WorldWideScience

Sample records for applied mathematics principal

  1. Methods of applied mathematics

    CERN Document Server

    Hildebrand, Francis B

    1992-01-01

    This invaluable book offers engineers and physicists working knowledge of a number of mathematical facts and techniques not commonly treated in courses in advanced calculus, but nevertheless extremely useful when applied to typical problems in many different fields. It deals principally with linear algebraic equations, quadratic and Hermitian forms, operations with vectors and matrices, the calculus of variations, and the formulations and theory of linear integral equations. Annotated problems and exercises accompany each chapter.

  2. Instrumentation for Scientific Computing in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics.

    Science.gov (United States)

    1987-10-01

    include Security Classification) Instrumentation for scientific computing in neural networks, information science, artificial intelligence, and...instrumentation grant to purchase equipment for support of research in neural networks, information science, artificail intellignece , and applied mathematics...in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics Contract AFOSR 86-0282 Principal Investigator: Stephen

  3. Activities report 1977--78. Applied mathematics department 5640

    International Nuclear Information System (INIS)

    1979-03-01

    This report is a compilation of independent articles highlighting some of the work done in the Applied Mathematics Department during the years 1977 and 1978. It is neither an exhaustive report on all activities in the department during this period nor a list of the most substantial mathematical contributions. Instead, it is a selection of topics which are thought to be of greatest interest because of their importance to Sandia. The report is divided into four principal sections which reflect the department's major areas of interest: Mathematical Physics, Computational Mathematics, Probability and Statistics, and Discrete Mathematics. To provide a smoother narrative, references are omitted from the text. However, a complete department bibliography of corporate and open publications as well as technical presentations for the period October 1977 through December 1978 is appended. 4 figures, 3 tables

  4. Applied mathematics

    CERN Document Server

    Logan, J David

    2013-01-01

    Praise for the Third Edition"Future mathematicians, scientists, and engineers should find the book to be an excellent introductory text for coursework or self-study as well as worth its shelf space for reference." -MAA Reviews Applied Mathematics, Fourth Edition is a thoroughly updated and revised edition on the applications of modeling and analyzing natural, social, and technological processes. The book covers a wide range of key topics in mathematical methods and modeling and highlights the connections between mathematics and the applied and nat

  5. Applied Mathematics Seminar 1982

    International Nuclear Information System (INIS)

    1983-01-01

    This report contains the abstracts of the lectures delivered at 1982 Applied Mathematics Seminar of the DPD/LCC/CNPq and Colloquy on Applied Mathematics of LCC/CNPq. The Seminar comprised 36 conferences. Among these, 30 were presented by researchers associated to brazilian institutions, 9 of them to the LCC/CNPq, and the other 6 were given by visiting lecturers according to the following distribution: 4 from the USA, 1 from England and 1 from Venezuela. The 1981 Applied Mathematics Seminar was organized by Leon R. Sinay and Nelson do Valle Silva. The Colloquy on Applied Mathematics was held from october 1982 on, being organized by Ricardo S. Kubrusly and Leon R. Sinay. (Author) [pt

  6. Journal of applied mathematics

    National Research Council Canada - National Science Library

    2001-01-01

    "[The] Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics...

  7. Setting Instructional Expectations: Patterns of Principal Leadership for Middle School Mathematics

    Science.gov (United States)

    Katterfeld, Karin

    2013-01-01

    Principal instructional leadership has been found to support improved instruction. However, the methods through which principal leadership influences classroom instruction are less clear. This study investigates how principals' leadership may predict the expectations that mathematics teachers perceive for classroom practice. Results from a…

  8. Principals' Leadership Practices and Mathematics Pass Rate in Jamaican High Schools

    Science.gov (United States)

    Palmer, David; Hermond, Douglas; Gardiner, Carl

    2014-01-01

    This research was intended to explore the degree to which leadership practices impacted Jamaican schools' mathematics achievement. More specifically, the researchers examined Jamaica's high school students' CSEC mathematics performance in relation to principals' instructional leadership behaviors as measured by teachers' perceptions, using Kouzes…

  9. Applied Mathematics Should Be Taught Mixed.

    Science.gov (United States)

    Brown, Gary I.

    1994-01-01

    Discusses the differences between applied and pure mathematics and provides extensive history of mixed mathematics. Argues that applied mathematics should be taught allowing for speculative mathematics, which involves breaking down a given problem into simpler parts until one arrives at first principles. (ASK)

  10. Coaches' and Principals' Conceptualizations of the Roles of Elementary Mathematics Coaches

    Science.gov (United States)

    Salkind, Gwenanne M.

    2010-01-01

    Many schools employ coaches to support mathematics instruction and student learning. This research study investigated the roles of coaches from five school districts in Virginia. Participants included 125 elementary mathematics coaches and 59 principals. Results from cross-sectional surveys revealed that most coaches did not have a degree in…

  11. Intelligent mathematics II applied mathematics and approximation theory

    CERN Document Server

    Duman, Oktay

    2016-01-01

    This special volume is a collection of outstanding more applied articles presented in AMAT 2015 held in Ankara, May 28-31, 2015, at TOBB Economics and Technology University. The collection is suitable for Applied and Computational Mathematics and Engineering practitioners, also for related graduate students and researchers. Furthermore it will be a useful resource for all science and engineering libraries. This book includes 29 self-contained and well-edited chapters that can be among others useful for seminars in applied and computational mathematics, as well as in engineering.

  12. Applied mathematics made simple

    CERN Document Server

    Murphy, Patrick

    1982-01-01

    Applied Mathematics: Made Simple provides an elementary study of the three main branches of classical applied mathematics: statics, hydrostatics, and dynamics. The book begins with discussion of the concepts of mechanics, parallel forces and rigid bodies, kinematics, motion with uniform acceleration in a straight line, and Newton's law of motion. Separate chapters cover vector algebra and coplanar motion, relative motion, projectiles, friction, and rigid bodies in equilibrium under the action of coplanar forces. The final chapters deal with machines and hydrostatics. The standard and conte

  13. Applied mathematics

    International Nuclear Information System (INIS)

    Nedelec, J.C.

    1988-01-01

    The 1988 progress report of the Applied Mathematics center (Polytechnic School, France), is presented. The research fields of the Center are the scientific calculus, the probabilities and statistics and the video image synthesis. The research topics developed are: the analysis of numerical methods, the mathematical analysis of the physics and mechanics fundamental models, the numerical solution of complex models related to the industrial problems, the stochastic calculus and the brownian movement, the stochastic partial differential equations, the identification of the adaptive filtering parameters, the discrete element systems, statistics, the stochastic control and the development, the image synthesis techniques for education and research programs. The published papers, the congress communications and the thesis are listed [fr

  14. A First Course in Applied Mathematics

    CERN Document Server

    Rebaza, Jorge

    2012-01-01

    Explore real-world applications of selected mathematical theory, concepts, and methods Exploring related methods that can be utilized in various fields of practice from science and engineering to business, A First Course in Applied Mathematics details how applied mathematics involves predictions, interpretations, analysis, and mathematical modeling to solve real-world problems. Written at a level that is accessible to readers from a wide range of scientific and engineering fields, the book masterfully blends standard topics with modern areas of application and provides the needed foundation

  15. Applied impulsive mathematical models

    CERN Document Server

    Stamova, Ivanka

    2016-01-01

    Using the theory of impulsive differential equations, this book focuses on mathematical models which reflect current research in biology, population dynamics, neural networks and economics. The authors provide the basic background from the fundamental theory and give a systematic exposition of recent results related to the qualitative analysis of impulsive mathematical models. Consisting of six chapters, the book presents many applicable techniques, making them available in a single source easily accessible to researchers interested in mathematical models and their applications. Serving as a valuable reference, this text is addressed to a wide audience of professionals, including mathematicians, applied researchers and practitioners.

  16. Applied mathematics for science and engineering

    CERN Document Server

    Glasgow, Larry A

    2014-01-01

    Prepare students for success in using applied mathematics for engineering practice and post-graduate studies moves from one mathematical method to the next sustaining reader interest and easing the application of the techniques Uses different examples from chemical, civil, mechanical and various other engineering fields Based on a decade's worth of the authors lecture notes detailing the topic of applied mathematics for scientists and engineers Concisely writing with numerous examples provided including historical perspectives as well as a solutions manual for academic adopters

  17. Mathematical physics applied mathematics for scientists and engineers

    CERN Document Server

    Kusse, Bruce R

    2006-01-01

    What sets this volume apart from other mathematics texts is its emphasis on mathematical tools commonly used by scientists and engineers to solve real-world problems. Using a unique approach, it covers intermediate and advanced material in a manner appropriate for undergraduate students. Based on author Bruce Kusse's course at the Department of Applied and Engineering Physics at Cornell University, Mathematical Physics begins with essentials such as vector and tensor algebra, curvilinear coordinate systems, complex variables, Fourier series, Fourier and Laplace transforms, differential and integral equations, and solutions to Laplace's equations

  18. Proceedings of the workshop on applied mathematics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H C; Couture, M; Douglas, S; Leivo, H P

    1992-10-01

    The Workshop on Applied Mathematics was held at the Cockcroft Centre, Deep River, Ontario, 1992 February 7-8. The purpose of the workshop was to provide a forum for applied mathematicians to survey the use and to discuss the future of applied mathematics at AECL Research. There were 57 participants at the workshop A total of eight 30-minute and 25 15-minute talks were presented describing mathematical techniques used in the whole range of activities at AECL Research, from numerical simulation of fluid flow through eddy current testing to quantum algebra and accelerator physics.

  19. Proceedings of the workshop on applied mathematics

    International Nuclear Information System (INIS)

    Lee, H.C.; Couture, M.; Douglas, S.; Leivo, H.P.

    1992-10-01

    The Workshop on Applied Mathematics was held at the Cockcroft Centre, Deep River, Ontario, 1992 February 7-8. The purpose of the workshop was to provide a forum for applied mathematicians to survey the use and to discuss the future of applied mathematics at AECL Research. There were 57 participants at the workshop A total of eight 30-minute and 25 15-minute talks were presented describing mathematical techniques used in the whole range of activities at AECL Research, from numerical simulation of fluid flow through eddy current testing to quantum algebra and accelerator physics

  20. Applied geometry and discrete mathematics

    CERN Document Server

    Sturm; Gritzmann, Peter; Sturmfels, Bernd

    1991-01-01

    This volume, published jointly with the Association for Computing Machinery, comprises a collection of research articles celebrating the occasion of Victor Klee's sixty-fifth birthday in September 1990. During his long career, Klee has made contributions to a wide variety of areas, such as discrete and computational geometry, convexity, combinatorics, graph theory, functional analysis, mathematical programming and optimization, and theoretical computer science. In addition, Klee made important contributions to mathematics education, mathematical methods in economics and the decision sciences, applications of discrete mathematics in the biological and social sciences, and the transfer of knowledge from applied mathematics to industry. In honor of Klee's achievements, this volume presents more than forty papers on topics related to Klee's research. While the majority of the papers are research articles, a number of survey articles are also included. Mirroring the breadth of Klee's mathematical contributions, th...

  1. International Conference on Applied Mathematics, Modeling and Computational Science & Annual meeting of the Canadian Applied and Industrial Mathematics

    CERN Document Server

    Bélair, Jacques; Kunze, Herb; Makarov, Roman; Melnik, Roderick; Spiteri, Raymond J

    2016-01-01

    Focusing on five main groups of interdisciplinary problems, this book covers a wide range of topics in mathematical modeling, computational science and applied mathematics. It presents a wealth of new results in the development of modeling theories and methods, advancing diverse areas of applications and promoting interdisciplinary interactions between mathematicians, scientists, engineers and representatives from other disciplines. The book offers a valuable source of methods, ideas, and tools developed for a variety of disciplines, including the natural and social sciences, medicine, engineering, and technology. Original results are presented on both the fundamental and applied level, accompanied by an ample number of real-world problems and examples emphasizing the interdisciplinary nature and universality of mathematical modeling, and providing an excellent outline of today’s challenges. Mathematical modeling, with applied and computational methods and tools, plays a fundamental role in modern science a...

  2. Applied Mathematical Problems in Engineering

    Directory of Open Access Journals (Sweden)

    Carlos Llopis-Albert

    2016-10-01

    Full Text Available There is a close relationship between engineering and mathematics, which has led to the development of new techniques in recent years. Likewise the developments in technology and computers have led to new ways of teaching mathematics for engineering students and the use of modern techniques and methods.  This research aims to provide insight on how to deal with mathematical problems for engineering students. This is performed by means of a fuzzy set/Qualitative Comparative Analysis applied to conflict resolution of Public Participation Projects in support to the EU Water Framework Directive.

  3. Applied Computational Mathematics in Social Sciences

    CERN Document Server

    Damaceanu, Romulus-Catalin

    2010-01-01

    Applied Computational Mathematics in Social Sciences adopts a modern scientific approach that combines knowledge from mathematical modeling with various aspects of social science. Special algorithms can be created to simulate an artificial society and a detailed analysis can subsequently be used to project social realities. This Ebook specifically deals with computations using the NetLogo platform, and is intended for researchers interested in advanced human geography and mathematical modeling studies.

  4. The 1989 progress report: Applied Mathematics

    International Nuclear Information System (INIS)

    Nedelec, J.C.

    1989-01-01

    The 1989 progress report of the laboratory of Applied Mathematics of the Polytechnic School (France) is presented. The investigations reported were performed in the following fields: mathematical and numerical aspects of wave propagation, nonlinear hyperbolic fluid mechanics, numerical simulations and mathematical aspects of semiconductors and electron beams, mechanics of solids, plasticity, viscoelasticity, stochastic, automatic and statistic calculations, synthesis and image processing. The published papers, the conferences and the Laboratory staff are listed [fr

  5. International Conference on Advances in Applied Mathematics

    CERN Document Server

    Hammami, Mohamed; Masmoudi, Afif

    2015-01-01

    This contributed volume presents some recent theoretical advances in mathematics and its applications in various areas of science and technology.   Written by internationally recognized scientists and researchers, the chapters in this book are based on talks given at the International Conference on Advances in Applied Mathematics (ICAAM), which took place December 16-19, 2013, in Hammamet, Tunisia.  Topics discussed at the conference included spectral theory, operator theory, optimization, numerical analysis, ordinary and partial differential equations, dynamical systems, control theory, probability, and statistics.  These proceedings aim to foster and develop further growth in all areas of applied mathematics.

  6. Applied mathematics for engineers and physicists

    CERN Document Server

    Pipes, Louis A

    2014-01-01

    One of the most widely used reference books on applied mathematics for a generation, distributed in multiple languages throughout the world, this text is geared toward use with a one-year advanced course in applied mathematics for engineering students. The treatment assumes a solid background in the theory of complex variables and a familiarity with complex numbers, but it includes a brief review. Chapters are as self-contained as possible, offering instructors flexibility in designing their own courses. The first eight chapters explore the analysis of lumped parameter systems. Succeeding topi

  7. [Geometry, analysis, and computation in mathematics and applied science]. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D.

    1994-02-01

    The principal investigators` work on a variety of pure and applied problems in Differential Geometry, Calculus of Variations and Mathematical Physics has been done in a computational laboratory and been based on interactive scientific computer graphics and high speed computation created by the principal investigators to study geometric interface problems in the physical sciences. We have developed software to simulate various physical phenomena from constrained plasma flow to the electron microscope imaging of the microstructure of compound materials, techniques for the visualization of geometric structures that has been used to make significant breakthroughs in the global theory of minimal surfaces, and graphics tools to study evolution processes, such as flow by mean curvature, while simultaneously developing the mathematical foundation of the subject. An increasingly important activity of the laboratory is to extend this environment in order to support and enhance scientific collaboration with researchers at other locations. Toward this end, the Center developed the GANGVideo distributed video software system and software methods for running lab-developed programs simultaneously on remote and local machines. Further, the Center operates a broadcast video network, running in parallel with the Center`s data networks, over which researchers can access stored video materials or view ongoing computations. The graphical front-end to GANGVideo can be used to make ``multi-media mail`` from both ``live`` computing sessions and stored materials without video editing. Currently, videotape is used as the delivery medium, but GANGVideo is compatible with future ``all-digital`` distribution systems. Thus as a byproduct of mathematical research, we are developing methods for scientific communication. But, most important, our research focuses on important scientific problems; the parallel development of computational and graphical tools is driven by scientific needs.

  8. Applied Mathematics, Modelling and Computational Science

    CERN Document Server

    Kotsireas, Ilias; Makarov, Roman; Melnik, Roderick; Shodiev, Hasan

    2015-01-01

    The Applied Mathematics, Modelling, and Computational Science (AMMCS) conference aims to promote interdisciplinary research and collaboration. The contributions in this volume cover the latest research in mathematical and computational sciences, modeling, and simulation as well as their applications in natural and social sciences, engineering and technology, industry, and finance. The 2013 conference, the second in a series of AMMCS meetings, was held August 26–30 and organized in cooperation with AIMS and SIAM, with support from the Fields Institute in Toronto, and Wilfrid Laurier University. There were many young scientists at AMMCS-2013, both as presenters and as organizers. This proceedings contains refereed papers contributed by the participants of the AMMCS-2013 after the conference. This volume is suitable for researchers and graduate students, mathematicians and engineers, industrialists, and anyone who would like to delve into the interdisciplinary research of applied and computational mathematics ...

  9. Notes for Applied Mathematics in Trigonometry and Earth Geometry/Navigation

    Science.gov (United States)

    Faulkner, Peter

    2004-01-01

    As time has progressed, the role of applied mathematics has become increasingly important. Indeed there are now more students enrolled in applied mathematics courses in senior high schools and colleges than in pure mathematics. Such courses become more relevant both to the student and to future employers, if the same constants and equations that…

  10. Molecular modeling: An open invitation for applied mathematics

    Science.gov (United States)

    Mezey, Paul G.

    2013-10-01

    Molecular modeling methods provide a very wide range of challenges for innovative mathematical and computational techniques, where often high dimensionality, large sets of data, and complicated interrelations imply a multitude of iterative approximations. The physical and chemical basis of these methodologies involves quantum mechanics with several non-intuitive aspects, where classical interpretation and classical analogies are often misleading or outright wrong. Hence, instead of the everyday, common sense approaches which work so well in engineering, in molecular modeling one often needs to rely on rather abstract mathematical constraints and conditions, again emphasizing the high level of reliance on applied mathematics. Yet, the interdisciplinary aspects of the field of molecular modeling also generates some inertia and perhaps too conservative reliance on tried and tested methodologies, that is at least partially caused by the less than up-to-date involvement in the newest developments in applied mathematics. It is expected that as more applied mathematicians take up the challenge of employing the latest advances of their field in molecular modeling, important breakthroughs may follow. In this presentation some of the current challenges of molecular modeling are discussed.

  11. Study guide for applied finite mathematics

    CERN Document Server

    Macri, Nicholas A

    1982-01-01

    Study Guide for Applied Finite Mathematics, Third Edition is a study guide that introduces beginners to the fundamentals of finite mathematics and its various realistic and relevant applications. Some applications of probability, game theory, and Markov chains are given. Each chapter includes exercises, and each set begins with basic computational ""drill"" problems and then progresses to problems with more substance.Comprised of 10 chapters, this book begins with exercises related to set theory and concepts such as the union and intersection of sets. Exercises on Cartesian coordinate

  12. Expander graphs in pure and applied mathematics

    OpenAIRE

    Lubotzky, Alexander

    2012-01-01

    Expander graphs are highly connected sparse finite graphs. They play an important role in computer science as basic building blocks for network constructions, error correcting codes, algorithms and more. In recent years they have started to play an increasing role also in pure mathematics: number theory, group theory, geometry and more. This expository article describes their constructions and various applications in pure and applied mathematics.

  13. The Applied Mathematics for Power Systems (AMPS)

    Energy Technology Data Exchange (ETDEWEB)

    Chertkov, Michael [Los Alamos National Laboratory

    2012-07-24

    Increased deployment of new technologies, e.g., renewable generation and electric vehicles, is rapidly transforming electrical power networks by crossing previously distinct spatiotemporal scales and invalidating many traditional approaches for designing, analyzing, and operating power grids. This trend is expected to accelerate over the coming years, bringing the disruptive challenge of complexity, but also opportunities to deliver unprecedented efficiency and reliability. Our Applied Mathematics for Power Systems (AMPS) Center will discover, enable, and solve emerging mathematics challenges arising in power systems and, more generally, in complex engineered networks. We will develop foundational applied mathematics resulting in rigorous algorithms and simulation toolboxes for modern and future engineered networks. The AMPS Center deconstruction/reconstruction approach 'deconstructs' complex networks into sub-problems within non-separable spatiotemporal scales, a missing step in 20th century modeling of engineered networks. These sub-problems are addressed within the appropriate AMPS foundational pillar - complex systems, control theory, and optimization theory - and merged or 'reconstructed' at their boundaries into more general mathematical descriptions of complex engineered networks where important new questions are formulated and attacked. These two steps, iterated multiple times, will bridge the growing chasm between the legacy power grid and its future as a complex engineered network.

  14. Workshop on Women of Applied Mathematics: Research and Leadership

    Energy Technology Data Exchange (ETDEWEB)

    Dianne P. O' Leary; Tamara G. Kolda

    2004-09-28

    We held a two and a half day workshop on Women of Applied Mathematics: Research and Leadership at the University of Maryland in College Park, Maryland, October 8--10, 2003. The workshop provided a technical and professional forum for eleven senior women and twenty-four early-career women in applied mathematics. Each participant committed to an outreach activity and publication of a report on the workshop's web site. The final session of the workshop produced recommendations for future action.

  15. Research in progress in applied mathematics, numerical analysis, and computer science

    Science.gov (United States)

    1990-01-01

    Research conducted at the Institute in Science and Engineering in applied mathematics, numerical analysis, and computer science is summarized. The Institute conducts unclassified basic research in applied mathematics in order to extend and improve problem solving capabilities in science and engineering, particularly in aeronautics and space.

  16. Gulf International Conference on Applied Mathematics 2013

    CERN Document Server

    Advances in Applied Mathematics

    2014-01-01

    This volume contains contributions from the Gulf International Conference in Applied Mathematics, held at the Gulf University for Science & Technology. The proceedings reflects the three major themes of the conference. The first of these was mathematical biology, including a keynote address by Professor Philip Maini. The second theme was computational science/numerical analysis, including a keynote address by Professor Grigorii Shishkin. The conference also addressed more general applications topics, with papers in business applications, fluid mechanics, optimization, scheduling problems, and engineering applications, as well as a keynote by Professor Ali Nayfeh.

  17. Global Conference on Applied Physics and Mathematics

    CERN Document Server

    2016-01-01

    The Global Conference on Applied Physics and Mathematics is organized by academics and researchers belonging to different scientific areas of the C3i/Polytechnic Institute of Portalegre (Portugal) and the University of Extremadura (Spain) with the technical support of ScienceKnow Conferences. The event has the objective of creating an international forum for academics, researchers and scientists from worldwide to discuss worldwide results and proposals regarding to the soundest issues related to Applied Physics and Mathematics. This event will include the participation of renowned keynote speakers, oral presentations, posters sessions and technical conferences related to the topics dealt with in the Scientific Program as well as an attractive social and cultural program. The papers will be published in the Proceedings e-books. The proceedings of the conference will be sent to possible indexing on Thomson Reuters (selective by Thomson Reuters, not all-inclusive) and Google Scholar. Those communications con...

  18. Methods of applied mathematics with a software overview

    CERN Document Server

    Davis, Jon H

    2016-01-01

    This textbook, now in its second edition, provides students with a firm grasp of the fundamental notions and techniques of applied mathematics as well as the software skills to implement them. The text emphasizes the computational aspects of problem solving as well as the limitations and implicit assumptions inherent in the formal methods. Readers are also given a sense of the wide variety of problems in which the presented techniques are useful. Broadly organized around the theme of applied Fourier analysis, the treatment covers classical applications in partial differential equations and boundary value problems, and a substantial number of topics associated with Laplace, Fourier, and discrete transform theories. Some advanced topics are explored in the final chapters such as short-time Fourier analysis and geometrically based transforms applicable to boundary value problems. The topics covered are useful in a variety of applied fields such as continuum mechanics, mathematical physics, control theory, and si...

  19. Johannes Kepler and his contribution to Applied Mathematics

    Science.gov (United States)

    Pichler, Franz

    The worldwide renown of Johannes Kepler is based above all on his contribution to astronomy. The 3 Kepler's Laws relating to the planets are well known and will ensure that his name is remembered by future generations. Besides his astronomical work, Kepler also made important contributions in the fields of theology, physics, phylosophy and mathematics. The actual paper discusses the advances by Kepler in the application of mathematics to the solution of "real life problems". The author made a concise account of some of the disciples by Kepler: Klug, Wieleitner, Caspar, Hammer, paying particular attention to works published by Kepler while he was living in Linz (1612-1628). The Kepler's contribution to applied mathematics is an example supremely worthy of emulation, the author concludes.

  20. Principals Discuss Early Implementation of the ASSISTments Online Homework Tutor for Mathematics. ASSISTments Efficacy Study Report 2

    Science.gov (United States)

    Fairman, Janet; Porter, Michael; Fisher, Susannah

    2015-01-01

    This report presents the findings from interviews with principals about their schools' participation in the ASSISTments efficacy study on seventh-grade mathematics. The purpose of the interviews was to explore the following areas: To what extent schools had policies or expectations regarding homework practice and completion; To what extent schools…

  1. The "Human Factor" in Pure and in Applied Mathematics. Systems Everywhere: Their Impact on Mathematics Education.

    Science.gov (United States)

    Fischer, Roland

    1992-01-01

    Discusses the impact that the relationship between people and mathematics could have on the development of pure and applied mathematics. Argues for (1) a growing interest in philosophy, history and sociology of science; (2) new models in educational and psychological research; and (3) a growing awareness of the human factor in technology,…

  2. Recent progress and modern challenges in applied mathematics, modeling and computational science

    CERN Document Server

    Makarov, Roman; Belair, Jacques

    2017-01-01

    This volume is an excellent resource for professionals in various areas of applications of mathematics, modeling, and computational science. It focuses on recent progress and modern challenges in these areas. The volume provides a balance between fundamental theoretical and applied developments, emphasizing the interdisciplinary nature of modern trends and detailing state-of-the-art achievements in Applied Mathematics, Modeling, and Computational Science.  The chapters have been authored by international experts in their respective fields, making this book ideal for researchers in academia, practitioners, and graduate students. It can also serve as a reference in the diverse selected areas of applied mathematics, modelling, and computational sciences, and is ideal for interdisciplinary collaborations.

  3. Student School-Level Math Knowledge Influence on Applied Mathematics Study Courses

    Directory of Open Access Journals (Sweden)

    Rima Kriauzienė

    2013-08-01

    Full Text Available Purpose—to find out the influence of student school-level math knowledge on courses of applied mathematics studies: what is the importance of having a math maturity exam for students, an estimate of social science students’ motivation to learn math, and attendance of seminars. Students who did take the state exam attended more seminars than the students who did not take math exam, and vice versa. Design/methodology/approach—this work describes research which involved persistent MRU Public Administration degree program second-year students. Doing statistical analysis of the data will be a link between school-level mathematics knowledge and attendance activity in seminars and motivation to learn mathematics. Findings—the research is expected to establish a connection between school-level mathematics knowledge and student motivation to learn mathematics. It was found that there is no correlation between student opinions about school mathematics courses and result of their first test. Determine relationship between attendance of exercises and public examinations. Between the stored type of exam and test results are dependent. Determine relationship between exercise attendance and test results, as shown by the calculated correlation coefficient Based on the results, it’s recommended to increase the number of exercises. A more refined analysis of the data is subject to further investigation. Research limitations/implications—this method is just one of the possible ways of application. Practical implications—that kind of research and its methodology can be applied not only to the subject of applied mathematics studies, but also to other natural or social sciences. Originality/Value—empirical experiment data can be used in other studies of Educology nature analysis.

  4. Student School-Level Math Knowledge Influence on Applied Mathematics Study Courses

    Directory of Open Access Journals (Sweden)

    Tadas Laukevičius

    2011-12-01

    Full Text Available Purpose—to find out the influence of student school-level math knowledge on courses of applied mathematics studies: what is the importance of having a math maturity exam for students, an estimate of social science students’ motivation to learn math, and attendance of seminars. Students who did take the state exam attended more seminars than the students who did not take math exam, and vice versa.Design/methodology/approach—this work describes research which involved persistent MRU Public Administration degree program second-year students. Doing statistical analysis of the data will be a link between school-level mathematics knowledge and attendance activity in seminars and motivation to learn mathematics.Findings—the research is expected to establish a connection between school-level mathematics knowledge and student motivation to learn mathematics.It was found that there is no correlation between student opinions about school mathematics courses and result of their first test.Determine relationship between attendance of exercises and public examinations.Between the stored type of exam and test results are dependent.Determine relationship between exercise attendance and test results, as shown by the calculated correlation coefficientBased on the results, it’s recommended to increase the number of exercises. A more refined analysis of the data is subject to further investigation.Research limitations/implications—this method is just one of the possible ways of application.Practical implications—that kind of research and its methodology can be applied not only to the subject of applied mathematics studies, but also to other natural or social sciences.Originality/Value—empirical experiment data can be used in other studies of Educology nature analysis.

  5. 3rd International Conference on Applied Mathematics and Approximation Theory

    CERN Document Server

    Duman, Oktay

    2016-01-01

    This special volume is a collection of outstanding theoretical articles presented at the conference AMAT 2015, held in Ankara, Turkey from May 28-31, 2015, at TOBB University of Economics and Technology. The collection is suitable for a range of applications: from researchers and practitioners of applied and computational mathematics, to students in graduate-level seminars. Furthermore it will be a useful resource for all science libraries. This book includes 27 self-contained and expertly-refereed chapters that provide numerous insights into the latest developments at the intersection of applied and computational mathematics, engineering, and statistics.

  6. The interconnectedness of ageing:does the convoy principal apply?

    OpenAIRE

    Saffrey, Jill; Brown, James E.

    2015-01-01

    This is an excerpt from the content: The convoy principal states that any system is only as functional as its ‘slowest’ unit. As organisms are made up of interconnected networks of physiological systems, it is possible that this principle applies to the biology of ageing. Often biogerontology will focus either on organismal ageing (mechanisms associated with increased longevity of a lower model organism for example), ageing of an individual organ system (such as the cardiovascular/musculoskel...

  7. Applied mathematical sciences research at Argonne, April 1, 1981-March 31, 1982

    International Nuclear Information System (INIS)

    Pieper, G.W.

    1982-01-01

    This report reviews the research activities in Applied Mathematical Sciences at Argonne National Laboratory for the period April 1, 1981, through March 31, 1982. The body of the report discusses various projects carried out in three major areas of research: applied analysis, computational mathematics, and software engineering. Information on section staff, visitors, workshops, and seminars is found in the appendices

  8. Applying Standards for Leaders to the Selection of Secondary School Principals

    Science.gov (United States)

    Wildy, Helen; Pepper, Coral; Guanzhong, Luo

    2011-01-01

    Purpose: The purpose of this paper is to report innovative research aimed at ascertaining whether standards for school leaders could be applied to the process of selecting senior secondary school principals for appointment. Specifically, psychometrically robust measures of performance are sought that would sufficiently differentiate performance to…

  9. Principal bundles the classical case

    CERN Document Server

    Sontz, Stephen Bruce

    2015-01-01

    This introductory graduate level text provides a relatively quick path to a special topic in classical differential geometry: principal bundles.  While the topic of principal bundles in differential geometry has become classic, even standard, material in the modern graduate mathematics curriculum, the unique approach taken in this text presents the material in a way that is intuitive for both students of mathematics and of physics. The goal of this book is to present important, modern geometric ideas in a form readily accessible to students and researchers in both the physics and mathematics communities, providing each with an understanding and appreciation of the language and ideas of the other.

  10. Research in Applied Mathematics, Fluid Mechanics and Computer Science

    Science.gov (United States)

    1999-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999.

  11. Applied Mathematical Sciences research at Argonne, October 1, 1978-March 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Pieper, G. W. [ed.

    1980-01-01

    This report reviews the research activities of the Applied Mathematical Sciences Section for the period October 1, 1978, through March 31, 1980. The body of the report discusses various projects carried out in four major areas of research: applied analysis, computational mathematics, software engineering, and software clinics. Information on section staff, visitors, workshops, and seminars is found in the appendices. Descriptions of individual research topics are very brief.

  12. Applying contemporary philosophy in mathematics and statistics education : The perspective of inferentialism

    NARCIS (Netherlands)

    Schindler, Maike; Mackrell, Kate; Pratt, Dave; Bakker, A.

    2017-01-01

    Schindler, M., Mackrell, K., Pratt, D., & Bakker, A. (2017). Applying contemporary philosophy in mathematics and statistics education: The perspective of inferentialism. In G. Kaiser (Ed.). Proceedings of the 13th International Congress on Mathematical Education, ICME-13

  13. Applied Mathematics for agronomical engineers in Spain at UPM

    Science.gov (United States)

    Anton, J. M.; Grau, J. B.; Tarquis, A. M.; Fabregat, J.; Sanchez, M. E.

    2009-04-01

    Mathematics, created or discovered, are a global human conceptual endowment, containing large systems of knowledge, and varied skills to use definite parts of them, in creation or discovery, or for applications, e.g. in Physics, or notably in engineering behaviour. When getting upper intellectual levels in the 19th century, the agronomical science and praxis was noticeably or mainly organised in Spain in agronomical engineering schools and also in institutes, together with technician schools, also with different lower lever centres, and they have evolved with progress and they are much changing at present to a EEES schema (Bolonia process). They work in different lines that need some basis or skills from mathematics. The vocation to start such careers, that have varied curriculums, contains only some mathematics, and the number of credits for mathematics is restrained because time is necessary for other initial sciences such as applied chemistry, biology, ecology and soil sciences, but some basis and skill of maths are needed, also with Physics, at least for electricity, machines, construction, economics at initial ground levels, and also for Statistics that are here considered part of Applied Mathematics. The ways of teaching mathematical basis and skills are especial, and are different from the practical ways needed e. g. for Soil Sciences, and they involve especial efforts from students, and especial controls or exams that guide much learning. The mathematics have a very large accepted content that uses mostly a standard logic, and that is remarkably stable and international, rather similar notation and expressions being used with different main languages. For engineering the logical basis is really often not taught, but the use of it is transferred, especially for calculus that requires both adapted somehow simplified schemas and the learning of a specific skill to use it, and also for linear algebra. The basic forms of differential calculus in several

  14. Discussing Perception, Determining Provision: Teachers' Perspectives on the Applied Options of A-Level Mathematics

    Science.gov (United States)

    Ward-Penny, Robert; Johnston-Wilder, Sue; Johnston-Wilder, Peter

    2013-01-01

    One-third of the current A-level mathematics curriculum is determined by choice, constructed out of "applied mathematics" modules in mechanics, statistics and decision mathematics. Although this choice arguably involves the most sizeable instance of choice in the current English school mathematics curriculum, and it has a significant…

  15. 12th International School of Mathematics "G Stampacchia" : Applied Mathematics in the Aerospace Field "Ettore Majorana"

    CERN Document Server

    Salvetti, Attilio; Applied Mathematics in Aerospace Science and Engineering

    1994-01-01

    This book contains the proceedings ofthe meeting on "Applied Mathematics in the Aerospace Field," held in Erice, Sicily, Italy from September 3 to September 10, 1991. The occasion of the meeting was the 12th Course of the School of Mathematics "Guido Stampacchia," directed by Professor Franco Giannessi of the University of Pisa. The school is affiliated with the International Center for Scientific Culture "Ettore Majorana," which is directed by Professor Antonino Zichichi of the University of Bologna. The objective of the course was to give a perspective on the state-of­ the-art and research trends concerning the application of mathematics to aerospace science and engineering. The course was structured with invited lectures and seminars concerning fundamental aspects of differential equa­ tions, mathematical programming, optimal control, numerical methods, per­ turbation methods, and variational methods occurring in flight mechanics, astrodynamics, guidance, control, aircraft design, fluid mechanic...

  16. [Research activities in applied mathematics, fluid mechanics, and computer science

    Science.gov (United States)

    1995-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995.

  17. Mathematical methods for cancer evolution

    CERN Document Server

    Suzuki, Takashi

    2017-01-01

    The purpose of this monograph is to describe recent developments in mathematical modeling and mathematical analysis of certain problems arising from cell biology. Cancer cells and their growth via several stages are of particular interest. To describe these events, multi-scale models are applied, involving continuously distributed environment variables and several components related to particles. Hybrid simulations are also carried out, using discretization of environment variables and the Monte Carlo method for the principal particle variables. Rigorous mathematical foundations are the bases of these tools. The monograph is composed of four chapters. The first three chapters are concerned with modeling, while the last one is devoted to mathematical analysis. The first chapter deals with molecular dynamics occurring at the early stage of cancer invasion. A pathway network model based on a biological scenario is constructed, and then its mathematical structures are determined. In the second chapter mathematica...

  18. Applied mathematical methods in nuclear thermal hydraulics

    International Nuclear Information System (INIS)

    Ransom, V.H.; Trapp, J.A.

    1983-01-01

    Applied mathematical methods are used extensively in modeling of nuclear reactor thermal-hydraulic behavior. This application has required significant extension to the state-of-the-art. The problems encountered in modeling of two-phase fluid transients and the development of associated numerical solution methods are reviewed and quantified using results from a numerical study of an analogous linear system of differential equations. In particular, some possible approaches for formulating a well-posed numerical problem for an ill-posed differential model are investigated and discussed. The need for closer attention to numerical fidelity is indicated

  19. A comparison between strategies applied by mathematicians and mathematics teachers to solve a problem

    OpenAIRE

    Guerrero-Ortiz, Carolina; Mena-Lorca, Jaime

    2015-01-01

    International audience; This study analyses the results obtained from comparing the paths shown by expert mathematicians on the one hand and mathematics teachers on the other, when addressing a hypothetical problem that requires the construction of a mathematical model. The research was conducted with a qualitative approach, applying a case study which involved a group of mathematics teachers and three experts from different mathematical areas. The results show that the process of constructin...

  20. Mathematics Connection: Contact

    African Journals Online (AJOL)

    Principal Contact. Dr. Kofi Mereku Executive Editor Department of Mathematics Education, UCE Mathematical Association of Ghana, C/o Department of Mathematics Education University College of Education of Winneba P. O. Box 25, Winneba, Ghana Phone: +233244961318. Email: dkmereku@uew.edu.gh ...

  1. Research in progress in applied mathematics, numerical analysis, fluid mechanics, and computer science

    Science.gov (United States)

    1994-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.

  2. Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model.

    Science.gov (United States)

    Said, Nadia; Engelhart, Michael; Kirches, Christian; Körkel, Stefan; Holt, Daniel V

    2016-01-01

    Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods.

  3. Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model.

    Directory of Open Access Journals (Sweden)

    Nadia Said

    Full Text Available Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods.

  4. Current problems in applied mathematics and mathematical physics

    Science.gov (United States)

    Samarskii, A. A.

    Papers are presented on such topics as mathematical models in immunology, mathematical problems of medical computer tomography, classical orthogonal polynomials depending on a discrete variable, and boundary layer methods for singular perturbation problems in partial derivatives. Consideration is also given to the computer simulation of supernova explosion, nonstationary internal waves in a stratified fluid, the description of turbulent flows by unsteady solutions of the Navier-Stokes equations, and the reduced Galerkin method for external diffraction problems using the spline approximation of fields.

  5. Solving applied mathematical problems with Matlab

    CERN Document Server

    Xue, Dingyu

    2008-01-01

    Computer Mathematics Language-An Overview. Fundamentals of MATLAB Programming. Calculus Problems. MATLAB Computations of Linear Algebra Problems. Integral Transforms and Complex Variable Functions. Solutions to Nonlinear Equations and Optimization Problems. MATLAB Solutions to Differential Equation Problems. Solving Interpolations and Approximations Problems. Solving Probability and Mathematical Statistics Problems. Nontraditional Solution Methods for Mathematical Problems.

  6. 1st International Conference on Industrial and Applied Mathematics of the Indian Subcontinent

    CERN Document Server

    Kočvara, Michal

    2002-01-01

    An important objective of the study of mathematics is to analyze and visualize phenomena of nature and real world problems for its proper understanding. Gradually, it is also becoming the language of modem financial instruments. To project some of these developments, the conference was planned under the joint auspices of the Indian Society of Industrial and Applied mathematics (ISlAM) and Guru Nanak Dev University (G. N. D. U. ), Amritsar, India. Dr. Pammy Manchanda, chairperson of Mathematics Department, G. N. D. U. , was appointed the organizing secretary and an organizing committee was constituted. The Conference was scheduled in World Mathematics Year 2000 but, due one reason or the other, it could be held during 22. -25. January 2001. How­ ever, keeping in view the suggestion of the International Mathematics union, we organized two symposia, Role of Mathematics in industrial development and vice-versa and How image of Mathematics can be improved in public. These two symposia aroused great interest among...

