies with CRAFT” (Chiara Rovelli). We had also a report from Offline (Andrea Rizzi) and Computing (Markus Klute) on the San Diego Workshop, described elsewhere in this bulletin. Tracking group (Boris Mangano). The level of sophistication of the tracking software increased significantly over the last few months: V0 (K0 and Λ) reconstr...

  16. Evaluating the suitability of Hydrobia ulvae as a test species for sediment metal toxicity testing applying a tissue residue approach to metal mixtures in laboratory and field exposures.

    Science.gov (United States)

    Campana, Olivia; Rodríguez, Antonio; Blasco, Julián

    2013-05-01

    A major weakness in evaluating the suitability of a biomonitor organism is the poor ability to predict the variability of the bioavailability of metals from measured environmental concentrations. In this study, the intertidal gastropod Hydrobia ulvae was used to evaluate its suitability as a test organism for assessing sediment metal toxicity. Toxicity tests were run with sediments spiked with copper, cadmium and zinc applied both as single metal and as a mixture to investigate toxicological interactions evaluating different lethal and sublethal effects. Dose-response relationships were constructed based both on tissue residue approach and particulate metal concentrations. Because metal-spiked sediments used in routine toxicity tests often do not exhibit the same adsorption/desorption kinetics as the natural sediments, the laboratory results were compared to 10-d bioassays conducted with natural field sediments collected from the Guadalete estuary (SW Spain). Highly significant correlations between tissue residue concentrations and particulate metal concentrations were found for all metal-spiked or field-collected and demonstrated that: (i) H. ulvae readily accumulated copper and cadmium in response to contamination and (ii) dietary uptake was determined to be the most significant route of metal exposure. The comparison of the modeled tissue residue-response curve developed from the mixture tests was in good agreement with the results from the bioassay conducted with field sediments and strongly demonstrated that H. ulvae is also a suitable test organism for assessing copper sediment toxicity. In contrast, the dose-response curve expressed as a function of total particulate metal concentrations would fail in predicting effect, erroneously assessing higher metal toxicity.

  17. Implementation of Collaborative Learning during the Applied Pharmaceutical Calculations Laboratory at the School of Pharmacy from the Universidad de Costa Rica

    Directory of Open Access Journals (Sweden)

    Juan José Mora Román

    2014-05-01

    Full Text Available The School of Pharmacy is currently facing a problem due to little or no communication among students of the same class or same academic level. Collaborative learning is a methodological strategy that goes beyond just working in groups. Small groups are formed and, after receiving instructions from the professor, group members exchange knowledge and work on an assignment until every person in the group has understood and completed the task, thus learning through collaboration. The main elements of this learning technique include: intentional design through the use of activities prepared by the teacher, collaboration through the active commitment of all the members of the work team, and significant learning through the increase of individual and collective in-depth knowledge on a given topic. Due to the foregoing, this learning experience was conducted during three sessions of the Applied Pharmaceutical Calculations Laboratory (FA-2023 during the second semester of 2012.  During these sessions, students were paired and assigned specific tasks that had to be completed before, during and after each lab session. In order to determine the result of the strategy used, the grades obtained by all the groups (24 students in quizzes and reports during those sessions were compared against the grades obtained in both items during the sessions where no collaborative learning approach was used. In addition, a survey in the form of a questionnaire was used to know the students’ opinion regarding this methodological strategy. Data was examined using a sociodemographic analysis for age and gender, and a descriptive analysis with frequency distribution for the rest of the items in the questionnaire. Results obtained show an enriching experience from the perspective of both the professor and the students. Consequently, the implementation of this strategy is necessary and advisable for the education processes of all learning levels in Costa Rica.

  18. Particle Astrophysics and Cosmology: Cosmic Laboratories for New Physics (Summary of the Snowmass 2001 P4 Working Group)

    Science.gov (United States)

    Akerib, Daniel S.; Carroll, Sean M.; Kaminokowski, Marc; Ritz, Steven; White, Nicholas E. (Technical Monitor)

    2002-01-01

    The past few years have seen dramatic breakthroughs and spectacular and puzzling discoveries in astrophysics and cosmology. In many cases, the new observations can only be explained with the introduction of new fundamental physics. Here we summarize some of these recent advances. We then describe several problems in astrophysics and cosmology, ripe for major advances, the resolution of which will likely require new physics.

