WorldWideScience

Sample records for applied climate-change analysis

  1. Downscaling Statistical Model Techniques for Climate Change Analysis Applied to the Amazon Region

    Directory of Open Access Journals (Sweden)

    David Mendes

    2014-01-01

    Full Text Available The Amazon is an area covered predominantly by dense tropical rainforest with relatively small inclusions of several other types of vegetation. In the last decades, scientific research has suggested a strong link between the health of the Amazon and the integrity of the global climate: tropical forests and woodlands (e.g., savannas exchange vast amounts of water and energy with the atmosphere and are thought to be important in controlling local and regional climates. Consider the importance of the Amazon biome to the global climate changes impacts and the role of the protected area in the conservation of biodiversity and state-of-art of downscaling model techniques based on ANN Calibrate and run a downscaling model technique based on the Artificial Neural Network (ANN that is applied to the Amazon region in order to obtain regional and local climate predicted data (e.g., precipitation. Considering the importance of the Amazon biome to the global climate changes impacts and the state-of-art of downscaling techniques for climate models, the shower of this work is presented as follows: the use of ANNs good similarity with the observation in the cities of Belém and Manaus, with correlations of approximately 88.9% and 91.3%, respectively, and spatial distribution, especially in the correction process, representing a good fit.

  2. Regional climate change mitigation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rowlands, Ian H. [UNEP Collaborating Centre on Energy and Environment, and Univ. of Waterloo (Canada)

    1998-10-01

    The purpose of this paper is to explore some of the key methodological issues that arise from an analysis of regional climate change mitigation options. The rationale for any analysis of regional mitigation activities, emphasising both the theoretical attractiveness and the existing political encouragement and the methodology that has been developed are reviewed. The differences arising from the fact that mitigation analyses have been taken from the level of the national - where the majority of the work has been completed to date - to the level of the international - that is, the `regional` - will be especially highlighted. (EG)

  3. How to ensure that the results of climate risk analysis make a difference? - Experience from applied research addressing the challenges of climate change

    Science.gov (United States)

    Schneiderbauer, Stefan; Zebisch, Marc; Becker, Daniel; Pedoth, Lydia; Renner, Kathrin; Kienberger, Stefan

    2016-04-01

    Changing climate conditions may have beneficial or adverse effects on the social-ecological systems we are living in. In any case, the possible effects result from complex and interlinked physical and social processes embedded in these systems. Traditional research addresses these bio-physical and societal issues in a separate way. Therefore, in general, studies on risks related to climate change are still mono-disciplinary in nature with an increasing amount of work following a multi-disciplinary approach. The quality and usefulness of the results of such research for policy or decision making in practice may further be limited by study designs that do not acknowledge appropriately the significance of integrating or at least mixing qualitative and quantitative information and knowledge. Finally, the acceptance of study results - particularly when containing some kind of assessments - is often endangered by insufficient and / or late involvement of stakeholders and users. The above mentioned limitations have often been brought up in the recent past. However, despite that a certain consensus could be achieved in the last years recognising the need to tackle these issues, little progress has been made in terms of implementation within the context of (research) studies. This paper elaborates in detail on reasons that hamper the application of - interdisciplinary (i.e. natural and social science), - trans-disciplinary (i.e. co-production of knowledge) and - integrative (i.e. combining qualitative and quantitative approaches) work. It is based on the experience gained through a number of applied climate change vulnerability studies carried out within the context of various GIZ-financed development cooperation projects, a consultancy project for the German Environment Agency as well as the workshop series INQUIMUS, which tackles particularly the issues of mixing qualitative and quantitative research approaches. Potentials and constraints of possible attempts for

  4. Climate change risk analysis framework (CCRAF) a probabilistic tool for analyzing climate change uncertainties

    Science.gov (United States)

    Legget, J.; Pepper, W.; Sankovski, A.; Smith, J.; Tol, R.; Wigley, T.

    2003-04-01

    Potential risks of human-induced climate change are subject to a three-fold uncertainty associated with: the extent of future anthropogenic and natural GHG emissions; global and regional climatic responses to emissions; and impacts of climatic changes on economies and the biosphere. Long-term analyses are also subject to uncertainty regarding how humans will respond to actual or perceived changes, through adaptation or mitigation efforts. Explicitly addressing these uncertainties is a high priority in the scientific and policy communities Probabilistic modeling is gaining momentum as a technique to quantify uncertainties explicitly and use decision analysis techniques that take advantage of improved risk information. The Climate Change Risk Assessment Framework (CCRAF) presented here a new integrative tool that combines the probabilistic approaches developed in population, energy and economic sciences with empirical data and probabilistic results of climate and impact models. The main CCRAF objective is to assess global climate change as a risk management challenge and to provide insights regarding robust policies that address the risks, by mitigating greenhouse gas emissions and by adapting to climate change consequences. The CCRAF endogenously simulates to 2100 or beyond annual region-specific changes in population; GDP; primary (by fuel) and final energy (by type) use; a wide set of associated GHG emissions; GHG concentrations; global temperature change and sea level rise; economic, health, and biospheric impacts; costs of mitigation and adaptation measures and residual costs or benefits of climate change. Atmospheric and climate components of CCRAF are formulated based on the latest version of Wigley's and Raper's MAGICC model and impacts are simulated based on a modified version of Tol's FUND model. The CCRAF is based on series of log-linear equations with deterministic and random components and is implemented using a Monte-Carlo method with up to 5000

  5. Bahamians and Climate Change: An Analysis of Risk Perception and Climate Change Literacy

    Science.gov (United States)

    Neely, R.; Owens, M. A.

    2011-12-01

    The Commonwealth of the Bahamas is forecasted to be adversely impacted by the effects of climate change. This presentation will present the results of an assessment of the risk perception toward climate change and climate change literacy among Bahamians. 499 Bahamians from the health care and hospitality industries participated in surveys and/or focus groups and three (3) areas of climate change literacy (attitude, behavior and knowledge) were analyzed as well as risk perception. In general, 1) Bahamians demonstrated an elementary understanding of the underlying causes of climate change, 2) possessed positive attitudes toward adopting new climate change policies, and 3) are already adjusting their behaviors in light of the current predictions. This research also resulted in the development of a model of the relationships between the climate literacy subscales (attitude, behavior and knowledge) and risk perception. This study also examined information sources and their impacts on climate change literacy. As the source of information is important in assessing the quality of the information, participants also identified the source(s) of most of their climate change information. The TV news was cited as the most common source for climate change information among Bahamians. As there is limited active research generating specific climate change information in the Bahamas, all the information Bahamians receive as it pertains to climate change is generated abroad. As a result, Bahamians must decipher through to make sense of it on an individual level. From the focus groups, many of the participants have been able to view possible changes through a cultural lens and are willing to make adjustments to maintain the uniqueness and viability of the Bahamas and to preserve it for generations. Continued study of Bahamians' climate change literacy will inform adaption and mitigation policy as well as individual action.

  6. Cost benefit analysis for climate change adaption

    NARCIS (Netherlands)

    Ierland, van E.C.; Weikard, H.P.; Wesseler, J.H.H.; Groeneveld, R.A.; Ansink, E.J.H.; Bruin, de K.; Rietveld, P.; Bockarjova, M.; Hofkes, M.; Brouwer, R.; Dekker, T.

    2012-01-01

    The focus of this programme was on the development of decision making tools based on cost benefit analysis under uncertainty, for analysing adaptation and mitigation options related to spatial planning in the Netherlands. The full programme focused on the methodological issues for cost benefit analy

  7. Climate Change: a critical analysis from Ecological Economy

    OpenAIRE

    2012-01-01

    It is a critical and comparative analysis between environmental economics and ecological economics, and then establish the implications for policy instruments to deal with the phenomenon of climate change. From the comparison looks at some tools used by the Environmental Economics for Decision-making, given the specific environmental problems and limitations of neoclassical economics in the economic field does not provide the desired results. From Ecological Economics approaches are how decis...

  8. Climate Change Signal Analysis for Northeast Asian Surface Temperature

    Institute of Scientific and Technical Information of China (English)

    Jeong-Hyeong LEE; Byungsoo KIM; Keon-Tae SOHN; Won-Tae KOWN; Seung-Ki MIN

    2005-01-01

    Climate change detection, attribution, and prediction were studied for the surface temperature in the Northeast Asian region using NCEP/NCAR reanalysis data and three coupled-model simulations from ECHAM4/OPYC3, HadCM3, and CCCma GCMs (Canadian Centre for Climate Modeling and Analysis general circulation model). The Bayesian fingerprint approach was used to perform the detection and attribution test for the anthropogenic climate change signal associated with changes in anthropogenic carbon dioxide (CO2) and sulfate aerosol (SO42-) concentrations for the Northeast Asian temperature. It was shown that there was a weak anthropogenic climate change signal in the Northeast Asian temperature change. The relative contribution of CO2 and SOl- effects to total temperature change in Northeast Asia was quantified from ECHAM4/OPYC3 and CCCma GCM simulations using analysis of variance. For the observed temperature change for the period of 1959-1998, the CO2 effect contributed 10%-21% of the total variance and the direct cooling effect of SO42- played a less important role (0% 7%) than the CO2effect. The prediction of surface temperature change was estimated from the second CO2+SO24- scenario run of ECHAM4/OPYC3 which has the least error in the simulation of the present-day temperature field near the Korean Peninsula. The result shows that the area-mean surface temperature near the Korean Peninsula will increase by about 1.1° by the 2040s relative to the 1990s.

  9. Arctic climate change and oil spill risk analysis

    Institute of Scientific and Technical Information of China (English)

    William B. Samuels; David E. Amstutz; Heather A. Crowley

    2011-01-01

    The purpose of this project was to:1) describe the effects of climate change in the Arctic and its impact on circulation,2) describe hindcast data used in the Ocean Energy Management,Regulation and Enforcement (BOEMRE) Oil Spill Risk Analysis (OSRA) model,3)evaluate alternatives such as using forecast results in the OSRA model,and 4) recommend future studies.Effects of climate change on winds,sea ice,ocean circulation and river discharge in the Arctic and impacts on surface circulation can be evaluated only through a series of specially designed numerical experiments using highresolution coupled ice-ocean models to elucidate the sensitivity of the models to various parameterizations or forcings.The results of these experiments will suggest what mechanisms are most important in controlling model response and guide inferences on how OSRA may respond to different climate change scenarios.Climatological change in the Arctic could lead to drastic alterations of wind,sea ice cover and concentration,and surface current fields all of which would influence hypothetical oil spill trajectories.Because of the pace at which conditions are changing,BOEMRE needs to assess whether forecast ice/ocean model results might contain useful information for the purposes of calculating hypothetical oil spill trajectories.

  10. Applying & Publishing GRI framework in Transport Companies Rethink. Redesign. Rebuild. CSR Reporting and Climate Change

    Directory of Open Access Journals (Sweden)

    Lilian Soares Outtes Wanderley

    2010-08-01

    Full Text Available Corporations with systematic relationships to tourism are developing activities and publishing CSR reports applying the GRI framework (GRI, 2009. The contribution of tourism to climate change is estimated at between 5% and 12% and by 2050 the amount spent on the tourism sector will consume the entire carbon budget required to avoid dangerous climate change (Scott et al. 2009, UNWTO-UNEP-WMO 2008. This study defines the TC-8 group, a group of transport in tourism related companies, in order to answer the main questions:To what extent is climate change addressed in the CSR reports of transport companies? Climate change is mentioned and receives attention in all of the company reports analysed, however,overall the transport sector shows that in comparison to the GRI/KPMG (2007 survey, it under-performs. Are the companies just reporting direct emissions from production or also broader emissions from the use of the products? Half of these companies report emissions; some include direct and indirect emissions. Further actions can be mentioned such as, companies participating in forums discussing solutions to climate change, assuming shared responsibilities and employing measures such as reducing energy consumption by runningtheir own photovoltaic power unit or planning for a CO2 neutral operation by 2012.

  11. Empirical Analysis of Urban Residents’ Perceived Climatic Change Risks

    Institute of Scientific and Technical Information of China (English)

    Peihui; DAI; Lingling; HUANG

    2014-01-01

    The impact of climate change on human survival and security,urban development is even more profound,and receives more and more attention. To explore the perceived status of urban residents for the risks of climate change and put forward corresponding countermeasures and suggestions,taking Wuhan for example,from the microscopic point of urban residents,we use factor analysis to classify the perceived risks and recognized risk reduction measures,use cluster analysis to divide the urban residents into five groups,and use variance analysis to explore differences in the choice of measures between different cluster groups. We draw the following conclusions: the risk of deterioration of the ecological environment,the risk of economic damage,the risk of damage to the mental health,the risk of damage to the physical health and the risk of damage to the political harmony are the main risks of climate change for urban residents; individuals and families to develop good habits,businesses and governments to strengthen energy conservation,schools and other agencies to carry on the propaganda and education,carrying out multi-agent environment improvement,learn from the West are their recognized risk reduction measures. Depending on the perceived risk,the urban residents are clustered into five groups: those who are concerned about the body and politics,those who are concerned about the mental health,those who are concerned about the economic development,those who are concerned about the ecological safety,and those who ignore the climatic change. For the roles of individual and the family,business and government in the environmental protection,different groups have unanimous views,while for other measures,different groups have different understanding. It is concluded that individuals and families to develop environmentally friendly habits,government to strengthen regulation,businesses to take environmental responsibility,schools to strengthen publicity and education,and exploring

  12. A Meta-Analysis of Local Climate Change Adaptation Actions

    Science.gov (United States)

    Local governments are beginning to take steps to address the consequences of climate change, such as sea level rise and heat events. However, we do not have a clear understanding of what local governments are doing -- the extent to which they expect climate change to affect their...

  13. Climate change induced risk analysis of Addis Ababa city (Ethiopia)

    Science.gov (United States)

    Jalayer, Fatemeh; Herslund, Lise; Cavan, Gina; Printz, Andreas; Simonis, Ingo; Bucchignani, Edoardo; Jean-Baptiste, Nathalie; Hellevik, Siri; Fekade, Rebka; Nebebe, Alemu; Woldegerima, Tekle; Workalemahu, Liku; Workneh, Abraham; Yonas, Nebyou; Abebe Bekele, Essete; Yeshitela, Kumelachew

    2013-04-01

    CLUVA (CLimate change and Urban Vulnerability in Africa; http://www.cluva.eu/) is a 3 years project, funded by the European Commission in 2010. Its objective is to develop context-centered methods to assess vulnerability and increase knowledge on managing climate related risks and to estimate the impacts of climate changes in the next 40 years at urban scale in Africa. The project downscales IPCC climate projections to evaluate threats to selected African test cities; mainly floods, sea-level rise, droughts, heat waves, desertification. It also evaluates and links: social vulnerability; urban green structures and ecosystem services; urban-rural interfaces; vulnerability of urban built environment and lifelines; and related institutional and governance dimensions of adaptation. CLUVA combines assessment approaches to investigate how cities, communities and households can resist and cope with, as well as recover from climate induced hazards. This multi-scale and multi-disciplinary qualitative, quantitative and probabilistic approach of CLUVA is currently being applied to selected African test cities (Addis Ababa - Ethiopia; Dar es Salaam - Tanzania; Douala - Cameroun; Ouagadougou - Burkina Faso; St. Louis - Senegal). In particular, the poster will report on the progresses of the Addis Ababa case study. Addis Ababa, the largest city in Ethiopia, is exposed to heat waves, drought, and, more recently, to flash floods. Due to undulating topography, poor waste management and the absence of sustainable storm water management, Addis Ababa is prone to severe flood events during the rainy seasons. Metropolitan Addis Ababa is crossed by several small watercourses. Torrential rains, very common during the rainy season, cause a sudden rise in the flow of these water courses, inundating and damaging the settlements along their banks and affecting the livelihood of the local population. The combination of climate change and development pressures are expected to exacerbate the

  14. Climate Change, Disaster and Sentiment Analysis over Social Media Mining

    Science.gov (United States)

    Lee, J.; McCusker, J. P.; McGuinness, D. L.

    2012-12-01

    Accelerated climate change causes disasters and disrupts people living all over the globe. Disruptive climate events are often reflected in expressed sentiments of the people affected. Monitoring changes in these sentiments during and after disasters can reveal relationships between climate change and mental health. We developed a semantic web tool that uses linked data principles and semantic web technologies to integrate data from multiple sources and analyze them together. We are converting statistical data on climate change and disaster records obtained from the World Bank data catalog and the International Disaster Database into a Resource Description Framework (RDF) representation that was annotated with the RDF Data Cube vocabulary. We compare these data with a dataset of tweets that mention terms from the Emotion Ontology to get a sense of how disasters can impact the affected populations. This dataset is being gathered using an infrastructure we developed that extracts term uses in Twitter with controlled vocabularies. This data was also converted to RDF structure so that statistical data on the climate change and disasters is analyzed together with sentiment data. To visualize and explore relationship of the multiple data across the dimensions of time and location, we use the qb.js framework. We are using this approach to investigate the social and emotional impact of climate change. We hope that this will demonstrate the use of social media data as a valuable source of understanding on global climate change.

  15. Applying "Climate" system to teaching basic climatology and raising public awareness of climate change issues

    Science.gov (United States)

    Gordova, Yulia; Okladnikov, Igor; Titov, Alexander; Gordov, Evgeny

    2016-04-01

    While there is a strong demand for innovation in digital learning, available training programs in the environmental sciences have no time to adapt to rapid changes in the domain content. A joint group of scientists and university teachers develops and implements an educational environment for new learning experiences in basics of climatic science and its applications. This so-called virtual learning laboratory "Climate" contains educational materials and interactive training courses developed to provide undergraduate and graduate students with profound understanding of changes in regional climate and environment. The main feature of this Laboratory is that students perform their computational tasks on climate modeling and evaluation and assessment of climate change using the typical tools of the "Climate" information-computational system, which are usually used by real-life practitioners performing such kind of research. Students have an opportunity to perform computational laboratory works using information-computational tools of the system and improve skills of their usage simultaneously with mastering the subject. We did not create an artificial learning environment to pass the trainings. On the contrary, the main purpose of association of the educational block and computational information system was to familiarize students with the real existing technologies for monitoring and analysis of data on the state of the climate. Trainings are based on technologies and procedures which are typical for Earth system sciences. Educational courses are designed to permit students to conduct their own investigations of ongoing and future climate changes in a manner that is essentially identical to the techniques used by national and international climate research organizations. All trainings are supported by lectures, devoted to the basic aspects of modern climatology, including analysis of current climate change and its possible impacts ensuring effective links between

  16. Applying a framework for landscape planning under climate change for the conservation of biodiversity in the Finnish boreal forest

    DEFF Research Database (Denmark)

    Mazziotta, Adriano; Triviño, Maria; Tikkanen, Olli Pekka

    2015-01-01

    Conservation strategies are often established without consideration of the impact of climate change. However, this impact is expected to threaten species and ecosystem persistence and to have dramatic effects towards the end of the 21st century. Landscape suitability for species under climate...... change is determined by several interacting factors including dispersal and human land use. Designing effective conservation strategies at regional scales to improve landscape suitability requires measuring the vulnerabilities of specific regions to climate change and determining their conservation...... capacity to its vulnerability to climate change. In applying this framework, we take into account the responses to climate change of a broad range of red-listed species with different niche requirements. This framework allowed us to identify four categories in which representation in the landscape varies...

  17. Population and Climate Change

    Science.gov (United States)

    O'Neill, Brian C.; Landis MacKellar, F.; Lutz, Wolfgang

    2000-11-01

    Population and Climate Change provides the first systematic in-depth treatment of links between two major themes of the 21st century: population growth (and associated demographic trends such as aging) and climate change. It is written by a multidisciplinary team of authors from the International Institute for Applied Systems Analysis who integrate both natural science and social science perspectives in a way that is comprehensible to members of both communities. The book will be of primary interest to researchers in the fields of climate change, demography, and economics. It will also be useful to policy-makers and NGOs dealing with issues of population dynamics and climate change, and to teachers and students in courses such as environmental studies, demography, climatology, economics, earth systems science, and international relations.

  18. Coupled Ethical-Epistemic Analysis of Climate Change

    Science.gov (United States)

    Vezer, M.

    2015-12-01

    Are there inherent limitations to what we can know about how the climate will change in the years ahead? How can we use what is known about the future climate in a way that promotes ethical decision-making? These questions call for urgent attention because important policy decisions need to be made in order to prepare for climate change in North America and around the world. While the science of climate change is central to this line of inquiry, the fields of epistemology, moral, political and environmental philosophy may provide insights on how these issues should be addressed. Detailing the relationship between evidential and ethical dimensions of climate change, this research aims to improve our understanding of the interconnections among several lines of inquiry and to develop solutions to problems of decision-making under conditions of scientific uncertainty.

  19. Regional climate change scenarios applied to viticultural zoning in Mendoza, Argentina.

    Science.gov (United States)

    Cabré, María Fernanda; Quénol, Hervé; Nuñez, Mario

    2016-09-01

    regions. It has been concluded that regional climate change simulations are an adequate methodology, and indeed, the MM5 regional model is an appropriate tool to be applied in viticultural zoning in Mendoza, Argentina.

  20. Regional climate change scenarios applied to viticultural zoning in Mendoza, Argentina

    Science.gov (United States)

    Cabré, María Fernanda; Quénol, Hervé; Nuñez, Mario

    2016-09-01

    regions. It has been concluded that regional climate change simulations are an adequate methodology, and indeed, the MM5 regional model is an appropriate tool to be applied in viticultural zoning in Mendoza, Argentina.

  1. Climate change threatens polar bear populations: a stochastic demographic analysis.

    Science.gov (United States)

    Hunter, Christine M; Caswell, Hal; Runge, Michael C; Regehr, Eric V; Amstrup, Steve C; Stirling, Ian

    2010-10-01

    The polar bear (Ursus maritimus) depends on sea ice for feeding, breeding, and movement. Significant reductions in Arctic sea ice are forecast to continue because of climate warming. We evaluated the impacts of climate change on polar bears in the southern Beaufort Sea by means of a demographic analysis, combining deterministic, stochastic, environment-dependent matrix population models with forecasts of future sea ice conditions from IPCC general circulation models (GCMs). The matrix population models classified individuals by age and breeding status; mothers and dependent cubs were treated as units. Parameter estimates were obtained from a capture-recapture study conducted from 2001 to 2006. Candidate statistical models allowed vital rates to vary with time and as functions of a sea ice covariate. Model averaging was used to produce the vital rate estimates, and a parametric bootstrap procedure was used to quantify model selection and parameter estimation uncertainty. Deterministic models projected population growth in years with more extensive ice coverage (2001-2003) and population decline in years with less ice coverage (2004-2005). LTRE (life table response experiment) analysis showed that the reduction in lambda in years with low sea ice was due primarily to reduced adult female survival, and secondarily to reduced breeding. A stochastic model with two environmental states, good and poor sea ice conditions, projected a declining stochastic growth rate, log lambdas, as the frequency of poor ice years increased. The observed frequency of poor ice years since 1979 would imply log lambdas approximately - 0.01, which agrees with available (albeit crude) observations of population size. The stochastic model was linked to a set of 10 GCMs compiled by the IPCC; the models were chosen for their ability to reproduce historical observations of sea ice and were forced with "business as usual" (A1B) greenhouse gas emissions. The resulting stochastic population

  2. Endogenous Risks and Learning in Climate Change Decision Analysis

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, B.C.; Ermoliev, Y.; Ermolieva, T.

    2005-10-05

    We analyze the effects of risks and learning on climate change decisions. A two-stage, dynamic, climate change stabilization problem is formulated. The explicit incorporation of ex-post learning induces risk aversion among ex-ante decisions, which is characterized in linear models by VaR- (Value at Risk) and CVaR-type risk (Conditional Value at Risk) measures. Combined with explicit introduction of 'safety' constraints, it creates a 'hit-or-miss' type decision making situation and shows that, even in linear models, learning may lead to either less or more restrictive ex-ante emission reductions. We analyze stylized elements of the model in order to identify the key factors driving outcomes, in particular, the critical role of quantiles of probability distributions characterizing key uncertainties.

  3. Equitable cost-benefit analysis of climate change policies

    Energy Technology Data Exchange (ETDEWEB)

    Tol, R.S.J. [Centre for Marine and Climate Studies, Hamburg University, Bundesstrasse 55, 20146 Hamburg (Germany)

    2001-01-01

    The literature of welfare-maximising greenhouse gas emission reduction strategies pays remarkably little attention to equity. This paper introduces three ways to consider efficiency and equity simultaneously. The first method, inspired by Kant and Rawls, maximises net present welfare, without international cooperation, as if all regions share the fate of the region affected worst by climate change. Optimal emission abatement varies greatly depending on the spatial and temporal resolution, that is, the grid at which 'maximum impact' is defined. The second method is inspired by Varian's no-envy. Emissions are reduced so as to equalise total costs and benefits of climate change over all countries of the world and over all time periods. Emission reductions are substantial. This method approximately preserves the inequities that would occur in a world without climate change. The third method uses non-linear aggregations of welfare (the utilitarian default is linear) in a cooperative setting. This method cannot distinguish between sources of inequity. The higher the aversion to inequity, the higher optimal greenhouse gas emission reduction. 59 refs.