  7. Applied mathematics and condensed matter; Mathematiques appliquees et matiere condensee

    Energy Technology Data Exchange (ETDEWEB)

    Bouche, D.; Jollet, F. [CEA Bruyeres-le-Chatel, 91 (France)

    2011-01-15

    Applied mathematics have always been a key tool in computing the structure of condensed matter. In this paper, we present the most widely used methods, and show the importance of mathematics in their genesis and evolution. After a brief survey of quantum Monte Carlo methods, which try to compute the N electrons wave function, the paper describes the theoretical foundations of N independent particle approximations. We mainly focus on density functional theory (DFT). This theory associated with advanced numerical methods, and high performance computing, has produced significant achievements in the field. This paper presents the foundations of the theory, as well as different numerical methods used to solve DFT equations. (authors)

  8. Principal minors and rhombus tilings

    International Nuclear Information System (INIS)

    Kenyon, Richard; Pemantle, Robin

    2014-01-01

    The algebraic relations between the principal minors of a generic n × n matrix are somewhat mysterious, see e.g. Lin and Sturmfels (2009 J. Algebra 322 4121–31). We show, however, that by adding in certain almost principal minors, the ideal of relations is generated by translations of a single relation, the so-called hexahedron relation, which is a composition of six cluster mutations. We give in particular a Laurent-polynomial parameterization of the space of n × n matrices, whose parameters consist of certain principal and almost principal minors. The parameters naturally live on vertices and faces of the tiles in a rhombus tiling of a convex 2n-gon. A matrix is associated to an equivalence class of tilings, all related to each other by Yang–Baxter-like transformations. By specializing the initial data we can similarly parameterize the space of Hermitian symmetric matrices over R,C or H the quaternions. Moreover by further specialization we can parametrize the space of positive definite matrices over these rings. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Cluster algebras mathematical physics’. (paper)

  9. 3rd International Conference on Computer Science, Applied Mathematics and Applications

    CERN Document Server

    Nguyen, Ngoc; Do, Tien

    2015-01-01

    This volume contains the extended versions of papers presented at the 3rd International Conference on Computer Science, Applied Mathematics and Applications (ICCSAMA 2015) held on 11-13 May, 2015 in Metz, France. The book contains 5 parts: 1. Mathematical programming and optimization: theory, methods and software, Operational research and decision making, Machine learning, data security, and bioinformatics, Knowledge information system, Software engineering. All chapters in the book discuss theoretical and algorithmic as well as practical issues connected with computation methods & optimization methods for knowledge engineering and machine learning techniques.  

  10. Studies in Mathematics, Volume X. Applied Mathematics in the High School.

    Science.gov (United States)

    Schiffer, Max M.

    This publication contains a sequence of lectures given to high school mathematics teachers by the author. Applications of mathematics emphasized are elementary algebra, geometry, and matrix algebra. Included are: (1) an introduction concerning teaching applications of mathematics; (2) Chapter 1: Mechanics for the High School Student; (3) Chapter…

  11. Preface to the Special Issue on the International Workshop on Applied Mathematics Errachidia (IWAM’2017

    Directory of Open Access Journals (Sweden)

    M. R. Sidi Ammi

    2017-04-01

    Full Text Available The International Workshop on Applied Mathematics, Errachidia (IWAM’2017 took place in Errachidia, Morocco at the Faculty of Sciences and Technics during March 13, 2017 (https://iwam2017.sciencesconf.org/. The workshop was held with the support of FST Errachidia, the University Moulay Isma¨ıl. It is aimed at celebrating the collaborative research in applied mathematics by the mathematicians of the FST Errachidia, the Systems and Control Group of CIDMA, University of Aveiro, and with the MIA Lab, University of La Rochelle. It was attended by about 100 Mathematicians and Ph.D. and M.S. students, coming from universities from different countries, such as Algeria, Egypt, France, Portugal, and Morocco. The aim of IWAM’2017 is to bring researchers and professionals to discuss recent developments in both theoretical and applied mathematics, to create the knowledge exchange platform between mathematicians. The workshop is broad-based that covers several branches of engineering sciences, mathematics and interdisciplinary researches mainly in the fields of optimization and variational analysis, theoretical, asymptotic and numerical analysis of ordinary, partial and fractional differential equations

  12. Mathematical scandals

    CERN Document Server

    Pappas, Theoni

    1997-01-01

    In this highly readable volume of vignettes of mathematical scandals and gossip, Theoni Pappas assembles 29 fascinating stories of intrigue and the bizarre ? in short, the human background of the history of mathematics. Might a haberdasher have changed Einstein's life? Why was the first woman mathematician murdered? How come there's no Nobel Prize in mathematics?Mathematics is principally about numbers, equations, and solutions, all of them precise and timeless. But, behind this arcane matter lies the sometimes sordid world of real people, whose rivalries and deceptions

  13. Schematic Harder–Narasimhan stratification for families of principal ...

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 124; Issue 3. Schematic Harder–Narasimhan Stratification for Families of Principal Bundles ... Author Affiliations. Sudarshan Gurjar1 Nitin Nitsure1. School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India ...

  14. System for corrosion monitoring in pipeline applying fuzzy logic mathematics

    Science.gov (United States)

    Kuzyakov, O. N.; Kolosova, A. L.; Andreeva, M. A.

    2018-05-01

    A list of factors influencing corrosion rate on the external side of underground pipeline is determined. Principles of constructing a corrosion monitoring system are described; the system performance algorithm and program are elaborated. A comparative analysis of methods for calculating corrosion rate is undertaken. Fuzzy logic mathematics is applied to reduce calculations while considering a wider range of corrosion factors.

  15. A simple mathematical model of society collapse applied to Easter Island

    Science.gov (United States)

    Bologna, M.; Flores, J. C.

    2008-02-01

    In this paper we consider a mathematical model for the evolution and collapse of the Easter Island society. Based on historical reports, the available primary resources consisted almost exclusively in the trees, then we describe the inhabitants and the resources as an isolated dynamical system. A mathematical, and numerical, analysis about the Easter Island community collapse is performed. In particular, we analyze the critical values of the fundamental parameters and a demographic curve is presented. The technological parameter, quantifying the exploitation of the resources, is calculated and applied to the case of another extinguished civilization (Copán Maya) confirming the consistency of the adopted model.

  16. Mathematics Audit of the DoDEA Schools: 2014-2015

    Science.gov (United States)

    2016-01-01

    39 The Role of the Mathematics Instructional Support Specialist ... mathematics Instructional Support Specialists (ISSs) and school principals. We also interviewed administrative staff at DoDEA headquarters (HQ) and at the...Resources for High-Quality Professional Development for Mathematics Instructional Support Specialists , Principals, and Teachers DoDEA understands

  17. Washback Effect of University Entrance exams in Applied Mathematics to Social Sciences.

    Science.gov (United States)

    Rodríguez-Muñiz, Luis J; Díaz, Patricia; Mier, Verónica; Alonso, Pedro

    2016-01-01

    Curricular issues of subject Applied Mathematics to Social Sciences are studied in relation to university entrance exams performed in several Spanish regions between 2009-2014. By using quantitative and qualitative analyses, it has been studied how these exams align with curriculum and how they produce a washback on curriculum and teachers' work. Additionally, one questionnaire about teachers' practices has been performed, in order to find out how the exams are influencing teaching methodology development. Main results obtained show that evaluation is producing a bias on the official curriculum, substantially simplifying the specific orientation that should guide applied mathematics. Furthermore, teachers' practices are influenced by the exams, and they usually approach their teaching methodology to the frequent types of exams. Also, slight differences among the teachers lead to distinguish two behavioral subgroups. Results can also be useful in an international context, because of the importance of standardized exit exams in OECD countries.

  18. Research in applied mathematics, numerical analysis, and computer science

    Science.gov (United States)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers.

  19. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2011-01-01

    ; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics...... to new problems. Relations and functions: Define a product set; define and apply equivalence relations; construct and apply functions. Apply these concepts to new problems. Natural numbers and induction: Define the natural numbers; apply the principle of induction to verify a selection of properties...

  20. Mathematical Model Based on Newton’s Laws and in First Thermodynamic Law of a Gas Turbine

    Directory of Open Access Journals (Sweden)

    Ottmar Rafael Uriza Gosebruch

    2017-09-01

    Full Text Available The present article explains the modeling of a Gas Turbine system; the mathematical modeling is based on fluid mechanics applying the principal energy laws such as Euler’s Law, Newton’s second Law and the first thermodynamic law to obtain the equations for mass, momentum and energy conservation; expressed as the continuity equation, the Navier-Stokes equation and the energy conservation using Fourier’s Law. The purpose of this article is to establish a precise mathematical model to be applied in control applications, for future works, within industry applications.

  1. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2011-01-01

    The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics......; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...

  2. APPLYING PROFESSIONALLY ORIENTED PROBLEMS OF MATHEMATICAL MODELING IN TEACHING STUDENTS OF ENGINEERING DEPARTMENTS

    Directory of Open Access Journals (Sweden)

    Natal’ya Yur’evna Gorbunova

    2017-06-01

    Full Text Available We described several aspects of organizing student research work, as well as solving a number of mathematical modeling problems: professionally-oriented, multi-stage, etc. We underlined the importance of their economic content. Samples of using such problems in teaching Mathematics at agricultural university were given. Several questions connected with information material selection and peculiarities of research problems application were described. Purpose. The author aims to show the possibility and necessity of using professionally-oriented problems of mathematical modeling in teaching Mathematics at agricultural university. The subject of analysis is including such problems into educational process. Methodology. The main research method is dialectical method of obtaining knowledge of finding approaches to selection, writing and using mathematical modeling and professionally-oriented problems in educational process; the methodology is study of these methods of obtaining knowledge. Results. As a result of analysis of literature, students opinions, observation of students work, and taking into account personal teaching experience, it is possible to make conclusion about importance of using mathematical modeling problems, as it helps to systemize theoretical knowledge, apply it to practice, raise students study motivation in engineering sphere. Practical implications. Results of the research can be of interest for teachers of Mathematics in preparing Bachelor and Master students of engineering departments of agricultural university both for theoretical research and for modernization of study courses.

  3. Washback Effect of University Entrance exams in Applied Mathematics to Social Sciences

    Science.gov (United States)

    Díaz, Patricia; Mier, Verónica; Alonso, Pedro

    2016-01-01

    Curricular issues of subject Applied Mathematics to Social Sciences are studied in relation to university entrance exams performed in several Spanish regions between 2009–2014. By using quantitative and qualitative analyses, it has been studied how these exams align with curriculum and how they produce a washback on curriculum and teachers’ work. Additionally, one questionnaire about teachers’ practices has been performed, in order to find out how the exams are influencing teaching methodology development. Main results obtained show that evaluation is producing a bias on the official curriculum, substantially simplifying the specific orientation that should guide applied mathematics. Furthermore, teachers’ practices are influenced by the exams, and they usually approach their teaching methodology to the frequent types of exams. Also, slight differences among the teachers lead to distinguish two behavioral subgroups. Results can also be useful in an international context, because of the importance of standardized exit exams in OECD countries. PMID:27936103

  4. Frontiers in economic research on petroleum allocation using mathematical programming methods

    International Nuclear Information System (INIS)

    Rowse, J.

    1991-01-01

    This paper presents a state of the art of operations research techniques applied in petroleum allocation, namely mathematical programming methods, with principal attention directed toward linear programming and nonlinear programming (including quadratic programming). Contributions to the economics of petroleum allocation are discussed for international trade, industrial organization, regional/macro economics, public finance and natural resource/environmental economics

  5. Error analysis of mathematical problems on TIMSS: A case of Indonesian secondary students

    Science.gov (United States)

    Priyani, H. A.; Ekawati, R.

    2018-01-01

    Indonesian students’ competence in solving mathematical problems is still considered as weak. It was pointed out by the results of international assessment such as TIMSS. This might be caused by various types of errors made. Hence, this study aimed at identifying students’ errors in solving mathematical problems in TIMSS in the topic of numbers that considered as the fundamental concept in Mathematics. This study applied descriptive qualitative analysis. The subject was three students with most errors in the test indicators who were taken from 34 students of 8th graders. Data was obtained through paper and pencil test and student’s’ interview. The error analysis indicated that in solving Applying level problem, the type of error that students made was operational errors. In addition, for reasoning level problem, there are three types of errors made such as conceptual errors, operational errors and principal errors. Meanwhile, analysis of the causes of students’ errors showed that students did not comprehend the mathematical problems given.

  6. Particulate morphology mathematics applied to particle assemblies

    CERN Document Server

    Gotoh, Keishi

    2012-01-01

    Encompassing over fifty years of research, Professor Gotoh addresses the correlation function of spatial structures and the statistical geometry of random particle assemblies. In this book morphological study is formed into random particle assemblies to which various mathematics are applied such as correlation function, radial distribution function and statistical geometry. This leads to the general comparison between the thermodynamic state such as gases and liquids and the random particle assemblies. Although structures of molecular configurations change at every moment due to thermal vibration, liquids can be regarded as random packing of particles. Similarly, gaseous states correspond to particle dispersion. If physical and chemical properties are taken away from the subject, the remainder is the structure itself. Hence, the structural study is ubiquitous and of fundamental importance. This book will prove useful to chemical engineers working on powder technology as well as mathematicians interested in le...

  7. Interval Mathematics Applied to Critical Point Transitions

    Directory of Open Access Journals (Sweden)

    Benito A. Stradi

    2012-03-01

    Full Text Available The determination of critical points of mixtures is important for both practical and theoretical reasons in the modeling of phase behavior, especially at high pressure. The equations that describe the behavior of complex mixtures near critical points are highly nonlinear and with multiplicity of solutions to the critical point equations. Interval arithmetic can be used to reliably locate all the critical points of a given mixture. The method also verifies the nonexistence of a critical point if a mixture of a given composition does not have one. This study uses an interval Newton/Generalized Bisection algorithm that provides a mathematical and computational guarantee that all mixture critical points are located. The technique is illustrated using several example problems. These problems involve cubic equation of state models; however, the technique is general purpose and can be applied in connection with other nonlinear problems.

  8. THE CASE STUDY TASKS AS A BASIS FOR THE FUND OF THE ASSESSMENT TOOLS AT THE MATHEMATICAL ANALYSIS FOR THE DIRECTION 01.03.02 APPLIED MATHEMATICS AND COMPUTER SCIENCE

    Directory of Open Access Journals (Sweden)

    Dina Aleksandrovna Kirillova

    2015-12-01

    Full Text Available The modern reform of the Russian higher education involves the implementation of competence-based approach, the main idea of which is the practical orientation of education. Mathematics is a universal language of description, modeling and studies of phenomena and processes of different nature. Therefore creating the fund of assessment tools for mathematical disciplines based on the applied problems is actual. The case method is the most appropriate mean of monitoring the learning outcomes, it is aimed at bridging the gap between theory and practice.The aim of the research is the development of methodical materials for the creating the fund of assessment tools that are based on the case-study for the mathematical analisis for direction «Applied Mathematics and Computer Science». The aim follows from the contradiction between the need for the introduction of case-method in the educational process in high school and the lack of study of the theoretical foundations of using of this method as applied to mathematical disciplines, insufficient theoretical basis and the description of the process of creating case-problems for use their in the monitoring of the learning outcomes.

  9. International seminar series on mathematics and applied mathematics and a series of three focused international research workshops on engineering mathematics organised by the Research Environment in Mathematics and Applied Mathematics at Mälardalen University from autumn 2014 to autumn 2015: the International Workshop on Engineering Mathematics for Electromagnetics and Health Technology; the International Workshop on Engineering Mathematics, Algebra, Analysis and Electromagnetics; and the 1st Swedish-Estonian International Workshop on Engineering Mathematics, Algebra, Analysis and Applications

    CERN Document Server

    Rancic, Milica

    2016-01-01

    This book highlights the latest advances in engineering mathematics with a main focus on the mathematical models, structures, concepts, problems and computational methods and algorithms most relevant for applications in modern technologies and engineering. It addresses mathematical methods of algebra, applied matrix analysis, operator analysis, probability theory and stochastic processes, geometry and computational methods in network analysis, data classification, ranking and optimisation. The individual chapters cover both theory and applications, and include a wealth of figures, schemes, algorithms, tables and results of data analysis and simulation. Presenting new methods and results, reviews of cutting-edge research, and open problems for future research, they equip readers to develop new mathematical methods and concepts of their own, and to further compare and analyse the methods and results discussed. The book consists of contributed chapters covering research developed as a result of a focused interna...

  10. Quantum mechanics as applied mathematical statistics

    International Nuclear Information System (INIS)

    Skala, L.; Cizek, J.; Kapsa, V.

    2011-01-01

    Basic mathematical apparatus of quantum mechanics like the wave function, probability density, probability density current, coordinate and momentum operators, corresponding commutation relation, Schroedinger equation, kinetic energy, uncertainty relations and continuity equation is discussed from the point of view of mathematical statistics. It is shown that the basic structure of quantum mechanics can be understood as generalization of classical mechanics in which the statistical character of results of measurement of the coordinate and momentum is taken into account and the most important general properties of statistical theories are correctly respected.

  11. International Conference on Applied Mathematics and Informatics

    CERN Document Server

    Vasilieva, Olga

    2015-01-01

    This book highlights recent compelling research results and trends in various aspects of contemporary mathematics, emphasizing applications to real-world situations. The chapters present exciting new findings and developments in situations where mathematical rigor is combined with common sense. A multi-disciplinary approach, both within each chapter and in the volume as a whole, leads to practical insights that may result in a more synthetic understanding of specific global issues—as well as their possible solutions. The volume will be of interest not only to experts in mathematics, but also to graduate students, scientists, and practitioners from other fields including physics, biology, geology, management, and medicine.

  12. Applying an alternative mathematics pedagogy for students with weak mathematics: meta-analysis of alternative pedagogies

    Science.gov (United States)

    Lake, Warren; Wallin, Margie; Woolcott, Geoff; Boyd, Wendy; Foster, Alan; Markopoulos, Christos; Boyd, William

    2017-02-01

    Student mathematics performance and the need for work-ready graduates to be mathematics-competent is a core issue for many universities. While both student and teacher are responsible for learning outcomes, there is a need to explicitly acknowledge the weak mathematics foundation of many university students. A systematic literature review was undertaken of identified innovations and/or interventions that may lead to improvement in student outcomes for university mathematics-based units of study. The review revealed the importance of understanding the foundations of student performance in higher education mathematics learning, especially in first year. Pre-university mathematics skills were identified as significant in student retention and mathematics success at university, and a specific focus on student pre-university mathematics skill level was found to be more effective in providing help, rather than simply focusing on a particular at-risk group. Diagnostics tools were found to be important in identifying (1) student background and (2) appropriate intervention. The studies highlighted the importance of appropriate and validated interventions in mathematics teaching and learning, and the need to improve the learning model for mathematics-based subjects, communication and technology innovations.

  13. Parallel Processing and Applied Mathematics. 10th International Conference, PPAM 2013. Revised Selected Papers

    DEFF Research Database (Denmark)

    The following topics are dealt with: parallel scientific computing; numerical algorithms; parallel nonnumerical algorithms; cloud computing; evolutionary computing; metaheuristics; applied mathematics; GPU computing; multicore systems; hybrid architectures; hierarchical parallelism; HPC systems......; power monitoring; energy monitoring; and distributed computing....

  14. Principal Component Analysis: Most Favourite Tool in Chemometrics

    Indian Academy of Sciences (India)

    GENERAL ARTICLE. Principal ... Chemometrics is a discipline that combines mathematics, statis- ... workers have used PCA for air quality monitoring [8]. ..... J S Verbeke, Handbook of Chemometrics and Qualimetrics, Elsevier, New York,.

  15. Applied Wave Mathematics Selected Topics in Solids, Fluids, and Mathematical Methods

    CERN Document Server

    Quak, Ewald

    2009-01-01

    This edited volume addresses the importance of mathematics in wave-related research, and its tutorial style contributions provide educational material for courses or seminars. It presents highlights from research carried out at the Centre for Nonlinear Studies in Tallinn, Estonia, the Centre of Mathematics for Applications in Oslo, Norway, and by visitors from the EU project CENS-CMA. The example applications discussed include wave propagation in inhomogeneous solids, liquid crystals in mesoscopic physics, and long ship waves in shallow water bodies. Other contributions focus on specific mathe

  16. Emerging Trends in Applied Mathematics: Dedicated to the Memory of Sir Asutosh Mookerjee and Contributions of S.N. Bose, M.N. Saha and N.R. Sen

    CERN Document Server

    Basu, Uma; De, Soumen

    2015-01-01

    The book is based on research presentations at the international conference, “Emerging Trends in Applied Mathematics: In the Memory of Sir Asutosh Mookerjee, S.N. Bose, M.N. Saha, and N.R. Sen”, held at the Department of Applied Mathematics, University of Calcutta, during 12–14 February 2014. It focuses on various emerging and challenging topics in the field of applied mathematics and theoretical physics. The book will be a valuable resource for postgraduate students at higher levels and researchers in applied mathematics and theoretical physics. Researchers presented a wide variety of themes in applied mathematics and theoretical physics—such as emergent periodicity in a field of chaos; Ricci flow equation and Poincare conjecture; Bose–Einstein condensation; geometry of local scale invariance and turbulence; statistical mechanics of human resource allocation: mathematical modelling of job-matching in labour markets; contact problem in elasticity; the Saha equation; computational fluid dynamics with...

  17. Proceedings: Summer Conference for College Teachers on Applied Mathematics, University of Missouri-Rolla, 1971.

    Science.gov (United States)

    Committee on the Undergraduate Program in Mathematics, Berkeley, CA.

    Proceedings from four sessions of the Summer Conference for College Teachers on Applied Mathematics are presented. The four sessions were: (1) Applications of Elementary Calculus, (2) Applications of Linear Algebra, (3) Applications of Elementary Differential Equations, and (4) Applications of Probability and Statistics. Nine lectures were given…

  18. On the Formal-Logical Analysis of the Foundations of Mathematics Applied to Problems in Physics

    Science.gov (United States)

    Kalanov, Temur Z.

    2016-03-01

    Analysis of the foundations of mathematics applied to problems in physics was proposed. The unity of formal logic and of rational dialectics is methodological basis of the analysis. It is shown that critical analysis of the concept of mathematical quantity - central concept of mathematics - leads to the following conclusion: (1) The concept of ``mathematical quantity'' is the result of the following mental operations: (a) abstraction of the ``quantitative determinacy of physical quantity'' from the ``physical quantity'' at that the ``quantitative determinacy of physical quantity'' is an independent object of thought; (b) abstraction of the ``amount (i.e., abstract number)'' from the ``quantitative determinacy of physical quantity'' at that the ``amount (i.e., abstract number)'' is an independent object of thought. In this case, unnamed, abstract numbers are the only sign of the ``mathematical quantity''. This sign is not an essential sign of the material objects. (2) The concept of mathematical quantity is meaningless, erroneous, and inadmissible concept in science because it represents the following formal-logical and dialectical-materialistic error: negation of the existence of the essential sign of the concept (i.e., negation of the existence of the essence of the concept) and negation of the existence of measure of material object.

  19. The Threshold Hypothesis Applied to Spatial Skill and Mathematics

    Science.gov (United States)

    Freer, Daniel

    2017-01-01

    This cross-sectional study assessed the relation between spatial skills and mathematics in 854 participants across kindergarten, third grade, and sixth grade. Specifically, the study probed for a threshold for spatial skills when performing mathematics, above which spatial scores and mathematics scores would be significantly less related. This…

  20. Equations of mathematical physics

    CERN Document Server

    Tikhonov, A N

    2011-01-01

    Mathematical physics plays an important role in the study of many physical processes - hydrodynamics, elasticity, and electrodynamics, to name just a few. Because of the enormous range and variety of problems dealt with by mathematical physics, this thorough advanced-undergraduate or graduate-level text considers only those problems leading to partial differential equations. The authors - two well-known Russian mathematicians - have focused on typical physical processes and the principal types of equations deailing with them. Special attention is paid throughout to mathematical formulation, ri

  1. How to solve applied mathematics problems

    CERN Document Server

    Moiseiwitsch, B L

    2011-01-01

    This workbook bridges the gap between lectures and practical applications, offering students of mathematics, engineering, and physics the chance to practice solving problems from a wide variety of fields. 2011 edition.

  2. The fundamentals of mathematical analysis

    CERN Document Server

    Fikhtengol'ts, G M

    1965-01-01

    The Fundamentals of Mathematical Analysis, Volume 1 is a textbook that provides a systematic and rigorous treatment of the fundamentals of mathematical analysis. Emphasis is placed on the concept of limit which plays a principal role in mathematical analysis. Examples of the application of mathematical analysis to geometry, mechanics, physics, and engineering are given. This volume is comprised of 14 chapters and begins with a discussion on real numbers, their properties and applications, and arithmetical operations over real numbers. The reader is then introduced to the concept of function, i

  3. Reduction of symplectic principal R-bundles

    International Nuclear Information System (INIS)

    Lacirasella, Ignazio; Marrero, Juan Carlos; Padrón, Edith

    2012-01-01

    We describe a reduction process for symplectic principal R-bundles in the presence of a momentum map. These types of structures play an important role in the geometric formulation of non-autonomous Hamiltonian systems. We apply this procedure to the standard symplectic principal R-bundle associated with a fibration π:M→R. Moreover, we show a reduction process for non-autonomous Hamiltonian systems on symplectic principal R-bundles. We apply these reduction processes to several examples. (paper)

  4. Mathematics Underground

    Science.gov (United States)

    Luther, Kenneth H.

    2012-01-01

    Mathematical modeling of groundwater flow is a topic at the intersection of mathematics and geohydrology and is rarely encountered in undergraduate mathematics. However, this subject is full of interesting and meaningful examples of truly "applied" mathematics accessible to undergraduates, from the pre-calculus to advanced mathematics levels. This…

  5. International Conference Organized on the Occasion of the Silver Jubilee of the Indian Society of Industrial and Applied Mathematics (ISIAM)

    CERN Document Server

    Lozi, René; Siddiqi, Abul

    2017-01-01

    The book discusses essential topics in industrial and applied mathematics such as image processing with a special focus on medical imaging, biometrics and tomography. Applications of mathematical concepts to areas like national security, homeland security and law enforcement, enterprise and e-government services, personal information and business transactions, and brain-like computers are also highlighted. These contributions – all prepared by respected academicians, scientists and researchers from across the globe – are based on papers presented at the international conference organized on the occasion of the Silver Jubilee of the Indian Society of Industrial and Applied Mathematics (ISIAM) held from 29 to 31 January 2016 at Sharda University, Greater Noida, India. The book will help young scientists and engineers grasp systematic developments in those areas of mathematics that are essential to properly understand challenging contemporary problems.

  6. Exploring Differential Effects of Mathematics Courses on Mathematics Achievement

    Science.gov (United States)

    Ma, Xin; McIntyre, Laureen J.

    2005-01-01

    Using data from the Longitudinal Study of Mathematics Participation (N = 1,518 students from 34 schools), we investigated the effects of pure and applied mathematics courses on mathematics achievement, controlling for prior mathematics achievement. Results of multilevel modelling showed that the effects of pure mathematics were significant after…

  7. Mathematics applied to nuclear geophysics

    International Nuclear Information System (INIS)

    Pereira, E.B.; Nordemann, D.J.R.

    1987-01-01

    One of the powerful auxiliary to nuclear geophysics is the obtention and interpretation of the alpha and gamma radiation spectra. This work discuss, qualitative and quantitative, the lost information problem, motivated by the noise in the process of information codification. The decodification process must be suppield by the appropriate mathematical model on the measure system to recovery the information from nuclear source. (C.D.G.) [pt

  8. THE STUDY OF THE CHARACTERIZATION INDICES OF FABRICS BY PRINCIPAL COMPONENT ANALYSIS METHOD

    Directory of Open Access Journals (Sweden)

    HRISTIAN Liliana

    2017-05-01

    Full Text Available The paper was pursued to prioritize the worsted fabrics type, for the manufacture of outerwear products by characterization indeces of fabrics, using the mathematical model of Principal Component Analysis (PCA. There are a number of variables with a certain influence on the quality of fabrics, but some of these variables are more important than others, so it is useful to identify those variables to a better understanding the factors which can lead the improving of the fabrics quality. A solution to this problem can be the application of a method of factorial analysis, the so-called Principal Component Analysis, with the final goal of establishing and analyzing those variables which influence in a significant manner the internal structure of combed wool fabrics according to armire type. By applying PCA it is obtained a small number of the linear combinations (principal components from a set of variables, describing the internal structure of the fabrics, which can hold as much information as possible from the original variables. Data analysis is an important initial step in decision making, allowing identification of the causes that lead to a decision- making situations. Thus it is the action of transforming the initial data in order to extract useful information and to facilitate reaching the conclusions. The process of data analysis can be defined as a sequence of steps aimed at formulating hypotheses, collecting primary information and validation, the construction of the mathematical model describing this phenomenon and reaching these conclusions about the behavior of this model.

  9. SPSS软件中主成分分析的计算技术解析%Analysis of Computing Technology on Principal Components Method in SPSS

    Institute of Scientific and Technical Information of China (English)

    王春枝

    2011-01-01

    In view of the errors in many teaching material and articles about applying SPSS software for principal components analysis, analyzes the basic principles and mathematical process, on this basis, demonstrates the applied progress of principal component an%针对目前很多用SPSS软件进行主成分分析的教材和发表的文章中有不少误解之处.在解析主成分分析的基本原理与数学过程的基础上.结合实例演示应用SPSS软件实现主成分分析的过程。

  10. A sampler of useful computational tools for applied geometry, computer graphics, and image processing foundations for computer graphics, vision, and image processing

    CERN Document Server

    Cohen-Or, Daniel; Ju, Tao; Mitra, Niloy J; Shamir, Ariel; Sorkine-Hornung, Olga; Zhang, Hao (Richard)

    2015-01-01

    A Sampler of Useful Computational Tools for Applied Geometry, Computer Graphics, and Image Processing shows how to use a collection of mathematical techniques to solve important problems in applied mathematics and computer science areas. The book discusses fundamental tools in analytical geometry and linear algebra. It covers a wide range of topics, from matrix decomposition to curvature analysis and principal component analysis to dimensionality reduction.Written by a team of highly respected professors, the book can be used in a one-semester, intermediate-level course in computer science. It

  11. Mathematical Modeling Applied to Maritime Security

    OpenAIRE

    Center for Homeland Defense and Security

    2010-01-01

    Center for Homeland Defense and Security, OUT OF THE CLASSROOM Download the paper: Layered Defense: Modeling Terrorist Transfer Threat Networks and Optimizing Network Risk Reduction” Students in Ted Lewis’ Critical Infrastructure Protection course are taught how mathematic modeling can provide...

  12. Literature Review of Applying Visual Method to Understand Mathematics

    Directory of Open Access Journals (Sweden)

    Yu Xiaojuan

    2015-01-01

    Full Text Available As a new method to understand mathematics, visualization offers a new way of understanding mathematical principles and phenomena via image thinking and geometric explanation. It aims to deepen the understanding of the nature of concepts or phenomena and enhance the cognitive ability of learners. This paper collates and summarizes the application of this visual method in the understanding of mathematics. It also makes a literature review of the existing research, especially with a visual demonstration of Euler’s formula, introduces the application of this method in solving relevant mathematical problems, and points out the differences and similarities between the visualization method and the numerical-graphic combination method, as well as matters needing attention for its application.

  13. Andragogical Practices of School Principals in Developing the Leadership Capacities of Assistant Principals

    Science.gov (United States)

    McDaniel, Luther

    2017-01-01

    The purpose of this mixed methods study was to assess school principals' perspectives of the extent to which they apply the principles of andragogy to the professional development of assistant principals in their schools. This study was conducted in school districts that constitute a RESA area in a southeastern state. The schools in these…

  14. Quotable Quotes in Mathematics

    Science.gov (United States)

    Lo, Bruce W. N.

    1983-01-01

    As a way to dispel negative feelings toward mathematics, a variety of quotations are given. They are categorized by: what mathematics is, mathematicians, mathematics and other disciplines, different areas of mathematics, mathematics and humor, applications of mathematics, and pure versus applied mathematics. (MNS)

  15. The Effects of Teacher Collaboration in Grade 9 Applied Mathematics

    Science.gov (United States)

    Egodawatte, Gunawardena; McDougall, Douglas; Stoilescu, Dorian

    2011-01-01

    The current emphasis of many mathematics education reform documents is on the need to change the environment of mathematics classrooms from the transmission of knowledge by the teacher to the transaction of knowledge between the teacher and the students which promotes mathematical investigation and exploration. In this article, we discuss the…

  16. Proceedings – Mathematical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 121; Issue 2. Principal Bundles whose Restrictions to a Curve are Isomorphic. Sudarshan ... Author Affiliations. Sudarshan Rajendra Gurjar1. School of Mathematics, Tata Institute of Fundamental Research, Dr Homi Bhabha Road, Mumbai 400 005, India ...

  17. Applied Mathematics at the U.S. Department of Energy: Past, Present and a View to the Future

    International Nuclear Information System (INIS)

    Brown, D.L; Bell, J.; Estep, D.; Gropp, W.; Hendrickson, B.; Keller-McNulty, S.; Keyes, D.; Oden, J.T.; Petzold, L.; Wright, M.

    2008-01-01

    Over the past half-century, the Applied Mathematics program in the U.S. Department of Energy's Office of Advanced Scientific Computing Research has made significant, enduring advances in applied mathematics that have been essential enablers of modern computational science. Motivated by the scientific needs of the Department of Energy and its predecessors, advances have been made in mathematical modeling, numerical analysis of differential equations, optimization theory, mesh generation for complex geometries, adaptive algorithms and other important mathematical areas. High-performance mathematical software libraries developed through this program have contributed as much or more to the performance of modern scientific computer codes as the high-performance computers on which these codes run. The combination of these mathematical advances and the resulting software has enabled high-performance computers to be used for scientific discovery in ways that could only be imagined at the program's inception. Our nation, and indeed our world, face great challenges that must be addressed in coming years, and many of these will be addressed through the development of scientific understanding and engineering advances yet to be discovered. The U.S. Department of Energy (DOE) will play an essential role in providing science-based solutions to many of these problems, particularly those that involve the energy, environmental and national security needs of the country. As the capability of high-performance computers continues to increase, the types of questions that can be answered by applying this huge computational power become more varied and more complex. It will be essential that we find new ways to develop and apply the mathematics necessary to enable the new scientific and engineering discoveries that are needed. In August 2007, a panel of experts in applied, computational and statistical mathematics met for a day and a half in Berkeley, California to understand the

  18. Sparse logistic principal components analysis for binary data

    KAUST Repository

    Lee, Seokho

    2010-09-01

    We develop a new principal components analysis (PCA) type dimension reduction method for binary data. Different from the standard PCA which is defined on the observed data, the proposed PCA is defined on the logit transform of the success probabilities of the binary observations. Sparsity is introduced to the principal component (PC) loading vectors for enhanced interpretability and more stable extraction of the principal components. Our sparse PCA is formulated as solving an optimization problem with a criterion function motivated from a penalized Bernoulli likelihood. A Majorization-Minimization algorithm is developed to efficiently solve the optimization problem. The effectiveness of the proposed sparse logistic PCA method is illustrated by application to a single nucleotide polymorphism data set and a simulation study. © Institute ol Mathematical Statistics, 2010.

  19. Post annealing performance evaluation of printable interdigital capacitive sensors by principal component analysis

    KAUST Repository

    Zia, Asif Iqbal

    2015-06-01

    The surface roughness of thin-film gold electrodes induces instability in impedance spectroscopy measurements of capacitive interdigital printable sensors. Post-fabrication thermodynamic annealing was carried out at temperatures ranging from 30 °C to 210 °C in a vacuum oven and the variation in surface morphology of thin-film gold electrodes was observed by scanning electron microscopy. Impedance spectra obtained at different temperatures were translated into equivalent circuit models by applying complex nonlinear least square curve-fitting algorithm. Principal component analysis was applied to deduce the classification of the parameters affected due to the annealing process and to evaluate the performance stability using mathematical model. Physics of the thermodynamic annealing was discussed based on the surface activation energies. The post anneal testing of the sensors validated the achieved stability in impedance measurement. © 2001-2012 IEEE.

  20. Post annealing performance evaluation of printable interdigital capacitive sensors by principal component analysis

    KAUST Repository

    Zia, Asif Iqbal; Mukhopadhyay, Subhas Chandra; Yu, Paklam; Al-Bahadly, Ibrahim H.; Gooneratne, Chinthaka Pasan; Kosel, Jü rgen

    2015-01-01

    The surface roughness of thin-film gold electrodes induces instability in impedance spectroscopy measurements of capacitive interdigital printable sensors. Post-fabrication thermodynamic annealing was carried out at temperatures ranging from 30 °C to 210 °C in a vacuum oven and the variation in surface morphology of thin-film gold electrodes was observed by scanning electron microscopy. Impedance spectra obtained at different temperatures were translated into equivalent circuit models by applying complex nonlinear least square curve-fitting algorithm. Principal component analysis was applied to deduce the classification of the parameters affected due to the annealing process and to evaluate the performance stability using mathematical model. Physics of the thermodynamic annealing was discussed based on the surface activation energies. The post anneal testing of the sensors validated the achieved stability in impedance measurement. © 2001-2012 IEEE.

  1. Proceedings – Mathematical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 120; Issue 3. The Atiyah Bundle and Connections on a Principal Bundle. Indranil Biswas. Volume 120 Issue 3 ... Author Affiliations. Indranil Biswas1. School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India ...

  2. Applying Piaget's Theory of Cognitive Development to Mathematics Instruction

    Science.gov (United States)

    Ojose, Bobby

    2008-01-01

    This paper is based on a presentation given at National Council of Teachers of Mathematics (NCTM) in 2005 in Anaheim, California. It explicates the developmental stages of the child as posited by Piaget. The author then ties each of the stages to developmentally appropriate mathematics instruction. The implications in terms of not imposing…

  3. Applying Lakatos' Theory to the Theory of Mathematical Problem Solving.

    Science.gov (United States)

    Nunokawa, Kazuhiko

    1996-01-01

    The relation between Lakatos' theory and issues in mathematics education, especially mathematical problem solving, is investigated by examining Lakatos' methodology of a scientific research program. (AIM)

  4. School Principals' Sources of Knowledge

    Science.gov (United States)

    Perkins, Arland Early

    2014-01-01

    The purpose of this study was to determine what sources of professional knowledge are available to principals in 1 rural East Tennessee school district. Qualitative research methods were applied to gain an understanding of what sources of knowledge are used by school principals in 1 rural East Tennessee school district and the barriers they face…

  5. Mathematical modelling of scour: A review

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu

    2007-01-01

    A review is presented of mathematical modelling of scour around hydraulic and marine structures. Principal ideas, general features and procedures are given. The paper is organized in three sections: the first two sections deal with the mathematical modelling of scour around piers....../piles and pipelines, respectively, the two benchmark cases, while the third section deals with the mathematical modelling of scour around other structures such as groins, breakwaters and sea walls. A section is also added to discuss potential future research areas. Over one hundred references are included...

  6. Applied Mathematical Methods in Theoretical Physics

    Science.gov (United States)

    Masujima, Michio

    2005-04-01

    All there is to know about functional analysis, integral equations and calculus of variations in a single volume. This advanced textbook is divided into two parts: The first on integral equations and the second on the calculus of variations. It begins with a short introduction to functional analysis, including a short review of complex analysis, before continuing a systematic discussion of different types of equations, such as Volterra integral equations, singular integral equations of Cauchy type, integral equations of the Fredholm type, with a special emphasis on Wiener-Hopf integral equations and Wiener-Hopf sum equations. After a few remarks on the historical development, the second part starts with an introduction to the calculus of variations and the relationship between integral equations and applications of the calculus of variations. It further covers applications of the calculus of variations developed in the second half of the 20th century in the fields of quantum mechanics, quantum statistical mechanics and quantum field theory. Throughout the book, the author presents over 150 problems and exercises -- many from such branches of physics as quantum mechanics, quantum statistical mechanics, and quantum field theory -- together with outlines of the solutions in each case. Detailed solutions are given, supplementing the materials discussed in the main text, allowing problems to be solved making direct use of the method illustrated. The original references are given for difficult problems. The result is complete coverage of the mathematical tools and techniques used by physicists and applied mathematicians Intended for senior undergraduates and first-year graduates in science and engineering, this is equally useful as a reference and self-study guide.

  7. Mathematics related anxiety: Mathematics bogeyman or not?

    Directory of Open Access Journals (Sweden)

    Videnović Marina

    2011-01-01

    Full Text Available Data of the PISA 2003 survey indicate high levels of mathematics anxiety of students in Serbia. More than half of our students worry whether they will have difficulties in mathematics class or whether they will earn poor marks. Aims of this study therefore are: examining relationship between math anxiety and achievement at mathematics literacy scale; establishing possible predictors of math anxiety and identification of students' groups in relations to their relationship towards mathematics as a subject. Mathematics anxiety is statistically negatively correlated with school achievement and achievement at mathematics literacy scale. Socio-demographic factors, motivational and cognitive aspects related to learning mathematics, perception of school and classroom climate explain 40% variance of mathematics anxiety. Based on students' relationship towards mathematics they cam be divided into three groups; while dimensions that apart them are uninterested-interested in mathematics and presence-absence of anxiety. The group displaying anxiety scores lowest among the three. Applying qualitative analysis students' and teachers' attitudes on specific issues related to teaching and learning mathematics was examined.

  8. Dilemma in Teaching Mathematics

    Science.gov (United States)

    Md Kamaruddin, Nafisah Kamariah; Md Amin, Zulkarnain

    2012-01-01

    The challenge in mathematics education is finding the best way to teach mathematics. When students learn the reasoning and proving in mathematics, they will be proficient in mathematics. Students must know mathematics before they can apply it. Symbolism and logic is the key to both the learning of mathematics and its effective application to…

  9. Judging complex movement performances for excellence: a principal components analysis-based technique applied to competitive diving.

