WorldWideScience

Sample records for applied electric fields

  1. [Study on dewatering of activated sludge under applied electric field].

    Science.gov (United States)

    Ji, Xue-Yuan; Wang, Yi-Li; Feng, Jing

    2012-12-01

    For an electro-dewatering process of activated sludge (AS), the effect of pH and conductivity of AS, flocculation conditioning and operation factors of horizontal electric field (voltage magnitude, method of applying electric field and distance between plates) were investigated, and the corresponding optimum electro-dewatering conditions were also obtained. The results showed that the best electro-dewatering effect was achieved for AS without change of its pH value (6.93) and conductivity (1.46 mS x cm(-1)). CPAM conditioning could lead to the increase of 30%-40% in the dewatering rate and accelerate the dewatering process, whereas a slight increase in the electro-dewatering rate. The electro-dewatering rate for conditioned AS reached 83.12% during an electric field applied period of 60 minutes, while this rate for original AS could be 75.31% even the electric field applied period extended to 120 minutes. The delay of applying the electric field had an inhibition effect on the AS electro-dewatering rate. Moreover, the optimum conditions for AS electro-dewatering were followed: CPAM dose of 9 g x kg(-1), electric field strength of 600 V x m(-1), distance between the two plates of 40 mm, dehydration time of 60 minutes. Under above optimum conditions the AS electro-dewatering rate could approach to 85.33% and the moisture content in AS decreased from 99.30% to 95.15% accordingly.

  2. Charged Polymers Transport under Applied Electric Fields in Periodic Channels

    Directory of Open Access Journals (Sweden)

    Sorin Nedelcu

    2013-07-01

    Full Text Available By molecular dynamics simulations, we investigated the transport of charged polymers in applied electric fields in confining environments, which were straight cylinders of uniform or non-uniform diameter. In the simulations, the solvent was modeled explicitly and, also, the counterions and coions of added salt. The electrophoretic velocities of charged chains in relation to electrolyte friction, hydrodynamic effects due to the solvent, and surface friction were calculated. We found that the velocities were higher if counterions were moved away from the polymeric domain, which led to a decrease in hydrodynamic friction. The topology of the surface played a key role in retarding the motion of the polyelectrolyte and, even more so, in the presence of transverse electric fields. The present study showed that a possible way of improving separation resolution is by controlling the motion of counterions or electrolyte friction effects.

  3. Effect of applied DC electric fields in flame spread over polyethylene-coated electrical wire

    KAUST Repository

    Jin, Young Kyu

    2011-03-01

    We experimentally investigated the effect of applied DC electric fields on the flame spread over polyethylene-coated electrical wire. The flame-spread rates over electrical wire with negative and positive DC electric fields from 0 to ±7 kV were measured and analyzed. We compared the results for DC electric fields with previous results for AC electric fields. We explored whether or not various flame shapes could be obtained with DC electric fields and the main reason for the flame-spread acceleration, particularly at the end of the electrical wire, for AC electric fields. We found that DC electric fields do not significantly affect the flame-spread rates. However, the flame shape is mildly altered by the ionic wind effect even for DC electric fields. The flame-spread rate is relevant to the flame shape and the slanted direction in spite of the mild impact. A possible explanation for the flame spread is given by a thermal-balance mechanism and fuel-vapor jet. © 2011 The Korean Society of Mechanical Engineers.

  4. Mechanism of Carbon Nanotubes Aligning along Applied Electric Field

    Institute of Scientific and Technical Information of China (English)

    MA Shao-Jie; GUO Wan-Lin

    2008-01-01

    The mechanism of single-walled carbon nanotubes (SWCNTS)aligning in the direction of external electric field is studied by quantum mechanics calculations.The rotational torque on the carbon nanotubes is proportional to the difference between the longitudinal and transverse polarizabilities and varies with the angle of SWCNTs to the external electric field.The longitudinal polarizability increases with second power of length,while the transverse polarizability increases linearly with length.A zigzag SWCNT has larger longitudinal and transverse polarizabilities than an armchair SWCNT with the same diameter and the discrepancy becomes larger for longer tubes.

  5. The Contribution of Electric Force to Sintering Ⅱ.Natures of the Applied Electric Field for Driving lonic Diffusion

    Institute of Scientific and Technical Information of China (English)

    SHIShang-zhao

    1994-01-01

    Through discussion on the acting forces of the applied electric field on the ionic system,it was shown that a periordical field with both even and odd components is to be applied.The suitable wavelengty,the extent of the field intensity and electric potential and the application of the selected field were suggested.

  6. Laser ablation with applied magnetic field for electric propulsion

    Science.gov (United States)

    Batishcheva, Alla; Batishchev, Oleg; Cambier, Jean-Luc

    2012-10-01

    Using ultrafast lasers with tera-watt-level power allows efficient ablation and ionization of solid-density materials [1], creating dense and hot (˜100eV) plasma. We propose ablating small droplets in the magnetic nozzle configurations similar to mini-helicon plasma source [2]. Such approach may improve the momentum coupling compared to ablation of solid surfaces and facilitate plasma detachment. Results of 2D modeling of solid wire ablation in the applied magnetic field are presented and discussed. [4pt] [1] O. Batishchev et al, Ultrafast Laser Ablation for Space Propulsion, AIAA technical paper 2008-5294, -16p, 44th JPC, Hartford, 2008.[0pt] [2] O. Batishchev and J.L. Cambier, Experimental Study of the Mini-Helicon Thruster, Air Force Research Laboratory Report, AFRL-RZ-ED-TR-2009-0020, 2009.

  7. Crystallization Behavior of Anatase Films in Applied Electric Field Heating Process

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this research the TiO2 thin films were prepared by sol-gel dip coating. The crystallization of the films in the applied electric field heating process was thoroughly studied by many technique, differential thermal analysis (DTA), Raman spectroscopy and atomic force microscope (AFM). Furthermore the phase formation, microstructure and photo-catalytic activity of TiO2 film were studied under the condition of an electric field heating-treatment. It is found that the existence of applied electric field promotes the phase transformation from anatase to rutile. Studies on photo-catalytic degradation show that the photo-catalytic activity of TiO2 thin films in an applied electric field is higher.

  8. Inhibition of root elongation in microgravity by an applied electric field

    Science.gov (United States)

    Wolverton, C.; Mullen, J. L.; Aizawa, S.; Yoshizaki, I.; Kamigaichi, S.; Mukai, C.; Shimazu, T.; Fukui, K.; Evans, M. L.; Ishikawa, H.

    1999-01-01

    Roots grown in an applied electric field demonstrate a bidirectional curvature. To further understand the nature of this response and its implications for the regulation of differential growth, we applied an electric field to roots growing in microgravity. We found that growth rates of roots in microgravity were higher than growth rates of ground controls. Immediately upon application of the electric field, root elongation was inhibited. We interpret this result as an indication that, in the absence of a gravity stimulus, the sensitivity of the root to an applied electric stimulus is increased. Further space experiments are required to determine the extent to which this sensitivity is shifted. The implications of this result are discussed in relation to gravitropic signaling and the regulation of differential cell elongation in the root.

  9. Redistribution of mobile surface charges of an oil droplet in water in applied electric field.

    Science.gov (United States)

    Li, Mengqi; Li, Dongqing

    2016-10-01

    Most researches on oil droplets immersed in aqueous solutions assume that the surface charges of oil droplets are, similar to that of solid particles, immobile and distributed uniformly under external electric field. However, the surface charges at the liquid-liquid interface are mobile and will redistribute under external electric field. This paper studies the redistribution of surface charges on an oil droplet under the influence of the external electrical field. Analytical expressions of the local zeta potential on the surface of an oil droplet after the charge redistribution in a uniform electrical field were derived. The effects of the initial zeta potential, droplet radius and strength of applied electric field on the surface charge redistribution were studied. In analogy to the mobile surface charges, the redistribution of Al2O3-passivated aluminum nanoparticles on the oil droplet surface was observed under applied electrical field. Experimental results showed that these nanoparticles moved and accumulated towards one side of the oil droplet under electric field. The redistribution of the nanoparticles is in qualitative agreement with the redistribution model of the mobile surface charges developed in this work.

  10. Carboxylated Capped Carbon Nanotubes Interacting with Nimesulide Molecules: Applied Electric Fields Effects

    Directory of Open Access Journals (Sweden)

    Vivian Machado de Menezes

    2015-01-01

    Full Text Available Interactions of carboxylated capped carbon nanotubes with nimesulide molecules under electric fields were investigated by ab initio simulations. Repulsive forces between the nimesulide molecules and the carboxyl group of the carbon nanotubes, except for the nimesulide radical configuration, were observed. To keep the original molecule in the pristine form, electric fields with different intensities were applied, where changes in the behavior of the interactions between the molecules were noticed. It was shown that the intensity of the interaction between the nimesulide and the hydrophilic carboxylated capped carbon nanotube can be modulated by the action of the external electric fields making promising systems for drug delivery applications.

  11. The second harmonic generation in symmetrical and asymmetrical Gaussian potential quantum wells with applied electric field

    Science.gov (United States)

    Yuan, Jian-Hui; Chen, Ni; Mo, Hua; Zhang, Yan; Zhang, Zhi-Hai

    2015-12-01

    A detailed investigation of the second harmonic generation in symmetrical and asymmetrical Gaussian potential quantum wells under the influence of applied electric field by using the compact-density-matrix approach and the finite difference method. The results show that the second-harmonic generation susceptibility obtained in two cases can reach the magnitude of 10-4 m/V, which depend dramatically on the applied electric field and the structural parameters. Finally, the resonant peak and its corresponding to the resonant energy are also taken into account.

  12. Removal of alum from Iron-Age wooden objects by an applied electric field

    DEFF Research Database (Denmark)

    Christensen, Iben Vernegren; Ottosen, Lisbeth M.; Jensen, Poul;

    2010-01-01

    In this paper removal of potassium, sulfate and aluminum ions from waterlogged alum treated wood with the use of an applied electric field is described. An electric DC field was applied across the wood for 4-20 days. At the end of the experiments sulfate had moved as expected towards the anode...... and potassium had moved towards the cathode. One experiment showed that after 20 days only 10% of the sulfate and 8% of the potassium was left in the wood. Aluminum tended to be removed more slowly and even after 20 days only minor amounts of aluminum were removed from the wood. Total removal of alum...

  13. The effects of intense laser field and applied electric and magnetic fields on optical properties of an asymmetric quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, R.L., E-mail: pfrire@eia.edu.co [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Escuela de Ingeniería de Antioquia-EIA, Envigado (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia); Ungan, F.; Kasapoglu, E. [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonóma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Morales, A.L.; Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2015-01-15

    This paper presents the results of the theoretical study of the effects of non-resonant intense laser field and electric and magnetic fields on the optical properties (the linear and third-order nonlinear refractive index and absorption coefficients) in an asymmetric quantum well. The electric field and intense laser field are applied along the growth direction of the asymmetric quantum well and the magnetic field is oriented perpendicularly. To calculate the energy and the wave functions of the electron in the asymmetric quantum well, the effective mass approximation and the method of envelope wave function are used. The asymmetric quantum well is constructed by using different aluminium concentrations in both right and left barriers. The confinement in the quantum well is changed drastically by either the effect of electric and magnetic fields or by the application of intense laser field. The optical properties are calculated using the compact density matrix approach. The results show that the effect of the intense laser field competes with the effects of the electric and magnetic fields. Consequently, peak position shifts to lower photon energies due to the effect of the intense laser field and it shifts to higher photon energies by the effects of electric and magnetic fields. In general, it is found that the concentration of aluminum, electric and magnetic fields and intense laser field are external agents that modify the optical responses in the asymmetric quantum well.

  14. The second-harmonic generation susceptibility in semiparabolic quantum wells with applied electric field

    Science.gov (United States)

    Yuan, Jian-Hui; Zhang, Yan; Mo, Hua; Chen, Ni; Zhang, Zhihai

    2015-12-01

    The second-harmonic generation susceptibility in semiparabolic quantum wells with applied electric field is investigated theoretically. For the same topic studied by Zhang and Xie [Phys. Rev. B 68 (2003) 235315] [1], some new and reliable results are obtained by us. It is easily observed that the second harmonic generation susceptibility decreases and the blue shift of the resonance is induced with increasing of the frequencies of the confined potential. Moreover, a transition from a two-photon resonance to two single-photon resonances will appear adjusted by the frequencies of the confined potential. Similar results can also be obtained by controlling the applied electric field. Surprisingly, the second harmonic generation susceptibility is weakened in the presence of the electric field, which is in contrast to the conventional case. Finally, the resonant peak and its corresponding resonant energy are also taken into account.

  15. Finite element modeling and analysis of piezo-integrated composite structures under large applied electric fields

    Science.gov (United States)

    Rao, M. N.; Tarun, S.; Schmidt, R.; Schröder, K.-U.

    2016-05-01

    In this article, we focus on static finite element (FE) simulation of piezoelectric laminated composite plates and shells, considering the nonlinear constitutive behavior of piezoelectric materials under large applied electric fields. Under the assumptions of small strains and large electric fields, the second-order nonlinear constitutive equations are used in the variational principle approach, to develop a nonlinear FE model. Numerical simulations are performed to study the effect of material nonlinearity for piezoelectric bimorph and laminated composite plates as well as cylindrical shells. In comparison to the experimental investigations existing in the literature, the results predicted by the present model agree very well. The importance of the present nonlinear model is highlighted especially in large applied electric fields, and it is shown that the difference between the results simulated by linear and nonlinear constitutive FE models cannot be omitted.

  16. Electronic and Shallow Impurity States in Semiconductor Heterostructures Under an Applied Electric Field

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hai-Yang; GU Shi-Wei; SHI Yao-Ming

    2005-01-01

    With the use of variational method to solve the effective mass equation, we have studied the electronic and shallow impurity states in semiconductor heterostructures under an applied electric field. The electron energy levels are calculated exactly and the impurity binding energies are calculated with the variational approach. It is found that the behaviors of electronic and shallow impurity states in heterostructures under an applied electric field are analogous to that of quantum wells. Our results show that with the increasing strength of electric field, the electron confinement energies increase, and the impurity binding energy increases also when the impurity is on the surface, while the impurity binding energy increases at first, to a peak value, then decreases to a value which is related to the impurity position when the impurity is away from the surface. In the absence of electric field, the result tends to the Levine's ground state energy (-1/4 effective Rydberg) when the impurity is on the surface, and the ground impurity binding energy tends to that in the bulk when the impurity is far away from the surface. The dependence of the impurity binding energy on the impurity position for different electric field is also discussed.

  17. Experimental Study on Downwardly Spreading Flame over Inclined Polyethylene-insulated Electrical Wire with Applied AC Electric Fields

    KAUST Repository

    Lim, Seung Jae

    2014-12-30

    An experimental study on downwardly spreading flame over slanted electrical wire, which is insulated by Polyethylene (PE), was conducted with applied AC electric fields. The result showed that the flame spread rate decreased initially with increase in inclination angle of wire and then became nearly constant. The flame shape was modified significantly with applied AC electric field due to the effect of ionic wind. Such a variation in flame spread rate could be explained by a thermal balance mechanism, depending on flame shape and slanted direction of flame. Extinction of the spreading flame was not related to angle of inclination, and was described well by a functional dependency upon the frequency and voltage at extinction.

  18. Optical Conductivity of Impurity-Doped Parabolic Quantum Wells in an Applied Electric Field

    Institute of Scientific and Technical Information of China (English)

    GUO Kang-Xian; CHEN Chuan-Yu

    2005-01-01

    The optical conductivity of impurity-doped parabolic quantum wells in an applied electric field is investigated with the memory-function approach, and the analytic expression for the optical conductivity is derived. With characteristic parameters pertaining to GaAs/Ga1-xAlxAs parabolic quantum wells, the numerical results are presented.It is shown that, the smaller the well width, the larger the peak intensity of the optical conductivity, and the more asymmetric the shape of the optical conductivity; the optical conductivity is more sensitive to the electric field, the electric field enhances the optical conductivity; when the dimension of the quantum well increases, the optical conductivity increases until it reaches a maximum value, and then decreases.

  19. Second-order nonlinear susceptibility in quantum dot structure under applied electric field

    Science.gov (United States)

    Abdullah, M.; Noori, Farah T. Mohammed; Al-Khursan, Amin H.

    2015-06-01

    A model for quantum dot (QD) subbands, when the dots are in the form of quantum disks, under applied electric field was stated. Then, subbands of dots with different disk radii and heights were calculated under applied field. The competition between the shift due to confinement by field and the size was shown for subbands. Second-order nonlinear susceptibility in quantum dots (QDs) was derived using density matrix theory which is, then, simulated using the calculated subbands. Both interband (IB) and intersubband (ISB) transitions were discussed. High second-order susceptibility in QDs was predicted. The results show a reduction in the susceptibility with the applied field while the peak wavelength was mainly relates to energy difference between subbands. A good match between theory and laboratory experiments was observed. Laboratory experiments at terahertz region might be possible using valence intersubband which is important in many device applications.

  20. Nonlinear optical rectification in laterally-coupled quantum well wires with applied electric field

    Science.gov (United States)

    Liu, Guanghui; Guo, Kangxian; Zhang, Zhongmin; Hassanbadi, Hassan; Lu, Liangliang

    2017-03-01

    Nonlinear optical rectification coefficient χ0(2) in laterally-coupled AlxGa1-xAs/GaAs quantum well wires with an applied electric field is theoretically investigated using the effective mass approximation as well as the numerical energy levels and wavefunctions of electrons. We find that χ0(2) is greatly influenced by the electric field as well as both the distance and the radius of the coupled system. A blue shift of χ0(2) with increasing electric field is exhibited while a red shift followed by a blue shift with increasing distance or radius is exhibited. A nonmonotonic behavior can be found in the resonant peak values of χ0(2) along with the increase of the electric field, the distance or the radius. One or two of the following physical mechanisms: the increased localization of the ground and first-excited states, the reduced coupling and the reduced quantum confinement effect are applied to elucidate the results above. Our results play a potential role in infrared photodetectors based on the coupled system.

  1. [Negative air ions generated by plants upon pulsed electric field stimulation applied to soil].

    Science.gov (United States)

    Wu, Ren-ye; Deng, Chuan-yuan; Yang, Zhi-jian; Weng, Hai-yong; Zhu, Tie-jun-rong; Zheng, Jin-gui

    2015-02-01

    This paper investigated the capacity of plants (Schlumbergera truncata, Aloe vera var. chinensis, Chlorophytum comosum, Schlumbergera bridgesii, Gymnocalycium mihanovichii var. friedrichii, Aspidistra elatior, Cymbidium kanran, Echinocactus grusonii, Agave americana var. marginata, Asparagus setaceus) to generate negative air ions (NAI) under pulsed electric field stimulation. The results showed that single plant generated low amounts of NAI in natural condition. The capacity of C. comosum and G. mihanovichii var. friedrichii generated most NAI among the above ten species, with a daily average of 43 ion · cm(-3). The least one was A. americana var. marginata with the value of 19 ion · cm(-3). When proper pulsed electric field stimulation was applied to soil, the NAI of ten plant species were greatly improved. The effect of pulsed electric field u3 (average voltage over the pulse period was 2.0 x 10(4) V, pulse frequency was 1 Hz, and pulse duration was 50 ms) was the greatest. The mean NAI concentration of C. kanran was the highest 1454967 ion · cm(-3), which was 48498.9 times as much as that in natural condition. The lowest one was S. truncata with the value of 34567 ion · cm(-3), which was 843.1 times as much as that in natural condition. The capacity of the same plants to generate negative air ion varied extremely under different intensity pulsed electric fields.

  2. High-temperature tensile deformation behavior of aluminum oxide with and without an applied electric field

    Science.gov (United States)

    Campbell, James

    1998-12-01

    Ceramics are usually considered to be brittle, but under certain conditions some ceramics exhibit a large degree of ductility. They are fine-grained and exhibit superplastic behavior when deformed at high temperatures and low stresses. Whereas superplasticity gives enhanced ductility to metals, it may be the only method for imparting large plasticity to ceramics. Electric fields have been shown to increase ductility, reduce flow stress and reduce cavitation in the superplastic forming of 7475 Al and yttria-stabilized zirconia. Thus, the concurrent application of an electric field may give improved superplastic properties and increased plasticity to a marginally ductile ceramic such as aluminum oxide (alpha-alumina). Fine-grained alumina tensile specimens, formed by dry pressing and sintering a spray-dried powder, were tested in tension at high temperature with and without an electric field of 300 V/cm. Constant strain rate, strain rate cycling and stress relaxation tests were performed. The effects of an electric field on the ductility, flow stress, cavitation and parameters of the Weertman-Dorn deformation equation were measured. Without an electric field, the following deformation parameters were found: the stress exponent n = 2.2, the grain size exponent p = 1.9, the activation energy Q = 490 kJ/mol and the threshold stress sigmao ≈ 0 MPa, indicating structural superplasticity where grain boundary sliding is the predominant deformation mode and was likely accommodated by the motion of grain boundary dislocations. An electric field of 300 V/cm gave a Joule heating temperature increase of ˜30°C and caused the alumina to swell 5--25% (increasing with time), even while under no applied stress, thereby reducing its ductility and flow stress. After correcting for Joule heating and swelling there was still a significant flow stress reduction produced by the field and the following deformation parameters were found: n = 2.2, p = 1.9, Q = 950 kJ/mol and sigmao ≈ 0

  3. Extensional flow of nematic liquid crystal with an applied electric field

    KAUST Repository

    CUMMINGS, L. J.

    2013-10-17

    Systematic asymptotic methods are used to formulate a model for the extensional flow of a thin sheet of nematic liquid crystal. With no external body forces applied, the model is found to be equivalent to the so-called Trouton model for Newtonian sheets (and fibres), albeit with a modified \\'Trouton ratio\\'. However, with a symmetry-breaking electric field gradient applied, behaviour deviates from the Newtonian case, and the sheet can undergo finite-time breakup if a suitable destabilizing field is applied. Some simple exact solutions are presented to illustrate the results in certain idealized limits, as well as sample numerical results to the full model equations. Copyright © Cambridge University Press 2013.

  4. Rupture of nanoscaled water sheets in the presence of an applied electric field

    Science.gov (United States)

    Gopan, Nandu

    2016-12-01

    Understanding the behaviour of water sheets is relevant in numerous areas, such as thin film coating and atomisation. The rupture of planar liquid sheets are interesting due to the fact that they are objects of co-dimension 1. Previous work seems to suggest that a generic route to liquid structure fragmentation is via liquid sheets. The interplay between inertia, surface tension and viscosity is crucial in determining the dynamics of liquid sheets at a macro scale. At the nanoscale, where thermal fluctuations are expected to play a dominant role, the dynamics become more interesting. The stability and rupture dynamics of nanoscaled water sheets, at constant temperature, are studied using constrained molecular dynamics (MD) simulations. The SPC/E potential with long range electrostatics is used to simulate water molecules. The effect of an applied electric field on the stability of the nanoscaled water sheet forms the focus of this study. The effect of the initial configuration is studied by changing the random seed values used for velocity initialisation. The effect of sheet thickness on the rupture dynamics is also explored. It is seen that when large electric fields (5 V/nm) act across very thin sheets (1 layer), then breakup into multiple ellipsoidal structures is a possibility, and the response of the fluid structure to the applied electric field is non-linear. Furthermore, it is seen that Taylor's predictions for the critical electric field intensity, based on classical electro-hydrodynamics for the onset of instability in macroscopic drops, scales surprisingly well for the case of nanoscaled sheets.

  5. Studies on the second-harmonic generations in cubical quantum dots with applied electric field

    Energy Technology Data Exchange (ETDEWEB)

    Shao Shuai [Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Guo Kangxian, E-mail: axguo@sohu.co [Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Zhang Zhihai; Li Ning; Peng Chao [Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China)

    2011-02-01

    The second-harmonic generation (SHG) coefficient for cubical quantum dots (CQDs) with the applied electric field is theoretically investigated. Using the compact density-matrix approach and the iterative method, we get the analytical expression of the SHG coefficient. And the numerical calculations for the typical GaAs/AlAs CQDs are presented. The results show that the SHG coefficient can reach the magnitude of 10{sup -5} m/V, about two orders higher than that in spherical quantum dot system. More importantly, the SHG coefficient is not a monotonic function of the length L of CQDs as well as the applied field F. If we select suitable values of F and L, we will get a higher value of the SHG coefficient. In addition, the relaxation rate also affects the SHG coefficient obviously.

  6. Tuning the energy gap of bilayer α-graphyne by applying strain and electric field

    Science.gov (United States)

    Yang, Hang; Wu, Wen-Zhi; Jin, Yu; Wan-Lin, Guo

    2016-02-01

    Our density functional theory calculations show that the energy gap of bilayer α-graphyne can be modulated by a vertically applied electric field and interlayer strain. Like bilayer graphene, the bilayer α-graphyne has electronic properties that are hardly changed under purely mechanical strain, while an external electric field can open the gap up to 120 meV. It is of special interest that compressive strain can further enlarge the field induced gap up to 160 meV, while tensile strain reduces the gap. We attribute the gap variation to the novel interlayer charge redistribution between bilayer α-graphynes. These findings shed light on the modulation of Dirac cone structures and potential applications of graphyne in mechanical-electric devices. Project supported by the National Key Basic Research Program of China (Grant Nos. 2013CB932604 and 2012CB933403), the National Natural Science Foundation of China (Grant Nos. 51472117 and 51535005), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures, China (Grant No. 0414K01), the Nanjing University of Aeronautics and Astronautics (NUAA) Fundamental Research Funds, China (Grant No. NP2015203), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

  7. Directing migration of endothelial progenitor cells with applied DC electric fields.

    Science.gov (United States)

    Zhao, Zhiqiang; Qin, Lu; Reid, Brian; Pu, Jin; Hara, Takahiko; Zhao, Min

    2012-01-01

    Naturally-occurring, endogenous electric fields (EFs) have been detected at skin wounds, damaged tissue sites and vasculature. Applied EFs guide migration of many types of cells, including endothelial cells to migrate directionally. Homing of endothelial progenitor cells (EPCs) to an injury site is important for repair of vasculature and also for angiogenesis. However, it has not been reported whether EPCs respond to applied EFs. Aiming to explore the possibility to use electric stimulation to regulate the progenitor cells and angiogenesis, we tested the effects of direct-current (DC) EFs on EPCs. We first used immunofluorescence to confirm the expression of endothelial progenitor markers in three lines of EPCs. We then cultured the progenitor cells in EFs. Using time-lapse video microscopy, we demonstrated that an applied DC EF directs migration of the EPCs toward the cathode. The progenitor cells also align and elongate in an EF. Inhibition of vascular endothelial growth factor (VEGF) receptor signaling completely abolished the EF-induced directional migration of the progenitor cells. We conclude that EFs are an effective signal that guides EPC migration through VEGF receptor signaling in vitro. Applied EFs may be used to control behaviors of EPCs in tissue engineering, in homing of EPCs to wounds and to an injury site in the vasculature.

  8. Electronic structures of stacked layers quantum dots: influence of the non-perfect alignment and the applied electric field

    Institute of Scientific and Technical Information of China (English)

    Jia Bo-Yong; Yu Zhong-Yuan; Liu Yu-Min; Han Li-Hong; Yao Wen-Jie; Feng Hao; Ye Han

    2011-01-01

    Electronic structures of the artificial molecule comprising two truncated pyramidal quantum dots vertically coupled and embedded in the matrix are theoretically analysed via the finite element method. When the quantum dots are completely aligned, the electron energy levels decrease with the horizontally applied electric field. However, energy levels may have the maxima at non-zero electric field if the dots are staggered by a distance of several nanometers in the same direction of the electric field. In addition to shifting the energy levels, the electric field can also manipulate the electron wavefunctions confined in the quantum dots, in company with the non-perfect alignment.

  9. Ionization at a solid-water interface in an applied electric field: Charge regulation

    Science.gov (United States)

    Okamoto, Ryuichi; Onuki, Akira

    2016-09-01

    We investigate ionization at a solid-water interface in an applied electric field. We attach an electrode to a dielectric film bearing silanol or carboxyl groups with an areal density Γ0, where the degree of dissociation α is determined by the proton density in water close to the film. We show how α depends on the density n0 of NaOH in water and the surface charge density σm on the electrode. For σm > 0, the protons are expelled away from the film, leading to an increase in α. In particular, in the range 0 < σm < eΓ0, self-regulation occurs to realize α ≅ σm/eΓ0 for n0 ≪ nc, where nc is 0.01 mol/L for silica surfaces and is 2 × 10-5 mol/L for carboxyl-bearing surfaces. We also examine the charge regulation with decreasing the cell thickness H below the Debye length κ-1, where a crossover occurs at the Gouy-Chapman length. In particular, when σm ˜ eΓ0 and H ≪ κ-1, the surface charges remain only partially screened by ions, leading to a nonvanishing electric field in the interior.

  10. Embryonic zebrafish neuronal growth is not affected by an applied electric field in vitro.

    Science.gov (United States)

    Cormie, Peter; Robinson, Kenneth R

    2007-01-10

    Naturally occurring electric fields (EFs) have been implicated in cell guidance during embryonic development and adult wound healing. Embryonic Xenopus laevis neurons sprout preferentially towards the cathode, turn towards the cathode, and migrate faster towards the cathode in the presence of an external EF in vitro. A recent Phase 1 clinical trial has investigated the effects of oscillating EFs on human spinal cord regeneration. The purpose of this study was to investigate whether embryonic zebrafish neurons respond to an applied EF, and thus extend this research into another vertebrate system. Neural tubes of zebrafish embryos (16-17 somites) were dissected and dissociated neuroblasts were plated onto laminin-coated glass. A 100 mV/mm EF was applied to cell cultures for 4 or 20 h and the responses of neurons to the applied EFs were investigated. After 4h in an EF neurites were significantly shorter than control neurites. No other statistically significant effects were observed. After 20 h, control and EF-exposed neurites were no different in length. No length difference was seen between cathodally- and anodally-sprouted neurites. Application of an EF did not affect the average number of neurons in a chamber. Growth cones did not migrate preferentially towards either pole of the EF and no asymmetry was seen in neurite sprout sites. We conclude that zebrafish neurons do not respond to a 100 mV/mm applied EF in vitro. This suggests that neurons of other vertebrate species may not respond to applied EFs in the same ways as Xenopus laevis neurons.

  11. [Research progress of nanosecond pulsed electric field applied to intracellular electromanipulation].

    Science.gov (United States)

    Yao, Chenguo; Mo, Dengbin; Sun, Caixin; Chen, Xin; Xiong, Zheng'ai

    2008-10-01

    In recent years, many experts have done some researches on experiment and mechanism of intracellular electromanipulation (IEM) under nanosecond pulsed electric field (nsPEF). The experiment results have shown that nsPEF could not induce electroporation of cell membrane, but could induce intracellular effects such as apoptosis, calcium release, enhancement of gene expression, and fragmentation of DNA and chromosome. In order to account for the phenomenon, researchers believe that when the pulse width of the pulsed electric field is larger than the charging time of plasma membrane, the pulsed electric field mainly targets on the outer membrane of cell; and that the effect of the pulsed electric field on nucleus and nuclear membrane increases with the decrease of the pulse width. It is also believed that the effect of electroporation changes from the outer membrane to intracellular electromanipulation when the pulse width decreases to a value being smaller than the charging time of plasma membrane.

  12. Models for general phase change phenomena in heat exchangers and in industrial processes affected by applying an electric field

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Y.Y. [Nottingham Trent University Burton Street, Dept. of Mechinal and Manufacturing Engineering (United Kingdom)

    1999-07-01

    This paper describes the theoretical models for general phase change phenomena in heat exchangers and in industrial processes affected by applying an electric field. The models are on the basis of nucleation and surface fluctuation theories to study the generality of phase change processes under the action of an electric field. Theoretical analysis is carried out and highlights the effect of an electric field on phase change processes from an existing phase to a new phase. The analysis has shown that a critical value of the filed strength could be found theoretically for a certain phase change process. This could be a mechanism of control the processes. (authors)

  13. Instability of protein drops via applied electric field: mathematical and experimental aspects.

    Science.gov (United States)

    Penkova, Anita; Mladenov, Ivaïlo M

    2009-04-01

    Drops (5-15 microL) consisting of a protein solution readily crystallize and could provide an opportunity for a simultaneous examination of their thermodynamic and kinetic properties at various sizes. These drops experienced different pressures and therefore different surface tensions. Starting from the expression for the interface traction between protein fluid and silicon medium (with different dielectric constants), we have derived an equation accounting the influence of the electric field strength on the geometry of a protein drop. If the field strength increases, the lysozyme drop between two electrodes elongates and some crystals nucleate on the cathode side. In this situation numerous factors besides the intensity of the electric field--such as the solution composition, the charge and size of the protein molecule, the purity of the protein substance, and the consistency of bubbles of water--can have a significant effect on the crystallization rate and location.

  14. Health-Economics Analyses Applied to ELF Electric and Magnetic Fields.

    Science.gov (United States)

    Kandel, Shaiela; Swanson, John; Kheifets, Leeka

    2016-06-01

    Extremely low frequency electric and magnetic fields (ELF EMFs) are a common exposure for modern populations. The prevailing public-health protection paradigm is that quantitative exposure limits are based on the established acute effects, whereas the possible chronic effects are considered too uncertain for quantitative limits, but might justify precautionary measures. The choice of precautionary measures can be informed by a health-economics analysis (HEA). We consider four such analyses of precautionary measures that have been conducted at a national or state level in California, the Netherlands, the United Kingdom, and Israel. We describe the context of each analysis, examine how they deal with some of the more significant issues that arise, and present a comparison of the input parameters and assumptions used. The four HEAs are methodologically similar. The most significant qualitative choices that have to be made are what dose-response relationship to assume, what allowance if any to make for uncertainty, and, for a CBA only, what diseases to consider, and all four analyses made similar choices. These analyses suggest that, on the assumptions made, there are some low-cost measures, such as rephasing, that can be applied to transmission in some circumstances and that can be justifiable in cost-benefit terms, but that higher cost measures, such as undergrounding, become unjustifiable. Of the four HEAs, those in the United Kingdom and Israel were influential in determining the country's EMF policy. In California and Netherlands, the HEA may well have informed the debate, but the policy chosen did not stem directly from the HEA.

  15. Reactive molecular dynamics of the initial oxidation stages of Ni111 in pure water: effect of an applied electric field.

    Science.gov (United States)

    Assowe, O; Politano, O; Vignal, V; Arnoux, P; Diawara, B; Verners, O; van Duin, A C T

    2012-12-01

    Corrosion processes occurring in aqueous solutions are critically dependent upon the interaction between the metal electrode and the solvent. In this work, the interaction of a nickel substrate with water molecules has been investigated using reactive force field (ReaxFF) molecular dynamics simulations. This approach was originally developed by van Duin and co-workers to study hydrocarbon chemistry and the catalytic properties of organic compounds. To our knowledge, this method has not previously been used to study the corrosion of nickel. In this work, we studied the interaction of 480 molecules of water (ρ = 0.99 g·cm(-3)) with Ni(111) surfaces at 300 K. The results showed that a water "bilayer" was adsorbed on the nickel surface. In the absence of an applied electric field, no dissociation of water was observed. However, the nickel atoms at the surface were charged positively, whereas the first water layer was charged negatively, indicating the formation of an electric double layer. To study the corrosion of nickel in pure water, we introduced an external electric field between the metal and the solution. The electric field intensity varied between 10 and 20 MeV/cm. The presence of this electric field led to oxidation of the metal surface. The structural and morphological differences associated with the growth of this oxide film in the presence of the electric field were evaluated. The simulated atomic trajectories were used to analyze the atomic displacement during the reactive process. The growth of the oxide scale on the nickel surface was primarily due to the movement of anions toward the interior of the metal substrate and the migration of nickel toward the free surface. We found that increasing the electric field intensity sped up the corrosion of nickel. The results also showed that the oxide film thickness increased linearly with increasing electric field intensity.

  16. Slant transform applied to electric power quality detection with field programmable gate array design enhanced

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Cheng-Tao [Dept. of Electrical Engineering, Kun Shan University, Tainan (China); Lin, Jeu-Min [Dept. of Electrical Engineering, Far East University, Tainan (China); Huang, Shyh-Jier [Dept. of Electrical Engineering, National Cheng Kung University, Tainan (China)

    2010-06-15

    In this paper, a slantlet transform is proposed with the field-programmable gate array (FPGA) hardware realization for electrical power system disturbance detection. By embedding the slantlet functions into wavelet basis, the method is anticipated to increase the capability of signal discrimination, hence improving the grasping the disturbance intrusion. Furthermore, with the hardware realization of FPGA chip, the practicality of the method can be better ensured. In order to validate the effectiveness of the proposed approach, several scenarios have been considered and verified with good agreement. (author)

  17. Donor impurity states and related optical response in a lateral coupled dot-ring system under applied electric field

    Energy Technology Data Exchange (ETDEWEB)

    Correa, J.D. [Departamento de Ciencias Básicas, Universidad de Medellín, Medellín (Colombia); Mora-Ramos, M.E. [Centro de Investigación en Ciencias, Instituto de Ciencias Básicas y Aplicadas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2015-09-01

    A study on the effects of an externally applied electric field on the linear optical absorption and relative refractive index change associated with transitions between off-center donor impurity states in laterally coupled quantum dot-ring system is reported. Electron states are calculated within the effective mass and parabolic band approximations by means of an exact diagonalization procedure. The states and the optical response in each case show significant sensitivity to the geometrical distribution of confining energies as well as to the strength of the applied field.

  18. Dynamic response of a thin sessile drop of conductive liquid to an abruptly applied or removed electric field

    Science.gov (United States)

    Corson, L. T.; Mottram, N. J.; Duffy, B. R.; Wilson, S. K.; Tsakonas, C.; Brown, C. V.

    2016-10-01

    We consider, both theoretically and experimentally, a thin sessile drop of conductive liquid that rests on the lower plate of a parallel-plate capacitor. We derive analytical expressions for both the initial deformation and the relaxation dynamics of the drop as the electric field is either abruptly applied or abruptly removed, as functions of the geometrical, electrical, and material parameters, and investigate the ranges of validity of these expressions by comparison with full numerical simulations. These expressions provide a reasonable description of the experimentally measured dynamic response of a drop of conductive ionic liquid 1-butyl-3-methyl imidazolium tetrafluoroborate.

  19. Effect of applying static electric field on the physical parameters and dynamics of laser-induced plasma

    Directory of Open Access Journals (Sweden)

    Asmaa Elhassan

    2010-04-01

    Full Text Available In order to improve the performance of the LIBS technique – in particular its sensitivity, reproducibility and limit of detection – we studied the effect of applying a static electric field with different polarities on the emission spectra obtained in a typical LIBS set-up. The physical parameters of the laser-induced plasma, namely the electron density Ne and the plasma temperature Te, were studied under such circumstances. In addition to the spectroscopic analysis of the plasma plume emission, the laser-induced shock waves were exploited to monitor the probable changes in the plasma plume dynamics due to the application of the electric field. The study showed a pronounced enhancement in the signal-to-noise (S/N ratio of different Al, neutral and ionic lines under forward biasing voltage (negative target and positive electrode. On the other hand, a clear deterioration of the emission line intensities was observed under conditions of reversed polarity. This negative effect may be attributed to the reduction in electron-ion recombinations due to the stretched plasma plume. The plasma temperature showed a constant value in the average with the increasing electric field in both directions. This effect may be due to the fact that the measured values of Te were averaged over the whole plasma emission volume. The electron density was observed to decrease slightly in the case of forward biasing while no significant effect was noticed in the case of reversed biasing. This slight decrease in Ne can be interpreted in view of the increase in the rate of electron–ion recombinations due to the presence of the electric field. No appreciable effects of the applied electric field on the plasma dynamics were noticed.

  20. Molecular dynamics study of response of liquid N,N-dimethylformamide to externally applied electric field using a polarizable force field

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Weimin; Niu, Haitao; Lin, Tong; Wang, Xungai; Kong, Lingxue [Institute for Frontier Materials, Deakin University, Waurn Ponds VIC 3216 (Australia)

    2014-01-28

    The behavior of Liquid N,N-dimethylformamide subjected to a wide range of externally applied electric fields (from 0.001 V/nm to 1 V/nm) has been investigated through molecular dynamics simulation. To approach the objective the AMOEBA polarizable force field was extended to include the interaction of the external electric field with atomic partial charges and the contribution to the atomic polarization. The simulation results were evaluated with quantum mechanical calculations. The results from the present force field for the liquid at normal conditions were compared with the experimental and molecular dynamics results with non-polarizable and other polarizable force fields. The uniform external electric fields of higher than 0.01 V/nm have a significant effect on the structure of the liquid, which exhibits a variation in numerous properties, including molecular polarization, local cluster structure, rotation, alignment, energetics, and bulk thermodynamic and structural properties.

  1. Strain distribution and electronic structures of the InAs/GaAs quantum ring molecule in an applied electric field

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The strain distribution and electronic structures of the InAs/GaAs quantum ring molecule are calculated via the finite element method.In our model,three identical InAs quantum rings are aligned vertically and embedded in the cubic GaAs barrier.Considering the band edge modification induced by the strain,the electronic ground state and the dependence of ground state energy on geometric parameters of the quantum ring molecule are investigated.The change of localization of the wavefunction resulting from the applied electric field along the growth direction is observed.The ground state energy decreases as the electric field intensity increases in a parabolic-like mode.The electric field changes the monotonic dependence of the energy level on the inter-ring distance into a non-monotonic one.However,the electric field has no effect on the relationships between the energy level and other geometric parameters such as the inner radius and outer radius.

  2. A new theoretical formulation of coupling thermo-electric breakdown in LDPE film under dc high applied fields

    Science.gov (United States)

    Boughariou, F.; Chouikhi, S.; Kallel, A.; Belgaroui, E.

    2015-12-01

    In this paper, we present a new theoretical and numerical formulation for the electrical and thermal breakdown phenomena, induced by charge packet dynamics, in low-density polyethylene (LDPE) insulating film under dc high applied field. The theoretical physical formulation is composed by the equations of bipolar charge transport as well as by the thermo-electric coupled equation associated for the first time in modeling to the bipolar transport problem. This coupled equation is resolved by the finite-element numerical model. For the first time, all bipolar transport results are obtained under non-uniform temperature distributions in the sample bulk. The principal original results show the occurring of very sudden abrupt increase in local temperature associated to a very sharp increase in external and conduction current densities appearing during the steady state. The coupling between these electrical and thermal instabilities reflects physically the local coupling between electrical conduction and thermal joule effect. The results of non-uniform temperature distributions induced by non-uniform electrical conduction current are also presented for several times. According to our formulation, the strong injection current is the principal factor of the electrical and thermal breakdown of polymer insulating material. This result is shown in this work. Our formulation is also validated experimentally.

  3. Generalizing the correlated chromophore domain model of reversible photodegradation to include the effects of an applied electric field

    CERN Document Server

    Anderson, Benjamin

    2013-01-01

    All observations of photodegradation and self healing follow the predictions of the correlated chromophore domain model. [Ramini et.al. Polym. Chem., 2013, 4, 4948.] In the present work, we generalize the domain model to describe the effects of an electric field by including induced dipole interactions between molecules in a domain by means of a self-consistent field approach. This electric field correction is added to the statistical mechanical model to calculate the distribution of domains that are central to healing. Also included in the model are the dynamics due to the formation of an irreversibly damaged species. As in previous studies, the model with a one-dimensional domain best explains all experimental data of the population as a function of time, temperature, intensity, concentration, and now applied electric field. Though the nature of a domain is yet to be determined, the fact that only one-dimensional domain models are consistent with observations suggests that they might be made of correlated d...

  4. Dependence of electrical property on the applied magnetic fields in spin coated Fe(III)-Phorphyrin films

    Science.gov (United States)

    Utari; Kusumandari; Purnama, B.; Mudasir; Abraha, K.

    2016-11-01

    We report here on the experimental results of the effect of external magnetic field on the current flow in plane surface of Fe(III)-porphyrin thin layer. The deposition of the Fe(III)- porphyrin thin layer was done by spin coating method. The I-V characteristics of film were measured by means of two point probes. The sample of layer number N = 4 was used to evaluate the magnetic effect on the electrical currents. The ohmic characteristics of the I-V film measurement were obtained. The current decreases when magnetic field is applied to the system and saturated current is obtained at a given magnetic field. Here, the decrease in the current can be attributed to the recombination of carrier charge under the magnetic field. In addition, the magnitude of the saturated current is found to increase with the increase in the voltage used.

  5. First-principles studies of magnetoelectric coupling in hexagonal LuFeO3 under applied electric fields

    Science.gov (United States)

    Zhang, Yubo; Wang, Hongwei; Dhuvad, Pratikkumar; Xu, Xiaoshan; Stengel, Massimiliano; Wu, Xifan

    The recently stabilized hexagonal LuFeO3 thin-film provides an opportunity in realizing the magnetoelectric coupling in multiferroic materials, in which the weak ferromagnetism due to Dzyaloshinskii-Moriya interaction was found to be closely associated with the trimerization (K3) mode. Here, we performed first-principles calculations in hexagonal LuFeO3 and studied the variations of weak ferromagnetic moment under applied electric fields. It is found that the weak ferromagnetism is a property that can be directly tuned by the external electric fields. As an improper ferroelectric material, such a magnetoelectric coupling is realized by the strong interaction between the trimerization mode and ferroelectric mode. Under the electric field poling, ferroelectric mode will respond. A change in ferroelectric distortion will in turn affect the amplitude of trimerization mode, and therefore, the weak ferromagnetism. Interestingly, the magnetoelectric coupling in LuFeO3 shows a strong nonlinear behavior originating again from the coupling between the trimerization and ferroelectric modes due to its improper nature.

  6. A rapid two-dimensional data collection system for the study of ferroelectric materials under external applied electric fields.

    Science.gov (United States)

    Vergentev, Tikhon; Bronwald, Iurii; Chernyshov, Dmitry; Gorfman, Semen; Ryding, Stephanie H M; Thompson, Paul; Cernik, Robert J

    2016-10-01

    Synchrotron X-rays on the Swiss Norwegian Beamline and BM28 (XMaS) at the ESRF have been used to record the diffraction response of the PMN-PT relaxor piezoelectric 67% Pb(Mg1/3Nb2/3)O3-33% PbTiO3 as a function of externally applied electric field. A DC field in the range 0-18 kV cm(-1) was applied along the [001] pseudo-cubic direction using a specially designed sample cell for in situ single-crystal diffraction experiments. The cell allowed data to be collected on a Pilatus 2M area detector in a large volume of reciprocal space using transmission geometry. The data showed good agreement with a twinned single-phase monoclinic structure model. The results from the area detector were compared with previous Bragg peak mapping using variable electric fields and a single detector where the structural model was ambiguous. The coverage of a significantly larger section of reciprocal space facilitated by the area detector allowed precise phase analysis.

  7. A rapid two-dimensional data collection system for the study of ferroelectric materials under external applied electric fields

    Science.gov (United States)

    Vergentev, Tikhon; Bronwald, Iurii; Chernyshov, Dmitry; Gorfman, Semen; Ryding, Stephanie H. M.; Thompson, Paul; Cernik, Robert J.

    2016-01-01

    Synchrotron X-rays on the Swiss Norwegian Beamline and BM28 (XMaS) at the ESRF have been used to record the diffraction response of the PMN–PT relaxor piezoelectric 67% Pb(Mg1/3Nb2/3)O3–33% PbTiO3 as a function of externally applied electric field. A DC field in the range 0–18 kV cm−1 was applied along the [001] pseudo-cubic direction using a specially designed sample cell for in situ single-crystal diffraction experiments. The cell allowed data to be collected on a Pilatus 2M area detector in a large volume of reciprocal space using transmission geometry. The data showed good agreement with a twinned single-phase monoclinic structure model. The results from the area detector were compared with previous Bragg peak mapping using variable electric fields and a single detector where the structural model was ambiguous. The coverage of a significantly larger section of reciprocal space facilitated by the area detector allowed precise phase analysis. PMID:27738414

  8. Enhancing filterability of activated sludge from landfill leachate treatment plant by applying electrical field ineffective on bacterial life.

    Science.gov (United States)

    Akkaya, Gulizar Kurtoglu; Sekman, Elif; Top, Selin; Sagir, Ece; Bilgili, Mehmet Sinan; Guvenc, Senem Yazici

    2017-03-09

    The aim of this study is to investigate filterability enhancement of activated sludge supplied form a full-scale leachate treatment plant by applying DC electric field while keeping the biological operational conditions in desirable range. The activated sludge samples were received from the nitrification tank in the leachate treatment plant of Istanbul's Odayeri Sanitary Landfill Site. Experimental sets were conducted as laboratory-scale batch studies and were duplicated for 1A, 2A, 3A, 4A, and 5A of electrical currents and 2, 5, 10, 15, and 30 min of exposure times under continuous aeration. Physicochemical parameters such as temperature, pH, and oxidation reduction potential in the mixture right after each experimental set and biochemical parameters such as chemical oxygen demand, total phosphorus, and ammonia nitrogen in supernatant were analyzed to define the sets that remain in the range of ideal biological operational conditions. Later on, sludge filterability properties such as capillary suction time, specific resistance to filtration, zeta potential, and particle size were measured for remaining harmless sets. Additionally, cost analyses were conducted in respect to energy and electrode consumptions. Application of 2A DC electric field and 15-min exposure time was found to be the most favorable conditions to enhance filterability of the landfill leachate-activated sludge.

  9. Development of double-pulse lasers ablation system for generating gold ion source under applying an electric field

    Science.gov (United States)

    Khalil, A. A. I.

    2015-12-01

    Double-pulse lasers ablation (DPLA) technique was developed to generate gold (Au) ion source and produce high current under applying an electric potential in an argon ambient gas environment. Two Q-switched Nd:YAG lasers operating at 1064 and 266 nm wavelengths are combined in an unconventional orthogonal (crossed-beam) double-pulse configuration with 45° angle to focus on a gold target along with a spectrometer for spectral analysis of gold plasma. The properties of gold plasma produced under double-pulse lasers excitation were studied. The velocity distribution function (VDF) of the emitted plasma was studied using a dedicated Faraday-cup ion probe (FCIP) under argon gas discharge. The experimental parameters were optimized to attain the best signal to noise (S/N) ratio. The results depicted that the VDF and current signals depend on the discharge applied voltage, laser intensity, laser wavelength and ambient argon gas pressure. A seven-fold increases in the current signal by increasing the discharge applied voltage and ion velocity under applying double-pulse lasers field. The plasma parameters (electron temperature and density) were also studied and their dependence on the delay (times between the excitation laser pulse and the opening of camera shutter) was investigated as well. This study could provide significant reference data for the optimization and design of DPLA systems engaged in laser induced plasma deposition thin films and facing components diagnostics.

  10. Electric fields and electrical insulation

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    2002-01-01

    The adoption of a field-theoretical approach to problems arising in the framework of electrical insulation is discussed with reference to six main topics, which have been addressed over the last 30 years. These include uniform field electrodes, Green's differential equation, electrode surface......, it is amply demonstrated that such an approach can lead to significant progress in many areas of electrical insulation....

  11. Improvement in refractive-index change in LiNbO3:Ce:Cu by applying an external electric field

    Institute of Scientific and Technical Information of China (English)

    Dai Cui-Xia; Liu Li-Ren; Liu De-An; Zhou Yu; Chai Zhi-Fang; Luan Zhu

    2005-01-01

    By jointly solving two-centre material equations with a nonzero external electric field and coupled-wave equations,we have numerically studied the dependence of the non-volatile holographic recording in LiNbO3:Ce:Cu crystals on the external electric field. The dominative photovoltaic effect of the non-volatile holographic recording in doubly doped LiNbO3 crystals is directly verified. And an external electric field that is applied in the positive direction along the c-axis (or a large one in the negative direction of the c-axis) in the recording phase and another one that is applied in the negative direction of the c-axis in the fixing phase are both proved to benefit strong photorefractive performances.Experimental verifications are given with a small electric field applied externally.

  12. Effect of Rare Earth Elements (Er, Ho) on Semi-Metallic Materials (ScN) in an Applied Electric Field

    Science.gov (United States)

    Kim, Hyunjung; Park, Yeonjoon; King, Glen C.; Lee, Kunik; Choi, Sang H.

    2012-01-01

    The development of materials and fabrication technology for field-controlled spectrally active optics is essential for applications such as membrane optics, filters for LIDARs, windows for sensors, telescopes, spectroscopes, cameras and flat-panel displays. The dopants of rare earth elements, in a host of optical systems, create a number of absorption and emission band structures and can easily be incorporated into many high quality crystalline and amorphous hosts. In wide band-gap semiconductors like ScN, the existing deep levels can capture or emit the mobile charges, and can be ionized with the loss or capture of the carriers which are the fundamental basis of concept for smart optic materials. The band gap shrinkage or splitting with dopants supports the possibility of this concept. In the present work, a semi-metallic material (ScN) was doped with rare earth elements (Er, Ho) and tested under an applied electric field to characterize spectral and refractive index shifts by either Stark or Zeeman Effect. These effects can be verified using the UV-Vis spectroscopy, the Hall Effect measurement and the ellipsometric spectroscopy. The optical band gaps of ScN doped with Er and doped with Ho were experimentally estimated as 2.33eV and 2.24eV ( 0.2eV) respectively. This is less than that of undoped ScN (2.5 0.2eV). The red-shifted absorption onset is a direct evidence for the decrease of band gap energy (Eg), and the broadening of valence band states is attributable to the doping cases. A decrease in refractive index with an applied field was observed as a small shift in absorption coefficient using a variable angle spectroscopic ellipsometer. In the presence of an electric field, mobile carriers are redistributed within the space charge region (SCR) to produce this electro-refractive effect. The shift in refractive index is also affected by the density and location of deep potential wells within the SCR. In addition, the microstructure change was observed by a TEM

  13. Externally applied electric fields up to 1.6 × 10(5) V/m do not affect the homogeneous nucleation of ice in supercooled water.

    Science.gov (United States)

    Stan, Claudiu A; Tang, Sindy K Y; Bishop, Kyle J M; Whitesides, George M

    2011-02-10

    The freezing of water can initiate at electrically conducting electrodes kept at a high electric potential or at charged electrically insulating surfaces. The microscopic mechanisms of these phenomena are unknown, but they must involve interactions between water molecules and electric fields. This paper investigates the effect of uniform electric fields on the homogeneous nucleation of ice in supercooled water. Electric fields were applied across drops of water immersed in a perfluorinated liquid using a parallel-plate capacitor; the drops traveled in a microchannel and were supercooled until they froze due to the homogeneous nucleation of ice. The distribution of freezing temperatures of drops depended on the rate of nucleation of ice, and the sensitivity of measurements allowed detection of changes by a factor of 1.5 in the rate of nucleation. Sinusoidal alternation of the electric field at frequencies from 3 to 100 kHz prevented free ions present in water from screening the electric field in the bulk of drops. Uniform electric fields in water with amplitudes up to (1.6 ± 0.4) × 10(5) V/m neither enhanced nor suppressed the homogeneous nucleation of ice. Estimations based on thermodynamic models suggest that fields in the range of 10(7)-10(8) V/m might cause an observable increase in the rate of nucleation.

  14. Influence of applied electric field on the absorption coefficient and subband distances in asymmetrical AIN/GaN coupled double quantum wells

    Institute of Scientific and Technical Information of China (English)

    Cen Long-Bin; Shen Bo; qin Zhi-Xin; Zhang Guo-Yi

    2009-01-01

    The influence of applied electric fields on the absorption coefficient and subband distances in asymmetrical AlN/GaN coupled double quantum wells (CDQWs) has been investigated by solving Schrodinger and Poisson equations self-consistently. It is found that the absorption coefficient of the intersubband transition (ISBT) between the ground state and the third excited state (1odd -2even) can be equal to zero when the electric fields are applied in asymmetrical A1N/GaN CDQWs,which is related to applied electric fields induced symmetry recovery of these states. Meanwhile,the energy distances between 1odd -2even and 1even - 2even subbands have different relationships from each other with the increase of applied electric fields due to the different polarization-induced potential drops between the lett and the right wells. The results indicate that an electrical-optical modulator operated within the opto-communication wavelength range can be realized in spite of the strong polarization-induced electric fields in asymmetrical AIN/GaN CDQWs.

  15. Electric Field Imaging Project

    Science.gov (United States)

    Wilcutt, Terrence; Hughitt, Brian; Burke, Eric; Generazio, Edward

    2016-01-01

    NDE historically has focused technology development in propagating wave phenomena with little attention to the field of electrostatics and emanating electric fields. This work is intended to bring electrostatic imaging to the forefront of new inspection technologies, and new technologies in general. The specific goals are to specify the electric potential and electric field including the electric field spatial components emanating from, to, and throughout volumes containing objects or in free space.

  16. Simulation study on structure of water in aqueous solutions confined between graphene electrodes under very high applied electric field

    Science.gov (United States)

    Leuty, Gary; Tsige, Mesfin; Talapatra, Saikat

    2011-03-01

    Arising from questions regarding electric double-layer capacitors utilizing graphene electrodes and aqueous electrolyte (KOH solution), atomistic MD simulations of electrolyte confined between graphene electrodes were performed to understand the behavior of electrolyte as a function of electric field strength and solution concentration, from pure water to 6M KOH. It was noted that the strength of the electric field had a demonstrable effect on the structure of pure water between the electrodes (as has previously been seen in highly confined multilayer water systems), creating regularly spaced channels and densely packed sheets of highly ordered molecules. We also saw a clear effect due to the presence of electrolyte ions and their separation from the water due to the action of the field; different field strengths appear to greatly alter the distribution of ions, which in turn affects the structure and ordering of the water. Time dependence in the strength of the electric field was also studied to determine what effect, if any, it has on induced structure. Authors gratefully acknowledge support from the ACS Petroleum Research Fund and the National Science Foundation.

  17. Electric field analysis

    CERN Document Server

    Chakravorti, Sivaji

    2015-01-01

    This book prepares newcomers to dive into the realm of electric field analysis. The book details why one should perform electric field analysis and what are its practical implications. It emphasizes both the fundamentals and modern computational methods of electric machines. The book covers practical applications of the numerical methods in high voltage equipment, including transmission lines, power transformers, cables, and gas insulated systems.

  18. Early applied electric field stimulation attenuates secondary apoptotic responses and exerts neuroprotective effects in acute spinal cord injury of rats.