  4. Multi-fingerprint detection and attribution analysis of greenhouse gas, greenhouse gas-plus-aerosol and solar forced climate change

    Energy Technology Data Exchange (ETDEWEB)

    Hegerl, G.C.; Hasselmann, K.; Cubasch, U.; Roeckner, E.; Voss, R. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Mitchell, J.F.B. [Hadley Centre for Climate Prediction and Research, Bracknell (United Kingdom). Meteorological Office; Waszkewitz, J. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany)

    1997-09-01

    A multifingerprint analysis is applied to the detection and attribution of anthropogenic climate change. While a single fingerprint is optimal for the detection of climate change, further tests of the statistical consistency of the detected climate change signal with model predictions for different candidate forcing mechanisms require the simultaneous application of several fingerprints. Model-predicted climate change signals are derived from three anthropogenic global warming simulations for the period 1880 to 2049and two simulations forced by estimated changes in solar radiation from 1700 to 1992. In the first global warming simulation, the forcing is by greenhouse gas only, while in the remaining two simulations the direct influence of sulfate aerosols is also included. From the climate change signals of the greenhouse gas only and the average of the two greenhouse gas-plus-aerosol simulations, two optimized fingerprint patterns are derived by weighting the model-predicted climate change patterns towards low-noise directions. The optimized fingerprint patterns are then applied as a filter to the observed near-surface temperature trend patterns, yielding several detection variables. The space-time structure of natural climate variability needed to determine the optimal fingerprint pattern and the resultant signal-to-noise ratio of the detection variable is estimated from several multicentury control simulations with different CGCMs and from instrumental data over the last 136 y. Applying the combined greenhouse gas-plus-aerosol fingerprint in the same way as the greenhouse gas only fingerprint in a previous work, the recent 30-y trends (1966-1995) of annual mean near surface temperature are again found to represent a significant climate change at the 97.5% confidence level. (orig.) With 13 figs., 3 tabs., 63 refs.

  5. A quantitative analysis of the causes of the global climate change research distribution

    DEFF Research Database (Denmark)

    Pasgaard, Maya; Strange, Niels

    2013-01-01

    During the last decades of growing scientific, political and public attention to global climate change, it has become increasingly clear that the present and projected impacts from climate change, and the ability adapt to the these changes, are not evenly distributed across the globe. This paper...... is biased toward richer countries, which are more stable and less corrupt, have higher school enrolment and expenditures on research and development, emit more carbon and are less vulnerable to climate change. Similarly, the production of knowledge, analyzed by author affiliations, is skewed away from...... the poorer, fragile and more vulnerable regions of the world. A quantitative keywords analysis of all publications shows that different knowledge domains and research themes dominate across regions, reflecting the divergent global concerns in relation to climate change. In general, research on climate change...

  6. Analysis for Drought Resilience of Monoculture on Climate Change

    Science.gov (United States)

    Jung, Seungkwon; Kang, Hyunjoong; Maeng, Seungjin

    2015-04-01

    Damage occur frequently around the world on climate change, and Korea is no exception. Drought of natural disasters caused by climate change is having a significant impact on crops. Therefore, established for adaptation measures of drought are needed. Recently resilience concept is based on the study to analyze the natural disaster has conducted actively. Uses a different definition for each researcher because of the complexity of resilience concept on the studies of the natural disaster and commonly contains the meaning of "Ability to resist changes in pressure by external force. In this study, the cabbage-growing areas in the Chungcheong utilizing Statistical Annual Report(2013) from past 2007 to 2012 were analyzed by region per unit area yield of Chinese cabbage. Determination of the occurrence and intensity of the drought were utilizing SPEI(Standardized Precipitation Evapotranspiration). Configure the drought scenario was based on the result that SPEI index, cabbage yield per unit area (kg/10a) analyzed the regional drought resilience for a single crop by comparison. As a result, the average Chinese cabbage yield per unit area is the same when drought occurs Cheongyang, YeSan, SeoSan, Asan, GongJu, CheongJu came out in the order, Chungnam Chinese cabbage yield (kg / 10a) was higher than 10% of the value of Chungbuk in Republic of Korea. Acknowledgement This research was supported by a grant (12-TI-C01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  7. Alternative future analysis for assessing the potential impact of climate change on urban landscape dynamics.

    Science.gov (United States)

    He, Chunyang; Zhao, Yuanyuan; Huang, Qingxu; Zhang, Qiaofeng; Zhang, Da

    2015-11-01

    Assessing the impact of climate change on urban landscape dynamics (ULD) is the foundation for adapting to climate change and maintaining urban landscape sustainability. This paper demonstrates an alternative future analysis by coupling a system dynamics (SD) and a cellular automata (CA) model. The potential impact of different climate change scenarios on ULD from 2009 to 2030 was simulated and evaluated in the Beijing-Tianjin-Tangshan megalopolis cluster area (BTT-MCA). The results suggested that the integrated model, which combines the advantages of the SD and CA model, has the strengths of spatial quantification and flexibility. Meanwhile, the results showed that the influence of climate change would become more severe over time. In 2030, the potential urban area affected by climate change will be 343.60-1260.66 km(2) (5.55 -20.37 % of the total urban area, projected by the no-climate-change-effect scenario). Therefore, the effects of climate change should not be neglected when designing and managing urban landscape.

  8. Measuring the Dynamics of Climate Change Communication in Mass Media and Social Networks with Computer-Assisted Content Analysis

    Science.gov (United States)

    Kirilenko, A.; Stepchenkova, S.

    2012-12-01

    To date, multiple authors have examined media representations of and public attitudes towards climate change, as well as how these representations and attitudes differ from scientific knowledge on the issue of climate change. Content analysis of newspaper publications, TV news, and, recently, Internet blogs has allowed for identification of major discussion themes within the climate change domain (e.g., newspaper trends, comparison of climate change discourse in different countries, contrasting liberal vs. conservative press). The majority of these studies, however, have processed texts manually, limiting textual population size, restricting the analysis to a relatively small number of themes, and using time-expensive coding procedures. The use of computer-assisted text analysis (CATA) software is important because the difficulties with manual processing become more severe with an increased volume of data. We developed a CATA approach that allows a large body of text materials to be surveyed in a quantifiable, objective, transparent, and time-efficient manner. While staying within the quantitative tradition of content analysis, the approach allows for an interpretation of the public discourse closer to one of more qualitatively oriented methods. The methodology used in this study contains several steps: (1) sample selection; (2) data preparation for computer processing and obtaining a matrix of keyword frequencies; (3) identification of themes in the texts using Exploratory Factor Analysis (EFA); (4) combining identified themes into higher order themes using Confirmatory Factor Analysis (CFA); (5) interpretation of obtained public discourse themes using factor scores; and (6) tracking the development of the main themes of the climate change discourse through time. In the report, we concentrate on two examples of CATA applied to study public perception of climate change. First example is an analysis of temporal change in public discourse on climate change. Applying

  9. Analysis of economic impacts of climate change on agricultural water management in Europe

    Science.gov (United States)

    Garrote, Luis; Iglesias, Ana

    2016-04-01

    This contribution presents an analysis of impacts of climate change on agricultural water management in Europe. The analysis of climate change impacts on agriculture is composed of two main categories: rainfed agriculture and irrigated agriculture. Impacts on rainfed agriculture are mostly conditioned by climatic factors and were evaluated through the estimation of changes in agricultural productivity induced by climatic changes using the SARA model. At each site, process-based crop responses to climate and management are simulated by using the DSSAT crop models for cereals (wheat and rice), coarse grains (maize) and leguminous (soybeans). Changes in the rest of the crops are derived from analogies to these main crops. For each of the sites we conducted a sensitivity analysis to environmental variables (temperature, precipitation and CO2 levels) and management variables (planting date, nitrogen and irrigation applications) to obtain a database of crop responses. The resulting site output was used to define statistical models of yield response for each site which were used to obtain estimates of changes in agricultural productivity of representative production systems in European agro-climatic regions. Impacts on irrigated agriculture are mostly conditioned by water availability and were evaluated through the estimation of changes in water availability using the WAAPA model, which simulates the operation of a water resources system to maximize water availability. Basic components of WAAPA are inflows, reservoirs and demands. These components are linked to nodes of the river network. WAAPA allows the simulation of reservoir operation and the computation of supply to demands from a system of reservoirs accounting for ecological flows and evaporation losses. WAAPA model was used to estimate maximum potential water availability in the European river network applying gross volume reliability as performance criterion. Impacts on agricultural production are also dependent

  10. How Can African Agriculture Adapt to Climate Change? A Counterfactual Analysis from Ethiopia

    OpenAIRE

    2012-01-01

    We analyze the impact of different adaptation strategies on crop net revenues in the Nile Basin of Ethiopia. We estimate a multinomial endogenous switching regression model of climate change adaptation and crop net revenues and implement a counterfactual analysis. Households data are combined with spatial climate data. We find that adaptation to climate change based upon a portfolio of strategies significantly increases farm net revenues. Changing crop varieties has a positive and significant...

  11. Computer models and the evidence of anthropogenic climate change: An epistemology of variety-of-evidence inferences and robustness analysis.

    Science.gov (United States)

    Vezér, Martin A

    2016-04-01

    To study climate change, scientists employ computer models, which approximate target systems with various levels of skill. Given the imperfection of climate models, how do scientists use simulations to generate knowledge about the causes of observed climate change? Addressing a similar question in the context of biological modelling, Levins (1966) proposed an account grounded in robustness analysis. Recent philosophical discussions dispute the confirmatory power of robustness, raising the question of how the results of computer modelling studies contribute to the body of evidence supporting hypotheses about climate change. Expanding on Staley's (2004) distinction between evidential strength and security, and Lloyd's (2015) argument connecting variety-of-evidence inferences and robustness analysis, I address this question with respect to recent challenges to the epistemology robustness analysis. Applying this epistemology to case studies of climate change, I argue that, despite imperfections in climate models, and epistemic constraints on variety-of-evidence reasoning and robustness analysis, this framework accounts for the strength and security of evidence supporting climatological inferences, including the finding that global warming is occurring and its primary causes are anthropogenic.

  12. Impact of climate change on freshwater ecosystems: a global-scale analysis of ecologically relevant river flow alterations

    Directory of Open Access Journals (Sweden)

    P. Döll

    2010-05-01

    Full Text Available River flow regimes, including long-term average flows, seasonality, low flows, high flows and other types of flow variability, play an important role for freshwater ecosystems. Thus, climate change affects freshwater ecosystems not only by increased temperatures but also by altered river flow regimes. However, with one exception, transferable quantitative relations between flow alterations and ecological responses have not yet been derived. While discharge decreases are generally considered to be detrimental for ecosystems, the effect of future discharge increases is unclear. As a first step towards a global-scale analysis of climate change impacts on freshwater ecosystems, we quantified the impact of climate change on five ecologically relevant river flow indicators, using the global water model WaterGAP 2.1g to simulate monthly time series of river discharge with a spatial resolution of 0.5 degrees. Four climate change scenarios based on two global climate models and two greenhouse gas emissions scenarios were evaluated.

    We compared the impact of climate change by the 2050s to the impact of water withdrawals and dams on natural flow regimes that had occurred by 2002. Climate change was computed to alter seasonal flow regimes significantly (i.e. by more than 10% on 90% of the global land area (excluding Greenland and Antarctica, as compared to only one quarter of the land area that had suffered from significant seasonal flow regime alterations due to dams and water withdrawals. Due to climate change, the timing of the maximum mean monthly river discharge will be shifted by at least one month on one third on the global land area, more often towards earlier months (mainly due to earlier snowmelt. Dams and withdrawals had caused comparable shifts on less than 5% of the land area only. Long-term average annual river discharge is predicted to significantly increase on one half of the land area, and to significantly decrease on one quarter

  13. Satellite image analysis for surveillance, vegetation and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Cai, D Michael [Los Alamos National Laboratory

    2011-01-18

    Recently, many studies have provided abundant evidence to show the trend of tree mortality is increasing in many regions, and the cause of tree mortality is associated with drought, insect outbreak, or fire. Unfortunately, there is no current capability available to monitor vegetation changes, and correlate and predict tree mortality with CO{sub 2} change, and climate change on the global scale. Different survey platforms (methods) have been used for forest management. Typical ground-based forest surveys measure tree stem diameter, species, and alive or dead. The measurements are low-tech and time consuming, but the sample sizes are large, running into millions of trees, covering large areas, and spanning many years. These field surveys provide powerful ground validation for other survey methods such as photo survey, helicopter GPS survey, and aerial overview survey. The satellite imagery has much larger coverage. It is easier to tile the different images together, and more important, the spatial resolution has been improved such that close to or even higher than aerial survey platforms. Today, the remote sensing satellite data have reached sub-meter spatial resolution for panchromatic channels (IKONOS 2: 1 m; Quickbird-2: 0.61 m; Worldview-2: 0.5 m) and meter spatial resolution for multi-spectral channels (IKONOS 2: 4 meter; Quickbird-2: 2.44 m; Worldview-2: 2 m). Therefore, high resolution satellite imagery can allow foresters to discern individual trees. This vital information should allow us to quantify physiological states of trees, e.g. healthy or dead, shape and size of tree crowns, as well as species and functional compositions of trees. This is a powerful data resource, however, due to the vast amount of the data collected daily, it is impossible for human analysts to review the imagery in detail to identify the vital biodiversity information. Thus, in this talk, we will discuss the opportunities and challenges to use high resolution satellite imagery and

  14. Climate change induced risk analysis of Dar es Salaam city (Tanzania)

    Science.gov (United States)

    Topa, Maria Elena; Herslund, Lise; Cavan, Gina; Printz, Andreas; Simonis, Ingo; Bucchignani, Edoardo; Jean-Baptiste, Nathalie; Hellevik, Siri; Johns, Regina; Kibassa, Deusdedit; Kweka, Clara; Magina, Fredrick; Mangula, Alpha; Mbuya, Elinorata; Uhinga, Guido; Kassenga, Gabriel; Kyessi, Alphonce; Shemdoe, Riziki; Kombe, Wilbard

    2013-04-01

    CLUVA (CLimate change and Urban Vulnerability in Africa; http://www.cluva.eu/) is a 3 years project, funded by the European Commission in 2010. The main objective of CLUVA is to develop context-centered methods and knowledge to be applied to African cities to assess vulnerabilities and increase knowledge on managing climate related risks. The project estimates the impacts of climate changes in the next 40 years at urban scale and downscales IPCC climate projections to evaluate specific threats to selected African test cities. These are mainly from floods, sea-level rise, droughts, heat waves, and desertification. The project evaluates and links: social vulnerability; urban green structures and ecosystem services; urban-rural interfaces; vulnerability of urban built environment and lifelines; and related institutional and governance dimensions of adaptation. The multi-scale and multi-disciplinary qualitative, quantitative and probabilistic approach of CLUVA is currently being applied to selected African test cities (Addis Ababa - Ethiopia; Dar es Salaam - Tanzania; Douala - Cameroun; Ouagadougou - Burkina Faso; St. Louis - Senegal). In particular, the poster will present preliminary findings for the Dar es Salaam case study. Dar es Salaam, which is Tanzania's largest coastal city, is exposed to floods, coastal erosion, droughts and heat waves, and highly vulnerable to impacts as a result of ineffective urban planning (about 70% unplanned settlements), poverty and lack of basic infrastructure (e.g. lack of or poor quality storm water drainage systems). Climate change could exacerbate the current situation increasing hazard-exposure alongside the impacts of development pressures which act to increase urban vulnerability for example because of informal (unregulated) urbanization. The CLUVA research team - composed of climate and environmental scientists, risk management experts, urban planners and social scientists from both European and African institutions - has

  15. Impact of climate change on freshwater ecosystems: a global-scale analysis of ecologically relevant river flow alterations

    Directory of Open Access Journals (Sweden)

    P. Döll

    2010-02-01

    Full Text Available River flow regimes, including long-term average flows, seasonality, low flows, high flows and other types of flow variability, play an important role for freshwater ecosystems. Thus, climate change affects freshwater ecosystems not only by increased temperatures but also by altered river flow regimes. However, with one exception, transferable quantitative relations between flow alterations and ecosystem responses have not yet been derived. While discharge decreases are generally considered to be detrimental for ecosystems, the effect of future discharge increases is unclear. As a first step towards a global-scale analysis of climate change impacts on freshwater ecosystems, we quantified the impact of climate change on five ecologically relevant river flow indicators, using the global water model WaterGAP 2.1g to simulate monthly time series of river discharge with a spatial resolution of 0.5 degrees. Four climate change scenarios based on two global climate models and two greenhouse gas emissions scenarios were evaluated.

    We compared the impact of climate change by the 2050s to the impact of water withdrawals and dams on natural flow regimes that had occurred by 2002. Climate change was computed to alter seasonal flow regimes significantly (i.e. by more than 10% on 90% of the global land area (excluding Greenland and Antarctica, as compared to only one quarter of the land area that had suffered from significant seasonal flow regime alterations due to dams and water withdrawals. Due to climate change, the timing of the maximum mean monthly river discharge will be shifted by at least one month on one third on the global land area, more often towards earlier months (mainly due to earlier snowmelt. Dams and withdrawals had caused comparable shifts on less than 5% of the land area only. Long-term average annual river discharge is predicted to significantly increase on one half of the land area, and to significantly decrease on one quarter

  16. Applying a framework for landscape planning under climate change for the conservation of biodiversity in the Finnish boreal forest.

    Science.gov (United States)

    Mazziotta, Adriano; Triviño, Maria; Tikkanen, Olli-Pekka; Kouki, Jari; Strandman, Harri; Mönkkönen, Mikko

    2015-02-01

    Conservation strategies are often established without consideration of the impact of climate change. However, this impact is expected to threaten species and ecosystem persistence and to have dramatic effects towards the end of the 21st century. Landscape suitability for species under climate change is determined by several interacting factors including dispersal and human land use. Designing effective conservation strategies at regional scales to improve landscape suitability requires measuring the vulnerabilities of specific regions to climate change and determining their conservation capacities. Although methods for defining vulnerability categories are available, methods for doing this in a systematic, cost-effective way have not been identified. Here, we use an ecosystem model to define the potential resilience of the Finnish forest landscape by relating its current conservation capacity to its vulnerability to climate change. In applying this framework, we take into account the responses to climate change of a broad range of red-listed species with different niche requirements. This framework allowed us to identify four categories in which representation in the landscape varies among three IPCC emission scenarios (B1, low; A1B, intermediate; A2, high emissions): (i) susceptible (B1 = 24.7%, A1B = 26.4%, A2 = 26.2%), the most intact forest landscapes vulnerable to climate change, requiring management for heterogeneity and resilience; (ii) resilient (B1 = 2.2%, A1B = 0.5%, A2 = 0.6%), intact areas with low vulnerability that represent potential climate refugia and require conservation capacity maintenance; (iii) resistant (B1 = 6.7%, A1B = 0.8%, A2 = 1.1%), landscapes with low current conservation capacity and low vulnerability that are suitable for restoration projects; (iv) sensitive (B1 = 66.4%, A1B = 72.3%, A2 = 72.0%), low conservation capacity landscapes that are vulnerable and for which alternative conservation measures are required depending on the

  17. Networked Content Analysis: The case of climate change

    NARCIS (Netherlands)

    Niederer, S.M.C.

    2016-01-01

    Content Analysis has been developed within communication science as a technique to analyze bodies of text for features or (recurring) themes, in order to identify cultural indicators, societal trends and issues. And while Content Analysis has seen a tremendous uptake across scientific disciplines, t

  18. Climate Change Discourse in Mass Media: Application of Computer-Assisted Content Analysis

    Science.gov (United States)

    Kirilenko, Andrei P.; Stepchenkova, Svetlana O.

    2012-01-01

    Content analysis of mass media publications has become a major scientific method used to analyze public discourse on climate change. We propose a computer-assisted content analysis method to extract prevalent themes and analyze discourse changes over an extended period in an objective and quantifiable manner. The method includes the following: (1)…

  19. Trends in research on global climate change: A Science Citation Index Expanded-based analysis

    Science.gov (United States)

    Li, Jinfeng; Wang, Ming-Huang; Ho, Yuh-Shan

    2011-05-01

    This study was conceived to evaluate the global scientific output of climate change research over the past 18 years and to assess the characteristics of the research patterns, tendencies, and methods in the papers. Data were based on the online version of Science Citation Index Expanded from 1992 to 2009. Articles referring to climate change were assessed by distribution of source countries, source institutes, paper titles, author keywords, KeyWords Plus, abstracts, and the most cited articles in these years. By synthetic analysis of the four kinds of keywords, it was concluded that the items "temperature", "environment", "precipitation", "greenhouse gas", "risk", and "biodiversity" will be the foci of climate change research in the 21st century, while "model", "monitoring", and "remote sensing" will continue to be the leading research methods. A novel method, "phylogeography", may have a strong application potential in the near future.

  20. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate......This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...

  1. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...... and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  2. Broken Robustness Analysis: How to make proper climate change conclusions in contradictory multimodal measurement contexts.

    Science.gov (United States)

    Keyser, V.

    2015-12-01

    Philosophers of science discuss how multiple modes of measurement can generate evidence for the existence and character of a phenomenon (Horwich 1982; Hacking 1983; Franklin and Howson 1984; Collins 1985; Sober 1989; Trout 1993; Culp 1995; Keeley 2002; Staley 2004; Weber 2005; Keyser 2012). But how can this work systematically in climate change measurement? Additionally, what conclusions can scientists and policy-makers draw when different modes of measurement fail to be robust by producing contradictory results? First, I present a new technical account of robust measurement (RAMP) that focuses on the physical independence of measurement processes. I detail how physically independent measurement processes "check each other's results." (This account is in contrast to philosophical accounts of robustness analysis that focus on independent model assumptions or independent measurement products or results.) Second, I present a puzzle about contradictory and divergent climate change measures, which has consistently re-emerged in climate measurement. This discussion will focus on land, drilling, troposphere, and computer simulation measures. Third, to systematically solve this climate measurement puzzle, I use RAMP in the context of drought measurement in order to generate a classification of measurement processes. Here, I discuss how multimodal precipitation measures—e.g., measures of precipitation deficit like the Standard Precipitation Index vs. air humidity measures like the Standardized Relative Humidity Index--can help with the classification scheme of climate change measurement processes. Finally, I discuss how this classification of measures can help scientists and policy-makers draw effective conclusions in contradictory multimodal climate change measurement contexts.

  3. Climate Change

    Science.gov (United States)

    ... events, such as hurricanes and wildfires. These can cause death, injuries, stress, and mental health problems. Researchers are studying the best ways to lessen climate change and reduce its impact on our health. NIH: ...

  4. Analysis of magnitude and duration of floods and droughts in the context of climate change

    Science.gov (United States)

    Eshetu Debele, Sisay; Bogdanowicz, Ewa; Strupczewski, Witold

    2016-04-01

    Research and scientific information are key elements of any decision-making process. There is also a strong need for tools to describe and compare in a concise way the regime of hydrological extreme events in the context of presumed climate change. To meet these demands, two complementary methods for estimating high and low-flow frequency characteristics are proposed. Both methods deal with duration and magnitude of extreme events. The first one "flow-duration-frequency" (known as QdF) has already been applied successfully to low-flow analysis, flood flows and rainfall intensity. The second one called "duration-flow-frequency" (DqF) was proposed by Strupczewski et al. in 2010 to flood frequency analysis. The two methods differ in the treatment of flow and duration. In the QdF method the duration (d-consecutive days) is a chosen fixed value and the frequency analysis concerns the annual or seasonal series of mean value of flows exceeded (in the case of floods) or non-exceeded (in the case of droughts) within d-day period. In the second method, DqF, the flows are treated as fixed thresholds and the duration of flows exceeding (floods) and non-exceeding (droughts) these thresholds are a subject of frequency analysis. The comparison of characteristics of floods and droughts in reference period and under future climate conditions for catchments studied within the CHIHE project is presented and a simple way to show the results to non-professionals and decision-makers is proposed. The work was undertaken within the project "Climate Change Impacts on Hydrological Extremes (CHIHE)", which is supported by the Norway-Poland Grants Program administered by the Norwegian Research Council. The observed time series were provided by the Institute of Meteorology and Water Management (IMGW), Poland. Strupczewski, W. G., Kochanek, K., Markiewicz, I., Bogdanowicz, E., Weglarczyk, S., & Singh V. P. (2010). On the Tails of Distributions of Annual Peak Flow. Hydrology Research, 42, 171

  5. Using and Applying Focus Groups in Climate Change Impact Assessment Projects

    Science.gov (United States)

    DeLorme, D.; Hagen, S.

    2011-12-01

    The focus group social science research method is an efficient and flexible data collection tool with broad applicability across disciplines and contexts. Through group dynamics, this interviewing approach offers strengths in gathering candid, spontaneous comments and detailed firsthand descriptions from stakeholders' perspectives. The method, which can stand alone or be integrated with other research frameworks, has much potential for helping to manage complex issues of global change. For optimal outcomes, however, careful planning and procedures are paramount. This presentation offers guidance in this regard via examples, tips, and lessons learned from a multidisciplinary NOAA-funded project: Ecological Effects of Sea Level Rise in the Northern Gulf of Mexico (EESLR-NGOM). Focus groups are a key component of the EESLR-NGOM project as they are being used to better understand coastal resource managers' operational and information behaviors and needs regarding sea level rise (SLR), erosion, and hurricane storm surge impact; to learn how to best develop and translate the project's expected scientific results into straightforward, useful, and readily-disseminated products; and to gather outreach recommendations. As part of an EESLR-NGOM project kickoff workshop, 12 coastal resource managers participated voluntarily in a focus group. A summary of findings and illustrative participant quotations will be included in the presentation. The initial focus group was productive in gaining insights into challenges and opportunities associated with a climate change project such as the EESLR-NGOM. It highlighted the importance of considering the interrelationships of natural and built environments and new avenues for resilience and sustainability. The coastal resource managers are not only end-users but also opinion leaders in their local communities who will diffuse this information widely through their networks of other potential end-users. Engaging coastal resource managers in

  6. Climatic Data Integration and Analysis - Regional Approaches to Climate Change for Pacific Northwest Agriculture (REACCH PNA)

    Science.gov (United States)

    Seamon, E.; Gessler, P. E.; Flathers, E.; Sheneman, L.; Gollberg, G.