    Science.gov (United States)

    Young, Cole; Reinkensmeyer, David J

    2014-08-01

    Athletes rely on subjective assessment of complex movements from coaches and judges to improve their motor skills. In some sports, such as diving, snowboard half pipe, gymnastics, and figure skating, subjective scoring forms the basis for competition. It is currently unclear whether this scoring process can be mathematically modeled; doing so could provide insight into what motor skill is. Principal components analysis has been proposed as a motion analysis method for identifying fundamental units of coordination. We used PCA to analyze movement quality of dives taken from USA Diving's 2009 World Team Selection Camp, first identifying eigenpostures associated with dives, and then using the eigenpostures and their temporal weighting coefficients, as well as elements commonly assumed to affect scoring - gross body path, splash area, and board tip motion - to identify eigendives. Within this eigendive space we predicted actual judges' scores using linear regression. This technique rated dives with accuracy comparable to the human judges. The temporal weighting of the eigenpostures, body center path, splash area, and board tip motion affected the score, but not the eigenpostures themselves. These results illustrate that (1) subjective scoring in a competitive diving event can be mathematically modeled; (2) the elements commonly assumed to affect dive scoring actually do affect scoring (3) skill in elite diving is more associated with the gross body path and the effect of the movement on the board and water than the units of coordination that PCA extracts, which might reflect the high level of technique these divers had achieved. We also illustrate how eigendives can be used to produce dive animations that an observer can distort continuously from poor to excellent, which is a novel approach to performance visualization. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Improving the reliability of nuclear reprocessing by application of computers and mathematical modelling

    International Nuclear Information System (INIS)

    Gabowitsch, E.; Trauboth, H.

    1982-01-01

    After a brief survey of the present and expected future state of nuclear energy utilization, which should demonstrate the significance of nuclear reprocessing, safety and reliability aspects of nuclear reprocessing plants (NRP) are considered. Then, the principal possibilities of modern computer technology including computer systems architecture and application-oriented software for improving the reliability and availability are outlined. In this context, two information systems being developed at the Nuclear Research Center Karlsruhe (KfK) are briefly described. For design evaluation of certain areas of a large NRP mathematical methods and computer-aided tools developed, used or being designed by KfK are discussed. In conclusion, future research to be pursued in information processing and applied mathematics in support of reliable operation of NRP's is proposed. (Auth.)

  11. Introduction to mathematical logic

    CERN Document Server

    Mendelson, Elliott

    2015-01-01

    The new edition of this classic textbook, Introduction to Mathematical Logic, Sixth Edition explores the principal topics of mathematical logic. It covers propositional logic, first-order logic, first-order number theory, axiomatic set theory, and the theory of computability. The text also discusses the major results of Gödel, Church, Kleene, Rosser, and Turing.The sixth edition incorporates recent work on Gödel's second incompleteness theorem as well as restoring an appendix on consistency proofs for first-order arithmetic. This appendix last appeared in the first edition. It is offered in th

  12. A Multifaceted Mathematical Approach for Complex Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, F.; Anitescu, M.; Bell, J.; Brown, D.; Ferris, M.; Luskin, M.; Mehrotra, S.; Moser, B.; Pinar, A.; Tartakovsky, A.; Willcox, K.; Wright, S.; Zavala, V.

    2012-03-07

    Applied mathematics has an important role to play in developing the tools needed for the analysis, simulation, and optimization of complex problems. These efforts require the development of the mathematical foundations for scientific discovery, engineering design, and risk analysis based on a sound integrated approach for the understanding of complex systems. However, maximizing the impact of applied mathematics on these challenges requires a novel perspective on approaching the mathematical enterprise. Previous reports that have surveyed the DOE's research needs in applied mathematics have played a key role in defining research directions with the community. Although these reports have had significant impact, accurately assessing current research needs requires an evaluation of today's challenges against the backdrop of recent advances in applied mathematics and computing. To address these needs, the DOE Applied Mathematics Program sponsored a Workshop for Mathematics for the Analysis, Simulation and Optimization of Complex Systems on September 13-14, 2011. The workshop had approximately 50 participants from both the national labs and academia. The goal of the workshop was to identify new research areas in applied mathematics that will complement and enhance the existing DOE ASCR Applied Mathematics Program efforts that are needed to address problems associated with complex systems. This report describes recommendations from the workshop and subsequent analysis of the workshop findings by the organizing committee.

  13. The Succession of a School Principal.

    Science.gov (United States)

    Fauske, Janice R.; Ogawa, Rodney T.

    Applying theory from organizational and cultural perspectives to succession of principals, this study observes and records the language and culture of a small suburban elementary school. The study's procedures included analyses of shared organizational understandings as well as identification of the principal's influence on the school. Analyses of…

  14. Mathematical Formulation of Relationship between Applied Marketing Effort and Potential Ability of Determining Market Share

    Directory of Open Access Journals (Sweden)

    Mokhtar M. Metwally

    2008-01-01

    Full Text Available The aim of this paper is to formulate the mathematical relationship between firms potential ability and their applied efforts to attract the body of unattached customers. A method is devised in this paper by which management techniques imposed by a particular firm can evaluate its market share. This paper demonstrates the relationship between the applied marketing effort of management and the potential ability of the firm in determining its market share. This paper also investigates the effect of a number of simultaneous marketing impulses on the movement of the body of unattached customers and hence on the size of the market share.

  15. Towards a simple mathematical theory of citation distributions.

    Science.gov (United States)

    Katchanov, Yurij L

    2015-01-01

    The paper is written with the assumption that the purpose of a mathematical theory of citation is to explain bibliometric regularities at the level of mathematical formalism. A mathematical formalism is proposed for the appearance of power law distributions in social citation systems. The principal contributions of this paper are an axiomatic characterization of citation distributions in terms of the Ekeland variational principle and a mathematical exploration of the power law nature of citation distributions. Apart from its inherent value in providing a better understanding of the mathematical underpinnings of bibliometric models, such an approach can be used to derive a citation distribution from first principles.

  16. A mathematical approach to research problems of science and technology theoretical basis and developments in mathematical modeling

    CERN Document Server

    Ei, Shin-ichiro; Koiso, Miyuki; Ochiai, Hiroyuki; Okada, Kanzo; Saito, Shingo; Shirai, Tomoyuki

    2014-01-01

    This book deals with one of the most novel advances in mathematical modeling for applied scientific technology, including computer graphics, public-key encryption, data visualization, statistical data analysis, symbolic calculation, encryption, error correcting codes, and risk management. It also shows that mathematics can be used to solve problems from nature, e.g., slime mold algorithms. One of the unique features of this book is that it shows readers how to use pure and applied mathematics, especially those mathematical theory/techniques developed in the twentieth century, and developing now, to solve applied problems in several fields of industry. Each chapter includes clues on how to use "mathematics" to solve concrete problems faced in industry as well as practical applications. The target audience is not limited to researchers working in applied mathematics and includes those in engineering, material sciences, economics, and life sciences.

  17. Comprehensive applied mathematical modeling in the natural and engineering sciences theoretical predictions compared with data

    CERN Document Server

    Wollkind, David J

    2017-01-01

    This text demonstrates the process of comprehensive applied mathematical modeling through the introduction of various case studies.  The case studies are arranged in increasing order of complexity based on the mathematical methods required to analyze the models. The development of these methods is also included, providing a self-contained presentation. To reinforce and supplement the material introduced, original problem sets are offered involving case studies closely related to the ones presented.  With this style, the text’s perspective, scope, and completeness of the subject matter are considered unique. Having grown out of four self-contained courses taught by the authors, this text will be of use in a two-semester sequence for advanced undergraduate and beginning graduate students, requiring rudimentary knowledge of advanced calculus and differential equations, along with a basic understanding of some simple physical and biological scientific principles. .

  18. Popular lectures on mathematical logic

    CERN Document Server

    Wang, Hao

    2014-01-01

    A noted logician and philosopher addresses various forms of mathematical logic, discussing both theoretical underpinnings and practical applications. Author Hao Wang surveys the central concepts and theories of the discipline in a historical and developmental context, and then focuses on the four principal domains of contemporary mathematical logic: set theory, model theory, recursion theory and constructivism, and proof theory.Topics include the place of problems in the development of theories of logic and logic's relation to computer science. Specific attention is given to Gödel's incomplete

  19. Applying Mathematical Concepts with Hands-On, Food-Based Science Curriculum

    Science.gov (United States)

    Roseno, Ashley T.; Carraway-Stage, Virginia G.; Hoerdeman, Callan; Díaz, Sebastián R.; Geist, Eugene; Duffrin, Melani W.

    2015-01-01

    This article addresses the current state of the mathematics education system in the United States and provides a possible solution to the contributing issues. As a result of lower performance in primary mathematics, American students are not acquiring the necessary quantitative literacy skills to become successful adults. This study analyzed the…

  20. Functional analysis in modern applied mathematics

    CERN Document Server

    Curtain, Ruth F

    1977-01-01

    In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat

  1. Financial mathematics

    CERN Document Server

    Jothi, A Lenin

    2009-01-01

    Financial services, particularly banking and insurance services is the prominent sector for the development of a nation. After the liberalisation of financial sector in India, the scope of getting career opportunities has been widened. It is heartening to note that various universities in India have introduced professional courses on banking and insurance. A new field of applied mathematics has come into prominence under the name of Financial Mathematics. Financial mathematics has attained much importance in the recent years because of the role played by mathematical concepts in decision - m

  2. Mathematics and Computer Science | Argonne National Laboratory

    Science.gov (United States)

    Extreme Computing Data-Intensive Science Applied Mathematics Science & Engineering Applications Software Extreme Computing Data-Intensive Science Applied Mathematics Science & Engineering Opportunities For Employees Staff Directory Argonne National Laboratory Mathematics and Computer Science Tools

  3. Introducing philosophy of mathematics

    CERN Document Server

    Friend, Michele

    2014-01-01

    What is mathematics about? Does the subject-matter of mathematics exist independently of the mind or are they mental constructions? How do we know mathematics? Is mathematical knowledge logical knowledge? And how is mathematics applied to the material world? In this introduction to the philosophy of mathematics, Michele Friend examines these and other ontological and epistemological problems raised by the content and practice of mathematics. Aimed at a readership with limited proficiency in mathematics but with some experience of formal logic it seeks to strike a balance between conceptual acc

  4. Progress in Industrial Mathematics at ECMI 96

    DEFF Research Database (Denmark)

    mathematicians get inspiration from industrial demands. The European Consortium for Mathematics in Industry aims to create contact between industry and academia, and to promote research in industrial mathematics. This book contains a broad spectrum of mathematics applied to industrial problems. Applied...... mathematics, case studies, and review papers in the following fields are included: Environmental modelling, railway systems, industrial processes, electronics, ships, oil industry, optimization, machine dynamics, fluids in industry. Applied mathematicians and other professionals working in academia...

  5. Current research activities: Applied and numerical mathematics, fluid mechanics, experiments in transition and turbulence and aerodynamics, and computer science

    Science.gov (United States)

    1992-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, fluid mechanics including fluid dynamics, acoustics, and combustion, aerodynamics, and computer science during the period 1 Apr. 1992 - 30 Sep. 1992 is summarized.

  6. Changes in Elementary Mathematics Teachers' Understanding of Cognitive Demand: When Adapting, Creating, and Using Mathematical Performance Tasks

    Science.gov (United States)

    Jamieson, Thad Spencer

    2015-01-01

    The use of mathematics performance tasks can provide a window into how a student is applying mathematics to various situations, how they are reasoning mathematically and how they are applying conceptual knowledge through problem solving and critical thinking. The purpose of this study was to investigate, according to the elementary mathematics…

  7. The Effectiveness of Business Leadership Practices among Principals on Student Achievement on Public School Campuses in Texas

    Science.gov (United States)

    Cooper, Kary M.

    2009-01-01

    The purpose of this descriptive study was to determine if business leadership practices by Texas public school principals have an impact on principals' campus student achievement in mathematics and reading, as measured by TAKS scores. The survey instrument was the Leadership Assessment Instrument (LAI), developed by Warren Bennis in 1989. The…

  8. Reorganizing Freshman Business Mathematics II: Authentic Assessment in Mathematics through Professional Memos

    Science.gov (United States)

    Green, Kris; Emerson, Allen

    2008-01-01

    The first part of this two-part paper [see EJ787497] described the development of a new freshman business mathematics (FBM) course at our college. In this paper, we discuss our assessment tool, the business memo, as a venue for students to apply mathematical skills, via mathematical modelling, to realistic business problems. These memos have…

  9. Journey through genius the great theorems of mathematics

    CERN Document Server

    Dunham, William

    1990-01-01

    In Journey through Genius, author William Dunham strikes an extraordinary balance between the historical and technical. He devotes each chapter to a principal result of mathematics, such as the solution of the cubic series and the divergence of the harmonic series. Not only does this book tell the stories of the people behind the math, but it also includes discussions and rigorous proofs of the relevant mathematical results.

  10. Handbook of mathematics

    CERN Document Server

    Kuipers, L

    1969-01-01

    International Series of Monographs in Pure and Applied Mathematics, Volume 99: Handbook of Mathematics provides the fundamental mathematical knowledge needed for scientific and technological research. The book starts with the history of mathematics and the number systems. The text then progresses to discussions of linear algebra and analytical geometry including polar theories of conic sections and quadratic surfaces. The book then explains differential and integral calculus, covering topics, such as algebra of limits, the concept of continuity, the theorem of continuous functions (with examp

  11. Complexity-Based Modeling of Scientific Capital: An Outline of Mathematical Theory

    Directory of Open Access Journals (Sweden)

    Yurij L. Katchanov

    2014-01-01

    measuring and assessing the accumulated recognition and the specific scientific power. The concept of scientific capital developed by Bourdieu is used in international social science research to explain a set of scholarly properties and practices. Mathematical modeling is applied as a lens through which the scientific capital is addressed. The principal contribution of this paper is an axiomatic characterization of scientific capital in terms of natural axioms. The application of the axiomatic method to scientific capital reveals novel insights into problem still not covered by mathematical modeling. Proposed model embraces the interrelations between separate sociological variables, providing a unified sociological view of science. Suggested microvariational principle is based upon postulate, which affirms that (under suitable conditions the observed state of the agent in scientific field maximizes scientific capital. Its value can be roughly imagined as a volume of social differences. According to the considered macrovariational principle, the actual state of scientific field makes so-called energy functional (which is associated with the distribution of scientific capital minimal.

  12. Summary of research in applied mathematics, numerical analysis and computer science at the Institute for Computer Applications in Science and Engineering

    Science.gov (United States)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science during the period October 1, 1983 through March 31, 1984 is summarized.

  13. Continuum mechanics the birthplace of mathematical models

    CERN Document Server

    Allen, Myron B

    2015-01-01

    Continuum mechanics is a standard course in many graduate programs in engineering and applied mathematics as it provides the foundations for the various differential equations and mathematical models that are encountered in fluid mechanics, solid mechanics, and heat transfer.  This book successfully makes the topic more accessible to advanced undergraduate mathematics majors by aligning the mathematical notation and language with related courses in multivariable calculus, linear algebra, and differential equations; making connections with other areas of applied mathematics where parial differe

  14. Modern problems in insurance mathematics

    CERN Document Server

    Martin-Löf, Anders

    2014-01-01

    This book is a compilation of 21 papers presented at the International Cramér Symposium on Insurance Mathematics (ICSIM) held at Stockholm University in June, 2013. The book comprises selected contributions from several large research communities in modern insurance mathematics and its applications. The main topics represented in the book are modern risk theory and its applications, stochastic modelling of insurance business, new mathematical problems in life and non-life insurance, and related topics in applied and financial mathematics. The book is an original and useful source of inspiration and essential reference for a broad spectrum of theoretical and applied researchers, research students and experts from the insurance business. In this way, Modern Problems in Insurance Mathematics will contribute to the development of research and academy–industry co-operation in the area of insurance mathematics and its applications.

  15. Mathematical modelling of tissue formation in chondrocyte filter cultures.

    Science.gov (United States)

    Catt, C J; Schuurman, W; Sengers, B G; van Weeren, P R; Dhert, W J A; Please, C P; Malda, J

    2011-12-17

    In the field of cartilage tissue engineering, filter cultures are a frequently used three-dimensional differentiation model. However, understanding of the governing processes of in vitro growth and development of tissue in these models is limited. Therefore, this study aimed to further characterise these processes by means of an approach combining both experimental and applied mathematical methods. A mathematical model was constructed, consisting of partial differential equations predicting the distribution of cells and glycosaminoglycans (GAGs), as well as the overall thickness of the tissue. Experimental data was collected to allow comparison with the predictions of the simulation and refinement of the initial models. Healthy mature equine chondrocytes were expanded and subsequently seeded on collagen-coated filters and cultured for up to 7 weeks. Resulting samples were characterised biochemically, as well as histologically. The simulations showed a good representation of the experimentally obtained cell and matrix distribution within the cultures. The mathematical results indicate that the experimental GAG and cell distribution is critically dependent on the rate at which the cell differentiation process takes place, which has important implications for interpreting experimental results. This study demonstrates that large regions of the tissue are inactive in terms of proliferation and growth of the layer. In particular, this would imply that higher seeding densities will not significantly affect the growth rate. A simple mathematical model was developed to predict the observed experimental data and enable interpretation of the principal underlying mechanisms controlling growth-related changes in tissue composition.

  16. Proceedings of the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering - M and C 2013

    International Nuclear Information System (INIS)

    2013-01-01

    The Mathematics and Computation Division of the American Nuclear (ANS) and the Idaho Section of the ANS hosted the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M and C 2013). This proceedings contains over 250 full papers with topics ranging from reactor physics; radiation transport; materials science; nuclear fuels; core performance and optimization; reactor systems and safety; fluid dynamics; medical applications; analytical and numerical methods; algorithms for advanced architectures; and validation verification, and uncertainty quantification

  17. Proceedings of the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering - M and C 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    The Mathematics and Computation Division of the American Nuclear (ANS) and the Idaho Section of the ANS hosted the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M and C 2013). This proceedings contains over 250 full papers with topics ranging from reactor physics; radiation transport; materials science; nuclear fuels; core performance and optimization; reactor systems and safety; fluid dynamics; medical applications; analytical and numerical methods; algorithms for advanced architectures; and validation verification, and uncertainty quantification.

  18. The Effects of Elementary School Principals' Leadership Styles and the Preferred Managerial Styles of Teachers on Student Achievement

    Science.gov (United States)

    Pichon, Christopher, Sr.

    2010-01-01

    The objective of this study is to identify principal leadership styles and teacher preferred principal leadership styles, as well as to examine the independent and combined effects of these variables on the TAKS Mathematics achievement scores of elementary students. School leadership affects every aspect of an institution. Studies reveal that the…

  19. Building Leadership Capacity to Support Principal Succession

    Science.gov (United States)

    Escalante, Karen Elizabeth

    2016-01-01

    This study applies transformational leadership theory practices, specifically inspiring a shared vision, modeling the way and enabling others to act to examine the purposeful ways in which principals work to build the next generation of teacher leaders in response to the dearth of K-12 principals. The purpose of this study was to discover how one…

  20. Mathematics as verbal behavior.

    Science.gov (United States)

    Marr, M Jackson

    2015-04-01

    "Behavior which is effective only through the mediation of other persons has so many distinguishing dynamic and topographical properties that a special treatment is justified and indeed demanded" (Skinner, 1957, p. 2). Skinner's demand for a special treatment of verbal behavior can be extended within that field to domains such as music, poetry, drama, and the topic of this paper: mathematics. For centuries, mathematics has been of special concern to philosophers who have continually argued to the present day about what some deem its "special nature." Two interrelated principal questions have been: (1) Are the subjects of mathematical interest pre-existing in some transcendental realm and thus are "discovered" as one might discover a new planet; and (2) Why is mathematics so effective in the practices of science and engineering even though originally such mathematics was "pure" with applications neither contemplated or even desired? I argue that considering the actual practice of mathematics in its history and in the context of acquired verbal behavior one can address at least some of its apparent mysteries. To this end, I discuss some of the structural and functional features of mathematics including verbal operants, rule-and contingency-modulated behavior, relational frames, the shaping of abstraction, and the development of intuition. How is it possible to understand Nature by properly talking about it? Essentially, it is because nature taught us how to talk. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Teaching Mathematics in Geography Degrees

    Science.gov (United States)

    Bennett, Robert

    1978-01-01

    Examines ways of developing college students' motivation for mathematical training; describes the type of mathematical knowledge required in the geography discipline; and explores an applied approach to mathematics teaching based on a systems concept. For journal availability, see SO 506 224. (Author/AV)

  2. Developing the STS sound pollution unit for enhancing students' applying knowledge among science technology engineering and mathematics

    Science.gov (United States)

    Jumpatong, Sutthaya; Yuenyong, Chokchai

    2018-01-01

    STEM education suggested that students should be enhanced to learn science with integration between Science, Technology, Engineering and Mathematics. To help Thai students make sense of relationship between Science, Technology, Engineering and Mathematics, this paper presents learning activities of STS Sound Pollution. The developing of STS Sound Pollution is a part of research that aimed to enhance students' perception of the relationship between Science Technology Engineering and Mathematics. This paper will discuss how to develop Sound Pollution through STS approach in framework of Yuenyong (2006) where learning activities were provided based on 5 stages. These included (1) identification of social issues, (2) identification of potential solutions, (3) need for knowledge, (4) decisionmaking, and (5) socialization stage. The learning activities could be highlighted as following. First stage, we use video clip of `Problem of people about Sound Pollution'. Second stage, students will need to identification of potential solutions by design Home/Factory without noisy. The need of scientific and other knowledge will be proposed for various alternative solutions. Third stage, students will gain their scientific knowledge through laboratory and demonstration of sound wave. Fourth stage, students have to make decision for the best solution of designing safety Home/Factory based on their scientific knowledge and others (e.g. mathematics, economics, art, value, and so on). Finally, students will present and share their Design Safety Home/Factory in society (e.g. social media or exhibition) in order to validate their ideas and redesigning. The paper, then, will discuss how those activities would allow students' applying knowledge of science technology engineering, mathematics and others (art, culture and value) for their possible solution of the STS issues.

  3. A Mathematical Approach to Establishing Constitutive Models for Geomaterials

    Directory of Open Access Journals (Sweden)

    Guang-hua Yang

    2013-01-01

    Full Text Available The mathematical foundation of the traditional elastoplastic constitutive theory for geomaterials is presented from the mathematical point of view, that is, the expression of stress-strain relationship in principal stress/strain space being transformed to the expression in six-dimensional space. A new framework is then established according to the mathematical theory of vectors and tensors, which is applicable to establishing elastoplastic models both in strain space and in stress space. Traditional constitutive theories can be considered as its special cases. The framework also enables modification of traditional constitutive models.

  4. Surface analysis the principal techniques

    CERN Document Server

    Vickerman, John C

    2009-01-01

    This completely updated and revised second edition of Surface Analysis: The Principal Techniques, deals with the characterisation and understanding of the outer layers of substrates, how they react, look and function which are all of interest to surface scientists. Within this comprehensive text, experts in each analysis area introduce the theory and practice of the principal techniques that have shown themselves to be effective in both basic research and in applied surface analysis. Examples of analysis are provided to facilitate the understanding of this topic and to show readers how they c

  5. Annual report of the Center for Applied Mathematics, 1985

    International Nuclear Information System (INIS)

    1986-01-01

    Research on the mathematical aspects of wave propagation; particulate methods in fluid physics and mechanics; nonlinear problems; stochastic equations; martingales, and interacting particle systems; and computer programming and algorithms is presented [fr

  6. Annual report of the Center for Applied Mathematics, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    Research on the mathematical aspects of wave propagation; particulate methods in fluid physics and mechanics; nonlinear problems; stochastic equations; martingales, and interacting particle systems; and computer programming and algorithms is presented [fr

  7. WOW! Mathematics Convention: A Community Connection

    Science.gov (United States)

    Cavazos, Rebecca R.

    2014-01-01

    This article details how certain mathematical "discoveries" that Cavazos' fourth graders made were recorded throughout the year. Cavazos invited a math professor, a biologist, a literacy professor, a chemist, a statistician, and an engineering student, as well as their school principal and computer lab technician, both of whom are…

  8. Sustainable Student Retention and Gender Issues in Mathematics for ICT Study

    Science.gov (United States)

    Divjak, Blazenka; Ostroski, Mirela; Hains, Violeta Vidacek

    2010-01-01

    This article reports on the research whose specific objective is to improve student retention in mathematics included in the first-year ICT study programme by means of improving teaching methods, with an emphasis on gender issues. Two principal reasons for this research are, first, the fact that first-year mathematics courses are often viewed as…

  9. An introduction to the mathematics of finance

    CERN Document Server

    Pollard, A H

    1968-01-01

    An Introduction to the Mathematics of Finance provides a simple, nonmathematical introduction to the mathematics of finance. Topics discussed in this book include simple interest; compound interest-annual compounding; annuities-certain; use of compound interest; and sinking funds. The equations of value; compounding more frequently than annually; and contracts at """"flat"""" rates of interest are also deliberated. This text likewise elaborates on the loans repayable by equal annual installments when interest is charged only on the amount of principal from time to time outstanding. Exercis

  10. Success-Factors in Transition to University Mathematics

    Science.gov (United States)

    Bengmark, S.; Thunberg, H.; Winberg, T. M.

    2017-01-01

    This study examines different factors' relative importance for students' performance in the transition to university mathematics. Students' characteristics (motivation, actions and beliefs) were measured when entering the university and at the end of the first year. Principal component analysis revealed four important constructs:…

  11. Summary of research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science

    Science.gov (United States)

    1989-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 1, 1988 through March 31, 1989 is summarized.

  12. Mathematical modelling

    CERN Document Server

    2016-01-01

    This book provides a thorough introduction to the challenge of applying mathematics in real-world scenarios. Modelling tasks rarely involve well-defined categories, and they often require multidisciplinary input from mathematics, physics, computer sciences, or engineering. In keeping with this spirit of modelling, the book includes a wealth of cross-references between the chapters and frequently points to the real-world context. The book combines classical approaches to modelling with novel areas such as soft computing methods, inverse problems, and model uncertainty. Attention is also paid to the interaction between models, data and the use of mathematical software. The reader will find a broad selection of theoretical tools for practicing industrial mathematics, including the analysis of continuum models, probabilistic and discrete phenomena, and asymptotic and sensitivity analysis.

  13. Mathematical modeling

    CERN Document Server

    Eck, Christof; Knabner, Peter

    2017-01-01

    Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.

  14. Mathematical problems for chemistry students

    CERN Document Server

    Pota, Gyorgy

    2011-01-01

    Mathematical Problems for Chemistry Students has been compiled and written (a) to help chemistrystudents in their mathematical studies by providing them with mathematical problems really occurring in chemistry (b) to help practising chemists to activate their applied mathematical skills and (c) to introduce students and specialistsof the chemistry-related fields (physicists, mathematicians, biologists, etc.) intothe world of the chemical applications.Some problems of the collection are mathematical reformulations of those in the standard textbooks of chemistry, others we

  15. Biogeneric tooth: a new mathematical representation for tooth morphology in lower first molars.

    Science.gov (United States)

    Mehl, Albert; Blanz, Volker; Hickel, Reinhard

    2005-08-01

    A mathematical representation of tooth morphology may help to improve and automate restorative computer-aided design processes, virtual dental education, and parametric morphology. However, to date, no quantitative formulation has been identified for the description of dental features. The aim of this study was to establish and to validate a mathematical process for describing the morphology of first lower molars. Stone replicas of 170 caries-free first lower molars from young patients were measured three-dimensionally with a resolution of about 100,000 points. First, the average tooth was computed, which captures the common features of the molar's surface quantitatively. For this, the crucial step was to establish a dense point-to-point correspondence between all teeth. The algorithm did not involve any prior knowledge about teeth. In a second step, principal component analysis was carried out. Repeated for 3 different reference teeth, the procedure yielded average teeth that were nearly independent of the reference (less than +/- 40 microm). Additionally, the results indicate that only a few principal components determine a high percentage of the three-dimensional shape variability of first lower molars (e.g. the first five principal components describe 52% of the total variance, the first 10 principal components 72% and the first 20 principal components 83%). With the novel approach presented in this paper, surfaces of teeth can be described efficiently in terms of only a few parameters. This mathematical representation is called the 'biogeneric tooth'.

  16. Factors Affecting Turkish Students' Achievement in Mathematics

    Science.gov (United States)

    Demir, Ibrahim; Kilic, Serpil; Depren, Ozer

    2009-01-01

    Following past researches, student background, learning strategies, self-related cognitions in mathematics and school climate variables were important for achievement. The purpose of this study was to identify a number of factors that represent the relationship among sets of interrelated variables using principal component factor analysis and…

  17. Mathematical Processes: A Viewpoint-oriented Manipulation Perspective

    DEFF Research Database (Denmark)

    Badie, Farshad

    2008-01-01

    View-point oriented manipulation of concepts can be helpful for generating new ideas in basic sciences and in the meantime, justifying the processes that are principally meaningful to the related disciplines. Mathematics, as a major ground for basic sciences, seems to be an appropriate exemplar t...

  18. Shifting Roles and Responsibilities to Support Mathematical Understanding

    Science.gov (United States)

    Hansen, Pia; Mathern, Donna

    2008-01-01

    This article describes the journey that one elementary school took in examining the roles and responsibilities of the principal, teachers, students, and school environment in supporting mathematical understanding as described by the NCTM Standards. (Contains 2 tables and a bibliography.)

  19. Applying Realistic Mathematics Education (RME) in teaching geometry in Indonesian primary schools

    NARCIS (Netherlands)

    Fauzan, Ahmad

    2002-01-01

    Similar to other countries (see for example Niss, 1996; NCTM, 2000), the mathematics curriculum for primary schools in Indonesia pays much attention to several important aspects such as developing pupils' reasoning, activity, creativity and attitude, and providing pupils with mathematics skills so

  20. Positive Mathematical Programming Approaches – Recent Developments in Literature and Applied Modelling

    Directory of Open Access Journals (Sweden)

    Thomas Heckelei

    2012-05-01

    Full Text Available This paper reviews and discusses the more recent literature and application of Positive Mathematical Programming in the context of agricultural supply models. Specifically, advances in the empirical foundation of parameter specifications as well as the economic rationalisation of PMP models – both criticized in earlier reviews – are investigated. Moreover, the paper provides an overview on a larger set of models with regular/repeated policy application that apply variants of PMP. Results show that most applications today avoid arbitrary parameter specifications and rely on exogenous information on supply responses to calibrate model parameters. However, only few approaches use multiple observations to estimate parameters, which is likely due to the still considerable technical challenges associated with it. Equally, we found only limited reflection on the behavioral or technological assumptions that could rationalise the PMP model structure while still keeping the model’s advantages.

  1. Experimental Mathematics and Computational Statistics

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, David H.; Borwein, Jonathan M.

    2009-04-30

    The field of statistics has long been noted for techniques to detect patterns and regularities in numerical data. In this article we explore connections between statistics and the emerging field of 'experimental mathematics'. These includes both applications of experimental mathematics in statistics, as well as statistical methods applied to computational mathematics.

  2. Think Pair Share Using Realistic Mathematics Education Approach in Geometry Learning

    Science.gov (United States)

    Afthina, H.; Mardiyana; Pramudya, I.

    2017-09-01

    This research aims to determine the impact of mathematics learning applying Think Pair Share (TPS) using Realistic Mathematics Education (RME) viewed from mathematical-logical intelligence in geometry learning. Method that used in this research is quasi experimental research The result of this research shows that (1) mathematics achievement applying TPS using RME approach gives a better result than those applying direct learning model; (2) students with high mathematical-logical intelligence can reach a better mathematics achievement than those with average and low one, whereas students with average mathematical-logical intelligence can reach a better achievement than those with low one; (3) there is no interaction between learning model and the level of students’ mathematical-logical intelligence in giving a mathematics achievement. The impact of this research is that TPS model using RME approach can be applied in mathematics learning so that students can learn more actively and understand the material more, and mathematics learning become more meaningful. On the other hand, internal factors of students must become a consideration toward the success of students’ mathematical achievement particularly in geometry material.

  3. Mathematical theory of compressible viscous fluids analysis and numerics

    CERN Document Server

    Feireisl, Eduard; Pokorný, Milan

    2016-01-01

    This book offers an essential introduction to the mathematical theory of compressible viscous fluids. The main goal is to present analytical methods from the perspective of their numerical applications. Accordingly, we introduce the principal theoretical tools needed to handle well-posedness of the underlying Navier-Stokes system, study the problems of sequential stability, and, lastly, construct solutions by means of an implicit numerical scheme. Offering a unique contribution – by exploring in detail the “synergy” of analytical and numerical methods – the book offers a valuable resource for graduate students in mathematics and researchers working in mathematical fluid mechanics. Mathematical fluid mechanics concerns problems that are closely connected to real-world applications and is also an important part of the theory of partial differential equations and numerical analysis in general. This book highlights the fact that numerical and mathematical analysis are not two separate fields of mathematic...

  4. Self-Perceptions of Pre-Service Mathematics Teachers Completing a Graduate Diploma of Secondary Education

    Science.gov (United States)

    Hine, Gregory S. C.

    2015-01-01

    This qualitative research project explored the self-perceptions of pre-service secondary mathematics teachers completing a Graduate Diploma of Secondary Education. Specifically, the researcher investigated the extent to which teachers perceived their readiness to commence a secondary mathematics teaching position. The project relied principally on…

  5. Mathematical modeling and computational intelligence in engineering applications

    CERN Document Server

    Silva Neto, Antônio José da; Silva, Geraldo Nunes

    2016-01-01

    This book brings together a rich selection of studies in mathematical modeling and computational intelligence, with application in several fields of engineering, like automation, biomedical, chemical, civil, electrical, electronic, geophysical and mechanical engineering, on a multidisciplinary approach. Authors from five countries and 16 different research centers contribute with their expertise in both the fundamentals and real problems applications based upon their strong background on modeling and computational intelligence. The reader will find a wide variety of applications, mathematical and computational tools and original results, all presented with rigorous mathematical procedures. This work is intended for use in graduate courses of engineering, applied mathematics and applied computation where tools as mathematical and computational modeling, numerical methods and computational intelligence are applied to the solution of real problems.

  6. Mathematical modelling techniques

    CERN Document Server

    Aris, Rutherford

    1995-01-01

    ""Engaging, elegantly written."" - Applied Mathematical ModellingMathematical modelling is a highly useful methodology designed to enable mathematicians, physicists and other scientists to formulate equations from a given nonmathematical situation. In this elegantly written volume, a distinguished theoretical chemist and engineer sets down helpful rules not only for setting up models but also for solving the mathematical problems they pose and for evaluating models.The author begins with a discussion of the term ""model,"" followed by clearly presented examples of the different types of mode

  7. Elementary Mathematics Specialists: Influencing Student Achievement

    Science.gov (United States)

    Campbell, Patricia F.; Malkus, Nathaniel N.

    2013-01-01

    "To whom do you turn in this school for advice or information about mathematics instruction?" (Spillane, Healey, and Parise 2009, p. 413). When teachers in forty-four schools were asked this question, they were more likely to indicate a teacher leader in their school, rather than the school's principal or any other administrator.…

  8. Computational physics and applied mathematics capability review June 8-10, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Stephen R [Los Alamos National Laboratory

    2010-01-01

    Los Alamos National Laboratory will review its Computational Physics and Applied Mathematics (CPAM) capabilities in 2010. The goals of capability reviews are to assess the quality of science, technology, and engineering (STE) performed by the capability, evaluate the integration of this capability across the Laboratory and within the scientific community, examine the relevance of this capability to the Laboratory's programs, and provide advice on the current and future directions of this capability. This is the first such review for CPAM, which has a long and unique history at the Laboratory, starting from the inception of the Laboratory in 1943. The CPAM capability covers an extremely broad technical area at Los Alamos, encompassing a wide array of disciplines, research topics, and organizations. A vast array of technical disciplines and activities are included in this capability, from general numerical modeling, to coupled multi-physics simulations, to detailed domain science activities in mathematics, methods, and algorithms. The CPAM capability involves over 12 different technical divisions and a majority of our programmatic and scientific activities. To make this large scope tractable, the CPAM capability is broken into the following six technical 'themes.' These themes represent technical slices through the CPAM capability and collect critical core competencies of the Laboratory, each of which contributes to the capability (and each of which is divided into multiple additional elements in the detailed descriptions of the themes in subsequent sections), as follows. Theme 1: Computational Fluid Dynamics - This theme speaks to the vast array of scientific capabilities for the simulation of fluids under shocks, low-speed flow, and turbulent conditions - which are key, historical, and fundamental strengths of the Laboratory. Theme 2: Partial Differential Equations - The technical scope of this theme is the applied mathematics and numerical solution

  9. Introduction to mathematical systems theory a behavioral approach

    CERN Document Server

    Polderman, Jan Willem

    1998-01-01

    Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modem as well as the classical techniques of applied mathematics. This renewal of interest,both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics (TAM). The developmentof new courses is a natural consequenceof a high level of excite­ ment on the research frontier as newer techniques, such as numerical and symbolic computersystems,dynamicalsystems,and chaos, mix with and reinforce the tradi­ tional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbookssuitable for use in advancedundergraduate and begin­ ning graduate courses, and will complement the Applied Mathematical Seiences (AMS) series, which will focus on advanced tex...

  10. Examining mathematics attitude in a TIMSS 2003 pilot research

    Directory of Open Access Journals (Sweden)

    Kadijević Đorđe M.

    2003-01-01

    Full Text Available Apart from the data on test reliability, the psychometric features of the TIMSS variables are not officially available. It is therefore not clear whether the TIMSS findings capture real educational trends. Being concerned with mathematics attitude, the aim of this research was to determine the psychometric values of a mathematics attitude scale derived from a student questionnaire, and, if these are appropriate, to examine the relation of mathematics attitude to gender and mathematics achievement, and search for gender differences in the applied mathematics attitude indicators. By using a sample of 89 seventh-grade students involved in a TIMSS 2003 pilot research, it revealed the following findings: (a the representativity reliability, homogeneity and validity of the applied attitude scale were acceptable, (b attitude to mathematics was related to mathematics achievement, (c gender differences in mathematics attitude were not found and (d gender differences in the applied indicators were only present for the statement "I need to do well in mathematics to get into the faculty of my choice" where males expressed a higher agreement than females.

  11. Mathematical Modeling in the High School Curriculum

    Science.gov (United States)

    Hernández, Maria L.; Levy, Rachel; Felton-Koestler, Mathew D.; Zbiek, Rose Mary

    2016-01-01

    In 2015, mathematics leaders and instructors from the Society for Industrial and Applied Mathematics (SIAM) and the Consortium for Mathematics and Its Applications (COMAP), with input from NCTM, came together to write the "Guidelines for Assessment and Instruction in Mathematical Modeling Education" (GAIMME) report as a resource for…

  12. EXAFS and principal component analysis : a new shell game

    International Nuclear Information System (INIS)

    Wasserman, S.

    1998-01-01

    The use of principal component (factor) analysis in the analysis EXAFS spectra is described. The components derived from EXAFS spectra share mathematical properties with the original spectra. As a result, the abstract components can be analyzed using standard EXAFS methodology to yield the bond distances and other coordination parameters. The number of components that must be analyzed is usually less than the number of original spectra. The method is demonstrated using a series of spectra from aqueous solutions of uranyl ions

  13. Mathematical Model and Artificial Intelligent Techniques Applied to a Milk Industry through DSM

    Science.gov (United States)

    Babu, P. Ravi; Divya, V. P. Sree

    2011-08-01

    The resources for electrical energy are depleting and hence the gap between the supply and the demand is continuously increasing. Under such circumstances, the option left is optimal utilization of available energy resources. The main objective of this chapter is to discuss about the Peak load management and overcome the problems associated with it in processing industries such as Milk industry with the help of DSM techniques. The chapter presents a generalized mathematical model for minimizing the total operating cost of the industry subject to the constraints. The work presented in this chapter also deals with the results of application of Neural Network, Fuzzy Logic and Demand Side Management (DSM) techniques applied to a medium scale milk industrial consumer in India to achieve the improvement in load factor, reduction in Maximum Demand (MD) and also the consumer gets saving in the energy bill.

  14. The Gender of Secondary School Principals.

    Science.gov (United States)

    Bonuso, Carl; Shakeshaft, Charol

    1983-01-01

    A study was conducted to understand why so few of the secondary school principals in New York State are women. Results suggest two possible causes: either sufficient women candidates do not apply for the positions, or sex discrimination still exists. (KH)

  15. An Introductory Application of Principal Components to Cricket Data

    Science.gov (United States)

    Manage, Ananda B. W.; Scariano, Stephen M.

    2013-01-01

    Principal Component Analysis is widely used in applied multivariate data analysis, and this article shows how to motivate student interest in this topic using cricket sports data. Here, principal component analysis is successfully used to rank the cricket batsmen and bowlers who played in the 2012 Indian Premier League (IPL) competition. In…

  16. Teachers' Views of the Challenges of Teaching Grade 9 Applied Mathematics in Toronto Schools

    Science.gov (United States)

    Stoilescu, Dorian; McDougall, Douglas; Egodawatte, Gunawardena

    2016-01-01

    Mathematics teachers, mathematics department heads, curriculum leaders, and administrators from 11 schools in four school boards from Toronto, Ontario, Canada, participated in a project to improve the teaching and learning in grade 9 mathematics classrooms. In each of these schools, an implementation team was created, so that at least three…

  17. Development of pregnant female, hybrid voxel-mathematical models and their application to the dosimetry of applied magnetic and electric fields at 50 Hz

    International Nuclear Information System (INIS)

    Dimbylow, Peter

    2006-01-01

    This paper describes the development of 2 mm resolution hybrid voxel-mathematical models of the pregnant female. Mathematical models of the developing foetus at 8-, 13-, 26- and 38-weeks of gestation were converted into voxels and combined with the adult female model, NAOMI. This set of models was used to calculate induced current densities and electric fields in the foetus from applied 50 Hz magnetic and electric fields. The influence of foetal tissue conductivities was investigated and implications for electromagnetic field guidelines discussed

  18. Construction mathematics

    CERN Document Server

    Virdi, Surinder; Virdi, Narinder Kaur

    2014-01-01

    Construction Mathematics is an introductory level mathematics text, written specifically for students of construction and related disciplines. Learn by tackling exercises based on real-life construction maths. Examples include: costing calculations, labour costs, cost of materials and setting out of building components. Suitable for beginners and easy to follow throughout. Learn the essential basic theory along with the practical necessities. The second edition of this popular textbook is fully updated to match new curricula, and expanded to include even more learning exercises. End of chapter exercises cover a range of theoretical as well as practical problems commonly found in construction practice, and three detailed assignments based on practical tasks give students the opportunity to apply all the knowledge they have gained. Construction Mathematics addresses all the mathematical requirements of Level 2 construction NVQs from City & Guilds/CITB and Edexcel courses, including the BTEC First Diploma in...

