WorldWideScience

Sample records for applied electrochemistry prikladnaya

  1. Applied Electrochemistry of Aluminum

    DEFF Research Database (Denmark)

    Li, Qingfeng; Qiu, Zhuxian

    Electrochemistry of aluminum is of special importance from both theoretical and technological point of view. It covers a wide range of electrolyte systems from molten fluoride melts at around 1000oC to room temperature molten salts, from aqueous to various organic media and from liquid to solid...

  2. Encyclopedia of electrochemistry. Vol. 5. Electrochemical engineering

    Energy Technology Data Exchange (ETDEWEB)

    Bard, A.J. [Texas Univ., Austin, TX (United States). Dept. of Chemistry; Stratmann, M. [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany); Macdonald, D. [Pennsylvania State Univ., University Park, PA (United States). Center for Electrochemical Science and Engineering; Schmuki, P. (eds.) [Erlangen-Nuernberg Univ., Erlangen (Germany). Dept. of Material Science

    2007-07-01

    This volume contains the following chapters: 1. Technical scale of electrochemistry; 2. Electrocatalysis; 3. Electrochemical composition; 4. Electrowinning of metals; 5. Electrowinning of other inorganic compounds; 6. Electrochemistry applied to organic synthesis: Principles and main achievements; 7. Batteries: Basic principles, technologies, and modeling; 8. Fuel cells; 9. The electrochemistry of nuclear reactor coolant circuits; 10. Electrochemical techniques for studying high-temperature subcritical and supercritical aqueous solutions; 11. Electrochemistry of silicon etching; 12. Electrochemical machining; 13. Environmental chemistry.

  3. Supramolecular Electrochemistry

    Science.gov (United States)

    Kaifer, Angel E.; Gomez-Kaifer, Marielle

    1999-12-01

    This book describes the electrochemical behavior of supramolecular systems. Special emphasis will be given to the electrochemistry of host-guest complexes, monolayer and multilayer assemblies, dendrimers, and other supramolecular assemblies. A fundamental theme throughout the book is to explore the effects that supramolecular structure exerts on the thermodynamics and kinetics of electrochemical reactions. Conversely, attention will be placed to the various ways in which electrochemical or redox conversions can be utilized to control or affect the structure or properties of supramolecular systems. This first book on this topic will be of value for graduate students and advanced researchers in both electrochemistry and supramolecular chemistry.

  4. Analytical and physical electrochemistry

    CERN Document Server

    Girault, Hubert H

    2004-01-01

    The study of electrochemistry is pertinent to a wide variety of fields, including bioenergetics, environmental sciences, and engineering sciences. In addition, electrochemistry plays a fundamental role in specific applications as diverse as the conversion and storage of energy and the sequencing of DNA.Intended both as a basic course for undergraduate students and as a reference work for graduates and researchers, Analytical and Physical Electrochemistry covers two fundamental aspects of electrochemistry: electrochemistry in solution and interfacial electrochemistry. By bringing these two subj

  5. 关于应用电化学课程的科研化教学思考%A Reflection of Integrating Teaching into Scientific Research for Applied Electrochemistry

    Institute of Scientific and Technical Information of China (English)

    崔萍; 彭荣; 石小鹏; 肖作安

    2015-01-01

    Applied electrochemistry was one of the specialized optional courses for the undergraduate students on chemistry, involving the electrochemical principals and the applications of electrochemistry. A teaching method of integrating teaching into research was employed for applied electrochemistry course. Appling the discipline progress and scientific achievements of teachers in the teaching plan and guiding the students to participate in scientific research practice could make the students’ knowledge more systematic and broadening the students’ vision and knowledge. The innovation ability and scientific research quality can be strengthened by understanding the research methods and achievements.%《应用电化学》是化学专业本科生的专业选修课,主要涉及电化学基本原理以及电化学在各领域的应用。本文介绍了应用电化学课程的科研化教学方法。主要采用将学科科研发展、教师科研成果引入课堂教学,引导学生参与课外科研实践活动的教学模式,开阔学生的视野,增加学生的知识面,使学生的科研素质和综合能力得到提高。

  6. Applications of electrochemistry and nanotechnology in biology and medicine II

    CERN Document Server

    Eliaz, Noam

    2011-01-01

    The study of electrochemical nanotechnology has emerged as researchers apply electrochemistry to nanoscience and nanotechnology. These two related volumes in the Modern Aspects of Electrochemistry Series review recent developments and breakthroughs in the specific application of electrochemistry and nanotechnology to biology and medicine. Internationally renowned experts contribute chapters that address both fundamental and practical aspects of several key emerging technologies in biomedicine, such as the processing of new biomaterials, biofunctionalization of surfaces, characterization of bio

  7. Silicon: electrochemistry and luminescence

    NARCIS (Netherlands)

    Kooij, Ernst Stefan

    2001-01-01

    The electrochemistry of crystalline and porous silicon and the luminescence from porous silicon has been studied. One chapter deals with a model for the anodic dissolution of silicon in HF solution. In following chapters both the electrochemistry and various ways of generating visible luminescenc

  8. Instrumental methods in electrochemistry

    CERN Document Server

    Pletcher, D; Peat, R

    2010-01-01

    Using 372 references and 211 illustrations, this book underlines the fundamentals of electrochemistry essential to the understanding of laboratory experiments. It treats not only the fundamental concepts of electrode reactions, but also covers the methodology and practical application of the many versatile electrochemical techniques available.Underlines the fundamentals of electrochemistry essential to the understanding of laboratory experimentsTreats the fundamental concepts of electrode reactionsCovers the methodology and practical application of the many ve

  9. Applications of electrochemistry in medicine

    CERN Document Server

    Schlesinger, Mordechay

    2013-01-01

    Medical Applications of Electrochemistry, a volume of the series Modern Aspects of Electrochemistry, illustrates the interdisciplinary nature of modern science by indicating the many current issues in medicine that are susceptible to solution by electrochemical methods. This book also suggests how personalized medicine can develop.

  10. Determination of Lead by Electrochemistry

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Lead is one of the poisonous trace element for human body. It is important to find a way for measuring content of lead. Deternination of lead by electrochemistry is one of a method[1]. In this paper, lead is determined by single-sweep polarography. The absorption behavior of meso-tetra (4-sulfonylphenyl) porphyrin (H2TPPS4) complex with lead ion has also been studied.In Na2B4O7-NaOH solution with pH=l 0.5, the reduction peaks of the ligand are P1 (Ep1=-0.38V), P2 (Ep2=-1.04V), which potentials are obtained vs. S.C.E. When lead ion has been added into above solution. The peak current of P1 and P2 decrease, and a new reduction peak P3 (Ep3=-1.10 V) appears. It shows that the TPPS4-Pb(Ⅱ) complex forms,and this method can be applied to study the complex.

  11. Determination of Lead by Electrochemistry

    Institute of Scientific and Technical Information of China (English)

    HE; YuFeng

    2001-01-01

    Lead is one of the poisonous trace element for human body. It is important to find a way for measuring content of lead. Deternination of lead by electrochemistry is one of a method[1]. In this paper, lead is determined by single-sweep polarography. The absorption behavior of meso-tetra (4-sulfonylphenyl) porphyrin (H2TPPS4) complex with lead ion has also been studied.In Na2B4O7-NaOH solution with pH=l 0.5, the reduction peaks of the ligand are P1 (Ep1=-0.38V), P2 (Ep2=-1.04V), which potentials are obtained vs. S.C.E. When lead ion has been added into above solution. The peak current of P1 and P2 decrease, and a new reduction peak P3 (Ep3=-1.10 V) appears. It shows that the TPPS4-Pb(Ⅱ) complex forms,and this method can be applied to study the complex.……

  12. 7. International Frumkin Symposium. Basic electrochemistry for science and technology. Abstracts. Part 2

    International Nuclear Information System (INIS)

    Modern tendencies of development of electrochemistry as in regions of fundamental investigations so in applied directions are presented. Basic themes of reports presented are: electrocatalysis and electrosynthesis, batteries and supercapacitors, corrosion and electrodeposition, electrolytes and membranes, biosensors and electroanalysis, nanoelectrochemistry

  13. Corrosive electrochemistry of jamesonite

    Institute of Scientific and Technical Information of China (English)

    邱冠周; 余润兰; 胡岳华; 覃文庆

    2004-01-01

    The corrosive electrochemistry of jamesonite (Pb4 FeSb6 S14) was studied by the electrochemical methods of cyclic voltammetry, polarization, and AC impedance. The electrochemical processes of jamesonite were controlled by the corrosive reactions, growth of the metal-deficient and sulfur-riched layer, passivation and breakdown of elemental sulfur film on the electrode surface. The corrosive potential(ψcorr) moves negatively, its corrosive current increases, and hydroxyl action becomes stronger with the rising pH value. The charge transfer resistance increases and the capacitance decreases due to the gradual growth of the metal-deficient and sulfur-riched layer on the mineral surface from -378 to 122 mV (vs SHE). Element sulfur layer is formed at the potential of 122 mV. The charge transfer resistance increases and its capacitance rises slowly due to the gradual breakdown of sulfur film at voltage from 222 mV to 422 mV. S2O2-3 and SO2-4 ions occur when the electrode potential is over 422 mV. Under basic condition, the hydrophobic hydroxyl precipitate occurs on jamesonite surface, so that its collectorless floatability is poor. Under the condition of pH 6.86, it can be deduced that the potential range of collectorless floatability of jamesonite is from 22 to 422 mV due to the passive action of the hydrophilic sulfur on jamesonite surface, and its optimum range of floatable potential is between 122 and 322 mV.

  14. New achievements and methodologies of electrochemistry and electrochemical engineering in the environmental protection and pollution control

    OpenAIRE

    Rodrigo, Manuel Andrés Rodrigo

    2014-01-01

    During the last decades, many applications of Electrochemistry and Electrochemical Engineering have arisen for the characterization and remediation of environmental problems. As a result, now­adays this subject has become one of the most interesting areas of research in applied electrochemistry, with hundreds of papers published every year and many applications already ava­ilable in the market. This special issue contains sixteen very valuable contributions on these topics, written by highly ...

  15. Electrochemistry and environment; Electroquimica y Medio Ambiente

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Garcia, J.; Iniesta, J.; Agullo, E.; Garcia, V.; Montiel, V.; Aldaz, A. [Grupo de Electroquimica aplicada, Departamento de Quimica y Fisica, Universidad de Alicante, Alicante (Spain)

    1996-09-01

    This paper proposes Electrochemistry as a new technology for waste water treatment. Many advantages and new scopes are described. It also introduces several concepts of Electrochemical Technology. (Author)

  16. Electrochemistry of folded graphene edges.

    Science.gov (United States)

    Ambrosi, Adriano; Bonanni, Alessandra; Pumera, Martin

    2011-05-01

    There is enormous interest in the investigation of electron transfer rates at the edges of graphene due to possible energy storage and sensing applications. While electrochemistry at the edges and the basal plane of graphene has been studied in the past, the new frontier is the electrochemistry of folded graphene edges. Here we describe the electrochemistry of folded graphene edges and compare it to that of open graphene edges. The materials were characterized in detail by high-resolution transmission electron microscopy, Raman spectroscopy, high-resolution X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry. We found that the heterogeneous electron transfer rate is significantly lower on folded graphene edges compared to open edge sites for ferro/ferricyanide, and that electrochemical properties of open edges offer lower potential detection of biomarkers than the folded ones. It is apparent, therefore, that for sensing and biosensing applications the folded edges are less active than open edges, which should then be preferred for such applications. As folded edges are the product of thermal treatment of multilayer graphene, such thermal procedures should be avoided when fabricating graphene for electrochemical applications.

  17. Electrochemistry and Spectroelectrochemistry of Luminescent Europium complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lines, Amanda M.; Wang, Zheming; Clark, Sue B.; Bryan, Samuel A.

    2016-05-04

    Fast, cost effective, and robust means of detecting and quantifying lanthanides are needed for supporting more efficient tracking within the nuclear, medicinal, and industrial fields. Spectroelectrochemistry (SEC) is a powerful technique combining electrochemistry and spectroscopy that can meet those needs. The primary limitation of SEC as a detection method for lanthanides is their low molar absorptivity in absorbance based measurements and low emission intensities in fluorescence based measurements; both lead to high limits of detection. These limitations can be circumvented by complexing the lanthanides with sensitizing ligands that enhance fluorescence, thereby dropping the limits of detection. Complexation may also stabilize the metal ions in solution and improve the electrochemical reversibility, or Nernstian behavior, of the redox couples. To demonstrate this concept, studies were completed using europium in complexes with four different sensitizing ligands. Initial work indicates Eu in the four complexes studied does display the necessary characteristics for SEC analysis, which was successfully and reproducibly applied to all Eu complexes.

  18. Biomass electrochemistry : from cellulose to sorbitol

    NARCIS (Netherlands)

    Kwon, Youngkook

    2013-01-01

    The primary goal of this thesis is to study the potential role of electrochemistry in finding new routes for sustainable chemicals from biomass in aqueous-phase solutions. In order to assess the potential of electrochemistry in biomass conversion, we developed an online HPLC system by using a fracti

  19. Modern Aspects of Electrochemistry 40

    CERN Document Server

    White, Ralph E

    2007-01-01

    This volume in the acclaimed series Modern Aspects of Electrochemistry starts with a dedication to the late Professor Brian Conway who for 50 years helped to guide this series to its current prominence. The remainder of the volume is then devoted to the following topics: PEM fuel cells; the use of graphs in electrochemical reaction newtworks; nanomaterials in Lithium-ion batteries; direct methanolf fuel cells (two chapters); fuel cell catalyst layers. The book is for electrochemists, electrochemical engineers, fuel cell workers and energy generation workers.

  20. Medicinal electrochemistry: integration of electrochemistry, medicinal chemistry and computational chemistry.

    Science.gov (United States)

    Almeida, M O; Maltarollo, V G; de Toledo, R A; Shim, H; Santos, M C; Honorio, K M

    2014-01-01

    Over the last centuries, there were many important discoveries in medicine that were crucial for gaining a better understanding of several physiological processes. Molecular modelling techniques are powerful tools that have been successfully used to analyse and interface medicinal chemistry studies with electrochemical experimental results. This special combination can help to comprehend medicinal chemistry problems, such as predicting biological activity and understanding drug action mechanisms. Electrochemistry has provided better comprehension of biological reactions and, as a result of many technological improvements, the combination of electrochemical techniques and biosensors has become an appealing choice for pharmaceutical and biomedical analyses. Therefore, this review will briefly outline the present scope and future advances related to the integration of electrochemical and medicinal chemistry approaches based on various applications from recent studies. PMID:24533810

  1. Electrochemistry "Discovery" Course for Undergraduates

    Science.gov (United States)

    May, Michael Alan; Gupta, Vijay K.

    1997-07-01

    We developed a chemistry selected topics course at Central State University, "Introduction to Laboratory Techniques in Electrochemistry" to: (1) give undergraduates hands-on experience with electrochemical measurements, (2) prepare students for summer research in Fuel Cell and Battery technology. Since students "learn by doing", the course is suitable for undergraduates from sophomore to senior levels. Students complete 6 laboratories, based on a "less is more" philosophy which emphasizes analytic and creative process rather than mandatory topical coverage. Eight electrochemical experiments are available: Construction of Zinc-Copper battery stacks, Lead Acid Battery discharge-charge cycles, Conductimetric titration of aspirin with Ammonium Hydroxide, Ion Selective Electrode determination of Fluoride in water, Cyclic Voltammetry of Potassium Ferricyanide solution, Cyclic Voltammetry of Sulfuric acid on Platinum working electrode, Anodic Stripping Voltammetry of Lead ion in solution, Differential Pulse Polarography of Lead ion in solution. Topics discussed in lecture include: chemical definitions, electrical definitions, Oxidation-Reduction reactions, Electrochemical series, Electrodes, Electrochemical Cells, direct Coulometry, electrolysis, electrochemical process efficiency, equilibrium Potentiometry, real Cell Voltages, Ion Selective Electrode types and designs, reference electrode designs, working electrode materials, pH buffers, Cyclic Voltammetry, Anodic Stripping Voltammetry, Polarography, differential pulse Polarography, and simple electrochemical instrumentation circuits.

  2. Electrochemistry and spectro-electrochemistry of dithizonatophenylmercury(II)

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted Highlights: → CV and spectroelectrochemistry of dithizone and PhHgHDz, 3, is presented. → CV shows 3 has stable metal thioether (Hg-S-C), 1 oxidation and two reductions. → 3 is photochromic (t1/2,relaxation = 1300 s). → Electrochemistry of ground and photo-activated 3 is identical. → Spectroelectrochemistry of 3 highlights electrochromism. - Abstract: The reactions between dithizone (H2Dz, (1)) or potassium dithizonate (K+HDz-, (2)) and phenylmercury(II) chloride gives PhHg(HDz), (3). Complex (3) is photochromic. In dichloromethane, the blue photo-exited state of (3) exhibits a first order relaxation process to regenerate the orange ground state with rate constant 0.00053 s-1. The half life of this relaxation is ca. 1300 s. Electrochemically, on cyclic voltammetry time scale, the oxidations of (1) and (3) are different. A comparative voltammetric and spectro-electrochemical study of (1) and (3) in CH2Cl2 containing 0.1 mol dm-3 [N(nBu)4][B(C6F5)4] revealed that the mercapto group of (1) can be oxidised in two one-electron transfer steps. A disulphide is first produced and then in a second oxidation step, HDz+ is formed. In contrast, complex (3) shows only one ligand-based oxidation step. Upon complexation with phenylmercury the free mercaptan group of (1) becomes a stable 'metal thioether', Hg-S-C, which effectively prevents disulphide formation in (3) upon electrochemical oxidation. Both (1) and (3) shows two reduction steps. The electrochemical fingerprint of blue photo-excited (3) is identical to that of the orange ground state as no new functional groups are introduced upon irradiation; only bond rotation occurs. The different electronic spectra for each of the redox states of (3), obtained from spectro-electrochemical measurements, revealed that only the (3)/(3-) couple exhibits electrochromic properties.

  3. Preface: International Symposium on Computational Electrochemistry

    Science.gov (United States)

    Bieniasz, L. K.; Britz, D.

    2007-12-01

    Computational methods and approaches play an increasingly important role in various areas of electrochemistry, but this fact still does not find a proper reflection in the structure of electrochemical societies, nor in the calendar of international conferences or symposia. Meetings devoted to computation in electrochemistry are rare, and they are focused on specific application areas. The present symposium has been organized with the aim to bring together computationally oriented electrochemists working in diverse application areas, in order to overcome communication barriers and expose common aspects of their work. The placement of the symposium within the ICCMSE has been dictated by the intention to uncover and reinforce links between Computational Electrochemistry and Computational Science and Engineering.

  4. Electrochemistry and spectro-electrochemistry of dithizonatophenylmercury(II)

    Energy Technology Data Exchange (ETDEWEB)

    Eschwege, Karel G. von; As, Lydia van [Department of Chemistry, University of the Free State, Bloemfontein 9300 (South Africa); Swarts, Jannie C., E-mail: swartsjc@ufs.ac.za [Department of Chemistry, University of the Free State, Bloemfontein 9300 (South Africa)

    2011-11-30

    Graphical abstract: Display Omitted Highlights: > CV and spectroelectrochemistry of dithizone and PhHgHDz, 3, is presented. > CV shows 3 has stable metal thioether (Hg-S-C), 1 oxidation and two reductions. > 3 is photochromic (t{sub 1/2,} {sub relaxation} = 1300 s). > Electrochemistry of ground and photo-activated 3 is identical. > Spectroelectrochemistry of 3 highlights electrochromism. - Abstract: The reactions between dithizone (H{sub 2}Dz, (1)) or potassium dithizonate (K{sup +}HDz{sup -}, (2)) and phenylmercury(II) chloride gives PhHg(HDz), (3). Complex (3) is photochromic. In dichloromethane, the blue photo-exited state of (3) exhibits a first order relaxation process to regenerate the orange ground state with rate constant 0.00053 s{sup -1}. The half life of this relaxation is ca. 1300 s. Electrochemically, on cyclic voltammetry time scale, the oxidations of (1) and (3) are different. A comparative voltammetric and spectro-electrochemical study of (1) and (3) in CH{sub 2}Cl{sub 2} containing 0.1 mol dm{sup -3} [N({sup n}Bu){sub 4}][B(C{sub 6}F{sub 5}){sub 4}] revealed that the mercapto group of (1) can be oxidised in two one-electron transfer steps. A disulphide is first produced and then in a second oxidation step, HDz{sup +} is formed. In contrast, complex (3) shows only one ligand-based oxidation step. Upon complexation with phenylmercury the free mercaptan group of (1) becomes a stable 'metal thioether', Hg-S-C, which effectively prevents disulphide formation in (3) upon electrochemical oxidation. Both (1) and (3) shows two reduction steps. The electrochemical fingerprint of blue photo-excited (3) is identical to that of the orange ground state as no new functional groups are introduced upon irradiation; only bond rotation occurs. The different electronic spectra for each of the redox states of (3), obtained from spectro-electrochemical measurements, revealed that only the (3)/(3{sup -}) couple exhibits electrochromic properties.

  5. A Unifying View of Computational Electrochemistry

    Science.gov (United States)

    Bieniasz, L. K.

    2007-11-01

    The current state of development of Computational Electrochemistry is briefly discussed, and a unifying view of the field is proposed, with the aim of stimulating a communication between, and unity of, computationally oriented electrochemists involved in diverse kinds of computations. The most recent work of the author, pertaining to the field, is also reviewed.

  6. Annals of the 4. Brazilian Symposium on Electrochemistry and Electroanalytics

    International Nuclear Information System (INIS)

    Theoretical and experimental papers on electrochemistry and electroanalysis are presented. The techniques used are: voltametry, polarography, ellipsometry, coulometric titration, luminescence, potentiometry, electrodeposition and photoelectrochemistry. (C.L.B.)

  7. Bipolar electrochemistry for high throughput screening applications

    OpenAIRE

    Munktell, Sara

    2016-01-01

    Bipolar electrochemistry is an interesting concept for high throughput screening techniques due to the ability to induce gradients in a range of materials and their properties, such as composition, particle size, or dopant levels, among many others. One of the key advantages of the method is the ability to test, create or modify materials without the need for a direct electrical connection. In this thesis, the viability of this method has been explored for a range of possible applications, su...

  8. Unconventional Electrochemistry in Micro-/Nanofluidic Systems

    Directory of Open Access Journals (Sweden)

    Sahana Sarkar

    2016-05-01

    Full Text Available Electrochemistry is ideally suited to serve as a detection mechanism in miniaturized analysis systems. A significant hurdle can, however, be the implementation of reliable micrometer-scale reference electrodes. In this tutorial review, we introduce the principal challenges and discuss the approaches that have been employed to build suitable references. We then discuss several alternative strategies aimed at eliminating the reference electrode altogether, in particular two-electrode electrochemical cells, bipolar electrodes and chronopotentiometry.

  9. Development of a 3-electrode system for gas phase dynamic electrochemistry

    OpenAIRE

    Fowowe, T.

    2011-01-01

    The principles of potentiometry from liquid phase electrochemistry have already been applied to the gas phase by considering a flame as an ionised gaseous environment which can behave as a dilute electrolyte. This study focused on the design, construction and optimisation of a 3-electrode electrochemical cell for direct electron transfer in the gas phase. Three electrochemical cells were developed with the final design deemed satisfactory to conduct electrochemical measureme...

  10. Development of an Electrochemistry Teaching Sequence Using a Phenomenographic Approach

    Science.gov (United States)

    Rodriguez-Velazquez, Sorangel

    2013-01-01

    Electrochemistry is the area of chemistry that studies electron transfer reactions across an interface. Chemistry education researchers have acknowledged that difficulties in electrochemistry instruction arise due to the level of abstraction of the topic, lack of adequate explanations and representations found in textbooks, and a quantitative…

  11. Electrochemistry of oxygen ion transport in slag

    Institute of Scientific and Technical Information of China (English)

    鲁雄刚; 丁伟中; 李福燊; 李丽芬; 周国治

    2002-01-01

    A systematic experiment relating to the electrochemistry of oxygen ion transport in slag has been studied in lab.An equivalent circuit has been used to describe ion transfer between metal and slag in this paper and a kinetic model with electrochemical characteristic representing oxygen ion immigration has been worked out.The different experimental phenomena can be explained generally by this model.It can be seen that the theoretical results are in good agreement with experiments.The comparison of experimental data with model calculation proved that the electrochemical model is right.

  12. Electrochemistry-based Battery Modeling for Prognostics

    Science.gov (United States)

    Daigle, Matthew J.; Kulkarni, Chetan Shrikant

    2013-01-01

    Batteries are used in a wide variety of applications. In recent years, they have become popular as a source of power for electric vehicles such as cars, unmanned aerial vehicles, and commericial passenger aircraft. In such application domains, it becomes crucial to both monitor battery health and performance and to predict end of discharge (EOD) and end of useful life (EOL) events. To implement such technologies, it is crucial to understand how batteries work and to capture that knowledge in the form of models that can be used by monitoring, diagnosis, and prognosis algorithms. In this work, we develop electrochemistry-based models of lithium-ion batteries that capture the significant electrochemical processes, are computationally efficient, capture the effects of aging, and are of suitable accuracy for reliable EOD prediction in a variety of usage profiles. This paper reports on the progress of such a model, with results demonstrating the model validity and accurate EOD predictions.

  13. Corrosive electrochemistry of jamesonite by cyclic voltammetry

    Institute of Scientific and Technical Information of China (English)

    余润兰; 胡岳华; 邱冠周; 覃文庆

    2004-01-01

    The corrosive electrochemistry of jamesonite was studied by cyclic voltammetry. Every peak in voltammograms was identified through thermodynamic calculation. The results show an irreversible electrode process by the strong adsorption of oxidation elemental sulfur on jamesonite. A deficient-metal and sulfur-rich compound is formed under the potential of 80 mV at pH 6.86. The passive action by elemental sulfur occurs from 80 to 470 mV and S2O23- , SO24- are produced at potential over 470 mV. The anodic peak producing SO24- is inhibited due to the deposition of PbSO4 at higher potential in Na2SO4 solution. The corrosive action of jamesonite becomes strong and the redox characterization similar to PbS, FeS and Sb2 S3 appears at pH 9.18.

  14. Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy.

    Science.gov (United States)

    Huang, Zhen-Feng; Song, Jiajia; Pan, Lun; Zhang, Xiangwen; Wang, Li; Zou, Ji-Jun

    2015-09-23

    The conversion, storage, and utilization of renewable energy have all become more important than ever before as a response to ever-growing energy and environment concerns. The performance of energy-related technologies strongly relies on the structure and property of the material used. The earth-abundant family of tungsten oxides (WOx ≤3 ) receives considerable attention in photocatalysis, electrochemistry, and phototherapy due to their highly tunable structures and unique physicochemical properties. Great breakthroughs have been made in enhancing the optical absorption, charge separation, redox capability, and electrical conductivity of WOx ≤3 through control of the composition, crystal structure, morphology, and construction of composite structures with other materials, which significantly promotes the efficiency of processes and devices based on this material. Herein, the properties and synthesis of WOx ≤3 family are reviewed, and then their energy-related applications are highlighted, including solar-light-driven water splitting, CO2 reduction, and pollutant removal, electrochromism, supercapacitors, lithium batteries, solar and fuel cells, non-volatile memory devices, gas sensors, and cancer therapy, from the aspect of function-oriented structure design and control. PMID:26287959

  15. Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy.

    Science.gov (United States)

    Huang, Zhen-Feng; Song, Jiajia; Pan, Lun; Zhang, Xiangwen; Wang, Li; Zou, Ji-Jun

    2015-09-23

    The conversion, storage, and utilization of renewable energy have all become more important than ever before as a response to ever-growing energy and environment concerns. The performance of energy-related technologies strongly relies on the structure and property of the material used. The earth-abundant family of tungsten oxides (WOx ≤3 ) receives considerable attention in photocatalysis, electrochemistry, and phototherapy due to their highly tunable structures and unique physicochemical properties. Great breakthroughs have been made in enhancing the optical absorption, charge separation, redox capability, and electrical conductivity of WOx ≤3 through control of the composition, crystal structure, morphology, and construction of composite structures with other materials, which significantly promotes the efficiency of processes and devices based on this material. Herein, the properties and synthesis of WOx ≤3 family are reviewed, and then their energy-related applications are highlighted, including solar-light-driven water splitting, CO2 reduction, and pollutant removal, electrochromism, supercapacitors, lithium batteries, solar and fuel cells, non-volatile memory devices, gas sensors, and cancer therapy, from the aspect of function-oriented structure design and control.

  16. The Mesoscopic Electrochemistry of Molecular Junctions

    Science.gov (United States)

    Bueno, Paulo R.; Benites, Tiago A.; Davis, Jason J.

    2016-01-01

    Within the context of an electron dynamic (time-dependent) perspective and a voltage driving force acting to redistribute electrons between metallic and addressable molecular states, we define here the associated electron admittance and conductance. We specifically present a mesoscopic approach to resolving the electron transfer rate associated with the electrochemistry of a redox active film tethered to metallic leads and immersed in electrolyte. The methodology is centred on aligning the lifetime of the process of electron exchange with associated resistance and capacitance quantities. Notably, however, these are no longer those empirically known as charge transfer resistance and pseudo-capacitance, but are those derived instead from a consideration of the quantum states contained in molecular films and their accessibility through a scattering region existing between them and the metallic probe. The averaged lifetime (τr) associated with the redox site occupancy is specifically dependent on scattering associated with the quantum channels linking them to the underlying metallic continuum and associated with both a quantum resistance (Rq) and an electrochemical (redox) capacitance (Cr). These are related to electron transfer rate through k = 1/τr = (RqCr)‑1. The proposed mesoscopic approach is consistent with Marcus’s (electron transfer rate) theory and experimental measurements obtained by capacitance spectroscopy.

  17. Electrochemistry and electroanalytical applications of carbon nanotubes: a review.

    Science.gov (United States)

    Gong, Kuanping; Yan, Yiming; Zhang, Meining; Su, Lei; Xiong, Shaoxiang; Mao, Lanqun

    2005-12-01

    This review addresses recent developments in electrochemistry and electroanalytical chemistry of carbon nanotubes (CNTs). CNTs have been proved to possess unique electronic, chemical and structural features that make them very attractive for electrochemical studies and electrochemical applications. For example, the structural and electronic properties of the CNTs endow them with distinct electrocatalytic activities and capabilities for facilitating direct electrochemistry of proteins and enzymes from other kinds of carbon materials. These striking electrochemical properties of the CNTs pave the way to CNT-based bioelectrochemistry and to bioelectronic nanodevices, such as electrochemical sensors and biosensors. The electrochemistry and bioelectrochemistry of the CNTs are summarized and discussed, along with some common methods for CNT electrode preparation and some recent advances in the rational functionalization of the CNTs for electroanalytical applications.

  18. Developments in electrochemistry science inspired by Martin Fleischmann

    CERN Document Server

    Pletcher, Derek; Williams, David

    2014-01-01

    Martin Fleischmann was truly one of the 'fathers' of modern electrochemistry having made major contributions to diverse topics within electrochemical science and technology. These include the theory and practice of voltammetry and in situ spectroscopic techniques, instrumentation, electrochemical phase formation, corrosion, electrochemical engineering, electrosynthesis and cold fusion.  While intended to honour the memory of Martin Fleischmann, Developments in Electrochemistry is neither a biography nor a history of his contributions. Rather, the book is a series of critical reviews of topic

  19. Nanoscale Electrochemistry of sp(2) Carbon Materials: From Graphite and Graphene to Carbon Nanotubes.

    Science.gov (United States)

    Unwin, Patrick R; Güell, Aleix G; Zhang, Guohui

    2016-09-20

    Carbon materials have a long history of use as electrodes in electrochemistry, from (bio)electroanalysis to applications in energy technologies, such as batteries and fuel cells. With the advent of new forms of nanocarbon, particularly, carbon nanotubes and graphene, carbon electrode materials have taken on even greater significance for electrochemical studies, both in their own right and as components and supports in an array of functional composites. With the increasing prominence of carbon nanomaterials in electrochemistry comes a need to critically evaluate the experimental framework from which a microscopic understanding of electrochemical processes is best developed. This Account advocates the use of emerging electrochemical imaging techniques and confined electrochemical cell formats that have considerable potential to reveal major new perspectives on the intrinsic electrochemical activity of carbon materials, with unprecedented detail and spatial resolution. These techniques allow particular features on a surface to be targeted and models of structure-activity to be developed and tested on a wide range of length scales and time scales. When high resolution electrochemical imaging data are combined with information from other microscopy and spectroscopy techniques applied to the same area of an electrode surface, in a correlative-electrochemical microscopy approach, highly resolved and unambiguous pictures of electrode activity are revealed that provide new views of the electrochemical properties of carbon materials. With a focus on major sp(2) carbon materials, graphite, graphene, and single walled carbon nanotubes (SWNTs), this Account summarizes recent advances that have changed understanding of interfacial electrochemistry at carbon electrodes including: (i) Unequivocal evidence for the high activity of the basal surface of highly oriented pyrolytic graphite (HOPG), which is at least as active as noble metal electrodes (e.g., platinum) for outer

  20. Using a Teaching Model To Correct Known Misconceptions in Electrochemistry.

    Science.gov (United States)

    Huddle, Penelope Ann; White, Margaret Dawn; Rogers, Fiona

    2000-01-01

    Describes a concrete teaching model designed to eliminate students' misconceptions about current flow in electrochemistry. The model uses a semi-permeable membrane rather than a salt bridge to complete the circuit and demonstrate the maintenance of cell neutrality. Concludes that use of the model led to improvement in students' understanding at…

  1. Unusual inherent electrochemistry of graphene oxides prepared using permanganate oxidants.

    Science.gov (United States)

    Eng, Alex Yong Sheng; Ambrosi, Adriano; Chua, Chun Kiang; Saněk, Filip; Sofer, Zdeněk; Pumera, Martin

    2013-09-16

    Graphene and graphene oxides are materials of significant interest in electrochemical devices such as supercapacitors, batteries, fuel cells, and sensors. Graphene oxides and reduced graphenes are typically prepared by oxidizing graphite in strong mineral acid mixtures with chlorate (Staudenmaier, Hofmann) or permanganate (Hummers, Tour) oxidants. Herein, we reveal that graphene oxides pose inherent electrochemistry, that is, they can be oxidized or reduced at relatively mild potentials (within the range ±1 V) that are lower than typical battery potentials. This inherent electrochemistry of graphene differs dramatically from that of the used oxidants. Graphene oxides prepared using chlorate exhibit chemically irreversible reductions, whereas graphene oxides prepared through permanganate-based methods exhibit very unusual inherent chemically reversible electrochemistry of oxygen-containing groups. Insight into the electrochemical behaviour was obtained through cyclic voltammetry, chronoamperometry, and X-ray photoelectron spectroscopy experiments. Our findings are of extreme importance for the electrochemistry community as they reveal that electrode materials undergo cyclic changes in charge/discharge cycles, which has strong implications for energy-storage and sensing devices.

  2. (The latest developments of the physical aspects of electrochemistry)

    Energy Technology Data Exchange (ETDEWEB)

    Liu, S.H.

    1990-09-24

    The author was one of 26 invited lecturers to discuss the latest developments of the physical aspects of electrochemistry. He interacted extensively with other lecturers and many participants from developing countries. He also visited with the Director of the Italian Synchrotron Radiation Source now under construction in Trieste, Italy.

  3. Common Student Misconceptions in Electrochemistry: Galvanic, Electrolytic, and Concentration Cells.

    Science.gov (United States)

    Sanger, Michael J.; Greenbowe, Thomas J.

    1997-01-01

    Investigates student (N=16) misconceptions concerning electrochemistry related to galvanic, electrolytic, and concentration cells. Findings indicate that most students demonstrating misconceptions were still able to calculate cell potentials correctly. Discusses common misconceptions and possible sources of these. Contains 33 references.…

  4. Scanning thermo-ionic microscopy for probing local electrochemistry at the nanoscale

    Science.gov (United States)

    Eshghinejad, Ahmadreza; Nasr Esfahani, Ehsan; Wang, Peiqi; Xie, Shuhong; Geary, Timothy C.; Adler, Stuart B.; Li, Jiangyu

    2016-05-01

    Conventional electrochemical characterization techniques based on voltage and current measurements only probe faradaic and capacitive rates in aggregate. In this work we develop a scanning thermo-ionic microscopy (STIM) to probe local electrochemistry at the nanoscale, based on imaging of Vegard strain induced by thermal oscillation. It is demonstrated from both theoretical analysis and experimental validation that the second harmonic response of thermally induced cantilever vibration, associated with thermal expansion, is present in all solids, whereas the fourth harmonic response, caused by local transport of mobile species, is only present in ionic materials. The origin of STIM response is further confirmed by its reduced amplitude with respect to increased contact force, due to the coupling of stress to concentration of ionic species and/or electronic defects. The technique has been applied to probe Sm-doped Ceria and LiFePO4, both of which exhibit higher concentrations of mobile species near grain boundaries. The STIM gives us a powerful method to study local electrochemistry with high sensitivity and spatial resolution for a wide range of ionic systems, as well as ability to map local thermomechanical response.

  5. Strain Engineering to Modify the Electrochemistry of Energy Storage Electrodes

    Science.gov (United States)

    Muralidharan, Nitin; Carter, Rachel; Oakes, Landon; Cohn, Adam P.; Pint, Cary L.

    2016-06-01

    Strain engineering has been a critical aspect of device design in semiconductor manufacturing for the past decade, but remains relatively unexplored for other applications, such as energy storage. Using mechanical strain as an input parameter to modulate electrochemical potentials of metal oxides opens new opportunities intersecting fields of electrochemistry and mechanics. Here we demonstrate that less than 0.1% strain on a Ni-Ti-O based metal-oxide formed on superelastic shape memory NiTi alloys leads to anodic and cathodic peak potential shifts by up to ~30 mV in an electrochemical cell. Moreover, using the superelastic properties of NiTi to enable strain recovery also recovers the electrochemical potential of the metal oxide, providing mechanistic evidence of strain-modified electrochemistry. These results indicate that mechanical energy can be coupled with electrochemical systems to efficiently design and optimize a new class of strain-modulated energy storage materials.

  6. Synthesis, Electrochemistry, and Photophysics of Aza-BODIPY Porphyrin Dyes.

    Science.gov (United States)

    Pascal, Simon; Bucher, Léo; Desbois, Nicolas; Bucher, Christophe; Andraud, Chantal; Gros, Claude P

    2016-03-24

    The synthesis of dyad and triad aza-BODIPY-porphyrin systems in two steps starting from an aryl-substituted aza-BODIPY chromophore is described. The properties of the resulting aza-BODIPY-porphyrin conjugates have been extensively investigated by means of electrochemistry, spectroelectrochemistry, and absorption/emission spectroscopy. Fluorescence measurements have revealed a dramatic loss of luminescence intensity, mainly due to competitive energy transfer and photoinduced electron transfer involving charge separation followed by recombination. PMID:26938146

  7. 2010 ELECTROCHEMISTRY GRC, JANUARY 9-15, 2010, VENTURA, CA

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Creager

    2010-12-31

    Electrochemical science plays a crucial role in many important technologies and is intimately involved in many natural phenomena. Several new Gordon Research Conferences have appeared recently that are dedicated to electrochemical technologies, however electrochemistry as a discipline continues to thrive and provide the underpinnings of these technologies. The 2010 Electrochemistry GRC will focus on a wide range of fundamental electrochemical phenomena and materials and on their application in areas involving energy storage, information storage, chemical analysis, and motion actuation. The meeting will include sessions dedicated to the following specific topics: electrochemical energy storage (e.g. batteries; at least two sessions); electrochemical motion actuation (e.g. electrokinesis); electrocatalysis; electrochemistry in digital information storage; and bioelectrochemistry (including bioanalysis). An Open Session devoted to highlighting the activities of {approx}10 young investigators and non-North American visitors via brief 10-minute talks, and two open poster sessions highlighting the contributions of approximately 60 conference participants including graduate students, will be held. Altogether the conference is expected to include approximately 90 presentations. As has been the case in the recent past, the meeting will bring together participants from academia, national labs, and the private sector, including senior and junior-level scientists, postdoctoral scientists, and graduate students for informal interactions and exchange of ideas. An affiliated Gordon-Kenan Research Seminar (GRS) will also be held with the conference. Special efforts will be made to invite participation from members of underrepresented groups.

  8. Development of an Electrochemistry Teaching Sequence using a Phenomenographic Approach

    Science.gov (United States)

    Rodriguez-Velazquez, Sorangel

    Electrochemistry is the area of chemistry that studies electron transfer reactions across an interface. Chemistry education researchers have acknowledged that difficulties in electrochemistry instruction arise due to the level of abstraction of the topic, lack of adequate explanations and representations found in textbooks, and a quantitative emphasis in the application of concepts. Studies have identified conceptions (also referred to as misconceptions, alternative conceptions, etc.) about the electrochemical process that transcends academic and preparation levels (e.g., students and instructors) as well as cultural and educational settings. Furthermore, conceptual understanding of the electrochemical process requires comprehension of concepts usually studied in physics such as electric current, resistance and potential and often neglected in introductory chemistry courses. The lack of understanding of physical concepts leads to students. conceptions with regards to the relation between the concepts of redox reactions and electric circuits. The need for instructional materials to promote conceptual understanding of the electrochemical process motivated the development of the electrochemistry teaching sequence presented in this dissertation. Teaching sequences are educational tools that aim to bridge the gap between student conceptions and the scientific acceptable conceptions that instructors expect students to learn. This teaching sequence explicitly addresses known conceptions in electrochemistry and departs from traditional instruction in electrochemistry to reinforce students. previous knowledge in thermodynamics providing the foundation for the explicit relation of redox reactions and electric circuits during electrochemistry instruction. The scientific foundations of the electrochemical process are explained based on the Gibbs free energy (G) involved rather than on the standard redox potential values (E° ox/red) of redox half-reactions. Representations of

  9. Electrochemistry and green chemical processes: electrochemical ozone production

    Directory of Open Access Journals (Sweden)

    Leonardo M. da Silva

    2003-12-01

    Full Text Available After an introductory discussion emphasising the importance of electrochemistry for the so-called Green Chemical Processes, the article presents a short discussion of the classical ozone generation technologies. Next a revision of the electrochemical ozone production technology focusing on such aspects as: fundamentals, latest advances, advantages and limitations of this technology is presented. Recent results about fundamentals of electrochemical ozone production obtained in our laboratory, using different electrode materials (e.g. boron doped diamond electrodes, lead dioxide and DSAÒ-based electrodes also are presented. Different chemical processes of interest to the solution of environmental problems involving ozone are discussed.

  10. Mediated electrochemistry of dimethyl sulfoxide reductase promoted by carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    BERNHARDT; Paul; V

    2010-01-01

    Mediated electrochemistry of dimethyl sulfoxide reductase from Rhodobacter capsulatus (DMSOR) which is immobilized on a bare glassy carbon (GC) electrode and a carbon nanotube (CNT)-modified GC electrode was studied using the Co complex (trans-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine)cobalt(III) ([Co(trans-diammac)] +) as a mediator.The cyclic voltammograms of different electrodes were carried out at different substrate (DMSO) concentrations.The results demonstrated that the catalytic current was increased by employing CNT as a promoter.

  11. Electrospray ion source with reduced analyte electrochemistry

    Science.gov (United States)

    Kertesz, Vilmos; Van Berkel, Gary J

    2013-07-30

    An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.

  12. A Review on Direct Electrochemistry of Catalase for Electrochemical Sensors

    Directory of Open Access Journals (Sweden)

    Periasamy Arun Prakash

    2009-03-01

    Full Text Available Catalase (CAT is a heme enzyme with a Fe(III/II prosthetic group at its redox centre. CAT is present in almost all aerobic living organisms, where it catalyzes the disproportionation of H2O2 into oxygen and water without forming free radicals. In order to study this catalytic mechanism in detail, the direct electrochemistry of CAT has been investigated at various modified electrode surfaces with and without nanomaterials. The results show that CAT immobilized on nanomaterial modified electrodes shows excellent catalytic activity, high sensitivity and the lowest detection limit for H2O2 determination. In the presence of nanomaterials, the direct electron transfer between the heme group of the enzyme and the electrode surface improved significantly. Moreover, the immobilized CAT is highly biocompatible and remains extremely stable within the nanomaterial matrices. This review discusses about the versatile approaches carried out in CAT immobilization for direct electrochemistry and electrochemical sensor development aimed as efficient H2O2 determination. The benefits of immobilizing CAT in nanomaterial matrices have also been highlighted.

  13. Bipolar electrochemistry: from materials science to motion and beyond.

    Science.gov (United States)

    Loget, Gabriel; Zigah, Dodzi; Bouffier, Laurent; Sojic, Neso; Kuhn, Alexander

    2013-11-19

    Bipolar electrochemistry, a phenomenon which generates an asymmetric reactivity on the surface of conductive objects in a wireless manner, is an important concept for many purposes, from analysis to materials science as well as for the generation of motion. Chemists have known the basic concept for a long time, but it has recently attracted additional attention, especially in the context of micro- and nanoscience. In this Account, we introduce the fundamentals of bipolar electrochemistry and illustrate its recent applications, with a particular focus on the fields of materials science and dynamic systems. Janus particles, named after the Roman god depicted with two faces, are currently in the heart of many original investigations. These objects exhibit different physicochemical properties on two opposite sides. This makes them a unique class of materials, showing interesting features. They have received increasing attention from the materials science community, since they can be used for a large variety of applications, ranging from sensing to photosplitting of water. So far the great majority of methods developed for the generation of Janus particles breaks the symmetry by using interfaces or surfaces. The consequence is often a low time-space yield, which limits their large scale production. In this context, chemists have successfully used bipolar electrodeposition to break the symmetry. This provides a single-step technique for the bulk production of Janus particles with a high control over the deposit structure and morphology, as well as a significantly improved yield. In this context, researchers have used the bipolar electrodeposition of molecular layers, metals, semiconductors, and insulators at one or both reactive poles of bipolar electrodes to generate a wide range of Janus particles with different size, composition and shape. In using bipolar electrochemistry as a driving force for generating motion, its intrinsic asymmetric reactivity is again the

  14. Mesomorphism and electrochemistry of thienoviologen liquid crystals.

    Science.gov (United States)

    Cospito, S; Beneduci, A; Veltri, L; Salamonczyk, M; Chidichimo, G

    2015-07-21

    The thienoviologen series 4,4'-(2,2'-bithiophene-5,5'-diyl)bis(1-alkylpridinium)X2, with = counterion is a new class of electron acceptor materials which show very interesting electrochromic and electrofluorescence properties. Depending on the length, m, of the promesogenic alkyl chains, and on the counterion, thienoviologens might become liquid crystals. Here, we present the mesomorphic behaviour, and the electrochemical and spectroelectrochemical properties in solution of new thienoviologens of the series and (I = iodide; NTf2(-) = bis(tri-fuoromethylsulfonyl)imide) with m = 8, 12. Interestingly, we found that only the compounds are liquid crystals, exhibiting a calamitic behaviour in contrast to the homologous compounds of the series with m = 9-11 and X = NTf2(-), which showed columnar rectangular mesophases. The electrochemical study here reported allowed us to explain for the first time the anomalous behaviour of these thienoviologens already observed in cyclic voltammetry, where two apparently irreversible redox processes occur. This can be explained by a comproportionation reaction in which the neutral species rapidly reduces the dication to the radical-cation, due to its strong reducing power. Electrochemical reduction of the thienoviologens causes electrochromism since a new absorption band, occurring at 660 nm in the electronic spectra, appears with the negative potential bias applied. With a LUMO level of 3.64 eV, similar to those of the C60 and of other n-type materials, these compounds can find applications in several electronics devices, where their liquid crystalline properties can be used to control film morphology and geometry, provided they have good electron mobility. PMID:26082287

  15. Single-crystal-like NiO colloidal nanocrystal-aggregated microspheres with mesoporous structure: Synthesis and enhanced electrochemistry, photocatalysis and water treatment properties

    International Nuclear Information System (INIS)

    A new microwave-assisted hydrothermal synthetic route based on the self-assembly and subsequently controlled thermal decomposition process is proposed to fabricate nickel oxide colloidal nanocrystal aggregated microspheres (CNAMs) with mesoporous structure. XRD, EDS, SEM, TEM. FTIR, and N2 adsorption and desorption isotherm techniques are employed for morphology and structure characterizations. The as-prepared nickel oxide CNAMs, which has a high surface area (234 m2/g) with narrow pore distribution at around 3.25 nm, are composed of numerous hexagonal mesoporous nanocrystals of approximately 50–60 nm in size, and present a single-crystal-like characteristic. The experimental results also demonstrated that the CNAMs showed outstanding performance in electrochemistry, photocatalysis and waste water treatment due to their special hierarchical and mesoporous structure, presenting the promising candidate for catalysis and catalysis support materials. - Graphical abstract: CNAMs with mesoporous structure synthesized via a simple microwave-assisted hydrothermal method was applied in electrochemistry and catalysis and exhibited enhanced performance. Display Omitted - Highlights: • CNAMs with mesoporous structure are achieved via a simple microwave-assisted hydrothermal method. • Morphology, structure and pore distribution of sample particles is specifically controlled. • The samples show enhanced properties in electrochemistry and catalysis due to hierarchical structure

  16. Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach

    Science.gov (United States)

    Strelcov, Evgheni; Yang, Sang Mo; Jesse, Stephen; Balke, Nina; Vasudevan, Rama K.; Kalinin, Sergei V.

    2016-07-01

    Energy technologies of the 21st century require an understanding and precise control over ion transport and electrochemistry at all length scales - from single atoms to macroscopic devices. This short review provides a summary of recent studies dedicated to methods of advanced scanning probe microscopy for probing electrochemical transformations in solids at the meso-, nano- and atomic scales. The discussion presents the advantages and limitations of several techniques and a wealth of examples highlighting peculiarities of nanoscale electrochemistry.

  17. Role of Palladium in the Redox Electrochemistry of Ferrocene Monocarboxylic Acid Encapsulated Within ORMOSIL Networks

    OpenAIRE

    Upadhyay, B.; P Pandey

    2005-01-01

    We report herein the effect of palladium on the redox electrochemistry of ferrocene monocarboxylic acid encapsulated within an organically modified sol-gel glass network (ORMOSIL). It has been found that amount of palladium and its geometrical distribution significantly alter the redox electrochemistry of FcMCA. The geometrical distribution of palladium has been controlled by two methods: (i) palladium is allowed to link within nanostructured network of the ORMOSIL which was subsequently avai...

  18. Catalysis in electrochemistry from fundamental aspects to strategies for fuel cell development

    CERN Document Server

    Santos, Elizabeth

    2011-01-01

    Catalysis in Electrochemistry: From Fundamental Aspects to Strategies for Fuel Cell Development is a modern, comprehensive reference work on catalysis in electrochemistry, including principles, methods, strategies, and applications. It points out differences between catalysis at gas/surfaces and electrochemical interfaces, along with the future possibilities and impact of electrochemical science on energy problems. This book contributes both to fundamental science; experience in the design, preparation, and characterization of electrocatalytic materials; and the industrial application o

  19. The electrochemistry of 13% chromium stainless steel in oilfield brines

    Energy Technology Data Exchange (ETDEWEB)

    Sidorin, Dmitry; Pletcher, Derek [Department of Chemistry, The University of Southampton, Southampton SO17 1BJ (United Kingdom); Hedges, Bill [BP Trinidad Ltd., P.O. Box 714, Port of Spain (Trinidad and Tobago)

    2005-07-25

    The electrochemistry of a 13% Cr stainless steel (API5CT L80-13Cr) in 3% NaCl containing acetate and either acetic acid or carbon dioxide at 333 K is explored using RDE voltammetry. The reduction of proton, carbonic acid and acetic acid occur simultaneously, immediately negative to the corrosion potential. Acetic acid gives a well formed reduction wave and the current densities increase with the equilibrium concentration of acetic acid in the medium; in the plateau region, the reduction is mass transport controlled. Despite this reduction process, the corrosion resistance and passivation current density are independent of the acetic acid concentration. It is confirmed that the 13% Cr stainless steel is much more resistant to corrosion that X65 carbon steel and, unlike the carbon steel, its rate of corrosion does not vary with acetic acid concentration. The properties of the passivating film appear to dominate the behaviour of the 13% Cr stainless steel. (author)

  20. The electrochemistry of 13% chromium stainless steel in oilfield brines

    International Nuclear Information System (INIS)

    The electrochemistry of a 13% Cr stainless steel (API5CT L80-13Cr) in 3% NaCl containing acetate and either acetic acid or carbon dioxide at 333 K is explored using RDE voltammetry. The reduction of proton, carbonic acid and acetic acid occur simultaneously, immediately negative to the corrosion potential. Acetic acid gives a well formed reduction wave and the current densities increase with the equilibrium concentration of acetic acid in the medium; in the plateau region, the reduction is mass transport controlled. Despite this reduction process, the corrosion resistance and passivation current density are independent of the acetic acid concentration. It is confirmed that the 13% Cr stainless steel is much more resistant to corrosion that X65 carbon steel and, unlike the carbon steel, its rate of corrosion does not vary with acetic acid concentration. The properties of the passivating film appear to dominate the behaviour of the 13% Cr stainless steel

  1. Facile synthesis of cuprous oxide nanoparticles by plasma electrochemistry

    Science.gov (United States)

    Liu, Jiandi; Chen, Qiang; Li, Junshuai; Xiong, Qing; Yue, Guanghui; Zhang, Xianhui; Yang, Size; Huo Liu, Qing

    2016-07-01

    We report on a simple plasma electrochemistry method for synthesizing cuprous oxide (Cu2O) nanoparticles in the presence of glucose. In this system, Ar plasma in contact with a NaCl solution was used as one electrode, and a Cu plate was immersed in the solution as the counter electrode. The plasma-solution interaction produced many reducing and oxidizing species which can react with the Cu ions released from the Cu electrode. Cu2O nanoparticles, with an average diameter of 22 +/- 6 nm, were formed under the competition of reducing and oxidizing reactions in the solution. The results show that the glucose added in the electrolyte strongly influences the properties of the products. Corresponding to high, medium, and low concentrations of glucose, the products were nanoparticles from amorphous Cu2O, polycrystalline Cu2O, and a mixture of polycrystalline Cu2O and Cu2Cl(OH)3, respectively.

  2. Direct Electrochemistry of Horseradish Peroxidase-Gold Nanoparticles Conjugate

    Directory of Open Access Journals (Sweden)

    Chanchal K. Mitra

    2009-02-01

    Full Text Available We have studied the direct electrochemistry of horseradish peroxidase (HRP coupled to gold nanoparticles (AuNP using electrochemical techniques, which provide some insight in the application of biosensors as tools for diagnostics because HRP is widely used in clinical diagnostics kits. AuNP capped with (i glutathione and (ii lipoic acid was covalently linked to HRP. The immobilized HRP/AuNP conjugate showed characteristic redox peaks at a gold electrode. It displayed good electrocatalytic response to the reduction of H2O2, with good sensitivity and without any electron mediator. The covalent linking of HRP and AuNP did not affect the activity of the enzyme significantly. The response of the electrode towards the different concentrations of H2O2 showed the characteristics of Michaelis Menten enzyme kinetics with an optimum pH between 7.0 to 8.0. The preparation of the sensor involves single layer of enzyme, which can be carried out efficiently and is also highly reproducible when compared to other systems involving the layer-by-layer assembly, adsorption or encapsulation of the enzyme. The immobilized AuNP-HRP can be used for immunosensor applications

  3. Electrochemistry of magnesium electrolytes in ionic liquids for secondary batteries.

    Science.gov (United States)

    Vardar, Gulin; Sleightholme, Alice E S; Naruse, Junichi; Hiramatsu, Hidehiko; Siegel, Donald J; Monroe, Charles W

    2014-10-22

    The electrochemistry of Mg salts in room-temperature ionic liquids (ILs) was studied using plating/stripping voltammetry to assess the viability of IL solvents for applications in secondary Mg batteries. Borohydride (BH4(-)), trifluoromethanesulfonate (TfO(-)), and bis(trifluoromethanesulfonyl)imide (Tf2N(-)) salts of Mg were investigated. Three ILs were considered: l-n-butyl-3-methylimidazolium (BMIM)-Tf2N, N-methyl-N-propylpiperidinium (PP13)-Tf2N, and N,N-diethyl-N-methyl(2-methoxyethyl)ammonium (DEME(+)) tetrafluoroborate (BF4(-)). Salts and ILs were combined to produce binary solutions in which the anions were structurally similar or identical, if possible. Contrary to some prior reports, no salt/IL combination appeared to facilitate reversible Mg plating. In solutions containing BMIM(+), oxidative activity near 0.8 V vs Mg/Mg(2+) is likely associated with the BMIM cation, rather than Mg stripping. The absence of voltammetric signatures of Mg plating from ILs with Tf2N(-) and BF4(-) suggests that strong Mg/anion Coulombic attraction inhibits electrodeposition. Cosolvent additions to Mg(Tf2N)2/PP13-Tf2N were explored but did not result in enhanced plating/stripping activity. The results highlight the need for IL solvents or cosolvent systems that promote Mg(2+) dissociation. PMID:25248147

  4. Predominating stable adsorption and direct electrochemistry of glucose oxidase on carbon nanotubes by oxygen-containing groups

    Institute of Scientific and Technical Information of China (English)

    Chun Hai Yang; Cheng Guo Hu; Sheng Shui Hu

    2007-01-01

    Stable adsorption and direct electrochemistry of glucose oxidase (GOx) occurred on nitric acid (HNO3)-treated multi-walled carbon nanotubes (MWNTs) instead of as-received MWNTs, demonstrating the critical roles of oxygen-containing groups in stable adsorption and direct electrochemistry of GOx on carbon nanotubes (CNTs).