    2013-12-01

    The Regional Approaches to Climate Change for Pacific Northwest Agriculture (REACCH PNA) is a five-year USDA/NIFA-funded coordinated agriculture project to examine the sustainability of cereal crop production systems in the Pacific Northwest, in relationship to ongoing climate change. As part of this effort, an extensive data management system has been developed to enable researchers, students, and the public, to upload, manage, and analyze various data. The REACCH PNA data management team has developed three core systems to encompass cyberinfrastructure and data management needs: 1) the reacchpna.org portal (https://www.reacchpna.org) is the entry point for all public and secure information, with secure access by REACCH PNA members for data analysis, uploading, and informational review; 2) the REACCH PNA Data Repository is a replicated, redundant database server environment that allows for file and database storage and access to all core data; and 3) the REACCH PNA Libraries which are functional groupings of data for REACCH PNA members and the public, based on their access level. These libraries are accessible thru our https://www.reacchpna.org portal. The developed system is structured in a virtual server environment (data, applications, web) that includes a geospatial database/geospatial web server for web mapping services (ArcGIS Server), use of ESRI's Geoportal Server for data discovery and metadata management (under the ISO 19115-2 standard), Thematic Realtime Environmental Distributed Data Services (THREDDS) for data cataloging, and Interactive Python notebook server (IPython) technology for data analysis. REACCH systems are housed and maintained by the Northwest Knowledge Network project (www.northwestknowledge.net), which provides data management services to support research. Initial project data harvesting and meta-tagging efforts have resulted in the interrogation and loading of over 10 terabytes of climate model output, regional entomological data

  7. Review of trend analysis and climate change projections of extreme precipitation and floods in Europe

    Science.gov (United States)

    Madsen, H.; Lawrence, D.; Lang, M.; Martinkova, M.; Kjeldsen, T. R.

    2014-11-01

    This paper presents a review of trend analysis of extreme precipitation and hydrological floods in Europe based on observations and future climate projections. The review summaries methods and methodologies applied and key findings from a large number of studies. Reported analyses of observed extreme precipitation and flood records show that there is some evidence of a general increase in extreme precipitation, whereas there are no clear indications of significant trends at large-scale regional or national level of extreme streamflow. Several studies from regions dominated by snowmelt-induced peak flows report decreases in extreme streamflow and earlier spring snowmelt peak flows, likely caused by increasing temperature. The review of likely future changes based on climate projections indicates a general increase in extreme precipitation under a future climate, which is consistent with the observed trends. Hydrological projections of peak flows show large impacts in many areas with both positive and negative changes. A general decrease in flood magnitude and earlier spring floods are projected for catchments with snowmelt-dominated peak flows, which is consistent with the observed trends. Finally, existing guidelines in Europe on design flood and design rainfall estimation are reviewed. The review shows that only few countries have developed guidelines that incorporate a consideration of climate change impacts.

  8. Benefits Comparison Analysis of Diferent Rice and Wheat Cropping Patterns to Adapt to Climate Change

    Institute of Scientific and Technical Information of China (English)

    HUANG; Huan-Ping; MA; Shi-Ming; LIN; Er-Da; LI; Ying-Chun; ZHUANG; Heng-Yang

    2013-01-01

    Based on the input-output survey of farmers and experts in one of the Jiangsu GEF project areas,the Cost-Benefit analysis method and greenhouse gas estimation method recommended by IPCC were applied to evaluate and compare the social,economic and ecological benefits of artificial transplanting(ATR),mechanical transplanting(MTR)and direct seeding(DSR)rice under wheat-rice Double Late mode(late rice harvest and late wheat sowing).Results showed that the MTR and DSR rice achieved obvious social benefits.Farming measures resulted in excessive emission of anthropogenic greenhouse gases.Through the use of ATR rice and wheat rotation mode it is possible to obtain most economic and ecological benefits.The Double Late mode of action had good application prospects,but the key to implementation was the timely exploitation of the recently increased availability of agricultural climate resources.The cropping pattern of combining the wheat-rice Double Late mode with the ATR was a better choice in mitigating and adapting to climate change.

  9. Benefits Comparison Analysis of Different Rice and Wheat Cropping Patterns to Adapt to Climate Change

    Institute of Scientific and Technical Information of China (English)

    HUANG Huan-Ping; MA Shi-Ming; LIN Er-Da; LI Ying-Chun; ZHUANG Heng-Yang

    2013-01-01

    Based on the input-output survey of farmers and experts in one of the Jiangsu GEF project areas, the Cost-Benefit analysis method and greenhouse gas estimation method recommended by IPCC were applied to evaluate and compare the social, economic and ecological benefits of artificial transplanting (ATR), mechanical transplanting (MTR) and direct seeding (DSR) rice under wheat-rice Double Late mode (late rice harvest and late wheat sowing). Results showed that the MTR and DSR rice achieved obvious social benefits. Farming measures resulted in excessive emission of anthropogenic greenhouse gases. Through the use of ATR rice and wheat rotation mode it is possible to obtain most economic and ecological benefits. The Double Late mode of action had good application prospects, but the key to implementation was the timely exploitation of the recently increased availability of agricultural climate resources. The cropping pattern of combining the wheat-rice Double Late mode with the ATR was a better choice in mitigating and adapting to climate change.

  10. Analysis of weather patterns for attribution of changes in floods to anthropogenic climate change

    Science.gov (United States)

    Murawski, Aline; Vorogushyn, Sergiy; Merz, Bruno

    2015-04-01

    Detection of changes in the frequency and/or magnitude of floods has been extensively carried out for many river basins worldwide. However, little effort has been made so far to attribute these changes to certain drivers such as climate change, changes in land use, catchment properties, or river training. The knowledge of reasons behind observed changes is essential in order to better quantify related risks and to be able to adapt to changing flood risks or to take action to reduce them. As climate change is assumed to be a significant driver of changes in the past decades and near future, the contribution of climate change to changes in floods is of great interest. To quantify the flood risk attributable to climate change, a hydrological model can be run with different climate input - weather time series representing the observed climate or a climate without the influence of anthropogenic greenhouse gas emissions (non-GHG). These two different states of the climate system are assumed to be represented in the occurrence of weather patterns. Each weather pattern can be linked to an individual distribution of values of weather variables (e.g. precipitation, temperature, etc.). This link can be established by first applying a weather pattern classification scheme to large-scale gridded observations, and secondly deriving the distribution of values of weather variables that were observed locally during the same weather pattern occurrence. After applying the weather pattern classification scheme to the GCM output as well, values for weather variables can be drawn from the derived distributions, resulting in new weather time series for local stations. The derivation of weather patterns and establishment of a link to local weather variables is presented in this contribution.

  11. Web Service Based Approach to Link Heterogeneous Climate-Energy-Economy Models for Climate Change Mitigation Analysis

    NARCIS (Netherlands)

    Belete, Getachew F.; Voinov, Alexey; Bulavskaya, Tatyana; Niamir, Leila; Dhavala, Kishore

    2016-01-01

    Climate change mitigation analysis requires understanding the causes and identifying the possible alternative actions that could be taken. We linked heterogeneous models that focus on climate, energy, and economy for the purpose of climate change mitigation. The models were originally developed to s

  12. An Economic Analysis of Potential Impacts of Climate Change in Egypt

    OpenAIRE

    Onyeji, S.C.; Fischer, G.

    1993-01-01

    Projections of climate impacts on crop yields simulated for different GCM scenarios are used, in a recursively dynamic general equilibrium framework, to account for potential economy-wide impacts of climate change in Egypt. Comparing these impact projections to those obtained under a reference, business-as-usual, scenario assuming some moderate changes in the political, economic or technological sphere, indicates that global warming has potentially negative effects. The analysis is based on ...

  13. Comparative analysis of climate change policy in a trans-Atlantic perspective, The implications of level of governance regarding climate change mitigation effectiveness

    NARCIS (Netherlands)

    Taminiau, Job

    2010-01-01

    The United States and the European Union address climate change in a fundamentally different manner. The US seems uninterested to address climate change from a federal level, but individual states within the US are definitely moving forward with climate c

  14. Climatic changes

    DEFF Research Database (Denmark)

    Majgaard Krarup, Jonna

    2014-01-01

    According to Cleo Paskal climatic changes are environmental changes. They are global, but their impact is local, and manifests them selves in the landscape, in our cities, in open urban spaces, and in everyday life. The landscape and open public spaces will in many cases be the sites where...... measurements to handle climatic changes will be positioned and enacted. Measurements taken are mostly adaptive or aimed to secure and protect existing values, buildings, infrastructure etc., but will in many cases also affects functions, meaning and peoples identification with the landscape and the open urban...... be addressed in order to develop and support social sustainability and identification. This paper explore and discuss how the handling of climatic changes in landscape and open urban spaces might hold a potential for them to become common goods....

  15. Analysis of possible impacts of climate change on the hydrological regimes of different regions in Germany

    Directory of Open Access Journals (Sweden)

    H. Bormann

    2009-08-01

    Full Text Available In this study, the impact of climate change scenarios on the hydrological regimes of five different regions in Germany is investigated. These regions (Northwest Germany, Northeast Germany and East German basins, upper and lower Rhine, pre-Alps differ with respect to present climate and projected climate change. The physically based SVAT-model SIMULAT is applied to theoretical soil columns based on combinations of land use, soil texture and groundwater depth to quantify climate change effects on the hydrological regime. Observed climate, measured at climate stations of the German Weather Service (1991–2007, is used for comparison with climate projections (2071–2100 generated by the regional scale climate model WETTREG.

    While all climate scenarios implicate an increase in precipitation in winter, a decrease in precipitation in summer and an increase in temperature, the simulated impacts on the hydrological regime are regionally different. In the Rhine region and in Northwest Germany, an increase in the annual runoff and groundwater recharge is simulated despite the increase in temperature and potential evapotranspiration. In the Eastern part of Germany and the pre-Alps, annual runoff and groundwater recharge will decrease. Due to dry conditions in summer, the soil moisture deficit will increase (in Northeast Germany and the East German basins in particular or remain constant (Rhine region. In all regions the seasonal variability in runoff and soil moisture status will increase. Despite regional warming actual evapotranspiration will decrease in most regions except in areas with shallow groundwater tables and the lower Rhine. Although the study is limited by the fact that only one climate model was used to drive one hydrologic model, the study shows that the hydrological regime will be affected by climate change. The direction of the expected changes seems to be obvious as well as the necessity of the adaptation of future water

  16. Steady-state analysis of the impact of climate change on distribution transformer

    Science.gov (United States)

    Almohaimeed, Sulaiman

    Climate change could cause several issues such as decreasing water availability, increasing intensity of storm events, flooding and sea level rise, increasing air, and water temperatures. One aspect of climate change is the increase in ambient temperature. According to, the average global surface temperature is expected to increase around 1.8° to 4°, while the average increase of global ambient temperature is predicted from 1.4° to 5.8°, in the periods of 1990 to 2100. Climate change can also affect distribution systems in terms of reliability and loadability. A 1° rise in global temperature increases peak demand by 4.6%. In 2013, U.S. weather-related power outages may have reached 180 events per year. Further, climate change leads to high temperature, and many factors might change. An increase in ambient temperature leads to increase in transformer loading, which leads to a reduction of lifetime of transformers and low insulation value due to degradation of degree of polymerization. As ambient temperature and operation temperature increase can cause thermal aging of transformers, it is important to control a loaded transformer to mitigate aging effect. Thus, demand response is an important and effective feature of thermal management of a transformer. Multiple models are discussed and explained to obtain accurate results and a good prediction for the three factors: ambient temperature, operation temperature, and demand response. Therefore, IEEE standard C57.91-2011 is used for calculating thermal characteristics and the loss of life of distribution transformers. It also provides an example using rated parameters of a 25 MVA distribution transformer, real data of temperature, load available in the public domain for Fort Collins, Colorado, USA. Moreover, demand response is considered in this calculation in order to study the effect of changing load levels on the transformer insulation life and aging acceleration factor. Four scenarios of load levels will be

  17. A Critical Analysis of Climate Change Factors and its Projected Future Values in Delta State, Nigeria

    Directory of Open Access Journals (Sweden)

    Emaziye, P. O., R. N. Okoh

    2012-06-01

    Full Text Available The study focused on the critical analysis of climate change factors (temperature and rainfall and its projected future values in the state. The main objective was to determine the trends of climate change factors (temperature and rainfall. And the specific objective was to determine the projected future trends of climate change factors in the state. Multistage sampling procedure was used in the random selection of states, local government, communities and rural households for the research study. Annual mean time series data of temperature and rainfall were collected from Nigerian Meteorological Agency (NIMET. Data were also obtained from structure questionnaire survey. The collected data were analyzed using descriptive statistics, trend analysis and growth model. The study reveals that there were increasing trends of temperature values and decreasing rainfall values in the state. But their projected future values witnessed an increasing trend. The increasing trends in temperature values may lead to a situation were crops will be smothered by excessive heat thereby reducing food production in the state. The study therefore recommends that meteorological station units should be established in the rural farming households in the state where accessibility is extremely difficult. This will make available meteorological data (information to the reach of the poor rural farming household for the attainment of food production.

  18. Deciphering the spatio-temporal complexity of climate change of the last deglaciation: a model analysis

    Directory of Open Access Journals (Sweden)

    D. M. Roche

    2010-12-01

    Full Text Available Understanding the sequence of events occuring during the last major glacial to interglacial transition (21 ka BP to 9 ka BP is a challenging task that has the potential to unveil the mechanisms behind large scale climate changes. Though many studies have focused at a complex understanding of the sequence of rapid climatic change that accompanied or interrupted the deglaciation, few have analysed it in a more theoretical framework with simple forcings. In the following, we address when and where the first significant temperature anomalies appear when using slow varying forcing of the last deglaciation. We use here coupled transient simulations of the last deglaciation, including ocean, atmosphere and vegetation components to analyse the spatial timing of the deglaciation. To keep the analysis in a simple framework, we do not include rapid freshwater forcings that have led to rapid climate shifts during that time period. We aim to disentangle the direct and subsequent response of the climate system to slow forcing and moreover the location where those changes are more clearly expressed. In a data-modelling comparison perspective this could help understanding the physically plausible phasing between known forcings and recorded climatic changes. Our analysis of climate variability could also help to distinguish deglacial warming signals from internal climate variability. We thus are able to better pinpoint the onset of local deglaciation, as defined by the first significant local warming, and further show that there is a large regional variability associated with it, even with the set of slow forcings used here.

  19. Bio-physical vs. Economic Uncertainty in the Analysis of Climate Change Impacts on World Agriculture

    Science.gov (United States)

    Hertel, T. W.; Lobell, D. B.

    2010-12-01

    Accumulating evidence suggests that agricultural production could be greatly affected by climate change, but there remains little quantitative understanding of how these agricultural impacts would affect economic livelihoods in poor countries. The recent paper by Hertel, Burke and Lobell (GEC, 2010) considers three scenarios of agricultural impacts of climate change, corresponding to the fifth, fiftieth, and ninety fifth percentiles of projected yield distributions for the world’s crops in 2030. They evaluate the resulting changes in global commodity prices, national economic welfare, and the incidence of poverty in a set of 15 developing countries. Although the small price changes under the medium scenario are consistent with previous findings, their low productivity scenario reveals the potential for much larger food price changes than reported in recent studies which have hitherto focused on the most likely outcomes. The poverty impacts of price changes under the extremely adverse scenario are quite heterogeneous and very significant in some population strata. They conclude that it is critical to look beyond central case climate shocks and beyond a simple focus on yields and highly aggregated poverty impacts. In this paper, we conduct a more formal, systematic sensitivity analysis (SSA) with respect to uncertainty in the biophysical impacts of climate change on agriculture, by explicitly specifying joint distributions for global yield changes - this time focusing on 2050. This permits us to place confidence intervals on the resulting price impacts and poverty results which reflect the uncertainty inherited from the biophysical side of the analysis. We contrast this with the economic uncertainty inherited from the global general equilibrium model (GTAP), by undertaking SSA with respect to the behavioral parameters in that model. This permits us to assess which type of uncertainty is more important for regional price and poverty outcomes. Finally, we undertake a

  20. Climate change experiments in Hamburg

    Energy Technology Data Exchange (ETDEWEB)

    Gubasch, U. [DKRZ, Hamburg (Germany)

    1995-12-31

    Nowadays the anthropogenic climate change is been simulated world wide with a fair number of coupled ocean atmosphere general circulation models (IPCC, 1995). Typical model problems do not only blur the estimates of the anthropogenic climate change, but they also cause errors in the estimates of the natural variability. An accurate representation of the natural variability of the climate system is, however, essential for the detection of the anthropogenic climate change. All model simulations world wide show, even though they differ considerably in their technical details and the experimental setup and the forcing data, similar amplitudes and pattern of the predicted climate change. In the model world it is already at the beginning of the next century possible to detect the anthropogenic climate change in the global mean. If the model results are applied in a `fingerprint analysis`, then it is possible to prove that the climate change during the last 30 years is with a significance of 95 % larger than any other climate change during the last 100 years. The experiments performed in Hamburg show that the experimental conditions are of great importance for the estimate of the future climate. The usual starting point of most of the simulations with present day conditions (1980-1990) is too late, because then a considerable part of the warming since the beginning of the industrialization (ca. 1750) has been neglected. Furthermore it has only recently become clear that the sulphat-aerosols play an important role in the present day climate and in the future climate. The effect of the sulphat aerosols has first been simulated in a number of equilibrium simulations with mixed layer models, but nowadays with globally coupled ocean-atmosphere circulation models

  1. Climate change

    NARCIS (Netherlands)

    Marchal, V.; Dellink, R.; Vuuren, D.P. van; Clapp, C.; Chateau, J.; Magné, B.; Lanzi, E.; Vliet, J. van

    2012-01-01

    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth pathwa

  2. Trade Liberalization and Climate Change: A Computable General Equilibrium Analysis of the Impacts on Global Agriculture

    Directory of Open Access Journals (Sweden)

    Katrin Rehdanz

    2011-05-01

    Full Text Available Based on predicted changes in the magnitude and distribution of global precipitation, temperature and river flow under the A1B and A2 scenarios of the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES, this study assesses the potential impacts of climate change and CO2 fertilization on global agriculture, and its interactions with trade liberalization, as proposed for the Doha Development Round. The analysis uses the new version of the GTAP-W model, which distinguishes between rainfed and irrigated agriculture and implements water as an explicit factor of production for irrigated agriculture. Significant reductions in agricultural tariffs lead to modest changes in regional water use. Patterns are non-linear. On the regional level, water use may go up for partial liberalization, and down for more complete liberalization. This is because different crops respond differently to tariff reductions, and because trade and competition matter too. Moreover, trade liberalization tends to reduce water use in water scarce regions, and increase water use in water abundant regions, even though water markets do not exist in most countries. Considering impacts of climate change, the results show that global food production, welfare and GDP fall over time while food prices increase. Larger changes are observed under the SRES A2 scenario for the medium term (2020 and under the SRES A1B scenario for the long term (2050. Combining scenarios of future climate change with trade liberalization, countries are affected differently. However, the overall effect on welfare does not change much.

  3. Measuring perceptions of climate change in northern Alaska: pairing ethnography with cultural consensus analysis

    Directory of Open Access Journals (Sweden)

    Courtney Carothers

    2014-12-01

    Full Text Available Given current and projected warming trends in the Arctic and the important role played by subsistence hunting and fishing in the life of northern rural communities, it is increasingly important to document local observations of climate change and its impacts on livelihood practices. We describe ethnographic research exploring local observations of climate changes and related impacts on subsistence fisheries in three Iñupiat communities in northwest Alaska and six Athabascan communities in the Yukon River drainage. We found consistent agreement among perceptions concerning a broad range of environmental changes affecting subsistence practices in these communities. These observations of environmental changes are not experienced in isolation but within the context of accompanying social changes that are continually reshaping rural Alaskan communities and subsistence economies. In this paper we reflect on our research approach combining multiple methods of inquiry. Participant observation and semidirected interviews provided the conceptual framework for broadening our focus from climate and environmental change to community residents' understanding of climate change in the context of their holistic human-environment worldview. Cultural consensus analysis allowed us to assess the extent to which perceptions of change are shared among hunters and fishers within and between villages and regions and to identify those phenomena occurring or experienced at smaller scales. Reflecting on this multimethods approach, we highlight important questions that have emerged about how we understand, synthesize, and represent local knowledge, especially as it is used in regulatory or management arenas.

  4. RECONSTRUCTION OF PRECIPITATION SERIES AND ANALYSIS OF CLIMATE CHANGE OVER PAST 500 YEARS IN NORTHERN CHINA

    Institute of Scientific and Technical Information of China (English)

    RONG Yan-shu; TU Qi-pu

    2005-01-01

    It is important and necessary to get a much longer precipitation series in order to research features of drought/flood and climate change.Based on dryness and wetness grades series of 18 stations in Northern China of 533 years from 1470 to 2002, the Moving Cumulative Frequency Method (MCFM) was developed, moving average precipitation series from 1499 to 2002 were reconstructed by testing three kinds of average precipitation, and the features of climate change and dry and wet periods were researched by using reconstructed precipitation series in the present paper.The results showed that there were good relationship between the reconstructed precipitation series and the observation precipitation series since 1954 and their relative root-mean-square error were below 1.89%, that the relation between reconstructed series and the dryness and wetness grades series were nonlinear and this nonlinear relation implied that reconstructed series were reliable and could became foundation data for researching evolution of the drought and flood.Analysis of climate change upon reconstructed precipitation series revealed that although drought intensity of recent dry period from middle 1970s of 20th century until early 21st century was not the strongest in historical climate of Northern China, intensity and duration of wet period was a great deal decreasing and shortening respectively, climate evolve to aridification situation in Northern China.

  5. Agriculture and food security challenge of climate change: a dynamic analysis for policy selection

    Directory of Open Access Journals (Sweden)

    Ferdous Ahmed

    2016-08-01

    Full Text Available ABSTRACT This study presents an empirical examination of climate change related to vulnerability impacts on food security and remedial adaptation options as a suitable strategy by prioritizing needs over a 50-year period. An Empirical Dynamic Commutable General Equilibrium Model for Climate and the Economy (EDCGECE is applied using future strategies for Malaysia against a baseline scenario of existing conditions, following the top-down options. The model takes into account various climatic variables, including climatic damage, carbon cycle, temperature and rainfall fluctuation, carbon emissions, vulnerability and carbon concentrations, which were adapted from national observational predictions of climatic changes caused by global warming from 2015 to 2065. The results prioritize climate change mitigation for the future. Specifically, this study estimates Malaysia’s food sustainability prospects without adaptation actions and with 5 % to 20 % adaptation actions overtime in different adaptation scenarios, as contrasted with the baseline. The results indicate that food sustainability cost in the baseline in 2015 is 859.3 million US Dollar (USD, which is about a 30-35 % shortage compared with the national targets, and that the shortage will rise over time to USD 987.3 million in 2065. However, the cost of applying different levels of adaptation for food sustainability over time is rising considerably. However, the residual damage also decreases with all adaptation actions in the different scenarios. Thus, adaptation shows a positive sign for Malaysia’s agricultural sectors. As growth values are positive and show rising trends, therefore the projected adaptation policy can be effective for food sustainability for sustainable future strategies in Malaysia.

  6. Incorporating Student Activities into Climate Change Education

    Science.gov (United States)

    Steele, H.; Kelly, K.; Klein, D.; Cadavid, A. C.

    2013-12-01

    Under a NASA grant, Mathematical and Geospatial Pathways to Climate Change Education, students at California State University, Northridge integrated Geographic Information Systems (GIS), remote sensing, satellite data technologies, and climate modelling into the study of global climate change under a Pathway for studying the Mathematics of Climate Change (PMCC). The PMCC, which is an interdisciplinary option within the BS in Applied Mathematical Sciences, consists of courses offered by the departments of Mathematics, Physics, and Geography and is designed to prepare students for careers and Ph.D. programs in technical fields relevant to global climate change. Under this option students are exposed to the science, mathematics, and applications of climate change science through a variety of methods including hands-on experience with computer modeling and image processing software. In the Geography component of the program, ESRI's ArcGIS and ERDAS Imagine mapping, spatial analysis and image processing software were used to explore NASA satellite data to examine the earth's atmosphere, hydrosphere and biosphere in areas that are affected by climate change or affect climate. These technology tools were incorporated into climate change and remote sensing courses to enhance students' knowledge and understanding of climate change through hands-on application of image processing techniques to NASA data. Several sets of exercises were developed with specific learning objectives in mind. These were (1) to increase student understanding of climate change and climate change processes; (2) to develop student skills in understanding, downloading and processing satellite data; (3) to teach remote sensing technology and GIS through applications to climate change; (4) to expose students to climate data and methods they can apply to solve real world problems and incorporate in future research projects. In the Math and Physics components of the course, students learned about

  7. Review and Quantitative Analysis of Indices of Climate Change Exposure, Adaptive Capacity, Sensitivity, and Impacts

    OpenAIRE

    Füssel, Hans-Martin

    2010-01-01

    Adaptation to climate change is necessary, in addition to mitigation of climate change, to avoid unacceptable impacts of anthropogenic climate change [IPCC 2007]. UNFCCC Article 4 requires developed countries to assist developing countries that are "particularly vulnerable" to climate change in meeting costs of adaptation to its adverse effects. As a result, three funds have been established under the UNFCCC and Kyoto Protocol to provide financial resources for assessing, planning, and implem...

  8. Limitations and pitfalls of climate change impact analysis on urban rainfall extremes

    DEFF Research Database (Denmark)

    Willems, P.; Olsson, J.; Arnbjerg-Nielsen, Karsten;

    to anthropogenic climate change. Current practices have several limitations and pitfalls, which are important to be considered by trend or climate change impact modellers and users of trend/impact results. Climate change may well be the driver that ensures that changes in urban drainage paradigms are identified...... and suitable solutions implemented. Design and optimization of urban drainage infrastructure considering climate change impacts and co-optimizing with other objectives will become ever more important to keep our cities liveable into the future....