  19. APPLYING PRINCIPAL COMPONENT ANALYSIS, MULTILAYER PERCEPTRON AND SELF-ORGANIZING MAPS FOR OPTICAL CHARACTER RECOGNITION

    Directory of Open Access Journals (Sweden)

    Khuat Thanh Tung

    2016-11-01

    Full Text Available Optical Character Recognition plays an important role in data storage and data mining when the number of documents stored as images is increasing. It is expected to find the ways to convert images of typewritten or printed text into machine-encoded text effectively in order to support for the process of information handling effectively. In this paper, therefore, the techniques which are being used to convert image into editable text in the computer such as principal component analysis, multilayer perceptron network, self-organizing maps, and improved multilayer neural network using principal component analysis are experimented. The obtained results indicated the effectiveness and feasibility of the proposed methods.

  20. Advanced engineering mathematics

    CERN Document Server

    Jeffrey, Alan

    2001-01-01

    Advanced Engineering Mathematics provides comprehensive and contemporary coverage of key mathematical ideas, techniques, and their widespread applications, for students majoring in engineering, computer science, mathematics and physics. Using a wide range of examples throughout the book, Jeffrey illustrates how to construct simple mathematical models, how to apply mathematical reasoning to select a particular solution from a range of possible alternatives, and how to determine which solution has physical significance. Jeffrey includes material that is not found in works of a similar nature, such as the use of the matrix exponential when solving systems of ordinary differential equations. The text provides many detailed, worked examples following the introduction of each new idea, and large problem sets provide both routine practice, and, in many cases, greater challenge and insight for students. Most chapters end with a set of computer projects that require the use of any CAS (such as Maple or Mathematica) th...

  1. A Principal-Agent Analysis of the Family: Implications for the Welfare State

    OpenAIRE

    Munro, Lauchlan

    1999-01-01

    The principal-agent literature has focussed on situations where both principal and agent are assumed to be capable of defining and defending their own interests. The principal-agent literature has thus ignored an important set of cases where the principal is incapable of acting on her own behalf, and so is assigned an agent by law or custom. Such cases account for around 40% of humanity and for a similarly substantial proportion of all principal-agent interactions. This paper applies principa...

  2. Lipman Bers, a life in mathematics

    CERN Document Server

    Keen, Linda; Rodríguez, Rubí E

    2015-01-01

    The book is part biography and part collection of mathematical essays that gives the reader a perspective on the evolution of an interesting mathematical life. It is all about Lipman Bers, a giant in the mathematical world who lived in turbulent and exciting times. It captures the essence of his mathematics, a development and transition from applied mathematics to complex analysis-quasiconformal mappings and moduli of Riemann surfaces-and the essence of his personality, a progression from a young revolutionary refugee to an elder statesman in the world of mathematics and a fighter for global h

  3. Reprint of "Mathematics as verbal behavior".

    Science.gov (United States)

    Marr, M Jackson

    2015-05-01

    "Behavior which is effective only through the mediation of other persons has so many distinguishing dynamic and topographical properties that a special treatment is justified and indeed demanded" (Skinner, 1957, p. 2). Skinner's demand for a special treatment of verbal behavior can be extended within that field to domains such as music, poetry, drama, and the topic of this paper: mathematics. For centuries, mathematics has been of special concern to philosophers who have continually argued to the present day about what some deem its "special nature." Two interrelated principal questions have been: (1) Are the subjects of mathematical interest pre-existing in some transcendental realm and thus are "discovered" as one might discover a new planet; and (2) Why is mathematics so effective in the practices of science and engineering even though originally such mathematics was "pure" with applications neither contemplated or even desired? I argue that considering the actual practice of mathematics in its history and in the context of acquired verbal behavior one can address at least some of its apparent mysteries. To this end, I discuss some of the structural and functional features of mathematics including verbal operants, rule-and contingency-modulated behavior, relational frames, the shaping of abstraction, and the development of intuition. How is it possible to understand Nature by properly talking about it? Essentially, it is because nature taught us how to talk. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Evaluation of functional scintigraphy of gastric emptying by the principal component method

    Energy Technology Data Exchange (ETDEWEB)

    Haeussler, M.; Eilles, C.; Reiners, C.; Moll, E.; Boerner, W.

    1980-10-01

    Gastric emptying of a standard semifluid test-meal, labeled with /sup 99/sup(m)Tc-DTPA, was studied by functional scintigraphy in 88 subjects (normals, patients with duodenal and gastric ulcer before and after selective proximal vagotomy with and without pyloroplasty). Gastric emptying curves were analysed by the method of principal components. Patients after selective proximal vagotomy with pyloroplasty showed an rapid initial emptying, whereas this was a rare finding in patients after selective proximal vagotomy without pyloroplasty. The method of principal components is well suited for mathematical analysis of gastric emptying; nevertheless the results are difficult to interpret. The method has advantages when looking at larger collectives and allows a separation into groups with different gastric emptying.

  5. Learning higher mathematics

    CERN Document Server

    Pontrjagin, Lev Semenovič

    1984-01-01

    Lev Semenovic Pontrjagin (1908) is one of the outstanding figures in 20th century mathematics. In a long career he has made fundamental con­ tributions to many branches of mathematics, both pure and applied. He has received every honor that a grateful government can bestow. Though in no way constrained to do so, he has through the years taught mathematics courses at Moscow State University. In the year 1975 he set himself the task of writing a series of books on secondary school and beginning university mathematics. In his own words, "I wished to set forth the foundations of higher mathematics in a form that would have been accessible to myself as a lad, but making use of all my experience as a scientist and a teacher, ac­ cumulated over many years. " The present volume is a translation of the first two out of four moderately sized volumes on this theme planned by Pro­ fessor Pontrjagin. The book begins at the beginning of modern mathematics, analytic ge­ ometry in the plane and 3-dimensional space. Refin...

  6. Open problems in mathematics

    CERN Document Server

    Nash, Jr, John Forbes

    2016-01-01

    The goal in putting together this unique compilation was to present the current status of the solutions to some of the most essential open problems in pure and applied mathematics. Emphasis is also given to problems in interdisciplinary research for which mathematics plays a key role. This volume comprises highly selected contributions by some of the most eminent mathematicians in the international mathematical community on longstanding problems in very active domains of mathematical research. A joint preface by the two volume editors is followed by a personal farewell to John F. Nash, Jr. written by Michael Th. Rassias. An introduction by Mikhail Gromov highlights some of Nash’s legendary mathematical achievements. The treatment in this book includes open problems in the following fields: algebraic geometry, number theory, analysis, discrete mathematics, PDEs, differential geometry, topology, K-theory, game theory, fluid mechanics, dynamical systems and ergodic theory, cryptography, theoretical computer sc...

  7. Mathematical model for solid fuel combustion in fluidized bed

    International Nuclear Information System (INIS)

    Kostikj, Zvonimir; Noshpal, Aleksandar

    1994-01-01

    A mathematical model for computation of the combustion process of solid fuel in fluidized bed is presented in this work. Only the combustor part of the plant (the fluidized bed and the free board) is treated with this model. In that manner, all principal, physical presumption and improvements (upon which this model is based) are given. Finally, the results of the numerical realisation of the mathematical model for combustion of minced straw as well as the results of the experimental investigation of a concrete physical model are presented. (author)

  8. An excursion through elementary mathematics, volume iii discrete mathematics and polynomial algebra

    CERN Document Server

    Caminha Muniz Neto, Antonio

    2018-01-01

    This book provides a comprehensive, in-depth overview of elementary mathematics as explored in Mathematical Olympiads around the world. It expands on topics usually encountered in high school and could even be used as preparation for a first-semester undergraduate course. This third and last volume covers Counting, Generating Functions, Graph Theory, Number Theory, Complex Numbers, Polynomials, and much more. As part of a collection, the book differs from other publications in this field by not being a mere selection of questions or a set of tips and tricks that applies to specific problems. It starts from the most basic theoretical principles, without being either too general or too axiomatic. Examples and problems are discussed only if they are helpful as applications of the theory. Propositions are proved in detail and subsequently applied to Olympic problems or to other problems at the Olympic level. The book also explores some of the hardest problems presented at National and International Mathematics Ol...

  9. Adaptation of abbreviated mathematics anxiety rating scale for engineering students

    Science.gov (United States)

    Nordin, Sayed Kushairi Sayed; Samat, Khairul Fadzli; Sultan, Al Amin Mohamed; Halim, Bushra Abdul; Ismail, Siti Fatimah; Mafazi, Nurul Wirdah

    2015-05-01

    Mathematics is an essential and fundamental tool used by engineers to analyse and solve problems in their field. Due to this, most engineering education programs involve a concentration of study in mathematics courses whereby engineering students have to take mathematics courses such as numerical methods, differential equations and calculus in the first two years and continue to do so until the completion of the sequence. However, the students struggled and had difficulties in learning courses that require mathematical abilities. Hence, this study presents the factors that caused mathematics anxiety among engineering students using Abbreviated Mathematics Anxiety Rating Scale (AMARS) through 95 students of Universiti Teknikal Malaysia Melaka (UTeM). From 25 items in AMARS, principal component analysis (PCA) suggested that there are four mathematics anxiety factors, namely experiences of learning mathematics, cognitive skills, mathematics evaluation anxiety and students' perception on mathematics. Minitab 16 software was used to analyse the nonparametric statistics. Kruskal-Wallis Test indicated that there is a significant difference in the experience of learning mathematics and mathematics evaluation anxiety among races. The Chi-Square Test of Independence revealed that the experience of learning mathematics, cognitive skills and mathematics evaluation anxiety depend on the results of their SPM additional mathematics. Based on this study, it is recommended to address the anxiety problems among engineering students at the early stage of studying in the university. Thus, lecturers should play their part by ensuring a positive classroom environment which encourages students to study mathematics without fear.

  10. Applying a Conceptual Mini Game for Supporting Simple Mathematical Calculation Skills: Students' Perceptions and Considerations

    Science.gov (United States)

    Panagiotakopoulos, Chris T.

    2011-01-01

    Mathematics is an area of study that particularly lacks student enthusiasm. Nevertheless, with the help of educational games, any phobias concerning mathematics can be considerably decreased and mathematics can become more appealing. In this study, an educational game addressing mathematics was designed, developed and evaluated by a sample of 33…

  11. The Enhancement of Mathematical Reasoning Ability of Junior High School Students by Applying Mind Mapping Strategy

    Science.gov (United States)

    Ayal, Carolina S.; Kusuma, Yaya S.; Sabandar, Jozua; Dahlan, Jarnawi Afgan

    2016-01-01

    Mathematical reasoning ability, are component that must be governable by the student. Mathematical reasoning plays an important role, both in solving problems and in conveying ideas when learning mathematics. In fact there ability are not still developed well, even in middle school. The importance of mathematical reasoning ability (KPM are…

  12. Proceedings – Mathematical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Department of Applied Mathematics, Andhra University, Visakhapatnam 530 003, India; Department of Mathematics, Gayatri Vidya Parishad College of Engineering for Women, Madhurawada, Visakhapatnam 530 048, India; Department of Mathematics, Sri Prakash College of Engineering, Tuni 533 401, India ...

  13. Mathematics for energy

    International Nuclear Information System (INIS)

    Snow, D.R.

    1975-01-01

    This paper provides mathematicians and other persons interested in energy problems with some ideas of the kinds of mathematics being applied and a few ideas for further investigation both in the relevant mathematics and in mathematical modeling. This paper is not meant to be an extensive bibliography on the subject, but references are provided. The Conference emphasized large scale and economic considerations related to energy rather than specific technologies, but additional mathematical problems arising in current and future technologies are suggested. Several of the papers dealt with linear programming models of large scale systems related to energy. These included economic models, policy models, energy sector models for supply and demand and environmental concerns. One of the economic models utilized variational techniques including such things as the Hamiltonian, the Euler-Lagrange differential equation, transversality and natural boundary conditions

  14. What is the problem in problem-based learning in higher education mathematics

    Science.gov (United States)

    Dahl, Bettina

    2018-01-01

    Problem and Project-Based Learning (PBL) emphasise collaborate work on problems relevant to society and emphases the relation between theory and practice. PBL fits engineering students as preparation for their future professions but what about mathematics? Mathematics is not just applied mathematics, but it is also a body of abstract knowledge where the application in society is not always obvious. Does mathematics, including pure mathematics, fit into a PBL curriculum? This paper argues that it does for two reasons: (1) PBL resembles the working methods of research mathematicians. (2) The concept of society includes the society of researchers to whom theoretical mathematics is relevant. The paper describes two cases of university PBL projects in mathematics; one in pure mathematics and the other in applied mathematics. The paper also discusses that future engineers need to understand the world of mathematics as well as how engineers fit into a process of fundamental-research-turned-into-applied-science.

  15. Proceedings – Mathematical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 123; Issue 2. Notes on Discrete Subgroups of Möbius Transformations ... Department of Applied Mathematics, Hunan University, Changsha 410082, People's Republic of China; School of Mathematics and Computational Science, Wuyi University, Jiangmen, ...

  16. Laser-induced breakdown spectroscopy applied to the characterization of rock by support vector machine combined with principal component analysis

    International Nuclear Information System (INIS)

    Yang Hong-Xing; Fu Hong-Bo; Wang Hua-Dong; Jia Jun-Wei; Dong Feng-Zhong; Sigrist, Markus W

    2016-01-01

    Laser-induced breakdown spectroscopy (LIBS) is a versatile tool for both qualitative and quantitative analysis. In this paper, LIBS combined with principal component analysis (PCA) and support vector machine (SVM) is applied to rock analysis. Fourteen emission lines including Fe, Mg, Ca, Al, Si, and Ti are selected as analysis lines. A good accuracy (91.38% for the real rock) is achieved by using SVM to analyze the spectroscopic peak area data which are processed by PCA. It can not only reduce the noise and dimensionality which contributes to improving the efficiency of the program, but also solve the problem of linear inseparability by combining PCA and SVM. By this method, the ability of LIBS to classify rock is validated. (paper)

  17. Visible Leading: Principal Academy Connects and Empowers Principals

    Science.gov (United States)

    Hindman, Jennifer; Rozzelle, Jan; Ball, Rachel; Fahey, John

    2015-01-01

    The School-University Research Network (SURN) Principal Academy at the College of William & Mary in Williamsburg, Virginia, has a mission to build a leadership development program that increases principals' instructional knowledge and develops mentor principals to sustain the program. The academy is designed to connect and empower principals…

  18. Using LabVIEW for Applying Mathematical Models in Representing Phenomena

    Science.gov (United States)

    Faraco, G.; Gabriele, L.

    2007-01-01

    Simulations make it possible to explore physical and biological phenomena, where conducting the real experiment is impracticable or difficult. The implementation of a software program describing and simulating a given physical situation encourages the understanding of a phenomenon itself. Fifty-nine students, enrolled at the Mathematical Methods…

  19. Mathematical methods in neutronics

    International Nuclear Information System (INIS)

    Planchard, J.

    1995-01-01

    This book presents the mathematical theory of nuclear reactors. It applies to engineers in neutronics and applied mathematicians. After a recall of the elementary notions of neutronics and of diffusion-type partial derivative equations, the theory of reactors criticality calculation is described. (J.S.)

  20. Mathematical Theory of Dispersion-Managed Optical Solitons

    CERN Document Server

    Biswas, Anjan; Edwards, Matthew

    2010-01-01

    "Mathematical Theory of Dispersion-Managed Optical Solitons" discusses recent advances covering optical solitons, soliton perturbation, optical cross-talk, Gabitov-Turitsyn Equations, quasi-linear pulses, and higher order Gabitov-Turitsyn Equations. Focusing on a mathematical perspective, the book bridges the gap between concepts in engineering and mathematics, and gives an outlook to many new topics for further research. The book is intended for researchers and graduate students in applied mathematics, physics and engineering and also it will be of interest to those who are conducting research in nonlinear fiber optics. Dr. Anjan Biswas is an Associate Professor at the Department of Applied Mathematics & Theoretical Physics, Delaware State University, Dover, DE, USA; Dr. Daniela Milovic is an Associate Professor at the Department of Telecommunications, Faculty of Electronic Engineering, University of Nis, Serbia; Dr. Matthew Edwards is the Dean of the School of Arts and Sciences at Alabama A & M Univ...

  1. Herbart's mathematical psychology.

    Science.gov (United States)

    Boudewijnse, G J; Murray, D J; Bandomir, C A

    1999-08-01

    J.F. Herbart (1824/1890b) provided a mathematical theory about how mental ideas (Vorstellungen) in consciousness at Time 1 (T1) could compete, possibly driving 1 or more Vorstellungen below a threshold of consciousness. At T1 a Vorstellung A could also fuse with another, B. If at a later T2, A resurfaced into consciousness, it could help B to re-resurface into consciousness. This article describes the historical and mathematical background of Herbart's theory, outlines the mathematical theory itself with the aid of computer graphics, and argues that the theory can be applied to the modern problem of predicting recognition latencies in short-term memory (Sternberg's task; Sternberg, 1966)

  2. Proceedings – Mathematical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    We classify principal -bundles on the projective line over an arbitrary field of characteristic ≠ 2 or 3, where is a reductive group. If such a bundle is trivial at a -rational point, then the structure group can be reduced to a maximal torus. Author Affiliations. V B Mehta1 S Subramanian1. School of Mathematics, Tata ...

  3. 18th European Conference on Mathematics for Industry

    CERN Document Server

    Capasso, Vincenzo; Nicosia, Giuseppe; Romano, Vittorio

    2016-01-01

    This book presents a collection of papers emphasizing applications of mathematical models and methods to real-world problems of relevance for industry, life science, environment, finance, and so on. The biannual Conference of ECMI (the European Consortium of Mathematics in Industry) held in 2014 focused on various aspects of industrial and applied mathematics. The five main topics addressed at the conference were mathematical models in life science, material science and semiconductors, mathematical methods in the environment, design automation and industrial applications, and computational finance. Several other topics have been treated, such as, among others, optimization and inverse problems, education, numerical methods for stiff pdes, model reduction, imaging processing, multi physics simulation, mathematical models in textile industry. The conference, which brought together applied mathematicians and experts from industry, provided a unique opportunity to exchange ideas, problems and methodologies...

  4. Mastering mathematics for Edexcel GCSE

    CERN Document Server

    Davis, Heather; Liggett, Linda

    2015-01-01

    Help students to develop their knowledge, skills and understanding so that they can reason mathematically, communicate mathematical information and apply mathematical techniques in solving problems; with resources developed specifically for the Edexcel GCSE 2015 specification with leading Assessment Consultant Keith Pledger and a team of subject specialists. - Supports you and your students through the new specifications, with topic explanations and new exam-style questions, to support the new assessment objectives. - Builds understanding and measures progress throughout the course with plenty

  5. Applied environmetrics. Simulation applied to the physical environment

    Energy Technology Data Exchange (ETDEWEB)

    Beer, T

    1988-02-01

    Environmetrics is the application of quantitative methods to all aspects of the social and natural environment. This includes forecasting, mathematical modelling, data analysis, and statistics. Applied Environmetrics as a discipline involves the analysis of environmental data through the use of packaged, or specially designed computer software. Two case studies of recent implementations of applied environmetrics within the Australian mining industry are dealt with. 3 figs., 5 refs.

  6. The many faces of the mathematical modeling cycle

    NARCIS (Netherlands)

    Perrenet, J.C.; Zwaneveld, B.

    2012-01-01

    In literature about mathematical modeling a diversity can be seen in ways of presenting the modeling cycle. Every year, students in the Bachelor’s program Applied Mathematics of the Eindhoven University of Technology, after having completed a series of mathematical modeling projects, have been

  7. mathematical models for estimating radio channels utilization

    African Journals Online (AJOL)

    2017-08-08

    Aug 8, 2017 ... Mathematical models for radio channels utilization assessment by real-time flows transfer in ... data transmission networks application having dynamic topology ..... Journal of Applied Mathematics and Statistics, 56(2): 85–90.

  8. Applied & Computational MathematicsChallenges for the Design and Control of Dynamic Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D L; Burns, J A; Collis, S; Grosh, J; Jacobson, C A; Johansen, H; Mezic, I; Narayanan, S; Wetter, M

    2011-03-10

    The Energy Independence and Security Act of 2007 (EISA) was passed with the goal 'to move the United States toward greater energy independence and security.' Energy security and independence cannot be achieved unless the United States addresses the issue of energy consumption in the building sector and significantly reduces energy consumption in buildings. Commercial and residential buildings account for approximately 40% of the U.S. energy consumption and emit 50% of CO{sub 2} emissions in the U.S. which is more than twice the total energy consumption of the entire U.S. automobile and light truck fleet. A 50%-80% improvement in building energy efficiency in both new construction and in retrofitting existing buildings could significantly reduce U.S. energy consumption and mitigate climate change. Reaching these aggressive building efficiency goals will not happen without significant Federal investments in areas of computational and mathematical sciences. Applied and computational mathematics are required to enable the development of algorithms and tools to design, control and optimize energy efficient buildings. The challenge has been issued by the U.S. Secretary of Energy, Dr. Steven Chu (emphasis added): 'We need to do more transformational research at DOE including computer design tools for commercial and residential buildings that enable reductions in energy consumption of up to 80 percent with investments that will pay for themselves in less than 10 years.' On July 8-9, 2010 a team of technical experts from industry, government and academia were assembled in Arlington, Virginia to identify the challenges associated with developing and deploying newcomputational methodologies and tools thatwill address building energy efficiency. These experts concluded that investments in fundamental applied and computational mathematics will be required to build enabling technology that can be used to realize the target of 80% reductions in energy

  9. Principal Investigator-in-a-Box

    Science.gov (United States)

    Young, Laurence R.

    1999-01-01

    Human performance in orbit is currently limited by several factors beyond the intrinsic awkwardness of motor control in weightlessness. Cognitive functioning can be affected by such factors as cumulative sleep loss, stress and the psychological effects of long-duration small-group isolation. When an astronaut operates a scientific experiment, the performance decrement associated with such factors can lead to lost or poor quality data and even the total loss of a scientific objective, at great cost to the sponsors and to the dismay of the Principal Investigator. In long-duration flights, as anticipated on the International Space Station and on any planetary exploration, the experimental model is further complicated by long delays between training and experiment, and the large number of experiments each crew member must perform. Although no documented studies have been published on the subject, astronauts report that an unusually large number of simple errors are made in space. Whether a result of the effects of microgravity, accumulated fatigue, stress or other factors, this pattern of increased error supports the need for a computerized decision-making aid for astronauts performing experiments. Artificial intelligence and expert systems might serve as powerful tools for assisting experiments in space. Those conducting space experiments typically need assistance exactly when the planned checklist does not apply. Expert systems, which use bits of human knowledge and human methods to respond appropriately to unusual situations, have a flexibility that is highly desirable in circumstances where an invariably predictable course of action/response does not exist. Frequently the human expert on the ground is unavailable, lacking the latest information, or not consulted by the astronaut conducting the experiment. In response to these issues, we have developed "Principal Investigator-in-a-Box," or [PI], to capture the reasoning process of the real expert, the Principal

  10. Teachers' Perception of Social Justice in Mathematics Classrooms

    Science.gov (United States)

    Panthi, Ram Krishna; Luitel, Bal Chandra; Belbase, Shashidhar

    2017-01-01

    The purpose of this study was to explore mathematics teachers' perception of social justice in mathematics classrooms. We applied interpretive qualitative method for data collection, analysis, and interpretation through iterative process. We administered in-depth semi-structured interviews to capture the perceptions of three mathematics teachers…

  11. The Mathematics-language symbiosis: The learners' benefits ...

    African Journals Online (AJOL)

    On their own part, those whose course of study is mathematics are curious ... of Applied Linguistics propounded by Leonard Bloomfield in 1941 guides the study. ... a mathematics classroom so as to continue learning advanced concepts.

  12. Mathematical foundations of image processing and analysis

    CERN Document Server

    Pinoli, Jean-Charles

    2014-01-01

    Mathematical Imaging is currently a rapidly growing field in applied mathematics, with an increasing need for theoretical mathematics. This book, the second of two volumes, emphasizes the role of mathematics as a rigorous basis for imaging sciences. It provides a comprehensive and convenient overview of the key mathematical concepts, notions, tools and frameworks involved in the various fields of gray-tone and binary image processing and analysis, by proposing a large, but coherent, set of symbols and notations, a complete list of subjects and a detailed bibliography. It establishes a bridg

  13. Capturing student mathematical engagement through differently enacted classroom practices: applying a modification of Watson's analytical tool

    Science.gov (United States)

    Patahuddin, Sitti Maesuri; Puteri, Indira; Lowrie, Tom; Logan, Tracy; Rika, Baiq

    2018-04-01

    This study examined student mathematical engagement through the intended and enacted lessons taught by two teachers in two different middle schools in Indonesia. The intended lesson was developed using the ELPSA learning design to promote mathematical engagement. Based on the premise that students will react to the mathematical tasks in the forms of words and actions, the analysis focused on identifying the types of mathematical engagement promoted through the intended lesson and performed by students during the lesson. Using modified Watson's analytical tool (2007), students' engagement was captured from what the participants' did or said mathematically. We found that teachers' enacted practices had an influence on student mathematical engagement. The teacher who demonstrated content in explicit ways tended to limit the richness of the engagement; whereas the teacher who presented activities in an open-ended manner fostered engagement.

  14. The academic merits of modelling in higher mathematics education: A case study

    NARCIS (Netherlands)

    Perrenet, J.; Adan, I.

    2010-01-01

    Modelling is an important subject in the Bachelor curriculum of Applied Mathematics at Eindhoven University of Technology in the Netherlands. Students not only learn how to apply their knowledge to solve mathematical problems posed in non-mathematical language, but also they learn to look actively

  15. The academic merits of modelling in higher mathematics education : a case study

    NARCIS (Netherlands)

    Perrenet, J.C.; Adan, I.J.B.F.

    2010-01-01

    Modelling is an important subject in the Bachelor curriculum of Applied Mathematics at Eindhoven University of Technology in the Netherlands. Students not only learn how to apply their knowledge to solve mathematical problems posed in non-mathematical language, but also they learn to look actively

  16. An introduction to mathematical modeling

    CERN Document Server

    Bender, Edward A

    2000-01-01

    Employing a practical, ""learn by doing"" approach, this first-rate text fosters the development of the skills beyond the pure mathematics needed to set up and manipulate mathematical models. The author draws on a diversity of fields - including science, engineering, and operations research - to provide over 100 reality-based examples. Students learn from the examples by applying mathematical methods to formulate, analyze, and criticize models. Extensive documentation, consisting of over 150 references, supplements the models, encouraging further research on models of particular interest. The

  17. Teaching mathematics to non-mathematicians

    DEFF Research Database (Denmark)

    Triantafyllou, Evangelia; Timcenko, Olga

    2017-01-01

    Over the past years, a number of engineering programs have arisen that transcend the division between technical, scientific and art-related disciplines. Media Technology at Aalborg University, Denmark is such an engineering program. In relation to mathematics education, this new development has...... changed the way mathematics is applied in practice and is taught in these disciplines. This paper discusses a doctoral dissertation that investigated and assessed interventions to increase student motivation and engagement in mathematics among Media Technology students. The results of this dissertation...

  18. The Education of Mathematics

    Directory of Open Access Journals (Sweden)

    Abu Darda

    2016-01-01

    Full Text Available The objective of mathematics education is not only preparingmathematicians but making well-informed citizens. This is a broad generalterms for objective of the teaching of mathematics. And, this might beimplemented as “accurate thorough knowledge” or “original logicalthinking”. So, teaching mathematics is not the conversation andtransmission of mathematical knowledge, but on the aim of preparing wellinformedcitizens trained in independent, critical thinking.By the mathematics, sciences become simple, clearer, and easier to bedeveloped. The mathematics is often applied for solving any problem ofother field of sciences, either in the physics such as astronomy, chemistry,technique; or social sciences such as economy, demography, and assurance.Those all need an analysis reading ability.Mathematical skill, therefore, relates strongly with the analysisreading ability in the human intellectual structure. This study is about therelationship between them. And, result of the study shows us as below:Both Mathematical skill and analysis reading ability possess the “high type”of thinking operation. Both also involve the same content of the abstractintelligent, i.e. symbolic and semantic contents. Last but not least, both alsouse the same product of thinking, i.e. units, classes, relations, and systems.Both can be transformed and have an implication.

  19. Mathematical logic in the human brain: syntax.

    Directory of Open Access Journals (Sweden)

    Roland Friedrich

    Full Text Available Theory predicts a close structural relation of formal languages with natural languages. Both share the aspect of an underlying grammar which either generates (hierarchically structured expressions or allows us to decide whether a sentence is syntactically correct or not. The advantage of rule-based communication is commonly believed to be its efficiency and effectiveness. A particularly important class of formal languages are those underlying the mathematical syntax. Here we provide brain-imaging evidence that the syntactic processing of abstract mathematical formulae, written in a first order language, is, indeed efficient and effective as a rule-based generation and decision process. However, it is remarkable, that the neural network involved, consisting of intraparietal and prefrontal regions, only involves Broca's area in a surprisingly selective way. This seems to imply that despite structural analogies of common and current formal languages, at the neural level, mathematics and natural language are processed differently, in principal.

  20. The functions of mathematical physics

    CERN Document Server

    Hochstadt, Harry

    2012-01-01

    A modern classic, this clearly written, incisive textbook provides a comprehensive, detailed survey of the functions of mathematical physics, a field of study straddling the somewhat artificial boundary between pure and applied mathematics.In the 18th and 19th centuries, the theorists who devoted themselves to this field - pioneers such as Gauss, Euler, Fourier, Legendre, and Bessel - were searching for mathematical solutions to physical problems. Today, although most of the functions have practical applications, in areas ranging from the quantum-theoretical model of the atom to the vibrating

  1. Problem solving through recreational mathematics

    CERN Document Server

    Averbach, Bonnie

    1999-01-01

    Historically, many of the most important mathematical concepts arose from problems that were recreational in origin. This book takes advantage of that fact, using recreational mathematics - problems, puzzles and games - to teach students how to think critically. Encouraging active participation rather than just observation, the book focuses less on mathematical results than on how these results can be applied to thinking about problems and solving them. Each chapter contains a diverse array of problems in such areas as logic, number and graph theory, two-player games of strategy, solitaire ga

  2. Mathematical Biology Modules Based on Modern Molecular Biology and Modern Discrete Mathematics

    Science.gov (United States)

    Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-based-learning approach, the modules highlight applications of modern discrete mathematics and algebraic statistics to pressing problems in molecular biology. For the majority of projects, calculus is not a required prerequisite and, due to the modest amount of mathematical background needed for some of the modules, the materials can be used for an early introduction to mathematical modeling. At the same time, most modules are connected with topics in linear and abstract algebra, algebraic geometry, and probability, and they can be used as meaningful applied introductions into the relevant advanced-level mathematics courses. Open-source software is used to facilitate the relevant computations. As a detailed example, we outline a module that focuses on Boolean models of the lac operon network. PMID:20810955

  3. Mathematical biology modules based on modern molecular biology and modern discrete mathematics.

    Science.gov (United States)

    Robeva, Raina; Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-based-learning approach, the modules highlight applications of modern discrete mathematics and algebraic statistics to pressing problems in molecular biology. For the majority of projects, calculus is not a required prerequisite and, due to the modest amount of mathematical background needed for some of the modules, the materials can be used for an early introduction to mathematical modeling. At the same time, most modules are connected with topics in linear and abstract algebra, algebraic geometry, and probability, and they can be used as meaningful applied introductions into the relevant advanced-level mathematics courses. Open-source software is used to facilitate the relevant computations. As a detailed example, we outline a module that focuses on Boolean models of the lac operon network.

  4. Analyzing Principal Professional Development Practices through the Lens of Adult Learning Theory

    Science.gov (United States)

    Zepeda, Sally J.; Parylo, Oksana; Bengtson, Ed

    2014-01-01

    This qualitative study sought to identify current principal professional development practices in four school systems in Georgia and to examine them by applying the principles of adult learning theory. The cross-case analysis of principal professional development initiatives in four school districts revealed nine common practices: connecting…

  5. Mathematical analysis fundamentals

    CERN Document Server

    Bashirov, Agamirza

    2014-01-01

    The author's goal is a rigorous presentation of the fundamentals of analysis, starting from elementary level and moving to the advanced coursework. The curriculum of all mathematics (pure or applied) and physics programs include a compulsory course in mathematical analysis. This book will serve as can serve a main textbook of such (one semester) courses. The book can also serve as additional reading for such courses as real analysis, functional analysis, harmonic analysis etc. For non-math major students requiring math beyond calculus, this is a more friendly approach than many math-centric o

  6. The Influence of Trust in Principals' Mentoring Experiences across Different Career Phases

    Science.gov (United States)

    Bakioglu, Aysen; Hacifazlioglu, Ozge; Ozcan, Kenan

    2010-01-01

    The purpose of this study is to examine the perceptions of primary school principals about the influence of "trust" in their mentoring experiences. Both quantitative and qualitative methods were used in the study. The Primary School Principals' Mentoring Questionnaire previously developed by the researchers was applied to 1462 primary…

  7. Mathematical modelling of the process of quality control of construction products

    Directory of Open Access Journals (Sweden)

    Pogorelov Vadim

    2017-01-01

    Full Text Available The study presents the results of years of research in the field of quality management of industrial production construction production, based on mathematical modelling techniques, process and results of implementing the developed programme of monitoring and quality control in the production process of the enterprise. The aim of this work is the presentation of scientific community of the practical results of mathematical modelling in application programs. In the course of the research addressed the description of the applied mathematical models, views, practical results of its application in the applied field to assess quality control. The authors used this mathematical model in practice. The article presents the results of applying this model. The authors developed the experimental software management and quality assessment by using mathematical modeling methods. The authors continue research in this direction to improve the diagnostic systems and quality management systems based on mathematical modeling methods prognostic and diagnostic processes.

  8. Developing digital technologies for university mathematics by applying participatory design methods

    DEFF Research Database (Denmark)

    Triantafyllou, Eva; Timcenko, Olga

    2013-01-01

    This paper presents our research efforts to develop digital technologies for undergraduate university mathematics. We employ participatory design methods in order to involve teachers and students in the design of such technologies. The results of the first round of our design are included...

  9. Remarks on orthotropic elastic models applied to wood

    Directory of Open Access Journals (Sweden)

    Nilson Tadeu Mascia

    2006-09-01

    Full Text Available Wood is generally considered an anisotropic material. In terms of engineering elastic models, wood is usually treated as an orthotropic material. This paper presents an analysis of two principal anisotropic elastic models that are usually applied to wood. The first one, the linear orthotropic model, where the material axes L (Longitudinal, R( radial and T(tangential are coincident with the Cartesian axes (x, y, z, is more accepted as wood elastic model. The other one, the cylindrical orthotropic model is more adequate of the growth caracteristics of wood but more mathematically complex to be adopted in practical terms. Specifically due to its importance in wood elastic parameters, this paper deals with the fiber orientation influence in these models through adequate transformation of coordinates. As a final result, some examples of the linear model, which show the variation of elastic moduli, i.e., Young´s modulus and shear modulus, with fiber orientation are presented.

  10. Large Covariance Estimation by Thresholding Principal Orthogonal Complements.

    Science.gov (United States)

    Fan, Jianqing; Liao, Yuan; Mincheva, Martina

    2013-09-01

    This paper deals with the estimation of a high-dimensional covariance with a conditional sparsity structure and fast-diverging eigenvalues. By assuming sparse error covariance matrix in an approximate factor model, we allow for the presence of some cross-sectional correlation even after taking out common but unobservable factors. We introduce the Principal Orthogonal complEment Thresholding (POET) method to explore such an approximate factor structure with sparsity. The POET estimator includes the sample covariance matrix, the factor-based covariance matrix (Fan, Fan, and Lv, 2008), the thresholding estimator (Bickel and Levina, 2008) and the adaptive thresholding estimator (Cai and Liu, 2011) as specific examples. We provide mathematical insights when the factor analysis is approximately the same as the principal component analysis for high-dimensional data. The rates of convergence of the sparse residual covariance matrix and the conditional sparse covariance matrix are studied under various norms. It is shown that the impact of estimating the unknown factors vanishes as the dimensionality increases. The uniform rates of convergence for the unobserved factors and their factor loadings are derived. The asymptotic results are also verified by extensive simulation studies. Finally, a real data application on portfolio allocation is presented.

  11. The common core mathematics standards transforming practice through team leadership

    CERN Document Server

    Hull, Ted H; Balka, Don S

    2012-01-01

    Transform math instruction with effective CCSS leadership The Common Core State Standards for mathematics describe the "habits of mind" that teachers should develop in their students without which the content standards cannot be successfully implemented. This professional development resource helps principals and math leaders grapple with the changes that must be addressed so that teachers can implement the practices required by the CCSS. Included are: A clear explanation of the CCSS for Mathematical Practice  Techniques to help leadership teams collaboratively implement and maintain the new standards A proficiency matrix with examples of instructional strategies for helping students reach competency in each standard.

  12. Strict finitism and the logic of mathematical applications

    CERN Document Server

    Ye, Feng

    2011-01-01

    Exploring the logic behind applied mathematics to the physical world, this volume illustrates how radical naturalism, nominalism and strict finitism can account for the applications of classical mathematics in current theories about natural phenomena.

  13. A Tannakian approach to dimensional reduction of principal bundles

    Science.gov (United States)

    Álvarez-Cónsul, Luis; Biswas, Indranil; García-Prada, Oscar

    2017-08-01

    Let P be a parabolic subgroup of a connected simply connected complex semisimple Lie group G. Given a compact Kähler manifold X, the dimensional reduction of G-equivariant holomorphic vector bundles over X × G / P was carried out in Álvarez-Cónsul and García-Prada (2003). This raises the question of dimensional reduction of holomorphic principal bundles over X × G / P. The method of Álvarez-Cónsul and García-Prada (2003) is special to vector bundles; it does not generalize to principal bundles. In this paper, we adapt to equivariant principal bundles the Tannakian approach of Nori, to describe the dimensional reduction of G-equivariant principal bundles over X × G / P, and to establish a Hitchin-Kobayashi type correspondence. In order to be able to apply the Tannakian theory, we need to assume that X is a complex projective manifold.

  14. Frontiers in mathematical biology

    CERN Document Server

    1994-01-01

    Volume 100, which is the final volume of the LNBM series serves to commemorate the acievements in two decades of this influential collection of books in mathematical biology. The contributions, by the leading mathematical biologists, survey the state of the art in the subject, and offer speculative, philosophical and critical analyses of the key issues confronting the field. The papers address fundamental issues in cell and molecular biology, organismal biology, evolutionary biology, population ecology, community and ecosystem ecology, and applied biology, plus the explicit and implicit mathematical challenges. Cross-cuttting issues involve the problem of variation among units in nonlinear systems, and the related problems of the interactions among phenomena across scales of space, time and organizational complexity.

  15. Principal Component Analysis as an Efficient Performance ...

    African Journals Online (AJOL)

    This paper uses the principal component analysis (PCA) to examine the possibility of using few explanatory variables (X's) to explain the variation in Y. It applied PCA to assess the performance of students in Abia State Polytechnic, Aba, Nigeria. This was done by estimating the coefficients of eight explanatory variables in a ...

  16. Aesthetics of interdisciplinarity art and mathematics

    CERN Document Server

    Lähdesmäki, Tuuli

    2017-01-01

    This anthology fosters an interdisciplinary dialogue between the mathematical and artistic approaches in the field where mathematical and artistic thinking and practice merge. The articles included highlight the most significant current ideas and phenomena, providing a multifaceted and extensive snapshot of the field and indicating how interdisciplinary approaches are applied in the research of various cultural and artistic phenomena. The discussions are related, for example, to the fields of aesthetics, anthropology, art history, art theory, artistic practice, cultural studies, ethno-mathematics, geometry, mathematics, new physics, philosophy, physics, study of visual illusions, and symmetry studies. Further, the book introduces a new concept: the interdisciplinary aesthetics of mathematical art, which the editors use to explain the manifold nature of the aesthetic principles intertwined in these discussions.

  17. An excursion through elementary mathematics

    CERN Document Server

    Caminha Muniz Neto, Antonio

    2017-01-01

    This book provides a comprehensive, in-depth overview of elementary mathematics as explored in Mathematical Olympiads around the world. It expands on topics usually encountered in high school and could even be used as preparation for a first-semester undergraduate course. This first volume covers Real Numbers, Functions, Real Analysis, Systems of Equations, Limits and Derivatives, and much more. As part of a collection, the book differs from other publications in this field by not being a mere selection of questions or a set of tips and tricks that applies to specific problems. It starts from the most basic theoretical principles, without being either too general or too axiomatic. Examples and problems are discussed only if they are helpful as applications of the theory. Propositions are proved in detail and subsequently applied to Olympic problems or to other problems at the Olympic level. The book also explores some of the hardest problems presented at National and International Mathematics Olympiads, as we...

  18. An excursion through elementary mathematics

    CERN Document Server

    Caminha Muniz Neto, Antonio

    This book provides a comprehensive, in-depth overview of elementary mathematics as explored in Mathematical Olympiads around the world. It expands on topics usually encountered in high school and could even be used as preparation for a first-semester undergraduate course. This first volume covers Real Numbers, Functions, Real Analysis, Systems of Equations, Limits and Derivatives, and much more. As part of a collection, the book differs from other publications in this field by not being a mere selection of questions or a set of tips and tricks that applies to specific problems. It starts from the most basic theoretical principles, without being either too general or too axiomatic. Examples and problems are discussed only if they are helpful as applications of the theory. Propositions are proved in detail and subsequently applied to Olympic problems or to other problems at the Olympic level. The book also explores some of the hardest problems presented at National and International Mathematics Olympiads, as we...