  5. LIGA-based microsystem manufacturing:the electrochemistry of through-mold depostion and material properties.

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, James J. (Sandia National Laboratories, Livermore, CA); Goods, Steven Howard (Sandia National Laboratories, Livermore, CA)

    2005-06-01

    The report presented below is to appear in ''Electrochemistry at the Nanoscale'', Patrik Schmuki, Ed. Springer-Verlag, (ca. 2005). The history of the LIGA process, used for fabricating dimensional precise structures for microsystem applications, is briefly reviewed, as are the basic elements of the technology. The principal focus however, is on the unique aspects of the electrochemistry of LIGA through-mask metal deposition and the generation of the fine and uniform microstructures necessary to ensure proper functionality of LIGA components. We draw from both previously published work by external researchers in the field as well as from published and unpublished studies from within Sandia.

  6. Direct Electrochemistry and Electrocatalysis of Myoglobin Immobilized on Graphene-CTAB-Ionic Liquid Nanocomposite Film

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Honggang; Wu, Hong; Wang, Jun; Liu, Jun; Jiang, Yanxia; Sun, Shigang; Lin, Yuehe

    2010-10-01

    We have investigated direct electrochemistry and electrocatalysis of myoglobin immobilized on graphene-cetylramethylammonium bromide (CTAB)-ionic liquid nanocomposite film on a glassy carbon electrode. The nanocomposite was characterized by TEM, SEM, XPS, and electrochemistry. It was found that the high surface area of graphene was helpful for immobilizing more proteins and the nanocomposite film can provide a favorable microenvironment for MB to retain its native structure and activity and to achieve reversible direct electron transfer reaction at an electrode. The nanocomposite films also exhibit good stability and catalytic activities for the electrocatalytic reduction of H2O2.

  7. Electrochemically modulated liquid chromatography: Theoretical investigations and applications from the perspectives of chromatography and interfacial electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Keller, David W. [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    Electrochemically modulated liquid chromatography (EMLC) employs a conductive material as both a stationary phase for chromatographic separations and as a working electrode for performing electrochemistry experiments. This dual functionality gives EMLC the capacity to manipulate chromatographic separations by changing the potential applied (Eapp) to the stationary phase with respect to an external reference. The ability to monitor retention as a function of Eapp provides a means to chromatographically monitor electrosorption processes at solid-liquid interfaces. In this dissertation, the retention mechanism for EMLC is examined from the perspective of electrical double layer theory and interfacial thermodynamics. From the chromatographic data, it is possible to determine the interfacial excess (Λ) of a solute and changes in interfacial tension (dγ) as a function of both Eapp and the supporting electrolyte concentration. Taken together, these two experimentally manipulated parameters can be examined within the context of the Gibbs adsorption equation to delineate the contribution of a variety of interfacial properties, including the charge of solute on the stationary phase and the potential of zero charge (PZC), to the mechanism behind EMLC-based retention. The chromatographic probing of interfacial phenomena is complemented by electroanalytical experiments that exploit the ability to monitor the electronic current flowing through an EMLC column. Cyclic voltammetry and chronoamperometry of an EMLC column are used to determine the electronic performance characteristics of an EMLC column. An electrochemical flow injection analysis of a column is provided in which the current required to maintain a constant Eapp is monitored and provides a way to examine the influence that acetonitrile and supporting electrolyte composition, flow rate, column backpressure, and ionic strength have on the structure of electrified interfaces.

  8. Electrochemistry and Electrocatalysis with Hemoglobin in DHP- PDDA Surfactant-Polymer Multibilayer Composite Films

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Polyionic complex DHP-PDDA was prepared by reacting anionic surfactant dihexadecyl phosphate (DHP) with polycationic poly(diallyldimethyl ammonium) (PDDA). Thin films made from DHP-PDDA with incorporated hemoglobin (Hb) on pyrolytic graphite (PG) electrodes were characterized by electrochemistry and other techniques.

  9. Electrochemistry of Single Metalloprotein and DNA‐Based Molecules at Au(111) Electrode Surfaces

    DEFF Research Database (Denmark)

    Salvatore, Princia; Zeng, Dongdong; Karlsen, Kasper Kannegård;

    2013-01-01

    We have briefly overviewed recent efforts in the electrochemistry of single transition metal complex, redox metalloprotein, and redox‐marked oligonucleotide (ON) molecules. We have particularly studied self‐assembled molecular monolayers (SAMs) of several 5′‐C6‐SH single‐ (ss) and double‐strand (...

  10. Electrochemistry as a Tool for Study, Delvelopment and Promotion of Catalytic Reactions

    DEFF Research Database (Denmark)

    Petrushina, Irina

    of Fermi level by electrochemical production of promoters, reducing or oxidizing current carriers of the catalyst support (O2-, H+, Na+). This type1 was abbreviated as EEPP. In Capters 4-7, the results of my research are given as examples of use of electrochemistry as a tool for study, promotion and...

  11. Inquiry-Based Laboratory Activities in Electrochemistry: High School Students' Achievements and Attitudes

    Science.gov (United States)

    Sesen, Burcin Acar; Tarhan, Leman

    2013-01-01

    This study aimed to investigate the effects of inquiry-based laboratory activities on high school students' understanding of electrochemistry and attitudes towards chemistry and laboratory work. The participants were 62 high school students (average age 17 years) in an urban public high school in Turkey. Students were assigned to experimental (N =…

  12. 电化学学术会议年历%Electrochemistry Calendar

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    International Symposium in Buenos Aires: Challenges on Rechargeable Lithium Oxygen Batteries Date: 17-19 September, 2012 Location: Buenos Aires, Argentina Sponsored by : Consejo Nacional de Investigaciones Cientificas y T6cnicas & International Society of Electro-chemistry (ISE)

  13. In vitro mimicry of metabolic oxidation reactions by electrochemistry/mass spectrometry

    NARCIS (Netherlands)

    Jurva, U; Wikstrom, HV; Bruins, AP

    2000-01-01

    The aim of these studies was to investigate the scope and limitations of electrochemistry on-line with mass spectrometry as a quick and convenient way to mimic phase I:oxidative reactions in drug metabolism. A compound with previously reported in vitro and in vivo metabolism, the dopamine agonist 2-

  14. A detailed approach to model transport, heterogeneous chemistry, and electrochemistry in solid-oxide fuel cells

    OpenAIRE

    Janardhanan, Vinod

    2007-01-01

    This book lays out a numerical framework for the detailed description of heterogeneous chemistry, electrochemistry and porous media transport in solid-oxide fuel cells (SOFC). Assuming hydrogen as the only electrochemically active species, a modified Butler-Volmer equation is used to model the electrochemical charge transfer.

  15. Conceptual Difficulties Experienced by Senior High School Students of Electrochemistry: Electrochemical (Galvanic) and Electrolytic Cells.

    Science.gov (United States)

    Garnett, Pamela J.; Treagust, David F.

    1992-01-01

    This research used semistructured interviews to investigate students' (n=32) understanding of electrochemistry following a 7-9 week course of instruction. Three misconceptions were identified and incorporated with five previously reported into an alternative framework about electric current involving drifting electrons. Also noted was the tendency…

  16. Three-Electrode Analytical and Preparative Electrochemistry in Micro-Volume Hanging Droplets

    OpenAIRE

    Perez Jimenez, Ana Isabel; Challier, Lylian; Di Pisa, Margherita; Guille-Collignon, Manon; Lemaître, Frédéric; Lavielle, Solange; Mansuy, Christelle; Amatore, Christian; Labbé, Eric; Buriez, Olivier

    2015-01-01

    Three-electrode micro-cells equipped with a conventional reference electrode (SCE) were easily constructed based on micro-volume droplets suspended by capillary forces to the fritted glass of the SCE bridge. Working and counter electrodes were simply inserted through the droplet surface, allowing classical electrochemistry to be readily performed in minute samples.

  17. Semiconductor electrochemistry of coal pyrite. Final technical report, September 1990--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Osseo-Asare, K.; Wei, D.

    1996-01-01

    This project is concerned with the physiochemical processes occuring at the pyrite/aqueous interface, in the context of coal cleaning, desulfurization, and acid mine drainage. The use of synthetic particles of pyrite as model electrodes to investigate the semiconductor electrochemistry of pyrite is employed.

  18. Evaluation of Tris-Bipyridine Chromium Complexes for Flow Battery Applications: Impact of Bipyridine Ligand Structure on Solubility and Electrochemistry.

    Science.gov (United States)

    Cabrera, Pablo J; Yang, Xingyi; Suttil, James A; Brooner, Rachel E M; Thompson, Levi T; Sanford, Melanie S

    2015-11-01

    This report describes the design, synthesis, solubility, and electrochemistry of a series of tris-bipyridine chromium complexes that exhibit up to six reversible redox couples as well as solubilities approaching 1 M in acetonitrile. We have systematically modified both the ligand structure and the oxidation state of these complexes to gain insights into the factors that impact solubility and electrochemistry. The results provide a set of structure-solubility-electrochemistry relationships to guide the future development of electrolytes for nonaqueous flow batteries. In addition, we have identified a promising candidate from the series of chromium complexes for further electrochemical and battery assessment. PMID:26468668

  19. Investigating Nanoscale Electrochemistry with Surface- and Tip-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Zaleski, Stephanie; Wilson, Andrew J; Mattei, Michael; Chen, Xu; Goubert, Guillaume; Cardinal, M Fernanda; Willets, Katherine A; Van Duyne, Richard P

    2016-09-20

    The chemical sensitivity of surface-enhanced Raman spectroscopy (SERS) methodologies allows for the investigation of heterogeneous chemical reactions with high sensitivity. Specifically, SERS methodologies are well-suited to study electron transfer (ET) reactions, which lie at the heart of numerous fundamental processes: electrocatalysis, solar energy conversion, energy storage in batteries, and biological events such as photosynthesis. Heterogeneous ET reactions are commonly monitored by electrochemical methods such as cyclic voltammetry, observing billions of electrochemical events per second. Since the first proof of detecting single molecules by redox cycling, there has been growing interest in examining electrochemistry at the nanoscale and single-molecule levels. Doing so unravels details that would otherwise be obscured by an ensemble experiment. The use of optical spectroscopies, such as SERS, to elucidate nanoscale electrochemical behavior is an attractive alternative to traditional approaches such as scanning electrochemical microscopy (SECM). While techniques such as single-molecule fluorescence or electrogenerated chemiluminescence have been used to optically monitor electrochemical events, SERS methodologies, in particular, have shown great promise for exploring electrochemistry at the nanoscale. SERS is ideally suited to study nanoscale electrochemistry because the Raman-enhancing metallic, nanoscale substrate duly serves as the working electrode material. Moreover, SERS has the ability to directly probe single molecules without redox cycling and can achieve nanoscale spatial resolution in combination with super-resolution or scanning probe microscopies. This Account summarizes the latest progress from the Van Duyne and Willets groups toward understanding nanoelectrochemistry using Raman spectroscopic methodologies. The first half of this Account highlights three techniques that have been recently used to probe few- or single-molecule electrochemical

  20. Investigating Nanoscale Electrochemistry with Surface- and Tip-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Zaleski, Stephanie; Wilson, Andrew J; Mattei, Michael; Chen, Xu; Goubert, Guillaume; Cardinal, M Fernanda; Willets, Katherine A; Van Duyne, Richard P

    2016-09-20

    The chemical sensitivity of surface-enhanced Raman spectroscopy (SERS) methodologies allows for the investigation of heterogeneous chemical reactions with high sensitivity. Specifically, SERS methodologies are well-suited to study electron transfer (ET) reactions, which lie at the heart of numerous fundamental processes: electrocatalysis, solar energy conversion, energy storage in batteries, and biological events such as photosynthesis. Heterogeneous ET reactions are commonly monitored by electrochemical methods such as cyclic voltammetry, observing billions of electrochemical events per second. Since the first proof of detecting single molecules by redox cycling, there has been growing interest in examining electrochemistry at the nanoscale and single-molecule levels. Doing so unravels details that would otherwise be obscured by an ensemble experiment. The use of optical spectroscopies, such as SERS, to elucidate nanoscale electrochemical behavior is an attractive alternative to traditional approaches such as scanning electrochemical microscopy (SECM). While techniques such as single-molecule fluorescence or electrogenerated chemiluminescence have been used to optically monitor electrochemical events, SERS methodologies, in particular, have shown great promise for exploring electrochemistry at the nanoscale. SERS is ideally suited to study nanoscale electrochemistry because the Raman-enhancing metallic, nanoscale substrate duly serves as the working electrode material. Moreover, SERS has the ability to directly probe single molecules without redox cycling and can achieve nanoscale spatial resolution in combination with super-resolution or scanning probe microscopies. This Account summarizes the latest progress from the Van Duyne and Willets groups toward understanding nanoelectrochemistry using Raman spectroscopic methodologies. The first half of this Account highlights three techniques that have been recently used to probe few- or single-molecule electrochemical

  1. SOME RECENT STUDIES IN RUGHENIUM ELECTROCHEMISTRY AND ELECTROCATALYSIS.

    Energy Technology Data Exchange (ETDEWEB)

    MARINKOVIC, N.S.; VUKMIROVIC, M.B.; ADZIC, R.R.

    2006-08-01

    Ruthenium is a metal of a considerable importance in electrochemical science and technology. It is a catalyst or co-catalyst material in Pt-Ru alloys for methanol- and reformate hydrogen-oxidation in fuel cells, while ruthenium oxide, a component in chlorine-evolution catalysts, represents an attractive material for electrochemical supercapacitors. Its facile surface oxidation generates an oxygen-containing species that provides active oxygen in some reactions. Ru sites in Pt-Ru catalysts increase the ''CO tolerance'' of Pt in the catalytic oxidation-reaction in direct methanol fuel cells (DMFC) and in reformate hydrogen-oxidation in proton exchange membrane fuel cells (PEMFC). The mechanism of Ru action is not completely understood, although current consensus revolves around the so-called ''bifunctional mechanism'' wherein Ru provides oxygenated species to oxidize CO that blocks Pt sites, and has an electronic effect on Pt-CO interaction. While various studies of polycrystalline Ru go back several decades those involving single crystal surfaces and the structural sensitivity of reactions on Ru surfaces emerged only recently. Using well-ordered single crystalline surfaces brings useful information as the processes on realistic catalysts are far too complex to allow identification of the microscopic reaction steps. In this article, we focus on progress in model systems and conditions, such as electrochemistry and electrocatalysis on bare and Pt-modified well-ordered Ru(0001) and Ru(10{bar 1}0) single-crystal surfaces. We also review current understanding of the mechanistic principles of Pt-Ru systems and a new development of a Pt submonolayer on Ru support electrocatalyst. Ruthenium crystallizes in a hexagonal close-packed structure, (hcp). Figure 1.1 shows the two single crystal surfaces of Ru. The Ru(0001) surface possesses the densest, i.e. hexagonal arrangement of atoms, Fig. 1.1a. The other plane, Ru(10{bar 1}0), can have

  2. Role of Palladium in the Redox Electrochemistry of Ferrocene Monocarboxylic Acid Encapsulated Within ORMOSIL Networks

    Directory of Open Access Journals (Sweden)

    B. Upadhyay

    2005-07-01

    Full Text Available We report herein the effect of palladium on the redox electrochemistry of ferrocene monocarboxylic acid encapsulated within an organically modified sol-gel glass network (ORMOSIL. It has been found that amount of palladium and its geometrical distribution significantly alter the redox electrochemistry of FcMCA. The geometrical distribution of palladium has been controlled by two methods: (i palladium is allowed to link within nanostructured network of the ORMOSIL which was subsequently availed from the reactivity of palladium chloride and trimethoxysilane; (ii palladium powder is encapsulated together FcMCA thus allowing the presence of palladium within the nanoporous domain. The content of palladium is varied by controlling the reaction dynamics of palladium chloride and trimethoxysilane interaction. For this we initially allowed to trigger hydrolysis, condensation and poly-condensation of trimethoxysilane and dimethyldiethoxysilane in acidic medium and subsequently partially dried ORMOSIL film was allowed to interact with palladium chloride. Even with partially dried ORMOSIL derived from trimethoxysilane and dimethyldiethoxysilane undergoes rapid interaction with palladium chloride and the transparent color of ORMOSIL changed to a black colour due to the formation of palladium silicon linkage. The palladium-silicon linkage has been identified by NMR, UV-VIS and transmission electron spectroscopy. The electrochemistry of FcMCA encapsulated within such an ORMOSIL matrix has been studied. Excellent redox electrochemistry of ferrocene monocarboxylic acid having peak potential separation tending to 0 for a multilayered electrode was investigated. The palladium content has been found to affect the redox electrochemistry of ferrocene as well as electrocatalytic efficiency of new ORMOSIL material. The electroanalysis of NADH is reported. The modified electrode is very sensitive to NADH with lowest detection limit of < 1 μM.

  3. A Preliminary Study of Some of the Learning and Assessment Difficulties in Connection with O-Level Electrochemistry.

    Science.gov (United States)

    Hillman, R. A. H.; And Others

    1981-01-01

    Describes a study which explored some difficulties related to technical and nontechnical vocabulary and the structure of the examination questions in electrochemistry. Includes results from a sample of 1,500 students in the fourth forms. (DS)

  4. Direct electrochemistry of glucose oxidase on the hydroxyapatite/Nafion composite film modified electrode and its application for glucose biosensing

    Institute of Scientific and Technical Information of China (English)

    MA RongNa; WANG Bin; LIU Yan; LI Jing; ZHAO Qian; WANG GuoTao; JIA WenLi; WANG HuaiSheng

    2009-01-01

    A novel glucose biosensor was constructed by immobilizing the glucose oxidase (GOD) on a hydroxyapatite (Hap)/Nafion composite film modified glassy carbon electrode (GCE) and applied to the highly selective and sensitive determination of glucose.With the cooperation of Hap and Nation,the composite film played an important role in enhancing the stability and sensitivity of the biosensor.The results demonstrate that the GOD adsorbed onto the Hap/Nation composite film exhibits a pair of welldefined nearly reversible redox peaks and fine catalysis to the oxidation of glucose companied with the consumption of dissolved oxygen.On the basis of the decrease of the reduction current of dissolved oxygen at the applied potential of-0.80 V (vs.SCE) upon the addition of glucose,the concentration of glucose could be detected sensitively and selectively.The decreased reduction current was linear with the concentration of glucose in the range of 0.12-2.16 mM.The detection limit and sensitivity were 0.02 mM (S/N=3) and 6.75 mA·M~(-1),respectively.All the results demonstrate that Hap/Nafion composite film provides a novel and efficient platform for the immobilization of enzymes end realizes the direct electrochemistry.The composite materials should have potential applications in the fabrication of third-generation biosensors.

  5. Direct electrochemistry of glucose oxidase on the hydroxyapatite/Nafion composite film modified electrode and its application for glucose biosensing

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A novel glucose biosensor was constructed by immobilizing the glucose oxidase(GOD) on a hydroxyapatite(HAp)/Nafion composite film modified glassy carbon electrode(GCE) and applied to the highly selective and sensitive determination of glucose.With the cooperation of HAp and Nafion,the composite film played an important role in enhancing the stability and sensitivity of the biosensor.The results demonstrate that the GOD adsorbed onto the HAp/Nafion composite film exhibits a pair of welldefined nearly reversible redox peaks and fine catalysis to the oxidation of glucose companied with the consumption of dissolved oxygen.On the basis of the decrease of the reduction current of dissolved oxygen at the applied potential of -0.80 V(vs.SCE) upon the addition of glucose,the concentration of glucose could be detected sensitively and selectively.The decreased reduction current was linear with the concentration of glucose in the range of 0.12―2.16 mM.The detection limit and sensitivity were 0.02 mM(S/N=3) and 6.75 mA·M-1,respectively.All the results demonstrate that HAp/Nafion composite film provides a novel and efficient platform for the immobilization of enzymes and realizes the direct electrochemistry.The composite materials should have potential applications in the fabrication of third-generation biosensors.

  6. Microbial Electrochemistry and its Application to Energy and Environmental Issues

    Science.gov (United States)

    Hastings, Jason Thomas

    Microbial electrochemistry forms the basis of a wide range of topics from microbial fuel cells to fermentation of carbon food sources. The ability to harness microbial electron transfer processes can lead to a greener and cleaner future. This study focuses on microbial electron transfer for liquid fuel production, novel electrode materials, subsurface environments and removal of unwanted byproducts. In the first chapter, exocellular electron transfer through direct contact utilizing passive electrodes for the enhancement of bio-fuel production was tested. Through the application of microbial growth in a 2-cell apparatus on an electrode surface ethanol production was enhanced by 22.7% over traditional fermentation. Ethanol production efficiencies of close to 95% were achieved in a fraction of the time required by traditional fermentation. Also, in this chapter, the effect of exogenous electron shuttles, electrode material selection and resistance was investigated. Power generation was observed using the 2-cell passive electrode system. An encapsulation method, which would also utilize exocellular transfer of electrons through direct contact, was hypothesized for the suspension of viable cells in a conductive polymer substrate. This conductive polymer substrate could have applications in bio-fuel production. Carbon black was added to a polymer solution to test electrospun polymer conductivity and cell viability. Polymer morphology and cell viability were imaged using electron and optical microscopy. Through proper encapsulation, higher fuel production efficiencies would be achievable. Electron transfer through endogenous exocellular protein shuttles was observed in this study. Secretion of a soluble redox active exocellular protein by Clostridium sp. have been shown utilizing a 2-cell apparatus. Cyclic voltammetry and gel electrophoresis were used to show the presence of the protein. The exocellular protein is capable of reducing ferrous iron in a membrane separated

  7. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory.

    Science.gov (United States)

    Zheng, Yao; Jiao, Yan; Jaroniec, Mietek; Qiao, Shi Zhang

    2015-01-01

    The electrocatalytic hydrogen-evolution reaction (HER), as the main step of water splitting and the cornerstone of exploring the mechanism of other multi-electron transfer electrochemical processes, is the subject of extensive studies. A large number of high-performance electrocatalysts have been developed for HER accompanied by recent significant advances in exploring its electrochemical nature. Herein we present a critical appraisal of both theoretical and experimental studies of HER electrocatalysts with special emphasis on the electronic structure, surface (electro)chemistry, and molecular design. It addresses the importance of correlating theoretical calculations and electrochemical measurements toward better understanding of HER electrocatalysis at the atomic level. Fundamental concepts in the computational quantum chemistry and its relation to experimental electrochemistry are also presented along with some featured examples. PMID:25384712

  8. Nanoplasmonic biosensor: coupling electrochemistry to localized surface plasmon resonance spectroscopy on nanocup arrays.

    Science.gov (United States)

    Zhang, Diming; Lu, Yanli; Jiang, Jing; Zhang, Qian; Yao, Yao; Wang, Ping; Chen, Bilian; Cheng, Qiaoyuan; Liu, Gang Logan; Liu, Qingjun

    2015-05-15

    The nanoscale Lycurgus cup arrays were hybrid structures of nanocups and nanoparticles with ultrasensitivity to refractive index change. In this study, an electrochemical localized surface plasmon resonance (LSPR) sensor was developed by coupling electrochemistry to LSPR spectroscopy measurement on the nanoscale cup arrays (nanoCA). Based on the combination of electrochemistry and LSPR measurement, the electrochemical LSPR on nanoCA was observed with significant resonance wavelength shifts in electrochemical modulation. The synchronous implementation of cyclic voltammetry and optical transmission spectrum can be used to obtain multiply sensing information and investigate the enhancement for LSPR from electrochemical scanning. The electrochemical enhanced LSPR was utilized as biosensor to detect biomolecules. The electrochemical LSPR biosensor with synchronous electrochemical and optical implement showed higher sensitivity than that of conventional optical LSPR measurement. Detecting with multi-transducer parameters and high sensitivity, the electrochemical LSPR provided a promising approach for chemical and biological detection. PMID:25172029

  9. Development of a controlled-distance electrochemistry arrangement to be used in power plant environments

    International Nuclear Information System (INIS)

    This publication presents the state-of-the-art of the controlled-distance electrochemistry (CDE) arrangement developed at VTT. Due to the possibility to control accurately the distance between two electrodes, the CDE arrangement makes possible electrochemical measurements in poorly-conductive media such as simulated coolants of light water reactor systems. This experimental arrangement has now been developed into a versatile electrochemical tool, which can be used for thin-layer electrochemistry (TLEC), wall-jet ring-disc and contact electric impedance (CEI) as well as contact electric resistance (CER) measurements. This report comprises results from the years 1997-1999 and summarises the different possible TLEC configurations and electrode locations as well as the development of a bellows-driven CDE system. (orig.)

  10. Proceedings of the conference on electrochemistry of carbon allotropes: Graphite, fullerenes and diamond

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.] [Lawrence Berkeley National Lab., CA (United States); Scherson, D. [ed.] [Case Western Reserve Univ., Cleveland, OH (United States)

    1998-02-01

    This conference provided an opportunity for electrochemists, physicists, materials scientists and engineers to meet and exchange information on different carbon allotropes. The presentations and discussion among the participants provided a forum to develop recommendations on research and development which are relevant to the electrochemistry of carbon allotropes. The following topics which are relevant to the electrochemistry of carbon allotropes were addressed: Graphitized and disordered carbons, as Li-ion intercalation anodes for high-energy-density, high-power-density Li-based secondary batteries; Carbons as substrate materials for catalysis and electrocatalysis; Boron-doped diamond film electrodes; and Electrochemical characterization and electrosynthesis of fullerenes and fullerene-type materials. Abstracts of the presentations are presented.

  11. Electrochemistry-Assisted Top-Down Characterization of Disulfide-Containing Proteins

    OpenAIRE

    Zhang, Yun; Cui, Weidong; Zhang, Hao; Dewald, Howard D.; Chen, Hao

    2012-01-01

    Covalent disulfide bond linkage in a protein represents an important challenge for mass spectrometry (MS)-based top-down protein structure analysis as it reduces the backbone cleavage efficiency for MS/MS dissociation. This study presents a strategy for solving this critical issue via integrating electrochemistry (EC) online with top-down MS approach. In this approach, proteins undergo electrolytic reduction in an electrochemical cell to break disulfide bonds and then online ionized into gase...

  12. Power Ultrasound in Electrochemistry From Versatile Laboratory Tool to Engineering Solution

    CERN Document Server

    Pollet, Bruno

    2012-01-01

    The use of power ultrasound to promote industrial electrochemical processes, or sonoelectrochemistry, was first discovered over 70 years ago, but recently there has been a revived interest in this field. Sonoelectrochemistry is a technology that is safe, cost-effective, environmentally friendly and energy efficient compared to other conventional methods.? The book contains chapters on the following topics, contributed from leading researchers in academia and industry:?Use of electrochemistry as a tool to investigate Cavitation Bubble DynamicsSonoelectroanalysisSonoelectrochemistry in environme

  13. Application of Nuclear Microprobes towards Understanding Complex Ore Geo-electrochemistry

    Directory of Open Access Journals (Sweden)

    Szymanski R.

    2012-10-01

    Full Text Available We report on recent development on the CSIRO Nuclear Microprobe (NMP towards catering for long exposure mapping required for large area scanning. A new data collection system based on Labview FPGA highly co-ordinated with beam transport sits at the heart of the upgrade. These upgrades are discussed and an example of the systems use for μ-Particle Induced X-ray Emission (PIXE analysis in the area of complex ore geo-electrochemistry is briefly described.

  14. Achieving direct electrochemistry of glucose oxidase by one step electrochemical reduction of graphene oxide and its use in glucose sensing

    Energy Technology Data Exchange (ETDEWEB)

    Shamsipur, Mojtaba; Amouzadeh Tabrizi, Mahmoud, E-mail: mahmoud.tabrizi@gmail.com

    2014-12-01

    In this paper, the direct electrochemistry of glucose oxidase (GOD) was accomplished at a glassy carbon electrode modified with electrochemically reduced graphene oxide/sodium dodecyl sulfate (GCE/ERGO/SDS). A pair of reversible peaks is exhibited on GCE/ERGO/SDS/GOD by cyclic voltammetry. The peak-to-peak potential separation of immobilized GOD is 28 mV in 0.1 M phosphate buffer solution (pH 7.0) with a scan rate of 50 mV/s. The average surface coverage is 2.62 × 10{sup −10} mol cm{sup −2}. The resulting biosensor exhibited a good response to glucose with linear range from 1 to 8 mM (R{sup 2} = 0.9878), good reproducibility and detection limit of 40.8 μM. The results from the biosensor were similar (± 5%) to those obtained from the clinical analyzer. - Highlights: • A direct electron transfer reaction of glucose oxidase was observed on GCE/ERGO/SDS. • This composite film was successfully applied in preparation of glucose biosensor. • The detection limit of the biosensor was estimated to be 40.8 μM. • The results from the sensor were similar to those obtained from the clinical analyzer.

  15. Application of N-doped graphene modified carbon ionic liquid electrode for direct electrochemistry of hemoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei, E-mail: swyy26@hotmail.com [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Dong, Lifeng, E-mail: donglifeng@qust.edu.cn [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Department of Physics, Astronomy, and Materials Science, Missouri State University, Springfield, MO 65897 (United States); Deng, Ying; Yu, Jianhua [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Wang, Wencheng [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Zhu, Qianqian [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2014-06-01

    Nitrogen-doped graphene (NG) was synthesized and used for the investigation on direct electrochemistry of hemoglobin (Hb) with a carbon ionic liquid electrode as the substrate electrode. Due to specific characteristics of NG such as excellent electrocatalytic property and large surface area, direct electron transfer of Hb was realized with enhanced electrochemical responses appearing. Electrochemical behaviors of Hb on the NG modified electrode were carefully investigated with the electrochemical parameters calculated. The Hb modified electrode exhibited excellent electrocatalytic reduction activity toward different substrates, such as trichloroacetic acid and H{sub 2}O{sub 2}, with wider dynamic range and lower detection limit. These findings show that NG can be used for the preparation of chemically modified electrodes with improved performance and has potential applications in electrochemical sensing. - Graphical abstract: The utilization of N-doped graphene enables direct electrochemistry of hemoglobin with a pair of well-defined redox peaks appearing. - Highlights: • Nitrogen-doped graphene (NG) was synthesized by a solvothermal method. • NG was used for the investigation on direct electrochemistry of hemoglobin with carbon ionic liquid electrode. • The Hb modified electrode exhibited excellent electrocatalytic activity toward different substrates.

  16. Application of N-doped graphene modified carbon ionic liquid electrode for direct electrochemistry of hemoglobin

    International Nuclear Information System (INIS)

    Nitrogen-doped graphene (NG) was synthesized and used for the investigation on direct electrochemistry of hemoglobin (Hb) with a carbon ionic liquid electrode as the substrate electrode. Due to specific characteristics of NG such as excellent electrocatalytic property and large surface area, direct electron transfer of Hb was realized with enhanced electrochemical responses appearing. Electrochemical behaviors of Hb on the NG modified electrode were carefully investigated with the electrochemical parameters calculated. The Hb modified electrode exhibited excellent electrocatalytic reduction activity toward different substrates, such as trichloroacetic acid and H2O2, with wider dynamic range and lower detection limit. These findings show that NG can be used for the preparation of chemically modified electrodes with improved performance and has potential applications in electrochemical sensing. - Graphical abstract: The utilization of N-doped graphene enables direct electrochemistry of hemoglobin with a pair of well-defined redox peaks appearing. - Highlights: • Nitrogen-doped graphene (NG) was synthesized by a solvothermal method. • NG was used for the investigation on direct electrochemistry of hemoglobin with carbon ionic liquid electrode. • The Hb modified electrode exhibited excellent electrocatalytic activity toward different substrates

  17. 石墨烯电化学研究进展%Research progress of graphene-based electrochemistry

    Institute of Scientific and Technical Information of China (English)

    孟越; 王林萍; 黄毅; 黄钊; 陈超; 谭月明; 傅迎春; 谢青季

    2014-01-01

    该文简要综述了石墨烯电化学研究的最新进展,包括石墨烯与电分析、石墨烯与能源电化学以及基于石墨烯的光透电极等内容,引用文献88篇。%In this article, we briefly review the recent research progress of graphene-based electrochemistry, in-volving graphene in electroanalysis, graphene in energy electrochemistry and graphene-based optically transparent electrodes, with 88 literatures cited.

  18. Chrono-potentiometry by chemical re-dissolution - Electrochemistry in two phase medium

    International Nuclear Information System (INIS)

    In this document which comprises two research thesis, the first one addresses the technique of chrono-potentiometry by chemical re-dissolution (or potentiometric stripping analysis). The author, after a presentation of this technique, reports the search for relationships which govern this analytical technique with respect to diffusion transport regimes imposed to species involved in the pre-concentration and chemical re-dissolution stages. The second research thesis addresses dispersed media like emulsions, micro-emulsions and micellar solutions which are interesting potential applications in organic electrochemistry. The author recalls some properties of tensio-active compounds, and then describes electrochemical investigations and electro-synthesis performed within these media

  19. Direct Electrochemistry of Catalase on Single Wall Carbon Nanotubes Modified Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    Qiang ZHAO; Lun Hui GUAN; Zhen Nan GU; Qian Kun ZHUANG

    2005-01-01

    Direct electrochemistry of catalase (Ct) has been studied on single wall carbon nanotubes (SWNTs) modified glassy carbon (GC) electrode. A pair of well-defined nearly reversible redox peaks is given at --0.48 V (vs. SCE) in 0.1 mol/L phosphate solution (pH 7.0).The peak current in cyclic voltammogram is proportional to the scan rate. The peak potential of catalase is shifted to more negative value when the pH increases. Catalase can adsorb on the SWNTs modified electrode.

  20. Research progress in tribo-electrochemistry and tribo-electrochemical polishing

    Institute of Scientific and Technical Information of China (English)

    ZHAI Wenjie

    2007-01-01

    In this paper, the status quo and recent progress in the research on tribo-electrochemistry in aqueous and non-aqueous media, respectively, are reviewed. Much more attention has been paid to the tribo-electrochemical mechanisms for the control of friction and wear. Based on a summary of the conventional polishing principles of hard and brittle materials, the tribo-electrochemical polishing method is proposed. The results of the preliminary test show that tribo-electrochemical polishing is promising to become a critical technology in the high efficient polishing and planarization of microelectronic materials.

  1. Flavonoid electrochemistry: a review on the electroanalytical applications

    Directory of Open Access Journals (Sweden)

    Eric S. Gil

    2013-06-01

    Full Text Available Flavonoids are polyphenolic compounds widespread in vegetal kingdom. They present a C-15 skeleton, which is divided into three units A, B and C. Unit C is an oxygen containing heterocyclic, whose oxidation state and saturation level define major subclasses. Units A and B are aromatic rings, in which four major types of substituents, i. e. hydroxyl, methoxyl, prenyl and glycosides, lead to over 8000 different flavonoids. The great healthy-protecting value of these phytochemical biomarkers has attracted the attention of scientific community. Their main biological actions include anticancer and anti-inflammatory properties, which are strictly linked to antioxidant activities. So that, electroanalysis have been extensively applied on mechanistic studies and also for analytical determinations. This review presents the state of the art regarding the main applications of electroanalysis on the flavonoid research. The approaches on redox behavior characterization leading to a better understanding of structure antioxidant activity relationships are highlighted.

  2. Nanoflake-like SnS₂ matrix for glucose biosensing based on direct electrochemistry of glucose oxidase.

    Science.gov (United States)

    Yang, Zhanjun; Ren, Yanyan; Zhang, Yongcai; Li, Juan; Li, Hongbo; Hu, Xiaochun Huang Xiaoya; Xu, Qin

    2011-07-15

    A novel biosensor is developed based on immobilization of proteins on nanoflake-like SnS₂ modified glass carbon electrode (GCE). With glucose oxidase (GOD) as a model, direct electrochemistry of the GOD/nanoflake-like SnS₂ is studied. The prepared SnS₂ has large surface area and can offer favorable microenvironment for facilitating the electron transfer between protein and electrode surface. The properties of GOD/SnS₂ are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR) and cyclic voltammetry (CV), respectively. The immobilized enzyme on nanoflake-like SnS₂ retains its native structure and bioactivity and exhibits a surface-controlled, reversible two-proton and two-electron transfer reaction with the apparent electron transfer rate constant (k(s)) of 3.68 s⁻¹. The proposed biosensor shows fast amperometric response (8s) to glucose with a wide linear range from 2.5 × 10⁻⁵ M to 1.1 × 10⁻³ M, a low detection limit of 1.0 × 10⁻⁵ M at signal-to-noise of 3 and good sensitivity (7.6 ± 0.5 mA M⁻¹ cm⁻²). The resulting biosensor has acceptable operational stability, good reproducibility and excellent selectivity and can be successfully applied in the reagentless glucose sensing at -0.45 V. It should be worthwhile noting that it opens a new avenue for fabricating excellent electrochemical biosensor. PMID:21592767

  3. The application of electrochemistry to pharmaceutical stability testing--comparison with in silico prediction and chemical forced degradation approaches.

    Science.gov (United States)

    Torres, Susana; Brown, Roland; Szucs, Roman; Hawkins, Joel M; Zelesky, Todd; Scrivens, Garry; Pettman, Alan; Taylor, Mark R

    2015-11-10

    The aim of this study was to evaluate the use of electrochemistry to generate oxidative degradation products of a model pharmaceutical compound. The compound was oxidized at different potentials using an electrochemical flow-cell fitted with a glassy carbon working electrode, a Pd/H2 reference electrode and a titanium auxiliary electrode. The oxidative products formed were identified and structurally characterized by LC-ESI-MS/MS using a high resolution Q-TOF mass spectrometer. Results from electrochemical oxidation using electrolytes of different pH were compared to those from chemical oxidation and from accelerated stability studies. Additionally, oxidative degradation products predicted using an in silico commercially available software were compared to those obtained from the various experimental methods. The electrochemical approach proved to be useful as an oxidative stress test as all of the final oxidation products observed under accelerated stability studies could be generated; previously reported reactive intermediate species were not observed most likely because the electrochemical mechanism differs from the oxidative pathway followed under accelerated stability conditions. In comparison to chemical degradation tests electrochemical degradation has the advantage of being much faster and does not require the use of strong oxidizing agents. Moreover, it enables the study of different operating parameters in short periods of time and optimisation of the reaction conditions (pH and applied potential) to achieve different oxidative products mixtures. This technique may prove useful as a stress test condition for the generation of oxidative degradation products and may help accelerate structure elucidation and development of stability indicating analytical methods.

  4. Merits of online electrochemistry liquid sample desorption electrospray ionization mass spectrometry (EC/LS DESI MS).

    Science.gov (United States)

    Looi, Wen Donq; Brown, Blake; Chamand, Laura; Brajter-Toth, Anna

    2016-03-01

    A new online electrochemistry/liquid sample desorption electrospray ionization mass spectrometry (EC/LS DESI MS) system with a simple electrochemical thin-layer flow-through cell was developed and tested using N,N-dimethyl-p-phenylenediamine (DMPA) as a model probe. Although oxidation of DMPA is observed as a result of ionization of LS in positive ion mode LS DESI, application of voltage to the online electrochemical (EC) cell in EC/LS DESI MS increases yields of oxidation products. An advantage of LS DESI MS is its sensitivity in aqueous electrolyte solutions, which improves efficiency of electrochemical reactions in EC/LS DESI MS. In highly conductive low pH aqueous buffer solutions, oxidation efficiency is close to 100%. EC/ESI MS typically requires mixed aqueous/organic solvents and low electrolyte concentrations for efficient ionization in MS, limiting efficiency of electrochemistry online with MS. Independently, the results verify higher electrochemical oxidation efficiency during positive mode ESI than during LS DESI.

  5. Direct electrochemistry behavior of Cytochrome c on silicon dioxide nanoparticles-modified electrode

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A newfangled direct electrochemistry behavior of Cytochrome c (Cyt c) was found on glassy carbon (GC) electrode modified with the silicon dioxide (SiO2) nanoparticles by physical adsorption. A pair of stable and well-defined redox peaks of Cyt c′ quasi-reversible electrochemical reaction were obtained with a heterogeneous electron transfer rate constant of 1.66×10-3 cm/s and a formal potential of 0.069 V (vs. Ag/AgCl) (0.263 V versus NHE) in 0.1 mol/L pH 6.8 PBS. Both the size and the amount of SiO2 nanoparticles could influence the electron transfer between Cyt c and the electrode. Electrostatic interaction which is between the negative nanoparticle surface and positively charged amino acid residues on the Cyt c surface is of importance for the stability and reproducibility toward the direct electron transfer of Cyt c. It is suggested that the modification of SiO2 nanoparticles proposes a novel approach to realize the direct electrochemistry of proteins.

  6. Fabrication of graphene–platinum nanocomposite for the direct electrochemistry and electrocatalysis of myoglobin

    International Nuclear Information System (INIS)

    In this paper a platinum (Pt) nanoparticle decorated graphene (GR) nanosheet was synthesized and used for the investigation on direct electrochemistry of myoglobin (Mb). By integrating GR–Pt nanocomposite with Mb on the surface of carbon ionic liquid electrode (CILE), a new electrochemical biosensor was fabricated. UV-Vis absorption and FT-IR spectra indicated that Mb remained its native structure in the nanocomposite film. Electrochemical behaviors of Nafion/Mb–GR–Pt/CILE were investigated with a pair of well-defined redox peak appeared, which indicated that direct electron transfer of Mb was realized on the underlying electrode with the usage of the GR–Pt nanocomposite. The fabricated electrode showed good electrocatalytic activity to the reduction of trichloroacetic acid in the linear range from 0.9 to 9.0 mmol/L with the detection limit as 0.32 mmol/L (3σ), which showed potential application for fabricating novel electrochemical biosensors and bioelectronic devices. - Highlights: ► The GR–Pt nanocomposite was synthesized and employed for the fabrication of electrochemical biosensor. ► Direct electrochemistry of Mb in the nanocomposite was realized. ► The prepared biosensor exhibited excellent electrochemical response to the reduction of TCA

  7. Fabrication of graphene–platinum nanocomposite for the direct electrochemistry and electrocatalysis of myoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei, E-mail: swyy26@hotmail.com [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Li, Linfang [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Lei, Bingxin [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Li, Tongtong; Ju, Xiaomei; Wang, Xiuzheng; Li, Guangjiu [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Sun, Zhenfan [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China)

    2013-05-01

    In this paper a platinum (Pt) nanoparticle decorated graphene (GR) nanosheet was synthesized and used for the investigation on direct electrochemistry of myoglobin (Mb). By integrating GR–Pt nanocomposite with Mb on the surface of carbon ionic liquid electrode (CILE), a new electrochemical biosensor was fabricated. UV-Vis absorption and FT-IR spectra indicated that Mb remained its native structure in the nanocomposite film. Electrochemical behaviors of Nafion/Mb–GR–Pt/CILE were investigated with a pair of well-defined redox peak appeared, which indicated that direct electron transfer of Mb was realized on the underlying electrode with the usage of the GR–Pt nanocomposite. The fabricated electrode showed good electrocatalytic activity to the reduction of trichloroacetic acid in the linear range from 0.9 to 9.0 mmol/L with the detection limit as 0.32 mmol/L (3σ), which showed potential application for fabricating novel electrochemical biosensors and bioelectronic devices. - Highlights: ► The GR–Pt nanocomposite was synthesized and employed for the fabrication of electrochemical biosensor. ► Direct electrochemistry of Mb in the nanocomposite was realized. ► The prepared biosensor exhibited excellent electrochemical response to the reduction of TCA.

  8. Merits of online electrochemistry liquid sample desorption electrospray ionization mass spectrometry (EC/LS DESI MS).

    Science.gov (United States)

    Looi, Wen Donq; Brown, Blake; Chamand, Laura; Brajter-Toth, Anna

    2016-03-01

    A new online electrochemistry/liquid sample desorption electrospray ionization mass spectrometry (EC/LS DESI MS) system with a simple electrochemical thin-layer flow-through cell was developed and tested using N,N-dimethyl-p-phenylenediamine (DMPA) as a model probe. Although oxidation of DMPA is observed as a result of ionization of LS in positive ion mode LS DESI, application of voltage to the online electrochemical (EC) cell in EC/LS DESI MS increases yields of oxidation products. An advantage of LS DESI MS is its sensitivity in aqueous electrolyte solutions, which improves efficiency of electrochemical reactions in EC/LS DESI MS. In highly conductive low pH aqueous buffer solutions, oxidation efficiency is close to 100%. EC/ESI MS typically requires mixed aqueous/organic solvents and low electrolyte concentrations for efficient ionization in MS, limiting efficiency of electrochemistry online with MS. Independently, the results verify higher electrochemical oxidation efficiency during positive mode ESI than during LS DESI. PMID:26886744

  9. Effects of Lecture Method Supplemented with Music and Computer Animation on Senior Secondary School Students' Academic Achievement in Electrochemistry

    Science.gov (United States)

    Akpoghol, T. V.; Ezeudu, F. O.; Adzape, J. N.; Otor, E. E.

    2016-01-01

    The study investigated the effects of Lecture Method Supplemented with Music (LMM) and Computer Animation (LMC) on senior secondary school students' academic achievement in electrochemistry in Makurdi metropolis. Six research questions and six hypotheses guided the study. The design of the study was quasi experimental, specifically the pre-test,…

  10. Electrochemistry of cefditoren pivoxil and its voltammetric determination

    Directory of Open Access Journals (Sweden)

    İbrahim Hüdai Taşdemir

    2016-01-01

    Full Text Available Electrochemical behavior of cefditoren pivoxil (CTP was studied via experimental electrochemical methods and theoretical calculations performed at B3LYP/6-31+G(d//AM1 level. Experimental studies were carried out based on an irreversible 4e−/4H+ reduction peak at ca. −0.8 V on hanging mercury drop electrode (HMDE and irreversible 1e−/1H+ oxidation of CTP at ca. 0.8 V on glassy carbon electrode (GCE versus Ag/AgCl, KCl (3.0 M in Britton–Robinson buffer at pH 6.0 and 4.0, respectively. Tentative reduction and oxidation mechanisms were proposed based on computational and experimental results. Square-wave adsorptive stripping voltammetric methods have been developed and validated for quantification of CTP in different samples. Linear working range was established as 0.15–15.0 μM for HMDE and 1.0–50.0 μM for GCE. Limit of quantification (S/N = 10 was calculated to be (0.10 ± 0.02 μM and (0.80 ± 0.03 μM for HMDE and GCE, respectively. Methods were successfully applied to assay the drug in tablets and human serum with good recoveries between (99.2 ± 11.6 % and (102.5 ± 9.5 % having relative standard deviation less than 10%.

  11. Na-Ion Battery Anodes: Materials and Electrochemistry.

    Science.gov (United States)

    Luo, Wei; Shen, Fei; Bommier, Clement; Zhu, Hongli; Ji, Xiulei; Hu, Liangbing

    2016-02-16

    also outlined, where graphene oxide was employed as dehydration agent and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) was used to unzip wood fiber. Furthermore, surface modification by atomic layer deposition technology is introduced, where we discover that a thin layer of Al2O3 can function to encapsulate Sn nanoparticles, leading to a much enhanced cycling performance. We also highlight recent work about the phosphorene/graphene anode, which outperformed other anodes in terms of capacity. The aromatic organic anode is also studied as anode with very high initial sodiation capacity. Furthermore, electrochemical intercalation of Na ions into reduced graphene oxide is applied for fabricating transparent conductors, demonstrating the great feasibility of Na ion intercalation for optical applications. PMID:26783764

  12. Na-Ion Battery Anodes: Materials and Electrochemistry.

    Science.gov (United States)

    Luo, Wei; Shen, Fei; Bommier, Clement; Zhu, Hongli; Ji, Xiulei; Hu, Liangbing

    2016-02-16

    also outlined, where graphene oxide was employed as dehydration agent and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) was used to unzip wood fiber. Furthermore, surface modification by atomic layer deposition technology is introduced, where we discover that a thin layer of Al2O3 can function to encapsulate Sn nanoparticles, leading to a much enhanced cycling performance. We also highlight recent work about the phosphorene/graphene anode, which outperformed other anodes in terms of capacity. The aromatic organic anode is also studied as anode with very high initial sodiation capacity. Furthermore, electrochemical intercalation of Na ions into reduced graphene oxide is applied for fabricating transparent conductors, demonstrating the great feasibility of Na ion intercalation for optical applications.

  13. Electrochemistry-mass spectrometry for in-vitro determination of selected chemotherapeutics and their electrochemical products in comparison to in-vivo approach.

    Science.gov (United States)

    Szultka-Mlynska, Malgorzata; Buszewski, Boguslaw

    2016-11-01

    Chemotherapeutics are among the most frequently prescribed medications in modern medicine. They are widely prescribed; however, problems with organisms developing resistance to these drugs means that their efficacy may be lost, so care should be taken to avoid unnecessary prescription. It is therefore of great interest to study the detailed metabolism of these biologically active compounds. This study aimed at developing an efficient analytical protocol for the determination of in-vitro electrochemical products of selected antibiotic drugs (amoxicillin, cefotaxime, fluconazole, linezolid, metronidazole and moxifloxacin). Combination of electrochemistry (EC) and mass spectrometry (MS) was applied for the in-vitro determination of the studied antibiotics and their electrochemical products. To identify the structure of the detected electrochemical products, MS/MS experiments were performed. This was one of the first applications of the EC system for generation of electrochemical products produced from antibiotic drugs. Adjustment of appropriate conditions and such parameters as the potential value, mobile phase (pH), working electrode and temperature had significant influence on electrochemical simulations and the creation of selected derivatives. Consequently, several working electrodes were evaluated for this purpose. In most of the studied cases, mainly two types of products were observed. One corresponded to an increase in mass by 14Da, which can be explained by a process consisting of oxidation (+16 m/z) and dehydrogenation (-2 m/z); The second in turn showed mass reduction by 14Da, which can be attributed to the loss of -CH2 as a result of N-demethylation. The performed experiments consisted of two stages: electrochemical oxidation of the analyzed samples (phase I of metabolic transformation), and addition of glutathione (GSH) for follow-up reactions (phase II conjunction). The electrochemical results were compared to in-vivo experiments by analyzing urine

  14. Electrochemistry-mass spectrometry for in-vitro determination of selected chemotherapeutics and their electrochemical products in comparison to in-vivo approach.

    Science.gov (United States)

    Szultka-Mlynska, Malgorzata; Buszewski, Boguslaw

    2016-11-01

    Chemotherapeutics are among the most frequently prescribed medications in modern medicine. They are widely prescribed; however, problems with organisms developing resistance to these drugs means that their efficacy may be lost, so care should be taken to avoid unnecessary prescription. It is therefore of great interest to study the detailed metabolism of these biologically active compounds. This study aimed at developing an efficient analytical protocol for the determination of in-vitro electrochemical products of selected antibiotic drugs (amoxicillin, cefotaxime, fluconazole, linezolid, metronidazole and moxifloxacin). Combination of electrochemistry (EC) and mass spectrometry (MS) was applied for the in-vitro determination of the studied antibiotics and their electrochemical products. To identify the structure of the detected electrochemical products, MS/MS experiments were performed. This was one of the first applications of the EC system for generation of electrochemical products produced from antibiotic drugs. Adjustment of appropriate conditions and such parameters as the potential value, mobile phase (pH), working electrode and temperature had significant influence on electrochemical simulations and the creation of selected derivatives. Consequently, several working electrodes were evaluated for this purpose. In most of the studied cases, mainly two types of products were observed. One corresponded to an increase in mass by 14Da, which can be explained by a process consisting of oxidation (+16 m/z) and dehydrogenation (-2 m/z); The second in turn showed mass reduction by 14Da, which can be attributed to the loss of -CH2 as a result of N-demethylation. The performed experiments consisted of two stages: electrochemical oxidation of the analyzed samples (phase I of metabolic transformation), and addition of glutathione (GSH) for follow-up reactions (phase II conjunction). The electrochemical results were compared to in-vivo experiments by analyzing urine

  15. Immobilization and direct electrochemistry of copper-containing enzymes on active carbon

    Institute of Scientific and Technical Information of China (English)

    SUN Dongmei; CAI Chenxin; XING Wei; LU Tianhong

    2004-01-01

    Two typical and important copper-containing enzymes, laccase (Lac) and tyrosinase (Tyr), have been immobilized on the surface of active carbon with simple adsorption method. The cyclic voltammetric results indicated that the active carbon could promote the direct electron transfer of both Lac and Tyr and a pair of well-defined and nearly symmetric redox peaks appeared on the cyclic voltammograms of Lac or Tyr with the formal potential, E0′, independent on the scan rate. The further experimental results showed that the immobilized copper-containing oxidase displayed an excellent electrocatalytic activity to the electrochemical reduction of O2. The immobilization method presented here has several advantages, such as simplicity, easy to operation and keeping good activity of enzyme etc., and could be further used to study the direct electrochemistry of other redox proteins and enzymes and fabricate the catalysts for biofuel cell.

  16. Direct electrochemistry and electrocatalysis of myoglobin in dodecyltrimethylammonium bromide film modified carbon ceramic electrode

    Institute of Scientific and Technical Information of China (English)

    Yuan Zhen Zhou; Hui Wang; She Ying Dong; An Xiang Tian; Zhi Xian He; Bin Chen

    2011-01-01

    Direct electrochemistry and electrocatalysis of myoglobin (Mb) were studied with Mb immobilized on dodecyltrimethylammonium bromide (DTAB) film modified carbon ceramic (CC) electrode. Cyclic voltammetry showed a pair of well-defined and nearly reversible redox peaks of Mb (FeⅡ/FeⅢ) at about -0.3 V vs. SCE (pH = 6.98). The currents of the redox peak were linear to scan rate, and rate constant (Ks) was estimated to be 3.03 s-1. The formal potential (E01) of Mb in the DTAB/CC electrodes shifted linearly with pH with a slope of-36.44 mV/pH, implying that the electron transfer between DTAB and CC electrodes is accompanied by proton transportation. The immobilized Mb exhibited excellent electrocatalytic response to the reduction of hydrogen peroxide (H2O2).

  17. In-situ Liquid Electron Microscopy Setups for Investigation of Nanoscale Electrochemistry

    DEFF Research Database (Denmark)

    Jensen, Eric; Møller-Nilsen, Rolf Erling Robberstad; Canepa, Silvia;

    2014-01-01

    Recently there has been an explosion in the number of systems available for in-situliquid-phase electron microscopy (1). These systems separate the liquid from the vacuum andallow for nanoscale imaging as well as electrical contact. Such systems are important for the further development of nanoto......Recently there has been an explosion in the number of systems available for in-situliquid-phase electron microscopy (1). These systems separate the liquid from the vacuum andallow for nanoscale imaging as well as electrical contact. Such systems are important for the further development......-situ electrochemistry and has achieved ~10 nm resolution. Such systems are important tools for developing sustainable technology and for understanding nanoscale phenomena. However, both systems suffer from interacting with theelectron beam, which is a high-voltage radiation source, and therefore initial experiments...

  18. Electrochemistry at the edge of a single graphene layer in a nanopore

    DEFF Research Database (Denmark)

    Banerjee, Sutanuka; Shim, Jeong; Rivera, J.;

    2013-01-01

    We study the electrochemistry of single layer graphene edges using a nanopore-based structure consisting of stacked graphene and AlO dielectric layers. Nanopores, with diameters ranging from 5 to 20 nm, are formed by an electron beam sculpting process on the stacked layers. This leads to a unique...... edge structure which, along with the atomically thin nature of the embedded graphene electrode, demonstrates electrochemical current densities as high as 1.2 × 10 A/cm. The graphene edge embedded structure offers a unique capability to study the electrochemical exchange at an individual graphene edge......, isolated from the basal plane electrochemical activity. We also report ionic current modulation in the nanopore by biasing the embedded graphene terminal with respect to the electrodes in the fluid. The high electrochemical specific current density for a graphene nanopore-based device can have many...