  9. Climate change regional review: Russia

    OpenAIRE

    Sharmina, Maria; Anderson, Kevin; Bows-Larkin, Alice

    2013-01-01

    With climate change, an increasingly important focus of scientific and policy discourse, the Russian government has aimed to position the country as one of the leaders of the global process for addressing climate change. This article reviews a breadth of literature to analyze the politico-economic situation in Russia with regard to international climate change negotiations, related domestic policies, societal attitudes, and climatic change impacts on Russia's territory. The analysis demonstra...

  10. Climate change and compensation

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint; Flanagan, Tine Bech

    2013-01-01

    This paper presents a case for compensation of actual harm from climate change in the poorest countries. First, it is shown that climate change threatens to reverse the fight to eradicate poverty. Secondly, it is shown how the problems raised in the literature for compensation to some extent...... are based on misconceptions and do not apply to compensation of present actual harm. Finally, two arguments are presented to the effect that, in so far as developed countries accept a major commitment to mitigate climate change, they should also accept a commitment to address or compensate actual harm from...... in the future, then there is also moral reason to address these harms if they materialize now. We argue that these principles are applicable to climate change, and that given the commitment of wealthy countries to a "common but differentiated responsibility," they lead to a commitment to address or compensate...

  11. Climate change and compensation

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint; Flanagan, Tine Bech

    2013-01-01

    This paper presents a case for compensation of actual harm from climate change in the poorest countries. First, it is shown that climate change threatens to reverse the fight to eradicate poverty. Secondly, it is shown how the problems raised in the literature for compensation to some extent...... are based on misconceptions and do not apply to compensation of present actual harm. Finally, two arguments are presented to the effect that, in so far as developed countries accept a major commitment to mitigate climate change, they should also accept a commitment to address or compensate actual harm from...... climate change. The first argument appeals to the principle that if it is an injustice to cause risk of incurring harm in the future, then it is also an injustice to cause a similar harm now. The second argument appeals to the principle that if there is moral reason to reduce the risk of specific harms...

  12. Key trends of climate change in the ASEAN countries. The IPAT decomposition analysis 1980-2005

    Energy Technology Data Exchange (ETDEWEB)

    Vehmas, J.; Luukkanen, J.; Kaivo-oja, J.; Panula-Ontto, J.; Allievi, F.

    2012-07-01

    Decomposition analyses of energy consumption and CO{sub 2} emissions have mainly focused on effects of changes in economic activity, energy intensity and fuel mix, and structural changes in energy consumption in different countries or different sectors of the economy. This e-Book introduces a different perspective by identifying five globally relevant factors affecting CO{sub 2} emissions. Changes in carbon intensity of primary energy, efficiency of the energy system, energy intensity of the economy, level of economic development, and the amount of population have been identified by extending the well-known IPAT identity. Empirical part focuses on CO{sub 2} emissions from fuel combustion in the ASEAN countries between the years 1980 and 2005. CO{sub 2} emissions are considerable low in many ASEAN countries but have increased in recent years due to the rapid economic growth and increased reliance on fossil fuels. Emission and energy intensities have increased during the industrialization process, but with a shift towards a more service-oriented economy and the increase in GDP per capita, the intensities have started to decrease in some ASEAN countries. However, these changes have not been able to slow down the rapid increase in CO{sub 2} emissions due to the growth of both the economy and the population. With the rapid economic development of the member countries of the Association of South East Asian Nations (ASEAN) and nations such as China and India since the mid-1980s, the Asia-Pacific region has emerged as the growth centre of the global economy. However, many countries in the region have, instead of being successful, faced serious social and environmental problems, particularly with regard to deforestation, land degradation and the loss of biological diversity. Climate change has been regarded one of the major environmental threats to developing countries. The need to develop theoretical and empirical research in the field of climate and energy policy analysis

  13. Preliminary analysis of Alvito-Odivelas reservoir system operation under climate change scenarios

    OpenAIRE

    2008-01-01

    The present study provides a preliminary analysis of the impact of climate change on a water resources system of Alentejo region in the South of Portugal. Regional climate model HadRM3P forced by the Global Circulation Model HadAM3P A2 of the Hadley Centre, is used to derive temperature and precipitation data, which in turn is used as input to hydrological model (SHETRAN) for simulation of future streamflow. Dynamic programming based models are used for operation of reservoir system in order ...

  14. Climaite - a three factor climate change ecosystem manipulation study: set up and approaches for data analysis

    DEFF Research Database (Denmark)

    N. Mikkelsen, Teis; Beier, Claus; Schmidt, Inger Kappel;

    (based on vegetation analysis) containing each of the 8 treatments. Prior to initiation of the treatments 3rd October 2005, pre treatment measurements and studies were conducted for establishing the initial status of key variables e.g. soil and air temperature, soil moisture, species composition......In a new Danish climate change related field scale experiment, CLIMAITE, we are investigating the impacts of individual and multiple simultaneous global changes on ecosystem processes and functioning in a Danish semi natural grassland vegetation dominated by Deschampsia flexuosa and Calluna...

  15. The Analysis of the Relationship between Clean Technology Transfer and Chinese Intellectual Property Countering the Climate Changes

    DEFF Research Database (Denmark)

    Min, Hao

    This report discusses the relationship between the Chinese intellectual property systems which counter with the climate change and the transfer of clean technology, and states how to encourage the developed countries transfer the clean technology to the developing countries according...... to the relative international climate convention program. The report also proposes the current hindrances and developing strategies according to Chinese current situation at this field. The report is mainly divided into three subjects: the relationship between clean technology transfer and the intellectual...... property countering the climate changes; the analysis of current technology transfer modes relating to the climate; the difficulties of Chinese countering climate changes technology transfer and strategic thinking....

  16. From Principle to Action. An Analysis of the Financial Sector's Approach to Addressing Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Mudde, P.; Abadie, A. [Sustainable Finance, Shrewsbury, Shropshire (United Kingdom)

    2008-05-15

    The Ministry of the Housing, Spatial Planning and the Environment of the Netherlands (VROM), has taken the initiative to commission a study to determine best practice approaches within the financial sector regarding climate change. This study focuses on the indirect climate change footprint of the financial sector, i.e. the impact of the financial sector's clients on climate change. The study sets out to further the body of knowledge relating to the financial sector's approach to understanding and managing the effects of climate change on their clients' business. Specifically, it offers recommendations and potential next steps for both the financial sector and the Dutch government to enable a more focused and definitive approach to understanding, addressing and incorporating climate change considerations into decision-making procedures and policy development. The paper comprises the following analysis: Chapter 1 is an introduction describing why climate change is relevant to the financial sector, and introduces 18 financial institutions which were selected as the basis for the study. Chapter 2 elaborates on challenges for the financial sector regarding the incorporation of climate change considerations into enhanced risk analysis and decision making. Chapter 3 provides a comprehensive overview of the main international business initiatives regarding climate change and sustainability. It can be seen as a summary of Annex I to this report, which identifies which initiatives the 18 financial institutions are involved in. Chapter 4 highlights selected best practices amongst the 18 financial institutions assessed. Chapter 5 provides the main conclusions of the study and puts forward general and specific recommendations and potential next steps for the Dutch government and the financial sector. The Annexes contain fact sheets containing information about the climate change strategy and main activities of these organisations.

  17. Climate Change and Its Effects on Runoff of Kaidu River,Xinjiang, China: A Multiple Time-scale Analysis

    Institute of Scientific and Technical Information of China (English)

    XU Jianhua; CHEN Yaning; JI Minhe; LU Feng

    2008-01-01

    This paper applied an integrated method combining grey relation analysis, wavelet analysis and statistical analysis to study climate change and its effects on runoff of the Kaidu River at multi-time scales. Major findings are as follows: 1) Climatic factors were ranked in the order of importance to annual runoff as average annual temperature, average temperature in autumn, average temperature in winter, annual precipitation, precipitation in flood season, av-erage temperature in summer, and average temperature in spring. The average annual temperature and annual precipi-tation were selected as the two representative factors that impact the annual runoff. 2) From the 32-year time scale, the annual runoff and the average annual temperature presented a significantly rising trend, whereas the annual precipita-tion showed little increase over the period of 1957-2002. By changing the time scale from 32-year to 4-year, we ob-served nonlinear trends with increasingly obvious oscillations for annual runoff, average annual temperature, and an-nual precipitation. 3) The changes of the runoff and the regional climate are closely related, indicating that the runoff change is the result of the regional climate changes. With time scales ranging from 32-year, 16-year, 8-year and to 4-year, there are highly significant linear correlations between the annual runoff and the average annual temperature and the annual precipitation.

  18. Uncertainty of tipping elements on risk analysis in hydrology under climate change

    Science.gov (United States)

    Kiguchi, M.; Iseri, Y.; Tawatari, R.; Kanae, S.; Oki, T.

    2015-12-01

    Risk analysis in this study characterizes the events that could be caused by climate change and estimates their effects on society. In order to characterize climate change risks, events that might be caused by climate change will be investigated focusing on critical geophysical phenomena such as changes in thermohaline circulation (THC) in oceans and the large-scale melting of the Greenland and other ice sheets. The results of numerical experiments with climate models and paleoclimate studies will be referenced in listing up these phenomena. The trigger mechanisms, tendency to occur and relationship of these phenomena to global climate will be clarified. To clarify that relationship between the RCP scenarios and tipping elements, we identified which year tipping elements in case of "Arctic summer sea ice" and "Greenland ice sheet" are appeared using the increase of global average temperature in 5 GCMs under RCP (2.6, 4.5, 6.0, and 8.5) from Zickfeld et al. (2013) and IPCC (2013), and tipping point of each tipping elements from IPCC (2013). In case of "Greenland ice sheet" (Tipping point takes a value within the range of 1.0oC and 4.0oC), we found that "Greenland ice sheet" may melt down when the tipping point is 1.0oC as lowest value. On the other hand, when tipping point sets as 4.0oC, it may not melt down except for RCP 8.5. As above, we show the uncertainty of tipping point itself. In future, it is necessary how to reflect such uncertainty in risk analysis in hydrology.

  19. Analysis of the Impact of Climate Change on Extreme Hydrological Events in California

    Science.gov (United States)

    Ashraf Vaghefi, Saeid; Abbaspour, Karim C.

    2016-04-01

    Estimating magnitude and occurrence frequency of extreme hydrological events is required for taking preventive remedial actions against the impact of climate change on the management of water resources. Examples include: characterization of extreme rainfall events to predict urban runoff, determination of river flows, and the likely severity of drought events during the design life of a water project. In recent years California has experienced its most severe drought in recorded history, causing water stress, economic loss, and an increase in wildfires. In this paper we describe development of a Climate Change Toolkit (CCT) and demonstrate its use in the analysis of dry and wet periods in California for the years 2020-2050 and compare the results with the historic period 1975-2005. CCT provides four modules to: i) manage big databases such as those of Global Climate Models (GCMs), ii) make bias correction using observed local climate data , iii) interpolate gridded climate data to finer resolution, and iv) calculate continuous dry- and wet-day periods based on rainfall, temperature, and soil moisture for analysis of drought and flooding risks. We used bias-corrected meteorological data of five GCMs for extreme CO2 emission scenario rcp8.5 for California to analyze the trend of extreme hydrological events. The findings indicate that frequency of dry period will increase in center and southern parts of California. The assessment of the number of wet days and the frequency of wet periods suggests an increased risk of flooding in north and north-western part of California, especially in the coastal strip. Keywords: Climate Change Toolkit (CCT), Extreme Hydrological Events, California

  20. Climate change impact and adaptation research requires integrated assessment and farming systems analysis: a case study in the Netherlands

    Science.gov (United States)

    Reidsma, Pytrik; Wolf, Joost; Kanellopoulos, Argyris; Schaap, Ben F.; Mandryk, Maryia; Verhagen, Jan; van Ittersum, Martin K.

    2015-04-01

    Rather than on crop modelling only, climate change impact assessments in agriculture need to be based on integrated assessment and farming systems analysis, and account for adaptation at different levels. With a case study for Flevoland, the Netherlands, we illustrate that (1) crop models cannot account for all relevant climate change impacts and adaptation options, and (2) changes in technology, policy and prices have had and are likely to have larger impacts on farms than climate change. While crop modelling indicates positive impacts of climate change on yields of major crops in 2050, a semi-quantitative and participatory method assessing impacts of extreme events shows that there are nevertheless several climate risks. A range of adaptation measures are, however, available to reduce possible negative effects at crop level. In addition, at farm level farmers can change cropping patterns, and adjust inputs and outputs. Also farm structural change will influence impacts and adaptation. While the 5th IPCC report is more negative regarding impacts of climate change on agriculture compared to the previous report, also for temperate regions, our results show that when putting climate change in context of other drivers, and when explicitly accounting for adaptation at crop and farm level, impacts may be less negative in some regions and opportunities are revealed. These results refer to a temperate region, but an integrated assessment may also change perspectives on climate change for other parts of the world.

  1. Analysis of climate change in Northern Ethiopia: implications for agricultural production

    Science.gov (United States)

    Hadgu, Gebre; Tesfaye, Kindie; Mamo, Girma

    2015-08-01

    The impact of climatic change can be on specific locations. However, the broader the affected area coverage, in mind, the higher would be the chance in missing critical details. In this light, this paper attempts to assess the possible climatic changes and their corresponding implications on agricultural production in northern Ethiopia. The analysis is based on the future (2030 and 2050) temperature and rainfall data, downscaled as ensemble of four general circulation models (GCMs) using the A2 and B1 emission scenarios for ten meteorological stations located in different agroecological zones of the study region. The result indicates that, based on emission scenarios, the mean maximum and minimum temperature would increase by 2-2.3 and 0.8-0.9 °C in 2030 and by 2.2-2.7 and 1.4-1.7 °C in 2050, respectively. This will be accompanied by an increase in the frequency of hot days and nights and a decrease in cool days and nights. While annual rainfall totals will remain unchanged, main rainy season ( kiremt) rainfall total would increase on average in 12.9 and 14.2 % under A2 and 9.5 and 11.2 % under B1 by 2030 and 2050, respectively. Owing to an increase in kiremt rainfall, the yield of maize and sorghum may increase at some sites under future climatic conditions, and the increase would be higher under CO2 fertilization. The results suggest the need for site-specific adaptation strategies to reduce the impact and/or exploit the opportunities of climate change.

  2. Incorporating Climate Change Projections into a Hydrologic Hazard Analysis for Friant Dam

    Science.gov (United States)

    Holman, K. D.; Novembre, N.; Sankovich-Bahls, V.; England, J. F.

    2015-12-01

    The Bureau of Reclamation's Dam Safety Office has initiated a series of pilot studies focused on exploring potential impacts of climate change on hydrologic hazards at specific dam locations across the Western US. Friant Dam, located in Fresno, California, was chosen for study because the site had recently undergone a high-level hydrologic hazard analysis using the Stochastic Event Flood Model (SEFM). SEFM is a deterministic flood-event model that treats input parameters as variables, rather than fixed values. Monte Carlo sampling allows the hydrometeorological input parameters to vary according to observed relationships. In this study, we explore the potential impacts of climate change on the hydrologic hazard at Friant Dam using historical and climate-adjusted hydrometeorological inputs to the SEFM. Historical magnitude-frequency relationships of peak inflow and reservoir elevation were developed at Friant Dam for the baseline study using observed temperature and precipitation data between 1966 and 2011. Historical air temperatures, antecedent precipitation, mean annual precipitation, and the precipitation-frequency curve were adjusted for the climate change study using the delta method to create climate-adjusted hydrometeorological inputs. Historical and future climate projections are based on the Bias-Corrected Spatially-Disaggregated CMIP5 dataset (BCSD-CMIP5). The SEFM model was run thousands of times to produce magnitude-frequency relationships of peak reservoir inflow, inflow volume, and reservoir elevation, based on historical and climate-adjusted inputs. Results suggest that peak reservoir inflow and peak reservoir elevation increase (decrease) for all return periods under mean increases (decreases) in precipitation, independently of changes in surface air temperature.

  3. Sustainability analysis of bioenergy based land use change under climate change and variability

    Science.gov (United States)

    Raj, C.; Chaubey, I.; Brouder, S. M.; Bowling, L. C.; Cherkauer, K. A.; Frankenberger, J.; Goforth, R. R.; Gramig, B. M.; Volenec, J. J.

    2014-12-01

    Sustainability analyses of futuristic plausible land use and climate change scenarios are critical in making watershed-scale decisions for simultaneous improvement of food, energy and water management. Bioenergy production targets for the US are anticipated to impact farming practices through the introduction of fast growing and high yielding perennial grasses/trees, and use of crop residues as bioenergy feedstocks. These land use/land management changes raise concern over potential environmental impacts of bioenergy crop production scenarios, both in terms of water availability and water quality; impacts that may be exacerbated by climate variability and change. The objective of the study was to assess environmental, economic and biodiversity sustainability of plausible bioenergy scenarios for two watersheds in Midwest US under changing climate scenarios. The study considers fourteen sustainability indicators under nine climate change scenarios from World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3). The distributed hydrological model SWAT (Soil and Water Assessment Tool) was used to simulate perennial bioenergy crops such as Miscanthus and switchgrass, and corn stover removal at various removal rates and their impacts on hydrology and water quality. Species Distribution Models (SDMs) developed to evaluate stream fish response to hydrology and water quality changes associated with land use change were used to quantify biodiversity sustainability of various bioenergy scenarios. The watershed-scale sustainability analysis was done in the St. Joseph River watershed located in Indiana, Michigan, and Ohio; and the Wildcat Creek watershed, located in Indiana. The results indicate streamflow reduction at watershed outlet with increased evapotranspiration demands for high-yielding perennial grasses. Bioenergy crops in general improved in-stream water quality compared to conventional cropping systems (maize-soybean). Water

  4. Suitability Analysis and Projected Climate Change Impact on Banana and Coffee Production Zones in Nepal

    Science.gov (United States)

    Sujakhu, Nani M.; Merz, Juerg; Kindt, Roeland; Xu, Jianchu; Matin, Mir A.; Ali, Mostafa; Zomer, Robert J.

    2016-01-01

    The Government of Nepal has identified opportunities in agricultural commercialization, responding to a growing internal demand and expansion of export markets to reduce the immense trade deficit. Several cash crops, including coffee and bananas, have been identified in the recently approved Agriculture Development Strategy. Both of these crops have encouraged smallholder farmers to convert their subsistence farming practices to more commercial cultivation. Identification of suitable agro-ecological zones and understanding climate-related issues are important for improved production and livelihoods of smallholder farmers. Here, the suitability of coffee and banana crops is analyzed for different agro-ecological zones represented by Global Environmental Stratification (GEnS). Future shifts in these suitability zones are also predicted. Plantation sites in Nepal were geo-referenced and used as input in species distribution modelling. The multi-model ensemble model suggests that climate change will reduce the suitable growing area for coffee by about 72% across the selected emission scenarios from now to 2050. Impacts are low for banana growing, with a reduction in suitability by about 16% by 2050. Bananas show a lot of potential for playing an important role in Nepal as a sustainable crop in the context of climate change, as this study indicates that the amount of area suited to banana growing will grow by 40% by 2050. Based on our analysis we recommend possible new locations for coffee plantations and one method for mitigating climate change-related problems on existing plantations. These findings are expected to support planning and policy dialogue for mitigation and support better informed and scientifically based decision-making relating to these two crops. PMID:27689354

  5. Suitability Analysis and Projected Climate Change Impact on Banana and Coffee Production Zones in Nepal.

    Science.gov (United States)

    Ranjitkar, Sailesh; Sujakhu, Nani M; Merz, Juerg; Kindt, Roeland; Xu, Jianchu; Matin, Mir A; Ali, Mostafa; Zomer, Robert J

    The Government of Nepal has identified opportunities in agricultural commercialization, responding to a growing internal demand and expansion of export markets to reduce the immense trade deficit. Several cash crops, including coffee and bananas, have been identified in the recently approved Agriculture Development Strategy. Both of these crops have encouraged smallholder farmers to convert their subsistence farming practices to more commercial cultivation. Identification of suitable agro-ecological zones and understanding climate-related issues are important for improved production and livelihoods of smallholder farmers. Here, the suitability of coffee and banana crops is analyzed for different agro-ecological zones represented by Global Environmental Stratification (GEnS). Future shifts in these suitability zones are also predicted. Plantation sites in Nepal were geo-referenced and used as input in species distribution modelling. The multi-model ensemble model suggests that climate change will reduce the suitable growing area for coffee by about 72% across the selected emission scenarios from now to 2050. Impacts are low for banana growing, with a reduction in suitability by about 16% by 2050. Bananas show a lot of potential for playing an important role in Nepal as a sustainable crop in the context of climate change, as this study indicates that the amount of area suited to banana growing will grow by 40% by 2050. Based on our analysis we recommend possible new locations for coffee plantations and one method for mitigating climate change-related problems on existing plantations. These findings are expected to support planning and policy dialogue for mitigation and support better informed and scientifically based decision-making relating to these two crops.

  6. Multi-criteria evaluation of CMIP5 GCMs for climate change impact analysis

    Science.gov (United States)

    Ahmadalipour, Ali; Rana, Arun; Moradkhani, Hamid; Sharma, Ashish

    2015-12-01

    Climate change is expected to have severe impacts on global hydrological cycle along with food-water-energy nexus. Currently, there are many climate models used in predicting important climatic variables. Though there have been advances in the field, there are still many problems to be resolved related to reliability, uncertainty, and computing needs, among many others. In the present work, we have analyzed performance of 20 different global climate models (GCMs) from Climate Model Intercomparison Project Phase 5 (CMIP5) dataset over the Columbia River Basin (CRB) in the Pacific Northwest USA. We demonstrate a statistical multicriteria approach, using univariate and multivariate techniques, for selecting suitable GCMs to be used for climate change impact analysis in the region. Univariate methods includes mean, standard deviation, coefficient of variation, relative change (variability), Mann-Kendall test, and Kolmogorov-Smirnov test (KS-test); whereas multivariate methods used were principal component analysis (PCA), singular value decomposition (SVD), canonical correlation analysis (CCA), and cluster analysis. The analysis is performed on raw GCM data, i.e., before bias correction, for precipitation and temperature climatic variables for all the 20 models to capture the reliability and nature of the particular model at regional scale. The analysis is based on spatially averaged datasets of GCMs and observation for the period of 1970 to 2000. Ranking is provided to each of the GCMs based on the performance evaluated against gridded observational data on various temporal scales (daily, monthly, and seasonal). Results have provided insight into each of the methods and various statistical properties addressed by them employed in ranking GCMs. Further; evaluation was also performed for raw GCM simulations against different sets of gridded observational dataset in the area.

  7. Analysis of Climate Change Effect on Camellia Oil Content in Fujian Province of China

    Directory of Open Access Journals (Sweden)

    YU Hui-kang

    2015-02-01

    Full Text Available Fujian Province is one of the main camellia oleifera production areas in China. Camellia oleifera is also an important characteristic varieties of woody oil, which can produce the high quality seed oil. By using of 0.5°(E×0.5°(Nlattice data of China ground temperature and precipitation from 1961 to 2010 which came from National Meteorological Information Center in 2013, this paper extracted the corre-sponding decadal climate data of Fujian Province to carry on statistical and variation analysis, applied climate models of the integrated assess-ment for camellia oil content by using of ArcGIS geographic information technology and probability statistics method to regionalize the oil content of camellia oleifera temporal and spatial distribution from 1961s to 2010s in Fujian Province, analyzed the variation relationship be-tween the oil content and climate essential factor of the monthly decadal mean temperature and precipitation in September at the stage of the key growth period of camellia oil fat accumulation and transformation, evaluated the regional characteristics of camellia oil content variation affected by climate factors in Fujian Province from 1961s to 2010s. The results showed that the decadal mean precipitation in September had a positive significant correlation with oil content change and played a major role of camellia oleifera production in Fujian Province; the signif-icant characteristics of that oil content level in high or low followed the decadal alternate change. There were obviously different oil content level between high oil decadal(1960s, 1980s, 2000sand low oil decadal(1970s, 1990s, and its significant variation period was 20 years. The decadal difference was not significant in temperature coefficient of variation (CvT, which affected the oil content was not obvious either. But there had significant change between precipitation coefficient of variation(CvRand oil content coefficient of variation(Cvf, and their

  8. Mountain Rivers and Climate Change: Analysis of hazardous events in torrents of small alpine watersheds

    Science.gov (United States)

    Lutzmann, Silke; Sass, Oliver

    2016-04-01

    Torrential processes like flooding, heavy bedload transport or debris flows in steep mountain channels emerge during intense, highly localized rainfall events. They pose a serious risk on the densely populated Alpine region. Hydrogeomorphic hazards are profoundly nonlinear, threshold mediated phenomena frequently causing costly damage to infrastructure and people. Thus, in the context of climate change, there is an ever rising interest in whether sediment cascades of small alpine catchments react to changing precipitation patterns and how the climate signal is propagated through the fluvial system. We intend to answer the following research questions: (i) What are critical meteorological characteristics triggering torrential events in the Eastern Alps of Austria? (ii) The effect of external triggers is strongly mediated by the internal disposition of catchments to respond. Which factors control the internal susceptibility? (iii) Do torrential processes show an increase in magnitude and frequency or a shift in seasonality in the recent past? (iv) Which future changes can be expected under different climate scenarios? Quantifications of bedload transport in small alpine catchments are rare and often associated with high uncertainties. Detailed knowledge though exists for the Schöttlbach catchment, a 71 km2 study area in Styria in the Eastern Alps. The torrent is monitored since a heavy precipitation event resulted in a disastrous flood in July 2011. Sediment mobilisation from slopes as well as within-channel storage and fluxes are regularly measured by photogrammetric methods and sediment impact sensors (SIS). The associated hydro-meteorological conditions are known from a dense station network. Changing states of connectivity can thus be related to precipitation and internal dynamics (sediment availability, cut-and-fill cycles). The site-specific insights are then conceptualized for application to a broader scale. Therefore, a Styria wide database of torrential

  9. Climate change and the effects of dengue upon Australia: An analysis of health impacts and costs

    Energy Technology Data Exchange (ETDEWEB)

    Newth, D; Gunasekera, D, E-mail: david.newth@csiro.a [CSIRO Centre for Complex Systems Science, CSIRO Marine and Atmospheric Research, CSIRO, GPO Box 3023, Canberra ACT 2601 (Australia)

    2010-08-15

    Projected regional warming and climate change analysis and health impact studies suggest that Australia is potentially vulnerable to increased occurrence of vector borne diseases such as dengue fever. Expansion of the dengue fever host, Aedes aegypti could potentially pose a significant public health risk. To manage such health risks, there is a growing need to focus on adaptive risk management strategies. In this paper, we combine analyses from climate, biophysical and economic models with a high resolution population model for disease spread, the EpiCast model to analyse the health impacts and costs of spread of dengue fever. We demonstrate the applicability of EpiCast as a decision support tool to evaluate mitigation strategies to manage the public health risks associated with shifts in the distribution of dengue fever in Australia.