  19. Handbook of mathematical methods in imaging

    CERN Document Server

    2015-01-01

    The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. This expanded and revised second edition contains updates to existing chapters and 16 additional entries on important mathematical methods such as graph cuts, morphology, discrete geometry, PDEs, conformal methods, to name a few. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 200 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and com...

  20. Mathematical supply-chain modelling: Product analysis of cost and time

    International Nuclear Information System (INIS)

    Easters, D J

    2014-01-01

    Establishing a mathematical supply-chain model is a proposition that has received attention due to its inherent benefits of evolving global supply-chain efficiencies. This paper discusses the prevailing relationships found within apparel supply-chain environments, and contemplates the complex issues indicated for constituting a mathematical model. Principal results identified within the data suggest, that the multifarious nature of global supply-chain activities require a degree of simplification in order to fully dilate the necessary factors which affect, each sub-section of the chain. Subsequently, the research findings allowed the division of supply-chain components into sub-sections, which amassed a coherent method of product development activity. Concurrently, the supply-chain model was found to allow systematic mathematical formulae analysis, of cost and time, within the multiple contexts of each subsection encountered. The paper indicates the supply-chain model structure, the mathematics, and considers how product analysis of cost and time can improve the comprehension of product lifecycle management

  1. Mathematical supply-chain modelling: Product analysis of cost and time

    Science.gov (United States)

    Easters, D. J.

    2014-03-01

    Establishing a mathematical supply-chain model is a proposition that has received attention due to its inherent benefits of evolving global supply-chain efficiencies. This paper discusses the prevailing relationships found within apparel supply-chain environments, and contemplates the complex issues indicated for constituting a mathematical model. Principal results identified within the data suggest, that the multifarious nature of global supply-chain activities require a degree of simplification in order to fully dilate the necessary factors which affect, each sub-section of the chain. Subsequently, the research findings allowed the division of supply-chain components into sub-sections, which amassed a coherent method of product development activity. Concurrently, the supply-chain model was found to allow systematic mathematical formulae analysis, of cost and time, within the multiple contexts of each subsection encountered. The paper indicates the supply-chain model structure, the mathematics, and considers how product analysis of cost and time can improve the comprehension of product lifecycle management.

  2. What Software to Use in the Teaching of Mathematical Subjects?

    Science.gov (United States)

    Berežný, Štefan

    2015-01-01

    We can consider two basic views, when using mathematical software in the teaching of mathematical subjects. First: How to learn to use specific software for the specific tasks, e. g., software Statistica for the subjects of Applied statistics, probability and mathematical statistics, or financial mathematics. Second: How to learn to use the…

  3. Principal components analysis in clinical studies.

    Science.gov (United States)

    Zhang, Zhongheng; Castelló, Adela

    2017-09-01

    In multivariate analysis, independent variables are usually correlated to each other which can introduce multicollinearity in the regression models. One approach to solve this problem is to apply principal components analysis (PCA) over these variables. This method uses orthogonal transformation to represent sets of potentially correlated variables with principal components (PC) that are linearly uncorrelated. PCs are ordered so that the first PC has the largest possible variance and only some components are selected to represent the correlated variables. As a result, the dimension of the variable space is reduced. This tutorial illustrates how to perform PCA in R environment, the example is a simulated dataset in which two PCs are responsible for the majority of the variance in the data. Furthermore, the visualization of PCA is highlighted.

  4. Mathematical Modelling of Surfactant Self-assembly at Interfaces

    KAUST Repository

    Morgan, C. E.; Breward, C. J. W.; Griffiths, I. M.; Howell, P. D.

    2015-01-01

    © 2015 Society for Industrial and Applied Mathematics. We present a mathematical model to describe the distribution of surfactant pairs in a multilayer structure beneath an adsorbed monolayer. A mesoscopic model comprising a set of ordinary

  5. Proceedings – Mathematical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Wenhua Gao1 Lin Tang2. School of Applied Mathematics, Beijing Normal University Zhuhai, Zhuhai 519085, People's Republic of China; LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, People's Republic of China ...

  6. Longitudinal functional principal component modelling via Stochastic Approximation Monte Carlo

    KAUST Repository

    Martinez, Josue G.

    2010-06-01

    The authors consider the analysis of hierarchical longitudinal functional data based upon a functional principal components approach. In contrast to standard frequentist approaches to selecting the number of principal components, the authors do model averaging using a Bayesian formulation. A relatively straightforward reversible jump Markov Chain Monte Carlo formulation has poor mixing properties and in simulated data often becomes trapped at the wrong number of principal components. In order to overcome this, the authors show how to apply Stochastic Approximation Monte Carlo (SAMC) to this problem, a method that has the potential to explore the entire space and does not become trapped in local extrema. The combination of reversible jump methods and SAMC in hierarchical longitudinal functional data is simplified by a polar coordinate representation of the principal components. The approach is easy to implement and does well in simulated data in determining the distribution of the number of principal components, and in terms of its frequentist estimation properties. Empirical applications are also presented.

  7. Applying mathematical finance tools to the competitive Nordic electricity market

    OpenAIRE

    Vehviläinen, Iivo

    2004-01-01

    This thesis models competitive electricity markets using the methods of mathematical finance. Fundamental problems of finance are market price modelling, derivative pricing, and optimal portfolio selection. The same questions arise in competitive electricity markets. The thesis presents an electricity spot price model based on the fundamental stochastic factors that affect electricity prices. The resulting price model has sound economic foundations, is able to explain spot market price mo...

  8. Topological data analysis (TDA) applied to reveal pedogenetic principles of European topsoil system.

    Science.gov (United States)

    Savic, Aleksandar; Toth, Gergely; Duponchel, Ludovic

    2017-05-15

    Recent developments in applied mathematics are bringing new tools that are capable to synthesize knowledge in various disciplines, and help in finding hidden relationships between variables. One such technique is topological data analysis (TDA), a fusion of classical exploration techniques such as principal component analysis (PCA), and a topological point of view applied to clustering of results. Various phenomena have already received new interpretations thanks to TDA, from the proper choice of sport teams to cancer treatments. For the first time, this technique has been applied in soil science, to show the interaction between physical and chemical soil attributes and main soil-forming factors, such as climate and land use. The topsoil data set of the Land Use/Land Cover Area Frame survey (LUCAS) was used as a comprehensive database that consists of approximately 20,000 samples, each described by 12 physical and chemical parameters. After the application of TDA, results obtained were cross-checked against known grouping parameters including five types of land cover, nine types of climate and the organic carbon content of soil. Some of the grouping characteristics observed using standard approaches were confirmed by TDA (e.g., organic carbon content) but novel subtle relationships (e.g., magnitude of anthropogenic effect in soil formation), were discovered as well. The importance of this finding is that TDA is a unique mathematical technique capable of extracting complex relations hidden in soil science data sets, giving the opportunity to see the influence of physicochemical, biotic and abiotic factors on topsoil formation through fresh eyes. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Noncommutative mathematics for quantum systems

    CERN Document Server

    Franz, Uwe

    2016-01-01

    Noncommutative mathematics is a significant new trend of mathematics. Initially motivated by the development of quantum physics, the idea of 'making theory noncommutative' has been extended to many areas of pure and applied mathematics. This book is divided into two parts. The first part provides an introduction to quantum probability, focusing on the notion of independence in quantum probability and on the theory of quantum stochastic processes with independent and stationary increments. The second part provides an introduction to quantum dynamical systems, discussing analogies with fundamental problems studied in classical dynamics. The desire to build an extension of the classical theory provides new, original ways to understand well-known 'commutative' results. On the other hand the richness of the quantum mathematical world presents completely novel phenomena, never encountered in the classical setting. This book will be useful to students and researchers in noncommutative probability, mathematical physi...

  10. Applied mediation analyses

    DEFF Research Database (Denmark)

    Lange, Theis; Hansen, Kim Wadt; Sørensen, Rikke

    2017-01-01

    In recent years, mediation analysis has emerged as a powerful tool to disentangle causal pathways from an exposure/treatment to clinically relevant outcomes. Mediation analysis has been applied in scientific fields as diverse as labour market relations and randomized clinical trials of heart...... disease treatments. In parallel to these applications, the underlying mathematical theory and computer tools have been refined. This combined review and tutorial will introduce the reader to modern mediation analysis including: the mathematical framework; required assumptions; and software implementation...

  11. Mathematical Modeling of Diverse Phenomena

    Science.gov (United States)

    Howard, J. C.

    1979-01-01

    Tensor calculus is applied to the formulation of mathematical models of diverse phenomena. Aeronautics, fluid dynamics, and cosmology are among the areas of application. The feasibility of combining tensor methods and computer capability to formulate problems is demonstrated. The techniques described are an attempt to simplify the formulation of mathematical models by reducing the modeling process to a series of routine operations, which can be performed either manually or by computer.

  12. GENERAL TASKS OF MATHEMATICAL EDUCATION DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    V. A. Testov

    2014-01-01

    Full Text Available The paper discusses basic implementation aspects of the Mathematical Education Development Concept, adopted by the Russian Government in 2013. According to the above document, the main problems of mathematical education include: low motivation of secondary and higher school students for studying the discipline, resulted from underestimation of mathematical knowledge; and outdated educational content, overloaded by technical elements. In the author’s opinion, a number of important new mathematical fields, developed over the last years, - the graph theory, discrete mathematics, encoding theory, fractal geometry, etc – have a large methodological and applied educational potential. However, these new subdisciplines have very little representation both in the secondary and higher school mathematical curricula. As a solution for overcoming the gap between the latest scientific achievements and pedagogical practices, the author recommends integration of the above mentioned mathematical disciplines in educational curricula instead of some outdated technical issues. In conclusion, the paper emphasizes the need for qualified mathematical teachers’ training for solving the problems of students’ motivation development and content updates.

  13. Pedagogical Applications from Real Analysis for Secondary Mathematics Teachers

    Science.gov (United States)

    Wasserman, Nicholas; Weber, Keith

    2017-01-01

    In this article, we consider the potential influences of the study of proofs in advanced mathematics on secondary mathematics teaching. Thus far, the literature has highlighted the benefits of applying the conclusions of particular proofs to secondary content and of developing a more general sense of disciplinary practices in mathematics in…

  14. Modelling as a foundation for academic forming in mathematics education

    NARCIS (Netherlands)

    Perrenet, J.C.; Morsche, ter H.G.

    2004-01-01

    The Bachelor curriculum of Applied Mathematics in Eindhoven includes a series of modelling projects where pairs of students solve mathematical problems posed in non-mathematical language. Communication skills training is integrated with this track. Recently a new course has been added. The students

  15. An Ecological Analysis of Mathematics Teachers' Noticing

    Science.gov (United States)

    Jazby, Dan

    2016-01-01

    Most studies which investigate mathematics teacher noticing cast perception into a passive role. This study develops an ecological analysis of mathematics teachers' noticing in order to investigate how teachers actively look for information in classroom environments. This method of analysis is applied to data collected as an experienced primary…

  16. Combined principal component preprocessing and n-tuple neural networks for improved classification

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar; Linneberg, Christian

    2000-01-01

    We present a combined principal component analysis/neural network scheme for classification. The data used to illustrate the method consist of spectral fluorescence recordings from seven different production facilities, and the task is to relate an unknown sample to one of these seven factories....... The data are first preprocessed by performing an individual principal component analysis on each of the seven groups of data. The components found are then used for classifying the data, but instead of making a single multiclass classifier, we follow the ideas of turning a multiclass problem into a number...... of two-class problems. For each possible pair of classes we further apply a transformation to the calculated principal components in order to increase the separation between the classes. Finally we apply the so-called n-tuple neural network to the transformed data in order to give the classification...

  17. Symbolic mathematical computing: orbital dynamics and application to accelerators

    International Nuclear Information System (INIS)

    Fateman, R.

    1986-01-01

    Computer-assisted symbolic mathematical computation has become increasingly useful in applied mathematics. A brief introduction to such capabilitites and some examples related to orbital dynamics and accelerator physics are presented. (author)

  18. Disposal criticality analysis methodology's principal isotope burnup credit

    International Nuclear Information System (INIS)

    Doering, T.W.; Thomas, D.A.

    2001-01-01

    This paper presents the burnup credit aspects of the United States Department of Energy Yucca Mountain Project's methodology for performing criticality analyses for commercial light-water-reactor fuel. The disposal burnup credit methodology uses a 'principal isotope' model, which takes credit for the reduced reactivity associated with the build-up of the primary principal actinides and fission products in irradiated fuel. Burnup credit is important to the disposal criticality analysis methodology and to the design of commercial fuel waste packages. The burnup credit methodology developed for disposal of irradiated commercial nuclear fuel can also be applied to storage and transportation of irradiated commercial nuclear fuel. For all applications a series of loading curves are developed using a best estimate methodology and depending on the application, an additional administrative safety margin may be applied. The burnup credit methodology better represents the 'true' reactivity of the irradiated fuel configuration, and hence the real safety margin, than do evaluations using the 'fresh fuel' assumption. (author)

  19. Improving of prospective elementary teachers' reasoning: Learning geometry through mathematical investigation

    Science.gov (United States)

    Sumarna, Nana; Sentryo, Izlan

    2017-08-01

    This research applies mathematical investigation approach in teaching geometry to improve mathematical reasoning abilities of prospective elementary teachers. Mathematical investigation in this study involved non-routine tasks through a mathematical investigation process, namely through a series of activities as an attribute of mathematical investigation. Developing the ability of mathematical reasoning of research subjects obtained through capability of research subjects in the analysis, generalization, synthesis, justify, and resolve non-routine, which is operationally constructed as an indicator of research and is used as a criterion for measuring the ability of mathematical reasoning. Research design using Quasi-Experimental design. Based on this type, the researchers apply a pre-and posttest design, which is divided into two study groups: control group and the treatment group. The number of research subjects were 111 students consisting of 56 students in the experimental group and 55 students in the control group. The conclusion of this study stated that (1) Investigation of mathematics as an approach to learning is able to give a positive response to the increasing ability of mathematical reasoning, and (2) There is no interaction effect of the factors of learning and prior knowledge of mathematics to the increased ability of mathematical reasoning.

  20. A critical review of principal traffic noise models: Strategies and implications

    Energy Technology Data Exchange (ETDEWEB)

    Garg, Naveen, E-mail: ngarg@mail.nplindia.ernet.in [Apex Level Standards and Industrial Metrology Division, CSIR-National Physical Laboratory, New Delhi 110012 (India); Department of Mechanical, Production and Industrial Engineering, Delhi Technological University, Delhi 110042 (India); Maji, Sagar [Department of Mechanical, Production and Industrial Engineering, Delhi Technological University, Delhi 110042 (India)

    2014-04-01

    The paper presents an exhaustive comparison of principal traffic noise models adopted in recent years in developed nations. The comparison is drawn on the basis of technical attributes including source modelling and sound propagation algorithms. Although the characterization of source in terms of rolling and propulsion noise in conjunction with advanced numerical methods for sound propagation has significantly reduced the uncertainty in traffic noise predictions, the approach followed is quite complex and requires specialized mathematical skills for predictions which is sometimes quite cumbersome for town planners. Also, it is sometimes difficult to follow the best approach when a variety of solutions have been proposed. This paper critically reviews all these aspects pertaining to the recent models developed and adapted in some countries and also discusses the strategies followed and implications of these models. - Highlights: • Principal traffic noise models developed are reviewed. • Sound propagation algorithms used in traffic noise models are compared. • Implications of models are discussed.

  1. Nursing mathematics: the importance of application.

    Science.gov (United States)

    Hutton, B M

    This study explores the effectiveness of a revision programme in nursing mathematics for student nurses. Students who took the revision programme achieved a marked improvement in test results, although some still scored low in written tests. When interviewed, the students reported that they had difficulty applying written work in the classroom to actual calculations in the workplace. They found that only by 'doing' mathematics did the theory make sense. The author recommends that students should be encouraged to maximise the opportunities to practise mathematics in the clinical setting.

  2. The challenge of computer mathematics.

    Science.gov (United States)

    Barendregt, Henk; Wiedijk, Freek

    2005-10-15

    Progress in the foundations of mathematics has made it possible to formulate all thinkable mathematical concepts, algorithms and proofs in one language and in an impeccable way. This is not in spite of, but partially based on the famous results of Gödel and Turing. In this way statements are about mathematical objects and algorithms, proofs show the correctness of statements and computations, and computations are dealing with objects and proofs. Interactive computer systems for a full integration of defining, computing and proving are based on this. The human defines concepts, constructs algorithms and provides proofs, while the machine checks that the definitions are well formed and the proofs and computations are correct. Results formalized so far demonstrate the feasibility of this 'computer mathematics'. Also there are very good applications. The challenge is to make the systems more mathematician-friendly, by building libraries and tools. The eventual goal is to help humans to learn, develop, communicate, referee and apply mathematics.

  3. Building innovative and creative character through mathematics

    Science.gov (United States)

    Suyitno, Hardi; Suyitno, Amin

    2018-03-01

    21st century is predicted as the century with rapid development in all aspects of life. People require creative and innovative character to exist. Specifically, mathematics has been given to students from the kindergarten until the middle school. Thus, building character through mathematics should begin since the early age. The problem is how to build creative and innovative character through mathematics education? The goal expected from this question is to build innovative and creative characters to face the challenges of the 21st century. This article discusses the values of mathematics, the values in mathematics education, innovative and creative character, and the integration of these values in teaching mathematics that support the innovative and creative character building, and applying the values in structurely programmed, measurable, and applicable learning activities.

  4. Felix Klein and the NCTM's Standards: A Mathematician Considers Mathematics Education.

    Science.gov (United States)

    McComas, Kim Krusen

    2000-01-01

    Discusses the parallels between Klein's position at the forefront of a movement to reform mathematics education and that of the National Council of Teachers of Mathematics' (NCTM) Standards. Draws a picture of Klein as an important historical figure who saw equal importance in studying pure mathematics, applying mathematics, and teaching…

  5. Basic Phage Mathematics.

    Science.gov (United States)

    Abedon, Stephen T; Katsaounis, Tena I

    2018-01-01

    Basic mathematical descriptions are useful in phage ecology, applied phage ecology such as in the course of phage therapy, and also toward keeping track of expected phage-bacterial interactions as seen during laboratory manipulation of phages. The most basic mathematical descriptor of phages is their titer, that is, their concentration within stocks, experimental vessels, or other environments. Various phenomena can serve to modify phage titers, and indeed phage titers can vary as a function of how they are measured. An important aspect of how changes in titers can occur results from phage interactions with bacteria. These changes tend to vary in degree as a function of bacterial densities within environments, and particularly densities of those bacteria that are susceptible to or at least adsorbable by a given phage type. Using simple mathematical models one can describe phage-bacterial interactions that give rise particularly to phage adsorption events. With elaboration one can consider changes in both phage and bacterial densities as a function of both time and these interactions. In addition, phages along with their impact on bacteria can be considered as spatially constrained processes. In this chapter we consider the simpler of these concepts, providing in particular detailed verbal explanations toward facile mathematical insight. The primary goal is to stimulate a more informed use and manipulation of phages and phage populations within the laboratory as well as toward more effective phage application outside of the laboratory, such as during phage therapy. More generally, numerous issues and approaches to the quantification of phages are considered along with the quantification of individual, ecological, and applied properties of phages.

  6. Nuclear physics mathematical methods

    International Nuclear Information System (INIS)

    Balian, R.; Gervois, A.; Giannoni, M.J.; Levesque, D.; Maille, M.

    1984-01-01

    The nuclear physics mathematical methods, applied to the collective motion theory, to the reduction of the degrees of freedom and to the order and disorder phenomena; are investigated. In the scope of the study, the following aspects are discussed: the entropy of an ensemble of collective variables; the interpretation of the dissipation, applying the information theory; the chaos and the universality; the Monte-Carlo method applied to the classical statistical mechanics and quantum mechanics; the finite elements method, and the classical ergodicity [fr

  7. There is more variation within than across domains: an interview with Paul A. Kirschner about applying cognitive psychology based instructional design principles in mathematics teaching and learning

    NARCIS (Netherlands)

    Kirschner, Paul A.; Verschaffel, Lieven; Star, Jon; Van Dooren, Wim

    2018-01-01

    In this interview we asked Paul A. Kirschner about his comments and reflections regarding the idea to apply cognitive psychology-based instructional design principles to mathematics education and some related issues. With a main focus on cognitive psychology, educational psychology, educational

  8. Towards mathematical philosophy

    CERN Document Server

    Hendricks, Vincent F

    2008-01-01

    Logical investigations in cognitive science have successfully utilized methods and systems of belief revision, non-monotonic logic and dynamic epistemic logic. This title deals with focal issues of belief revision. It contains a collection of articles applying methods of logic or, more generally, of mathematics to solve problems.

  9. 9th International Congress on Mathematical Education

    CERN Document Server

    Hashimoto, Yoshihiko; Hodgson, Bernard; Lee, Peng; Lerman, Stephen; Sawada, Toshio

    2004-01-01

    Mathematics as a discipline has a long history, emerging from many cultures, with a truly universal character. Mathematicians throughout the world have a fundamentally common understanding of the nature of mathematics and of its central problems and methods. Research mathematicians in any part of the world are part of a cohesive intellectual community that communicates fluently. Mathematics education in contrast has a variable and culturally based character, and this is certainly true of educational organization and practice. Educational research is both an applied social science and a multidisciplinary domain of theoretical scholarship. Among organizations devoted to mathematics education, The International Commission on Mathematical Instruction (ICMI) is distinctive because of its close ties to the mathematics community. The great challenges now facing mathematics education around the world demand a deeper and more sensitive involvement of disciplinary mathematicians than we now have, both in the work of ed...

  10. A new direction in mathematics for materials science

    CERN Document Server

    Ikeda, Susumu

    2015-01-01

    This book is the first volume of the SpringerBriefs in the Mathematics of Materials and provides a comprehensive guide to the interaction of mathematics with materials science. The anterior part of the book describes a selected history of materials science as well as the interaction between mathematics and materials in history. The emergence of materials science was itself a result of an interdisciplinary movement in the 1950s and 1960s. Materials science was formed by the integration of metallurgy, polymer science, ceramics, solid state physics, and related disciplines. We believe that such historical background helps readers to understand the importance of interdisciplinary interaction such as mathematics–materials science collaboration. The middle part of the book describes mathematical ideas and methods that can be applied to materials problems and introduces some examples of specific studies—for example, computational homology applied to structural analysis of glassy materials, stochastic models for ...

  11. THE STUDY OF THE CHARACTERIZATION INDICES OF FABRICS BY PRINCIPAL COMPONENT ANALYSIS METHOD

    OpenAIRE

    HRISTIAN Liliana; OSTAFE Maria Magdalena; BORDEIANU Demetra Lacramioara; APOSTOL Laura Liliana

    2017-01-01

    The paper was pursued to prioritize the worsted fabrics type, for the manufacture of outerwear products by characterization indeces of fabrics, using the mathematical model of Principal Component Analysis (PCA). There are a number of variables with a certain influence on the quality of fabrics, but some of these variables are more important than others, so it is useful to identify those variables to a better understanding the factors which can lead the improving of the fabrics quality. A s...

  12. The Construction of Mathematical Literacy Problems for Geometry

    Science.gov (United States)

    Malasari, P. N.; Herman, T.; Jupri, A.

    2017-09-01

    The students of junior high school should have mathematical literacy ability to formulate, apply, and interpret mathematics in problem solving of daily life. Teaching these students are not enough by giving them ordinary mathematics problems. Teaching activities for these students brings consequence for teacher to construct mathematical literacy problems. Therefore, the aim of this study is to construct mathematical literacy problems to assess mathematical literacy ability. The steps of this study that consists of analysing, designing, theoretical validation, revising, limited testing to students, and evaluating. The data was collected with written test to 38 students of grade IX at one of state junior high school. Mathematical literacy problems consist of three essays with three indicators and three levels at polyhedron subject. The Indicators are formulating and employing mathematics. The results show that: (1) mathematical literacy problems which are constructed have been valid and practical, (2) mathematical literacy problems have good distinguishing characteristics and adequate distinguishing characteristics, (3) difficulty levels of problems are easy and moderate. The final conclusion is mathematical literacy problems which are constructed can be used to assess mathematical literacy ability.

  13. Сontrol systems using mathematical models of technological objects ...

    African Journals Online (AJOL)

    Сontrol systems using mathematical models of technological objects in the control loop. ... Journal of Fundamental and Applied Sciences ... Such mathematical models make it possible to specify the optimal operating modes of the considered ...

  14. Mathematics in a Pumpkin Patch.

    Science.gov (United States)

    Taffe, William J.

    1978-01-01

    Estimating the weight of large pumpkins before harvest presents an opportunity for applying several diverse mathematical topics. A model that allows an estimation by easy tape measurement is derived. (MP)

  15. Female Traditional Principals and Co-Principals: Experiences of Role Conflict and Job Satisfaction

    Science.gov (United States)

    Eckman, Ellen Wexler; Kelber, Sheryl Talcott

    2010-01-01

    This paper presents a secondary analysis of survey data focusing on role conflict and job satisfaction of 102 female principals. Data were collected from 51 female traditional principals and 51 female co-principals. By examining the traditional and co-principal leadership models as experienced by female principals, this paper addresses the impact…

  16. The Leadership Experience of a Principal Using Technology to Change a School: An Autoethnography

    Science.gov (United States)

    Foiles Kiel, Donna

    2013-01-01

    Increasingly, principals are challenged to merge technology and instruction to achieve meaningful school reform. There are limited studies revealing the personal perspective of a principal who applied servant and transformational leadership to achieve school improvement by leveraging school-wide technology integration. The purpose of this…

  17. Basics of modern mathematical statistics

    CERN Document Server

    Spokoiny, Vladimir

    2015-01-01

    This textbook provides a unified and self-contained presentation of the main approaches to and ideas of mathematical statistics. It collects the basic mathematical ideas and tools needed as a basis for more serious studies or even independent research in statistics. The majority of existing textbooks in mathematical statistics follow the classical asymptotic framework. Yet, as modern statistics has changed rapidly in recent years, new methods and approaches have appeared. The emphasis is on finite sample behavior, large parameter dimensions, and model misspecifications. The present book provides a fully self-contained introduction to the world of modern mathematical statistics, collecting the basic knowledge, concepts and findings needed for doing further research in the modern theoretical and applied statistics. This textbook is primarily intended for graduate and postdoc students and young researchers who are interested in modern statistical methods.

  18. Large Covariance Estimation by Thresholding Principal Orthogonal Complements

    Science.gov (United States)

    Fan, Jianqing; Liao, Yuan; Mincheva, Martina

    2012-01-01

    This paper deals with the estimation of a high-dimensional covariance with a conditional sparsity structure and fast-diverging eigenvalues. By assuming sparse error covariance matrix in an approximate factor model, we allow for the presence of some cross-sectional correlation even after taking out common but unobservable factors. We introduce the Principal Orthogonal complEment Thresholding (POET) method to explore such an approximate factor structure with sparsity. The POET estimator includes the sample covariance matrix, the factor-based covariance matrix (Fan, Fan, and Lv, 2008), the thresholding estimator (Bickel and Levina, 2008) and the adaptive thresholding estimator (Cai and Liu, 2011) as specific examples. We provide mathematical insights when the factor analysis is approximately the same as the principal component analysis for high-dimensional data. The rates of convergence of the sparse residual covariance matrix and the conditional sparse covariance matrix are studied under various norms. It is shown that the impact of estimating the unknown factors vanishes as the dimensionality increases. The uniform rates of convergence for the unobserved factors and their factor loadings are derived. The asymptotic results are also verified by extensive simulation studies. Finally, a real data application on portfolio allocation is presented. PMID:24348088

  19. Mathematics teachers' beliefs about scientific approach (SA) and implementation in mathematics learning

    Science.gov (United States)

    Mutholib, Ahmad Abdul; Sujadi, Imam; Subanti, Sri

    2017-08-01

    SA is the approach used for the exploration of research and answer questions. Teachers' beliefs have a greater influence than the teacher's knowledge of designing lesson plans in the classroom. The objectives of this study are to explore the teachers' beliefs in SA, to reveal how the beliefs are reflected in classroom practices; and to figure out the factors affecting their beliefs and practices of SA to the teaching of mathematics. This qualitative research applied case study. The data was gained from classroom observation, face-to-face interview, and documentation. Interactive models from Miles and Huberman were used to examine the data. Results of the study: 1) The teachers believe about the conception of SA. They also believe that the SA is important and gives impact to students' progress. They believe that by applying SA, the target of mathematics learning is acquired. As to learning procedure, they believe that SA steps are conducted in sequence by combining some steps for each. 2) Teachers formulate their beliefs of applying the five scientific step of integrating all steps by keeping the sequence. Teachers argue that target of mathematics learning can be attained by some ways, namely presence of theoretical and practical support, teachers' guidance, providing variety of media and motivation to students. 3) There are five factors which influence teachers' beliefs and practices of SA, namely learning and teaching experience, teachers' motivation, sharing with colleagues and facility. This study concludes that teachers believe in the importance of SA, therefore they implement it in the classroom.

  20. Mathematical methods in engineering

    CERN Document Server

    Machado, José

    2014-01-01

    This book presents a careful selection of the contributions presented at the Mathematical Methods in Engineering (MME10) International Symposium, held at the Polytechnic Institute of Coimbra- Engineering Institute of Coimbra (IPC/ISEC), Portugal, October 21-24, 2010. The volume discusses recent developments about theoretical and applied mathematics toward the solution of engineering problems, thus covering a wide range of topics, such as:  Automatic Control, Autonomous Systems, Computer Science, Dynamical Systems and Control,  Electronics, Finance and Economics, Fluid Mechanics and Heat Transfer, Fractional Mathematics, Fractional Transforms and Their Applications,  Fuzzy Sets and Systems, Image and Signal Analysis, Image Processing, Mechanics, Mechatronics, Motor Control and Human Movement Analysis, Nonlinear Dynamics, Partial Differential Equations, Robotics, Acoustics, Vibration and Control, and Wavelets.

  1. Using Mathematics, Mathematical Applications, Mathematical Modelling, and Mathematical Literacy: A Theoretical Study

    Science.gov (United States)

    Mumcu, Hayal Yavuz

    2016-01-01

    The purpose of this theoretical study is to explore the relationships between the concepts of using mathematics in the daily life, mathematical applications, mathematical modelling, and mathematical literacy. As these concepts are generally taken as independent concepts in the related literature, they are confused with each other and it becomes…

  2. Researching as an Enactivist Mathematics Education Researcher

    Science.gov (United States)

    Brown, Laurinda

    2015-01-01

    This paper focusses on how researching is done through reflections about, or at a meta-level to, the practice over time of an enactivist mathematics education researcher. How are the key concepts of enactivist theory ("ZDM Mathematics Education," doi: 10.1007/s11858-014-0634-7, 2015) applied? This paper begins by giving an…

  3. Innovative and collaborative industrial mathematics in Europe

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    2017-01-01

    This paper presents a brief review of how industrial mathematics, inspired by the Oxford Study Group activity, organized itself in Europe, gave rise to the European Consortium for Mathematics in Industry, the series of European Study Groups with Industry, and to new modes of productive contacts b...... between industry and applied mathematicians in academia....

  4. Mathematical and theoretical neuroscience cell, network and data analysis

    CERN Document Server

    Nieus, Thierry

    2017-01-01

    This volume gathers contributions from theoretical, experimental and computational researchers who are working on various topics in theoretical/computational/mathematical neuroscience. The focus is on mathematical modeling, analytical and numerical topics, and statistical analysis in neuroscience with applications. The following subjects are considered: mathematical modelling in Neuroscience, analytical  and numerical topics;  statistical analysis in Neuroscience; Neural Networks; Theoretical Neuroscience. The book is addressed to researchers involved in mathematical models applied to neuroscience.

  5. Social control of public expenditures in a multilevel principal-agent approach

    Directory of Open Access Journals (Sweden)

    VALDEMIR PIRES

    2015-12-01

    Full Text Available ABSTRACTThis study enhances the principal-agent model by incorporating a multilevel perspective and differences among agency situations. A theoretical discussion is developed using a proposed intersection of methodological focuses and a descriptive-exemplificative hypothetical analysis. The analysis is applied to public expenditure social control in representative democracies, and as a result, a principal-agent model unfolds that incorporates a decision-making perspective and focuses on formulation, negotiation, articulation, and implementation competencies. Thus, it is possible to incorporate elements into the principal-agent model to make it more permeable to individual, group, and societal idiosyncrasies with respect to public expenditure social control.

  6. Computers as medium for mathematical writing

    DEFF Research Database (Denmark)

    Misfeldt, Morten

    2011-01-01

    The production of mathematical formalism on state of the art computers is quite different than by pen and paper.  In this paper I examine the question of how different media influence the writing of mathematical signs. The examination is based on an investigation of professional mathematicians' use...... of various media for their writing. A model for describing mathematical writing through turntakings is proposed. The model is applied to the ways mathematicians use computers for writing, and especially it is used to understand how interaction with the computer system LaTeX is different in the case...

  7. Structuring an Undergraduate Mathematics Seminar Dealing with Options and Hedging

    Science.gov (United States)

    Prevot, K. J.

    2006-01-01

    Offering mathematics majors the opportunity to engage in current, real-world applications can be an important enhancement to their undergraduate course curriculum. Instead of focusing on the traditional topic areas in pure and/or applied mathematics, one may structure a seminar course for senior mathematics majors by concentrating on a specific…

  8. Mathematical Footprints Discovering Mathematics Everywhere

    CERN Document Server

    Pappas, Theoni

    1999-01-01

    MATHEMATICAL FOOTPRINTS takes a creative look at the role mathematics has played since prehistoric times, and will play in the future, and uncovers mathematics where you least expect to find it from its many uses in medicine, the sciences, and its appearance in art to its patterns in nature and its central role in the development of computers. Pappas presents mathematical ideas in a readable non-threatening manner. MATHEMATICAL FOOTPRINTS is another gem by the creator of THE MATHEMATICS CALENDAR and author of THE JOY OF MATHEMATICS. "Pappas's books have been gold mines of mathematical ent

  9. Mathematics of large eddy simulation of turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Berselli, L.C. [Pisa Univ. (Italy). Dept. of Applied Mathematics ' ' U. Dini' ' ; Iliescu, T. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Mathematics; Layton, W.J. [Pittsburgh Univ., PA (United States). Dept. of Mathematics

    2006-07-01

    Large eddy simulation (LES) is a method of scientific computation seeking to predict the dynamics of organized structures in turbulent flows by approximating local, spatial averages of the flow. Since its birth in 1970, LES has undergone an explosive development and has matured into a highly-developed computational technology. It uses the tools of turbulence theory and the experience gained from practical computation. This book focuses on the mathematical foundations of LES and its models and provides a connection between the powerful tools of applied mathematics, partial differential equations and LES. Thus, it is concerned with fundamental aspects not treated so deeply in the other books in the field, aspects such as well-posedness of the models, their energy balance and the connection to the Leray theory of weak solutions of the Navier-Stokes equations. The authors give a mathematically informed and detailed treatment of an interesting selection of models, focusing on issues connected with understanding and expanding the correctness and universality of LES. This volume offers a useful entry point into the field for PhD students in applied mathematics, computational mathematics and partial differential equations. Non-mathematicians will appreciate it as a reference that introduces them to current tools and advances in the mathematical theory of LES. (orig.)

  10. Mathematics and the real world

    Directory of Open Access Journals (Sweden)

    D.F.M. Strauss

    2000-03-01

    Full Text Available In this article the initial discussion of the untenability of the distinction between “pure” and “applied" mathematics is followed by looking at alternative approaches regarding the relationship between mathematics and the “real world” - with intuitionism and Platonism representing the two opposite positions. The notions of infinity as well as the totality character of spatial continuity (and its implied infinite divisibility turned out to occupy a central position in this context. In the final section brief attention is given - against the background of some perspectives on the history of mathematics - to an alternative approach in which both the uniqueness and the mutual irreducibility of number and space are conjectured.

  11. Fuzzy Genetic Algorithm Based on Principal Operation and Inequity Degree

    Science.gov (United States)

    Li, Fachao; Jin, Chenxia

    In this paper, starting from the structure of fuzzy information, by distinguishing principal indexes and assistant indexes, give comparison of fuzzy information on synthesizing effect and operation of fuzzy optimization on principal indexes transformation, further, propose axiom system of fuzzy inequity degree from essence of constraint, and give an instructive metric method; Then, combining genetic algorithm, give fuzzy optimization methods based on principal operation and inequity degree (denoted by BPO&ID-FGA, for short); Finally, consider its convergence using Markov chain theory and analyze its performance through an example. All these indicate, BPO&ID-FGA can not only effectively merge decision consciousness into the optimization process, but possess better global convergence, so it can be applied to many fuzzy optimization problems.

  12. Mathematical models in marketing a collection of abstracts

    CERN Document Server

    Funke, Ursula H

    1976-01-01

    Mathematical models can be classified in a number of ways, e.g., static and dynamic; deterministic and stochastic; linear and nonlinear; individual and aggregate; descriptive, predictive, and normative; according to the mathematical technique applied or according to the problem area in which they are used. In marketing, the level of sophistication of the mathe­ matical models varies considerably, so that a nurnber of models will be meaningful to a marketing specialist without an extensive mathematical background. To make it easier for the nontechnical user we have chosen to classify the models included in this collection according to the major marketing problem areas in which they are applied. Since the emphasis lies on mathematical models, we shall not as a rule present statistical models, flow chart models, computer models, or the empirical testing aspects of these theories. We have also excluded competitive bidding, inventory and transportation models since these areas do not form the core of ·the market...

  13. Mathematical models applied to the Cr(III) and Cr(VI) breakthrough curves.

    Science.gov (United States)

    Ramirez C, Margarita; Pereira da Silva, Mônica; Ferreira L, Selma G; Vasco E, Oscar

    2007-07-19

    Trivalent and hexavalent chromium continuous biosorption was studied using residual brewer Saccharomyces cerevisiae immobilized in volcanic rock. The columns used in the process had a diameter of 4.5 cm and a length of 140 cm, working at an inlet flow rate of 15 mL/min. Breakthrough curves were used to study the yeast biosorption behavior in the process. The saturation time (ts) was 21 and 45 h for Cr(III) and Cr(VI), respectively, and a breakthrough time (tb) of 4 h for Cr(III) and 5 h for Cr(VI). The uptake capacity of the biosorbent for Cr(III) and Cr(VI) were 48 and 60 mg/g, respectively. Two non-diffusional mathematical models with parameters t0 and sigma were used to adjust the experimental data obtained. Microsoft Excel tools were used for the mathematical solution of the two parameters used.

  14. [What did bachelard mean by "applied rationalism" ?].

    Science.gov (United States)

    Tiles, Mary

    2013-01-01

    Bachelard was concerned with the processes whereby scientific knowledge is acquired, including the activity of knowing subjects. He did not equate reasoning with logic but rather argued that reasoning resulted from the use of mathematics in organizing both thought and experimental practices, which is why he conceived science as applied mathematics. This had material and technical implications, for Bachelard was concerned with the element of reason inherent in technical materialism as well as the concrete reality inherent in applied rationalism.

  15. Technology-Enhanced Mathematics Education for Creative Engineering Studies

    DEFF Research Database (Denmark)

    Triantafyllou, Eva; Timcenko, Olga

    2014-01-01

    This project explores the opportunities and challenges of integrating digital technologies in mathematics education in creative engineering studies. Students in such studies lack motivation and do not perceive the mathematics the same way as mathematics students do. Digital technologies offer new...... are conceptualized. Then, we are going to apply this field data in designing learning technologies, which will be introduced in university classrooms. The effect of this introduction will be evaluated through educational design experiments....

  16. Combinatorial Speculations and the Combinatorial Conjecture for Mathematics

    OpenAIRE

    Mao, Linfan

    2006-01-01

    Combinatorics is a powerful tool for dealing with relations among objectives mushroomed in the past century. However, an more important work for mathematician is to apply combinatorics to other mathematics and other sciences not merely to find combinatorial behavior for objectives. Recently, such research works appeared on journals for mathematics and theoretical physics on cosmos. The main purpose of this paper is to survey these thinking and ideas for mathematics and cosmological physics, s...

  17. Machine Learning via Mathematical Programming

    National Research Council Canada - National Science Library

    Mamgasarian, Olivi

    1999-01-01

    Mathematical programming approaches were applied to a variety of problems in machine learning in order to gain deeper understanding of the problems and to come up with new and more efficient computational algorithms...

  18. Does an Observer's Content Knowledge Influence the Feedback Offered about Mathematics Lessons?

    Science.gov (United States)

    Peck, Duane C.

    2016-01-01

    The purpose of this study was two-fold. First, feedback from 3 different groups of observers: math content specialists, content specialists in areas other than mathematics, and building principals, was analyzed using an inductive approach to identify themes within the feedback. Second, differences in the feedback offered by participants of the 3…

  19. There Is More Variation "within" than "across" Domains: An Interview with Paul A. Kirschner about Applying Cognitive Psychology-Based Instructional Design Principles in Mathematics Teaching and Learning

    Science.gov (United States)

    Kirschner, Paul A.; Verschaffel, Lieven; Star, Jon; Van Dooren, Wim

    2017-01-01

    In this interview we asked Paul A. Kirschner about his comments and reflections regarding the idea to apply cognitive psychology-based instructional design principles to mathematics education and some related issues. With a main focus on cognitive psychology, educational psychology, educational technology and instructional design, this…

  20. The Role and Relevance of Mathematics in the Maritime Industry

    African Journals Online (AJOL)

    kofi.mereku

    symmetry in chemistry and physics; Calculus (differential equations) applicable in ... and engineering; and is a branch of applied mathematics. .... The maritime and offshore industries use advanced mathematical methods in the design of ships.