  19. Does Physical Environment Contribute to Basic Psychological Needs? A Self-Determination Theory Perspective on Learning in the Chemistry Laboratory

    Science.gov (United States)

    Sjöblom, Kirsi; Mälkki, Kaisu; Sandström, Niclas; Lonka, Kirsti

    2016-01-01

    The role of motivation and emotions in learning has been extensively studied in recent years; however, research on the role of the physical environment still remains scarce. This study examined the role of the physical environment in the learning process from the perspective of basic psychological needs. Although self-determination theory stresses…

  20. 1977-78 Directory of Physics & Astronomy Staff Members - North American Colleges & Universities, Federally Funded Research & Development Centers, Government Laboratories.

    Science.gov (United States)

    Shea, Dion W. J.

    This document is an updated edition of an annual publication of the "Directory of Physics and Astronomy Staff Members," published by the American Institute of Physics, and covers the United States, Canada, Mexico and Central America. The directory contains 10 parts and 7 appendices. Part I through Part IV include the geographic listing of academic…

  1. PHYSICS

    CERN Multimedia

    D. Futyan

    A lot has transpired on the “Physics” front since the last CMS Bulletin. The summer was filled with preparations of new Monte Carlo samples based on CMSSW_3, the finalization of all the 10 TeV physics analyses [in total 50 analyses were approved] and the preparations for the Physics Week in Bologna. A couple weeks later, the “October Exercise” commenced and ran through an intense two-week period. The Physics Days in October were packed with a number of topics that are relevant to data taking, in a number of “mini-workshops”: the luminosity measurement, the determination of the beam spot and the measurement of the missing transverse energy (MET) were the three main topics.  Physics Week in Bologna The second physics week in 2009 took place in Bologna, Italy, on the week of Sep 7-11. The aim of the week was to review and establish how ready we are to do physics with the early collisions at the LHC. The agenda of the week was thus pac...

  2. PHYSICS

    CERN Multimedia

    D. Futyan

    A lot has transpired on the “Physics” front since the last CMS Bulletin. The summer was filled with preparations of new Monte Carlo samples based on CMSSW_3, the finalization of all the 10 TeV physics analyses [in total 50 analyses were approved] and the preparations for the Physics Week in Bologna. A couple weeks later, the “October Exercise” commenced and ran through an intense two-week period. The Physics Days in October were packed with a number of topics that are relevant to data taking, in a number of “mini-workshops”: the luminosity measurement, the determination of the beam spot and the measurement of the missing transverse energy (MET) were the three main topics.   Physics Week in Bologna The second physics week in 2009 took place in Bologna, Italy, on the week of Sep 7-11. The aim of the week was to review and establish (we hoped) the readiness of CMS to do physics with the early collisions at the LHC. The agenda of the...

  3. Analyzing the Anxiety States of Canditates Applying f or Special Talent Examination in the School of Physical Education and Sports in Terms of Several Variables

    Directory of Open Access Journals (Sweden)

    Yeşim SONGÜN

    2015-08-01

    Full Text Available In this study, anxiety states of candidates who were going to attend special talent examination in the School of Physical Education and Sports were analyzed in terms of various variables such as age, gender, residence and socio - economic level of the family , parents’ educational levels and professions, active sports status, the number of exams taken, and applied training methods. Within the scope of this study, 244 candidates who applied for the special talent examination held by the School of Physical Educa tion and Sports in Gümüşhane University in 2014 - 2015 academic year volunteered to participate. Regarding the data collection tool, a personal information form and State - Trait Anxiety Scale developed by Spielberger et. al were used. For the analysis of gath ered data, for paramedic variables, t test and test of One Way Anova were applied. For non paramedic variables, Kruskal Wallis test was applied. In order to determine the source of difference between the means Post Hoc Tukey test was applied. All the analy ses during the research process were carried out by SPSS 20.00 package program. As a result, it was found out that the only significant diff erence between the anxiety scores and the stated variables was in terms of candidates’ mothers’ occupation variable (F 239 = 2,507, p<.05 whereas no other significant difference was determined concerning other variables.

  4. PHYSICS

    CERN Document Server

    J. Incandela

    The all-plenary format of the CMS week in Cyprus gave the opportunity to the conveners of the physics groups to present the plans of each physics analysis group for tackling early physics analyses. The presentations were complete, so all are encouraged to browse through them on the Web. There is a wealth of information on what is going on, by whom and on what basis and priority. The CMS week was followed by two CMS “physics events”, the ICHEP08 days and the physics days in July. These were two weeks dedicated to either the approval of all the results that would be presented at ICHEP08, or to the review of all the other Monte-Carlo based analyses that were carried out in the context of our preparations for analysis with the early LHC data (the so-called “2008 analyses”). All this was planned in the context of the beginning of a ramp down of these Monte Carlo efforts, in anticipation of data.  The ICHEP days are described below (agenda and talks at: http://indic...