  10. A Methodology for Meta-Analysis of Local Climate Change Adaptation Policies

    Science.gov (United States)

    Local governments are beginning to take steps to address the consequences of climate change, such as sea level rise and heat events. However, we donot have a clear understanding of what local governments are doing -- the extent to which they expect climate change to affect their ...

  11. Projective analysis of staple food crop productivity in adaptation to future climate change in China

    Science.gov (United States)

    Zhang, Qing; Zhang, Wen; Li, Tingting; Sun, Wenjuan; Yu, Yongqiang; Wang, Guocheng

    2017-02-01

    Climate change continually affects our capabilities to feed the increasing population. Rising temperatures have the potential to shorten the crop growth duration and therefore reduce crop yields. In the past decades, China has successfully improved crop cultivars to stabilize, and even lengthen, the crop growth duration to make use of increasing heat resources. However, because of the complex cropping systems in the different regions of China, the possibility and the effectiveness of regulating crop growth duration to reduce the negative impacts of future climate change remain questionable. Here, we performed a projective analysis of the staple food crop productivity in double-rice, wheat-rice, wheat-maize, single-rice, and single-maize cropping systems in China using modeling approaches. The results indicated that from the present to the 2040s, the warming climate would shorten the growth duration of the current rice, wheat, and maize cultivars by 2-24, 11-13, and 9-29 days, respectively. The most significant shortening of the crop growth duration would be in Northeast China, where single-rice and single-maize cropping dominates the croplands. The shortened crop growth duration would consequently reduce crop productivity. The most significant decreases would be 27-31, 6-20, and 7-22% for the late crop in the double-rice rotation, wheat in the winter wheat-rice rotation, and single maize, respectively. However, our projection analysis also showed that the negative effects of the warming climate could be compensated for by stabilizing the growth duration of the crops via improvement in crop cultivars. In this case, the productivity of rice, wheat, and maize in the 2040s would increase by 4-16, 31-38, and 11-12%, respectively. Our modeling results implied that the possibility of securing future food production exists by adopting proper adaptation options in China.

  12. Primary School Student Teachers' Understanding of Climate Change: Comparing the Results Given by Concept Maps and Communication Analysis

    Science.gov (United States)

    Ratinen, Ilkka; Viiri, Jouni; Lehesvuori, Sami

    2012-11-01

    Climate change is a complex environmental problem that can be used to examine students' understanding, gained through classroom communication, of climate change and its interactions. The present study examines a series of four science sessions given to a group of primary school student teachers (n = 20). This includes analysis of the communication styles used and the students' pre- and post-conceptualisation of climate change based on results obtained via essay writing and drawings. The essays and drawings concerned the students' unprompted pre- and post-conceptions about climate change, collected before and after each of the four inquiry-based science sessions (in physics, chemistry, biology and geography). Concept mapping was used in the analysis of the students' responses. The communication used in the four sessions was analysed with a communicative approach in order to find out the discussion about climate change between teacher and students. The analyses indicated that the students did not have the knowledge or the courage to participate in discussion, but post-conceptualisation map showed that students' thinking had become more coherent after the four sessions. Given the results of the present study, proposals for using concepts maps and/or communication analysis in studying students' conceptions are presented.

  13. A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models

    Directory of Open Access Journals (Sweden)

    S. N. Gosling

    2010-09-01

    Full Text Available We present a comparative analysis of projected impacts of climate change on river runoff from two types of distributed hydrological model, a global hydrological model (GHM and catchment-scale hydrological models (CHM. Analyses are conducted for six catchments that are global in coverage and feature strong contrasts in spatial scale as well as climatic and developmental conditions. These include the Liard (Canada, Mekong (SE Asia, Okavango (SW Africa, Rio Grande (Brazil, Xiangxi (China and Harper's Brook (UK. A single GHM (Mac-PDM.09 is applied to all catchments whilst different CHMs are applied for each catchment. The CHMs include SLURP v. 12.2 (Liard, SLURP v. 12.7 (Mekong, Pitman (Okavango, MGB-IPH (Rio Grande, AV-SWAT-X 2005 (Xiangxi and Cat-PDM (Harper's Brook. Simulations of mean annual runoff, mean monthly runoff and high (Q5 and low (Q95 monthly runoff under baseline (1961–1990 and climate change scenarios are presented. We compare the simulated runoff response of each hydrological model to (1 prescribed increases in global-mean air temperature of 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 °C relative to baseline from the UKMO HadCM3 Global Climate Model (GCM to explore response to different amounts of climate forcing, and (2 a prescribed increase in global-mean air temperature of 2.0 °C relative to baseline for seven GCMs to explore response to climate model structural uncertainty.

    We find that the differences in projected changes of mean annual runoff between the two types of hydrological model can be substantial for a given GCM, and they are generally larger for indicators of high and low monthly runoff. However, they are relatively small in comparison to the range of projections across the seven GCMs. Hence, for the six catchments and seven GCMs we considered, climate model structural uncertainty is greater than the uncertainty associated with the type of hydrological model applied. Moreover, shifts in the seasonal cycle of runoff

  14. A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models

    Directory of Open Access Journals (Sweden)

    S. N. Gosling

    2011-01-01

    Full Text Available We present a comparative analysis of projected impacts of climate change on river runoff from two types of distributed hydrological model, a global hydrological model (GHM and catchment-scale hydrological models (CHM. Analyses are conducted for six catchments that are global in coverage and feature strong contrasts in spatial scale as well as climatic and developmental conditions. These include the Liard (Canada, Mekong (SE Asia, Okavango (SW Africa, Rio Grande (Brazil, Xiangxi (China and Harper's Brook (UK. A single GHM (Mac-PDM.09 is applied to all catchments whilst different CHMs are applied for each catchment. The CHMs include SLURP v. 12.2 (Liard, SLURP v. 12.7 (Mekong, Pitman (Okavango, MGB-IPH (Rio Grande, AV-SWAT-X 2005 (Xiangxi and Cat-PDM (Harper's Brook. The CHMs typically simulate water resource impacts based on a more explicit representation of catchment water resources than that available from the GHM and the CHMs include river routing, whereas the GHM does not. Simulations of mean annual runoff, mean monthly runoff and high (Q5 and low (Q95 monthly runoff under baseline (1961–1990 and climate change scenarios are presented. We compare the simulated runoff response of each hydrological model to (1 prescribed increases in global-mean air temperature of 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 °C relative to baseline from the UKMO HadCM3 Global Climate Model (GCM to explore response to different amounts of climate forcing, and (2 a prescribed increase in global-mean air temperature of 2.0 °C relative to baseline for seven GCMs to explore response to climate model structural uncertainty.

    We find that the differences in projected changes of mean annual runoff between the two types of hydrological model can be substantial for a given GCM (e.g. an absolute GHM-CHM difference in mean annual runoff percentage change for UKMO HadCM3 2 °C warming of up to 25%, and they are generally larger for indicators of high and low monthly runoff

  15. Adopting public values and climate change adaptation strategies in urban forest management: A review and analysis of the relevant literature.

    Science.gov (United States)

    Ordóñez Barona, Camilo

    2015-12-01

    Urban trees are a dominant natural element in cities; they provide important ecosystem services to urban citizens and help urban areas adapt to climate change. Many rationales have been proposed to provide a purpose for urban forest management, some of which have been ineffective in addressing important ecological and social management themes. Among these rationales we find a values-based perspective, which sees management as a process where the desires of urban dwellers are met. Another perspective is climate change adaptation, which sees management as a process where urban forest vulnerability to climate change is reduced and resilience enhanced. Both these rationales have the advantage of complementing, enhancing, and broadening urban forest management objectives. A critical analysis of the literature on public values related to urban forests and climate change adaptation in the context of urban forests is undertaken to discuss what it means to adopt these two issues in urban forest management. The analysis suggests that by seeing urban forest management as a process by which public values are satisfied and urban-forest vulnerabilities to climate change are reduced, we can place issues such as naturalization, adaptive management, and engaging people in management at the centre of urban forest management. Focusing urban forest management on these issues may help ensure the success of programs focused on planting more trees and increasing citizen participation in urban forest management.

  16. Climate change, uncertainty and investment in flood risk reduction

    NARCIS (Netherlands)

    Pol, van der T.D.

    2015-01-01

    Economic analysis of flood risk management strategies has become more complex due to climate change. This thesis investigates the impact of climate change on investment in flood risk reduction, and applies optimisation methods to support identification of optimal flood risk management strategies. Ch

  17. Applying a framework for landscape planning under climate change for the conservation of biodiversity in the Finnish boreal forest

    DEFF Research Database (Denmark)

    Mazziotta, Adriano; Triviño, Maria; Tikkanen, Olli Pekka;

    2015-01-01

    Conservation strategies are often established without consideration of the impact of climate change. However, this impact is expected to threaten species and ecosystem persistence and to have dramatic effects towards the end of the 21st century. Landscape suitability for species under climate cha...

  18. Resilience to climate change in a cross-scale tourism governance context: a combined quantitative-qualitative network analysis

    Directory of Open Access Journals (Sweden)

    Tobias Luthe

    2016-03-01

    Full Text Available Social systems in mountain regions are exposed to a number of disturbances, such as climate change. Calls for conceptual and practical approaches on how to address climate change have been taken up in the literature. The resilience concept as a comprehensive theory-driven approach to address climate change has only recently increased in importance. Limited research has been undertaken concerning tourism and resilience from a network governance point of view. We analyze tourism supply chain networks with regard to resilience to climate change at the municipal governance scale of three Alpine villages. We compare these with a planned destination management organization (DMO as a governance entity of the same three municipalities on the regional scale. Network measures are analyzed via a quantitative social network analysis (SNA focusing on resilience from a tourism governance point of view. Results indicate higher resilience of the regional DMO because of a more flexible and diverse governance structure, more centralized steering of fast collective action, and improved innovative capacity, because of higher modularity and better core-periphery integration. Interpretations of quantitative results have been qualitatively validated by interviews and a workshop. We conclude that adaptation of tourism-dependent municipalities to gradual climate change should be dealt with at a regional governance scale and adaptation to sudden changes at a municipal scale. Overall, DMO building at a regional scale may enhance the resilience of tourism destinations, if the municipalities are well integrated.

  19. Southern voices on climate policy choices: Analysis of and lessons learned from civil society advocacy on climate change

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Hannah; Ampomah, Gifty; Prera, Maria Isabel Olazabal; Rabbani, Golam; Zvigadza, Shepard

    2012-05-15

    This report provides an analysis of the tools and tactics advocacy groups use to influence policy responses to climate change at international, regional, national and sub-national levels. More than 20 climate networks and their member organisations have contributed to the report with their experiences of advocacy on climate change, including over 70 case studies from a wide range of countries - including many of the poorest - in Africa, Asia, Latin America and the Pacific. These advocacy activities primarily target national governments, but also international and regional processes, donors and the private sector. Analyses and case studies show how civil society plays key roles in pushing for new laws, programmes, policies or strategies on climate change, in holding governments to account on their commitments; in identifying the lack of joined-up government responses to climate change; and in ensuring that national policy making does not forget the poor and vulnerable. The report is the first joint product of the Southern Voices Capacity Building Programme, or for short: Southern Voices on Climate Change.

  20. Social Impacts of Climate Change in Brazil: A municipal level analysis of the effects of recent and future climate change on income, health and inequality

    OpenAIRE

    Andersen, Lykke E.; Román, Soraya; Verner, Dorte

    2010-01-01

    The paper uses data from 5,507 municipalities in Brazil to estimate the relationships between climate and income as well as climate and health, and then uses the estimated relationships to gauge the effects of past and future climate change on income levels and life expectancy in each of these municipalities. The simulations indicate that climate change over the past 50 years has tended to cause an overall drop in incomes in Brazil of about four percent, with the initially poorer and hotter m...

  1. Uncertainty introduced by flood frequency analysis in the estimation of climate change impacts on flooding

    Science.gov (United States)

    Lawrence, Deborah

    2016-04-01

    Potential changes in extreme flooding under a future climate are of much interest in climate change adaptation work, and estimates for high flows with long return periods are often based on an application of flood frequency analysis methods. The uncertainty introduced by this estimation is, however, only rarely considered when assessing changes in flood magnitude. In this study, an ensemble of hydrological projections for each of 115 catchments distributed across Norway is analysed to derive an estimate for the percentage change in the magnitude of the 200-year flood under a future climate. This is the return level used for flood hazard mapping in Norway. The ensemble of projections is based on climate data from 10 EUROCORDEX GCM/RCM combinations, two bias correction methods (empirical quantile mapping and double gamma function), and 25 alternative parameterisations of the HBV hydrological model. For each hydrological simulation, the annual maximum series is used to estimate the 200-year flood for the reference period, 1971-2000 and a future period, 2071-2100, based on two and three-parameter GEV distributions. In addition, bootstrap resampling is used to estimate the 95% confidence levels for the extreme value estimates, and this range is incorporated into the ensemble estimates for each catchment. As has been shown in previous work based on earlier climate projections, there are large regional differences in the projected changes in the 200-year flood across Norway, with median ensemble projections ranging from 44% to +56% for the daily-averaged flood magnitude. These differences reflect the relative importance of rainfall vs. snowmelt as the dominant flood generating process in different regions, at differing altitudes and as a function of catchment area, in addition to dominant storm tracks. Variance decomposition is used to assess the relative contributions of the following components to the total spread (given by the 5 to 95% range) in the ensemble for each

  2. A Meta-Analysis of Urban Climate Change Adaptation Planning in the U.S.

    Science.gov (United States)

    The concentration of people, infrastructure, and ecosystem services in urban areas make them prime sites for climate change adaptation. While advances have been made in developing frameworks for adaptation planning and identifying both real and potential barriers to action, empir...

  3. Climate Change and Economic Growth: An Intertemporal General Equilibrium Analysis for Egypt

    OpenAIRE

    Elshennawy, Abeer; Robinson, Sherman; Willenbockel, Dirk

    2013-01-01

    Due to the high concentration of economic activity along the low-lying coastal zone of the Nile delta and its dependence on Nile river streamflow, Egypt's economy is highly exposed to adverse climate change. Adaptation planning requires a forward-looking assessment of climate change impacts on economic performance at economy-wide and sectoral level and a cost-benefit assessment of conceivable adaptation investments. This study develops a multisectoral intertemporal general equilibrium model w...

  4. Impacts of climate change on Brazilian agriculture: an analysis of irrigation as an adaptation strategy

    OpenAIRE

    Cunha, Denis Antonio da; Coelho, Alexandre Braganca; Feres, Jose; Braga, Marcelo Jose

    2012-01-01

    This paper aims to analyze the effects of climate change on Brazilian agriculture considering irrigation adoption as an adaptation strategy. Investigation on how climatic variability influences irrigation adoption was performed as well as whether this adaptation measure actually reduces producers’ vulnerability to climate change. We used matching methods to analyze the choice of irrigation in the first stage and the land values for two types of farmer (irrigators or dryland) in the second sta...

  5. Comparative analysis of climate change vulnerability assessments. Lessons from Tunisia and Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Hammill, Anne; Bizikova, Livia; Dekens, Julie; McCandless, Matthew

    2013-03-15

    Vulnerability assessments (VAs) are central to shaping climate change adaptation decisions. They help to define the nature and extent of the threat that may harm a given human or ecological system, providing a basis for devising measures that will minimize or avoid this harm. Yet the wide variety of VA approaches can be confusing for practitioners, creating uncertainty about the ''right'' way to assess vulnerability. In an effort to provide some guidance on designing and conducting VAs, this paper reviews and compares VAs undertaken in Indonesia and Tunisia to distill key approaches, components and lessons. It begins with a general overview of definitions, approaches and challenges with conducting VAs, and then proposes a framework for analyzing and comparing them. The framework looks at four components of VAs: (1) Framing: where do we come from? (2) Process of conducting the VAs: how does it work? (3) Inputs: what is needed? (4) Outputs: what does it tell us? The framework is then applied to analyze the assessments carried out in Tunisia and Indonesia, from their respective framings of vulnerability to the outputs of the process. The report then concludes with observations on differences and similarities between the VAs, as well as lessons learned that can inform the design and execution of future assessments.

  6. Social impacts of climate change in Mexico: A municipality level analysis of the effects of recent and future climate change on human development and inequality

    OpenAIRE

    Andersen, Lykke E.; Verner, Dorte

    2010-01-01

    This paper uses municipality level data to estimate the general relationships between climate, income and child mortality in Mexico. Climate was found to play only a very minor role in explaining the large differences in income levels and child mortality rates observed in Mexico. This implies that Mexico is considerably less vulnerable to expected future climate change than other countries in Latin America.

  7. Poverty and Climate Change

    Science.gov (United States)

    van der Vink, G.; Franco, E.; Fuckar, N. S.; Kalmbach, E. R.; Kayatta, E.; Lankester, K.; Rothschild, R. E.; Sarma, A.; Wall, M. L.

    2008-05-01

    The poor are disproportionately vulnerable to environmental change because they have the least amount of resources with which to adapt, and they live in areas (e.g. flood plains, low-lying coastal areas, and marginal drylands) that are particularly vulnerable to the manifestations of climate change. By quantifying the various environmental, economic, and social factors that can contribute to poverty, we identify populations that are most vulnerable to poverty and poverty traps due to environmental change. We define vulnerability as consisting of risk (probability of event and exposed elements), resiliency, and capacity to respond. Resiliency captures the social system's ability to absorb a natural disaster while retaining the same basic structure, organization, and ways of functioning, as well as its general capacity to adapt to stress and change. Capacity to respond is a surrogate for technical skills, institutional capabilities, and efficacy within countries and their economies. We use a "climate change multiplier" to account for possible increases in the frequency and severity of natural events due to climate change. Through various analytical methods, we quantify the social, political, economic, and environmental factors that contribute to poverty or poverty traps. These data sets are then used to determine vulnerability through raster multiplication in geospatial analysis. The vulnerability of a particular location to climate change is then mapped, with areas of high vulnerability clearly delineated. The success of this methodology indicates that it is indeed possible to quantify the effects of climate change on global vulnerability to natural disasters, and can be used as a mechanism to identify areas where proactive measures, such as improving adaptation or capacity to respond, can reduce the humanitarian and economic impacts of climate change.

  8. The American Climate Prospectus: a risk-centered analysis of the economic impacts of climate change

    Science.gov (United States)

    Jina, A.; Houser, T.; Hsiang, S. M.; Kopp, R. E., III; Delgado, M.; Larsen, K.; Mohan, S.; Rasmussen, D.; Rising, J.; Wilson, P. S.; Muir-Wood, R.

    2014-12-01

    The American Climate Prospectus (ACP), the analysis underlying the Risky Business project, quantitatively assessed the climate risks posed to the United States' economy in six sectors - crop yields, energy demand, coastal property, crime, labor productivity, and mortality [1]. The ACP is unique in its characterization of the full probability distribution of economic impacts of climate change throughout the 21st century, making it an extremely useful basis for risk assessments. Three key innovations allow for this characterization. First, climate projections from CMIP5 models are scaled to a temperature probability distribution derived from a coarser climate model (MAGICC). This allows a more accurate representation of the whole distribution of future climates (in particular the tails) than a simple ensemble average. These are downscaled both temporally and spatially. Second, a set of local sea level rise and tropical cyclone projections are used in conjunction with the most detailed dataset of coastal property in the US in order to capture the risks of rising seas and storm surge. Third, we base many of our sectors on empirically-derived responses to temperature and precipitation. Each of these dose-response functions is resampled many times to populate a statistical distribution. Combining these with uncertainty in emissions scenario, climate model, and weather, we create the full probability distribution of climate impacts from county up to national levels, as well as model the effects upon the economy as a whole. Results are presented as likelihood ranges, as well as changes to return intervals of extreme events. The ACP analysis allows us to compare between sectors to understand the magnitude of required policy responses, and also to identify risks through time. Many sectors displaying large impacts at the end of the century, like those of mortality, have smaller changes in the near-term, due to non-linearities in the response functions. Other sectors, like

  9. Cost-benefit analysis of climate change dynamics. Uncertainties and the value of information

    Energy Technology Data Exchange (ETDEWEB)

    Rable, A. [Centre Energetique et Procedes, Ecole des Mines, Paris (France); Van der Zwaan, B.C.C. [ECN Policy Studies, Petten (Netherlands)

    2009-10-15

    damage costs are three times larger or smaller than the estimate, the total social cost of global climate change increases by less than 20% above its minimum at the true optimal emission level. Because of the enormous magnitude of the total costs involved with climate change (mitigation), however, even a small relative error implies large additional expenses in absolute terms. To evaluate the benefit of reducing cost uncertainties, we plot the cost penalty as function of the uncertainty in relative damage and abatement costs, expressed as geometric standard deviation and standard deviation respectively. If continued externality analysis reduces the geometric standard deviation of relative damage cost estimates from 5 to 4, the benefit is 0.05% of the present value G{sub tot} of total gross word product over 150 years (about USD 3.9 x 10{sup 15}), and if further research reduces the standard deviation of relative abatement costs from 1 to 0.5, the benefit is 0.03% of G{sub tot}.

  10. Scenario analysis of the impacts of forest management and climate change on the European forest sector carbon budget

    NARCIS (Netherlands)

    Karjalainen, T.; Pusinen, A.; Liski, J.; Nabuurs, G.J.; Eggers, T.; Lapveteläinen, T.; Kaipainen, T.

    2003-01-01

    Analysis of the impacts of forest management and climate change on the European forest sector carbon budget between 1990 and 2050 are presented in this article. Forest inventory based carbon budgeting with large scale scenario modelling was used. Altogether 27 countries and 128.5 million hectare of

  11. Applying a System Dynamics Approach for Modeling Groundwater Dynamics to Depletion under Different Economical and Climate Change Scenarios

    Directory of Open Access Journals (Sweden)

    Hamid Balali

    2015-09-01

    Full Text Available In the recent decades, due to many different factors, including climate change effects towards be warming and lower precipitation, as well as some structural policies such as more intensive harvesting of groundwater and low price of irrigation water, the level of groundwater has decreased in most plains of Iran. The objective of this study is to model groundwater dynamics to depletion under different economic policies and climate change by using a system dynamics approach. For this purpose a dynamic hydro-economic model which simultaneously simulates the farmer’s economic behavior, groundwater aquifer dynamics, studied area climatology factors and government economical policies related to groundwater, is developed using STELLA 10.0.6. The vulnerability of groundwater balance is forecasted under three scenarios of climate including the Dry, Nor and Wet and also, different scenarios of irrigation water and energy pricing policies. Results show that implementation of some economic policies on irrigation water and energy pricing can significantly affect on groundwater exploitation and its volume balance. By increasing of irrigation water price along with energy price, exploitation of groundwater will improve, in so far as in scenarios S15 and S16, studied area’s aquifer groundwater balance is positive at the end of planning horizon, even in Dry condition of precipitation. Also, results indicate that climate change can affect groundwater recharge. It can generally be expected that increases in precipitation would produce greater aquifer recharge rates.

  12. A paradigm analysis of ecological sustainability: The emerging polycentric climate change publics

    Science.gov (United States)

    Taminiau, Job B.

    Climate change poses significant complications to the development model employed by modern societies. Using paradigm analysis, the dissertation explains why, after 21 years, policy failure haunts the field: a key impediment is the unquestioned assumption that policy must adhere to an economic optimality principle. This results in policy models which fail to uphold sustainability, justice, and equality due to an emphasis on economic growth, technology, and technical and bureaucratic expertise. Unable to build consensus among low- and high-carbon economies, and searching for what one economist has called an oxymoron -- "sustainable growth" (Daly, 1997) -- the policy process has foundered with its only international convention (the Kyoto Protocol) having lost relevance. In the midst of this policy failure, the dissertation offers and defends the premise that alternative strategies have emerged which signal the prospect of a paradigm shift to ecological sustainability -- a paradigm in which social change takes places through commons-based management and community authorship in the form of network governance and where sustainability serves as governor of growth -- something unavailable in an optimality-guided world. Especially, a strategy of polycentricity is discussed in detail in order to elucidate the potential for a paradigm shift. This discussion is followed by an evaluation of two innovative concepts -- the Sustainable Energy Utility and the Solar City -- that might fit the polycentricity strategy and bring forth transformative change. The dissertation finds considerable potential rests in these two concepts and argues the critical importance of further development of innovative approaches to implement the ecological sustainability paradigm.