    Science.gov (United States)

    Zhang, C; Zhang, G; Rong, W; Wang, A; Wu, C; Huo, X

    2015-04-16

    Injury potential, which refers to a direct current voltage between intact and injured nerve ends, is mainly caused by injury-induced Ca2+ influx. Our previous studies revealed that injury potential increased with the onset and severity of spinal cord injury (SCI), and an application of applied electric field stimulation (EFS) with the cathode distal to the lesion could delay and attenuate injury potential formation. As Ca2+ influx is also considered as a major trigger for secondary injury after SCI, we hypothesize that EFS would protect an injured spinal cord from secondary injury and consequently improve functional and pathological outcomes. In this study, rats were divided into three groups: (1) sham group, laminectomy only; (2) control group, subjected to SCI only; and (3) EFS group, received EFS immediately post-injury with the injury potential modulated to 0±0.5 mV by EFS. Functional recovery of the hind limbs was assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. Results revealed that EFS-treated rats exhibited significantly better locomotor function recovery. Luxol fast blue staining was performed to assess the spared myelin area. Immunofluorescence was used to observe the number of myelinated nerve fibers. Ultrastructural analysis was performed to evaluate the size of myelinated nerve fibers. Findings showed that the EFS group rats exhibited significantly less myelin loss and had larger and more myelinated nerve fibers than the control group rats in dorsal corticospinal tract (dCST) 8 weeks after SCI. Furthermore, we found that EFS inhibited the activation of calpain and caspase-3, as well as the expression of Bax, as detected by Western blot analysis. Moreover, EFS decreased cellular apoptosis, as measured by TUNEL, within 4 weeks post-injury. Results suggest that early EFS could significantly reduce spinal cord degeneration and improve functional and historical recovery. Furthermore, these neuroprotective effects may be related to

  19. Apparatuses and methods for generating electric fields

    Science.gov (United States)

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  20. Spectral-phase interferometry for direct electric-field reconstruction applied to seeded extreme-ultraviolet free-electron lasers

    CERN Document Server

    Mahieu, Benoît; De Ninno, Giovanni; Dacasa, Hugo; Lozano, Magali; Rousseau, Jean-Philippe; Zeitoun, Philippe; Garzella, David; Merdji, Hamed

    2015-01-01

    We present a setup for complete characterization of femtosecond pulses generated by seeded free-electron lasers (FEL's) in the extreme-ultraviolet spectral region. Two delayed and spectrally shifted replicas are produced and used for spectral phase interferometry for direct electric field reconstruction (SPIDER). We show that it can be achieved by a simple arrangement of the seed laser. Temporal shape and phase obtained in FEL simulations are well retrieved by the SPIDER reconstruction, allowing to foresee the implementation of this diagnostic on existing and future sources. This will be a significant step towards an experimental investigation and control of FEL spectral phase.

  1. Pulsed electric fields

    Science.gov (United States)

    The concept of pulsed electric fields (PEF) was first proposed in 1967 to change the behavior or microorganisms. The electric field phenomenon was identified as membrane rupture theory in the 1980s. Increasing the membrane permeability led to the application of PEF assisted extraction of cellular co...

  2. Cryosurgery with pulsed electric fields.

    Science.gov (United States)

    Daniels, Charlotte S; Rubinsky, Boris

    2011-01-01

    This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to

  3. Cryosurgery with pulsed electric fields.

    Directory of Open Access Journals (Sweden)

    Charlotte S Daniels

    Full Text Available This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused

  4. Dielectrics in electric fields

    CERN Document Server

    Raju, Gorur G

    2003-01-01

    Discover nontraditional applications of dielectric studies in this exceptionally crafted field reference or text for seniors and graduate students in power engineering tracks. This text contains more than 800 display equations and discusses polarization phenomena in dielectrics, the complex dielectric constant in an alternating electric field, dielectric relaxation and interfacial polarization, the measurement of absorption and desorption currents in time domains, and high field conduction phenomena. Dielectrics in Electric Fields is an interdisciplinary reference and text for professionals and students in electrical and electronics, chemical, biochemical, and environmental engineering; physical, surface, and colloid chemistry; materials science; and chemical physics.

  5. Exciton spectra in GaAs/Ga1-xAlxAs quantum wells in an externally applied electric field

    Science.gov (United States)

    Zhu, Bangfen

    1988-12-01

    A theory on the exciton spectra in quantum wells in the presence of an external electric field is presented. The theory emphasizes the usually ignored aspect, namely, that the different exciton spinor components correspond to different in-plane angular momenta and only a single spinor component contributes to the optical transition, which in conjunction with the hybridization of the heavy and light holes will affect the exciton binding energies and oscillator strengths drastically. Numerical calculations based on the theory explain the contradictory behavior of the h12a peak observed by Collins et al., which is actually the 2p state of the light-hole-conduction-band (LH1-CB1) exciton.

  6. Investigation of the metabolic consequences of impregnating spinach leaves with trehalose and applying a pulsed electric field.

    Science.gov (United States)

    Dymek, Katarzyna; Panarese, Valentina; Herremans, Els; Cantre, Dennis; Schoo, Rick; Toraño, Javier Sastre; Schluepmann, Henriette; Wadso, Lars; Verboven, Pieter; Nicolai, Bart M; Dejmek, Petr; Gómez Galindo, Federico

    2016-12-01

    The impregnation of leafy vegetables with cryoprotectants using a combination of vacuum impregnation (VI) and pulsed electric fields (PEF) has been proposed by our research group as a method of improving their freezing tolerance and consequently their general quality after thawing. In this study, we have investigated the metabolic consequences of the combination of these unit operations on spinach. The vacuum impregnated spinach leaves showed a drastic decrease in the porosity of the extracellular space. However, at maximum weight gain, randomly located air pockets remained, which may account for oxygen-consuming pathways in the cells being active after VI. The metabolic activity of the impregnated leaves showed a drastic increase that was further enhanced by the application of PEF to the impregnated tissue. Impregnating the leaves with trehalose by VI led to a significant accumulation of trehalose-6-phosphate (T6P), however, this was not further enhanced by PEF. It is suggested that the accumulation of T6P in the leaves may increase metabolic activity, and increase tissue resistance to abiotic stress.

  7. Studies on the Second-Order Nonlinear Optical Properties of Parabolic and Semi-parabolic Quantum Wells with Applied Electric Fields

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; XIE Hong-Jing

    2004-01-01

    Within the framework of compact density matrix approach and iterative procedure, a detailed procedure for the calculation of the second-harmonic generation (SHG)susceptibility tensor is given in the electric-field-biased parabolic and semi-parabolic quantum wells (QWs). The simple analytical formula for the SHG susceptibility in the systems is also deduced. Numerical results on typical AlGaAs/GaAs materials show that, for the same effective width,the SHG susceptibility in semi-parabolic QW is larger than that in parabolic QW due to the self-asymmetry of the semiparabolic QW, and the applied electric field can make the SHG susceptibilities in both systems enhance remarkably.Moreover, the SHG susceptibility is also related to the parabolic confinement frequency and the relaxation rate of the systems.

  8. Electric circuit theory applied electricity and electronics

    CERN Document Server

    Yorke, R

    1981-01-01

    Electric Circuit Theory provides a concise coverage of the framework of electrical engineering. Comprised of six chapters, this book emphasizes the physical process of electrical engineering rather than abstract mathematics. Chapter 1 deals with files, circuits, and parameters, while Chapter 2 covers the natural and forced response of simple circuit. Chapter 3 talks about the sinusoidal steady state, and Chapter 4 discusses the circuit analysis. The fifth chapter tackles frequency response of networks, and the last chapter covers polyphase systems. This book will be of great help to electrical

  9. Effects of applied electric and magnetic fields on the nonlinear optical rectification and second-harmonic generation in a graded quantum well under intense laser field

    Science.gov (United States)

    Ungan, Fatih

    2017-01-01

    In this present study, the effects of electric and magnetic fields on the nonlinear optical rectification and second-harmonic generation in a graded quantum well under intense laser field have been investigated theoretically. The energy eigenvalues and their corresponding eigenfunctions are obtained by solving Schrödinger equation within the framework of effective mass approximation. The analytic expressions for the optical properties are calculated by the compact-density-matrix approach and iterative method. The numerical results are presented for a typical GaAs/Ga1- x Al x As quantum well. The results show that the nonlinear optical rectification and second-harmonic generation coefficients are considerably affected by the electromagnetic fields and intense laser field.

  10. Donor impurity-related linear and nonlinear intraband optical absorption coefficients in quantum ring: effects of applied electric field and hydrostatic pressure.

    Science.gov (United States)

    Barseghyan, Manuk G; Restrepo, Ricardo L; Mora-Ramos, Miguel E; Kirakosyan, Albert A; Duque, Carlos A

    2012-09-28

    : The linear and nonlinear intraband optical absorption coefficients in GaAs three-dimensional single quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and electric field, applied along the growth direction of the heterostructure, the energies of the ground and first excited states of a donor impurity have been found using the effective mass approximation and a variational method. The energies of these states are examined as functions of the dimensions of the structure, electric field, and hydrostatic pressure. We have also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as a function of incident photon energy for several configurations of the system. It is found that the variation of distinct sizes of the structure leads to either a redshift and/or a blueshift of the resonant peaks of the intraband optical spectrum. In addition, we have found that the application of an electric field leads to a redshift, whereas the influence of hydrostatic pressure leads to a blueshift (in the case of on-ring-center donor impurity position) of the resonant peaks of the intraband optical spectrum.

  11. Revisiting the Corotation Electric Field

    Science.gov (United States)

    Rothwell, P. L.

    2001-05-01

    The rotation of the Earth's dipole magnetic field produces a corotation electric field in the nonrotating frame of reference. A quick calculation implies that this field might arise from the relative motion of an observer in the nonrotating frame and the motion of rotating magnetic field lines. However, upon applying Faraday's Law one finds that total time rate of change of the magnetic field as seen in the nonrotating frame is zero due to the azimuthal symmetry of the dipole. Therefore, classical EM theory(1) predicts a zero corotation electric field in the nonrotating frame for a vacuum. This conundrum has been traditionally treated in the following manner(2,3). 1) Start with a vacuum state with no conductors and plasma present. The transformation between E (the electric field in the nonrotating frame) and E' (the electric field in the rotating frame)implies that in the rotating frame E' is nonzero while E = 0. 2) In the presence of a thin conducting spherical shell (the ionosphere) polarization charges form in the shell due to the magnetic force on the electrons. A polarization electric field Ep is created such that in the idealized case the shell has a uniform electric potential. This Ep has a component along the magnetic field lines outside the shell. 3) Plasma will polarize along B, thus canceling the parallel component of Ep which allows the potential on the shell to be mapped along the magnetic field lines setting E' = 0. From the transformation equation E is now nonzero. This is the electric field required in the nonrotating frame for the plasma to corotate with the dipole. The presence of the corotation electric field is not a local result, but a nonlocal effect that requires the presence of an ionosphere and a conducting plasma. (1) W.K.H. Panofsky and M. Phillips, Classical Electricity and Magnetism, Addison-Wesley, 1956. (2) H. Alfven and C.-G. Falthammar, Cosmical Electrodynamics, 2nd ed., Oxford Press, 1963. (3) E.W.Hones and J.E.Bergeson, J. Geophys

  12. Appearance of perfect amorphous linear bulk polyethylene under applied electric field and the analysis by radial distribution function and direct tunneling effect.

    Science.gov (United States)

    Zhang, Rong; Bin, Yuezhen; Yang, Wenxiao; Fan, Shaoyan; Matsuo, Masaru

    2014-02-27

    Without melting flow, linear ultrahigh molecular weight polyethylene (UHMWPE) provided X-ray intensity curve from only amorphous halo at 129.0 °C (surface temperature, Ts arisen by Joule heat) lower than the conventionally known melting point 145.5 °C on applying electric field to UHMWPE-nickel-coated carbon fiber (NiCF) composite. Such surprising phenomenon was analyzed by simultaneous measurements of X-ray intensity, electric current, and Ts as a function of time. The calculated radial distribution function revealed the amorphous structure with disordered chain arrangement. The appearance of such amorphous phase was arisen by the phenomenon that the transferring electrons between overlapped adjacent NiCFs by tunneling effect struck together with X-ray photons and some of the transferring electron flown out from the gap to UHMWPE matrix collided against carbon atoms of UHMWPE. The impact by the collision caused disordering chain arrangement in crystal grains.

  13. Study on Dewatering of Activated Sludge Under Applied Electric Field%水平电场作用下活性污泥的脱水研究

    Institute of Scientific and Technical Information of China (English)

    季雪元; 王毅力; 冯晶

    2012-01-01

    通过考察水平电场作用下活性污泥的性质(pH、电导率)、絮凝调理及电场因素(电压大小、电场应用方式、极板间距)对污泥电脱水效果的影响,确定了水平电场下污泥电脱水的最佳条件.结果表明,对于本研究的活性污泥,以水平电场为驱动力进行脱水,在原始pH(6.93)、电导率=1.46 mS·cm-1的条件下污泥电脱水效果最好;投加阳离子型聚丙烯酰胺(CPAM)可以使污泥脱水率提高30%~40%,缩短达到相同电脱水效果的时间,但对电脱水率的提高不显著.水平电场施加60 min,絮凝调理后污泥的电脱水率可达83.12%,而对应的原始污泥则需要120 min才能达到75.31%的电脱水效果.延迟电场应用对污泥电脱水效果产生抑制作用.此外,本研究确定的最佳脱水条件为:CPAM投药量为9 g.kg-1,电场强度为600V·m-1,极板间距为40 mm,电场应用时间为60 min.在上述最佳条件下对活性污泥进行电脱水,其含水率从99.30%降至95.15%,脱水率可达85.33%.%For an electro-dewatering process of activated sludge(AS),the effect of pH and conductivity of AS,flocculation conditioning and operation factors of horizontal electric field(voltage magnitude,method of applying electric field and distance between plates) were investigated,and the corresponding optimum electro-dewatering conditions were also obtained.The results showed that the best electro-dewatering effect was achieved for AS without change of its pH value(6.93) and conductivity(1.46 mS·cm-1).CPAM conditioning could lead to the increase of 30%-40% in the dewatering rate and accelerate the dewatering process,whereas a slight increase in the electro-dewatering rate.The electro-dewatering rate for conditioned AS reached 83.12% during an electric field applied period of 60 minutes,while this rate for original AS could be 75.31% even the electric field applied period extended to 120 minutes.The delay of applying the electric field had

  14. Variational reduced-density-matrix theory applied to the potential energy surfaces of carbon monoxide in the presence of electric fields.

    Science.gov (United States)

    Gidofalvi, Gergely; Mazziotti, David A

    2006-04-27

    The variational optimization of the energy with respect to the two-electron reduced-density matrix (2-RDM), constrained by N-representability conditions, can determine the shape of molecular potential energy surfaces with useful accuracy. In this paper, we apply the 2-RDM method with a first-order optimization algorithm [Mazziotti, D. A. Phys. Rev. Lett. 2004, 93, 213001] to investigating the potential energy surfaces of carbon monoxide in the presence and absence of an electric field. Two beneficial characteristics of the 2-RDM method for computing potential energy surfaces include the following: (i) its ability to capture multireference effects without specifying any reference wave function or density matrix and (ii) its guarantee of a global energy minimum in the variational optimization. The 2-RDM method produces electronic ground-state energies with similar accuracy at equilibrium and nonequilibrium geometries in both the presence and the absence of the electric field. Computed dipole moments are similar in accuracy to the values from the computationally expensive configuration interaction with single, double, triple, and quadruple excitations. These surfaces have important applications in quantum molecular control theory.

  15. Induction of ELF transmembrane potentials in relation to power-frequency electric field bioeffects in a plant root model system. Pt. 1. Relationship between applied field strength and cucurbitaceous root growth rates

    Energy Technology Data Exchange (ETDEWEB)

    Brayman, A.A.; Miller, M.W.

    1986-08-01

    Seminal roots of Cucumis sativus and Cucurbita maxima were exposed to 60 Hz electric fields of 100-500 V . m/sup -1/ in a conducting aqueous inorganic growth medium. Root growth rates were measured to produce a dose-response relationship for each species. The species were selected for study because of their familial relationship, reported sensitivity to 60 Hz, 360 V . m/sup -1/ electric fields, and differing average root cell sizes. The latter characteristic influences the magnitude of ELF membrane potentials induced by constant-strength applied electric fields, but does not affect the magnitude of the electric field strength tangent to the cell surface. The difference in average root cell size between C. sativus (smaller cells) and C. maxima (larger cells) was used to evaluate two alternate hypotheses that the observed effect on root growth is stimulated by the electric field tangent to the cell surface, or a field-induced perturbation in the normal transmembrane potential of the cells. The results of the dose-response relationship studies are qualitatively consistent with the hypothesis that the effect is elicited by induced transmembrane potentials. The smaller-celled roots showed a substantially higher response threshold (C. sativus; E/sub 0/sup(TH) approx.= 330 V . m/sup -1/) than did the larger-celled species (C. maxima; E/sub 0/sup(TH) approx.= 200 V . m/sup -1/). At field strengths above the response thresholds in both species, the growth rate of C. sativus roots was less affected than that of C. maxima roots exposed to the same field strength.

  16. Electric double layer of anisotropic dielectric colloids under electric fields

    Science.gov (United States)

    Han, M.; Wu, H.; Luijten, E.

    2016-07-01

    Anisotropic colloidal particles constitute an important class of building blocks for self-assembly directed by electrical fields. The aggregation of these building blocks is driven by induced dipole moments, which arise from an interplay between dielectric effects and the electric double layer. For particles that are anisotropic in shape, charge distribution, and dielectric properties, calculation of the electric double layer requires coupling of the ionic dynamics to a Poisson solver. We apply recently proposed methods to solve this problem for experimentally employed colloids in static and time-dependent electric fields. This allows us to predict the effects of field strength and frequency on the colloidal properties.

  17. Most effective way to improve the hydrogen storage abilities of Na-decorated BN sheets: applying external biaxial strain and an electric field.

    Science.gov (United States)

    Tang, Chunmei; Zhang, Xue; Zhou, Xiaofeng

    2017-02-15

    Density functional calculations were used to investigate the hydrogen storage abilities of Na-atoms-decorated BN sheets under both external biaxial strain and a vertical electric field. The Na atom generally has the weakest binding strength to a given substrate compared with the other elements in the periodic table [PANS, 2016, 113, 3735]. Consequently, it is understudied in comparison to other elements and there are few reports about the hydrogen storage abilities of Na-decorated nanomaterials. We calculated that the average binding energy (Eb) of Na atoms to the pure BN sheet is 1.08 eV, which is smaller than the cohesive energy of bulk Na (1.11 eV). However, the Eb can be increased to 1.15 eV under 15% biaxial strain, and further up to 1.53 eV with the control of both 15% biaxial strain and a 5.14 V nm(-1) electric field (E-field). Therefore, the application of biaxial strain and an external upward E-field can prevent clustering of the Na atoms on the surface of a BN sheet, which is crucial for the hydrogen storage. Each Na atom on the surface of a BN sheet can adsorb only one H2 molecule when no strain or E-field is applied; however, the absorption increases to five H2 molecules under 15% biaxial strain and six H2 molecules under both 15% biaxial strain combined with a 5.14 V nm(-1)E-field. The average adsorption energies for H2 of BN-(Na-mH2) (m = 1-6) are within the range of practical applications (0.2-0.6 eV). The hydrogen gravimetric density of the periodic BN-(Na-6H2)4 structure is 9 wt%, which exceeds the 5.5 wt% value that should be met by 2017 as specified by the US Department of Energy. On the other side, removal of the biaxial strain and E-field can help to desorb the H2 molecule. These findings suggest a new route to design hydrogen storage materials under near-ambient conditions.

  18. Electrophoresis in strong electric fields.

    Science.gov (United States)

    Barany, Sandor

    2009-01-01

    Two kinds of non-linear electrophoresis (ef) that can be detected in strong electric fields (several hundred V/cm) are considered. The first ("classical" non-linear ef) is due to the interaction of the outer field with field-induced ionic charges in the electric double layer (EDL) under conditions, when field-induced variations of electrolyte concentration remain to be small comparatively to its equilibrium value. According to the Shilov theory, the non-linear component of the electrophoretic velocity for dielectric particles is proportional to the cubic power of the applied field strength (cubic electrophoresis) and to the second power of the particles radius; it is independent of the zeta-potential but is determined by the surface conductivity of particles. The second one, the so-called "superfast electrophoresis" is connected with the interaction of a strong outer field with a secondary diffuse layer of counterions (space charge) that is induced outside the primary (classical) diffuse EDL by the external field itself because of concentration polarization. The Dukhin-Mishchuk theory of "superfast electrophoresis" predicts quadratic dependence of the electrophoretic velocity of unipolar (ionically or electronically) conducting particles on the external field gradient and linear dependence on the particle's size in strong electric fields. These are in sharp contrast to the laws of classical electrophoresis (no dependence of V(ef) on the particle's size and linear dependence on the electric field gradient). A new method to measure the ef velocity of particles in strong electric fields is developed that is based on separation of the effects of sedimentation and electrophoresis using videoimaging and a new flowcell and use of short electric pulses. To test the "classical" non-linear electrophoresis, we have measured the ef velocity of non-conducting polystyrene, aluminium-oxide and (semiconductor) graphite particles as well as Saccharomice cerevisiae yeast cells as a

  19. Bending and turbulent enhancement phenomena of neutral gas flow containing an atmospheric pressure plasma by applying external electric fields measured by schlieren optical method

    Science.gov (United States)

    Yamada, Hiromasa; Yamagishi, Yusuke; Sakakita, Hajime; Tsunoda, Syuichiro; Kasahara, Jiro; Fujiwara, Masanori; Kato, Susumu; Itagaki, Hirotomo; Kim, Jaeho; Kiyama, Satoru; Fujiwara, Yutaka; Ikehara, Yuzuru; Ikehara, Sanae; Nakanishi, Hayao; Shimizu, Nobuyuki

    2016-01-01

    To understand the mechanism of turbulent enhancement phenomena of a neutral gas flow containing plasma ejected from the nozzle of plasma equipment, the schlieren optical method was performed to visualize the neutral gas behavior. It was confirmed that the turbulent starting point became closer to the nozzle exit, as the amplitude of discharge voltage (electric field) increased. To study the effect of electric field on turbulent enhancement, two sets of external electrodes were arranged in parallel, and the gas from the nozzle was allowed to flow between the upper and lower electrodes. It was found that the neutral gas flow was bent, and the bending angle increased as the amplitude of the external electric field increased. The results obtained using a simple model analysis roughly coincide with experimental data. These results indicate that momentum transport from drifted ions induced by the electric field to neutral particles is an important factor that enhances turbulence.

  20. Classical theory of electric and magnetic fields

    CERN Document Server

    Good, Roland H

    1971-01-01

    Classical Theory of Electric and Magnetic Fields is a textbook on the principles of electricity and magnetism. This book discusses mathematical techniques, calculations, with examples of physical reasoning, that are generally applied in theoretical physics. This text reviews the classical theory of electric and magnetic fields, Maxwell's Equations, Lorentz Force, and Faraday's Law of Induction. The book also focuses on electrostatics and the general methods for solving electrostatic problems concerning images, inversion, complex variable, or separation of variables. The text also explains ma

  1. A Novel Hysteresis Model of Magnetic Field Strength Determined by Magnetic Induction Intensity for Fe-3% Si Electrical Steel Applied in Cigarette Making Machines

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2016-01-01

    Full Text Available Hysteresis characteristics of grain-oriented electrical steel were studied through the hysteresis loop. Existing hysteresis fitting simulation methods were summarized, and new Fe-3% Si grain-oriented electrical steel hysteresis loop model was proposed. Undetermined coefficients of the magnetic field intensity and magnetic flux density were determined by both the fixed angle method and the least squares method, and the hysteresis loop model was validated with high fitting degree by experimental data.

  2. Sensing electric fields using single diamond spins

    CERN Document Server

    Dolde, Florian; Doherty, Marcus W; Nöbauer, Tobias; Rempp, Florian; Balasubramanian, Gopalakrishnan; Wolf, Thomas; Reinhard, Friedemann; Hollenberg, Lloyd C L; Jelezko, Fedor; Wrachtrup, Jörg

    2011-01-01

    The ability to sensitively detect charges under ambient conditions would be a fascinating new tool benefitting a wide range of researchers across disciplines. However, most current techniques are limited to low-temperature methods like single-electron transistors (SET), single-electron electrostatic force microscopy and scanning tunnelling microscopy. Here we open up a new quantum metrology technique demonstrating precision electric field measurement using a single nitrogen-vacancy defect centre(NV) spin in diamond. An AC electric field sensitivity reaching ~ 140V/cm/\\surd Hz has been achieved. This corresponds to the electric field produced by a single elementary charge located at a distance of ~ 150 nm from our spin sensor with averaging for one second. By careful analysis of the electronic structure of the defect centre, we show how an applied magnetic field influences the electric field sensing properties. By this we demonstrate that diamond defect centre spins can be switched between electric and magneti...

  3. Pulsed electric field increases reproduction.

    Science.gov (United States)

    Panagopoulos, Dimitris J

    2016-01-01

    Purpose To study the effect of pulsed electric field - applied in corona discharge photography - on Drosophila melanogaster reproduction, possible induction of DNA fragmentation, and morphological alterations in the gonads. Materials and methods Animals were exposed to different field intensities (100, 200, 300, and 400 kV/m) during the first 2-5 days of their adult lives, and the effect on reproductive capacity was assessed. DNA fragmentation during early- and mid-oogenesis was investigated by application of the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay. Sections of follicles after fixation and embedding in resins were observed for possible morphological/developmental abnormalities. Results The field increased reproduction by up to 30% by increasing reproductive capacity in both sexes. The effect increased with increasing field intensities. The rate of increase diminished at the strongest intensities. Slight induction of DNA fragmentation was observed exclusively in the nurse (predominantly) and follicle cells, and exclusively at the two most sensitive developmental stages, i.e., germarium and predominantly stage 7-8. Sections of follicles from exposed females at stages of early and mid-oogennesis other than germarium and stages 7-8 did not reveal abnormalities. Conclusions (1) The specific type of electric field may represent a mild stress factor, inducing DNA fragmentation and cell death in a small percentage of gametes, triggering the reaction of the animal's reproductive system to increase the rate of gametogenesis in order to compensate the loss of a small number of gametes. (2) The nurse cells are the most sensitive from all three types of egg chamber cells. (3) The mid-oogenesis checkpoint (stage 7-8) is more sensitive to this field than the early oogenesis one (germarium) in contrast to microwave exposure. (4) Possible therapeutic applications, or applications in increasing fertility, should be investigated.

  4. Local electric field measurements by optical tweezers

    Directory of Open Access Journals (Sweden)

    G. Pesce

    2011-09-01

    Full Text Available We report a new technique to measure direction and amplitude of electric fields generated by microelectrodes embedded in polar liquid environment, as often used in microfluidic devices. The method is based on optical tweezers which act as sensitive force transducer while a trapped charged microsphere behaves as a probe. When an electric field is applied the particles moves from its equilibrium position and finishes in a new equilibrium position where electric and optical forces are balanced. A trapped bead is moved to explore the electric field in a wide region around the microelectrodes. In such way maps of electric fields with high spatial resolution can be reconstructed even for complex electrode geometries where numerical simulation approaches can fail. Experimental results are compared with calculations based on finite element analysis simulation.

  5. Interaction Between Flames and Electric Fields Studied

    Science.gov (United States)

    Yuan, Zeng-Guang; Hegde, Uday

    2003-01-01

    The interaction between flames and electric fields has long been an interesting research subject that has theoretical importance as well as practical significance. Many of the reactions in a flame follow an ionic pathway: that is, positive and negative ions are formed during the intermediate steps of the reaction. When an external electric field is applied, the ions move according to the electric force (the Coulomb force) exerted on them. The motion of the ions modifies the chemistry because the reacting species are altered, it changes the velocity field of the flame, and it alters the electric field distribution. As a result, the flame will change its shape and location to meet all thermal, chemical, and electrical constraints. In normal gravity, the strong buoyant effect often makes the flame multidimensional and, thus, hinders the detailed study of the problem.

  6. Electric field control of the magnetocaloric effect.

    Science.gov (United States)

    Gong, Yuan-Yuan; Wang, Dun-Hui; Cao, Qing-Qi; Liu, En-Ke; Liu, Jian; Du, You-Wei

    2015-02-04

    Through strain-mediated magnetoelectric coupling, it is demonstrated that the magnetocaloric effect of a ferromagnetic shape-memory alloy can be controlled by an electric field. Large hysteresis and the limited operating temperature region are effectively overcome by applying an electric field on a laminate comprising a piezoelectric and the alloy. Accordingly, a model for an active magnetic refrigerator with high efficiency is proposed in principle.

  7. Magnetic response to applied electrostatic field in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); University of Florida, Department of Physics, Gainesville, FL (United States); Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); Tomsk State University, Department of Physics, Tomsk (Russian Federation); Shabad, A.E. [P. N. Lebedev Physics Institute, Moscow (Russian Federation)

    2014-04-15

    We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to the simple example of a spherically symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space; the pattern of the lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics. (orig.)

  8. Magnetic response to applied electrostatic field in external magnetic field

    CERN Document Server

    Adorno, T C; Shabad, A E

    2014-01-01

    We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to a simple example of a spherically-symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space, the pattern of lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics.

  9. Electrical integrity of oxides in a radiation field

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Laboratory, TN (United States); Kinoshita, C.

    1996-04-01

    In the absence of an applied electric field, irradiation generally produces a decrease in the permanent (beam-off) electrical conductivity of ceramic insulators. However, in the past 6 years several research groups have reported a phenomenon known as radiation induced electrical degradation (RIED), which produces significant permanent increases in the electrical conductivity of ceramic insulators irradiated with an applied electric field. RIED has been reported to occur at temperatures between 420 and 800 K with applied electric fields as low as 20 V/mm.

  10. Numerical Study of Electric Field Enhanced Combustion

    KAUST Repository

    Han, Jie

    2016-12-26

    Electric fields can be used to change and control flame properties, for example changing flame speed, enhancing flame stability, or reducing pollutant emission. The ions generated in flames are believed to play the primary role. Although experiments have been carried out to study electric field enhanced combustion, they are not sufficient to explain how the ions in a flame are affected by an electric field. It is therefore necessary to investigate the problem through numerical simulations. In the present work, the electric structure of stabilized CH4/air premixed flames at atmospheric pressure within a direct current field is studied using numerical simulations. This study consists of three parts. First, the transport equations are derived from the Boltzmann kinetic equation for each individual species. Second, a general method for computing the diffusivity and mobility of ions in a gas mixture is introduced. Third, the mechanisms for neutral and charged species are improved to give better predictions of the concentrations of charged species, based on experimental data. Following from this, comprehensive numerical results are presented, including the concentrations and fluxes of charged species, the distributions of the electric field and electric potential, and the electric current-voltage relation. Two new concepts introduced with the numerical results are the plasma sheath and dead zone in the premixed flame. A reactive plasma sheath and a Boltzmann relation sheath are discovered in the region near the electrodes. The plasma sheath penetrates into the flame gas when a voltage is applied, and penetrating further if the voltage is higher. The zone outside the region of sheath penetration is defined as the dead zone. With the two concepts, analytical solutions for the electric field, electric potential and current-voltage curve are derived. The solutions directly describe the electric structure of a premixed flame subject to a DC field. These analytical solutions

  11. Electric Field Uniformity of TEPC

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Wei-hua; WANG; Zhi-qiang; LIU; Yi-na; LI; Chun-juan; LUO; Hai-long

    2012-01-01

    <正>As a proportional counter, the problem with tissue-equivalent proportional counter (TEPC) is that near the end of the anode wire the wall of detector is much closer to the anode, the electric field is stronger, and the gas gain is higher than at the center of the anode, namely end effects. In order to optimize the design of TEPC, a gas-flow TEPC (Fig. 1) is designed and constructed to take the research of electric field distribution characteristics.

  12. Inhibition of brain tumor cell proliferation by alternating electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [School of Biosystem and Biomedical Science, Korea University, Seoul 136-703 (Korea, Republic of); Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [Department of Bio-convergence Engineering, Korea University, Seoul 136-703 (Korea, Republic of); Koh, Eui Kwan [Seoul Center, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of)

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  13. Critical electric field strengths of onion tissues treated by pulsed electric fields.

    Science.gov (United States)

    Asavasanti, Suvaluk; Ersus, Seda; Ristenpart, William; Stroeve, Pieter; Barrett, Diane M

    2010-09-01

    The impact of pulsed electric fields (PEF) on cellular integrity and texture of Ranchero and Sabroso onions (Allium cepa L.) was investigated. Electrical properties, ion leakage rate, texture, and amount of enzymatically formed pyruvate were measured before and after PEF treatment for a range of applied field strengths and number of pulses. Critical electric field strengths or thresholds (E(c)) necessary to initiate membrane rupture were different because dissimilar properties were measured. Measurement of electrical characteristics was the most sensitive method and was used to detect the early stage of plasma membrane breakdown, while pyruvate formation by the enzyme alliinase was used to identify tonoplast membrane breakdown. Our results for 100-μs pulses indicate that breakdown of the plasma membrane occurs above E(c)= 67 V/cm for 10 pulses, but breakdown of the tonoplast membrane is above either E(c)= 200 V/cm for 10 pulses or 133 V/cm for 100 pulses. This disparity in field strength suggests there may be 2 critical electrical field strengths: a lower field strength for plasma membrane breakdown and a higher field strength for tonoplast membrane breakdown. Both critical electric field strengths depended on the number of pulses applied. Application of a single pulse at an electric field up to 333 V/cm had no observable effect on any measured properties, while significant differences were observed for n≥10. The minimum electric field strength required to cause a measurable property change decreased with the number of pulses. The results also suggest that PEF treatment may be more efficient if a higher electric field strength is applied for a fewer pulses.

  14. Electric field controlled emulsion phase contactor

    Science.gov (United States)

    Scott, Timothy C.

    1995-01-01

    A system for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity.

  15. Electric fields and quantum wormholes

    CERN Document Server

    Engelhardt, Dalit; Iqbal, Nabil

    2015-01-01

    Electric fields can thread a classical Einstein-Rosen bridge. Maldacena and Susskind have recently suggested that in a theory of dynamical gravity the entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the particles, or a "quantum wormhole". We demonstrate within low-energy effective field theory that there is a precise sense in which electric fields can also thread such quantum wormholes. We define a non-perturbative "wormhole susceptibility" that measures the ease of passing an electric field through any sort of wormhole. The susceptibility of a quantum wormhole is suppressed by powers of the U(1) gauge coupling relative to that for a classical wormhole but can be made numerically equal with a sufficiently large amount of entangled matter.

  16. Electric fields and quantum wormholes

    Science.gov (United States)

    Engelhardt, Dalit; Freivogel, Ben; Iqbal, Nabil

    2015-09-01

    Electric fields can thread a classical Einstein-Rosen bridge. Maldacena and Susskind have recently suggested that in a theory of dynamical gravity the entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the particles, or a "quantum wormhole." We demonstrate within low-energy effective field theory that there is a precise sense in which electric fields can also thread such quantum wormholes. We define a nonperturbative "wormhole susceptibility" that measures the ease of passing an electric field through any sort of wormhole. The susceptibility of a quantum wormhole is suppressed by powers of the U (1 ) gauge coupling relative to that for a classical wormhole but can be made numerically equal with a sufficiently large amount of entangled matter.

  17. Electric Field Effects in RUS Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Darling, Timothy W [Los Alamos National Laboratory; Ten Cate, James A [Los Alamos National Laboratory; Allured, Bradley [UNIV NEVADA, RENO; Carpenter, Michael A [CAMBRIDGE UNIV. UK

    2009-09-21

    Much of the power of the Resonant Ultrasound Spectroscopy (RUS) technique is the ability to make mechanical resonance measurements while the environment of the sample is changed. Temperature and magnetic field are important examples. Due to the common use of piezoelectric transducers near the sample, applied electric fields introduce complications, but many materials have technologically interesting responses to applied static and RF electric fields. Non-contact optical, buffered, or shielded transducers permit the application of charge and externally applied electric fields while making RUS measurements. For conducting samples, in vacuum, charging produces a small negative pressure in the volume of the material - a state rarely explored. At very high charges we influence the electron density near the surface so the propagation of surface waves and their resonances may give us a handle on the relationship of electron density to bond strength and elasticity. Our preliminary results indicate a charge sign dependent effect, but we are studying a number of possible other effects induced by charging. In dielectric materials, external electric fields influence the strain response, particularly in ferroelectrics. Experiments to study this connection at phase transformations are planned. The fact that many geological samples contain single crystal quartz suggests a possible use of the piezoelectric response to drive vibrations using applied RF fields. In polycrystals, averaging of strains in randomly oriented crystals implies using the 'statistical residual' strain as the drive. The ability to excite vibrations in quartzite polycrystals and arenites is explored. We present results of experimental and theoretical approaches to electric field effects using RUS methods.

  18. The effects of the intense laser field on the nonlinear optical properties of a cylindrical Ga{sub 1−x}Al{sub x}As/GaAs quantum dot under applied electric field

    Energy Technology Data Exchange (ETDEWEB)

    Kasapoglu, E., E-mail: ekasap@cumhuriyet.edu.tr [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Mora-Ramos, M.E. [Centro de Investigación en Ciencias, Instituto de Ciencias Básicas y Aplicadas, Universidad Autóonoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Sökmen, I. [Department of Physics, Dokuz Eylül University, 35160 Buca, İzmir (Turkey)

    2015-10-01

    In the present work, the effects of the intense laser field on total optical absorption coefficient (the linear and third-order nonlinear) and total refractive index change (the linear and third-order nonlinear) for transitions between different intersubbands in the Ga{sub 1−x}Al{sub x}As/GaAs cylindrical quantum dot under external electric field are investigated. The calculations were performed within the compact density-matrix formalism with the use of the effective mass approximation. The obtained results show that both total absorption coefficient and refractive index change are sensitive to the electric and intense laser fields. By changing the intensities of the electric and laser fields, we can obtain the blue or red shift, without the need for the growth of many different samples. - Highlights: • The effects of the non-resonant intense laser field and electric field on the nonlinear optical properties of cylindrical quantum dot are investigated. • The both total absorption coefficient and refractive index change are sensitive to dot dimensions and the effects of external fields. • By changing the external fields together with dot dimensions a blue or red shift can be obtained.

  19. Special Effect of Parallel Inductive Electric Field

    Institute of Scientific and Technical Information of China (English)

    陈涛; 刘振兴; W.Heikkila

    2002-01-01

    Acceleration of electrons by a field-aligned electric field during a magnetospheric substorm in the deep geomagnetic tail is studied by means of a one-dimensional electromagnetic particle code. It was found that the free acceleration of the electrons by the parallel electric field is obvious; kinetic energy variation is greater than electromagnetic energy variation in the presence of parallel electric field. Magnetic energy is greater than kinetic energy variation and electric energy variation in the absence of the parallel electric field. More wave modes in the presence of the parallel electric field are generated than those in the absence of the parallel electric field.

  20. Linear electric field mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    McComas, D.J.; Nordholt, J.E.

    1991-03-29

    A mass spectrometer is described having a low weight and low power requirement, for use in space. It can be used to analyze the ionized particles in the region of the spacecraft on which it is mounted. High mass resolution measurements are made by timing ions moving through a gridless cylindrically sysmetric linear electric field.

  1. Electric fields and quantum wormholes

    NARCIS (Netherlands)

    Engelhardt, D.; Freivogel, B.; Iqbal, N.

    2015-01-01

    Electric fields can thread a classical Einstein-Rosen bridge. Maldacena and Susskind have recently suggested that in a theory of dynamical gravity the entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the particles, or a "

  2. Electrical engineering is an applied mathematics

    Science.gov (United States)

    Zainal, Yuda Bakti; Sambasri, Susanto; Widodo, Rohani Jahja

    2015-05-01

    This paper presents developments and applications of Electrical Engieering (EE) as an Applied Mathematic (AM). Several characteristics of EE can be linked to human behavior. EE can "think" in the sense that they can replace to some extent, human operation. It is a concept or principle that seems to fundamental in nature and not necessarily peculiar to engineering. EE theory can be discussed from four viewpoints as: an intellectual discipline within science and the philosophy of science, a part of engineering, with industrial applications and Social Systems (SS) of the present and the future. In global communication, developed countries and developing countries should build several attractive and sound symbiosis bridges, to prevent loss of universe balances. EE applications have social impacts not only in developed countries but also in developing countries.

  3. Electric fields and double layers in plasmas

    Science.gov (United States)

    Singh, Nagendra; Thiemann, H.; Schunk, R. W.

    1987-05-01

    Various mechanisms for driving double layers in plasmas are briefly described, including applied potential drops, currents, contact potentials, and plasma expansions. Some dynamical features of the double layers are discussed. These features, as seen in simulations, laboratory experiments, and theory, indicate that double layers and the currents through them undergo slow oscillations which are determined by the ion transit time across an effective length of the system in which double layers form. It is shown that a localized potential dip forms at the low potential end of a double layer, which interrupts the electron current through it according to the Langmuir criterion, whenever the ion flux into the double is disrupted. The generation of electric fields perpendicular to the ambient magnetic field by contact potentials is also discussed. Two different situations were considered; in one, a low-density hot plasma is sandwiched between high-density cold plasmas, while in the other a high-density current sheet permeates a low-density background plasma. Perpendicular electric fields develop near the contact surfaces. In the case of the current sheet, the creation of parallel electric fields and the formation of double layers are also discussed when the current sheet thickness is varied. Finally, the generation of electric fields and double layers in an expanding plasma is discussed.

  4. Effect of Electric Field on Conductivity and Vickers Hardness of an A1-Li Alloy

    Institute of Scientific and Technical Information of China (English)

    刘兵; 陈大融; 陈铮; 王永欣; 李晓玲

    2003-01-01

    Static electric fields were applied on an aluminium-lithium alloy during solution treatment.The conductivity and Vickers hardness of the quenched Al-Li alloy is changed with the effect of electric field.The Vickers hardness increases with the applied electric field for a certain solutionizing time but decreases with the time under an electric field.In the absence of the electric field,the Vickers hardness and the conductivity increase synchronously,while reversed after electric field treatment.Positive and negative electric fields had the similar effect.The change of the local electron density in alloy caused by electric field is presented to explain the effect.

  5. Effect of Electric Field on Conductivity and Vickers Hardness of an Al-Li Alloy

    Science.gov (United States)

    Liu, Bing; Chen, Da-Rong; Chen, Zheng; Wang, Yong-Xin; Li, Xiao-Ling

    2003-11-01

    Static electric fields were applied on an aluminium-lithium alloy during solution treatment. The conductivity and Vickers hardness of the quenched Al-Li alloy is changed with the effect of electric field. The Vickers hardness increases with the applied electric field for a certain solutionizing time but decreases with the time under an electric field. In the absence of the electric field, the Vickers hardness and the conductivity increase synchronously, while reversed after electric field treatment. Positive and negative electric fields had the similar effect. The change of the local electron density in alloy caused by electric field is presented to explain the effect.

  6. Donor-impurity-related second and third harmonic generation and optical absorption in GaAs-(Ga,Al)As 3D coupled quantum dot-rings under applied electric field

    Science.gov (United States)

    Duque, C. A.; Mora-Ramos, M. E.; Correa, J. D.

    2015-11-01

    The features of some donor-impurity-related nonlinear optical properties in coupled dot-ring nanostructures are investigated with the use of the effective mass and parabolic band approximations. The electron confinement is modeled via a recently reported analytical potential, and the influence of an externally applied static electric field is taken into account. The results show that the increase in the applied field strength causes the blueshift of all the optical responses considered, whereas they can be redshifted or blueshifted depending of the impurity position. For the parameters and interlevel transitions considered in this work, the third harmonic generation is absent when the impurity moves along the same direction of the polarization of the incident resonant radiation.

  7. Atomistic modeling of metal surfaces under electric fields: direct coupling of electric fields to a molecular dynamics algorithm

    CERN Document Server

    Djurabekova, Flyura; Pohjonen, Aarne; Nordlund, Kai

    2011-01-01

    The effect of electric fields on metal surfaces is fairly well studied, resulting in numerous analytical models developed to understand the mechanisms of ionization of surface atoms observed at very high electric fields, as well as the general behavior of a metal surface in this condition. However, the derivation of analytical models does not include explicitly the structural properties of metals, missing the link between the instantaneous effects owing to the applied field and the consequent response observed in the metal surface as a result of an extended application of an electric field. In the present work, we have developed a concurrent electrodynamic–molecular dynamic model for the dynamical simulation of an electric-field effect and subsequent modification of a metal surface in the framework of an atomistic molecular dynamics (MD) approach. The partial charge induced on the surface atoms by the electric field is assessed by applying the classical Gauss law. The electric forces acting on the partially...

  8. Orientation of the agarose gel matrix in pulsed electric fields.

    OpenAIRE

    Stellwagen, J; Stellwagen, N C

    1989-01-01

    The technique of transient electric birefringence was used to investigate the effect of pulsed electric fields on the orientation of the agarose gel matrix. Orientation of the gel was observed at all electric field strengths. Very slow, time-dependent effects were observed when pulses of 10-100 V/cm were applied to 1% gels for 0.5-2 seconds, indicating that domains of the matrix were being oriented by the electric field. The sign of the birefringence reversed when the direction of the applied...

  9. Conically shaped drops in electric fields

    Science.gov (United States)

    Stone, Howard A.; Brenner, Michael P.; Lister, John R.

    1996-11-01

    When an electric field is applied to a dielectric liquid containing a suspended immiscible fluid drop, the drop deforms into a prolate ellipsoidal shape. Above a critical field strength the drop develops conical ends, as first observed by Zeleny [Phys. Rev. 10, 1 (1917)] and Wilson & Taylor [Proc. Camb. Phil. Soc. 22, 728 (1925)] for, respectively, the case of conducting drops and soap films in air. The case of two dielectric liquids was studied recently using a slender drop approximation by Li, Halsey & Lobkovsky [Europhys. Lett 27, 575 (1994)]. In this presentation we further develop the slender body approximation to obtain coupled ordinary differential equations for the electric field and the drop shape. Analytical formulae are derived which approximately give the cone angle as a function of the dielectric constant ratio between the two fluids, and the minimum applied electric field at which conical tips first form as a function of the dielectric constant ratio. Finally, drops shapes are calculated numerically and compared with the common prolate shape assumption.

  10. Prognostics Applied to Electric Propulsion UAV

    Science.gov (United States)

    Goebel, Kai; Saha, Bhaskar

    2013-01-01

    Health management plays an important role in operations of UAV. If there is equipment malfunction on critical components, safe operation of the UAV might possibly be compromised. A technology with particular promise in this arena is equipment prognostics. This technology provides a state assessment of the health of components of interest and, if a degraded state has been found, it estimates how long it will take before the equipment will reach a failure threshold, conditional on assumptions about future operating conditions and future environmental conditions. This chapter explores the technical underpinnings of how to perform prognostics and shows an implementation on the propulsion of an electric UAV. A particle filter is shown as the method of choice in performing state assessment and predicting future degradation. The method is then applied to the batteries that provide power to the propeller motors. An accurate run-time battery life prediction algorithm is of critical importance to ensure the safe operation of the vehicle if one wants to maximize in-air time. Current reliability based techniques turn out to be insufficient to manage the use of such batteries where loads vary frequently in uncertain environments.

  11. Electric field distribution of electron emitter surfaces

    Science.gov (United States)

    Tagawa, M.; Takenobu, S.; Ohmae, N.; Umeno, M.

    1987-03-01

    The electric field distribution of a tungsten field emitter surface and a LaB6 thermionic emitter surface has been studied. The computer simulation of electric field distribution on the emitter surface was carried out with a charge simulation method. The electric field distribution of the LaB6 thermionic emitter was experimentally evaluated by the Schottky plot. Two independent equations are necessary for obtaining local electric field and work function; the Fowler-Nordheim equation and the equation of total energy distribution of emitted electron being used to evaluate the electric field distribution of the tungsten field emitter. The experimental results agreed with the computer simulation.

  12. New electric field in asymmetric magnetic reconnection.

    Science.gov (United States)

    Malakit, K; Shay, M A; Cassak, P A; Ruffolo, D

    2013-09-27

    We present a theory and numerical evidence for the existence of a previously unexplored in-plane electric field in collisionless asymmetric magnetic reconnection. This electric field, dubbed the "Larmor electric field," is associated with finite Larmor radius effects and is distinct from the known Hall electric field. Potentially, it could be an important indicator for the upcoming Magnetospheric Multiscale mission to locate reconnection sites as we expect it to appear on the magnetospheric side, pointing earthward, at the dayside magnetopause reconnection site.

  13. Simultaneous effects of hydrostatic pressure and applied electric field on the impurity-related self-polarization in GaAs/Ga{sub 1-x}Al{sub x}As multiple quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, R.L.; Miranda, Guillermo L. [Fisica Teorica y Aplicada, Escuela de Ingenieria de Antioquia, A.A. 7516 Medellin (Colombia); Duque, C.A., E-mail: cduque_echeverri@yahoo.e [Instituto de Fisica, Universidad de Antioquia, A.A. 1226 Medellin (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico)

    2011-05-15

    A detailed theoretical study of the combined effects of hydrostatic pressure and in-growth direction applied electric field on the binding energy and self-polarization of a donor impurity in a system of GaAs-(Ga,Al)As coupled square quantum wells is presented. The study is performed in the framework of the effective mass and parabolic band approximations and using a variational procedure. The electron effective mass, the dielectric constant, the barrier height, the well sizes, all them varying with the hydrostatic pressure are taken into account within the study. The results obtained show that the impurity binding energy and its self-polarization bear strong dependencies with the hydrostatic pressure, the strength of the applied electric field, the width of the confining potential barriers, and the impurity position. - Research highlights: {yields} Impurity binding energy and self-polarization have a conjugate behavior in MQWs. {yields} Binding energy (self-polarization) is an increasing (decreasing) function of HP. {yields} For on-center impurity, the binding energy decreases with EF. {yields} For on-center impurity the self-polarization increases with EF.

  14. Cell separation using electric fields

    Science.gov (United States)

    Mangano, Joseph (Inventor); Eppich, Henry (Inventor)

    2009-01-01

    The present invention involves methods and devices which enable discrete objects having a conducting inner core, surrounded by a dielectric membrane to be selectively inactivated by electric fields via irreversible breakdown of their dielectric membrane. One important application of the invention is in the selection, purification, and/or purging of desired or undesired biological cells from cell suspensions. According to the invention, electric fields can be utilized to selectively inactivate and render non-viable particular subpopulations of cells in a suspension, while not adversely affecting other desired subpopulations. According to the inventive methods, the cells can be selected on the basis of intrinsic or induced differences in a characteristic electroporation threshold, which can depend, for example, on a difference in cell size and/or critical dielectric membrane breakdown voltage. The invention enables effective cell separation without the need to employ undesirable exogenous agents, such as toxins or antibodies. The inventive method also enables relatively rapid cell separation involving a relatively low degree of trauma or modification to the selected, desired cells. The inventive method has a variety of potential applications in clinical medicine, research, etc., with two of the more important foreseeable applications being stem cell enrichment/isolation, and cancer cell purging.

  15. Laser ablation of titanium in liquid in external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Serkov, A.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); The Federal State Educational Institution of Higher Professional Education, “Moscow Institute of Physics and Technology (State University)”, 9 Institutskiy per., 141700, Dolgoprudny, Moscow Region (Russian Federation); Barmina, E.V., E-mail: barminaev@gmail.com [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); Shafeev, G.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31, Kashirskoye Highway, 115409 Moscow (Russian Federation); Voronov, V.V. [A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation)

    2015-09-01

    Highlights: • Ablation of a bulk Ti target by 10 ps laser pulses in liquid is experimentally studied in external DC electric field. • Applied cathodic bias leads to increase in average size of self-organized nanostructures formed upon ablation of titanium target. • Laser ablation of Ti target in external electric field results in generation of elongated titanium oxide nanoparticles. - Abstract: Ablation of a bulk Ti target by 10 ps laser pulses in water is experimentally studied in external DC electric field. It is demonstrated that both lateral size of nanostructures (NS) on Ti surface and their density depend on the electric field applied to the target. Scanning Electron Microscopy of NS reveals the shift of their size distribution function toward larger sizes with applied field (cathodic bias, 25 V DC). Density of mushroom-like NS with applied electric field amounts to 10{sup 10} cm{sup −2}. X-ray diffraction of generated nanoparticles (NPs) shows difference in the crystallographic structure of NPs of non-stoichiometric Ti oxides generated with and without electric field. This conclusion is corroborated with the optical absorption spectroscopy of obtained colloids. Transmission Electron Microscopy of NPs also shows difference in morphology of particles produced with and without cathodic bias. The results are interpreted on the basis of instability of the melt on Ti surface in the electric field.

  16. Technique applied in electrical power distribution for Satellite Launch Vehicle

    Directory of Open Access Journals (Sweden)

    João Maurício Rosário

    2010-09-01

    Full Text Available The Satellite Launch Vehicle electrical network, which is currently being developed in Brazil, is sub-divided for analysis in the following parts: Service Electrical Network, Controlling Electrical Network, Safety Electrical Network and Telemetry Electrical Network. During the pre-launching and launching phases, these electrical networks are associated electrically and mechanically to the structure of the vehicle. In order to succeed in the integration of these electrical networks it is necessary to employ techniques of electrical power distribution, which are proper to Launch Vehicle systems. This work presents the most important techniques to be considered in the characterization of the electrical power supply applied to Launch Vehicle systems. Such techniques are primarily designed to allow the electrical networks, when submitted to the single-phase fault to ground, to be able of keeping the power supply to the loads.

  17. Effect of the Joule heating and of the material voids on free-convective transport in porous or fibrous media with applied electrical fields.

    Science.gov (United States)

    Erdmann, Eleonora; Oyanader, Mario A; Arce, Pedro

    2005-08-01

    The effect of the geometry of the soil in electrokinetic application has been studied by using capillary models of annular geometry. The Joule heating generation has been included as a primary effect of temperature development leading to buoyancy flows. The heat transfer model has been formulated for conduction-dominated regime. The results of this model have been coupled with the motion equation to obtain the analytical hydrodynamic velocity profile. Numerical illustrations, demonstrating the effect of the cross-sectional area of the annular region on the velocity field, have been included. It is observed that a substantial effect on the magnitude of such velocity field for different parameters of the system. The results are useful to obtain better understanding of the role of the soil geometry in potential soil cleaning field operations.

  18. Electrohydrodynamic deformation of capsules in electric field

    Science.gov (United States)

    Das, Sudip; Thaokar, Rochish

    2016-11-01

    Micron size capsules are abundant in natural, technological and biological processes but they still require extensive investigation for better understanding of their mechanical behavior. A spherical capusle containing a Newtonian fluid bounded by a viscoelastic membrane and immersed in another Newtonian fluid, and subject to electric field is considered. Discontinuity of electrical properties such as conductivity and permittivity leads to a net Maxwell stress at the capsule interface. In response the capsule undergoes elastic deformation, leading to strain fields and elastic stresses that can balance the applied forces. We investigate this problem with fully resolved hydrodynamics in the Stokes flow limit and electrostatics using the capacitance model. Effect of AC, DC and pulsed DC fields is investigated. Our results show that membrane electrical properties have a huge impact on the equilibrium deformation as well as on the break up of capsules. Our results match with the literature results in the limit of high conductance of the membrane. Analytical theory is employed using spherical harmonics and numerical investigations are conducted using the Boundary integral method.

  19. Preseismic electric field "strange attractor" like precursor analysis applied on large (Ms > 5.5R) EQs, which occurred in Greece during December 1st, 2007 - April 30th, 2008

    CERN Document Server

    Thanassoulas, C; Verveniotis, G; Zymaris, N

    2008-01-01

    In order to investigate the capability of the preseismic electric field "strange attractor like" precursor as a time predictor of a large EQ within a short time window (short-term prediction), the specific methodology was applied on the Earth's electric field recorded during a rather long seismically active period (December 1st, 2007 - April 30th, 2008) of Greece. During this period of time a number (8) of large (Ms > 5.5R) earthquakes took place. The particular analysis is presented in detail for the following EQs: the Monemvasia EQ (January 6th 2008, Ms = 6.6R), the Methoni EQs (February 14th 2008 Ms = 6.7R, February 19th 2008 Ms = 5.6R, February 20th 2008 Ms = 6.5R, February 26th 2008 Ms = 5.7R), the Skyros EQ (March 19th 2008 Ms = 5.5R) and the Mid Southern Creta EQ (March 28th 2008 Ms = 5.6R). The obtained results from the analysis of the afore mentioned EQs, in conjunction to the ones obtained from an earlier presentation of the particular methodology (Thanassoulas et al. 2008a), suggest: an average tim...

  20. Tuning Photoluminescence Response by Electric Field in Electrically Soft Ferroelectrics

    Science.gov (United States)

    Khatua, Dipak Kumar; Kalaskar, Abhijeet; Ranjan, Rajeev

    2016-03-01

    We show that an electrically soft ferroelectric host can be used to tune the photoluminescence (PL) response of rare-earth emitter ions by external electric field. The proof of this concept is demonstrated by changing the PL response of the Eu3 + ion by electric field on a model system Eu-doped 0.94 (Na1 /2Bi1 /2TiO3)-0.06 (BaTiO3) . We also show that new channels of radiative transitions, forbidden otherwise, open up due to positional disorder in the system, which can as well be tuned by electric field.

  1. Electropumping of water with rotating electric fields

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; De Luca, Sergio; Todd, Billy

    2013-01-01

    of the fluid. By selectively tuning the degree of hydrophobicity of the solid walls one can generate a net unidirectional flow. Our results for the linear streaming and angular velocities of the confined water are in general agreement with the extended hydrodynamical theory for this process, though also...... require some sort of direct intrusion into the nanofluidic system, and involve mechanical or electronic components. In this paper, we present the first nonequilibrium molecular dynamics results to demonstrate that non-intrusive electropumping of liquid water on the nanoscale can be performed by subtly...... exploiting the coupling of spin angular momentum to linear streaming momentum. A spatially uniform rotating electric field is applied to water molecules, which couples to their permanent electric dipole moments. The resulting molecular rotational momentum is converted into linear streaming momentum...

  2. Enhancement of antibacterial properties of Ag nanorods by electric field

    Directory of Open Access Journals (Sweden)

    Omid Akhavan and Elham Ghaderi

    2009-01-01

    Full Text Available The effect of an electric field on the antibacterial activity of columnar aligned silver nanorods was investigated. Silver nanorods with a polygonal cross section, a width of 20–60 nm and a length of 260–550 nm, were grown on a titanium interlayer by applying an electric field perpendicular to the surface of a Ag/Ti/Si(100 thin film during its heat treatment at 700 °C in an Ar+H2 environment. The optical absorption spectrum of the silver nanorods exhibited two peaks at wavelengths of 350 and 395 nm corresponding to the main surface plasmon resonance bands of the one-dimensional silver nanostructures. It was found that the silver nanorods with an fcc structure were bounded mainly by {100} facets. The antibacterial activity of the silver nanorods against Escherichia coli bacteria was evaluated at various electric fields applied in the direction of the nanorods without any electrical connection between the nanorods and the capacitor plates producing the electric field. Increasing the electric field from 0 to 50 V cm−1 resulted in an exponential increase in the relative rate of reduction of the bacteria from 3.9×10−2 to 10.5×10−2 min−1. This indicates that the antibacterial activity of silver nanorods can be enhanced by applying an electric field, for application in medical and food-preserving fields.