  19. Electrochemistry Experiments to Develop Novel Sensors for Real-World Applications

    Directory of Open Access Journals (Sweden)

    Suzanne Lunsford

    2013-08-01

    Full Text Available These novel STEM (Science Technology Engineering and Mathematics Electrochemistry experiments have been designed to increase the integrated science content, pedagogical, and technological knowledge for real-world applications. This study has focused on (1 the fundamental understanding on the relationship of metal oxide films and polymers to electrochemical sensors, and (2 the development of new materials which have great application of electrode materials. Following the inquiry based learning strategy the research students learn to develop and study the electrode surfaces to meet the needs of stability and low detection limits. Recently, new advances in environmental health are revealing the anthropogenic or naturally occurring harmful organic chemicals in sources of water supply expose a great health threat to human and aquatic life. Due to their well-known carcinogenic and lethal properties, the presence of human produced toxic chemicals such as phenol and its derivatives poses a critical threat to human health and aquatic life in such water resources. In order to achieve effective assessment and monitoring of these toxic chemicals there is a need to develop in-situ (electrochemical sensors methods to detect rapidly. Electrochemical sensors have attracted more attention to analytical chemist and electrochemistry engineers due to its simplicity, rapidness and high sensitivity. However, there will be real challenges of achieving successful analysis of chemicals (phenol in the presence of common interferences in water resources, which will be discussed regarding the students challenging learning experiences in developing an electrochemical sensor. The electrochemical sensor developed (TiO2 , ZrO2 or sol-gel mixture TiO2/ZrO2 will be illustrated and the successes will be shown by cyclic voltammetry data in detection of 1,2-dihydroxybenzenes (catechol, dopamine and phenol.

  20. Electrochemistry of single metalloprotein and DNA-based molecules at Au(111) electrode surfaces.

    Science.gov (United States)

    Salvatore, Princia; Zeng, Dongdong; Karlsen, Kasper K; Chi, Qijin; Wengel, Jesper; Ulstrup, Jens

    2013-07-22

    We have briefly overviewed recent efforts in the electrochemistry of single transition metal complex, redox metalloprotein, and redox-marked oligonucleotide (ON) molecules. We have particularly studied self-assembled molecular monolayers (SAMs) of several 5'-C6-SH single- (ss) and double-strand (ds) ONs immobilized on Au(111) electrode surfaces via Au-S bond formation, using a combination of nucleic acid chemistry, electrochemistry and electrochemically controlled scanning tunnelling microscopy (in situ STM). Ds ONs stabilized by multiply charged cations and locked nucleic acid (LNA) monomers have been primary targets, with a view on stabilizing the ds-ONs and improving voltammetric signals of intercalating electrochemical redox probes. Voltammetric signals of the intercalator anthraquinone monosulfonate (AQMS) at ds-DNA/Au(111) surfaces diluted by mercaptohexanol are significantly sharpened and more robust in the presence than in the absence of [Co(NH3)6](3+). AQMS also displays robust Faradaic voltammetric signals specific to the ds form on binding to similar LNA/Au(111) surfaces, but this signal only evolves after successive voltammetric scanning into negative potential ranges. Triply charged spermidine (Spd) invokes itself a strong voltammetric signal, which is specific to the ds form and fully matched sequences. This signal is of non-Faradaic, capacitive origin but appears in the same potential range as the Faradaic AQMS signal. In situ STM shows that molecular scale structures of the size of Spd-stabilized ds-ONs are densely packed over the Au(111) surface in potential ranges around the capacitive peak potential.

  1. Direct Electrochemistry of Hemoglobin in Layer-by-layer {PDDA/Hb}n Films Assembled on Pyrolytic Graphite Electrodes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Layer-by-layer {PDDA/Hb}n films were assembled by means of alternate adsorption of positively charged poly(diallyldimethyl ammonium) (PDDA) and negatively charged hemoglobin (Hb) at pH 9.2 from their aqueous solutions on pyrolytic graphite (PG) electrodes. Film growth during adsorption cycles was demonstrated by cyclic voltammetry and UV-Vis spectroscopy.Direct electrochemistry of Hb in {PDDA/Hb} n films on PG was studied.

  2. Carrier concentration profiling in magnetic GaMnSb/GaSb investigated by electrochemistry capacitance-voltage profiler

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Depth profiles of carrier concentrations in Ga- MnSb/GaSb are investigated by electrochemistry capacitance-voltage profiler and electrolyte of Tiron. The carrier concentration in GaMnSb/GaSb measured by this method is coincident with the results of Hall and X-ray diffraction measurements. It is indicated that most of the Mn atoms in GaMnSb take the site of Ga, play a role of acceptors, and provide shallow acceptor level(s).

  3. The mechanism of the nano-CeO2 films deposition by electrochemistry method as coated conductor buffer layers

    International Nuclear Information System (INIS)

    Highlights: • Crack-free CeO2 film thicker than 200 nm was prepared on NiW substrate by ED method. • Different electrochemical processes as hydroxide/metal mechanisms were identified. • The CeO2 precursor films deposited by ED method were in nano-scales. - Abstract: Comparing with conventional physical vapor deposition methods, electrochemistry deposition technique shows a crack suppression effect by which the thickness of CeO2 films on Ni–5 at.%W substrate can reach a high value up to 200 nm without any cracks, make it a potential single buffer layer for coated conductor. In the present work, the processes of CeO2 film deposited by electrochemistry method are detailed investigated. A hydroxide reactive mechanism and an oxide reactive mechanism are distinguished for dimethyl sulfoxide and aqueous solution, respectively. Before heat treatment to achieve the required bi-axial texture performance of buffer layers, the precursor CeO2 films are identified in nanometer scales. The crack suppression for electrochemistry deposited CeO2 films is believed to be attributed to the nano-effects of the precursors

  4. The mechanism of the nano-CeO{sub 2} films deposition by electrochemistry method as coated conductor buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuming; Cai, Shuang [Department of Physics, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai 200444 (China); Liang, Ying, E-mail: yliang@ecust.edu.cn [Institute of Nuclear Technology and Application, School of Science, East China University of Science and Technology, Shanghai 200237 (China); Bai, Chuanyi; Liu, Zhiyong; Guo, Yanqun; Cai, Chuanbing [Department of Physics, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai 200444 (China)

    2015-05-15

    Highlights: • Crack-free CeO{sub 2} film thicker than 200 nm was prepared on NiW substrate by ED method. • Different electrochemical processes as hydroxide/metal mechanisms were identified. • The CeO{sub 2} precursor films deposited by ED method were in nano-scales. - Abstract: Comparing with conventional physical vapor deposition methods, electrochemistry deposition technique shows a crack suppression effect by which the thickness of CeO{sub 2} films on Ni–5 at.%W substrate can reach a high value up to 200 nm without any cracks, make it a potential single buffer layer for coated conductor. In the present work, the processes of CeO{sub 2} film deposited by electrochemistry method are detailed investigated. A hydroxide reactive mechanism and an oxide reactive mechanism are distinguished for dimethyl sulfoxide and aqueous solution, respectively. Before heat treatment to achieve the required bi-axial texture performance of buffer layers, the precursor CeO{sub 2} films are identified in nanometer scales. The crack suppression for electrochemistry deposited CeO{sub 2} films is believed to be attributed to the nano-effects of the precursors.

  5. Applied Electromagnetics

    International Nuclear Information System (INIS)

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics

  6. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  7. Parameter estimation of an electrochemistry-based lithium-ion battery model

    Science.gov (United States)

    Masoudi, Ramin; Uchida, Thomas; McPhee, John

    2015-09-01

    Parameters for an electrochemistry-based Lithium-ion battery model are estimated using the homotopy optimization approach. A high-fidelity model of the battery is presented based on chemical and electrical phenomena. Equations expressing the conservation of species and charge for the solid and electrolyte phases are combined with the kinetics of the electrodes to obtain a system of differential-algebraic equations (DAEs) governing the dynamic behavior of the battery. The presence of algebraic constraints in the governing dynamic equations makes the optimization problem challenging: a simulation is performed in each iteration of the optimization procedure to evaluate the objective function, and the initial conditions must be updated to satisfy the constraints as the parameter values change. The ε-embedding method is employed to convert the original DAEs into a singularly perturbed system of ordinary differential equations, which are then used to simulate the system efficiently. The proposed numerical procedure demonstrates excellent performance in the estimation of parameters for the Lithium-ion battery model, compared to direct methods that are either unstable or incapable of converging. The obtained results and estimated parameters demonstrate the efficacy of the proposed simulation approach and homotopy optimization procedure.

  8. Direct electrochemistry and electrocatalysis of myoglobin immobilized on zirconia/multi-walled carbon nanotube nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Ruping; Deng, Minqiang; Cui, Sanguan; Chen, Hong [Department of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang 330031 (China); Qiu, Jianding, E-mail: jdqiu@ncu.edu.cn [Department of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang 330031 (China)

    2010-12-15

    Zirconia/multi-walled carbon nanotube (ZrO{sub 2}/MWCNT) nanocomposite was prepared by hydrothermal treatment of MWCNTs in ZrOCl{sub 2}.8H{sub 2}O aqueous solution. The morphology and structure of the synthesized ZrO{sub 2}/MWCNT nanocomposite were characterized by transmission electron microscopy and X-ray diffraction analysis. It was found that ZrO{sub 2} nanoparticles homogeneously distributed on the sidewall of MWCNTs. Myoglobin (Mb), as a model protein to investigate the nanocomposite, was immobilized on ZrO{sub 2}/MWCNT nanocomposite. Ultraviolet-visible spectroscopy and electrochemical measurements showed that the nanocomposite could retain the bioactivity of the immobilized Mb to a large extent. The Mb immobilized in the composite showed excellent direct electrochemistry and electrocatalytic activity to the reduction of hydrogen peroxide (H{sub 2}O{sub 2}). The linear response range of the biosensor to H{sub 2}O{sub 2} concentration was from 1.0 to 116.0 {mu}M with the limit of detection of 0.53 {mu}M (S/N = 3). The ZrO{sub 2}/MWCNT nanocomposite provided a good biocompatible matrix for protein immobilization and biosensors preparation.

  9. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized on L-glutathione self-assembled monolayers

    Institute of Scientific and Technical Information of China (English)

    Chuan Yin Liu; Ji Ming Hu

    2008-01-01

    A novel hydrogen peroxide biosensor has been fabricated based on covalently linked horseradish peroxidase (HRP) onto Lglutathione self-assembled monolayers (SAMs). The SAMs-based electrode was characterized by electrochemical methods, and direct electrochemistry of HRP can be achieved with formal potential of-0.242 V (vs. saturated Ag/AgCl) in pH7 phosphate buffer solution (PBS), the redox peak current is linear to scan rate and rate constant can be calculated to be 0.042 s-1. The HRP-SAMs-based biosensors show its better electrocatalysis to hydrogen peroxide in the concentration range of 1 × 10-6 mol/L to 1.2 × 10-3 mol/L with a detection limit of 4 × 10-7 mol/L. The apparent Michealis-Menten constant is 3.12 mmol/L. The biosensor can effectively eliminate the interferences of dopamine, ascorbic acid, uric acid, catechol and p-acetaminophen.

  10. Reduced Graphene Oxide Thin Film on Conductive Substrates by Bipolar Electrochemistry

    Science.gov (United States)

    Anis, Allagui; Mohammad, Ali Abdelkareem; Hussain, Alawadhi; Ahmed, S. Elwakil

    2016-01-01

    Recent years have shown an increased interest in developing manufacturing processes for graphene and its derivatives that consider the environmental impact and large scale cost-effectiveness. However, today’s most commonly used synthesis routes still suffer from their excessive use of harsh chemicals and/or the complexity and financial cost of the process. Furthermore, the subsequent transfer of the material onto a substrate makes the overall process even more intricate and time-consuming. Here we describe a single-step, single-cell preparation procedure of metal-supported reduced graphene oxide (rGO) using the principle of bipolar electrochemistry of graphite in deionized water. Under the effect of an electric field between two stainless steel feeder electrodes, grapheme layers at the anodic pole of the wireless graphite were oxidized into colloidal dispersion of GO, which migrated electrophoretically towards the anodic side of the cell, and deposited in the form of rGO (d(002) = 0.395 nm) by van der Waals forces. For substrates chemically more susceptible to the high anodic voltage, we show that the electrochemical setup can be adapted by placing the latter between the wireless graphite and the stainless steel feeder anode. This method is straightforward, inexpensive, environmentally-friendly, and could be easily scaled up for high yield and large area production of rGO thin films. PMID:26883173

  11. Water as a promoter and catalyst for dioxygen electrochemistry in aqueous and organic media.

    Energy Technology Data Exchange (ETDEWEB)

    Staszak-Jirkovsky, Jakub; Subbaraman, Ram; Strmcnik, Dusan; Harrison, Katherine L.; Diesendruck, Charles E.; Assary, Rajeev; Frank, Otakar; Kobr, Lukas; Wiberg, Gustav K.H; Genorio, Bostjan; Connell, Justin G.; Lopes, Pietro P.; Stamenkovic, Vojislav R.; Curtiss, Larry; Moore, Jeffrey S.; Zavadil, Kevin R.; Markovic, Nenad M.

    2015-11-01

    Water and oxygen electrochemistry lies at the heart of interfacial processes controlling energy transformations in fuel cells, electrolyzers, and batteries. Here, by comparing results for the ORR obtained in alkaline aqueous media to those obtained in ultradry organic electrolytes with known amounts of H2O added intentionally, we propose a new rationale in which water itself plays an important role in determining the reaction kinetics. This effect derives from the formation of HOad center dot center dot center dot H2O (aqueous solutions) and LiO2 center dot center dot center dot H2O (organic solvents) complexes that place water in a configurationally favorable position for proton transfer to weakly adsorbed intermediates. We also find that, even at low concentrations (<10 ppm), water acts simultaneously as a promoter and as a catalyst in the production of Li2O2, regenerating itself through a sequence of steps that include the formation and recombination of H+ and OH-. We conclude that, although the binding energy between metal surfaces and oxygen intermediates is an important descriptor in electrocatalysis, understanding the role of water as a proton-donor reactant may explain many anomalous features in electrocatalysis at metal-liquid interfaces.

  12. Detailed H2 and CO Electrochemistry for a MEA Model Fueled by Syngas

    KAUST Repository

    Lee, W. Y.

    2015-07-17

    © The Electrochemical Society. SOFCs can directly oxidize CO in addition to H2, which allows them to be coupled to a gasifier. Many membrane-electrode-assembly (MEA) models neglect CO electrochemistry due to sluggish kinetics and the water-gas-shift reaction, but CO oxidation may be important for high CO-content syngas. The 1D-MEA model presented here incorporates detailed mechanisms for both H2 and CO oxidation, individually fitted to experimental data. These mechanisms are then combined into a single model, which provides a good fit to experimental data for H2/CO mixtures. Furthermore, the model fits H2/CO data best when a single chargetransfer step in the H2 mechanism is assumed to be rate-limiting for all current densities. This differs from the result for H2/H2O mixtures, where H2 adsorption becomes rate-limiting at high current densities. These results indicate that CO oxidation cannot be neglected in MEA models running on CO-rich syngas, and that CO oxidation can alter the H2 oxidation mechanism.

  13. Direct electrochemistry of hemoglobin entrapped in dextran film on carbon ionic liquid electrode

    Indian Academy of Sciences (India)

    Xiaoqing Li; Yan Wang; Xiaoying Sun; Tianrong Zhan; Wei Sun

    2010-03-01

    Direct electrochemistry of hemoglobin (Hb) entrapped in the dextran (De) film on the surface of a room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) modified carbon paste electrode (CILE) has been investigated. UV-Vis and FT-IR spectroscopy showed that Hb retained its native structure in the De film. Scanning electron microscopy (SEM) indicated an uniform film was formed on the electrode surface. Cyclic voltammetric experiments indicated that the electron transfer efficiency between Hb and the electrode was greatly improved due to the presence of the De film and ionic liquid, which provided a biocompatible and higher conductive interface. A pair of well-defined and quasi-reversible redox peak was obtained with the anodic and cathodic peaks located at -0.195 V and -0.355 V in pH 7.0 phosphate buffer solution, respectively. The electrochemical parameters were calculated by investigating the relationship of the peak potential with the scan rate. The fabricated De/Hb/CILE showed good electrocatalytic ability to the reduction of H2O2 with the linear concentration range from 4.0 × 10-6 to 1.5 × 10-5 mol/L and the apparent Michaelis-Menten constant ($K_{M}^{\\text{app}}$) for the electrocatalytic reaction was calculated as 0.17 M.

  14. Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Xinhuang; Wang, Jun; Wu, Hong; Aksay, Ilhan A.; Liu, Jun; Lin, Yuehe

    2009-11-01

    Direct electrochemistry of a glucose oxidase (GOD)/graphene/chitosan nanocomposite was studied. The immobilized enzyme retains its bioactivity, exhibits a surface confined, reversible two-proton and two-electron transfer reaction, and has good stability, activity and a fast heterogeneous electron transfer rate with the rate constant (ks) of 2.83 s-1. A much higher enzyme loading (1.12 × 10-9 mol/cm2) is obtained as compared to the bare glass carbon surface. This GOD/graphene/chitosan nanocomposite film can be used for sensitive detection of glucose. The biosensor exhibits a wider linearity range from 0.08 mM to 12 mM glucose with a detection limit of 0.02 mM and much higher sensitivity (37.93 μA mM-1 cm-2) as compared with other nanostructured supports. The excellent performance of the biosensor is attributed to large surface-to-volume ratio and high conductivity of graphene, and good biocompatibility of chitosan, which enhances the enzyme absorption and promotes direct electron transfer between redox enzymes and the surface of electrodes.

  15. Metallic nanoparticles deposited on carbon microspheres: novel materials for combinatorial electrochemistry and electroanalysis.

    Science.gov (United States)

    Baron, Ronan; Wildgoose, Gregory G; Compton, Richard G

    2009-04-01

    This review deals with the preparation of metallic nanoparticles on glassy carbon microspheres and the use of these new hybrid materials for combinatorial electrochemistry and electroanalysis. First, the preparation of gold, silver and palladium nanoparticles on glassy carbon microspheres by a simple electroless procedure is described. Then, different types of electrodes modified with glassy carbon microspheres are described. These are: (i) glassy carbon electrodes modified by a composite film of glassy carbon microspheres and multi-walled carbon nanotubes, (ii) basal plane pyrolylic graphite electrodes modified by the abrasive attachment of glassy carbon microspheres and (iii) carbon-epoxy composite electrodes loaded with glassy carbon microspheres. The three types of electrode architectures described consist of metallic nanoparticles embedded in a carbon matrix and each of the electrode macrodisc surfaces actually correspond to a random metallic nanoelectrode array. Carbon-epoxy composite electrodes have good characteristics for their use as practical sensors. Furthermore, the use of several kinds of metallic nanoparticles allows the construction of a multi-analyte electrode and the screening of electroactive materials by following a combinatorial approach.

  16. Electrochemistry of surface wired cytochrome c and bioelectrocatalytic sensing of superoxide

    Indian Academy of Sciences (India)

    Susmita Behera; Ramendra Sundar Dey; Manas Kumar Rana; C Retna Raj

    2013-03-01

    Electrochemistry of cytochrome c (Cyt-c) wired on an electrode modified with the self-assemblies of 4,4'-dithio-dibutyric acid (DTB) and 2-pyrazineethane thiol (PET) by covalent and electrostatic binding and the amperometric sensing of superoxide (O$^{−}_{2}$) are described. Cyt-c wired on the mixed self-assembly of DTB and PET displays well-defined voltammetric response at 0.025V with a peak-to-peak separation ( ) of 5mV. Pyrazine unit in the mixed self-assembly promotes the electron transfer in the redox reaction of surface wired Cyt-c. Cyt-c wired on the mixed self-assembly has been used for the amperometric sensing of superoxide. The enzymatically generated superoxide has been successfully detected using the Cyt-c wired electrode. High sensitivity and fast response for superoxide have been achieved. Uric acid does not interfere in the amperometric measurement of superoxide. The interference due to H2O2 has been eliminated by using enzyme catalase.

  17. Reduced Graphene Oxide Thin Film on Conductive Substrates by Bipolar Electrochemistry

    Science.gov (United States)

    Anis, Allagui; Mohammad, Ali Abdelkareem; Hussain, Alawadhi; Ahmed, S. Elwakil

    2016-02-01

    Recent years have shown an increased interest in developing manufacturing processes for graphene and its derivatives that consider the environmental impact and large scale cost-effectiveness. However, today’s most commonly used synthesis routes still suffer from their excessive use of harsh chemicals and/or the complexity and financial cost of the process. Furthermore, the subsequent transfer of the material onto a substrate makes the overall process even more intricate and time-consuming. Here we describe a single-step, single-cell preparation procedure of metal-supported reduced graphene oxide (rGO) using the principle of bipolar electrochemistry of graphite in deionized water. Under the effect of an electric field between two stainless steel feeder electrodes, grapheme layers at the anodic pole of the wireless graphite were oxidized into colloidal dispersion of GO, which migrated electrophoretically towards the anodic side of the cell, and deposited in the form of rGO (d(002) = 0.395 nm) by van der Waals forces. For substrates chemically more susceptible to the high anodic voltage, we show that the electrochemical setup can be adapted by placing the latter between the wireless graphite and the stainless steel feeder anode. This method is straightforward, inexpensive, environmentally-friendly, and could be easily scaled up for high yield and large area production of rGO thin films.

  18. Applied mathematics

    CERN Document Server

    Logan, J David

    2013-01-01

    Praise for the Third Edition"Future mathematicians, scientists, and engineers should find the book to be an excellent introductory text for coursework or self-study as well as worth its shelf space for reference." -MAA Reviews Applied Mathematics, Fourth Edition is a thoroughly updated and revised edition on the applications of modeling and analyzing natural, social, and technological processes. The book covers a wide range of key topics in mathematical methods and modeling and highlights the connections between mathematics and the applied and nat

  19. Applied dynamics

    CERN Document Server

    Schiehlen, Werner

    2014-01-01

    Applied Dynamics is an important branch of engineering mechanics widely applied to mechanical and automotive engineering, aerospace and biomechanics as well as control engineering and mechatronics. The computational methods presented are based on common fundamentals. For this purpose analytical mechanics turns out to be very useful where D’Alembert’s principle in the Lagrangian formulation proves to be most efficient. The method of multibody systems, finite element systems and continuous systems are treated consistently. Thus, students get a much better understanding of dynamical phenomena, and engineers in design and development departments using computer codes may check the results more easily by choosing models of different complexity for vibration and stress analysis.

  20. Applied optics

    International Nuclear Information System (INIS)

    The 1988 progress report, of the Applied Optics laboratory, of the (Polytechnic School, France), is presented. The optical fiber activities are focused on the development of an optical gyrometer, containing a resonance cavity. The following domains are included, in the research program: the infrared laser physics, the laser sources, the semiconductor physics, the multiple-photon ionization and the nonlinear optics. Investigations on the biomedical, the biological and biophysical domains are carried out. The published papers and the congress communications are listed

  1. Direct electrochemistry and intramolecular electron transfer of ascorbate oxidase confined on L-cysteine self-assembled gold electrode.

    Science.gov (United States)

    Patil, Bhushan; Kobayashi, Yoshiki; Fujikawa, Shigenori; Okajima, Takeyoshi; Mao, Lanqun; Ohsaka, Takeo

    2014-02-01

    A direct electrochemistry and intramolecular electron transfer of multicopper oxidases are of a great importance for the fabrication of these enzyme-based bioelectrochemical-devices. Ascorbate oxidase from Acremonium sp. (ASOM) has been successfully immobilized via a chemisorptive interaction on the l-cysteine self-assembled monolayer modified gold electrode (cys-SAM/AuE). Thermodynamics and kinetics of adsorption of ASOM on the cys-SAM/AuE were studied using cyclic voltammetry. A well-defined redox wave centered at 166±3mV (vs. Ag│AgCl│KCl(sat.)) was observed in 5.0mM phosphate buffer solution (pH7.0) at the fabricated ASOM electrode, abbreviated as ASOM/cys-SAM/AuE, confirming a direct electrochemistry, i.e., a direct electron transfer (DET) between ASOM and cys-SAM/AuE. The direct electrochemistry of ASOM was further confirmed by taking into account the chemical oxidation of ascorbic acid (AA) by O2 via an intramolecular electron transfer in the ASOM as well as the electrocatalytic oxidation of AA at the ASOM/cys-SAM/AuE. Thermodynamics and kinetics of the adsorption of ASOM on the cys-SAM/AuE have been elaborated along with its direct electron transfer at the modified electrodes on the basis of its intramolecular electron transfer and electrocatalytic activity towards ascorbic acid oxidation and O2 reduction. ASOM saturated surface area was obtained as 2.41×10(-11)molcm(-2) with the apparent adsorption coefficient of 1.63×10(6)Lmol(-1). The ASOM confined on the cys-SAM/AuE possesses its essential enzymatic function. PMID:24189123

  2. Direct electrochemistry and electrocatalysis of hemoglobin in graphene oxide and ionic liquid composite film

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei, E-mail: swyy26@hotmail.com [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Gong, Shixing [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Shi, Fan [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Cao, Lili; Ling, Luyang [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Zheng, Weizhe; Wang, Wencheng [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China)

    2014-07-01

    In this paper a novel sensing platform based on graphene oxide (GO), ionic liquid (IL) 1-ethyl-3-methylimidazolium tetrafluoroborate and Nafion for the immobilization of hemoglobin (Hb) was adopted with a carbon ionic liquid electrode (CILE) as the substrate electrode, which was denoted as Nafion/Hb–GO–IL/CILE. Spectroscopic results suggested that Hb molecules were not denatured in the composite. A pair of well-defined redox peaks appeared on the cyclic voltammogram, which was attributed to the realization of direct electron transfer of Hb on the electrode. Electrochemical behaviors of Hb entrapped in the film were carefully investigated by cyclic voltammetry with the electrochemical parameters calculated. Based on the catalytic ability of the immobilized Hb, Nafion/Hb–GO–IL/CILE exhibited excellent electrocatalytic behavior towards the reduction of different substrates such as trichloroacetic acid in the concentration range from 0.01 to 40.0 mM with the detection limit as 3.12 μM (3σ), H{sub 2}O{sub 2} in the concentration range from 0.08 to 635.0 μM with the detection limit as 0.0137 μM (3σ) and NaNO{sub 2} in the concentration range from 0.5 to 800.0 μM with the detection limit as 0.0104 μM (3σ). So the proposed bioelectrode could be served as a new third-generation electrochemical sensor without mediator. - Highlights: • A graphene oxide, 1-ethyl-3-methylimidazolium tetrafluoroborate and hemoglobin composite were prepared. • Composite modified carbon ionic liquid electrode was fabricated. • Direct electrochemistry of hemoglobin was realized on the modified electrode. • Bioelectrocatalytic reduction of the modified electrode to different substrates was studied.

  3. Recent Advances in Modeling Transition Metal Oxides for Photo-electrochemistry

    Science.gov (United States)

    Caspary Toroker, Maytal

    Computational research offers a wide range of opportunities for materials science and engineering, especially in the energy arena where there is a need for understanding how material composition and structure control energy conversion, and for designing materials that could improve conversion efficiency. Potential inexpensive materials for energy conversion devices are metal oxides. However, their conversion efficiency is limited by at least one of several factors: a too large band gap for efficiently absorbing solar energy, similar conduction and valence band edge characters that may lead to unfavorably high electron-hole recombination rates, a valence band edge that is not positioned well for oxidizing water, low stability, low electronic conductivity, and low surface reactivity. I will show how we model metal oxides with ab-initio methods, primarily DFT +U. Our previous results show that doping with lithium, sodium, or hydrogen could improve iron (II) oxide's electronic properties, and alloying with zinc or nickel could improve iron (II) oxide's optical properties. Furthermore, doping nickel (II) oxide with lithium could improve several key properties including solar energy absorption. In this talk I will highlight new results on our understanding of the mechanism of iron (III) oxide's surface reactivity. Our theoretical insights bring us a step closer towards understanding how to design better materials for photo-electrochemistry. References: 1. O. Neufeld and M. Caspary Toroker, ``Pt-doped Fe2O3 for enhanced water splitting efficiency: a DFT +U study'', J. Phys. Chem. C 119, 5836 (2015). 2. M. Caspary Toroker, ``Theoretical Insights into the Mechanism of Water Oxidation on Non-stoichiometric and Ti - doped Fe2O3 (0001)'', J. Phys. Chem. C, 118, 23162 (2014). This research was supported by the Morantz Energy Research Fund, the Nancy and Stephen Grand Technion Energy Program, the I-CORE Program of the Planning and Budgeting Committee, and The Israel Science

  4. Direct electrochemistry and electrocatalysis of hemoglobin in graphene oxide and ionic liquid composite film

    International Nuclear Information System (INIS)

    In this paper a novel sensing platform based on graphene oxide (GO), ionic liquid (IL) 1-ethyl-3-methylimidazolium tetrafluoroborate and Nafion for the immobilization of hemoglobin (Hb) was adopted with a carbon ionic liquid electrode (CILE) as the substrate electrode, which was denoted as Nafion/Hb–GO–IL/CILE. Spectroscopic results suggested that Hb molecules were not denatured in the composite. A pair of well-defined redox peaks appeared on the cyclic voltammogram, which was attributed to the realization of direct electron transfer of Hb on the electrode. Electrochemical behaviors of Hb entrapped in the film were carefully investigated by cyclic voltammetry with the electrochemical parameters calculated. Based on the catalytic ability of the immobilized Hb, Nafion/Hb–GO–IL/CILE exhibited excellent electrocatalytic behavior towards the reduction of different substrates such as trichloroacetic acid in the concentration range from 0.01 to 40.0 mM with the detection limit as 3.12 μM (3σ), H2O2 in the concentration range from 0.08 to 635.0 μM with the detection limit as 0.0137 μM (3σ) and NaNO2 in the concentration range from 0.5 to 800.0 μM with the detection limit as 0.0104 μM (3σ). So the proposed bioelectrode could be served as a new third-generation electrochemical sensor without mediator. - Highlights: • A graphene oxide, 1-ethyl-3-methylimidazolium tetrafluoroborate and hemoglobin composite were prepared. • Composite modified carbon ionic liquid electrode was fabricated. • Direct electrochemistry of hemoglobin was realized on the modified electrode. • Bioelectrocatalytic reduction of the modified electrode to different substrates was studied

  5. Semiconductor electrochemistry of coal pyrite. Final technical report, September 1990--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Osseo-Asare, K.; Wei, Dawei

    1996-01-01

    This project seeks to advance the fundamental understanding of the physico-chemical processes occurring at the pyrite/aqueous interface, in the context of coal cleaning, coal desulfurization, and acid mine drainage. Central to this research is the use of synthetic microsize particles of pyrite as model microelectrodes to investigate the semiconductor electrochemistry of pyrite. The research focuses on: (a) the synthesis of microsize particles of pyrite in aqueous solution at room temperature, (b) the formation of iron sulfide complex, the precursor of FeS or FeS{sub 2}, and (c) the relationship between the semiconductor properties of pyrite and its interfacial electrochemical behavior in the dissolution process. In Chapter 2, 3 and 4, a suitable protocol for preparing microsize particles of pyrite in aqueous solution is given, and the essential roles of the precursors elemental sulfur and ``FeS`` in pyrite formation are investigated. In Chapter 5, the formation of iron sulfide complex prior to the precipitation of FeS or FeS{sub 2} is investigated using a fast kinetics technique based on a stopped-flow spectrophotometer. The stoichiometry of the iron sulfide complex is determined, and the rate and formation constants are also evaluated. Chapter 6 provides a summary of the semiconductor properties of pyrite relevant to the present study. In Chapters 7 and 8, the effects of the semiconductor properties on pyrite dissolution are investigated experimentally and the mechanism of pyrite dissolution in acidic aqueous solution is examined. Finally, a summary of the conclusions from this study and suggestions for future research are presented in Chapter 9.

  6. Endogenous minerals have influences on surface electrochemistry and ion exchange properties of biochar.

    Science.gov (United States)

    Zhao, Ling; Cao, Xinde; Zheng, Wei; Wang, Qun; Yang, Fan

    2015-10-01

    The feedstocks for biochar production are diverse and many of them contain various minerals in addition to being rich in carbon. Twelve types of biomass classified into 2 categories: plant-based and municipal waste, were employed to produce biochars under 350 °C and 500 °C. Their pH, point of zero net charge (PZNC), zeta potential, cation and anion exchange capacity (CEC and AEC) were analyzed. The municipal waste-based biochars (MW-BC) had higher mineral levels than the plant-based biochars (PB-BC). However, the water soluble mineral levels were lower in the MW-BCs due to the dominant presence of less soluble minerals, such as CaCO3 and (Ca,Mg)3(PO4)2. The higher total minerals in MW-BCs accounted for the higher PZNC (5.47-9.95) than in PB-BCs (1.91-8.18), though the PZNCs of the PB-BCs increased more than that of the MW-BCs as the production temperature rose. The minerals had influence on the zeta potentials via affecting the negative charges of biochars and the ionic strength of solution. The organic functional groups in PB-BCs such as -COOH and -OH had a greater effect on the CEC and AEC, while the minerals had a greater effect on that of MW-BCs. The measured CEC and AEC values had a strong positive correlation with the total amount of soluble cations and anions, respectively. Results indicated that biochar surface charges depend not only on the organic functional groups, but also on the minerals present and to some extent, minerals have more influences on the surface electrochemistry and ion exchange properties of biochar. PMID:25974107

  7. Applied mathematics

    International Nuclear Information System (INIS)

    The 1988 progress report of the Applied Mathematics center (Polytechnic School, France), is presented. The research fields of the Center are the scientific calculus, the probabilities and statistics and the video image synthesis. The research topics developed are: the analysis of numerical methods, the mathematical analysis of the physics and mechanics fundamental models, the numerical solution of complex models related to the industrial problems, the stochastic calculus and the brownian movement, the stochastic partial differential equations, the identification of the adaptive filtering parameters, the discrete element systems, statistics, the stochastic control and the development, the image synthesis techniques for education and research programs. The published papers, the congress communications and the thesis are listed

  8. Applied geodesy

    International Nuclear Information System (INIS)

    This volume is based on the proceedings of the CERN Accelerator School's course on Applied Geodesy for Particle Accelerators held in April 1986. The purpose was to record and disseminate the knowledge gained in recent years on the geodesy of accelerators and other large systems. The latest methods for positioning equipment to sub-millimetric accuracy in deep underground tunnels several tens of kilometers long are described, as well as such sophisticated techniques as the Navstar Global Positioning System and the Terrameter. Automation of better known instruments such as the gyroscope and Distinvar is also treated along with the highly evolved treatment of components in a modern accelerator. Use of the methods described can be of great benefit in many areas of research and industrial geodesy such as surveying, nautical and aeronautical engineering, astronomical radio-interferometry, metrology of large components, deformation studies, etc

  9. Conceptual difficulties experienced by senior high school students of electrochemistry: Electric circuits and oxidation-reduction equations

    Science.gov (United States)

    Garnett, Pamela J.; Treagust, David F.

    The purpose of this research was to investigate students' understanding of electrochemistry following a course of instruction. A list of conceptual and propositional knowledge statements was formulated to identify the knowledge base necessary for students to understand electric circuits and oxidation-reduction equations. The conceptual and propositional knowledge statements provided the framework for the development of a semistructured interview protocol which was administered to 32 students in their final year of high school chemistry. The interview questions about electric circuits revealed that several students in the sample were confused about the nature of electric current both in metallic conductors and in electrolytes. Students studying both physics and chemistry were more confused about current flow in metallic conductors than students who were only studying chemistry. In the section of the interview which focused on oxidation and reduction, many students experienced problems in identifying oxidation-reduction equations. Several misconceptions relating to the inappropriate use of definitions of oxidation and reduction were identified. The data illustrate how students attempted to make sense of the concepts of electrochemistry with the knowledge they had already developed or constructed. The implications of the research are that teachers, curriculum developers, and textbook writers, if they are to minimize potential misconceptions, need to be cognizant of the relationship between physics and chemistry teaching, of the need to test for erroneous preconceptions about current before teaching about electrochemical (galvanic) and electrolytic cells, and of the difficulties experienced by students when using more than one model to explain scientific phenomena.

  10. The direct electrochemistry of glucose oxidase based on the synergic effect of amino acid ionic liquid and carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    WANG MengDong; DENG ChunYan; NIE Zhou; XU XiaHong; YAO ShouZhuo

    2009-01-01

    Amino acid ionic liquids (AAILs) have attracted much attention due to their special chemical and physical properties,especially their outstanding biocompatibility and truly green aspect.In this work,a novel electrochemical biosensing platform based on AAILs/carbon nanotubes (CNTs) composite was fabricated.AAILs were used as a novel solvent for glucose oxidase (GOD) and the GOD-AAILs/CNTs/GC electrode was conveniently prepared by immersing the carbon nanotubes (CNTs) modified glassy carbon (GC) electrode into AAILs containing GOD.The direct electrochemistry of GOD on the GOD-AAILs/CNTs/GC electrode has been investigated and a pair of reversible peaks was obtained by cyclic voltammetry.The immobilized glucose oxidase could retain bioactivity and catalyze the reduction of dissolved oxygen.Due to the synergic effect of AAILs and CNTs,the GOD-AAILs/CNTs/GC electrode shows excellent electrocatalytic activity towards glucose with a linear range from 0.05 to 0.8 mM and a detection limit of 5.5 μM (S/N=3).Furthermore,the biosensor exhibits good stability and ability to exclude the interference of commonly coexisting uric and ascorbic acid.Therefore,AAILs/CNTs composite can be a good candidate biocompatible material for the direct electrochemistry of the redox-active enzyme and the construction of third-generation enzyme sensors.

  11. Immobilization of horseradish peroxidase on self-assembled (3-mercaptopropyl)trimethoxysilane film: Characterization, direct electrochemistry, redox thermodynamics and biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Wu Fanghua [Department of Chemistry, East China Normal University, Shanghai 200062 (China); Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials (Huaiyin Teachers College), Huaian 223300 (China); Hu Zhichao; Xu Jingjing [Department of Chemistry, East China Normal University, Shanghai 200062 (China); Tian Yuan [Department of Chemistry, East China Normal University, Shanghai 200062 (China); Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials (Huaiyin Teachers College), Huaian 223300 (China); Wang Liwei [Department of Chemistry, East China Normal University, Shanghai 200062 (China); Xian Yuezhong [Department of Chemistry, East China Normal University, Shanghai 200062 (China); Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials (Huaiyin Teachers College), Huaian 223300 (China)], E-mail: yzxian@chem.ecnu.edu.cn; Jin Litong [Department of Chemistry, East China Normal University, Shanghai 200062 (China)], E-mail: ltjin@chem.ecnu.edu.cn

    2008-11-30

    Highly organized (3-mercaptopropyl)trimethoxysilane (3-MPT) films have been prepared via self-assembled coupled with sol-gel linking technology. Horseradish peroxidase (HRP) is successfully immobilized onto the densely packed three-dimensional (3D) 3-MPT network and the direct electrochemistry of HRP is achieved without any electron mediators or promoters. Redox thermodynamics of HRP on the 3-MPT films, which is obtained from the temperature dependence of the reduction potential, suggests that the positive shift of redox potentials of HRP at the interface of 3-MPT originates from the solvent reorganization effects and conformational change of the polypeptide chain of HRP. Based on the direct electrochemistry and electrocatalytic ability of HRP, a sensitive third-generation amperometric H{sub 2}O{sub 2} biosensor is developed with two linear dependence ranges of 5.0 x 10{sup -7} to 1.0 x 10{sup -4} and 1.0 x 10{sup -4} to 2.0 x 10{sup -2} mol L{sup -1}.

  12. The direct electrochemistry of glucose oxidase based on the synergic effect of amino acid ionic liquid and carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Amino acid ionic liquids(AAILs) have attracted much attention due to their special chemical and physical properties,especially their outstanding biocompatibility and truly green aspect.In this work,a novel electrochemical biosensing platform based on AAILs/carbon nanotubes(CNTs) composite was fabricated.AAILs were used as a novel solvent for glucose oxidase(GOD) and the GOD-AAILs/CNTs/GC electrode was conveniently prepared by immersing the carbon nanotubes(CNTs) modified glassy carbon(GC) electrode into AAILs containing GOD.The direct electrochemistry of GOD on the GOD-AAILs/CNTs/GC electrode has been investigated and a pair of reversible peaks was obtained by cyclic voltammetry.The immobilized glucose oxidase could retain bioactivity and catalyze the reduction of dissolved oxygen.Due to the synergic effect of AAILs and CNTs,the GOD-AAILs/CNTs/GC electrode shows excellent electrocatalytic activity towards glucose with a linear range from 0.05 to 0.8 mM and a detection limit of 5.5 μM(S/N = 3).Furthermore,the biosensor exhibits good stability and ability to exclude the interference of commonly coexisting uric and ascorbic acid.Therefore,AAILs/CNTs composite can be a good candidate biocompatible material for the direct electrochemistry of the redox-active enzyme and the construction of third-generation enzyme sensors.

  13. Understanding the mechanism of direct electrochemistry of mitochondria-modified electrodes from yeast, potato and bovine sources at carbon paper electrodes

    International Nuclear Information System (INIS)

    Although mitochondria have been used for bio-electrochemistry for over 5 years, little is known about their direct electrochemistry mechanism. This paper focuses on developing a better understanding of the electron transfer mechanism of mitochondria from three different organisms at carbon electrodes. Yeast, potato and bovine mitochondria have been successfully isolated and immobilized onto Toray paper electrodes via vapor deposited silica. Organelle-modified electrodes were first characterized using cyclic voltammetry. Similar electrochemical signals were obtained for all organisms. Direct electron transfer was observed when a metabolite of the Krebs cycle was present in the buffer solution. Control experiments based on the immobilization of two electron carriers contained in mitochondria, cytochrome c and a quinone (coenzyme Q10), tend to show the electron transfer mechanism to the carbon material comes from the quinone pool of the organelles. As quinones are known to be pH-dependent, we further investigated the response of the electrochemical signal of the three isolated mitochondria and the two electron carriers separately. The half wave potentials obtained from the organelles appeared to be pH-dependent and their variations are comparable to coenzyme Q10 rather than cytochrome c. Finally, extraction of both the cytochrome c and the quinone pool from intact mitochondria was performed to validate our hypothesis that direct electrochemistry of mitochondria happens via the quinone pool. Electrochemistry of immobilized quinone-depleted mitochondria validated the hypothesis that the mitochondria are communicating with the electrodes through the quinone pool

  14. Conceptual Difficulties Experienced by Prospective Teachers in Electrochemistry: Half-Cell Potential, Cell Potential, and Chemical and Electrochemical Equilibrium in Galvanic Cells.

    Science.gov (United States)

    Ozkaya, Ali Riza

    2002-01-01

    A previous study of prospective teachers found that students from different countries and different levels of electrochemistry hold common misconceptions, indicating that concepts were presented to them poorly. Reports on how prospective teachers' scientifically incorrect ideas were used to form assertion-reason-type questions and how these…

  15. Nickel-free manganese bearing stainless steel in alkaline media-Electrochemistry and surface chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Elsener, B., E-mail: belsener@unica.i [Dipartimento di Chimica Inorganica ed Analitica, Universita di Cagliari, SS 554 bivio per Sestu, I-09042 Monserrato (Italy); ETH Zurich, Institute for Building Materials, ETH Hoenggerberg, CH-8093 Zurich (Switzerland); Addari, D. [Dipartimento di Chimica Inorganica ed Analitica, Universita di Cagliari, SS 554 bivio per Sestu, I-09042 Monserrato (Italy); Coray, S. [ETH Zurich, Institute for Building Materials, ETH Hoenggerberg, CH-8093 Zurich (Switzerland); Rossi, A., E-mail: rossi@unica.i [Dipartimento di Chimica Inorganica ed Analitica, Universita di Cagliari, SS 554 bivio per Sestu, I-09042 Monserrato (Italy)

    2011-04-30

    Research highlights: {yields} New nickel-free manganese bearing 18Cr18Mn2Mo stainless steel in alkaline media. {yields} XPS analysis shows Mo(VI) enrichment up to 6% in the passive film upon ageing. {yields} No pitting corrosion in alkaline media (pH 13) up to 4 M NaCl (14 wt%). {yields} Promising alternative stainless steel for reinforcement in concrete. - Abstract: The use of austenitic nickel-containing stainless steels as concrete reinforcement offers excellent corrosion protection for concrete structures in harsh chloride bearing environments but is often limited due to the very high costs of these materials. Manganese bearing nickel-free stainless steels can be a cost-effective alternative for corrosion resistant reinforcements. Little, however, is known about the electrochemistry and even less on surface chemistry of these materials in alkaline media simulating concrete pore solutions. In this work a combined electrochemical (ocp = open circuit potential) and XPS (X-ray photoelectron spectroscopy) surface analytical investigation on the austenitic manganese bearing DIN 1.4456 (X8CrMnMoN18-18-2) stainless steel immersed into 0.1 M NaOH and more complex alkaline concrete pore solutions was performed. The results show that the passive film composition changes with immersion time, being progressively enriched in chromium oxy-hydroxide becoming similar to the conventional nickel-containing stainless steels. The composition of the metal interface beneath the passive film is strongly depleted in manganese and enriched in iron; chromium has nearly the nominal composition. The results are discussed regarding the film growth mechanism (ageing) of the new nickel-free stainless steel in alkaline solutions compared to traditional austenitic steels. Combining the results from pitting potential measurements with the composition of the passive film and the underlying metal interface, it can be concluded that the resistance against localized corrosion of the new nickel

  16. Core-perfluoroalkylated perylene diimides and naphthalene diimides: versatile synthesis, solubility, electrochemistry, and optical properties.

    Science.gov (United States)

    Yuan, Zhongyi; Li, Jing; Xiao, Yi; Li, Zheng; Qian, Xuhong

    2010-05-01

    By a strategy featuring perfluoroalkylation of the highly soluble intermediates and their further efficient transformations to target compounds, a versatile synthesis of core-perfluoroalkylated perylene diimides (PDIs) and naphthalene diimides (NDIs) was developed, and PDIs perfluoroalkylated at 1-position or 1,6-positions and core-perfluoroalkylated NDIs were first obtained. By esterification, perfluoroalkylation, hydrolysis, and condensation with amine, 1-perfluorooctyl-PDIs (7b, 7c, and 7e), 1,7-bis(perfluorooctyl)-PDIs (8a-c and 8e-g), 1,6-bis(perfluorooctyl)-PDIs (8'e), a mixture of 1,7-bis(trifluoromethyl)-PDIs and 1,6-bis(trifluoromethyl)-PDIs (11b and 11'b, 11d and 11'd, in a ratio of 19:1), 2-perfluorooctyl-NDIs (20a-d), and 2,6-bis(perfluorooctyl)-NDIs (21a-21d) were efficiently synthesized. Five valuable intermediates--1-perfluorooctylperylene dianhydride (5), 1,7-bis(perfluorooctyl)perylene dianhydride (6) 1,6-bis(perfluorooctyl)perylene dianhydride (6'), 2-perfluorooctylnaphthalene dianhydride (18), and 2,6-bis(perfluorooctyl) naphthalene dianhydride (19)--were also obtained, and they can condense with many amines to produce PDIs containing different functional side chains on the imide nitrogen atoms. Solubility, electrochemistry, and optical properties of the above core-perfluoroalkylated PDIs and NDIs were investigated. Core-perfluoroalkylated 8e, 8f, 8'e, mixture of 11d and 11'd, 20b, and 20d with excellent solubility in common organic solvents are competitive as candidates as solution processable semiconductors. Core-perfluoroalkylated PDIs and NDIs with experimental LUMO energy of 4.04-4.34 eV demonstrate strong electron accepting ability. For core-perfluoroalkylated PDIs, the maximum absorptions display blue shifts of 6-18 nm and the maximum molar extinction coefficients decrease obviously relative to those of unsubstituted PDIs, and they inherit the strong fluorescence from the PDIs family, which makes them promising fluorescent dyes. PMID

  17. Achieving direct electrochemistry of glucose oxidase by one step electrochemical reduction of graphene oxide and its use in glucose sensing.

    Science.gov (United States)

    Shamsipur, Mojtaba; Tabrizi, Mahmoud Amouzadeh

    2014-12-01

    In this paper, the direct electrochemistry of glucose oxidase (GOD) was accomplished at a glassy carbon electrode modified with electrochemically reduced graphene oxide/sodium dodecyl sulfate (GCE/ERGO/SDS). A pair of reversible peaks is exhibited on GCE/ERGO/SDS/GOD by cyclic voltammetry. The peak-to-peak potential separation of immobilized GOD is 28 mV in 0.1 M phosphate buffer solution (pH7.0) with a scan rate of 50 mV/s. The average surface coverage is 2.62×10(-10) mol cm(-2). The resulting biosensor exhibited a good response to glucose with linear range from 1 to 8 mM (R(2)=0.9878), good reproducibility and detection limit of 40.8 μM. The results from the biosensor were similar (±5%) to those obtained from the clinical analyzer. PMID:25491807

  18. Fast single run of vanilla fingerprint markers on microfluidic-electrochemistry chip for confirmation of common frauds.

    Science.gov (United States)

    Avila, Mónica; Zougagh, Mohammed; Escarpa, Alberto; Ríos, Angel

    2009-10-01

    A new strategy based on the fast separation of the fingerprint markers of Vanilla planifolia extracts and vanilla-related samples on microfluidic-electrochemistry chip is proposed. This methodology allowed the detection of all required markers for confirmation of common frauds in this field. The elution order was strategically connected with sequential sample screening and analyte confirmation steps, where first ethyl vanillin was detected to distinguish natural from adultered samples; second, vanillin as prominent marker in V. planifolia, but frequently added in its synthetic form; and third, the final detection of the fingerprint markers (p-hydroxybenzaldehyde, vanillic acid, and p-hydroxybenzoic acid) of V. planifolia with confirmation purposes. The reliability of the proposed methodology was demonstrated in the confirmation the natural or non-natural origin of vanilla in samples using V. planifolia extracts and other selected food samples containing this flavor.

  19. The relationship between redox enzyme activity and electrochemical potential-cellular and mechanistic implications from protein film electrochemistry.

    Science.gov (United States)

    Gates, Andrew J; Kemp, Gemma L; To, Chun Yip; Mann, James; Marritt, Sophie J; Mayes, Andrew G; Richardson, David J; Butt, Julea N

    2011-05-01

    In protein film electrochemistry a redox protein of interest is studied as an electroactive film adsorbed on an electrode surface. For redox enzymes this configuration allows quantification of the relationship between catalytic activity and electrochemical potential. Considered as a function of enzyme environment, i.e., pH, substrate concentration etc., the activity-potential relationship provides a fingerprint of activity unique to a given enzyme. Here we consider the nature of the activity-potential relationship in terms of both its cellular impact and its origin in the structure and catalytic mechanism of the enzyme. We propose that the activity-potential relationship of a redox enzyme is tuned to facilitate cellular function and highlight opportunities to test this hypothesis through computational, structural, biochemical and cellular studies. PMID:21423952

  20. Combined optical and electrochemical methods for studying electrochemistry at the single molecule and single particle level: recent progress and perspectives.

    Science.gov (United States)

    Hill, Caleb M; Clayton, Daniel A; Pan, Shanlin

    2013-12-28

    We present a review of recent efforts aimed at understanding interfacial charge transfer at the single molecule and single nanoparticle level using the combined methods of traditional electrochemistry and optical spectroscopy with high spatial, spectral, and temporal resolution. Elastic light scattering, surface enhanced Raman scattering (SERS), fluorescence, and electrogenerated chemiluminescence (ECL) techniques have been demonstrated to be powerful tools for the study of interfacial charge transfer events involving a single molecule or nanoparticle and for the characterization of nanostructured electrodes. It is shown that these optical methods enable the exploration of electrochemical events with improved temporal and spatial resolution which are usually obstructed by the ensemble averaging inherent in conventional electrochemical methods. In this report, the current status of the field is reviewed and challenges for future work are discussed. PMID:24196825

  1. Application of Carbon-Microsphere-Modified Electrodes for Electrochemistry of Hemoglobin and Electrocatalytic Sensing of Trichloroacetic Acid

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Wang

    2015-12-01

    Full Text Available By using the hydrothermal method, carbon microspheres (CMS were fabricated and used for electrode modification. The characteristics of CMS were investigated using various techniques. The biocompatible sensing platform was built by immobilizing hemoglobin (Hb on the micrometer-sized CMS-modified electrode with a layer of chitosan membrane. On the cyclic voltammogram, a couple of quasi-reversible cathodic and anodic peaks appeared, showing that direct electrochemistry of Hb with the working electrode was achieved. The catalytic reduction peak currents of the bioelectrode to trichloroacetic acid was established in the linear range of 2.0~70.0 mmol·L−1 accompanied by a detection limit of 0.30 mmol·L−1 (3σ. The modified electrode displayed favorable sensitivity, good reproducibility and stability, which suggests that CMS is promising for fabricating third-generation bioelectrochemical sensors.

  2. Guiding Principles of Hydrogenase Catalysis Instigated and Clarified by Protein Film Electrochemistry.

    Science.gov (United States)

    Armstrong, Fraser A; Evans, Rhiannon M; Hexter, Suzannah V; Murphy, Bonnie J; Roessler, Maxie M; Wulff, Philip

    2016-05-17

    Protein film electrochemistry (PFE) is providing cutting-edge insight into the chemical principles underpinning biological hydrogen. Attached to an electrode, many enzymes exhibit "reversible" electrocatalytic behavior, meaning that a catalyzed redox reaction appears reversible or quasi-reversible when viewed by cyclic voltammetry. This efficiency is most relevant for enzymes that are inspiring advances in renewable energy, such as hydrogen-activating and CO2-reducing enzymes. Exploiting the rich repertoire of available instrumental methods, PFE experiments yield both a general snapshot and fine detail, all from tiny samples of enzyme. The dynamic electrochemical investigations blaze new trails and add exquisite detail to the information gained from structural and spectroscopic studies. This Account describes recent investigations of hydrogenases carried out in Oxford, including ideas initiated with PFE and followed through with complementary techniques, all contributing to an eventual complete picture of fast and efficient H2 activation without Pt. By immobilization of an enzyme on an electrode, catalytic electron flow and the chemistry controlling it can be addressed at the touch of a button. The buried nature of the active site means that structures that have been determined by crystallography or spectroscopy are likely to be protected, retained, and fully relevant in a PFE experiment. An electrocatalysis model formulated for the PFE of immobilized enzymes predicts interesting behavior and gives insight into why some hydrogenases are H2 producers and others are H2 oxidizers. Immobilization also allows for easy addition and removal of inhibitors along with precise potential control, one interesting outcome being that formaldehyde forms a reversible complex with reduced [FeFe]-hydrogenases, thereby providing insight into the order of electron and proton transfers. Experiments on O2-tolerant [NiFe]-hydrogenases show that O2 behaves like a reversible inhibitor: it

  3. Experimental and theoretical study of possible correlation between the electrochemistry of canthin-6-one and the anti-proliferative activity against human cancer stem cells

    Science.gov (United States)

    Cebrián-Torrejón, G.; Doménech-Carbó, A.; Scotti, M. T.; Fournet, A.; Figadère, B.; Poupon, E.

    2015-12-01

    This work presents an approach to study the performance of novel targets able to overcome cancer stem cell chemoresistance, based on the voltammetric data for microparticulate films of natural or synthetic alkaloids from the canthin-6-one series. A comparison of this voltammetric technique with conventional solution phase electrochemistry suggests the differences in the anti-proliferative activity of canthin-6-ones could be tentatively correlated to their different capacity to generate semiquinone radical anions. These data also match theoretical calculations.

  4. Methodological evaluation of electrochemistry luminescent technique for HE4 detection%人附睾蛋白4检测试剂方法学评价

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

      目的通过对罗氏公司电化学发光法检测人附睾蛋白4(human epididymal protein 4,HE4)试剂的方法学评价。方法检测本方法的批内变异系数和批间变异系数、线性实验。比较本方法与酶联免疫法检测结果的相关性分析,评估此方法的可靠性。结果在检测范围内,该方法的线性良好,检测的批内变异系数分别为1.05%和1.83%,批间变异系数分别为2.63%和2.68%,与酶联免疫法试剂检测结果比较呈良好相关性(R2=0.9966)。结论本方法测定结果准确可靠,操作简便,值得推广使用。%Objective To evaluate the detection methodology of HE4 using electrochemistry luminescent technique (Roche Company). Methods The variation coefficients for within runs and between runs and linear experiment were detected with electrochemistry luminescent technique, and compared with those detected by ELASA. The reliability of electrochemistry luminescent technique was assessed. Results The electrochemistry luminescent technique had a good linearity in the detection range. The variation coefficient for within runs and between runs was 1.05 and 1.83, and 2.63%and 2.68%, respectively, which were well correlated with those detected by ELISA (R2=0.9966). Conclusion The electrochemistry luminescent technique is accurate, reliable, and easy to operate, and is thus worthy to be widely used in clinical practice.