  13. Vulnerability of European freshwater catchments to climate change.

    Science.gov (United States)

    Markovic, Danijela; Carrizo, Savrina F; Kärcher, Oskar; Walz, Ariane; David, Jonathan N W

    2017-02-10

    Climate change is expected to exacerbate the current threats to freshwater ecosystems, yet multifaceted studies on the potential impacts of climate change on freshwater biodiversity at scales that inform management planning are lacking. The aim of this study was to fill this void through the development of a novel framework for assessing climate change vulnerability tailored to freshwater ecosystems. The three dimensions of climate change vulnerability are as follows: (i) exposure to climate change, (ii) sensitivity to altered environmental conditions and (iii) resilience potential. Our vulnerability framework includes 1685 freshwater species of plants, fishes, molluscs, odonates, amphibians, crayfish and turtles alongside key features within and between catchments, such as topography and connectivity. Several methodologies were used to combine these dimensions across a variety of future climate change models and scenarios. The resulting indices were overlaid to assess the vulnerability of European freshwater ecosystems at the catchment scale (18 783 catchments). The Balkan Lakes Ohrid and Prespa and Mediterranean islands emerge as most vulnerable to climate change. For the 2030s, we showed a consensus among the applied methods whereby up to 573 lake and river catchments are highly vulnerable to climate change. The anthropogenic disruption of hydrological habitat connectivity by dams is the major factor reducing climate change resilience. A gap analysis demonstrated that the current European protected area network covers climate change. Priority should be placed on enhancing stakeholder cooperation at the major basin scale towards preventing further degradation of freshwater ecosystems and maintaining connectivity among catchments. The catchments identified as most vulnerable to climate change provide preliminary targets for development of climate change conservation management and mitigation strategies.

  14. Ciguatera Fish Poisoning and Climate Change: Analysis of National Poison Center Data in the United States, 2001–2011

    Science.gov (United States)

    Strickland, Matthew J.; Hess, Jeremy J.

    2014-01-01

    Background: Warm sea surface temperatures (SSTs) are positively related to incidence of ciguatera fish poisoning (CFP). Increased severe storm frequency may create more habitat for ciguatoxic organisms. Although climate change could expand the endemic range of CFP, the relationship between CFP incidence and specific environmental conditions is unknown. Objectives: We estimated associations between monthly CFP incidence in the contiguous United States and SST and storm frequency in the Caribbean basin. Methods: We obtained information on 1,102 CFP-related calls to U.S. poison control centers during 2001–2011 from the National Poison Data System. We performed a time-series analysis using Poisson regression to relate monthly CFP call incidence to SST and tropical storms. We investigated associations across a range of plausible lag structures. Results: Results showed associations between monthly CFP calls and both warmer SSTs and increased tropical storm frequency. The SST variable with the strongest association linked current monthly CFP calls to the peak August SST of the previous year. The lag period with the strongest association for storms was 18 months. If climate change increases SST in the Caribbean 2.5–3.5°C over the coming century as projected, this model implies that CFP incidence in the United States is likely to increase 200–400%. Conclusions: Using CFP calls as a marker of CFP incidence, these results clarify associations between climate variability and CFP incidence and suggest that, all other things equal, climate change could increase the burden of CFP. These findings have implications for disease prediction, surveillance, and public health preparedness for climate change. Citation: Gingold DB, Strickland MJ, Hess JJ. 2014. Ciguatera fish poisoning and climate change: analysis of National Poison Center data in the United States, 2001–2011. Environ Health Perspect 122:580–586; http://dx.doi.org/10.1289/ehp.1307196 PMID:24618280

  15. Cinematic climate change, a promising perspective on climate change communication.

    Science.gov (United States)

    Sakellari, Maria

    2015-10-01

    Previous research findings display that after having seen popular climate change films, people became more concerned, more motivated and more aware of climate change, but changes in behaviors were short-term. This article performs a meta-analysis of three popular climate change films, The Day after Tomorrow (2005), An Inconvenient Truth (2006), and The Age of Stupid (2009), drawing on research in social psychology, human agency, and media effect theory in order to formulate a rationale about how mass media communication shapes our everyday life experience. This article highlights the factors with which science blends in the reception of the three climate change films and expands the range of options considered in order to encourage people to engage in climate change mitigation actions.

  16. Adapting Towards Climate Change: A Bioeconomic Analysis of Winterwheat and Grain Maize

    NARCIS (Netherlands)

    Lehmann, N.; Finger, R.; Klein, T.; Calanca, P.; Walter, A.

    2012-01-01

    Climate change (CC) will alter the environmental conditions for crop growth. In order to minimize negative CC impacts on cropping systems, farmers will have to adapt their management schemes. In this paper we analyzed CC impacts and adaptation in winterwheat and grain maize production using a bio-ec

  17. Tradeoff Analysis Between Economic Development and Climate Change Adaptation Strategies for River Nile Basin Water Resources

    Science.gov (United States)

    Recent Intergovernmental Panel on Climate Change (IPCC) briefings have declared that the growing population in the Nile river basin region (about 160 million, or 57% of the entire population of the basin’s ten riparian countries) is at risk of water scarcity. Adjustment strategies in response to cl...

  18. Climate Change Schools Project...

    Science.gov (United States)

    McKinzey, Krista

    2010-01-01

    This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools Project…

  19. Climate Change Schools Project...

    Science.gov (United States)

    McKinzey, Krista

    2010-01-01

    This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools…

  20. Climate Change Education in Earth System Science

    Science.gov (United States)

    Hänsel, Stephanie; Matschullat, Jörg

    2013-04-01

    The course "Atmospheric Research - Climate Change" is offered to master Earth System Science students within the specialisation "Climate and Environment" at the Technical University Bergakademie Freiberg. This module takes a comprehensive approach to climate sciences, reaching from the natural sciences background of climate change via the social components of the issue to the statistical analysis of changes in climate parameters. The course aims at qualifying the students to structure the physical and chemical basics of the climate system including relevant feedbacks. The students can evaluate relevant drivers of climate variability and change on various temporal and spatial scales and can transform knowledge from climate history to the present and the future. Special focus is given to the assessment of uncertainties related to climate observations and projections as well as the specific challenges of extreme weather and climate events. At the end of the course the students are able to critically reflect and evaluate climate change related results of scientific studies and related issues in media. The course is divided into two parts - "Climate Change" and "Climate Data Analysis" and encompasses two lectures, one seminar and one exercise. The weekly "Climate change" lecture transmits the physical and chemical background for climate variation and change. (Pre)historical, observed and projected climate changes and their effects on various sectors are being introduced and discussed regarding their implications for society, economics, ecology and politics. The related seminar presents and discusses the multiple reasons for controversy in climate change issues, based on various texts. Students train the presentation of scientific content and the discussion of climate change aspects. The biweekly lecture on "Climate data analysis" introduces the most relevant statistical tools and methods in climate science. Starting with checking data quality via tools of exploratory

  1. Bayesian analysis of climate change effects on observed and projected airborne levels of birch pollen

    Science.gov (United States)

    Zhang, Yong; Isukapalli, Sastry S.; Bielory, Leonard; Georgopoulos, Panos G.

    2013-04-01

    A Bayesian framework is presented for modeling effects of climate change on pollen indices such as annual birch pollen count, maximum daily birch pollen count, start date of birch pollen season and the date of maximum daily birch pollen count. Annual mean CO2 concentration, mean spring temperature and the corresponding pollen index of prior year were found to be statistically significant accounting for effects of climate change on four pollen indices. Results suggest that annual productions and peak values from 2020 to 2100 under different scenarios will be 1.3-8.0 and 1.1-7.3 times higher respectively than the mean values for 2000, and start and peak dates will occur around two to four weeks earlier. These results have been partly confirmed by the available historical data. As a demonstration, the emission profiles in future years were generated by incorporating the predicted pollen indices into an existing emission model.

  2. Operationalizing analysis of micro-level climate change vulnerability and adaptive capacity

    DEFF Research Database (Denmark)

    Jiao, Xi; Moinuddin, Hasan

    2016-01-01

    This paper explores vulnerability and adaptive capacity of rural communities in Southern Laos, where households are highly dependent on climate-sensitive natural resources and vulnerable to seasonal weather fluctuations. The speed and magnitude of climate-induced changes may seriously challenge...... their ability to adapt. Participatory group discussions and 271 household surveys in three villages highlight the current level of vulnerability and adaptive capacity towards climatic variability and risks. This paper visualizes three dimensions of the vulnerability framework at two levels using the Community...... Climate Vulnerability Index and household climate vulnerability cube. Results show that not only poor households are most at risk from climate change challenges, but also those better-off households highly dependent on specialized agricultural production are locally exposed to climate change risks...

  3. Adapting to climate change

    DEFF Research Database (Denmark)

    Arndt, Channing; Strzepek, Kenneth; Tarp, Finn

    2011-01-01

    framework that translates atmospheric changes from general circulation model projections into biophysical outcomes via detailed hydrologic, crop, hydropower and infrastructure models. These sector models simulate a historical baseline and four extreme climate change scenarios. Sector results are then passed...... down to a dynamic computable general equilibrium model, which is used to estimate economy-wide impacts on national welfare, as well as the total cost of damages caused by climate change. Potential damages without changes in policy are significant; our discounted estimates range from US2.3 to US2.3toUS7.......4 billion during 2003–2050. Our analysis identifies improved road design and agricultural sector investments as key ‘no-regret’ adaptation measures, alongside intensified efforts to develop a more flexible and resilient society. Our findings also support the need for cooperative river basin management...

  4. Water Resources Sustainability in Northwest Mexico: Analysis of Regional Infrastructure Plans under Historical and Climate Change Scenarios

    Science.gov (United States)

    Che, D.; Robles-Morua, A.; Mayer, A. S.; Vivoni, E. R.

    2012-12-01

    The arid state of Sonora, Mexico, has embarked on a large water infrastructure project to provide additional water supply and improved sanitation to the growing capital of Hermosillo. The main component of the Sonora SI project involves an interbasin transfer from rural to urban water users that has generated conflicts over water among different social sectors. Through interactions with regional stakeholders from agricultural and water management agencies, we ascertained the need for a long-term assessment of the water resources of one of the system components, the Sonora River Basin (SRB). A semi-distributed, daily watershed model that includes current and proposed reservoir infrastructure was applied to the SRB. This simulation framework allowed us to explore alternative scenarios of water supply from the SRB to Hermosillo under historical (1980-2010) and future (2031-2040) periods that include the impact of climate change. We compared three precipitation forcing scenarios for the historical period: (1) a network of ground observations from Mexican water agencies; (2) gridded fields from the North America Land Data Assimilation System (NLDAS) at 12 km resolution; and (3) gridded fields from the Weather Research and Forecasting (WRF) model at 10 km resolution. These were compared to daily historical observations at two stream gauging stations and two reservoirs to generate confidence in the simulation tools. We then tested the impact of climate change through the use of the A2 emissions scenario and HadCM3 boundary forcing on the WRF simulations of a future period. Our analysis is focused on the combined impact of existing and proposed reservoir infrastructure at two new sites on the water supply management in the SRB under historical and future climate conditions. We also explore the impact of climate variability and change on the bimodal precipitation pattern from winter frontal storms and the summertime North American monsoon and its consequences on water

  5. Processing and analysis of Global snow cover time series for climate change assessment

    OpenAIRE

    2014-01-01

    Remote sensing data offer the opportunity to detect terrestrial snow cover in high temporal and spatial resolution. Such information is essential for various applications – ranging from small scale predictions of runoff or floods, ground water recharge and hydro power generation to large scale planetary processes connected to climate change. The processing of globally available time series of remote sensing data constitutes a challenging task due to the huge data volume and computational dema...

  6. Whither justice? An analysis of local climate change responses from South East Queensland, Australia

    OpenAIRE

    Diana MacCallum; Jason Byrne; Wendy Steele

    2014-01-01

    Climate change is a highly contested policy issue in Australia, generating fierce debate at every level of governance. In this paper we explore a crucial tension in both the policy and the public debate: a seeming lack of attention to social inclusion and broader equity implications. We pay special attention to the municipal scale, where concerns about social difference and democratic participation are often foregrounded in political discourse, using South East Queensland—a recognised climate...

  7. Climate change effects on airborne pathogenic bioaerosol concentrations: a scenario analysis.

    Science.gov (United States)

    van Leuken, J P G; Swart, A N; Droogers, P; van Pul, A; Heederik, D; Havelaar, A H

    2016-01-01

    The most recent IPCC report presented further scientific evidence for global climate change in the twenty-first century. Important secondary effects of climate change include those on water resource availability, agricultural yields, urban healthy living, biodiversity, ecosystems, food security, and public health. The aim of this explorative study was to determine the range of expected airborne pathogen concentrations during a single outbreak or release in a future climate compared to a historical climatic period (1981-2010). We used five climate scenarios for the periods 2016-2045 and 2036-2065 defined by the Royal Netherlands Meteorological Institute and two conversion tools to create hourly future meteorological data sets. We modelled season-averaged airborne pathogen concentrations by means of an atmospheric dispersion model and compared these data to historical (1981-2010) modelled concentrations. Our results showed that modelled concentrations were modified several percentage points on average as a result of climate change. On average, concentrations were reduced in four out of five scenarios. Wind speed and global radiation were of critical importance, which determine horizontal and vertical dilution. Modelled concentrations decreased on average, but large positive and negative hourly averaged effects were calculated (from -67 to +639 %). This explorative study shows that further research should include pathogen inactivation and more detailed probability functions on precipitation, snow, and large-scale circulation.

  8. Climate change impact of biochar cook stoves in western Kenyan farm households: system dynamics model analysis.

    Science.gov (United States)

    Whitman, Thea; Nicholson, Charles F; Torres, Dorisel; Lehmann, Johannes

    2011-04-15

    Cook stoves that produce biochar as well as heat for cooking could help mitigate indoor air pollution from cooking fires and could enhance local soils, while their potential reductions in carbon (C) emissions and increases in soil C sequestration could offer access to C market financing. We use system dynamics modeling to (i) investigate the climate change impact of prototype and refined biochar-producing pyrolytic cook stoves and improved combustion cook stoves in comparison to conventional cook stoves; (ii) assess the relative sensitivity of the stoves' climate change impacts to key parameters; and (iii) quantify the effects of different climate change impact accounting decisions. Simulated reductions in mean greenhouse gas (GHG) impact from a traditional, 3-stone cook stove baseline are 3.50 tCO(2)e/household/year for the improved combustion stove and 3.69-4.33 tCO(2)e/household/year for the pyrolytic stoves, of which biochar directly accounts for 26-42%. The magnitude of these reductions is about 2-5 times more sensitive to baseline wood fuel use and the fraction of nonrenewable biomass (fNRB) of off-farm wood that is used as fuel than to soil fertility improvement or stability of biochar. Improved cookstoves with higher wood demand are less sensitive to changes in baseline fuel use and rely on biochar for a greater proportion of their reductions.

  9. Climate change and marine life

    DEFF Research Database (Denmark)

    Richardson, Anthony J.; Brown, Christopher J.; Brander, Keith

    2012-01-01

    A Marine Climate Impacts Workshop was held from 29 April to 3 May 2012 at the US National Center of Ecological Analysis and Synthesis in Santa Barbara. This workshop was the culmination of a series of six meetings over the past three years, which had brought together 25 experts in climate change...... ecology, analysis of large datasets, palaeontology, marine ecology and physical oceanography. Aims of these workshops were to produce a global synthesis of climate impacts on marine biota, to identify sensitive habitats and taxa, to inform the current Intergovernmental Panel on Climate Change (IPCC......) process, and to strengthen research into ecological impacts of climate change...

  10. A multi-site techniques intercomparison of integrated water vapour observations for climate change analysis

    Directory of Open Access Journals (Sweden)

    R. Van Malderen

    2014-02-01

    Full Text Available Water vapour plays a dominant role in the climate change debate. However, observing water vapour over a climatological time period in a consistent and homogeneous manner is challenging. At one hand, networks of ground-based instruments allowing to retrieve homogeneous Integrated Water Vapour (IWV datasets are being set up. Typical examples are Global Navigation Satellite System (GNSS observation networks such as the International GNSS Service (IGS, with continuous GPS (Global Positioning System observations spanning over the last 15+ yr, and the AErosol RObotic NETwork (AERONET, providing long-term observations performed with standardized and well-calibrated sun photometers. On the other hand, satellite-based measurements of IWV already have a time span of over 10 yr (e.g. AIRS or are being merged in order to create long-term time series (e.g. GOME, SCIAMACHY, and GOME-2. The present study aims at setting up a techniques intercomparison of IWV measurements from satellite devices (in the visible, GOME/SCIAMACHY/GOME-2, and in the thermal infrared, AIRS, in-situ measurements (radiosondes and ground-based instruments (GPS, sun photometer, to assess the applicability of either dataset for water vapour trends analysis. To this end, we selected 28 sites worldwide at which GPS observations can directly be compared with coincident satellite IWV observations, together with sun photometer and/or radiosonde measurements. We found that the mean biases of the different techniques w.r.t. the GPS estimates vary only between −0.3 to 0.5 mm of IWV, but the small bias is accompanied by large Root Mean Square (RMS values, especially for the satellite instruments. In particular, we analysed the impact of the presence of clouds on the techniques IWV agreement. Also, the influence of specific issues for each instrument on the intercomparison is investigated, e.g. the distance between the satellite ground pixel centre and the co-located ground-based station, the

  11. Effects of climate change on an emperor penguin population: analysis of coupled demographic and climate models.

    Science.gov (United States)

    Jenouvrier, Stéphanie; Holland, Marika; Stroeve, Julienne; Barbraud, Christophe; Weimerskirch, Henri; Serreze, Mark; Caswell, Hal

    2012-09-01

    Sea ice conditions in the Antarctic affect the life cycle of the emperor penguin (Aptenodytes forsteri). We present a population projection for the emperor penguin population of Terre Adélie, Antarctica, by linking demographic models (stage-structured, seasonal, nonlinear, two-sex matrix population models) to sea ice forecasts from an ensemble of IPCC climate models. Based on maximum likelihood capture-mark-recapture analysis, we find that seasonal sea ice concentration anomalies (SICa ) affect adult survival and breeding success. Demographic models show that both deterministic and stochastic population growth rates are maximized at intermediate values of annual SICa , because neither the complete absence of sea ice, nor heavy and persistent sea ice, would provide satisfactory conditions for the emperor penguin. We show that under some conditions the stochastic growth rate is positively affected by the variance in SICa . We identify an ensemble of five general circulation climate models whose output closely matches the historical record of sea ice concentration in Terre Adélie. The output of this ensemble is used to produce stochastic forecasts of SICa , which in turn drive the population model. Uncertainty is included by incorporating multiple climate models and by a parametric bootstrap procedure that includes parameter uncertainty due to both model selection and estimation error. The median of these simulations predicts a decline of the Terre Adélie emperor penguin population of 81% by the year 2100. We find a 43% chance of an even greater decline, of 90% or more. The uncertainty in population projections reflects large differences among climate models in their forecasts of future sea ice conditions. One such model predicts population increases over much of the century, but overall, the ensemble of models predicts that population declines are far more likely than population increases. We conclude that climate change is a significant risk for the emperor

  12. Holocene rapid climatic changes in the Okhotsk Sea and Amur watershed based on pollen analysis

    Science.gov (United States)

    Kokfelt, U.; Tiedemann, R.; Nuernberg, D.; Biebow, N.; Kozdon, R.; Lembke, L.; Kaiser, A.

    2003-04-01

    Recent investigations in the Sea of Okhotsk reveal high resolution records of rapid past climatic and vegetation pattern changes within this marginal sea and the adjacent Amur river drainage basin. The watershed of the Amur undergoes exteme seasonal as well as longer term climatic changes. A humid SE-Asia monsoon regime in summer is contrasted by cold, dry continental climate of Siberia in wintertime. Thus this region is crucial for our understanding of complex changes and shifts of athmospheric systems in the subarctic Far East and western North Pacific region. Gravity core LV28-4-4 was recovered from the continental margin off NE Sakhalin. Our age model consists of 16 AMS radiocarbon control points from planktic foraminifera and benthic shell fragments fit together by ninth order polynomial regressions. According to this, sedimentation rates exceed 100cm/kyr. Thus to date our investigations gain a temporal resolution of 200-600 years between discrete samples. We use analysis of terrestrial pollen and freshwater algae as proxies for vegetation changes in the Amur catchment area and the adjacent Siberian hinterland. Within this 930 cm long sequence, four pollen zones were distinguished: Pollen zone I (12,600-11,800 years BP), which comprises the Younger Dryas event, was dominated by non-arboreale taxa such as grasses (gramineae) and sedges (cyperaceae). The following pollen zone II (11,800-8,500 years BP) was in general dominated by birch (Betula) and elder (Alnus). The rise of spruce-dominated taiga (Picea jezoensis and P. glehnii) is clearly seen to the end of this zone and shows the preboreal warming. The oldest part of the pollen zone II has distinctly high values of birch and spruce and very low values of gramineae and cyperaceae suggesting a period of intense warming. Pollenzone III (8,500-3,600 years BP) is dominated by darkneedled taiga components and increased oak (Quercus) values and reflects the Holocene climatic optimum. The latest pollen zone IV

  13. Climate change and the economics of biomass energy feedstocks in semi-arid agricultural landscapes: A spatially explicit real options analysis.

    Science.gov (United States)

    Regan, Courtney M; Connor, Jeffery D; Raja Segaran, Ramesh; Meyer, Wayne S; Bryan, Brett A; Ostendorf, Bertram

    2017-05-01

    The economics of establishing perennial species as renewable energy feedstocks has been widely investigated as a climate change adapted diversification option for landholders, primarily using net present value (NPV) analysis. NPV does not account for key uncertainties likely to influence relevant landholder decision making. While real options analysis (ROA) is an alternative method that accounts for the uncertainty over future conditions and the large upfront irreversible investment involved in establishing perennials, there have been limited applications of ROA to evaluating land use change decision economics and even fewer applications considering climate change risks. Further, while the influence of spatially varying climate risk on biomass conversion economic has been widely evaluated using NPV methods, effects of spatial variability and climate on land use change have been scarcely assessed with ROA. In this study we applied a simulation-based ROA model to evaluate a landholder's decision to convert land from agriculture to biomass. This spatially explicit model considers price and yield risks under baseline climate and two climate change scenarios over a geographically diverse farming region. We found that underlying variability in primary productivity across the study area had a substantial effect on conversion thresholds required to trigger land use change when compared to results from NPV analysis. Areas traditionally thought of as being quite similar in average productive capacity can display large differences in response to the inclusion of production and price risks. The effects of climate change, broadly reduced returns required for land use change to biomass in low and medium rainfall zones and increased them in higher rainfall areas. Additionally, the risks posed by climate change can further exacerbate the tendency for NPV methods to underestimate true conversion thresholds. Our results show that even under severe drying and warming where crop yield

  14. A preliminary analysis of climate change effect on long-term risk-based design of flood defense

    Science.gov (United States)

    Wang, L.; Van Gelder, P. H. A. J. M.; Vrijling, J. K.

    2012-04-01

    The lifetime of a flood defense usually lasts for decades or centuries. The future flood probabilistic distribution is not stationary due to climate change. Therefore in the long-term design of flood defense systems, the effect of climate change should be taken into account. The design height of Bengbu dike segment (about 10 km) along Huai River in China is studied as an example to explore the potential effects of climate change on long-term risk-based design. The economic-optimal design height of the dike is determined based on cost-benefit analysis. In this analysis the incremental investments in more safety are balanced with the reduction of the risk. Since climate change will result in the change of flood probability and hence the change of flooding risk, the optimal height might be shifted. To describe the possible future climate, the ensemble prediction of Global Climate Models (GCMs) is used in the study. River runoff series, which is required in deriving annual probability of peak runoff, is obtained by forcing a hydrological model with each GCM climate prediction. Then the probability of high water level in the river is derived based on the relationship between water level and peak runoff. The probability of flooding is assumed to equal to the exceedance probability of the high water level in the river. The possible future flood risk is calculated based on the flooding probability estimates, and is corresponding to each member of the GCMs ensemble. The result will provide information about the significance of potential effects of climate change on the long-term design of flood defense. With comparison to the baseline period, the shift of risk curve in future will be shown on the cost-benefit diagram as well as the change of economic optimal design dike height. As it is a preliminary analysis in this study a sensitivity analysis will be carried out. The sensitivity of use of GCMs ensemble, the damage value and the investment cost will be investigated.

  15. The influence of historical climate changes on Southern Ocean marine predator populations: a comparative analysis.

    Science.gov (United States)

    Younger, Jane L; Emmerson, Louise M; Miller, Karen J

    2016-02-01

    The Southern Ocean ecosystem is undergoing rapid physical and biological changes that are likely to have profound implications for higher-order predators. Here, we compare the long-term, historical responses of Southern Ocean predators to climate change. We examine palaeoecological evidence for changes in the abundance and distribution of seabirds and marine mammals, and place these into context with palaeoclimate records in order to identify key environmental drivers associated with population changes. Our synthesis revealed two key factors underlying Southern Ocean predator population changes; (i) the availability of ice-free ground for breeding and (ii) access to productive foraging grounds. The processes of glaciation and sea ice fluctuation were key; the distributions and abundances of elephant seals, snow petrels, gentoo, chinstrap and Adélie penguins all responded strongly to the emergence of new breeding habitat coincident with deglaciation and reductions in sea ice. Access to productive foraging grounds was another limiting factor, with snow petrels, king and emperor penguins all affected by reduced prey availability in the past. Several species were isolated in glacial refugia and there is evidence that refuge populations were supported by polynyas. While the underlying drivers of population change were similar across most Southern Ocean predators, the individual responses of species to environmental change varied because of species specific factors such as dispersal ability and environmental sensitivity. Such interspecific differences are likely to affect the future climate change responses of Southern Ocean marine predators and should be considered in conservation plans. Comparative palaeoecological studies are a valuable source of long-term data on species' responses to environmental change that can provide important insights into future climate change responses. This synthesis highlights the importance of protecting productive foraging grounds

  16. Comprehensive analysis of the impact of climatic changes on Chinese terrestrial net primary productivity

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Recent climatic changes have affected terrestrial net primary productivity (NPP). This paper presents an investigation of the impact of climatic changes on Chinese terrestrial vegetation NPP by analyzing 18 years' (1982 to 1999) climatic data and satellite observations of vegetation activity. Results indicate that climatic changes in China have eased some critical climatic constraint on plant growth. (1) From 1982 to 1999, modeled NPP increased by 1.42%·a-1 in water-limited regions of Northwest China, 1.46%·a-1 in temperature-limited regions of Northeast China and Tibet Plateau, and 0.99%·a-1 in radiation-limited regions of South China and East China. (2) NPP increased by 24.2%, i.e. 0.76 petagram of carbon (Pg C) over 18 years in China. Changes in climate (with constant vegetation) directly contributed nearly 11.5% (0.36 Pg C). Changes in vegetation (with constant climate) contributed 12.4% (0.40 Pg C), possibly as a result of climate-vegetation feedbacks, changes in land use, and growth stimulation from other mechanisms. (3) Globally, NPP declined during all three major El Nino events (1982 to 1983, 1987 to 1988, and 1997 to 1998) between 1982 and 2000, but Chinese vegetation productivity responded differently to them because of the monsoon dynamics. In the first three events (1982 to 1983, 1987 to 1988, and 1992), Chinese vegetation NPP declined, while in the later two events (1993, 1997 to 1998) increasing obviously.