  3. Enhancement of antibacterial properties of Ag nanorods by electric field

    Energy Technology Data Exchange (ETDEWEB)

    Akhavan, Omid [Department of Physics, Sharif University of Technology, PO Box 11155-9161, Tehran (Iran, Islamic Republic of); Ghaderi, Elham [Tehran University of Medical Sciences, PO Box 14155-6447, Tehran (Iran, Islamic Republic of)], E-mail: oakhavan@sharif.edu

    2009-01-15

    The effect of an electric field on the antibacterial activity of columnar aligned silver nanorods was investigated. Silver nanorods with a polygonal cross section, a width of 20-60 nm and a length of 260-550 nm, were grown on a titanium interlayer by applying an electric field perpendicular to the surface of a Ag/Ti/Si(100) thin film during its heat treatment at 700 deg. C in an Ar+H{sub 2} environment. The optical absorption spectrum of the silver nanorods exhibited two peaks at wavelengths of 350 and 395 nm corresponding to the main surface plasmon resonance bands of the one-dimensional silver nanostructures. It was found that the silver nanorods with an fcc structure were bounded mainly by {l_brace}100{r_brace} facets. The antibacterial activity of the silver nanorods against Escherichia coli bacteria was evaluated at various electric fields applied in the direction of the nanorods without any electrical connection between the nanorods and the capacitor plates producing the electric field. Increasing the electric field from 0 to 50 V cm{sup -1} resulted in an exponential increase in the relative rate of reduction of the bacteria from 3.9x10{sup -2} to 10.5x10{sup -2} min{sup -1}. This indicates that the antibacterial activity of silver nanorods can be enhanced by applying an electric field, for application in medical and food-preserving fields.

  4. Compact Electric- And Magnetic-Field Sensor

    Science.gov (United States)

    Winterhalter, Daniel; Smith, Edward

    1994-01-01

    Compact sensor measures both electric and magnetic fields. Includes both short electric-field dipole and search-coil magnetometer. Three mounted orthogonally providing triaxial measurements of electromagnetic field at frequencies ranging from near 0 to about 10 kHz.

  5. Electric field effects on droplet burning

    Science.gov (United States)

    Patyal, Advitya; Kyritsis, Dimitrios; Matalon, Moshe

    2015-11-01

    The effects of an externally applied electric field are studied on the burning characteristics of a spherically symmetric fuel drop including the structure, mass burning rate and extinction characteristics of the diffusion flame. A reduced three-step chemical kinetic mechanism that reflects the chemi-ionization process for general hydrocarbon fuels has been proposed to capture the production and destruction of ions inside the flame zone. Due to the imposed symmetry, the effect of the ionic wind is simply to modify the pressure field. Our study thus focuses exclusively on the effects of Ohmic heating and kinetic effects on the burning process. Two distinguished limits of weak and strong field are identified, highlighting the relative strength of the internal charge barrier compared to the externally applied field, and numerically simulated. For both limits, significantly different charged species distributions are observed. An increase in the mass burning rate is noticed with increasing field in either limit with negligible change in the flame temperature. Increasing external voltages pushes the flame away from the droplet and causes a strengthening of the flame with a reduction in the extinction Damkhöler number.

  6. Imaging electric field dynamics with graphene optoelectronics

    Science.gov (United States)

    Horng, Jason; Balch, Halleh B.; McGuire, Allister F.; Tsai, Hsin-Zon; Forrester, Patrick R.; Crommie, Michael F.; Cui, Bianxiao; Wang, Feng

    2016-12-01

    The use of electric fields for signalling and control in liquids is widespread, spanning bioelectric activity in cells to electrical manipulation of microstructures in lab-on-a-chip devices. However, an appropriate tool to resolve the spatio-temporal distribution of electric fields over a large dynamic range has yet to be developed. Here we present a label-free method to image local electric fields in real time and under ambient conditions. Our technique combines the unique gate-variable optical transitions of graphene with a critically coupled planar waveguide platform that enables highly sensitive detection of local electric fields with a voltage sensitivity of a few microvolts, a spatial resolution of tens of micrometres and a frequency response over tens of kilohertz. Our imaging platform enables parallel detection of electric fields over a large field of view and can be tailored to broad applications spanning lab-on-a-chip device engineering to analysis of bioelectric phenomena.

  7. Geostatistical methods applied to field model residuals

    DEFF Research Database (Denmark)

    Maule, Fox; Mosegaard, K.; Olsen, Nils

    consists of measurement errors and unmodelled signal), and is typically assumed to be uncorrelated and Gaussian distributed. We have applied geostatistical methods to analyse the residuals of the Oersted(09d/04) field model [http://www.dsri.dk/Oersted/Field_models/IGRF_2005_candidates/], which is based...

  8. Biofouling prevention with pulsed electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Ghazala, A.; Schoenbach, K.H.

    2000-02-01

    Temporary immobilization of aquatic nuisance species through application of short electric pulses has been explored as a method to prevent biofouling in cooling water systems where untreated lake, river, or sea water is used. In laboratory experiments, electrical pulses with amplitudes on the order of kilovolts/centimeter and submicrosecond duration were found to be most effective in stunning time in a temporal range from minutes to hours. The temporary immobilization is assumed to be caused by reversible membrane breakdown. This assumption is supported by results of measurements of the energy required for stunning. Based on the data obtained in laboratory experiments, field experiments in a tidal water environment have been performed. The flow velocity was such that the residence time of the aquatic nuisance species in the system was approximately half a minute. The results showed that the pulsed electric field method provides full protection against biofouling when pulses of 0.77 {micro}s width and 6 kV/cm amplitude are applied to the water at the inlet of such a cooling water system. Even at amplitudes of 1 kV/cm, the protection is still in the 90% range, at an energy expenditure of 1 kWh for the treatment of 60,000 gallons of water.

  9. Entanglement Generation by Electric Field Background

    OpenAIRE

    Ebadi, Zahra; Mirza, Behrouz

    2014-01-01

    The quantum vacuum is unstable under the influence of an external electric field and decays into pairs of charged particles, a process which is known as the Schwinger pair production. We propose and demonstrate that this electric field can generate entanglement. Using the Schwinger pair production for constant and pulsed electric fields, we study entanglement for scalar particles with zero spins and Dirac fermions. One can observe the variation of the entanglement produced for bosonic and fer...

  10. Entanglement Generation by Electric Field Background

    CERN Document Server

    Ebadi, Zahra

    2014-01-01

    The quantum vacuum is unstable under the influence of an external electric field and decays into pairs of charged particles, a process which is known as the Schwinger pair production. We propose and demonstrate that this electric field can generate entanglement. Using the Schwinger pair production for constant and pulsed electric fields, we study entanglement for scalar particles with zero spins and Dirac fermions. One can observe the variation of the entanglement produced for bosonic and fermionic modes with respect to different parameters.

  11. Electric field domain interface in helical systems

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka; Sanuki, Heiji; Toda, Shinichiro; Yokoyama, Masayuki [National Inst. for Fusion Science, Toki, Gifu (Japan); Itoh, Sanae-I.; Yagi, Masatoshi [Kyushu Univ., Research Institute for Applied Mechanics, Kasuga, Fukuoka (Japan); Fukuyama, Atsushi [Kyoto Univ., Department of Nuclear Engineering, Kyoto (Japan)

    2001-07-01

    The electric field bifurcation in helical plasmas under the condition of continuous fluxes is investigated. The stationary solution of the transport equation, together with charge neutrality condition, is investigated. It is shown that the anomalous flux plays an important role in determining multiple electric field solutions. The transition to the branch with a strong positive electric field occurs when the heat flux exceeds a critical value. Condition for the presence of transition is obtained. The radial structure of the electric field domain interface is obtained. The condition that the suppression of turbulence is expected to occur is discussed. Comparison with experimental observation is briefly mentioned. (author)

  12. Formation of Organized Protein Thin Films with External Electric Field.

    Science.gov (United States)

    Ferreira, Cecília Fabiana da G; Camargo, Paulo C; Benelli, Elaine M

    2015-10-01

    The effect of an external electric field on the formation of protein GlnB-Hs films and on its buffer solution on siliconized glass slides has been analyzed by current versus electric field curves and atomic force microscopy (AFM). The Herbaspirillum seropedicae GlnB protein (GlnB-Hs) is a globular, soluble homotrimer (36 kDa) with its 3-D structure previously determined. Concentrations of 10 nM native denatured GlnB-Hs protein were deposited on siliconized glass slides under ambient conditions. Immediately after solution deposition a maximum electric field of 30 kV/m was applied with rates of 3 V/s. The measured currents were surface currents and were analyzed as transport current. Electric current started to flow only after a minimum electric field (critical value) for the systems analyzed. The AFM images showed films with a high degree of directional organization only when the proteins were present in the solution. These results showed that the applied electric field favored directional organization of the protein GlnB-Hs films and may contribute to understand the formation of protein films under applied electric fields.

  13. Remote Educational Experiment Applied To Electrical Engineering

    OpenAIRE

    João Mota Neto; Roderval Marcelino; Carlos Eduardo Pereira; Vilson Gruber; Juarez Bento da Silva; Suenoni Paladini

    2013-01-01

    This article presents the development of an architecture for a remote educational experiment concerning the speed control applied to a direct current motor. The proposed architecture is based on the use of an Arduino Uno and Ethernet Shield, whose function is to interface between the experiment and the Internet. The user can access the control experiment through an application developed in Java, which allows the students to choose the model of the controller (P, PI and PID) they want to study...

  14. Directed cell movement in pulsed electric fields.

    Science.gov (United States)

    Franke, K; Gruler, H

    1994-01-01

    Human granulocytes exposed to pulsed electric guiding fields were investigated. The trajectories were determined from digitized pictures (phase contrast). The basic results are: (i) No directed response was induced by pulsed electric guiding fields having a zero averaged field. (ii) A directed response was induced by pulsed electric guiding fields having a non-zero averaged field. (iii) The directed response was enhanced for pulse sequences having a repetition time of 8 s. (iv) The lag-time between signal recognition and cellular response was 8-10 s. The results are discussed in the framework of a self-ignition model.

  15. [Mechanism of ablation with nanosecond pulsed electric field].

    Science.gov (United States)

    Cen, Chao; Chen, Xin-hua; Zheng, Shu-sen

    2015-11-01

    Nanosecond pulsed electric field ablation has been widely applied in clinical cancer treatment, while its molecular mechanism is still unclear. Researchers have revealed that nanosecond pulsed electric field generates nanopores in plasma membrane, leading to a rapid influx of Ca²⁺; it has specific effect on intracellular organelle membranes, resulting in endoplasmic reticulum injuries and mitochondrial membrane potential changes. In addition, it may also change cellular morphology through damage of cytoskeleton. This article reviews the recent research advances on the molecular mechanism of cell membrane and organelle changes induced by nanosecond pulsed electric field ablation.

  16. Pulsed electric field inactivation in a microreactor

    NARCIS (Netherlands)

    Fox, M.B.

    2006-01-01

    Pulsed electric fields (PEF) is a novel, non-thermal pasteurization method which uses short, high electric field pulses to inactivate microorganisms. The advantage of a pasteurization method like PEF compared to regular heat pasteurization is that the taste, flavour, texture and nutritional value ar

  17. Rotating artificial gauge magnetic and electric fields

    CERN Document Server

    Lembessis, V E; Alshamari, S; Siddig, A; Aldossary, O M

    2016-01-01

    We consider the creation of artificial gauge magnetic and electric fields created when a two-level atom interacts with an optical Ferris wheel light field.These fields have the spatial structure of the optical Ferris wheel field intensity profile. If this optical field pattern is made to rotate in space then we have the creation of artificial electromagnetic fields which propagate in closed paths. The properties of such fields are presented and discussed

  18. Threshold electric field in unconventional density waves

    Science.gov (United States)

    Dóra, Balázs; Virosztek, Attila; Maki, Kazumi

    2001-07-01

    As it is well known most charge-density waves (CDW's) and spin-density waves exhibit nonlinear transport with well-defined threshold electric field ET. Here we study theoretically the threshold electric field of unconventional density waves. We find that the threshold field increases monotonically with temperature without divergent behavior at Tc, unlike the one in conventional CDW. The present result in the three-dimensional weak pinning limit appears to describe rather well the threshold electric field observed recently in the low-temperature phase of α-(BEDT-TTF)2KHg(SCN)4.

  19. Nonpremixed flame in a counterflow under electric fields

    KAUST Repository

    Park, Daegeun

    2016-05-08

    Electrically assisted combustion has been studied in order to control or improve flame characteristics, and emphasizing efficiency and emission regulation. Many phenomenological observations have been reported on the positive impact of electric fields on flame, however there is a lack of detailed physical mechanisms for interpreting these. To clarify the effects of electric fields on flame, I have investigated flame structure, soot formation, and flow field with ionic wind electrical current responses in nonpremixed counterflow flames. The effects of direct current (DC) electric field on flame movement and flow field was also demonstrated in premixed Bunsen flames. When a DC electric field was applied to a lower nozzle, the flames moved toward the cathode side due to Lorentz force action on the positive ions, soot particles simultaneously disappeared completely and laser diagnostics was used to identify the results from the soot particles. To understand the effects of an electric field on flames, flow visualization was performed by Mie scattering to check the ionic wind effect, which is considered to play an important role in electric field assisted combustion. Results showed a bidirectional ionic wind, with a double-stagnant flow configuration, which blew from the flame (ionic source) toward both the cathode and the anode. This implies that the electric field affects strain rate and the axial location of stoichiometry, important factors in maintaining nonpremixed counterflow flames; thus, soot formation of the counterflow flame can also be affected by the electric field. In a test of premixed Bunsen flames having parallel electrodes, flame movement toward the cathode and bidirectional ionic wind were observed. Using PIV measurement it was found that a created radial velocity caused by positive ions (i.e. toward a cathode), was much faster than the velocity toward the anode. Even in a study of alternating current (AC) electric fields, bidirectional ionic wind could

  20. Hydrogel Actuation by Electric Field Driven Effects

    Science.gov (United States)

    Morales, Daniel Humphrey

    the applied electric field. We extend the use of ionoprinting to develop multi-responsive bilayer gel systems capable of more complex shape transformation. The localized crosslinked regions determine the bending axis as the gel responds to the external environment. The bending can be tuned to reverse direction isothermally by changing the solvent quality or by changing the temperature at a fixed concentration. The multi-responsive behavior is caused by the volume transitions of a non-ionic, thermos-sensitive hydrogel coupled with a superabsorbent ionic hydrogel. Lastly, electric field driven microparticle assembly, using dielectrophoretic (DEP) forces, organized colloidal microparticles within a hydrogel matrix. The use of DEP forces enables rapid, efficient and precise control over the colloidal distribution. The resulting supracolloidal endoskeleton structures impart directional bending as the hydrogel shrinks. We compare the ordered particles structures to random particle distributions in affecting the hydrogel sheet bending response. This study demonstrates a universal technique for imparting directional properties in hydrogels towards new generations of hybrid soft materials.

  1. ELECTRIC AND MAGNETIC FIELDS ELECTRIC AND GASOLINE-POWERED VEHICLES.

    Science.gov (United States)

    Tell, Richard A; Kavet, Robert

    2016-12-01

    Measurements were conducted to investigate electric and magnetic fields (EMFs) from 120 Hz to 10 kHz and 1.2 to 100 kHz in 9 electric or hybrid vehicles and 4 gasoline vehicles, all while being driven. The range of fields in the electric vehicles enclosed the range observed in the gasoline vehicles. Mean magnetic fields ranged from nominally 0.6 to 3.5 µT for electric/hybrids depending on the measurement band compared with nominally 0.4 to 0.6 µT for gasoline vehicles. Mean values of electric fields ranged from nominally 2 to 3 V m(-1) for electric/hybrid vehicles depending on the band, compared with 0.9 to 3 V m(-1) for gasoline vehicles. In all cases, the fields were well within published exposure limits for the general population. The measurements were performed with Narda model EHP-50C/EHP-50D EMF analysers that revealed the presence of spurious signals in the EHP-50C unit, which were resolved with the EHP-50D model.

  2. Electric field effects in hyperexcitable neural tissue: A review

    Energy Technology Data Exchange (ETDEWEB)

    Durand, D.M

    2003-07-01

    Uniform electric fields applied to neural tissue can modulate neuronal excitability with a threshold value of about 1mV mm{sup -1} in normal physiological conditions. However, electric fields could have a lower threshold in conditions where field sensitivity is enhanced, such as those simulating epilepsy. Uniform electrical fields were applied to hippocampal brain slices exposed to picrotoxin, high potassium or low calcium solutions. The results in the low calcium medium show that neuronal activity can be completely blocked in 10% of the 30 slices tested with a field amplitude of 1mV mm{sup -1}. These results suggest that the threshold for this effect is clearly smaller than 1mV mm{sup -1}. The hypothesis that the extracellular resistance could affect the sensitivity to the electrical fields was tested by measuring the effect of the osmolarity of the extracellular solution on the efficacy of the field. A 10% decrease on osmolarity resulted in a 56% decrease (n=4) in the minimum field required for full suppression. A 14% in osmolarity produced an 81% increase in the minimum field required for full suppression. These results show that the extracellular volume can modulate the efficacy of the field and could lower the threshold field amplitudes to values lower than {approx}1mmV mm{sup -.} (author)

  3. Magnetotail electric fields observed from lunar orbit

    Science.gov (United States)

    Mccoy, J. E.; Lin, R. P.; Mcguire, R. E.; Chase, L. M.; Anderson, K. A.

    1975-01-01

    Direct observations of convection electric fields in the earth's magnetotail are reported. The electric fields have been measured from lunar orbit by detection of the E x B/B-squared drift displacement of low-energy electrons at the limb of the moon. It is found that electric fields range in magnitude from a value less than or equal to 0.02 mV/m, the limit of sensitivity of the method, to 2 mV/M. The typical value is 0.15 mV/M, and the corresponding convection velocity is 15 km/s. The sense of the electric field is almost always dawn to dusk. The electric field is often variable on a time scale of hours and sometimes minutes. The observations indicate that the electric field is not uniform across the magnetotail. If it is assumed that the typical measured electric-field value represents an average over the inhomogeneities, the potential drop across the entire tail is of the order of 40 kV.

  4. Molecular dynamics in high electric fields

    Science.gov (United States)

    Apostol, M.; Cune, L. C.

    2016-06-01

    Molecular rotation spectra, generated by the coupling of the molecular electric-dipole moments to an external time-dependent electric field, are discussed in a few particular conditions which can be of some experimental interest. First, the spherical-pendulum molecular model is reviewed, with the aim of introducing an approximate method which consists in the separation of the azimuthal and zenithal motions. Second, rotation spectra are considered in the presence of a static electric field. Two particular cases are analyzed, corresponding to strong and weak fields. In both cases the classical motion of the dipoles consists of rotations and vibrations about equilibrium positions; this motion may exhibit parametric resonances. For strong fields a large macroscopic electric polarization may appear. This situation may be relevant for polar matter (like pyroelectrics, ferroelectrics), or for heavy impurities embedded in a polar solid. The dipolar interaction is analyzed in polar condensed matter, where it is shown that new polarization modes appear for a spontaneous macroscopic electric polarization (these modes are tentatively called "dipolons"); one of the polarization modes is related to parametric resonances. The extension of these considerations to magnetic dipoles is briefly discussed. The treatment is extended to strong electric fields which oscillate with a high frequency, as those provided by high-power lasers. It is shown that the effect of such fields on molecular dynamics is governed by a much weaker, effective, renormalized, static electric field.

  5. Electric field and temperature effects in irradiated MOSFETs

    Science.gov (United States)

    Silveira, M. A. G.; Santos, R. B. B.; Leite, F. G.; Araújo, N. E.; Cirne, K. H.; Melo, M. A. A.; Rallo, A.; Aguiar, Vitor. A. P.; Aguirre, F.; Macchione, E. L. A.; Added, N.; Medina, N. H.

    2016-07-01

    Electronic devices exposed to ionizing radiation exhibit degradation on their electrical characteristics, which may compromise the functionality of the device. Understanding the physical phenomena responsible for radiation damage, which may be specific to a particular technology, it is of extreme importance to develop methods for testing and recovering the devices. The aim of this work is to check the influence of thermal annealing processes and electric field applied during irradiation of Metal Oxide Semiconductor Field Effect Transistors (MOSFET) in total ionizing dose experiments analyzing the changes in the electrical parameters in these devices

  6. Electric Field-Responsive Mesoporous Suspensions: A Review

    Directory of Open Access Journals (Sweden)

    Seung Hyuk Kwon

    2015-12-01

    Full Text Available This paper briefly reviews the fabrication and electrorheological (ER characteristics of mesoporous materials and their nanocomposites with conducting polymers under an applied electric field when dispersed in an insulating liquid. Smart fluids of electrically-polarizable particles exhibit a reversible and tunable phase transition from a liquid-like to solid-like state in response to an external electric field of various strengths, and have potential applications in a variety of active control systems. The ER properties of these mesoporous suspensions are explained further according to their dielectric spectra in terms of the flow curve, dynamic moduli, and yield stress.

  7. Effect of superheat and electric field on saturated film boiling

    Science.gov (United States)

    Pandey, Vinod; Biswas, Gautam; Dalal, Amaresh

    2016-05-01

    The objective of this investigation is to study the influence of superheat temperature and applied uniform electric field across the liquid-vapor interface during film boiling using a coupled level set and volume of fluid algorithm. The hydrodynamics of bubble growth, detachment, and its morphological variation with electrohydrodynamic forces are studied considering the medium to be incompressible, viscous, and perfectly dielectric at near critical pressure. The transition in interfacial instability behavior occurs with increase in superheat, the bubble release being periodic both in space and time. Discrete bubble growth occurs at a smaller superheat whereas vapor columns form at the higher superheat values. Destabilization of interfacial motion due to applied electric field results in decrease in bubble separation distance and increase in bubble release rate culminating in enhanced heat transfer rate. A comparison of maximum bubble height owing to application of different intensities of electric field is performed at a smaller superheat. The change in dynamics of bubble growth due to increasing superheat at a high intensity of electric field is studied. The effect of increasing intensity of electric field on the heat transfer rate at different superheats is determined. The boiling characteristic is found to be influenced significantly only above a minimum critical intensity of the electric field.

  8. Migration of amoeba cells in an electric field

    Science.gov (United States)

    Guido, Isabella; Bodenschatz, Eberhard

    2015-03-01

    Exogenous and endogenous electric fields play a role in cell physiology as a guiding mechanism for the orientation and migration of cells. Electrotaxis of living cells has been observed for several cell types, e.g. neurons, fibroblasts, leukocytes, neural crest cells, cancer cells. Dictyostelium discoideum (Dd), an intensively investigated chemotactic model organism, also exhibits a strong electrotactic behavior moving toward the cathode under the influence of electric fields. Here we report experiments on the effects of DC electric fields on the directional migration of Dd cells. We apply the electric field to cells seeded into microfluidic devices equipped with agar bridges to avoid any harmful effects of the electric field on the cells (ions formation, pH changes, etc.) and a constant flow to prevent the build-up of chemical gradient that elicits chemotaxis. Our results show that the cells linearly increase their speed over time when a constant electric field is applied for a prolonged duration (2 hours). This novel phenomenon cannot be attributed to mechanotaxis as the drag force of the electroosmotic flow is too small to produce shear forces that can reorient cells. It is independent of the cellular developmental stage and to our knowledge, it was not observed in chemotaxis. This work is supported by MaxSynBio project of the Max Planck Society.

  9. Communication: Control of chemical reactions using electric field gradients.

    Science.gov (United States)

    Deshmukh, Shivaraj D; Tsori, Yoav

    2016-05-21

    We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phase or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts.

  10. Communication: Control of chemical reactions using electric field gradients

    Science.gov (United States)

    Deshmukh, Shivaraj D.; Tsori, Yoav

    2016-05-01

    We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phase or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts.

  11. Drop oscillation and mass transfer in alternating electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Carleson, T.E.

    1992-06-24

    In certain cases droplet direct contact heat transfer rates can be significantly enhanced by the application of an alternating electric field. This field can produce shape oscillations in a droplet which will enhance mixing. The theoretical evaluation of the effect of the interaction of the field with drop charge on the hydrodynamics has been completed for small amplitude oscillations. Previous work with a zero order perturbation method was followed up with a first order perturbation method to evaluate the effect of drop distortion on drop charge and field distribution. The first order perturbation results show secondary drop oscillations of four modes and two frequencies in each mode. The most significant secondary oscillation has the same mode and frequency as the second mode oscillation predicted from the first order perturbation work. The resonant frequency of all oscillations decrease with increasing electric field strength and drop charge. Work is currently underway to evaluate the heat transfer enhancement from an applied alternating electric field.

  12. Introduction to power-frequency electric and magnetic fields.

    OpenAIRE

    1993-01-01

    This paper introduces the reader to electric and magnetic fields, particularly those fields produced by electric power systems and other sources using frequencies in the power-frequency range. Electric fields are produced by electric charges; a magnetic field also is produced if these charges are in motion. Electric fields exert forces on other charges; if in motion, these charges will experience magnetic forces. Power-frequency electric and magnetic fields induce electric currents in conduct...

  13. Spiral Wave Generation in a Vortex Electric Field

    Institute of Scientific and Technical Information of China (English)

    YUAN Xiao-Ping; CHEN Jiang-Xing; ZHAO Ye-Hua; LOU Qin; WANG Lu-Lu; SIIEN Qian

    2011-01-01

    The effect of a vortical electric field on nonlinear patterns in excitable media is studied. When an appropriate vortex electric field is applied, the system exhibits pattern transition from chemical turbulence to spiral waves, which possess the same chtality as the vortex electric field. The underlying mechanism of this is discussed. We also show the meandering behavior of a spiral under the taming of a vortex electric field. The results obtained here may contribute to control strategies of patterns on surface reaction.%The effect of a vortical electric field on nonlinear patterns in excitable media is studied.When an appropriate vortex electric field is applied,the system exhibits pattern transition from chemical turbulence to spiral waves,which possess the same chirality as the vortex electric field.The underlying mechanism of this is discussed.We also show the meandering behavior of a spiral under the taming of a vortex electric field.The results obtained here may contribute to control strategies of patterns on surface reaction.Spiral waves are one of the most common and widely studied patterns in nature.They appear in hydrodynamic systems,chemical reactions and a large variety of biological,chemical and physical systems.[1-5] Much attention has been paid to their rich nonlinear dynamics,as well as potential applications in various biological or physiological systems,since the emergence and instability of spirals usually lead to abnormal states,for example in cardiac arrythmia[6,7] and epilepsy[8].Much research has been carried out in studying pattern formations in catalytic CO oxidation on Pt(110),[9-11] because they provide practical utilization in industry.A rich variety of spatiotemporal patterns,including travelling pulses,standing waves,target patterns,spiral waves and chemical turbulence have been observed in this system.[12-16

  14. Effect of vacancy defect on electrical properties of chiral single-walled carbon nanotube under external electrical field

    Institute of Scientific and Technical Information of China (English)

    Luo Yu-Pin; Tien Li-Gan; Tsai Chuen-Horng; Lee Ming-Hsien; Li Feng-Yin

    2011-01-01

    Ab initio calculations demonstrated that the energy gap modulation of a chiral carbon nanotube with monovacancy defect can be achieved by applying a transverse electric field. The bandstructure of this defective carbon nanotube varying due to the external electric field is distinctly different from those of the perfect nanotube and defective zigzag nanotube. This variation in bandstructure strongly depends on not only the chirality of the nanotube and also the applied direction of the transverse electric field. A mechanism is proposed to explain the response of the local energy gap between the valence band maximum state and the local gap state under external electric field. Several potential applications of these phenomena are discussed.

  15. Pulsed electric field inactivation in a microreactor

    OpenAIRE

    Fox, M.B.

    2006-01-01

    Pulsed electric fields (PEF) is a novel, non-thermal pasteurization method which uses short, high electric field pulses to inactivate microorganisms. The advantage of a pasteurization method like PEF compared to regular heat pasteurization is that the taste, flavour, texture and nutritional value are much less affected. At the moment, the PEF process faces several challenges, to which microtechnology could be an aid. The small electrode distance in microtechnological reactors enables the use ...

  16. Swarm equatorial electric field chain: First results

    OpenAIRE

    Alken, P; Maus, S.; A. Chulliat; Vigneron, P.; Sirol, O.; Hulot, G.

    2015-01-01

    International audience; The eastward equatorial electric field (EEF) in the E region ionosphere drives many important phenomena at low latitudes. We developed a method of estimating the EEF from magnetometer measurements of near-polar orbiting satellites as they cross the magnetic equator, by recovering a clean signal of the equatorial electrojet current and modeling the observed current to determine the electric field present during the satellite pass. This algorithm is now implemented as an...

  17. Generation of Focused Electric Field Patterns at Dielectric Surfaces

    Science.gov (United States)

    Olofsson, Jessica; Levin, Mikael; Strömberg, Anette; Weber, Stephen G.; Ryttsén, Frida; Orwar, Owe

    2006-01-01

    We here report on a concept for creating well-defined electric field gradients between the boundaries of capillary electrode (a capillary of a nonconducting material equipped with an interior metal electrode) outlets, and dielectric surfaces. By keeping a capillary electrode opening close to a boundary between a conducting solution and a nonconducting medium, a high electric field can be created close to the interface by field focusing effects. By varying the inner and outer diameters of the capillary, the span of electric field strengths and the field gradient obtained can be controlled, and by varying the slit height between the capillary rim and the surface, or the applied current, the average field strength and gradient can be varied. Field focusing effects and generation of electric field patterns were analyzed using finite element method simulations. We experimentally verified the method by electroporation of a fluorescent dye (fluorescein diphosphate) into adherent, monolayered cells (PC-12 and WSS-1) and obtained a pattern of fluorescent cells corresponding to the focused electric field. PMID:16013887

  18. GEM Detector Electric Field Simulation

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    GEM (Gas Electron Multiplier) detectors have been widely employed in the experimental field of high energy physics and nuclear physics. As a successor to drift chambers, GEMs are much easier to fabricate and have a much higher spatial resolution

  19. On the influence of applied fields on spinel formation

    Energy Technology Data Exchange (ETDEWEB)

    KORTE,C.; FARER,J.K.; RAVISHANKAR,N.; MICHAEL,JOSEPH R.; SCHMALZRIED,J.; CARTER,C.B.

    2000-04-04

    Interfaces play an important role in determining the effect of electric fields on the mechanism of the formation spinel by solid-state reaction. The reaction occurs by the movement of phase boundaries but the rate of this movement can be affected by grain boundaries in the reactants or in the reaction product. Only by understanding these relationships will it be possible to engineer their behavior. As a particular example of such a study, MgIn{sub 2}O{sub 4} can be formed by the reaction between single-crystal MgO substrate and a thin film of In{sub 2}O{sub 3} with or without an applied electric field. High-resolution backscattered electron (BSE) imaging and electron backscattered diffraction (EBSD) in a scanning electron microscope (SEM) has been used to obtain complementary chemical and crystallographic information.

  20. Analysis of Electric Fields inside Microchannels and Single Cell Electrical Lysis with a Microfluidic Device

    Directory of Open Access Journals (Sweden)

    Tofy Mussivand

    2013-06-01

    Full Text Available Analysis of electric fields generated inside the microchannels of a microfluidic device for electrical lysis of biological cells along with experimental verification are presented. Electrical lysis is the complete disintegration of cell membranes, due to a critical level of electric fields applied for a critical duration on a biological cell. Generating an electric field inside a microchannel of a microfluidic device has many advantages, including the efficient utilization of energy and low-current requirement. An ideal microchannel model was compared with a practical microchannel model using a finite element analysis tool that suggests that the overestimation error can be over 10%, from 2.5 mm or smaller, in the length of a microchannel. Two analytical forms are proposed to reduce this overestimation error. Experimental results showed that the high electric field is confined only inside the microchannel that is in agreement with the simulation results. Single cell electrical lysis was conducted with a fabricated microfluidic device. An average of 800 V for seven seconds across an 8 mm-long microchannel with the dimension of 100 μm × 20 μm was required for lysis, with electric fields exceeding 100 kV/m and consuming 300 mW.

  1. Effect of AC electric fields on flame spread over electrical wire

    KAUST Repository

    Kim, Minkuk

    2011-01-01

    The effect of electric fields on the characteristics of flame spread over insulated electrical wire has been investigated experimentally by varying AC voltage and frequency applied to the wire in the normal gravity condition. The polyethylene (PE) insulated electrical wire was placed horizontally on electrically non-conducting posts and one end of the wire was connected to the high voltage terminal. Thus, the electrical system is the single electrode configuration. The wire was ignited at one end and the flame spread rate along the wire has been measured from the images using a video camera. Two distinct regimes existed depending on the applied AC frequency. In the low frequency regime, the flame spread rate decreased with the frequency and voltage. While in the high frequency regime, it decreased initially with voltage and then increased. At high frequency, the spread rate was even over that without applying electric fields. This result implies that fire safety codes developed without considering the effect of electric fields may require modifications. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  2. Midday reversal of equatorial ionospheric electric field

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    Full Text Available A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V×Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.

  3. Method of using an electric field controlled emulsion phase contactor

    Science.gov (United States)

    Scott, Timothy C.

    1993-01-01

    A system for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity.

  4. Rotationally Vibrating Electric-Field Mill

    Science.gov (United States)

    Kirkham, Harold

    2008-01-01

    A proposed instrument for measuring a static electric field would be based partly on a conventional rotating-split-cylinder or rotating-split-sphere electric-field mill. However, the design of the proposed instrument would overcome the difficulty, encountered in conventional rotational field mills, of transferring measurement signals and power via either electrical or fiber-optic rotary couplings that must be aligned and installed in conjunction with rotary bearings. Instead of being made to rotate in one direction at a steady speed as in a conventional rotational field mill, a split-cylinder or split-sphere electrode assembly in the proposed instrument would be set into rotational vibration like that of a metronome. The rotational vibration, synchronized with appropriate rapid electronic switching of electrical connections between electric-current-measuring circuitry and the split-cylinder or split-sphere electrodes, would result in an electrical measurement effect equivalent to that of a conventional rotational field mill. A version of the proposed instrument is described.

  5. Transverse voltage in superconductors at zero applied magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Luz, M.S. da [Escola de Engenharia de Lorena - USP, P.O. Box 116, Lorena, SP 12602-810 (Brazil)], E-mail: luz@physics.montana.edu; Santos, C.A.M. dos; Shigue, C.Y.; Carvalho, F.J.H. de; Machado, A.J.S. [Escola de Engenharia de Lorena - USP, P.O. Box 116, Lorena, SP 12602-810 (Brazil)

    2009-01-01

    A systematic study of the transverse voltage at zero magnetic field in the superconducting state is reported. The effects of warming rate, temperature, applied magnetic field, and electrical current on the transversal resistance (R{sub XY}) of polycrystalline superconducting sample are taken into account. At zero magnetic field two peaks are observed in R{sub XY}(T) curves which are related to the double superconducting transition in the R{sub XX}(T) component. In the superconducting (R{sub XX} = zero) and normal states no transverse voltage has been detected at zero magnetic field as expected. The results are discussed within the framework of the motion of Abrikosov and Josephson vortices and anti-vortices. A new scaling relation between transverse and longitudinal components given by R{sub XY} {approx} dR{sub XX}/dT has been confirmed.

  6. Effects of high external electric fields on protein conformation

    Science.gov (United States)

    Pompa, Pier Paolo; Bramanti, Alessandro; Maruccio, Giuseppe; del Mercato, Loretta Laureana; Chiuri, Rocco; Cingolani, Roberto; Rinaldi, Ross

    2005-06-01

    Resistance of biomolecules to high electric fields is a main concern for nanobioelectronics/nanobiosensing applications, and it is also a relevant issue from a fundamental perspective, to understand the dielectric properties and structural dynamics of proteins. In nanoscale devices, biomolecules may experience electric fields as high as 107 V/m in order to elicit charge transport/transfer. Understanding the effects of such fields on their structural integrity is thus crucial to assess the reliability of biomolecular devices. In this study, we show experimental evidence for the retention of native-like fold pattern by proteins embedded in high electric fields. We have tested the metalloprotein azurin, deposited onto SiO2 substrates in air with proper electrode configuration, by applying high static electric fields (up to 106-107 V/m). The effects on the conformational properties of protein molecules have been determined by means of intrinsic fluorescence measurements. Experimental results indicate that no significant field-induced conformational alteration occurs. This behavior is also discussed and supported by theoretical predictions of the intrinsic intra-protein electric fields. As the general features of such inner fields are not peculiar of azurin, the conclusions presented here should have general validity.

  7. Effect of Electric Field on Outwardly Propagating Spherical Flame

    KAUST Repository

    Mannaa, Ossama

    2012-06-01

    The thesis comprises effects of electric fields on a fundamental study of spheri­cal premixed flame propagation.Outwardly-propagating spherical laminar premixed flames have been investigated in a constant volume combustion vessel by applying au uni-directional electric potential.Direct photography and schlieren techniques have been adopted and captured images were analyzed through image processing. Unstretched laminar burning velocities under the influence of electric fields and their associated Markstein length scales have been determined from outwardly prop­agating spherical flame at a constant pressure. Methane and propane fuels have been tested to assess the effect of electric fields on the differential diffusion of the two fuels.The effects of varying equivalence ratios and applied voltages have been in­vestigated, while the frequency of AC was fixed at 1 KHz. Directional propagating characteristics were analyzed to identify the electric filed effect. The flame morphology varied appreciably under the influence of electric fields which in turn affected the burning rate of mixtures.The flame front was found to propagate much faster toward to the electrode at which the electric fields were supplied while the flame speeds in the other direction were minimally influenced. When the voltage was above 7 KV the combustion is markedly enhanced in the downward direction since intense turbulence is generated and as a result the mixing process or rather the heat and mass transfer within the flame front will be enhanced.The com­bustion pressure for the cases with electric fields increased rapidly during the initial stage of combustion and was relatively higher since the flame front was lengthened in the downward direction.

  8. Electric field measurements from Halley, Antarctica

    Science.gov (United States)

    Nicoll, Keri; Harrison, R. Giles

    2016-04-01

    Antarctica is a unique location for the study of atmospheric electricity. Not only is it one of the most pollutant free places on Earth, but its proximity to the south magnetic pole means that it is an ideal location to study the effects of solar variability on the atmospheric electric field. This is due to the reduced shielding effect of the geomagnetic field at the poles which leads to a greater flux of incoming Galactic Cosmic Rays (GCRs) as well as an increased probability of energetic particle precipitation from SEPs and relativistic electrons. To investigate such effects, two electric field mills of different design were installed at the British Antarctic Survey Halley base in February 2015 (75. 58 degrees south, 26.66 degrees west). Halley is situated on the Brunt Ice Shelf in the south east of the Weddell Sea and has snow cover all year round. Preliminary analysis has focused on selection of fair weather criteria using wind speed and visibility measurements which are vital to assess the effects of falling snow, blowing snow and freezing fog on the electric field measurements. When the effects of such adverse weather conditions are removed clear evidence of the characteristic Carnegie Curve diurnal cycle exists in the Halley electric field measurements (with a mean value of 50V/m and showing a 40% peak to peak variation in comparison to the 34% variation in the Carnegie data). Since the Carnegie Curve represents the variation in thunderstorm activity across the Earth, its presence in the Halley data confirms the presence of the global atmospheric electric circuit signal at Halley. The work presented here will discuss the details of the Halley electric field dataset, including the variability in the fair weather measurements, with a particular focus on magnetic field fluctuations.

  9. Stratospheric electric field measurements with transmediterranean balloons

    Science.gov (United States)

    de La Morena, B. A.; Alberca, L. F.; Curto, J. J.; Holzworth, R. H.

    1993-01-01

    The horizontal component of the stratospheric electric field was measured using a balloon in the ODISEA Campaign of Transmediterranean Balloon Program. The balloon flew between Trapani (Sicily) and El Arenosillo (Huelva, Spain) along the 39 deg N parallel at a height between 34 and 24 km. The high values found for the field on fair-weather and its quasi-turbulent variation, both in amplitude and direction, are difficult to explain with the classical electric field source. A new source, first described by Holzworth (1989), is considered as possibly causing them.

  10. Electric field enhanced hydrogen storage on polarizable materials substrates.

    Science.gov (United States)

    Zhou, J; Wang, Q; Sun, Q; Jena, P; Chen, X S

    2010-02-16

    Using density functional theory, we show that an applied electric field can substantially improve the hydrogen storage properties of polarizable substrates. This new concept is demonstrated by adsorbing a layer of hydrogen molecules on a number of nanomaterials. When one layer of H(2) molecules is adsorbed on a BN sheet, the binding energy per H(2) molecule increases from 0.03 eV/H(2) in the field-free case to 0.14 eV/H(2) in the presence of an electric field of 0.045 a.u. The corresponding gravimetric density of 7.5 wt% is consistent with the 6 wt% system target set by Department of Energy for 2010. The strength of the electric field can be reduced if the substrate is more polarizable. For example, a hydrogen adsorption energy of 0.14 eV/H(2) can be achieved by applying an electric field of 0.03 a.u. on an AlN substrate, 0.006 a.u. on a silsesquioxane molecule, and 0.007 a.u. on a silsesquioxane sheet. Thus, application of an electric field to a polarizable substrate provides a novel way to store hydrogen; once the applied electric field is removed, the stored H(2) molecules can be easily released, thus making storage reversible with fast kinetics. In addition, we show that materials with rich low-coordinated nonmetal anions are highly polarizable and can serve as a guide in the design of new hydrogen storage materials.

  11. Schwinger effect in inhomogeneous electric fields

    CERN Document Server

    Hebenstreit, Florian

    2011-01-01

    The vacuum of quantum electrodynamics is unstable against the formation of many-body states in the presence of an external electric field, manifesting itself as the creation of electron-positron pairs (Schwinger effect). This effect has been a long-standing but still unobserved prediction as the generation of the required field strengths has not been feasible so far. However, due to the advent of a new generation of high-intensity laser systems such as the European XFEL or the Extreme Light Infrastructure (ELI), this effect might eventually become observable within the next decades. Based on the equal-time Wigner formalism, various aspects of the Schwinger effect in electric fields showing both temporal and spatial variations are investigated. Regarding the Schwinger effect in time-dependent electric fields, analytic expressions for the equal-time Wigner function in the presence of a static as well as a pulsed electric field are derived. Moreover, the pair creation process in the presence of a pulsed electric...

  12. Interaction between hollow needles - electric field, light emission and ozone generation study in multineedle to plate electrical discharge

    Science.gov (United States)

    Kriha, Vitezslav

    2004-09-01

    Multi hollow needle to plate electrical discharges in air are studied as ozone sources. Dependence of ozone concentration as an function of applied voltage, discharge current, mutual hollow needles position and electrical connection, working gas flow rate, distances between needles tips and plate electrode, visible light emission was measured experimentally in these systems. Electric field was numerically modeled. Light emission and electrical field distributions were compared. Coming from light emission and electric field a model of energy density spatial distribution was built. This model was finally compared with ozone generation.

  13. Control of colloids with gravity, temperature gradients, and electric fields

    CERN Document Server

    Sullivan, M; Harrison, C; Austin, R H; Megens, M; Hollingsworth, A; Russel, W B; Cheng Zhen; Mason, T; Chaikin, P M

    2003-01-01

    We have used a variety of different applied fields to control the density, growth, and structure of colloidal crystals. Gravity exerts a body force proportional to the buoyant mass and in equilibrium produces a height-dependent concentration profile. A similar body force can be obtained with electric fields on charged particles (electrophoresis), a temperature gradient on all particles, or an electric field gradient on uncharged particles (dielectrophoresis). The last is particularly interesting since its magnitude and sign can be changed by tuning the applied frequency. We study these effects in bulk (making 'dielectrophoretic bottles' or traps), to control concentration profiles during nucleation and growth and near surfaces. We also study control of non-spherical and optically anisotropic particles with the light field from laser tweezers.

  14. Report on Non-Contact DC Electric Field Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Miles, R; Bond, T; Meyer, G

    2009-06-16

    This document reports on methods used to measure DC electrostatic fields in the range of 100 to 4000 V/m using a non-contact method. The project for which this report is written requires this capability. Non-contact measurements of DC fields is complicated by the effect of the accumulation of random space-charges near the sensors which interfere with the measurement of the field-of-interest and consequently, many forms of field measurements are either limited to AC measurements or use oscillating devices to create pseudo-AC fields. The intent of this document is to report on methods discussed in the literature for non-contact measurement of DC fields. Electric field meters report either the electric field expressed in volts per distance or the voltage measured with respect to a ground reference. Common commercial applications for measuring static (DC) electric fields include measurement of surface charge on materials near electronic equipment to prevent arcing which can destroy sensitive electronic components, measurement of the potential for lightning to strike buildings or other exposed assets, measurement of the electric fields under power lines to investigate potential health risks from exposure to EM fields and measurement of fields emanating from the brain for brain diagnostic purposes. Companies that make electric field sensors include Trek (Medina, NY), MKS Instruments, Boltek, Campbell Systems, Mission Instruments, Monroe Electronics, AlphaLab, Inc. and others. In addition to commercial vendors, there are research activities continuing in the MEMS and optical arenas to make compact devices using the principles applied to the larger commercial sensors.

  15. Microwave electric field sensing with Rydberg atoms

    Science.gov (United States)

    Stack, Daniel T.; Kunz, Paul D.; Meyer, David H.; Solmeyer, Neal

    2016-05-01

    Atoms form the basis of precise measurement for many quantities (time, acceleration, rotation, magnetic field, etc.). Measurements of microwave frequency electric fields by traditional methods (i.e. engineered antennas) have limited sensitivity and can be difficult to calibrate properly. Highly-excited (Rydberg) neutral atoms have very large electric-dipole moments and many dipole allowed transitions in the range of 1 - 500 GHz. It is possible to sensitively probe the electric field in this range using the combination of two quantum interference phenomena: electromagnetically induced transparency and the Autler-Townes effect. This technique allows for very sensitive field amplitude, polarization, and sub-wavelength imaging measurements. These quantities can be extracted by measuring properties of a probe laser beam as it passes through a warm rubidium vapor cell. Thus far, Rydberg microwave electrometry has relied upon the absorption of the probe laser. We report on our use of polarization rotation, which corresponds to the real part of the susceptibility, for measuring the properties of microwave frequency electric fields. Our simulations show that when a magnetic field is present and directed along the optical propagation direction a polarization rotation signal exists and can be used for microwave electrometry. One central advantage in using the polarization rotation signal rather than the absorption signal is that common mode laser noise is naturally eliminated leading to a potentially dramatic increase in signal-to-noise ratio.

  16. Electric field induced deformation of sessile drops

    Science.gov (United States)

    Corson, Lindsey; Tsakonas, Costas; Duffy, Brian; Mottram, Nigel; Brown, Carl; Wilson, Stephen

    2014-11-01

    The ability to control the shape of a drop with the application of an electric field has been exploited for many technological applications including measuring surface tension, producing an optical display device, and optimising the optical properties of microlenses. In this work we consider, both theoretically and experimentally, the deformation of pinned sessile drops with contact angles close to either 0° or 90° resting on the lower substrate inside a parallel plate capacitor due to an A.C. electric field. Using both asymptotic and numerical approaches we obtain predictive equations for the static and dynamic drop shape deformations as functions of the key experimental parameters (drop size, capacitor plate separation, electric field magnitude and contact angle). The asymptotic results agree well with the experimental results for a range of liquids. We gratefully acknowledge the financial support of EPSRC via research Grants EP/J009865 and EP/J009873.

  17. Schwinger Pair Production in Pulsed Electric Fields

    CERN Document Server

    Kim, Sang Pyo; Ruffini, Remo

    2012-01-01

    We numerically investigate the temporal behavior and the structure of longitudinal momentum spectrum and the field polarity effect on pair production in pulsed electric fields in scalar quantum electrodynamics (QED). Using the evolution operator expressed in terms of the particle and antiparticle operators, we find the exact quantum states under the influence of electric pulses and measure the number of pairs of the Minkowski particle and antiparticle. The number of pairs, depending on the configuration of electric pulses, exhibits rich structures in the longitudinal momentum spectrum and undergoes diverse dynamical behaviors at the onset of the interaction but always either converges to a momentum-dependent constant or oscillates around a momentum-dependent time average after the completion of fields.

  18. Microfluidic Screening of Electric Fields for Electroporation

    Science.gov (United States)

    Garcia, Paulo A.; Ge, Zhifei; Moran, Jeffrey L.; Buie, Cullen R.

    2016-02-01

    Electroporation is commonly used to deliver molecules such as drugs, proteins, and/or DNA into cells, but the mechanism remains poorly understood. In this work a rapid microfluidic assay was developed to determine the critical electric field threshold required for inducing bacterial electroporation. The microfluidic device was designed to have a bilaterally converging channel to amplify the electric field to magnitudes sufficient to induce electroporation. The bacterial cells are introduced into the channel in the presence of SYTOX®, which fluorescently labels cells with compromised membranes. Upon delivery of an electric pulse, the cells fluoresce due to transmembrane influx of SYTOX® after disruption of the cell membranes. We calculate the critical electric field by capturing the location within the channel of the increase in fluorescence intensity after electroporation. Bacterial strains with industrial and therapeutic relevance such as Escherichia coli BL21 (3.65 ± 0.09 kV/cm), Corynebacterium glutamicum (5.20 ± 0.20 kV/cm), and Mycobacterium smegmatis (5.56 ± 0.08 kV/cm) have been successfully characterized. Determining the critical electric field for electroporation facilitates the development of electroporation protocols that minimize Joule heating and maximize cell viability. This assay will ultimately enable the genetic transformation of bacteria and archaea considered intractable and difficult-to-transfect, while facilitating fundamental genetic studies on numerous diverse microbes.

  19. Noncommuting electric fields and algebraic consistency in noncommutative gauge theories

    Science.gov (United States)

    Banerjee, Rabin

    2003-05-01

    We show that noncommuting electric fields occur naturally in θ-expanded noncommutative gauge theories. Using this noncommutativity, which is field dependent, and a Hamiltonian generalization of the Seiberg-Witten map, the algebraic consistency in the Lagrangian and Hamiltonian formulations of these theories is established. A comparison of results in different descriptions shows that this generalized map acts as a canonical transformation in the physical subspace only. Finally, we apply the Hamiltonian formulation to derive the gauge symmetries of the action.

  20. Dependence of electric field on STM tip preparation

    DEFF Research Database (Denmark)

    Huang, D.H.; Grey, Francois; Aono, M.

    1998-01-01

    Voltage pulses applied between an STM tip and a surface can modify the surface on the nanometer scale due to electric-field-induced evaporation. However, at present, different groups have achieved surface modification with quite different bias conditions, and it is still difficult to obtain high...... reproducibility in such experiments. In this paper, we measure the tip displacement during a pulse at constant tunnelling current, and deduce that the electric field produced by the pulse depends in a systematic way on tip preparation, The results show how differences in tip preparation can be a major source...

  1. Electric Field Quantitative Measurement System and Method

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2016-01-01

    A method and system are provided for making a quantitative measurement of an electric field. A plurality of antennas separated from one another by known distances are arrayed in a region that extends in at least one dimension. A voltage difference between at least one selected pair of antennas is measured. Each voltage difference is divided by the known distance associated with the selected pair of antennas corresponding thereto to generate a resulting quantity. The plurality of resulting quantities defined over the region quantitatively describe an electric field therein.

  2. The convection electric field in auroral substorms

    DEFF Research Database (Denmark)

    Gjerløv, Jesper Wittendorff; Hoffman, R.A.

    2001-01-01

    Dynamics Explorer 2 (DE 2) electric field and ion drift data are used in a statistical study of the ionospheric convection electric field in bulge-type auroral substorms. Thirty-one individual DE 2 substorm crossings were carefully selected and organized by the use of global auroral images obtained...... by DE 1. The selected passes, which occurred during substorm expansion phase, maximum, or early recovery phase, cover the entire nighttime substorm. The organization of the data used the method developed by Fujii et al. [1994], which divided the data into six local time sectors covering the nighttime...

  3. Pulsed electric field assisted assembly of polyaniline

    Science.gov (United States)

    Kumar, Arun; Kazmer, David O.; Barry, Carol M. F.; Mead, Joey L.

    2012-08-01

    Assembling conducting polyaniline (PANi) on pre-patterned nano-structures by a high rate, commercially viable route offers an opportunity for manufacturing devices with nanoscale features. In this work we report for the first time the use of pulsed electric field to assist electrophoresis for the assembly of conducting polyaniline on gold nanowire interdigitated templates. This technique offers dynamic control over heat build-up, which has been a main drawback in the DC electrophoresis and AC dielectrophoresis as well as the main cause of nanowire template damage. The use of this technique allowed higher voltages to be applied, resulting in shorter assembly times (e.g., 17.4 s, assembly resolution of 100 nm). Moreover, the area coverage increases with the increase in number of pulses. A similar trend was observed with the deposition height and the increase in deposition height followed a linear trend with a correlation coefficient of 0.95. When the experimental mass deposited was compared with Hamaker’s theoretical model, the two were found to be very close. The pre-patterned templates with PANi deposition were subsequently used to transfer the nanoscale assembled PANi from the rigid templates to thermoplastic polyurethane using the thermoforming process.

  4. Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation

    Science.gov (United States)

    Huang, Yu; Liu, Anli A; Lafon, Belen; Friedman, Daniel; Dayan, Michael; Wang, Xiuyuan; Bikson, Marom; Doyle, Werner K; Devinsky, Orrin; Parra, Lucas C

    2017-01-01

    Transcranial electric stimulation aims to stimulate the brain by applying weak electrical currents at the scalp. However, the magnitude and spatial distribution of electric fields in the human brain are unknown. We measured electric potentials intracranially in ten epilepsy patients and estimated electric fields across the entire brain by leveraging calibrated current-flow models. When stimulating at 2 mA, cortical electric fields reach 0.4 V/m, the lower limit of effectiveness in animal studies. When individual whole-head anatomy is considered, the predicted electric field magnitudes correlate with the recorded values in cortical (r = 0.89) and depth (r = 0.84) electrodes. Accurate models require adjustment of tissue conductivity values reported in the literature, but accuracy is not improved when incorporating white matter anisotropy or different skull compartments. This is the first study to validate and calibrate current-flow models with in vivo intracranial recordings in humans, providing a solid foundation to target stimulation and interpret clinical trials. DOI: http://dx.doi.org/10.7554/eLife.18834.001 PMID:28169833

  5. Electric field stimulated growth of Zn whiskers

    Science.gov (United States)

    Niraula, D.; McCulloch, J.; Warrell, G. R.; Irving, R.; Karpov, V. G.; Shvydka, Diana

    2016-07-01

    We have investigated the impact of strong (˜104 V/cm) electric fields on the development of Zn whiskers. The original samples, with considerable whisker infestation were cut from Zn-coated steel floors and then exposed to electric fields stresses for 10-20 hours at room temperature. We used various electric field sources, from charges accumulated in samples irradiated by: (1) the electron beam of a scanning electron microscope (SEM), (2) the electron beam of a medical linear accelerator, and (3) the ion beam of a linear accelerator; we also used (4) the electric field produced by a Van der Graaf generator. In all cases, the exposed samples exhibited a considerable (tens of percent) increase in whiskers concentration compared to the control sample. The acceleration factor defined as the ratio of the measured whisker growth rate over that in zero field, was estimated to approach several hundred. The statistics of lengths of e-beam induced whiskers was found to follow the log-normal distribution known previously for metal whiskers. The observed accelerated whisker growth is attributed to electrostatic effects. These results offer promise for establishing whisker-related accelerated life testing protocols.

  6. Coherent anti-Stokes Raman scattering under electric field stimulation

    Science.gov (United States)

    Capitaine, Erwan; Ould Moussa, Nawel; Louot, Christophe; Lefort, Claire; Pagnoux, Dominique; Duclère, Jean-René; Kaneyasu, Junya F.; Kano, Hideaki; Duponchel, Ludovic; Couderc, Vincent; Leproux, Philippe

    2016-12-01

    We introduce an experiment using electro-CARS, an electro-optical method based on the combination of ultrabroadband multiplex coherent anti-Stokes Raman scattering (M-CARS) spectroscopy and electric field stimulation. We demonstrate that this method can effectively discriminate the resonant CARS signal from the nonresonant background owing to a phenomenon of molecular orientation in the sample medium. Such molecular orientation is intrinsically related to the induction of an electric dipole moment by the applied static electric field. Evidence of the electro-CARS effect is obtained with a solution of n -alkanes (CnH2 n +2 , 15 ≤n ≤40 ), for which an enhancement of the CARS signal-to-noise ratio is achieved in the case of CH2 and CH3 symmetric/asymmetric stretching vibrations. Additionally, an electric-field-induced second-harmonic generation experiment is performed in order to corroborate the orientational organization of molecules due to the electric field excitation. Finally, we use a simple mathematical approach to compare the vibrational information extracted from electro-CARS measurements with spontaneous Raman data and to highlight the impact of electric stimulation on the vibrational signal.

  7. Carbon nanotube based separation columns for high electrical field strengths in microchip electrochromatography

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Chen, Miaoxiang Max; Mølhave, Kristian;

    2011-01-01

    Patterning carbon nanotubes into an array of pillars makes it possible to increase the electrical field strength applied across a separation column by more than one order of magnitude.......Patterning carbon nanotubes into an array of pillars makes it possible to increase the electrical field strength applied across a separation column by more than one order of magnitude....

  8. Multilayer graphene under vertical electric field

    OpenAIRE

    Kumar, S. Bala; GUO, Jing

    2011-01-01

    We study the effect of vertical electric field (E-field) on the electronic properties of multilayer graphene. We show that the effective mass, electron velocity and density-of-state of a bilayer graphene are modified under the E-field. We also study the transformation of the band structure of multilayer graphenes. E-field induces finite (zero) bandgap in the even (odd)-layer ABA-stacking graphene. On the other hand, finite bandgap is induced in all ABC-stacking graphene. We also identify the ...

  9. Particle creation by peak electric field

    CERN Document Server

    Adorno, T C; Gitman, D M

    2016-01-01

    The particle creation by the so-called peak electric field is considered. The latter field is a combination of two exponential parts, one exponentially-increasing and another exponentially-decreasing. We find exact solutions of the Dirac equation with the field under consideration with appropriate asymptotic conditions and calculate all the characteristics of particle creation effect, in particular, differential mean numbers of created particle, total number of created particles, and the probability for a vacuum to remain a vacuum. Characteristic asymptotic regimes are discussed in detail and a comparison with the pure asymptotically decaying field is considered.