  5. Direct electrochemistry and electrocatalysis of horseradish peroxidase with hyaluronic acid-ionic liquid-cadmium sulfide nanorod composite material

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Zhihong [Institute of Nano-Science and Technology Center, Huazhong Normal University, Wuhan 430079 (China); Li Xia; Wang Yan [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Zeng Yan [Institute of Nano-Science and Technology Center, Huazhong Normal University, Wuhan 430079 (China); Sun Wei, E-mail: sunwei@qust.edu.cn [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Huang Xintang [Institute of Nano-Science and Technology Center, Huazhong Normal University, Wuhan 430079 (China)

    2010-06-18

    A new composite material consisted of hyaluronic acid (HA), ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF{sub 4}) and cadmium sulfide (CdS) nanorod was fabricated and used for the immobilization of horseradish peroxidase (HRP) on the surface of a carbon ionic liquid electrode (CILE), which was prepared with 1-ethyl-3-methyl-imidazolium ethylsulphate ([EMIM]EtOSO{sub 3}) as modifier. Spectroscopic results indicated that HRP remained its native structure in the composite film. Based on the synergistic effect of the materials used, an obvious promotion to the direct electron transfer efficient between HRP and CILE was achieved with a pair of well-defined redox peaks appeared in 0.1 mol L{sup -1} phosphate buffer solution, indicating the realization of the direct electrochemistry of HRP. The immobilized HRP showed good electrocatalytic activity towards the reduction of trichloroacetic acid and H{sub 2}O{sub 2} with the electrochemical parameters calculated. Based on the fabricated electrode, a new third-generation electrochemical biosensor was constructed with good stability and reproducibility.

  6. Lack of nano size effect on electrochemistry of dopamine at a gold nanoparticle modified indium tin oxide electrode

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Nanometer sized materials have been shown to possess excellent chemical and electrochemical catalytic properties.In this work,a gold nanoparticle (AuNP) modified indium tin oxide (ITO) electrode was employed for investigating its electro-catalytic property.AuNP was deposited on the 3-aminopropyltriethoxysilane (APTES) modified ITO electrode by self-assembly,and was characterized by scanning electron microscopy and cyclic voltammetry.Although the electrochemical reaction of dopamine was very sluggish on the ITO/APTES electrode,it was significantly enhanced after AuNP deposition.The cyclic voltammogram exhibited apparent dependence on the surface coverage of 11 nm AuNPs,which could be rationalized by different modes of mass diffusion.Among the different sizes of AuNP investigated,the lowest anodic peak potential was observed on 11 nm AuNP.However,the potential was still about 50 mV more positive than that obtained on a bulk gold electrode of similar geometry.It is therefore concluded that there is no nanometer size effect of AuNP modified ITO on the electrochemistry of dopamine.

  7. Direct electrochemistry of cytochrome c immobilized on titanium nitride/multi-walled carbon nanotube composite for amperometric nitrite biosensor.

    Science.gov (United States)

    Haldorai, Yuvaraj; Hwang, Seung-Kyu; Gopalan, Anantha-Iyengar; Huh, Yun Suk; Han, Young-Kyu; Voit, Walter; Sai-Anand, Gopalan; Lee, Kwang-Pill

    2016-05-15

    In this report, titanium nitride (TiN) nanoparticles decorated multi-walled carbon nanotube (MWCNTs) nanocomposite is fabricated via a two-step process. These two steps involve the decoration of titanium dioxide nanoparticles onto the MWCNTs surface and a subsequent thermal nitridation. Transmission electron microscopy shows that TiN nanoparticles with a mean diameter of ≤ 20 nm are homogeneously dispersed onto the MWCNTs surface. Direct electrochemistry and electrocatalysis of cytochrome c immobilized on the MWCNTs-TiN composite modified on a glassy carbon electrode for nitrite sensing are investigated. Under optimum conditions, the current response is linear to its concentration from 1 µM to 2000 µM with a sensitivity of 121.5 µA µM(-1)cm(-2) and a low detection limit of 0.0014 µM. The proposed electrode shows good reproducibility and long-term stability. The applicability of the as-prepared biosensor is validated by the successful detection of nitrite in tap and sea water samples. PMID:26748372

  8. Surface analysis and electrochemistry of a robust carbon-nanofiber-based electrode platform H2O2 sensor

    Science.gov (United States)

    Suazo-Dávila, D.; Rivera-Meléndez, J.; Koehne, J.; Meyyappan, M.; Cabrera, C. R.

    2016-10-01

    A vertically aligned carbon nanofiber-based (VACNF) electrode platform was developed for an enzymeless hydrogen peroxide sensor. Vertical nanofibers have heights on the order of 2-3 μm, and diameters that vary from 50 to 100 nm as seen by atomic force microscopy. The VACNF was grown as individual, vertically, and freestanding structures using plasma-enhanced chemical vapor deposition. The electrochemical sensor, for the hydrogen peroxide measurement in solution, showed stability and reproducibility in five consecutive calibration curves with different hydrogen peroxide concentrations over a period of 3 days. The detection limit was 66 μM. The sensitivity for hydrogen peroxide electrochemical detection was 0.0906 mA cm-2 mM-1, respectively. The sensor was also used for the measurement of hydrogen peroxide as the by-product of the reaction of cholesterol with cholesterol oxidase as a biosensor application. The sensor exhibits linear behavior in the range of 50 μM-1 mM in cholesterol concentrations. The surface analysis and electrochemistry characterization is presented.

  9. Direct electrochemistry of catalase at amine-functionalized graphene/gold nanoparticles composite film for hydrogen peroxide sensor

    Energy Technology Data Exchange (ETDEWEB)

    Huang Kejing, E-mail: kejinghuang@163.co [College of Chemistry and Chemical Engineering, Xinyang Normal University, 237 Chang' an Road, Xinyang, He' nan 464000 (China); Niu Dejun; Liu Xue; Wu Zhiwei; Fan Yang; Chang Yafang; Wu Yingying [College of Chemistry and Chemical Engineering, Xinyang Normal University, 237 Chang' an Road, Xinyang, He' nan 464000 (China)

    2011-02-28

    Direct electrochemistry and electrocatalysis of catalase (Cat) was studied based on a nano-composite film consisting of amine functionalized graphene and gold nanoparticles (AuNPs) modified glassy carbon electrode. Graphene was synthesized chemically by Hummers and Offeman method and then was functionalized with amino groups via chemical modification of carboxyl groups introduced on the graphene surface. The nano-composite film showed an obvious promotion of the direct electron transfer between Cat and the underlying electrode, which attributed to the synergistic effect of graphene-NH{sub 2} and AuNPs. The resultant bioelectrode retained its biocatalytic activity and offered fast and sensitive H{sub 2}O{sub 2} quantification. Under the optimized experimental conditions, hydrogen peroxide was detected in the concentration range from 0.3 to 600 {mu}M with a detection limit of 50 nM at S/N = 3. The biosensor exhibited some advantages, such as short time respond (2 s), high sensitivity (13.4 {mu}A/mM) and good reproducibility (RSD = 5.8%).

  10. Forensic analyses of explosion debris from the January 2, 1992 Pd/D2O electrochemistry incident at SRI International

    International Nuclear Information System (INIS)

    The January 2, 1992 explosion in an electrochemistry laboratory at SRI International (SRI) resulted in the death of scientist Andrew Riley, and gained some notoriety due to its association with experimental work in the controversial field of cold fusion research. Selected components of explosion debris were subjected to forensic analyses at LLNL to elucidate potential causes of, or contributing factors to, the explosion. Interrogation of the debris by LLNL encompassed nuclear, chemical, physical, and materials investigations. Nuclear studies for the determination of tritium and neutron-activation products in stainless steel and brass were negative. No evidence of signature species indicative of orthodox nuclear events was detected. The inorganic and particulate analyses were likewise negative with respect to residues of unexpected chemical species. Such target compounds included conventional explosives, accelerants, propellants, or any exceptional industrial chemicals. The GC-MS analyses of trace organic components in the explosion debris provided perhaps the most interesting results obtained at LLNL. Although no evidence of organic explosives, oxidizers, or other unusual compounds was detected, the presence of a hydrocarbon oil in the interior of the electrochemical cell was established. It is likely that its source was lubricating fluid from the machining of the metal cell components. If residues of organic oils are present during electrolysis experiments, the potential exists for an explosive reaction in the increasingly enriched oxygen atmosphere within the headspace of a metal cell

  11. Direct electrochemistry of cytochrome c immobilized on titanium nitride/multi-walled carbon nanotube composite for amperometric nitrite biosensor.

    Science.gov (United States)

    Haldorai, Yuvaraj; Hwang, Seung-Kyu; Gopalan, Anantha-Iyengar; Huh, Yun Suk; Han, Young-Kyu; Voit, Walter; Sai-Anand, Gopalan; Lee, Kwang-Pill

    2016-05-15

    In this report, titanium nitride (TiN) nanoparticles decorated multi-walled carbon nanotube (MWCNTs) nanocomposite is fabricated via a two-step process. These two steps involve the decoration of titanium dioxide nanoparticles onto the MWCNTs surface and a subsequent thermal nitridation. Transmission electron microscopy shows that TiN nanoparticles with a mean diameter of ≤ 20 nm are homogeneously dispersed onto the MWCNTs surface. Direct electrochemistry and electrocatalysis of cytochrome c immobilized on the MWCNTs-TiN composite modified on a glassy carbon electrode for nitrite sensing are investigated. Under optimum conditions, the current response is linear to its concentration from 1 µM to 2000 µM with a sensitivity of 121.5 µA µM(-1)cm(-2) and a low detection limit of 0.0014 µM. The proposed electrode shows good reproducibility and long-term stability. The applicability of the as-prepared biosensor is validated by the successful detection of nitrite in tap and sea water samples.

  12. Electrochemistry and determination of epinephrine using a mesoporous Al-incorporated SiO{sub 2} modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Yanhong; Yang Jinquan [Department of Chemistry, Huazhong University of Science and Technology, Wuhan 430074 (China); Wu Kangbing [Department of Chemistry, Huazhong University of Science and Technology, Wuhan 430074 (China)], E-mail: kbwu@mail.hust.edu.cn

    2008-05-30

    The potential application of Al-incorporated mesoporous SiO{sub 2} (denoted as Al-MCM-41) in electrochemistry as a novel electrode material was investigated. The peak currents of K{sub 3}[Fe(CN){sub 6}] remarkably increase and the peak potential separation obviously decreases at the mesoporous Al-MCM-41 modified carbon paste electrode (CPE). These phenomena suggest that the mesoporous Al-MCM-41 modified CPE possesses larger electrode area and electron transfer rate constant. Furthermore, the electrochemical behavior of epinephrine (EP) was investigated in different supporting electrolytes such as 0.01 mol L{sup -1} HClO{sub 4} and pH 7.0 phosphate buffer. It is found that the mesoporous Al-MCM-41 modified CPE exhibits catalytic ability to the oxidation of EP due to remarkable peak current enhancement and negative shift of peak potential. The electrochemical oxidation mechanism was also discussed. Finally, a novel electrochemical method was proposed for the determination of EP, which used to determine EP in urine samples.

  13. Electrochemistry and determination of epinephrine using a mesoporous Al-incorporated SiO{sub 2} modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yanhong; Yang, Jinquan; Wu, Kangbing [Department of Chemistry, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2008-05-30

    The potential application of Al-incorporated mesoporous SiO{sub 2} (denoted as Al-MCM-41) in electrochemistry as a novel electrode material was investigated. The peak currents of K{sub 3}[Fe(CN){sub 6}] remarkably increase and the peak potential separation obviously decreases at the mesoporous Al-MCM-41 modified carbon paste electrode (CPE). These phenomena suggest that the mesoporous Al-MCM-41 modified CPE possesses larger electrode area and electron transfer rate constant. Furthermore, the electrochemical behavior of epinephrine (EP) was investigated in different supporting electrolytes such as 0.01 mol L{sup -1} HClO{sub 4} and pH 7.0 phosphate buffer. It is found that the mesoporous Al-MCM-41 modified CPE exhibits catalytic ability to the oxidation of EP due to remarkable peak current enhancement and negative shift of peak potential. The electrochemical oxidation mechanism was also discussed. Finally, a novel electrochemical method was proposed for the determination of EP, which used to determine EP in urine samples. (author)

  14. Electrochemistry in aqueous solution at high temperature and under pressure: study of nickel in a highly alkaline environment

    International Nuclear Information System (INIS)

    This research thesis reports the study of the corrosion resistance and anodic behaviour of various metals and alloys used in conventional thermal or nuclear power stations, more particularly the case of nickel in a highly alkaline environment (KOH 5 N) which is widely used for hydrogen production by water electrolysis. The author studied the influence of temperature and pressure on the electrochemical behaviour of nickel, and more particularly the first-oxidation kinetics. The report discusses the physicochemical and thermodynamic properties of aqueous systems at high temperature and under pressure, presents the general techniques of high-temperature electrochemistry, describes the experimental installation, and reports the development of a reference electrode which can operate in those experimental conditions. The author reports the study of the electrochemical behaviour of nickel in alkaline environment and at high temperature, reports a surface analysis performed by Auger spectroscopy, electron spectroscopy for chemical analysis or ESCA, and scanning electronic microscopy, reports the study of the electrochemical behaviour of nickel in a potassium hydroxide solution under normal temperature and pressure, but also in acid environment. Results are interpreted with respect to temperature

  15. Potassium-doped carbon nanotubes toward the direct electrochemistry of cholesterol oxidase and its application in highly sensitive cholesterol biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaorong [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Xu Jingjuan, E-mail: xujj@nju.edu.cn [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Chen Hongyuan [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2011-10-30

    We demonstrate herein a newly developed serum total cholesterol biosensor by using the direct electron transfer of cholesterol oxidase (ChOx), which is based on the immobilization of cholesterol oxidase and cholesterol esterase (ChEt) on potassium-doped multi-walled carbon nanotubes (KMWNTs) modified electrodes. The KMWNTs accelerate the electron transfer from electrode surface to the immobilized ChOx, achieving the direct electrochemistry of ChOx and maintaining its bioactivity. As a new platform in cholesterol analysis, the resulting electrode (ChOx/KMWNTs/GCE) exhibits a sensitive response to free cholesterol, with a linear range of 0.050-16.0 {mu}mol L{sup -1} and a detection limit of 5.0 nmol L{sup -1} (S/N = 3). Coimmobilization of ChEt and ChOx (ChEt/ChOx/KMWNTs/GCE) allows the determination of both free cholesterol and esterified cholesterol. The resulting biosensor shows the same linear range of 0.050-16.0 {mu}mol L{sup -1} for free cholesterol and cholesteryl oleate, with the detection limit of 10.0 and 12.0 nmol L{sup -1} (S/N = 3), respectively. The concentrations of total (free and esterified) cholesterol in human serum samples, determined by using the techniques developed in the present study, are in good agreement with those determined by the well-established techniques using the spectrophotometry.

  16. Conducting Polymer Nanostructures and Nanocomposites with Carbon Nanotubes: Hierarchical Assembly by Molecular Electrochemistry, Growth Aspects and Property Characterization.

    Science.gov (United States)

    Gupta, Sanju; Price, Carson; Heintzman, Eli

    2016-01-01

    Conducting (or π-conjugated) polymers are promising materials for preparing supramolecular nano-structures and nanocomposites. We report controlled nanostructure syntheses of polypyrrole (PPy) and poylaniline (PANi) via electropolymerization (i.e., in-situ electrochemical anodic oxidation). The density, shape, caliber and thickness of self-assembled PPy micro-containers are regulated by electrochemical potential window for H2 bubbles and number of cyclic voltammetric (potentiodynamic) scans. Likewise, we employed amperometry, chronopotentiometry and potentiodynamic modes using hydrochloric acid as oxidizing agent to prepare PANi nanoparticles and nanotubules. We present our findings from the viewpoint of molecular electrochemistry with growth kinetic aspects yielding mechanistic details (initially forming dimers and oligomers as nucleating agents followed by polymer growth). Also targeted is forming nanocomposites with functionalized single- and multi-walled carbon nanotubes (FSWCNTs and FMWCNTs) as reinforced agent to optimize structural and functional properties. All of these novel nanomaterials are characterized using a range of complementary techniques to establish microscopic structure-property-function relationship. PMID:27398466

  17. Reduced Graphene Oxide: Is it a promising catalyst for the electrochemistry of [UO2(CO3)3]4−/[UO2(CO3)3]5−?

    International Nuclear Information System (INIS)

    Highlights: • First report on aqueous electrochemistry of uranium on graphene materials. • Graphene(Nafion)/GC did not show applicability for the anionic analytes. • Electrochemically Reduced Graphene Oxide (ERGNO) was synthesised by cyclic voltammetry. • ERGNO catalysed the electrochemistry of [UVIO2(CO3)3]4-/[UVO2(CO3)3]5-. • Both the cathodic and anodic overpotentials of U(VI)/U(V) reaction decreased on ERGNO. - Abstract: The graphene has been emerging in the electrocatalysis and electroanalysis as the potent surface modifying agents for the working electrodes. However, the aqueous electrochemistry of the actinides on graphene (or graphene type materials) is yet unexplored. In this paper, the aqueous electrochemistry of [UVIO2(CO3)3]4−/[UVO2(CO3)3]5− redox couple was systematically investigated on electrochemically reduced graphene oxide (ERGNO) modified glassy carbon (GC) electrode in saturated Na2CO3 solution (pH ∼12.3). This is the first report on aqueous actinide electrochemistry on graphene materials. The results showed that ERGNO could catalyse the redox chemistry of [UVIO2(CO3)3]4−/[UVO2(CO3)3]5− by reducing both the cathodic and anodic overpotentials compared to bare GC electrode. However, no enhancement in the peak current was observed on ERGNO electrode for the same reaction. Therefore, the present study introduces an appeal for a systematic investigation on the electrochemistry of the actinides at graphene materials to gear up their applications in nuclear technology

  18. Fully solar-driven thermo- and electrochemistry for advanced oxidation processes (STEP-AOPs) of 2-nitrophenol wastewater.

    Science.gov (United States)

    Nie, Chunhong; Shao, Nan; Wang, Baohui; Yuan, Dandan; Sui, Xin; Wu, Hongjun

    2016-07-01

    The STEP (Solar Thermal Electrochemical Process) for Advanced Oxidation Processes (AOPs, combined to STEP-AOPs), fully driven by solar energy without the input of any other forms of energy and chemicals, is introduced and demonstrated from the theory to experiments. Exemplified by the persistent organic pollutant 2-nitrophenol in water, the fundamental model and practical system are exhibited for the STEP-AOPs to efficiently transform 2-nitrophenol into carbon dioxide, water, and the other substances. The results show that the STEP-AOPs system performs more effectively than classical AOPs in terms of the thermodynamics and kinetics of pollutant oxidation. Due to the combination of solar thermochemical reactions with electrochemistry, the STEP-AOPs system allows the requisite electrolysis voltage of 2-nitrophenol to be experimentally decreased from 1.00 V to 0.84 V, and the response current increases from 18 mA to 40 mA. STEP-AOPs also greatly improve the kinetics of the oxidation at 30 °C and 80 °C. As a result, the removal rate of 2-nitrophenol after 1 h increased from 19.50% at 30 °C to 32.70% at 80 °C at constant 1.90 V. Mechanistic analysis reveals that the oxidation pathway is favorably changed because of thermal effects. The tracking of the reaction displayed that benzenediol and hydroquinone are initial products, with maleic acid and formic acid as sequential carboxylic acid products, and carbon dioxide as the final product. The theory and experiments on STEP-AOPs system exemplified by the oxidation of 2-nitrophenol provide a broad basis for extension of the STEP and AOPs for rapid and efficient treatment of organic wastewater. PMID:27093694

  19. Fully solar-driven thermo- and electrochemistry for advanced oxidation processes (STEP-AOPs) of 2-nitrophenol wastewater.

    Science.gov (United States)

    Nie, Chunhong; Shao, Nan; Wang, Baohui; Yuan, Dandan; Sui, Xin; Wu, Hongjun

    2016-07-01

    The STEP (Solar Thermal Electrochemical Process) for Advanced Oxidation Processes (AOPs, combined to STEP-AOPs), fully driven by solar energy without the input of any other forms of energy and chemicals, is introduced and demonstrated from the theory to experiments. Exemplified by the persistent organic pollutant 2-nitrophenol in water, the fundamental model and practical system are exhibited for the STEP-AOPs to efficiently transform 2-nitrophenol into carbon dioxide, water, and the other substances. The results show that the STEP-AOPs system performs more effectively than classical AOPs in terms of the thermodynamics and kinetics of pollutant oxidation. Due to the combination of solar thermochemical reactions with electrochemistry, the STEP-AOPs system allows the requisite electrolysis voltage of 2-nitrophenol to be experimentally decreased from 1.00 V to 0.84 V, and the response current increases from 18 mA to 40 mA. STEP-AOPs also greatly improve the kinetics of the oxidation at 30 °C and 80 °C. As a result, the removal rate of 2-nitrophenol after 1 h increased from 19.50% at 30 °C to 32.70% at 80 °C at constant 1.90 V. Mechanistic analysis reveals that the oxidation pathway is favorably changed because of thermal effects. The tracking of the reaction displayed that benzenediol and hydroquinone are initial products, with maleic acid and formic acid as sequential carboxylic acid products, and carbon dioxide as the final product. The theory and experiments on STEP-AOPs system exemplified by the oxidation of 2-nitrophenol provide a broad basis for extension of the STEP and AOPs for rapid and efficient treatment of organic wastewater.

  20. Sol-gel derived silica/chitosan/Fe3O4 nanocomposite for direct electrochemistry and hydrogen peroxide biosensing

    Science.gov (United States)

    Satvekar, R. K.; Rohiwal, S. S.; Tiwari, A. P.; Raut, A. V.; Tiwale, B. M.; Pawar, S. H.

    2015-01-01

    A novel strategy to fabricate hydrogen peroxide third generation biosensor has been developed from sol-gel of silica/chitosan (SC) organic-inorganic hybrid material assimilated with iron oxide magnetic nanoparticles (Fe3O4). The large surface area of Fe3O4 and porous morphology of the SC composite facilitates a high loading of horseradish peroxidase (HRP). Moreover, the entrapped enzyme preserves its conformation and biofunctionality. The fabrication of hydrogen peroxide biosensor has been carried out by drop casting of the SC/F/HRP nanocomposite on glassy carbon electrode (GCE) for study of direct electrochemistry. The x-ray diffraction (XRD) pattern and transmission electron microscopy (TEM) confirms the phase purity and particle size of as-synthesized Fe3O4 nanoparticles, respectively. The nanocomposite was characterized by UV-vis spectroscopy, fluorescence spectroscopy and Fourier transform infrared (FTIR) for the characteristic structure and conformation of enzyme. The surface topographies of the nanocomposite thin films were investigated by scanning electron microscopy (SEM). Dynamic light scattering (DLS) was used to determine the particle size distribution. The electrostatic interactions of the SC composite with Fe3O4 nanoparticles were studied by the zeta potential measurement. Electrochemical impedance spectroscopy (EIS) of the SC/F/HRP/GCE electrode displays Fe3O4 nanoparticles as an excellent candidate for electron transfer. The SC/F/HRP/GCE exhibited a pair of well-defined quasi reversible cyclic voltammetry peaks due to the redox couple of HRP-heme Fe (III)/Fe (II) in pH 7.0 potassium phosphate buffer. The biosensor was employed to detect H2O2 with linear range of 5 μM to 40 μM and detection limit of 5 μM. The sensor displays excellent selectivity, sensitivity, good reproducibility and long term stability.

  1. Electrochemistry and analytical determination of lysergic acid diethylamide (LSD) via adsorptive stripping voltammetry.

    Science.gov (United States)

    Merli, Daniele; Zamboni, Daniele; Protti, Stefano; Pesavento, Maria; Profumo, Antonella

    2014-12-01

    Lysergic acid diethylamide (LSD) is hardly detectable and quantifiable in biological samples because of its low active dose. Although several analytical tests are available, routine analysis of this drug is rarely performed. In this article, we report a simple and accurate method for the determination of LSD, based on adsorptive stripping voltammetry in DMF/tetrabutylammonium perchlorate, with a linear range of 1-90 ng L(-1) for deposition times of 50s. LOD of 1.4 ng L(-1) and LOQ of 4.3 ng L(-1) were found. The method can be also applied to biological samples after a simple extraction with 1-chlorobutane.

  2. An aptamer-based biosensing platform for highly sensitive detection of platelet-derived growth factor via enzyme-mediated direct electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Deng Kun; Xiang Yang; Zhang Liqun; Chen Qinghai [Laboratory of the Clinical Experimental Base of Biosensor and Microarray, Center of Molecule and Gene Diagnosis, Southwest Hospital, Third Military Medical University, Chongqing 400042 (China); Fu Weiling, E-mail: weilingfu@yahoo.com [Laboratory of the Clinical Experimental Base of Biosensor and Microarray, Center of Molecule and Gene Diagnosis, Southwest Hospital, Third Military Medical University, Chongqing 400042 (China)

    2013-01-08

    Highlights: Black-Right-Pointing-Pointer Direct electrochemistry of glucose oxidase used for signal generation in aptasensor. Black-Right-Pointing-Pointer Using novel nanocomposite for immobilization and signal amplification. Black-Right-Pointing-Pointer Sensitive electrochemical detection of platelet-derived growth factor. - Abstract: In this work, a new label-free electrochemical aptamer-based sensor (aptasensor) was constructed for detection of platelet-derived growth factor (PDGF) based on the direct electrochemistry of glucose oxidase (GOD). For this proposed aptasensor, poly(diallyldimethylammonium chloride) (PDDA)-protected graphene-gold nanoparticles (P-Gra-GNPs) composite was firstly coated on electrode surface to form the interface with biocompatibility and huge surface area for the adsorption of GOD layer. Subsequently, gold nanoclusters (GNCs) were deposited on the surface of GOD to capture PDGF binding aptamer (PBA). Finally, GOD as a blocking reagent was employed to block the remaining active sites of the GNCs and avoid the nonspecific adsorption. With the direct electron transfer of double layer GOD membranes, the aptasensor showed excellent electrochemical response and the peak current decreased linearly with increasing logarithm of PDGF concentration from 0.005 nM to 60 nM with a relatively low limit of detection of 1.7 pM. The proposed aptasensor exhibited high specificity, good reproducibility and long-term stability, which provided a new promising technique for aptamer-based protein detection.

  3. Direct electrochemistry of Shewanella loihica PV-4 on gold nanoparticles-modified boron-doped diamond electrodes fabricated by layer-by-layer technique.

    Science.gov (United States)

    Wu, Wenguo; Xie, Ronggang; Bai, Linling; Tang, Zuming; Gu, Zhongze

    2012-05-01

    Microbial Fuel Cells (MFCs) are robust devices capable of taping biological energy, converting pollutants into electricity through renewable biomass. The fabrication of nanostructured electrodes with good bio- and electrochemical activity, play a profound role in promoting power generation of MFCs. Au nanoparticles (AuNPs)-modified Boron-Doped Diamond (BDD) electrodes are fabricated by layer-by-layer (LBL) self-assembly technique and used for the direct electrochemistry of Shewanella loihica PV-4 in an electrochemical cell. Experimental results show that the peak current densities generated on the Au/PAH multilayer-modified BDD electrodes increased from 1.25 to 2.93 microA/cm(-2) as the layer increased from 0 to 6. Different cell morphologies of S. loihica PV-4 were also observed on the electrodes and the highest density of cells was attached on the (Au/PAH)6/BDD electrode with well-formed three-dimensional nanostructure. The electrochemistry of S. loihica PV-4 was enhanced on the (Au/PAH)4/BDD electrode due to the appropriate amount of AuNPsand thickness of PAH layer.

  4. Surfaces of action: cells and membranes in electrochemistry and the life sciences.

    Science.gov (United States)

    Grote, Mathias

    2010-09-01

    The term 'cell', in addition to designating fundamental units of life, has also been applied since the nineteenth century to technical apparatuses such as fuel and galvanic cells. This paper shows that such technologies, based on the electrical effects of chemical reactions taking place in containers, had a far-reaching impact on the concept of the biological cell. My argument revolves around the controversy over oxidative phosphorylation in bioenergetics between 1961 and 1977. In this scientific conflict, a two-level mingling of technological culture, physical chemistry and biological research can be observed. First, Peter Mitchell explained the chemiosmotic hypothesis of energy generation by representing cellular membrane processes via an analogy to fuel cells. Second, in the associated experimental scrutiny of membranes, material cell models were devised that reassembled spatialized molecular processes in vitro. Cells were thus modelled both on paper and in the test tube not as morphological structures but as compartments able to perform physicochemical work. The story of cells and membranes in bioenergetics points out the role that theories and practices in physical chemistry had in the molecularization of life. These approaches model the cell as a 'topology of molecular action', as I will call it, and it involves concepts of spaces, surfaces and movements. They epitomize an engineer's vision of the organism that has influenced diverse fields in today's life sciences.

  5. Atomic-scale electrochemistry on the surface of a manganite by scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Rama K., E-mail: rvv@ornl.gov; Tselev, Alexander; Baddorf, Arthur P. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); ORNL Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Gianfrancesco, Anthony G. [UT/ORNL Bredesen Center, University of Tennessee, Knoxville, Tennessee 37996 (United States); Kalinin, Sergei V. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); ORNL Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); UT/ORNL Bredesen Center, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2015-04-06

    The doped manganese oxides (manganites) have been widely studied for their colossal magnetoresistive effects, for potential applications in oxide spintronics, electroforming in resistive switching devices, and are materials of choice as cathodes in modern solid oxide fuel cells. However, little experimental knowledge of the dynamics of the surfaces of perovskite manganites at the atomic scale exists. Here, through in-situ scanning tunneling microscopy (STM), we demonstrate atomic resolution on samples of La{sub 0.625}Ca{sub 0.375}MnO{sub 3} grown on (001) SrTiO{sub 3} by pulsed laser deposition. Furthermore, by applying triangular DC waveforms of increasing amplitude to the STM tip, and measuring the tunneling current, we demonstrate the ability to both perform and monitor surface electrochemical processes at the atomic level, including formation of oxygen vacancies and removal and deposition of individual atomic units or clusters. Our work paves the way for better understanding of surface oxygen reactions in these systems.

  6. Magnetite-graphene for the direct electrochemistry of hemoglobin and its biosensing application

    Energy Technology Data Exchange (ETDEWEB)

    He Yaping; Sheng Qinglin [Institute of Analytical Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi' an, Shaanxi 710069 (China); Zheng Jianbin, E-mail: zhengjb@nwu.edu.c [Institute of Analytical Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi' an, Shaanxi 710069 (China); Wang Minzhi [Institute of Analytical Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi' an, Shaanxi 710069 (China); Liu Bin [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Northwest University, Xi' an, Shaanxi 710069 (China); Department of Chemistry, Xianyang Normal University, Xianyang, Shaanxi 712000 (China)

    2011-02-01

    Magnetite-graphene (Fe{sub 3}O{sub 4}-GE) was prepared via a simple effective chemical precipitation method, followed by the chemical reduction with hydrazine. Fe{sub 3}O{sub 4}-GE was characterized by Raman spectroscopy, transmission electron microscope, X-ray powder diffraction and electrochemical methods. A hydrogen peroxide (H{sub 2}O{sub 2}) biosensor was structured by immobilizing hemoglobin (Hb) into Fe{sub 3}O{sub 4}-GE for the first time. UV-vis and Fourier transform infrared spectra were employed to characterize Hb retained original structure in the resulting Hb-Fe{sub 3}O{sub 4}-GE membrane. Electrochemical investigation of the biosensor showed a pair of well-defined, quasi-reversible redox peaks with E{sub pa} = -0.285 V and E{sub pc} = -0.363 V (vs. SCE) in phosphate buffer solution (0.1 mol/L, pH 7.0) at the scan rate of 100 mV/s. The Hb-Fe{sub 3}O{sub 4}-GE showed a better synergistic electrochemical effect for the reduced process of H{sub 2}O{sub 2}. The biosensor displayed a fast response time (<3 s) and broad linear response to H{sub 2}O{sub 2} in the range from 1.50 to 585 {mu}mol/L with a relatively low detection limit of 0.5 {mu}mol/L (S/N = 3). Moreover, the biosensor could be applied in practical analysis and exhibit good reproducibility and long-term stability.

  7. Redox-dependent spatially resolved electrochemistry at graphene and graphite step edges.

    Science.gov (United States)

    Güell, Aleix G; Cuharuc, Anatolii S; Kim, Yang-Rae; Zhang, Guohui; Tan, Sze-yin; Ebejer, Neil; Unwin, Patrick R

    2015-04-28

    The electrochemical (EC) behavior of mechanically exfoliated graphene and highly oriented pyrolytic graphite (HOPG) is studied at high spatial resolution in aqueous solutions using Ru(NH3)6(3+/2+) as a redox probe whose standard potential sits close to the intrinsic Fermi level of graphene and graphite. When scanning electrochemical cell microscopy (SECCM) data are coupled with that from complementary techniques (AFM, micro-Raman) applied to the same sample area, different time-dependent EC activity between the basal planes and step edges is revealed. In contrast, other redox couples (ferrocene derivatives) whose potential is further removed from the intrinsic Fermi level of graphene and graphite show uniform and high activity (close to diffusion-control). Macroscopic voltammetric measurements in different environments reveal that the time-dependent behavior after HOPG cleavage, peculiar to Ru(NH3)6(3+/2+), is not associated particularly with any surface contaminants but is reasonably attributed to the spontaneous delamination of the HOPG with time to create partially coupled graphene layers, further supported by conductive AFM measurements. This process has a major impact on the density of states of graphene and graphite edges, particularly at the intrinsic Fermi level to which Ru(NH3)6(3+/2+) is most sensitive. Through the use of an improved voltammetric mode of SECCM, we produce movies of potential-resolved and spatially resolved HOPG activity, revealing how enhanced activity at step edges is a subtle effect for Ru(NH3)6(3+/2+). These latter studies allow us to propose a microscopic model to interpret the EC response of graphene (basal plane and edges) and aged HOPG considering the nontrivial electronic band structure.

  8. Probing the nature of electron transfer in metalloproteins on graphene-family materials as nanobiocatalytic scaffold using electrochemistry

    International Nuclear Information System (INIS)

    Graphene-based nanomaterials have shown great promise not only in nanoelectronics due to ultrahigh electron mobility but also as biocatalytic scaffolds owing to irreversible protein surface adsorption and facilitating direct electron transfer. In this work, we synthesized stable dispersions of graphene using liquid-phase exfoliation approach based on non-covalent interactions between graphene and 1-pyrenesulfonic acid sodium salt (Py–1SO3), 1-pyrenemethylamine salt (Py − Me-NH2) and Pluronic® P-123 surfactant using only water as solvent compatible with biomolecules. The resulting graphene nanoplatelets (Gr-LPE) are characterized by a combination of analytical (microscopy and spectroscopy) techniques revealing mono- to few-layer graphene displaying that the exfoliation efficiency strongly depends upon the type of pyrene-based salts and organic surfactants. Moreover being completely water-based approach, we build robust nanoscaffolds of graphene-family nanomaterials (GFNs) namely, monolayer graphene, Gr-LPE (the one prepared with Pluronic® P-123), graphene oxide (GO) and its reduced form (rGO) on glassy carbon electrode surface with three important metalloproteins include cytochrome c (Cyt c) [for electron transfer], myoglobin (Mb) [for oxygen storage] and horseradish peroxidase (HRP) [for catalyzing the biochemical reaction]. In order to demonstrate the nanobiocatalytical activity of these proteins, we used electrochemical interfacial direct electron transfer (DET) kinetics and attempt to determine the rate constant (kET) using two different analytical approaches namely, linear sweep voltammetry and Laviron’s theory. We elucidated that all of the metalloproteins retain their structural integrity (secondary structure) upon forming mixtures with GFNs confirmed through optical and vibrational spectroscopy and biological activity using electrochemistry. Among the GFNs studied, Gr-LPE, GO and rGO support the efficient electrical wiring of the redox centers (with

  9. Probing the nature of electron transfer in metalloproteins on graphene-family materials as nanobiocatalytic scaffold using electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sanju, E-mail: sanju.gupta@wku.edu [Department of Physics and Astronomy, Western Kentucky University, 1906 College Heights Blvd. Bowling Green, KY 42101-3576 (United States); Biotechnology Center, Western Kentucky University, 1906 College Heights Blvd. Bowling Green, KY 42101-3576 (United States); Irihamye, Aline [Gatton Academy of Mathematics and Science in Kentucky, Western Kentucky University, 1906 College Heights Blvd. Bowling Green, KY 42101-3576 (United States)

    2015-03-15

    Graphene-based nanomaterials have shown great promise not only in nanoelectronics due to ultrahigh electron mobility but also as biocatalytic scaffolds owing to irreversible protein surface adsorption and facilitating direct electron transfer. In this work, we synthesized stable dispersions of graphene using liquid-phase exfoliation approach based on non-covalent interactions between graphene and 1-pyrenesulfonic acid sodium salt (Py–1SO{sub 3}), 1-pyrenemethylamine salt (Py − Me-NH{sub 2}) and Pluronic{sup ®} P-123 surfactant using only water as solvent compatible with biomolecules. The resulting graphene nanoplatelets (Gr-LPE) are characterized by a combination of analytical (microscopy and spectroscopy) techniques revealing mono- to few-layer graphene displaying that the exfoliation efficiency strongly depends upon the type of pyrene-based salts and organic surfactants. Moreover being completely water-based approach, we build robust nanoscaffolds of graphene-family nanomaterials (GFNs) namely, monolayer graphene, Gr-LPE (the one prepared with Pluronic{sup ®} P-123), graphene oxide (GO) and its reduced form (rGO) on glassy carbon electrode surface with three important metalloproteins include cytochrome c (Cyt c) [for electron transfer], myoglobin (Mb) [for oxygen storage] and horseradish peroxidase (HRP) [for catalyzing the biochemical reaction]. In order to demonstrate the nanobiocatalytical activity of these proteins, we used electrochemical interfacial direct electron transfer (DET) kinetics and attempt to determine the rate constant (k{sub ET}) using two different analytical approaches namely, linear sweep voltammetry and Laviron’s theory. We elucidated that all of the metalloproteins retain their structural integrity (secondary structure) upon forming mixtures with GFNs confirmed through optical and vibrational spectroscopy and biological activity using electrochemistry. Among the GFNs studied, Gr-LPE, GO and rGO support the efficient electrical

  10. Probing the nature of electron transfer in metalloproteins on graphene-family materials as nanobiocatalytic scaffold using electrochemistry

    Directory of Open Access Journals (Sweden)

    Sanju Gupta

    2015-03-01

    Full Text Available Graphene-based nanomaterials have shown great promise not only in nanoelectronics due to ultrahigh electron mobility but also as biocatalytic scaffolds owing to irreversible protein surface adsorption and facilitating direct electron transfer. In this work, we synthesized stable dispersions of graphene using liquid-phase exfoliation approach based on non-covalent interactions between graphene and 1-pyrenesulfonic acid sodium salt (Py–1SO3, 1-pyrenemethylamine salt (Py − Me-NH2 and Pluronic® P-123 surfactant using only water as solvent compatible with biomolecules. The resulting graphene nanoplatelets (Gr_LPE are characterized by a combination of analytical (microscopy and spectroscopy techniques revealing mono- to few-layer graphene displaying that the exfoliation efficiency strongly depends upon the type of pyrene-based salts and organic surfactants. Moreover being completely water-based approach, we build robust nanoscaffolds of graphene-family nanomaterials (GFNs namely, monolayer graphene, Gr_LPE (the one prepared with Pluronic® P-123, graphene oxide (GO and its reduced form (rGO on glassy carbon electrode surface with three important metalloproteins include cytochrome c (Cyt c [for electron transfer], myoglobin (Mb [for oxygen storage] and horseradish peroxidase (HRP [for catalyzing the biochemical reaction]. In order to demonstrate the nanobiocatalytical activity of these proteins, we used electrochemical interfacial direct electron transfer (DET kinetics and attempt to determine the rate constant (kET using two different analytical approaches namely, linear sweep voltammetry and Laviron’s theory. We elucidated that all of the metalloproteins retain their structural integrity (secondary structure upon forming mixtures with GFNs confirmed through optical and vibrational spectroscopy and biological activity using electrochemistry. Among the GFNs studied, Gr-LPE, GO and rGO support the efficient electrical wiring of the redox centers

  11. Modeling and experimental validation of CO heterogeneous chemistry and electrochemistry in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Yurkiv, Vitaly

    2010-12-17

    In the present work experimental and numerical modeling studies of the heterogeneously catalyzed and electrochemical oxidation of CO at Nickel/yttria-stabilized zirconia (YSZ) solid oxide fuel cell (SOFC) anode systems were performed to evaluate elementary charge-transfer reaction mechanisms taking place at the three-phase boundary of CO/CO{sub 2} gas-phase, Ni electrode, and YSZ electrolyte. Temperature-programmed desorption and reaction experiments along with density functional theory calculations were performed to determine adsorption/desorption and surface diffusion kinetics as well as thermodynamic data for the CO/CO{sub 2}/Ni and CO/CO{sub 2}/YSZ systems. Based on these data elementary reaction based models with four different charge transfer mechanisms for the electrochemical CO oxidation were developed and applied in numerical simulations of literature experimental electrochemical data such as polarization curves and impedance spectra. Comparison between simulation and experiment demonstrated that only one of the four charge transfer mechanisms can consistently reproduce the electrochemical data over a wide range of operating temperatures and CO/CO{sub 2} gas compositions. (orig.) [German] In der vorliegenden Arbeit wurden experimentelle und numerische Untersuchungen zur heterogen katalysierten und elektrochemischen Oxidation von CO an Anodensystemen (bestehend aus Nickel und yttriumdotiertem Zirkoniumdioxid, YSZ) von Festoxidbrennstoffzellen (engl. Solid Oxide Fuel Cells, SOFCs) ausgefuehrt, um den mikroskopischen Mechanismus der an der CO/CO{sub 2}-Gasphase/Ni-Elektrode/YSZ-Elektrolyt- Dreiphasen-Grenzflaeche ablaufenden Ladungsuebertragungsreaktion aufzuklaeren. Temperaturprogrammierte Desorptionsmessungen (TPD) und Temperaturprogrammierte Reaktionsmessungen (TPR) sowie Dichtefunktionaltheorierechnungen wurden ausgefuehrt, um adsorptions-, desorptions- und reaktionskinetische sowie thermodynamische Daten fuer die CO/CO{sub 2}/Ni- und CO/CO{sub 2}/YSZ

  12. Advances in Applied Mechanics

    OpenAIRE

    2014-01-01

    Advances in Applied Mechanics draws together recent significant advances in various topics in applied mechanics. Published since 1948, Advances in Applied Mechanics aims to provide authoritative review articles on topics in the mechanical sciences, primarily of interest to scientists and engineers working in the various branches of mechanics, but also of interest to the many who use the results of investigations in mechanics in various application areas, such as aerospace, chemical, civil, en...

  13. Perspectives on Applied Ethics

    OpenAIRE

    2007-01-01

    Applied ethics is a growing, interdisciplinary field dealing with ethical problems in different areas of society. It includes for instance social and political ethics, computer ethics, medical ethics, bioethics, envi-ronmental ethics, business ethics, and it also relates to different forms of professional ethics. From the perspective of ethics, applied ethics is a specialisation in one area of ethics. From the perspective of social practice applying eth-ics is to focus on ethical aspects and ...

  14. Applied Neuroscience Laboratory Complex

    Data.gov (United States)

    Federal Laboratory Consortium — Located at WPAFB, Ohio, the Applied Neuroscience lab researches and develops technologies to optimize Airmen individual and team performance across all AF domains....

  15. Luminescent cyclometalated alkynylplatinum(II) complexes with a tridentate pyridine-based N-heterocyclic carbene ligand: synthesis, characterization, electrochemistry, photophysics, and computational studies.

    Science.gov (United States)

    Leung, Sammual Yu-Lut; Lam, Elizabeth Suk-Hang; Lam, Wai Han; Wong, Keith Man-Chung; Wong, Wing-Tak; Yam, Vivian Wing-Wah

    2013-07-29

    A new class of luminescent alkynylplatinum(II) complexes with a tridentate pyridine-based N-heterocyclic carbene (2,6-bis(1-butylimidazol-2-ylidenyl)pyridine) ligand, [Pt(II)(C^N^C)(C≡CR)][PF6], and their chloroplatinum(II) precursor complex, [Pt(II)(C^N^C)Cl][PF6], have been synthesized and characterized. One of the alkynylplatinum(II) complexes has also been structurally characterized by X-ray crystallography. The electrochemistry, electronic absorption and luminescence properties of the complexes have been studied. Nanosecond transient absorption (TA) spectroscopy has also been performed to probe the nature of the excited state. The origin of the absorption and emission properties has been supported by computational studies. PMID:23788216

  16. End-of-Discharge and End-of-Life Prediction in Lithium-Ion Batteries with Electrochemistry-Based Aging Models

    Science.gov (United States)

    Daigle, Matthew; Kulkarni, Chetan S.

    2016-01-01

    As batteries become increasingly prevalent in complex systems such as aircraft and electric cars, monitoring and predicting battery state of charge and state of health becomes critical. In order to accurately predict the remaining battery power to support system operations for informed operational decision-making, age-dependent changes in dynamics must be accounted for. Using an electrochemistry-based model, we investigate how key parameters of the battery change as aging occurs, and develop models to describe aging through these key parameters. Using these models, we demonstrate how we can (i) accurately predict end-of-discharge for aged batteries, and (ii) predict the end-of-life of a battery as a function of anticipated usage. The approach is validated through an experimental set of randomized discharge profiles.

  17. Depth probing of the hydride formation process in thin Pd films by combined electrochemistry and fiber optics-based in situ UV/vis spectroscopy.

    Science.gov (United States)

    Wickman, Björn; Fredriksson, Mattias; Feng, Ligang; Lindahl, Niklas; Hagberg, Johan; Langhammer, Christoph

    2015-07-15

    We demonstrate a flexible combined electrochemistry and fiber optics-based in situ UV/vis spectroscopy setup to gain insight into the depth evolution of electrochemical hydride and oxide formation in Pd films with thicknesses of 20 and 100 nm. The thicknesses of our model systems are chosen such that the films are thinner or significantly thicker than the optical skin depth of Pd to create two distinctly different situations. Low power white light is irradiated on the sample and analyzed in three different configurations; transmittance through, and, reflectance from the front and the back side of the film. The obtained optical sensitivities correspond to fractions of a monolayer of adsorbed or absorbed hydrogen (H) and oxygen (O) on Pd. Moreover, a combined simultaneous readout obtained from the different optical measurement configurations provides mechanistic insights into the depth-evolution of the studied hydrogenation and oxidation processes.

  18. 碳纳米管的纯化——电化学氧化法%Purification of Carbon Nanotubes Oxidation Method by Using Electrochemistry

    Institute of Scientific and Technical Information of China (English)

    杨占红; 吴浩青; 李晶; 李新海

    2001-01-01

    用电化学氧化法对碳纳米管进行纯化, 从稳态极化曲线出发, 对反应的可行性进行了分析, 考察了支持电解质、 电流密度、 时间等因素对反应的影响, 确定了最佳实验条件, 同时对纯化机理进行了解释.%Carbon nanotubes were purified by use of electrical chemistry oxidation method. In the view of polarization curves it was discussed that electrochemistry method could be used in the purification of carbon nanotubus. The influence of current density, sulfuric acid concentration and reaction time on the reaction was studied, the optimum experimental condition was obtained and the mechanism of purification was also discussed.

  19. Electrochemistry of fullerene films

    Energy Technology Data Exchange (ETDEWEB)

    Chlistunoff, J. [Texas Univ., Austin, TX (United States). Dept. of Chemistry and Biochemistry; Cliffel, D. [Texas Univ., Austin, TX (United States). Dept. of Chemistry and Biochemistry; Bard, A.J. [Texas Univ., Austin, TX (United States). Dept. of Chemistry and Biochemistry

    1995-03-01

    The preparation of C{sub 60} films on electrodes by drop coating, Langmuir-Blodgett and electrochemical techniques, and the electrochemical behavior of these films in acetonitrile solutions containing a variety of supporting electrolytes (e.g., quaternary ammonium, alkali metal, and alkaline earth salts) is reviewed. Reduction can form insoluble films with incorporated cations or lead to dissolution. The large splitting between cathodic and anodic waves is discussed in terms of structural rearrange- ments during the redox processes. Studies of C{sub 60} electrodes with the quartz crystal microbalance and with the scanning electrochemical microscope, and by laser-desorption mass spectrometry and surface-enhanced Raman scattering are also discussed. ((orig.))

  20. Magnetic effects in electrochemistry

    Directory of Open Access Journals (Sweden)

    NEBOJSA D. NIKOLIC

    2005-05-01

    Full Text Available The effect of imposed magnetic fields onto the electrodeposition of magnetic (nickel and non – magnetic (copper metals was analysed. Also, magnetic properties of electrochemically obtained nanocontacts were examined. An effort to establish a possible correlation between the morphologies of the nanocontacts and the effect of the very large ballistic magnetoresistance (BMR effect was made.

  1. Electrochemistry of hexanitroazobenzene (HNAB)

    Energy Technology Data Exchange (ETDEWEB)

    Firsich, D.W.

    1985-01-01

    The electrochemical properties of HNAB are explored, including the characterization of its anion, dianion, protonated dianion and diprotonated dianion by cyclic voltammetry, controlled potential coulometry, and visible spectroscopy. The acid/base relationships of these species are defined. The chemistry demonstrated is shown to be useful in exploring the reactivity of HNAB with common metals, and is relevant to the synthesis of HNAB. 2 refs., 5 figs.

  2. Electrochemistry reveals archaeological materials

    OpenAIRE

    Costa, Virginia; Leyssens, Karen; Adriaens, Annemie; Richard, N.; Scholz, Fritz

    2010-01-01

    The characterization of materials constituting cultural artefacts is a challenging step in their conservation, due to the object’s uniqueness and the reduced number of conservation institutes able to supply non-destructive analysis. We propose an alternative analytical tool, which combines accessibility (low cost and portable) and high sensitivity, based on electrochemical linear sweep voltammetry (LSV) with paraffin impregnated graphite electrode (PIGE). To investigate the composition of “wh...

  3. DNA-Mediated Electrochemistry

    OpenAIRE

    Gorodetsky, Alon A.; Buzzeo, Marisa C.; Barton, Jacqueline K.

    2008-01-01

    The base pair stack of DNA has been demonstrated as a medium for long-range charge transport chemistry both in solution and at DNA-modified surfaces. This chemistry is exquisitely sensitive to structural perturbations in the base pair stack as occur with lesions, single base mismatches, and protein binding. We have exploited this sensitivity for the development of reliable electrochemical assays based on DNA charge transport at self-assembled DNA monolayers. Here, we discuss the characteristi...

  4. What are applied ethics?

    Science.gov (United States)

    Allhoff, Fritz

    2011-03-01

    This paper explores the relationships that various applied ethics bear to each other, both in particular disciplines and more generally. The introductory section lays out the challenge of coming up with such an account and, drawing a parallel with the philosophy of science, offers that applied ethics may either be unified or disunified. The second section develops one simple account through which applied ethics are unified, vis-à-vis ethical theory. However, this is not taken to be a satisfying answer, for reasons explained. In the third section, specific applied ethics are explored: biomedical ethics; business ethics; environmental ethics; and neuroethics. These are chosen not to be comprehensive, but rather for their traditions or other illustrative purposes. The final section draws together the results of the preceding analysis and defends a disunity conception of applied ethics.

  5. Applied statistics: A review

    OpenAIRE

    Cox, D R

    2007-01-01

    The main phases of applied statistical work are discussed in general terms. The account starts with the clarification of objectives and proceeds through study design, measurement and analysis to interpretation. An attempt is made to extract some general notions.

  6. Applied eye tracking research

    NARCIS (Netherlands)

    Jarodzka, Halszka

    2011-01-01

    Jarodzka, H. (2010, 12 November). Applied eye tracking research. Presentation and Labtour for Vereniging Gewone Leden in oprichting (VGL i.o.), Heerlen, The Netherlands: Open University of the Netherlands.

  7. Applied Mathematics Seminar 1982

    International Nuclear Information System (INIS)

    This report contains the abstracts of the lectures delivered at 1982 Applied Mathematics Seminar of the DPD/LCC/CNPq and Colloquy on Applied Mathematics of LCC/CNPq. The Seminar comprised 36 conferences. Among these, 30 were presented by researchers associated to brazilian institutions, 9 of them to the LCC/CNPq, and the other 6 were given by visiting lecturers according to the following distribution: 4 from the USA, 1 from England and 1 from Venezuela. The 1981 Applied Mathematics Seminar was organized by Leon R. Sinay and Nelson do Valle Silva. The Colloquy on Applied Mathematics was held from october 1982 on, being organized by Ricardo S. Kubrusly and Leon R. Sinay. (Author)

  8. Mesothelioma Applied Research Foundation

    Science.gov (United States)

    ... Percentage Donations Tribute Wall Other Giving/Fundraising Opportunities Bitcoin Donation Form FAQs Help us raise awareness and ... Percentage Donations Tribute Wall Other Giving/Fundraising Opportunities Bitcoin Donation Form FAQs © 2013 Mesothelioma Applied Research Foundation, ...

  9. Handbook of Applied Analysis

    CERN Document Server

    Papageorgiou, Nikolaos S

    2009-01-01

    Offers an examination of important theoretical methods and procedures in applied analysis. This book details the important theoretical trends in nonlinear analysis and applications to different fields. It is suitable for those working on nonlinear analysis.

  10. Applying contemporary statistical techniques

    CERN Document Server

    Wilcox, Rand R

    2003-01-01

    Applying Contemporary Statistical Techniques explains why traditional statistical methods are often inadequate or outdated when applied to modern problems. Wilcox demonstrates how new and more powerful techniques address these problems far more effectively, making these modern robust methods understandable, practical, and easily accessible.* Assumes no previous training in statistics * Explains how and why modern statistical methods provide more accurate results than conventional methods* Covers the latest developments on multiple comparisons * Includes recent advanc

  11. Estudio comparativo de la resolución de problemas en el rendimiento estudiantil en el contenido de electroquímica (COMPARATIVE STUDY OF THE RESOLUTION OF PROBLEMS IN THE STUDENT YIELD ON THE CONTENT OF ELECTROCHEMISTRY

    Directory of Open Access Journals (Sweden)

    Di’ Bacco Vera Lucia

    2009-04-01

    Full Text Available Resumen:Este estudio comparó las metodologías de resolución de problemas de: Reif, Durán y García, a través del rendimiento estudiantil en el contenido de electroquímica. La muestra estuvo representada por 73 estudiantes del Primer Año de Ciencias de la Unidad Educativa Nacional "El Eneal" del Municipio Crespo, Estado Lara-Venezuela, año escolar 2006-2007. Veinticinco (25 aprendices pertenecen al grupo experimental uno (GE1 y los grupos experimentales dos (GE2 y tres (GE3 están conformados por veinticuatro (24 estudiantes cada uno. Antes de la aplicación de las metodologías, se administró una prueba de conocimientos previos a los tres grupos experimentales; determinándose que los grupos son homogéneos. Al finalizar las tres metodologías, se les aplicó a los tres grupos una post-prueba. Los resultados permitieron concluir que no existe diferencia, estadísticamente significativa, entre el rendimiento estudiantil, en términos del promedio de calificaciones, por los tres grupos que recibieron los tratamientos con las tres estrategias de resolución de problemas utilizadas.Abstract:This study compared the methodologies of resolution of problems: Reif, and García Durán, through student performance on the content of electrochemistry. The sample was represented by 73 students from the First Year of Science Education National Unity "The Eneal" Crespo Municipio Crespo, Estado Lara-Venezuela, 2006-2007 school year. Twenty-five (25 trainees belong to an experimental group (GE1 and two experimental groups (GE2 and three (GE3 are composed of twenty-four (24 students each. Before the application of methodologies, were administered a test of knowledge prior to the three experimental groups, determined that the groups are homogeneous. At the end of the three methodologies were applied to all three groups a post-test.The results allowed concluding that statistically significant difference between the student yields in terms of the average of

  12. Applied chemical engineering thermodynamics

    CERN Document Server

    Tassios, Dimitrios P

    1993-01-01

    Applied Chemical Engineering Thermodynamics provides the undergraduate and graduate student of chemical engineering with the basic knowledge, the methodology and the references he needs to apply it in industrial practice. Thus, in addition to the classical topics of the laws of thermodynamics,pure component and mixture thermodynamic properties as well as phase and chemical equilibria the reader will find: - history of thermodynamics - energy conservation - internmolecular forces and molecular thermodynamics - cubic equations of state - statistical mechanics. A great number of calculated problems with solutions and an appendix with numerous tables of numbers of practical importance are extremely helpful for applied calculations. The computer programs on the included disk help the student to become familiar with the typical methods used in industry for volumetric and vapor-liquid equilibria calculations.