  5. PHYSICS

    CERN Multimedia

    Joe Incandela

    There have been two plenary physics meetings since the December CMS week. The year started with two workshops, one on the measurements of the Standard Model necessary for “discovery physics” as well as one on the Physics Analysis Toolkit (PAT). Meanwhile the tail of the “2007 analyses” is going through the last steps of approval. It is expected that by the end of January all analyses will have converted to using the data from CSA07 – which include the effects of miscalibration and misalignment. January Physics Days The first Physics Days of 2008 took place on January 22-24. The first two days were devoted to comprehensive re¬ports from the Detector Performance Groups (DPG) and Physics Objects Groups (POG) on their planning and readiness for early data-taking followed by approvals of several recent studies. Highlights of POG presentations are included below while the activities of the DPGs are covered elsewhere in this bulletin. January 24th was devo...

  6. An Experimental Investigation of the Role of Radiation in Laboratory Bench-Top Experiments in Thermal Physics

    Science.gov (United States)

    Twomey, Patrick; O'Sullivan, Colm; O'Riordan, John

    2009-01-01

    A simple undergraduate experiment designed to study cooling purely by radiation and cooling by a combination of convection and radiation is described. Results indicate that the contribution from radiative cooling in normal laboratory experiments is more significant than students often realize, even in the case of forced cooling. (Contains 1…

  7. Integrating Statistical Mechanics with Experimental Data from the Rotational-Vibrational Spectrum of HCl into the Physical Chemistry Laboratory

    Science.gov (United States)

    Findley, Bret R.; Mylon, Steven E.

    2008-01-01

    We introduce a computer exercise that bridges spectroscopy and thermodynamics using statistical mechanics and the experimental data taken from the commonly used laboratory exercise involving the rotational-vibrational spectrum of HCl. Based on the results from the analysis of their HCl spectrum, students calculate bulk thermodynamic properties…

  8. Pacific Northwest Laboratory annual report for 1988 to the DOE Office of Energy Research: Part 4, Physical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Touburen, L.H.

    1989-03-01

    This document contains brief descriptions of various research programs in the physical science. Topics include Chernobyl Information Management, Supercritical Fluids, Laser Spectroscopy, DNA Adducts, Dosimetry, Biophysics, and Genetic Damage. (TEM)

  9. Pacific Northwest Laboratory annual report for 1980 to the DOE Assistant Secretary for Environment. Part 4. Physical sciences.

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, J.M.

    1981-02-01

    Separate abstracts were prepared for the 16 sections of this progress report which deals with the physics and chemistry of various energy technologies including coal, fission, geothermal and oil shale. (KRM)

  10. Physics

    CERN Document Server

    Cullen, Katherine

    2005-01-01

    Defined as the scientific study of matter and energy, physics explains how all matter behaves. Separated into modern and classical physics, the study attracts both experimental and theoretical physicists. From the discovery of the process of nuclear fission to an explanation of the nature of light, from the theory of special relativity to advancements made in particle physics, this volume profiles 10 pioneers who overcame tremendous odds to make significant breakthroughs in this heavily studied branch of science. Each chapter contains relevant information on the scientist''s childhood, research, discoveries, and lasting contributions to the field and concludes with a chronology and a list of print and Internet references specific to that individual.

  11. Analysis of applied undergraduate college physics experiment teaching reform%应用型本科院校物理实验教学改革探析

    Institute of Scientific and Technical Information of China (English)

    杜长龙

    2015-01-01

    大学物理实验是本科高校教学体系中的非常重要的基础通识课,是一门着重培养大学生动手操作能力的课程。应用型人才的培养又是当前高等教育的必然趋势。因此,针对应用型本科院校特点和物理实验课程教学现状,加快和创新大学物理实验教学改革,提高应用型本科人才动手操作能力具有重要的现实指导意义。%The university physics experiment is an important basic course in undergraduate teaching system in colleges and universities, is a focus on cultivating college students' hands-on ability. The cultivation of applied talents is the inevitable trend of current higher education. Therefore, in view of the characteristics and applied college physics experiment teaching present situation, speeds up the university physics experiment teaching reform and innovation, improve the ability of applied undergraduate talents to work is of important guiding significance to the reality.