  10. Particle creation by peak electric field

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Gavrilov, S.P. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Herzen State Pedagogical University of Russia, Department of General and Experimental Physics, St. Petersburg (Russian Federation); Gitman, D.M. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); P. N. Lebedev Physical Institute, Moscow (Russian Federation); University of Sao Paulo, Institute of Physics, CP 66318, Sao Paulo, SP (Brazil)

    2016-08-15

    The particle creation by the so-called peak electric field is considered. The latter field is a combination of two exponential parts, one exponentially increasing and another exponentially decreasing. We find exact solutions of the Dirac equation with the field under consideration with appropriate asymptotic conditions and calculate all the characteristics of particle creation effect, in particular, differential mean numbers of created particle, total number of created particles, and the probability for a vacuum to remain a vacuum. Characteristic asymptotic regimes are discussed in detail and a comparison with the pure asymptotically decaying field is considered. (orig.)

  11. Leidenfrost droplets in an electric field

    Science.gov (United States)

    Wildeman, Sander; Sun, Chao; Lohse, Detlef

    2014-11-01

    In a recent video broadcast dubbed the ``Knitting Needle Experiment,'' astronaut Don Petit aboard the ISS demonstrated how weightless water droplets can be made to orbit a statically charged Teflon rod. We study the earthly analogue of mobile droplets in an electric field, whereby the mobility is ensured by a thin vapor film sustained between the droplet and a hot plate (the Leidenfrost effect). We find that in a strong vertical electric field the droplet starts to bounce progressively higher, defying gravitational attraction. From its trajectory we can deduce the temporal evolution of the charge on the droplet. The measurements show that the charge starts high and then decreases in a step-like manner as the droplet evaporates. The discharge trend is predicted well by treating the droplet as a dielectric sphere in electrical contact with the hot plate, but the mechanism by which definite lumps of charge are transferred through the vapor film is still an open question.

  12. Health of workers exposed to electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Broadbent, D.E.; Broadbent, M.H.; Male, J.C.; Jones, M.R.

    1985-02-01

    The results of health questionnaire interviews with 390 electrical power transmission and distribution workers, together with long term estimates of their exposure to 50 Hz electric fields, and short term measurements of the actual exposure for 287 of them are reported. Twenty eight workers received measurable exposures, averaging about 30 kVm-1h over the two week measurement period. Estimated exposure rates were considerably greater, but showed fair correlation with the measurements. Although the general level of health was higher than we have found in manual workers in other industries, there were significant differences in the health measures between different categories of job, different parts of the country, and in association with factors such as overtime, working alone, or frequently changing shift. After allowing for the effects of job and location, however, we found no significant correlations of health with either measured or estimated exposure to electric fields.

  13. Directing Soft Matter in Water Using Electric Fields.

    Science.gov (United States)

    van der Asdonk, Pim; Kragt, Stijn; Kouwer, Paul H J

    2016-06-29

    Directing the spatial organization of functional supramolecular and polymeric materials at larger length scales is essential for many biological and molecular optoelectronic applications. Although the application of electrical fields is one of the most powerful approaches to induce spatial control, it is rarely applied experimentally in aqueous solutions, since the low susceptibility of soft and biological materials requires the use of high fields, which leads to parasitic heating and electrochemical degradation. In this work, we demonstrate that we can apply electric fields when we use a mineral liquid crystal as a responsive template. Besides aligning and positioning functional soft matter, we show that the concentration of the liquid crystal template controls the morphology of the assembly. As our setup is very easy to operate and our approach lacks specific molecular interactions, we believe it will be applicable for a wide range of (aqueous) materials.

  14. Modelling electricity forward markets by ambit fields

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole; Fred Espen Benth, Fred Espen; Veraart, Almut

    This paper proposes a new modelling framework for electricity forward markets, which is based on ambit fields. The new model can capture many of the stylised facts observed in energy markets. One of the main differences to the traditional models lies in the fact that we do not model the dynamics...

  15. Pulsed Electric Field treatment of packaged food

    NARCIS (Netherlands)

    Roodenburg, B.

    2011-01-01

    Food manufacturers are looking for new preservation techniques that don’t influence the fresh-like characteristics of products. Non-thermal pasteurisation of food with Pulsed Electric Fields (often referred to as PEF) is an emerging technology, where the change of the food is less than with thermal

  16. Preliminary Studies on Pulsed Electric Field Breakdown of Lead Azide

    Science.gov (United States)

    1976-10-01

    1/2 OS CO ton NO. S3L TECHNICAL REPORT 4991 PRELIMINARY SUJDfES ON PULSED ELECTRIC FIELD BREAKDOWN OF LEAD AZIDE L AVRAMI M. BUMS D. DOWNS...Introduction Background A. Contact Effects B. Pulsed Electric Field Measurements Experimental A. Contact Effects B. Pulsed Electric Fields Discussion...B. Pulsed Electric Field Measurements The application of pulsed electric fields to lead azide does not exactly simulate the conditions experienced

  17. Tikekar superdense stars in electric fields

    Science.gov (United States)

    Komathiraj, K.; Maharaj, S. D.

    2007-04-01

    We present exact solutions to the Einstein-Maxwell system of equations with a specified form of the electric field intensity by assuming that the hypersurface {t=constant} are spheroidal. The solution of the Einstein-Maxwell system is reduced to a recurrence relation with variable rational coefficients which can be solved in general using mathematical induction. New classes of solutions of linearly independent functions are obtained by restricting the spheroidal parameter K and the electric field intensity parameter α. Consequently, it is possible to find exact solutions in terms of elementary functions, namely, polynomials and algebraic functions. Our result contains models found previously including the superdense Tikekar neutron star model [J. Math. Phys. 31, 2454 (1990)] when K=-7 and α=0. Our class of charged spheroidal models generalize the uncharged isotropic Maharaj and Leach solutions [J. Math. Phys. 37, 430 (1996)]. In particular, we find an explicit relationship directly relating the spheroidal parameter K to the electromagnetic field.

  18. Effect of Low Electric Fields on Alpha Scintillation Light Yield in Liquid Argon

    CERN Document Server

    Agnes, P; Alexander, T; Alton, A K; Asner, D M; Back, H O; Baldin, B; Biery, K; Bocci, V; Bonfini, G; Bonivento, W; Bossa, M; Bottino, B; Brigatti, A; Brodsky, J; Budano, F; Bussino, S; Cadeddu, M; Cadoni, M; Calaprice, F; Canci, N; Candela, A; Caravati, M; Cariello, M; Carlini, M; Catalanotti, S; Cavalcante, P; Chepurnov, A; Cicalò, C; Cocco, A G; Covone, G; D'Angelo, D; D'Incecco, M; Davini, S; De Cecco, S; De Deo, M; De Vincenzi, M; Derbin, A; Devoto, A; Di Eusanio, F; Di Pietro, G; Dionisi, C; Edkins, E; Empl, A; Fan, A; Fiorillo, G; Fomenko, K; Forster, G; Franco, D; Gabriele, F; Galbiati, C; Giagu, S; Giganti, C; Giovanetti, G K; Goretti, A M; Granato, F; Gromov, M; Guan, M; Guardincerri, Y; Hackett, B R; Herner, K; Hughes, D; Humble, P; Hungerford, E V; Ianni, A; James, I; Johnson, T N; Jollet, C; Keeter, K; Kendziora, C L; Koh, G; Korablev, D; Korga, G; Kubankin, A; Li, X; Lissia, M; Loer, B; Lombardi, P; Longo, G; Ma, Y; Machulin, I N; Mandarano, A; Mari, S M; Maricic, J; Marini, L; Martoff, C J; Meregaglia, A; Meyers, P D; Milincic, R; Miller, J D; Montanari, D; Monte, A; Mount, B J; Muratova, V N; Musico, P; Napolitano, J; Agasson, A Navrer; Odrowski, S; Oleinik, A; Orsini, M; Ortica, F; Pagani, L; Pallavicini, M; Pantic, E; Parmeggiano, S; Pelczar, K; Pelliccia, N; Pocar, A; Pordes, S; Pugachev, D A; Qian, H; Randle, K; Ranucci, G; Razeti, M; Razeto, A; Reinhold, B; Renshaw, A L; Rescigno, M; Riffard, Q; Romani, A; Rossi, B; Rossi, N; Rountree, D; Sablone, D; Saggese, P; Sands, W; Savarese, C; Schlitzer, B; Segreto, E; Semenov, D A; Shields, E; Singh, P N; Skorokhvatov, M D; Smirnov, O; Sotnikov, A; Stanford, C; Suvorov, Y; Tartaglia, R; Tatarowicz, J; Testera, G; Tonazzo, A; Trinchese, P; Unzhakov, E V; Verducci, M; Vishneva, A; Vogelaar, B; Wada, M; Walker, S; Wang, H; Wang, Y; Watson, A W; Westerdale, S; Wilhelmi, J; Wojcik, M M; Xiang, X; Xiao, X; Xu, J; Yang, C; Zhong, W; Zhu, C; Zuzel, G

    2016-01-01

    Measurements were made of scintillation light yield of alpha particles from the $^{222}$Rn decay chain within the DarkSide-50 liquid argon time projection chamber. The light yield was found to increase as the applied electric field increased, with alphas in a 200 V/cm electric field exhibiting a $\\sim$2% increase in light yield compared to alphas in no field.

  19. Effect of low electric fields on alpha scintillation light yield in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Asner, D. M.; Back, H. O.; Baldin, B.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Caravati, M.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cicalò, C.; Cocco, A. G.; Covone, G.; D' Angelo, D.; D' Incecco, M.; Davini, S.; Cecco, S. De; Deo, M. De; Vincenzi, M. De; Derbin, A.; Devoto, A.; Eusanio, F. Di; Pietro, G. Di; Dionisi, C.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, A.; James, I.; Johnson, T. N.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Loer, B.; Lombardi, P.; Longo, G.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Milincic, R.; Miller, J. D.; Montanari, D.; Monte, A.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Agasson, A. Navrer; Odrowski, S.; Oleinik, A.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Sands, W.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xiao, X.; Xu, J.; Yang, C.; Zhong, W.; Zhu, C.; Zuzel, G.

    2017-01-01

    Measurements were made of scintillation light yield of alpha particles from the $^{222}$Rn decay chain within the DarkSide-50 liquid argon time projection chamber. The light yield was found to increase as the applied electric field increased, with alphas in a 200 V/cm electric field exhibiting a 2% increase in light yield compared to alphas in no field.

  20. Electric-field manipulation of magnetization vector direction

    Science.gov (United States)

    Ohno, Hideo

    2009-03-01

    Ferromagnetism and magnetization in Mn-doped III-V semiconductors can be manipulated by various means; by changing its carrier concentration by electric fields [1] or by spin- current flowing along with the electric current [2]. This material system is thus an excellent system to study the physics involved in manipulation of magnetism as well as exploring new ways to control magnetization. Here, we show that electrical control of magnetization direction can be done through manipulating electronically the magnetic anisotropy energies [3]. The basic idea behind the effort is to control the population of carriers on spin-split anisotropic valence bands that governs the magnetic anisotropy energies, which should result in change of the direction of magnetization. In order to measure the magnetic anisotropies under a gate that applies the electric-field to the ferromagnetic semiconductor channel, we used the planar Hall effect. Analyses showed that there are biaxial as well as uniaxial anisotropies. As the sheet carrier concentration is reduced by applying electric- field to the channel, the uniaxial anisotropy field reduced its magnitude and eventually changed its sign, whereas no significant change was apparent in the biaxial anisotropy field. From the electric-field dependent anisotropy fields, one can show that the angle of the magnetization direction in the absence of magnetic fields is modulated by electric-fields by 10 degrees. This opens up a new and unique opportunity for manipulating magnetization direction solely by electronic means, not resorting to magnetic-field, spin-current, mechanical stress, nor multiferroics. The conditions for switching the magnetization direction will also be discussed. The work was done together with D. Chiba, F. Matsukura, M. Sawicki, Y. Nishitani, and Y. Nakatani. [4pt] [1] H. Ohno, et al. Nature 408, 944 (2000). D. Chiba, et al. Science, 301, 943 (2003). D. Chiba, et al. Appl. Phys. Lett. 89, 162505 (2006). [0pt] [2] M

  1. Nanoelectrospray emitter arrays providing interemitter electric field uniformity.

    Science.gov (United States)

    Kelly, Ryan T; Page, Jason S; Marginean, Ioan; Tang, Keqi; Smith, Richard D

    2008-07-15

    Arrays of electrospray ionization (ESI) emitters have been reported previously as a means of enhancing ionization efficiency or signal intensity. A key challenge when working with multiple, closely spaced ESI emitters is overcoming the deleterious effects caused by electrical interference among neighboring emitters. Individual emitters can experience different electric fields depending on their relative position in the array, such that it becomes difficult to operate all of the emitters optimally for a given applied potential. In this work, we have developed multi-nanoESI emitters arranged with a circular pattern, which enable the constituent emitters to experience a uniform electric field. The performance of the circular emitter array was compared to a single emitter and to a previously developed linear emitter array, which verified that improved electric field uniformity was achieved with the circular arrangement. The circular arrays were also interfaced with a mass spectrometer via a matching multicapillary inlet, and the results were compared with those obtained using a single emitter. By minimizing interemitter electric field inhomogeneities, much larger arrays having closer emitter spacing should be feasible.

  2. Cholesteric elastomers in external mechanical and electric fields

    Science.gov (United States)

    Menzel, Andreas M.; Brand, Helmut R.

    2007-01-01

    In our studies, we focus on the reaction of cholesteric side-chain liquid single-crystal elastomers (SCLSCEs) to static external mechanical and electric fields. By means of linearized continuum theory, different geometries are investigated: The mechanical forces are oriented in a direction either parallel or perpendicular to the axis of the cholesteric helix such that they lead to a compression or dilation of the elastomer. Whereas only a homogeneous deformation of the system is found for the parallel case, perpendicularly applied mechanical forces cause either twisting or untwisting of the cholesteric helix. This predominantly depends on the direction in which the director of the cholesteric phase is anchored at the boundaries of the elastomer, and on the sign of a material parameter that describes how deformations of the elastomer couple to the relative rotations between the elastomer and the director. It is also this material parameter that leads to an anisotropy of the mechanical reaction of the system to compression and dilation, due to the liquid crystalline order. The effect of an external electric field is studied when applied parallel to the helix axis of a perfect electric insulator. Here an instability arises at a threshold value of the field amplitude, where the latter results from a competition between the effects of the external electric field on the one hand and the influences of the boundaries of the system, the cholesteric order, and the coupling between the director and the polymer network on the other hand. The instability is either homogeneous in space in the directions perpendicular to the external electric field and includes homogeneous shearing, or, for certain values of the material parameters, there arise undulations of the elastomer and the director orientation perpendicular to the direction of the external electric field at onset. This describes a qualitatively new phenomenon not observed in cholesteric systems yet, as these undulations

  3. Wave packet dynamics under effect of a pulsed electric field

    Science.gov (United States)

    da Silva, A. R. C. B.; de Moura, F. A. B. F.; Dias, W. S.

    2016-06-01

    We studied the dynamics of an electron in a crystalline one-dimensional model under effect of a time-dependent Gaussian field. The time evolution of an initially Gaussian wave packet it was obtained through the numerical solution of the time-dependent Schrödinger equation. Our analysis consists of computing the electronic centroid as well as the mean square displacement. We observe that the electrical pulse is able to promote a special kind of displacement along the chain. We demonstrated a direct relation between the group velocity of the wave packet and the applied electrical pulses. We compare those numerical calculations with a semi-classical approach.

  4. Electric field tuning of phase separation in manganite thin films

    KAUST Repository

    Lourembam, James

    2014-01-29

    In this paper, we investigate the electric field effect on epitaxial Pr0.65(Ca0.75Sr0.25)0.35MnO3 thin films in electric double-layer transistors. Different from the conventional transistors with semiconducting channels, the sub(micrometer)-scale phase separation in the manganite channels is expected to result in inhomogeneous distribution of mobile carriers and local enhancement of electric field. The field effect is much larger in the low-temperature phase separation region compared to that in the high-temperature polaron transport region. Further enhancement of electroresistance is achieved by applying a magnetic field, and a 250% modulation of resistance is observed at 80 K, equivalent to an increase of the ferromagnetic metallic phase fraction by 0.51%, as estimated by the general effective medium model. Our results illustrate the complementary nature of electric and magnetic field effects in phase-separated manganites, providing insights on such novel electronic devices based on complex oxides.

  5. The manipulation of magnetic coercive field and orientation of magnetic anisotropy via electric fields

    Science.gov (United States)

    Xiang, Jun-Sen; Ye, Jun; Yang, Yun-Long; Xie, Yong; Li, Wei; Chen, Zi-Yu

    2016-08-01

    We report the effects of the electric field on the magnetic coercive field (H c) and uniaxial magnetic anisotropy (UMA) orientation of polycrystalline Ni film grown on an unpoled (0 1 1) [Pb(Mg1/3Nb2/3)O3](1-x)-[PbTiO3] x (PMN-PT) single crystal substrate. Under various electric fields, normalized magnetic hysteresis loops of Ni films change in width; this represents the change of coercive field (ΔH c). Loop shapes are found to depend on the angle between the magnetic field and the sample, where changes in the shape reveal a small rotation of UMA. All these changes show that the magnetic properties vary periodically with a periodic electric field, by strain-mediated magnetoelectric coupling in the Ni/Ag/PMN-PT/Ag heterostructure. The poled PMN-PT produces strains under electric fields in the range of  -4.2 kV cm-1  ⩽  E  ⩽  4.2 kV cm-1, then transfers it to Ni films resulting in changes to its H c and UMA. The curves of the in-plane H c and strain, at two mutually orthogonal directions, represent butterfly patterns versus the applied electric field. In addition, the changes observed in both the H c and strain show asymmetric features in two orthogonal directions, which results in a small rotation angle of the UMA of Ni as the electric field decreases. The effective manipulation of magnitude and orientation of magnetic anisotropy via electric fields in ferromagnetic/ferroelectric (FM/FE) heterostructures is an important step towards controlling the magnetic tunnel junctions.

  6. Investigation of electric field distribution on FAC-IR-300 ionization chamber

    Science.gov (United States)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2016-07-01

    One of the important parameters for establishing charge particle equilibrium (CPE) conditions of free-air ionization chamber is an electric field distribution. In this paper, electric field distribution inside the ionization chamber was investigated by finite element method. For this purpose, the effects of adding guard plate and guard strips on the electric field distribution in the ionization chamber were studied. it is necessary to apply a lead box around the ionization chamber body to avoid of scattered radiation effects on the ionization chamber operation, but the lead box changes the electric field distribution. In the following, the effect of lead box on the electric field distribution was studied. Finally, electric field distribution factor (kfield) was calculated by the simulation. The results of the simulation showed that presence of the guard plate and guard strips, and applying a suitable potential to lead box, a convergence of kfield to 1 was achieved.

  7. Possible role of external radial electric field on ion heating in an FRC

    Science.gov (United States)

    Gupta, Deepak; Trask, E.; Korepanov, S.; Granstedt, E.; Osin, D.; Roche, T.; Deng, B.; Beall, M.; Zhai, K.; TAE Team

    2016-10-01

    In C-2/C-2U FRCs, a radial electric field is applied by either plasma guns or biased electrodes inside the divertors, at both ends of the machine. The electric field plays an important role in stabilizing the FRC; thus, providing a favorable target condition to a neutral beam injection. In addition, it is also observed that the application of radial electric field may lead to a heating of ions. Radial profile of impurity ion emission, azimuthal velocity and temperature are measured under different configurations. The conditions and evidences of ion heating due to the electric field biasing will be presented and discussed. Radial momentum balance equation of oxygen impurity ions is used with these measurements to estimate the radial electric field profile. Parameters affecting the ion heating due to biasing will also be discussed with some correlations. The external radial electric field is planned to be applied by biased electrodes and plasma guns in C-2W inner/outer divertors.

  8. Broadband Electric-Field Sensor Array Technology

    Science.gov (United States)

    2012-08-05

    the RF DUT. The RF receiver measures the power output from the photodiode, Prf. Fringing RF electric fields from a microstrip resonator circuit ...are measured by placing the ring resonators on top of the circuit . A photograph of the microstrip resonator circuit is shown in Fig. 6(b). The... circuit is a one port device and consists of a 50 Ω input line gap-coupled to a second 50 Ω microstrip line resonator. From vector network analyzer (VNA

  9. Gas storage and separation by electric field swing adsorption

    Science.gov (United States)

    Currier, Robert P; Obrey, Stephen J; Devlin, David J; Sansinena, Jose Maria

    2013-05-28

    Gases are stored, separated, and/or concentrated. An electric field is applied across a porous dielectric adsorbent material. A gas component from a gas mixture may be selectively separated inside the energized dielectric. Gas is stored in the energized dielectric for as long as the dielectric is energized. The energized dielectric selectively separates, or concentrates, a gas component of the gas mixture. When the potential is removed, gas from inside the dielectric is released.

  10. Spontaneous electric fields in solid films: spontelectrics

    DEFF Research Database (Denmark)

    Field, David; Plekan, Oksana; Cassidy, Andrew

    2013-01-01

    When dipolar gases are condensed at sufficiently low temperature onto a solid surface, they form films that may spontaneously exhibit electric fields in excess of 108V/m. This effect, called the ‘spontelectric effect’, was recently revealed using an instrument designed to measure scattering...... that the spontelectric field generally decreases monotonically with increased deposition temperature, with the exception of methyl formate that shows an increase beyond a critical range of deposition temperature. Films of spontelectric material show a Curie temperature above which the spontelectric effect disappears...

  11. Electrical Resistivity of an Elasmobranch's Ampullary Jelly in Varying Electric and Magnetic Fields

    Science.gov (United States)

    Brown, Brandon; Hughes, Mary E.

    2001-03-01

    The ampullae of Lorenzini are believed to function as the electroreceptive organs in elasmobranch fishes. Though the entire excised organs have been the subject of electrical transport measurements, the jelly that fills the ampullae -- composed primarily of glycoproteins with proteins and dissolved salts -- has received less scrutiny. The specific electromagnetic properties of the jelly contribute to electroreception, and we hope to supply useful parameters to modeling efforts via precise electrical characterization. We report preliminary resistivity measurements from ampullary jelly removed, post mortem, from an adult triaenodon obesus (white-tip reef shark). We present data over a broad range of applied electrical currents. We also present data of the resistivity as a function of applied magnetic field strength.

  12. The Strength of PIN-PMN-PT Single Crystals under Bending with a Longitudinal Electric Field

    Science.gov (United States)

    2011-04-06

    The strength of PIN– PMN – PT single crystals under bending with a longitudinal electric field This article has been downloaded from IOPscience. Please...COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE The Strength Of PIN- PMN - PT Single Crystals Under Bending With A Longitudinal Electric Field... PMN ? PT ) single crystals was measured using a four point bending apparatus with a longitudinal electric field applied to the bar during bending. The

  13. Experimental study on the effects of AC electric fields on flame spreading over polyethylene-insulated electric-wire

    KAUST Repository

    Jin, Young Kyu

    2010-11-01

    In this present study, we experimentally investigated the effects of electric fields on the characteristics of flames spreading over electric-wires with AC fields. The dependence of the rate at which a flame spreads over polyethylene-insulated wires on the frequency and amplitude of the applied AC electric field was examined. The spreading of the flame can be categorized into linear spreading and non-linearly accelerated spreading of flame. This categorization is based on the axial distribution of the field strength of the applied electric field. The rate at which the flame spreads is highly dependent on the inclined direction of the wire fire. It could be possible to explain the spreading of the flame on the basis of thermal balance. © 2010 The Korean Society of Mechanical Engineers.

  14. Electric field and energy of a point electric charge between confocal hyperbolaidal electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ley-Koo, E. [Universidad Nacional Autonoma de Mexico, Mexico, D. F. (Mexico)

    2001-06-01

    The electric potential and intensity field, as well as the energy of a point electric charge between confocal hyperboloidal electrodes is evaluated as a superposition of prolate spheroidal harmonics using the Green-function technique. This study is motivated by the need to model the electric field between the tip and the sample in a scanning tunnelling microscope, and it can also be applied to a conductor-insulator-conductor junction. [Spanish] Los campos de potencial y de intensidad electrica, asi como la energia de una carga electrica puntual entre electrodos hiperboloidales confocales se evaluan como superposiciones de armonicos esferoidales prolatos usando la tecnica de la funcion de Green. Este estudio ha sido motivado por la necesidad de modelar el campo electrico entre la punta y la muestra de un microscopio de tunelamiento y barrido, y se puede aplicar tambien a una union de conductor-aislante-conductor.

  15. Intraband Absorption In Gaas-(ga,al)as Variably Spaced Semiconductor Superlattices Under Crossed Electric And Magnetic Fields

    OpenAIRE

    Reyes-Gomez, E; Raigoza, N; Oliveira, LE

    2013-01-01

    A theoretical study of the intraband absorption properties of GaAs-Ga1-xAlxAs variably spaced semiconductor superlattices under crossed magnetic and electric fields is presented. Calculations are performed for the applied electric field along the growth-axis direction, whereas the magnetic field is considered parallel to the heterostructure layers. By defining a critical electric field so that the heterostructure energy levels are aligned in the absence of the applied magnetic fields, one fin...

  16. Electric-Field-Enhanced Jumping-Droplet Condensation

    Science.gov (United States)

    Miljkovic, Nenad; Preston, Daniel; Enright, Ryan; Limia, Alexander; Wang, Evelyn

    2013-11-01

    When condensed droplets coalesce on a superhydrophobic surface, the resulting droplet can jump due to the conversion of surface energy into kinetic energy. This frequent out-of-plane droplet jumping has the potential to enhance condensation heat and mass transfer. In this work, we demonstrated that these jumping droplets accumulate positive charge that can be used to further increase condensation heat transfer via electric fields. We studied droplet jumping dynamics on silanized nanostructured copper oxide surfaces. By characterizing the droplet trajectories under various applied external electric fields (0 - 50 V/cm), we show that condensation on superhydrophobic surfaces results in a buildup of negative surface charge (OH-) due to dissociated water ion adsorption on the superhydrophobic coating. Consequently, the opposite charge (H3O +) accumulates on the coalesced jumping droplet. Using this knowledge, we demonstrate electric-field-enhanced jumping droplet condensation whereby an external electric field opposes the droplet vapor flow entrainment towards the condensing surface to increase the droplet removal rate and overall surface heat transfer by 100% when compared to state-of-the-art dropwise condensing surfaces. This work not only shows significant condensation heat transfer enhancement through the passive charging of condensed droplets, but promises a low cost approach to increase efficiency for applications such as atmospheric water harvesting and dehumidification.

  17. Electrical Grounding - a Field for Geophysicists and Electrical Engineers Partnership

    Science.gov (United States)

    Freire, P. F.; Pane, E.; Guaraldo, N.

    2012-12-01

    , layered stratified or showing lateral variations, ranging down to several tens of kilometers deep, reaching the crust-mantle interface (typically with the order of 30-40 km). This work aims to analyze the constraints of the current soil models being used for grounding electrodes design, and suggests the need of a soil modeling methodology compatible with large grounding systems. Concerning the aspects related to soil modeling, electrical engineers need to get aware of geophysics resources, such as: - geophysical techniques for soil electrical resistivity prospection (down to about 15 kilometers deep); and - techniques for converting field measured data, from many different geophysical techniques, into adequate soil models for grounding grid simulation. It is also important to equalize the basic knowledge for the professionals that are working together for the specific purpose of soil modeling for electrical grounding studies. The authors have experienced the situation of electrical engineers working with geophysicists, but it was not clear for the latter the effective need of the electrical engineers, and for the engineers it was unknown the available geophysical resources, and also, what to do convert the large amount of soil resistivity data into a reliable soil model.

  18. Transient electrical field across cellular membranes: pulsed electric field treatment of microbial cells

    Energy Technology Data Exchange (ETDEWEB)

    Timoshkin, I V [High Voltage Technologies Group, Institute for Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom); MacGregor, S J [High Voltage Technologies Group, Institute for Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom); Fouracre, R A [High Voltage Technologies Group, Institute for Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom); Crichton, B H [High Voltage Technologies Group, Institute for Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom); Anderson, J G [Robertson Trust Laboratory for Electronic Sterilization Technologies (ROLEST), Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom)

    2006-02-07

    The pulsed electric field (PEF) treatment of liquid and pumpable products contaminated with microorganisms has attracted significant interest from the pulsed power and bioscience research communities particularly because the inactivation mechanism is non-thermal, thereby allowing retention of the original nutritional and flavour characteristics of the product. Although the biological effects of PEF have been studied for several decades, the physical mechanisms of the interaction of the fields with microorganisms is still not fully understood. The present work is a study of the dynamics of the electrical field both in a PEF treatment chamber with dielectric barriers and in the plasma (cell) membrane of a microbial cell. It is shown that the transient process can be divided into three physical phases, and models for these phases are proposed and briefly discussed. The complete dynamics of the time development of the electric field in a spherical dielectric shell representing the cellular membrane is then obtained using an analytical solution of the Ohmic conduction problem. It was found that the field in the membrane reaches a maximum value that could be two orders of magnitude higher than the original Laplacian electrical field in the chamber, and this value was attained in a time comparable to the field relaxation time in the chamber. Thus, the optimal duration of the field during PEF treatment should be equal to such a time.

  19. Electric Field Induced Surface Modification of Au

    Energy Technology Data Exchange (ETDEWEB)

    Erchak, A.A.; Franklin, G.F.; Houston, J.E.; Mayer, T.M.; Michalske, T.A.

    1999-02-15

    We discuss the role of localized high electric fields in the modification of Au surfaces with a W probe using the Interfacial Force Microscope. Upon bringing a probe close to a Au surface, we measure both the interfacial force and the field emission current as a function of separation with a constant potential of 100 V between tip and sample. The current initially increases exponentially as the separation decreases. However, at a distance of less than {approximately} 500{angstrom} the current rises sharply as the surface begins to distort and rapidly close the gap. Retraction of the tip before contact is made reveals the formation of a mound on the surface. We propose a simple model, in which the localized high electric field under the tip assists the production of mobile Au adatoms by detachment from surface steps, and a radial field gradient causes a net flux of atoms toward the tip by surface diffusion. These processes give rise to an unstable surface deformation which, if left unchecked, results in a destructive mechanical contact. We discuss our findings with respect to earlier work using voltage pulses in the STM as a means of nanofabrication.

  20. The electroresponse properties of alginate films under the electric field

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I.J.; Kang, H.W.; Jeong, C.N. [Sunchon National University, Sunchon (Korea)

    2002-05-01

    Alginate is a natural ionic polymer including numerous anionic groups and can be actuated by the ionic group under the electric field. The crosslinked alginate films were fabricated with CaCl{sub 2}. The thermal, mechanical and electroresponse properties of the films were investigated by thermogravimetric analysis, tensile and bending tests. The initial degradation and tensile strength increased according to the degree of crosslinking. Also, the swelling ratio of the films increased with decreasing degree of crosslinking and increasing pH due to free volume and electrostatic repulsion. The films actuated by an electric stimulus exhibited gentle and flexible action like a pendulum. In the electric field, the electric stimuli such as the applied voltage, ionic strength and kind of electrolyte solution had an effect on the electroresponse of the films. Alginate films with 5 wt% crosslinking agent showed the highest bending angle and reversible bending behavior. When the ionic strength of NaCl and KCI electrolyte solution was 0.1 M, the films showed the highest electroresponse. The bending behavior of the films increased with the applied voltage. (author). 18 refs., 12 figs.

  1. Stabilization and destabilization effects of the electric field on stochastic precipitate pattern formation

    NARCIS (Netherlands)

    Lagzi, István; Izsák, Ferenc

    2004-01-01

    Stabilization and destabilization effects of an applied electric field on the Liesegang pattern formation in low concentration gradient were studied with numerical model simulations. In the absence of an electric field pattern formation exhibits increasingly stochastic behaviour as the initial conce

  2. Controlling turbulent drag across electrolytes using electric fields

    Science.gov (United States)

    Lee, Alpha; Ostilla-Mónico, Rodolfo

    2016-11-01

    Controlling friction is a crucial problem in engineering science. Using direct numerical simulation, we investigate the phenomenology of turbulent Couette flows in electrolytes sheared by charged surfaces. We show how the presence of large shear rates affects the structure, dynamics and stress generation in the electrical double layer. The constant injection of energy from the sheared boundaries drives the double layer far from thermodynamic equilibrium, thus placing conventional statistical physical intuitions on a more tenuous footing. Critically, we uncover regimes where friction associated with turbulent dissipation could be controlled by applying an electric field. The implications of our results on chaotic electrokinetic flows and the non-equilibrium electrical double layer in other electrokinetic settings will also be discussed.

  3. Characterization of composite particles responsive to electric and magnetic fields

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiaopeng; GUO Hongxia

    2004-01-01

    The multilayer particles with responses to electric and magnetic fields are a prerequisite for particles assembled under external fields. Three routes to produce particles responsive to electric and magnetic fields are presented in this article. The size and morphology, properties as well as the electric-magnetic responses of three kinds of particles are comparatively discussed. This will provide a useful basis for the control of the behavior of the particles in suspensions by external electric and magnetic fields.

  4. Difficulties in applying numerical simulations to an evaluation of occupational hazards caused by electromagnetic fields

    OpenAIRE

    Zradziński, Patryk

    2015-01-01

    Due to the various physical mechanisms of interaction between a worker's body and the electromagnetic field at various frequencies, the principles of numerical simulations have been discussed for three areas of worker exposure: to low frequency magnetic field, to low and intermediate frequency electric field and to radiofrequency electromagnetic field. This paper presents the identified difficulties in applying numerical simulations to evaluate physical estimators of direct and indirect effec...

  5. Radial-Electric-Field Piezoelectric Diaphragm Pumps

    Science.gov (United States)

    Bryant, Robert G.; Working, Dennis C.; Mossi, Karla; Castro, Nicholas D.; Mane, Pooma

    2009-01-01

    In a recently invented class of piezoelectric diaphragm pumps, the electrode patterns on the piezoelectric diaphragms are configured so that the electric fields in the diaphragms have symmetrical radial (along-the-surface) components in addition to through-the-thickness components. Previously, it was accepted in the piezoelectric-transducer art that in order to produce the out-of-plane bending displacement of a diaphragm needed for pumping, one must make the electric field asymmetrical through the thickness, typically by means of electrodes placed on only one side of the piezoelectric material. In the present invention, electrodes are placed on both sides and patterned so as to produce substantial radial as well as through-the-thickness components. Moreover, unlike in the prior art, the electric field can be symmetrical through the thickness. Tests have shown in a given diaphragm that an electrode configuration according to this invention produces more displacement than does a conventional one-sided electrode pattern. The invention admits of numerous variations characterized by various degrees of complexity. Figure 1 is a simplified depiction of a basic version. As in other piezoelectric diaphragm pumps of similar basic design, the prime mover is a piezoelectric diaphragm. Application of a suitable voltage to the electrodes on the diaphragm causes it to undergo out-of-plane bending. The bending displacement pushes a fluid out of, or pulls the fluid into, a chamber bounded partly by the diaphragm. Also as in other diaphragm pumps in general, check valves ensure that the fluid flows only in through one port and only out through another port.

  6. Spinning Janus doublets driven in uniform AC electric fields

    CERN Document Server

    Boymelgreen, Alicia; Park, Sinwook; Miloh, Touvia

    2013-01-01

    We provide an experimental proof-of-concept for a robust, continuously rotating microstructure - consisting of two metallodielectric (gold-polystyrene)Janus particles rigidly attached to each other - which is driven in uniform ac fields by asymmetric induced-charge electroosmosis. The pairs (doublets) are stabilized on the substrate surface which is parallel to the plane of view and normal to the direction of the applied electric field. We find that the radius of orbit and angular velocity of the pair are predominantly dependent on the relative orientations of the interfaces between the metallic and dielectric hemispheres and that the electrohydrodynamic particle-particle interactions are small. Additionally, we verify that both the angular and linear velocities of the pair are proportional to the square of the applied field which is consistent with the theory for non-linear electrokinetics. A simple kinematic rigid body model is used to predict the paths and double velocities (angular and linear) based on th...

  7. Electric field control of Skyrmions in magnetic nanodisks

    Science.gov (United States)

    Nakatani, Y.; Hayashi, M.; Kanai, S.; Fukami, S.; Ohno, H.

    2016-04-01

    The control of magnetic Skyrmions confined in a nanometer scale disk using electric field pulses is studied by micromagnetic simulation. A stable Skyrmion can be created and annihilated by an electric field pulse depending on the polarity of the electric field. Moreover, the core direction of the Skyrmion can be switched using the same electric field pulses. Such creation and annihilation of Skyrmions, and its core switching do not require any magnetic field and precise control of the pulse length. This unconventional manipulation of magnetic texture using electric field pulses allows a robust way of controlling magnetic Skyrmions in nanodiscs, a path toward building ultralow power memory devices.

  8. AC Electric Field Activated Shape Memory Polymer Composite

    Science.gov (United States)

    Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.

    2011-01-01

    Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.

  9. Electric fields, weighting fields, signals and charge diffusion in detectors including resistive materials

    CERN Document Server

    AUTHOR|(CDS)2067623

    2016-01-01

    In this report we discuss static and time dependent electric fields in detector geometries with an arbitrary number of parallel layers of a given permittivity and weak conductivity. We derive the Green's functions i.e. the field of a point charge, as well as the weighting fields for readout pads and readout strips in these geometries. The effect of 'bulk' resistivity on electric fields and signals is investigated. The spreading of charge on thin resistive layers is also discussed in detail, and the conditions for allowing the effect to be described by the diffusion equation is discussed. We apply the results to derive fields and induced signals in Resistive Plate Chambers, Micromega detectors including resistive layers for charge spreading and discharge protection as well as detectors using resistive charge division readout like the MicroCAT detector. We also discuss in detail how resistive layers affect signal shapes and increase crosstalk between readout electrodes.

  10. Electric-field-induced second harmonic generation in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Lafrentz, Marco; Brunne, David; Kaminski, Benjamin; Bayer, Manfred [Experimentelle Physik 2, Technische Universitaet Dortmund, D-44221 Dortmund (Germany); Yakovlev, Dmitri R. [Experimentelle Physik 2, Technische Universitaet Dortmund, D-44221 Dortmund (Germany); Ioffe Physico-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); Pavlov, Victor V.; Pisarev, Roman V. [Ioffe Physico-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation)

    2011-07-01

    We report on electric-field-induced second-harmonic generation (SHG) in the GaAs semiconductor in the vicinity of the band gap. The light has been send along 001-crystallographic direction. In this geometry SHG is forbidden in electric-dipole approximation. In applied electric field the SHG signal arises due to field-induced symmetry breaking causing new optical nonlinearities. Electric-field and temperature investigations assign the strong signal at E(2{omega})=1.517 eV for T=2 K to excitonic resonance. This phenomenon is a supplementary tool for detailed investigation of complex susceptibilities we have reported on in the past.

  11. Electrostatic air filters generated by electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W.; Biermann, A.H.; Hebard, H.D.; Lum, B.Y.; Kuhl, W.D.

    1981-01-27

    This paper presents theoretical and experimental findings on fibrous filters converted to electrostatic operation by a nonionizing electric field. Compared to a conventional fibrous filter, the electrostatic filter has a higher efficiency and a longer, useful life. The increased efficiency is attributed to a time independent attraction between polarized fibers and charged, polarized particles and a time dependent attraction between charged fibers and charged, polarized particles. The charge on the fibers results from a dynamic process of charge accumulation due to the particle deposits and a charge dissipation due to the fiber conductivity.

  12. Plasma instabilities in high electric fields

    DEFF Research Database (Denmark)

    Morawetz, K.; Jauho, Antti-Pekka

    1994-01-01

    We analyze nonequilibrium screening with nonequilibrium Green function techniques. By employing the generalized Kadanoff-Baym ansatz to relate the correlation function to the nonequilibrium distribution function, the latter of which is assumed to be a shifted Maxwellian, an analytically tractable...... expression is derived for the nonequilibrium dielectric function epsilon(K, omega). For certain values of momenta K and frequency omega, Imepsilon(K, omega) becomes negative, implying a plasma instability. This new instability exists only for strong electric fields, underlining its nonequilibrium origin....

  13. Numerical study of the influence of an applied electrical potential on the solidification of a binary metal alloy

    OpenAIRE

    Nikrityuk, P. A.; Eckert, K.; Grundmann, R

    2007-01-01

    In this work we study numerically the influence of a homogeneous electrical field on the fluid and heat transfer phenomena at macroscale and mesoscale during unidirectional solidification of a binary metal alloy. The numerical results showed that a pulse electric discharging applied perpendicularly to the solidification front leads to a much stronger Joule heating of the liquid phase in comparison to the solid phase. It was found that on the mesoscopic scale the electric current density is no...

  14. Shielding ultracold dipolar molecular collisions with electric fields

    Science.gov (United States)

    Quéméner, Goulven; Bohn, John

    2016-05-01

    The prospect for shielding ultracold dipolar molecules from inelastic and reactive collisions is investigated. Molecules placed in their first rotationally excited states are found to exhibit effective long-range repulsion for applied electric fields above a certain critical value. This repulsion can safely allow the molecules to scatter while reducing the risk of inelastic or chemically reactive collisions. Several molecular species of molecules of experimental interest such as NaRb, NaK, RbSr, SrF, BaF, and YO, are considered and all are shown to exhibit orders of magnitude suppression in quenching rates in a sufficiently strong laboratory electric field. We acknowledge the financial support of the COPOMOL project (ANR-13-IS04-0004) from Agence Nationale de la Recherche and the ARO MURI Grant No. W911NF-12-1-0476.

  15. Shielding $^2\\Sigma$ ultracold dipolar molecular collisions with electric fields

    CERN Document Server

    Quéméner, Goulven

    2016-01-01

    The prospects for shielding ultracold, paramagnetic, dipolar molecules from inelastic and chemical collisions are investigated. Molecules placed in their first rotationally excited states are found to exhibit effective long-range repulsion for applied electric fields above a certain critical value, as previously shown for non-paramagnetic molecules. This repulsion can safely allow the molecules to scatter while reducing the risk of inelastic or chemically reactive collisions. Several molecular species of $^2\\Sigma$ molecules of experimental interest -- RbSr, SrF, BaF, and YO -- are considered, and all are shown to exhibit orders of magnitude suppression in quenching rates in a sufficiently strong laboratory electric field. It is further shown that, for these molecules described by Hund's coupling case b, electronic and nuclear spins play the role of spectator with respect to the shielding.

  16. Evaluation of DC electric field distribution of PPLP specimen based on the measurement of electrical conductivity in LN2

    Science.gov (United States)

    Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Lee, Jong-Geon; Cho, Jeon-Wook; Ryoo, Hee-Suk; Lee, Bang-Wook

    2013-11-01

    High temperature superconducting (HTS) cable has been paid much attention due to its high efficiency and high current transportation capability, and it is also regarded as eco-friendly power cable for the next generation. Especially for DC HTS cable, it has more sustainable and stable properties compared to AC HTS cable due to the absence of AC loss in DC HTS cable. Recently, DC HTS cable has been investigated competitively all over the world, and one of the key components of DC HTS cable to be developed is a cable joint box considering HVDC environment. In order to achieve the optimum insulation design of the joint box, analysis of DC electric field distribution of the joint box is a fundamental process to develop DC HTS cable. Generally, AC electric field distribution depends on relative permittivity of dielectric materials but in case of DC, electrical conductivity of dielectric material is a dominant factor which determines electric field distribution. In this study, in order to evaluate DC electric field characteristics of the joint box for DC HTS cable, polypropylene laminated paper (PPLP) specimen has been prepared and its DC electric field distribution was analyzed based on the measurement of electrical conductivity of PPLP in liquid nitrogen (LN2). Electrical conductivity of PPLP in LN2 has not been reported yet but it should be measured for DC electric field analysis. The experimental works for measuring electrical conductivity of PPLP in LN2 were presented in this paper. Based on the experimental works, DC electric field distribution of PPLP specimen was fully analyzed considering the steady state and the transient state of DC. Consequently, it was possible to determine the electric field distribution characteristics considering different DC applying stages including DC switching on, DC switching off and polarity reversal conditions.

  17. Electric field gradient, generalized Sternheimer shieldings and electric field gradient polarizabilities by multiconfigurational SCF response

    Science.gov (United States)

    Rizzo, Antonio; Ruud, Kenneth; Helgaker, Trygve; Jaszuński, Michał

    1998-08-01

    The electric field gradient (EFG) at the nuclei, the generalized Sternheimer shielding constants and the EFG electric dipole polarizabilities are computed for eight small molecules employing multiconfigurational self-consistent field wave functions and the corresponding linear and quadratic response functions. The molecules studied are H2, N2, CO, HF, C2H2, HCl, HCN, and HNC, all of which are linear. For the hydrogen molecule, full configuration-interaction results for the properties are also reported. The dependence of the computed quantities on the basis set and the electron-correlation treatment is analyzed.

  18. Dielectric Fluid in Inhomogeneous Pulsed Electric Field

    CERN Document Server

    Shneider, M N

    2013-01-01

    We consider the dynamics of a compressible fluid under the influence of electrostrictive ponderomotive forces in strong inhomogeneous nonstationary electric fields. It is shown that if the fronts of the voltage rise at a sharp, needle-like electrode are rather steep (less than or about nanoseconds), and the region of negative pressure arises, which can reach values at which the fluid loses its continuity with the formation of cavitation ruptures. If the voltage on the electrode is not large enough or the front is flatter, the cavitation in the liquid does not occur. However, a sudden shutdown of the field results in a reverse flow of liquid from the electrode, which leads to appearance of negative pressure, and, possibly, cavitation.

  19. ELECTRIC FIELD SENSORS BASED ON MEMS TECHNOLOGY

    Institute of Scientific and Technical Information of China (English)

    Gong Chao; Xia Shanhong; Deng Kai; Bai Qiang; Chen Shaofeng

    2005-01-01

    The design and optimization of two types of novel miniature vibrating Electric Field Sensors (EFSs) based on Micro Electro Mechanical Systems (MEMS) technology are presented.They have different structures and vibrating modes. The volume is much smaller than other types of charge-induced EFSs such as field-mills. As miniaturizing, the induced signal is reduced enormously and a high sensitive circuit is needed to detect it. Elaborately designed electrodes can increase the amplitude of the output current, making the detecting circuit simplified and improving the signal-to-noise ratio. Computer simulations for different structural parameters of the EFSs and vibrating methods have been carried out by Finite Element Method (FEM). It is proved that the new structures are realizable and the output signals are detectable.

  20. Nonlinear relaxation field in charged systems under high electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Morawetz, K

    2000-07-01

    The influence of an external electric field on the current in charged systems is investigated. The results from the classical hierarchy of density matrices are compared with the results from the quantum kinetic theory. The kinetic theory yields a systematic treatment of the nonlinear current beyond linear response. To this end the dynamically screened and field-dependent Lenard-Balescu equation is integrated analytically and the nonlinear relaxation field is calculated. The classical linear response result known as Debye - On-Sager relaxation effect is only obtained if asymmetric screening is assumed. Considering the kinetic equation of one specie the other species have to be screened dynamically while the screening with the same specie itself has to be performed statically. Different other approximations are discussed and compared. (author)

  1. Electric Eels Concentrate Their Electric Field to Induce Involuntary Fatigue in Struggling Prey.

    Science.gov (United States)

    Catania, Kenneth C

    2015-11-16

    Nature is replete with predator venoms that immobilize prey by targeting ion channels. Electric eels (Electrophorus electricus) take a different tactic to accomplish the same end. Striking eels emit electricity in volleys of 1 ms, high-voltage pulses. Each pulse is capable of activating prey motor neuron efferents, and hence muscles. In a typical attack, eel discharges cause brief, immobilizing tetanus, allowing eels to swallow small prey almost immediately. Here I show that when eels struggle with large prey or fish held precariously, they commonly curl to bring their own tail to the opposite side of prey, sandwiching it between the two poles of their powerful electric organ. They then deliver volleys of high-voltage pulses. Shortly thereafter, eels juggle prey into a favorable position for swallowing. Recordings from electrodes placed within prey items show that this curling behavior at least doubles the field strength within shocked prey, most likely ensuring reliable activation of the majority of prey motor neurons. Simulated pulse trains, or pulses from an eel-triggered stimulator, applied to a prey muscle preparations result in profound muscle fatigue and loss of contractile force. Consistent with this result, video recordings show that formerly struggling prey are temporarily immobile after this form of attack, allowing the manipulation of prey that might otherwise escape. These results reveal a unique use of electric organs to a unique end; eels superimpose electric fields from two poles, ensuring maximal remote activation of prey efferents that blocks subsequent prey movement by inducing involuntary muscle fatigue.

  2. Functionally Graded Interfaces: Role and Origin of Internal Electric Field and Modulated Electrical Response.

    Science.gov (United States)

    Maurya, Deepam; Zhou, Yuan; Chen, Bo; Kang, Min-Gyu; Nguyen, Peter; Hudait, Mantu K; Priya, Shashank

    2015-10-14

    We report the tunable electrical response in functionally graded interfaces in lead-free ferroelectric thin films. Multilayer thin film graded heterostructures were synthesized on platinized silicon substrate with oxide layers of varying thickness. Interestingly, the graded heterostructure thin films exhibited shift of the hysteresis loops on electric field and polarization axes depending upon the direction of an applied bias. A diode-like characteristics was observed in current-voltage behavior under forward and reverse bias. This modulated electrical behavior was attributed to the perturbed dynamics of charge carriers under internal bias (self-bias) generated due to the increased skewness of the potential wells. The cyclic sweeping of voltage further demonstrated memristor-like current-voltage behavior in functionally graded heterostructure devices. The presence of an internal bias assisted the generation of photocurrent by facilitating the separation of photogenerated charges. These novel findings provide opportunity to design new circuit components for the next generation of microelectronic device architectures.

  3. Ab-initio study of the relation between electric polarization and electric field gradients in ferroelectrics

    CERN Document Server

    Gonçalves, J N; Correia, J G; Butz, T; Picozzi, S; Fenta, A S; Amaral, V S

    2012-01-01

    The hyperfine interaction between the quadrupole moment of atomic nuclei and the electric field gradient (EFG) provides information on the electronic charge distribution close to a given atomic site. In ferroelectric materials, the loss of inversion symmetry of the electronic charge distribution is necessary for the appearance of the electric polarization. We present first-principles density functional theory calculations of ferroelectrics such as BaTiO$_{3}$, KNbO$_{3}$, PbTiO$_{3}$ and other oxides with perovskite structures, by focusing on both EFG tensors and polarization. We analyze the EFG tensor properties such as orientation and correlation between components and their relation with electric polarization. This work supports previous studies of ferroelectric materials where a relation between EFG tensors and polarization was observed, which may be exploited to study the ferroelectric order when standard techniques to measure polarization are not easily applied.

  4. Experimental Investigation of Integrated Optical Intensive Impulse Electric Field Sensors

    Institute of Scientific and Technical Information of China (English)

    SUN Bao; CHEN Fu-Shen

    2009-01-01

    We design and fabricate an integrated optical electric field sensor with segmented electrode for intensive im-pulse electric field measurement. The integrated optical sensor is based on a Mach-Zehnder interferometer with segmented electrodes. The output/input character of the sensing system is analysed and measured. The max-imal detectable electric field range (-75 kV/m to 245 kV/m) is obtained by analysing the results. As a result, the integrated optics electric field sensing system is suitable for transient intensive electric field measurement investigation.

  5. A Generalized Model for Transport of Contaminants in Soil by Electric Fields

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Baek, Kitae; Alshawabkeh, Iyad D.

    2012-01-01

    A generalized model applicable to soils contaminated with multiple species under enhanced boundary conditions during treatment by electric fields is presented. The partial differential equations describing species transport are developed by applying the law of mass conservation to their fluxes...

  6. Electric-field variations within a nematic-liquid-crystal layer.

    Science.gov (United States)

    Cummings, L J; Mema, E; Cai, C; Kondic, L

    2014-07-01

    A thin layer of nematic liquid crystal (NLC) across which an electric field is applied is a setup of great industrial importance in liquid crystal display devices. There is thus a large literature modeling this situation and related scenarios. A commonly used assumption is that an electric field generated by electrodes at the two bounding surfaces of the layer will produce a field that is uniform: that is, the presence of NLC does not affect the electric field. In this paper, we use calculus of variations to derive the equations coupling the electric potential to the orientation of the NLC's director field, and use a simple one-dimensional model to investigate the limitations of the uniform field assumption in the case of a steady applied field. The extension of the model to the unsteady case is also briefly discussed.

  7. Effects of AC Electric Field on Small Laminar Nonpremixed Flames

    KAUST Repository

    Xiong, Yuan

    2015-04-01

    Electric field can be a viable method in controlling various combustion properties. Comparing to traditional actuators, an application of electric field requires very small power consumption. Especially, alternating current (AC) has received attention recently, since it could modulate flames appreciably even for the cases when direct current (DC) has minimal effects. In this study, the effect of AC electric fields on small coflow diffusion flames is focused with applications of various laser diagnostic techniques. Flow characteristics of baseline diffusion flames, which corresponds to stationary small coflow diffusion flames when electric field is not applied, were firstly investigated with a particular focus on the flow field in near-nozzle region with the buoyancy force exerted on fuels due to density differences among fuel, ambient air, and burnt gas. The result showed that the buoyancy force exerted on the fuel as well as on burnt gas significantly distorted the near-nozzle flow-fields. In the fuels with densities heavier than air, recirculation zones were formed very close to the nozzle exit. Nozzle heating effect influenced this near-nozzle flow-field particularly among lighter fuels. Numerical simulations were also conducted and the results showed that a fuel inlet boundary condition with a fully developed velocity profile for cases with long fuel tubes should be specified inside the fuel tube to obtain satisfactory agreement in both the flow and temperature fields with those from experiment. With sub-critical AC applied to the baseline flames, particle image velocimetry (PIV), light scattering, laser-induced incandescence (LII), and laser-induced fluores- cence (LIF) techniques were adopted to identify the flow field and the structures of OH, polycyclic aromatic hydrocarbons (PAHs), soot zone. Under certain AC condi- tions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered from the

  8. EMERGING TECHNOLOGY SUMMARY: THEORETICAL AND EXPERIMENTAL MODELING OF MULTI-SPECIES TRANSPORT IN SOILS UNDER ELECTRIC FIELDS

    Science.gov (United States)

    This project investigated an innovative approach for transport of inorganic species under the influence of electric fields. This process, commonly known as electrokinetics uses low-level direct current (dc) electrical potential difference across a soil mass applied through inert...

  9. Local Heat Transfer to an Evaporating Sessile Droplet in an Electric Field

    Science.gov (United States)

    Gibbons, M. J.; Howe, C. M.; Di Marco, P.; Robinson, A. J.

    2016-09-01

    Local heat transfer of an evaporating sessile droplet under a static electric field is an underdeveloped topic. In this research an 80 μl water droplet is placed in the centre of a 25 μm thick stainless steel substrate. A static electric field is applied by an electrode positioned 10 mm above the substrate. A high speed thermal imaging camera is placed below the substrate to capture the thermal footprint of the evaporating droplet. Four electric fields were characterised; 0, 5, 10 and 11 kV/cm. As the electric field is increased the contact angle was observed to decrease. The local heat flux profile, peak and radial location of this peek were observed to be independent of the applied electric field for all test points for this working fluid and surface combination.

  10. Manipulation of nano-entities in suspension by electric fields

    Science.gov (United States)

    Fan, Donglei

    Nanoscale entities, including nanospheres, nanodisks, nanorings, nanowires and nanotubes are potential building blocks for nanoscale devices. Among them, nanowires is an important type of nanoparticles, due to the potential application in microelectronics and bio-diagnosis. Manipulation of nanowires in suspension has been a formidable problem. As described in this thesis, using AC electric fields applied to strategically designed microelectrodes, nanowires in suspension can be driven to align, to chain, to accelerate in directions parallel and perpendicular to its orientation, to concentrate onto designated places, and to disperse in a controlled manner with high efficiency despite an extremely low Reynolds number at the level of 10-5. Randomly oriented nanowires in suspension can be rapidly assembled into extended nonlinear structures within seconds. We show that both the electric field and its gradient play the essential roles of aligning and transporting the nanowires into scaffolds according to the electric field distributions inherent to the geometry of the microelectrodes. The assembling efficiency depends strongly on the frequency of the applied AC voltages and varies as square of the voltage. Furthermore, nanowires have been rotated by AC electric fields applied to strategically designed electrodes. The rotation of the nanowires can be instantly switched on or off with precisely controlled rotation speed (to at least 25000 rpm), definite chirality, and total angle of rotation. This new method has been used to controllably rotate magnetic and non-magnetic nanowires as well as multi-wall carbon nanotubes. We have also produced a micromotor using a rotating nanowire that can drive particles into circular motion. This has application to microfluidic devices, micro-stirrers, and micro electromechanical systems (MEMS). To move and place nanowires onto designated locations with high precision, electrophoretic force has been combined with dielectrophoretic force to

  11. Numerical simulation of the leaky dielectric microdroplet generation in electric fields

    Science.gov (United States)

    Kamali, Reza; Manshadi, Mohammad Karim Dehghan

    2016-07-01

    Microdroplet generation has a vast range of applications in the chemical, biomedical, and biological sciences. Several devices are applied to produce microdroplets, such as Co-flow, T-junction and Flow-focusing. The important point in the producing process is controlling the separated fluid volume in these devices. On the other hand, a large number of liquids, especially aqueous one, are influenced by electric or magnetic fields. As a consequence, an electric field could be used in order to affect the separated fluid volume. In this study, effects of an electric field on the microdroplet generation in a Co-flow device are investigated numerically. Furthermore, effects of some electrical properties such as permittivity on the separating process of microdroplets are studied. Leaky dielectric and perfect dielectric models are used in this investigation. According to the results, in the microdroplet generating process, leaky dielectric fluids show different behaviors, when an electric field is applied to the device. In other words, in a constant electric field strength, the volume of generated microdroplets can increase or decrease, in comparison with the condition without the electric field. However, for perfect dielectric fluids, droplet volume always decreases with increasing the electric field strength. In order to validate the numerical method of this study, deformation of a leaky dielectric droplet in an electric field is investigated. Results are compared with Taylor theoretical model.