  13. PSYCHOANALYSIS AS APPLIED AESTHETICS.

    Science.gov (United States)

    Richmond, Stephen H

    2016-07-01

    The question of how to place psychoanalysis in relation to science has been debated since the beginning of psychoanalysis and continues to this day. The author argues that psychoanalysis is best viewed as a form of applied art (also termed applied aesthetics) in parallel to medicine as applied science. This postulate draws on a functional definition of modernity as involving the differentiation of the value spheres of science, art, and religion. The validity criteria for each of the value spheres are discussed. Freud is examined, drawing on Habermas, and seen to have erred by claiming that the psychoanalytic method is a form of science. Implications for clinical and metapsychological issues in psychoanalysis are discussed. PMID:27428582

  14. Retransmission Steganography Applied

    CERN Document Server

    Mazurczyk, Wojciech; Szczypiorski, Krzysztof

    2010-01-01

    This paper presents experimental results of the implementation of network steganography method called RSTEG (Retransmission Steganography). The main idea of RSTEG is to not acknowledge a successfully received packet to intentionally invoke retransmission. The retransmitted packet carries a steganogram instead of user data in the payload field. RSTEG can be applied to many network protocols that utilize retransmissions. We present experimental results for RSTEG applied to TCP (Transmission Control Protocol) as TCP is the most popular network protocol which ensures reliable data transfer. The main aim of the performed experiments was to estimate RSTEG steganographic bandwidth and detectability by observing its influence on the network retransmission level.

  15. Applied mathematics made simple

    CERN Document Server

    Murphy, Patrick

    1982-01-01

    Applied Mathematics: Made Simple provides an elementary study of the three main branches of classical applied mathematics: statics, hydrostatics, and dynamics. The book begins with discussion of the concepts of mechanics, parallel forces and rigid bodies, kinematics, motion with uniform acceleration in a straight line, and Newton's law of motion. Separate chapters cover vector algebra and coplanar motion, relative motion, projectiles, friction, and rigid bodies in equilibrium under the action of coplanar forces. The final chapters deal with machines and hydrostatics. The standard and conte

  16. Applied statistics with SPSS

    CERN Document Server

    Huizingh, Eelko K R E

    2007-01-01

    Accessibly written and easy to use, Applied Statistics Using SPSS is an all-in-one self-study guide to SPSS and do-it-yourself guide to statistics. Based around the needs of undergraduate students embarking on their own research project, the text's self-help style is designed to boost the skills and confidence of those that will need to use SPSS in the course of doing their research project. The book is pedagogically well developed and contains many screen dumps and exercises, glossary terms and worked examples. Divided into two parts, Applied Statistics Using SPSS covers :

  17. Applied Electromagnetism and Materials

    CERN Document Server

    Moliton, André

    2007-01-01

    Applied Electromagnetism and Materials picks up where the author's Basic Electromagnetism and Materials left off by presenting practical and relevant technological information about electromagnetic material properties and their applications. This book is aimed at senior undergraduate and graduate students as well as researchers in materials science and is the product of many years of teaching basic and applied electromagnetism. Topics range from the spectroscopy and characterization of dielectrics and semiconductors, to non-linear effects and electromagnetic cavities, to ion-beam applications in materials science.

  18. On applying cognitive psychology.

    Science.gov (United States)

    Baddeley, Alan

    2013-11-01

    Recent attempts to assess the practical impact of scientific research prompted my own reflections on over 40 years worth of combining basic and applied cognitive psychology. Examples are drawn principally from the study of memory disorders, but also include applications to the assessment of attention, reading, and intelligence. The most striking conclusion concerns the many years it typically takes to go from an initial study, to the final practical outcome. Although the complexity and sheer timescale involved make external evaluation problematic, the combination of practical satisfaction and theoretical stimulation make the attempt to combine basic and applied research very rewarding.

  19. Introduction to applied thermodynamics

    CERN Document Server

    Helsdon, R M; Walker, G E

    1965-01-01

    Introduction to Applied Thermodynamics is an introductory text on applied thermodynamics and covers topics ranging from energy and temperature to reversibility and entropy, the first and second laws of thermodynamics, and the properties of ideal gases. Standard air cycles and the thermodynamic properties of pure substances are also discussed, together with gas compressors, combustion, and psychrometry. This volume is comprised of 16 chapters and begins with an overview of the concept of energy as well as the macroscopic and molecular approaches to thermodynamics. The following chapters focus o

  20. Applied Statistics with SPSS

    Science.gov (United States)

    Huizingh, Eelko K. R. E.

    2007-01-01

    Accessibly written and easy to use, "Applied Statistics Using SPSS" is an all-in-one self-study guide to SPSS and do-it-yourself guide to statistics. What is unique about Eelko Huizingh's approach is that this book is based around the needs of undergraduate students embarking on their own research project, and its self-help style is designed to…

  1. Essays on Applied Microeconomics

    Science.gov (United States)

    Mejia Mantilla, Carolina

    2013-01-01

    Each chapter of this dissertation studies a different question within the field of Applied Microeconomics. The first chapter examines the mid- and long-term effects of the 1998 Asian Crisis on the educational attainment of Indonesian children ages 6 to 18, at the time of the crisis. The effects are identified as deviations from a linear trend for…

  2. Coupled optical absorption, charge carrier separation, and surface electrochemistry in surface disordered/hydrogenated TiO2 for enhanced PEC water splitting reaction.

    Science.gov (United States)

    Behara, Dilip Kumar; Ummireddi, Ashok Kumar; Aragonda, Vidyasagar; Gupta, Prashant Kumar; Pala, Raj Ganesh S; Sivakumar, Sri

    2016-03-28

    The central governing factors that influence the efficiency of photoelectrochemical (PEC) water splitting reaction are photon absorption, effective charge-carrier separation, and surface electrochemistry. Attempts to improve one of the three factors may debilitate other factors and we explore such issues in hydrogenated TiO2, wherein a significant increase in optical absorption has not resulted in a significant increase in PEC performance, which we attribute to the enhanced recombination rate due to the formation of amorphization/disorderness in the bulk during the hydrogenation process. To this end, we report a methodology to increase the charge-carrier separation with enhanced optical absorption of hydrogenated TiO2. Current methodology involves hydrogenation of non-metal (N and S) doped TiO2 which comprises (1) lowering of the band gap through shifting of the valence band via less electronegative non-metal N, S-doping, (2) lowering of the conduction band level and the band gap via formation of the Ti(3+) state and oxygen vacancies by hydrogenation, and (3) material processing to obtain a disordered surface structure which favors higher electrocatalytic (EC) activity. This design strategy yields enhanced PEC activity (%ABPE = 0.38) for the N-S co-doped TiO2 sample hydrogenated at 800 °C for 24 h over possible combinations of N-S co-doped TiO2 samples hydrogenated at 500 °C/24 h, 650 °C/24 h and 800 °C/72 h. This suggests that hydrogenation at lower temperatures does not result in much increase in optical absorption and prolonged hydrogenation results in an increase in optical absorption but a decrease in charge carrier separation by forming disorderness/oxygen vacancies in the bulk. Furthermore, the difference in double layer capacitance (C(dl)) calculated from electrochemical impedance spectroscopy (EIS) measurements of these samples reflects the change in the electrochemical surface area (ECSA) and facilitates assessing the key role of surface

  3. Applied Control Systems Design

    CERN Document Server

    Mahmoud, Magdi S

    2012-01-01

    Applied Control System Design examines several methods for building up systems models based on real experimental data from typical industrial processes and incorporating system identification techniques. The text takes a comparative approach to the models derived in this way judging their suitability for use in different systems and under different operational circumstances. A broad spectrum of control methods including various forms of filtering, feedback and feedforward control is applied to the models and the guidelines derived from the closed-loop responses are then composed into a concrete self-tested recipe to serve as a check-list for industrial engineers or control designers. System identification and control design are given equal weight in model derivation and testing to reflect their equality of importance in the proper design and optimization of high-performance control systems. Readers’ assimilation of the material discussed is assisted by the provision of problems and examples. Most of these e...

  4. Applied longitudinal analysis

    CERN Document Server

    Fitzmaurice, Garrett M; Ware, James H

    2012-01-01

    Praise for the First Edition "". . . [this book] should be on the shelf of everyone interested in . . . longitudinal data analysis.""-Journal of the American Statistical Association   Features newly developed topics and applications of the analysis of longitudinal data Applied Longitudinal Analysis, Second Edition presents modern methods for analyzing data from longitudinal studies and now features the latest state-of-the-art techniques. The book emphasizes practical, rather than theoretical, aspects of methods for the analysis of diverse types of lo

  5. Applied Economics in Teaching

    Institute of Scientific and Technical Information of China (English)

    朱红萍

    2009-01-01

    This paper explains some plain phenomena in teaching and class management with an economic view. Some basic economic principles mentioned therein are: everything has its opportunity cost; the marginal utility of consumption of any kind is diminishing; Game theory is everywhere. By applying the economic theories to teaching, it is of great help for teachers to understand the students' behavior and thus improve the teaching effectiveness and efficiency.

  6. Essays in Applied Microeconomics

    OpenAIRE

    Buehler, Benno

    2010-01-01

    This thesis consists of 4 chapters in the field of applied microeconomics. Chapter 1 develops a model of international roaming. International alliances emerge endogenously and serve as a commitment device to soften competition on the retail market. Chapter 2 provides an explanation for why political leaders may want to adopt ideological positions. Because voters expect the perceived ideology of office holders to determine their future political actions, politicians are tempted to act ac...

  7. Applied statistics for economists

    CERN Document Server

    Lewis, Margaret

    2012-01-01

    This book is an undergraduate text that introduces students to commonly-used statistical methods in economics. Using examples based on contemporary economic issues and readily-available data, it not only explains the mechanics of the various methods, it also guides students to connect statistical results to detailed economic interpretations. Because the goal is for students to be able to apply the statistical methods presented, online sources for economic data and directions for performing each task in Excel are also included.

  8. Methods of applied mathematics

    CERN Document Server

    Hildebrand, Francis B

    1992-01-01

    This invaluable book offers engineers and physicists working knowledge of a number of mathematical facts and techniques not commonly treated in courses in advanced calculus, but nevertheless extremely useful when applied to typical problems in many different fields. It deals principally with linear algebraic equations, quadratic and Hermitian forms, operations with vectors and matrices, the calculus of variations, and the formulations and theory of linear integral equations. Annotated problems and exercises accompany each chapter.

  9. Essays on Applied Microeconomics

    OpenAIRE

    Lee, Hoan Soo

    2013-01-01

    Empirical and theoretical topics in applied microeconomics are discussed in this dissertation. The first essay identifies and measures managerial advantages from access to high-quality deals in venture capital investments. The underlying social network of Harvard Business School MBA venture capitalists and entrepreneurs is used to proxy availability of deal access. Random section assignment of HBS MBA graduates provides a key exogenous variation for identification. Being socially connected to...

  10. Applied ALARA techniques

    Energy Technology Data Exchange (ETDEWEB)

    Waggoner, L.O.

    1998-02-05

    The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work.

  11. Direct Electrochemistry of Glucose Oxidase Immobilized on Chitosan-gold Nanoparticle Composite Film on Glassy Carbon Electrodes and Its Biosensing Application

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The direct electrochemistry of glucose oxidase (Gox) immobilized on a composite matrix based on chitosan (CHIT) and Au nanoparticles (Au NP) underlying on a glassy carbon electrode was achieved. The cyclic voltam-metry and electrochemical impedance spectroscopy were used to characterize the modified electrode. In deaerated buffer solutions, the cyclic voltammetry of the composite films of Gox-Au NP-CHIT showed a pair of well-behaved redox peaks that were assigned to the redox reaction of Gox, confirming the effective immobilization of Gox on the composite film. The electron transfer rate constant was estimated to be 15.6 s-1, indicating a high electron transfer between the Gox redox center and electrode. The combination of CHIT and Au NP also promoted the stability of Gox in the composite film and retained its bioactivity, which might have the potential application to glucose determination. The calculated apparent Michaelis-Menten constant was 10.1 mmol·L-1. Furthermore, the proposed biosensor could be used for the determination of glucose in human plasma samples.

  12. The Development of Microsystems and New Applications of Electrochemistry%微系统科技的发展及电化学的新应用

    Institute of Scientific and Technical Information of China (English)

    田昭武; 林华水; 孙建军; 周勇亮; 祖延斌; 田中群; 罗瑾; 林仲华; 谢兆雄; 胡维玲; 胡涌刚; 苏文煅

    2001-01-01

    1 )Brief introduction to microsystems. 2)Discussio ns on the developments of microsystem technologies. 3)Applications of electrochemistry in microsystem: Confined Etchant Layer Technique (CELT) for the complex 3D-pattern micromachining; Focusing Electrophoresis and the application of microsystem in (bio) chemistry (μTAS or Lab on A Chip) ;Smart Electro-Osmosis pump a reasonable choosing for microfluidic network. 4)Concluding remark.%根据田昭武在中国化学会第一届全国纳米技术与应用会议(2000.11.28,厦门)特邀大会报告内容整理而成:1)微系统技术概述(技术的必要性和前景);2)发展微系统技术的特殊困难;3)电化学在微系统技术中的应用,包括用于复杂3D-图形微加工的约束刻蚀剂层技术(CELT);聚焦电泳和微系统在(生物)化学中的应用(μ-TAS或芯片上实验室);芯片实验室中微流体输运网络的合理选择之一-灵巧(Smart)电渗泵;4)结论.

  13. Nanocrystalline TiO2 films containing sulfur and gold: Synthesis, characterization and application to immobilize and direct electrochemistry of cytochrome c

    Science.gov (United States)

    Rafiee-Pour, Hossain-Ali; Hamadanian, Masood; Koushali, Samaneh Katebi

    2016-02-01

    In this paper, nanoporous titanium dioxide (TiO2) film was used for cytochrome c (cyt c) immobilization as an electrode substrate for electrochemical redox activity of the adsorbed cyt c. The result of cyclic voltammetry exhibited a pair of well-defined and quasi-reversible peaks for direct electron transfer of cyt c (formal potential [E0‧ = (Epa + Epc)/2] of 53 mV versus Ag/AgCl). In addition the effect of metal and nonmetal ions (Au, S) co-doping on the efficiency of TiO2 nanoparticles (prepared by combining sol-gel and photo-deposition methods) on the cyt c immobilization process was investigated. The results exhibited that the Au, S-co-doped TiO2 (Au/S-TiO2) with a spheroidal shape demonstrates a smaller grain size than the pure TiO2. Meanwhile, the UV-vis DRS of Au/S-TiO2 showed a considerable red shift to the visible region. As a result, it was found that 4% Au/0.1% S-TiO2 had the highest efficiency for cytochrome c immobilization. The results showed that the peak currents were higher after the annealing of the TiO2 film. This observation suggests that the use of TiO2 films may be advantageous for the development of nanoporous biosensors employing reductive electrochemistry.

  14. A Novel Hydrogen Peroxide Sensor via the Direct Electrochemistry of Horseradish Peroxidase Immobilized on Colloidal Gold Modified Screen-printed Electrode

    Directory of Open Access Journals (Sweden)

    Huangxian Ju

    2003-09-01

    Full Text Available The direct electrochemistry of horseradish peroxidase (HRP immobilized on a colloidal gold modified screen-printed carbon electrode (HRP-Au-SPCE and its application as a disposable sensor were studied. The immobilized HRP displayed a couple of stable and well-defined redox peaks with a formal potential of –0.338 V (vs. SCE and a heterogeneous electron transfer rate constant of (0.75±0.04 s-1 in 0.1 M pH 7.0 PBS. It showed a highly thermal stability, fast amperometric response and an electrocatalytic activity to the reduction of hydrogen peroxide (H2O2 without the aid of an electron mediator. The biosensor exhibited high sensitivity, good reproducibility, and long-term stability for the determination of H2O2 with a linear range from 0.8 μM to 1.0 mM and a detection limit of 0. 4 μM at 3σ. The variation coefficients are 2.7 % and 2.3 % for over 10 successive assays at the H2O2 concentrations of 8.0 and 20 μM, respectively. The K M app for H2O2 sensor was determined to be 1.3 mM.

  15. Direct Electrochemistry of Horseradish Peroxidase Embedded in Nano-Fe304 Matrix on Paraffin Impregnated Graphite Electrode and Its Electrochemical Catalysis for H2O2

    Institute of Scientific and Technical Information of China (English)

    龚静鸣; 林祥钦

    2003-01-01

    Fe3O4 particles coated with acrylic copolymer (ACP) of about 5--8 nm in diameter were synthesized and used for immobilization of horseradish peroxidase (HRP). Direct electrochemistry of HRP embedded in the nanosized Fe304 solid matrix modified paraffin impregnated graphite electrode (PIGE) was achieved,which is related to the heine Fe(Ⅲ)/Fe(Ⅱ) conversion of HRP. Cyclic voltammetry gave a pair of reproducible and welldefined redox peaks at about Ea of -0.295 V vs. SCE. The standard rate constant k, was determined as 2.7 s-1. It demonstrated that the nano-Fe3O4 solid matrix offers a friendly platform to assemble the HRP protein molecules and enhance the electron transfer rate between the HRP and the electrode. UV-Vis absorption spectra and WrIR spectra studies revealed that the embedded HRP retained its native-like structure. The HRP/Fe3O4/PIGE showed a strong catalytic activity toward H2O2. The voltammetric response was a linear function of H2O2 concentration in the range of 10-140μmol/L with detection limit of 7.3 μmol/L (s/n = 3 ). The apparent Michaelis-Menten constant is calculated to be 0.42 mmol/L.

  16. Pseudo-single-crystal electrochemistry on polycrystalline electrodes: visualizing activity at grains and grain boundaries on platinum for the Fe2+/Fe3+ redox reaction.

    Science.gov (United States)

    Aaronson, Barak D B; Chen, Chang-Hui; Li, Hongjiao; Koper, Marc T M; Lai, Stanley C S; Unwin, Patrick R

    2013-03-13

    The influence of electrode surface structure on electrochemical reaction rates and mechanisms is a major theme in electrochemical research, especially as electrodes with inherent structural heterogeneities are used ubiquitously. Yet, probing local electrochemistry and surface structure at complex surfaces is challenging. In this paper, high spatial resolution scanning electrochemical cell microscopy (SECCM) complemented with electron backscatter diffraction (EBSD) is demonstrated as a means of performing 'pseudo-single-crystal' electrochemical measurements at individual grains of a polycrystalline platinum electrode, while also allowing grain boundaries to be probed. Using the Fe(2+/3+) couple as an illustrative case, a strong correlation is found between local surface structure and electrochemical activity. Variations in electrochemical activity for individual high index grains, visualized in a weakly adsorbing perchlorate medium, show that there is higher activity on grains with a significant (101) orientation contribution, compared to those with (001) and (111) contribution, consistent with findings on single-crystal electrodes. Interestingly, for Fe(2+) oxidation in a sulfate medium a different pattern of activity emerges. Here, SECCM reveals only minor variations in activity between individual grains, again consistent with single-crystal studies, with a greatly enhanced activity at grain boundaries. This suggests that these sites may contribute significantly to the overall electrochemical behavior measured on the macroscale. PMID:23405963

  17. Applied logistic regression

    CERN Document Server

    Hosmer, David W; Sturdivant, Rodney X

    2013-01-01

     A new edition of the definitive guide to logistic regression modeling for health science and other applications This thoroughly expanded Third Edition provides an easily accessible introduction to the logistic regression (LR) model and highlights the power of this model by examining the relationship between a dichotomous outcome and a set of covariables. Applied Logistic Regression, Third Edition emphasizes applications in the health sciences and handpicks topics that best suit the use of modern statistical software. The book provides readers with state-of-

  18. Applied Semantic Web Technologies

    CERN Document Server

    Sugumaran, Vijayan

    2011-01-01

    The rapid advancement of semantic web technologies, along with the fact that they are at various levels of maturity, has left many practitioners confused about the current state of these technologies. Focusing on the most mature technologies, Applied Semantic Web Technologies integrates theory with case studies to illustrate the history, current state, and future direction of the semantic web. It maintains an emphasis on real-world applications and examines the technical and practical issues related to the use of semantic technologies in intelligent information management. The book starts with

  19. Applied linear regression

    CERN Document Server

    Weisberg, Sanford

    2005-01-01

    Master linear regression techniques with a new edition of a classic text Reviews of the Second Edition: ""I found it enjoyable reading and so full of interesting material that even the well-informed reader will probably find something new . . . a necessity for all of those who do linear regression."" -Technometrics, February 1987 ""Overall, I feel that the book is a valuable addition to the now considerable list of texts on applied linear regression. It should be a strong contender as the leading text for a first serious course in regression analysis."" -American Scientist, May-June 1987

  20. Applied linear regression

    CERN Document Server

    Weisberg, Sanford

    2013-01-01

    Praise for the Third Edition ""...this is an excellent book which could easily be used as a course text...""-International Statistical Institute The Fourth Edition of Applied Linear Regression provides a thorough update of the basic theory and methodology of linear regression modeling. Demonstrating the practical applications of linear regression analysis techniques, the Fourth Edition uses interesting, real-world exercises and examples. Stressing central concepts such as model building, understanding parameters, assessing fit and reliability, and drawing conclusions, the new edition illus

  1. Applied energy an introduction

    CERN Document Server

    Abdullah, Mohammad Omar

    2012-01-01

    Introduction to Applied EnergyGeneral IntroductionEnergy and Power BasicsEnergy EquationEnergy Generation SystemsEnergy Storage and MethodsEnergy Efficiencies and LossesEnergy industry and Energy Applications in Small -Medium Enterprises (SME) industriesEnergy IndustryEnergy-Intensive industryEnergy Applications in SME Energy industriesEnergy Sources and SupplyEnergy SourcesEnergy Supply and Energy DemandEnergy Flow Visualization and Sankey DiagramEnergy Management and AnalysisEnergy AuditsEnergy Use and Fuel Consumption StudyEnergy Life-Cycle AnalysisEnergy and EnvironmentEnergy Pollutants, S

  2. Applied impulsive mathematical models

    CERN Document Server

    Stamova, Ivanka

    2016-01-01

    Using the theory of impulsive differential equations, this book focuses on mathematical models which reflect current research in biology, population dynamics, neural networks and economics. The authors provide the basic background from the fundamental theory and give a systematic exposition of recent results related to the qualitative analysis of impulsive mathematical models. Consisting of six chapters, the book presents many applicable techniques, making them available in a single source easily accessible to researchers interested in mathematical models and their applications. Serving as a valuable reference, this text is addressed to a wide audience of professionals, including mathematicians, applied researchers and practitioners.

  3. Applying Popper's Probability

    CERN Document Server

    Whiting, Alan B

    2014-01-01

    Professor Sir Karl Popper (1902-1994) was one of the most influential philosophers of science of the twentieth century, best known for his doctrine of falsifiability. His axiomatic formulation of probability, however, is unknown to current scientists, though it is championed by several current philosophers of science as superior to the familiar version. Applying his system to problems identified by himself and his supporters, it is shown that it does not have some features he intended and does not solve the problems they have identified.

  4. SIFT applied to CBIR

    Directory of Open Access Journals (Sweden)

    ALMEIDA, J.

    2009-12-01

    Full Text Available Content-Based Image Retrieval (CBIR is a challenging task. Common approaches use only low-level features. Notwithstanding, such CBIR solutions fail on capturing some local features representing the details and nuances of scenes. Many techniques in image processing and computer vision can capture these scene semantics. Among them, the Scale Invariant Features Transform~(SIFT has been widely used in a lot of applications. This approach relies on the choice of several parameters which directly impact its effectiveness when applied to retrieve images. In this paper, we discuss the results obtained in several experiments proposed to evaluate the application of the SIFT in CBIR tasks.

  5. Applied complex variables

    CERN Document Server

    Dettman, John W

    1965-01-01

    Analytic function theory is a traditional subject going back to Cauchy and Riemann in the 19th century. Once the exclusive province of advanced mathematics students, its applications have proven vital to today's physicists and engineers. In this highly regarded work, Professor John W. Dettman offers a clear, well-organized overview of the subject and various applications - making the often-perplexing study of analytic functions of complex variables more accessible to a wider audience. The first half of Applied Complex Variables, designed for sequential study, is a step-by-step treatment of fun

  6. Applied multivariate statistical analysis

    CERN Document Server

    Härdle, Wolfgang Karl

    2015-01-01

    Focusing on high-dimensional applications, this 4th edition presents the tools and concepts used in multivariate data analysis in a style that is also accessible for non-mathematicians and practitioners.  It surveys the basic principles and emphasizes both exploratory and inferential statistics; a new chapter on Variable Selection (Lasso, SCAD and Elastic Net) has also been added.  All chapters include practical exercises that highlight applications in different multivariate data analysis fields: in quantitative financial studies, where the joint dynamics of assets are observed; in medicine, where recorded observations of subjects in different locations form the basis for reliable diagnoses and medication; and in quantitative marketing, where consumers’ preferences are collected in order to construct models of consumer behavior.  All of these examples involve high to ultra-high dimensions and represent a number of major fields in big data analysis. The fourth edition of this book on Applied Multivariate ...

  7. Applied plasma physics

    International Nuclear Information System (INIS)

    Applied Plasma Physics is a major sub-organizational unit of the MFE Program. It includes Fusion Plasma Theory and Experimental Plasma Research. The Fusion Plasma Theory group has the responsibility for developing theoretical-computational models in the general areas of plasma properties, equilibrium, stability, transport, and atomic physics. This group has responsibility for giving guidance to the mirror experimental program. There is a formal division of the group into theory and computational; however, in this report the efforts of the two areas are not separated since many projects have contributions from members of both. Under the Experimental Plasma Research Program, we are developing the intense, pulsed neutral-beam source (IPINS) for the generation of a reversed-field configuration on 2XIIB. We are also studying the feasibility of utilizing certain neutron-detection techniques as plasma diagnostics in the next generation of thermonuclear experiments

  8. Applied partial differential equations

    CERN Document Server

    Logan, J David

    2015-01-01

    This text presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs.  Emphasis is placed on motivation, concepts, methods, and interpretation, rather than on formal theory. The concise treatment of the subject is maintained in this third edition covering all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. In this third edition, text remains intimately tied to applications in heat transfer, wave motion, biological systems, and a variety other topics in pure and applied science. The text offers flexibility to instructors who, for example, may wish to insert topics from biology or numerical methods at any time in the course. The exposition is presented in a friendly, easy-to-read, style, with mathematical ideas motivated from physical problems. Many exercises and worked e...

  9. Applied number theory

    CERN Document Server

    Niederreiter, Harald

    2015-01-01

    This textbook effectively builds a bridge from basic number theory to recent advances in applied number theory. It presents the first unified account of the four major areas of application where number theory plays a fundamental role, namely cryptography, coding theory, quasi-Monte Carlo methods, and pseudorandom number generation, allowing the authors to delineate the manifold links and interrelations between these areas.  Number theory, which Carl-Friedrich Gauss famously dubbed the queen of mathematics, has always been considered a very beautiful field of mathematics, producing lovely results and elegant proofs. While only very few real-life applications were known in the past, today number theory can be found in everyday life: in supermarket bar code scanners, in our cars’ GPS systems, in online banking, etc.  Starting with a brief introductory course on number theory in Chapter 1, which makes the book more accessible for undergraduates, the authors describe the four main application areas in Chapters...

  10. Applied plasma physics

    International Nuclear Information System (INIS)

    Applied Plasma Physics is a major sub-organizational unit of the MFE Porgram. It includes Fusion Plasma Theory and Experimental Plasma Research. Fusion Plasma Theory has the responsibility for developing theoretical-computational models in the general areas of plasma properties, equilibrium, stability, transport, and atomic physics. This group has responsibility for giving guidance to the mirror experimental program. There is a formal division of the group into theory and computational; however, in this report the efforts of the two areas are not separated since many projects have contributions from members of both. Under Experimental Plasma Research, we are developing the intense, pulsed ion-neutral source (IPINS) for the generation of a reversed-field configuration on 2XIIB. We are also studying the feasibility of utilizing certain neutron-detection techniques as plasma diagnostics in the next generation of thermonuclear experiments

  11. Applied statistical thermodynamics

    CERN Document Server

    Lucas, Klaus

    1991-01-01

    The book guides the reader from the foundations of statisti- cal thermodynamics including the theory of intermolecular forces to modern computer-aided applications in chemical en- gineering and physical chemistry. The approach is new. The foundations of quantum and statistical mechanics are presen- ted in a simple way and their applications to the prediction of fluid phase behavior of real systems are demonstrated. A particular effort is made to introduce the reader to expli- cit formulations of intermolecular interaction models and to show how these models influence the properties of fluid sy- stems. The established methods of statistical mechanics - computer simulation, perturbation theory, and numerical in- tegration - are discussed in a style appropriate for newcom- ers and are extensively applied. Numerous worked examples illustrate how practical calculations should be carried out.

  12. Applied mechanics of solids

    CERN Document Server

    Bower, Allan F

    2009-01-01

    Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based. Develop Intuitive Ability to Identify and Avoid Physically Meaningless Predictions Applied Mechanics of Solids is a powerful tool for understanding how to take advantage of these revolutionary computer advances in the field of solid mechanics. Beginning with a description of the physical and mathematical laws that govern deformation in solids, the text presents modern constitutive equations, as well as analytical and computational methods of stress analysis and fracture mechanics. It also addresses the nonlinear theory of deformable rods, membranes, plates, and shells, and solutions to important boundary and initial value problems in solid mechanics. The author uses the step-by-step manner of a blackboard lecture to explain problem solving methods, often providing...

  13. Applied plasma physics

    International Nuclear Information System (INIS)

    Applied Plasma Physics is a major sub-organizational unit of the Magnetic Fusion Energy (MFE) Program. It includes Fusion Plasma Theory and Experimental Plasma Research. The Fusion Plasma Theory group has the responsibility for developing theoretical-computational models in the general areas of plasma properties, equilibrium, stability, transport, and atomic physics. This group has responsibility for giving guidance to the mirror experimental program. There is a formal division of the group into theory and computational; however, in this report the efforts of the two areas are not separated since many projects have contributions from members of both. Under the Experimental Plasma Research Program we are developing a neutral-beam source, the intense, pulsed ion-neutral source (IPINS), for the generation of a reversed-field configuration on 2XIIB. We are also studying the feasibility of using certain neutron-detection techniques as plasma diagnostics in the next generation of thermonuclear experiments

  14. Applied Linguistics and the "Annual Review of Applied Linguistics."

    Science.gov (United States)

    Kaplan, Robert B.; Grabe, William

    2000-01-01

    Examines the complexities and differences involved in granting disciplinary status to the role of applied linguistics, discusses the role of the "Annual Review of Applied Linguistics" as a contributor to the development of applied linguistics, and highlights a set of publications for the future of applied linguistics. (Author/VWL)

  15. Academic training: Applied superconductivity

    CERN Multimedia

    2007-01-01

    LECTURE SERIES 17, 18, 19 January from 11.00 to 12.00 hrs Council Room, Bldg 503 Applied Superconductivity : Theory, superconducting Materials and applications E. PALMIERI/INFN, Padova, Italy When hearing about persistent currents recirculating for several years in a superconducting loop without any appreciable decay, one realizes that we are dealing with a phenomenon which in nature is the closest known to the perpetual motion. Zero resistivity and perfect diamagnetism in Mercury at 4.2 K, the breakthrough during 75 years of several hundreds of superconducting materials, the revolution of the "liquid Nitrogen superconductivity"; the discovery of still a binary compound becoming superconducting at 40 K and the subsequent re-exploration of the already known superconducting materials: Nature discloses drop by drop its intimate secrets and nobody can exclude that the last final surprise must still come. After an overview of phenomenology and basic theory of superconductivity, the lectures for this a...

  16. Applied hydraulic transients

    CERN Document Server

    Chaudhry, M Hanif

    2014-01-01

    This book covers hydraulic transients in a comprehensive and systematic manner from introduction to advanced level and presents various methods of analysis for computer solution. The field of application of the book is very broad and diverse and covers areas such as hydroelectric projects, pumped storage schemes, water-supply systems, cooling-water systems, oil pipelines and industrial piping systems. Strong emphasis is given to practical applications, including several case studies, problems of applied nature, and design criteria. This will help design engineers and introduce students to real-life projects. This book also: ·         Presents modern methods of analysis suitable for computer analysis, such as the method of characteristics, explicit and implicit finite-difference methods and matrix methods ·         Includes case studies of actual projects ·         Provides extensive and complete treatment of governed hydraulic turbines ·         Presents design charts, desi...

  17. Applying evolutionary anthropology.

    Science.gov (United States)

    Gibson, Mhairi A; Lawson, David W

    2015-01-01

    Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution.

  18. Applied large eddy simulation.

    Science.gov (United States)

    Tucker, Paul G; Lardeau, Sylvain

    2009-07-28

    Large eddy simulation (LES) is now seen more and more as a viable alternative to current industrial practice, usually based on problem-specific Reynolds-averaged Navier-Stokes (RANS) methods. Access to detailed flow physics is attractive to industry, especially in an environment in which computer modelling is bound to play an ever increasing role. However, the improvement in accuracy and flow detail has substantial cost. This has so far prevented wider industrial use of LES. The purpose of the applied LES discussion meeting was to address questions regarding what is achievable and what is not, given the current technology and knowledge, for an industrial practitioner who is interested in using LES. The use of LES was explored in an application-centred context between diverse fields. The general flow-governing equation form was explored along with various LES models. The errors occurring in LES were analysed. Also, the hybridization of RANS and LES was considered. The importance of modelling relative to boundary conditions, problem definition and other more mundane aspects were examined. It was to an extent concluded that for LES to make most rapid industrial impact, pragmatic hybrid use of LES, implicit LES and RANS elements will probably be needed. Added to this further, highly industrial sector model parametrizations will be required with clear thought on the key target design parameter(s). The combination of good numerical modelling expertise, a sound understanding of turbulence, along with artistry, pragmatism and the use of recent developments in computer science should dramatically add impetus to the industrial uptake of LES. In the light of the numerous technical challenges that remain it appears that for some time to come LES will have echoes of the high levels of technical knowledge required for safe use of RANS but with much greater fidelity. PMID:19531503

  19. Essays in applied microeconomics

    Science.gov (United States)

    Wang, Xiaoting

    In this dissertation I use Microeconomic theory to study firms' behavior. Chapter One introduces the motivations and main findings of this dissertation. Chapter Two studies the issue of information provision through advertisement when markets are segmented and consumers' price information is incomplete. Firms compete in prices and advertising strategies for consumers with transportation costs. High advertising costs contribute to market segmentation. Low advertising costs promote price competition among firms and improves consumer welfare. Chapter Three also investigates market power as a result of consumers' switching costs. A potential entrant can offer a new product bundled with an existing product to compensate consumers for their switching cost. If the primary market is competitive, bundling simply plays the role of price discrimination, and it does not dominate unbundled sales in the process of entry. If the entrant has market power in the primary market, then bundling also plays the role of leveraging market power and it dominates unbundled sales. The market for electric power generation has been opened to competition in recent years. Chapter Four looks at issues involved in the deregulated electricity market. By comparing the performance of the competitive market with the social optimum, we identify the conditions under which market equilibrium generates socially efficient levels of electric power. Chapter Two to Four investigate the strategic behavior among firms. Chapter Five studies the interaction between firms and unemployed workers in a frictional labor market. We set up an asymmetric job auction model, where two types of workers apply for two types of job openings by bidding in auctions and firms hire the applicant offering them the most profits. The job auction model internalizes the determination of the share of surplus from a match, therefore endogenously generates incentives for an efficient division of the matching surplus. Microeconomic

  20. Applied Historical Astronomy

    Science.gov (United States)

    Stephenson, F. Richard

    2014-01-01

    F. Richard Stephenson has spent most of his research career -- spanning more than 45 years -- studying various aspects of Applied Historical Astronomy. The aim of this interdisciplinary subject is the application of historical astronomical records to the investigation of problems in modern astronomy and geophysics. Stephenson has almost exclusively concentrated on pre-telescopic records, especially those preserved from ancient and medieval times -- the earliest reliable observations dating from around 700 BC. The records which have mainly interested him are of eclipses (both solar and lunar), supernovae, sunspots and aurorae, and Halley's Comet. The main sources of early astronomical data are fourfold: records from ancient and medieval East Asia (China, together with Korea and Japan); ancient Babylon; ancient and medieval Europe; and the medieval Arab world. A feature of Stephenson's research is the direct consultation of early astronomical texts in their original language -- either working unaided or with the help of colleagues. He has also developed a variety of techniques to help interpret the various observations. Most pre-telescopic observations are very crude by present-day standards. In addition, early motives for skywatching were more often astrological rather than scientific. Despite these drawbacks, ancient and medieval astronomical records have two remarkable advantages over modern data. Firstly, they can enable the investigation of long-term trends (e.g. in the terrestrial rate of rotation), which in the relatively short period covered by telescopic observations are obscured by short-term fluctuations. Secondly, over the lengthy time-scale which they cover, significant numbers of very rare events (such as Galactic supernovae) were reported, which have few -- if any-- counterparts in the telescopic record. In his various researches, Stephenson has mainly focused his attention on two specific topics. These are: (i) long-term changes in the Earth's rate of

  1. The Development of Microsystems and New Applications of Electrochemistry%微系统科技的发展及电化学的新应用

    Institute of Scientific and Technical Information of China (English)

    田昭武; 林华水; 孙建军; 周勇亮; 祖延斌; 田中群; 罗瑾; 林仲华; 谢兆雄; 胡维玲; 胡涌刚; 苏文煅

    2001-01-01

    本文根据田昭武在中国化学会第一届全国纳米技术与应用会议(2000.11.28,厦门)特邀大会报告内容整理而成:   1 微系统技术概述(技术的必要性和前景)   2 发展微系统技术的特殊困难   3 电化学在微系统技术中的应用    3.1 用于复杂3D-图形微加工的约束刻蚀剂层技术(CELT)    3.2 聚焦电泳和微系统在(生物)化学中的应用(μ-TAS或芯片上实验室)    3.3 芯片实验室中微流体输运网络的合理选择之一-灵巧(Smart)电渗泵   4 结论%1 Brief introduction to microsystems   2 Discussions on the developments of microsystem technologies   3 Applications of electrochemistry in microsystem    3.1 Confined Etchant Layer Technique (CELT) for the complex 3D-pattern micromachining    3.2 Focusing Electrophoresis and the application of microsystem in (bio) chemistry (μTAS or Lab on A Chip)    3.3 Smart Electro-Osmosis pump——a reasonable choosing for microfluidic network   4 Concluding remark

  2. Electrochemistry of glucose oxidase on modified carbon nanotubes%葡萄糖氧化酶在修饰碳纳米管上的电化学

    Institute of Scientific and Technical Information of China (English)

    王佳; 李俊华; 周健

    2014-01-01

    Glucose oxidase (GOx) was immobilized on the electrode surface of multi-walled carbon nanotubes, amino functionalized carbon nanotubes (AMWNTs)and carboxyl functionalized carbon nanotubes (MWNTs-COOH). Electrochemical measurements indicated that the formal potentials of GOx immobilized on AMWNTs and MWNTs-COOH did not change, but their peak currents were improved. The peak current of GOx immobilized on AMWNTs was four times larger than that immobilized on MWNTs. The electrochemistry behavior of Nafion/GOx-AMWNTs/GC electrode were further characterized. The results indicated that GOx immobilized on AMWNTs could undergo a direct quasi-reversible electrochemical reaction and show good stability. Amino-functionalized electrodes could significantly improve the performance of GOx-based biofuel cells.%将葡萄糖氧化酶(GOx)分别固定在多壁碳纳米管(MWNT)、氨基化碳纳米管(AMWNTs)和羧基化碳纳米管(MWNTs-COOH)修饰的电极表面,电化学测量表明固定在羧基和氨基碳纳米管上的 GOx 式量电位基本没变,而峰电流得到了很大提高。尤其是氨基化碳纳米管上的GOx的峰电流是未功能化碳管上GOx的4倍多。进一步研究Nafion/GOx-AMWNTs/GC电极的电化学行为,发现固定在AMWNTs上的GOx可进行直接准可逆的氧化还原反应,而且固定在 AMWNTs 上的 GOx 有良好的稳定性。氨基改性碳纳米管电极载体材料有望显著提高 GOx生物燃料电池性能。

  3. Amperometric carbohydrate antigen 19-9 immunosensor based on three dimensional ordered macroporous magnetic Au film coupling direct electrochemistry of horseradish peroxidase

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qi [College of Sciences, Nanjing Tech University, Nanjing 211816 (China); Chen, Xiaojun, E-mail: chenxj_njut@126.com [College of Sciences, Nanjing Tech University, Nanjing 211816 (China); State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009 (China); Tang, Yin [Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang 215600 (China); Ge, Lingna; Guo, Buhua [College of Sciences, Nanjing Tech University, Nanjing 211816 (China); Yao, Cheng, E-mail: yaochengnjut@163.com [College of Sciences, Nanjing Tech University, Nanjing 211816 (China)

    2014-03-01

    Highlights: • Three dimensional ordered macroporous magnetic electrode was newly used in electrochemical immunosensor. • The large surface area of macroporous magnetic electrode could improve the immobilized amount of antibody. • Au nanoparticles functionalized SBA-15 was used to immobilize enzyme labeled Ab₂ and enzyme. • Macroporous magnetic electrode and Au nanoparticles composite facilitated the direct electron transfer of enzyme. • The immunoassay avoided adding electron transfer mediator, simplifying the procedure. Abstract: A sandwich-type electrochemical immunosensor for the detection of carbohydrate antigen 19-9 (CA 19-9) antigen based on the immobilization of primary antibody (Ab₁) on three dimensional ordered macroporous magnetic (3DOMM) electrode, and the direct electrochemistry of horseradish peroxidase (HRP) that was used as both the label of secondary antibody (Ab₂) and the blocking reagent. The 3DOMM electrode was fabricated by introducing core–shell Au–SiO₂@Fe₃O₄ nanospheres onto the surface of three dimensional ordered macroporous (3DOM) Au electrode via the application of an external magnet. Au nanoparticles functionalized SBA-15 (Au@SBA-15) was conjugated to the HRP labeled secondary antibody (HRP-Ab₂) through the Au–SH or Au–NH₃⁺ interaction, and HRP was also used as the block reagent. The formation of antigen–antibody complex made the combination of Au@SBA-15 and 3DOMM exhibit remarkable synergistic effects for accelerating direct electron transfer (DET) between HRP and the electrode. Under the optimal conditions, the DET current signal increased proportionally to CA 19-9 concentration in the range of 0.05 to 15.65 U mL⁻¹ with a detection limit of 0.01 U mL⁻¹. Moreover, the immunosensor showed high selectivity, good stability, satisfactory reproducibility and regeneration. Importantly, the developed method was used to assay clinical serum specimens, achieving a good relation with those obtained from

  4. Superficial characterization and zircaloy-2 electrochemistry with hydrothermal deposit of platinum; Caracterizacion superficial y electroquimica de zircaloy-2 con deposito hidrotermal de platino

    Energy Technology Data Exchange (ETDEWEB)

    Contreras R, A.; Arganis J, C. R.; Medina A, A. L. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Gris C, M. M., E-mail: aida.contreras@inin.gob.mx [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Carretera Cardel-Nautla Km 42.5, Alto Lucero, Veracruz (Mexico)

    2011-11-15

    The combustible elements of the boiling water nuclear reactors (BWR) are formed by zircaloy-2 tubes that contain in their interior UO{sub 2} pellets. With the objective of mitigating the speed of crack growth by IGSCC to a minimum negative impact on the BWR operation, General Electric developed the noble metals chemical addition (NMCA), in where noble metals particles as Pt, Pd, and Rh, are deposited on the surface of the metal to catalyze the recombination of H{sub 2} and O{sub 2}. Hydrogen is also injected to have it in excess and to favor this recombination (HWC) and zinc to reduce dose. In this work was oxidized zircaloy-2 low similar conditions to the HWC, platinum was deposited starting from a solution of Na{sub 2}Pt(OH){sub 6} with 30 ppm of Pt, in refined samples and without polishing, they were characterized by scanning electron microscopy, energy dispersed spectroscopy, XPS and electrochemistry, by means of Tafel curves and cyclical polarization. On the zircaloy surface was found a ZrO{sub 2} layer that remains under the different study conditions. Under HWC conditions is the oxides formation, possibly complex oxides of zirconium, iron and tin. After the platinum deposit these oxides decrease forming the sub-oxides: Zr{sub 2}O, Zr O, Zr{sub 2}O{sub 3}. The Tafel curves indicates the reduction of the oxygen of the sample with platinum and the cyclical polarization curves show that the reactions that happen on the zircaloy electrodes are not dur to located corrosion. (Author)

  5. Nuclear power plant conference 2010 (NPC 2010): International conference on water chemistry of nuclear reactor systems and 8th International radiolysis, electrochemistry and materials performance workshop

    International Nuclear Information System (INIS)

    The Nuclear Plant Chemistry Conference was held in Quebec City, Quebec, Canada on October 3-7, 2010. It was hosted by the Canadian Nuclear Society and was held in Canada for the first time. This international event hosted over 300 attendees, two thirds from outside of Canada, mostly from Europe and and Far East. The conference is formally known as the International Conference on Water Chemistry of Nuclear Reactor Systems and is the 15th of a series that began in 1977 in Bournemouth, UK. The conference focussed on the latest developments in the science and technology of water chemistry control in nuclear reactor systems. Utility scientists, engineers and operations people met their counterparts from research institutes, service organizations and universities to address the challenges of chemistry control and degradation management of their complex and costly plants for the many decades that they are expected to operate. Following the four day conference, the 8th International Radiolysis, Electrochemistry and Materials Performance Workshop was held as associated, but otherwise free-standing event on Friday, October 8, 2010. It was also well attended and the primary focus was the effect of radiation on corrosion. When asked about the importance of chemistry in operating nuclear power plants, the primary organizers summarized it in the following statement: 'Once a nuclear plant is in operation, chemistry improvement is the only way to increase the longevity of the plant and its equipment'. The organisers of the 2010 Workshop and the NPC 2010 conference decided that these two events would be held consecutively, as previous, but for the first time the organization and registration would be shared, which proved to be a winning combination by the attendance.

  6. Imidazoline derivative templated synthesis of broccoli-like Bi2S3 and its electrocatalysis towards the direct electrochemistry of hemoglobin.

    Science.gov (United States)

    Chen, Xiaoqian; Wang, Qingxiang; Wang, Liheng; Gao, Feng; Wang, Wei; Hu, Zhengshui

    2015-04-15

    A broccoli-like bismuth sulfide (bBi2S3) was synthesized via a solvothermal method using a self-made imidazoline derivative of 2-undecyl-1-dithioureido-ethyl-imidazoline as the soft template. The morphology and chemical constitution of the product were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). Electrochemical characterization experiments show that the bBi2S3 has the higher specific surface area and standard heterogeneous electron transfer rate constant than the rod-like Bi2S3 (rBi2S3). Hemoglobin (Hb) was then chosen as a protein model to investigate the electrocatalytic property of the synthesized bBi2S3. The results show that Hb entrapped in the composite film of chitosan and bBi2S3 displays an excellent direct electrochemistry, and retains its biocatalytic activity toward the electro-reduction of hydrogen peroxide. The current response in the amperometry shows a linear response to H2O2 concentrations in the range from 0.4 to 4.8µM with high sensitivity (444µAmM(-1)) and low detection limit (0.096µM). The Michaelis-Menten constant (KM(app)) of the fabricated bioelectrode for H2O2 was determined as low as 1µM. These results demonstrate that the synthesized bBi2S3 offers a new path for the immobilization of redox-active protein and the construction of the third-generation biosensors. PMID:25437355

  7. Structural, spectral, electrochemistry, thermal properties and theoretical studies on 4-[N, N-di(4-tolyl)amino] benzaldehyde-2-chloro benzoylhydrazone

    Science.gov (United States)

    Lizeng, Liu; Wei, Li; Xianfang, Meng; Dongzhi, Liu; Gongfeng, Xu; Zhengchen, Bai

    2014-11-01

    The title compound 4-[N, N-di(4-tolyl)amino] benzaldehyde-2-chloro benzoylhydrazone (C28H24ClN3O, Mr = 453.96) was synthesized by the reaction of 4-[N, N-di(4-tolyl)amino] benzaldehyde with 2-chlorobenzohydrazide, and its structure was characterized by IR, 1H NMR, 13H NMR, high-resolution mass spectrometry and single-crystal X-ray diffraction. The crystal belongs to Monoclinic, space group P2(1)/n with a = 12.626(3), b = 12.609(3), c = 15.837(3) Å, β = 90.00(3)°, Z = 5, V = 2512.5(9) Å3, Mr = 453.95, Dc = 1.280 g/cm3, μ = 0.183 mm-1, F(0 0 0) = 1024, R = 0.0432 and wR = 0.1087. X-ray analysis revealed that one of the benzene ring and acylhydrazone were essentially planar, the 2-chloro benzene ring and amide were non-planar, the torsion angles C(1)sbnd C(6)sbnd C(7)sbnd O(1) and C(5)sbnd C(6)sbnd C(7)sbnd O(1) are 61.4(5)° and -114.4(4)°. The thermal stability studies indicate that the title compound is stable up to 341.1 °C. The spectral, electrochemistry properties and theoretical studies show that the title compound is a good candidate for the charge-transporting materials.

  8. Essays in Applied Microeconomics

    Science.gov (United States)

    Ge, Qi

    This dissertation consists of three self-contained applied microeconomics essays on topics related to behavioral economics and industrial organization. Chapter 1 studies how sentiment as a result of sports event outcomes affects consumers' tipping behavior in the presence of social norms. I formulate a model of tipping behavior that captures consumer sentiment following a reference-dependent preference framework and empirically test its relevance using the game outcomes of the NBA and the trip and tipping data on New York City taxicabs. While I find that consumers' tipping behavior responds to unexpected wins and losses of their home team, particularly in close game outcomes, I do not find evidence for loss aversion. Coupled with the findings on default tipping, my empirical results on the asymmetric tipping responses suggest that while social norms may dominate loss aversion, affect and surprises can result in freedom on the upside of tipping. Chapter 2 utilizes a novel data source of airline entry and exit announcements and examines how the incumbent airlines adjust quality provisions as a response to their competitors' announcements and the role of timing in such responses. I find no evidence that the incumbents engage in preemptive actions when facing probable entry and exit threats as signaled by the competitors' announcements in either short term or long term. There is, however, evidence supporting their responses to the competitors' realized entry or exit. My empirical findings underscore the role of timing in determining preemptive actions and suggest that previous studies may have overestimated how the incumbent airlines respond to entry threats. Chapter 3, which is collaborated with Benjamin Ho, investigates the habit formation of consumers' thermostat setting behavior, an often implicitly made decision and yet a key determinant of home energy consumption and expenditures. We utilize a high frequency dataset on household thermostat usage and find that

  9. Essays in applied economics

    Science.gov (United States)

    Arano, Kathleen

    Three independent studies in applied economics are presented. The first essay looks at the US natural gas industrial sector and estimates welfare effects associated with the changes in natural gas regulatory policy over the past three decades. Using a disequilibrium model suited to the natural gas industry, welfare transfers and deadweight losses are calculated. Results indicate that deregulation policies, beginning with the NGPA of 1978, have caused the industry to become more responsive to market conditions. Over time, regulated prices converge toward the estimated equilibrium prices. As a result of this convergence, deadweight losses associated with regulation are also diminished. The second essay examines the discounted utility model (DU), the standard model used for intertemporal decision-making. Prior empirical studies challenge the descriptive validity of the model. This essay addresses the four main inconsistencies that have been raised: domain dependence, magnitude effects, time effects, and gain/loss asymmetries. These inconsistencies, however, may be the result of the implicit assumption of linear utility and not a failure of the DU model itself. In order to test this hypothesis, data was collected from in-class surveys of economics classes at Mississippi State University. A random effects model for panel data estimation which accounts for individual specific effects was then used to impute discount rates measured in terms of dollars and utility. All four inconsistencies were found to be present when the dollar measures were used. Using utility measures of the discount rate resolved the inconsistencies in some cases. The third essay brings together two perspectives in the study of religion and economics: modeling religious behavior using economic tools and variables, and modeling economic behavior using religious variables. A system of ordered probit equations is developed to simultaneously model religious activities and economic outcomes. Using data

  10. Applied Ethics in Nowadays Society

    OpenAIRE

    Tomita CIULEI

    2013-01-01

    This special issue is dedicated to Nowadays Applied Ethics in Society, and falls in the field of social sciences and humanities, being hosted both theoretical approaches and empirical research in various areas of applied ethics. Applied ethics analyzes of a series of morally concrete situations of social or professional practice in order to make / adopt decisions. In the field of applied ethics are integrated medical ethics, legal ethics, media ethics, professional ethics, environmental ethic...

  11. The Routledge Applied Linguistics Reader

    Science.gov (United States)

    Wei, Li, Ed.

    2011-01-01

    "The Routledge Applied Linguistics Reader" is an essential collection of readings for students of Applied Linguistics. Divided into five sections: Language Teaching and Learning, Second Language Acquisition, Applied Linguistics, Identity and Power and Language Use in Professional Contexts, the "Reader" takes a broad interpretation of the subject…

  12. APPLIED RESEARCH ON HIGHLY BORON-DOPED DIAMOND ELECTRODES IN ELECTROCHEMISTRY%高硼掺杂金刚石膜电极的电化学应用研究

    Institute of Scientific and Technical Information of China (English)

    胡陈果

    2002-01-01

    概述了高硼掺杂金刚石膜电极的电化学研究的最新进展,介绍了高硼掺杂金刚石膜电极的制备、金刚石膜电极在水介质中的电化学行为、金刚石膜电极在废水处理、微量有机化合物成分探测和蜂窝状金刚石电极双电层电容器方面的应用.

  13. Preparation of micron-sized Li{sub 4}Ti{sub 5}O{sub 12} and its electrochemistry in polyacrylonitrile electrolyte-based lithium cells

    Energy Technology Data Exchange (ETDEWEB)

    Peramunage, D.; Abraham, K.M. [EIC Labs., Inc., Norwood, MA (United States)

    1998-08-01

    Micron-sized Li{sub 4}Ti{sub 5}O{sub 12} was prepared in a single-step solid-state reaction involving TiO{sub 2} and Li{sub 2}CO{sub 3}, and its electrochemical behavior was evaluated in Li and Li-ion cells containing a polyacrylonitrile (PAN)-based solid polymer electrolyte. The usefulness of Li{sub 4}Ti{sub 5}O{sub 12} was demonstrated for three distinctive applications: (1) cathode of a 1.5 V rechargeable Li battery, (2) auxiliary electrode for investigating the electrochemistry of Li insertion cathode materials, and (3) anode of a Li-ion cell in conjunction with a high voltage cathode, e.g., cubic spinel LiMn{sub 2}O{sub 4}. The micron-sized Li{sub 4}Ti{sub 5}O{sub 12} exhibited a capacity of 160 mAh/g at C/20--C/30 rates which about 7% better than the capacity exhibited by this material prepared according to a previously published procedure. More importantly, the micron-sized oxide showed significantly better high rate capability, yielding 25--50% larger capacity at the 3C to 8C rates. Li//solid polymer electrolyte//Li{sub 4}Ti{sub 5}O{sub 12} cells underwent extended, full-depth, charge/discharge cycling at {ge}1C rates with virtually no capacity fade. The auxiliary electrode concept was demonstrated in Li{sub (4+x)}Ti{sub 5}O{sub 12} (x {approximately} 1.2)//solid polymer electrolyte//LiMn{sub 2}O{sub 4} cells. At a 1C discharge rate, more than 150 cycles were demonstrated in these cells with a capacity fade rate of about 0.1% per cycle and an end utilization of {approximately}90 mAh/g for spinel LiMn{sub 2}O{sub 4}. Balanced Li{sub 4}Ti{sub 5}O{sub 12}//solid polymer electrolyte//LiMn{sub 2}O{sub 4} cells of slightly cathode-limited configuration showed full-depth extended cycling capability at a utilization of {approximately}90 mAh/g for LiMn{sub 2}O{sub 4} at 1C rate and a capacity fade rate of about 0.08% per cycle.