  1. Mathematical analysis, approximation theory and their applications

    CERN Document Server

    Gupta, Vijay

    2016-01-01

    Designed for graduate students, researchers, and engineers in mathematics, optimization, and economics, this self-contained volume presents theory, methods, and applications in mathematical analysis and approximation theory. Specific topics include: approximation of functions by linear positive operators with applications to computer aided geometric design, numerical analysis, optimization theory, and solutions of differential equations. Recent and significant developments in approximation theory, special functions and q-calculus along with their applications to mathematics, engineering, and social sciences are discussed and analyzed. Each chapter enriches the understanding of current research problems and theories in pure and applied research.

  2. TEACHING MATHEMATICAL DISCIPLINES AT THE MEDICAL UNIVERSITY

    Directory of Open Access Journals (Sweden)

    V. Ya. Gelman

    2018-01-01

    Full Text Available Introduction.In programs of training of students of medical specialties, Mathematics is a subject of basic education, i.e. non-core discipline. However, studying Mathematics is extremely important for future physicians, as recently there has been an impetuous development of mathematization in the field of health care. Today, a set of the new medical devices, the equipment and high technologies are being developed based on the mathematical modeling, analysis and forecasting. Mathematical methods are widely applied to diagnostics, development of life-support systems and the description of various biological processes both at the molecular level,  and at the level of a whole organism, its systems, bodies and tissues. The solution of many medical tasks in the field of taxonomy, genetics, and organization of medical service is impossible without knowledge of mathematics. Unfortunately, along with the evident importance of mathematical preparation for a medical profession, its need is poorly realized not only by junior students, but even by some teachers of specialized departments of medical schools.The aim of the publication is to discuss the problems that arise in the teaching of mathematical disciplines to students at a medical school and to suggest possible solutions to these problems.Methodology and research methods. The study is based on the use of modeling of the educational process. The methods of analysis, generalization and the method of expert assessments were applied in the course of the research.Results and scientific novelty. The aspects of mathematical preparation at the university are considered on the basis of the application of the multiplicative model of training quality. It is shown that the main students’ learning difficulties in Mathematics are connected with the following factors: the initial level of mathematical preparation of students and their motivation; outdated methods of Mathematics teaching and academic content

  3. The mathematics of banking and finance

    CERN Document Server

    Cox, Dennis

    2006-01-01

    Throughout banking, mathematical techniques are used. Some of these are within software products or models; mathematicians use others to analyse data. The current literature on the subject is either very basic or very advanced. The Mathematics of Banking offers an intermediate guide to the various techniques used in the industry, and a consideration of how each one should be approached. Written in a practical style, it will enable readers to quickly appreciate the purpose of the techniques and, through illustrations, see how they can be applied in practice. Coverage is extensive and includes techniques such as VaR analysis, Monte Carlo simulation, extreme value theory, variance and many others.A practical review of mathematical techniques needed in banking which does not expect a high level of mathematical competence from the reader

  4. Mathematical and physical theory of turbulence

    CERN Document Server

    Cannon, John

    2006-01-01

    Although the current dynamical system approach offers several important insights into the turbulence problem, issues still remain that present challenges to conventional methodologies and concepts. These challenges call for the advancement and application of new physical concepts, mathematical modeling, and analysis techniques. Bringing together experts from physics, applied mathematics, and engineering, Mathematical and Physical Theory of Turbulence discusses recent progress and some of the major unresolved issues in two- and three-dimensional turbulence as well as scalar compressible turbulence. Containing introductory overviews as well as more specialized sections, this book examines a variety of turbulence-related topics. The authors concentrate on theory, experiments, computational, and mathematical aspects of Navier-Stokes turbulence; geophysical flows; modeling; laboratory experiments; and compressible/magnetohydrodynamic effects. The topics discussed in these areas include finite-time singularities a...

  5. Methods of mathematical modelling continuous systems and differential equations

    CERN Document Server

    Witelski, Thomas

    2015-01-01

    This book presents mathematical modelling and the integrated process of formulating sets of equations to describe real-world problems. It describes methods for obtaining solutions of challenging differential equations stemming from problems in areas such as chemical reactions, population dynamics, mechanical systems, and fluid mechanics. Chapters 1 to 4 cover essential topics in ordinary differential equations, transport equations and the calculus of variations that are important for formulating models. Chapters 5 to 11 then develop more advanced techniques including similarity solutions, matched asymptotic expansions, multiple scale analysis, long-wave models, and fast/slow dynamical systems. Methods of Mathematical Modelling will be useful for advanced undergraduate or beginning graduate students in applied mathematics, engineering and other applied sciences.

  6. Using realistic mathematics education and the DAPIC problem-solving process to enhance secondary school students' mathematical literacy

    Directory of Open Access Journals (Sweden)

    Sunisa Sumirattana

    2017-09-01

    This study was based on research and development design. The main purposes of this study were to develop an instructional process for enhancing mathematical literacy among students in secondary school and to study the effects of the developed instructional process on mathematical literacy. The instructional process was developed by analyzing and synthesizing realistic mathematics education and the DAPIC problem-solving process. The developed instructional process was verified by experts and was trialed. The designated pre-test/post-test control method was used to study the effectiveness of the developed instructional process on mathematical literacy. The sample consisted of 104 ninth grade students from a secondary school in Bangkok, Thailand. The developed instructional process consisted of five steps, namely (1 posing real life problems, (2 solving problems individually or in a group, (3 presenting and discussing, (4 developing formal mathematics, and (5 applying knowledge. The mathematical literacy of the experimental group was significantly higher after being taught through the instructional process. The same results were obtained when comparing the results of the experimental group with the control group.

  7. Introduction to mathematics of satisfiability

    CERN Document Server

    Marek, Victor W

    2009-01-01

    Although this area has a history of over 80 years, it was not until the creation of efficient SAT solvers in the mid-1990s that it became practically important, finding applications in electronic design automation, hardware and software verification, combinatorial optimization, and more. Exploring the theoretical and practical aspects of satisfiability, Introduction to Mathematics of Satisfiability focuses on the satisfiability of theories consisting of propositional logic formulas. It describes how SAT solvers and techniques are applied to problems in mathematics and computer science as well

  8. Pure Science and Applied Science

    Directory of Open Access Journals (Sweden)

    Robert J. Aumann

    2011-01-01

    Full Text Available (Excerpt The name of my talk is Pure Science and Applied Science, and the idea I would like to sell to you today is that there is no such thing as “pure” or “applied” science. In other words, there is such a thing as science, but there is no difference between pure and applied science. Science is one entity and cannot be separated into different categories. In order to back that up, I would like to tell you a little story. As an undergraduate, I studied mathematics at City College in New York. At that time, what was called Pure Mathematics was in vogue, and the more prominent mathematicians were a little contemptuous of any kind of application. A very famous, prominent mathematician in the first half of the previous century by the name of G. H. Hardy, who was in a branch of mathematics called number theory, said that the only thing he regretted was that he unwittingly did some important work in mathematical genetics that eventually turned out to have some application. … Such was the atmosphere in the late ’40s of the previous century and, being a young man and impressionable, I was swept up in this atmosphere.

  9. The Music of Mathematics: Toward a New Problem Typology

    Science.gov (United States)

    Quarfoot, David

    Halmos (1980) once described problems and their solutions as "the heart of mathematics". Following this line of thinking, one might naturally ask: "What, then, is the heart of problems?". In this work, I attempt to answer this question using techniques from statistics, information visualization, and machine learning. I begin the journey by cataloging the features of problems delineated by the mathematics and mathematics education communities. These dimensions are explored in a large data set of students working thousands of problems at the Art of Problem Solving, an online company that provides adaptive mathematical training for students around the world. This analysis is able to concretely show how the fabric of mathematical problems changes across different subjects, difficulty levels, and students. Furthermore, it locates problems that stand out in the crowd -- those that synergize cognitive engagement, learning, and difficulty. This quantitatively-heavy side of the dissertation is partnered with a qualitatively-inspired portion that involves human scoring of 105 problems and their solutions. In this setting, I am able to capture elusive features of mathematical problems and derive a fuller picture of the space of mathematical problems. Using correlation matrices, principal components analysis, and clustering techniques, I explore the relationships among those features frequently discussed in mathematics problems (e.g., difficulty, creativity, novelty, affective engagement, authenticity). Along the way, I define a new set of uncorrelated features in problems and use these as the basis for a New Mathematical Problem Typology (NMPT). Grounded in the terminology of classical music, the NMPT works to quickly convey the essence and value of a problem, just as terms like "etude" and "mazurka" do for musicians. Taken together, these quantitative and qualitative analyses seek to terraform the landscape of mathematical problems and, concomitantly, the current thinking

  10. Cloud Masking for Remotely Sensed Data Using Spectral and Principal Components Analysis

    Directory of Open Access Journals (Sweden)

    A. Ahmad

    2012-06-01

    Full Text Available Two methods of cloud masking tuned to tropical conditions have been developed, based on spectral analysis and Principal Components Analysis (PCA of Moderate Resolution Imaging Spectroradiometer (MODIS data. In the spectral approach, thresholds were applied to four reflective bands (1, 2, 3, and 4, three thermal bands (29, 31 and 32, the band 2/band 1 ratio, and the difference between band 29 and 31 in order to detect clouds. The PCA approach applied a threshold to the first principal component derived from the seven quantities used for spectral analysis. Cloud detections were compared with the standard MODIS cloud mask, and their accuracy was assessed using reference images and geographical information on the study area.

  11. Capturing Student Mathematical Engagement through Differently Enacted Classroom Practices: Applying a Modification of Watson's Analytical Tool

    Science.gov (United States)

    Patahuddin, Sitti Maesuri; Puteri, Indira; Lowrie, Tom; Logan, Tracy; Rika, Baiq

    2018-01-01

    This study examined student mathematical engagement through the intended and enacted lessons taught by two teachers in two different middle schools in Indonesia. The intended lesson was developed using the ELPSA learning design to promote mathematical engagement. Based on the premise that students will react to the mathematical tasks in the forms…

  12. Applying mathematical finance tools to the competitive Nordic electricity market

    International Nuclear Information System (INIS)

    Vehvilaeinen, I.

    2004-01-01

    This thesis models competitive electricity markets using the methods of mathematical finance. Fundamental problems of finance are market price modelling, derivative pricing, and optimal portfolio selection. The same questions arise in competitive electricity markets. The thesis presents an electricity spot price model based on the fundamental stochastic factors that affect electricity prices. The resulting price model has sound economic foundations, is able to explain spot market price movements, and offers a computationally efficient way of simulating spot prices. The thesis shows that the connection between spot prices and electricity forward prices is nontrivial because electricity is a commodity that must be consumed immediately. Consequently, forward prices of different times are based on the supply-demand conditions at those times. This thesis introduces a statistical model that captures the main characteristics of observed forward price movements. The thesis presents the pricing problems relating to the common Nordic electricity derivatives, as well as the pricing relations between electricity derivatives. The special characteristics of electricity make spot electricity market incomplete. The thesis assumes the existence of a risk-neutral martingale measure so that formal pricing results can be obtained. Some concepts introduced in financial markets are directly usable in the electricity markets. The risk management application in this thesis uses a static optimal portfolio selection framework where Monte Carlo simulation provides quantitative results. The application of mathematical finance requires careful consideration of the special characteristics of the electricity markets. Economic theory and reasoning have to be taken into account when constructing financial models in competitive electricity markets. (orig.)

  13. Strategy Instruction in Mathematics.

    Science.gov (United States)

    Goldman, Susan R.

    1989-01-01

    Experiments in strategy instruction for mathematics have been conducted using three models (direct instruction, self-instruction, and guided learning) applied to the tasks of computation and word problem solving. Results have implications for effective strategy instruction for learning disabled students. It is recommended that strategy instruction…

  14. Applying Mathematical Tools to Accelerate Vaccine Development: Modeling Shigella Immune Dynamics

    Science.gov (United States)

    Davis, Courtney L.; Wahid, Rezwanul; Toapanta, Franklin R.; Simon, Jakub K.

    2013-01-01

    We establish a mathematical framework for studying immune interactions with Shigella, a bacteria that kills over one million people worldwide every year. The long-term goal of this novel approach is to inform Shigella vaccine design by elucidating which immune components and bacterial targets are crucial for establishing Shigella immunity. Our delay differential equation model focuses on antibody and B cell responses directed against antigens like lipopolysaccharide in Shigella’s outer membrane. We find that antibody-based vaccines targeting only surface antigens cannot elicit sufficient immunity for protection. Additional boosting prior to infection would require a four-orders-of-magnitude increase in antibodies to sufficiently prevent epithelial invasion. However, boosting anti-LPS B memory can confer protection, which suggests these cells may correlate with immunity. We see that IgA antibodies are slightly more effective per molecule than IgG, but more total IgA is required due to spatial functionality. An extension of the model reveals that targeting both LPS and epithelial entry proteins is a promising avenue to advance vaccine development. This paper underscores the importance of multifaceted immune targeting in creating an effective Shigella vaccine. It introduces mathematical models to the Shigella vaccine development effort and lays a foundation for joint theoretical/experimental/clinical approaches to Shigella vaccine design. PMID:23589755

  15. Imperialist Competitive Algorithm with Dynamic Parameter Adaptation Using Fuzzy Logic Applied to the Optimization of Mathematical Functions

    Directory of Open Access Journals (Sweden)

    Emer Bernal

    2017-01-01

    Full Text Available In this paper we are presenting a method using fuzzy logic for dynamic parameter adaptation in the imperialist competitive algorithm, which is usually known by its acronym ICA. The ICA algorithm was initially studied in its original form to find out how it works and what parameters have more effect upon its results. Based on this study, several designs of fuzzy systems for dynamic adjustment of the ICA parameters are proposed. The experiments were performed on the basis of solving complex optimization problems, particularly applied to benchmark mathematical functions. A comparison of the original imperialist competitive algorithm and our proposed fuzzy imperialist competitive algorithm was performed. In addition, the fuzzy ICA was compared with another metaheuristic using a statistical test to measure the advantage of the proposed fuzzy approach for dynamic parameter adaptation.

  16. Philosophy of mathematics an introduction to a world of proofs and pictures

    CERN Document Server

    Brown, James Robert

    1999-01-01

    This text discusses the great philosophers and the importance of mathematics to their thought. It includes topics such as: the mathematical image; platonism; picture-proofs; applied mathematics; Hilbert and Godel; knots and nations; definitions; picture-proofs and Wittgenstein; and computation, proof and conjecture.

  17. Regularized principal covariates regression and its application to finding coupled patterns in climate fields

    Science.gov (United States)

    Fischer, M. J.

    2014-02-01

    There are many different methods for investigating the coupling between two climate fields, which are all based on the multivariate regression model. Each different method of solving the multivariate model has its own attractive characteristics, but often the suitability of a particular method for a particular problem is not clear. Continuum regression methods search the solution space between the conventional methods and thus can find regression model subspaces that mix the attractive characteristics of the end-member subspaces. Principal covariates regression is a continuum regression method that is easily applied to climate fields and makes use of two end-members: principal components regression and redundancy analysis. In this study, principal covariates regression is extended to additionally span a third end-member (partial least squares or maximum covariance analysis). The new method, regularized principal covariates regression, has several attractive features including the following: it easily applies to problems in which the response field has missing values or is temporally sparse, it explores a wide range of model spaces, and it seeks a model subspace that will, for a set number of components, have a predictive skill that is the same or better than conventional regression methods. The new method is illustrated by applying it to the problem of predicting the southern Australian winter rainfall anomaly field using the regional atmospheric pressure anomaly field. Regularized principal covariates regression identifies four major coupled patterns in these two fields. The two leading patterns, which explain over half the variance in the rainfall field, are related to the subtropical ridge and features of the zonally asymmetric circulation.

  18. Platonism, Naturalism, and Mathematical Knowledge

    CERN Document Server

    Brown, James Robert

    2011-01-01

    This study addresses a central theme in current philosophy: Platonism vs Naturalism and provides accounts of both approaches to mathematics, crucially discussing Quine, Maddy, Kitcher, Lakoff, Colyvan, and many others. Beginning with accounts of both approaches, Brown defends Platonism by arguing that only a Platonistic approach can account for concept acquisition in a number of special cases in the sciences. He also argues for a particular view of applied mathematics, a view that supports Platonism against Naturalist alternatives. Not only does this engaging book present the Platonist-Natural

  19. Wind tunnel modeling of roadways: Comparison with mathematical models

    International Nuclear Information System (INIS)

    Heidorn, K.; Davies, A.E.; Murphy, M.C.

    1991-01-01

    The assessment of air quality impacts from roadways is a major concern to urban planners. In order to assess future road and building configurations, a number of techniques have been developed including mathematical models, which simulate traffic emissions and atmospheric dispersion through a series of mathematical relationships and physical models. The latter models simulate emissions and dispersion through scaling of these processes in a wind tunnel. Two roadway mathematical models, HIWAY-2 and CALINE-4, were applied to a proposed development in a large urban area. Physical modeling procedures developed by Rowan Williams Davies and Irwin Inc. (RWDI) in the form of line source simulators were also applied, and the resulting carbon monoxide concentrations were compared. The results indicated a factor of two agreement between the mathematical and physical models. The physical model, however, reacted to change in building massing and configuration. The mathematical models did not, since no provision for such changes was included in the mathematical models. In general, the RWDI model resulted in higher concentrations than either HIWAY-2 or CALINE-4. Where there was underprediction, it was often due to shielding of the receptor by surrounding buildings. Comparison of these three models with the CALTRANS Tracer Dispersion Experiment showed good results although concentrations were consistently underpredicted

  20. Economics and Mathematical Theory of Games

    OpenAIRE

    Ajda Fosner

    2012-01-01

    The theory of games is a branch of applied mathematics that is used in economics, management, and other social sciences. Moreover, it is used also in military science, political science, international relations, computer science, evolutionary biology, and ecology. It is a field of mathematics in which games are studied. The aim of this article is to present matrix games and the game theory. After the introduction, we will explain the methodology and give some examples. We will show applicatio...

  1. Putting Teachers First: Leading Change through Design--Initiating and Sustaining Effective Teaching of Mathematics

    Science.gov (United States)

    Proffitt-White, Rob

    2017-01-01

    The Teachers First initiative is a grass-roots cluster-model approach for bringing together primary and secondary teachers and school principals: to analyse student performance data; design and practice activities and assessment tools; and promote teaching practices that address students' learning difficulties in mathematics. The balance of both…

  2. Mathematics education for social justice

    Science.gov (United States)

    Suhendra

    2016-02-01

    Mathematics often perceived as a difficult subject with many students failing to understand why they learn mathematics. This situation has been further aggravated by the teaching and learning processes used, which is mechanistic without considering students' needs. The learning of mathematics tends to be just a compulsory subject, in which all students have to attend its classes. Social justice framework facilitates individuals or groups as a whole and provides equitable approaches to achieving equitable outcomes by recognising disadvantage. Applying social justice principles in educational context is related to how the teachers treat their students, dictates that all students the right to equal treatment regardless of their background and completed with applying social justice issues integrated with the content of the subject in order to internalise the principles of social justice simultaneously the concepts of the subject. The study examined the usefulness of implementing the social justice framework as a means of improving the quality of mathematics teaching in Indonesia involved four teacher-participants and their mathematics classes. The study used action research as the research methodology in which the teachers implemented and evaluated their use of social justice framework in their teaching. The data were collected using multiple research methods while analysis and interpretation of the data were carried out throughout the study. The findings of the study indicated that there were a number of challengesrelated to the implementation of the social justice framework. The findings also indicated that, the teachers were provided with a comprehensive guide that they could draw on to make decisions about how they could improve their lessons. The interactions among students and between the teachers and the students improved, they became more involved in teaching and learning process. Using social justice framework helped the teachers to make mathematics more

  3. A mathematical model for the third-body concept

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Pavel; Petrov, A.

    2018-01-01

    Roč. 23, č. 3 (2018), s. 420-432 ISSN 1081-2865 R&D Projects: GA ČR(CZ) GA15-12227S Institutional support: RVO:67985840 Keywords : third-body * hysteresis operators * variational inequality Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 2.953, year: 2016 http://journals.sagepub.com/doi/abs/10.1177/1081286517732827

  4. Mathematics and the laws of nature

    CERN Document Server

    Tabak, John

    2004-01-01

    Examining the pioneering ideas, works, and applications that have made math the language of science, Mathematics and the Laws of Nature looks at the many ways in which so-called ''''pure'''' math has been used in the applied sciences. For example, the volume explores how mathematical theories contributed to the development of Kepler''s laws of planetary motion, as well as to that of combustion modeling and hydrodynamics. Offering many examples showing how nature can be described mathematically and how the physical sciences and math are connected, this attention-holding and easy-to-understand volume gives students an insight into the ways that math is used to explain the world around them.

  5. Moving beyond the Barriers: Supporting Meaningful Teacher Collaboration to Improve Secondary School Mathematics

    Science.gov (United States)

    Jao, Limin; McDougall, Doug

    2016-01-01

    The Collaborative Teacher Inquiry Project was a professional development initiative that sought to improve the teaching and learning of Grade 9 Applied mathematics by encouraging teachers to work collaboratively. The project brought together Grade 9 Applied mathematics teachers from 11 schools across four neighboring public school boards in the…

  6. Applying Krumboltz's Theory of Career Decision Making (CDM) to the Longevity of Principals in the North American Division of Seventh-Day Adventists

    Science.gov (United States)

    Saint-Ulysse, Sadrail

    2017-01-01

    Problem: Ledesma (2011) reports that principals' average tenure in Adventist schools in North America "ranges from 2.5-4.0 years. Elementary principals remain in leadership for 2.5 years, day academy principals stay for 3.6 years, and boarding academy principals leave after 4.0 years" (p, 8). Ledesma also noted that the length of tenure…

  7. A software complex intended for constructing applied models and meta-models on the basis of mathematical programming principles

    Directory of Open Access Journals (Sweden)

    Михаил Юрьевич Чернышов

    2013-12-01

    Full Text Available A software complex (SC elaborated by the authors on the basis of the language LMPL and representing a software tool intended for synthesis of applied software models and meta-models constructed on the basis of mathematical programming (MP principles is described. LMPL provides for an explicit form of declarative representation of MP-models, presumes automatic constructing and transformation of models and the capability of adding external software packages. The following software versions of the SC have been implemented: 1 a SC intended for representing the process of choosing an optimal hydroelectric power plant model (on the principles of meta-modeling and 2 a SC intended for representing the logic-sense relations between the models of a set of discourse formations in the discourse meta-model.

  8. Principal direction of inertia for 3D trajectories from patient-specific TMJ movement.

    Science.gov (United States)

    Kim, Dae-Seung; Choi, Soon-Chul; Lee, Sam-Sun; Heo, Min-Suk; Huh, Kyung-Hoe; Hwang, Soon-Jung; Kim, Seong-Ha; Yi, Won-Jin

    2013-03-01

    Accurate simulation and evaluation of mandibular movement is fundamental for the analysis of functional changes and effects of the mandible and maxilla before and after surgical treatments. We applied principal axes of inertia to the three-dimensional (3D) trajectories generated by patient-specific simulations of TMJ movements for the functional evaluations of mandible movement. Three-dimensional movements of the mandible and the maxilla were tracked based on a patient-specific splint and an optical tracking system. The dental occlusion recorded on the sprint provided synchronization for initial movement in the tracking and the simulation phases. The translation and rotation recorded during movement tracking was applied sequentially to the mandibular model in relation to a fixed maxilla model. The sequential 3D positions of selected landmarks on the mandible were calculated based on the reference coordinate system. The landmarks selected for analysis were bilateral condyles and pogonion points. The moment of inertia tensor was calculated with respect to the 3D trajectory points. Using the unit vectors along the principal axes derived from the tensor matrix, α, β and γ rotations around z-, y- and x-axes were determined to represent the principal directions as principal rotations respectively. The γ direction showed the higher standard deviation, variation of directions, than other directions at all the landmarks. The mandible movement has larger kinematic redundancy in the γ direction than α and β during mouth opening and closing. Principal directions of inertia would be applied to analyzing the changes in angular motion of trajectories introduced by mandibular shape changes from surgical treatments and also to the analysis of the influence of skeletal deformities on mandibular movement asymmetry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Equations in mathematical physics a practical course

    CERN Document Server

    Pikulin, Victor P

    2001-01-01

    Many physical processes in fields such as mechanics, thermodynamics, electricity, magnetism or optics are described by means of partial differential equations. The aim of the present book is to demonstrate the basic methods for solving the classical linear problems in mathematical physics of elliptic, parabolic and hyperbolic type. In particular, the methods of conformal mappings, Fourier analysis and Green`s functions are considered, as well as the perturbation method and integral transformation method, among others. Every chapter contains concrete examples with a detailed analysis of their solution. The book is intended as a textbook for students in mathematical physics, but will also serve as a handbook for scientists and engineers.   ------------ [A] manual for future engineers must strongly differ from the textbook for pure mathematicians, and the book by Pikulin and Pohozaev is the good example. (…) The purpose (…)  is to offer quick access to the principal facts (…) This well written book is a...

  10. Predicting Relationships between Mathematics Anxiety, Mathematics Teaching Anxiety, Self-efficacy Beliefs towards Mathematics and Mathematics Teaching

    OpenAIRE

    Unlu, Melihan; Ertekin, Erhan; Dilmac, Bulent

    2017-01-01

    The purpose of the research is to investigate the relationships betweenself-efficacy beliefs toward mathematics, mathematics anxiety and self-efficacybeliefs toward mathematics teaching, mathematics teaching anxiety variables andtesting the relationships between these variables with structural equationmodel. The sample of the research, which was conducted in accordance withrelational survey model, consists of 380 university students, who studied atthe department of Elementary Mathematics Educ...

  11. The use of mathematical models in teaching wastewater treatment engineering

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Arvin, Erik; Vanrolleghem, P.

    2002-01-01

    Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models...... efficiently and responsibly. Approaches for introducing mathematical modeling into courses on wastewater treatment engineering are discussed depending on the learning objectives, level of the course and the time available....

  12. Dimensionality reduction of collective motion by principal manifolds

    Science.gov (United States)

    Gajamannage, Kelum; Butail, Sachit; Porfiri, Maurizio; Bollt, Erik M.

    2015-01-01

    While the existence of low-dimensional embedding manifolds has been shown in patterns of collective motion, the current battery of nonlinear dimensionality reduction methods is not amenable to the analysis of such manifolds. This is mainly due to the necessary spectral decomposition step, which limits control over the mapping from the original high-dimensional space to the embedding space. Here, we propose an alternative approach that demands a two-dimensional embedding which topologically summarizes the high-dimensional data. In this sense, our approach is closely related to the construction of one-dimensional principal curves that minimize orthogonal error to data points subject to smoothness constraints. Specifically, we construct a two-dimensional principal manifold directly in the high-dimensional space using cubic smoothing splines, and define the embedding coordinates in terms of geodesic distances. Thus, the mapping from the high-dimensional data to the manifold is defined in terms of local coordinates. Through representative examples, we show that compared to existing nonlinear dimensionality reduction methods, the principal manifold retains the original structure even in noisy and sparse datasets. The principal manifold finding algorithm is applied to configurations obtained from a dynamical system of multiple agents simulating a complex maneuver called predator mobbing, and the resulting two-dimensional embedding is compared with that of a well-established nonlinear dimensionality reduction method.

  13. Partial differential equations of mathematical physics

    CERN Document Server

    Sobolev, S L

    1964-01-01

    Partial Differential Equations of Mathematical Physics emphasizes the study of second-order partial differential equations of mathematical physics, which is deemed as the foundation of investigations into waves, heat conduction, hydrodynamics, and other physical problems. The book discusses in detail a wide spectrum of topics related to partial differential equations, such as the theories of sets and of Lebesgue integration, integral equations, Green's function, and the proof of the Fourier method. Theoretical physicists, experimental physicists, mathematicians engaged in pure and applied math

  14. Mathematical methods for physicists and engineers

    CERN Document Server

    Collins, Royal Eugene

    2011-01-01

    This practical, highly readable text provides physics and engineering students with the essential mathematical tools for thorough comprehension of their disciplines. Featuring all the necessary topics in applied mathematics in the form of programmed instruction, the text can be understood by advanced undergraduates and beginning graduate students without any assistance from the instructor. Topics include elementary vector calculus, matrix algebra, and linear vector operations; the many and varied methods of solving linear boundary value problems, including the more common special functions o

  15. MATHEMATICS AND COMPUTERS IN SPORT - OVERVIEW

    Directory of Open Access Journals (Sweden)

    John Hammond

    2006-12-01

    Full Text Available MATHEMATICS AND COMPUTERS IN SPORT - OVERVIEW The first 17 papers in this (December issue of the Journal of Sports Science and Medicine are selected papers from the Eighth Australasian Conference on Mathematics and Computers in Sport, held in Queensland in July 2006. Of the first seven conferences, five were held at Bond University in Queensland, one at the University of Technology in Sydney during the year of the Sydney Olympics, and the last one was in New Zealand at Massey University. The emerging discipline of mathematics and computers in sport has developed under the auspices of the Australian and New Zealand Industrial and Applied Mathematics (ANZIAM Division of the Australian Mathematics Society through an interest group known as MathSport, bringing together sports scientists who are interested inmathematical and statistical modelling in sport, the use of computers in sport, the application of these to improve coaching and individual performance, and teaching that combines mathematics, computers and sport. This eighth conference in the series returned to Queensland but not at Bond University, because campus accommodation for conference participants was no longer available at that venue. Instead delegates gathered at the Greenmount Beach Resort, which has been used during the past decade for a number of Applied Mathematics Conferences. There were 33 papers presented during the 3 days, across topics that covered a variety of individual and team sports. Participants attended from the United Kingdom, France, Germany, India, New Zealand and Australia. These participants were drawn from those working in mainstream mathematics, statistics, computers science, sports science support, coaching and education.Professor Steve Clarke and Emeritus Professor Neville de Mestre have been to all eight conferences and this year delivered papers on Australian rules football and golf putting respectively. Tony Lewis, of the Duckworth-Lewis formula for

  16. The Role of Self-Assessment in Foundation of Mathematics Learning

    Science.gov (United States)

    Masriyah

    2018-01-01

    This research is motivated by the low performance of students who took Foundations of Mathematics course. This study was aimed to describe (1) the learning outcomes of students who learned Mathematics Foundation after learning axiomatic applying self-assessment; (2) the difficulty of students and the alternative solutions; and (3) the response of students toward Foundation of Mathematics learning taught by applying self-assessment. This research was a descriptive research. The subjects were 25 mathematics students who studied Foundation of Mathematics in odd semester of the 2015/2016 academic year. Data collection was done using questionnaires, and testing methods. Based on the results of data analysis, it can be concluded that the learning outcomes of students were categorized as “good.” Student responses were positive; the difficulties lied in the sub material: Classification of Axiom Systems and the requirements, Theorem and how the formation, and finite geometry. The alternatives deal with these difficulties are to give emphasis and explanation as needed on these materials, as well as provide some more exercises to reinforce their understanding.

  17. Bridging different perspectives of the physiological and mathematical disciplines.

    Science.gov (United States)

    Batzel, Jerry Joseph; Hinghofer-Szalkay, Helmut; Kappel, Franz; Schneditz, Daniel; Kenner, Thomas; Goswami, Nandu

    2012-12-01

    The goal of this report is to discuss educational approaches for bridging the different perspectives of the physiological and mathematical disciplines. These approaches can enhance the learning experience for physiology, medical, and mathematics students and simultaneously act to stimulate mathematical/physiological/clinical interdisciplinary research. While physiology education incorporates mathematics, via equations and formulas, it does not typically provide a foundation for interdisciplinary research linking mathematics and physiology. Here, we provide insights and ideas derived from interdisciplinary seminars involving mathematicians and physiologists that have been conducted over the last decade. The approaches described here can be used as templates for giving physiology and medical students insights into how sophisticated tools from mathematics can be applied and how the disciplines of mathematics and physiology can be integrated in research, thereby fostering a foundation for interdisciplinary collaboration. These templates are equally applicable to linking mathematical methods with other life and health sciences in the educational process.

  18. Basic mathematics for biochemists

    CERN Document Server

    Cornish-Bowden, Athel

    1981-01-01

    Some teachers of biochemistry think it positively beneficial for students to struggle with difficult mathematics. I do not number myself among these people, although I have derived much personal pleasure from the study of mathematics and from applying it to problems that interest me in biochemistry. On the contrary, I think that students choose courses in biochemistry out of interest in biochemistry and that they should not be encumbered with more mathematics than is absolutely required for a proper understanding of biochemistry. This of course includes physical chemistry, because a biochemist ignorant of physical chemistry is no biochemist. I have been guided by these beliefs in writing this book. I have laid heavy emphasis on those topics, such as the use of logarithms, that play an important role in biochemistry and often cause problems in teaching; I have ignored others, such as trigonometry, that one can manage without. The proper treatment of statistics has been more difficult to decide. Although it cle...

  19. 6th World Conference on 21st Century Mathematics

    CERN Document Server

    Choudary, ADR; Waldschmidt, Michel

    2015-01-01

    Numerous well-presented and important papers from the conference are gathered in the proceedings for the purpose of pointing directions for useful future research in diverse areas of mathematics including algebraic geometry, analysis, commutative algebra, complex analysis, discrete mathematics, dynamical systems, number theory and topology. Several papers on computational and applied mathematics such as wavelet analysis, quantum mechanics, piecewise linear modeling, cosmological models of super symmetry, fluid dynamics, interpolation theory, optimization, ergodic theory and games theory are also presented.

  20. Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements

    International Nuclear Information System (INIS)

    Yeh, J.-W.; Chang, S.-Y.; Hong, Y.-D.; Chen, S.-K.; Lin, S.-J.

    2007-01-01

    With an aim to understand the great reduction in the X-ray diffraction (XRD) intensities of high-entropy alloys, a series of Cu-Ni-Al-Co-Cr-Fe-Si alloys with systematic addition of principal elements from pure element to seven elements was investigated for quantitative analysis of XRD intensities. The variation of XRD peak intensities of the alloy system is similar to that caused by thermal effect, but the intensities further drop beyond the thermal effect with increasing number of incorporated principal elements. An intrinsic lattice distortion effect caused by the addition of multi-principal elements with different atomic sizes is expected for the anomalous decrease in XRD intensities. The mathematical factor of this distortion effect for the modification of XRD structure factor is formulated analogue to that of thermal effect

  1. History of mathematics and history of science reunited?

    Science.gov (United States)

    Gray, Jeremy

    2011-09-01

    For some years now, the history of modern mathematics and the history of modern science have developed independently. A step toward a reunification that would benefit both disciplines could come about through a revived appreciation of mathematical practice. Detailed studies of what mathematicians actually do, whether local or broadly based, have often led in recent work to examinations of the social, cultural, and national contexts, and more can be done. Another recent approach toward a historical understanding of the abstractness of modern mathematics has been to see it as a species of modernism, and this thesis will be tested by the raft of works on the history of modern applied mathematics currently under way.

  2. Statistical techniques applied to aerial radiometric surveys (STAARS): principal components analysis user's manual

    International Nuclear Information System (INIS)

    Koch, C.D.; Pirkle, F.L.; Schmidt, J.S.

    1981-01-01

    A Principal Components Analysis (PCA) has been written to aid in the interpretation of multivariate aerial radiometric data collected by the US Department of Energy (DOE) under the National Uranium Resource Evaluation (NURE) program. The variations exhibited by these data have been reduced and classified into a number of linear combinations by using the PCA program. The PCA program then generates histograms and outlier maps of the individual variates. Black and white plots can be made on a Calcomp plotter by the application of follow-up programs. All programs referred to in this guide were written for a DEC-10. From this analysis a geologist may begin to interpret the data structure. Insight into geological processes underlying the data may be obtained

  3. Total Quality Management in the Classroom: Applications to University-Level Mathematics.

    Science.gov (United States)

    Williams, Frank

    1995-01-01

    Describes a Total Quality Management-based system of instruction that is used in a variety of undergraduate mathematics courses. The courses that incorporate this approach include mathematics appreciation, introductory calculus, and advanced applied linear algebra. (DDR)

  4. Mathematics intervention for prevention of neurocognitive deficits in childhood leukemia.

    Science.gov (United States)

    Moore, Ida M; Hockenberry, Marilyn J; Anhalt, Cynthia; McCarthy, Kathy; Krull, Kevin R

    2012-08-01

    Despite evidence that CNS treatment is associated with cognitive and academic impairment, interventions to prevent or mitigate these problems are limited. The purpose was to determine if early intervention can prevent declines in mathematics abilities. Fifty-seven children with ALL were enrolled and randomized to a Mathematics Intervention or Standard Care. Subjects completed neurocognitive assessments prior to the intervention, post-intervention, and 1 year later. Parents received written results and recommendations for use with their school. The Mathematics Intervention was based on Multiple Representation Theory and delivered individually over 1 year. Thirty-two of 57 subjects completed the study and were included in data analyses. These 32 subjects completed all neurocognitive assessments and, for those in the Intervention Group, 40-50 hours of the Mathematics Intervention. There were no group differences on relevant demographic variables; risk stratification; number of intrathecal methotrexate injections; or high dose systemic methotrexate. Significant improvements in calculation and applied mathematics from Baseline to Post-Intervention (P = 0.003 and 0.002, respectively) and in visual working memory from Baseline to 1 year Follow-up (P = 0.02) were observed in the Intervention but not the Standard Care Group. Results from repeated measures ANOVA demonstrated significant between group differences for applied mathematics [F(2,29) = 12.47, P Mathematics Intervention improved mathematics abilities and visual working memory compared to standard care. Future studies are needed to translate the Mathematics Intervention into a "virtual" delivery method more readily available to parents and children. Copyright © 2011 Wiley Periodicals, Inc.

  5. A case study of Markdale High School's implementation of heterogeneously-grouped classes in English, mathematics, science, and social studies

    Science.gov (United States)

    Pierre-Louis, Fred

    The purpose of this study was to describe Markdale High School's change from separate college preparatory and general level classes to heterogeneously-grouped classes in English, mathematics, science, and social studies, with particular emphasis on the principal's leadership style, change process, and teacher concerns (Hall & Hord, 2006) experienced during this effort. The researcher used Hall and Hord's (2006) Concern-Based Adoption Model (CBAM) as a conceptual framework. Specifically, the researcher applied three elements of the CBAM model: (a) the Twelve Principles of Change, (b) the Change Facilitator Styles, and (c) the Stages of Concerns. Hall and Hord's framework served as a lens through which the researcher analyzed all data. The researcher used a mixed-method (qualitative and quantitative) approach to answer the four research questions. The participants completed three instruments: (a) the Stages of Concern Questionnaire (SoCQ), (b) the Principles of Change Survey, and (c) the Facilitator Style Survey. All three instruments were self-report, paper-pencil surveys. The sample included 72 faculty members who experienced the change over the past three years. Findings from the three data sources and the school principal's comments during debriefing are indicated for each research question and reported by unit of analysis. Respective to the research questions, the researcher concluded that: (1) Markdale High School accomplished the change by implementing both structural and instructional changes supporting to the change to heterogeneous grouping; (2) even though teachers had divergent opinions on the school principal's facilitation style, the principal thought of himself as an incrementalist and a practitioner of differentiated facilitation styles; (3) while half of the faculty felt that they received formal training on heterogeneous grouping, (4) half felt that they did not have a choice in the decision-making process as it occurred with college preparatory and

  6. What Is the Problem in Problem-Based Learning in Higher Education Mathematics

    Science.gov (United States)

    Dahl, Bettina

    2018-01-01

    Problem and Project-Based Learning (PBL) emphasise collaborate work on problems relevant to society and emphases the relation between theory and practice. PBL fits engineering students as preparation for their future professions but what about mathematics? Mathematics is not just applied mathematics, but it is also a body of abstract knowledge…

  7. 29 CFR 1471.995 - Principal.

    Science.gov (United States)

    2010-07-01

    ... SUSPENSION (NONPROCUREMENT) Definitions § 1471.995 Principal. Principal means— (a) An officer, director, owner, partner, principal investigator, or other person within a participant with management or... 29 Labor 4 2010-07-01 2010-07-01 false Principal. 1471.995 Section 1471.995 Labor Regulations...

  8. Predicting Relationships between Mathematics Anxiety, Mathematics Teaching Anxiety, Self-Efficacy Beliefs towards Mathematics and Mathematics Teaching

    Science.gov (United States)

    Unlu, Melihan; Ertekin, Erhan; Dilmac, Bulent

    2017-01-01

    The purpose of the research is to investigate the relationships between self-efficacy beliefs toward mathematics, mathematics anxiety and self-efficacy beliefs toward mathematics teaching, mathematics teaching anxiety variables and testing the relationships between these variables with structural equation model. The sample of the research, which…

  9. Mathematical Approaches to Cognitive Linguistics

    Directory of Open Access Journals (Sweden)

    Chuluundorj Begz

    2013-05-01

    Full Text Available Cognitive linguistics, neuro-cognitive and psychological analysis of human verbal cognition present important area of multidisciplinary research. Mathematical methods and models have been introduced in number of publications with increasing attention to these theories. In this paper we have described some possible applications of mathematical methods to cognitive linguistics. Human verbal perception and verbal mapping deal with dissipative mental structures and symmetric/asymmetric relationships between objects of perception and deep (also surface structures of language. In that’s way methods of tensor analysis are ambitious candidate to be applied to analysis of human verbal thinking and mental space.

  10. Portraits of Principal Practice: Time Allocation and School Principal Work

    Science.gov (United States)

    Sebastian, James; Camburn, Eric M.; Spillane, James P.