  12. Dynamics of an electric dipole moment in a stochastic electric field.

    Science.gov (United States)

    Band, Y B

    2013-08-01

    The mean-field dynamics of an electric dipole moment in a deterministic and a fluctuating electric field is solved to obtain the average over fluctuations of the dipole moment and the angular momentum as a function of time for a Gaussian white-noise stochastic electric field. The components of the average electric dipole moment and the average angular momentum along the deterministic electric-field direction do not decay to zero, despite fluctuations in all three components of the electric field. This is in contrast to the decay of the average over fluctuations of a magnetic moment in a stochastic magnetic field with Gaussian white noise in all three components. The components of the average electric dipole moment and the average angular momentum perpendicular to the deterministic electric-field direction oscillate with time but decay to zero, and their variance grows with time.

  13. Energy consumption in Hodgkin–Huxley type fast spiking neuron model exposed to an external electric field

    Directory of Open Access Journals (Sweden)

    K. Usha

    2016-09-01

    Full Text Available This paper evaluates the change in metabolic energy required to maintain the signalling activity of neurons in the presence of an external electric field. We have analysed the Hodgkin–Huxley type conductance based fast spiking neuron model as electrical circuit by changing the frequency and amplitude of the applied electric field. The study has shown that, the presence of electric field increases the membrane potential, electrical energy supply and metabolic energy consumption. As the amplitude of applied electric field increases by keeping a constant frequency, the membrane potential increases and consequently the electrical energy supply and metabolic energy consumption increases. On increasing the frequency of the applied field, the peak value of membrane potential after depolarization gradually decreases as a result electrical energy supply decreases which results in a lower rate of hydrolysis of ATP molecules.

  14. B3LYP study of water adsorption on cluster models of Pt(1 1 1), Pt(1 0 0) and Pt(1 1 0): Effect of applied electric field

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Raquel; Orts, Jose Manuel [Departamento de Quimica Fisica e Instituto Universitario de Electroquimica, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)

    2008-11-01

    A density functional theory (DFT) study of the adsorption of a water molecule on Pt(1 1 1), Pt(1 0 0) and Pt(1 1 0) surfaces has been carried out using cluster models, at the B3LYP/LANL2DZ,6-311++G(d,p) level. The water molecule binds preferentially at the top site on Pt(1 1 1) and Pt(1 0 0) with adsorption energy around -27 kJ mol{sup -1}, and is oriented with the molecular plane nearly parallel to the metal surface and the H atoms pointing away from it. On Pt(1 1 0) a hollow site is preferred, with adsorption energy of -32 kJ mol{sup -1}. Potential energy barriers for the rotation around an axis normal to the surface have been estimated to be below 1 kJ mol{sup -1} for Pt(1 1 1) and Pt(1 0 0) when water is adsorbed on top. Upon application of an external electric field (inducing positive charge density on the metal) adsorbed water is additionally stabilized on the three surfaces, especially at the top adsorption site, and adsorption on Pt(1 1 1) and Pt(1 0 0) becomes more favoured than on Pt(1 1 0). Good agreement has been found between harmonic vibrational frequencies calculated at the B3LYP/LANL2DZ,6-311++G(d,p) level and experimental frequencies for adsorbed water monomers on Pt(h k l) surfaces. (author)

  15. Muscle maintenance by volitional contraction against applied electrical stimulation.

    Science.gov (United States)

    Nago, Takeshi; Umezu, Yuichi; Shiba, Naoto; Matsuse, Hiroo; Maeda, Takashi; Tagawa, Yoshihiko; Nagata, Kensei; Basford, Jeffrey R

    2007-01-01

    Muscle training exercises are needed for muscular endurance during spaceflight. This study was designed to investigate effects of volitional contraction against applied electrical stimulation on the muscular endurance of the proximal upper extremity. Thirteen healthy sedentary men were allocated into two groups. One group participated in a hybrid (HYB) exercise regimen in which the biceps brachii was stimulated as he volitionally extended his elbow, and the triceps brachii was stimulated as the volitionally flexed his elbow. The second group underwent a similar regimen in which the electrical stimulation (ELS) was alternatively delivered to the biceps brachii and then to the triceps brachii with the limb fixed. Forty-second surface electromyography (EMG) recordings at 50% maximum voluntary contraction (MVC) were made as baseline data at just before starting the training regimen, and again conclusion. The median frequency (MF) and mean power frequency (MPF) slopes with time were determined using power spectrum analysis. There were statistical significance only for the triceps in which the MF and MPF slopes in the HYB Group became less negative over the period of study (from -45.7+/-14.7 and -47.0+/-8.6%/min at baseline to -36.9+/-10.7 and -36.8+/-7.0%/min at the end of training, respectively). The corresponding values for these slopes in the ELS Group showed opposite tends with less marked changes of borderline significance for MF and of statistical significance for MPF. These results suggested that the HYB exercise regimen was capable of producing an improvement in triceps but not biceps brachii.

  16. Resistive memory effects in BiFeO3 single crystals controlled by transverse electric fields

    Science.gov (United States)

    Kawachi, S.; Kuroe, H.; Ito, T.; Miyake, A.; Tokunaga, M.

    2016-04-01

    The effects of electric fields perpendicular to the c-axis of the trigonal cell in single crystals of BiFeO3 are investigated through magnetization and resistance measurements. Magnetization and resistance exhibit hysteretic changes under applied electric fields, which can be ascribed to the reorientation of the magnetoelectric domains. Samples are repetitively switched between high- and low-resistance states by changing the polarity of the applied electric fields over 20 000 cycles at room temperature. These results demonstrate the potential of BiFeO3 for use in non-volatile memory devices.

  17. Patchy particle packing under electric fields.

    Science.gov (United States)

    Song, Pengcheng; Wang, Yufeng; Wang, Yu; Hollingsworth, Andrew D; Weck, Marcus; Pine, David J; Ward, Michael D

    2015-03-01

    Colloidal particles equipped with two, three, or four negatively charged patches, which endow the particles with 2-fold, 3-fold, or tetrahedral symmetries, form 1D chains, 2D layers, and 3D packings when polarized by an AC electric field. Two-patch particles, with two patches on opposite sides of the particle (2-fold symmetry) pack into the cmm plane group and 3D packings with I4mm space group symmetry, in contrast to uncharged spherical or ellipsoidal colloids that typically crystallize into a face-centered ABC layer packing. Three-patch particles (3-fold symmetry) form chains having a 21 screw axis symmetry, but these chains pair in a manner such that each individual chain has one-fold symmetry but the pair has 21 screw axis symmetry, in an arrangement that aligns the patches that would favor Coulombic interactions along the chain. Surprisingly, some chain pairs form unanticipated double-helix regions that result from mutual twisting of the chains about each other, illustrating a kind of polymorphism that may be associated with nucleation from short chain pairs. Larger 2D domains of the three-patch particles crystallize in the p6m plane group with alignment (with respect to the field) and packing densities that suggest random disorder in the domains, whereas four-patch particles form 2D domains in which close-packed rows are aligned with the field.

  18. Liquid methanol under a static electric field

    Energy Technology Data Exchange (ETDEWEB)

    Cassone, Giuseppe, E-mail: giuseppe.cassone@impmc.upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7590, IMPMC, F-75005 Paris (France); CNRS, UMR 7590, IMPMC, F-75005 Paris (France); Università degli Studi di Messina, Dipartimento di Fisica e di Scienze della Terra, Contrada Papardo, 98166 Messina (Italy); CNR-IPCF, Viale Ferdinando Stagno d’Alcontres 37, 98158 Messina (Italy); Giaquinta, Paolo V., E-mail: paolo.giaquinta@unime.it [Università degli Studi di Messina, Dipartimento di Fisica e di Scienze della Terra, Contrada Papardo, 98166 Messina (Italy); Saija, Franz, E-mail: saija@ipcf.cnr.it [CNR-IPCF, Viale Ferdinando Stagno d’Alcontres 37, 98158 Messina (Italy); Saitta, A. Marco, E-mail: marco.saitta@impmc.upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7590, IMPMC, F-75005 Paris (France); CNRS, UMR 7590, IMPMC, F-75005 Paris (France)

    2015-02-07

    We report on an ab initio molecular dynamics study of liquid methanol under the effect of a static electric field. We found that the hydrogen-bond structure of methanol is more robust and persistent for field intensities below the molecular dissociation threshold whose value (≈0.31 V/Å) turns out to be moderately larger than the corresponding estimate obtained for liquid water. A sustained ionic current, with ohmic current-voltage behavior, flows in this material for field intensities above 0.36 V/Å, as is also the case of water, but the resulting ionic conductivity (≈0.40 S cm{sup −1}) is at least one order of magnitude lower than that of water, a circumstance that evidences a lower efficiency of proton transfer processes. We surmise that this study may be relevant for the understanding of the properties and functioning of technological materials which exploit ionic conduction, such as direct-methanol fuel cells and Nafion membranes.

  19. Electric field enhancement of depolarization of excited states

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, M.H.; Hillard, G.B.; Glab, W.L.

    1985-12-01

    Our calculations show that an external dc electric field can enhance by many orders of magnitude the depolarization cross section of highly excited atoms by charged particles. The enhancement is due to the fact that the electric field extends and shifts the electronic charge distribution along its direction, thus effectively creating a giant electric dipole in the atom.

  20. Mapping of steady-state electric fields and convective drifts in geomagnetic fields - Part 2: The IGRF

    Science.gov (United States)

    Walker, A. D. M.

    2016-01-01

    A method of mapping electric fields along geomagnetic field lines is applied to the IGRF (International Geomagnetic Reference Field) model. The method involves integrating additional sets of first order differential equations simultaneously with those for tracing a magnetic field line. These provide a measure of the rate of change of the separation of two magnetic field lines separated by an infinitesimal amount. From the results of the integration Faraday's law is used to compute the electric field as a function of position along the field line. Examples of computations from a software package developed to implement the method are presented. This is expected to be of use in conjugate studies of magnetospheric phenomena such as SuperDARN (Super Dual Auroral Radar) observations of convection in conjugate hemispheres, or comparison of satellite electric field observations with fields measured in the ionosphere.

  1. Neutron scattering techniques for betaine calcium chloride dihydrate under applied external field (temperature, electric field and hydrostatic pressure); Etude par diffusion de neutrons du chlorure de calcium et de betaine dihydrate sous champ externe applique (temperature, champ electrique et pression hydrostatique)

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, O

    1997-11-17

    We have studied with neutron scattering techniques betaine calcium chloride dihydrate (BCCD), a dielectric aperiodic crystal which displays a Devil`s staircase type phase diagram made up of several incommensurate and commensurate phases, having a range of stability very sensitive to temperature, electric field and hydrostatic pressure. We have measured a global hysteresis of {delta}(T) of about 2-3 K in the two incommensurate phases. A structural study of the modulated commensurate phases 1/4 and 1/5 allows us to evidence that the atomic modulation functions are anharmonic. The relevance of the modelization of the modulated structure by polar Ising pseudo-spins is then directly established. On the basis of group theory calculation in the four dimensional super-space, we interpret this anharmonic modulation as a soliton regime with respect to the lowest-temperature non modulated ferroelectric phase. The continuous character of the transition to the lowest-temperature non modulated phase and the diffuse scattering observed in this phase are accounted for the presence of ferroelectric domains separated by discommensurations. Furthermore, we have shown that X-rays induce in BCCD a strong variation with time of irradiation of the intensity of satellite peaks, and more specifically for third order ones. This is why the `X-rays` structural model is found more harmonic than the `neutron` one. Under electric field applied along the vector b axis, we confirm that commensurate phases with {delta} = even/odd are favoured and hence are polar along this direction. We have evidenced at 10 kV / cm two new higher order commensurate phases in the phase INC2, corroborating the idea of a `complete` Devil`s air-case phase diagram. A phenomenon of generalized coexistence of phases occurs above 5 kV / cm. We have characterized at high field phase transitions between `coexisting` phases, which are distinguishable from classical lock-in transitions. Under hydrostatic pressure, our results

  2. BUBBLES OF LANDAU-LIFSHITZ EQUATIONS WITH APPLIED FIELDS

    Institute of Scientific and Technical Information of China (English)

    Ding Shijin; Guo Boling

    2005-01-01

    In this paper, we discuss the Landau-Lifshitz equations with applied magnetic fields. The equations describing the bubbles in the ferromagnets and the behaviors of the solutions near the singularities are given. We found that the applied fields do not affect the bubbles and we have the same conclusions as in reference [1].

  3. Ex Vivo and In Silico Feasibility Study of Monitoring Electric Field Distribution in Tissue during Electroporation Based Treatments

    Science.gov (United States)

    Kranjc, Matej; Bajd, Franci; Sersa, Igor; Woo, Eung Je; Miklavcic, Damijan

    2012-01-01

    Magnetic resonance electrical impedance tomography (MREIT) was recently proposed for determining electric field distribution during electroporation in which cell membrane permeability is temporary increased by application of an external high electric field. The method was already successfully applied for reconstruction of electric field distribution in agar phantoms. Before the next step towards in vivo experiments is taken, monitoring of electric field distribution during electroporation of ex vivo tissue ex vivo and feasibility for its use in electroporation based treatments needed to be evaluated. Sequences of high voltage pulses were applied to chicken liver tissue in order to expose it to electric field which was measured by means of MREIT. MREIT was also evaluated for its use in electroporation based treatments by calculating electric field distribution for two regions, the tumor and the tumor-liver region, in a numerical model based on data obtained from clinical study on electrochemotherapy treatment of deep-seated tumors. Electric field distribution inside tissue was successfully measured ex vivo using MREIT and significant changes of tissue electrical conductivity were observed in the region of the highest electric field. A good agreement was obtained between the electric field distribution obtained by MREIT and the actual electric field distribution in evaluated regions of a numerical model, suggesting that implementation of MREIT could thus enable efficient detection of areas with insufficient electric field coverage during electroporation based treatments, thus assuring the effectiveness of the treatment. PMID:23029212

  4. Ex vivo and in silico feasibility study of monitoring electric field distribution in tissue during electroporation based treatments.

    Directory of Open Access Journals (Sweden)

    Matej Kranjc

    Full Text Available Magnetic resonance electrical impedance tomography (MREIT was recently proposed for determining electric field distribution during electroporation in which cell membrane permeability is temporary increased by application of an external high electric field. The method was already successfully applied for reconstruction of electric field distribution in agar phantoms. Before the next step towards in vivo experiments is taken, monitoring of electric field distribution during electroporation of ex vivo tissue ex vivo and feasibility for its use in electroporation based treatments needed to be evaluated. Sequences of high voltage pulses were applied to chicken liver tissue in order to expose it to electric field which was measured by means of MREIT. MREIT was also evaluated for its use in electroporation based treatments by calculating electric field distribution for two regions, the tumor and the tumor-liver region, in a numerical model based on data obtained from clinical study on electrochemotherapy treatment of deep-seated tumors. Electric field distribution inside tissue was successfully measured ex vivo using MREIT and significant changes of tissue electrical conductivity were observed in the region of the highest electric field. A good agreement was obtained between the electric field distribution obtained by MREIT and the actual electric field distribution in evaluated regions of a numerical model, suggesting that implementation of MREIT could thus enable efficient detection of areas with insufficient electric field coverage during electroporation based treatments, thus assuring the effectiveness of the treatment.

  5. Electric-field-controlled unpinning of scroll waves

    Science.gov (United States)

    Jiménez, Zulma A.; Zhang, Zhihui; Steinbock, Oliver

    2013-11-01

    Three-dimensional excitation vortices exist in systems such as chemical reactions and the human heart. Their one-dimensional rotation backbone can pin to unexcitable heterogeneities, which greatly affect the structure, dynamics, and lifetime of the vortex. In experiments with the Belousov-Zhabotinsky reaction, we demonstrate vortex unpinning from a pair of inert and impermeable spheres using externally applied electric fields. Unpinning occurs abruptly but is preceded by a slow reorientation and deformation of the initially circular vortex loop. Our experimental findings are reproduced by numerical simulations of an excitable reaction-diffusion-advection model.

  6. Analysis of circular wave packets generated by pulsed electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, S., E-mail: shuhei@concord.itp.tuwien.ac.at [Institute for Theoretical Physics, Vienna University of Technology, Vienna (Austria); Reinhold, C.O. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6372 (United States); Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States); Burgdoerfer, J. [Institute for Theoretical Physics, Vienna University of Technology, Vienna (Austria); Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States); Wyker, B.; Ye, S.; Dunning, F.B. [Department of Physics and Astronomy and the Rice Quantum Institute, Rice University, Houston, TX 77005-1892 (United States)

    2012-05-15

    We demonstrate that circular wave packets in high Rydberg states generated by a pulsed electric field applied to extreme Stark states are characterized by a position-dependent energy gradient that leads to a correlation between the principal quantum number n and the spatial coordinate. This correlation is rather insensitive to the initial state and can be seen even in an incoherent mix of states such as is generated experimentally allowing information to be placed into, and extracted from, such wave packets. We show that detailed information on the spatial distribution of a circular wave packet can be extracted by analyzing the complex phase of its expansion coefficients.

  7. Analysis of Circular Wave Packets Generated by Pulsed Electric Fields

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, S. [Vienna University of Technology, Austria; Reinhold, Carlos O [ORNL; Burgdorfer, J. [Vienna University of Technology, Austria; Wyker, B. [Rice University; Ye, S. [Rice University; Dunning, F. B. [Rice University

    2011-01-01

    We demonstrate that circular wave packets in high Rydberg states generated using a pulsed electric field applied to extreme Stark states are characterized by a position-dependent energy gradient that leads to a correlation between the principal quantum number n and the spatial coordinate. This correlation is rather insensitive to the initial state and can be seen even in an incoherent mix of states such as is generated experimentally allowing information to be placed into, and extracted from, such wavepackets. We show that detailed information on the spatial distribution of a circular wave packet can be extracted by analyzing the complex phase of its expansion coefficient.

  8. Electric field effect on (6,0) zigzag single-walled aluminum nitride nanotube.

    Science.gov (United States)

    Baei, Mohammad T; Peyghan, Ali Ahmadi; Moghimi, Masoumeh

    2012-09-01

    Structural, electronic, and electrical responses of the H-capped (6,0) zigzag single-walled aluminum nitride nanotube was studied under the parallel and transverse electric fields with strengths 0-140 × 10(-4) a.u. by using density functional calculations. Geometry optimizations were carried out at the B3LYP/6-31G* level of theory using a locally modified version of the GAMESS electronic structure program. The dipole moments, atomic charge variations, and total energy of the (6,0) zigzag AlNNT show increases with increase in the applied external electric field strengths. The length, tip diameters, electronic spatial extent, and molecular volume of the nanotube do not significantly change with increasing electric field strength. The energy gap of the nanotube decreases with increases of the electric field strength and its reactivity is increased. Increase of the ionization potential, electron affinity, chemical potential, electrophilicity, and HOMO and LUMO in the nanotube with increase of the applied parallel electric field strengths shows that the parallel field has a much stronger interaction with the nanotube with respect to the transverse electric field strengths. Analysis of the parameters indicates that the properties of AlNNTs can be controlled by the proper external electric field.

  9. Dynamics of Drop Formation in an Electric Field.

    Science.gov (United States)

    Notz; Basaran

    1999-05-01

    The effect of an electric field on the formation of a drop of an inviscid, perfectly conducting liquid from a capillary which protrudes from the top plate of a parallel-plate capacitor into a surrounding dynamically inactive, insulating gas is studied computationally. This free boundary problem which is comprised of the surface Bernoulli equation for the transient drop shape and the Laplace equation for the velocity potential inside the drop and the electrostatic potential outside the drop is solved by a method of lines incorporating the finite element method for spatial discretization. The finite element algorithm employed relies on judicious use of remeshing and element addition to a two-region adaptive mesh to accommodate large domain deformations, and allows the computations to proceed until the thickness of the neck connecting an about to form drop to the rest of the liquid in the capillary is less than 0.1% of the capillary radius. The accuracy of the computations is demonstrated by showing that in the absence of an electric field predictions made with the new algorithm are in excellent agreement with boundary integral calculations (Schulkes, R. M. S. M. J. Fluid Mech. 278, 83 (1994)) and experimental measurements on water drops (Zhang, X., and Basaran, O. A. Phys. Fluids 7(6), 1184 (1995)). In the presence of an electric field, the algorithm predicts that as the strength of the applied field increases, the mode of drop formation changes from simple dripping to jetting to so-called microdripping, in accordance with experimental observations (Cloupeau, M., and Prunet-Foch, B. J. Aerosol Sci. 25(6), 1021 (1994); Zhang, X., and Basaran, O. A. J. Fluid Mech. 326, 239 (1996)). Computational predictions of the primary drop volume and drop length at breakup are reported over a wide range of values of the ratios of electrical, gravitational, and inertial forces to surface tension force. In contrast to previously mentioned cases where both the flow rate in the tube

  10. Electric field effect on the magnetization process for a very thin Co60Fe40 film

    Science.gov (United States)

    Suzuki, K. Z.; Ranjbar, R.; Sugihara, A.; Kondo, Y.; Mizukami, S.

    2016-08-01

    The electric field effect on the magnetization process for a very thin Co60Fe40 film was studied. The magnetization process under the electric field was characterized using tunnel magnetoresistance curves measured in a fully-epitaxial (001)-oriented CoFe(1)/MgO/CoFe(3) (thickness in nanometers) magnetic tunnel junction, where both the CoFe electrodes are magnetized in- plane. The out-of-plane saturation field of the thinner CoFe electrode changed linearly by varying the applied voltage, and the field-induced change of saturation field was estimated to be -0.10 TV-1. This change in the saturation field is interpreted as the electric field induced change in a perpendicular magnetic anisotropy originating from the CoFe/MgO interface. The electric field effect efficiency was estimated to be about 200 fJV-1 m-1.

  11. Effects of charging and electric field on graphene functionalized with titanium.

    Science.gov (United States)

    Gürel, H Hakan; Ciraci, S

    2013-07-10

    Titanium atoms are adsorbed to graphene with a significant binding energy and render diverse functionalities to it. Carrying out first-principles calculations, we investigated the effects of charging and static electric field on the physical and chemical properties of graphene covered by Ti adatoms. When uniformly Ti covered graphene is charged positively, its antiferromagnetic ground state changes to ferromagnetic metal and attains a permanent magnetic moment. Static electric field applied perpendicularly causes charge transfer between Ti and graphene, and can induce metal-insulator transition. While each Ti adatom adsorbed to graphene atom can hold four hydrogen molecules with a weak binding, these molecules can be released by charging or applying electric field perpendicularly. Hence, it is demonstrated that charging and applied static electric field induce quasi-continuous and side specific modifications in the charge distribution and potential energy of adatoms absorbed to single-layer nanostructures, resulting in fundamentally crucial effects on their physical and chemical properties.

  12. The influence of electric field and confinement on cell motility.

    Science.gov (United States)

    Huang, Yu-Ja; Samorajski, Justin; Kreimer, Rachel; Searson, Peter C

    2013-01-01

    The ability of cells to sense and respond to endogenous electric fields is important in processes such as wound healing, development, and nerve regeneration. In cell culture, many epithelial and endothelial cell types respond to an electric field of magnitude similar to endogenous electric fields by moving preferentially either parallel or antiparallel to the field vector, a process known as galvanotaxis. Here we report on the influence of dc electric field and confinement on the motility of fibroblast cells using a chip-based platform. From analysis of cell paths we show that the influence of electric field on motility is much more complex than simply imposing a directional bias towards the cathode or anode. The cell velocity, directedness, as well as the parallel and perpendicular components of the segments along the cell path are dependent on the magnitude of the electric field. Forces in the directions perpendicular and parallel to the electric field are in competition with one another in a voltage-dependent manner, which ultimately govern the trajectories of the cells in the presence of an electric field. To further investigate the effects of cell reorientation in the presence of a field, cells are confined within microchannels to physically prohibit the alignment seen in 2D environment. Interestingly, we found that confinement results in an increase in cell velocity both in the absence and presence of an electric field compared to migration in 2D.

  13. The influence of electric field and confinement on cell motility.

    Directory of Open Access Journals (Sweden)

    Yu-Ja Huang

    Full Text Available The ability of cells to sense and respond to endogenous electric fields is important in processes such as wound healing, development, and nerve regeneration. In cell culture, many epithelial and endothelial cell types respond to an electric field of magnitude similar to endogenous electric fields by moving preferentially either parallel or antiparallel to the field vector, a process known as galvanotaxis. Here we report on the influence of dc electric field and confinement on the motility of fibroblast cells using a chip-based platform. From analysis of cell paths we show that the influence of electric field on motility is much more complex than simply imposing a directional bias towards the cathode or anode. The cell velocity, directedness, as well as the parallel and perpendicular components of the segments along the cell path are dependent on the magnitude of the electric field. Forces in the directions perpendicular and parallel to the electric field are in competition with one another in a voltage-dependent manner, which ultimately govern the trajectories of the cells in the presence of an electric field. To further investigate the effects of cell reorientation in the presence of a field, cells are confined within microchannels to physically prohibit the alignment seen in 2D environment. Interestingly, we found that confinement results in an increase in cell velocity both in the absence and presence of an electric field compared to migration in 2D.

  14. Biological effects of electric fields: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, L.E.; Phillips, R.D.

    1983-11-01

    An overview of the literature suggests tha electric-field exposure is an environmental agent/influence of relatively low potential toxicity to biological systems. Generally, many of the biological effects which have been reported are quite subtle and differences between exposed and unexposed subjects may be masked by normal biological variations. However, several recent reports indicate possibly more serious consequences from chronic exposure, emphasizing the need for more research in epidemiology and laboratory experiments. This paper presents a cursory overview of investigations on the biological consequences of exposure to ELF electromagnetic fields. Three important topics are discussed, including: 1) the general methodology of exposure experiments, including those elements which are critical for definitive studies in biological systems; 2) a brief discussion of epidemiological and clinical studies conducted to date; and 3) a somewhat more extensive examination of animal experiments representing major areas of investigation (behavior, biological rhythms, nervous and endocrine systems, bone growth and repair, cardiovascular system and blood chemistry, immunology, reproduction, growth and development mortality and pathology, cellular and membrane studies, and mutagenesis). A discussion of current concepts, possible mechanisms and future directions of research is presented. 110 references.

  15. An exact line integral representation of the physical optics scattered field: the case of a perfectly conducting polyhedral structure illuminated by electric Hertzian dipoles

    DEFF Research Database (Denmark)

    Johansen, Peter M.; Breinbjerg, Olav

    1995-01-01

    An exact line integral representation of the electric physical optics scattered field is presented. This representation applies to scattering configurations with perfectly electrically conducting polyhedral structures illuminated by a finite number of electric Hertzian dipoles. The positions...

  16. High-field electron transport in GaN under crossed electric and magnetic fields

    Science.gov (United States)

    Kochelap, V. A.; Korotyeyev, V. V.; Syngayivska, G. I.; Varani, L.

    2015-10-01

    High-field electron transport studied in crossed electric and magnetic fields in bulk GaN with doping of 1016 cm-3, compensation around 90% at the low lattice temperature (30 K). It was found the range of the magnetic and electric fields where the non-equilibrium electron distribution function has a complicated topological structure in the momentum space with a tendency to the formation of the inversion population. Field dependences of dissipative and Hall components of the drift velocity were calculated for the samples with short- and open- circuited Hall contacts in wide ranges of applied electric (0 — 20 kV/cm) and magnetic (1 — 10 T) fields. For former sample, field dependences of dissipative and Hall components of the drift velocity have a non-monotonic behavior. The dissipative component has the inflection point which corresponds to the maximum point of the Hall component. For latter sample, the drift velocity demonstrate a usual sub-linear growth without any critical points. We found that GaN samples with controlled resistance of the Hall circuit can be utilized as a electronic high-power switch.

  17. The field of the vertical electric dipole immersed in the heterogeneous half-space

    Science.gov (United States)

    Barsukov, P. O.; Fainberg, E. B.

    2014-07-01

    The field of the vertical electric dipole (VED) immersed in the heterogeneous conductive halfspace (sea) is analyzed in time domain. In the near field of the source, the amplitudes of the electric and magnetic components of the field are proportional to power 3/2 and power 5/2 of the conductivity of the medium, respectively. After termination of the transmitter pulse, all the VED components decay with time as ˜1/ t 5/2. The possibility of applying the VED field for estimating the electrical properties of the offshore geological sections is demonstrated.

  18. A generalization information management system applied to electrical distribution

    Energy Technology Data Exchange (ETDEWEB)

    Geisler, K.I.; Neumann, S.A.; Nielsen, T.D.; Bower, P.K. (Empros Systems International (US)); Hughes, B.A.

    1990-07-01

    This article presents a system solution approach that meets the requirements being imposed by industry trends and the electric utility customer. Specifically, the solution addresses electric distribution management systems. Electrical distribution management is a particularly well suited area of application because it involves a high diversity of tasks, which are currently supported by a proliferation of automated islands. Islands of automation which currently exist include (among others) distribution operations, load management, automated mapping, facility management, work order processing, and planning.

  19. PHASE GRADIENT METHOD OF MAGNETIC FIELD MEASUREMENTS IN ELECTRIC VEHICLES

    Directory of Open Access Journals (Sweden)

    N. G. Ptitsyna

    2013-01-01

    Full Text Available Operation of electric and hybrid vehicles demands real time magnetic field control, for instance, for fire and electromagnetic safety. The article deals with a method of magnetic field measurements onboard electric cars taking into account peculiar features of these fields. The method is based on differential methods of measurements, and minimizes the quantity of magnetic sensors.

  20. Field-Induced Superconductivity in Electric Double Layer Transistors

    NARCIS (Netherlands)

    Ueno, Kazunori; Shimotani, Hidekazu; Yuan, Hongtao; Ye, Jianting; Kawasaki, Masashi; Iwasa, Yoshihiro

    2014-01-01

    Electric field tuning of superconductivity has been a long-standing issue in solid state physics since the invention of the field-effect transistor (FET) in 1960. Owing to limited available carrier density in conventional FET devices, electric-field-induced superconductivity was believed to be possi

  1. Flow-driven cell migration under external electric fields

    Science.gov (United States)

    Li, Yizeng; Mori, Yoichiro; Sun, Sean X.

    2016-01-01

    Electric fields influence many aspects of cell physiology, including various forms of cell migration. Many cells are sensitive to electric fields, and can migrate toward a cathode or an anode, depending on the cell type. In this paper, we examine an actomyosin-independent mode of cell migration under electrical fields. Our theory considers a one-dimensional cell with water and ionic fluxes at the cell boundary. Water fluxes through the membrane are governed by the osmotic pressure difference across the cell membrane. Fluxes of cations and anions across the cell membrane are determined by the properties of the ion channels as well as the external electric field. Results show that without actin polymerization and myosin contraction, electric fields can also drive cell migration, even when the cell is not polarized. The direction of migration with respect to the electric field direction is influenced by the properties of ion channels, and are cell-type dependent. PMID:26765031

  2. Development of 3 D Electric Field Analysis Program under Power System Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Myung, S. H.; Lee, K. C.; Lee, J. B.; Ha, T. H. [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    1996-12-01

    Recently, as the effects of electric fields on animals, human beings and sensitive equipment have been reported, the study on electric fields has become more important. Transmission lines and substation among power facilities are dominant parts related to electrical environment. Electric field analysis of transmission line has been made using image charge method or CSM since 1970`s, however electric field analysis in substation has been rarely studied due to the complexity of three dimensional evaluation of an electric field in substation. For the rather complicated and time-consuming three-dimensional electric field calculation in the vicinity of transmission lines and substations, this study proposes an effective numerical calculation method based on Charge Simulation Method(CSM). In order to represent non-uniform charge distribution on an electrode better, it is subdivided into small segments with linear charge density. Each segment with linear charge density can be easily represented by a generalized finite line type of charge whose expressions for potential and electric field were analytically derived and which was named {sup f}inite slant line charge in this study. As for the arrangement of small segments of a subdivided electrode, it has been found that unequally spaced arrangement method is superior to equally spaced one. In order to arrange segments fast and effectively, effective formulas were derived from multiple regression analysis of many simulations. The proposed method is applied to the electric field calculation around the transmission lines with significant change in direction and substation busbars. (author). refs., figs., tabs.

  3. Optical activity of microemulsion induced by electric field and its tunable behaviors

    Institute of Scientific and Technical Information of China (English)

    赵晓鹏; 赵乾; 向礼琴

    2003-01-01

    It has been shown that optical activity can occur in microemulsion under external electric field and rotation angle can also be tuned by the electric field. A set of microemulsions (water/Span80/transformer oil) with different water concentration were prepared and their optical activity was measured with the changes of applied electric field and θ, the angle between the electric vector of the incident linearly polarized light and the external electric field, using an automatic polarimeter. The experiments indicate that when none of the external electric field, water concentration and θ are zero, there is optical activity in microemulsions. For a given concentration, rotation angle ψ increases with electric field, and it firstly increases, passes through a maximum at C = C0,then monotonically decreases as C increases when electric field keeps constant. The relationship between the rotation angle and θ is also obtained. It is thought that the electric field-induced destroy of spatial symmetry of microemulsion is responsible for the optical activity of microemulsion.

  4. Difficulties in applying numerical simulations to an evaluation of occupational hazards caused by electromagnetic fields.

    Science.gov (United States)

    Zradziński, Patryk

    2015-01-01

    Due to the various physical mechanisms of interaction between a worker's body and the electromagnetic field at various frequencies, the principles of numerical simulations have been discussed for three areas of worker exposure: to low frequency magnetic field, to low and intermediate frequency electric field and to radiofrequency electromagnetic field. This paper presents the identified difficulties in applying numerical simulations to evaluate physical estimators of direct and indirect effects of exposure to electromagnetic fields at various frequencies. Exposure of workers operating a plastic sealer have been taken as an example scenario of electromagnetic field exposure at the workplace for discussion of those difficulties in applying numerical simulations. The following difficulties in reliable numerical simulations of workers' exposure to the electromagnetic field have been considered: workers' body models (posture, dimensions, shape and grounding conditions), working environment models (objects most influencing electromagnetic field distribution) and an analysis of parameters for which exposure limitations are specified in international guidelines and standards.

  5. Generation of Electric Field and Net Charge in Hall Reconnection

    Institute of Scientific and Technical Information of China (English)

    MA Zhi-Wei; FENG Shu-Ling

    2008-01-01

    @@ Generation of Hall electric field and net charge associated with magnetic reconnection is studied under different initial conditions of plasma density and magnetic field. With inclusion of the Hall effects, decoupling of the electron and ion motions leads to the formation of a narrow layer with strong electric field and large net charge density along the separatrix. The asymmetry of the plasma density or magnetic field or both across the current sheet will largely increase the magnitude of the electric field and net charge. The results indicate that the asymmetry of the magnetic field is more effective in producing larger electric field and charge density. The electric field and net charge are always much larger in the low density or/and high magnetic field side than those in the high density or/and low magnetic field side. Both the electric field and net charge density are linearly dependent on the ratios of the plasma density or the square of the magnetic field across the current sheet. For the case with both initial asymmetries of the magnetic field and density, rather large Hall electric field and charge density are generated.

  6. An analysis of electrical impedance measurements applied for plant N status estimation in lettuce (Lactuca sativa).

    Science.gov (United States)

    Muñoz-Huerta, Rafael F; Ortiz-Melendez, Antonio de J; Guevara-Gonzalez, Ramon G; Torres-Pacheco, Irineo; Herrera-Ruiz, Gilberto; Contreras-Medina, Luis M; Prado-Olivarez, Juan; Ocampo-Velazquez, Rosalia V

    2014-06-27

    Nitrogen plays a key role in crop yields. Hence, farmers may apply excessive N fertilizers to crop fields, inducing environmental pollution. Crop N monitoring methods have been developed to improve N fertilizer management, most of them based on leaf or canopy optical-property measurements. However, sensitivity to environmental interference remains an important drawback. Electrical impedance has been applied to determine the physiological and nutritional status of plant tissue, but no studies related to plant-N contents are reported. The objective of this article is to analyze how the electrical impedance response of plants is affected by their N status. Four sets of lettuce (Lactuca sativa L.) with a different N-source concentrations per set were used. Total nitrogen and electrical impedance spectra (in a 1 to 100 kHz frequency range) were measured five times per set, three times every other day. Minimum phase angles of impedance spectra were detected and analyzed, together with the frequency value in which they occurred, and their magnitude at that frequency. High and positive correlation was observed between plant N content and frequency values at minimum phase angle with no significant variations detected between days of measurement. These results suggest that electrical impedance can be sensitive to plant N status.

  7. An Analysis of Electrical Impedance Measurements Applied for Plant N Status Estimation in Lettuce (Lactuca sativa

    Directory of Open Access Journals (Sweden)

    Rafael F. Muñoz-Huerta

    2014-06-01

    Full Text Available Nitrogen plays a key role in crop yields. Hence, farmers may apply excessive N fertilizers to crop fields, inducing environmental pollution. Crop N monitoring methods have been developed to improve N fertilizer management, most of them based on leaf or canopy optical-property measurements. However, sensitivity to environmental interference remains an important drawback. Electrical impedance has been applied to determine the physiological and nutritional status of plant tissue, but no studies related to plant-N contents are reported. The objective of this article is to analyze how the electrical impedance response of plants is affected by their N status. Four sets of lettuce (Lactuca sativa L. with a different N-source concentrations per set were used. Total nitrogen and electrical impedance spectra (in a 1 to 100 kHz frequency range were measured five times per set, three times every other day. Minimum phase angles of impedance spectra were detected and analyzed, together with the frequency value in which they occurred, and their magnitude at that frequency. High and positive correlation was observed between plant N content and frequency values at minimum phase angle with no significant variations detected between days of measurement. These results suggest that electrical impedance can be sensitive to plant N status.

  8. Electrically small, complementary electric-field-coupled resonator antennas

    Science.gov (United States)

    Odabasi, H.; Teixeira, F. L.; Guney, D. O.

    2013-02-01

    We study the radiation properties of electrically small resonant antennas (ka CELC) resonators and a monopole antenna. We use such parasitic ELC and CELC "metaresonators" to design various electrically small antennas. In particular, monopole-excited and bent-monopole-excited CELC resonator antennas are proposed that provide very low profiles on the order of λ0/20. We compare the performance of the proposed ELC and CELC antennas against more conventional designs based upon split-ring resonators.

  9. Anatomy of electric field control of perpendicular magnetic anisotropy at Fe/MgO interfaces

    Science.gov (United States)

    Ibrahim, F.; Yang, H. X.; Hallal, A.; Dieny, B.; Chshiev, M.

    2016-01-01

    The charge-mediated effect of electric field on the perpendicular magnetic anisotropy (PMA) of Fe/MgO interfaces is investigated using first-principles calculations. We present an approach by discussing this effect in relation to the intrinsic dipole field existing at the Fe/MgO interface. A firm correlation between the PMA and the interfacial dipole is established and further verified in the absence of an applied electric field. The on-site projected PMA analysis not only elucidates that the effect of electric field on the PMA extends beyond the interfacial Fe layer, but also shows that the second Fe layer carries the largest contribution to the effect. This observation is interpreted in relation to the orbital hybridization changes induced by applying an electric field.

  10. Regulation of tissue repair and regeneration by electric fields.

    Science.gov (United States)

    Wang, En-tong; Zhao, Min

    2010-02-01

    Endogenous electric fields (EFs) have been detected at wounds and damaged tissues. The potential roles of EFs in tissue repair and regeneration have been an intriguing topic for centuries. Recent researches have provided significant insights into how naturally occurring EFs may participate in the control of tissue repair and regeneration. Applied EFs equivalent to the size of fields measured in vivo direct cell migration, cell proliferation and nerve sprouting at wounds. More remarkably, physiological EFs are a guidance cue that directs cell migration which overrides other well accepted directional signals including initial injury stimulation, wound void, contact inhibition release, population pressure and chemotaxis. EFs activate many intracellular signaling pathways in a directional manner. Modulation of endogenous wound EFs affects epithelial cell migration, cell proliferation, and nerve growth at cornea wounds in vivo. Electric stimulation is being tested clinically for the treatments of bone fracture, wound healing and spinal cord injury. EFs thus may represent a novel type of signaling paradigm in tissue repair and regeneration. Combination of the electric stimulation and other well understood biochemical regulatory mechanisms may offer powerful and effective therapies for tissue repair and regeneration. This review introduces experimental evidence for the existence of endogenous EFs and discusses their roles in tissue repair and regeneration.

  11. Regulation of tissue repair and regeneration by electric fields

    Institute of Scientific and Technical Information of China (English)

    WANG En-tong; ZHAO Min

    2010-01-01

    Endogenous electric fields(Efs)have been detected at wounds and damaged tissues.The potential roles of Efs in tissue repair and regeneration have been an intriguing topic for centuries.Recent researches have provided significant insights into how naturally occurring Efs may participate in the control of tissue repair and regeneration.Applied Efs equivalent to the size of fields measured in vivo direct cell migration,cell proliferation and nerve sprouting at wounds.More remarkably,physiological Efs are a guidance cue that directs cell migration which overrides other well accepted directional signals including initial injury stimulation,wound void,contact inhibition release,population pressure and chemotaxis.Efs activate many intracellular signaling pathways in a directional manner.Modulation of endogenous wound Efs affects epithelial cell migration,cell proliferation,and nerve growth at cornea wounds in vivo.Electric stimulation is being tested clinically for the treatments of bone fracture,wound healing and spinal cord injury.Efs thus may represent a novel type of signaling paradigm in tissue repair and regeneration.Combination of the electric stimulation and other well understood biochemical regulatory mechanisms may offer powerful and effective therapies for tissue repair and regeneration.This review introduces experimental evidence for the existence of endogenous Efs and discusses their roles in tissue repair and regeneration.

  12. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces.

    Science.gov (United States)

    Miljkovic, Nenad; Preston, Daniel J; Enright, Ryan; Wang, Evelyn N

    2013-12-23

    When condensed droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump due to the conversion of excess surface energy into kinetic energy. This phenomenon has been shown to enhance condensation heat transfer by up to 30% compared to state-of-the-art dropwise condensing surfaces. However, after the droplets jump away from the surface, the existence of the vapor flow toward the condensing surface increases the drag on the jumping droplets, which can lead to complete droplet reversal and return to the surface. This effect limits the possible heat transfer enhancement because larger droplets form upon droplet return to the surface, which impedes heat transfer until they can be either removed by jumping again or finally shedding via gravity. By characterizing individual droplet trajectories during condensation on superhydrophobic nanostructured copper oxide (CuO) surfaces, we show that this vapor flow entrainment dominates droplet motion for droplets smaller than R ≈ 30 μm at moderate heat fluxes (q″ > 2 W/cm(2)). Subsequently, we demonstrate electric-field-enhanced condensation, whereby an externally applied electric field prevents jumping droplet return. This concept leverages our recent insight that these droplets gain a net positive charge due to charge separation of the electric double layer at the hydrophobic coating. As a result, with scalable superhydrophobic CuO surfaces, we experimentally demonstrated a 50% higher overall condensation heat transfer coefficient compared to that on a jumping-droplet surface with no applied field for low supersaturations (condensation heat transfer enhancement but also offers avenues for improving the performance of self-cleaning and anti-icing surfaces as well as thermal diodes.

  13. Experimental investigations of electric current under transverse and longitudinal electric field in uniaxially deformed p-Ge

    Science.gov (United States)

    Abramov, A. A.; Akimov, V. I.; Dalakyan, A. T.; Tulupenko, Victor N.; Zaitsev, A. M.; Danilov, S. N.; Firsov, D. A.; Shalygin, V. A.

    1999-11-01

    Comparison between cases of longitudinal and transverse directions of uniaxial pressure and strong electric field, affected the bulk hole germanium, to use it for lasting in far IR region has been carried out. Conclusion about preference of crossed directions is made. Threshold pressure, at which stimulated radiation arises, independence of crystallographic direction, along which external influences are applied, is also discussed. The results of experimental investigations of the crossed directions of uniaxial pressure and electric current are given.

  14. Bilayer molecular assembly at a solid/liquid interface as triggered by a mild electric field.

    Science.gov (United States)

    Zheng, Qing-Na; Liu, Xuan-He; Liu, Xing-Rui; Chen, Ting; Yan, Hui-Juan; Zhong, Yu-Wu; Wang, Dong; Wan, Li-Jun

    2014-12-01

    The construction of a spatially defined assembly of molecular building blocks, especially in the vertical direction, presents a great challenge for surface molecular engineering. Herein, we demonstrate that an electric field applied between an STM tip and a substrate triggered the formation of a bilayer structure at the solid-liquid interface. In contrast to the typical high electric-field strength (10(9)  V m(-1) ) used to induce structural transitions in supramolecular assemblies, a mild electric field (10(5)  V m(-1) ) triggered the formation of a bilayer structure of a polar molecule on top of a nanoporous network of trimesic acid on graphite. The bilayer structure was transformed into a monolayer kagome structure by changing the polarity of the electric field. This tailored formation and large-scale phase transformation of a molecular assembly in the perpendicular dimension by a mild electric field opens perspectives for the manipulation of surface molecular nanoarchitectures.

  15. State-Space Based Approach to Particle Creation in Spatially Uniform Electric Fields

    CERN Document Server

    Dolby, C E; Dolby, Carl E.; Gull, Stephen F.

    2001-01-01

    Our formalism described recently in (Dolby et al, hep-th/0103228) is applied to the study of particle creation in spatially uniform electric fields, concentrating on the cases of a time-invariant electric field and a so-called `adiabatic' electric field. Several problems are resolved by incorporating the `Bogoliubov coefficient' approach and the `tunnelling' approaches into a single consistent, gauge invariant formulation. The value of a time-dependent particle interpretation is demonstrated by presenting a coherent account of the time-development of the particle creation process, in which the particles are created with small momentum (in the frame of the electric field) and are then accelerated by the electric field to make up the `bulge' of created particles predicted by asymptotic calculations. An initial state comprising one particle is also considered, and its evolution is described as being the sum of two contributions: the `sea of current' produced by the evolved vacuum, and the extra current arising f...

  16. Effects of aging in electric field on 2024 alloy

    Institute of Scientific and Technical Information of China (English)

    王秀芳; 孙东立; 武高辉; 王美玲

    2002-01-01

    The effect of heat treatment in an electric field on micro-plastic deformation characteristics of 2024 Al alloy was investigated.The mechanism of aging in an electric field affecting the micro-plastic deformation behavior was preliminarily discussed.The results show that the resistance to micro-plastic deformation of the alloy can be greatly increased by aging in an electric field.Aging temperature,aging time and electric field strength are selected by adopting the orthogonal design method and the optimum technological parameters are obtained.

  17. Linear electric field time-of-flight ion mass spectrometer

    Science.gov (United States)

    Funsten, Herbert O.; Feldman, William C.

    2008-06-10

    A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.

  18. Effective Action of Scalar QED in Electric Field Backgrounds

    CERN Document Server

    Kim, Sang Pyo; Yoon, Yongsung

    2008-01-01

    We use the evolution operator method to find the one-loop effective action of scalar QED in electric field backgrounds in terms of the Bogoliubov coefficient between the ingoing and the outgoing vacuum. The effective action shows the general relation between the vacuum persistence and the mean number of created pairs for any electric field. We obtain the exact effective action for a constant electric field and a pulsed electric field, E_0 sech^2 (t/tau), and show that the imaginary part correctly yields the vacuum persistence.

  19. Electric field effect on the Néel temperature of cobalt oxide formed at an alumina nano-oxide layer

    Science.gov (United States)

    Al-Mahdawi, Muftah; Sahashi, Masashi

    2017-02-01

    The electric control of surface magnetism is important for spintronic applications. Due to the screening of electric field by conduction electrons in metals, an electric field can be applied only at a surface layer. However, the electric field can be applied on metallic contacts smaller than the electron’s mean free path. We report on the electric modulation of the phase-transition temperature of CoO that is present at Co/Pt nano-contacts through a thin AlO x barrier. We found a 50-K/V change that can be attributed to the injection of electrons through nano-contacts.

  20. Semiconductor crystal growth in crossed electric and magnetic fields: Center Director's Discretionary Fund

    Science.gov (United States)

    Mazuruk, K.; Volz, M. P.

    1996-01-01

    A unique growth cell was designed in which crossed electric and magnetic fields could be separately or simultaneously applied during semiconductor crystal growth. A thermocouple was inserted into an InSb melt inside the growth cell to examine the temperature response of the fluid to applied electromagnetic fields. A static magnetic field suppressed time-dependent convection when a destabilizing thermal field was applied. The simultaneous application of electric and magnetic fields resulted in forced convection in the melt. The InSb ingots grown in the cell were polycrystalline. An InGaSb crystal, 0.5 cm in diameter and 23-cm long, was grown without electromagnetic fields applied. The axial composition results indicated that complete mixing in the melt occurred for this large aspect ratio.

  1. Surface electric fields for North America during historical geomagnetic storms

    Science.gov (United States)

    Wei, Lisa H.; Homeier, Nichole; Gannon, Jennifer L.

    2013-01-01

    To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 “Quebec” storm and the 2003 “Halloween” storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.

  2. Determine electric field directions at semiconductor surfaces by femtosecond frequency domain interferometric second harmonic (FDISH) generation

    Science.gov (United States)

    Nelson, C. A.; Zhu, X.-Y.

    2016-10-01

    Optical excitations at semiconductor surfaces or interfaces are accompanied by transient interfacial electric fields due to charge redistribution or transfer. While such transient fields may be probed by time-resolved second harmonic generation (TR-SHG), it is difficult to determine the field direction, which is invaluable to unveiling the underlying physics. Here we apply a time-resolved frequency domain interferometric second harmonic (TR-FDISH) generation technique to determine the phase relationship between the SH field emitted from bulk GaAs(1 0 0) and the transient SH field from the space charge region. The interference between these two SH fields allow us to unambiguously determine the directions of transient electric fields. Since SH fields from a static bulk contribution and a changing electric field contribution are present at most semiconductor surfaces or interfaces under optical excitation, the TR-FDISH technique is of general significance to probing the dynamics of interfacial charge transfer/redistribution.

  3. Applying Smart Grid Technology For Reducing Electric Energy Consumption

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Roy

    2010-09-15

    In recent years the term 'Smart Grid' has become a widely used buzz word with respect to the operation of Electric Power Systems. One analysis has suggested that a Smart Grid could potentially reduce annual energy consumption in the USA by 56 to 203 billion kWh in 2030, corresponding to a 1.2 to 4.3% reduction in projected retail electricity sales in 2030. This paper discusses some of the smart grid technologies pertaining to the operation of electric power distribution networks.

  4. Size separation of DNA molecules by pulsed electric field dielectrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Nedelcu, S [National Institute for R and D in Microtechnologies, Str. Erou Iancu Nicolae 32B, PO Box 38-160, 023573 Bucharest (Romania); Watson, J H P [School of Physics and Astronomy, University of Southampton, Highfield, SO17 1BJ, Southampton (United Kingdom)

    2004-08-07

    In this paper we propose an electrode design and a switching pattern of the applied DC electrode potentials for a microfluidic device to be used in size separation of DNA molecules. Estimates on the separation resolution, which are based on numerical solutions of a Newton-type equation on time-averaged quantities, are presented for an input batch sample of DNA fragments with sizes up to 220 base pairs (bp). The active area of the device (which can be microfabricated by standard photolitographic techniques) is a channel 6 {mu}m wide, 8 {mu}m deep and 150 {mu}m in length, flanked by 23 plane parallel integrated electrodes, individually addressed with low DC voltages, up to {+-} 25 V. In the active area a time-dependent non-uniform electric field, or a travelling dielectrophoretic wave (TDW) is being produced. In order to enhance the separation resolution, the polarization DC potentials are switched with a relatively high frequency ({approx} 10{sup -7} s), which is chosen accordingly with the buffer conductivity and dielectric constants of the fluid and particles. Since the external field is of DC type, we put forward an explanatory model of the dielectric response of the DNA to the time-dependent applied field. We then numerically investigate the size-dependent response of the DNA in a low conductivity buffer ({approx}0.01 {omega}{sup -1} m{sup -1}) under the influence of the electric field, which is calculated by means of the method of moments. The results of the computer modelling indicate the existence of a threshold value for the size of the successfully transported molecules, which can be adjusted by varying the velocity of the dielectrophoretic wave produced by the system. The estimated error in selecting a chosen group of molecules with sizes above a specified value is about 5 bp, while the processing times are of the order of hundred of seconds.

  5. Electric field effects in combustion with non-thermal plasma

    Science.gov (United States)

    Casey, Tiernan Albert

    Chemically reacting zones such as flames act as sources of charged species and can thus be considered as weakly-ionized plasmas. As such, the action of an externally applied electric field has the potential to affect the dynamics of reaction zones by enhancing transport, altering the local chemical composition, activating reaction pathways, and by providing additional thermal energy through the interaction of electrons with neutral molecules. To investigate these effects, one-dimensional simulations of reacting flows are performed including the treatment of charged species transport and non-thermal electron chemistry using a modified reacting fluid solver. A particular area of interest is that of plasma assisted ignition, which is investigated in a canonical one-dimensional configuration. An incipient ignition kernel, formed by localized energy deposition into a lean mixture of methane and air at atmospheric pressure, is subjected to sub-breakdown electric fields by applied voltages across the domain, resulting in non-thermal behavior of the electron sub-fluid formed during the discharge. Strong electric fields cause charged species to be rapidly transported from the ignition zone across the domain in opposite directions as charge fronts, augmenting the magnitude of the electric field in the fresh gas during the pulse through a dynamic-electrode effect. This phenomenon results in an increase in the energy of the electrons in the fresh mixture with increasing time, accelerating electron impact dissociation processes. A semi-analytic model to represent this dynamic electrode effect is constructed to highlight the relative simplicity of the electrodynamic problem admitted by the far more detailed chemistry and transport. Enhanced fuel and oxidizer decomposition due to electron impact dissociation and interaction with excited neutrals generate a pool of radicals, mostly O and H, in the fresh gas ahead of the flame's preheat zone. The effect of nanosecond pulses are to

  6. Intracellular calcium during signal transduction in the lymphocyte is altered by ELF magnetic and electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Liburdy, R.P. (Lawrence Berkeley Lab., CA (United States))

    1992-02-26

    Research has shown that ELF magnetic and electric fields alter calcium transport in rat thymic T-lymphocytes during signal transduction initiated by mitogen. Interestingly activated T-lymphocytes display a nonlinear dose-response for this basic field interaction which scales with the induced electric field in contrast to the applied magnetic field. Specialized multiring annular well cell culture plates based on Faraday's Law of Current Induction were used to demonstrate that the electric field associated with the magnetic field is the exposure metric of biological interest. The first real-time measurements of (Ca{sup 2+}){sub i} were recently presented and (Ca{sup 2+}){sub i} was shown to be altered by sinusoidal 60 Hz electric fields; magnetic fields that induced comparable electric fields yielded similar alterations in (Ca{sup 2+}){sub i}. The author now presents evidence that both parameters, (Ca{sup 2+}){sub i} and calcium transport, are altered by ELF fields during calcium signaling in thymocytes and scale with the induced electric field. In addition, (Ca{sup 2+}){sub i} studies have been conducted that provide evidence supporting the hypothesis that the mitogen-gated calcium channel present in the plasma cell membrane represents a specific site of interaction for ELF fields.

  7. Measurement of electric fields and estimation of dielectric susceptibility

    Science.gov (United States)

    Nogi, Yasuyuki; Suzuki, Kiyomitsu; Ohkuma, Yasunori

    2013-05-01

    We describe a method of measuring the spatial structures of electric fields produced by charge distributions such as those on strip electrodes, small disk electrodes, and long double-plate electrodes. An electric-field sensor with high sensitivity to ac fields is fabricated for the measurement using a thin copper sheet. The reliability of the sensor is confirmed using a parallel-plate capacitor. The electric fields are oscillated at a frequency of 300 kHz to operate the electric-field sensor successfully. The structures of the measured fields coincide well with those of theoretical fields derived from Coulomb's law. When a dielectric is inserted in an electric field, polarization charges appear on the surface of the dielectric and modify the electric field in empty space. We measure the modified field and confirm the well-known linear relation between the polarization of a dielectric and the electric field. Dielectric susceptibilities are estimated from the linear relation for four types of dielectric.

  8. Study of thermoelectric systems applied to electric power generation

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, A.; Vian, J.G.; Astrain, D.; Martinez, A. [Dpto. Ingenieria Mecanica, Energetica y de Materiales, Universidad Publica de Navarra, Pamplona (Spain)

    2009-05-15

    A computational model has been developed in order to simulate the thermal and electric behavior of thermoelectric generators. This model solves the nonlinear system of equations of the thermoelectric and heat transfer equations. The inputs of the program are the thermoelectric parameters as a function of temperature and the boundary conditions, (room temperature and residual heat flux). The outputs are the temperature values of all the elements forming the thermoelectric generator, (performance, electric power, voltage and electric current generated). The model solves the equation system using the finite difference method and semi-empirical expressions for the convection coefficients. A thermoelectric electric power generation test bench has been built in order to validate and determine the accuracy of the computational model, which maximum error is lower than 5%. The objective of this study is to create a design tool that allows us to solve the system of equations involved in the electric generation process without needing to impose boundary conditions that are not known in the design phase, such as the temperature of the Peltier modules. With the computational model, we study the influence of the heat flux supplied as well as the room temperature on the electric power generated. (author)

  9. Effective electric fields along realistic DTI-based neural trajectories for modelling the stimulation mechanisms of TMS

    NARCIS (Netherlands)

    De Geeter, N.; Crevecoeur, G.; Leemans, A.; Dupré, L.

    2015-01-01

    In transcranial magnetic stimulation (TMS), an applied alternating magnetic field induces an electric field in the brain that can interact with the neural system. It is generally assumed that this induced electric field is the crucial effect exciting a certain region of the brain. More specifically,

  10. Electric fields inside and outside an anisotropic dielectric sphere

    Institute of Scientific and Technical Information of China (English)

    Li Ying-Le; Wang Ming-Jun

    2009-01-01

    Analytical expressions of electric fields inside and outside an anisotropic dielectric sphere are presented by transforming an anisotropic medium into an isotropic one based on the multi-scale transformation of electromagnetic theory.The theoretical expressions are consistent with those in the literature. The inside electric field, the outside electric field and the angle between their directions are derived in detail. Numerical simulations show that the direction of the outside field influences the magnitude of the inside field, while the dielectric constant tensor greatly affects its direction.

  11. Simultaneous electric-field measurements on nearby balloons.

    Science.gov (United States)

    Mozer, F. S.

    1972-01-01

    Electric-field payloads were flown simultaneously on two balloons from Great Whale River, Canada, on September 21, 1971, to provide data at two points in the upper atmosphere that differed in altitude by more than one atmospheric density scale height and in horizontal position by 30-140 km. The altitude dependences in the two sets of data prove conclusively that the vertical electric field at balloon altitudes stems from fair-weather atmospheric electricity sources and that the horizontal fields are mapped down ionospheric fields, since the weather-associated horizontal fields were smaller than 2 mV/m.