  14. Direct electrochemistry with enhanced electrocatalytic activity of hemoglobin in hybrid modified electrodes composed of graphene and multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Graphical abstract: -- Highlights: •A graphene and multi-walled carbon nanotubes nanocomposite was prepared. •Hemoglobin and nanocomposite modified carbon ionic liquid electrode was fabricated. •Direct electrochemistry of hemoglobin was realized on the modified electrode. •Bioelectrocatalysis towards the reduction of different substrates was enhanced. -- Abstract: A graphene (GR) and multi-walled carbon nanotubes (MWCNT) hybrid was prepared and modified on a 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE). Hemoglobin (Hb) was immobilized on GR-MWCNT/CILE surface with Nafion as the film forming material and the modified electrode was denoted as Nafion/Hb-GR-MWCNT/CILE. Spectroscopic results revealed that Hb molecules retained its native structure in the GR-MWCNT hybird. Electrochemical behaviors of Hb were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks obtained, which indicated that direct electron transfer of Hb was realized in the hybrid modified electrode. The result could be attributed to the synergistic effects of GR-MWCNT hybrid with enlarged surface area and improved conductivity through the formation of a three-dimensional network. Electrochemical parameters of the immobilized Hb on the electrode surface were further calculated with the results of the electron transfer number (n) as 1.03, the charge transfer coefficient (a) as 0.58 and the electron-transfer rate constant (ks) as 0.97 s−1. The Hb modified electrode showed good electrocatalytic ability toward the reduction of different substrates such as trichloroacetic acid in the concentration range from 0.05 to 38.0 mmol L−1 with a detection limit of 0.0153 mmol L−1 (3σ), H2O2 in the concentration range from 0.1 to 516.0 mmol L−1 with a detection limit of 34.9 nmol/L (3σ) and NaNO2 in the concentration range from 0.5 to 650.0 mmol L−1 with a detection limit of 0.282 μmol L−1 (3σ). So the proposed electrode had the

  15. Direct electrochemistry with enhanced electrocatalytic activity of hemoglobin in hybrid modified electrodes composed of graphene and multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei, E-mail: swyy26@hotmail.com [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 China (China); College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Cao, Lili; Deng, Ying; Gong, Shixing [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Shi, Fan; Li, Gaonan; Sun, Zhenfan [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 China (China)

    2013-06-05

    Graphical abstract: -- Highlights: •A graphene and multi-walled carbon nanotubes nanocomposite was prepared. •Hemoglobin and nanocomposite modified carbon ionic liquid electrode was fabricated. •Direct electrochemistry of hemoglobin was realized on the modified electrode. •Bioelectrocatalysis towards the reduction of different substrates was enhanced. -- Abstract: A graphene (GR) and multi-walled carbon nanotubes (MWCNT) hybrid was prepared and modified on a 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE). Hemoglobin (Hb) was immobilized on GR-MWCNT/CILE surface with Nafion as the film forming material and the modified electrode was denoted as Nafion/Hb-GR-MWCNT/CILE. Spectroscopic results revealed that Hb molecules retained its native structure in the GR-MWCNT hybird. Electrochemical behaviors of Hb were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks obtained, which indicated that direct electron transfer of Hb was realized in the hybrid modified electrode. The result could be attributed to the synergistic effects of GR-MWCNT hybrid with enlarged surface area and improved conductivity through the formation of a three-dimensional network. Electrochemical parameters of the immobilized Hb on the electrode surface were further calculated with the results of the electron transfer number (n) as 1.03, the charge transfer coefficient (a) as 0.58 and the electron-transfer rate constant (k{sub s}) as 0.97 s{sup −1}. The Hb modified electrode showed good electrocatalytic ability toward the reduction of different substrates such as trichloroacetic acid in the concentration range from 0.05 to 38.0 mmol L{sup −1} with a detection limit of 0.0153 mmol L{sup −1} (3σ), H{sub 2}O{sub 2} in the concentration range from 0.1 to 516.0 mmol L{sup −1} with a detection limit of 34.9 nmol/L (3σ) and NaNO{sub 2} in the concentration range from 0.5 to 650.0 mmol L{sup −1} with a detection limit of 0

  16. A Review of Applied Mathematics

    OpenAIRE

    Ó Náraigh, Lennon; Ní Shúilleabháin, Aoibhinn

    2015-01-01

    Applied Mahtematics is a subject which deals with problmes arising inthe physical, life, and social sciences as well as in engineering and provides a broad body of knowledge for use in a wide spectrum of research and insdustry. Applied Mathematics is an important school subject which builds students' mathematical and problem solving skills. The subject has remained on the periphery of school time-tables and, without the commitment and enthusiasm of Applied Maths teachers, would likely be omit...

  17. Applied Ethics in Nowadays Society

    Directory of Open Access Journals (Sweden)

    Tomita CIULEI

    2013-12-01

    Full Text Available This special issue is dedicated to Nowadays Applied Ethics in Society, and falls in the field of social sciences and humanities, being hosted both theoretical approaches and empirical research in various areas of applied ethics. Applied ethics analyzes of a series of morally concrete situations of social or professional practice in order to make / adopt decisions. In the field of applied ethics are integrated medical ethics, legal ethics, media ethics, professional ethics, environmental ethics, business ethics etc. Classification-JEL: A23

  18. Writing, Literacy, and Applied Linguistics.

    Science.gov (United States)

    Leki, Ilona

    2000-01-01

    Discusses writing and literacy in the domain of applied linguistics. Focus is on needs analysis for literacy acquisition; second language learner identity; longitudinal studies as extensions of identity work; and applied linguistics contributions to second language literacy research. (Author/VWL)

  19. Conversation Analysis and Applied Linguistics.

    Science.gov (United States)

    Schegloff, Emanuel A.; Koshik, Irene; Jacoby, Sally; Olsher, David

    2002-01-01

    Offers biographical guidance on several major areas of conversation-analytic work--turn-taking, repair, and word selection--and indicates past or potential points of contact with applied linguistics. Also discusses areas of applied linguistic work. (Author/VWL)

  20. Applied probability and stochastic processes

    CERN Document Server

    Sumita, Ushio

    1999-01-01

    Applied Probability and Stochastic Processes is an edited work written in honor of Julien Keilson. This volume has attracted a host of scholars in applied probability, who have made major contributions to the field, and have written survey and state-of-the-art papers on a variety of applied probability topics, including, but not limited to: perturbation method, time reversible Markov chains, Poisson processes, Brownian techniques, Bayesian probability, optimal quality control, Markov decision processes, random matrices, queueing theory and a variety of applications of stochastic processes. The book has a mixture of theoretical, algorithmic, and application chapters providing examples of the cutting-edge work that Professor Keilson has done or influenced over the course of his highly-productive and energetic career in applied probability and stochastic processes. The book will be of interest to academic researchers, students, and industrial practitioners who seek to use the mathematics of applied probability i...

  1. Distributed computing applied applied to the identification of new drugs

    OpenAIRE

    Isea, Raul; Mayo, Rafael

    2010-01-01

    This work emphasizes the assets of implementing the distributed computing for the intensive use in computational science devoted to the search of new medicines that could be applied in public healthy problems.

  2. Conversation Analysis in Applied Linguistics

    DEFF Research Database (Denmark)

    Kasper, Gabriele; Wagner, Johannes

    2014-01-01

    For the last decade, conversation analysis (CA) has increasingly contributed to several established fields in applied linguistics. In this article, we will discuss its methodological contributions. The article distinguishes between basic and applied CA. Basic CA is a sociological endeavor concerned...... been driven by applied work. After laying out CA's standard practices of data treatment and analysis, this article takes up the role of comparison as a fundamental analytical strategy and reviews recent developments into cross-linguistic and cross-cultural directions. The remaining article focuses...... on learning and development. In conclusion, we address some emerging themes in the relationship of CA and applied linguistics, including the role of multilingualism, standard social science methods as research objects, CA's potential for direct social intervention, and increasing efforts to complement CA...

  3. Graduation Credit for Applied Academics.

    Science.gov (United States)

    Rose, Dennis M.

    1988-01-01

    Describes a pilot project in applied academics that involved hiring certified mathemathics and science instructors so that students could obtain academic rather than vocational credit for material that vocational instructors had previously taught. (JOW)

  4. Shock Thermodynamic Applied Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Shock Thermodynamic Applied Research Facility (STAR) facility, within Sandia’s Solid Dynamic Physics Department, is one of a few institutions in the world with...

  5. Applied statistical inference with MINITAB

    CERN Document Server

    Lesik, Sally

    2009-01-01

    Through clear, step-by-step mathematical calculations, Applied Statistical Inference with MINITAB enables students to gain a solid understanding of how to apply statistical techniques using a statistical software program. It focuses on the concepts of confidence intervals, hypothesis testing, validating model assumptions, and power analysis.Illustrates the techniques and methods using MINITABAfter introducing some common terminology, the author explains how to create simple graphs using MINITAB and how to calculate descriptive statistics using both traditional hand computations and MINITAB. Sh

  6. Electrochemistry of Q-Graphene

    Science.gov (United States)

    Randviir, Edward P.; Brownson, Dale A. C.; Gómez-Mingot, Maria; Kampouris, Dimitrios K.; Iniesta, Jesús; Banks, Craig E.

    2012-09-01

    A newly synthesised type of graphene, Q-Graphene, has been physically and electrochemically characterised with Scanning and Transmission Electron Microscopy (SEM, TEM), X-ray Photoelectron Spectroscopy (XPS) and Cyclic Voltammetry (CV). Interpretation of SEM, TEM and XPS data reveal the material to consist of hollow carbon nanospheres of multi-layer graphene (viz. graphite), which exhibit a total oxygen content of ca. 36.0% (atomic weight via XPS). In addition to the carbon structures present, spherical magnesium oxide particles of ruthenium(iii) chloride and hexachloroiridate(iii), in addition to the biologically relevant and electroactive analytes, norepinephrine, β-nicotinamide adenine dinucleotide (NADH) and l-ascorbic acid. The electrochemical response of Q-Graphene is benchmarked against edge plane- and basal plane-pyrolytic graphite (EPPG and BPPG respectively), pristine graphene and graphite alternatives. Q-Graphene is found to exhibit fast electron transfer kinetics, likely due to its high proportion of folded edges and surface defects, exhibiting a response similar to that of EPPG - which exhibits fast electron transfer rates due to the high proportion of edge plane sites it possesses. Furthermore, we demonstrate that the specific oxygen content plays a pivotal role in dictating the observed electrochemical response, which is analyte dependant. Consequently there is potential for this new member of the graphene family to be beneficially utilised in various electrochemical applications.A newly synthesised type of graphene, Q-Graphene, has been physically and electrochemically characterised with Scanning and Transmission Electron Microscopy (SEM, TEM), X-ray Photoelectron Spectroscopy (XPS) and Cyclic Voltammetry (CV). Interpretation of SEM, TEM and XPS data reveal the material to consist of hollow carbon nanospheres of multi-layer graphene (viz. graphite), which exhibit a total oxygen content of ca. 36.0% (atomic weight via XPS). In addition to the carbon structures present, spherical magnesium oxide particles of ruthenium(iii) chloride and hexachloroiridate(iii), in addition to the biologically relevant and electroactive analytes, norepinephrine, β-nicotinamide adenine dinucleotide (NADH) and l-ascorbic acid. The electrochemical response of Q-Graphene is benchmarked against edge plane- and basal plane-pyrolytic graphite (EPPG and BPPG respectively), pristine graphene and graphite alternatives. Q-Graphene is found to exhibit fast electron transfer kinetics, likely due to its high proportion of folded edges and surface defects, exhibiting a response similar to that of EPPG - which exhibits fast electron transfer rates due to the high proportion of edge plane sites it possesses. Furthermore, we demonstrate that the specific oxygen content plays a pivotal role in dictating the observed electrochemical response, which is analyte dependant. Consequently there is potential for this new member of the graphene family to be beneficially utilised in various electrochemical applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr31823g

  7. CHEMISTRY, ELECTROCHEMISTRY, AND ELECTROCHEMICAL APPLICATIONS

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf; Bjerrum, Niels

    2009-01-01

    About 350 Papers Covering: Basics of Electrodes, Electrolytes, Cells, Batteries and Stacks, Measurement Techniques, Synthesis of Materials, Primary Batteries, Secondary Batteries, Supercapacitors, and Fuel Cells, Hydrogen Production and Storage, Photoelectrochemical Cells, Safety, Recycling, Port...

  8. Applications of ultrasound in electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Silva Martinez, Susana

    1997-10-01

    The effect of the ultrasound on electrochemical processes has been investigated employing a microelectrode within the cavitating media. Transient mass transport was strongly enhanced in the presence of ultrasound. High rates of mass transfer of up to 1.5 cm s-1 were observed. These high rates of mass transfer were attributed to two cavitation processes. First, bubble collapse at or near the solid-liquid interface with the consequent formation of a high speed liquid microjet directed at the electrode surface. Second, bubble motion near or within the diffusion layer or the electrode. Single current transients were also recorded at high time resolution. These single current transients were attributed to the short-time perturbation of the diffusion field of the microelectrode due to impacts of cavitation bubble collapse followed by a long time relaxation of the diffusion field back to the steady state. The influence of the ultrasonic source to electrode separation, temperature of the bulk solution, electrode potential and electrode size on the magnitude of current transients was also studied. All of these parameters affected markedly the magnitude of the current transients recorded at microelectrode in the presence of ultrasound. An alternative approach is presented to characterise fast heterogeneous electron transfer reactions employing ultrasound as a mass transport enhancement tool. Two innovative techniques, sampled-current voltammetry and sampled-mean current voltammetry, were developed during the course of this thesis. The technique of sample-current voltammetry reported values of the standard rate constant of heterogeneous electron transfer of up to 1.2 cm s-1 in the presence of ultrasound. This technique focuses on the electrochemical phenomena under investigation at the point of impact of the ultrasonic event, produced by asymmetric cavitation bubble collapse near the electrode surface. Bubble dynamics were also examined under the experimental conditions employed in the present study. The bubble behaviour was observed from the numerical solution of the RPNNP equation that describes the motion of a gas filled bubble in a homogeneous phase. This equation was solved numerically employing the Fourorder Runge-Kutta method. Finally, a preliminary study of surface process in the presence of ultrasound is presented. Erosion current events were recorded at high time solution. These current events were attributed to the reoxidation of the exposed metal as a result of cavitation events. This study shows that surface erosion can be electrochemically investigated in-situ withing a cavitating media. [Espanol] El efecto del ultrasonido en procesos electroquimicos ha sido investigado empleando un micro-electrodo dentro de un medio cavitante. El transporte de masa transitorio fue realzado fuertemente en la presencia de ultrasonido. Altos indices de la transferencia de masa de hasta 1.5 cm s-1 fueron observados. Estos altos indices de la transferencia de masa fueron atribuidos a dos procesos de la cavitacion. Primero, el colapso de la burbuja en/o cerca de la interfase solido-liquido con la formacion consiguiente de un microjet liquido de alta velocidad dirigido hacia la superficie del electrodo. En segundo lugar, movimiento de la burbuja cerca o dentro de la capa de difusion o del electrodo. Tambien se registraron los simples transitorios de corriente a una alta resolucion de tiempo. Estos transitorios simples de corriente fueron atribuidos a la perturbacion a corto plazo del campo de difusion del micro-electrodo debido a los impactos de cavitacion del colapso de la burbuja seguido por una relajacion de largo tiempo del campo de la difusion de nuevo al estado estable. La influencia de la fuente ultrasonica a la separacion del electrodo, la temperatura total de la solucion, el potencial del electrodo y el tamano del electrodo sobre la magnitud de transitorios de corriente tambien fue estudiada. Todos estos parametros afectaron marcadamente la magnitud de los transitorios de corriente registrados en el micro-electrodo en presencia del ultrasonido. Se presenta una opcion alternativa para caracterizar reacciones heterogeneas rapidas de transferencia del electron que empleando el ultrasonido como herramienta, de realce del transporte de masa. Dos tecnicas innovadoras, la voltametria corriente muestreada y la voltametria corriente-media muestreada, se desarrollaron durante el curso de esta tesis. La tecnica del voltammetria corriente de muestra senalo los valores del regimen estandar constante de la transferencia heterogenea del electron de hasta 1.2 centimetros s-1 en la presencia del ultrasonido. Esta tecnica se centra en los fenomenos electroquimicos bajo investigacion en el punto de impacto del acontecimiento ultrasonico, producido por colapso asimetrico de la burbuja de cavitacion cerca de la superficie del electrodo. Las dinamicas de la burbuja tambien fueron examinadas bajo las condiciones experimentales empleadas en el presente estudio. El comportamiento de la burbuja fue observado desde la solucion numerica de la ecuacion de RPNNP que describe el movimiento de una burbuja llena gas en una fase homogenea. Esta ecuacion fue resuelta numericamente empleando el metodo de cuarto orden de Runge-Kutta. Finalmente se presenta un estudio preliminar del proceso superficial en presencia del ultrasonido. Los eventos de erosion por corriente fueron registrados a una alta resolucion de tiempo. Estos eventos de corriente fueron atribuidos a la re-oxidacion del metal expuesto como resultado de eventos de cavitacion. Este estudio muestra que la erosion superficial puede ser investigada electroquimicamente in situ dentro del medio de cavitacion.

  9. Direct electrochemistry of redox proteins.

    NARCIS (Netherlands)

    Heering, H.A.

    1995-01-01

    The goal of the project was to obtain more detailed insight in interactions between redox proteins and solid electrodes and the mechanisms of electron transfer. In addition to this, the influence of the protein environment on the redox properties of the active site and the possible influence of the

  10. Electrochemistry of Q-graphene.

    Science.gov (United States)

    Randviir, Edward P; Brownson, Dale A C; Gómez-Mingot, Maria; Kampouris, Dimitrios K; Iniesta, Jesús; Banks, Craig E

    2012-10-21

    A newly synthesised type of graphene, Q-Graphene, has been physically and electrochemically characterised with Scanning and Transmission Electron Microscopy (SEM, TEM), X-ray Photoelectron Spectroscopy (XPS) and Cyclic Voltammetry (CV). Interpretation of SEM, TEM and XPS data reveal the material to consist of hollow carbon nanospheres of multi-layer graphene (viz. graphite), which exhibit a total oxygen content of ca. 36.0% (atomic weight via XPS). In addition to the carbon structures present, spherical magnesium oxide particles of ≤50 nm in diameter are abundantly present in the sample (ca. 16.2%). Interestingly, although the TEM/SEM images show macroporous carbon structures, Raman spectroscopy shows peaks typically characteristic of graphene, which suggests the material is highly heterogeneous and consists of many types of carbon allotropes. Q-Graphene is electrochemically characterised using both inner-sphere and outer-sphere electrochemical redox probes, namely potassium ferrocyanide(II), hexaammine-ruthenium(III) chloride and hexachloroiridate(III), in addition to the biologically relevant and electroactive analytes, norepinephrine, β-nicotinamide adenine dinucleotide (NADH) and l-ascorbic acid. The electrochemical response of Q-Graphene is benchmarked against edge plane- and basal plane-pyrolytic graphite (EPPG and BPPG respectively), pristine graphene and graphite alternatives. Q-Graphene is found to exhibit fast electron transfer kinetics, likely due to its high proportion of folded edges and surface defects, exhibiting a response similar to that of EPPG - which exhibits fast electron transfer rates due to the high proportion of edge plane sites it possesses. Furthermore, we demonstrate that the specific oxygen content plays a pivotal role in dictating the observed electrochemical response, which is analyte dependant. Consequently there is potential for this new member of the graphene family to be beneficially utilised in various electrochemical applications.

  11. Applied analysis and differential equations

    CERN Document Server

    Cârj, Ovidiu

    2007-01-01

    This volume contains refereed research articles written by experts in the field of applied analysis, differential equations and related topics. Well-known leading mathematicians worldwide and prominent young scientists cover a diverse range of topics, including the most exciting recent developments. A broad range of topics of recent interest are treated: existence, uniqueness, viability, asymptotic stability, viscosity solutions, controllability and numerical analysis for ODE, PDE and stochastic equations. The scope of the book is wide, ranging from pure mathematics to various applied fields such as classical mechanics, biomedicine, and population dynamics.

  12. Applied medical statistics using SAS

    CERN Document Server

    Der, Geoff

    2012-01-01

    ""Each chapter in the book is well laid out, contains examples with SAS code, and ends with a concise summary. The chapters in the book contain the right level of information to use SAS to apply different statistical methods. … a good overview of how to apply in SAS 9.3 the many possible statistical analysis methods.""-Caroline Kennedy, Takeda Development Centre Europe Ltd., Statistical Methods for Medical Research, 2015""… a well-organized and thorough exploration of broad coverage in medical statistics. The book is an excellent reference of statistical methods

  13. SEM in applied marketing research

    DEFF Research Database (Denmark)

    Sørensen, Bjarne Taulo; Tudoran, Ana Alina

    In this paper we discuss two SEM approaches: an exploratory structural equation modelling based on a more liberalised and inductive philosophy versus the classical SEM based on the traditional hypothetical-deductive approach. We apply these two modelling techniques to data from a consumer survey...

  14. Toward an Applied Administrative Science.

    Science.gov (United States)

    Dunbar, Roger L. M.

    1983-01-01

    A study of 65 articles from the 1981 volumes of "Administrative Science Quarterly" and "Harvard Business Review," using smallest space analysis, found that the few studies adopting subjective (instead of objective) approaches to analyzing organizational change were most likely to provide a basis for an applied administrative science. (Author/RW)

  15. Applying and extending Oracle Spatial

    CERN Document Server

    Simon Gerard Greener, Siva Ravada

    2013-01-01

    This book is an advanced practical guide to applying and extending Oracle Spatial.This book is for existing users of Oracle and Oracle Spatial who have, at a minimum, basic operational experience of using Oracle or an equivalent database. Advanced skills are not required.

  16. Applied Linguistics Research on Asianness

    Science.gov (United States)

    Kobayashi, Yoko

    2011-01-01

    As China is increasingly occupying the world's attention, its explosively expanding economical and political clout has also been felt in the applied linguistics domain, with the discussion on China's/Chinese language issues growing by leaps and bounds (e.g. China's English education policies, Chinese language classes in the West). Amid the world's…

  17. Modern applied U-statistics

    CERN Document Server

    Kowalski, Jeanne

    2008-01-01

    A timely and applied approach to the newly discovered methods and applications of U-statisticsBuilt on years of collaborative research and academic experience, Modern Applied U-Statistics successfully presents a thorough introduction to the theory of U-statistics using in-depth examples and applications that address contemporary areas of study including biomedical and psychosocial research. Utilizing a "learn by example" approach, this book provides an accessible, yet in-depth, treatment of U-statistics, as well as addresses key concepts in asymptotic theory by integrating translational and cross-disciplinary research.The authors begin with an introduction of the essential and theoretical foundations of U-statistics such as the notion of convergence in probability and distribution, basic convergence results, stochastic Os, inference theory, generalized estimating equations, as well as the definition and asymptotic properties of U-statistics. With an emphasis on nonparametric applications when and where applic...

  18. Emotional Value of Applied Textiles

    DEFF Research Database (Denmark)

    Bang, Anne Louise

    2011-01-01

    The present PhD thesis is conducted as an Industrial PhD project in collaboration with the Danish company Gabriel A/S (Gabriel), which designs and produces furniture textiles and ‘related products’ for manufacturers of furniture. A ‘related textile product’ is e.g. processing of piece goods......, upholstery, mounting etc. This PhD project addresses the challenges of the textile industry, where the global knowledge economy increasingly forces companies to include user-participation and value innovation in their product development. My project revolves around the challenges which the textile designers...... of applied textiles. The objective is to operationalise the strategic term ‘emotional value’ as it relates to applied textiles. The procedure includes the development of user- and stakeholder-centred approaches, which are valuable for the textile designer in the design process. The research approach...

  19. Applied survival analysis using R

    CERN Document Server

    Moore, Dirk F

    2016-01-01

    Applied Survival Analysis Using R covers the main principles of survival analysis, gives examples of how it is applied, and teaches how to put those principles to use to analyze data using R as a vehicle. Survival data, where the primary outcome is time to a specific event, arise in many areas of biomedical research, including clinical trials, epidemiological studies, and studies of animals. Many survival methods are extensions of techniques used in linear regression and categorical data, while other aspects of this field are unique to survival data. This text employs numerous actual examples to illustrate survival curve estimation, comparison of survivals of different groups, proper accounting for censoring and truncation, model variable selection, and residual analysis. Because explaining survival analysis requires more advanced mathematics than many other statistical topics, this book is organized with basic concepts and most frequently used procedures covered in earlier chapters, with more advanced topics...

  20. The MRC Applied Psychology Unit

    OpenAIRE

    2003-01-01

    This transcript considers the origins and impact of the MRC Applied Psychology Unit’s work from 1944 to 1998. Psychologists, clinicians, and industrial, ergonomic and occupational psychologists discuss the evolution of work from quite narrow postwar industrial and military concerns to more recent applications in, for example, ageing, dyslexia, depression, form design, information and semantics. Those who contributed included Professor Alan Baddeley, Dr Philip Barnard, Dr Ivan Brown, Professor...

  1. Three essays on applied economics

    OpenAIRE

    Li, Yunrong

    2014-01-01

    This thesis focuses on the application of empirical research methods to different economic topics. The first chapter examines production effects of subsidies with different characteristics. The second chapter evaluates the impact of an oldage pension program on the welfare of the recipient’s family members. The third chapter applies an income inequality model to study the influence of differences in citation practices across scientific fields on the overall citation inequality. ...

  2. Three Essays on Applied Microeconomics

    OpenAIRE

    Cao, Yang

    2016-01-01

    In these essays, I study the following three topics in Applied Microeconomics using datasets of China: (1) The impact of political movements in the first thirty years of People's Republic of China on the intergenerational and multigenerational transmission of education; (2) The relationship between health insurance and households' consumption; (3) The effect of health insurance on out-of-pocket medical expenditures. The first chapter investigates the effect of family class origin on education...

  3. Towards "open applied" Earth sciences

    Science.gov (United States)

    Ziegler, C. R.; Schildhauer, M.

    2014-12-01

    Concepts of open science -- in the context of cyber/digital technology and culture -- could greatly benefit applied and secondary Earth science efforts. However, international organizations (e.g., environmental agencies, conservation groups and sustainable development organizations) that are focused on applied science have been slow to incorporate open practices across the spectrum of scientific activities, from data to decisions. Myriad benefits include transparency, reproducibility, efficiency (timeliness and cost savings), stakeholder engagement, direct linkages between research and environmental outcomes, reduction in bias and corruption, improved simulation of Earth systems and improved availability of science in general. We map out where and how open science can play a role, providing next steps, with specific emphasis on applied science efforts and processes such as environmental assessment, synthesis and systematic reviews, meta-analyses, decision support and emerging cyber technologies. Disclaimer: The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the organizations for which they work and/or represent.

  4. An Applied Physicist Does Econometrics

    Science.gov (United States)

    Taff, L. G.

    2010-02-01

    The biggest problem those attempting to understand econometric data, via modeling, have is that economics has no F = ma. Without a theoretical underpinning, econometricians have no way to build a good model to fit observations to. Physicists do, and when F = ma failed, we knew it. Still desiring to comprehend econometric data, applied economists turn to mis-applying probability theory---especially with regard to the assumptions concerning random errors---and choosing extremely simplistic analytical formulations of inter-relationships. This introduces model bias to an unknown degree. An applied physicist, used to having to match observations to a numerical or analytical model with a firm theoretical basis, modify the model, re-perform the analysis, and then know why, and when, to delete ``outliers'', is at a considerable advantage when quantitatively analyzing econometric data. I treat two cases. One is to determine the household density distribution of total assets, annual income, age, level of education, race, and marital status. Each of these ``independent'' variables is highly correlated with every other but only current annual income and level of education follow a linear relationship. The other is to discover the functional dependence of total assets on the distribution of assets: total assets has an amazingly tight power law dependence on a quadratic function of portfolio composition. Who knew? )

  5. Matrix methods applied linear algebra

    CERN Document Server

    Bronson, Richard

    2008-01-01

    Matrix Methods: Applied Linear Algebra, 3e, as a textbook, provides a unique and comprehensive balance between the theory and computation of matrices. The application of matrices is not just for mathematicians. The use by other disciplines has grown dramatically over the years in response to the rapid changes in technology. Matrix methods is the essence of linear algebra and is what is used to help physical scientists; chemists, physicists, engineers, statisticians, and economists solve real world problems.* Applications like Markov chains, graph theory and Leontief Models are placed i

  6. Applying quantum principles to psychology

    International Nuclear Information System (INIS)

    This article starts out with a detailed example illustrating the utility of applying quantum probability to psychology. Then it describes several alternative mathematical methods for mapping fundamental quantum concepts (such as state preparation, measurement, state evolution) to fundamental psychological concepts (such as stimulus, response, information processing). For state preparation, we consider both pure states and densities with mixtures. For measurement, we consider projective measurements and positive operator valued measurements. The advantages and disadvantages of each method with respect to applications in psychology are discussed. (paper)

  7. Epidemiology applied to health physics

    International Nuclear Information System (INIS)

    The technical program of the mid-year meeting of the Health Physics Society, entitled Epidemiology Applied to Health physics, was developed to meet three objectives: (1) give health physicists a deeper understanding of the basics of epidemiological methods and their use in developing standards, regulations, and criteria and in risk assessment; (2) present current reports on recently completed or on-going epidemiology studies; and (3) encourage greater interaction between the health physics and epidemiology disciplines. Included are studies relating methods in epidemiology to radiation protection standards, risk assessment from exposure to bone-seekers, from occupational exposures in mines, mills and nuclear facilities, and from radioactivity in building materials

  8. Applied gamma-ray spectrometry

    CERN Document Server

    Dams, R; Crouthamel, Carl E

    1970-01-01

    Applied Gamma-Ray Spectrometry covers real life application of the gamma-ray and the devices used in their experimental studies. This book is organized into 9 chapters, and starts with discussions of the various decay processes, the possible interaction mechanisms of gamma radiation with matter, and the intrinsic and extrinsic variables, which affect the observed gamma-ray and X-ray spectra. The subsequent chapters deal with the properties and fabrication of scintillation detectors, semiconductor detectors, and proportional gas counters. These chapters present some of the most widely utilized

  9. Aerospace reliability applied to biomedicine.

    Science.gov (United States)

    Lalli, V. R.; Vargo, D. J.

    1972-01-01

    An analysis is presented that indicates that the reliability and quality assurance methodology selected by NASA to minimize failures in aerospace equipment can be applied directly to biomedical devices to improve hospital equipment reliability. The Space Electric Rocket Test project is used as an example of NASA application of reliability and quality assurance (R&QA) methods. By analogy a comparison is made to show how these same methods can be used in the development of transducers, instrumentation, and complex systems for use in medicine.

  10. Workshop applied antineutrino physics 2007

    International Nuclear Information System (INIS)

    The 'Applied Antineutrino Physics 2007' workshop is the fourth international meeting devoted to the opening of the neutrino physics to more applied fields, such as geophysics and geochemistry, nuclear industry, as well as the nonproliferation. This meeting highlights the world efforts already engaged to exploit the single characteristics of the neutrinos for the control of the production of plutonium in the civil nuclear power reactor. The potential industrial application of the measurement of the thermal power of the nuclear plants by the neutrinos is also approached. earth neutrinos were for the first time highlighted in 2002 by the KamLAND experiment. Several international efforts are currently underway to use earth neutrinos to reveal the interior of the Earth. This meeting is an opportunity to adapt the efforts of detection to the real needs of geophysicists and geochemists (sources of radiogenic heat, potassium in the court, feathers.) Finally more futuristic topics such as the detection of nuclear explosions, of low powers, are also discussed. This document gathers only the slides of the presentations

  11. Pure Science and Applied Science

    Directory of Open Access Journals (Sweden)

    Robert J. Aumann

    2011-01-01

    Full Text Available (Excerpt The name of my talk is Pure Science and Applied Science, and the idea I would like to sell to you today is that there is no such thing as “pure” or “applied” science. In other words, there is such a thing as science, but there is no difference between pure and applied science. Science is one entity and cannot be separated into different categories. In order to back that up, I would like to tell you a little story. As an undergraduate, I studied mathematics at City College in New York. At that time, what was called Pure Mathematics was in vogue, and the more prominent mathematicians were a little contemptuous of any kind of application. A very famous, prominent mathematician in the first half of the previous century by the name of G. H. Hardy, who was in a branch of mathematics called number theory, said that the only thing he regretted was that he unwittingly did some important work in mathematical genetics that eventually turned out to have some application. … Such was the atmosphere in the late ’40s of the previous century and, being a young man and impressionable, I was swept up in this atmosphere.

  12. Workshop applied antineutrino physics 2007

    Energy Technology Data Exchange (ETDEWEB)

    Akiri, T.; Andrieu, B.; Anjos, J.; Argyriades, J.; Barouch, G.; Bernstein, A.; Bersillon, O.; Besida, O.; Bowden, N.; Cabrera, A.; Calmet, D.; Collar, J.; Cribier, M.; Kerret, H. de; Meijer, R. de; Dudziak, F.; Enomoto, S.; Fallot, M.; Fioni, G.; Fiorentini, G.; Gale, Ph.; Georgadze, A.; Giot, L.; Gonin, M.; Guillon, B.; Henson, C.; Jonkmans, G.; Kanamaru, S.; Kawasaki, T.; Kornoukhov, V.; Lasserre, Th.; Learned, J.G.; Lefebvre, J.; Letourneau, A.; Lhillier, D.; Lindner, M.; Lund, J.; Mantovani, F.; Mcdonough, B.; Mention, G.; Monteith, A.; Motta, D.; Mueller, Th.; Oberauer, L.; Obolensky, M.; Odrzywolek, A.; Petcov, S.; Porta, A.; Queval, R.; Reinhold, B.; Reyna, D.; Ridikas, D.; Sadler, L.; Schoenert, St.; Sida, J.L.; Sinev, V.; Suekane, F.; Suvorov, Y.; Svoboda, R.; Tang, A.; Tolich, N.; Tolich, K.; Vanka, S.; Vignaud, D.; Volpe, Ch.; Wong, H

    2007-07-01

    The 'Applied Antineutrino Physics 2007' workshop is the fourth international meeting devoted to the opening of the neutrino physics to more applied fields, such as geophysics and geochemistry, nuclear industry, as well as the nonproliferation. This meeting highlights the world efforts already engaged to exploit the single characteristics of the neutrinos for the control of the production of plutonium in the civil nuclear power reactor. The potential industrial application of the measurement of the thermal power of the nuclear plants by the neutrinos is also approached. earth neutrinos were for the first time highlighted in 2002 by the KamLAND experiment. Several international efforts are currently underway to use earth neutrinos to reveal the interior of the Earth. This meeting is an opportunity to adapt the efforts of detection to the real needs of geophysicists and geochemists (sources of radiogenic heat, potassium in the court, feathers.) Finally more futuristic topics such as the detection of nuclear explosions, of low powers, are also discussed. This document gathers only the slides of the presentations.

  13. Taxonomic Evidence Applying Intelligent Information Taxonomic Evidence Applying Intelligent Information

    Directory of Open Access Journals (Sweden)

    Félix Anibal Vallejos

    2005-12-01

    Full Text Available The Numeric Taxonomy aims to group operational taxonomic units in clusters (OTUs or taxons or taxa, using the denominated structure analysis by means of numeric methods. These clusters that constitute families are the purpose of this series of projects and they emerge of the structural analysis, of their phenotypical characteristic, exhibiting the relationships in terms of grades of similarity of the OTUs, employing tools such as i the Euclidean distance and ii nearest neighbor techniques. Thus taxonomic evidence is gathered so as to quantify the similarity for each pair of OTUs (pair-group method obtained from the basic data matrix and in this way the significant concept of spectrum of the OTUs is introduced, being based the same one on the state of their characters. A new taxonomic criterion is thereby formulated and a new approach to Computational Taxonomy is presented, that has been already employed with reference to Data Mining, when apply of Machine Learning techniques, in particular to the C4.5 algorithms, created by Quinlan, the degree of efficiency achieved by the TDIDT family's algorithms when are generating valid models of the data in classification problems with the Gain of Entropy through Maximum Entropy Principle. The Numeric Taxonomy aims to group operational taxonomic units in clusters (OTUs or taxons or taxa, using the denominated structure analysis by means of numeric methods. These clusters that constitute families are the purpose of this series of projects and they emerge of the structural analysis, of their phenotypical characteristic, exhibiting the relationships in terms of grades of similarity of the OTUs, employing tools such as i the Euclidean distance and ii nearest neighbor techniques. Thus taxonomic evidence is gathered so as to quantify the similarity for each pair of OTUs (pair-group method obtained from the basic data matrix and in this way the significant concept of spectrum of the OTUs is introduced, being based

  14. Radioisotope-applied measuring instruments

    International Nuclear Information System (INIS)

    Fuji Electric developed a new type detector for gamma thickness gauges, inner-mill housing gamma thickness gauges at hot plate mills and tube-wall thickness gauges at hot seamless tube mills. This detector attained much higher gamma counting and much lower drift than our former detectors. We plan to apply this detector to our new type thickness gauges and also renewal of now working thickness gauges at customer's site. In addition, we developed a soil mass measuring instrument for on-line measurement of cutting soil mass in a waste water tube in shield tunneling. This instrument is free from legal control and can be used in every field of civil engineering. (author)

  15. Special Functions for Applied Scientists

    CERN Document Server

    Mathai, A M

    2008-01-01

    Special Functions for Applied Scientists provides the required mathematical tools for researchers active in the physical sciences. The book presents a full suit of elementary functions for scholars at the PhD level and covers a wide-array of topics and begins by introducing elementary classical special functions. From there, differential equations and some applications into statistical distribution theory are examined. The fractional calculus chapter covers fractional integrals and fractional derivatives as well as their applications to reaction-diffusion problems in physics, input-output analysis, Mittag-Leffler stochastic processes and related topics. The authors then cover q-hypergeometric functions, Ramanujan's work and Lie groups. The latter half of this volume presents applications into stochastic processes, random variables, Mittag-Leffler processes, density estimation, order statistics, and problems in astrophysics. Professor Dr. A.M. Mathai is Emeritus Professor of Mathematics and Statistics, McGill ...

  16. [Basic science and applied science].

    Science.gov (United States)

    Pérez-Tamayo, R

    2001-01-01

    A lecture was presented by the author at the Democratic Opinion Forum on Health Teaching and Research, organized by Mexico's National Health Institutes Coordinating Office, at National Cardiology Institute "Ignacio Chavez", where he presented a critical review of the conventional classification of basic and applied science, as well as his personal view on health science teaching and research. According to the author, "well-conducted science" is that "generating reality-checked knowledge" and "mis-conducted science" is that "unproductive or producing 'just lies' and 'non-fundable'. To support his views, the author reviews utilitarian and pejorative definitions of science, as well as those of committed and pure science, useful and useless science, and practical and esoterical science, as synonyms of applied and basic science. He also asserts that, in Mexico, "this classification has been used in the past to justify federal funding cutbacks to basic science, allegedly because it is not targeted at solving 'national problems' or because it was not relevant to priorities set in a given six-year political administration period". Regarding health education and research, the author asserts that the current academic programs are inefficient and ineffective; his proposal to tackle these problems is to carry out a solid scientific study, conducted by a multidisciplinary team of experts, "to design the scientific researcher curricula from recruitment of intelligent young people to retirement or death". Performance assessment of researchers would not be restricted to publication of papers, since "the quality of scientific work and contribution to the development of science is not reflected by the number of published papers". The English version of this paper is available at: http://www.insp.mx/salud/index.html

  17. Applied extreme-value statistics

    Energy Technology Data Exchange (ETDEWEB)

    Kinnison, R.R.

    1983-05-01

    The statistical theory of extreme values is a well established part of theoretical statistics. Unfortunately, it is seldom part of applied statistics and is infrequently a part of statistical curricula except in advanced studies programs. This has resulted in the impression that it is difficult to understand and not of practical value. In recent environmental and pollution literature, several short articles have appeared with the purpose of documenting all that is necessary for the practical application of extreme value theory to field problems (for example, Roberts, 1979). These articles are so concise that only a statistician can recognise all the subtleties and assumptions necessary for the correct use of the material presented. The intent of this text is to expand upon several recent articles, and to provide the necessary statistical background so that the non-statistician scientist can recognize and extreme value problem when it occurs in his work, be confident in handling simple extreme value problems himself, and know when the problem is statistically beyond his capabilities and requires consultation.

  18. Applied computation and security systems

    CERN Document Server

    Saeed, Khalid; Choudhury, Sankhayan; Chaki, Nabendu

    2015-01-01

    This book contains the extended version of the works that have been presented and discussed in the First International Doctoral Symposium on Applied Computation and Security Systems (ACSS 2014) held during April 18-20, 2014 in Kolkata, India. The symposium has been jointly organized by the AGH University of Science & Technology, Cracow, Poland and University of Calcutta, India. The Volume I of this double-volume book contains fourteen high quality book chapters in three different parts. Part 1 is on Pattern Recognition and it presents four chapters. Part 2 is on Imaging and Healthcare Applications contains four more book chapters. The Part 3 of this volume is on Wireless Sensor Networking and it includes as many as six chapters. Volume II of the book has three Parts presenting a total of eleven chapters in it. Part 4 consists of five excellent chapters on Software Engineering ranging from cloud service design to transactional memory. Part 5 in Volume II is on Cryptography with two book...

  19. Applied discrete-time queues

    CERN Document Server

    Alfa, Attahiru S

    2016-01-01

    This book introduces the theoretical fundamentals for modeling queues in discrete-time, and the basic procedures for developing queuing models in discrete-time. There is a focus on applications in modern telecommunication systems. It presents how most queueing models in discrete-time can be set up as discrete-time Markov chains. Techniques such as matrix-analytic methods (MAM) that can used to analyze the resulting Markov chains are included. This book covers single node systems, tandem system and queueing networks. It shows how queues with time-varying parameters can be analyzed, and illustrates numerical issues associated with computations for the discrete-time queueing systems. Optimal control of queues is also covered. Applied Discrete-Time Queues targets researchers, advanced-level students and analysts in the field of telecommunication networks. It is suitable as a reference book and can also be used as a secondary text book in computer engineering and computer science. Examples and exercises are includ...

  20. Computer simulations applied in materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This workshop takes stock of the simulation methods applied to nuclear materials and discusses the conditions in which these methods can predict physical results when no experimental data are available. The main topic concerns the radiation effects in oxides and includes also the behaviour of fission products in ceramics, the diffusion and segregation phenomena and the thermodynamical properties under irradiation. This document brings together a report of the previous 2002 workshop and the transparencies of 12 presentations among the 15 given at the workshop: accommodation of uranium and plutonium in pyrochlores; radiation effects in La{sub 2}Zr{sub 2}O{sub 7} pyrochlores; first principle calculations of defects formation energies in the Y{sub 2}(Ti,Sn,Zr){sub 2}O{sub 7} pyrochlore system; an approximate approach to predicting radiation tolerant materials; molecular dynamics study of the structural effects of displacement cascades in UO{sub 2}; composition defect maps for A{sup 3+}B{sup 3+}O{sub 3} perovskites; NMR characterization of radiation damaged materials: using simulation to interpret the data; local structure in damaged zircon: a first principle study; simulation studies on SiC; insertion and diffusion of He in 3C-SiC; a review of helium in silica; self-trapped holes in amorphous silicon dioxide: their short-range structure revealed from electron spin resonance and optical measurements and opportunities for inferring intermediate range structure by theoretical modelling. (J.S.)

  1. CHINESE JOURNAL OF APPLIED MECHANICS

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Analytical analysis of supporting circular tunnel construction in viscoelastic rock mass Wang Huaning Zhong Zheng (School of Aerospace Engineering and Applied Mechanics, Tongji University, 200092, Shanghai, China) Abstract: Tunnel excavation and supporting are continuous processes. The time related deformation is due to rheologie behavior of rock mass and construction process. Time-varying function of radius is established to simulate the circular tunnel excavation process. The stresses and displacement general solutions of viscoelastic rock mass with elastic support during construction are derived by Laplace transformation method, which contains the undetermined supporting force. Volterra integral equation of supporting force is established by substituting different radius excavation function and surface force of excavation and supporting stage into the contact conditions. For Boltzmann viscoelastic model, supporting force can be calculated exactly. The expression and example show that radial displacement after supporting is increased with exponential form and stabilized to one value. If final tunnel is the same size and supported immediately in the finish time but excavated with different velocity, the displacement of cases with high velocity is larger in the beginning and smaller after some time. The final steady displacement is also smaller when excavated faster, but the displacement occurred after supporting is larger. The solutions can be calculated for cases with arbitrary time-varying radius and the method is applicable for the analysis of other viscoelastic models. Keywords: viscoelasticity, construction process, support, analytical analysis

  2. THE OUTLOOK FOR APPLIED ENTOMOLOGY.

    Science.gov (United States)

    1891-01-16

    I have thus touched, gentlemen, upon a few of the many subjects that crowd upon the mind for consideration on an occasion like this, - a few gleanings from a field which is passing rich in promise and possibility. It is a field that some of us have cultivated for many years, and yet have only scratched the surface ; and, if I have ventured to suggest or admonish, it is with the feeling that my own labors in this field are ere long about to end, and that I may not have another occasion. At no time in the history of the world has there, I trow, been gathered together such a body of devoted and capable workers in applied entomology. It marks an era in our calling, and, looking back at the progress of the past fifteen years, we may well ponder the possibilities of the next fifteen. They will be fruitful of grand results in proportion as we persistently and combinedly pursue the yet unsolved problems, and are not tempted to the immediate presentation of separate facts, which are so innumerable and so easily observed that their very wealth becomes an element of weakness. Epoch-making discoveries result only from this power of following up unswervingly any given problem or any fixed ideal. The kerosene emulsion ; the cyclone nozzle ; the history of Phylloxera vastatrix, of Phorodon humuli, of Vedalia cardinalis,- are illustrations in point: and, while we may not expect frequent results as striking or of as wide application as these, there is no end of important problems yet to be solved, and from the solution of which we may look for similar beneficial results. Applied entomology is often considered a sordid pursuit ; but it only becomes so when the object is sordid. When pursued with unselfish enthusiasm born of the love of investigation and the delight in benefiting our fellow-men, it is inspiring ; and there are few pursuits more deservedly so, considering the vast losses to our farmers from insect injury and the pressing need that the distressed husbandman has for

  3. Counterforce applied to prevent spalling

    International Nuclear Information System (INIS)

    The field experiment within CAPS (Counterforce Applied to Prevent Spalling) was initiated to determine if the application of dry bentonite pellets is sufficient to suppress thermally-induced spalling in KBS-3 deposition holes. The experience gained from Aespoe Pillar Stability Experiment, conducted between 2002 and 2006, indicated that spalling could be controlled by the application of a small confining pressure in the deposition holes. The CAPS field experiment that included four pairs of boreholes with a diameter of approximately 0.5 m, was carried out as a series of demonstration experiments in the TASQ-tunnel. The first and second heating tests were performed in open holes, without any confining pressure on the borehole wall and the third and fourth heating tests with a confining pressure created by expanded clay pellets (LECA). The first heating test was initiated at the end of August 2008 and the final test was finished at the end of May 2009. The trials suggest that the small confining pressure offered by the LECA pellets was adequate to control spalling and prevent the formation of a highly conductive zone of fractured rock in the 500-mm-diameter holes. It is recommended that a full-scale test be carried out to assess if the findings are applicable to 1,750-mm-diameter deposition holes. Should the full scale tests support the findings from these initial trials, filling the gap between the bentonite blocks and rock wall with dry bentonite pellets will provide a viable engineered solution for controlling the effects of thermally induced spalling in the KBS-3 deposition holes

  4. Counterforce applied to prevent spalling

    Energy Technology Data Exchange (ETDEWEB)

    Glamheden, Rune; Bergkvist, Lars (Golder Associates AB (Sweden)); Faelth, Billy (Clay Technology AB, Lund (Sweden)); Jacobsson, Lars (SP Technical Research Institute of Sweden, Boraas (Sweden)); Harrstroem, Johan (Geosigma AB, Uppsala (Sweden)); Berglund, Johan (Vattenfall Power Consultant AB, Stockholm (Sweden))

    2010-04-15

    The field experiment within CAPS (Counterforce Applied to Prevent Spalling) was initiated to determine if the application of dry bentonite pellets is sufficient to suppress thermally-induced spalling in KBS-3 deposition holes. The experience gained from Aespoe Pillar Stability Experiment, conducted between 2002 and 2006, indicated that spalling could be controlled by the application of a small confining pressure in the deposition holes. The CAPS field experiment that included four pairs of boreholes with a diameter of approximately 0.5 m, was carried out as a series of demonstration experiments in the TASQ-tunnel. The first and second heating tests were performed in open holes, without any confining pressure on the borehole wall and the third and fourth heating tests with a confining pressure created by expanded clay pellets (LECA). The first heating test was initiated at the end of August 2008 and the final test was finished at the end of May 2009. The trials suggest that the small confining pressure offered by the LECA pellets was adequate to control spalling and prevent the formation of a highly conductive zone of fractured rock in the 500-mm-diameter holes. It is recommended that a full-scale test be carried out to assess if the findings are applicable to 1,750-mm-diameter deposition holes. Should the full scale tests support the findings from these initial trials, filling the gap between the bentonite blocks and rock wall with dry bentonite pellets will provide a viable engineered solution for controlling the effects of thermally induced spalling in the KBS-3 deposition holes

  5. Gaitography applied to prosthetic walking.

    Science.gov (United States)

    Roerdink, Melvyn; Cutti, Andrea G; Summa, Aurora; Monari, Davide; Veronesi, Davide; van Ooijen, Mariëlle W; Beek, Peter J

    2014-11-01

    During walking on an instrumented treadmill with an embedded force platform or grid of pressure sensors, center-of-pressure (COP) trajectories exhibit a characteristic butterfly-like shape, reflecting the medio-lateral and anterior-posterior weight shifts associated with alternating steps. We define "gaitography" as the analysis of such COP trajectories during walking (the "gaitograms"). It is currently unknown, however, if gaitography can be employed to characterize pathological gait, such as lateralized gait impairments. We therefore registered gaitograms for a heterogeneous sample of persons with a trans-femoral and trans-tibial amputation during treadmill walking at a self-selected comfortable speed. We found that gaitograms directly visualize between-person differences in prosthetic gait in terms of step width and the relative duration of prosthetic and non-prosthetic single-support stance phases. We further demonstrated that one should not only focus on the gaitogram's shape but also on the time evolution along that shape, given that the COP evolves much slower in the single-support phase than in the double-support phase. Finally, commonly used temporal and spatial prosthetic gait characteristics were derived, revealing both individual and systematic differences in prosthetic and non-prosthetic step lengths, step times, swing times, and double-support durations. Because gaitograms can be rapidly collected in an unobtrusive and markerless manner over multiple gait cycles without constraining foot placement, clinical application of gaitography seems both expedient and appealing. Studies examining the repeatability of gaitograms and evaluating gaitography-based gait characteristics against a gold standard with known validity and reliability are required before gaitography can be clinically applied.

  6. Direct electrochemistry of glucose oxidase on hydroxyapatite/Nafion composite film modified electrode and its application for glucose biosensing%葡萄糖氧化酶在羟基磷灰石/Nafion复合膜修饰电极上的直接电化学及其对葡萄糖的生物传感

    Institute of Scientific and Technical Information of China (English)

    马荣娜; 王斌; 刘燕; 李静; 赵倩; 王国涛; 贾文丽; 王怀生

    2009-01-01

    将葡萄糖氧化酶固定于羟基磷灰石(HAp)-Nafion复合膜,构建了高灵敏、高选择性的葡萄糖传感器.羟基磷灰石和Nafion良好的协同作用,可以有效地提高传感器的稳定性与灵敏度.实验结果表明:固定在复合膜修饰电极上的葡萄糖氧化酶呈现出一对较好的近乎可逆的氧化还原峰,并且对葡萄糖的氧化有良好的催化作用,同时消耗溶解氧,从而导致溶解氧还原峰的降低.在-0.8 V处,随葡萄糖浓度的增加,葡萄糖氧化酶催化葡萄糖氧化时消耗溶解氧的量增加,溶解氧还原电流逐渐降低,因此该修饰电极可以作为葡萄糖传感器实现对葡萄糖的高灵敏检测.在0.12~2.16 mmol·L~(-1)浓度范围内,溶解氧还原电流的降低与葡萄糖的浓度成正比,据此可以测定出溶液中葡萄糖的浓度,该传感器的检出限和灵敏度分别为0.02 mmol·L~(-1)(S/N=3)和6.75 mA·L·mol~(-1).因此,HAp-Nafion复合膜为酶的固定和直接电化学研究提供了一个新的有效平台,在构建新型无试剂葡萄糖传感器方面具有较大的应用前景.%A novel glucose biosensor was constructed by immobilizing the glucose oxidase (GOD) on a hydroxyapa-tite (Hap)/Nafion composite film modified glassy carbon electrode (GCE) and applied to the highly selective and sensitive determination of glucose.With the cooperation of Hap and Nafion,the composite film played an important role in enhancing the stability and sensitivity of the biosensor.The results demonstrated that the GOD adsorbed onto the Hap/Nafion composite film exhibits a pair of well-defined nearly reversible redox peaks and fine catalysis to the oxidation of glucose companied with the consumption of dissolved oxygen.Based on the decrease of the reduction current of dissolved oxygen at the applied potential of -0.80 V (vs.SCE) upon the addition of glucose,the concentration of glucose could be detected sensitively and selectively.The decreased reduction current

  7. Morphometrics applied to medical entomology.

    Science.gov (United States)

    Dujardin, Jean-Pierre

    2008-12-01

    Morphometrics underwent a revolution more than one decade ago. In the modern morphometrics, the estimate of size is now contained in a single variable reflecting variation in many directions, as many as there are landmarks under study, and shape is defined as their relative positions after correcting for size, position and orientation. With these informative data, and the corresponding software freely available to conduct complex analyses, significant biological and epidemiological features can be quantified more accurately. We discuss the evolutionary significance of the environmental impact on metric variability, mentioning the importance of concepts like genetic assimilation, genetic accommodation, and epigenetics. We provide examples of measuring the effect of selection on metric variation by comparing (unpublished) Qst values with corresponding (published) Fst. The primary needs of medical entomologists are to distinguish species, especially cryptic species, and to detect them where they are not expected. We explain how geometric morphometrics could apply to these questions, and where there are deficiencies preventing the approach from being utilized at its maximum potential. Medical entomologists in connection with control programs aim to identify isolated populations where the risk of reinfestation after treatment would be low ("biogeographical islands"). Identifying them can be obtained from estimating the number of migrants per generation. Direct assessment of movement remains the most valid approach, but it scores active movement only. Genetic methods estimating gene flow levels among interbreeding populations are commonly used, but gene flow does not necessarily mean the current flow of migrants. Methods using the morphometric variation are neither suited to evaluate gene flow, nor are they adapted to estimate the flow of migrants. They may provide, however, the information needed to create a preliminary map pointing to relevant areas where one could

  8. Research on the treatment of fracturing flow-back fluid by coagulation-magnet separation-electrochemistry combined technology%混凝-磁分离-电化学技术处理压裂返排液研究

    Institute of Scientific and Technical Information of China (English)

    张太亮; 欧阳铖; 郭威; 张芳捷; 范开鑫

    2016-01-01

    The components,characteristics and treatment actuality of fracturing flow-back fluid from shale gas explo-ration are analyzed. It is put forward that the gel-breaking coagulation-magnetic separation-electrochemistry catalysis oxidation technology is used for treating fracturing flow-back fluid. The optimized technology of every treatment unit is obtained through researches,among which gel-breaker K2FeO4 is used in the gel-breaking coagulation process. The conditions needed are as follows:the dosage of K2FeO4 is 2 500 mg/L,PAFC dosage 2 000 mg/L, reacting pH 11.0 and reaction time 40 min. Nano-magnet powder 4 000 mg/L and polymer flocculant HPAM 20 mg/L are needed for the magnetic separation process. Ti/TiO2 plate is used as anode,while stainless steel plate as cathode, oxidation voltage 10.0 V,current density1.6×10-2 A/cm2,reaction pH of the system 11.0 and reaction time 30 min are needed for the electrochemistry catalysis oxidation process. The research results show that after the above technology and optimized processes have been used for the treatment of fracturing flow-back fluid,all of the main factors,such as COD,SS,oil content,chroma,pH,etc. meet the requirements specified in the first class of the Integrated Wastewater Discharge Standard(GB 8978—2002).%对页岩气开采中压裂返排液的组成、特性及处理现状进行分析,提出采用破胶混凝—磁分离—电化学催化氧化技术处理压裂返排液。研究得到各处理单元优化工艺,其中破胶混凝工艺采用高铁酸钾破胶剂、投加量2500 mg/L,混凝剂聚合氯化铝铁投加量为2000 mg/L,反应pH为11.0,反应时间40 min;磁分离工艺采用纳米磁铁粉,投加量4000 mg/L,高分子絮凝剂阴离子聚丙烯酰胺投加量为20 mg/L;电化学催化氧化工艺采用Ti/TiO2作阳极,不锈钢作阴极,氧化电压10.0 V,电流密度1.6×10-2 A/cm2,体系pH为11.0,反应时间30 min。研究结果表明,采用上述技术及优

  9. 无定形介孔磷酸锆固定葡萄糖氧化酶的直接电化学%Direct electrochemistry of immobilized glucose oxidase on amorphous mesoporous zirconium phosphate

    Institute of Scientific and Technical Information of China (English)

    于志辉; 黄鹏飞; 汪夏燕

    2016-01-01

    Glucose oxidase (GOD)/zirconium phosphate(ZrP)/glassy carbon(GC) electrode was prepared by adsorbing GOD on the amorphous mesoporous zirconium phosphate. The electrocatalytic properties of GOD/ZrP/GC electrode were characterized by cyclic voltammetric method at the medium of phosphate buffer (0.1 mol·L?1). The results showed that there were quicker electron transfer rate and larger surface coverage when GOD was supported on zirconium phosphate. At the same time, the electrochemical device with this electrode showed faster current response and higher sensitivity in detection of glucose, indicating that zirconium phosphate could be more suitable support for immobilization of GOD and achieve better performance of direct electrochemistry.%利用无定形介孔磷酸锆(ZrP)为载体,通过吸附法固定葡萄糖氧化酶(GOD),修饰玻碳(GC)电极得到GOD/ZrP/GC电极.在0.1 mol·L?1磷酸盐缓冲溶液中,利用循环伏安法研究了GOD/ZrP/GC电极的直接电化学行为和对葡萄糖的催化性能.结果表明,无定形磷酸锆ZrP为载体修饰的电极GOD/ZrP/GC其电化学反应电子转移速率快、表观覆盖量大;对葡萄糖的检测表现出较快的电流响应和较高的灵敏度,说明无定形磷酸锆更有利于GOD的固定和酶电极的直接电化学.