  12. PHYSICAL MEANING OF THE «REACTIVE POWER» CONCEPT APPLIED TO THREE-PHASE ENERGY SUPPLY SYSTEMS WITH NON-LINEAR LOAD

    Directory of Open Access Journals (Sweden)

    G.G. Zhemerov

    2015-12-01

    Full Text Available Purpose. The contradictions in the use of the term «reactive power» require justification by clarifying its physical meaning. The aim of the paper is to reveal the physical meaning of the term «reactive power» applied to three-phase three-wire and four-wire energy supply systems. Methodology. We have applied the modern theory of instantaneous active and reactive power, the graphical filling complex branched energy supply system of simplified design scheme, the theory of electrical circuits, computer Matlab-simulation. Results. We have provided answers to six basic questions that reveal the physical meaning and definition of the concept of «reactive power». We have justified the assumptions suggesting a universal calculation formula to determine the relative total power loss in the three-phase energy supply system as the sum of four components caused by: a minimal losses, reactive power, active power pulsations and instantaneous current flow in the neutral wire. Originality. We have developed the definition that reveals the physical meaning of the term «reactive power» for three-phase energy supply systems corresponding to modern theories of instantaneous active and reactive power. Practical value. We have proposed energy efficiency method ideas of energy supply systems with non-linear load based on the additional components of the power losses calculation. The further development of the method will allow to amend the design, selection and operation of the power active filters practices.

  13. PHYSICS

    CERN Multimedia

    D. Acosta

    2011-01-01

    Since the last CMS Week, all physics groups have been extremely active on analyses based on the full 2010 dataset, with most aiming for a preliminary measurement in time for the winter conferences. Nearly 50 analyses were approved in a “marathon” of approval meetings during the first two weeks of March, and the total number of approved analyses reached 90. The diversity of topics is very broad, including precision QCD, Top, and electroweak measurements, the first observation of single Top production at the LHC, the first limits on Higgs production at the LHC including the di-tau final state, and comprehensive searches for new physics in a wide range of topologies (so far all with null results unfortunately). Most of the results are based on the full 2010 pp data sample, which corresponds to 36 pb-1 at √s = 7 TeV. This report can only give a few of the highlights of a very rich physics program, which is listed below by physics group...

  14. PHYSICS

    CERN Multimedia

    Chris Hill

    2012-01-01

    The months that have passed since the last CMS Bulletin have been a very busy and exciting time for CMS physics. We have gone from observing the very first 8TeV collisions produced by the LHC to collecting a dataset of the collisions that already exceeds that recorded in all of 2011. All in just a few months! Meanwhile, the analysis of the 2011 dataset and publication of the subsequent results has continued. These results come from all the PAGs in CMS, including searches for the Higgs boson and other new phenomena, that have set the most stringent limits on an ever increasing number of models of physics beyond the Standard Model including dark matter, Supersymmetry, and TeV-scale gravity scenarios, top-quark physics where CMS has overtaken the Tevatron in the precision of some measurements, and bottom-quark physics where CMS made its first discovery of a new particle, the Ξ*0b baryon (candidate event pictured below). Image 2:  A Ξ*0b candidate event At the same time POGs and PAGs...

  15. PHYSICS

    CERN Multimedia

    Guenther Dissertori

    The time period between the last CMS week and this June was one of intense activity with numerous get-together targeted at addressing specific issues on the road to data-taking. The two series of workshops, namely the “En route to discoveries” series and the “Vertical Integration” meetings continued.   The first meeting of the “En route to discoveries” sequence (end 2007) had covered the measurements of the Standard Model signals as necessary prerequisite to any claim of signals beyond the Standard Model. The second meeting took place during the Feb CMS week and concentrated on the commissioning of the Physics Objects, whereas the third occurred during the April Physics Week – and this time the theme was the strategy for key new physics signatures. Both of these workshops are summarized below. The vertical integration meetings also continued, with two DPG-physics get-togethers on jets and missing ET and on electrons and photons. ...

  16. Pacific Northwest Laboratory annual report for 1989 to the DOE (Department of Energy) Office of Energy Research - Part 4: Physical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Toburen, L.H.; Stults, B.R.; Mahaffey, J.A.

    1990-04-01

    This 1989 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment, safety, and health conducted during fiscal year 1989. The report again consists of five parts, each in a separate volume. This volume contains 20 papers. Part 4 of the Pacific Northwest Laboratory Annual Report of 1989 to the DOE Office of Energy Research includes those programs funded under the title Physical and Technological Research.'' The Field Task Program Studies reported in this document are grouped by budget category and each Field Task proposal/agreement is introduced by an abstract that describes the projects reported in that section. These reports only briefly indicate progress made during 1989. 74 refs., 29 figs., 6 tabs.