  12. Analysis and design of nonlocal spin devices with electric-field-induced spin-transport acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Takamura, Yota, E-mail: takamura@spin.pe.titech.ac.jp [Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, Yokohama (Japan); Department of Physical Electronics, Tokyo Institute of Technology, Tokyo (Japan); Akushichi, Taiju; Shuto, Yusuke; Sugahara, Satoshi, E-mail: sugahara@isl.titech.ac.jp [Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, Yokohama (Japan)

    2015-05-07

    We apply electric-field-induced acceleration for spin transport to a four-terminal nonlocal device and theoretically analyze its Hanle-effect signals. The effect of the ferromagnetic contact widths of the spin injector and detector on the signals is carefully discussed. Although Hanle-effect signals are randomized owing to the effect of the contact widths, this can be excluded by selecting an appropriate electric field for acceleration of spin transport. Spin lifetime can be correctly extracted by nonlocal devices with electric-field acceleration even using the spin injector and detector with finite contact widths.

  13. Analysis and design of nonlocal spin devices with electric-field-induced spin-transport acceleration

    Science.gov (United States)

    Takamura, Yota; Akushichi, Taiju; Shuto, Yusuke; Sugahara, Satoshi

    2015-05-01

    We apply electric-field-induced acceleration for spin transport to a four-terminal nonlocal device and theoretically analyze its Hanle-effect signals. The effect of the ferromagnetic contact widths of the spin injector and detector on the signals is carefully discussed. Although Hanle-effect signals are randomized owing to the effect of the contact widths, this can be excluded by selecting an appropriate electric field for acceleration of spin transport. Spin lifetime can be correctly extracted by nonlocal devices with electric-field acceleration even using the spin injector and detector with finite contact widths.

  14. Pressure and electric field effects on piezoelectric responses of KNbO3

    Science.gov (United States)

    Liang, Linyun; Li, Y. L.; Xue, Fei; Chen, Long-Qing

    2012-09-01

    The dielectric and piezoelectric properties of a KNbO3 single crystal under applied hydrostatic pressure and positive bias electric field are investigated using phenomenological Landau-Ginzburg-Devonshire thermodynamic theory. It is shown that the hydrostatic pressure effect on the dielectric and piezoelectric properties is similar to temperature, suggesting a common underlying mechanism for the piezoelectric anisotropy and its enhancement. The stable phase diagram of KNbO3 as a function of temperature and positive bias electric field is constructed. The maximum piezoelectric coefficient d33o* varying with temperature and electric field is calculated.

  15. Electric field selective optical data storage using persistent spectral hole burning

    Science.gov (United States)

    Bogner, U.; Beck, K.; Maier, Max

    1985-03-01

    The electric field domain is used as a storage dimension in optical data storage by persistent spectral hole burning. The memory locations in the electric field domain are addressed with the voltage applied to the sample consisting of the amorphous polymer polyvinyl-butyral doped with the dye 9-amino acridine. The information is written by burning spectral holes at different electric field strengths with a HeCd laser and read by detecting the presence or absence of holes with weak laser intensity.

  16. Engineering the electronic structure and band gap of boron nitride nanoribbon via external electric field

    Science.gov (United States)

    Chegel, Raad

    2016-06-01

    By using the third nearest neighbor modified tight binding (3NN-TB) method, the electronic structure and band gap of BNNRs under transverse electric fields are explored. The band gap of the BNNRs has a decreasing with increasing the intensity of the applied electric field, independent on the ribbon edge types. Furthermore, an analytic model for the dependence of the band gap in armchair and zigzag BNNRs on the electric field is proposed. The reduction of E g is similar for some N a armchair and N z zigzag BNNRs independent of their edges.

  17. Fetal exposure to low frequency electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Cech, R; Leitgeb, N; Pediaditis, M [Institute of Clinical Engineering, Graz University of Technology, Inffeldgasse 18, 8010 Graz (Austria)

    2007-02-21

    To investigate the interaction of low frequency electric and magnetic fields with pregnant women and in particular with the fetus, an anatomical voxel model of an 89 kg woman at week 30 of pregnancy was developed. Intracorporal electric current density distributions due to exposure to homogeneous 50 Hz electric and magnetic fields were calculated and results were compared with basic restrictions recommended by ICNIRP guidelines. It could be shown that the basic restriction is met within the central nervous system (CNS) of the mother at exposure to reference level of either electric or magnetic fields. However, within the fetus the basic restriction is considerably exceeded. Revision of reference levels might be necessary.

  18. Fetal exposure to low frequency electric and magnetic fields

    Science.gov (United States)

    Cech, R.; Leitgeb, N.; Pediaditis, M.

    2007-02-01

    To investigate the interaction of low frequency electric and magnetic fields with pregnant women and in particular with the fetus, an anatomical voxel model of an 89 kg woman at week 30 of pregnancy was developed. Intracorporal electric current density distributions due to exposure to homogeneous 50 Hz electric and magnetic fields were calculated and results were compared with basic restrictions recommended by ICNIRP guidelines. It could be shown that the basic restriction is met within the central nervous system (CNS) of the mother at exposure to reference level of either electric or magnetic fields. However, within the fetus the basic restriction is considerably exceeded. Revision of reference levels might be necessary.

  19. Gastric applications of electrical field stimulation.

    LENUS (Irish Health Repository)

    Hogan, Aisling M

    2012-02-01

    Advances in clinical applications of electricity have been vast since the launch of Hayman\\'s first cardiac pacemaker more than 70 years ago. Gastric electrical stimulation devices have been recently licensed for treatment of gastroparesis and preliminary studies examining their potential for use in refractory obesity yield promising results.

  20. Electrical field manipulation of cancer cell behavior monitored by whole cell biosensing device.

    Science.gov (United States)

    Hondroulis, Evangelia; Melnick, Steven J; Zhang, Xueji; Wu, Ze-Zhi; Li, Chen-Zhong

    2013-08-01

    All living cells possess electrical characteristics and are thus responsive to, and even generate electric fields and currents. It has been shown that the electrical properties of cancer cells differ from normal proliferating cells, thus electric fields may induce differential effects in normal and cancer cells. Manipulation of these electrical properties may provide a powerful direct and/or adjuvant therapeutic option for cancer. A whole cell impedance-based biosensor to monitor the effects of a range of different frequencies (50 kHz-2 MHz) at low-intensity (growth rate of human SKOV3 ovarian cancer cells versus non-cancerous HUVECs is reported. Rapid real-time monitoring of the SKOV3 behavior was observed as the alternating electric fields were applied and the impedimetric response of the cells was recorded. The cells were also labeled with propidium iodide to examine morphological changes and cell viability with fluorescence microscopy with trypan blue for comparison. A noticeable decrease in the growth profile of the SKOV3 was observed with the application of 200 kHz alternating electric fields indicating specific inhibitory effects on dividing cells in culture in contrast to the HUVECs. The outcome of this research will improve our fundamental understanding of the behavior of cancer cells when exposed to alternating electric fields at specific frequencies and foster the development strategies and optimal parameters for alternating electric field therapies for clinical and drug delivery applications.

  1. The effect of normal electric field on the evolution of immiscible Rayleigh-Taylor instability

    Science.gov (United States)

    Tofighi, Nima; Ozbulut, Murat; Feng, James J.; Yildiz, Mehmet

    2016-10-01

    Manipulation of the Rayleigh-Taylor instability using an external electric field has been the subject of many studies. However, most of these studies are focused on early stages of the evolution. In this work, the long-term evolution of the instability is investigated, focusing on the forces acting on the interface between the two fluids. To this end, numerical simulations are carried out at various electric permittivity and conductivity ratios as well as electric field intensities using Smoothed Particle Hydrodynamics method. The electric field is applied in parallel to gravity to maintain unstable evolution. The results show that increasing top-to-bottom permittivity ratio increases the rising velocity of the bubble while hindering the spike descent. The opposite trend is observed for increasing top-to-bottom conductivity ratio. These effects are amplified at larger electric field intensities, resulting in narrower structures as the response to the excitation is non-uniform along the interface.

  2. Multigrid Discretization and Iterative Algorithm for Mixed Variational Formulation of the Eigenvalue Problem of Electric Field

    Directory of Open Access Journals (Sweden)

    Yidu Yang

    2012-01-01

    Full Text Available This paper discusses highly finite element algorithms for the eigenvalue problem of electric field. Combining the mixed finite element method with the Rayleigh quotient iteration method, a new multi-grid discretization scheme and an adaptive algorithm are proposed and applied to the eigenvalue problem of electric field. Theoretical analysis and numerical results show that the computational schemes established in the paper have high efficiency.

  3. High School Students' Representations and Understandings of Electric Fields

    Science.gov (United States)

    Cao, Ying; Brizuela, Bárbara M.

    2016-01-01

    This study investigates the representations and understandings of electric fields expressed by Chinese high school students 15 to 16 years old who have not received high school level physics instruction. The physics education research literature has reported students' conceptions of electric fields post-instruction as indicated by students'…

  4. Defect agglomeration in ferroelectric ceramics under cyclic electric field

    Institute of Scientific and Technical Information of China (English)

    GENG LiMing; YANG Wei

    2008-01-01

    The agglomeration of point defects in ferroelectric ceramics could be driven by repeated domain switching under cyclic electric field. The evolution equation of pore concentration under cyclic electric field is derived, with the help of a relation between the pore concentration and the extent of pore agglomeration. The results of the simulation agree quantitatively with the experimental data. An integrated framework about the mechanisms of electrically induced fatigue is proposed, which links the mechanisms at different scales.

  5. Generalized theoretical method for the interaction between arbitrary nonuniform electric field and molecular vibrations: Toward near-field infrared spectroscopy and microscopy.

    Science.gov (United States)

    Iwasa, Takeshi; Takenaka, Masato; Taketsugu, Tetsuya

    2016-03-28

    A theoretical method to compute infrared absorption spectra when a molecule is interacting with an arbitrary nonuniform electric field such as near-fields is developed and numerically applied to simple model systems. The method is based on the multipolar Hamiltonian where the light-matter interaction is described by a spatial integral of the inner product of the molecular polarization and applied electric field. The computation scheme is developed under the harmonic approximation for the molecular vibrations and the framework of modern electronic structure calculations such as the density functional theory. Infrared reflection absorption and near-field infrared absorption are considered as model systems. The obtained IR spectra successfully reflect the spatial structure of the applied electric field and corresponding vibrational modes, demonstrating applicability of the present method to analyze modern nanovibrational spectroscopy using near-fields. The present method can use arbitral electric fields and thus can integrate two fields such as computational chemistry and electromagnetics.

  6. Lamb-shift and electric field measurements in plasmas

    Science.gov (United States)

    Doveil, F.; Chérigier-Kovacic, L.; Ström, P.

    2017-01-01

    The electric field is a quantity of particular relevance in plasma physics. Indeed, its fluctuations are responsible for different macroscopic phenomena such as anomalous transport in fusion plasmas. Answering a long-standing challenge, we offer a new method to locally and non-intrusively measure weak electric fields and their fluctuations in plasmas, by means of a beam of hydrogen ions or atoms. We present measurements of the electric field in vacuum and in a plasma where Debye shielding is measured. For the first time, we have used the Lamb-shift resonance to measure oscillating electric fields around 1 GHz and observed the strong enhancement of the Lyman-α signal. The measurement is both direct and non-intrusive. This method provides sensitivity (mV cm-1) and temporal resolution (ns) that are three orders higher compared to current diagnostics. It thus allows measuring fluctuations of the electric field at scales not previously reached experimentally.

  7. Effect of AC electric fields on the stabilization of premixed bunsen flames

    KAUST Repository

    Kim, Minkuk

    2011-01-01

    The stabilization characteristics of laminar premixed bunsen flames have been investigated experimentally for stoichiometric methane-air mixture by applying AC voltage to the nozzle with the single-electrode configuration. The detachment velocity either at blowoff or partial-detachment has been measured by varying the applied voltage and frequency of AC. The result showed that the detachment velocity increased with the applied AC electric fields, such that the flame could be nozzle-attached even over five times of the blowoff velocity without having electric fields. There existed four distinct regimes depending on applied AC voltage and frequency. In the low voltage regime, the threshold condition of AC electric fields was identified, below which the effect of electric fields on the detachment velocity is minimal. In the moderate voltage regime, the flame base oscillated with the frequency synchronized to AC frequency and the detachment velocity increased linearly with the applied AC voltage and nonlinearly with the frequency. In the high voltage regime, two different sub-regimes depending on AC frequency were observed. For relatively low frequency, the flame base oscillated with the applied AC frequency together with the half frequency and the variation of the detachment velocity was insensitive to the applied voltage. For relatively high frequency, the stabilization of the flame was significantly affected by the generation of streamers and the detachment velocity decreased with the applied voltage. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  8. Spinning Janus doublets driven in uniform ac electric fields

    Science.gov (United States)

    Boymelgreen, Alicia; Yossifon, Gilad; Park, Sinwook; Miloh, Touvia

    2014-01-01

    We provide an experimental proof of concept for a robust, continuously rotating microstructure—consisting of two metallodielectric (gold-polystyrene) Janus particles rigidly attached to each other—which is driven in uniform ac fields by asymmetric induced-charge electro-osmosis. The pairs (doublets) are stabilized on the substrate surface which is parallel to the plane of view and normal to the direction of the applied electric field. We find that the radius of orbit and angular velocity of the pair are predominantly dependent on the relative orientations of the interfaces between the metallic and dielectric hemispheres and that the electrohydrodynamic particle-particle interactions are small. Additionally, we verify that both the angular and linear velocities of the pair are proportional to the square of the applied field which is consistent with the theory for nonlinear electrokinetics. A simple kinematic rigid body model is used to predict the paths and doublet velocities (angular and linear) based on their relative orientations with good agreement.

  9. The effect of electric and magnetic fields on the operation of a photovoltaic cell

    Energy Technology Data Exchange (ETDEWEB)

    Erel, Serafettin [Department of Physics, Faculty of Science and Letters, Kirikkale University, 71450 Yahsihan, Kirikkale (Turkey)

    2002-02-01

    In this work, we have investigated the effects of electric and magnetic fields on the operation of a CdS/CuInSe{sub 2} photovoltaic cell. Various electric field intensities changing from 0 to 35000V{sub dc}/m, were applied to the sample while it was irradiated by a He-Ne laser with a wavelength {lambda}=670nm. As a result, the typical values for the open circuit voltage of the photovoltaic cell significantly changed with various intensities of the electric field E{sub dc}. We also applied magnetic fields varying from 0.003 to 0.079T using a solenoid with an inductance of 10.55mH and the response of the sample was observed. In the third step of the experiment, instead of the laser beam, various intensities of white light of 50, 100,150 and also 250lux were utilised. 250lux was measured to be equivalent to the radiation power of He-Ne laser beam on the surface of the photovoltaic cell. The effect of electric fields from 0 up to 3x10{sup 5}V{sub dc} was applied and some significant experimental results were obtained. As a result of the illumination of the photovoltaic cell by the stimulated and spontaneous light emission sources under the effect of various intensities of electric field E{sub dc}, different electrical behaviours were observed.

  10. Characteristics of DC electric fields at dipolarization fronts

    Science.gov (United States)

    Laakso, Harri; Escoubet, Philippe; Masson, Arnaud

    2016-04-01

    We investigate the characteristics of DC electric field at dipolarization fronts and BBF's using multi-point Cluster observations. There are plenty of important issues that are considered, such as what kind of DC electric fields exist in such events and what are their spatial scales. One can also recognize if electrons and ions perform ExB drift motions in these events. To investigate this, we take an advantage of five different DC electric field measurements in the plasma sheet available from the EFW double probe experiment, EDI electron drift instrument, CODIF and HIA ion spectrometers, and PEACE electron spectrometer. The calibrated observations of the three spectrometers are used to determine the proton and electron drift velocity and furthermore the DC electric field, assuming that the electron and proton velocity perpendicular to the magnetic field is dominated by the ExB drift motion. Naturally when ions and electrons do not perform a proper drift motion, which can happen in the plasma sheet, the estimated DC electric field from ion and electron motion is not correct. However, surprisingly often the DC electric fields estimated from electron and ion motions are identical suggesting that this field is a real DC electric field around the measurement point. This investigation also helps understand how well different measurements are calibrated.

  11. Vertical electric field stimulated neural cell functionality on porous amorphous carbon electrodes.

    Science.gov (United States)

    Jain, Shilpee; Sharma, Ashutosh; Basu, Bikramjit

    2013-12-01

    We demonstrate the efficacy of amorphous macroporous carbon substrates as electrodes to support neuronal cell proliferation and differentiation in electric field mediated culture conditions. The electric field was applied perpendicular to carbon substrate electrode, while growing mouse neuroblastoma (N2a) cells in vitro. The placement of the second electrode outside of the cell culture medium allows the investigation of cell response to electric field without the concurrent complexities of submerged electrodes such as potentially toxic electrode reactions, electro-kinetic flows and charge transfer (electrical current) in the cell medium. The macroporous carbon electrodes are uniquely characterized by a higher specific charge storage capacity (0.2 mC/cm(2)) and low impedance (3.3 kΩ at 1 kHz). The optimal window of electric field stimulation for better cell viability and neurite outgrowth is established. When a uniform or a gradient electric field was applied perpendicular to the amorphous carbon substrate, it was found that the N2a cell viability and neurite length were higher at low electric field strengths (≤ 2.5 V/cm) compared to that measured without an applied field (0 V/cm). While the cell viability was assessed by two complementary biochemical assays (MTT and LDH), the differentiation was studied by indirect immunostaining. Overall, the results of the present study unambiguously establish the uniform/gradient vertical electric field based culture protocol to either enhance or to restrict neurite outgrowth respectively at lower or higher field strengths, when neuroblastoma cells are cultured on porous glassy carbon electrodes having a desired combination of electrochemical properties.

  12. Infrared optical activity: electric field approaches in time domain.

    Science.gov (United States)

    Rhee, Hanju; Choi, Jun-Ho; Cho, Minhaeng

    2010-12-21

    Vibrational circular dichroism (VCD) spectroscopy provides detailed information about the absolute configurations of chiral molecules including biomolecules and synthetic drugs. This method is the infrared (IR) analogue of the more popular electronic CD spectroscopy that uses the ultraviolet and visible ranges of the electromagnetic spectrum. Because conventional electronic CD spectroscopy measures the difference in signal intensity, problems such as weak signal and low time-resolution can limit its utility. To overcome the difficulties associated with that approach, we have recently developed femtosecond IR optical activity (IOA) spectrometry, which directly measures the IOA free-induction-decay (FID), the impulsive chiroptical IR response that occurs over time. In this Account, we review the time-domain electric field measurement and calculation methods used to simultaneously characterize VCD and related vibrational optical rotatory dispersion (VORD) spectra. Although conventional methods measure the electric field intensity, this vibrational technique is based on a direct phase-and-amplitude measurement of the electric field of the chiroptical signal over time. This method uses a cross-polarization analyzer to carry out heterodyned spectral interferometry. The cross-polarization scheme enables us to selectively remove the achiral background signal, which is the dominant noise component present in differential intensity measurement techniques. Because we can detect the IOA FID signal in a phase-amplitude-sensitive manner, we can directly characterize the time-dependent electric dipole/magnetic dipole response function and the complex chiral susceptibility that contain information about the angular oscillations of charged particles. These parameters yield information about the VCD and VORD spectra. In parallel with such experimental developments, we have also calculated the IOA FID signal and the resulting VCD spectrum. These simulations use a quantum mechanical

  13. Effects of geomagnetic activity on the mesospheric electric fields

    Directory of Open Access Journals (Sweden)

    A. M. Zadorozhny

    Full Text Available The results of three series of rocket measurements of mesospheric electric fields carried out under different geomagnetic conditions at polar and high middle latitudes are analysed. The measurements show a clear dependence of the vertical electric fields on geomagnetic activity at polar and high middle latitudes. The vertical electric fields in the lower mesosphere increase with the increase of geomagnetic indexes Kp and ∑Kp. The simultaneous increase of the vertical electric field strength and ion conductivity was observed in the mesosphere during geomagnetic disturbances. This striking phenomenon was displayed most clearly during the solar proton events of October, 1989 accompanied by very strong geomagnetic storm (Kp=8+. A possible mechanism of generation of the vertical electric fields in the mesosphere caused by gravitational sedimentation of charged aerosol particles is discussed. Simultaneous existence in the mesosphere of both the negative and positive multiply charged aerosol particles of different sizes is assumed for explanation of the observed V/m vertical electric fields and their behaviour under geomagnetically disturbed conditions.

    Keywords. Atmospheric composition and structure (aerosols and particles · Ionosphere (electric fields and currents · Meteorology and atmospheric dynamics (atmospheric electricity

  14. Novel electric field effects on Landau levels in graphene.

    Science.gov (United States)

    Lukose, Vinu; Shankar, R; Baskaran, G

    2007-03-16

    A new effect in graphene in the presence of crossed uniform electric and magnetic fields is predicted. Landau levels are shown to be modified in an unexpected fashion by the electric field, leading to a collapse of the spectrum, when the value of electric to magnetic field ratio exceeds a certain critical value. Our theoretical results, strikingly different from the standard 2D electron gas, are explained using a "Lorentz boost," and as an "instability of a relativistic quantum field vacuum." It is a remarkable case of emergent relativistic type phenomena in nonrelativistic graphene. We also discuss few possible experimental consequence.

  15. Effects of an electric field on white sharks: in situ testing of an electric deterrent.

    Directory of Open Access Journals (Sweden)

    Charlie Huveneers

    Full Text Available Elasmobranchs can detect minute electromagnetic fields, <1 nV cm(-1, using their ampullae of Lorenzini. Behavioural responses to electric fields have been investigated in various species, sometimes with the aim to develop shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1 the behaviour of 18 white sharks (Carcharodon carcharias near a static bait, and (2 the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks.

  16. 60 Hz electric field changes the membrane potential during burst phase in pancreatic β-cells: in silico analysis.

    Science.gov (United States)

    Neves, Gesilda F; Silva, José R F; Moraes, Renato B; Fernandes, Thiago S; Tenorio, Bruno M; Nogueira, Romildo A

    2014-06-01

    The production, distribution and use of electricity can generate low frequency electric and magnetic fields (50-60 Hz). Considering that some studies showed adverse effects on pancreatic β-cells exposed to these fields; the present study aimed to analyze the effects of 60 Hz electric fields on membrane potential during the silent and burst phases in pancreatic β-cells using a mathematical model. Sinusoidal 60 Hz electric fields with amplitude ranging from 0.5 to 4 mV were applied on pancreatic β-cells model. The sinusoidal electric field changed burst duration, inter-burst intervals (silent phase) and spike sizes. The parameters above presented dose-dependent response with the voltage amplitude applied. In conclusion, theoretical analyses showed that a 60 Hz electric field with low amplitudes changes the membrane potential in pancreatic β-cells.

  17. Real-space phase-field simulation of piezoresponse force microscopy accounting for stray electric fields

    Science.gov (United States)

    Yang, Lun; Dayal, Kaushik

    2012-04-01

    Piezoresponse force microscopy (PFM) is a powerful scanning-probe technique used to characterize important aspects of the microstructure in ferroelectrics. It has been widely applied to understand domain patterns, domain nucleation and the structure of domain walls. In this paper, we apply a real-space phase-field model to consistently simulate various PFM configurations. We model the PFM tip as a charged region that is external to the ferroelectric, and implement a boundary element method to efficiently and accurately account for the external stray fields that mediate the interactions between the tip and the ferroelectric. Our phase-field model and the solution method together are able to account for the electrical fields both within the specimen as well as those outside, and also consistently solve for the resulting electromechanical response with the same phase-field model. We apply this to various problems: first, the effect of crystal lattice orientation on the induced tip displacement and rotation; second, PFM scanning of a 90° domain wall that emerges at a free surface; third, the effect of closure domain microstructure on PFM response; fourth, the effect of surface modulations on PFM response; and fifth, the effect of surface charge compensation on PFM response.

  18. GUIDING OF PLASMA BY ELECTRIC FIELD AND MAGNETIC FIELD

    Institute of Scientific and Technical Information of China (English)

    ZHANG TAO; HOU JUN-DA; TANG BAO-YIN; P. K. CHU; I. G. BROWN

    2001-01-01

    The relationship between the transported ion current and the cathodic arc current is determined in a vacuum arc plasma source equipped with a curved magnetic filter. Our results suggest that the outer and inner walls of the duct interact with the plasma independently. The duct magnetic field is a critical factor of the plasma output. The duct transport efficiency is to maximize at a value of bias plate voltage in the range +10 V to +20 V, and independent (within our limit of measurement) of the magnetic field strength in the duct. The plasma flux is composed of two components:a diffusion flux in the transverse direction due to particle collisions, and a drift flux due to the ion inertia. The inner wall of the magnetic duct sees only the diffusion flux while the outer wall receives both fluxes. Thus, applying a positive potential to the outer duct wall can reflect the ions and increase the output current. Our experimental data also show that biasing both sides of the duct is more effective than biasing the outer wall alone.

  19. Effect of electric field, stress and environment on delayed fracture of a PZT-5 ferroelectric ceramic

    Institute of Scientific and Technical Information of China (English)

    WANG; Yi; SU; Yanjing; CHU; Wuyang; QIAO; Lijie

    2005-01-01

    The combined effect of electric and mechanical loading on fracture of a PZT-5 ferroelectric ceramic in silicone oil has been investigated using a single edge notched specimen. The results show that the fracture toughness and the threshold stress intensity factor of delayed fracture in silicone oil, i.e. stress corrosion cracking, decrease linearly with the increasing applied electric field, either positive or negative. For the PZT-5 ferroelectric ceramics, delayed fracture in silicone oil under sustained positive or negative field can occur, and the threshold field for delayed fracture under sustained positive or negative field decreases linearly with applied stress intensity factor. The combined effect of electric and mechanical loading on delayed fracture in silicone oil includes fieldenhancing delayed fracture under sustained load and stress-enhancing delayed fracture in silicone oil under sustained field.

  20. Deformation of a nearly hemispherical conducting drop due to an electric field: Theory and experiment

    Science.gov (United States)

    Corson, L. T.; Tsakonas, C.; Duffy, B. R.; Mottram, N. J.; Sage, I. C.; Brown, C. V.; Wilson, S. K.

    2014-12-01

    We consider, both theoretically and experimentally, the deformation due to an electric field of a pinned nearly hemispherical static sessile drop of an ionic fluid with a high conductivity resting on the lower substrate of a parallel-plate capacitor. Using both numerical and asymptotic approaches, we find solutions to the coupled electrostatic and augmented Young-Laplace equations which agree very well with the experimental results. Our asymptotic solution for the drop interface extends previous work in two ways, namely, to drops that have zero-field contact angles that are not exactly π/2 and to higher order in the applied electric field, and provides useful predictive equations for the changes in the height, contact angle, and pressure as functions of the zero-field contact angle, drop radius, surface tension, and applied electric field. The asymptotic solution requires some numerical computations, and so a surprisingly accurate approximate analytical asymptotic solution is also obtained.

  1. Electric-Field Coupling to Spin Waves in a Centrosymmetric Ferrite

    Science.gov (United States)

    Liu, Tianyu

    A systematic control of spin waves via external electric fields has been a long standing issue for the design of magnonic devices, and is of fundamental interest. One way to attain such control is to use multiferroics, whose electric and magnetic polarizations are inherently coupled. The lack of electric polarization in a centrosymmetric ferrite, however, makes direct coupling of its magnetization to external electric fields a challenge. Indirect electric control of spin waves has been accomplished by hybridizing yttrium iron garnet (YIG), a centrosymmetric ferrite, with a piezoelectric material. Here, we predict direct control of spin waves in YIG by a flexoelectric interaction, which couples an electric field to the spatial gradient of the magnetization, and thus the spin waves. Based on a superexchange model, which describes the antiferromagnetic coupling between two nearest neighbor iron ions through an oxygen ion, including spin-orbit coupling, we estimate the coupling constant and predict a phase shift linear in the applied electric fields. The theory is then confirmed by experimental measurement of the electric-field-induced phase shift in a YIG waveguide. In addition to the flexoelectric effect, another electric effect is observed, which couples the electric field directly with the magnetization of YIG. We call this a magnetoelectric effect. By adjusting the direction of the electric field, the two effects can be well separated. Experimental results agree quantitatively with the theoretical prediction. A phenomenological coupling constant for the magnetoelectric effect is also obtained. Our findings point to an important avenue for manipulating spin waves and developing electrically tunable magnonic devices.

  2. Effect of an electric field on the properties of BN Möbius stripes

    Energy Technology Data Exchange (ETDEWEB)

    Lemos de Melo, J. [Departamento de Física, CCEN, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900 João Pessoa, PB (Brazil); Azevedo, S., E-mail: sazevedo@fisica.ufpb.br [Departamento de Física, CCEN, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900 João Pessoa, PB (Brazil); Kaschny, J.R. [Instituto Federal da Bahia, Campus Vitória da Conquista, Av. Amazonas 3150, 45075-265 Vitória da conquista, BA (Brazil)

    2014-09-15

    In the present work, we present a first-principles study on the effects of an external electric field on the structural stability and electronic properties of boron nitride Möbius stripes with armchair and zigzag chirality. The calculation results indicate that the gap energy can be remarkably reduced by the application of an external field. Such reduction is in principle attributed to the occurrence of Stark effect, which significance depends on the orientation of the applied field relative to the stripe axis. Moreover, the electric field produces significant changes on dipole momentum of the structure and induces a negative shift on the calculated total energy, reducing the obtained formation energy. - Highlights: • The gap energy is remarkably reduced by the application of an external field. • The electric field produces significant changes on dipole momentum. • The field induces a negative shift on the total energy due to Stark effect.

  3. Modulating the vibronic correlation in 2D superconductor by electric field

    Science.gov (United States)

    Kazempour, Ali; Morshedloo, Toktam

    2017-04-01

    Superconductivity in the extreme two-dimensional atomic layers has been suffered because of the strong affection dimensionality confinement on electron-phonon binding. Here, using first-principles method, we study the effect of applied perpendicular and parallel electric field on the strength of phonon renormalization and electron-phonon coupling in bi-layer MgB2 as a known 2D superconductor. The changes of phonon frequency and line-width demonstrate that important E2 g optical modes are strongly sensitive to the applied parallel electric field which directs to sharp reduction of vibronic coupling. Whereas, we show that perpendicular electric field modulates the system to the strong-coupling superconductor and predict the enhancement of critical temperature Tc . Our study opens up the use of electric filed to probe and measure the variation amount of electron-phonon renormalization as a gauge in 2D superconductivity.

  4. Transition of radial electric field in helical systems

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka; Sanuki, Heiji; Toda, Shinichiro; Yokoyama, Masayuki [National Inst. for Fusion Science, Toki, Gifu (Japan); Itoh, Sanae-I.; Yagi, Masatoshi [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Fukuyama, Atsushi [Kyoto Univ. (Japan). Dept. of Nuclear Engineering

    2001-06-01

    Transition of radial electric field is investigated in helical plasmas for the given plasma fluxes. The density and temperature gradients are simultaneously determined together with radial electric field. The electric field shows a nature of bifurcation, if an anomalous particle transport exist in addition to the neoclassical particle flux. Based on the Maxwell's construction with respect to the work-done, the critical condition for the bifurcation is obtained. The existence of bifurcation is not affected by the anomalous energy flux. The gradients are found to be subject to bifurcation at high plasma fluxes regime. The transition to a better confinement is predicted. The presence of hard transition of the gradient and electric field indicates the existence of the electric domain interface, across which the discontinuous change of gradient takes place. (author)

  5. Mechanosensory hairs in bumblebees (Bombus terrestris) detect weak electric fields

    Science.gov (United States)

    Sutton, Gregory P.; Clarke, Dominic; Morley, Erica L.; Robert, Daniel

    2016-01-01

    Bumblebees (Bombus terrestris) use information from surrounding electric fields to make foraging decisions. Electroreception in air, a nonconductive medium, is a recently discovered sensory capacity of insects, yet the sensory mechanisms remain elusive. Here, we investigate two putative electric field sensors: antennae and mechanosensory hairs. Examining their mechanical and neural response, we show that electric fields cause deflections in both antennae and hairs. Hairs respond with a greater median velocity, displacement, and angular displacement than antennae. Extracellular recordings from the antennae do not show any electrophysiological correlates to these mechanical deflections. In contrast, hair deflections in response to an electric field elicited neural activity. Mechanical deflections of both hairs and antennae increase with the electric charge carried by the bumblebee. From this evidence, we conclude that sensory hairs are a site of electroreception in the bumblebee. PMID:27247399

  6. Numerical Simulation of Modified Radial Electric Field by LHCD

    Institute of Scientific and Technical Information of China (English)

    Wei Wei; Ding Bojiang; Kuang Guangli

    2005-01-01

    Based on the electron's radial force equilibrium, the profiles of radial electric field in OH and LHCD phase are calculated by using a simulation code. The dependences of radial electron field on electron density and its profile and different current ratio, Irf/Ip, are given. The connections between the improvement of plasma confinement and the modified radial electric field by LHCD are discussed by comparing the calculated results with the experimental results.

  7. On the correlation analysis of electric field inside jet engine

    OpenAIRE

    A Krishna; Khattab, T.; Abdelaziz, A.F.; Guizani, M.

    2014-01-01

    A Simple channel modeling method based on correlation analysis of the electric field inside jet engine is presented. The analysis of the statistical propagation characteristics of electromagnetic field inside harsh jet engine environment is presented by using `Ansys® HFSS'. In this paper, we propose a method to locate the best position for receiving probes inside jet engine with minimum correlation between the receiver points which have strong average electric field. Moreover, a MIMO system c...

  8. Fermionic Particle Production by Varying Electric and Magnetic Fields

    Science.gov (United States)

    Sogut, Kenan; Yanar, Hilmi; Havare, Ali

    2016-11-01

    Creation of fermionic particles by a time-dependent electric field and a space-dependent magnetic field is studied with the Bogoulibov transformation method. Exact analytic solutions of the Dirac equation are obtained in terms of the Whittaker functions and the particle creation number density depending on the electric and magnetic fields is determined. Supported by the Research Fund of Mersin University in TURKEY with project number: 2016-1-AP4-1425

  9. Applying portfolio theory to the electricity sector. Energy versus power

    Energy Technology Data Exchange (ETDEWEB)

    Delarue, Erik; D' haeseleer, William; De Jonghe, Cedric; Belmans, Ronnie [Leuven University, Leuven (Belgium)

    2011-01-15

    Portfolio theory has found its way in numerous applications for optimizing the electricity generation mix of a particular region. Existing models, however, consider typically a single time period and correspondingly do not properly account for actual dispatch constraints and energy sources with a non-dispatchable, variable output. This paper presents a portfolio theory model that explicitly distinguishes between installed capacity (power), electricity generation (energy) and actual instantaneous power delivery. This way, the variability of wind power and ramp limits of conventional power plants are correctly included in the investment optimization. The model is written as a quadratically constrained programming problem and illustrated in a case study. The results show that the introduction of wind power can be motivated to lower the risk on generation cost, albeit to smaller levels than typically reported in the literature. This wind power deployment further requires the need for sufficiently rampable technologies, to deal with its fluctuating output. (author)

  10. External Electric Field-Assisted Laser Percussion Drilling for Highly Reflective Metals

    Directory of Open Access Journals (Sweden)

    Chao-Ching Ho

    2013-01-01

    Full Text Available In this study, an external electric field was employed during the laser percussion drilling on highly reflective materials. The laser-produced plasma was sputtered substantially, and the charged ions in the plasma plume were drawn by the electrodes. Different configurations of plate electrodes were proposed and investigated in this work to provide a simple, low-cost method that allows expelling the laser-induced plasma during the percussion drilling process. The electric field resulted from the potential that was applied across the two electrodes. This electrical perturbation produced a uniform electric field when the laser-generated plasma was created in the plane plate-charged capacitor. The electric field with different electrode configurations applied to the charged particles that are carrying the electrons was also simulated in this work. All processing work was performed in air under standard atmospheric conditions and in the absence of assisting process gas. The depth of the holes drilled when various types of electrode configurations were used was measured, and the results were used to evaluate the percussion drilling rate. Results show that vaporized debris is expelled by the applied electric field; hence, in optimal configuration the penetration depth can be increased by up to 91.1%.

  11. Novel high power impulse magnetron sputtering enhanced by an auxiliary electrical field.

    Science.gov (United States)

    Li, Chunwei; Tian, Xiubo

    2016-08-01

    The high power impulse magnetron sputtering (HIPIMS) technique is a novel highly ionized physical vapor deposition method with a high application potential. However, the electron utilization efficiency during sputtering is rather low and the metal particle ionization rate needs to be considerably improved to allow for a large-scale industrial application. Therefore, we enhanced the HIPIMS technique by simultaneously applying an electric field (EF-HIPIMS). The effect of the electric field on the discharge process was studied using a current sensor and an optical emission spectrometer. Furthermore, the spatial distribution of the electric potential and electric field during the EF-HIPIMS process was simulated using the ANSYS software. The results indicate that a higher electron utilization efficiency and a higher particle ionization rate could be achieved. The auxiliary anode obviously changed the distribution of the electric potential and the electric field in the discharge region, which increased the plasma density and enhanced the degree of ionization of the vanadium and argon gas. Vanadium films were deposited to further compare both techniques, and the morphology of the prepared films was investigated by scanning electron microscopy. The films showed a smaller crystal grain size and a denser growth structure when the electric field was applied during the discharge process.

  12. Field and temperature dependence of the small polaron hopping electrical conductivity in 1D disordered systems

    Energy Technology Data Exchange (ETDEWEB)

    Triberis, G P; Dimakogianni, M, E-mail: gtriber@phys.uoa.g [Solid State Section, Physics Department, University of Athens, Panepistimiopolis, 15784 Zografos, Athens (Greece)

    2009-09-23

    We investigate the effect of the electric field and the temperature on the electrical conductivity of one-dimensional disordered systems due to phonon assisted hopping of small polarons. The microscopic transport mechanism is treated within the framework of the generalized molecular crystal model and the Kubo formula, while percolation theoretical arguments lead to analytical expressions for the macroscopic behavior of the electrical conductivity at high (multi-phonon assisted hopping) and low (few-phonon assisted hopping) temperatures under the influence of moderate electric fields. The theoretical results are successfully applied to recent experimental findings for a wide temperature range and from low up to moderate electric fields. Comparison is made with other theories.

  13. Effects of Crossed Electric and Magnetic Fields on Shallow Donor Impurity Binding Energy in a Parabolic Quantum Well

    Institute of Scientific and Technical Information of China (English)

    E. Kasapoglu; H. Sari; I. S(o)kmen

    2004-01-01

    @@ We have calculated variationally the ground state binding energy of a hydrogenic donor impurity in a parabolic quantum well in the presence of crossed electric and magnetic fields. These homogeneous crossed fields are such that the magnetic field is parallel to the heterostructure layers and the electric field is applied perpendicular to the magnetic field. The dependence of the donor impurity binding energy to the well width and the strength of the electric and magnetic fields are discussed. We hope that the obtained results will provide important improvements in device applications, especially for a suitable choice of both fields in the narrow well widths.

  14. Electric Field Measurement of the Living Human Body for Biomedical Applications: Phase Measurement of the Electric Field Intensity

    Directory of Open Access Journals (Sweden)

    Ichiro Hieda

    2013-01-01

    Full Text Available The authors are developing a technique for conducting measurements inside the human body by applying a weak electric field at a radio frequency (RF. Low RF power is fed to a small antenna, and a similar antenna located 15–50 cm away measures the electric field intensity. Although the resolution of the method is low, it is simple, safe, cost-effective, and able to be used for biomedical applications. One of the technical issues suggested by the authors' previous studies was that the signal pattern acquired from measurement of a human body was essentially different from that acquired from a phantom. To trace the causes of this difference, the accuracy of the phase measurements was improved. This paper describes the new experimental system that can measure the signal phase and amplitude and reports the results of experiments measuring a human body and a phantom. The results were analyzed and then discussed in terms of their contribution to the phase measurement.

  15. Effects of weak electric fields on the activity of neurons and neuronal networks

    Energy Technology Data Exchange (ETDEWEB)

    Jeffreys, J.G.R.; Deans, J.; Bikson, M.; Fox, J

    2003-07-01

    Electric fields applied to brain tissue will affect cellular properties. They will hyperpolarise the ends of cells closest to the positive part of the field, and depolarise ends closest to the negative. In the case of neurons this affects excitability. How these changes in transmembrane potential are distributed depends on the length constant of the neuron, and on its geometry; if the neuron is electrically compact, the change in transmembrane potential becomes an almost linear function of distance in the direction of the field. Neurons from the mammalian hippocampus, maintained in tissue slices in vitro, are significantly affected by fields of around 1-5 Vm{sup -1}. (author)

  16. Electric-field-assisted crystallisation in phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Kohary, Krisztian; Diosdado, Jorge A.V.; Ashwin, Peter; Wright, C. David [College of Engineering, Mathematics, and Physical Sciences, University of Exeter (United Kingdom)

    2012-10-15

    Phase-change materials are of intense research interest due mainly to their use in phase-change memory (PCM) devices that are emerging as a promising technology for future non-volatile, solid-state, electrical storage. Electrically driven transitions from the amorphous to the crystalline phase in such devices exhibit characteristic threshold switching. Several alternative electronic explanations for the origins of this characteristic behaviour have been put forward, for example Poole-Frenkel effects, delocalisation of tail states, field emission processes and space charge limited currents [for a full discussion, see Radielli et al., J. Appl. Phys. 103, 111101 (2008) and Simon et al., MRS Proc. 1251, H01-H011 (2010)]. However, an alternative to these conventional electronic models of threshold switching is based on electric field induced lowering of the system free energy, leading to the field induced nucleation of conducting crystal filaments. In this paper we investigate this alternative view. We present a detailed kinetics study of crystallisation in the presence of an electric field for the phase-change material Ge{sub 2}Sb{sub 2}Te{sub 5}. We derive quantitative crystallisation maps to show the effects of both temperature and electric field on crystallisation and we identify field ranges and parameter values where the electric field might play a significant role. Then we carry out physically realistic simulations of the threshold switching process in typical phase-change device structures, both with and without electric field dependent energy contributions to the system free energy. Our results show that threshold switching can be obtained by a mechanism driven purely by electric field induced nucleation, but the fields so required are large, of the order of 300 MV m{sup -1}, and significantly larger than the experimentally measured threshold fields. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Electric field gradients in Hg compounds

    DEFF Research Database (Denmark)

    Arcisauskaité, Vaida; Knecht, Stefan; Sauer, Stephan P. A.;

    2012-01-01

    We examine the performance of Density Functional Theory (DFT) approaches based on the Zeroth-Order Regular Approximation (ZORA) Hamiltonian (with and without inclusion of spinorbit coupling) for predictions of electric ¿eld gradients (EFGs) at the heavy atom Hg nucleus. This is achieved by compar......We examine the performance of Density Functional Theory (DFT) approaches based on the Zeroth-Order Regular Approximation (ZORA) Hamiltonian (with and without inclusion of spinorbit coupling) for predictions of electric ¿eld gradients (EFGs) at the heavy atom Hg nucleus. This is achieved...

  18. A Novel Dual-Electrode Plug to Achieve Intensive Electric Field for High Performance Ignition

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2013-01-01

    Full Text Available A thorough analysis of electric field is carried out so as to verify that a novel dual-electrode plug can build intensive electric field and can improve the main drawbacks of feeble electric field and low ignition efficiency of the traditional plug. With intensive electric field, the proposed novel plug can achieve high performance ignition, resulting in fuel saving and exhaust reduction. Gauss law is applied for electric field analysis to show that intensive electric field can be built by the novel plug. Then, according to Faraday law a lower-voltage ignition feature accomplished by the plug is discussed. Compared with traditional plug, the novel dual-electrode plug has the following advantages. (1 Much higher energy density is built between the plug electrodes, lowering ignition voltage requirement. (2 Electromagnetic interference (EMI problem caused by high ignition voltage is readily resolved. (3 Ignition time delay can be improved. (4 The feature to save fuel consuming is achieved. (5 The exhaust of CO and HC is reduced significantly. Practical measurements are fulfilled to validate the electric field analysis and to demonstrate the features of the proposed dual-electrode plug.

  19. Controlling the Goos-Hänchen shift with external electric and magnetic fields in an electro-optic/magneto-electric heterostructure

    Science.gov (United States)

    Dadoenkova, Yu. S.; Bentivegna, F. F. L.; Dadoenkova, N. N.; Petrov, R. V.; Lyubchanskii, I. L.; Bichurin, M. I.

    2016-05-01

    We present a theoretical investigation of the Goos-Hänchen effect upon light reflection from a heterostructure consisting of an electro-optic film deposited on a magneto-electric film grown on a nonmagnetic dielectric substrate. It is shown that the linear magneto-electric interaction leads to an increase of the lateral shift even in the absence of any applied electric field. The presence of the electro-optic layer enables the control of the Goos-Hänchen shift and of the position of its maximum (with respect to the angle of incidence) through a variation of the magnitude and orientation of an applied electric field. It is also demonstrated that applying an external magnetic field in order to reverse the magnetization in the magnetic layer results (under the influence of the magneto-electric interaction in the system) in a sign reversal of the lateral shift but a nonreciprocal change of its amplitude.

  20. Effects of Orthogonal Rotating Electric Fields on Electrospinning Process

    CERN Document Server

    Cipolletta, Federico; Pontrelli, Giuseppe; Pisignano, Dario; Succi, Sauro

    2016-01-01

    Electrospinning is an nanotechnology process whereby an external electric field is used to accelerate and stretch a charged polymer jet, so as to produce fibers at nanoscale diameters. In quest of a further reduction in the cross section of electrified jets hence of the resulting electrospun fibers, we explore the effects of an external rotating electric field orthogonal to the jet direction. Through extensive particle simulations, it is shown that by a proper tuning of the electric field amplitude and frequency, a reduction of up to a 30% in the aforementioned radius can be obtained, thereby opening new perspectives in the design of future ultra-thin electrospun fibres.

  1. High Dynamic Range Electric Field Sensor for Electromagnetic Pulse Detection

    CERN Document Server

    Lin, Che-Yun; Lee, Beom Suk; Zhang, Xingyu; Chen, Ray T

    2014-01-01

    We design a high dynamic range electric field sensor based on domain inverted electro-optic (E-O) polymer Y-fed directional coupler for electromagnetic wave detection. This electrode-less, all optical, wideband electrical field sensor is fabricated using standard processing for E-O polymer photonic devices. Experimental results demonstrate effective detection of electric field from 16.7V/m to 750KV/m at a frequency of 1GHz, and spurious free measurement range of 70dB.

  2. Solar Wind Electric Fields in the Ion Cyclotron Frequency Range

    CERN Document Server

    Kellogg, P J; Mozer, F S; Horbury, T S; Reme, H

    2006-01-01

    Measurements of fluctuations of electric fields in the frequency range from a fraction of one Hz to 12.5 Hz are presented, and corrected for the Lorentz transformation of magnetic fluctuations to give the electric fields in the plasma frame. The electric fields are large enough to provide the dominant force on the ions of the solar wind in the region near the ion cyclotron frequency of protons, larger than the force due to magnetic fluctuations. They provide sufficient velocity space diffusion or heating to counteract conservation of magnetic moment in the expanding solar wind to maintain nearly isotropic velocity distributions.

  3. Giant and tunable electric field enhancement in the terahertz regime.

    Science.gov (United States)

    Lu, Xiaoyuan; Wan, Rengang; Wang, Guoxi; Zhang, Tongyi; Zhang, Wenfu

    2014-11-01

    A novel array of slits design combining the nano-slit grating and dielectric-metal is proposed to obtain giant and tunable electric field enhancement in the terahertz regime. The maximum amplitude of electric field is more than 6000 times larger than that of the incident electric field. It is found that the enhancement depends primarily on the stripe and nano-slits width of grating, as well as the thickness of spacer layer. This property is particularly beneficial for the realization of ultra-sensitive nanoparticles detection and nonlinear optics in the terahertz range, such as the second harmonic generation (SHG).

  4. Photovoltaic electric power applied to Unmanned Aerial Vehicles (UAV)

    Science.gov (United States)

    Geis, Jack; Arnold, Jack H.

    1994-01-01

    Photovoltaic electric-powered flight is receiving a great deal of attention in the context of the United States' Unmanned Aerial Vehicle (UAV) program. This paper addresses some of the enabling technical areas and their potential solutions. Of particular interest are the long-duration, high-altitude class of UAV's whose mission it is to achieve altitudes between 60,000 and 100,000 feet, and to remain at those altitudes for prolonged periods performing various mapping and surveillance activities. Addressed herein are studies which reveal the need for extremely light-weight and efficient solar cells, high-efficiency electric motor-driven propeller modules, and power management and distribution control elements. Since the potential payloads vary dramatically in their power consumption and duty cycles, a typical load profile has been selected to provide commonality for the propulsion power comparisons. Since missions vary widely with respect to ground coverage requirements, from repeated orbiting over a localized target to long-distance routes over irregular terrain, we have also averaged the power requirements for on-board guidance and control power, as well as ground control and communication link utilization. In the context of the national technology reinvestment program, wherever possible we modeled components and materials which have been qualified for space and defense applications, yet are compatible with civilian UAV activities. These include, but are not limited to, solar cell developments, electric storage technology for diurnal operation, local and ground communications, power management and distribution, and control servo design. And finally, the results of tests conducted by Wright Laboratory on ultralight, highly efficient MOCVD GaAs solar cells purchased from EPI Materials Ltd. (EML) of the UK are presented. These cells were also used for modeling the flight characteristics of UAV aircraft.

  5. Electrical properties and electrical field in depletion layer for CZT crystals

    Institute of Scientific and Technical Information of China (English)

    LI Qiang; JIE Wan-qi; FU Li; YANG Ge; ZHA Gang-qiang; WANG Tao; BAI Xu-xu

    2006-01-01

    Current—voltage (I—V) and capacitance-voltage (C—V) characteristics of Au/p-CZT contacts with different surface treatments on cadmium zinc telluride (CZT) wafer's surface were measured with Agilent 4339B high resistance meter and Agilent 4294A precision impedance analyzer,respectively. The Schottky barrier height was 0.85±0.05,0.96±0.05 eV for non-passivated and passivated CZT crystals by I—V measurement. By C—V measurement,the Schottky barrier height was 1.39±0.05,1.51±0.05 eV for non-passivated and passivated CZT crystals. The results show that the passivation treatment can increase the barrier height of the Au/p-CZT contact and decrease the leakage current. The main reason is that the higher barrier height of Au/p-CZT contacts can decrease the possibility for electrons to pass through the native TeO2 film. Most of the applied voltage appears on the depleted layer and there is only a negligible voltage drops across the nearly undepleted region. Furthermore,the electric field in the depleted layer is not uniform and can be calculated by the depletion approximation. The maximum electric field of CZT crystals is Em1=133 V/cm at x=0 for non-passivated CZT crystal and Em2=55 V/cm for passivated CZT crystal,respectively.

  6. Pulsed electric field technology: Modeling of electric field and temperature distributions within continuous flow PEF treatment chamber

    OpenAIRE

    Salengke, dkk

    2012-01-01

    Innovations and technology developments in the field of food pasteurization and sterilization are continuously evolving. These include innovations in thermal processing technologies such as aseptic processing, ohmic technology, and microwave technology, as well as non-thermal processing technologies which include pulsed electric field technology and high pressure processing technology. This paper discussed the results of a study on mathematical modeling of electric field and temperature distr...

  7. High-frequency electric field amplification in a magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, Aleksandr V [Russian Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)

    2006-11-30

    In the investigation of cyclotron ion heating in systems designed for plasma isotope separation, the high-frequency (HF) electric field amplification effect was found to occur in equilibrium plasma. In the present article this effect is treated as a result of the interaction of the plasma placed in a constant external magnetic field with the HF modes of the vacuum chamber. Consistent elaboration of this approach allowed obtaining a clear interpretation of the HF electric field amplification effect and constructing a simple model of HF field excitation in a plasma column embedded in the external magnetic field. (methodological notes)

  8. Effects of an electric field on white sharks: in situ testing of an electric deterrent.

    Science.gov (United States)

    Huveneers, Charlie; Rogers, Paul J; Semmens, Jayson M; Beckmann, Crystal; Kock, Alison A; Page, Brad; Goldsworthy, Simon D

    2013-01-01

    Elasmobranchs can detect minute electromagnetic fields, shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1) the behaviour of 18 white sharks (Carcharodon carcharias) near a static bait, and (2) the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks.

  9. Electric-field-modulated nonvolatile resistance switching in VO₂/PMN-PT(111) heterostructures.

    Science.gov (United States)

    Zhi, Bowen; Gao, Guanyin; Xu, Haoran; Chen, Feng; Tan, Xuelian; Chen, Pingfan; Wang, Lingfei; Wu, Wenbin

    2014-04-09

    The electric-field-modulated resistance switching in VO2 thin films grown on piezoelectric (111)-0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 (PMN-PT) substrates has been investigated. Large relative change in resistance (10.7%) was observed in VO2/PMN-PT(111) hererostructures at room temperature. For a substrate with a given polarization direction, stable resistive states of VO2 films can be realized even when the applied electric fields are removed from the heterostructures. By sweeping electric fields across the heterostructure appropriately, multiple resistive states can be achieved. These stable resistive states result from the different stable remnant strain states of substrate, which is related to the rearrangements of ferroelectric domain structures in PMN-PT(111) substrate. The resistance switching tuned by electric field in our work may have potential applications for novel electronic devices.

  10. Low-energy electronic states of carbon nanocones in an electric field

    Institute of Scientific and Technical Information of China (English)

    Jun-Liang Chen; Ming-Horng Su; Chi-Chuan Hwang; Jian-Ming Lu; Chia-Chang Tsai

    2010-01-01

    The low-energy electronic states and energy gaps of carbon nanocones in an electric field are studied using a single-p-band tight-binding model. The analysis considers five perfect carbon nanocones with disclination angles of 60°, 120°, 180°, 240°and 300°, respectively. The numerical results reveal that the low-energy electronic states and energy gaps of a carbon nanocones are highly sensitive to its geometric shape (i.e. the disclination angle and height), and to the direction and magnitude of an electric field. The electric field causes a strong modulation of the state energies and energy gaps of the nanocones, changes their Fermi levels, and induces zero-gap transitions. The energy-gap modulation effect becomes particularly pronounced at higher strength of the applied electric field, and is strongly related to the geometric structure of the nanocone.

  11. Electric Field-Controlled Crystallizing CaCO3 Nanostructures from Solution.

    Science.gov (United States)

    Qi, Jian Quan; Guo, Rui; Wang, Yu; Liu, Xuan Wen; Chan, Helen Lai Wah

    2016-12-01

    The role of electric field is investigated in determining the structure, morphology, and crystallographic characteristics of CaCO3 nanostructures crystallized from solution. It is found that the lattice structure and crystalline morphology of CaCO3 can be tailed by the electric field applied to the solution during its crystallization. The calcite structure with cubic-like morphology can be obtained generally without electric field, and the vaterite structure with the morphology of nanorod is formed under the high electric field. The vaterite nanorods can be piled up to the petaliform layers. Both the nanorod and the petaliform layer can have mesocrystal structures which are piled up by much fine units of the rods with the size of several nanometers. Beautiful rose-like nanoflowers can be self-arranged by the petaliform layers. These structures can have potential application as carrier for medicine to involve into metabolism of living cell.

  12. Effect of the electric field on the primary scintillation from CF{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, A., E-mail: andrei@coimbra.lip.p [LIP-Coimbra and Departamento de Fisica, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Fraga, M.M.F.R.; Pereira, L. [LIP-Coimbra and Departamento de Fisica, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Margato, L.M.S. [LIP-Coimbra and Departamento de Fisica, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Institut Laue Langevin, 6 rue Jules Horowitz, 38042 Grenoble (France); Fetal, S.T.G. [LIP-Coimbra and Departamento de Fisica, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Guerard, B.; Manzin, G. [Institut Laue Langevin, 6 rue Jules Horowitz, 38042 Grenoble (France); Fraga, F.A.F. [LIP-Coimbra and Departamento de Fisica, Universidade de Coimbra, 3004-516 Coimbra (Portugal)

    2011-02-01

    The effect of an electric field on the primary scintillation from CF{sub 4} in the ultraviolet and visible wavelength regions (200-800 nm) is reported. The study was performed in the pressure range from 1 to 5 bar and at electric fields of up to 2 kV/cm. Photon emission spectra, fully corrected for the detection response, and the absolute photon yields in the ultraviolet and visible regions are reported. The CF{sub 4} emission spectra and the photon fluxes show no variations with the field at low pressures ({approx}1bar), while at higher pressures the effect of the field on the scintillation is strong: the ultraviolet emission intensity increases and the visible intensity decreases with the field strength. Time spectra of the primary scintillation for several applied electric field strengths are also reported for the two wavelength regions of light emission.

  13. Thermodynamics of the Heisenberg ferromagnet in an applied magnetic field.

    Science.gov (United States)

    Flax, L.

    1972-01-01

    The anisotropic-Heisenberg-ferromagnet formalism developed previously is examined to include an applied magnetic field for the isotropic case in the random-phase approximation. Thermodynamic quantities such as magnetization, susceptibility, and the derivative of magnetization with respect to temperature are studied near the Curie point.

  14. Analysis on Electric Field Around HVAC-HVDC Hybrid Transmission Lines%Analysis on Electric Field Around HVAC-HVDC Hybrid Transmission Lines

    Institute of Scientific and Technical Information of China (English)

    LI Qian; LIU Jun-xiang; LI Hua; LIN Fu-chang

    2011-01-01

    As the transmission line corridors become more and more rare in China, it is now inevitable for people to construct HVAC-HVDC hybrid transmission lines. The research on the electric field around the transmission lines plays an important role in evaluating the electromagnetic environment nearby. However, few existing research now considered the mutual effect of HVAC-HVDC hybrid transmission lines. Thus, this research designed a program based on windows, which calculated the surface voltage gradient on the transmission lines and the electric field at ground level respectively. This research calculated the surface voltage gradient on the transmission lines by applying the improved method of successive images. For the electric field at ground level under AC transmission line, simula- tion charge method is used, while for the electric field at the ground level under DC transmission lines, deutsch as- sumption method is used. Comparing the results generated by the calculation with those in published literature, the program is reliable. Taking 500 kV transmission lines as an example, when considering the mutual effect of the HVAC-HVDC'lines, the amplitude of the surface voltage gradient will increase by about 10% and the amplitude of the electric field at ground level will increase by about 8%, making the mutual effect of the AC and DC lines unneglectable. Larger part of the electric field at ground level under hybrid lines is produced by the DC line. Thus, in order to control the electric field at ground level under hybrid lines, it should pay more attention on that produced by the DC line.