  10. Trigonal-bipyramidal and square-pyramidal chromium-manganese chalcogenide clusters, [E2CrMn2(CO)n](2-) (E=S, Se, Te; n=9, 10): synthesis, electrochemistry, UV/Vis absorption, and computational studies.

    Science.gov (United States)

    Shieh, Minghuey; Yu, Chun-Hsien; Chu, Yen-Yi; Guo, Yu-Wen; Huang, Chung-Yi; Hsing, Kai-Jieah; Chen, Pei-Chi; Lee, Chung-Feng

    2013-05-01

    The reactions of E powder (E=S, Se) with a mixture of Cr(CO)6 and Mn2(CO)10 in concentrated solutions of KOH/MeOH produced two new mixed Cr-Mn-carbonyl clusters, [E2CrMn2(CO)9](2-) (E=S, 1; Se, 2). Clusters 1 and 2 were isostructural with one another and each displayed a trigonal-bipyramidal structure, with the CrMn2 triangle axially capped by two μ3-E atoms. The analogous telluride cluster, [Te2CrMn2(CO)9](2-) (3), was obtained from the ring-closure of Te2Mn2 ring complex [Te2Mn2Cr2(CO)18](2-) (4). Upon bubbling with CO, clusters 2 and 3 were readily converted into square-pyramidal clusters, [E2CrMn2(CO)10](2-) (E=Se, 5; Te, 6), accompanied with the cleavage of one Cr-Mn bond. According to SQUID analysis, cluster 6 was paramagnetic, with S=1 at room temperature; however, the Se analogue (5) was spectroscopically proposed to be diamagnetic, as verified by TD-DFT calculations. Cluster 6 could be further carbonylated, with cleavage of the Mn-Mn bond to produce a new arachno-cluster, [Te2CrMn2(CO)11](2-) (7). The formation and structural isomers, as well as electrochemistry and UV/Vis absorption, of these clusters were also elucidated by DFT calculations. PMID:23610078

  11. Applied Parallel Computing Industrial Computation and Optimization

    DEFF Research Database (Denmark)

    Madsen, Kaj; NA NA NA Olesen, Dorte

    Proceedings and the Third International Workshop on Applied Parallel Computing in Industrial Problems and Optimization (PARA96)......Proceedings and the Third International Workshop on Applied Parallel Computing in Industrial Problems and Optimization (PARA96)...

  12. Applied Materials taas investorite huviorbiidis / Erlend Zirk

    Index Scriptorium Estoniae

    Zirk, Erlend

    2006-01-01

    Ilmunud ka: Delovõje Vedomosti 29. nov. lk. 33. Protsessorite tootmisseadmete tootja Applied Materials on pärast 2000. aasta börsikrahhi taas investorite huviorbiiti jõudmas. Diagramm: Applied Materialsi aktsia

  13. Western Perspectives in Applied Linguistics in Africa

    Science.gov (United States)

    Makoni, Sinfree; Meinhof, Ulrike H.

    2004-01-01

    The aim of this article is to analyze the nature of the historical and contemporary social contexts within which applied linguistics in Africa emerged, and is currently practiced. The article examines the challenges "local" applied Linguistics in Africa is confronted with as it tries to amplify applied linguistic programs emanating from…

  14. Critical and Alternative Directions in Applied Linguistics

    Science.gov (United States)

    Pennycook, Alastair

    2010-01-01

    Critical directions in applied linguistics can be understood in various ways. The term "critical" as it has been used in "critical applied linguistics," "critical discourse analysis," "critical literacy" and so forth, is now embedded as part of applied linguistic work, adding an overt focus on questions of power and inequality to discourse…

  15. Towards quantitative measures in applied ontology

    CERN Document Server

    Hoehndorf, Robert; Gkoutos, Georgios V

    2012-01-01

    Applied ontology is a relatively new field which aims to apply theories and methods from diverse disciplines such as philosophy, cognitive science, linguistics and formal logics to perform or improve domain-specific tasks. To support the development of effective research methodologies for applied ontology, we critically discuss the question how its research results should be evaluated. We propose that results in applied ontology must be evaluated within their domain of application, based on some ontology-based task within the domain, and discuss quantitative measures which would facilitate the objective evaluation and comparison of research results in applied ontology.

  16. Electrochemistry of vanadium(II and the electrodeposition of aluminum-vanadium alloys in the aluminum chloride-1-ethyl-3-methylimidazolium chloride molten salt

    Directory of Open Access Journals (Sweden)

    Tsuda T.

    2003-01-01

    Full Text Available The electrochemical behavior of vanadium(II was examined in the 66.7-33.3 mole percent aluminum chloride-1-ethyl-3-methylimidazolium chloride molten salt containing dissolved VCl2 at 353 K. Voltammetry experiments revealed that V(II could be electrochemically oxidized to V(III and V(IV. However at slow scan rates the V(II/V(III electrode reaction is complicated by the rapid precipitation of V(III as VCl3. The reduction of V(II occurs at potentials considerably negative of the Al(III/Al electrode reaction, and Al-V alloys cannot be electrodeposited from this melt. However electrodeposition experiments conducted in VCl2-saturated melt containing the additive, 1-ethyl-3-methylimidazolium tetrafluoroborate, resulted in Al-V alloys. The vanadium content of these alloys increased with increasing cathodic current density or more negative applied potentials. X-ray analysis of Al-V alloys that were electrodeposited on a rotating copper wire substrate indicated that these alloys did not form or contain an intermetallic compound, but were non-equilibrium or metastable solid solutions. The chloride-pitting corrosion properties of these alloys were examined in aqueous NaCl by using potentiodynamic polarization techniques. Alloys containing ~10 a/o vanadium exhibited a pitting potential that was 0.3 V positive of that for pure aluminum.

  17. An Efficient CuxO Photocathode for Hydrogen Production at Neutral pH: New Insights from Combined Spectroscopy and Electrochemistry.

    Science.gov (United States)

    Baran, Tomasz; Wojtyła, Szymon; Lenardi, Cristina; Vertova, Alberto; Ghigna, Paolo; Achilli, Elisabetta; Fracchia, Martina; Rondinini, Sandra; Minguzzi, Alessandro

    2016-08-24

    Light-driven water splitting is one of the most promising approaches for using solar energy in light of more sustainable development. In this paper, a highly efficient p-type copper(II) oxide photocathode is studied. The material, prepared by thermal treatment of CuI nanoparticles, is initially partially reduced upon working conditions and soon reaches a stable form. Upon visible-light illumination, the material yields a photocurrent of 1.3 mA cm(-2) at a potential of 0.2 V vs a reversible hydrogen electrode at mild pH under illumination by AM 1.5 G and retains 30% of its photoactivity after 6 h. This represents an unprecedented result for a nonprotected Cu oxide photocathode at neutral pH. The photocurrent efficiency as a function of the applied potential was determined using scanning electrochemical microscopy. The material was characterized in terms of photoelectrochemical features; X-ray photoelectron spectroscopy, X-ray absorption near-edge structure, fixed-energy X-ray absorption voltammetry, and extended X-ray absorption fine structure analyses were carried out on pristine and used samples, which were used to explain the photoelectrochemical behavior. The optical features of the oxide are evidenced by direct reflectance spectroscopy and fluorescence spectroscopy, and Mott-Schottky analysis at different pH values explains the exceptional activity at neutral pH. PMID:27468763

  18. A Highly Efficient Mixed-culture Biofilm as Anodic Catalyst and Insights into Its Enhancement through Electrochemistry by Comparison with G. sulfurreducens

    International Nuclear Information System (INIS)

    Highlights: • A mixed-culture biofilm with 68.6% higher current than Geobacter sulfurreducens was firstly reported, while G. sulfurreducens biofilm showed five-time higher apparent affinity than the mixed-culture. • The mixed-culture biofilm showed surface-controlled process, while diffusion-controlled process was obtained for G. sulfurreducens as at certain accelerating scan rates. • When the used medium was replaced with the fresh, decrease percentage of currents for both kinds of biofilms is similar (50%). • A suitable community will be an alternative for improving MFC performance. - Abstract: In this paper an efficient mixed-culture microbial biofilm with increased current density by 68.6% (1020.9 ± 47 μA cm−2) than that on typical culture of Geobacter sulfurreducens biofilm was firstly reported. The insights into the enhanced electricity-producing ability was investigated through evaluating the dependence of limiting current density on electroactive biomass coverage, replacing used growth medium, applying stirring and electron transfer kinetics. It was shown that the enhanced electricity generation ability of the mixed-culture biofilm is from population superiority of active molecules or electron shuttles from the biofilm. This work suggested that the optimized synergistic effect between interspecies in community could significantly improve electricity-producing performance than single strain. This study highlighted the potential synergistic role in special community on electricity generation capability

  19. Direct Electrochemistry of Hemoglobin Immobilized on a Functionalized Multi-Walled Carbon Nanotubes and Gold Nanoparticles Nanocomplex-Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Nader Sheibani

    2013-07-01

    Full Text Available Direct electron transfer of hemoglobin (Hb was realized by immobilizing Hb on a carboxyl functionalized multi-walled carbon nanotubes (FMWCNTs and gold nanoparticles (AuNPs nanocomplex-modified glassy carbon electrode. The ultraviolet-visible absorption spectrometry (UV-Vis, transmission electron microscopy (TEM and Fourier transform infrared (FTIR methods were utilized for additional characterization of the AuNPs and FMWCNTs. The cyclic voltammogram of the modified electrode has a pair of well-defined quasi-reversible redox peaks with a formal potential of −0.270 ± 0.002 V (vs. Ag/AgCl at a scan rate of 0.05 V/s. The heterogeneous electron transfer constant (ks was evaluated to be 4.0 ± 0.2 s−1. The average surface concentration of electro-active Hb on the surface of the modified glassy carbon electrode was calculated to be 6.8 ± 0.3 × 10−10 mol cm−2. The cathodic peak current of the modified electrode increased linearly with increasing concentration of hydrogen peroxide (from 0.05 nM to 1 nM with a detection limit of 0.05 ± 0.01 nM. The apparent Michaelis-Menten constant (Kmapp was calculated to be 0.85 ± 0.1 nM. Thus, the modified electrode could be applied as a third generation biosensor with high sensitivity, long-term stability and low detection limit.

  20. Direct Electrochemistry and Electrocatalysis of Horseradish Peroxidase Immobilized in a DNA/Chitosan-Fe3O4 Magnetic Nanoparticle Bio-Complex Film

    Directory of Open Access Journals (Sweden)

    Tingting Gu

    2014-02-01

    Full Text Available A DNA/chitosan-Fe3O4 magnetic nanoparticle bio-complex film was constructed for the immobilization of horseradish peroxidase (HRP on a glassy carbon electrode. HRP was simply mixed with DNA, chitosan and Fe3O4 nanoparticles, and then applied to the electrode surface to form an enzyme-incorporated polyion complex film. Scanning electron microscopy (SEM was used to study the surface features of DNA/chitosan/Fe3O4/HRP layer. The results of electrochemical impedance spectroscopy (EIS show that Fe3O4 and enzyme were successfully immobilized on the electrode surface by the DNA/chitosan bio-polyion complex membrane. Direct electron transfer (DET and bioelectrocatalysis of HRP in the DNA/chitosan/Fe3O4 film were investigated by cyclic voltammetry (CV and constant potential amperometry. The HRP-immobilized electrode was found to undergo DET and exhibited a fast electron transfer rate constant of 3.7 s−1. The CV results showed that the modified electrode gave rise to well-defined peaks in phosphate buffer, corresponding to the electrochemical redox reaction between HRP(Fe(III and HRP(Fe(II. The obtained electrode also displayed an electrocatalytic reduction behavior towards H2O2. The resulting DNA/chitosan/Fe3O4/HRP/glassy carbon electrode (GCE shows a high sensitivity (20.8 A·cm−2·M−1 toward H2O2. A linear response to H2O2 measurement was obtained over the range from 2 µM to 100 µM (R2 = 0.99 and an amperometric detection limit of 1 µM (S/N = 3. The apparent Michaelis-Menten constant of HRP immobilized on the electrode was 0.28 mM. Furthermore, the electrode exhibits both good operational stability and storage stability.

  1. 34 CFR 400.4 - What definitions apply to the Vocational and Applied Technology Education Programs?

    Science.gov (United States)

    2010-07-01

    ... preparing to enter, planning, management, finances, technical and production skills, underlying principles... 34 Education 3 2010-07-01 2010-07-01 false What definitions apply to the Vocational and Applied... APPLIED TECHNOLOGY EDUCATION PROGRAMS-GENERAL PROVISIONS § 400.4 What definitions apply to the...

  2. Direct Electrochemistry of Glucose Oxidase on A Nano Complex Modified Glassy Carbon Electrode%葡萄糖氧化酶在修饰玻碳电极上的直接电化学

    Institute of Scientific and Technical Information of China (English)

    耿方勇; 李迪; 张钰帅; 杨晓璐; 肖宝林; 洪军

    2016-01-01

    Direct electrochemistry of glucose oxidase was realized when it was immobilized on a nano-complex modified glassy carbon electrode, and the nano-complex was composed of graphene and multi-walled carbon nanotubes. The outermost layer covered with chitosan. Using cyclic voltammetry ( CV ) to measure electrochemical and electro-catalyzed reaction of glucose oxidase that modified electrode, the electron transfer rate constant (ks) was evaluated to be 0. 87 s-1, and electroactive surface density was 1. 54í10-10 mol/cm-2. The apparent Michaelis-Menten constant (Kappm ) was 1. 32í103 μmol/L, linear detection range was 40 ~1000 μmol/L, and the modified electrode had better stability, and modified electrode had good anti-interference ability when detected the substrate. Therefore, the modified electrode can be used to detect glucose, as the third generation biosensors.%将葡萄糖氧化酶( Glucose oxidase, GOD)固定在由多壁碳纳米管( MWCNTS)和石墨烯( Graphene)构成的纳米复合材料修饰的玻碳电极上,最外层用壳聚糖( Chitosan)进行覆盖,利用循环伏安法( Cyclic Voltammetry, CV)来测量葡萄糖氧化酶在修饰电极上的电化学和电催化反应,测得电子传递速率常数ks 为0.87 s-1,电活性物质表面密度Г为1.54×10-10 mol/cm-2,动力学表观米氏常数Km 为1.32×103μmol/L,线性检测范围为:40~1000μmol/L,修饰电极有较好的稳定性,而且修饰电极在检测底物时有较好的抗干扰能力,因此,该体系修饰的电极有希望构建第三代葡萄糖生物传感器。

  3. Direct Electrochemistry of Hemoglobin on TiO2 Cavities Array%血红蛋白在二氧化钛球腔阵列上的直接电化学研究

    Institute of Scientific and Technical Information of China (English)

    周宇; 周丽娟; 孙磊; 尹凡

    2011-01-01

    采用Langmuir—Blodgett术和溶胶-凝胶(sol—gel)法在氧化铟锡(ITO)表面制备了TiO2球腔阵列.研究了TiO2球腔阵列的电化学性质,结果表明:所制备的TiO2球腔阵列具有微电极阵列特性.将血红蛋白(Hb)直接吸附在TiO2球腔阵列内部,制备过氧化氢(H2O2)生物传感器.修饰电极对过氧化氢(H2O2)的电流响应快速稳定、重现性和选择性较好,在9.00×10^-7~4.44×10^-4mol/L范围内H2O2浓度与响应电流呈现良好的线性关系,其检出限为3.12×10^-7mol/L,米氏常数为0.138mmol/L.%The TiO2 cavities array was fabricated on indium-tin oxide electrode surface by using Lang-muir-Blodgett technique and sol-gel technique. The electrochemistry property of TiO2 cavities array was investigated. The result showed that TiO2 cavities array had the property of microelectrode arrays. An amperometric biosensor for detection of H202 was prepared by adsorbing hemoglobin(Hb) in TiO2 cavities directly. In pH 7.0 phosphate buffer, the CV curve of Hb/TiO2 cavities array electrode showed a pair of reversible redox peaks, the catholic and anodic peak appeared at 0.042 and 0.127V, its direct electron transfer rate was 2.95s^-1. The amperometric response of the biosensor possessed properties of speediness, good stability, reproducibility, and selectivity. Under the optimal conditions, the calibration curve was linear in the range of 9.00×10^-7-4.44×10^-4 mol/L for H2O2 concentration with a detection limit of 3.12×10^-7 mol/L and the apparent Michaelis-Menten constant for HRP modified electrode was 0.138 mmol/L.

  4. Recent Developments in Applied Probability and Statistics

    CERN Document Server

    Devroye, Luc; Kohler, Michael; Korn, Ralf

    2010-01-01

    This book presents surveys on recent developments in applied probability and statistics. The contributions include topics such as nonparametric regression and density estimation, option pricing, probabilistic methods for multivariate interpolation, robust graphical modelling and stochastic differential equations. Due to its broad coverage of different topics the book offers an excellent overview of recent developments in applied probability and statistics.

  5. Applied Linguistics: The Challenge of Theory

    Science.gov (United States)

    McNamara, Tim

    2015-01-01

    Language has featured prominently in contemporary social theory, but the relevance of this fact to the concerns of Applied Linguistics, with its necessary orientation to practical issues of language in context, represents an ongoing challenge. This article supports the need for a greater engagement with theory in Applied Linguistics. It considers…

  6. Applied Implications of Reinforcement History Effects

    Science.gov (United States)

    Pipkin, Claire St. Peter; Vollmer, Timothy R.

    2009-01-01

    Although the influence of reinforcement history is a theoretical focus of behavior analysis, the specific behavioral effects of reinforcement history have received relatively little attention in applied research and practice. We examined the potential effects of reinforcement history by reviewing nonhuman, human operant, and applied research and…

  7. Situations of Applied Psycholinguistics in China

    Institute of Scientific and Technical Information of China (English)

    陈雪

    2007-01-01

    Numerous studies related to applied psycholinguistics in China have been published in the past two decades. So the present study reviewed the situations of applied psycholinguistics and by discussing the results, existing problems are dipped and suggestions for further research are proposed.

  8. 32 CFR 37.1220 - Applied research.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Applied research. 37.1220 Section 37.1220... REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Definitions of Terms Used in This Part § 37.1220 Applied research... technology such as new materials, devices, methods and processes. It typically is funded in...

  9. Applied Linguistics in Its Disciplinary Context

    Science.gov (United States)

    Liddicoat, Anthony J.

    2010-01-01

    Australia's current attempt to develop a process to evaluate the quality of research (Excellence in Research for Australia--ERA) places a central emphasis on the disciplinary organisation of academic work. This disciplinary focus poses particular problems for Applied Linguistics in Australia. This paper will examine Applied Linguistics in relation…

  10. Child Participant Roles in Applied Linguistics Research

    Science.gov (United States)

    Pinter, Annamaria

    2014-01-01

    Children's status as research participants in applied linguistics has been largely overlooked even though unique methodological and ethical concerns arise in projects where children, rather than adults, are involved. This article examines the role of children as research participants in applied linguistics and discusses the limitations of…

  11. Effectiveness of Investment in Applied Horticultural Research

    NARCIS (Netherlands)

    Wustman, R.; Putter, de H.; Achterbosch, T.J.; Adamicki, F.

    2005-01-01

    A study on the cost benefit analysis of applied horticultural research was carried out in two EU Member States: the Netherlands and Poland. Four crops were selected for the study; two fruit crops ¿ apple and pear and two vegetable crops ¿ carrot and onion. A developed spreadsheet model was applied t

  12. Active system monitoring applied on wind turbines

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad; Parbo, Henrik;

    2009-01-01

    A concept for active system monitoring (ASM) applied on wind turbines is presented in this paper. The concept is based on an injection of a small periodic auxiliary signal in the system. An investigation of the signature from the auxiliary input in residual (error) signals can then be applied for...... for an online monitoring of central parameters/elements of the system. Statistical tests are applied on the residual signals for obtaining a correct monitoring.......A concept for active system monitoring (ASM) applied on wind turbines is presented in this paper. The concept is based on an injection of a small periodic auxiliary signal in the system. An investigation of the signature from the auxiliary input in residual (error) signals can then be applied...

  13. Peripherally applied opioids for postoperative pain

    DEFF Research Database (Denmark)

    Nielsen, B N; Henneberg, S W; Schmiegelow, K;

    2015-01-01

    BACKGROUND: Opioids applied peripherally at the site of surgery may produce postoperative analgesia with few side effects. We performed this systematic review to evaluate the analgesic effect of peripherally applied opioids for acute postoperative pain. METHODS: We searched PubMed (1966 to June...... 2013), Embase (1980 to June 2013), and the Cochrane Central Register of Controlled Trials (The Cochrane Library 2013, Issue 6). Randomized controlled trials investigating the postoperative analgesic effect of peripherally applied opioids vs. systemic opioids or placebo, measured by pain intensity...... postoperative analgesia. CONCLUSION: Evidence of a clinically relevant analgesic effect of peripherally applied opioids for acute postoperative pain is lacking. The analgesic effect of peripherally applied opioids may depend on the presence of preoperative inflammation....

  14. Applied Sciences—Connecting Theories with Practice

    Directory of Open Access Journals (Sweden)

    Takayoshi Kobayashi

    2011-09-01

    Full Text Available Applied sciences cover many interdisciplinary fields that put basic sciences to application and make big changes by taking the one not-so-small step from “knowing how” to “knowing how-to”, the serendipity of which is often intriguing. Applied sciences are so deeply entrenched in almost all aspects of our daily lives. To provide an advanced forum for scholars all over the world to discuss and communicate the cutting-edge development in this field, on behalf of the Editorial Board members, I am honored to introduce Applied Sciences, a scholarly, peer-reviewed open access journal. [...

  15. ON THE EVOLUTION OF APPLIED MATHEMATICS

    Institute of Scientific and Technical Information of China (English)

    林家翘

    2003-01-01

    The recent trend in the application of mathematics to biological sciences is discussed in historical perspective. It is suggested that this new development should be regarded as a natural evolution of applied mathematics in the expansion of its scope. The mathematical concepts and methods to be used are not expected to be substantially different from those used in traditional applied mathematics. For illustration, we sketch an application of the kinetic theory of the study of dissipative systems to the study of the structure and function of protein molecules. The traditional concepts and methods of statistical physics can be successfully applied to yield predictions for comparison with empirical data.

  16. Encyclopedia of applied and computational mathematics

    CERN Document Server

    2015-01-01

    EACM is a comprehensive reference work covering the vast field of applied and computational mathematics. Applied mathematics itself accounts for at least 60 per cent of mathematics, and the emphasis on computation reflects the current and constantly growing importance of computational methods in all areas of applications. EACM emphasizes the strong links of applied mathematics with major areas of science, such as physics, chemistry, biology, and computer science, as well as specific fields like atmospheric ocean science. In addition, the mathematical input to modern engineering and technology form another core component of EACM.

  17. Concept analysis of culture applied to nursing.

    Science.gov (United States)

    Marzilli, Colleen

    2014-01-01

    Culture is an important concept, especially when applied to nursing. A concept analysis of culture is essential to understanding the meaning of the word. This article applies Rodgers' (2000) concept analysis template and provides a definition of the word culture as it applies to nursing practice. This article supplies examples of the concept of culture to aid the reader in understanding its application to nursing and includes a case study demonstrating components of culture that must be respected and included when providing health care.

  18. Applied linguistics - a science of culture?

    Directory of Open Access Journals (Sweden)

    Benke, Gertraud

    2003-01-01

    Full Text Available In this article, the status of applied linguistics as discipline is questioned and problems of establishing it - and other newly formed scientific enterprises like cultural science - as disciplines are discussed. This discussion is contextualized using the author's own experience as applied linguist working in (the institutional structure of Austria. Secondly, applied linguistics is presented as complementing cultural science, with both exploring at times the same phenomena albeit under different perspectives and focussing on different levels of experience. Two examples of research involving such a joint interest with different foci are discussed.

  19. 1st Applied Electromagnetic International Conference

    CERN Document Server

    Othman, Mohd; Aziz, Mohamad; Malek, Mohd

    2015-01-01

    In this book, experts from academia and industry present the latest advances in scientific theory relating to applied electromagnetics and examine current and emerging applications particularly within the fields of electronics, communications, and computer technology. The book is based on presentations delivered at APPEIC 2014, the 1st Applied Electromagnetic International Conference, held in Bandung, Indonesia in December 2014. The conference provided an ideal platform for researchers and specialists to deliver both theoretically and practically oriented contributions on a wide range of topics relevant to the theme of nurturing applied electromagnetics for human technology. Many novel aspects were addressed, and the contributions selected for this book highlight the relevance of advances in applied electromagnetics to a variety of industrial engineering problems and identify exciting future directions for research.

  20. H-methods in applied sciences

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar

    2008-01-01

    The author has developed a framework for mathematical modelling within applied sciences. It is characteristic for data from 'nature and industry' that they have reduced rank for inference. It means that full rank solutions normally do not give satisfactory solutions. The basic idea of H-methods is...... cannot be improved. H-methods have been applied to wide range of fields within applied sciences. In each case, the H-methods provide with superior solutions compared to the traditional ones. A background for the H-methods is presented. The H-principle of mathematical modelling is explained. It is shown...... how the principle leads to well-defined optimisation procedures. This is illustrated in the case of linear regression. The H-methods have been applied in different areas: general linear models, nonlinear models, multi-block methods, path modelling, multi-way data analysis, growth models, dynamic...

  1. Applying Change of Variable to Calculus Problems

    Science.gov (United States)

    Kachapova, Farida; Kachapov, Ilias

    2011-01-01

    This article describes the technique of introducing a new variable in some calculus problems to help students master the skills of integration and evaluation of limits. This technique is algorithmic and easy to apply.

  2. ICT for AQA applied as single award

    CERN Document Server

    Wilson, Barbara

    2007-01-01

    This book has been written specifically for teachers and students following AQA's Applied AS ICT specification and covers the key elements of the units of the course, including the coursework requirements.

  3. Computers in Some Branches of Applied Physiology .

    Directory of Open Access Journals (Sweden)

    S.S. Verma

    1994-04-01

    Full Text Available This paper reviews the applications of computers in the evaluation of different types of problems occuring in some branches of applied physiology. The recent applications of computers to perform advanced multivariate regression analysis for developing regression models in applied physiology are also highlighted. The regression models are practical significance for screening personnel in defence services, mines, industrial works, sports and the like.

  4. A View from Agricultural and Applied Economics

    OpenAIRE

    Henry, Mark

    2000-01-01

    Is regional science too focused on abstract models, theorizing, and methodology with weak links to policy and practice? Not from the perspective of the land grant university, where many applied economists with a regional science interest reside. The job of these applied economists is, in part, to translate the models and methods into tools for the use in understanding regional development processes and for undertaking policy analysis at the regional level.

  5. Industrial and applied mathematics in China

    CERN Document Server

    Li,Tatsien

    2014-01-01

    This new volume introduces readers to the current topics of industrial and applied mathematics in China, with applications to material science, information science, mathematical finance and engineering. The authors utilize mathematics for the solution of problems. The purposes of the volume are to promote research in applied mathematics and computational science; further the application of mathematics to new methods and techniques useful in industry and science; and provide for the exchange of information between the mathematical, industrial, and scientific communities.

  6. [What did bachelard mean by "applied rationalism" ?].

    Science.gov (United States)

    Tiles, Mary

    2013-01-01

    Bachelard was concerned with the processes whereby scientific knowledge is acquired, including the activity of knowing subjects. He did not equate reasoning with logic but rather argued that reasoning resulted from the use of mathematics in organizing both thought and experimental practices, which is why he conceived science as applied mathematics. This had material and technical implications, for Bachelard was concerned with the element of reason inherent in technical materialism as well as the concrete reality inherent in applied rationalism. PMID:24091650

  7. FEEDBACK LINEARISATION APPLIED ON A HYDRAULIC

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Hansen, Michael Rygaard; Pedersen, Henrik C.;

    2005-01-01

    Generally most hydraulic systems are intrensically non-linear, why applying linear control techniques typically results in conservatively dimensioned controllers to obtain stable performance. Non-linear control techniques have the potential of overcoming these problems, and in this paper the focus...... is on developing and applying several different feedback linearisation (FL) controllers to the individual servo actuators in a hydraulically driven servo robot to evaluate and compare their possiblities and limitations. This is done based on both simulation and experimental results....

  8. ECONOMIC ETHICS: APPLIED AND PROFESSIONAL CHARACTER

    Directory of Open Access Journals (Sweden)

    Ella Gordova

    2012-01-01

    Full Text Available In given article economic ethics are considered as set of norms of behavior of the businessman, the requirements shown by a cultural society to its style of work, to character of dialogue between participants of business, to their social shape. The conclusion becomes that economic ethics have applied character in relation to theoretical, to obschenormativnoy ethics, hence, represent section of applied ethics. On the other hand, the specific standard maintenance characterizes economic ethics as ethics professional.

  9. The Bakhtin Circle and Applied Linguistics

    Directory of Open Access Journals (Sweden)

    Newton Duarte Molon

    2012-11-01

    Full Text Available This article aims at presenting the relations between the theoretical formulations of the Bakhtin Circle and the current discussion on the scope of the so called Applied Linguistics (AL. In order to do that, we will briefly outline the history of AL, present the main conceptions of the Bakhtin Circle‟s thought, and build possible dialogues between the theoretical formulations of the Russian thinkers and the main issues of the current debate in Applied Linguistics.

  10. [What did bachelard mean by "applied rationalism" ?].

    Science.gov (United States)

    Tiles, Mary

    2013-01-01

    Bachelard was concerned with the processes whereby scientific knowledge is acquired, including the activity of knowing subjects. He did not equate reasoning with logic but rather argued that reasoning resulted from the use of mathematics in organizing both thought and experimental practices, which is why he conceived science as applied mathematics. This had material and technical implications, for Bachelard was concerned with the element of reason inherent in technical materialism as well as the concrete reality inherent in applied rationalism.

  11. Advanced surface technology a holistic view on the extensive and intertwined world of applied surface engineering

    CERN Document Server

    Moller, Per

    2013-01-01

    These two volumes serve as an inclusive and practical reference in manufacturing as well as a comprehensive text for university-level course work. Before delving into the variety of conventional and emerging surface finishing processes available to the 21st century practitioner, the authors cover the principles behind the processes, including wear and other mechanical properties, corrosion and electrochemistry. Throughout, the material also covers testing, property measurement and a generic introduction to basically all surface relevant characterization techniques, keyed to the specific process and application under discussion.

  12. 血红蛋白在SWCNTs-CTAB修饰电极上的直接电化学和电催化研究%Direct Electrochemistry and Electrocatalysis of Hemoglobin on SWCNTs-CTAB Modified Electrode

    Institute of Scientific and Technical Information of China (English)

    李元军; 黄富英; 王飞; 林丽芳; 李艳彩

    2011-01-01

    The direct electrochemistry and electrocatalysis of hemoglobin(Hb) were investigated with the protein incorporated in the nanocomposite film of single walled carbon nanotubes(SWCNTs)-cetylramethy-lammonium bromide(CTAB) immobilized on the surface of a glassy carbon electrode(GCE).The incorporated hemoglobin was characterized using ultraviolet visible(UV-Vis) spectroscopy,indicating the hemoglobin in SWCNTs-CTAB nanocomposite film keeps its secondary structure similar to its native state.The reactions on the surface of GCE showed a surface-controlled process with a single proton transfer at the scan rate range from 10 to 500 mV/s.According to the electrochemical methods,a series of electrochemical parameters such as formal potentials(Eθ') and apparent heterogeneous electron transfer rate constants(ks) were obtained.Moreover,the Hb-SWCNTs-CTAB electrode showed excellent electrocatalytic activities for the reduction of H2O2 ranging from 7.00×10-5mol L-1-1.26×10-3mol L-1(R=0.9983,n=18) with a detection limit of 1.96×10-5(S/N=3).Furthermore,the biosensor possessed good stability and reproducibility and could be used to determine the concentration of H2O2.%利用血红蛋白(Hb)结合单壁碳纳米管(SWCNTs)-十六烷基三甲基溴化铵(CTAB)制备纳米复合物修饰到玻碳电极(GCE)表面,并研究了电极上Hb的直接电化学和电催化行为.用紫外可见光谱(UV-Vis)检测键合到电极表面的Hb,可知复合膜中的Hb保持了类似于本体环境中的亚结构.通过电化学实验可知,复合膜中的Hb表现出了表面控制的可逆的直接电子转移反应.得到了标准式电位(Eθ')和表面覆盖度(Γ*)等电化学参数.在7.00×10-5mol L-1-1.26×10-3mol L-1范围内(R=0.9983,n=18)内,Hb-SWCNTs-CTAB修饰电极对过氧化氢(H2O2)表现出较好的催化还原活性,得检测限为1.96×10-5(S/N=3).该传感器具有良好的稳

  13. Study on the direct electrochemistry of Myoglobin based on Ag2 S-MWNTs nanocomposites%基于Ag2 S-MWNTs的肌红蛋白直接电化学研究

    Institute of Scientific and Technical Information of China (English)

    史智锋; 贺慧; 马李思思

    2014-01-01

    Ag2 S-MWNTs nanoconposites was prepared and then a Mb-Ag2 S-MWNTs-CHIT/GCE was fabricated. Based on the fabri-cated Mb-Ag2 S-MWNTs-CHIT/GCE,the direct electrochemistry and electrocatalytic properties of the immobilized Mb were investi-gated. Scanning electron microscopic and Transmission electron microscopic were used to characterize the morphology of the Ag2 S-MWNTs. Cyclic voltammetry and amperometry were used for studying the electrochemical behaviors of Mb. Uniform and stable Ag2 S was growing at the MWNTs surface,and the fabricated electrode showed a well-defined and quasi-reversible redox peaks and good electrocatalytic ability for hydrogen peroxide( H2 O2 ) reduction. The resulting modified electrode could detect H2 O2 in a linear range of 1. 0 × 10-6 ~2. 5 × 10-4 mol·L-1 and the detection limit was 3 × 10-7 mol·L-1 at a signal-to-noise ratio of 3. Ag2 S-MWNTs in-creased the direct electron transfer rate dramatically and the modified electrode can provide a good platform for the investigation of the third generation biosensors.%制备了硫化银-多壁碳纳米管( Ag2 S-MWNTs)纳米复合材料,构置了Mb-Ag2 S-MWNTs-CHIT/GCE,并研究了肌红蛋白( Mb)在该修饰电极上的直接电化学和电催化行为。采用扫描电镜和透射电镜表征了Ag2 S-MWNTs的形貌,利用循环伏安法对Mb的电化学行为进行研究。 Ag2 S能够均一、稳定的在MWNTs表面生长,所构置的修饰电极在PBS中出现一对峰形良好的、准可逆的氧化还原峰,并对过氧化氢( H2 O2)表现出良好的电催化作用,测定H2O2的线性范围为1.0×10-6~2.5×10-4 mol·L-1,检出限为3×10-7 mol·L-1(S/N=3)。 Ag2 S-MWNTs纳米复合材料能显著提高氧化还原蛋白质(酶)的直接电子传递速率,所构置的修饰电极可为制备基于蛋白质(酶)的第三代电化学生物传感器提供一良好的研究平台。

  14. Eletroquímica das partículas coloidais e sua relação com a mineralogia de solos altamente intemperizados Electrochemistry of colloidal particles and its relationship with the mineralogy of highly weathered soils

    Directory of Open Access Journals (Sweden)

    Maurício Paulo F. Fontes

    2001-09-01

    improvement of the predictive capability of several phenomena, such as, floculation and dispersion of colloids, cations exchange, anion adsorption, specially phosphates, heavy metals adsorption, etc. Therefore, this literature review aims at to make a scientific approach of the topic "Electrochemistry of colloidal particles and its relationship with the mineralogy of highly weathered soils", in which, the historical evolution of the knowledge in this field is covered and the challenges to the development of the research in this area are raised. Different tendencies and views existing in the literature about Zero Points of Charge (ZPC, Charge Characterization and Measurement, ZPCs Terminology and Simbology and Relationship between Charge and Minerals of the highly weathered soils are also presented. Basic concepts are revisited and new or seldom used concepts in Soil Science are presented and discussed with the objective of improving the understanding and refining the interpretation of such important branch of the Soil Chemistry and Mineralogy field.

  15. [A critical review of applied criminology].

    Science.gov (United States)

    Vollbach, Alexander

    2016-01-01

    By reporting on a recent decision of the Regional Court (LG) of Marburg (Germany) calling attention to applied criminology, a concept still insufficiently considered in the administration of criminal justice, the paper argues that professional action in the execution of the sentence represents nothing else but applied criminology. Based on this assumption, the paper discusses practical diagnosis and correctional planning. Beyond that, the paper deals with the future of criminology. In the opinion of the author an important aspect for the future of criminology will be if it will be able to remain in touch with the world in which we live, as an independent empirical science. Applied criminology and its methodology constitute the link between science and practice.

  16. Applied regression analysis a research tool

    CERN Document Server

    Pantula, Sastry; Dickey, David

    1998-01-01

    Least squares estimation, when used appropriately, is a powerful research tool. A deeper understanding of the regression concepts is essential for achieving optimal benefits from a least squares analysis. This book builds on the fundamentals of statistical methods and provides appropriate concepts that will allow a scientist to use least squares as an effective research tool. Applied Regression Analysis is aimed at the scientist who wishes to gain a working knowledge of regression analysis. The basic purpose of this book is to develop an understanding of least squares and related statistical methods without becoming excessively mathematical. It is the outgrowth of more than 30 years of consulting experience with scientists and many years of teaching an applied regression course to graduate students. Applied Regression Analysis serves as an excellent text for a service course on regression for non-statisticians and as a reference for researchers. It also provides a bridge between a two-semester introduction to...

  17. System Applies Polymer Powder To Filament Tow

    Science.gov (United States)

    Baucom, Robert M.; Snoha, John J.; Marchello, Joseph M.

    1993-01-01

    Polymer powder applied uniformly and in continuous manner. Powder-coating system applies dry polymer powder to continuous fiber tow. Unique filament-spreading technique, combined with precise control of tension on fibers in system, ensures uniform application of polymer powder to web of spread filaments. Fiber tows impregnated with dry polymer powders ("towpregs") produced for preform-weaving and composite-material-molding applications. System and process valuable to prepreg industry, for production of flexible filament-windable tows and high-temperature polymer prepregs.

  18. Belbin's Team role theory applied to musicgroups

    OpenAIRE

    Qvick, Erik Robert, 1973-

    2015-01-01

    Can R Meredith Belbin´s team role theory be applied to applied to music groups? Could team role behavior have a impact on team work and group dynamic, and also on the success and productivity of a music group? This research analyzes the application of Belbin team role theory on three music groups consisting of Icelandic professional musicians to shed light on the possibilities of such relationships. The research examine the possibilities of relationships between team role behavior and it´s im...

  19. Applied orienting response research: some examples.

    Science.gov (United States)

    Tremayne, P; Barry, R J

    1990-01-01

    The development of orienting response (OR) theory has not been accompanied by many applications of the concept--most research still appears to be lab-based and "pure," rather than "applied." We present some examples from our own work in which the OR perspective has been applied in a wider context. These cover the exploration of processing deficits in autistic children, aspects of the "repression" of anxiety in elite athletes, and the locus of alcohol effects. Such applications of the OR concept in real-life situations seem a logical and, indeed, necessary step in the evolution of this area of psychophysiology.

  20. Applied mathematics for science and engineering

    CERN Document Server

    Glasgow, Larry A

    2014-01-01

    Prepare students for success in using applied mathematics for engineering practice and post-graduate studies moves from one mathematical method to the next sustaining reader interest and easing the application of the techniques Uses different examples from chemical, civil, mechanical and various other engineering fields Based on a decade's worth of the authors lecture notes detailing the topic of applied mathematics for scientists and engineers Concisely writing with numerous examples provided including historical perspectives as well as a solutions manual for academic adopters

  1. Fundamentals of applied probability and random processes

    CERN Document Server

    Ibe, Oliver

    2014-01-01

    The long-awaited revision of Fundamentals of Applied Probability and Random Processes expands on the central components that made the first edition a classic. The title is based on the premise that engineers use probability as a modeling tool, and that probability can be applied to the solution of engineering problems. Engineers and students studying probability and random processes also need to analyze data, and thus need some knowledge of statistics. This book is designed to provide students with a thorough grounding in probability and stochastic processes, demonstrate their applicability t

  2. Applied mathematics for engineers and physicists

    CERN Document Server

    Pipes, Louis A

    2014-01-01

    One of the most widely used reference books on applied mathematics for a generation, distributed in multiple languages throughout the world, this text is geared toward use with a one-year advanced course in applied mathematics for engineering students. The treatment assumes a solid background in the theory of complex variables and a familiarity with complex numbers, but it includes a brief review. Chapters are as self-contained as possible, offering instructors flexibility in designing their own courses. The first eight chapters explore the analysis of lumped parameter systems. Succeeding topi

  3. SPSS for applied sciences basic statistical testing

    CERN Document Server

    Davis, Cole

    2013-01-01

    This book offers a quick and basic guide to using SPSS and provides a general approach to solving problems using statistical tests. It is both comprehensive in terms of the tests covered and the applied settings it refers to, and yet is short and easy to understand. Whether you are a beginner or an intermediate level test user, this book will help you to analyse different types of data in applied settings. It will also give you the confidence to use other statistical software and to extend your expertise to more specific scientific settings as required.The author does not use mathematical form

  4. International Conference on Advances in Applied Mathematics

    CERN Document Server

    Hammami, Mohamed; Masmoudi, Afif

    2015-01-01

    This contributed volume presents some recent theoretical advances in mathematics and its applications in various areas of science and technology.   Written by internationally recognized scientists and researchers, the chapters in this book are based on talks given at the International Conference on Advances in Applied Mathematics (ICAAM), which took place December 16-19, 2013, in Hammamet, Tunisia.  Topics discussed at the conference included spectral theory, operator theory, optimization, numerical analysis, ordinary and partial differential equations, dynamical systems, control theory, probability, and statistics.  These proceedings aim to foster and develop further growth in all areas of applied mathematics.

  5. Applying a potential across a biomembrane

    DEFF Research Database (Denmark)

    Ambjörnsson, Tobias; Lomholt, Michael A; Hansen, Per Lyngs

    2007-01-01

    and increase the bending rigidity; explicit expressions for electrostatic contribution to the tension and bending rigidity are derived as a function of the applied potential, the Debye screening lengths, and the dielectric constants of the membrane and the solvents. For sufficiently large voltages the negative...... contribution to the tension is expected to cause a membrane stretching instability. (2) For the dielectric limit, i.e., no salt (and small wave vectors compared to the distance between the electrodes), when the dielectric constant on the two sides are different the applied potential induces an effective...

  6. A First Course in Applied Mathematics

    CERN Document Server

    Rebaza, Jorge

    2012-01-01

    Explore real-world applications of selected mathematical theory, concepts, and methods Exploring related methods that can be utilized in various fields of practice from science and engineering to business, A First Course in Applied Mathematics details how applied mathematics involves predictions, interpretations, analysis, and mathematical modeling to solve real-world problems. Written at a level that is accessible to readers from a wide range of scientific and engineering fields, the book masterfully blends standard topics with modern areas of application and provides the needed foundation

  7. Thermodynamic Foundation for High Temperature Electrochemistry

    Institute of Scientific and Technical Information of China (English)

    ZHANG W.; E. A. Charles; J. Congleton

    2004-01-01

    Thermodynamic concepts required for the thermodynamic calculation of the potentials of electrodes for high temperature applications are briefly reviewed. A thermodynamic approach to the calculation of half cell potentials and the standard chemical potential of an electron at high temperatures which are related to the Standard Hydrogen Electrode(SHE) is discussed. As examples, an external Ag/AgCl reference electrode and a YSZ (Ag |O2) pH sensor for high temperature applications are analyzed by using the thermodynamic approach to derive a high temperature pH measurement equation. The two electrodes are employed to measure high temperature pH and the measured pH was compared with the calculated pH by using a solution chemistry method. Concepts and principles for electrode kinetics are also briefly introduced and a modification to the Tafel equations is suggested.

  8. Encyclopedia of electrochemistry. Vol. 10. Modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Bard, A.J. [Texas Univ., Austin, TX (United States). Dept. of Chemistry; Stratmann, M. [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany); Rubinstein, I. [Weizmann Institute of Science, Rehovot (Israel). Dept. of Materials and Interfaces; Fujihira, Masamichi [Tokyo Institute of Technology, Yokohama (Japan). Dept. of Biomolecular Engineering; Rusling, J.F. (eds.) [Connecticut Univ., Storrs, CT (United States). Dept. of Chemistry, U-60]|[Connecticut Univ., Storrs, CT (United States). Dept. of Pharmacology

    2007-07-01

    This volume contains the following topics: 1. Preparation of monolayer modified electrodes; 2. Layer-by-layer assemblies of thin films on electrodes; 3. Epitaxial electrochemical growth; 5. Other films; 6. Ex-situ methods; 7. In-situ methods; 8. Electron transfer; 9. Charge transport in polymer-modified electrodes; 10. Electrochemical reactions on modified electrodes; 11. Redox-active dendrimers in solution and as films on surfaces; 12. Electrochemical formation of organic thin films; 13. Electron transfer and transport in ordered enzyme layers.

  9. Pattern Electrodes for Studying SOFC Electrochemistry

    NARCIS (Netherlands)

    Patel, H.C.; Biradar, N.; Venkataraman, V.; Aravind, P.V.

    2013-01-01

    Pattern anodes can be used to localize reactions and study individual processes like charge transfer, adsorption, diffusion etc. Ceria and Nickel (Ni) pattern anodes were fabricated with the same dimensions with Triple phase boundary (TPB) lengths of 0.2707 m/cm2. Electrochemical Impedance Spectrosc

  10. Nano-scale effects in electrochemistry

    DEFF Research Database (Denmark)

    Meier, J.; Schiøtz, Jakob; Liu, Ping;

    2004-01-01

    We report combined scanning tunneling microscopy and electrochemical reactivity measurements on individual palladium nanoparticles supported on a gold surface. It is shown that the catalytic activity towards electrochemical proton reduction is enhanced by more than two orders of magnitude as the ...... by the thickness-variation of the support-induced strain at the surface of the palladium nanoparticles. (C) 2004 Elsevier B.V. All rights reserved....

  11. Fundamental Material Properties Underlying Solid Oxide Electrochemistry

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Hansen, Karin Vels; Holtappels, Peter;

    2012-01-01

    place. The length of the TPB is a key factor even though the width and depth of the zone, in which the rate limiting reactions take place, may vary depending of the degree of the electrode materials ability to conduct both electrons and ions, i.e. the TPB zone volume depends on how good a mixed ionic...

  12. Electrochemistry of Water-Cooled Nuclear Reactors

    International Nuclear Information System (INIS)

    This project developed a comprehensive mathematical and simulation model for calculating thermal hydraulic, electrochemical, and corrosion parameters, viz. temperature, fluid flow velocity, pH, corrosion potential, hydrogen injection, oxygen contamination, stress corrosion cracking, crack growth rate, and other important quantities in the coolant circuits of water-cooled nuclear power plants, including both Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). The model is being used to assess the three major operational problems in Pressurized Water Reactors (PWR), which include mass transport, activity transport, and the axial offset anomaly, and provide a powerful tool for predicting the accumulation of SCC damage in BWR primary coolant circuits as a function of operating history. Another achievement of the project is the development of a simulation tool to serve both as a training tool for plant operators and as an engineering test-bed to evaluate new equipment and operating strategies (normal operation, cold shut down and others). The development and implementation of the model allows us to estimate the activity transport or ''radiation fields'' around the primary loop and the vessel, as a function of the operating parameters and the water chemistry

  13. Electrochemistry in an acoustically levitated drop.

    Science.gov (United States)

    Chainani, Edward T; Ngo, Khanh T; Scheeline, Alexander

    2013-02-19

    Levitated drops show potential as microreactors, especially when radicals are present as reactants or products. Solid/liquid interfaces are absent or minimized, avoiding adsorption and interfacial reaction of conventional microfluidics. We report amperometric detection in an acoustically levitated drop with simultaneous ballistic addition of reactant. A gold microelectrode sensor was fabricated with a lithographic process; active electrode area was defined by a photosensitive polyimide mask. The microdisk gold working electrode of radius 19 μm was characterized using ferrocenemethanol in aqueous buffer. Using cyclic voltammetry, the electrochemically active surface area was estimated by combining a recessed microdisk electrode model with the Randles-Sevcik equation. Computer-controlled ballistic introduction of reactant droplets into the levitated drop was developed. Chronoamperometric measurements of ferrocyanide added ballistically demonstrate electrochemical monitoring using the microfabricated electrode in a levitated drop. Although concentration increases with time due to drop evaporation, the extent of concentration is predictable with a linear evaporation model. Comparison of diffusion-limited currents in pendant and levitated drops show that convection arising from acoustic levitation causes an enhancement of diffusion-limited current on the order of 16%. PMID:23351154

  14. Pyrolytic 3D Carbon Microelectrodes for Electrochemistry

    DEFF Research Database (Denmark)

    Hemanth, Suhith; Caviglia, Claudia; Amato, Letizia;

    2016-01-01

    electrochemical activity, chemical stability, and ease in surface functionalization [1]. The most common carbon microfabrication techniques (i.e. screen printing) produce two-dimensional (2D) electrodes, which limit the detection sensitivity. Hence several 3D microfabrication techniques have been explored......This work presents the fabrication and characterization of multi-layered three-dimensional (3D) pyrolysed carbon microelectrodes for electrochemical applications. For this purpose, an optimized UV photolithography and pyrolysis process with the negative tone photoresist SU-8 has been developed....... The fabricated three electrode electrochemical cell is characterized with cyclic voltammetry (CV) using the standard potassium ferri-ferrocyanide redox probe. Carbon materials have several attractive characteristics as microelectrodes for electrochemical applications, such as wide potential window, good...

  15. Electrochemistry of polyamidoamine dendrimers ester gel electrolytes

    Institute of Scientific and Technical Information of China (English)

    CHEN Hong; MO Zunli

    2004-01-01

    This paper described the first example of polyamidoamine dendrimers ester (PAMAM) used as a gel electrolyte with a short-chain polyethylene glycol (MPEG-400) as a plasticizer. The polymer films are solid and sticky. Background cyclic voltammetry (CV) shows a potential window between +0.7 and -0.7 V vs. Ag/AgCl. The voltammetry of ferrocene and 7,7,8,8-tetracyanoquinodimethane (TCNQ) indicates that diffusion coefficients are in the range of 10-a-10-9 cm2/s.Ionic conductivities are approximately 10-6 S/cm. Similar films using dimethyl sulfoxide (DMSO) as a plasticizer instead of MPEG-400 have demonstrated ionic conductivities of 10-4 S/cra and reversible voltammetry. However, UV spectrophotometry shows that 70% of the DMSO is lost under vacuum, indicating the difficulty in quantifying the DMSO content when exposed to vacuum.

  16. Eigenstress model for electrochemistry of solid surfaces.

    Science.gov (United States)

    Ma, Hongxin; Xiong, Xilin; Gao, Panpan; Li, Xi; Yan, Yu; Volinsky, Alex A; Su, Yanjing

    2016-01-01

    Thermodynamic analysis and molecular dynamics simulations were conducted to systematically study the size-dependent electrochemical response of solids. By combining the generalized Young-Laplace equation with the popular Butler-Volmer formulation, the direct influence of surface stress on solid film electrochemical reactions was isolated. A series of thermodynamic formulas were developed to describe the size-dependent electrochemical properties of the solid surface. These formulas include intrinsic surface elastic parameters, such as surface eigenstress and surface elastic modulus. Metallic films of Au, Pt, Ni, Cu and Fe were studied as examples. The anodic current density of the metal film increased, while the equilibrium potential decreased with increasing solid film thickness.

  17. Biomimetic electrochemistry from conducting polymers. A review

    International Nuclear Information System (INIS)

    Highlights: ► Composition and properties of conducting polymers change during reactions. ► These properties are being exploited to develop biomimetic reactive and soft devices. ► The state of the art for artificial muscles sensing working conditions was reviewed. ► Smart membranes, drug delivery devices and nervous interfaces were also reviewed. - Abstract: Films of conducting polymers in the presence of electrolytes can be oxidized or reduced by the flow of anodic or cathodic currents. Ions and solvent are exchanged during a reaction for charge and osmotic pressure balance. A reactive conducting polymer contains ions and solvent. Such variation of composition during a reaction is reminiscent of the biological processes in cells. Along changes to the composition of the material during a reaction, there are also changes to other properties, including: volume (electrochemomechanical), colour (electrochromic), stored charge (electrical storage), porosity or permselectivity (electroporosity), stored chemicals, wettability and so on. Most of those properties mimic similar property changes in organs during their functioning. These properties are being exploited to develop biomimetic reactive and soft devices: artificial muscles and polymeric actuators; supercapacitors and all organic batteries; smart membranes; electron-ion transducers; nervous interfaces and artificial synapses, or drug delivery devices. In this review we focus on the state of the art for artificial muscles, smart membranes and electron-ion transducers. The reactive nature of those devices provide them with a unique advantage related to the present days technologies: any changes in the surrounding physical or chemical variable acting on the electrochemical reaction rate will be sensed by the device while working. Working under constant current (driving signal), the evolution of the device potential or the evolution of the consumed electrical energy (sensing signals) senses and quantifies the variable increment. Driving and sensing signals are present, simultaneously, in the same two connecting wires. It is possible to prepare electrochemical devices based on conducting polymers in which there are several kinds of different sensors and one actuator embedded in one device. Examples of the tools and products, start-up companies, increasing evolution of scientific literature and patents are also presented. Scientific and technological challenges are also considered.

  18. Electrochemistry of Water-Cooled Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, Dgiby; Urquidi-Macdonald, Mirna; Pitt, Jonathan

    2006-08-08

    This project developed a comprehensive mathematical and simulation model for calculating thermal hydraulic, electrochemical, and corrosion parameters, viz. temperature, fluid flow velocity, pH, corrosion potential, hydrogen injection, oxygen contamination, stress corrosion cracking, crack growth rate, and other important quantities in the coolant circuits of water-cooled nuclear power plants, including both Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). The model is being used to assess the three major operational problems in Pressurized Water Reactors (PWR), which include mass transport, activity transport, and the axial offset anomaly, and provide a powerful tool for predicting the accumulation of SCC damage in BWR primary coolant circuits as a function of operating history. Another achievement of the project is the development of a simulation tool to serve both as a training tool for plant operators and as an engineering test-bed to evaluate new equipment and operating strategies (normal operation, cold shut down and others). The development and implementation of the model allows us to estimate the activity transport or "radiation fields" around the primary loop and the vessel, as a function of the operating parameters and the water chemistry.

  19. Applying Social Psychological Concepts Outside the Classroom

    Science.gov (United States)

    Lakin, Jessica L.; Wichman, Aaron L.

    2005-01-01

    This article evaluates a writing assignment in which social psychology students gathered examples from outside the classroom (e.g., cartoons, movies) and analyzed them with course material. Compared to a control group, students who completed the assignment learned that it was easier to apply social psychology to the real world. A follow-up survey…

  20. Applying for Work Visas and Related Documentation

    Institute of Scientific and Technical Information of China (English)

    RICHARD; HOFFMANN

    2009-01-01

    Applying for an employment and residence certificate in China can be roughly broken down into four steps: the Alien Employment License applica- tion; the Employment Visa and Residence Permit Notification application; the Alien Employment Permit application; and the Residence Permit application.

  1. Applying Lean on Agile Scrum Development Methodology

    OpenAIRE

    SurendRaj Dharmapal; Dr. K. Thirunadana Sikamani

    2015-01-01

    This journal introduces the reader to Agile and Lean concepts and provides a basic level of understanding of each process. This journal will also provide a brief background about applying Lean concepts on each phase of agile scrum methodology and summarize their primary business advantages for delivering value to customer.

  2. Introduction: Conversation Analysis in Applied Linguistics

    Science.gov (United States)

    Sert, Olcay; Seedhouse, Paul

    2011-01-01

    This short, introductory paper presents an up-to-date account of works within the field of Applied Linguistics which have been influenced by a Conversation Analytic paradigm. The article reviews recent studies in classroom interaction, materials development, proficiency assessment and language teacher education. We believe that the publication of…

  3. Applied and fundamental aspects of fusion science

    Science.gov (United States)

    Melnikov, Alexander V.