  17. A method for physically based model analysis of conjunctive use in response to potential climate changes

    Science.gov (United States)

    Hanson, R.T.; Flint, L.E.; Flint, A.L.; Dettinger, M.D.; Faunt, C.C.; Cayan, D.; Schmid, W.

    2012-01-01

    Potential climate change effects on aspects of conjunctive management of water resources can be evaluated by linking climate models with fully integrated groundwater-surface water models. The objective of this study is to develop a modeling system that links global climate models with regional hydrologic models, using the California Central Valley as a case study. The new method is a supply and demand modeling framework that can be used to simulate and analyze potential climate change and conjunctive use. Supply-constrained and demand-driven linkages in the water system in the Central Valley are represented with the linked climate models, precipitation-runoff models, agricultural and native vegetation water use, and hydrologic flow models to demonstrate the feasibility of this method. Simulated precipitation and temperature were used from the GFDL-A2 climate change scenario through the 21st century to drive a regional water balance mountain hydrologic watershed model (MHWM) for the surrounding watersheds in combination with a regional integrated hydrologic model of the Central Valley (CVHM). Application of this method demonstrates the potential transition from predominantly surface water to groundwater supply for agriculture with secondary effects that may limit this transition of conjunctive use. The particular scenario considered includes intermittent climatic droughts in the first half of the 21st century followed by severe persistent droughts in the second half of the 21st century. These climatic droughts do not yield a valley-wide operational drought but do cause reduced surface water deliveries and increased groundwater abstractions that may cause additional land subsidence, reduced water for riparian habitat, or changes in flows at the Sacramento-San Joaquin River Delta. The method developed here can be used to explore conjunctive use adaptation options and hydrologic risk assessments in regional hydrologic systems throughout the world.

  18. Latest research related to climate change analysis with applications in impact studies over the territory of Serbia

    Science.gov (United States)

    Vukovic, Ana; Vujadinovic, Mirjam; Djurdjevic, Vladimir; Cvetkovic, Bojan; Djordjevic, Marija; Ruml, Mirjana; Rankovic-Vasic, Zorica; Przic, Zoran; Stojicic, Djurdja; Krzic, Aleksandra; Rajkovic, Borivoj

    2015-04-01

    Serbia is a country with relatively small scale terrain features with economy mostly based on local landowners' agricultural production. Climate change analysis must be downscaled accordingly, to recognize climatological features of the farmlands. Climate model simulations and impact studies significantly contribute to the future strategic planning in economic development and therefore impact analysis must be approached with high level of confidence. This paper includes research related to climate change and impacts in Serbia resulted from cooperative work of the modeling and user community. Dynamical downscaling of climate projections for the 21st century with multi-model approach and statistical bias correction are done in order to prepare model results for impact studies. Presented results are from simulations performed using regional EBU-POM model, which is forced with A1B and A2 SRES/IPCC (2007) with comparative analysis with other regional models and from the latest high resolution NMMB simulations forced with RCP8.5 IPCC scenario (2012). Application of bias correction of the model results is necessary when calculated indices are not linearly dependent on the model results and delta approach in presenting results with respect to present climate simulations is insufficient. This is most important during the summer over the north part of the country where model bias produce much higher temperatures and less precipitation, which is known as "summer drying problem" and is common in regional models' simulations over the Pannonian valley. Some of the results, which are already observed in present climate, like higher temperatures and disturbance in the precipitation pattern, lead to present and future advancement of the start of the vegetation period toward earlier dates, associated with an increased risk of the late spring frost, extended vegetation period, disturbed preparation for the rest period, increased duration and frequency of the draught periods, etc

  19. Climate Change and Health

    Science.gov (United States)

    ... sheets Fact files Questions & answers Features Multimedia Contacts Climate change and health Fact sheet Reviewed June 2016 Key ... in improved health, particularly through reduced air pollution. Climate change Over the last 50 years, human activities – particularly ...

  20. A Social Identity Analysis of Climate Change and Environmental Attitudes and Behaviors: Insights and Opportunities.

    Science.gov (United States)

    Fielding, Kelly S; Hornsey, Matthew J

    2016-01-01

    Environmental challenges are often marked by an intergroup dimension. Political conservatives and progressives are divided on their beliefs about climate change, farmers come into conflict with scientists and environmentalists over water allocation or species protection, and communities oppose big business and mining companies that threaten their local environment. These intergroup tensions are reminders of the powerful influence social contexts and group memberships can have on attitudes, beliefs, and actions relating to climate change and the environment more broadly. In this paper, we use social identity theory to help describe and explain these processes. We review literature showing, how conceiving of oneself in terms of a particular social identity influences our environmental attitudes and behaviors, how relations between groups can impact on environmental outcomes, and how the content of social identities can direct group members to act in more or less pro-environmental ways. We discuss the similarities and differences between the social identity approach to these phenomena and related theories, such as cultural cognition theory, the theory of planned behavior, and value-belief-norm theory. Importantly, we also advance social-identity based strategies to foster more sustainable environmental attitudes and behaviors. Although this theoretical approach can provide important insights and potential solutions, more research is needed to build the empirical base, especially in relation to testing social identity solutions.

  1. A social identity analysis of climate change and environmental attitudes and behaviors: Insights and opportunities

    Directory of Open Access Journals (Sweden)

    Kelly Shanene Fielding

    2016-02-01

    Full Text Available Environmental challenges are often marked by an intergroup dimension. Political conservatives and progressives are divided on their beliefs about climate change, farmers come into conflict with scientists and environmentalists over water allocation or species protection, and communities oppose big business and mining companies that threaten their local environment. These intergroup tensions are reminders of the powerful influence social contexts and group memberships can have on attitudes, beliefs, and actions relating to climate change and the environment more broadly. In this paper we use social identity theory to help describe and explain these processes. We review literature showing how conceiving of oneself in terms of a particular social identity influences our environmental attitudes and behaviors, how relations between groups can impact on environmental outcomes, and how the content of social identities can direct group members to act in more or less pro-environmental ways. We discuss the similarities and differences between the social identity approach to these phenomena and related theories such as cultural cognition theory, the theory of planned behavior and value-belief-norm theory. Importantly, we also advance social-identity based strategies to foster more sustainable environmental attitudes and behaviors. Although this theoretical approach can provide important insights and potential solutions, more research is needed to build the empirical base, especially in relation to testing social identity solutions.

  2. A Social Identity Analysis of Climate Change and Environmental Attitudes and Behaviors: Insights and Opportunities

    Science.gov (United States)

    Fielding, Kelly S.; Hornsey, Matthew J.

    2016-01-01

    Environmental challenges are often marked by an intergroup dimension. Political conservatives and progressives are divided on their beliefs about climate change, farmers come into conflict with scientists and environmentalists over water allocation or species protection, and communities oppose big business and mining companies that threaten their local environment. These intergroup tensions are reminders of the powerful influence social contexts and group memberships can have on attitudes, beliefs, and actions relating to climate change and the environment more broadly. In this paper, we use social identity theory to help describe and explain these processes. We review literature showing, how conceiving of oneself in terms of a particular social identity influences our environmental attitudes and behaviors, how relations between groups can impact on environmental outcomes, and how the content of social identities can direct group members to act in more or less pro-environmental ways. We discuss the similarities and differences between the social identity approach to these phenomena and related theories, such as cultural cognition theory, the theory of planned behavior, and value-belief-norm theory. Importantly, we also advance social-identity based strategies to foster more sustainable environmental attitudes and behaviors. Although this theoretical approach can provide important insights and potential solutions, more research is needed to build the empirical base, especially in relation to testing social identity solutions. PMID:26903924

  3. Climate Change Law

    NARCIS (Netherlands)

    Farber, D.A.; Peeters, Marjan

    2016-01-01

    This book brings together over seventy fifty authors for a comprehensive examination of the emerging global regime of climate change law. Despite the relative youth of climate change law, we can already begin to see the outlines of legal regimes addressing climate change mitigation and adaptation (a

  4. Climate change impacts on food system

    Science.gov (United States)

    Zhang, X.; Cai, X.; Zhu, T.

    2014-12-01

    Food system includes biophysical factors (climate, land and water), human environments (production technologies and food consumption, distribution and marketing), as well as the dynamic interactions within them. Climate change affects agriculture and food systems in various ways. Agricultural production can be influenced directly by climatic factors such as mean temperature rising, change in rainfall patterns, and more frequent extreme events. Eventually, climate change could cause shift of arable land, alteration of water availability, abnormal fluctuation of food prices, and increase of people at risk of malnutrition. This work aims to evaluate how climate change would affect agricultural production biophysically and how these effects would propagate to social factors at the global level. In order to model the complex interactions between the natural and social components, a Global Optimization model of Agricultural Land and Water resources (GOALW) is applied to the analysis. GOALW includes various demands of human society (food, feed, other), explicit production module, and irrigation water availability constraint. The objective of GOALW is to maximize global social welfare (consumers' surplus and producers' surplus).Crop-wise irrigation water use in different regions around the world are determined by the model; marginal value of water (MVW) can be obtained from the model, which implies how much additional welfare benefit could be gained with one unit increase in local water availability. Using GOALW, we will analyze two questions in this presentation: 1) how climate change will alter irrigation requirements and how the social system would buffer that by price/demand adjustment; 2) how will the MVW be affected by climate change and what are the controlling factors. These results facilitate meaningful insights for investment and adaptation strategies in sustaining world's food security under climate change.

  5. Climaite - a three factor climate change ecosystem manipulation study: set up and approaches for data analysis

    DEFF Research Database (Denmark)

    N. Mikkelsen, Teis; Beier, Claus; Schmidt, Inger Kappel;

    In a new Danish climate change related field scale experiment, CLIMAITE, we are investigating the impacts of individual and multiple simultaneous global changes on ecosystem processes and functioning in a Danish semi natural grassland vegetation dominated by Deschampsia flexuosa and Calluna...... vulgaris. The Climaite experiment involves three global change factors: elevated CO2 (510 ppm), elevated temperature (+ 1-2 C) and altered precipitation (1-1.5 months extended drought in May-July) all compared to ambient conditions in a complete factorial design. The experiment includes six replicates......, the physiological status of plants, soil water chemistry and emission of green house gasses. The CO2 is enhanced all year around during daylight hours in 6 plots by the use of a FACE system (F. Miglietta design). Temperature elevation is achieved by night time warming where IR reflective curtains automatically...

  6. E-participation and Climate Change in Europe: An analysis of local government practices

    Directory of Open Access Journals (Sweden)

    Ana Yetano

    2013-10-01

    Full Text Available Citizens are demanding greater transparency and accountability from their governments, and seek to participate in shaping the policies that affect their lives. The diffusion of the Internet has raised expectations that electronic tools may increase citizen participation in government decision-making and stop the decline of trust in political institutions. This paper brings together two relevant topics, e-participation and climate change, analyzing the websites of the environment departments of European local governments that have signed the Aalborg+10 commitments, in order to establish to what extent European local governments are making use of the Internet to promote e-participation and environmentally-friendly behaviors among their citizens. Our results show that the developments on e-participation are higher in transparency than interactivity. The Internet as a tool to revitalize the public sphere is still limited to those countries with higher levels of transparency, and penetration of ICTs and a culture of citizen engagement.

  7. The application of remote sensing techniques for air pollution analysis and climate change on Indian subcontinent

    Science.gov (United States)

    Palve, S. N.; Nemade, P. D., Dr.; Ghude, S. D., Dr.

    2016-06-01

    India is home to an extraordinary variety of climatic regions, ranging from tropical in the south to temperate and alpine in the Himalayan north, where elevated regions receive sustained winter snowfall. The subcontinent is characterized by high levels of air pollution due to intensively developing industries and mass fuel consumption for domestic purposes. The main tropospheric pollutants (O3, NO2, CO, formaldehyde (HCHO) and SO2) and two major greenhouse gases (tropospheric O3 and methane (CH4)) and important parameters of aerosols, which play a key role in climate change and affecting on the overall well-being of subcontinent residents. In light of considering these facts this paper aims to investigate possible impact of air pollutants over the climate change on Indian subcontinent. Satellite derived column aerosol optical depth (AOD) is a cost effective way to monitor and study aerosols distribution and effects over a long time period. AOD is found to be increasing rapidly since 2000 in summer season that may cause adverse effect to the agricultural crops and also to the human health. Increased aerosol loading may likely affect the rainfall which is responsible for the observed drought conditions over the Indian subcontinent. Carbon monoxide is emitted into the atmosphere by biomass burning activities and India is the second largest contributor of CO emissions in Asia. The MOPITT CO retrievals at 850 hPa show large CO emission from the IG region. The development of convective activity associated with the ASM leads to large scale vertical transport of the boundary layer CO from the Indian region into the upper troposphere. TCO over the Indian subcontinent during 2007 has a systematic and gradual variation, spatial as well as temporal. Higher amount of TCO in the northern latitudes and simultaneous lower TCO at near equatorial latitudes indicates depletion of ozone near the equator and accumulation at higher latitudes within the subcontinent. In addition, changes

  8. Applied analysis

    CERN Document Server

    Lanczos, Cornelius

    2010-01-01

    Basic text for graduate and advanced undergraduate deals with search for roots of algebraic equations encountered in vibration and flutter problems and in those of static and dynamic stability. Other topics devoted to matrices and eigenvalue problems, large-scale linear systems, harmonic analysis and data analysis, more.

  9. Managing Climate Change Risks

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R. [CSIRO Atmospheric Research, PMB1 Aspendale, Victoria 3195 (Australia)

    2003-07-01

    Issues of uncertainty, scale and delay between action and response mean that 'dangerous' climate change is best managed within a risk assessment framework that evolves as new information is gathered. Risk can be broadly defined as the combination of likelihood and consequence; the latter measured as vulnerability to greenhouse-induced climate change. The most robust way to assess climate change damages in a probabilistic framework is as the likelihood of critical threshold exceedance. Because vulnerability is dominated by local factors, global vulnerability is the aggregation of many local impacts being forced beyond their coping ranges. Several case studies, generic sea level rise and temperature, coral bleaching on the Great Barrier Reef and water supply in an Australian catchment, are used to show how local risk assessments can be assessed then expressed as a function of global warming. Impacts treated thus can be aggregated to assess global risks consistent with Article 2 of the UNFCCC. A 'proof of concept' example is then used to show how the stabilisation of greenhouse gases can constrain the likelihood of exceeding critical thresholds at both the both local and global scale. This analysis suggests that even if the costs of reducing greenhouse gas emissions and the benefits of avoiding climate damages can be estimated, the likelihood of being able to meet a cost-benefit target is limited by both physical and socio-economic uncertainties. In terms of managing climate change risks, adaptation will be most effective at reducing vulnerability likely to occur at low levels of warming. Successive efforts to mitigate greenhouse gases will reduce the likelihood of reaching levels of global warming from the top down, with the highest potential temperatures being avoided first, irrespective of contributing scientific uncertainties. This implies that the first cuts in emissions will always produce the largest economic benefits in terms of avoided

  10. Biogeochemical analysis of ancient Pacific Cod bone suggests Hg bioaccumulation was linked to paleo sea level rise and climate change

    Directory of Open Access Journals (Sweden)

    Maribeth S. Murray

    2015-02-01

    Full Text Available Deglaciation at the end of the Pleistocene initiated major changes in ocean circulation and distribution. Within a brief geological time, large areas of land were inundated by sea-level rise and today global sea level is 120 m above its minimum stand during the last glacial maximum. This was the era of modern sea shelf formation; climate change caused coastal plain flooding and created broad continental shelves with innumerable consequences to marine and terrestrial ecosystems and human populations. In Alaska, the Bering Sea nearly doubled in size and stretches of coastline to the south were flooded, with regional variability in the timing and extent of submergence. Here we suggest how past climate change and coastal flooding are linked to mercury bioaccumulation that could have had profound impacts on past human populations and that, under conditions of continued climate warming, may have future impacts. Biogeochemical analysis of total mercury (tHg and 13C/15N ratios in the bone collagen of archaeologically recovered Pacific Cod (Gadus macrocephalus bone shows high levels of tHg during early/mid-Holocene. This pattern cannot be linked to anthropogenic activity or to food web trophic changes, but may result from natural phenomena such as increases in productivity, carbon supply and coastal flooding driven by glacial melting and sea-level rise. The coastal flooding could have led to increased methylation of Hg in newly submerged terrestrial land and vegetation. Methylmercury is bioaccumulated through aquatic food webs with attendant consequences for the health of fish and their consumers, including people. This is the first study of tHg levels in a marine species from the Gulf of Alaska to provide a time series spanning nearly the entire Holocene and we propose that past coastal flooding resulting from climate change had the potential to input significant quantities of Hg into marine food webs and subsequently to human consumers.

  11. Life-cycle assessment of electricity generation systems and applications for climate change policy analysis

    Science.gov (United States)

    Meier, Paul Joseph

    This research uses Life-Cycle Assessment (LCA) to better understand the energy and environmental performance for two electricity generation systems, a 620 MW combined-cycle natural gas plant, and an 8kW building-integrated photovoltaic system. The results of the LCA are used to provide an effective and accurate means for evaluating greenhouse gas emission reduction strategies for U.S. electricity generation. The modern combined-cycle plant considered in this thesis is nominally 48% thermally efficient, but it is only 43% energy efficient when evaluated across its entire life-cycle, due primarily to energy losses during the natural gas fuel cycle. The emission rate for the combined-cycle natural gas plant life-cycle (469 tonnes CO2-equivalent per GWeh), was 23% higher than the emission rate from plant operation alone (382 tonnes CO2-equivalent per GWeh). Uncertainty in the rate of fuel-cycle methane releases results in a potential range of emission rates between 457 to 534 tonnes CO 2-equivalent per GWeh for the studied plant. The photovoltaic system modules have a sunlight to DC electricity conversion efficiency of 5.7%. However, the system's sunlight to AC electricity conversion efficiency is 4.3%, when accounting for life-cycle energy inputs, as well as losses due to system wiring, AC inversion, and module degradation. The LCA illustrates that the PV system has a low, but not zero, life-cycle greenhouse gas emission rate of 39 Tonnes CO2-equivalent per GWeh. A ternary method of evaluation is used to evaluate three greenhouse gas mitigation alternatives: (1) fuel-switching from coal to natural gas for Kyoto-based compliance, (2) fuel-switching from coal to nuclear/renewable for Kyoto based compliance, and (3) fuel-switching to meet the White House House's Global Climate Change Initiative. In a moderate growth scenario, fuel-switching from coal to natural gas fails to meet a Kyoto-based emission target, while fuel-switching to nuclear/renewable meets the emission

  12. Monthly water balance model for climate change analysis in agriculture with R

    Science.gov (United States)

    Kalicz, Péter; Herceg, András; Gribovszki, Zoltán

    2015-04-01

    For Hungary regional climate models projections suggest a warmer climate and some changes in annual precipitation distribution. These changes force the whole agrarian sector to consider the traditional cropping technologies. This situation is more serious in forestry because some forest populations are on their xeric distributional limits (Gálos et. al, 2014). Additionally, a decision has an impact sometimes longer than one hundred years. To support the stakeholder there is a project which develops a GIS (Geographic Information System) based decision support system. Hydrology plays significant role in this system because water is often one of the most important limiting factor in Hungary. A modified Thorntwaite-type monthly water balance model was choosen to produce hydrological estimations for the GIS modules. This model is calibrated with the available data between 2000 and 2008. Beside other meteorological data we used mainly an actual evapotranspiration map in the calibration phase, which was derived with the Complementary-relationship-based evapotranspiration mapping (CREMAP; Szilágyi and Kovács, 2011) technique. The calibration process is pixel based and it has several stochastic steps. We try to find a flexible solution for the model implementation which easy to automatize and can be integrate in GIS systems. The open source R programming language was selected which well satisfied these demands. The result of this development is summarized as an R package. This publication has been supported by AGRARKLIMA.2 VKSZ_12-1-2013-0034 project. References Gálos B., Antal V., Czimber K., Mátyás Cs. (2014) Forest ecosystems, sewage works and droughts - possibilities for climate change adaptation. In: Santamarta J.C., Hernandez-Gutiérrez L.E., Arraiza M.P. (eds) 2014. Natural Hazards and Climate Change/Riesgos Naturales y Cambio Climático. Madrid: Colegio de Ingenieros de Montes. ISBN 978-84-617-1060-7, D.L. TF 565-2014, 91-104 pp Szilágyi J., Kovács Á. (2011

  13. Analysis of plant available water in the context of climate change using Thornthwaite type monthly water balance model

    Science.gov (United States)

    Herceg, Andras; Gribovszki, Zoltan; Kalicz, Peter

    2016-04-01

    The hydrological impact of climate change can be dramatic. The primary objective of this paper was to analyze plant available water in the context of climate change using Thornthwaite type monthly water balance calibrated by remote sensing based ET maps. The calibrated model was used for projection on the basis of 4 climate model datasets. The 3 periods of projection were: 2010-2040, 2040-2070, and 2070-2100. The benefit of this method is its robust build up, which can be applied if temperature and precipitation time series are accessible. The key parameter is the water storage capacity of the soil (SOILMAX), which can be calibrated using the actual available evapotranspiration data. If the soil's physical properties are available, the maximal rooting depth is also projectable. Plant available water was evaluated for future scenarios focusing water stress periods. For testing the model, a dataset of an agricultural parcel next to Mosonmagyaróvár and a dataset of a small forest covered catchment next to Sopron were successfully used. Each of the models projected slightly ascending evapotranspiration values (+7 percent), but strongly decreasing soil moisture values (-15 percent) for the 21st century. The soil moisture minimum values (generally appeared at the end of the summer) reduced more than 50 percent which indicate almost critical water stress for vegetation. This research has been supported by Agroclimate.2 VKSZ_12-1-2013-0034 project.

  14. Analysis of Swedish Forest Owners' Information and Knowledge-Sharing Networks for Decision-Making: Insights for Climate Change Communication and Adaptation.

    Science.gov (United States)

    André, Karin; Baird, Julia; Gerger Swartling, Åsa; Vulturius, Gregor; Plummer, Ryan

    2017-03-08

    To further the understanding of climate change adaptation processes, more attention needs to be paid to the various contextual factors that shape whether and how climate-related knowledge and information is received and acted upon by actors involved. This study sets out to examine the characteristics of forest owners' in Sweden, the information and knowledge-sharing networks they draw upon for decision-making, and their perceptions of climate risks, their forests' resilience, the need for adaptation, and perceived adaptive capacity. By applying the concept of ego-network analysis, the empirical data was generated by a quantitative survey distributed to 3000 private forest owners' in Sweden in 2014 with a response rate of 31%. The results show that there is a positive correlation, even though it is generally weak, between forest owner climate perceptions and (i) network features, i.e. network size and heterogeneity, and (ii) presence of certain alter groups (i.e. network members or actors). Results indicate that forest owners' social networks currently serve only a minimal function of sharing knowledge of climate change and adaptation. Moreover, considering the fairly infrequent contact between respondents and alter groups, the timing of knowledge sharing is important. In conclusion we suggest those actors that forest owners' most frequently communicate with, especially forestry experts providing advisory services (e.g. forest owner associations, companies, and authorities) have a clear role to communicate both the risks of climate change and opportunities for adaptation. Peers are valuable in connecting information about climate risks and adaptation to the actual forest property.

  15. ADVANCED ENERGY TECHNOLOGIES AND CLIMATE CHANGE: AN ANALYSIS USING THE GLOBAL CHANGE ASSESSMENT MODEL (GCAM)

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, J. A.; Wise, M. A.; MacCracken, C. N.

    1994-05-01

    We report results from a "top down" energy-economy model employing "bottom up" assumptions embedded in an integrated assessment framework, the Global Change Assessment Model (GCAM). The analys~s shows that from the perspective of long-term energy system development, differences. in results from the "top down" and "bottom up" research communities would appear to be more closely linked to differences in assumptions regarding the economic cost associated with advanced technologies than to differences In modeling approach. The adoption of assumptions regarding advanced energy technologies were shown to have a profound effect on the future rate of anthropogenic climate change. The cumulative effect of the five sets of advanced energy technologies is to reduce annual emissions from fossil fuel use to levels which stabilize atmospheric concentrations below 550 ppmv, the point at which atmospheric concentrations are double those that existed in the m~ddleo f the eighteenth century. While all energy technologies play roles in reducing future fossil fuel carbon dioxide emissions, the introduction of advanced biomass energy production technology plays a particularly important role. If biomass energy can be made available at $2.40/GJ or less in quantities sufficient to make it the core energy supply technology in the middle of the next century, then emissions can be cut dramatically relative to the reference case. The problem of emiss~ons reduction becomes one of technology development and deployment in this case, and not one of fiscal and regulatory intervention.