  15. The bee, the flower and the electric field

    Directory of Open Access Journals (Sweden)

    Robert Daniel

    2016-01-01

    Full Text Available Insects use several different senses to forage on flowers, and detect floral cues such as color, shape, pattern, humidity and chemical volatiles. This presentation will present our discovery of a previously unappreciated sensory capacity in bumblebees (Bombus terrestris: the detection of floral electric fields. We show that these floral fields act as informational cues, and that they can be affected by the visit of naturally electrically charged bees. Like visual cues, floral electric fields exhibit variations in pattern and structure, which can be discriminated by bumblebees. We also show that such electric field information contributes to the complex array of floral cues that together improve a pollinator’s memory of floral rewards. Floral electric fields arise from complex interactions with the surrounding atmosphere, an interaction between plants and their environment that not well understood. Because floral electric fields can change within seconds, this new sensory modality - electrostatic field detection- may facilitate rapid and dynamic communication between flowers and their pollinators.

  16. Magnetic domain wall motion triggered by electric field

    Energy Technology Data Exchange (ETDEWEB)

    Pyatakov, A P; Sergeev, A S; Sechin, D A; Meshkov, G A; Nikolaeva, E P; Nikolaev, A V; Logginov, A S [Physics Department, M.V. Lomonosov Moscow State University, Leninskie gory, Moscow, 119296 (Russian Federation); Zvezdin, A K, E-mail: pyatakov@phys.msu.r [A.M. Prokhorov General Physics Institute, 38, Vavilova st., Moscow, 119991 (Russian Federation)

    2010-01-01

    We propose the new approach to the problem of electrically controlled magnetic state: the electric field driven domain wall motion. The effect is demonstrated in iron garnet films in ambient conditions. The theoretical model based on inhomogenous magnetoelectric interaction provides with the necessary criteria of the effect and the way to maximize it.

  17. Electric and magnetic field measurements. Annual report 80

    Energy Technology Data Exchange (ETDEWEB)

    McKnight, R.H.; Kotter, F.R.; Misakian, M.; Ortiz, P.

    1981-02-01

    The NBS program is concerned with developing methods for evaluating and calibrating instrumentation for use in measuring the electric field and various ion-related electrical quantities in the vicinity of high-voltage direct current (HVDC) transmission lines and in apparatus designed to simulate the transmission line environment.

  18. Study on delayed cracking of conductive notch under electric field in PZT-5H ferroelectric ceramics

    Institute of Scientific and Technical Information of China (English)

    QIAO Guangli; SU Yanjing; QIAO Lijie; CHU Wuyang

    2006-01-01

    Electric-field-induced delay cracking of conducting notch in PZT-5H ferroelectric ceramics has been studied using a compact specimen with a notch filled in conductive silver paste. The critical electric field that induces instant failure of the PZT-5H specimen is shown to be EF = 14.7(3.2 kV/cm. When an electric field lower than EF, but higher than EDF = 9.9 kV/cm was applied, a micro-crack formed at the conductive notch tip instantly, propagating slowly until the specimen failure. When the electric field was lower than EDF, the micro-crack propagated a short distance, and then stopped. When the electric field was lower than EK=4.9 kV/cm, no cracks formed at the conductive notch tip instantly, however, a delay micro-crack would form and propagate. When the electric field was lower than EDK=2.4 kV/cm, no cracks formed and delay propagation occurred. A model for electric charge emission and concentration at a conductive notch is proposed to explain the delay cracking of conducting notch.

  19. Molecular dynamics simulation study on behaviors of liquid 1,2-dichioroethane under external electric fields

    Institute of Scientific and Technical Information of China (English)

    杜志强; 陈正隆

    2003-01-01

    Molecular dynamics simulation was carried out to study the behavior of liquid 1,2-dichloroethane molecules under external electric fields including direct current field, alternating current field and positive-half-period cosin field. The maximum applied field strength was 108 V/m , the maximum frequency of the alternating current field and that of the positive-half-period cosine field was 1012 Hz . The simulation revealed that the field type and field strength act on the population of the molecular configuration. In the strong direct current field, all trans forms converted completely into gauche forms. Order parameter and the correlation of the system torsion angle were also investigated. The results suggested that these two dynamical parameters depended also on the field type and the field strength. The maximum of order parameter was found to be at 0.6in the strong direct current field.

  20. Molecular dynamics simulation study on behaviors of liquid 1,2-dichloroethane under external electric fields

    Institute of Scientific and Technical Information of China (English)

    杜志强; 陈正隆

    2003-01-01

    Molecular dynamics simulation was carried out to study the behavior of liquid 1,2-dichloroethane molecules under external electric fields including direct current field, alternating current field and positive-half-period cosin field. The maximum applied field strength was 108 V/m , the maximum frequency of the alternating current field and that of the positive-half-period cosine field was 1012 Hz .The simulation revealed that the field type and field strength act on the population of the molecular configuration. In the strong direct current field, all trans forms converted completely into gauche forms. Order parameter and the correlation of the system torsion angle were also investigated. The results suggested that these two dynamical parameters depended also on the field type and the field strength. The maximum of order parameter was found to be at 0.6 in the strong direct current field.

  1. Interferometric methods for mapping static electric and magnetic fields

    DEFF Research Database (Denmark)

    Pozzi, Giulio; Beleggia, Marco; Kasama, Takeshi;

    2014-01-01

    The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensi......) the model-independent determination of the locations and magnitudes of field sources (electric charges and magnetic dipoles) directly from electron holographic data.......The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensity...... on theoretical models that form the basis of the quantitative interpretation of electron holographic data. We review the application of electron holography to a variety of samples (including electric fields associated with p–n junctions in semiconductors, quantized magnetic flux in superconductors...

  2. Probing surface electric field noise with a single ion

    CERN Document Server

    Daniilidis, N; Bolloten, G; Ramm, M; Ransford, A; Ulin-Avila, E; Talukdar, I; Häffner, H

    2013-01-01

    We report room-temperature electric field noise measurements combined with in-situ surface characterization and cleaning of a microfabricated ion trap. We used a single-ion electric field noise sensor in combination with surface cleaning and analysis tools, to investigate the relationship between electric field noise from metal surfaces in vacuum and the composition of the surface. These experiments were performed in a novel setup that integrates ion trapping capabilities with surface analysis tools. We find that surface cleaning of an aluminum-copper surface significantly reduces the level of electric field noise, but the surface does not need to be atomically clean to show noise levels comparable to those of the best cryogenic traps. The post-cleaning noise levels are low enough to allow fault-tolerant trapped-ion quantum information processing on a microfabricated surface trap.

  3. Effective critical electric field for runaway electron generation

    CERN Document Server

    Stahl, Adam; Decker, Joan; Embréus, Ola; Fülöp, Tünde

    2014-01-01

    In this letter we investigate factors that influence the effective critical electric field for runaway electron generation in plasmas. We present numerical solutions of the kinetic equation, and discuss the implications for the threshold electric field. We show that the effective electric field necessary for significant runaway formation often is higher than previously calculated due to both (1) extremely strong dependence of primary generation on temperature, and (2) synchrotron radiation losses. We also address the effective critical field in the context of a transition from runaway growth to decay. We find agreement with recent experiments, but show that the observation of an elevated effective critical field can mainly be attributed to changes in the momentum-space distribution of runaways, and only to a lesser extent to a de facto change in the critical field.

  4. Calculation of the electric field gradients, generalized Sternheimer shielding constants, and electric-field-gradient polarizabilities for ten small molecules

    Science.gov (United States)

    Bishop, David M.; Cybulski, sławomir M.

    1994-05-01

    Electric field gradients, generalized Sternheimer shielding constants, and electric-field-gradient polarizabilities are calculated for H2, N2, F2, HF, HCl, CO, HCN, HNC, H2O, and NH3. The calculations are performed at both the Hartree-Fock and second order Møller-Plesset levels of approximation using large basis sets. For most of these molecules this is the first time that the shielding constants and electric field gradient polarizabilities have been determined. Electron correlation is generally found to be a significant factor.

  5. Lorentz force electrical impedance tomography using magnetic field measurements

    Science.gov (United States)

    Zengin, Reyhan; Güneri Gençer, Nevzat

    2016-08-01

    In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from -{{25}\\circ} to {{25}\\circ} at intervals of {{5}\\circ} . The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 dB. Simulation studies

  6. Anomalous plasma transport and induced electric field in a stochastic magnetic field structure

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Tetsuyuki; Itoh, Sanae-I.; Toda, Shinichiro; Yamaguchi, Hiroki [Kyushu Univ., Fukuoka (Japan); Fukuyama, Atsushi [Okayama Univ. (Japan)

    1995-04-01

    The plasma transport matrix is formulated using the kinetic equation for the particles in the stochastic magnetic field. The radial electric field generation is analyzed using this transport matrix. This thermoelectric field is dictated by the difference between the electron heat flux and the ion heat flux. We calculate the spatial structures of the radial electric field and the temperature in the stochastic field region. 7 refs., 3 figs.

  7. Electric field dependence of crystallinity in poly(vinylidene fluoride)

    Energy Technology Data Exchange (ETDEWEB)

    Kepler, R.G.; Anderson, R.A.; Lagasse, R.R.

    1982-05-03

    It is shown that the crystallinity of poled films of poly(vinylidene fluoride) can be changed by the application of an electric field. This is the first time that electric-field-induced changes of crystallinity in a polymer have been reported, and this observation confirms the hypothesis that reversible changes in crystallinity with temperature contribute significantly to the pyroelectric effect in poly(vinylidene fluoride).

  8. Electric Field Dependence of Crystallinity in Poly(Vinylidene Fluoride)

    Science.gov (United States)

    Kepler, R. G.; Anderson, R. A.; Lagasse, R. R.

    1982-05-01

    It is shown that the crystallinity of poled films of poly(vinylidene fluoride) can be changed by the application of an electric field. This is the first time that electric-field-induced changes of crystallinity in a polymer have been reported, and this observation confirms the hypothesis that reversible changes in crystallinity with temperature contribute significantly to the pyroelectric effect in poly(vinylidene fluoride).

  9. Ionizing gas breakdown waves in strong electric fields.

    Science.gov (United States)

    Klingbeil, R.; Tidman, D. A.; Fernsler, R. F.

    1972-01-01

    A previous analysis by Albright and Tidman (1972) of the structure of an ionizing potential wave driven through a dense gas by a strong electric field is extended to include atomic structure details of the background atoms and radiative effects, especially, photoionization. It is found that photoionization plays an important role in avalanche propagation. Velocities, electron densities, and temperatures are presented as a function of electric field for both negative and positive breakdown waves in nitrogen.

  10. Evolution of Spiral Waves under Modulated Electric Fields

    Institute of Scientific and Technical Information of China (English)

    MA Jun; YING He-Ping; PAN Guo-Wei; PU Zhong-Sheng

    2005-01-01

    @@ Spirals generated from the excitable media within the Barkley model is investigated under the gradient electric fields by a numerical simulation. The spiral drift and spiral break up are observed when the amplitude of the electric fields is modulated by a constant signal or a chaotic signal. It is also verified that, even in the presence of the white noise, the whole system can reach homogeneous states after the spiral breakup, by using an adaptive strategy.

  11. Applying nitrogen site-specifically using soil electrical conductivity maps and precision agriculture technology.

    Science.gov (United States)

    Lund, E D; Wolcott, M C; Hanson, G P

    2001-10-16

    Soil texture varies significantly within many agricultural fields. The physical properties of soil, such as soil texture, have a direct effect on water holding capacity, cation exchange capacity, crop yield, production capability, and nitrogen (N) loss variations within a field. In short, mobile nutrients are used, lost, and stored differently as soil textures vary. A uniform application of N to varying soils results in a wide range of N availability to the crop. N applied in excess of crop usage results in a waste of the grower"s input expense, a potential negative effect on the environment, and in some crops a reduction of crop quality, yield, and harvestability. Inadequate N levels represent a lost opportunity for crop yield and profit. The global positioning system (GPS)-referenced mapping of bulk soil electrical conductivity (EC) has been shown to serve as an effective proxy for soil texture and other soil properties. Soils with a high clay content conduct more electricity than coarser textured soils, which results in higher EC values. This paper will describe the EC mapping process and provide case studies of site-specific N applications based on EC maps. Results of these case studies suggest that N can be managed site-specifically using a variety of management practices, including soil sampling, variable yield goals, and cropping history.

  12. Applying Nitrogen Site-Specifically Using Soil Electrical Conductivity Maps and Precision Agriculture Technology

    Directory of Open Access Journals (Sweden)

    E.D. Lund

    2001-01-01

    Full Text Available Soil texture varies significantly within many agricultural fields. The physical properties of soil, such as soil texture, have a direct effect on water holding capacity, cation exchange capacity, crop yield, production capability, and nitrogen (N loss variations within a field. In short, mobile nutrients are used, lost, and stored differently as soil textures vary. A uniform application of N to varying soils results in a wide range of N availability to the crop. N applied in excess of crop usage results in a waste of the grower’s input expense, a potential negative effect on the environment, and in some crops a reduction of crop quality, yield, and harvestability. Inadequate N levels represent a lost opportunity for crop yield and profit. The global positioning system (GPS-referenced mapping of bulk soil electrical conductivity (EC has been shown to serve as an effective proxy for soil texture and other soil properties. Soils with a high clay content conduct more electricity than coarser textured soils, which results in higher EC values. This paper will describe the EC mapping process and provide case studies of site-specific N applications based on EC maps. Results of these case studies suggest that N can be managed site-specifically using a variety of management practices, including soil sampling, variable yield goals, and cropping history.

  13. Electric Field-Induced Fluid Velocity Field Distribution in DNA Solution

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ling-Yun; WANG Peng-Ye

    2008-01-01

    We present an analytical solution for fluid velocity field distribution of polyelectrolyte DNA. Both the electric field force and the viscous force in the DNA solution are considered under a suitable boundary condition. The solution of electric potential is analytically obtained by using the linearized Poisson-Boltzmann equation. The fluid velocity along the electric field is dependent on the cylindrical radius and concentration. It is shown that the electric field-induced fluid velocity will be increased with the increasing cylindrical radius, whose distribution also varies with the concentration

  14. Effect of electric field on the photoluminescence intensity of single CdSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Park, So-Jung; Link, Stephan; Miller, William L.; Gesquiere, Andre [Department of Chemistry and Biochemistry and the Center for Nano- and Molecular Science and Technology, University of Texas, Austin, TX 78712 (United States); Barbara, Paul F. [Department of Chemistry and Biochemistry and the Center for Nano- and Molecular Science and Technology, University of Texas, Austin, TX 78712 (United States)], E-mail: p.barbara@mail.utexas.edu

    2007-11-15

    An investigation of the effect of an applied electric field on the photoluminescence (PL) intensity of single CdSe nanocrystals has revealed a measurable field induced PL modulation for a large fraction of the nanocrystals studied. The field induced intensity modulation characteristics (i.e. modulation sign and depth) were observed to vary from particle to particle, and even for different time periods for the same particle in many cases. Simultaneous intensity and frequency resolved PL measurement show that the PL intensity modulation is in fact due to an electric field effect on the PL quantum yield. The results are consistent with a model in which the energies of surface charge trapping sites are modulated by the applied electric field, causing in turn a modulation of the rates of exciton quenching by these sites. The complex observed field effects can be explained by the superposition of the applied and internal electric fields due to deeply trapped charges on the surface of the nanoparticle.

  15. Structural characterization of electric-field assisted dip-coating of gold nanoparticles on silicon

    Science.gov (United States)

    Dushaq, Ghada H.; Alkhatib, Amro; Rasras, Mahmoud S.; Nayfeh, Ammar M.

    2015-09-01

    We report the effect of applying an electric field on the surface coverage of 40nm gold colloidal nanoparticles on silicon wafer using dip-coating and electrochemical cell set up. By applying electric field during the dip-coating of silicon wafer in a solution of gold nano particles (GNP) the surface coverage increased by 10% when the electric field varied from 5V/cm to 25V/cm at fixed deposition time of 90s. Ultra High Resolution Scanning Electron Microscopy (HRSEM) images shows that the particle agglomeration becomes more noticeable at higher electric field and as the deposition time increases from 90 s to 20 min a thin film of gold is achieved. Moreover, the results are discussed in terms of chemical bonding, electrostatic force and electrophoretic mobility of Au nano particles during the electric field enhanced deposition on the Si surface. Applied voltage, time of dipping, concentration of the aqueous solution, and particles zeta potential are all can be controlled to enhance the uniformity and particles profile on the silicon surface.

  16. Structural characterization of electric-field assisted dip-coating of gold nanoparticles on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Dushaq, Ghada H.; Alkhatib, Amro; Rasras, Mahmoud S.; Nayfeh, Ammar M. [Institute Center for microsystem engineering (iMicro), Department of Electrical Engineering and Computer Science (EECS), Masdar Institute of Science and Technology, PO Box. 54224, Abu Dhabi (United Arab Emirates)

    2015-09-15

    We report the effect of applying an electric field on the surface coverage of 40nm gold colloidal nanoparticles on silicon wafer using dip-coating and electrochemical cell set up. By applying electric field during the dip-coating of silicon wafer in a solution of gold nano particles (GNP) the surface coverage increased by 10% when the electric field varied from 5V/cm to 25V/cm at fixed deposition time of 90s. Ultra High Resolution Scanning Electron Microscopy (HRSEM) images shows that the particle agglomeration becomes more noticeable at higher electric field and as the deposition time increases from 90 s to 20 min a thin film of gold is achieved. Moreover, the results are discussed in terms of chemical bonding, electrostatic force and electrophoretic mobility of Au nano particles during the electric field enhanced deposition on the Si surface. Applied voltage, time of dipping, concentration of the aqueous solution, and particles zeta potential are all can be controlled to enhance the uniformity and particles profile on the silicon surface.

  17. Structural characterization of electric-field assisted dip-coating of gold nanoparticles on silicon

    Directory of Open Access Journals (Sweden)

    Ghada H. Dushaq

    2015-09-01

    Full Text Available We report the effect of applying an electric field on the surface coverage of 40nm gold colloidal nanoparticles on silicon wafer using dip-coating and electrochemical cell set up. By applying electric field during the dip-coating of silicon wafer in a solution of gold nano particles (GNP the surface coverage increased by 10% when the electric field varied from 5V/cm to 25V/cm at fixed deposition time of 90s. Ultra High Resolution Scanning Electron Microscopy (HRSEM images shows that the particle agglomeration becomes more noticeable at higher electric field and as the deposition time increases from 90 s to 20 min a thin film of gold is achieved. Moreover, the results are discussed in terms of chemical bonding, electrostatic force and electrophoretic mobility of Au nano particles during the electric field enhanced deposition on the Si surface. Applied voltage, time of dipping, concentration of the aqueous solution, and particles zeta potential are all can be controlled to enhance the uniformity and particles profile on the silicon surface.

  18. Electric field and temperature scaling of polarization reversal in silicon doped hafnium oxide ferroelectric thin films

    OpenAIRE

    Zhou, Dayu; Guan, Yan; Vopson, Melvin Marian; Xu, Jin; Liang, Hailong; Cao,Fei; Dong, Xianlin; Johannes, Johannes; Schenk, Tony; Schroeder, Uwe

    2015-01-01

    HfO2-based binary lead-free ferroelectrics show promising properties for non-volatile memory applications, providing that their polarization reversal behavior is fully understood. In this work, temperature-dependent polarization hysteresis measured over a wide applied field range has been investigated for Si-doped HfO2 ferroelectric thin films. Our study indicates that in the low and medium electric field regimes (E < twofold coercive field, 2Ec), the reversal process is dominated by the ther...

  19. Particle acceleration by fluctuating electric fields at a magnetic field null point

    CERN Document Server

    Petkaki, P

    2007-01-01

    Particle acceleration consequences from fluctuating electric fields superposed on an X-type magnetic field in collisionless solar plasma are studied. Such a system is chosen to mimic generic features of dynamic reconnection, or the reconnective dissipation of a linear disturbance. We explore numerically the consequences for charged particle distributions of fluctuating electric fields superposed on an X-type magnetic field. Particle distributions are obtained by numerically integrating individual charged particle orbits when a time varying electric field is superimposed on a static X-type neutral point. This configuration represents the effects of the passage of a generic MHD disturbance through such a system. Different frequencies of the electric field are used, representing different possible types of wave. The electric field reduces with increasing distance from the X-type neutral point as in linear dynamic magnetic reconnection. The resulting particle distributions have properties that depend on the ampli...

  20. Spiking patterns of a hippocampus model in electric fields

    Institute of Scientific and Technical Information of China (English)

    Men Cong; Wang Jiang; Qin Ying-Mei; Wei Xi-Le; Che Yan-Qiu; Deng Bin

    2011-01-01

    We develop a model of CA3 neurons embedded in a resistive array to mimic the effects of electric fields from a new perspective.Effects of DC and sinusoidal electric fields on firing patterns in CA3 neurons are investigated in this study.The firing patterns can be switched from no firing pattern to burst or from burst to fast periodic firing pattern with the increase of DC electric field intensity.It is also found that the firing activities are sensitive to the frequency and amplitude of the sinusoidal electric field.Different phase-locking states and chaotic firing regions are observed in the parameter space of frequency and amplitude.These findings are qualitatively in accordance with the results of relevant experimental and numerical studies.It is implied that the external or endogenous electric field can modulate the neural code in the brain.Furthermore,it is helpful to develop control strategies based on electric fields to control neural diseases such as epilepsy.

  1. The chromatographic separation of particles using optical electric fields

    DEFF Research Database (Denmark)

    Javier Alvarez, Nicolas; Jeppesen, Claus; Yvind, Kresten;

    2013-01-01

    array of axially non-uniform optical fields yielding an attractive potential (positive-DEP-FFF) is advantageous for the separation of polymers, biomolecules, and nanoparticles over very short distances. Furthermore, positive-DEP-FFF yields superior selectivity and resolution compared to conventional......We introduce a new field-flow fractionation (FFF) technique, whereby molecules are separated based on their differential interaction (dielectrophoresis (DEP)) with optical electric fields, i.e. electric fields with frequencies in the visible and near-infrared range. The results show that a parallel...

  2. Vacuum radiation induced by time dependent electric field

    Science.gov (United States)

    Zhang, Bo; Zhang, Zhi-meng; Hong, Wei; He, Shu-Kai; Teng, Jian; Gu, Yu-qiu

    2017-04-01

    Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED) will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.

  3. Vacuum radiation induced by time dependent electric field

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-04-01

    Full Text Available Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.

  4. Propagation of Magnetic Fields from Electrical Domestic Appliances

    Science.gov (United States)

    Orlova, K. N.; Gaidamak, M. A.; Borovikov, I. F.

    2016-08-01

    The article presents a research into propagation of magnetic fields from electrical domestic devices. A safe distance at which magnetic induction does not exceed the background level is determined for each type of devices. It is proved that there are two stages of increasing magnetic induction as the distance from the source increases. At the first stage magnetic induction rises and electromagnetic field is formed. At the second stage exponential decrease of magnetic field induction takes place. Mathematical regularities of propagation of magnetic field from electrical domestic devices are experimentally educed.

  5. Augmentation of boiling heat transfer by utilizing the EHD effect. 1st report. ; Basic study on the enhancement of nucleate boiling heat transfer by applying electric field. EHD koka wo katsuyosuru futto dennetsu sokushin ni kansuru kenkyu. 1. ; Futto sokushin no kisoteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, J. (Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)); Yabe, A. (Mechanical Engineering Lab., Tsukuba (Japan)); Yamazaki, T. (The Tokyo Electric Power Co. Inc., Tokyo (Japan)); Hirao, Y. (Mitsubishi Heavy Industries, Ltd., Tokyo (Japan))

    1990-07-25

    What utilizes the effect of electrohydrodynamical technique (EHD), as one of heat transfer augmentation methods, is methodically frequented and partially prepared to be put to practical use. Then, the heat transfer augmentation effect on nucleate boiling, utilizing the EHD effect, was both experimentally and theoretically studied from both the applicative and basic viewpoints. By adding fleon with 2wt% ethyl alcohol, higher in electric conductivity, in order to have the mitigation time of electric charge correspond to the bubbling frequency of bubble, the heat transfer augmentation was enabled to be about 8.5 times as high as that without impressing the electric field. As a result of observing the behavior of bubble in the electric field, was observed a phenomenon of bubble, moving from place to place, without ascending, on the plane electrode plate, by which could be found one of causes of the heat transfer augmentation. From analyzing the electric field around the bubble, it was clear that the static electric field force of vertical component generates force to push the bubble down on the heat transfer surface, and that the horizontal component of static electric field force is more than four times as large as its vertical component, and gives force to have the bubble move and rotate easily on the heat transfer surface. 8 refs., 9 figs.

  6. Radiation-induced solidification of ionic liquid under extreme electric field

    Science.gov (United States)

    Terhune, Kurt J.; King, Lyon B.; He, Kai; Cumings, John

    2016-09-01

    An extreme electric field on the order of 1010 V m-1 was applied to the free surface of an ionic liquid to cause electric-field-induced evaporation of molecular ions from the liquid. The point of ion emission was observed in situ using a TEM. The resulting electrospray emission process was observed to create nanoscale high-aspect-ratio dendritic features that were aligned with the direction of the electric field. Upon removal of the stressing field the features were seen to remain, indicating that the ionic liquid residue was solidified or gelled. Similar electrospray experiments performed in a field-emission scanning electron microscope revealed that the features are created when the high-energy electron beam damages the molecular structure of the ionic liquid. While the electric field does not play a direct role in the fluid modification, the electric stress was critical in detecting the liquid property change. It is only because the electric stress mechanically elongated the fluid during the electrospray process and these obviously non-liquid structures persisted when the field was removed that the damage was evident. This evidence of ionic liquid radiation damage may have significant bearing on electrospray devices where it is possible to produce high-energy secondary electrons through surface impacts of emitted ions downstream of the emitter. Any such impacts that are in close proximity could see reflected secondary electrons impact the emitter causing gelling of the ionic liquid.

  7. Theoretical study on coupling effects of modulation depth between two photorefractive phase gratings with an external applied field

    Institute of Scientific and Technical Information of China (English)

    YUAN Baohong; ZHOU Zhongxiang; HOU Chunfeng; SUN Xiudong

    2001-01-01

    We used the perturbation expanding method to the hopping model and studied coupling effects of the modulation depth between two photorefractive phase gratings stored in one point with an external applied DC electric field . It has been found that the modulation depth of one of the two gratings seriously affects the spatial-charge field of the other grating.

  8. Low magnetic Johnson noise electric field plates for precision measurement

    CERN Document Server

    Rabey, I M; Hinds, E A; Sauer, B E

    2016-01-01

    We describe a parallel pair of high voltage electric field plates designed and constructed to minimise magnetic Johnson noise. They are formed by laminating glass substrates with commercially available polyimide (Kapton) tape, covered with a thin gold film. Tested in vacuum, the outgassing rate is less than $5\\times10^{-5}$ mbar.l/s. The plates have been operated at electric fields up to 8.3 kV/cm, when the leakage current is at most a few hundred pA. The design is discussed in the context of a molecular spin precession experiment to measure the permanent electric dipole moment of the electron.

  9. EFFECTS OF STATIC ELECTRIC FIELD ON THE FRACTURE BEHAVIOR OF PIEZOELECTRIC CERAMICS

    Institute of Scientific and Technical Information of China (English)

    Tong-Yi Zhang

    2002-01-01

    The paper gives an overview on experimental observations of thefailure behavior of electrically insulating and conducting cracks in piezoelectric ce-ramics. The experiments include the indentation fracture test, the bending test onsmooth samples, and the fracture test on pre-notched (or pre-cracked) compact ten-sion samples. For electrically insulating cracks, the experimental results show a com-plicated fracture behavior under electrical and mechanical loading. Fracture dataare much scattered when a static electric field is applied. A statistically based frac-ture criterion is required. For electrically conducting cracks, the experimental resultsdemonstrate that static electric fields can fracture poled and depoled lead zirconatetitanate ceramics and that the concepts of fracture mechanics can be used to mea-sure the electrical fracture toughness. Furthermore, the electrical fracture toughnessis much higher than the mechanical fracture toughness. The highly electrical fracturetoughness arises from the greater energy dissipation around the conductive crack tipunder purely electric loading, which is impossible under mechanical loading in thebrittle ceramics.

  10. Static electric field enhancement in nanoscale structures

    Science.gov (United States)

    Lepetit, Bruno; Lemoine, Didier; Márquez-Mijares, Maykel

    2016-08-01

    We study the effect of local atomic- and nano-scale protrusions on field emission and, in particular, on the local field enhancement which plays a key role as known from the Fowler-Nordheim model of electronic emission. We study atomic size defects which consist of right angle steps forming an infinite length staircase on a tungsten surface. This structure is embedded in a 1 GV/m ambient electrostatic field. We perform calculations based upon density functional theory in order to characterize the total and induced electronic densities as well as the local electrostatic fields taking into account the detailed atomic structure of the metal. We show how the results must be processed to become comparable with those of a simple homogeneous tungsten sheet electrostatic model. We also describe an innovative procedure to extrapolate our results to nanoscale defects of larger sizes, which relies on the microscopic findings to guide, tune, and improve the homogeneous metal model, thus gaining predictive power. Furthermore, we evidence analytical power laws for the field enhancement characterization. The main physics-wise outcome of this analysis is that limited field enhancement is to be expected from atomic- and nano-scale defects.

  11. Ion-cage interpretation for the structural and dynamic changes of ionic liquids under an external electric field.

    Science.gov (United States)

    Shi, Rui; Wang, Yanting

    2013-05-01

    In many applications, ionic liquids (ILs) work in a nonequilibrium steady state driven by an external electric field. However, how the electric field changes the structure and dynamics of ILs and its underlying mechanism still remain poorly understood. In this paper, coarse-grained molecular dynamics simulations were performed to investigate the structure and dynamics of 1-ethyl-3-methylimidazolium nitrate ([EMIm][NO3]) under a static electric field. The ion cage structure was found to play an essential role in determining the structural and dynamic properties of the IL system. With a weak or moderate electric field (0-10(7) V/m), the external electric field is too weak to modify the ion cage structure in an influential way and thus the changes of structural and dynamic properties are negligible. With a strong electric field (10(7)-10(9) V/m) applied, ion cages expand and deform apparently, leading to the increase of ion mobility and self-diffusion coefficient with electric field, and the self-diffusion of ions along the electric field becomes faster than the other two directions due to the anisotropic deformation of ion cages. In addition, the Einstein relation connecting diffusion and mobility breaks down at strong electric fields, and it also breaks down for a single ion species even at moderate electric fields (linear-response region).

  12. Experimental investigation of barium spectra in crossed electric and magnetic fields

    Institute of Scientific and Technical Information of China (English)

    Quan Wei; Liu Hong-Ping; Shen Li; Zhan Ming-Sheng

    2007-01-01

    This paper has studied the barium spectra in external magnetic and electric fields on the recently-built system based on a super-conducting solenoid with high stability of better than 1 Gauss. Firstly, we compared the spectra in a high pure magnetic field of B = 4.00000T for different polarized laser, σ+ and σ-. We prove that after a proper shift,the σ+ and σ- spectra are completely identical. We also investigated the dependence of the spectral feature in the high magnetic field on an additionally applied crossing electric field. Along with the increase of the electric field, there is an energy shift for every spectral line. Based on a transformative Hamiltonian, we explained this energy shift well.

  13. Soybean Hydrophobic Protein Response to External Electric Field: A Molecular Modeling Approach

    Directory of Open Access Journals (Sweden)

    Vijaya Raghavan

    2013-02-01

    Full Text Available The molecular dynamic (MD modeling approach was applied to evaluate the effect of an external electric field on soybean hydrophobic protein and surface properties. Nominal electric field strengths of 0.002 V/nm and 0.004 V/nm had no major effect on the structure and surface properties of the protein isolate but the higher electric field strength of 3 V/nm significantly affected the protein conformation and solvent accessible surface area. The response of protein isolate to various external field stresses demonstrated that it is necessary to gain insight into protein dynamics under electromagnetic fields in order to be able to develop the techniques utilizing them for food processing and other biological applications.

  14. Electric field-induced softening of alkali silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, C.; Heffner, W.; Jain, H. [Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Tessarollo, R.; Raj, R. [Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309 (United States)

    2015-11-02

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown.

  15. Rovibrational spectra of diatomic molecules in strong electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Ferez, R; Schmelcher, P [Departamento de Fisica Moderna and Instituto ' Carlos I' de Fisica Teorica y Computacional, Facultad de Ciencias, Universidad de Granada, E-18071 Granada (Spain); Theoretische Chemie, Physikalisch-Chemisches Institut, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany); Physikalisches Institut, Universitaet Heidelberg, Philosophenweg 12, D-69120 Heidelberg (Germany)

    2005-01-01

    We investigate the effects of a strong static electric field on the rovibrational spectra of diatomic heteronuclear molecules in a {sup 1}{sigma}{sup +} electronic ground state. Using a hybrid computational technique combining discretization and basis set methods the full rovibrational equation of motion is solved. As a prototype for our computations we take the carbon monoxide molecule. For experimentally accessible field strengths we observe that while low-lying states are not significantly affected by the field, for highly excited states strong orientation and hybridization are achieved. We propose an effective rotor Hamiltonian, including the main properties of each vibrational state, to describe the influence of the electric field on the rovibrational spectra of a molecular system with a small coupling between its rotational and vibrational motions. This effective rotor approach goes significantly beyond the rigid rotor approach and is able to describe the effect of the electric field for highly excited states.

  16. Reversible electric-field control of magnetization at oxide interfaces

    Science.gov (United States)

    Cuellar, F. A.; Liu, Y. H.; Salafranca, J.; Nemes, N.; Iborra, E.; Sanchez-Santolino, G.; Varela, M.; Hernandez, M. Garcia; Freeland, J. W.; Zhernenkov, M.; Fitzsimmons, M. R.; Okamoto, S.; Pennycook, S. J.; Bibes, M.; Barthélémy, A.; Te Velthuis, S. G. E.; Sefrioui, Z.; Leon, C.; Santamaria, J.

    2014-06-01

    Electric-field control of magnetism has remained a major challenge which would greatly impact data storage technology. Although progress in this direction has been recently achieved, reversible magnetization switching by an electric field requires the assistance of a bias magnetic field. Here we take advantage of the novel electronic phenomena emerging at interfaces between correlated oxides and demonstrate reversible, voltage-driven magnetization switching without magnetic field. Sandwiching a non-superconducting cuprate between two manganese oxide layers, we find a novel form of magnetoelectric coupling arising from the orbital reconstruction at the interface between interfacial Mn spins and localized states in the CuO2 planes. This results in a ferromagnetic coupling between the manganite layers that can be controlled by a voltage. Consequently, magnetic tunnel junctions can be electrically toggled between two magnetization states, and the corresponding spin-dependent resistance states, in the absence of a magnetic field.

  17. Electric Field Generated Stress Moduli in Polythiophene/Polyisoprene Elastomer Blends

    Science.gov (United States)

    Puvanatvattana, Toemphong; Sirivat, Anuvat

    2006-03-01

    The effects of crosslinking ratio and electric field strength on the rheological properties of polyisoprene and polythiophene/polyisoprene (Pth/PI) blendss were investigated as potential electroactive actuator. Electrorheological properties of polyisoprene and blends were measured under the oscillatory shear mode with the applied electric filed strength varying from 0 to 2 kV/mm. The dynamic moduli, G' and G'', of the pure polyisoprene depend on the crosslinking ratio and the electric filed strength; the storage modulus (G') increases but the loss modulus (G'') decreases with increasing crosslinking ratio. The storage modulus (G') and the loss modulus (G'') of the pure polyisoprene fluid exhibit no change with increasing electric field strength. For PI with the crosslinking ratios of 2, 3, 5 and 7 (PI&_slash;02, 03, 05 and 07), the storage modulus sensitivity, Δ G'/G'o, increases with electric field strength and attains maximum values of 10&%slash;, 60&%slash;, 25&%slash;, and 30&%slash; at the electric field strength of 2 kV/mm, respectively. The loss modulus (G'') of the PI with the crosslinking ratios of 2 and 3 increases with the electric field, but for the blends of the crosslinking ratios of 5 and 7, it decreases. For the blends of polythiophene with PI at concentrations of 5&%slash;, 10&%slash; and 20&%slash; by vol, G' and G'' are generally higher than those of pure polyisoprene.

  18. Rydberg-Stark states in oscillating electric fields

    CERN Document Server

    Zhelyazkova, V

    2015-01-01

    Experimental and theoretical studies of the effects of weak radio-frequency electric fields on Rydberg-Stark states with electric dipole moments as large as 10000 D are reported. High-resolution laser spectroscopic studies of Rydberg states with principal quantum number $n=52$ and $53$ were performed in pulsed supersonic beams of metastable helium with the excited atoms detected by pulsed electric field ionisation. Experiments were carried out in the presence of sinusoidally oscillating electric fields with frequencies of 20~MHz, amplitudes of up to 120~mV/cm, and dc offsets of up to 4.4~V/cm. In weak fields the experimentally recorded spectra are in excellent agreement with the results of calculations carried out using Floquet methods to account for electric dipole couplings in the oscillating fields. This highlights the validity of these techniques for the accurate calculation of the Stark energy level structure in such fields, and the limitations of the calculations in stronger fields where $n-$mixing and ...

  19. Rydberg-Stark states in oscillating electric fields

    Science.gov (United States)

    Zhelyazkova, V.; Hogan, S. D.

    2015-12-01

    Experimental and theoretical studies of the effects of weak radio-frequency electric fields on Rydberg-Stark states with electric dipole moments as large as 10,000 D are reported. High-resolution laser spectroscopic studies of Rydberg states with principal quantum number n = 52 and 53 were performed in pulsed supersonic beams of metastable helium with the excited atoms detected by pulsed electric field ionisation. Experiments were carried out in the presence of sinusoidally oscillating electric fields with frequencies of 20 MHz, amplitudes of up to 120 mV/cm, and dc offsets of up to 4.4 V/cm. In weak fields, the experimentally recorded spectra are in excellent agreement with the results of calculations carried out using Floquet methods to account for electric dipole couplings in the oscillating fields. This highlights the validity of these techniques for the accurate calculation of the Stark energy level structure in such fields, and the limitations of the calculations in stronger fields where n-mixing and higher order contributions become important.

  20. New Method for Solving Inductive Electric Fields in the Ionosphere

    Science.gov (United States)

    Vanhamäki, H.

    2005-12-01

    We present a new method for calculating inductive electric fields in the ionosphere. It is well established that on large scales the ionospheric electric field is a potential field. This is understandable, since the temporal variations of large scale current systems are generally quite slow, in the timescales of several minutes, so inductive effects should be small. However, studies of Alfven wave reflection have indicated that in some situations inductive phenomena could well play a significant role in the reflection process, and thus modify the nature of ionosphere-magnetosphere coupling. The input to our calculation method are the time series of the potential part of the ionospheric electric field together with the Hall and Pedersen conductances. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called Cartesian Elementary Current Systems (CECS). This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfven wave reflection from uniformly conducting ionosphere.

  1. Enhanced proton acceleration in an applied longitudinal magnetic field

    CERN Document Server

    Arefiev, Alexey; Fiksel, Gennady

    2016-01-01

    Using two-dimensional particle-in-cell simulations, we examine how an externally applied strong magnetic impacts proton acceleration in laser-irradiated solid-density targets. We find that a kT-level external magnetic field can sufficiently inhibit transverse transport of hot electrons in a flat laser-irradiated target. While the electron heating by the laser remains mostly unaffected, the reduced electron transport during proton acceleration leads to an enhancement of maximum proton energies and the overall number of energetic protons. The resulting proton beam is much better collimated compared to a beam generated without applying a kT-level magnetic field. A factor of three enhancement of the laser energy conversion efficiency into multi-MeV protons is another effect of the magnetic field. The required kT magnetic fields are becoming feasible due to a significant progress that has been made in generating magnetic fields with laser-driven coils using ns-long laser pulses. The predicted improved characterist...

  2. Influence of an electric field on the spin-reorientation transition in Ni/Cu(100)

    Energy Technology Data Exchange (ETDEWEB)

    Gerhard, Lukas [Institut für Nanotechnologie, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); Bonell, Frédéric; Suzuki, Yoshishige [CREST, Japan Science Technology, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Graduate School of Engineering Science, Osaka University, Osaka 560-8531 (Japan); Wulfhekel, Wulf [Institut für Nanotechnologie, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); Physikalisches Institut, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany)

    2014-10-13

    Magnetoelectric coupling offers the possibility to change the magnetic state of a material by an applied electric field. Over the last few years, metallic systems have come up as simple prototypes for this interaction. While the previous studies focused on Fe and Co thin films or their alloys, here we demonstrate magnetoelectric coupling in a Ni thin film which is close to a spin-reorientation transition. Our magneto-optic Kerr effect measurements on 10 ML of Ni/Cu(100) show a considerable influence of the applied electric field on the magnetism. This rounds off the range of magnetic metals that exhibit magnetoelectric coupling, and it reveals the possibility of an electric field control of a spin-reorientation transition.

  3. Limiting electric fields of HVDC overhead power lines.

    Science.gov (United States)

    Leitgeb, N

    2014-05-01

    As a consequence of the increased use of renewable energy and the now long distances between energy generation and consumption, in Europe, electric power transfer by high-voltage (HV) direct current (DC) overhead power lines gains increasing importance. Thousands of kilometers of them are going to be built within the next years. However, existing guidelines and regulations do not yet contain recommendations to limit static electric fields, which are one of the most important criteria for HVDC overhead power lines in terms of tower design, span width and ground clearance. Based on theoretical and experimental data, in this article, static electric fields associated with adverse health effects are analysed and various criteria are derived for limiting static electric field strengths.

  4. Electric-Field-Induced Superconductivity Detected by Magnetization Measurements of an Electric-Double-Layer Capacitor

    NARCIS (Netherlands)

    Kasahara, Yuichi; Nishijima, Takahiro; Sato, Tatsuya; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro

    2011-01-01

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization measureme

  5. Distribution of electric field for carbon nanotube assembly: Experiments (Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    Soongeun KWON; Soo-Hyun KIM; Kwang-ho KIM; Myung-chang KANG; Hyung-woo LEE

    2011-01-01

    The distribution effect of electric field on the alignment and attachment of carbon nanotubes (CNTs) were investigated.The experimental results were compared with the simulation results according to three different shaped electrodes. In previous simulation, the round shaped electrodes were expected to be more effective for aligning and attaching a single CNT between two electrodes than conical or rectangular shaped electrodes. To verify the simulation results, three different shaped electrodes were introduced and a single multi-walled carbon nanotube (MWNT) was attached. The optimal conditions for aligning and attaching MWNTs such as the frequency, applied voltage and concentration of MWNTs solution were investigated. Through repeated experiments, frequency of 100 kHz-10 MHz, applied voltage of 0.3-1.3 Vrms/μm, concentration of 5 μg/mL in MWNTs solution were obtained as a possible condition range to attach MWNTs. Under these conditions, the yield of MWNTs attachment between two electrodes was up to 70%. In previous simulation, furthermore, it was verified that the size of the stable or quasi-stable region made CNTs aligned and attached on different shaped electrodes from the comparison of the experimental and simulation results. Most single MWNT attachment was accomplished on the round shaped electrodes.

  6. Forward and inverse problem for cardiac magnetic field and electric potential using two boundary element methods

    Science.gov (United States)

    Tang, Fa-Kuan; Wang, Qian; Hua, Ning; Tang, Xue-Zheng; Lu, Hong; Ma, Ping

    2010-12-01

    This paper discusses the forward and inverse problem for cardiac magnetic fields and electric potentials. A torso-heart model established by boundary element method (BEM) is used for studying the distributions of cardiac magnetic fields and electric potentials. Because node-to-node and triangle-to-triangle BEM can lead to discrepant field distributions, their properties and influences are compared. Then based on constructed torso-heart model and supposed current source functional model—current dipole array, the magnetic and electric imaging by optimal constrained linear inverse method are applied at the same time. Through figure and reconstructing parameter comparison, though the magnetic current dipole array imaging possesses better reconstructing effect, however node-to-node BEM and triangle-to-triangle BEM make little difference to magnetic and electric imaging.

  7. Electric-Field-Induced Degradation of Methylammonium Lead Iodide Perovskite Solar Cells.

    Science.gov (United States)

    Bae, Soohyun; Kim, Seongtak; Lee, Sang-Won; Cho, Kyung Jin; Park, Sungeun; Lee, Seunghun; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan

    2016-08-18

    Perovskite solar cells have great potential for high efficiency generation but are subject to the impact of external environmental conditions such as humidity, UV and sun light, temperature, and electric fields. The long-term stability of perovskite solar cells is an important issue for their commercialization. Various studies on the stability of perovskite solar cells are currently being performed; however, the stability related to electric fields is rarely discussed. Here the electrical stability of perovskite solar cells is studied. Ion migration is confirmed using the temperature-dependent dark current decay. Changes in the power conversion efficiency according to the amount of the external bias are measured in the dark, and a significant drop is observed only at an applied voltage greater than 0.8 V. We demonstrate that perovskite solar cells are stable under an electric field up to the operating voltage.

  8. High school students' representations and understandings of electric fields

    Science.gov (United States)

    Cao, Ying; Brizuela, Bárbara M.

    2016-12-01

    This study investigates the representations and understandings of electric fields expressed by Chinese high school students 15 to 16 years old who have not received high school level physics instruction. The physics education research literature has reported students' conceptions of electric fields postinstruction as indicated by students' performance on textbook-style questions. It has, however, inadequately captured student ideas expressed in other situations yet informative to educational research. In this study, we explore students' ideas of electric fields preinstruction as shown by students' representations produced in open-ended activities. 92 participant students completed a worksheet that involved drawing comic strips about electric charges as characters of a cartoon series. Three students who had spontaneously produced arrow diagrams were interviewed individually after class. We identified nine ideas related to electric fields that these three students spontaneously leveraged in the comic strip activity. In this paper, we describe in detail each idea and its situated context. As most research in the literature has understood students as having relatively fixed conceptions and mostly identified divergences in those conceptions from canonical targets, this study shows students' reasoning to be more variable in particular moments, and that variability includes common sense resources that can be productive for learning about electric fields.

  9. Consistency restrictions on maximal electric-field strength in quantum field theory.

    Science.gov (United States)

    Gavrilov, S P; Gitman, D M

    2008-09-26

    Quantum field theory with an external background can be considered as a consistent model only if backreaction is relatively small with respect to the background. To find the corresponding consistency restrictions on an external electric field and its duration in QED and QCD, we analyze the mean-energy density of quantized fields for an arbitrary constant electric field E, acting during a large but finite time T. Using the corresponding asymptotics with respect to the dimensionless parameter eET2, one can see that the leading contributions to the energy are due to the creation of particles by the electric field. Assuming that these contributions are small in comparison with the energy density of the electric background, we establish the above-mentioned restrictions, which determine, in fact, the time scales from above of depletion of an electric field due to the backreaction.

  10. A New Rotation Phenomena of Cells Induced by Homegeneous Electric Field

    Science.gov (United States)

    Hatakeyama, Toyomasa; Yagi, Hiroshi

    1990-05-01

    When at least two plant protoplasts are located close to each other under homogeneous electric field, almost all of the cells rotate in the vicinity of its frequency of 10 kHz and specific cells in the vicinity of 10 MHz. The first rotation occurs in the plane constituted by the connecting line between two cells and the applied electric field line. This angular velocity increases with the square of the field strength. On the other hand, the second rotation or new rotation occurs in any plane and its angular velocity complicatedly depends on the field strength. Furthermore, when two cells are arranged in such a way that their connecting line is parallel to the applied field, the second rotation occurs but the first does not. The distinctive feature of the second rotation can be explained by the anisotropic dielectric in the cell due to the shape of its vacuole.

  11. Electric field mapping inside metallized film capacitors

    DEFF Research Database (Denmark)

    Nielsen, Dennis Achton; Popok, Vladimir; Pedersen, Kjeld

    2015-01-01

    and durability and serves as verification that failure- and degradation mechanisms remain the same at different stress levels during accelerated testing. In this work we have used Kelvin probe force microscopy (KPFM) to analyze metallized film capacitors with the purpose of determining the degradation mechanism......(s) they suffered from accelerated testing. We have prepared film capacitors for analysis by micro-sectioning and verified the quality of the preparation procedure using optical and atomic force microscopy. The potential distribution in the layer structure (alternating 7 µm thick dielectric and 50-100 nm thick...... of the metallization stripes had lost contact to the end-spray. Thus, it is shown that the surface electric potential distributions on micro-sectioned film capacitors can be obtained through KPFM analysis. We have, from KPFM measurements, shown that the degraded capacitors under investigation had suffered from...

  12. High electric field phenomena in insulation

    Science.gov (United States)

    Laghari, J. R.; Sarjeant, W. J.

    1989-01-01

    The present study extends previous work to include electron radiation-induced changes in monoisopropyl biphenyl (MIPB)-impregnated polypropylene film as well as the effects of neutron/gamma radiation on dry polypropylene films. Effects that were quite similar were induced by both electron and neutron radiation on the properties of interest of the polypropylene films. Impregnation of the film with MIPB had a mitigatory effect on the degradation of the properties. This report also contains the results of a simultaneous electrical and thermal aging study of a capacitor-grade polypropylene film. The data obtained in this study was fitted to models that will enable realistic prediction of lifetimes under operating conditions.

  13. Relation between magnetic fields and electric currents in plasmas

    Directory of Open Access Journals (Sweden)

    V. M. Vasyliunas

    2005-10-01

    Full Text Available Maxwell's equations allow the magnetic field B to be calculated if the electric current density J is assumed to be completely known as a function of space and time. The charged particles that constitute the current, however, are subject to Newton's laws as well, and J can be changed by forces acting on charged particles. Particularly in plasmas, where the concentration of charged particles is high, the effect of the electromagnetic field calculated from a given J on J itself cannot be ignored. Whereas in ordinary laboratory physics one is accustomed to take J as primary and B as derived from J, it is often asserted that in plasmas B should be viewed as primary and J as derived from B simply as (c/4π∇×B. Here I investigate the relation between ∇×B and J in the same terms and by the same method as previously applied to the MHD relation between the electric field and the plasma bulk flow vmv2001: assume that one but not the other is present initially, and calculate what happens. The result is that, for configurations with spatial scales much larger than the electron inertial length λe, a given ∇×B produces the corresponding J, while a given J does not produce any ∇×B but disappears instead. The reason for this can be understood by noting that ∇×B≠4π/cJ implies a time-varying electric field (displacement current which acts to change both terms (in order to bring them toward equality; the changes in the two terms, however, proceed on different time scales, light travel time for B and electron plasma period for J, and clearly the term changing much more slowly is the one that survives. (By definition, the two time scales are equal at λe. On larger scales, the evolution of B (and hence also of ∇×B is governed by

  14. Relaxation of Magnetic Nanoparticle Chain without Applied Field*

    Institute of Scientific and Technical Information of China (English)

    HE Liang-Ming

    2011-01-01

    The relaxation ofa one-dimensional magnetic nanoparticle linear chain with lattice constant a is investigated in absence of applied field. There is an equilibrium state (or steady state) where all magnetic moments of particles lie along the chain (x-axis), back to which the magnetic nanoparticle chain at other state will relax. It is found that the relaxation time Tx is determined by Tx = 10β × a3. This relaxation is compared with that of single magnetic nanoparticle system.

  15. New foundations for applied electromagnetics the spatial structure of fields

    CERN Document Server

    Mikki, Said

    2016-01-01

    This comprehensive new resource focuses on applied electromagnetics and takes readers beyond the conventional theory with the use of contemporary mathematics to improve the practical use of electromagnetics in emerging areas of field communications, wireless power transfer, metamaterials, MIMO and direction-of-arrival systems. The book explores the existing and novel theories and principles of electromagnetics in order to help engineers analyze and design devices for todays applications in wireless power transfers, NFC, and metamaterials.

  16. Electric-field control of spin-orbit torque in a magnetically doped topological insulator

    Science.gov (United States)

    Fan, Yabin; Kou, Xufeng; Upadhyaya, Pramey; Shao, Qiming; Pan, Lei; Lang, Murong; Che, Xiaoyu; Tang, Jianshi; Montazeri, Mohammad; Murata, Koichi; Chang, Li-Te; Akyol, Mustafa; Yu, Guoqiang; Nie, Tianxiao; Wong, Kin L.; Liu, Jun; Wang, Yong; Tserkovnyak, Yaroslav; Wang, Kang L.

    2016-04-01

    Electric-field manipulation of magnetic order has proved of both fundamental and technological importance in spintronic devices. So far, electric-field control of ferromagnetism, magnetization and magnetic anisotropy has been explored in various magnetic materials, but the efficient electric-field control of spin-orbit torque (SOT) still remains elusive. Here, we report the effective electric-field control of a giant SOT in a Cr-doped topological insulator (TI) thin film using a top-gate field-effect transistor structure. The SOT strength can be modulated by a factor of four within the accessible gate voltage range, and it shows strong correlation with the spin-polarized surface current in the film. Furthermore, we demonstrate the magnetization switching by scanning gate voltage with constant current and in-plane magnetic field applied in the film. The effective electric-field control of SOT and the giant spin-torque efficiency in Cr-doped TI may lead to the development of energy-efficient gate-controlled spin-torque devices compatible with modern field-effect semiconductor technologies.

  17. The role of electric field during spray deposition on fluorine doped tin oxide film

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Anuj, E-mail: anujkumarom@gmail.com; Swami, Sanjay Kumar; Dutta, Viresh

    2014-03-05

    Highlights: • Fluorine doped tin oxide deposition by spray technique. • The growth reaction of tin oxide, controlled by the electric field on the substrate surface. • Deposit on large scale substrate 10 cm × 10 cm by single nozzle. • Obtained good quality of thin film. -- Abstract: The fluorine doped tin oxide film has been deposited on 10 cm × 10 cm glass substrate by using spray technique with a voltage applied between the nozzle and an annular electrode placed 2 mm below the nozzle. The effect of the electric field thus created during the spray deposition on structural, optical and electrical properties of SnO{sub 2}:F (FTO) film was studied. X-ray diffraction pattern revealed the presence of cassiterite structure with (2 0 0) orientation for all the FTO film. SEM study revealed the formation of smooth and uniform surface FTO film under the electric field over the entire substrate area. The electrical measurements show that the film prepared under the electric field (for an applied voltage of 2000 V) had a resistivity ∼1.2 × 10{sup −3} Ω cm, carrier concentration ∼4.21 × 10{sup 20} cm{sup −3} and mobility ∼14.48 cm{sup 2} V{sup −1} s{sup −1}. The sprayed FTO film have the average transmission in the visible region of more than about 80%.

  18. Soot reduction under DC electric fields in counterflow non-premixed laminar ethylene flames

    KAUST Repository

    Park, Daegeun

    2014-04-23

    The effects of DC electric fields on non-premixed ethylene flames in a counterflow burner were studied experimentally with a focus on the reduction of soot particles. The experiment was conducted by connecting a high voltage terminal and a ground terminal to a lower (fuel) and upper (oxidizer) nozzle, respectively. We applied direct current (DC) potentials in a range of -5 kV < Vdc < 5 kV. Uniform electric fields were then generated in the gap between the two nozzles. The experimental conditions were selected to cover both soot formation (SF) and soot formation oxidation (SFO) flames. The flames subjected to the negative electric fields moved toward the fuel nozzle because of an ionic wind due to the Lorentz force acting on the positive ions in the flames. In addition, the yellow luminosity significantly decreased, indicating changes in the sooting characteristics. To analyze the sooting characteristics under the electric fields, planar laser induced incandescence (PLII) and fluorescence (PLIF) techniques were used to visualize the soot, polycyclic aromatic hydrocarbons (PAHs), and OH radicals. The sooting limits in terms of the fuel and oxygen mole fractions were measured. No substantial soot formation due to the effects of the DC electric fields for the tested range of voltages and reactant mole fractions could be identified. The detailed flame behaviors and sooting characteristics under the DC electric fields are discussed. Copyright © Taylor & Francis Group, LLC.

  19. In-channel electrochemical detection in the middle of microchannel under high electric field.

    Science.gov (United States)

    Kang, Chung Mu; Joo, Segyeong; Bae, Je Hyun; Kim, Yang-Rae; Kim, Yongseong; Chung, Taek Dong

    2012-01-17

    We propose a new method for performing in-channel electrochemical detection under a high electric field using a polyelectrolytic gel salt bridge (PGSB) integrated in the middle of the electrophoretic separation channel. The finely tuned placement of a gold working electrode and the PGSB on an equipotential surface in the microchannel provided highly sensitive electrochemical detection without any deterioration in the separation efficiency or interference of the applied electric field. To assess the working principle, the open circuit potentials between gold working electrodes and the reference electrode at varying distances were measured in the microchannel under electrophoretic fields using an electrically isolated potentiostat. In addition, "in-channel" cyclic voltammetry confirmed the feasibility of electrochemical detection under various strengths of electric fields (∼400 V/cm). Effective separation on a microchip equipped with a PGSB under high electric fields was demonstrated for the electrochemical detection of biological compounds such as dopamine and catechol. The proposed "in-channel" electrochemical detection under a high electric field enables wider electrochemical detection applications in microchip electrophoresis.

  20. Elastic constant of Dendrobium protoplasts in AC electric fields

    Directory of Open Access Journals (Sweden)

    Pikul Wanichapichart

    2002-11-01

    Full Text Available This work reports elongation of Dendrobium protoplasts in an ac electric field between two cylindrical electrodes. A protoplast firstly was translated towards an electrode by dielectrophoretic force in 17 kV.m-1 field strength at 1 MHz, and secondly it was elongated due to an interaction between an induced electric dipole (μ and the electric field (E. Protoplast elongation was observed by varying both the field strength at 30, 45, 60, and 85 kV.m-1 and field frequency at 0.5, 1, 5, and 10 MHz. For a given field frequency and field strength, a parameter a/b (major/minor axis was measured as the protoplast elongation.Two-step elongation and restoration phases were observed. The former was completed within 2 minutes of field exposure, and the latter was completed within 15 seconds regardless of the field exposure time between 3 and 20 minutes. The evidence of a complete restoration indicated that the elasticity of the protoplast membrane obeyed Hooke’s law. This study also found that elastic constant k of the membrane varied non-linearly with the field strength. It was found to be from 0.04 to 0.08 mN.m-1, dependent on the field frequency.