  17. Student Teachers' Modeling of Acceleration Using a Video-Based Laboratory in Physics Education: A Multimodal Case Study

    Directory of Open Access Journals (Sweden)

    Louis Trudel

    2016-06-01

    Full Text Available This exploratory study intends to model kinematics learning of a pair of student teachers when exposed to prescribed teaching strategies in a video-based laboratory. Two student teachers were chosen from the Francophone B.Ed. program of the Faculty of Education of a Canadian university. The study method consisted of having the participants interact with a video-based laboratory to complete two activities for learning properties of acceleration in rectilinear motion. Time limits were placed on the learning activities during which the researcher collected detailed multimodal information from the student teachers' answers to questions, the graphs they produced from experimental data, and the videos taken during the learning sessions. As a result, we describe the learning approach each one followed, the evidence of conceptual change and the difficulties they face in tackling various aspects of the accelerated motion. We then specify advantages and limits of our research and propose recommendations for further study.

  18. Professionally significant psychophysiological qualities of information logical group of specialties at implementation of the experimental program of professionally applied physical training of students

    Directory of Open Access Journals (Sweden)

    Ostapenko Y.O.

    2014-03-01

    Full Text Available Purpose: to improve vocational and applied physical training of students of economics. Material: the pedagogical study involved 72 male students (aged 19-20 years. Results: job study was conducted. Defined professionally significant neurobehavioral performance of students of information logical group. Matched professionally applied exercises for their development. The results showed that in the process of purposeful muscle activity improved mechanisms of regulation of neural processes, adaptive changes occur that affect the temporal parameters of sensorimotor motor responses. A comparative analysis of the psychophysiological indicators of students of the control and experimental groups was done. Conclusions: it was found that matched professionally applied exercises positively affect the development of psycho-physiological qualities of students information and logical group of specialties.

  19. Research Progress of Nuclear Astrophysics Physics:Progress of Jinping Underground Laboratory for Nuclear Astrophysics Experiment JUNA

    Institute of Scientific and Technical Information of China (English)

    LIU; Wei-ping; LI; Zhi-hong; HE; Jian-jun; TANG; Xiao-dong; LIAN; Gang; GUO; Bing; AN; Zhu; CHEN; Qing-hao; CHEN; Xiong-jun; CHEN; Yang-ping; CHEN; Zhi-jun; CUI; Bao-qun; DU; Xian-chao; FU; Chang-bo; GAN; Lin; HAN; Zhi-yu; HE; Guo-zhu; A.Heger; HOU; Su-qing; HUANG; Han-xiong; HUANG; Ning; JIA; Bao-lu; JIANG; Li-yang; S.Kubono; LI; Jian-min; LI; Kuo-ang; LI; Tao; LI; Xin-yue; LI; Yun-ju; M.Lugaro; LUO; Xiao-bing; MA; Shao-bo; MEI; Dong-ming; QIAN; Yong-zhong; QIN; Jiu-chang; REN; Jie; SU; Jun; SUN; Liang-ting; TAN; Wan-peng; I.Tanihata; WANG; Peng; WANG; You-bao; WU; Qi; XU; Shi-wei; YAN; Sheng-quan; YANG; Li-tao; YU; Xiang-qing; YUE; Qian; ZENG; Sheng; ZHANG; Huan-yu; ZHANG; Hui; ZHANG; Li-yong; ZHANG; Ning-tao; ZHANG; Qi-wei; ZHANG; Tao; ZHANG; Xiao-peng; ZHANG; Xue-zhen; ZHANG; Zi-min; ZHAO; Wei; ZHAO; Zhuo; ZHOU; Chao; ZHOU; Yong

    2015-01-01

    1 Progress of this program This program is supported by the China Jinping Underground Laboratory(CJPL)and the direct measurement of stellar key reactions of(α,γ),(α,n),(p,γ)and(p,α)will be precisely carried out at the merit of current project by utilizing high stability and intensity accelerator,high efficiency detector and the shielding of extremely low background.Four

  20. Atlantic Oceanographic and Meteorological Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Atlantic Oceanographic and Meteorological Laboratory conducts research to understand the physical, chemical, and biological characteristics and processes of the...