    2016-05-01

    Fusion research is driven by the applied goal of energy production from fusion reactions. There is, however, a wealth of fundamental physics to be discovered and studied along the way. This Commentary discusses selected developments in diagnostics and present-day research topics in high-temperature plasma physics.

  4. Applied Behavior Analysis: Beyond Discrete Trial Teaching

    Science.gov (United States)

    Steege, Mark W.; Mace, F. Charles; Perry, Lora; Longenecker, Harold

    2007-01-01

    We discuss the problem of autism-specific special education programs representing themselves as Applied Behavior Analysis (ABA) programs when the only ABA intervention employed is Discrete Trial Teaching (DTT), and often for limited portions of the school day. Although DTT has many advantages to recommend its use, it is not well suited to teach…

  5. Security, Privacy, and Applied Cryptography Engineering

    DEFF Research Database (Denmark)

    This book constitutes the refereed proceedings of the Second International Conference on Security, Privacy and Applied Cryptography Engineering held in Chennai, India, in November 2012. The 11 papers presented were carefully reviewed and selected from 61 submissions. The papers are organized...

  6. Applying Lean on Agile Scrum Development Methodology

    Directory of Open Access Journals (Sweden)

    SurendRaj Dharmapal

    2014-03-01

    Full Text Available This journal introduces the reader to Agile and Lean concepts and provides a basic leve l of understanding of each process. This journal will also provide a brief background about applying Lean concepts on each phase of agile scrum methodology and summarize their primary business advantages for delivering value to customer.

  7. Applied probability models with optimization applications

    CERN Document Server

    Ross, Sheldon M

    1992-01-01

    Concise advanced-level introduction to stochastic processes that frequently arise in applied probability. Largely self-contained text covers Poisson process, renewal theory, Markov chains, inventory theory, Brownian motion and continuous time optimization models, much more. Problems and references at chapter ends. ""Excellent introduction."" - Journal of the American Statistical Association. Bibliography. 1970 edition.

  8. State Key Laboratory of Applied Organic Chemistry

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@The State Key Laboratory of Applied Organic Chemistry (SKLAOC) was founded in 1987 with the approval of the State Planning Commission. Professor Liu Zhongli is the director of the Laboratory and Professor Zhang Lihe, an academician of the Chinese Academy of Sciences, is the chairman of its academic committee. There are 30 faculty members, among them 21 are professors, working in the Laboratory.

  9. Educating and Training Undergraduate Applied Statisticians.

    Science.gov (United States)

    Peres, Clovis A.; And Others

    1985-01-01

    A course on Applied Statistics, offered since 1978 at the Instituto de Matematica e Estatistica, Universidade de Sao Paulo, Brasil, is designed to educate statisticians at the bachelor's level for jobs in government statistical offices, industry, and business. (Author/LMO)

  10. SORM applied to hierarchical parallel system

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2006-01-01

    of a particular first order reliability method (FORM) was first described in a celebrated paper by Rackwitz and Fiessler more than a quarter of a century ago. The method has become known as the Rackwitz-Fiessler algorithm. The original RF-algorithm as applied to a hierarchical random variable model...

  11. Psycholinguistics in Applied Linguistics: Trends and Perspectives.

    Science.gov (United States)

    de Bot, Kees

    2000-01-01

    Discusses the relationship between the terms psycholinguistics and applied linguistics, and in the process explores key issues in multilingual processing, such as the structure of the bilingual lexicon, language choice in production and perception, and the language mode. (Author/VWL)

  12. Second Language Acquisition and Applied Linguistics.

    Science.gov (United States)

    Larsen-Freeman, Diane

    2000-01-01

    Discusses the second language acquisition (SLA) process and the differential success of second language learners. Examines the fundamental challenges that this characterization faces, and highlights the contributions SLA is capable of in the coming decade. Offers topics for a training and development of curriculum for future applied linguists from…

  13. Positive Behavior Support and Applied Behavior Analysis

    Science.gov (United States)

    Johnston, J. M.; Foxx, R. M.; Jacobson, J. W.; Green, G.; Mulick, J. A.

    2006-01-01

    This article reviews the origins and characteristics of the positive behavior support (PBS) movement and examines those features in the context of the field of applied behavior analysis (ABA). We raise a number of concerns about PBS as an approach to delivery of behavioral services and its impact on how ABA is viewed by those in human services. We…

  14. Applied programs at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    This document overviews the areas of current research at Brookhaven National Laboratory. Technology transfer and the user facilities are discussed. Current topics are presented in the areas of applied physics, chemical science, material science, energy efficiency and conservation, environmental health and mathematics, biosystems and process science, oceanography, and nuclear energy. (GHH)

  15. Attachment Theory Applied to Juvenile Sex Offending.

    Science.gov (United States)

    Goodrow, Kenneth K.; Lim, Mee-Gaik

    1998-01-01

    Attachment theory is applied to identify systemic patterns encouraging juveniles to commit sexual offenses. The role of the helping system in perpetuating offenses is reviewed. The priority of family integrity and the role of professionals in breaking cycles of abuse and repairing earlier destructive emotional attachments are discussed. (EMK)

  16. Applied Linguistics and Primary School Teaching

    Science.gov (United States)

    Ellis, Sue, Ed.; McCartney, Elspeth, Ed.

    2011-01-01

    Modern primary teachers must adapt literacy programmes and ensure efficient learning for all. They must also support children with language and literacy difficulties, children learning English as an additional language and possibly teach a modern foreign language. To do this effectively, they need to understand the applied linguistics research…

  17. Applying Lean on Agile Scrum Development Methodology

    Directory of Open Access Journals (Sweden)

    SurendRaj Dharmapal

    2015-11-01

    Full Text Available This journal introduces the reader to Agile and Lean concepts and provides a basic level of understanding of each process. This journal will also provide a brief background about applying Lean concepts on each phase of agile scrum methodology and summarize their primary business advantages for delivering value to customer.

  18. Applied Creativity: The Creative Marketing Breakthrough Model

    Science.gov (United States)

    Titus, Philip A.

    2007-01-01

    Despite the increasing importance of personal creativity in today's business environment, few conceptual creativity frameworks have been presented in the marketing education literature. The purpose of this article is to advance the integration of creativity instruction into marketing classrooms by presenting an applied creative marketing…

  19. Apply the Communicative Approach in Listening Class

    Institute of Scientific and Technical Information of China (English)

    Wang changxue; Su na

    2014-01-01

    Speaking and listening are the two obstacles in the process of our learning and they are also the most important abilities that we should possess. Communicative approach aims to the ability of learners’communicative competence, thus apply the communicative approach in listening class is an effective way in English teaching procedure.

  20. Apply the Communicative Approach in Listening Class

    Institute of Scientific and Technical Information of China (English)

    Wang; changxue; Su; na

    2014-01-01

    Speaking and listening are the two obstacles in the process of our learning and they are also the most important abilities that we should possess. Communicative approach aims to the ability of learners’ communicative competence, thus apply the communicative approach in listening class is an effective way in English teaching procedure.

  1. Applying Servant Leadership in Today's Schools

    Science.gov (United States)

    Culver, Mary K.

    2009-01-01

    This book illustrates how the ideal of servant leadership can be applied in your school today. With real-life scenarios, discussions, and self assessments, this book gives practical suggestions to help you develop into a caring and effective servant leader. There are 52 scenarios in this book, focusing on situations as varied as: (1) Dealing with…

  2. Applied Welding Technology. Technical Committee Report.

    Science.gov (United States)

    Idaho State Dept. of Education, Boise. Div. of Vocational Education.

    This Technical Committee Report prepared by industry representatives in Idaho lists the skills currently necessary for an employee in that state to obtain a job in applied welding technology, retain a job once hired, and advance in that occupational field. (Task lists are grouped according to duty areas generally used in industry settings, and are…

  3. Recombinant vaccines: experimental and applied aspects

    DEFF Research Database (Denmark)

    Lorenzen, Niels

    1999-01-01

    Development of vaccines for aquaculture fish represent an important applied functional aspect of fish immunology research. Particularly in the case of recombinant vaccines, where a single antigen is usually expected to induce immunity to a specific pathogen, knowledge of mechanisms involved in in...

  4. Applying incentive sensitization models to behavioral addiction

    DEFF Research Database (Denmark)

    Rømer Thomsen, Kristine; Fjorback, Lone; Møller, Arne;

    2014-01-01

    The incentive sensitization theory is a promising model for understanding the mechanisms underlying drug addiction, and has received support in animal and human studies. So far the theory has not been applied to the case of behavioral addictions like Gambling Disorder, despite sharing clinical sy...

  5. Exploring the Applied Arts. Publication No. 0041.

    Science.gov (United States)

    Sokolowski, Kathleen

    The program covered in this curriculum guide deals with applied arts, concentrating on the areas of advertising, fashion illustration, graphic design, cartooning, and textile design and decoration. These areas have been developed to give a hands-on experience to the students by simulating the working world and the student's place in it. Each area…

  6. Thermodynamic Laws Applied to Economic Systems

    Science.gov (United States)

    González, José Villacís

    2009-01-01

    Economic activity in its different manifestations--production, exchange, consumption and, particularly, information on quantities and prices--generates and transfers energy. As a result, we can apply to it the basic laws of thermodynamics. These laws are applicable within a system, i.e., in a country or between systems and countries. To these…

  7. Teaching Applied Ethics to the Righteous Mind

    Science.gov (United States)

    Murphy, Peter

    2014-01-01

    What does current empirically informed moral psychology imply about the goals that can be realistically achieved in college-level applied ethics courses? This paper takes up this question from the vantage point of Jonathan Haidt's Social Intuitionist Model of human moral judgment. I summarize Haidt's model, and then consider a variety of…

  8. Correlation spectroscopy applied to glycerol polyester spectra

    Science.gov (United States)

    The recent development of glycerol polyesters for use as controlled release matrix materials in the nutraceuticals and pharmaceuticals industries presented a unique opportunity to apply correlation spectroscopy. In a typical formulation the glycerol is reacted with a polyfunctional acid such as citr...

  9. Ideology in Applied Linguistics for Language Teaching

    Science.gov (United States)

    Waters, Alan

    2009-01-01

    It is contended that much of present-day applied linguistics for language teaching (ALLT) fails to mediate effectively, primarily because an ideological construction, emanating from a critical theory perspective, is too often imposed on everyday pedagogical practices. This has resulted in an exaggerated level of concern about the power imbalances…

  10. Center for Applied Linguistics, Washington DC, USA

    Science.gov (United States)

    Sugarman, Julie; Fee, Molly; Donovan, Anne

    2015-01-01

    The Center for Applied Linguistics (CAL) is a private, nonprofit organization with over 50 years' experience in the application of research on language and culture to educational and societal concerns. CAL carries out its mission to improve communication through better understanding of language and culture by engaging in a variety of projects in…

  11. Problems Portraying Migrants in Applied Linguistics Research

    Science.gov (United States)

    Block, David

    2010-01-01

    This paper is a very personal attempt to explore the problematics of portraying migrants in Applied Linguistics research. I begin with a discussion of identity, in particular what we might mean when we use the term, and from there I go on to explore its fundamental imprecision through an analysis of a census question about ethnicity. I then…

  12. Plenary Speeches: Applied Linguists without Borders

    Science.gov (United States)

    Tarone, Elaine

    2013-01-01

    Until 1989, the American Association for Applied Linguistics (AAAL) could have been viewed as an interest group of the Linguistics Society of America (LSA); AAAL met in two designated meeting rooms as a subsection of the LSA conference. In 1991, I was asked to organize the first independent meeting of AAAL in New York City, with the help of…

  13. Developing an Undergraduate Applied Learning Experience

    Directory of Open Access Journals (Sweden)

    Denise C. Nelson-Hurwitz

    2015-02-01

    Full Text Available To foster student development, critical thinking, and application skills among public health students at the University of Hawai‘i at Mānoa, a 3-course capstone series was developed as a key component of the public health Bachelor of Arts degree program. Over the course of 1.5 academic years students are actively involved in developing an interdisciplinary project proposal, then executing and presenting an independent, supervised, applied learning project. In the first course, students are introduced to a diverse range of public health projects and methods while working to develop their own project proposal- the foundation for the Applied Learning Experience. The project execution course is designed to allow students to execute their proposed applied learning projects. This experience focuses on the application and integration of public health knowledge, skills, and practice acquired during the bachelor’s degree course of study. Finally, students will be involved in reflecting on, finalizing, and sharing their completed projects in an undergraduate capstone seminar. Through implementation of this series, the program hopes to provide students with the opportunity to actively apply academic skills to real-world application.

  14. Plant microbial fuel cell applied in wetlands

    NARCIS (Netherlands)

    Wetser, Koen; Liu, Jia; Buisman, Cees; Strik, David

    2015-01-01

    The plant microbial fuel cell (PMFC) has to be applied in wetlands to be able to generate electricity on a large scale. The objective of this PMFC application research is to clarify the differences in electricity generation between a Spartina anglica salt marsh and Phragmites australis peat soil

  15. Applied Categories and Functors for Undergraduates

    OpenAIRE

    Ivancevic, Vladimir G.; Ivancevic, Tijana T.

    2008-01-01

    These are lecture notes for a 1-semester undergraduate course (in computer science, mathematics, physics, engineering, chemistry or biology) in applied categorical meta-language. The only necessary background for comprehensive reading of these notes are first-year calculus and linear algebra.

  16. A Primer on Disseminating Applied Quantitative Research

    Science.gov (United States)

    Bell, Bethany A.; DiStefano, Christine; Morgan, Grant B.

    2010-01-01

    Transparency and replication are essential features of scientific inquiry, yet scientific communications of applied quantitative research are often lacking in much-needed procedural information. In an effort to promote researchers dissemination of their quantitative studies in a cohesive, detailed, and informative manner, the authors delineate…

  17. Applied research and development private sector accomplishments

    International Nuclear Information System (INIS)

    This report describes the fiscal year 1990 procurement of contracts with the private sector and the current status of applied research and development conducted for DOE's Office of Technology Development (OTD). This report documents the procurement actions, discusses lessons learned from this activity, and disseminates the results of the procurement to interested parties in DOE and in the private sector

  18. Applied Biomechanics in an Instructional Setting

    Science.gov (United States)

    Hudson, Jackie L.

    2006-01-01

    Biomechanics is the science of how people move better, meaning more skillfully and more safely. This article places more emphasis on skill rather than safety, though there are many parallels between them. It shares a few features of the author's paradigm of applied biomechanics and discusses an integrated approach toward a middle school football…

  19. Direct Electrochemistry of a GCE Modified with HRP/Gel-MWCNTs in Ionic Liquid [BMIM] BF4%基于明胶-碳纳米管的辣根过氧化物酶修饰电极在离子液体中的直接电化学

    Institute of Scientific and Technical Information of China (English)

    姚慧; 王燕; 董元; 孙迪; 张严化

    2012-01-01

    制备了明胶(Gel)-多壁碳纳米管(MWCNTs)纳米复合物,将其修饰在玻碳电极表面,再吸附辣根过氧化物酶(HRP),制得明胶-多壁碳纳米管-辣根过氧化物酶修饰电极(Gel-MWCNTs-HRP/GCE).该修饰电极在PBS中的循环伏安图上出现了一对峰形良好、几乎对称的氧化还原峰,式量电位为-0.356 V(vs.SCE),表明包埋在Gel-MWCNTs中的HRP与电极之间发生了直接电子传递.当扫速在20 ~ 180 mV/s时,氧化峰电流(Ipa)与还原峰电流(Ipc)均与扫速成正比,表明电极过程是受电子传递速率控制的表面传质过程.运用循环伏安法研究了修饰电极的电化学特性,探讨了工作电位、pH值、干扰物质等对修饰电极的影响.实验结果表明,HRP在修饰电极表面能有效和稳定地进行直接电子转移,并保持了其对过氧化氢(H2O2)的生物催化活性.进一步研究发现,在含有亲水性离子液体1-丁基-3-甲基咪唑四氟硼酸([BMIM]BF4)的溶液中,修饰电极对H2O2显示出更灵敏的催化活性,其线性范围为2.0×10-7~0.13 mol/L,检出限(S/N =3)为2.3×10-8 mol/L.该电极具有灵敏度高、重现性及稳定性好、使用寿命较长等优点,同时还显示了较好的抗干扰能力.%A novel hydrogen peroxide biosensor was constructed based on horseradish peroxidase (HRP) immobilized onto glass carbon electrode (GCE) , which was modified with the nanocomposite of gelatin and multi-walled carbon nanotubes ( MWCNTs ). The electrochemistry and electrocatalysis of the modified biosensor were investigated. A pair of well-defined and nearly symmetrical redox peaks with a formal potential of -0.356 Y(vs. SCE) in PBS were observed, which attribute to the direct electron transfer between the entrapped HRP and the electrode. The redox peak current was proportional to scan rate in the range of 20 -180 mV/s, indicating that the process was affected by e-lectronic transfer electrode rate control surface of mass transfer process

  20. Caldwell University's Department of Applied Behavior Analysis.

    Science.gov (United States)

    Reeve, Kenneth F; Reeve, Sharon A

    2016-05-01

    Since 2004, faculty members at Caldwell University have developed three successful graduate programs in Applied Behavior Analysis (i.e., PhD, MA, non-degree programs), increased program faculty from two to six members, developed and operated an on-campus autism center, and begun a stand-alone Applied Behavior Analysis Department. This paper outlines a number of strategies used to advance these initiatives, including those associated with an extensive public relations campaign. We also outline challenges that have limited our programs' growth. These strategies, along with a consideration of potential challenges, might prove useful in guiding academicians who are interested in starting their own programs in behavior analysis. PMID:27606194

  1. Applied Mathematics, Modelling and Computational Science

    CERN Document Server

    Kotsireas, Ilias; Makarov, Roman; Melnik, Roderick; Shodiev, Hasan

    2015-01-01

    The Applied Mathematics, Modelling, and Computational Science (AMMCS) conference aims to promote interdisciplinary research and collaboration. The contributions in this volume cover the latest research in mathematical and computational sciences, modeling, and simulation as well as their applications in natural and social sciences, engineering and technology, industry, and finance. The 2013 conference, the second in a series of AMMCS meetings, was held August 26–30 and organized in cooperation with AIMS and SIAM, with support from the Fields Institute in Toronto, and Wilfrid Laurier University. There were many young scientists at AMMCS-2013, both as presenters and as organizers. This proceedings contains refereed papers contributed by the participants of the AMMCS-2013 after the conference. This volume is suitable for researchers and graduate students, mathematicians and engineers, industrialists, and anyone who would like to delve into the interdisciplinary research of applied and computational mathematics ...

  2. Optimal alarm system applied in coffee rust

    Directory of Open Access Journals (Sweden)

    Luciene Resende Gonçalves

    2014-02-01

    Full Text Available Alarm systems have very great utility in detecting and warning of catastrophes. This methodology was applied via TARSO model with Bayesian estimation, serving as a forecasting mechanism for coffee rust disease. The coffee culture is very susceptible to this disease causing several records of incidence in most cultivated crops. Researches involving this limiting factor for production are intense and frequent, indicating environmental factors as responsible for the epidemics spread, which does not occur if these factors are not favorable. The fitting type used by the a posteriori probability, allows the system to be updated each time point. The methodology was applied to the rust index series in the presence of the average temperature series. Thus, it is possible to verify the alarm resulted or in a high catastrophe detection in points at which the catastrophe has not occurred, or in the low detections if the point was already in the catastrophe state.

  3. Global Conference on Applied Physics and Mathematics

    CERN Document Server

    2016-01-01

    The Global Conference on Applied Physics and Mathematics is organized by academics and researchers belonging to different scientific areas of the C3i/Polytechnic Institute of Portalegre (Portugal) and the University of Extremadura (Spain) with the technical support of ScienceKnow Conferences. The event has the objective of creating an international forum for academics, researchers and scientists from worldwide to discuss worldwide results and proposals regarding to the soundest issues related to Applied Physics and Mathematics. This event will include the participation of renowned keynote speakers, oral presentations, posters sessions and technical conferences related to the topics dealt with in the Scientific Program as well as an attractive social and cultural program. The papers will be published in the Proceedings e-books. The proceedings of the conference will be sent to possible indexing on Thomson Reuters (selective by Thomson Reuters, not all-inclusive) and Google Scholar. Those communications con...

  4. [Montessori method applied to dementia - literature review].

    Science.gov (United States)

    Brandão, Daniela Filipa Soares; Martín, José Ignacio

    2012-06-01

    The Montessori method was initially applied to children, but now it has also been applied to people with dementia. The purpose of this study is to systematically review the research on the effectiveness of this method using Medical Literature Analysis and Retrieval System Online (Medline) with the keywords dementia and Montessori method. We selected lo studies, in which there were significant improvements in participation and constructive engagement, and reduction of negative affects and passive engagement. Nevertheless, systematic reviews about this non-pharmacological intervention in dementia rate this method as weak in terms of effectiveness. This apparent discrepancy can be explained because the Montessori method may have, in fact, a small influence on dimensions such as behavioral problems, or because there is no research about this method with high levels of control, such as the presence of several control groups or a double-blind study. PMID:23155599

  5. Applying Dairy Cow Behavior in Management Practice

    Institute of Scientific and Technical Information of China (English)

    YUAN Kai; LIU Zongping; WANG Zongyuan

    2009-01-01

    Applying dairy cow behavior in management practice is an effective way of improving cow health, welfare and performance. This paper first reviewed daily time budget and normal patterns of dairy cow behavior, and then discussed the influence of major management conditions and practices (such as competitive environments, stocking density, grouping strategies) on cow's feeding, lying and social behavior. Finally, new findings of using feeding behavior to predict disorders in transition period were addressed. It was suggested that dairy researchers and farmers should take advantage of related knowledge of dairy cow behavior to improve dairy cow health and welfare. More research is required to further study dairy cow behavior so as to better apply it in practical management and meet the needs of production.

  6. 12th International Congress of Applied Mechanics

    CERN Document Server

    Vincenti, Walter

    1969-01-01

    This volume contains the Proceedings of the Twelfth International Congress of Applied Mechanics, held at Stanford University on August 26 to 31, 1968. The Congress was organized by the International Union of Theoretical and Applied Mechanics; members of the IUTAM Congress Committee and Bureau are listed under Congress Organization. The members of the Stanford Organizing Committee, which was responsible for the detailed organization of the Congress, are also given, as are the names of the sponsors and the industrial and educational organizations that contributed so generously to the financial support of the meeting. Those attending the Congress came from 32 countries and totaled 1337 persons, plus wives and children. A list of the registered participants is included in the volume. The technical sessions of the Congress comprised four General Lectures and 281 contributed papers, the latter being presented in groups of five simultaneous sessions. The final choice of the contributed papers was made on the basis o...

  7. Applied Anti-neutrino Physics 2013

    CERN Document Server

    2013-01-01

    This year, the 9th annual Applied Antineutrino Physics Workshop will be hosted by Sejong University, at the COEX conference center in Seoul South Korea. The workshop will be held on November 1(Friday) - 2(Saturday), 2013. Conveniently for many travelers, it takes place directly after and at the same venue as the 2013 IEEE Nuclear Science Symposium (http://www.nss-mic.org/2013/NSSMain.asp) Applied Antineutrino Physics describes an ensemble of experimental and theoretical efforts which aim to use the antineutrino signal from nuclear reactors, and from the Earth itself, in order to address practical problems in nonproliferation and geology respectively. Since the 2004 inception of these workshops, groups worldwide have made considerable advances in defining and expanding the field, garnering interest from the International Atomic Energy Agency (IAEA), which administers the worlds most important nonproliferation regime, and from the geology/geophysics community. This meeting will focus on the current activi...

  8. Hans Wolter - a pioneer of applied optics

    CERN Document Server

    Schrimpf, Andreas

    2016-01-01

    Applied optics was one of the major topics Hans Walter was engaged in during his scientific life. He contributed to the understanding of optical properties of thin films, which could be used to design coating layers to improve the properties of optical and other surfaces. He developed the theoretical description of the basic principles of phase-contrast, schlieren and interference optics applied to enhance low contrast details and to increase the resolution in studies of biological samples. And last, but not least, Hans Wolter proposed an optical system of two grazing--incidence mirrors for use in an X--ray imaging microscope. A microscope using such an optics never was put into practice, but the optical design turned out to be well suited for telescopes.

  9. Applied data mining for business and industry

    CERN Document Server

    Giudici, Paolo

    2009-01-01

    The increasing availability of data in our current, information overloaded society has led to the need for valid tools for its modelling and analysis. Data mining and applied statistical methods are the appropriate tools to extract knowledge from such data. This book provides an accessible introduction to data mining methods in a consistent and application oriented statistical framework, using case studies drawn from real industry projects and highlighting the use of data mining methods in a variety of business applications. Introduces data mining methods and applications.Covers classical and Bayesian multivariate statistical methodology as well as machine learning and computational data mining methods.Includes many recent developments such as association and sequence rules, graphical Markov models, lifetime value modelling, credit risk, operational risk and web mining.Features detailed case studies based on applied projects within industry.Incorporates discussion of data mining software, with case studies a...

  10. Applying the WEAP Model to Water Resource

    DEFF Research Database (Denmark)

    Gao, Jingjing; Christensen, Per; Li, Wei

    Water resources assessment is a tool to provide decision makers with an appropriate basis to make informed judgments regarding the objectives and targets to be addressed during the Strategic Environmental Assessment (SEA) process. The study shows how water resources assessment can be applied in SEA...... in assessing the effects on water resources using a case study on a Coal Industry Development Plan in an arid region in North Western China. In the case the WEAP model (Water Evaluation And Planning System) were used to simulate various scenarios using a diversity of technological instruments like irrigation...... efficiency, treatment and reuse of water. The WEAP model was applied to the Ordos catchment where it was used for the first time in China. The changes in water resource utilization in Ordos basin were assessed with the model. It was found that the WEAP model is a useful tool for water resource assessment...

  11. APPLIED ORIGAMI. Origami of thick panels.

    Science.gov (United States)

    Chen, Yan; Peng, Rui; You, Zhong

    2015-07-24

    Origami patterns, including the rigid origami patterns in which flat inflexible sheets are joined by creases, are primarily created for zero-thickness sheets. In order to apply them to fold structures such as roofs, solar panels, and space mirrors, for which thickness cannot be disregarded, various methods have been suggested. However, they generally involve adding materials to or offsetting panels away from the idealized sheet without altering the kinematic model used to simulate folding. We develop a comprehensive kinematic synthesis for rigid origami of thick panels that differs from the existing kinematic model but is capable of reproducing motions identical to that of zero-thickness origami. The approach, proven to be effective for typical origami, can be readily applied to fold real engineering structures. PMID:26206928

  12. Controller modification applied for active fault detection

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob; Poulsen, Niels Kjølstad

    2014-01-01

    This paper is focusing on active fault detection (AFD) for parametric faults in closed-loop systems. This auxiliary input applied for the fault detection will also disturb the external output and consequently reduce the performance of the controller. Therefore, only small auxiliary inputs are used...... the feedback controller with a minor effect on the external output in the fault free case. Further, in the faulty case, the signature of the auxiliary input can be optimized. This is obtained by using a band-pass filter for the YJBK parameter that is only effective in a small frequency range where...... the frequency for the auxiliary input is selected. This gives that it is possible to apply an auxiliary input with a reduced amplitude. An example is included to show the results....

  13. NASA's Applied Sciences for Water Resources

    Science.gov (United States)

    Doorn, Bradley; Toll, David; Engman, Ted

    2011-01-01

    The Earth Systems Division within NASA has the primary responsibility for the Earth Science Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses one of the major problems facing water resources managers, that of having timely and accurate data to drive their decision support tools. It then describes how NASA?s science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA?s Water Resources Applications Program are described.

  14. Applying Software Engineering Principles to Process Modeling

    OpenAIRE

    Henry, Joel

    1992-01-01

    Process models are constructed using specific modeling methods or techniques. These techniques impart certain characteristics to the models they produce. Application of the software engineering principles of information hiding, top-down functional decomposition and stepwise refinement to process modeling imparts many desirable characteristics to the process models produced. This paper describes an approach to process modeling which applies these software engineering principles to control flow...

  15. Passive slug mitigation by applying wavy pipes

    OpenAIRE

    Xing, Lanchang

    2011-01-01

    This work is to develop a passive slug mitigation technique based on a novel flow conditioner, wavy pipe, through laboratory experiment and numerical simulation. The wavy pipe has been applied to two types of slug flows: severe slugging in pipeline/riser systems and hydrodynamic slug flow in horizontal pipelines. The experiment of severe slugging mitigation was conducted on the 2” and 4” pipeline/riser systems in the Three-Phase Test Facility in PSE (Process Systems Engineer...

  16. Applied math for wastewater plant operators

    CERN Document Server

    Price, Joanne K

    1998-01-01

    With many worked examples, this book provides step-by-step instruction for all calculations required for wastewater treatment. Pertinent calculations are conveniently summarized in each chapter. The text covers all the fundamental math concepts and skills needed for daily wastewater treatment plant operations. The workbook for this book can be purchased separately or together in the Applied Math for Wastewater Plant Operators Set (ISBN: 9781566769891).

  17. How Science Is Applied in Technology

    OpenAIRE

    Boon, Mieke

    2006-01-01

    Unlike basic sciences, scientific research in advanced technologies aims to explain, predict, and (mathematically) describe not phenomena in nature, but phenomena in technological artefacts, thereby producing knowledge that is utilized in technological design. This article first explains why the covering-law view of applying science is inadequate for characterizing this research practice. Instead, the covering-law approach and causal explanation are integrated in this practice. Ludwig Prandtl...

  18. HIGH PERFORMANCE COMPUTING APPLIED TO CLOUD COMPUTING

    OpenAIRE

    Li, Luxingzi

    2015-01-01

    The purpose of this thesis was to introduce high performance computing and cloud computing. The purpose was also to describe how to apply high performance computing to cloud computing as well as its possibilities and challenges. There were two case studies in the thesis project to present the application of cloud computing. Both quantitative and qualitative methods were used in this research. The majority of materials were from books and Internet resources. The thesis may be us...

  19. The 1989 progress report: Applied Mathematics

    International Nuclear Information System (INIS)

    The 1989 progress report of the laboratory of Applied Mathematics of the Polytechnic School (France) is presented. The investigations reported were performed in the following fields: mathematical and numerical aspects of wave propagation, nonlinear hyperbolic fluid mechanics, numerical simulations and mathematical aspects of semiconductors and electron beams, mechanics of solids, plasticity, viscoelasticity, stochastic, automatic and statistic calculations, synthesis and image processing. The published papers, the conferences and the Laboratory staff are listed

  20. Ferromagnetic Liquid Thin Films Under Applied Field

    OpenAIRE

    Banerjee, S.; Widom, M.

    1999-01-01

    Theoretical calculations, computer simulations and experiments indicate the possible existence of a ferromagnetic liquid state, although definitive experimental evidence is lacking. Should such a state exist, demagnetization effects would force a nontrivial magnetization texture. Since liquid droplets are deformable, the droplet shape is coupled with the magnetization texture. In a thin-film geometry in zero applied field, the droplet has a circular shape and a rotating magnetization texture ...

  1. Expander Graphs in Pure and Applied Mathematics

    OpenAIRE

    Lubotzky, Alexander

    2011-01-01

    Expander graphs are highly connected sparse finite graphs. They play an important role in computer science as basic building blocks for network constructions, error correcting codes, algorithms and more. In recent years they have started to play an increasing role also in pure mathematics: number theory, group theory, geometry and more. This expository article describes their constructions and various applications in pure and applied mathematics.

  2. Applying Industrial Management Methodologies to Healthcare

    OpenAIRE

    Gacias Llobera, Amador

    2011-01-01

    The recent delicate economic situation has contributed to the fact that several of the existing industrial management techniques, initially conceived in order to improve manufacturing enterprises’ efficiency, have gained popularity not only within the industrial field, but also in the services sector. In that context, healthcare is facing a complicated situation on account of a reduction of resources and an increase of incoming patients. When applying existing industrial management techniques...

  3. Software Engineering applied to Manufacturing Problems

    Directory of Open Access Journals (Sweden)

    Jorge A. Ruiz-Vanoye

    2010-05-01

    Full Text Available Optimization approaches have traditionally been viewed as tools for solving manufacturing problems, the optimization approach is not suitable for many problems arising in modern manufacturing systems due to their complexity and involvement of qualitative factors. In this paper we use a tool of software engineering applied to manufacturing problems. We use the Heuristics Lab software to determine and analyze the solution obtained for Manufacturing Problems.

  4. Topics in theoretical and applied statistics

    CERN Document Server

    Giommi, Andrea

    2016-01-01

    This book highlights the latest research findings from the 46th International Meeting of the Italian Statistical Society (SIS) in Rome, during which both methodological and applied statistical research was discussed. This selection of fully peer-reviewed papers, originally presented at the meeting, addresses a broad range of topics, including the theory of statistical inference; data mining and multivariate statistical analysis; survey methodologies; analysis of social, demographic and health data; and economic statistics and econometrics.

  5. Bleached dissolving pulps applying laccase treatments

    OpenAIRE

    Quintana, Elisabet; Valls Vidal, Cristina; Roncero Vivero, María Blanca

    2012-01-01

    A biobleaching sequence, using a laccase enzyme (Trametes Villosa) in combination with different mediators, was applied to softwood dissolving cellulose in order to study its bleaching efficiency and its potential in terms of kappa number, ISO brightness and viscosity. The tested mediators were classified as synthetic compounds such as HBT (1-hydroxybenzotriazole) and VA (violuric acid), and as natural compounds such as SA (syringaldehyde) and pCA (p-coumaric acid). The influence of the enzym...

  6. Rigorous diffraction theory applied to microlenses

    OpenAIRE

    Blattner, Peter; Herzig, Hans-Peter

    2007-01-01

    In this paper, we discuss the behaviour of small cylindrical microlenses, arranged in one-dimensional arrays and as single elements. For this purpose, we apply a standard rigorous diffraction theory, commonly used for diffraction gratings. We investigate the coupling effect between the elements. It turns out that single elements behave like periodic elements if the spacing is chosen correctly. Furthermore, we compute the complex transmission function by rigorous diffraction theory and compare...

  7. Educational software design: applying models of learning

    OpenAIRE

    Richards, Stephen

    2011-01-01

    The model of learning adopted within this paper is the 'spreading ripples' (SR) model proposed by Race (1994). This model was chosen for two important reasons. First, it makes use of accessible ideas and language, .and is therefore simple. Second, .Race suggests that the model can be used in the design, of educational and training programmes (and can thereby be applied to the design of computer-based learning materials).DOI:10.1080/0968776960040303

  8. Boosting Applied to Word Sense Disambiguation

    OpenAIRE

    Escudero, Gerard; Marquez, Lluis; Rigau, German

    2000-01-01

    In this paper Schapire and Singer's AdaBoost.MH boosting algorithm is applied to the Word Sense Disambiguation (WSD) problem. Initial experiments on a set of 15 selected polysemous words show that the boosting approach surpasses Naive Bayes and Exemplar-based approaches, which represent state-of-the-art accuracy on supervised WSD. In order to make boosting practical for a real learning domain of thousands of words, several ways of accelerating the algorithm by reducing the feature space are s...

  9. [Applied problems of mathematical biology and bioinformatics].

    Science.gov (United States)

    Lakhno, V D

    2011-01-01

    Mathematical biology and bioinformatics represent a new and rapidly progressing line of investigations which emerged in the course of work on the project "Human genome". The main applied problems of these sciences are grug design, patient-specific medicine and nanobioelectronics. It is shown that progress in the technology of mass sequencing of the human genome has set the stage for starting the national program on patient-specific medicine.

  10. Applied game theory and optimal mechanism design

    OpenAIRE

    Zhang, Qi

    2014-01-01

    This thesis applies game theory to study optimal toehold bidding strategies during takeover competition, the problem of optimal design of voting rules and the design of package bidding mechanism to implement the core allocations. It documents three different research questions that are all related to auction theory. Chapter 2 develops a two-stage takeover game to explain toehold puzzle in the context of takeover. Potential bidders are allowed to acquire target shares in the open market, subje...

  11. Applied Computational Mathematics in Social Sciences

    CERN Document Server

    Damaceanu, Romulus-Catalin

    2010-01-01

    Applied Computational Mathematics in Social Sciences adopts a modern scientific approach that combines knowledge from mathematical modeling with various aspects of social science. Special algorithms can be created to simulate an artificial society and a detailed analysis can subsequently be used to project social realities. This Ebook specifically deals with computations using the NetLogo platform, and is intended for researchers interested in advanced human geography and mathematical modeling studies.

  12. Applying Theory to Assess Cultural Competency

    OpenAIRE

    Blue, Amy V.; Thiedke, Carolyn; Chessman, Alexander W.; Kern, Donna H.; Keller, Albert

    2009-01-01

    Using a theoretical cultural competency model, the effectiveness of a cultural competency learning assignment was examined to determine: 1) students’ cultural competency levels as reflected through the assignment, and 2) the effectiveness of the assignment as a cultural competency learning activity. Third-year family medicine clerkship students completed a required project to research and reflect upon a patient’s “cultural belief.” Applying a model of cultural competence development, a conten...

  13. Financial-Accounting Settlements Applying in 2008

    OpenAIRE

    Antonescu, Mihai; Ligia ANTONESCU

    2008-01-01

    As a result of the adhesion of our country to the European Union, the adaptation of the EC financial-accounting legislation has emerged as a necessity, new settlements starting to apply with the beginning of the financial exercise 2006. The improvement of the Romanian accounting system has as a main objective the harmonization of the national legislation with the European directives in the domain, in order to accomplish and answer the requests of the European Union, as well as to align its...

  14. Gamification platforms applied to education environments

    OpenAIRE

    Garcia Sanchez, Raquel

    2015-01-01

    Gamification, or the use of game elements in non-game contexts, has been identified as a really interesting technique for improving motivation, effort and many others positive values usually appearing in games. While it has already been applied in different areas like marketing, human resources and even in cultivation of customer loyalty in the education field it has just been installed. The goal of this TFC is to define gamification concept and present the best known gamification techniques ...

  15. Applied Physics Division 1998 Progress Report

    International Nuclear Information System (INIS)

    This report outlines the 1998 research activities carried out by the Applied Physics Division of the Innovation Department of ENEA (Italian Agency for New Technologies, Energy and Environment). The fields addressed and discussed include: optical and electro-optical technologies (chaps. 1 and 2); accelerator technologies (chap. 3); diagnostic systems for science and engineering (chaps. 4 and 5); theory, modelling and computational methods (chaps. 6 and 7). The aim of the Applied Physics Division is to develop technologies and systems that can be directly applied by internal (ENEA) and external users in research (high-resolution spectroscopy, laser-generated soft-x-ray sources), production processes (laser material photoproduction, structural analysis), social, cultural and environmental sciences (laser remote sensing, modelling of ecosystems and population dynamics) and medicine (particle accelerator for radiotherapy). Most of the work in 1998 was performed by the division's laboratories at the Frascati, Casaccia and Bologna Research Centres of ENEA; some was done elsewhere in collaboration with other ENEA units, external laboratories and industries. A good share of the activities was carried out for international projects; in particular, the IV European Union Framework Program

  16. Abductive networks applied to electronic combat

    Science.gov (United States)

    Montgomery, Gerard J.; Hess, Paul; Hwang, Jong S.

    1990-08-01

    A practical approach to dealing with combinatorial decision problems and uncertainties associated with electronic combat through the use of networks of high-level functional elements called abductive networks is presented. It describes the application of the Abductory Induction Mechanism (AIMTM) a supervised inductive learning tool for synthesizing polynomial abductive networks to the electronic combat problem domain. From databases of historical expert-generated or simulated combat engagements AIM can often induce compact and robust network models for making effective real-time electronic combat decisions despite significant uncertainties or a combinatorial explosion of possible situations. The feasibility of applying abductive networks to realize advanced combat decision aiding capabilities was demonstrated by applying AIM to a set of electronic combat simulations. The networks synthesized by AIM generated accurate assessments of the intent lethality and overall risk associated with a variety of simulated threats and produced reasonable estimates of the expected effectiveness of a group of electronic countermeasures for a large number of simulated combat scenarios. This paper presents the application of abductive networks to electronic combat summarizes the results of experiments performed using AIM discusses the benefits and limitations of applying abductive networks to electronic combat and indicates why abductive networks can often result in capabilities not attainable using alternative approaches. 1. ELECTRONIC COMBAT. UNCERTAINTY. AND MACHINE LEARNING Electronic combat has become an essential part of the ability to make war and has become increasingly complex since

  17. Applied Data Analysis in Energy Monitoring System

    Directory of Open Access Journals (Sweden)

    Kychkin А.V.

    2016-08-01

    Full Text Available Software and hardware system organization is presented as an example for building energy monitoring of multi-sectional lighting and climate control / conditioning needs. System key feature is applied office energy data analysis that allows to provide each type of hardware localized work mode recognition. It is based on general energy consumption profile with following energy consumption and workload evaluation. Applied data analysis includes primary data processing block, smoothing filter, time stamp identification block, clusterization and classification blocks, state change detection block, statistical data calculation block. Time slot consumed energy value and slot time stamp are taken as work mode classification main parameters. Energy data applied analysis with HIL and OpenJEVis visualization system usage experimental research results for chosen time period has been provided. Energy consumption, workload calculation and eight different states identification has been executed for two lighting sections and one climate control / conditioning emulating system by integral energy consumption profile. Research has been supported by university internal grant №2016/PI-2 «Methodology development of monitoring and heat flow utilization as low potential company energy sources».

  18. Applied photonic therapy in veterinary medicine

    Science.gov (United States)

    Wood, Terry R.; McLaren, Brian C.

    2005-04-01

    There can be no question that specific systemic physiological results occur, when red light (660nm) is applied to the skin, it is now more a question of detailed mechanisms. Before gathering statistically signifcant clinical trial data, it is important to first enumerate the type of results observed in practice. Case histories are presented highlighting the use of photonic therapy in veterinary medicine. Over 900 surgical procedures have been performed and documented, utilizing the principles of photonic therapy, and while hemostasis, pain relief, and nausea relief, were the primary goals, the peri-operative death rate, the post-operative seroma, and post-operative infection were reduced to almost zero, and there was a noticeable increase in the healing rate. Scientifically applied photonic therapy, rather than supplanting conventional veterinary medicine, compliments and increases the veterinarian's set of skills. This paper proposes a hypothesis of how 660 nm light applied to specific points on the skin, produces various physiological changes in animals. By using animals, there can be no placebo, hypnotic or psychosomatic confounding effects.

  19. Applied Physics Division 1998 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Cecchini, M.; Crescentini, L; Ghezzi, L.; Kent, C.; Bottomei, M. [ENEA, Centro Ricerche Frascati, Frascati, RM (Italy). Applied physics Division

    1999-07-01

    This report outlines the 1998 research activities carried out by the Applied Physics Division of the Innovation Department of ENEA (Italian Agency for New Technologies, Energy and Environment). The fields addressed and discussed include: optical and electro-optical technologies (chaps. 1 and 2); accelerator technologies (chap. 3); diagnostic systems for science and engineering (chaps. 4 and 5); theory, modelling and computational methods (chaps. 6 and 7). The aim of the Applied Physics Division is to develop technologies and systems that can be directly applied by internal (ENEA) and external users in research (high-resolution spectroscopy, laser-generated soft-x-ray sources), production processes (laser material photoproduction, structural analysis), social, cultural and environmental sciences (laser remote sensing, modelling of ecosystems and population dynamics) and medicine (particle accelerator for radiotherapy). Most of the work in 1998 was performed by the division's laboratories at the Frascati, Casaccia and Bologna Research Centres of ENEA; some was done elsewhere in collaboration with other ENEA units, external laboratories and industries. A good share of the activities was carried out for international projects; in particular, the IV European Union Framework Program.

  20. SINP MSU accelerator facility and applied research

    International Nuclear Information System (INIS)

    Full text: SINP accelerator facility includes 120 cm cyclotron, electrostatic generator with the upper voltage 3.0 MeV, electrostatic generator with the upper voltage 2.5 MeV, Cocroft -Walton generator with the upper voltage 500 keV, 150 keV accelerator for solid microparticles. A new generation of electron beam accelerators has been developed during the last decade. The SINP accelerator facility will be shortly described in the report. A wide range of basic research in nuclear and atomic physics, physics of ion-beam interactions with condensed matter is currently carried out. SINP activity in the applied research is concentrated in the following areas of materials science: - Materials diagnostics with the Rutherford backscattering techniques (RBS) and channeling of ions (RBS/C). A large number of surface ad-layers and multilayer systems for advanced micro- and nano-electronic technology have been investigated. A selected series of examples will be illustrated. - Concentration depth profiles of hydrogen by the elastic recoils detection techniques (ERD). Primarily, the hydrogen depth profiles in perspective materials for thermonuclear reactors have been investigated. - Lattice site locations of hydrogen by a combination of ERD and channeling techniques. This is a new technique which was successfully applied for investigation of hydrogen and hydrogen-defect complexes in silicon for the smart-cut technology. - Light element diagnostics by RBS and nuclear backscattering techniques (NBS). The technique is illustrated by applications for nitrogen concentration profiling in steels. Nitrogen take-up and release, nitrides precipitate formation will be illustrated. - New medium energy ion scattering (MEIS) facility and applications. Ultra-high vacuum and superior energy resolution electrostatic toroidal analyzer is designed to be applied for characterization of composition and structure of several upper atomic layers of materials

  1. Risk assessment of topically applied products

    DEFF Research Database (Denmark)

    Søborg, Tue; Basse, Line Hollesen; Halling-Sørensen, Bent

    2007-01-01

    parameters for estimating the risk. The immediate human risk of BADGE and derivatives in topical dosage forms was found to be low. However, local treatment of broken skin may lead to higher exposure of BADGE and derivatives compared to application to normal skin. 3-BC permeated skin at higher flux than 4-MBC......The human risk of harmful substances in semisolid topical dosage forms applied topically to normal skin and broken skin, respectively, was assessed. Bisphenol A diglycidyl ether (BADGE) and three derivatives of BADGE previously quantified in aqueous cream and the UV filters 3-BC and 4-MBC were used...

  2. Gulf International Conference on Applied Mathematics 2013

    CERN Document Server

    Advances in Applied Mathematics

    2014-01-01

    This volume contains contributions from the Gulf International Conference in Applied Mathematics, held at the Gulf University for Science & Technology. The proceedings reflects the three major themes of the conference. The first of these was mathematical biology, including a keynote address by Professor Philip Maini. The second theme was computational science/numerical analysis, including a keynote address by Professor Grigorii Shishkin. The conference also addressed more general applications topics, with papers in business applications, fluid mechanics, optimization, scheduling problems, and engineering applications, as well as a keynote by Professor Ali Nayfeh.

  3. Instructions for Applying | Division of Cancer Prevention

    Science.gov (United States)

    This is NOT a grant application - if successful, funds will not be transferred to your institution to support your project. Rather, this is an application to access the scientific capabilities and resources of the NCI with the goal of moving promising cancer chemopreventive agents into clinical testing. If successful, you will partner with the NCI in developing a drug development pipeline. | Apply to access the scientific capabilities and resources of the NCI with the goal of moving promising cancer chemopreventive agents into clinical testing.

  4. Wavelet analysis applied to the IRAS cirrus

    Science.gov (United States)

    Langer, William D.; Wilson, Robert W.; Anderson, Charles H.

    1994-01-01

    The structure of infrared cirrus clouds is analyzed with Laplacian pyramid transforms, a form of non-orthogonal wavelets. Pyramid and wavelet transforms provide a means to decompose images into their spatial frequency components such that all spatial scales are treated in an equivalent manner. The multiscale transform analysis is applied to IRAS 100 micrometer maps of cirrus emission in the north Galactic pole region to extract features on different scales. In the maps we identify filaments, fragments and clumps by separating all connected regions. These structures are analyzed with respect to their Hausdorff dimension for evidence of the scaling relationships in the cirrus clouds.

  5. Handbook of Applied Solid State Spectroscopy

    CERN Document Server

    Vij, D. R

    2006-01-01

    Solid-State spectroscopy is a burgeoning field with applications in many branches of science, including physics, chemistry, biosciences, surface science, and materials science. Handbook of Applied Solid-State Spectroscopy brings together in one volume information about various spectroscopic techniques that is currently scattered in the literature of these disciplines. This concise yet comprehensive volume covers theory and applications of a broad range of spectroscopies, including NMR, NQR, EPR/ESR, ENDOR, scanning tunneling, acoustic resonance, FTIR, auger electron emission, x-ray photoelectron emission, luminescence, and optical polarization, and more. Emphasis is placed on fundamentals and current methods and procedures, together with the latest applications and developments in the field.

  6. Applying the ABCs in provider organizations.

    Science.gov (United States)

    Pandey, Seema

    2012-11-01

    Activity-based costing (ABC) is an accounting technique designed to guard against potentially serious financial problems that can arise when an organization's accounting costs deviate significantly from its actual costs. In general, an ABC analysis considers two factors: a cost element (a directly measurable unit of cost, such as the cost of an item) and a cost driver (a directly measurable feature of the service, such as how often the item is used). ABC is best applied to specific service areas, orservice packages, for which consumption of resources is largely predictable and atomic units of services can be accurately identified. PMID:23173369

  7. How will biomining be applied in future?

    Institute of Scientific and Technical Information of China (English)

    C.L.BRIERLEY

    2008-01-01

    This paper reviews the current status of commercial biomining operations around the world,identifies factors that drive the selection of biomining as a processing technology,describes challenges to exploiting these innovations,and concludes with a discussion of biomining's future.Biomining is commercially applied using engineered dumps,heaps and stirred tanks.Overcoming the technical challenges of lowering costs,processing low-grade,low-quality and complex ores and utilizing existing capital investments at mines requires better understanding of microbial activities and innovative engineering.Surmounting biomining commercial challenges entails improved mining company/biomining innovator cooperation and intellectual property control.

  8. Econometric Errors in an _Applied Economics_ Article

    OpenAIRE

    Dimitris Hatzinikolaou

    2010-01-01

    This comment points out some econometric errors contained in an Applied Economics article by Mavrommati and Papadopoulos (2005), to wit, the authors make an incorrect statement about the standard F-test; they claim erroneously that the Durbin-Watson test is irrelevant in panel data; they fail to test for serial correlation and random-walk errors; and they misuse the Durbin-Wu-Hausman test for the consistency of the fixed-effects estimator. Thus, their results are questionable. This comment ai...

  9. Applied Integer Programming Modeling and Solution

    CERN Document Server

    Chen, Der-San; Dang, Yu

    2011-01-01

    An accessible treatment of the modeling and solution of integer programming problems, featuring modern applications and software In order to fully comprehend the algorithms associated with integer programming, it is important to understand not only how algorithms work, but also why they work. Applied Integer Programming features a unique emphasis on this point, focusing on problem modeling and solution using commercial software. Taking an application-oriented approach, this book addresses the art and science of mathematical modeling related to the mixed integer programming (MIP) framework and

  10. GA and PSO applied towind energy optimization

    OpenAIRE

    Alba, Enrique; Bilbao, Martín

    2009-01-01

    In this article we analyze two kinds of metaheuristic algorithms applied to wind farm optimization. The basic idea is to utilize CHC (a sort of GA) and GPSO (a sort of PSO) algorithms to obtain an acceptable configuration of wind turbines in the wind farm that maximizes the total output energy and minimize the number of wind turbines used. The energy produced depends of the farm geometry, wind conditions and the terrain where it is settled. In this work we will analyze three study farm sce...

  11. Computational optimization techniques applied to microgrids planning

    DEFF Research Database (Denmark)

    Gamarra, Carlos; Guerrero, Josep M.

    2015-01-01

    ), their planning process must be addressed to economic feasibility, as a long-term stability guarantee. Planning a microgrid is a complex process due to existing alternatives, goals, constraints and uncertainties. Usually planning goals conflict each other and, as a consequence, different optimization problems...... appear along the planning process. In this context, technical literature about optimization techniques applied to microgrid planning have been reviewed and the guidelines for innovative planning methodologies focused on economic feasibility can be defined. Finally, some trending techniques and new...... microgrid planning approaches are pointed out....

  12. The 1989 progress report: applied optics

    International Nuclear Information System (INIS)

    The 1989 progress report of the laboratory of Applied Optics of the Polytechnic School (France) is presented. The research programs are carried out in the following fields: Ultrafast Physics, including the development of femtoseconds laser sources and their utilization in Physics, Biology and Physical Chemistry; physics of infrared lasers and their applications in space and industries; Guided Optics, including investigations and construction of fiber optics couplers; biomedical studies on muscle mechanics and laser applications. The published papers, the conferences and the Laboratory staff are listed

  13. Novel nuclear diagnostics as applied pathophysiology

    International Nuclear Information System (INIS)

    Novel Diagnostic Procedures in Nuclear Medicine reflect applied Pathophysiology: Basics and future aspects. In their capacity as 'image - assisted functional diagnostics', methods of nuclear medicine link morphological patterns of radiology with clinical presentation. Based on pathophysiology they supply an insight into both global and regional parameters, present as basal values or as reserves. Both, single photon emission computed tomography (SPECT) or highly defined positron ECT (PET), enable computerassisted topographical overlay and thus an exact comparative evaluation of regional function versus morphology. In addition, PET gives accress to a true physiological, absolute quantification employing process specific, carrierfree substrates. (orig./GDG)

  14. Applied Regression Modeling A Business Approach

    CERN Document Server

    Pardoe, Iain

    2012-01-01

    An applied and concise treatment of statistical regression techniques for business students and professionals who have little or no background in calculusRegression analysis is an invaluable statistical methodology in business settings and is vital to model the relationship between a response variable and one or more predictor variables, as well as the prediction of a response value given values of the predictors. In view of the inherent uncertainty of business processes, such as the volatility of consumer spending and the presence of market uncertainty, business professionals use regression a

  15. Terahertz spectroscopy applied to food model systems

    DEFF Research Database (Denmark)

    Møller, Uffe

    Water plays a crucial role in the quality of food. Apart from the natural water content of a food product, the state of that water is very important. Water can be found integrated into the biological material or it can be added during production of the product. Currently it is difficult...... to differentiate between these types of water in subsequent quality controls. This thesis describes terahertz time-domain spectroscopy applied on aqueous food model systems, with particular focus on ethanol-water mixtures and confined water pools in inverse micelles....

  16. Comprehensive text book of applied physics

    CERN Document Server

    Kumar, Manoj

    2009-01-01

    ""This book is a comprehensive package for knowledge sharing on Applied Physics. The language of the book is simple and self explanatory, this will help the students to grasp the fundamentals of the subject easily. The book follows a to the point approach and lays stress on the understanding of the core concepts and sharpening the analytical ability of the students on the subject. The book covers wide range of multiple choice questions related to all the topics that is of a great help to the students appearing for competitive as well as state board examinations."

  17. Where is the engineering I applied for?

    DEFF Research Database (Denmark)

    Holmegaard, Henriette Tolstrup; Madsen, Lene Møller; Ulriksen, Lars

    2016-01-01

    explores how this encounter provides a platform for students to become integrated during first year. We find that students' expectations are poorly met by their first-year study programme. In their attempt to bridge the gap between their expectations and their experiences, the students apply three...... strategies: some endure the gap, some constantly try out different study strategies and some compromised their expectations and identities to become more aligned with the study programme. The findings show that even when students successfully manage to bridge the gap, their strategy may turn out to be...

  18. Markov Model Applied to Gene Evolution

    Institute of Scientific and Technical Information of China (English)

    季星来; 孙之荣

    2001-01-01

    The study of nucleotide substitution is very important both to our understanding of gene evolution and to reliable estimation of phylogenetic relationships. In this paper nucleotide substitution is assumed to be random and the Markov model is applied to the study of the evolution of genes. Then a non-linear optimization approach is proposed for estimating substitution in real sequences. This substitution is called the "Nucleotide State Transfer Matrix". One of the most important conclusions from this work is that gene sequence evolution conforms to the Markov process. Also, some theoretical evidences for random evolution are given from energy analysis of DNA replication.

  19. Plasmas applied atomic collision physics, v.2

    CERN Document Server

    Barnett, C F

    1984-01-01

    Applied Atomic Collision Physics, Volume 2: Plasmas covers topics on magnetically confined plasmas. The book starts by providing the history of fusion research and describing the various approaches in both magnetically and inertially confined plasmas. The text then gives a general discussion of the basic concepts and properties in confinement and heating of a plasma. The theory of atomic collisions that result in excited quantum states, particularly highly ionized impurity atoms; and diverse diagnostic topics such as emission spectra, laser scattering, electron cyclotron emission, particle bea

  20. Applied statistical designs for the researcher

    CERN Document Server

    Paulson, Daryl S

    2003-01-01

    Showcasing a discussion of the experimental process and a review of basic statistics, this volume provides methodologies to identify general data distribution, skewness, and outliers. It features a unique classification of the nonparametric analogs of their parametric counterparts according to the strength of the collected data. Applied Statistical Designs for the Researcher discusses three varieties of the Student t test, including a comparison of two different groups with different variances; two groups with the same variance; and a matched, paired group. It introduces the analysis of variance and Latin Square designs and presents screening approaches to comparing two factors and their interactions.