  1. Wetting of sessile water drop under an external electrical field

    Science.gov (United States)

    Vancauwenberghe, Valerie; di Marco, Paolo; Brutin, David; Amu Collaboration; Unipi Collaboration

    2013-11-01

    The enhancement of heat and mass transfer using a static electric field is an interesting process for industrial applications, due to its low energy consumption and potentially high level of evaporation rate enhancement. However, to date, this phenomenon is still not understood in the context of the evaporation of sessile drops. We previously synthesized the state of the art concerning the effect of an electric field on sessile drops with a focus on the change of contact angle and shape and the influence of the evaporation rate [1]. We present here the preliminary results of an new experiment set-up. The novelty of the set-up is the drop injection from the bottom that allows to generate safety the droplet under the electrostatic field. The evaporation at room temperature of water drops having three different volumes has been investigated under an electric field up to 10.5 kV/cm. The time evolutions of the contact angles, volumes and diameters have been analysed. As reported in the literature, the drop elongate along the direction of the electric field. Despite the hysteresis effect of the contact angle, the receding contact angle increases with the strength of the electric field. This is clearly observable for the small drops for which the gravity effect can be neglected.

  2. Asymmetry of Neoclassical Transport by Dipole Electric Field

    Institute of Scientific and Technical Information of China (English)

    王中天; 王龙

    2004-01-01

    Effects of dipole electric fields on neoclassical transport are studied. Large asymmetry in transport is created. The dipole fields, which are in a negative R-direction, reduce the ion drift, increase electron drift, and change the steps of excursion due to collisions. It is found that different levels of dipole field intensities have different types of transport. For the lowest level of the dipole field, the transport returns to the neoclassical one. For the highest level of the dipole field, the transport is turned to be the turbulence transport similar to the pseudo-classical transport. Experimental data may be corresponded to a large level of the dipole field intensity.

  3. Electric-field effect in partially deoxygenated YBCO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kula, W. (Dept. of Electrical Engineering and Lab. for Laser Energetics, Univ. of Rochester, NY (United States) Inst. of Physics, Polish Academy of Sciences, Warszawa (Poland)); Sobolewski, R. (Dept. of Electrical Engineering and Lab. for Laser Energetics, Univ. of Rochester, NY (United States) Inst. of Physics, Polish Academy of Sciences, Warszawa (Poland))

    1994-02-01

    We report our studies on the electric-field effect in partially oxygen-depleted YBa[sub 2]Cu[sub 3]O[sub y] (YBCO) thin-film test structures fabricated by a laser-writing patterning technique. Our preliminary results indicate substantial, field-induced changes of the sample critical current. (orig.)

  4. Noncommuting Electric Fields and Algebraic Consistency in Noncommutative Gauge theories

    CERN Document Server

    Banerjee, R

    2003-01-01

    We show that noncommuting electric fields occur naturally in noncommutative gauge theories. Using this noncommutativity, which is field dependent, and a hamiltonian generalisation of the Seiberg-Witten Map, the algebraic consistency in the lagrangian and hamiltonian formulations of these theories, is established. The stability of the Poisson algebra, under this generalised map, is studied.

  5. Production of pulsed electric fields using capacitively coupled electrodes

    Science.gov (United States)

    Kendall, B. R. F.; Schwab, F. A. S.

    1980-01-01

    It is shown that pulsed electric fields can be produced over extended volumes by taking advantage of the internal capacitances in a stacked array of electrodes. The design, construction, and performance of practical arrays are discussed. The prototype arrays involved fields of 100-1000 V/cm extending over several centimeters. Scaling to larger physical dimensions is straightforward.

  6. Premixed combustion under electric field in a constant volume chamber

    KAUST Repository

    Cha, Min Suk

    2012-12-01

    The effects of electric fields on outwardly propagating premixed flames in a constant volume chamber were experimentally investigated. An electric plug, subjected to high electrical voltages, was used to generate electric fields inside the chamber. To minimize directional ionic wind effects, alternating current with frequency of 1 kHz was employed. Lean and rich fuel/air mixtures for both methane and propane were tested to investigate various preferential diffusion conditions. As a result, electrically induced instability showing cracked structure on the flame surface could be observed. This cracked structure enhanced flame propagation speed for the initial period of combustion and led to reduction in flame initiation and overall combustion duration times. However, by analyzing pressure data, it was found that overall burning rates are not much affected from the electric field for the pressurized combustion period. The reduction of overall combustion time is less sensitive to equivalence ratio for methane/air mixtures, whereas the results demonstrate pronounced effects on a lean mixture for propane. The improvement of combustion characteristics in lean mixtures will be beneficial to the design of lean burn engines. Two hypothetical mechanisms to explain the electrically induced instability were proposed: 1) ionic wind initiated hydrodynamic instability and 2) thermodiffusive instability through the modification of transport property such as mass diffusivity. © 2012 IEEE.

  7. Electric field induced relaxor behavior in anisotropically strained SrTiO{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Y., E-mail: y.dai@fz-juelich.de; Schubert, J.; Hollmann, E.; Wördenweber, R.

    2016-03-15

    Electric fields can modify the dielectric response of ferroelectric and especially relaxor ferroelectric material. Since strained ferroelectric fields represent ideal candidates for relaxor ferroelectrics, we analyzed the impact of ac and dc electric fields and field orientation on the dielectric properties of anisotropically strained epitaxial SrTiO{sub 3} films in detail. The tensile strain in the SrTiO{sub 3} films causes an increase of the ferroelectric-dielectric phase transition temperature to 258 K and 288 K for small and large tensile strains, respectively. The resulting films represent relaxor-type ferroelectrics with properties that strongly depend on the applied electric field. While a dc bias field significantly suppresses the permittivity in the paraelectric regime ranging from 180 K to 320 K, an ac field leads to an even more pronounced enhancement of the permittivity in an even larger temperature regime (e.g. reduction of up to 50% versus enhancement of up to 380% for 0.5 V/μm dc bias or ac field, respectively). Furthermore the ac field dependence is nonlinear and cannot be explained by the classical Rayleigh law. Frequency dependent measurements show among others that the electric field dependences are strongly related to the relaxor-type behavior. The different dielectric responses are explained in terms of the mobility and dynamic of regimes of uniform polarization, the polar nanoregions, that are generally assumed to be responsible for the relaxor behavior.

  8. Resonances of a hydrogen atom in strong parallel electric and magnetic fields using B-spline basis sets

    Institute of Scientific and Technical Information of China (English)

    Zhang Yue-Xia; Meng Hui-Yan; Shi Ting-Yun

    2008-01-01

    The B-spline basis set plus complex scaling method is applied to the numerical calculation of the exact resonance parameters Er and I/2 of a hydrogen atom in parallel electric and magnetic fields.The method can calculate the ground and higher excited resonances accurately and efficiently.The resonance parameters with accuracies of 10-9 - 10-12 for hydrogen atom in parallel fields with different field strengths and symmetries are presented and compared with previous ones.Extension to the calculation of Rydberg atom in crossed electric and magnetic fields and of atomic double excited states in external electric fields is discussed.

  9. Electric field driven switching of individual magnetic skyrmions (Conference Presentation)

    Science.gov (United States)

    Hsu, Pin-Jui

    2016-10-01

    An interesting class of interface-driven non-collinear spin structures, i.e., chiral domain walls, cycloidal spin spirals and Néel-type skyrmions, have been observed in ultrathin transition metal films grown on heavy-element substrates making use of spin-polarized scanning tunneling microscopy (SP-STM) [1]. Due to a lack of structural inversion symmetry at interfaces, they exhibit a unique rotational sense as a consequence of interfacial Dzyaloshinskii-Moriya (DM) interactions. In this talk, I will present our results based on the investigations of such chiral spin textures under the influence of strain relief and the effect of local electric fields. While a nanoskyrmion lattice was revealed for Fe monolayers (ML) grown on Ir(111), a cycloidal spin spiral ground state has been resolved on Fe double-layers (DL) by employing SP-STM with vectorial magnetic field. As a result of a large lattice mismatch between the epitaxially grown Fe-DL film and the underlying Ir(111) substrate, local uniaxial strain relief occurs, leading to dislocation line patterns. Interestingly, the wavevector of spin spirals is strictly guided along the dislocation lines, while the spin spiral's wavefront exhibits a zigzag deformation [2]. By further increasing the Fe coverage to triple-layers (TL), the zigzag spin spiral remains the magnetic ground state, but with an enhanced periodicity as compared to that of Fe-DL. A magnetic phase transition from the spin spiral to a skyrmionic state, and finally to a saturated ferromagnetic state occurs for Fe-TL by applying an external magnetic field. STM-induced writing and deleting of individual skyrmions is demonstrated with a pronounced bias-polarity dependence, suggesting the decisive role of the local electric field between STM tip and Fe film for the switching mechanism [3]. [1] K. von Bergmann, A. Kubetzka, O. Pietzsch, and R. Wiesendanger, J. Phys.: Condens. Matter 26, 394002 (2014) [2] P.-J. Hsu, A. Finco, L. Schmidt, A. Kubetzka, K. von

  10. Electro-optic probe measurements of electric fields in plasmas

    Science.gov (United States)

    Nishiura, M.; Yoshida, Z.; Mushiake, T.; Kawazura, Y.; Osawa, R.; Fujinami, K.; Yano, Y.; Saitoh, H.; Yamasaki, M.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, A.

    2017-02-01

    The direct measurements of high-frequency electric fields in a plasma bring about significant advances in the physics and engineering of various waves. We have developed an electro-optic sensor system based on the Pockels effect. Since the signal is transmitted through an optical fiber, the system has high tolerance for electromagnetic noises. To demonstrate its applicability to plasma experiments, we report the first result of measurement of the ion-cyclotron wave excited in the RT-1 magnetosphere device. This study compares the results of experimental field measurements with simulation results of electric fields in plasmas.

  11. Time Evolution of Electric Fields in CDMS Detectors

    CERN Document Server

    Leman, S W; Brink, P L; Cabrera, B; Chagani, H; Cherry, M; Cushman, P; Silva, E Do Couto E; Doughty, T; Figueroa-Feliciano, E; Mandic, V; McCarthy, K A; Mirabolfathi, N; Pyle, M; Reisetter, A; Resch, R; Sadoulet, B; Serfass, B; Sundqvist, K M; Tomada, A; Young, B A; Zhang, J

    2011-01-01

    The Cryogenic Dark Matter Search (CDMS) utilizes large mass, 3" diameter x 1" thick target masses as particle detectors. The target is instrumented with both phonon and ionization sensors, the later providing a $\\sim$1 V cm$^{-1}$ electric field in the detector bulk. Cumulative radiation exposure which creates $\\sim 200\\times 10^6$ electron-hole pairs is sufficient to produce a comparable reverse field in the detector thereby degrading the ionization channel performance. To study this, the existing CDMS detector Monte Carlo has been modified to allow for an event by event evolution of the bulk electric field, in three spatial dimensions. Our most resent results and interpretation are discussed.

  12. Effects of pulsed electric field on ULQ and RFP plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, M. [Iwate Univ., Morioka (Japan). Faculty of Engineering; Saito, K.; Suzuki, T. [and others

    1997-12-31

    Dynamo activity and self-organization processes are investigated using the application of pulsed poloidal and toroidal electric fields on ULQ and RFP plasmas. Synchronized to the application of the pulsed electric fields, the remarkable responses of the several plasma parameters are observed. The plasma has a preferential magnetic field structure, and the external perturbation activates fluctuation to maintain the structure through dynamo effect. This process changes the total dissipation with the variation of magnetic helicity in the system, showing that self organization accompanies an enhanced dissipation. (author)

  13. Flow instability in laminar jet flames driven by alternating current electric fields

    KAUST Repository

    Kim, Gyeong Taek

    2016-10-13

    The effect of electric fields on the instability of laminar nonpremixed jet flames was investigated experimentally by applying the alternating current (AC) to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames in laminar jet flow configurations, which occurred when AC electric fields were applied. The results indicated that a twin-lifted jet flame originated from cold jet instability, caused by interactions between negative ions in the jet flow via electron attachment as O +e→O when AC electric fields were applied. This was confirmed by conducting systematic, parametric experiment, which included changing gaseous component in jets and applying different polarity of direct current (DC) to the nozzle. Using two deflection plates installed in parallel with the jet stream, we found that only negative DC on the nozzle could charge oxygen molecules negatively. Meanwhile, the cold jet instability occurred only for oxygen-containing jets. A shedding frequency of jet stream due to AC driven instability showed a good correlation with applied AC frequency exhibiting a frequency doubling. However, for the applied AC frequencies over 80Hz, the jet did not respond to the AC, indicating an existence of a minimum flow induction time in a dynamic response of negative ions to external AC fields. Detailed regime of the instability in terms of jet velocity, AC voltage and frequency was presented and discussed. Hypothesized mechanism to explain the instability was also proposed.

  14. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields

    Science.gov (United States)

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm, Martin C., Jr.; Austen, William G., Jr.; Yarmush, Martin L.

    2015-05-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases.

  15. Manipulation of red blood cells with electric field

    Science.gov (United States)

    Saboonchi, Hossain; Esmaeeli, Asghar

    2009-11-01

    Manipulation of bioparticles and macromolecules is the central task in many biological and biotechnological processes. The current methods for physical manipulation takes advantage of different forces such as acoustic, centrifugal, magnetic, electromagnetic, and electric forces, as well as using optical tweezers or filtration. Among all these methods, however, the electrical forces are particularly attractive because of their favorable scale up with the system size which makes them well-suited for miniaturization. Currently the electric field is used for transportation, poration, fusion, rotation, and separation of biological cells. The aim of the current research is to gain fundamental understanding of the effect of electric field on the human red blood cells (RBCs) using direct numerical simulation. A front tracking/finite difference technique is used to solve the fluid flow and electric field equations, where the fluid in the cell and the blood (plasma) is modeled as Newtonian and incompressible, and the interface separating the two is treated as an elastic membrane. The behavior of RBCs is investigated as a function of the controlling parameters of the problem such as the strength of the electric field.

  16. Relationship between ionospheric electric fields and magnetic activity indices

    Science.gov (United States)

    Shirapov, D. Sh.

    2012-02-01

    The relations between electric fields in the daytime and nighttime sectors of the polar ionosphere and magnetic activity indices of auroral region (AL) and northern polar cap (PCN) are studied. It is found that the above relations do exist and are described by: a) equations U {pc/(1)} (kV) = 27.62 + 21.43PCN with a correlation coefficient R = 0.87 and U {pc/(1)} (kV) = 4.06 + 49.21PCN - 6.24 PCN2 between the difference in the electric potentials across the polar cap in the daytime sector U {pc/(1)} and PCN and b) regression equation U {pc/(2)} (kV) = 23.33 + 0.08|AL| with R = 0.86 between the difference in the electric potentials across the polar cap in the nighttime sector U {pc/(2)} and |AL|. It is shown that: a) it is possible to use the AL and PCN indices for real-time diagnostics of instantaneous values of the electric fields in the daytime and nighttime sectors of the polar ionosphere in the process of a substorm development; b) at the expansion phase of a substorm, due to calibration of PCN values by the values of the solar wind electric field E sw, the PCN index does not feel the contribution of the western electrojet and, accordingly, the contribution of the nighttime ionospheric electric field U {pc/(2)}, governed by the reconnection in the magnetospheric tail.

  17. Evaluation of DC electric field distribution of PPLP specimen based on the measurement of electrical conductivity in LN{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Lee, Jong-Geon [Hanyang University, 408-2, 4th Engineering Bldg, Sa 3-dong, Sangrok-gu, Ansan 426-791 (Korea, Republic of); Cho, Jeon-Wook; Ryoo, Hee-Suk [Korea Electrotechnology Research Institute, Changwon, Gyungnam 641-120 (Korea, Republic of); Lee, Bang-Wook, E-mail: bangwook@hanyang.ac.kr [Hanyang University, 408-2, 4th Engineering Bldg, Sa 3-dong, Sangrok-gu, Ansan 426-791 (Korea, Republic of)

    2013-11-15

    Highlights: •The electrical conductivity of PPLP in LN{sub 2} was successfully measured. •Based on the measured value of PPLP, DC field analysis was performed. •The electric field distribution was altered according to the DC applying stages. •The maximum electric field was observed during polarity reversal situation. •DC field analysis is important to determine the optimum design of DC HTS devices. -- Abstract: High temperature superconducting (HTS) cable has been paid much attention due to its high efficiency and high current transportation capability, and it is also regarded as eco-friendly power cable for the next generation. Especially for DC HTS cable, it has more sustainable and stable properties compared to AC HTS cable due to the absence of AC loss in DC HTS cable. Recently, DC HTS cable has been investigated competitively all over the world, and one of the key components of DC HTS cable to be developed is a cable joint box considering HVDC environment. In order to achieve the optimum insulation design of the joint box, analysis of DC electric field distribution of the joint box is a fundamental process to develop DC HTS cable. Generally, AC electric field distribution depends on relative permittivity of dielectric materials but in case of DC, electrical conductivity of dielectric material is a dominant factor which determines electric field distribution. In this study, in order to evaluate DC electric field characteristics of the joint box for DC HTS cable, polypropylene laminated paper (PPLP) specimen has been prepared and its DC electric field distribution was analyzed based on the measurement of electrical conductivity of PPLP in liquid nitrogen (LN{sub 2}). Electrical conductivity of PPLP in LN{sub 2} has not been reported yet but it should be measured for DC electric field analysis. The experimental works for measuring electrical conductivity of PPLP in LN{sub 2} were presented in this paper. Based on the experimental works, DC electric

  18. Numerical simulation of electromagnetic and flow fields of TiAI melt under electric field

    Institute of Scientific and Technical Information of China (English)

    Zhang Yong; Ding Hongsheng; Jiang Sanyong; Chen Ruirun; Guo Jingjie

    2010-01-01

    This article aims at building an electromagnetic and fluid model, based on the Maxwell equations and Navier-Stokes equations, in TiAI melt under two electric fields. FEM (Finite Element Method) and APDL (ANSYS Parametric Design Language) were employed to perform the simulation, model setup, loading and problem solving. The melt in molds of same cross section area with different flakiness ratio (i.e. width/depth) under the load of sinusoidal current or pulse current was analyzed to obtain the distribution of electromagnetic field and flow field. The results show that the induced magnetic field occupies sufficiently the domain of the melt in the mold with a flakiness ratio of 5:1. The melt is driven bipolarly from the center in each electric field. It is also found that the pulse electric field actuates the TiAI melt to flow stronger than what the sinusoidal electric field does.

  19. THE ONSET OF ELECTRICAL BREAKDOWN IN DUST LAYERS: II. EFFECTIVE DIELECTRIC CONSTANT AND LOCAL FIELD ENHANCEMENT

    Science.gov (United States)

    Part 1 of the work has shown that electrical breakdown in dust layers obeys Paschen's Law, but occurs at applied field values which appear too small to initiate the breakdown. In this paper the authors show how an effective dielectric constant characterizing the dust layer can be...

  20. Pasteurization of strawberry puree using a pilot plant pulsed electric fields (PEF) system

    Science.gov (United States)

    The processing of strawberry puree by pulsed electric fields (PEF) in a pilot plant system has never been evaluated. In addition, a method does not exist to validate the exact number and shape of the pulses applied during PEF processing. Both buffered peptone water (BPW) and fresh strawberry puree (...

  1. Validation of a pulsed electric field process to pasteurize strawberry puree

    Science.gov (United States)

    An inexpensive data acquisition method was developed to validate the exact number and shape of the pulses applied during pulsed electric fields (PEF) processing. The novel validation method was evaluated in conjunction with developing a pasteurization PEF process for strawberry puree. Both buffered...

  2. Crack formation under an electric field in droplets of laponite gel: memory effect and scaling relations.

    Science.gov (United States)

    Khatun, Tajkera; Dutta, Tapati; Tarafdar, Sujata

    2013-12-17

    When a colloidal gel dries through evaporation, cracks are usually formed, which often reveal underlying processes at work during desiccation. Desiccating colloid droplets of a few hundred microliters size show interesting effects of pattern formation and cracking which makes this an active subject of current research. Because aqueous gels of clay are known to be strongly affected by an electric field, one may expect crack patterns to exhibit a field effect. In the present study we allow droplets of laponite gel to dry under a radial electric field. This gives rise to highly reproducible patterns of cracks, which depend on the strength, direction, and time of exposure to the electric field. For a continuously applied DC voltage, cracks always appear on dissipation of a certain constant amount of energy. If the field is switched off before cracks appear, the observed results are shown to obey a number of empirical scaling relations, which enable us to predict the time of appearance and the number of cracks under specified conditions. Scanning electron microscopy (SEM) images of the surface between the macroscopic cracks show the presence of microcracks, which are wider and more numerous when no electric field is applied. The microcracks are reduced in the presence of stronger fields.

  3. Molecular dynamics simulation of nanosized water droplet spreading in an electric field.

    Science.gov (United States)

    Song, F H; Li, B Q; Liu, C

    2013-04-02

    Molecular dynamics (MD) simulations are performed for the spreading of a nanosized water droplet on a solid substrate subject to a parallel electric field. A combined electrostatic and Lennard-Jones potential is employed to represent the intermolecular interactions. Results show that in response to the applied field, polar water molecules realign themselves and this microscopic reorientation of molecular dipoles combines with the intermolecular forces to produce a macroscopic deformation of a free spherical water droplet into an ellipsoid. The applied field has a strong effect on the spreading of the water droplet on a solid substrate. For a weaker parallel field, the droplet spreading is asymmetric with the leading contact angle being greater than the trailing contact angle. With an increase in field strength, this asymmetry continues to increase, culminates, and then decreases until it disappears. The symmetric spreading remains with a further increase in the field strength until the saturation point is reached. This transition from the asymmetric to symmetric spreading is a manifestation of the interaction of the electric field with polar water molecules and the intermolecular forces within the droplet and between the water and solid; the interaction also leads to a change in hydrogen bonds along the droplet surface. The dynamics of the droplet spreading is entailed by the electrically induced motion of molecules along the liquid surface toward the solid substrate and is controlled by a competing mechanism among the electric, water-water, and water-solid intermolecular forces.

  4. Charge Inversion Effects in Electrophoresis of Polyelectrolytes in the Presence of Multivalent Counterions and Transversal Electric Fields

    Directory of Open Access Journals (Sweden)

    Sorin Nedelcu

    2014-12-01

    Full Text Available By molecular dynamics simulations we investigate the transport of charged polymers in confinement, under externally applied electric fields, in straight cylinders of uniform diameter and in the presence of monovalent or multivalent counterions. The applied electric field has two components; a longitudinal component along the axis of the cylinder and a transversal component perpendicular to the cylinder axis. The direction of electrophoretic velocity depends on the polyelectrolyte length, valency of the counterions present in solution and transversal electric field value. A statistical model is put forward in order to explain these observations.

  5. Microbial electricity generation in rice paddy fields: recent advances and perspectives in rhizosphere microbial fuel cells.

    Science.gov (United States)

    Kouzuma, Atsushi; Kaku, Nobuo; Watanabe, Kazuya

    2014-12-01

    Microbial fuel cells (MFCs) are devices that use living microbes for the conversion of organic matter into electricity. MFC systems can be applied to the generation of electricity at water/sediment interfaces in the environment, such as bay areas, wetlands, and rice paddy fields. Using these systems, electricity generation in paddy fields as high as ∼80 mW m(-2) (based on the projected anode area) has been demonstrated, and evidence suggests that rhizosphere microbes preferentially utilize organic exudates from rice roots for generating electricity. Phylogenetic and metagenomic analyses have been conducted to identify the microbial species and catabolic pathways that are involved in the conversion of root exudates into electricity, suggesting the importance of syntrophic interactions. In parallel, pot cultures of rice and other aquatic plants have been used for rhizosphere MFC experiments under controlled laboratory conditions. The findings from these studies have demonstrated the potential of electricity generation for mitigating methane emission from the rhizosphere. Notably, however, the presence of large amounts of organics in the rhizosphere drastically reduces the effect of electricity generation on methane production. Further studies are necessary to evaluate the potential of these systems for mitigating methane emission from rice paddy fields. We suggest that paddy-field MFCs represent a promising approach for harvesting latent energy of the natural world.

  6. Signal amelioration of electrophoretically deposited whole-cell biosensors using external electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Yoav, Hadar, E-mail: benyoav@post.tau.ac.il [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978 (Israel); Amzel, Tal [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978 (Israel); Sternheim, Marek [Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel-Aviv, 69978 (Israel); Belkin, Shimshon [Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904 (Israel); Rubin, Adi [Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, 69978 (Israel); Shacham-Diamand, Yosi [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978 (Israel); Freeman, Amihay [Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel-Aviv, 69978 (Israel)

    2011-11-01

    Highlights: > We present an electrochemical whole-cell biochip that can apply electric fields. > We examine the integration of cells on a biochip using electrophoretic deposition. > The effect of electric fields on the whole-cell biosensor has been demonstrated. > Relatively short DC electric pulse improves the performance of whole-cell biosensors. > Prolonged AC electric fields deteriorated the whole-cell biosensor performance. - Abstract: This paper presents an integrated whole-cell biochip system where functioning cells are deposited on the solid micro-machined surfaces while specially designed indium tin oxide electrodes that can be used to apply controllable electric fields during various stages; for example during cell deposition. The electrodes can be used also for sensing currents associated with the sensing mechanisms of electrochemical whole-cell biosensors. In this work a new approach integrating live bacterial cells on a biochip using electrophoretic deposition is presented. The biomaterial deposition technique was characterized under various driving potentials and chamber configurations. An analytical model of the electrophoretic deposition kinetics was developed and presented here. The deposited biomass included genetically engineered bacterial cells that may respond to toxic material exposure by expressing proteins that react with specific analytes generating electrochemically active byproducts. In this study the effect of external electric fields on the whole-cell biochips has been successfully developed and tested. The research hypothesis was that by applying electric fields on bacterial whole-cells, their permeability to the penetration of external analytes can be increased. This effect was tested and the results are shown here. The effect of prolonged and short external electric fields on the bioelectrochemical signal generated by sessile bacterial whole-cells in response to the presence of toxins was studied. It was demonstrated that relatively

  7. Integrated optical waveguide sensor for lighting impulse electric field measurement

    Science.gov (United States)

    Zhang, Jiahong; Chen, Fushen; Sun, Bao; Chen, Kaixin

    2014-09-01

    A Lithium niobate (LiNbO3) based integrated optical E-field sensor with an optical waveguide Mach-Zehnder interferometer (MZI) and a tapered antenna has been designed and fabricated for the measurement of the pulsed electric field. The minimum detectable E-field of the sensor was 10 kV/m. The sensor showed a good linear characteristic while the input E-fields varied from 10 kV/m to 370 kV/m. Furthermore, the maximum detectable E-field of the sensor, which could be calculated from the sensor input/output characteristic, was approximately equal to 1000 kV/m. All these results suggest that such sensor can be used for the measurement of the lighting impulse electric field.

  8. Water-methanol separation with carbon nanotubes and electric fields

    Science.gov (United States)

    Winarto, Affa; Takaiwa, Daisuke; Yamamoto, Eiji; Yasuoka, Kenji

    2015-07-01

    Methanol is used in various applications, such as fuel for transportation vehicles, fuel cells, and in chemical industrial processes. Conventionally, separation of methanol from aqueous solution is by distillation. However, this method consumes a large amount of energy; hence development of a new method is needed. In this work, molecular dynamics simulations are performed to investigate the effect of an electric field on water-methanol separation by carbon nanotubes (CNTs) with diameters of 0.81 to 4.07 nm. Without an electric field, methanol molecules fill the CNTs in preference to water molecules. The preference of methanol to occupy the CNTs over water results in a separation effect. This separation effect is strong for small CNT diameters and significantly decreases with increasing diameter. In contrast, under an electric field, water molecules strongly prefer to occupy the CNTs over methanol molecules, resulting in a separation effect for water. More interestingly, the separation effect for water does not decrease with increasing CNT diameter. Formation of water structures in CNTs induced by an electric field has an important role in the separation of water from methanol.Methanol is used in various applications, such as fuel for transportation vehicles, fuel cells, and in chemical industrial processes. Conventionally, separation of methanol from aqueous solution is by distillation. However, this method consumes a large amount of energy; hence development of a new method is needed. In this work, molecular dynamics simulations are performed to investigate the effect of an electric field on water-methanol separation by carbon nanotubes (CNTs) with diameters of 0.81 to 4.07 nm. Without an electric field, methanol molecules fill the CNTs in preference to water molecules. The preference of methanol to occupy the CNTs over water results in a separation effect. This separation effect is strong for small CNT diameters and significantly decreases with increasing

  9. Electric-field tunable spin diode FMR in patterned PMN-PT/NiFe structures

    Science.gov (United States)

    Zietek, Slawomir; Ogrodnik, Piotr; Skowroński, Witold; Stobiecki, Feliks; van Dijken, Sebastiaan; Barnaś, Józef; Stobiecki, Tomasz

    2016-08-01

    Dynamic properties of NiFe thin films on PMN-PT piezoelectric substrate are investigated using the spin-diode method. Ferromagnetic resonance (FMR) spectra of microstrips with varying width are measured as a function of magnetic field and frequency. The FMR frequency is shown to depend on the electric field applied across the substrate, which induces strain in the NiFe layer. Electric field tunability of up to 100 MHz per 1 kV/cm is achieved. An analytical model based on total energy minimization and the Landau-Lifshitz-Gilbert equation, taking into account the magnetostriction effect, is used to explain the measured dynamics. Based on this model, conditions for optimal electric-field tunable spin diode FMR in patterned NiFe/PMN-PT structures are derived.

  10. The cluster size transformation model of molten alloy under pulse electric field

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on the electric dipole theory, the coupled field distribution of pulse electric field (PEF) with electric dipole field around the cluster in superheated molten alloy is simulated under the effect of PEF. For the difference of electro-migration, the atom of solute and solution will accumulate around the cluster, and then the smaller cluster may reorganize and grow up under the action of the coupled field. We also apply the electrostatic induction theory to analyze the bearing behavior of the half side of the cluster. The bigger the cluster is, the stronger the electrostatic force is, therefore, the bigger cluster’s stability is weak apparently. The study indi- cates that the cluster in the superheated molten has the homogeneous tendency under the effect of PEF.

  11. Zero-differential conductance of two-dimensional electrons in crossed electric and magnetic fields

    Science.gov (United States)

    Bykov, A. A.; Byrnes, Sean; Dietrich, Scott; Vitkalov, Sergey; Marchishin, I. V.; Dmitriev, D. V.

    2013-02-01

    An electronic state with zero-differential conductance is found in nonlinear response to an electric field E applied to two dimensional Corbino discs of highly mobile carriers placed in quantizing magnetic fields. The state occurs above a critical electric field E>Eth at low temperatures and is accompanied by an abrupt dip in the differential conductance. The proposed model considers a local instability of the electric field E as the origin of the observed phenomenon. Comparison between the observed electronic state and the state with zero differential resistance, occurring in Hall bar geometry, indicates that the nonlinear response of edge states and/or skipping orbits is not essential in the studied samples. The result confirms that quantal heating is the dominant nonlinear mechanism leading to electronic states with both zero differential resistance and conductance.

  12. The cluster size transformation model of molten alloy under pulse electric field

    Institute of Scientific and Technical Information of China (English)

    ZHANG ZhenBin; WANG JianZhong; QI JinGang; WANG Bing; HE LiJia; CANG DaQiang

    2008-01-01

    Based on the electric dipole theory,the coupled field distribution of pulse electric field (PEF) with electric dipole field around the cluster in superheated molten alloy is simulated under the effect of PEF. For the difference of electro-migration,the atom of solute and solution will accumulate around the cluster,and then the smaller cluster may reorganize and grow up under the action of the coupled field.We also apply the electrostatic induction theory to analyze the bearing behavior of the half side of the cluster. The bigger the cluster is,the stronger the electrostatic force is,therefore,the bigger cluster's stability is weak apparently. The study indicates that the cluster in the superheated molten has the homogeneous tendency under the effect of PEF.

  13. ELF electric and magnetic fields: Pacific Northwest Laboratory studies

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, L.E.

    1992-06-01

    Studies have been conducted at Battelle, Pacific Northwest Laboratory, to examine extremely-low-frequency (ELF) electromagnetic fields for possible biological effects in animals. Three areas of investigation are reported here: (1) studies on the nervous system, including behavior and neuroendocrine function, (2) experiments on cancer development in animals, and (3) measurements of currents and electric fields induced in animal models by exposure to external magnetic fields. In behavioral experiments, rats have been shown to be responsive to ELF electric field exposure. Furthermore, experimental data indicate that short-term memory may be affected in albino rats exposed to combined ELF and static magnetic fields. Neuroendocrine studies have been conducted to demonstrate an apparent stress-related response in rats exposed to 60-Hz electric fields. Nighttime pineal melatonin levels have been shown to be significantly depressed in animals exposed to either electric or magnetic fields. A number of animal tumor models are currently under investigation to examine possible relationships between ELF exposure and carcinogenesis. Finally, theoretical and experimental measurements have been performed which form the basis for animals and human exposure comparisons.

  14. Carrier heating in disordered conjugated polymers in electric field

    Energy Technology Data Exchange (ETDEWEB)

    Vukmirovic, Nenad; Wang, Lin-Wang

    2010-01-26

    The electric field dependence of charge carrier transport and the effect of carrier heating in disordered conjugated polymers were investigated. A parameter-free multiscale methodology consisting of classical molecular dynamics simulation for the generation of the atomic structure, large system electronic structure and electron-phonon coupling constants calculations and the procedure for extracting the bulk polymer mobility, was used. The results suggested that the mobility of a fully disordered poly(3-hexylthiophene) (P3HT) polymer increases with electric field which is consistent with the experimental results on samples of regiorandom P3HT and different from the results on more ordered regioregular P3HT polymers, where the opposite trend is often observed at low electric fields. We calculated the electric field dependence of the effective carrier temperature and showed however that the effective temperature cannot be used to replace the joint effect of temperature and electric field, in contrast to previous theoretical results from phenomenological models. Such a difference was traced to originate from the use of simplified Miller-Abrahams hopping rates in phenomenological models in contrast to our considerations that explicitly take into account the electronic state wave functions and the interaction with all phonon modes.

  15. MEFISTO An electric field instrument for BepiColombo/MMO

    Science.gov (United States)

    Blomberg, L. G.; Matsumoto, H.; Bougeret, J.-L.; Kojima, H.; Yagitani, S.; Cumnock, J. A.; Eriksson, A. I.; Marklund, G. T.; Wahlund, J.-E.; Bylander, L.; Åhlén, L.; Holtet, J. A.; Ishisaka, K.; Kallio, E.; Kasaba, Y.; Matsuoka, A.; Moncuquet, M.; Mursula, K.; Omura, Y.; Trotignon, J. G.

    2006-01-01

    MEFISTO, together with the companion instrument WPT, are planning the first-ever in situ measurements of the electric field in the magnetosphere of planet Mercury. The instruments have been selected by JAXA for inclusion in the BepiColombo/MMO payload, as part of the Plasma Wave Investigation coordinated by Kyoto University. The magnetosphere of Mercury was discovered by Mariner 10 in 1974 and will be studied further by Messenger starting in 2011. However, neither spacecraft did or will measure the electric field. Electric fields are crucial in the dynamics of a magnetosphere and for the energy and plasma transport between different regions within the magnetosphere as well as between the magnetosphere and the surrounding regions. The MEFISTO instrument will be capable of measuring electric fields from DC to 3 MHz, and will thus also allow diagnostics of waves at all frequencies of relevance to the Hermean magnetosphere. MEFISTO is a double-probe electric field instrument. The double-probe technique has strong heritage and is well proven on missions such as Viking, Polar, and Cluster. For BepiColombo, a newly developed deployment mechanism is planned which reduces the mass by a factor of about 5 compared to conventional mechanisms for 15 m long booms. We describe the basic characteristics of the instrument and briefly discuss the new developments made to tailor the instrument to flight in Mercury orbit.

  16. MEFISTO - an electric field instrument for BepiColombo/MMO

    Science.gov (United States)

    Blomberg, L. G.; Mefisto Team

    MEFISTO, together with the companion instrument PANT, are planning the first-ever in-situ measurements of the electric field in the magnetosphere of planet Mercury. The instruments are proposed to JAXA for inclusion in the BepiColombo/MMO payload, as part of the Plasma Wave Investigation co-ordinated by Kyoto University. The magnetosphere of Mercury was discovered by Mariner 10 in 1974, and will be studied further by Messenger starting in 2009. However, neither spacecraft measures the electric field. Electric fields are crucial in the dynamics of a magnetosphere and for the energy and plasma transport between different regions within the magnetosphere as well as between the magnetosphere and the surrounding regions. The instrument will be capable of measuring electric fields from DC to 3 MHz, and will thus also allow diagnostics of waves at all frequencies of relevance to the Hermean magnetosphere. MEFISTO is a double-probe electric field instrument. The double-probe technique has strong heritage and is well proven on missions such as Viking, Freja, and Cluster. For BepiColombo, a newly developed deployment mechanism is planned which reduces the mass by a factor of about 5 compared to conventional mechanisms. We describe the basic characteristics of the instrument and briefly discuss the new developments made to tailor the instrument to flight in Mercury orbit.

  17. Additional electric field in real trench MOS barrier Schottky diode

    Science.gov (United States)

    Mamedov, R. K.; Aslanova, A. R.

    2016-04-01

    In real trench MOS barrier Schottky diode (TMBS diode) additional electric field (AEF) the whole is formed in the near contact region of the semiconductor and its propagation space is limited with the barrier metal and the metallic electrodes of MOS structures. Effective potential barrier height TMBS diode is formed via resulting electric field of superposition AEF and electric field of space charge region (SCR) semiconductor. The dependence of the resulting electric field intensity of the distance towards the inside the semiconductor is nonlinear and characterized by a peak at a certain distance from the interface. The thickness of the SCR in TMBS diode becomes equal to the trench depth. Force and energy parameters of the AEF, and thus resulting electric field in the SCR region, become dependent on the geometric design parameters TMBS diode. The forward I-V characteristic TMBS diode is described by the thermionic emission theory as in conventional flat Scottky diode, and in the reverse bias, current is virtually absent at initial voltage, appears abruptly at a certain critical voltage.

  18. Formation of electric dipoles in pea stem tissue due to an electric field

    Science.gov (United States)

    Ahmadi, Fatemeh; Farahani, Elham

    2016-07-01

    For examining the effect of an electrical field (DC) on pea seed, we exposed the pea seeds to electric fields with intensities 1, 4 and 7 kV/cm for 30, 230, 430 and 630 seconds. The tests were repeated three times, and each iteration had 5 seeds. Then, the seeds were moved to packaged plates. Finally, microscopic observation of the pea stem tissue showed that the application of a DC electrical field caused a deformation in the pea stem tissue. The results led us to examine the deformation of the tissue theoretically and to address that deformation as an electrostatic problem. In this regard, we modeled the pea stem based on the formation of electric dipoles. Then, theoretically, we calculated the force acting on each xylem section by coding, and the results were consistent with the experimental data.

  19. Amended Electric Field Distribution: A Reliable Technique for Electrical Performance Improvement in Nano scale SOI MOSFETs

    Science.gov (United States)

    Ramezani, Zeinab; Orouji, Ali A.

    2017-04-01

    To achieve reliable transistors, we propose a new silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistor (MOSFET) with an amended electric field in the channel for improved electrical and thermal performance, with an emphasis on current leakage improvement. The amended electric field leads to lower electric field crowding and thereby we assume enhanced reliability, leakage current, gate-induced drain leakage (GIDL), and electron temperature. To modify the electric field distribution, an additional rectangular metal region (RMR) is utilized in the buried oxide of the SOI MOSFET. The location and dimensions of the RMR have been carefully optimized to achieve the best results. The electrical, thermal, and radiofrequency characteristics of the proposed structure were analyzed using two-dimensional (2-D) numerical simulations and compared with the characteristics of the conventional, fully depleted SOI MOSFET (C-SOI). Also, critical short-channel effects (SCEs) such as threshold voltage, drain-induced barrier lowering (DIBL), subthreshold slope degradation, hot-carrier effect, GIDL, and leakage power consumption are improved. According to the results obtained, the proposed nano SOI MOSFET is a reliable device, especially for use in low-power and high-temperature applications.

  20. Electric field confinement effect on charge transport in organic field-effect transistors

    NARCIS (Netherlands)

    Li, X.; Kadashchuk, A.; Fishchuk, I.I.; Smaal, W.T.T.; Gelinck, G.H.; Broer, D.J.; Genoe, J.; Heremans, P.; Bässler, H.

    2012-01-01

    While it is known that the charge-carrier mobility in organic semiconductors is only weakly dependent on the electric field at low fields, the experimental mobility in organic field-effect transistors using silylethynyl-substituted pentacene is found to be surprisingly field dependent at low source-

  1. Electric Fields in the 5/2 fractional quantum Hall effect

    Science.gov (United States)

    Tylan-Tyler, Anthony; Lyanda-Geller, Yuli

    The potential for non-Abelian quasiholes in the 5/2 fractional quantum Hall effect makes the state of interest theoretically and experimentally. The presence of such features in the ground state of the system would allow for the implementation of a topological quantum computation scheme. In order to probe the system for these features, a small measuring voltage, i.e. an electric field, is applied. In Corbino geometries, these electric fields are applied radially. This breaks the Galilean invariance, which in an infinite planar geometry allows us to transform to a moving frame of reference, eliminating the electric field. To study the effects of these fields, we carry out exact diagonalization calculations in a disk geometry. We find that application of small fields can lead to an improvement in the overlap with the Moore-Read Pfaffian long before the state is destroyed by the field. Additionally, we find that the coherence length of quasiholes travelling along the edge of the sample increases significantly when compared to the case with no applied field. This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0010544.

  2. Modulating protein behaviors on responsive surface by external electric fields: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yun, E-mail: xieyunxx@gdpu.edu.cn; Pan, Yufang; Zhang, Rong; Liang, Ying; Li, Zhanchao

    2015-01-30

    Graphical abstract: The adsorption of Cyt c on phosphorylcholine self-assembled monolayers (N atoms of the choline groups are colored in blue while the P atoms of the phosphate groups in orange). - Highlights: • PC-SAM could sensitively adjust its charge distribution to applied electric fields. • Adsorption of Cyt c on the PC-SAM is promoted or retarded as the charge distribution of the SAM changes. • Orientations of Cyt c on the PC-SAM are regulated by the structural changes of the SAM. • The structural changes of the SAM cause little deformation in Cyt c. - Abstract: Molecular dynamics simulations were employed to investigate the modulation of protein behaviors on the electrically responsive zwitterionic phosphorylcholine self-assembled monolayers (PC-SAMs). Results show that PC-SAMs could sensitively respond to the applied electric fields and exhibit three states with different charge distributions, namely both the negatively charged phosphate groups and the positively charged choline groups are exposed to the solution in the absence of electric fields (state 1), phosphate groups exposed in the presence of positive electric fields (state 2), and choline groups exposed in the presence of negative electric fields (state 3). Under state 1, the adsorption of Cyt c on the PC-SAM is reversible and the orientations of Cyt c are randomly distributed. Under state 2, the adsorption of Cyt c is enhanced due to the electrostatic attractions between the exposed phosphate groups and the positively charged protein; when adsorbed on the PC-SAMs, Cyt c tends to adopt the orientation with the heme plane perpendicular to the surface plane, and the percentage of this orientation increases as the field strength rises up. Under state 3, the adsorption of Cyt c is retarded because of the electrostatic repulsions between the exposed choline groups and the protein; however, if the gaps between PC chains are large enough, Cyt c could insert into the PC-SAM and access the

  3. Effect of an external electric field on the propagation velocity of premixed flames

    KAUST Repository

    Sánchez-Sanz, Mario

    2015-01-01

    © 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved. There have been many experimental investigations into the ability of electric fields to enhance combustion by acting upon ion species present in flames [1]. In this work, we examine this phenomenon using a one-dimensional model of a lean premixed flame under the influence of a longitudinal electric field. We expand upon prior two-step chain-branching reaction laminar models with reactions to model the creation and consumption of both a positively-charged radical species and free electrons. Also included are the electromotive force in the conservation equation for ion species and the electrostatic form of the Maxwell equations in order to resolve ion transport by externally applied and internally induced electric fields. The numerical solution of these equations allows us to compute changes in flame speed due to electric fields. Further, the variation of key kinetic and transport parameters modifies the electrical sensitivity of the flame. From changes in flame speed and reactant profiles we are able to gain novel, valuable insight into how and why combustion can be controlled by electric fields.

  4. Biological proton pumping in an oscillating electric field

    OpenAIRE

    Kim, Young C.; Furchtgott, Leon A.; Hummer, Gerhard

    2009-01-01

    Time-dependent external perturbations provide powerful probes of the function of molecular machines. Here we study biological proton pumping in an oscillating electric field. The protein cytochrome c oxidase is the main energy transducer in aerobic life, converting chemical energy into an electric potential by pumping protons across a membrane. With the help of master-equation descriptions that recover the key thermodynamic and kinetic properties of this biological “fuel cell,” we show that t...

  5. Electric Field Structures in Thin Films: Formation and Properties

    DEFF Research Database (Denmark)

    Cassidy, Andrew; Plekan, Oksana; Balog, Richard

    2014-01-01

    A newly discovered class of molecular materials, so-called “spontelectrics”, display spontaneous electric fields. Here we show that the novel properties of spontelectrics can be used to create composite spontelectrics, illustrating how electric fields in solid films may be structured on the nanoscale...... by combining layers of different spontelectric materials. This is demonstrated using the spontelectric materials nitrous oxide, toluene, isoprene, isopentane, and CF2Cl2. These yield a variety of tailored electric field structures, with individual layers harboring fields between 107 and 108 V/m. Fields may...

  6. Resistance switching induced by electric fields in manganite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Villafuerte, M [Facultad de Ciencias Exactas y TecnologIa, Universidad Nacional de Tucuman, S. M. de Tucuman (Argentina); Juarez, G [Facultad de Ciencias Exactas y TecnologIa, Universidad Nacional de Tucuman, S. M. de Tucuman (Argentina); Duhalde, S [Dpto de Fisica, Facultad de IngenierIa, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina); Golmar, F [Dpto de Fisica, Facultad de IngenierIa, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina); Degreef, C L [Dpto de Fisica, Facultad de IngenierIa, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina); Heluani, S P [Facultad de Ciencias Exactas y TecnologIa, Universidad Nacional de Tucuman, S. M. de Tucuman (Argentina)

    2007-04-15

    In this work, we investigate the polarity-dependent Electric Pulses Induced Resistive (EPIR) switching phenomenon in thin films driven by electric pulses. Thin films of {sub 0.5}Ca{sub 0.5}MnO{sub 3} (manganite) were deposited by PLD on Si substrate. The transport properties at the interface between the film and metallic electrode are characterized in order to study the resistance switching. Sample thermal treatment and electrical field history are important to be considered for get reproducible EPIR effect. Carriers trapping at the interfaces are considered as a possible explanation of our results.

  7. Magnetic field dependence of the threshold electric field in unconventional charge density waves

    Science.gov (United States)

    Dóra, Balázs; Virosztek, Attila; Maki, Kazumi

    2002-04-01

    Many experiments suggest that the unidentified low-temperature phase of α-(BEDT-TTF)2KHg(SCN)4 is most likely unconventional charge density wave (UCDW). To further extend this identification we present our theoretical study of the threshold electric field of UCDW in a magnetic field. The magnetic field-temperature phase diagram is very similar to those in a d-wave superconductor. The optical conductivity shows clear features characteristic to both UDW and magnetic field. We find a rather strong field dependence of the threshold electric field, which shows qualitatively good agreement with the experimental data.

  8. On the ionospheric coupling of auroral electric fields

    Directory of Open Access Journals (Sweden)

    G. T. Marklund

    2009-04-01

    Full Text Available The quasi-static coupling of high-altitude potential structures and electric fields to the ionosphere is discussed with particular focus on the downward field-aligned current (FAC region. Results are presented from a preliminary analysis of a selection of electric field events observed by Cluster above the acceleration region. The degree of coupling is here estimated as the ratio between the magnetic field-aligned potential drop, ΔΦII, as inferred from the characteristic energy of upward ion (electron beams for the upward (downward current region and the high-altitude perpendicular (to B potential, ΔΦbot, as calculated by integrating the perpendicular electric field across the structure. For upward currents, the coupling can be expressed analytically, using the linear current-voltage relation, as outlined by Weimer et al. (1985. This gives a scale size dependent coupling where structures are coupled (decoupled above (below a critical scale size. For downward currents, the current-voltage relation is highly non-linear which complicates the understanding of how the coupling works. Results from this experimental study indicate that small-scale structures are decoupled, similar to small-scale structures in the upward current region. There are, however, exceptions to this rule as illustrated by Cluster results of small-scale intense electric fields, correlated with downward currents, indicating a perfect coupling between the ionosphere and Cluster altitude.

  9. Simultaneous Measurements of Atmospheric Electric Field near Elbrus in Fair Weather

    Science.gov (United States)

    Boldyreff, Anton; Adzhiev, Anatoly; Boldyreva, Ksenia; Knyazeva, Zalina; Kudrinskaya, Tatiana; Kupovykh, Gennady; Pestova, Olesya; Pestov, Dmitry; Redin, Alexander

    2014-05-01

    Atmospheric Electric field variations are an appropriate indicator of local weather phenomena electrification and global electric circuit processes. The temporal variations of electric field based on experimental data, measured at Baksan gorge and high-mountains stations near Elbrus in the period of June 2012 - September 2013. The experimental stations are located in the natural preserve zone, characterized by low aerosol emissions and low quantity of ionizing radiation sources. Such perfect conditions allow to identify the diurnal variations of the electric field in fair weather, caused by unitary variation of the potential gradient. The station near Kyzburun village is situated 40 km on the west from Nalchik city at 600 m above sea level (43º40'N, 43º27'E). The alpine stations "Peak Cheget" and "Peak Terskol" are situated at 3040 m and 3003 m above sea level respectively (43º16'N, 42º30'E). The distance between mountain stations is about 3 km. The Kyzburun station is located 70 km on the east along the Baksan canyon. The EFM 550 Vaisala devices were used for uninterrupted electric field registration at three experimental stations. Measuring sensors were installed on the buildings' roofs at 3 m height. The Vaisala weather stations were applied for automatic 10-minutes registrations of the meteorological data on each stations. Meteorological parameters have been also measured using traditional methods simultaneously. The electric field diurnal variation during summer is characterized by significant evening maximum (16-19) UT and morning minimum (09-12) UT for all stations. The extra morning maximum at (05-07) UT was observed as a peculiarity of diurnal electric field data, received at Kyzburun, during summer and winter seasons. The correlation between diurnal variation of data, received at high-mountains stations and Carnegie curve, is rather high. Correlation between electric field, measured at high-altitude stations (Peak Cheget, Peak Terskol) and plain

  10. Early MITHRAS results - The electric field response to substorms

    Science.gov (United States)

    de La Beaujardiere, O.; Holt, J.; Nielsen, E.

    1983-12-01

    The MITHRAS data base offers a unique opportunity to observe simultaneously the auroral-zone ion convection pattern with three radars, widely separated in longitude. It is attempted to separate local-time versus universal-time effects in a study of the electric field signature associated with substorms. Preliminary results indicate that this signature is similar at a given local time, regardless of the longitude of the station. In the dawn and dusk sectors the electric field is intensified, whereas around noon and midnight the electric field appears to reverse during a substorm. The potential drop across the polar cap can be estimated from the potential across the auroral oval. The radar data agree well with the relationship found by Reiff and co-workers between the solar wind energy parameter epsilon and the cross-tail potential.

  11. Early MITHRAS results - the electric field response to substorms

    Energy Technology Data Exchange (ETDEWEB)

    De La Beaujardiere, O.; Holt, J.; Nielsen, E.

    1983-11-01

    The MITHRAS data base offers a unique opportunity to observe simultaneously the auroral-zone ion convection pattern with three radars, widely separated in longitude. It is attempted to separate local-time versus universal-time effects in a study of the electric field signature associated with substorms. Preliminary results indicate that this signature is similar at a given local time, regardless of the longitude of the station. In the dawn and dusk sectors the electric field is intensified, whereas around noon and midnight the electric field appears to reverse during a substorm. The potential drop across the polar cap can be estimated from the potential across the auroral oval. The radar data agree well with the relationship found by Reiff and co-workers between the solar wind energy parameter epsilon and the cross-tail potential. 15 references.

  12. Early MITHRAS results: the electric field response to substorms

    Energy Technology Data Exchange (ETDEWEB)

    Beaujardiere, O.; Holt, J.; Nielsen, E.

    1983-12-01

    The MITHRAS data base offers a unique opportunity to observe simultaneously the auroral-zone ion-convection pattern with three radars, widely separated in longitude. The authors attempt to separate local-time versus universal-time effects in a study of the electric field signature associated with substorms. Preliminary results indicate that this signature is similar at a given local time, regardless of the longitude of the station. In the dawn and dusk sectors the electric field is intensified, whereas around noon and midnight the electric field appears to reverse during a substorm. The potential drop across the polar cap can be estimated from the potential across the auroral oval. The radar agree well with the relationship found by Reiff and co-workers between the solar wind energy parameter epsilon and the cross-tail potential.

  13. Built-in electric field thickness design for betavoltaic batteries

    Institute of Scientific and Technical Information of China (English)

    Chen Haiyang; Li Darang; Yin Jianhua; Cai Shengguo

    2011-01-01

    Isotope source energy deposition along the thickness direction of a semiconductor is calculated,based upon which an ideal short current is evaluated for betavoltaic batteries.Electron-hole pair recombination and drifting length in a PN junction built-in electric field are extracted by comparing the measured short currents with the ideal short currents.A built-in electric field thickness design principle is proposed for betavoltaic batteries:after measuring the energy deposition depth and the carrier drift length,the shorter one should then be chosen as the built-in electric field thickness.If the energy deposition depth is much larger than the carrier drift length,a multijunction is preferred in betavoltaic batteries and the number of the junctions should be the value of the deposition depth divided by the drift length.

  14. Built-in electric field thickness design for betavoltaic batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen Haiyang; Li Darang; Yin Jianhua; Cai Shengguo, E-mail: haiyangchen@bit.edu.cn [School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2011-09-15

    Isotope source energy deposition along the thickness direction of a semiconductor is calculated, based upon which an ideal short current is evaluated for betavoltaic batteries. Electron-hole pair recombination and drifting length in a PN junction built-in electric field are extracted by comparing the measured short currents with the ideal short currents. A built-in electric field thickness design principle is proposed for betavoltaic batteries: after measuring the energy deposition depth and the carrier drift length, the shorter one should then be chosen as the built-in electric field thickness. If the energy deposition depth is much larger than the carrier drift length, a multi-junction is preferred in betavoltaic batteries and the number of the junctions should be the value of the deposition depth divided by the drift length. (semiconductor devices)

  15. Liesegang patterns: Complex formation of precipitate in an electric field

    Indian Academy of Sciences (India)

    István Lagzi

    2005-02-01

    Formation of 1D Liesegang patterns was studied numerically in precipitation and reversible complex formation of precipitate scenarios in an electric field. The Ostwald’s supersaturation model reported by Büki, Kárpáti-Smidróczki and Zrínyi (BKZ model) was extended further. In the presence of an electric field the position of the first and the last bands () measured from the junction point of the outer and the inner electrolytes can be described by the function = 1 $_{}^{1/2}$ + 2 + 3 , where is the time elapsed until the nth band formation, 1, 2 and 3 are constants. The variation of the total number of bands with different electric field strengths () has a maximum. For higher one can observe a moving precipitation zone that becomes wider due to precipitation and reversible complex formation.

  16. Incompressible Einstein–Maxwell fluids with specified electric fields

    Indian Academy of Sciences (India)

    S Hansraj; S D Maharaj; T Mthethwa

    2013-10-01

    The Einstein–Maxwell equations describing static charged spheres with uniform density and variable electric field intensity are studied. The special case of constant electric field is also studied. The evolution of the model is governed by a hypergeometric differential equation which has a general solution in terms of special functions. Several classes of exact solutions are identified which may be considered as charged generalizations of the incompressible Schwarzschild interior model. An analysis of the physical features is undertaken for the uniform case. It is demonstrated that uniform density spheres with constant electric field intensity are not realizable with isotropic pressures. This highlights the necessity of studying the criteria for physical admissability of gravitating spheres in general relativity which are solutions to the Einstein–Maxwell equations.

  17. High School Students' Understandings and Representations of the Electric Field

    CERN Document Server

    Cao, Ying

    2014-01-01

    This study investigates the understandings and representations of the electric field expressed by Chinese high school students ages 15 to 16 who have not yet received high school-level physics instruction. The literature has reported students' ideas of the electric field post-instruction as indicated by their performance on textbook-style questionnaires. However, by relying on measures such as questionnaires, previous research has inadequately captured the thinking process that led students to answer questions in the ways that they did. The present study portrays the beginning of this process by closely examining students' understandings pre-instruction. The participants in this study were asked to engage in a lesson that included informal group tasks that involved playing a Web-based hockey game that replicated an electric field and drawing comic strips that used charges as characters. The lesson was videotaped, students' work was collected, and three students were interviewed afterward to ascertain more det...

  18. Calculation and measurement of electric field under HVDC transmission lines

    Science.gov (United States)

    Kasdi, A.; Zebboudj, Y.; Yala, H.

    2007-03-01

    A stable corona discharge in a two conductors-to-plane configuration is analysed in this paper. A linear biased probe, without end-effect, has been adapted to a linear geometry and is used for the first time to measure the ground-plane current density and electric field during the bipolar corona. The values of the electric field and the current density are maximum under the two coronating conductors and decrease when moving away from them. Furthermore, a hybrid technique is developed to obtain a general solution of the governing equations of the coupled space-charge and electric field problem. The technique is to use the finite-element method (FEM) to solve Poisson's equation, and the method of characteristic (MOC) to find the charge density from a current-continuity relation. The model avoids resorting to the Deutsch assumption. The computed values are in good agreement with experimental data.

  19. The effect of electric fields on lipid membranes

    CERN Document Server

    Vasilkoski, Z

    2006-01-01

    Contrary to existing theoretical models, experimental evidence points out that electroporation (membrane defect formation under external electric fields) starts to occur within the range of transmembrane voltages that cells may routinely experience, curiously, just above the range of transmembrane voltages involved in neural signal transmission. Understanding the underlying principles of electric fields-lipid membrane interactions seems to carry a great biological importance. An argument is presented toward understanding the theoretical aspects of electroporation by using the DLVO theory, which has not been recognized previously in the context of electroporation. Further, the dispersion interactions (with its quantum nature), of the double layer counterions and membrane lipid molecules over the Stern layer are emphasized. The sign of these forces is such that they compress the membrane. A parallel is drawn to the theory of thin films. The argument is that the external electric field breaks the symmetry of the...

  20. An automated system for the measurement of magnetostriction in electrical steel sheet under applied stress

    CERN Document Server

    Anderson, P I; Stanbury, H J

    2000-01-01

    The design of an automated system for the rapid assessment of the AC magnetostriction in electrical steel sheet under linear applied stress in the range +-10 MPa is described in detail. Typical results are presented showing the effect of induction on the unstressed material together with plots of the harmonics of magnetostriction and specific total loss versus applied stress.