  1. PHYSICS

    CERN Multimedia

    Darin Acosta

    2010-01-01

    The collisions last year at 900 GeV and 2.36 TeV provided the long anticipated collider data to the CMS physics groups. Quite a lot has been accomplished in a very short time. Although the delivered luminosity was small, CMS was able to publish its first physics paper (with several more in preparation), and commence the commissioning of physics objects for future analyses. Many new performance results have been approved in advance of this CMS Week. One remarkable outcome has been the amazing agreement between out-of-the-box data with simulation at these low energies so early in the commissioning of the experiment. All of this is testament to the hard work and preparation conducted beforehand by many people in CMS. These analyses could not have happened without the dedicated work of the full collaboration on building and commissioning the detector, computing, and software systems combined with the tireless work of many to collect, calibrate and understand the data and our detector. To facilitate the efficien...

  2. PHYSICS

    CERN Multimedia

    D. Acosta

    2010-01-01

    The Physics Groups are actively engaged on analyses of the first data from the LHC at 7 TeV, targeting many results for the ICHEP conference taking place in Paris this summer. The first large batch of physics approvals is scheduled for this CMS Week, to be followed by four more weeks of approvals and analysis updates leading to the start of the conference in July. Several high priority analysis areas were organized into task forces to ensure sufficient coverage from the relevant detector, object, and analysis groups in the preparation of these analyses. Already some results on charged particle correlations and multiplicities in 7 TeV minimum bias collisions have been approved. Only one small detail remains before ICHEP: further integrated luminosity delivered by the LHC! Beyond the Standard Model measurements that can be done with these data, the focus changes to the search for new physics at the TeV scale and for the Higgs boson in the period after ICHEP. Particle Flow The PFT group is focusing on the ...

  3. PHYSICS

    CERN Multimedia

    C. Hill

    2012-01-01

      2012 has started off as a very busy year for the CMS Physics Groups. Planning for the upcoming higher luminosity/higher energy (8 TeV) operation of the LHC and relatively early Rencontres de Moriond are the high-priority activities for the group at the moment. To be ready for the coming 8-TeV data, CMS has made a concerted effort to perform and publish analyses on the 5 fb−1 dataset recorded in 2011. This has resulted in the submission of 16 papers already, including nine on the search for the Higgs boson. In addition, a number of preliminary results on the 2011 dataset have been released to the public. The Exotica and SUSY groups approved several searches for new physics in January, such as searches for W′ and exotic highly ionising particles. These were highlighted at a CERN seminar given on 24th  January. Many more analyses, from all the PAGs, including the newly formed SMP (Standard Model Physics) and FSQ (Forward and Small-x QCD), were approved in February. The ...

  4. PHYSICS

    CERN Multimedia

    L. Demortier

    Physics-wise, the CMS week in December was dominated by discussions of the analyses that will be carried out in the “next six months”, i.e. while waiting for the first LHC collisions.  As presented in December, analysis approvals based on Monte Carlo simulation were re-opened, with the caveat that for this work to be helpful to the goals of CMS, it should be carried out using the new software (CMSSW_2_X) and associated samples.  By the end of the week, the goal for the physics groups was set to be the porting of our physics commissioning methods and plans, as well as the early analyses (based an integrated luminosity in the range 10-100pb-1) into this new software. Since December, the large data samples from CMSSW_2_1 were completed. A big effort by the production group gave a significant number of events over the end-of-year break – but also gave out the first samples with the fast simulation. Meanwhile, as mentioned in December, the arrival of 2_2 meant that ...

  5. PHYSICS

    CERN Multimedia

    the PAG conveners

    2011-01-01

    The delivered LHC integrated luminosity of more than 1 inverse femtobarn by summer and more than 5 by the end of 2011 has been a gold mine for the physics groups. With 2011 data, we have submitted or published 14 papers, 7 others are in collaboration-wide review, and 75 Physics Analysis Summaries have been approved already. They add to the 73 papers already published based on the 2010 and 2009 datasets. Highlights from each physics analysis group are described below. Heavy ions Many important results have been obtained from the first lead-ion collision run in 2010. The published measurements include the first ever indications of Υ excited state suppression (PRL synopsis), long-range correlation in PbPb, and track multiplicity over a wide η range. Preliminary results include the first ever measurement of isolated photons (showing no modification), J/ψ suppression including the separation of the non-prompt component, further study of jet fragmentation, nuclear modification factor...