    2018-01-01

    Purpose: The purpose of this study was to examine how school principals in urban settings distributed their time working on critical school functions. We also examined who principals worked with and how their time allocation patterns varied by school contextual characteristics. Research Method/Approach: The study was conducted in an urban school…

  11. Principal component analysis of the nonlinear coupling of harmonic modes in heavy-ion collisions

    Science.gov (United States)

    BoŻek, Piotr

    2018-03-01

    The principal component analysis of flow correlations in heavy-ion collisions is studied. The correlation matrix of harmonic flow is generalized to correlations involving several different flow vectors. The method can be applied to study the nonlinear coupling between different harmonic modes in a double differential way in transverse momentum or pseudorapidity. The procedure is illustrated with results from the hydrodynamic model applied to Pb + Pb collisions at √{sN N}=2760 GeV. Three examples of generalized correlations matrices in transverse momentum are constructed corresponding to the coupling of v22 and v4, of v2v3 and v5, or of v23,v33 , and v6. The principal component decomposition is applied to the correlation matrices and the dominant modes are calculated.

  12. LIMES Large Infrastructure in Mathematics - Enhanced Services

    CERN Document Server

    Fachinformationszentrum Energie, Physik, Mathematik. Karlsruhe

    The Large Infrastructure in Mathematics - Enhanced Services (LIMES) Project is a RTD project within the Fifth (EC) Framework Programme - Horizontal Programme "Improving human research potential and the socio-economic knowledge base", Access to Resear The objective of this project is to upgrade the existing database Zentralblatt-MATH into a European based world class database for mathematics (pure and applied) by a process of technical improvement and wide Europeanisation, improving the present distribuited system. The goal is to make Zentralblatt MATH a world reference database, offering full coverage of the mathematics literature worldwide ncluding bibliographic data, peer reviews and/or abstracts, indexing, classification and search,

  13. Math in plain english literacy strategies for the mathematics classroom

    CERN Document Server

    Benjamin, Amy

    2013-01-01

    Do word problems and math vocabulary confuse students in your mathematics classes? Do simple keywords like ""value"" and ""portion"" seem to mislead them? Many words that students already know can have a different meaning in mathematics. To grasp that difference, students need to connect English literacy skills to math. Successful students speak, read, write, and listen to each other so they can understand, retain, and apply mathematics concepts. This book explains how to use 10 classroom-ready literacy strategies in concert with your mathematics instruction. You'll learn how to develop stude

  14. Principal shapes and squeezed limits in the effective field theory of large scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, Daniele; Solon, Mikhail P., E-mail: dbertolini@lbl.gov, E-mail: mpsolon@lbl.gov [Berkeley Center for Theoretical Physics, University of California, South Hall Road, Berkeley, CA, 94720 (United States)

    2016-11-01

    We apply an orthogonalization procedure on the effective field theory of large scale structure (EFT of LSS) shapes, relevant for the angle-averaged bispectrum and non-Gaussian covariance of the matter power spectrum at one loop. Assuming natural-sized EFT parameters, this identifies a linear combination of EFT shapes—referred to as the principal shape—that gives the dominant contribution for the whole kinematic plane, with subdominant combinations suppressed by a few orders of magnitude. For the covariance, our orthogonal transformation is in excellent agreement with a principal component analysis applied to available data. Additionally we find that, for both observables, the coefficients of the principal shapes are well approximated by the EFT coefficients appearing in the squeezed limit, and are thus measurable from power spectrum response functions. Employing data from N-body simulations for the growth-only response, we measure the single EFT coefficient describing the angle-averaged bispectrum with Ο (10%) precision. These methods of shape orthogonalization and measurement of coefficients from response functions are valuable tools for developing the EFT of LSS framework, and can be applied to more general observables.

  15. Mathematical modelling of metabolism

    DEFF Research Database (Denmark)

    Gombert, Andreas Karoly; Nielsen, Jens

    2000-01-01

    Mathematical models of the cellular metabolism have a special interest within biotechnology. Many different kinds of commercially important products are derived from the cell factory, and metabolic engineering can be applied to improve existing production processes, as well as to make new processes...... availability of genomic information and powerful analytical techniques, mathematical models also serve as a tool for understanding the cellular metabolism and physiology....... available. Both stoichiometric and kinetic models have been used to investigate the metabolism, which has resulted in defining the optimal fermentation conditions, as well as in directing the genetic changes to be introduced in order to obtain a good producer strain or cell line. With the increasing...

  16. 31 CFR 19.995 - Principal.

    Science.gov (United States)

    2010-07-01

    ... SUSPENSION (NONPROCUREMENT) Definitions § 19.995 Principal. Principal means— (a) An officer, director, owner, partner, principal investigator, or other person within a participant with management or supervisory... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Principal. 19.995 Section 19.995...

  17. 22 CFR 208.995 - Principal.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Principal. 208.995 Section 208.995 Foreign...) Definitions § 208.995 Principal. Principal means— (a) An officer, director, owner, partner, principal investigator, or other person within a participant with management or supervisory responsibilities related to a...

  18. 22 CFR 1006.995 - Principal.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Principal. 1006.995 Section 1006.995 Foreign... § 1006.995 Principal. Principal means— (a) An officer, director, owner, partner, principal investigator, or other person within a participant with management or supervisory responsibilities related to a...

  19. 2 CFR 180.995 - Principal.

    Science.gov (United States)

    2010-01-01

    ... 2 Grants and Agreements 1 2010-01-01 2010-01-01 false Principal. 180.995 Section 180.995 Grants and Agreements OFFICE OF MANAGEMENT AND BUDGET GOVERNMENTWIDE GUIDANCE FOR GRANTS AND AGREEMENTS... § 180.995 Principal. Principal means— (a) An officer, director, owner, partner, principal investigator...

  20. 22 CFR 1508.995 - Principal.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Principal. 1508.995 Section 1508.995 Foreign...) Definitions § 1508.995 Principal. Principal means— (a) An officer, director, owner, partner, principal investigator, or other person within a participant with management or supervisory responsibilities related to a...

  1. Principal stratification in causal inference.

    Science.gov (United States)

    Frangakis, Constantine E; Rubin, Donald B

    2002-03-01

    Many scientific problems require that treatment comparisons be adjusted for posttreatment variables, but the estimands underlying standard methods are not causal effects. To address this deficiency, we propose a general framework for comparing treatments adjusting for posttreatment variables that yields principal effects based on principal stratification. Principal stratification with respect to a posttreatment variable is a cross-classification of subjects defined by the joint potential values of that posttreatment variable tinder each of the treatments being compared. Principal effects are causal effects within a principal stratum. The key property of principal strata is that they are not affected by treatment assignment and therefore can be used just as any pretreatment covariate. such as age category. As a result, the central property of our principal effects is that they are always causal effects and do not suffer from the complications of standard posttreatment-adjusted estimands. We discuss briefly that such principal causal effects are the link between three recent applications with adjustment for posttreatment variables: (i) treatment noncompliance, (ii) missing outcomes (dropout) following treatment noncompliance. and (iii) censoring by death. We then attack the problem of surrogate or biomarker endpoints, where we show, using principal causal effects, that all current definitions of surrogacy, even when perfectly true, do not generally have the desired interpretation as causal effects of treatment on outcome. We go on to forrmulate estimands based on principal stratification and principal causal effects and show their superiority.

  2. Inverse truss design as a conic mathematical program with equilibrium constraints

    Czech Academy of Sciences Publication Activity Database

    Kočvara, Michal; Outrata, Jiří

    2017-01-01

    Roč. 10, č. 6 (2017), s. 1329-1350 ISSN 1937-1632 R&D Projects: GA ČR GA15-00735S Institutional support: RVO:67985556 Keywords : conic optimization * truss topology optimization * mathematical programs with equilibrium constraints Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.781, year: 2016 http://library.utia.cas.cz/separaty/2017/MTR/kocvara-0477818.pdf

  3. Principals' Salaries, 2007-2008

    Science.gov (United States)

    Cooke, Willa D.; Licciardi, Chris

    2008-01-01

    How do salaries of elementary and middle school principals compare with those of other administrators and classroom teachers? Are increases in salaries of principals keeping pace with increases in salaries of classroom teachers? And how have principals' salaries fared over the years when the cost of living is taken into account? There are reliable…

  4. 21 CFR 1404.995 - Principal.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Principal. 1404.995 Section 1404.995 Food and...) Definitions § 1404.995 Principal. Principal means— (a) An officer, director, owner, partner, principal investigator, or other person within a participant with management or supervisory responsibilities related to a...

  5. 34 CFR 85.995 - Principal.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Principal. 85.995 Section 85.995 Education Office of...) Definitions § 85.995 Principal. Principal means— (a) An officer, director, owner, partner, principal investigator, or other person within a participant with management or supervisory responsibilities related to a...

  6. Applying Cognitive Psychology Based Instructional Design Principles in Mathematics Teaching and Learning: Introduction

    Science.gov (United States)

    Verschaffel, Lieven; Van Dooren, W.; Star, J.

    2017-01-01

    This special issue comprises contributions that address the breadth of current lines of recent research from cognitive psychology that appear promising for positively impacting students' learning of mathematics. More specifically, we included contributions (a) that refer to cognitive psychology based principles and techniques, such as explanatory…

  7. Students' perceptions of the relevance of mathematics in engineering

    Science.gov (United States)

    Flegg, Jennifer; Mallet, Dann; Lupton, Mandy

    2012-09-01

    In this article, we report on the findings of an exploratory study into the experience of students as they learn first year engineering mathematics. Here we define engineering as the application of mathematics and sciences to the building and design of projects for the use of society [M. Kirschenman and B. Brenner, Education for Civil Engineering: A Profession of Practice, Leader. Manag. Eng. 10 (2010), p. 54]. Qualitative and quantitative data on students' views of the relevance of their mathematics study to their engineering studies and future careers in engineering was collected. The students described using a range of mathematics techniques (mathematics skills developed, mathematics concepts applied to engineering and skills developed relevant for engineering) for various usages (as a subject of study, a tool for other subjects or a tool for real world problems). We found a number of themes relating to the design of engineering mathematics curriculum emerged from the data. These included the relevance of mathematics within different engineering majors, the relevance of mathematics to future studies, the relevance of learning mathematical rigour and the effectiveness of problem-solving tasks in conveying the relevance of mathematics more effectively than other forms of assessment. We make recommendations for the design of engineering mathematics curriculum based on our findings.

  8. Principal Self-Efficacy and Work Engagement: Assessing a Norwegian Principal Self-Efficacy Scale

    Science.gov (United States)

    Federici, Roger A.; Skaalvik, Einar M.

    2011-01-01

    One purpose of the present study was to develop and test the factor structure of a multidimensional and hierarchical Norwegian Principal Self-Efficacy Scale (NPSES). Another purpose of the study was to investigate the relationship between principal self-efficacy and work engagement. Principal self-efficacy was measured by the 22-item NPSES. Work…

  9. Teachers' Mathematics as Mathematics-at-Work

    Science.gov (United States)

    Bednarz, Nadine; Proulx, Jérôme

    2017-01-01

    Through recognising mathematics teachers as professionals who use mathematics in their workplace, this article traces a parallel between the mathematics enacted by teachers in their practice and the mathematics used in workplaces found in studies of professionals (e.g. nurses, engineers, bankers). This parallel is developed through the five…

  10. European Conference on Numerical Mathematics and Advanced Applications

    CERN Document Server

    Manguoğlu, Murat; Tezer-Sezgin, Münevver; Göktepe, Serdar; Uğur, Ömür

    2016-01-01

    The European Conference on Numerical Mathematics and Advanced Applications (ENUMATH), held every 2 years, provides a forum for discussing recent advances in and aspects of numerical mathematics and scientific and industrial applications. The previous ENUMATH meetings took place in Paris (1995), Heidelberg (1997), Jyvaskyla (1999), Ischia (2001), Prague (2003), Santiago de Compostela (2005), Graz (2007), Uppsala (2009), Leicester (2011) and Lausanne (2013). This book presents a selection of invited and contributed lectures from the ENUMATH 2015 conference, which was organised by the Institute of Applied Mathematics (IAM), Middle East Technical University, Ankara, Turkey, from September 14 to 18, 2015. It offers an overview of central recent developments in numerical analysis, computational mathematics, and applications in the form of contributions by leading experts in the field.

  11. International Conference on Research and Education in Mathematics

    CERN Document Server

    Srivastava, Hari; Mursaleen, M; Majid, Zanariah

    2016-01-01

    This book features selected papers from The Seventh International Conference on Research and Education in Mathematics that was held in Kuala Lumpur, Malaysia from 25 - 27th August 2015. With chapters devoted to the most recent discoveries in mathematics and statistics and serve as a platform for knowledge and information exchange between experts from academic and industrial sectors, it covers a wide range of topics, including numerical analysis, fluid mechanics, operation research, optimization, statistics and game theory. It is a valuable resource for pure and applied mathematicians, statisticians, engineers and scientists, and provides an excellent overview of the latest research in mathematical sciences.

  12. Mathematical model and simulations of radiation fluxes from buried radionuclides

    International Nuclear Information System (INIS)

    Ahmad Saat

    1999-01-01

    A mathematical model and a simple Monte Carlo simulations were developed to predict radiation fluxes from buried radionuclides. The model and simulations were applied to measured (experimental) data. The results of the mathematical model showed good acceptable order of magnitude agreement. A good agreement was also obtained between the simple simulations and the experimental results. Thus, knowing the radionuclide distribution profiles in soil from a core sample, it can be applied to the model or simulations to estimate the radiation fluxes emerging from the soil surface. (author)

  13. Applying science and mathematics to big data for smarter buildings.

    Science.gov (United States)

    Lee, Young M; An, Lianjun; Liu, Fei; Horesh, Raya; Chae, Young Tae; Zhang, Rui

    2013-08-01

    Many buildings are now collecting a large amount of data on operations, energy consumption, and activities through systems such as a building management system (BMS), sensors, and meters (e.g., submeters and smart meters). However, the majority of data are not utilized and are thrown away. Science and mathematics can play an important role in utilizing these big data and accurately assessing how energy is consumed in buildings and what can be done to save energy, make buildings energy efficient, and reduce greenhouse gas (GHG) emissions. This paper discusses an analytical tool that has been developed to assist building owners, facility managers, operators, and tenants of buildings in assessing, benchmarking, diagnosing, tracking, forecasting, and simulating energy consumption in building portfolios. © 2013 New York Academy of Sciences.

  14. Focal points and principal solutions of linear Hamiltonian systems revisited

    Science.gov (United States)

    Šepitka, Peter; Šimon Hilscher, Roman

    2018-05-01

    In this paper we present a novel view on the principal (and antiprincipal) solutions of linear Hamiltonian systems, as well as on the focal points of their conjoined bases. We present a new and unified theory of principal (and antiprincipal) solutions at a finite point and at infinity, and apply it to obtain new representation of the multiplicities of right and left proper focal points of conjoined bases. We show that these multiplicities can be characterized by the abnormality of the system in a neighborhood of the given point and by the rank of the associated T-matrix from the theory of principal (and antiprincipal) solutions. We also derive some additional important results concerning the representation of T-matrices and associated normalized conjoined bases. The results in this paper are new even for completely controllable linear Hamiltonian systems. We also discuss other potential applications of our main results, in particular in the singular Sturmian theory.

  15. An Investigation of Teacher, Principal, and Superintendent Perceptions on the Ability of the National Framework for Principal Evaluations to Measure Principals' Leadership Competencies

    Science.gov (United States)

    Lamb, Lori D.

    2014-01-01

    The purpose of this qualitative study was to investigate the perceptions of effective principals' leadership competencies; determine if the perceptions of teachers, principals, and superintendents aligned with the proposed National Framework for Principal Evaluations initiative. This study examined the six domains of leadership outlined by the…

  16. Computational physics and applied mathematics capability review June 8-10, 2010 (Advance materials to committee members)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Stephen R [Los Alamos National Laboratory

    2010-01-01

    Los Alamos National Laboratory will review its Computational Physics and Applied Mathematics (CPAM) capabilities in 2010. The goals of capability reviews are to assess the quality of science, technology, and engineering (STE) performed by the capability, evaluate the integration of this capability across the Laboratory and within the scientific community, examine the relevance of this capability to the Laboratory's programs, and provide advice on the current and future directions of this capability. This is the first such review for CPAM, which has a long and unique history at the laboratory, starting from the inception of the Laboratory in 1943. The CPAM capability covers an extremely broad technical area at Los Alamos, encompassing a wide array of disciplines, research topics, and organizations. A vast array of technical disciplines and activities are included in this capability, from general numerical modeling, to coupled mUlti-physics simulations, to detailed domain science activities in mathematics, methods, and algorithms. The CPAM capability involves over 12 different technical divisions and a majority of our programmatic and scientific activities. To make this large scope tractable, the CPAM capability is broken into the following six technical 'themes.' These themes represent technical slices through the CP AM capability and collect critical core competencies of the Laboratory, each of which contributes to the capability (and each of which is divided into multiple additional elements in the detailed descriptions of the themes in subsequent sections): (1) Computational Fluid Dynamics - This theme speaks to the vast array of scientific capabilities for the simulation of fluids under shocks, low-speed flow, and turbulent conditions - which are key, historical, and fundamental strengths of the laboratory; (2) Partial Differential Equations - The technical scope of this theme is the applied mathematics and numerical solution of partial

  17. The Effects of Mathematical Modeling on Creative Production Ability and Self-Directed Learning Attitude

    Science.gov (United States)

    Kim, Sun Hee; Kim, Soojin

    2010-01-01

    What should we do to educate the mathematically gifted and how should we do it? In this research, to satisfy diverse mathematical and cognitive demands of the gifted who have excellent learning ability and task tenacity in mathematics, we sought to apply mathematical modeling. One of the objectives of the gifted education in Korea is cultivating…

  18. Examining Fourth-Grade Mathematics Writing: Features of Organization, Mathematics Vocabulary, and Mathematical Representations

    Science.gov (United States)

    Hebert, Michael A.; Powell, Sarah R.

    2016-01-01

    Increasingly, students are expected to write about mathematics. Mathematics writing may be informal (e.g., journals, exit slips) or formal (e.g., writing prompts on high-stakes mathematics assessments). In order to develop an effective mathematics-writing intervention, research needs to be conducted on how students organize mathematics writing and…

  19. The application of brain-based learning principles aided by GeoGebra to improve mathematical representation ability

    Science.gov (United States)

    Priatna, Nanang

    2017-08-01

    The use of Information and Communication Technology (ICT) in mathematics instruction will help students in building conceptual understanding. One of the software products used in mathematics instruction is GeoGebra. The program enables simple visualization of complex geometric concepts and helps improve students' understanding of geometric concepts. Instruction applying brain-based learning principles is one oriented at the efforts of naturally empowering the brain potentials which enable students to build their own knowledge. One of the goals of mathematics instruction in school is to develop mathematical communication ability. Mathematical representation is regarded as a part of mathematical communication. It is a description, expression, symbolization, or modeling of mathematical ideas/concepts as an attempt of clarifying meanings or seeking for solutions to the problems encountered by students. The research aims to develop a learning model and teaching materials by applying the principles of brain-based learning aided by GeoGebra to improve junior high school students' mathematical representation ability. It adopted a quasi-experimental method with the non-randomized control group pretest-posttest design and the 2x3 factorial model. Based on analysis of the data, it is found that the increase in the mathematical representation ability of students who were treated with mathematics instruction applying the brain-based learning principles aided by GeoGebra was greater than the increase of the students given conventional instruction, both as a whole and based on the categories of students' initial mathematical ability.

  20. Mathematical control theory

    International Nuclear Information System (INIS)

    Agrachev, A.A.

    2002-01-01

    This volume is based on the lecture notes of the minicourses given in the frame of the school on Mathematical Control Theory held at the Abdus Salam ICTP from 3 to 28 September 2001. Mathematical Control Theory is a rapidly growing field which provides strict theoretical and computational tools for dealing with problems arising in electrical and aerospace engineering, automatics, robotics, applied chemistry, and biology etc. Control methods are also involved in questions pertaining to the development of countries in the South, such as wastewater treatment, agronomy, epidemiology, population dynamics, control of industrial and natural bio-reactors. Since most of these natural processes are highly nonlinear, the tools of nonlinear control are essential for the modelling and control of such processes. At present regular courses in Mathematical Control Theory are rarely included in the curricula of universities, and very few researchers receive enough background in the field. Therefore it is important to organize specific activities in the form of schools to provide the necessary background for those embarking on research in this field. The school at the Abdus Salam ICTP consisted of several minicourses intended to provide an introduction to various topics of Mathematical Control Theory, including Linear Control Theory (finite and infinite-dimensional), Nonlinear Control, and Optimal Control. The last week of the school was concentrated on applications of Mathematical Control Theory, in particular, those which are important for the development of non-industrialized countries. The school was intended primarily for mathematicians and mathematically oriented engineers at the beginning of their career. The typical participant was expected to be a graduate student or young post-doctoral researcher interested in Mathematical Control Theory. It was assumed that participants have sufficient background in Ordinary Differential Equations and Advanced Calculus. The volume

  1. Mathematical control theory

    Energy Technology Data Exchange (ETDEWEB)

    Agrachev, A A [Steklov Mathematical Institute, Moscow (Russian Federation); SISSA, Trieste [Italy; ed.

    2002-07-15

    This volume is based on the lecture notes of the minicourses given in the frame of the school on Mathematical Control Theory held at the Abdus Salam ICTP from 3 to 28 September 2001. Mathematical Control Theory is a rapidly growing field which provides strict theoretical and computational tools for dealing with problems arising in electrical and aerospace engineering, automatics, tics, applied chemistry, and biology etc. Control methods are also involved in questions pertaining to the development of countries in the South, such as wastewater treatment, agronomy, epidemiology, population dynamics, control of industrial and natural bio-reactors. Since most of these natural processes are highly nonlinear, the tools of nonlinear control are essential for the modelling and control of such processes. At present regular courses in Mathematical Control Theory are rarely included in the curricula of universities, and very few researchers receive enough background in the field. Therefore it is important to organize specific activities in the form of schools to provide the necessary background for those embarking on research in this field. The school at the Abdus Salam ICTP consisted of several minicourses intended to provide an introduction to various topics of Mathematical Control Theory, including Linear Control Theory (finite and infinite-dimensional), Nonlinear Control, and Optimal Control. The last week of the school was concentrated on applications of Mathematical Control Theory, in particular, those which are important for the development of non-industrialized countries. The school was intended primarily for mathematicians and mathematically oriented engineers at the beginning of their career. The typical participant was expected to be a graduate student or young post-doctoral researcher interested in Mathematical Control Theory. It was assumed that participants have sufficient background in Ordinary Differential Equations and Advanced Calculus. The volume contains

  2. Using mathematics to solve real world problems: the role of enablers

    DEFF Research Database (Denmark)

    Niss, Mogens Allan; Geiger, Vincent; Stillman, Gloria

    2018-01-01

    The purpose of this article is to report on a newly funded research project in which we will investigate how secondary students apply mathematical modelling to effectively address real world situations. Through this study, we will identify factors, mathematical, cognitive, social and environmenta...

  3. Teaching Principal Components Using Correlations.

    Science.gov (United States)

    Westfall, Peter H; Arias, Andrea L; Fulton, Lawrence V

    2017-01-01

    Introducing principal components (PCs) to students is difficult. First, the matrix algebra and mathematical maximization lemmas are daunting, especially for students in the social and behavioral sciences. Second, the standard motivation involving variance maximization subject to unit length constraint does not directly connect to the "variance explained" interpretation. Third, the unit length and uncorrelatedness constraints of the standard motivation do not allow re-scaling or oblique rotations, which are common in practice. Instead, we propose to motivate the subject in terms of optimizing (weighted) average proportions of variance explained in the original variables; this approach may be more intuitive, and hence easier to understand because it links directly to the familiar "R-squared" statistic. It also removes the need for unit length and uncorrelatedness constraints, provides a direct interpretation of "variance explained," and provides a direct answer to the question of whether to use covariance-based or correlation-based PCs. Furthermore, the presentation can be made without matrix algebra or optimization proofs. Modern tools from data science, including heat maps and text mining, provide further help in the interpretation and application of PCs; examples are given. Together, these techniques may be used to revise currently used methods for teaching and learning PCs in the behavioral sciences.

  4. The philosophical aspect of learning inverse problems of mathematical physics

    Directory of Open Access Journals (Sweden)

    Виктор Семенович Корнилов

    2018-12-01

    Full Text Available The article describes specific questions student learning inverse problems of mathematical physics. When teaching inverse problems of mathematical physics to the understanding of the students brought the information that the inverse problems of mathematical physics with a philosophical point of view are the problems of determining the unknown causes of known consequences, and the search for their solutions have great scientific and educational potential. The reasons are specified in the form of unknown coefficients, right side, initial conditions of the mathematical model of inverse problems, and as a consequence are functionals of the solution of this mathematical model. In the process of learning the inverse problems of mathematical physics focuses on the philosophical aspects of the phenomenon of information and identify cause-effect relations. It is emphasized that in the process of logical analysis applied and humanitarian character, students realize that information is always related to the fundamental philosophical questions that the analysis applied and the humanitarian aspects of the obtained results the inverse problem of mathematical physics allows students to make appropriate inferences about the studied process and to, ultimately, new information, to study its properties and understand its value. Philosophical understanding of the notion of information opens up to students a new methodological opportunities to comprehend the world and helps us to reinterpret existing science and philosophy of the theory related to the disclosure of the interrelationship of all phenomena of reality.

  5. Rock Burst Mechanics: Insight from Physical and Mathematical Modelling

    Directory of Open Access Journals (Sweden)

    J. Vacek

    2008-01-01

    Full Text Available Rock burst processes in mines are studied by many groups active in the field of geomechanics. Physical and mathematical modelling can be used to better understand the phenomena and mechanisms involved in the bursts. In the present paper we describe both physical and mathematical models of a rock burst occurring in a gallery of a coal mine.For rock bursts (also called bumps to occur, the rock has to possess certain particular rock burst properties leading to accumulation of energy and the potential to release this energy. Such materials may be brittle, or the rock burst may arise at the interfacial zones of two parts of the rock, which have principally different material properties (e.g. in the Poíbram uranium mines.The solution is based on experimental and mathematical modelling. These two methods have to allow the problem to be studied on the basis of three presumptions:· the solution must be time dependent,· the solution must allow the creation of cracks in the rock mass,· the solution must allow an extrusion of rock into an open space (bump effect. 

  6. Teaching Mathematical Modeling in Mathematics Education

    Science.gov (United States)

    Saxena, Ritu; Shrivastava, Keerty; Bhardwaj, Ramakant

    2016-01-01

    Mathematics is not only a subject but it is also a language consisting of many different symbols and relations. Taught as a compulsory subject up the 10th class, students are then able to choose whether or not to study mathematics as a main subject. The present paper discusses mathematical modeling in mathematics education. The article provides…

  7. Physics, Computer Science and Mathematics Division. Annual report, 1 January--31 December 1977

    International Nuclear Information System (INIS)

    Lepore, J.V.

    1977-01-01

    This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during 1977. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics, although there is a relatively small program of medium-energy research. The High Energy Physics research program in the Physics Division is concerned with fundamental research which will enable man to comprehend the nature of the physical world. The major effort is now directed toward experiments with positron-electron colliding beam at PEP. The Medium Energy Physics program is concerned with research using mesons and nucleons to probe the properties of matter. This research is concerned with the study of nuclear structure, nuclear reactions, and the interactions between nuclei and electromagnetic radiation and mesons. The Computer Science and Applied Mathematics Department engages in research in a variety of computer science and mathematics disciplines. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The Computer Center provides large-scale computational support to LBL's scientific programs. Descriptions of the various activities are quite short; references to published results are given. 24 figures

  8. The Fu Foundation School of Engineering & Applied Science - Columbia

    Science.gov (United States)

    Engineering Mechanics Computer Science Earth and Environmental Engineering Electrical Engineering Industrial Engineering & Applied Science - Columbia University Admissions Undergraduates Graduates Distance Learning Physics and Applied Mathematics Biomedical Engineering Chemical Engineering Civil Engineering and

  9. Mathematical Modeling and Pure Mathematics

    Science.gov (United States)

    Usiskin, Zalman

    2015-01-01

    Common situations, like planning air travel, can become grist for mathematical modeling and can promote the mathematical ideas of variables, formulas, algebraic expressions, functions, and statistics. The purpose of this article is to illustrate how the mathematical modeling that is present in everyday situations can be naturally embedded in…

  10. Context-based mathematics tasks in Indonesia : Toward better practice and achievement

    OpenAIRE

    Wijaya, A.

    2015-01-01

    The Indonesian national curriculum mandates that mathematics education must be relevant to the needs of life and should offer students opportunities to develop the ability to apply their knowledge in society. Furthermore, there are educational movements in Indonesia that promote the application of mathematics and place a premium on using context-based tasks; see the projects Pendidikan MatematikaRealistik Indonesia (Indonesian Realistic Mathematics Education) and Pembelajaran Kontekstual (Con...

  11. Efficient real time OD matrix estimation based on principal component analysis

    NARCIS (Netherlands)

    Djukic, T.; Flötteröd, G.; Van Lint, H.; Hoogendoorn, S.P.

    2012-01-01

    In this paper we explore the idea of dimensionality reduction and approximation of OD demand based on principal component analysis (PCA). First, we show how we can apply PCA to linearly transform the high dimensional OD matrices into the lower dimensional space without significant loss of accuracy.

  12. Principal Component Analysis - A Powerful Tool in Computing Marketing Information

    Directory of Open Access Journals (Sweden)

    Constantin C.

    2014-12-01

    Full Text Available This paper is about an instrumental research regarding a powerful multivariate data analysis method which can be used by the researchers in order to obtain valuable information for decision makers that need to solve the marketing problem a company face with. The literature stresses the need to avoid the multicollinearity phenomenon in multivariate analysis and the features of Principal Component Analysis (PCA in reducing the number of variables that could be correlated with each other to a small number of principal components that are uncorrelated. In this respect, the paper presents step-by-step the process of applying the PCA in marketing research when we use a large number of variables that naturally are collinear.

  13. Some Notes About Artificial Intelligence as New Mathematical Tool

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2010-04-01

    Full Text Available Mathematics is a mere instance of First-Order Predicate Calculus. Therefore it belongs to applied Monotonic Logic. So, we found the limitations of classical logic reasoning and the clear advantages of Fuzzy Logic and many other new interesting tools. We present here some of the more usefulness tools of this new field of Mathematics so-called Artificial Intelligence.

  14. Mathematical methods in medicine: neuroscience, cardiology and pathology

    Science.gov (United States)

    Amigó, José M.

    2017-01-01

    The application of mathematics, natural sciences and engineering to medicine is gaining momentum as the mutual benefits of this collaboration become increasingly obvious. This theme issue is intended to highlight the trend in the case of mathematics. Specifically, the scope of this theme issue is to give a general view of the current research in the application of mathematical methods to medicine, as well as to show how mathematics can help in such important aspects as understanding, prediction, treatment and data processing. To this end, three representative specialties have been selected: neuroscience, cardiology and pathology. Concerning the topics, the 12 research papers and one review included in this issue cover biofluids, cardiac and virus dynamics, computational neuroscience, functional magnetic resonance imaging data processing, neural networks, optimization of treatment strategies, time-series analysis and tumour growth. In conclusion, this theme issue contains a collection of fine contributions at the intersection of mathematics and medicine, not as an exercise in applied mathematics but as a multidisciplinary research effort that interests both communities and our society in general. This article is part of the themed issue ‘Mathematical methods in medicine: neuroscience, cardiology and pathology’. PMID:28507240

  15. Mathematical methods in medicine: neuroscience, cardiology and pathology.

    Science.gov (United States)

    Amigó, José M; Small, Michael

    2017-06-28

    The application of mathematics, natural sciences and engineering to medicine is gaining momentum as the mutual benefits of this collaboration become increasingly obvious. This theme issue is intended to highlight the trend in the case of mathematics. Specifically, the scope of this theme issue is to give a general view of the current research in the application of mathematical methods to medicine, as well as to show how mathematics can help in such important aspects as understanding, prediction, treatment and data processing. To this end, three representative specialties have been selected: neuroscience, cardiology and pathology. Concerning the topics, the 12 research papers and one review included in this issue cover biofluids, cardiac and virus dynamics, computational neuroscience, functional magnetic resonance imaging data processing, neural networks, optimization of treatment strategies, time-series analysis and tumour growth. In conclusion, this theme issue contains a collection of fine contributions at the intersection of mathematics and medicine, not as an exercise in applied mathematics but as a multidisciplinary research effort that interests both communities and our society in general.This article is part of the themed issue 'Mathematical methods in medicine: neuroscience, cardiology and pathology'. © 2017 The Author(s).

  16. Quantization, geometry and noncommutative structures in mathematics and physics

    CERN Document Server

    Morales, Pedro; Ocampo, Hernán; Paycha, Sylvie; Lega, Andrés

    2017-01-01

    This monograph presents various ongoing approaches to the vast topic of quantization, which is the process of forming a quantum mechanical system starting from a classical one, and discusses their numerous fruitful interactions with mathematics. The opening chapter introduces the various forms of quantization and their interactions with each other and with mathematics. A first approach to quantization, called deformation quantization, consists of viewing the Planck constant as a small parameter. This approach provides a deformation of the structure of the algebra of classical observables rather than a radical change in the nature of the observables. When symmetries come into play, deformation quantization needs to be merged with group actions, which is presented in chapter 2, by Simone Gutt. The noncommutativity arising from quantization is the main concern of noncommutative geometry. Allowing for the presence of symmetries requires working with principal fiber bundles in a non-commutative setup, where Hopf a...

  17. A Framework for Mathematical Thinking: The Case of Linear Algebra

    Science.gov (United States)

    Stewart, Sepideh; Thomas, Michael O. J.

    2009-01-01

    Linear algebra is one of the unavoidable advanced courses that many mathematics students encounter at university level. The research reported here was part of the first author's recent PhD study, where she created and applied a theoretical framework combining the strengths of two major mathematics education theories in order to investigate the…

  18. On the difficulties of acquiring mathematical experience: Case rural education

    DEFF Research Database (Denmark)

    Booss-Bavnbek, Bernhelm

    2014-01-01

    Based on a variety of philosophical approaches and my own work for decades in pure and applied mathematics teaching and research, I explain my view upon the basic difficulties of acquiring the “Mathematical Experience” (in the sense of P.J. Davis and R. Hersh 1981) and submit a list of claims how...

  19. Assessing the Potential of Mathematics Textbooks to Promote Deep Learning

    Science.gov (United States)

    Shield, Malcolm; Dole, Shelley

    2013-01-01

    Curriculum documents for mathematics emphasise the importance of promoting depth of knowledge rather than shallow coverage of the curriculum. In this paper, we report on a study that explored the analysis of junior secondary mathematics textbooks to assess their potential to assist in teaching and learning aimed at building and applying deep…

  20. Linking Preservice Teachers' Mathematics Self-Efficacy and Mathematics Teaching Efficacy to Their Mathematical Performance

    Science.gov (United States)

    Bates, Alan B.; Latham, Nancy; Kim, Jin-ah

    2011-01-01

    This study examined preservice teachers' mathematics self-efficacy and mathematics teaching efficacy and compared them to their mathematical performance. Participants included 89 early childhood preservice teachers at a Midwestern university. Instruments included the Mathematics Self-Efficacy Scale (MSES), Mathematics Teaching Efficacy Beliefs…

  1. Contrasts in Mathematical Challenges in A-Level Mathematics and Further Mathematics, and Undergraduate Mathematics Examinations

    Science.gov (United States)

    Darlington, Ellie

    2014-01-01

    This article describes part of a study which investigated the role of questions in students' approaches to learning mathematics at the secondary-tertiary interface, focussing on the enculturation of students at the University of Oxford. Use of the Mathematical Assessment Task Hierarchy taxonomy revealed A-level Mathematics and Further Mathematics…

  2. International Conference on Mathematical Sciences and Statistics 2013 : Selected Papers

    CERN Document Server

    Leong, Wah; Eshkuvatov, Zainidin

    2014-01-01

    This volume is devoted to the most recent discoveries in mathematics and statistics. It also serves as a platform for knowledge and information exchange between experts from industrial and academic sectors. The book covers a wide range of topics, including mathematical analyses, probability, statistics, algebra, geometry, mathematical physics, wave propagation, stochastic processes, ordinary and partial differential equations, boundary value problems, linear operators, cybernetics and number and functional theory. It is a valuable resource for pure and applied mathematicians, statisticians, engineers and scientists.

  3. Engineering Physics and Mathematics Division progress report for period ending June 30, 1985

    International Nuclear Information System (INIS)

    1986-02-01

    The report is divided into eight sections: (1) nuclear data measurements and evaluation; (2) systems analysis and shielding; (3) applied physics and fusion reactor analysis; (4) mathematical modeling and intelligent control; (5) reliability and human factors research; (6) applied risk and decision analysis; (7) information analysis and data management; and (8) mathematical sciences. Each section then consists of abstracts of presented or published papers

  4. Engineering Physics and Mathematics Division progress report for period ending June 30, 1985

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    The report is divided into eight sections: (1) nuclear data measurements and evaluation; (2) systems analysis and shielding; (3) applied physics and fusion reactor analysis; (4) mathematical modeling and intelligent control; (5) reliability and human factors research; (6) applied risk and decision analysis; (7) information analysis and data management; and (8) mathematical sciences. Each section then consists of abstracts of presented or published papers. (WRF)

  5. Mathematical finance theory review and exercises from binomial model to risk measures

    CERN Document Server

    Gianin, Emanuela Rosazza

    2013-01-01

    The book collects over 120 exercises on different subjects of Mathematical Finance, including Option Pricing, Risk Theory, and Interest Rate Models. Many of the exercises are solved, while others are only proposed. Every chapter contains an introductory section illustrating the main theoretical results necessary to solve the exercises. The book is intended as an exercise textbook to accompany graduate courses in mathematical finance offered at many universities as part of degree programs in Applied and Industrial Mathematics, Mathematical Engineering, and Quantitative Finance.

  6. Mathematical and numerical models for eddy currents and magnetostatics with selected applications

    CERN Document Server

    Rappaz, Jacques

    2013-01-01

    This monograph addresses fundamental aspects of mathematical modeling and numerical solution methods of electromagnetic problems involving low frequencies, i.e. magnetostatic and eddy current problems which are rarely presented in the applied mathematics literature. In the first part, the authors introduce the mathematical models in a realistic context in view of their use for industrial applications. Several geometric configurations of electric conductors leading to different mathematical models are carefully derived and analyzed, and numerical methods for the solution of the obtained problem

  7. How District Leaders Use Knowledge Management to Influence Principals' Instructional Leadership

    Science.gov (United States)

    McGloughlin, Denise Marie

    2016-01-01

    The study of knowledge management, an integrated system of an organization's culture, conditions, and structure, as applied to educational institutions is limited. It was not known how district leaders use knowledge management to influence principals' instructional leadership performance. The purpose of this qualitative single-case study was to…

  8. Students’ Mathematical Problem-Solving Abilities Through The Application of Learning Models Problem Based Learning

    Science.gov (United States)

    Nasution, M. L.; Yerizon, Y.; Gusmiyanti, R.

    2018-04-01

    One of the purpose mathematic learning is to develop problem solving abilities. Problem solving is obtained through experience in questioning non-routine. Improving students’ mathematical problem-solving abilities required an appropriate strategy in learning activities one of them is models problem based learning (PBL). Thus, the purpose of this research is to determine whether the problem solving abilities of mathematical students’ who learn to use PBL better than on the ability of students’ mathematical problem solving by applying conventional learning. This research included quasi experiment with static group design and population is students class XI MIA SMAN 1 Lubuk Alung. Class experiment in the class XI MIA 5 and class control in the class XI MIA 6. The instrument of final test students’ mathematical problem solving used essay form. The result of data final test in analyzed with t-test. The result is students’ mathematical problem solving abilities with PBL better then on the ability of students’ mathematical problem solving by applying conventional learning. It’s seen from the high percentage achieved by the group of students who learn to use PBL for each indicator of students’ mathematical problem solving.

  9. Examining parents' ratings of middle-school students' academic self-regulation using principal axis factoring analysis.

    Science.gov (United States)

    Chen, Peggy P; Cleary, Timothy J; Lui, Angela M

    2015-09-01

    This study examined the reliability and validity of a parent rating scale, the Self-Regulation Strategy Inventory: Parent Rating Scale (SRSI-PRS), using a sample of 451 parents of sixth- and seventh-grade middle-school students. Principal axis factoring (PAF) analysis revealed a 3-factor structure for the 23-item SRSI-PRS: (a) Managing Behavior and Learning (α = .92), (b) Maladaptive Regulatory Behaviors (α = .76), and (c) Managing Environment (α = .84). The majority of the observed relations between these 3 subscales, and the SRSI-SR, student motivation beliefs, and student mathematics grades were statistically significant and in the small to medium range. After controlling for various student variables and motivation indices of parental involvement, 2 SRSI-PRS factors (Managing Behavior and Learning, Maladaptive Regulatory Behaviors) reliably predicted students' achievement in their mathematics course. This study provides initial support for the validity and reliability of the SRSI-PRS and underscores the advantages of obtaining parental ratings of students' SRL behaviors. (c) 2015 APA, all rights reserved).

  10. RE Rooted in Principal's Biography

    NARCIS (Netherlands)

    ter Avest, Ina; Bakker, C.

    2017-01-01

    Critical incidents in the biography of principals appear to be steering in their innovative way of constructing InterReligious Education in their schools. In this contribution, the authors present the biographical narratives of 4 principals: 1 principal introducing interreligious education in a

  11. Processes involved in solving mathematical problems

    Science.gov (United States)

    Shahrill, Masitah; Putri, Ratu Ilma Indra; Zulkardi, Prahmana, Rully Charitas Indra

    2018-04-01

    This study examines one of the instructional practices features utilized within the Year 8 mathematics lessons in Brunei Darussalam. The codes from the TIMSS 1999 Video Study were applied and strictly followed, and from the 183 mathematics problems recorded, there were 95 problems with a solution presented during the public segments of the video-recorded lesson sequences of the four sampled teachers. The analyses involved firstly, identifying the processes related to mathematical problem statements, and secondly, examining the different processes used in solving the mathematical problems for each problem publicly completed during the lessons. The findings revealed that for three of the teachers, their problem statements coded as `using procedures' ranged from 64% to 83%, while the remaining teacher had 40% of his problem statements coded as `making connections.' The processes used when solving the problems were mainly `using procedures', and none of the problems were coded as `giving results only'. Furthermore, all four teachers made use of making the relevant connections in solving the problems given to their respective students.