  6. PHYSICS

    CERN Multimedia

    C. Hill

    2012-01-01

      The period since the last CMS Bulletin has been historic for CMS Physics. The pinnacle of our physics programme was an observation of a new particle – a strong candidate for a Higgs boson – which has captured worldwide interest and made a profound impact on the very field of particle physics. At the time of the discovery announcement on 4 July, 2012, prominent signals were observed in the high-resolution H→γγ and H→ZZ(4l) modes. Corroborating excess was observed in the H→W+W– mode as well. The fermionic channel analyses (H→bb, H→ττ), however, yielded less than the Standard Model (SM) expectation. Collectively, the five channels established the signal with a significance of five standard deviations. With the exception of the diphoton channel, these analyses have all been updated in the last months and several new channels have been added. With improved analyses and more than twice the i...

  7. Pacific Northwest Laboratory annual report for 1984 to the DOE Office of Energy Research. Part 4. Physical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Danko, J.E. (ed.)

    1985-02-01

    Progress is reported in the following areas: (1) chemical basis for the biological response to complex organic mixtures; (2) supercritical fluid analytical methods; (3) lasers in analytical chemistry; (4) initial interaction processes in radiation physics; (5) track structure; (6) radiation dosimetry; (7) modeling and cellular studies; (8) radiation biophysics; (9) modeling cellular response to genetic damage; and (10) internal microdosimetry. (ACR)

  8. Determination of Molecular Self-Diffusion Coefficients Using Pulsed-Field-Gradient NMR: An Experiment for Undergraduate Physical Chemistry Laboratory

    Science.gov (United States)

    Harmon, Jennifer; Coffman, Cierra; Villarrial, Spring; Chabolla, Steven; Heisel, Kurt A.; Krishnan, Viswanathan V.

    2012-01-01

    NMR spectroscopy has become one of the primary tools that chemists utilize to characterize a range of chemical species in the solution phase, from small organic molecules to medium-sized proteins. A discussion of NMR spectroscopy is an essential component of physical and biophysical chemistry lecture courses, and a number of instructional…

  9. Laboratory simulations of the transformation of peas as a result of heat treatment: changes of the physical and chemical properties

    NARCIS (Netherlands)

    Braadbaart, F.; Boon, J.J.; Veld, H.; David, P.; Bergen, P.F. van

    2004-01-01

    The residues of heated organic remains, usually called carbonized or charred remains, are ubiquitous in the archaeological record and are often used to interpret certain aspects of past ways of living. This study focuses on the physical and chemical alterations, both as a function of temperature and

  10. Physical and Chemical Sciences Center - research briefs. Volume 1-96

    Energy Technology Data Exchange (ETDEWEB)

    Mattern, P.L.

    1994-12-31

    This report provides brief summaries of research performed in chemical and physical sciences at Sandia National Laboratories. Programs are described in the areas of advanced materials and technology, applied physics and chemistry, lasers, optics, and vision, and resources and capabilities.

  11. Physics with fast molecular-ion beams. Proceedings of workshop held at Argonne National Laboratory, August 20-21, 1979. [Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Gemmell, D.S. (ed.)

    1979-01-01

    The Workshop on Physics with Fast Molecular-Ion Beams was held in the Physics Division, Argonne National Laboratory on August 20 and 21, 1979. The meeting brought together representatives from several groups studying the interactions of fast (MeV) molecular-ion beams with matter. By keeping the Workshop program sharply focussed on current work related to the interactions of fast molecular ions, it was made possible for the participants to engage in vigorous and detailed discussions concerning such specialized topics as molecular-ion dissociation and transmission, wake effects, ionic charge states, cluster stopping powers, beam-foil spectroscopy, electron-emissions studies with molecular-ion beams, and molecular-ion structure determinations.

  12. Improved general physical fitness of young swimmers by applying in the training process of endogenous hypoxic breathing techniques

    Directory of Open Access Journals (Sweden)

    Furman Y.M.

    2014-06-01

    Full Text Available Purpose : to examine the effect of general physical preparedness of young swimmers in the body artificially created state hypercapnic normobaric hypoxia. Material : the study involved 21 swimmer aged 13-14 years with sports qualifications at third and second sports categories. Results : the original method of working with young swimmers. Studies were conducted for 16 weeks a year preparatory period macrocycle. The average value of the index on the results of general endurance races 800m improved by 2.80 %. 8.24 % increased speed- strength endurance and 18.77 % increased dynamic strength endurance. During the period of formative experiment performance speed, agility, static endurance, flexibility and explosive strength athletes first experimental group was not significantly changed. Conclusions : it was found that the use of the proposed technique provides statistically significant increase in overall endurance, speed strength endurance and dynamic strength endurance.