  12. Towards automatic analysis of dynamic radionuclide studies using principal-components factor analysis

    International Nuclear Information System (INIS)

    Nigran, K.S.; Barber, D.C.

    1985-01-01

    A method is proposed for automatic analysis of dynamic radionuclide studies using the mathematical technique of principal-components factor analysis. This method is considered as a possible alternative to the conventional manual regions-of-interest method widely used. The method emphasises the importance of introducing a priori information into the analysis about the physiology of at least one of the functional structures in a study. Information is added by using suitable mathematical models to describe the underlying physiological processes. A single physiological factor is extracted representing the particular dynamic structure of interest. Two spaces 'study space, S' and 'theory space, T' are defined in the formation of the concept of intersection of spaces. A one-dimensional intersection space is computed. An example from a dynamic 99 Tcsup(m) DTPA kidney study is used to demonstrate the principle inherent in the method proposed. The method requires no correction for the blood background activity, necessary when processing by the manual method. The careful isolation of the kidney by means of region of interest is not required. The method is therefore less prone to operator influence and can be automated. (author)

  13. Using Mathematics Literature with Prospective Secondary Mathematics Teachers

    Science.gov (United States)

    Jett, Christopher C.

    2014-01-01

    Literature in mathematics has been found to foster positive improvements in mathematics learning. This manuscript reports on a mathematics teacher educator's use of literature via literature circles with 11 prospective secondary mathematics teachers in a mathematics content course. Using survey and reflection data, the author found that…

  14. Mathematics, Physics and Computer Sciences The computation of ...

    African Journals Online (AJOL)

    Mathematics, Physics and Computer Sciences The computation of system matrices for biquadraticsquare finite ... Global Journal of Pure and Applied Sciences ... The computation of system matrices for biquadraticsquare finite elements.

  15. Proceedings, 3rd International Satellite Conference on Mathematical Methods in Physics (ICMP13)

    CERN Document Server

    2013-01-01

    The aim of the Conference is to present the latest advances in Mathematical Methods to researchers, post-docs and graduated students acting in the areas of Physics of Particles and Fields, Mathematical Physics and Applied Mathematics. Topics: Methods of Spectral and Group Theory, Differential and Algebraic Geometry and Topology in Field Theory, Quantum Gravity, String Theory and Cosmology.

  16. Sex-Related Differences in Mathematical Competencies of Pre-Calculus College Students.

    Science.gov (United States)

    Stones, Ivan; And Others

    1982-01-01

    Thirty-eight classes--categorized as College Algebra, Mathematics for Elementary Teachers, and Applied Mathematics-- were selected at four state and six community colleges during the first semester of the 1976-77 school year. Results reinforced the notion there is actually no difference in ability due to sex. (MP)

  17. Pokémon Battles as a Context for Mathematical Modeling

    Science.gov (United States)

    McGuffey, William

    2017-01-01

    In this article I explore some of the underlying mathematics of Poke´mon battles and describe ways that teachers at the secondary level could explore concepts of mathematical game theory in this context. I discuss various ways of representing and analyzing a Poke´mon battle using game theory and conclude with an example of applying concepts of…

  18. Redesigning Principal Internships: Practicing Principals' Perspectives

    Science.gov (United States)

    Anast-May, Linda; Buckner, Barbara; Geer, Gregory

    2011-01-01

    Internship programs too often do not provide the types of experiences that effectively bridge the gap between theory and practice and prepare school leaders who are capable of leading and transforming schools. To help address this problem, the current study is directed at providing insight into practicing principals' views of the types of…

  19. Doing Mathematics with Purpose: Mathematical Text Types

    Science.gov (United States)

    Dostal, Hannah M.; Robinson, Richard

    2018-01-01

    Mathematical literacy includes learning to read and write different types of mathematical texts as part of purposeful mathematical meaning making. Thus in this article, we describe how learning to read and write mathematical texts (proof text, algorithmic text, algebraic/symbolic text, and visual text) supports the development of students'…

  20. An excursion through elementary mathematics, volume ii euclidean geometry

    CERN Document Server

    Caminha Muniz Neto, Antonio

    2018-01-01

    This book provides a comprehensive, in-depth overview of elementary mathematics as explored in Mathematical Olympiads around the world. It expands on topics usually encountered in high school and could even be used as preparation for a first-semester undergraduate course. This second volume covers Plane Geometry, Trigonometry, Space Geometry, Vectors in the Plane, Solids and much more. As part of a collection, the book differs from other publications in this field by not being a mere selection of questions or a set of tips and tricks that applies to specific problems. It starts from the most basic theoretical principles, without being either too general or too axiomatic. Examples and problems are discussed only if they are helpful as applications of the theory. Propositions are proved in detail and subsequently applied to Olympic problems or to other problems at the Olympic level. The book also explores some of the hardest problems presented at National and International Mathematics Olympiads, as well as many...

  1. Annual Perspectives in Mathematics Education 2016: Mathematical Modeling and Modeling Mathematics

    Science.gov (United States)

    Hirsch, Christian R., Ed.; McDuffie, Amy Roth, Ed.

    2016-01-01

    Mathematical modeling plays an increasingly important role both in real-life applications--in engineering, business, the social sciences, climate study, advanced design, and more--and within mathematics education itself. This 2016 volume of "Annual Perspectives in Mathematics Education" ("APME") focuses on this key topic from a…

  2. The Future of Principal Evaluation

    Science.gov (United States)

    Clifford, Matthew; Ross, Steven

    2012-01-01

    The need to improve the quality of principal evaluation systems is long overdue. Although states and districts generally require principal evaluations, research and experience tell that many state and district evaluations do not reflect current standards and practices for principals, and that evaluation is not systematically administered. When…

  3. Preparing Principals as Instructional Leaders: Perceptions of University Faculty, Expert Principals, and Expert Teacher Leaders

    Science.gov (United States)

    Taylor Backor, Karen; Gordon, Stephen P.

    2015-01-01

    Although research has established links between the principal's instructional leadership and student achievement, there is considerable concern in the literature concerning the capacity of principal preparation programs to prepare instructional leaders. This study interviewed educational leadership faculty as well as expert principals and teacher…

  4. 34 CFR 406.5 - What definitions apply?

    Science.gov (United States)

    2010-07-01

    ..., industrial, or practical art or trade, or agriculture, health, or business; (3) Builds student competence in mathematics, science, and communications (including through applied academics) through a sequential course of...

  5. The MATH--Open Source Application for Easier Learning of Numerical Mathematics

    Science.gov (United States)

    Glaser-Opitz, Henrich; Budajová, Kristina

    2016-01-01

    The article introduces a software application (MATH) supporting an education of Applied Mathematics, with focus on Numerical Mathematics. The MATH is an easy to use tool supporting various numerical methods calculations with graphical user interface and integrated plotting tool for graphical representation written in Qt with extensive use of Qwt…

  6. School Principals' Emotional Coping Process

    Science.gov (United States)

    Poirel, Emmanuel; Yvon, Frédéric

    2014-01-01

    The present study examines the emotional coping of school principals in Quebec. Emotional coping was measured by stimulated recall; six principals were filmed during a working day and presented a week later with their video showing stressful encounters. The results show that school principals experience anger because of reproaches from staff…

  7. Mathematical modeling models, analysis and applications

    CERN Document Server

    Banerjee, Sandip

    2014-01-01

    ""…the reader may find quite a few interesting examples illustrating several important methods used in applied mathematics. … it may be well used as a valuable source of interesting examples as well as complementary reading in a number of courses.""-Svitlana P. Rogovchenko, Zentralblatt MATH 1298

  8. Mathematical modelling and numerical simulation of oil pollution problems

    CERN Document Server

    2015-01-01

    Written by outstanding experts in the fields of marine engineering, atmospheric physics and chemistry, fluid dynamics and applied mathematics, the contributions in this book cover a wide range of subjects, from pure mathematics to real-world applications in the oil spill engineering business. Offering a truly interdisciplinary approach, the authors present both mathematical models and state-of-the-art numerical methods for adequately solving the partial differential equations involved, as well as highly practical experiments involving actual cases of ocean oil pollution. It is indispensable that different disciplines of mathematics, like analysis and numerics,  together with physics, biology, fluid dynamics, environmental engineering and marine science, join forces to solve today’s oil pollution problems.   The book will be of great interest to researchers and graduate students in the environmental sciences, mathematics and physics, showing the broad range of techniques needed in order to solve these poll...

  9. Early mathematics intervention in a Danish municipality

    DEFF Research Database (Denmark)

    Lindenskov, Lena; Weng, Peter

    2013-01-01

    We describe a pilot project 2009 – 2010 about early intervention in second grade mathematics (about 8 years old) in Frederiksberg, a Danish urban municipality. We shortly describe the background of the pilot project, aims and organisation in four design cycles. We explore the pilot teachers......' feedback during the pilot process, how pilot teacher feedback was applied in material production, and the relations between the feedback and the project’s theoretical basis. The project is based on original theory (Math Holes theory), but international frameworks, like Mathematics Recovery, serve...

  10. A Mathematical Formalization Proposal for Business Growth

    Directory of Open Access Journals (Sweden)

    Gheorghe BAILESTEANU

    2013-01-01

    Full Text Available Economic sciences have known a spectacular evolution in the last century; beginning to use axiomatic methods, applying mathematical instruments as a decision-making tool. The quest to formalization needs to be addressed from various different angles, reducing entry and operating formal costs, increasing the incentives for firms to operate formally, reducing obstacles to their growth, and searching for inexpensive approaches through which to enforce compliancy with government regulations. This paper proposes a formalized approach to business growth, based on mathematics and logics, taking into consideration the particularities of the economic sector.

  11. Principal Component Analysis: Resources for an Essential Application of Linear Algebra

    Science.gov (United States)

    Pankavich, Stephen; Swanson, Rebecca

    2015-01-01

    Principal Component Analysis (PCA) is a highly useful topic within an introductory Linear Algebra course, especially since it can be used to incorporate a number of applied projects. This method represents an essential application and extension of the Spectral Theorem and is commonly used within a variety of fields, including statistics,…

  12. Principal Time Management Skills: Explaining Patterns in Principals' Time Use, Job Stress, and Perceived Effectiveness

    Science.gov (United States)

    Grissom, Jason A.; Loeb, Susanna; Mitani, Hajime

    2015-01-01

    Purpose: Time demands faced by school principals make principals' work increasingly difficult. Research outside education suggests that effective time management skills may help principals meet job demands, reduce job stress, and improve their performance. The purpose of this paper is to investigate these hypotheses. Design/methodology/approach:…

  13. Writing and mathematical problem solving in Grade 3

    Directory of Open Access Journals (Sweden)

    Belinda Petersen

    2017-06-01

    Full Text Available This article looks at writing tasks as a methodology to support learners’ mathematical problemsolving strategies in the South African Foundation Phase context. It is a qualitative case study and explores the relation between the use of writing in mathematics and development of learners’ problem-solving strategies and conceptual understanding. The research was conducted in a suburban Foundation Phase school in Cape Town with a class of Grade 3 learners involved in a writing and mathematics intervention. Writing tasks were modelled to learners and implemented by them while they were engaged in mathematical problem solving. Data were gathered from a sample of eight learners of different abilities and included written work, interviews, field notes and audio recordings of ability group discussions. The results revealed an improvement in the strategies and explanations learners used when solving mathematical problems compared to before the writing tasks were implemented. Learners were able to reflect critically on their thinking through their written strategies and explanations. The writing tasks appeared to support learners in providing opportunities to construct and apply mathematical knowledge and skills in their development of problem-solving strategies.

  14. Principal Self-Efficacy, Teacher Perceptions of Principal Performance, and Teacher Job Satisfaction

    Science.gov (United States)

    Evans, Molly Lynn

    2016-01-01

    In public schools, the principal's role is of paramount importance in influencing teachers to excel and to keep their job satisfaction high. The self-efficacy of leaders is an important characteristic of leadership, but this issue has not been extensively explored in school principals. Using internet-based questionnaires, this study obtained…

  15. Manifold valued statistics, exact principal geodesic analysis and the effect of linear approximations

    DEFF Research Database (Denmark)

    Sommer, Stefan Horst; Lauze, Francois Bernard; Hauberg, Søren

    2010-01-01

    , we present a comparison between the non-linear analog of Principal Component Analysis, Principal Geodesic Analysis, in its linearized form and its exact counterpart that uses true intrinsic distances. We give examples of datasets for which the linearized version provides good approximations...... and for which it does not. Indicators for the differences between the two versions are then developed and applied to two examples of manifold valued data: outlines of vertebrae from a study of vertebral fractures and spacial coordinates of human skeleton end-effectors acquired using a stereo camera and tracking...

  16. A mathematical medley fifty easy pieces on mathematics

    CERN Document Server

    Szpiro, George G

    2010-01-01

    Szpiro's book provides a delightful, well-written, eclectic selection of mathematical tidbits that makes excellent airplane reading for anyone with an interest in mathematics, regardless of their mathematical background. Excellent gift material. -Keith Devlin, Stanford University, author of The Unfinished Game and The Language of Mathematics It is great to have collected in one volume the many varied, insightful and often surprising mathematical stories that George Szpiro has written in his mathematical columns for the newspapers through the years. -Marcus du Sautoy, Oxford University, author

  17. 26 CFR 1.863-7 - Allocation of income attributable to certain notional principal contracts under section 863(a).

    Science.gov (United States)

    2010-04-01

    ... basis) so choose. See paragraph (c) of this section for an election to apply the rules of this section... notional principal contract income—(1) General rule. Unless paragraph (b) (2) or (3) of this section... negotiation or acquisition of a notional principal contract may be disregarded if the district director...

  18. A complementary measure of heterogeneity on mathematical skills

    Science.gov (United States)

    Fedriani, Eugenio M.; Moyano, Rafael

    2012-06-01

    Finding educational truths is an inherently multivariate problem. There are many factors affecting each student and their performances. Because of this, both measuring of skills and assessing students are always complex processes. This is a well-known problem, and a number of solutions have been proposed by specialists. One of its ramifications is that the variety of progress levels of students in the Mathematics classroom makes teaching more difficult. We think that a measure of the heterogeneity of the different student groups could be interesting in order to prepare some strategies to deal with these kinds of difficulties. The major aim of this study is to develop new tools, complementary to the statistical ones that are commonly used for these purposes, to study situations related to education (mainly to the detection of levels of mathematical education) in which several variables are involved. These tools are thought to simplify these educational analyses and, through a better comprehension of the topic, to improve our teaching. Several authors in our research group have developed some mathematical, theoretical tools, to deal with multidimensional phenomena, and have applied them to measure poverty and also to other business models. These tools are based on multidigraphs. In this article, we implement these tools using symbolic computational software and apply them to study a specific situation related to mathematical education.

  19. The Relationship among Elementary Teachers’ Mathematics Anxiety, Mathematics Instructional Practices, and Student Mathematics Achievement

    OpenAIRE

    Hadley, Kristin M.; Dorward, Jim

    2011-01-01

    Many elementary teachers have been found to have high levels of mathematics anxiety but the impact on student achievement was unknown. Elementary teachers (N = 692) completed the modified Mathematics Anxiety Rating Scale-Revised (Hopko, 2003) along with a questionnaire probing anxiety about teaching mathematics and current mathematics instructional practices. Student mathematics achievement data were collected for the classrooms taught by the teachers. A positive relationship was found betwee...

  20. Life insurance mathematics

    CERN Document Server

    Gerber, Hans U

    1997-01-01

    This concise introduction to life contingencies, the theory behind the actuarial work around life insurance and pension funds, will appeal to the reader who likes applied mathematics. In addition to model of life contingencies, the theory of compound interest is explained and it is shown how mortality and other rates can be estimated from observations. The probabilistic model is used consistently throughout the book. Numerous exercises (with answers and solutions) have been added, and for this third edition several misprints have been corrected.

  1. A Critical Discourse Analysis of Practical Problems in a Foundation Mathematics Course at a South African University

    Science.gov (United States)

    le Roux, Kate; Adler, Jill

    2016-01-01

    Mathematical problems that make links to the everyday and to disciplines other than mathematics--variously referred to as practical, realistic, real-world or applied problems in the literature--feature in school and undergraduate mathematics reforms aimed at increasing mathematics participation in contexts of inequity and diversity. In this…

  2. The language of mathematics telling mathematical tales

    CERN Document Server

    Barton, Bill

    2008-01-01

    Everyday mathematical ideas are expressed differently in different languages. This book probes those differences and explores their implications for mathematics education, arguing for alternatives to how we teach and learn mathematics.

  3. Higher-order automatic differentiation of mathematical functions

    Science.gov (United States)

    Charpentier, Isabelle; Dal Cappello, Claude

    2015-04-01

    Functions of mathematical physics such as the Bessel functions, the Chebyshev polynomials, the Gauss hypergeometric function and so forth, have practical applications in many scientific domains. On the one hand, differentiation formulas provided in reference books apply to real or complex variables. These do not account for the chain rule. On the other hand, based on the chain rule, the automatic differentiation has become a natural tool in numerical modeling. Nevertheless automatic differentiation tools do not deal with the numerous mathematical functions. This paper describes formulas and provides codes for the higher-order automatic differentiation of mathematical functions. The first method is based on Faà di Bruno's formula that generalizes the chain rule. The second one makes use of the second order differential equation they satisfy. Both methods are exemplified with the aforementioned functions.

  4. Mathematical models and accuracy of radioisotope gauges

    International Nuclear Information System (INIS)

    Urbanski, P.

    1989-01-01

    Mathematical expressions relating the variance and mean value of the intrinsic error with the parameters of one and multi-dimensional mathematical models of radioisotope gauges are given. Variance of the intrinsic error at the model's output is considered as a sum of the variances of the random error which is created in the first stages of the measuring chain and the random error of calibration procedure. The mean value of the intrinsic error (systematic error) appears always for nonlinear models. It was found that the optimal model of calibration procedure not always corresponds to the minimal value of the intrinsic error. The derived expressions are applied for the assessment of the mathematical models of some of the existing gauges (radioisotope belt weigher, XRF analyzer and coating thickness gauge). 7 refs., 5 figs., 1 tab. (author)

  5. Mathematical modeling and applications in nonlinear dynamics

    CERN Document Server

    Merdan, Hüseyin

    2016-01-01

    The book covers nonlinear physical problems and mathematical modeling, including molecular biology, genetics, neurosciences, artificial intelligence with classical problems in mechanics and astronomy and physics. The chapters present nonlinear mathematical modeling in life science and physics through nonlinear differential equations, nonlinear discrete equations and hybrid equations. Such modeling can be effectively applied to the wide spectrum of nonlinear physical problems, including the KAM (Kolmogorov-Arnold-Moser (KAM)) theory, singular differential equations, impulsive dichotomous linear systems, analytical bifurcation trees of periodic motions, and almost or pseudo- almost periodic solutions in nonlinear dynamical systems. Provides methods for mathematical models with switching, thresholds, and impulses, each of particular importance for discontinuous processes Includes qualitative analysis of behaviors on Tumor-Immune Systems and methods of analysis for DNA, neural networks and epidemiology Introduces...

  6. Legal Problems of the Principal.

    Science.gov (United States)

    Stern, Ralph D.; And Others

    The three talks included here treat aspects of the law--tort liability, student records, and the age of majority--as they relate to the principal. Specifically, the talk on torts deals with the consequences of principal negligence in the event of injuries to students. Assurance is given that a reasonable and prudent principal will have a minimum…

  7. NEW TEACHING MATHEMATICS TEACHING EFFECTIVENESS OF THE USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES

    OpenAIRE

    Zhanys Aray Boshanqyzy; Nurkasymova Saule Nurkasymovna

    2017-01-01

    The possibilities of computer technologies in improving the quality of teaching mathematics and its application in the 7th grade students studied the impact on the development of mathematical thinking. Teachers and pupils kanşalıktı methodology to apply this technology meñgergendikteri tested and determined to improve the methods of teaching mathematics in the scientific literature of the main ideas, 7th grade, based on the best practices in the teaching of mathematics and taking into account...

  8. Mathematical theory of elasticity of quasicrystals and its applications

    CERN Document Server

    Fan, Tian-You

    2016-01-01

    This interdisciplinary work on condensed matter physics, the continuum mechanics of novel materials, and partial differential equations, discusses the mathematical theory of elasticity and hydrodynamics of quasicrystals, as well as its applications. By establishing new partial differential equations of higher order and their solutions under complicated boundary value and initial value conditions, the theories developed here dramatically simplify the solution of complex elasticity problems. Comprehensive and detailed mathematical derivations guide readers through the work. By combining theoretical analysis and experimental data, mathematical studies and practical applications, readers will gain a systematic, comprehensive and in-depth understanding of condensed matter physics, new continuum mechanics and applied mathematics. This new edition covers the latest developments in quasicrystal studies. In particular, it pays special attention to the hydrodynamics, soft-matter quasicrystals, and the Poisson bracket m...

  9. Mathematical Modelling Approach in Mathematics Education

    Science.gov (United States)

    Arseven, Ayla

    2015-01-01

    The topic of models and modeling has come to be important for science and mathematics education in recent years. The topic of "Modeling" topic is especially important for examinations such as PISA which is conducted at an international level and measures a student's success in mathematics. Mathematical modeling can be defined as using…

  10. Discrete mathematics in deaf education: a survey of teachers' knowledge and use.

    Science.gov (United States)

    Pagliaro, Claudia M; Kritzer, Karen L

    The study documents what deaf education teachers know about discrete mathematics topics and determines if these topics are present in the mathematics curriculum. Survey data were collected from 290 mathematics teachers at center and public school programs serving a minimum of 120 students with hearing loss, grades K-8 or K-12, in the United States. Findings indicate that deaf education teachers are familiar with many discrete mathematics topics but do not include them in instruction because they consider the concepts too complicated for their students. Also, regardless of familiarity level, deaf education teachers are not familiar with discrete mathematics terminology; nor is their mathematics teaching structured to provide opportunities to apply the real-world-oriented activities used in discrete mathematics instruction. Findings emphasize the need for higher expectations of students with hearing loss, and for reform in mathematics curriculum and instruction within deaf education.

  11. Core Support of the Board on Mathematical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-04-04

    This proposal summarizes activities conducted by the Board on Mathematical Sciences (BMS) during the period August 1, 1994 to July 31, 1995 and describes future plans of the Board for the period August 1, 1995 to July 31, 1998. We are requesting core support in the amount of $105,000 ($35,000 each year) from the Department of Energy for the additional three-year period. The BMS activities supported exclusively by core funding are the annual Department Chairs Colloquia, the National Science and Technology Symposia, specific reports, the initiation of all projects, continuous oversight of all activities, and partial core support of the Committee on Applied and Theoretical Statistics (CATS). Other activities of the Board include giving recommendations on research directions to federal agencies, and reports on education in the mathematical sciences, interaction of mathematical sciences with other areas, health of the mathematical sciences, and emerging research directions.

  12. Mathematical methods of many-body quantum field theory

    CERN Document Server

    Lehmann, Detlef

    2004-01-01

    Mathematical Methods of Many-Body Quantum Field Theory offers a comprehensive, mathematically rigorous treatment of many-body physics. It develops the mathematical tools for describing quantum many-body systems and applies them to the many-electron system. These tools include the formalism of second quantization, field theoretical perturbation theory, functional integral methods, bosonic and fermionic, and estimation and summation techniques for Feynman diagrams. Among the physical effects discussed in this context are BCS superconductivity, s-wave and higher l-wave, and the fractional quantum Hall effect. While the presentation is mathematically rigorous, the author does not focus solely on precise definitions and proofs, but also shows how to actually perform the computations.Presenting many recent advances and clarifying difficult concepts, this book provides the background, results, and detail needed to further explore the issue of when the standard approximation schemes in this field actually work and wh...

  13. Finger crease pattern recognition using Legendre moments and principal component analysis

    Science.gov (United States)

    Luo, Rongfang; Lin, Tusheng

    2007-03-01

    The finger joint lines defined as finger creases and its distribution can identify a person. In this paper, we propose a new finger crease pattern recognition method based on Legendre moments and principal component analysis (PCA). After obtaining the region of interest (ROI) for each finger image in the pre-processing stage, Legendre moments under Radon transform are applied to construct a moment feature matrix from the ROI, which greatly decreases the dimensionality of ROI and can represent principal components of the finger creases quite well. Then, an approach to finger crease pattern recognition is designed based on Karhunen-Loeve (K-L) transform. The method applies PCA to a moment feature matrix rather than the original image matrix to achieve the feature vector. The proposed method has been tested on a database of 824 images from 103 individuals using the nearest neighbor classifier. The accuracy up to 98.584% has been obtained when using 4 samples per class for training. The experimental results demonstrate that our proposed approach is feasible and effective in biometrics.

  14. Conditional Independence in Applied Probability.

    Science.gov (United States)

    Pfeiffer, Paul E.

    This material assumes the user has the background provided by a good undergraduate course in applied probability. It is felt that introductory courses in calculus, linear algebra, and perhaps some differential equations should provide the requisite experience and proficiency with mathematical concepts, notation, and argument. The document is…

  15. Mathematical bridges

    CERN Document Server

    Andreescu, Titu; Tetiva, Marian

    2017-01-01

    Building bridges between classical results and contemporary nonstandard problems, Mathematical Bridges embraces important topics in analysis and algebra from a problem-solving perspective. Blending old and new techniques, tactics and strategies used in solving challenging mathematical problems, readers will discover numerous genuine mathematical gems throughout that will heighten their appreciation of the inherent beauty of mathematics. Most of the problems are original to the authors and are intertwined in a well-motivated exposition driven by representative examples. The book is structured to assist the reader in formulating and proving conjectures, as well as devising solutions to important mathematical problems by making connections between various concepts and ideas from different areas of mathematics. Instructors and educators teaching problem-solving courses or organizing mathematics clubs, as well as motivated mathematics students from high school juniors to college seniors, will find Mathematical Bri...

  16. A College-Level Foundational Mathematics Course: Evaluation, Challenges, and Future Directions

    Science.gov (United States)

    Maciejewski, Wes

    2012-01-01

    Recently in Ontario, Canada, the College Math Project brought to light startling data on the achievement of students in Ontario's College of Applied Arts and Technology System related to their performance in first-year mathematics courses: one-third of the students had failed their first-year mathematics course or were at risk of not completing…

  17. Exploring mathematics anxiety and attitude: Mathematics students' experiences

    Science.gov (United States)

    Sahri, Nurul Ashikin; Kamaruzaman, Wan Nur Farahdalila Wan; Jamil, Jastini Mohd.; Shaharanee, Izwan Nizal Mohd.

    2017-11-01

    A quantitative and correlational, survey methods were used to investigate the relationships among mathematical anxiety and attitude toward student's mathematics performance. Participants were 100 students volunteer to enroll in undergraduate Industrial Statistics, Decision Sciences and Business Mathematics at one of northern university in Malaysia. Survey data consisted of demographic items and Likert scale items. The collected data was analyzed by using the idea of correlation and regression analysis. The results indicated that there was a significant positive relationship between students' attitude and mathematics anxiety. Results also indicated that a substantial positive effect of students' attitude and mathematics anxiety in students' achievement. Further study can be conducted on how mathematical anxiety and attitude toward mathematics affects can be used to predict the students' performance in the class.

  18. A Capstone Mathematics Course for Prospective Secondary Mathematics Teachers

    Science.gov (United States)

    Artzt, Alice F.; Sultan, Alan; Curcio, Frances R.; Gurl, Theresa

    2012-01-01

    This article describes an innovative capstone mathematics course that links college mathematics with school mathematics and pedagogy. It describes how college juniors in a secondary mathematics teacher preparation program engage in leadership experiences that enable them to learn mathematics for teaching while developing student-centered…

  19. Principals Who Think Like Teachers

    Science.gov (United States)

    Fahey, Kevin

    2013-01-01

    Being a principal is a complex job, requiring quick, on-the-job learning. But many principals already have deep experience in a role at the very essence of the principalship. They know how to teach. In interviews with principals, Fahey and his colleagues learned that thinking like a teacher was key to their work. Part of thinking the way a teacher…

  20. Mathematics and Forms of Life

    Directory of Open Access Journals (Sweden)

    Severin Schroeder

    2015-10-01

    Full Text Available According to Wittgenstein, mathematics is embedded in, and partly constituting, a form of life. Hence, to imagine different, alternative forms of elementary mathematics, we should have to imagine different practices, different forms of life in which they could play a role. If we tried to imagine a radically different arithmetic we should think either of a strange world (in which objects unaccountably vanish or appear or of people acting and responding in very peculiar ways. If such was their practice, a calculus expressing the norms of representation they applied could not be called false. Rather, our criticism could only be to dismiss such a practice as foolish and to dismiss their norms as too different from ours to be called ‘mathematics’.

  1. Trust Me, Principal, or Burn Out! The Relationship between Principals' Burnout and Trust in Students and Parents

    Science.gov (United States)

    Ozer, Niyazi

    2013-01-01

    The purpose of this study was to determine the primary school principals' views on trust in students and parents and also, to explore the relationships between principals' levels of professional burnout and their trust in students and parents. To this end, Principal Trust Survey and Friedman Principal Burnout scales were administered on 119…

  2. Understanding Immunology via Engineering Design: The Role of Mathematical Prototyping

    Science.gov (United States)

    Klinke, David J.; Wang, Qing

    2012-01-01

    A major challenge in immunology is how to translate data into knowledge given the inherent complexity and dynamics of human physiology. Both the physiology and engineering communities have rich histories in applying computational approaches to translate data obtained from complex systems into knowledge of system behavior. However, there are some differences in how disciplines approach problems. By referring to mathematical models as mathematical prototypes, we aim to highlight aspects related to the process (i.e., prototyping) rather than the product (i.e., the model). The objective of this paper is to review how two related engineering concepts, specifically prototyping and “fitness for use,” can be applied to overcome the pressing challenge in translating data into improved knowledge of basic immunology that can be used to improve therapies for disease. These concepts are illustrated using two immunology-related examples. The prototypes presented focus on the beta cell mass at the onset of type 1 diabetes and the dynamics of dendritic cells in the lung. This paper is intended to illustrate some of the nuances associated with applying mathematical modeling to improve understanding of the dynamics of disease progression in humans. PMID:22973412

  3. Mathematical aspects of surface water waves

    International Nuclear Information System (INIS)

    Craig, Walter; Wayne, Clarence E

    2007-01-01

    The theory of the motion of a free surface over a body of water is a fascinating subject, with a long history in both applied and pure mathematical research, and with a continuing relevance to the enterprises of mankind having to do with the sea. Despite the recent advances in the field (some of which we will hear about during this Workshop on Mathematical Hydrodynamics at the Steklov Institute), and the current focus of the mathematical community on the topic, many fundamental mathematical questions remain. These have to do with the evolution of surface water waves, their approximation by model equations and by computer simulations, the detailed dynamics of wave interactions, such as would produce rogue waves in an open ocean, and the theory (partially probabilistic) of approximating wave fields over large regions by averaged 'macroscopic' quantities which satisfy essentially kinetic equations of motion. In this note we would like to point out open problems and some of the directions of current research in the field. We believe that the introduction of new analytical techniques and novel points of view will play an important role in the future development of the area.

  4. Experience of three-dimensional vision in the era of digital interaction new devices : opportunity and challenges for applied mathematics and visual design

    CERN Document Server

    Brunetti, Federico Alberto

    2014-01-01

    It will be soon presented to the public a new version of stereoscopic viewers designed for observing files and video projected images through a system of transparent optical prisms which allow the simultaneous perception of the surrounding environment. The real challenge for applied mathematics and visual design will be to prefigure how to use them and their applications, since these new devices can actually enable a deeper visual experience. A specific case study concerns the visualizations of the collisions at the LHC at CERN, selected to verify the traces of the boson theorized by Francois Englert and Peter Higgs, with Robert Brout, who recently (2013) received the Nobel Prize for their research.

  5. On Mathematical Understanding: Perspectives of Experienced Chinese Mathematics Teachers

    Science.gov (United States)

    Cai, Jinfa; Ding, Meixia

    2017-01-01

    Researchers have long debated the meaning of mathematical understanding and ways to achieve mathematical understanding. This study investigated experienced Chinese mathematics teachers' views about mathematical understanding. It was found that these mathematics teachers embrace the view that understanding is a web of connections, which is a result…

  6. Hands-On Mathematics: Two Cases from Ancient Chinese Mathematics

    Science.gov (United States)

    Wang, Youjun

    2009-01-01

    In modern mathematical teaching, it has become increasingly emphasized that mathematical knowledge should be taught by problem-solving, hands-on activities, and interactive learning experiences. Comparing the ideas of modern mathematical education with the development of ancient Chinese mathematics, we find that the history of mathematics in…

  7. Theoretical Mathematics

    Science.gov (United States)

    Stöltzner, Michael

    Answering to the double-faced influence of string theory on mathematical practice and rigour, the mathematical physicists Arthur Jaffe and Frank Quinn have contemplated the idea that there exists a `theoretical' mathematics (alongside `theoretical' physics) whose basic structures and results still require independent corroboration by mathematical proof. In this paper, I shall take the Jaffe-Quinn debate mainly as a problem of mathematical ontology and analyse it against the backdrop of two philosophical views that are appreciative towards informal mathematical development and conjectural results: Lakatos's methodology of proofs and refutations and John von Neumann's opportunistic reading of Hilbert's axiomatic method. The comparison of both approaches shows that mitigating Lakatos's falsificationism makes his insights about mathematical quasi-ontology more relevant to 20th century mathematics in which new structures are introduced by axiomatisation and not necessarily motivated by informal ancestors. The final section discusses the consequences of string theorists' claim to finality for the theory's mathematical make-up. I argue that ontological reductionism as advocated by particle physicists and the quest for mathematically deeper axioms do not necessarily lead to identical results.

  8. Physics, Computer Science and Mathematics Division. Annual report, 1 January--31 December 1977. [LBL, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Lepore, J.V. (ed.)

    1977-01-01

    This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during 1977. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics, although there is a relatively small program of medium-energy research. The High Energy Physics research program in the Physics Division is concerned with fundamental research which will enable man to comprehend the nature of the physical world. The major effort is now directed toward experiments with positron-electron colliding beam at PEP. The Medium Energy Physics program is concerned with research using mesons and nucleons to probe the properties of matter. This research is concerned with the study of nuclear structure, nuclear reactions, and the interactions between nuclei and electromagnetic radiation and mesons. The Computer Science and Applied Mathematics Department engages in research in a variety of computer science and mathematics disciplines. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The Computer Center provides large-scale computational support to LBL's scientific programs. Descriptions of the various activities are quite short; references to published results are given. 24 figures. (RWR)

  9. Mathematics Curriculum, the Philosophy of Mathematics and its ...

    African Journals Online (AJOL)

    It is my observation that the current school mathematics curriculum in Ethiopia is not producing competent mathematics students. Many mathematicians in Ethiopia and other part of the world have often expressed grief that the majority of students do not understand mathematical concepts, or do not see why mathematical ...

  10. Mathematics, the Computer, and the Impact on Mathematics Education.

    Science.gov (United States)

    Tooke, D. James

    2001-01-01

    Discusses the connection between mathematics and the computer; mathematics curriculum; mathematics instruction, including teachers learning to use computers; and the impact of the computer on learning mathematics. (LRW)

  11. Finite Mathematics and Discrete Mathematics: Is There a Difference?

    Science.gov (United States)

    Johnson, Marvin L.

    Discrete mathematics and finite mathematics differ in a number of ways. First, finite mathematics has a longer history and is therefore more stable in terms of course content. Finite mathematics courses emphasize certain particular mathematical tools which are useful in solving the problems of business and the social sciences. Discrete mathematics…

  12. Physics, Computer Science and Mathematics Division annual report, 1 January--31 December 1975

    International Nuclear Information System (INIS)

    Lepore, J.L.

    1975-01-01

    This annual report describes the scientific research and other work carried out during the calendar year 1975. The report is nontechnical in nature, with almost no data. A 17-page bibliography lists the technical papers which detail the work. The contents of the report include the following: experimental physics (high-energy physics--SPEAR, PEP, SLAC, FNAL, BNL, Bevatron; particle data group; medium-energy physics; astrophysics, astronomy, and cosmic rays; instrumentation development), theoretical physics (particle theory and accelerator theory and design), computer science and applied mathematics (data management systems, socio-economic environment demographic information system, computer graphics, computer networks, management information systems, computational physics and data analysis, mathematical modeling, programing languages, applied mathematics research), real-time systems (ModComp and PDP networks), and computer center activities (systems programing, user services, hardware development, computer operations). A glossary of computer science and mathematics terms is also included. 32 figures

  13. Mathematical Intelligence and Mathematical Creativity: A Causal Relationship

    Science.gov (United States)

    Tyagi, Tarun Kumar

    2017-01-01

    This study investigated the causal relationship between mathematical creativity and mathematical intelligence. Four hundred thirty-nine 8th-grade students, age ranged from 11 to 14 years, were included in the sample of this study by random cluster technique on which mathematical creativity and Hindi adaptation of mathematical intelligence test…

  14. Principal component regression analysis with SPSS.

    Science.gov (United States)

    Liu, R X; Kuang, J; Gong, Q; Hou, X L

    2003-06-01

    The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with SPSS 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correlations procedures in SPSS 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with SPSS.

  15. A course of mathematics for engineerings and scientists

    CERN Document Server

    Chirgwin, Brian H

    1984-01-01

    A Course of Mathematics for Engineers and Scientists, Volume 2 continues the course of pure and applied mathematics for undergraduate science and engineering students. It contains further examples and exercises from examination papers from Oxford University, Cambridge University, and the University of London. The topics covered in this book include differential equations, linear equations, matrices and determinants, vector algebra and coordinate geometry, and differentiation and integration of functions of two or more variables. This book is intended as a reference for students taking science

  16. Mathematical modeling of swirled flows in industrial applications

    Science.gov (United States)

    Dekterev, A. A.; Gavrilov, A. A.; Sentyabov, A. V.

    2018-03-01

    Swirled flows are widely used in technological devices. Swirling flows are characterized by a wide range of flow regimes. 3D mathematical modeling of flows is widely used in research and design. For correct mathematical modeling of such a flow, it is necessary to use turbulence models, which take into account important features of the flow. Based on the experience of computational modeling of a wide class of problems with swirling flows, recommendations on the use of turbulence models for calculating the applied problems are proposed.

  17. Recent developments of mathematical fluid mechanics

    CERN Document Server

    Giga, Yoshikazu; Kozono, Hideo; Okamoto, Hisashi; Yamazaki, Masao

    2016-01-01

    The book addresses recent developments of the mathematical research on the Navier-Stokes and Euler equations as well as on related problems. In particular, there are covered:   1) existence, uniqueness, and the regularity of weak solutions; 2) stability of the motion in rest and the asymptotic behavior of solutions; 3) singularity and blow-up of weak and strong solutions; 4) vorticity and energy conservation; 5) motions of rotating fluids, or of fluids surrounding a rotating body; 6) free boundary problems; 7) maximal regularity theory and other abstract results for mathematical fluid mechanics.   For this quarter century, these topics have been playing a central role in both pure and applied mathematics and having a great influence to the developm ent of the functional analysis, harmonic analysis and numerical analysis whose tools make a a substantial contribution to the investigation of nonlinear partial differential equations, particularly the Navier-Stokes and the Euler equations.      There are 24...

  18. Exploring the Impact of Applicants' Gender and Religion on Principals' Screening Decisions for Assistant Principal Applicants

    Science.gov (United States)

    Bon, Susan C.

    2009-01-01

    In this experimental study, a national random sample of high school principals (stratified by gender) were asked to evaluate hypothetical applicants whose resumes varied by religion (Jewish, Catholic, nondenominational) and gender (male, female) for employment as assistant principals. Results reveal that male principals rate all applicants higher…

  19. Applying Constructionism and Problem Based Learning for Developing Dynamic Educational Material for Mathematics At Undergraduate University Level

    DEFF Research Database (Denmark)

    Triantafyllou, Eva; Timcenko, Olga

    2013-01-01

    As a result of changes in society and education, assumptions about the knowledge of entrants to university have become obsolete. One area in which this seems to be true is mathematics. This paper presents our research aiming at tackling with this problem by developing digital educational material...... for mathematics education, which will be student-driven, dynamic, and multimodal. Our approach will be supported by the theories of Constructionism and PBL. The impact of its use will be evaluated in university settings. It is expected that the evaluation will demonstrate an improvement in student engagement...

  20. Unvealing the Principal Modes of Human Upper Limb Movements through Functional Analysis

    Directory of Open Access Journals (Sweden)

    Giuseppe Averta

    2017-08-01

    Full Text Available The rich variety of human upper limb movements requires an extraordinary coordination of different joints according to specific spatio-temporal patterns. However, unvealing these motor schemes is a challenging task. Principal components have been often used for analogous purposes, but such an approach relies on hypothesis of temporal uncorrelation of upper limb poses in time. To overcome these limitations, in this work, we leverage on functional principal component analysis (fPCA. We carried out experiments with 7 subjects performing a set of most significant human actions, selected considering state-of-the-art grasp taxonomies and human kinematic workspace. fPCA results show that human upper limb trajectories can be reconstructed by a linear combination of few principal time-dependent functions, with a first component alone explaining around 60/70% of the observed behaviors. This allows to infer that in daily living activities humans reduce the complexity of movement by modulating their motions through a reduced set of few principal patterns. Finally, we discuss how this approach could be profitably applied in robotics and bioengineering, opening fascinating perspectives to advance the state of the art of artificial systems, as it was the case of hand synergies.