  13. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the Ferrel in the Gulf of Mexico from 2010-08-13 to 2010-08-17 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069064)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the Ferrel in the Gulf of Mexico from 2010-08-13 to 2010-08-17 in...

  14. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the Ferrel in the Gulf of Mexico from 2010-07-15 to 2010-07-23 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069060)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the Ferrel in the Gulf of Mexico from 2010-07-15 to 2010-07-23 in...

  15. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-09-15 to 2010-09-22 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069079)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-09-15 to 2010-09-22 in...

  16. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-23 to 2010-07-17 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069128)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-23 to 2010-07-17 in...

  17. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-09-03 to 2010-09-07 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069108)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-09-03 to 2010-09-07 in...

  18. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-08-18 to 2010-08-22 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069105)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-08-18 to 2010-08-22 in...

  19. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-09-07 to 2010-10-16 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069109)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-09-07 to 2010-10-16 in...

  20. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-07 to 2010-06-11 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069094)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-07 to 2010-06-11 in...

  1. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-29 to 2010-07-05 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069098)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-29 to 2010-07-05 in...

  2. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-07-26 to 2010-07-29 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069101)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-07-26 to 2010-07-29 in...

  3. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the Ferrel in the Gulf of Mexico from 2010-08-18 to 2010-08-23 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069065)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the Ferrel in the Gulf of Mexico from 2010-08-18 to 2010-08-23 in...

  4. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-09-11 to 2010-09-13 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069110)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-09-11 to 2010-09-13 in...

  5. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-07-19 to 2010-07-23 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069100)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-07-19 to 2010-07-23 in...

  6. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-07-07 to 2010-07-11 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069099)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-07-07 to 2010-07-11 in...

  7. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-08-30 to 2010-09-03 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069107)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-08-30 to 2010-09-03 in...

  8. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-08-12 to 2010-08-16 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069104)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-08-12 to 2010-08-16 in...

  9. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the Ferrel in the Gulf of Mexico from 2010-08-03 to 2010-08-11 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069063)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the Ferrel in the Gulf of Mexico from 2010-08-03 to 2010-08-11 in...

  10. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-08-25 to 2010-08-29 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069106)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-08-25 to 2010-08-29 in...

  11. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-01 to 2010-06-05 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069093)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-01 to 2010-06-05 in...

  12. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the Ferrel in the Gulf of Mexico from 2010-07-25 to 2010-07-30 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069061)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the Ferrel in the Gulf of Mexico from 2010-07-25 to 2010-07-30 in...

  13. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-09-23 to 2010-09-28 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069080)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-09-23 to 2010-09-28 in...

  14. Chemical, laboratory analyses, physical and profile oceanographic data collected aboard the JACK FITZ in the Gulf of Mexico from 2010-08-18 to 2010-08-23 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069119)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, laboratory analyses, physical and profile oceanographic data were collected aboard the JACK FITZ in the Gulf of Mexico from 2010-08-18 to 2010-08-23 in...

  15. 23rd April 2008 - Nobel Prize in Physics 1987 J. G. Bednorz visiting the LHC tunnel at Point 1 with IBM Zurich Research Laboratory colleagues guided by L. Bottura, N. Catalan Lasheras and Y. Papaphilippou.

    CERN Multimedia

    Maximilien brice

    2008-01-01

    23rd April 2008 - Nobel Prize in Physics 1987 J. G. Bednorz visiting the LHC tunnel at Point 1 with IBM Zurich Research Laboratory colleagues guided by L. Bottura, N. Catalan Lasheras and Y. Papaphilippou.

  16. How to analyse a Big Bang of data: the mammoth project at the Cern physics laboratory in Geneva to recreate the conditions immediately after the universe began requires computing power on an unprecedented scale

    CERN Multimedia

    Thomas, Kim

    2005-01-01

    How to analyse a Big Bang of data: the mammoth project at the Cern physics laboratory in Geneva to recreate the conditions immediately after the universe began requires computing power on an unprecedented scale

  17. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-25 to 2010-06-29 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069097)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-25 to 2010-06-29 in...

  18. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-19 to 2010-06-23 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069096)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-19 to 2010-06-23 in...

  19. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-07-31 to 2010-08-03 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069102)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-07-31 to 2010-08-03 in...

  20. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-13 to 2010-06-17 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069095)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-13 to 2010-06-17 in...