  16. Statistical bias correction method applied on CMIP5 datasets over the Indian region during the summer monsoon season for climate change applications

    Science.gov (United States)

    Prasanna, V.

    2016-11-01

    This study makes use of temperature and precipitation from CMIP5 climate model output for climate change application studies over the Indian region during the summer monsoon season (JJAS). Bias correction of temperature and precipitation from CMIP5 GCM simulation results with respect to observation is discussed in detail. The non-linear statistical bias correction is a suitable bias correction method for climate change data because it is simple and does not add up artificial uncertainties to the impact assessment of climate change scenarios for climate change application studies (agricultural production changes) in the future. The simple statistical bias correction uses observational constraints on the GCM baseline, and the projected results are scaled with respect to the changing magnitude in future scenarios, varying from one model to the other. Two types of bias correction techniques are shown here: (1) a simple bias correction using a percentile-based quantile-mapping algorithm and (2) a simple but improved bias correction method, a cumulative distribution function (CDF; Weibull distribution function)-based quantile-mapping algorithm. This study shows that the percentile-based quantile mapping method gives results similar to the CDF (Weibull)-based quantile mapping method, and both the methods are comparable. The bias correction is applied on temperature and precipitation variables for present climate and future projected data to make use of it in a simple statistical model to understand the future changes in crop production over the Indian region during the summer monsoon season. In total, 12 CMIP5 models are used for Historical (1901-2005), RCP4.5 (2005-2100), and RCP8.5 (2005-2100) scenarios. The climate index from each CMIP5 model and the observed agricultural yield index over the Indian region are used in a regression model to project the changes in the agricultural yield over India from RCP4.5 and RCP8.5 scenarios. The results revealed a better

  17. Energy R and D portfolio analysis based on climate change mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, Graham, E-mail: graham.pugh@hq.doe.gov [U.S. Climate Change Technology Program, U.S. Department of Energy, Washington, DC (United States); Clarke, Leon [Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD (United States); Marlay, Robert [U.S. Climate Change Technology Program, U.S. Department of Energy, Washington, DC (United States); Kyle, Page; Wise, Marshall; McJeon, Haewon [Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD (United States); Chan, Gabriel [U.S. Climate Change Technology Program, U.S. Department of Energy, Washington, DC (United States)

    2011-07-15

    The diverse nature and uncertain potential of the energy technologies that are or may be available to mitigate greenhouse gas emissions pose a challenge to policymakers trying to invest public funds in an optimal R and D portfolio. This paper discusses two analytical approaches to this challenge used to inform funding decisions related to the U.S. Department of Energy (DOE) applied energy R and D portfolio. The two approaches are distinguished by the constraints under which they were conducted: the need to provide an end-to-end portfolio analysis as input to internal DOE budgeting processes, but with limited time and subject to institutional constraints regarding important issues such as expert judgment. Because of these constraints, neither approach should be viewed as an attempt to push forward the state of the art in portfolio analysis in the abstract. Instead, they are an attempt to use more stylized, heuristic methods that can provide first-order insights in the DOE institutional context. Both approaches make use of advanced technology scenarios implemented in an integrated assessment modeling framework and then apply expert judgment regarding the likelihood of achieving associated R and D and commercialization goals. The approaches differ in the granularity of the scenarios used and in the definition of the benefits of technological advance: in one approach the benefits are defined as the cumulative emission reduction attributable to a particular technology; in the other approach benefits are defined as the cumulative cost reduction. In both approaches a return on investment (ROI) criterion is established based on benefits divided by federal R and D investment. The ROI is then used to build a first-order approximation of an optimal applied energy R and D investment portfolio. Although these methodologies have been used to inform an actual budget request, the results reflect only one input among many used in budget formulation. The results are therefore not

  18. Energy R&D portfolio analysis based on climate change mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, Graham; Clarke, Leon E.; Marlay, Robert; Kyle, G. Page; Wise, Marshall A.; McJeon, Haewon C.; Chan, Gabriel

    2011-07-01

    The diverse nature and uncertain potential of the energy technologies that are or may be available to mitigate greenhouse gas emissions pose a challenge to policymakers trying to invest public funds in an optimal R&D portfolio. This paper discusses two analytical approaches to this challenge used to inform funding decisions related to the U.S. Department of Energy (DOE) applied energy R&D portfolio. The two approaches are distinguished by the constraints under which they were conducted: the need to provide an end-to-end portfolio analysis as input to internal DOE budgeting processes, but with limited time and subject to institutional constraints regarding important issues such as expert judgment. Because of these constraints, neither approach should be viewed as an attempt to push forward the state of the art in portfolio analysis in the abstract. Instead, they are an attempt to use more stylized, heuristic methods that can provide first-order insights in the DOE institutional context. Both approaches make use of advanced technology scenarios implemented in an integrated assessment modeling framework and then apply expert judgment regarding the likelihood of achieving associated R&D and commercialization goals. The approaches differ in the granularity of the scenarios used and in the definition of the benefits of technological advance: in one approach the benefits are defined as the cumulative emission reduction attributable to a particular technology; in the other approach benefits are defined as the cumulative cost reduction. In both approaches a return on investment (ROI) criterion is established based on benefits divided by federal R&D investment. The ROI is then used to build a first-order approximation of an optimal applied energy R&D investment portfolio. Although these methodologies have been used to inform an actual budget request, the results reflect only one input among many used in budget formulation. The results are therefore not representative of an

  19. Tests of Climate Change Effects on the Applicability of Flood Frequency Analysis in the Fulda Catchment Area, Germany

    Science.gov (United States)

    Fink, Gabriel Stefan Maria; Koch, Manfred

    2010-05-01

    An important aspect in hydrological engineering is the assessment of flood risk as a basis for the dimensioning of various hydraulic structures. The central element of such a risk assessment is flood frequency analysis (FFA) which itself is based on extreme value statistics theory. Despite the progress of methods in this scientific branch, the development, decision, and fitting of an appropriate distribution function still remains a challenge, particularly, when certain underlying assumptions of the theory are not met in real applications. This is, for example, the case when the stationarity-condition for a random flood time series is not satisfied anymore as could be the situation when long-term hydrological impacts of future climate change are to be considered. The objective of this study is to verify the applicability of FFA's to simulated flood time series in the 21st century. The main interest is to see whether the underlying conditions for the application of extreme value statistic are still valid under the impact of long-term climate change on global and regional flood regimes resp. hydrological systems. The object of the investigation is the Fulda catchment with a size of 6930 km² in central Germany. This hydrological system is simulated with the distributed hydrological model SWAT (Soil and Water Assessment Tool). Calibration and validation of the model with measured daily flow data has been carried out for the (C20) periods 1960-76 and 1977-2004, respectively, and result in a good fit (as quantified by the RN²) of the simulated to the modeled daily mean runoff. The climate data used for the hydrological predictions for the 2001-2100 time period are the results of dynamically downscaled calculations with the regional model REMO, the latter using the output of the global circulation model ECHAM5 MPI-OM. The three IPCC-scenarios A1B, A2, and B1 are tested in the subsequent SWAT hydrological simulations, using the predicted climate variables precipitation

  20. Climate Change Indicators

    Science.gov (United States)

    Presents information, charts and graphs showing measured climate changes across 40 indicators related to greenhouse gases, weather and climate, oceans, snow and ice, heath and society, and ecosystems.

  1. Holocene climate change in Newfoundland reconstructed using oxygen isotope analysis of lake sediment cores

    Science.gov (United States)

    Finkenbinder, Matthew S.; Abbott, Mark B.; Steinman, Byron A.

    2016-08-01

    Carbonate minerals that precipitate from open-basin lakes can provide archives of past variations in the oxygen isotopic composition of precipitation (δ18Oppt). Holocene δ18Oppt records from the circum- North Atlantic region exhibit large fluctuations during times of rapid ice sheet deglaciation, followed by more stable conditions when interglacial boundary conditions were achieved. However, the timing, magnitude, and climatic controls on century to millennial-scale variations in δ18Oppt in northeastern North America are unclear principally because of a dearth of paleo-proxy data. Here we present a lacustrine sediment oxygen isotope (δ18O) record spanning 10,200 to 1200 calendar years before present (cal yr BP) from Cheeseman Lake, a small, alkaline, hydrologically open lake basin located in west-central Newfoundland, Canada. Stable isotope data from regional lakes, rivers, and precipitation indicate that Cheeseman Lake water δ18O values are consistent with the isotopic composition of inflowing meteoric water. In light of the open-basin hydrology and relatively short water residence time of the lake, we interpret down-core variations in calcite oxygen isotope (δ18Ocal) values to primarily reflect changes in δ18Oppt and atmospheric temperature, although other factors such as changes in the seasonality of precipitation may be a minor influence. We conducted a series of climate sensitivity simulations with a lake hydrologic and isotope mass balance model to investigate theoretical lake water δ18O responses to climate change. Results from these experiments suggest that Cheeseman Lake δ18O values are primarily controlled by temperature and to a much lesser extent, the seasonality of precipitation. Increasing and more positive δ18Ocal values between 10,200 and 8000 cal yr BP are interpreted to reflect the waning influence of the Laurentide Ice Sheet on atmospheric circulation, warming temperatures, and rapidly changing surface ocean δ18O from the input of

  2. Assessment of climate change impacts on climate variables using probabilistic ensemble modeling and trend analysis

    Science.gov (United States)

    Safavi, Hamid R.; Sajjadi, Sayed Mahdi; Raghibi, Vahid

    2016-08-01

    Water resources in snow-dependent regions have undergone significant changes due to climate change. Snow measurements in these regions have revealed alarming declines in snowfall over the past few years. The Zayandeh-Rud River in central Iran chiefly depends on winter falls as snow for supplying water from wet regions in high Zagrous Mountains to the downstream, (semi-)arid, low-lying lands. In this study, the historical records (baseline: 1971-2000) of climate variables (temperature and precipitation) in the wet region were chosen to construct a probabilistic ensemble model using 15 GCMs in order to forecast future trends and changes while the Long Ashton Research Station Weather Generator (LARS-WG) was utilized to project climate variables under two A2 and B1 scenarios to a future period (2015-2044). Since future snow water equivalent (SWE) forecasts by GCMs were not available for the study area, an artificial neural network (ANN) was implemented to build a relationship between climate variables and snow water equivalent for the baseline period to estimate future snowfall amounts. As a last step, homogeneity and trend tests were performed to evaluate the robustness of the data series and changes were examined to detect past and future variations. Results indicate different characteristics of the climate variables at upstream stations. A shift is observed in the type of precipitation from snow to rain as well as in its quantities across the subregions. The key role in these shifts and the subsequent side effects such as water losses is played by temperature.

  3. Implications of spatial scale on climate change assessments

    Directory of Open Access Journals (Sweden)

    Pingale Santosh

    2015-09-01

    Full Text Available While assessing the effects of climate change at global or regional scales, local factors responsible for climate change are generalized, which results in the averaging of effects. However, climate change assessment is required at a micro-scale to determine the severity of climate change. To ascertain the impact of spatial scales on climate change assessments, trends and shifts in annual and seasonal (monsoon and non-monsoon, rainfall and temperature (minimum, average and maximum were determined at three different spatial resolutions in India (Ajmer city, Ajmer District and Rajasthan State. The Mann–Kendall (MK, MK test with pre-whitening of series (MK–PW, and Modified Mann–Kendall (MMK test, along with other statistical techniques were used for the trend analysis. The Pettitt–Mann–Whitney (PMW test was applied to detect the temporal shift in climatic parameters. The Sen’s slope and % change in rainfall and temperature were also estimated over the study period (35 years. The annual and seasonal average temperature indicates significant warming trends, when assessed at a fine spatial resolution (Ajmer city compared to a coarser spatial resolution (Ajmer District and Rajasthan State resolutions. Increasing trend was observed in minimum, mean and maximum temperature at all spatial scales; however, trends were more pronounced at a finer spatial resolution (Ajmer city. The PMW test indicates only the significant shift in non-monsoon season rainfall, which shows an increase in rainfall after 1995 in Ajmer city. The Kurtosis and coefficient of variation also revealed significant climate change, when assessed at a finer spatial resolution (Ajmer city compared to a coarser resolution. This shows the contribution of land use/land cover change and several other local anthropogenic activities on climate change. The results of this study can be useful for the identification of optimum climate change adaptation and mitigation strategies based on

  4. Climate Change and Poverty Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Simon

    2011-08-15

    Climate change will make it increasingly difficult to achieve and sustain development goals. This is largely because climate effects on poverty remain poorly understood, and poverty reduction strategies do not adequately support climate resilience. Ensuring effective development in the face of climate change requires action on six fronts: investing in a stronger climate and poverty evidence base; applying the learning about development effectiveness to how we address adaptation needs; supporting nationally derived, integrated policies and programmes; including the climate-vulnerable poor in developing strategies; and identifying how mitigation strategies can also reduce poverty and enable adaptation.

  5. Body composition to climate change studies - the many facets of neutron induced prompt gamma-ray analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mitra,S.

    2008-11-17

    In-vivo body composition analysis of humans and animals and in-situ analysis of soil using fast neutron inelastic scattering and thermal neutron capture induced prompt-gamma rays have been described. By measuring carbon (C), nitrogen (N) and oxygen (O), protein, fat and water are determined. C determination in soil has become important for understanding below ground carbon sequestration process in the light of climate change studies. Various neutron sources ranging from radio isotopic to compact 14 MeV neutron generators employing the associated particle neutron time-of-flight technique or micro-second pulsing were implemented. Gamma spectroscopy using recently developed digital multi-channel analyzers has also been described.

  6. Is There a Temperate Bias in Our Understanding of How Climate Change Will Alter Plant-Herbivore Interactions? A Meta-analysis of Experimental Studies.

    Science.gov (United States)

    Mundim, Fabiane M; Bruna, Emilio M

    2016-09-01

    Climate change can drive major shifts in community composition and interactions between resident species. However, the magnitude of these changes depends on the type of interactions and the biome in which they take place. We review the existing conceptual framework for how climate change will influence tropical plant-herbivore interactions and formalize a similar framework for the temperate zone. We then conduct the first biome-specific tests of how plant-herbivore interactions change in response to climate-driven changes in temperature, precipitation, ambient CO2, and ozone. We used quantitative meta-analysis to compare predicted and observed changes in experimental studies. Empirical studies were heavily biased toward temperate systems, so testing predicted changes in tropical plant-herbivore interactions was virtually impossible. Furthermore, most studies investigated the effects of CO2 with limited plant and herbivore species. Irrespective of location, most studies manipulated only one climate change factor despite the fact that different factors can act in synergy to alter responses of plants and herbivores. Finally, studies of belowground plant-herbivore interactions were also rare; those conducted suggest that climate change could have major effects on belowground subsystems. Our results suggest that there is a disconnection between the growing literature proposing how climate change will influence plant-herbivore interactions and the studies testing these predictions. General conclusions will also be hampered without better integration of above- and belowground systems, assessing the effects of multiple climate change factors simultaneously, and using greater diversity of species in experiments.

  7. Climate Change and Vietnam

    Science.gov (United States)

    2013-11-01

    expansion of large hydropower and reservoir construction can increase social resilience through associated economic development . However, the same...of the most vulnerable countries globally to the consequences of climate change, Vietnam is highly likely to experience a variety of negative...iii ABSTRACT Climate Change and Vietnam As one of the most vulnerable countries globally to the consequences

  8. Climate Change Crunch Time

    Institute of Scientific and Technical Information of China (English)

    Xie Zhenhua

    2011-01-01

    CLIMATE change is a severe challenge facing humanity in the 21st century and thus the Chinese Government always attaches great importance to the problem.Actively dealing with climate change is China's important strategic policy in its social and economic development.China will make a positive contribution to the world in this regard.

  9. Groundwater and climate change: a sensitivity analysis for the Grand Forks aquifer, southern British Columbia, Canada

    Science.gov (United States)

    Allen, D. M.; Mackie, D. C.; Wei, M.

    The Grand Forks aquifer, located in south-central British Columbia, Canada was used as a case study area for modeling the sensitivity of an aquifer to changes in recharge and river stage consistent with projected climate-change scenarios for the region. Results suggest that variations in recharge to the aquifer under the different climate-change scenarios, modeled under steady-state conditions, have a much smaller impact on the groundwater system than changes in river-stage elevation of the Kettle and Granby Rivers, which flow through the valley. All simulations showed relatively small changes in the overall configuration of the water table and general direction of groundwater flow. High-recharge and low-recharge simulations resulted in approximately a +0.05 m increase and a -0.025 m decrease, respectively, in water-table elevations throughout the aquifer. Simulated changes in river-stage elevation, to reflect higher-than-peak-flow levels (by 20 and 50%), resulted in average changes in the water-table elevation of 2.72 and 3.45 m, respectively. Simulated changes in river-stage elevation, to reflect lower-than-baseflow levels (by 20 and 50%), resulted in average changes in the water-table elevation of -0.48 and -2.10 m, respectively. Current observed water-table elevations in the valley are consistent with an average river-stage elevation (between current baseflow and peak-flow stages). L'aquifère de Grand Forks, situé en Colombie britannique (Canada), a été utilisé comme zone d'étude pour modéliser la sensibilité d'un aquifère à des modifications de la recharge et du niveau de la rivière, correspondant à des scénarios envisagés de changement climatique dans cette région. Les résultats font apparaître que les variations de recharge de l'aquifère pour différents scénarios de changement climatique, modélisées pour des conditions de régime permanent, ont un impact sur le système aquifère beaucoup plus faible que les changements du niveau des

  10. Asking about climate change

    DEFF Research Database (Denmark)

    Nielsen, Jonas Østergaard; D'haen, Sarah Ann Lise

    2014-01-01

    There is increasing evidence that climate change will strongly affect people across the globe. Likely impacts of and adaptations to climate change are drawing the attention of researchers from many disciplines. In adaptation research focus is often on perceptions of climate change...... and on vulnerability and adaptation strategies in a particular region or community. But how do we research the ways in which people experience changing climatic conditions, the processes of decision-making, the actual adaptation strategies carried out and the consequences of these for actors living and dealing...... with climate change? On the basis of a literature review of all articles published in Global Environmental Change between 2000 and 2012 that deal with human dimensions of climate change using qualitative methods this paper provides some answers but also raises some concerns. The period and length of fieldwork...

  11. A Generalized Stability Analysis of the AMOC in Earth System Models: Implication for Decadal Variability and Abrupt Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, Alexey V. [Yale Univ., New Haven, CT (United States)

    2015-01-14

    The central goal of this research project was to understand the mechanisms of decadal and multi-decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) as related to climate variability and abrupt climate change within a hierarchy of climate models ranging from realistic ocean models to comprehensive Earth system models. Generalized Stability Analysis, a method that quantifies the transient and asymptotic growth of perturbations in the system, is one of the main approaches used throughout this project. The topics we have explored range from physical mechanisms that control AMOC variability to the factors that determine AMOC predictability in the Earth system models, to the stability and variability of the AMOC in past climates.

  12. Climate change. Scientific assessment and policy analysis. Technological learning in the energy sector

    Energy Technology Data Exchange (ETDEWEB)

    Lako, P.; Lensink, S.M. [ECN Policy Studies, Petten (Netherlands); Junginger, M.; Van Sark, W.G.J.H.M.; Weiss, M. [Utrecht University, Utrecht (Netherlands)

    2008-04-15

    energy efficient technologies using the experience curve concept. (2) An overview and thorough analysis / discussion of the pitfalls of applying the experience curve approach, based on the issues identified in the various technology studies, and including aspects such as geographical system boundaries, whether the slope of the experience curves is constant or not, statistical error and sensitivity analysis of experience curves, and whether the experience curve approach can also be utilized to quantify improvements in energy efficiency. (3) A demonstration how declining production costs can also be translated in CO2{sub eq} reduction costs. (4) A discussion to what extent policy interventions (by measures to support 'learning-by-searching' and 'learning-by-doing') have been successful in accelerating technological learning and associated production cost reductions. The main scope of the study is a literature review study. A limited additional effort has been made to demonstrate how declining production costs can be translated in trends for decreasing electricity and CO2{sub eq} reduction costs.

  13. Coupled socioeconomic-crop modelling for the participatory local analysis of climate change impacts on smallholder farmers in Guatemala

    Science.gov (United States)

    Malard, J. J.; Adamowski, J. F.; Wang, L. Y.; Rojas, M.; Carrera, J.; Gálvez, J.; Tuy, H. A.; Melgar-Quiñonez, H.

    2015-12-01

    The modelling of the impacts of climate change on agriculture requires the inclusion of socio-economic factors. However, while cropping models and economic models of agricultural systems are common, dynamically coupled socio-economic-biophysical models have not received as much success. A promising methodology for modelling the socioeconomic aspects of coupled natural-human systems is participatory system dynamics modelling, in which stakeholders develop mental maps of the socio-economic system that are then turned into quantified simulation models. This methodology has been successful in the water resources management field. However, while the stocks and flows of water resources have also been represented within the system dynamics modelling framework and thus coupled to the socioeconomic portion of the model, cropping models are ill-suited for such reformulation. In addition, most of these system dynamics models were developed without stakeholder input, limiting the scope for the adoption and implementation of their results. We therefore propose a new methodology for the analysis of climate change variability on agroecosystems which uses dynamically coupled system dynamics (socio-economic) and biophysical (cropping) models to represent both physical and socioeconomic aspects of the agricultural system, using two case studies (intensive market-based agricultural development versus subsistence crop-based development) from rural Guatemala. The system dynamics model component is developed with relevant governmental and NGO stakeholders from rural and agricultural development in the case study regions and includes such processes as education, poverty and food security. Common variables with the cropping models (yield and agricultural management choices) are then used to dynamically couple the two models together, allowing for the analysis of the agroeconomic system's response to and resilience against various climatic and socioeconomic shocks.

  14. Climate change uncertainty and risk assessment in Iran during twenty-first century: evapotranspiration and green water deficit analysis

    Science.gov (United States)

    Karandish, Fatemeh; Mousavi, Seyed-Saeed

    2016-12-01

    For a 120-year period, the projected effects of climate change on annual, seasonal, and monthly potential evapotranspiration (ETo) and green water deficit (GWD) were analyzed involving the associated uncertainties for five climatic zones of Iran. Analysis was carried out using data obtained from 15 general circulation models (GCMs) under three SRES scenarios of A1B, A2, and B1 which were downscaled using LARS-WG for 52 synoptic stations up to 2100. The majority of GCMs as well as the median of the ensemble for each scenario project a positive change in both ETo and GWD. A total of 5.8-19.8 % increase in annual ETo, drier than normal wet seasons, as well as 2.3-56.4 % increase in ETo during December-March period well represent a probable increase in the hydrological water requirement in Iran under global warming. Regarding GWD, the country will experience more arid years requiring 113.7 × 103-576.8 × 103 Mm3 more water to supply annual atmospheric water demand. Semi-arid and Mediterranean regions, principal agricultural producer areas of Iran, will be the most vulnerable part of the country due to 1-38.6 % increase in annual GWD under climate change. In addition, water scarcity for irrigated agriculture will enhance in all climatic zones due to 0.9-41 % increase GWD in June-August. However, rain-fed agriculture might be less affected in the hyper-humid and Mediterranean regions because of 1.1-105.3 % reduction in GWD during wet season. Nevertheless, uncertainty analysis revealed that given results for monthly timescale as well as those for times and regions with lower ETo will be the most uncertain. Based on the results, suitable adaptation solutions are highly required to be undertaken to relieve the extra pressure on the decreased blue water resources in the future.

  15. Quantification of landfill methane using modified Intergovernmental Panel on Climate Change's waste model and error function analysis.

    Science.gov (United States)

    Govindan, Siva Shangari; Agamuthu, P

    2014-10-01

    Waste management can be regarded as a cross-cutting environmental 'mega-issue'. Sound waste management practices support the provision of basic needs for general health, such as clean air, clean water and safe supply of food. In addition, climate change mitigation efforts can be achieved through reduction of greenhouse gas emissions from waste management operations, such as landfills. Landfills generate landfill gas, especially methane, as a result of anaerobic degradation of the degradable components of municipal solid waste. Evaluating the mode of generation and collection of landfill gas has posted a challenge over time. Scientifically, landfill gas generation rates are presently estimated using numerical models. In this study the Intergovernmental Panel on Climate Change's Waste Model is used to estimate the methane generated from a Malaysian sanitary landfill. Key parameters of the model, which are the decay rate and degradable organic carbon, are analysed in two different approaches; the bulk waste approach and waste composition approach. The model is later validated using error function analysis and optimum decay rate, and degradable organic carbon for both approaches were also obtained. The best fitting values for the bulk waste approach are a decay rate of 0.08 y(-1) and degradable organic carbon value of 0.12; and for the waste composition approach the decay rate was found to be 0.09 y(-1) and degradable organic carbon value of 0.08. From this validation exercise, the estimated error was reduced by 81% and 69% for the bulk waste and waste composition approach, respectively. In conclusion, this type of modelling could constitute a sensible starting point for landfills to introduce careful planning for efficient gas recovery in individual landfills.

  16. Climate Change and Roads

    DEFF Research Database (Denmark)

    Chinowsky, P.; Arndt, Channing

    2012-01-01

    Decision-makers who are responsible for determining when and where infrastructure should be developed and/or enhanced are facing a new challenge with the emerging topic of climate change. The paper introduces a stressor–response methodology where engineering-based models are used as a basis...... four climate projection scenarios, the paper details how climate change response decisions may cost the Mozambican government in terms of maintenance costs and long-term roadstock inventory reduction. Through this approach the paper details how a 14% reduction in inventory loss can be achieved through...... the adoption of a proactive, design standard evolution approach to climate change....

  17. Carbon-Temperature-Water Change Analysis for Peanut Production Under Climate Change: A Prototype for the AgMIP Coordinated Climate-Crop Modeling Project (C3MP)

    Science.gov (United States)

    Ruane, Alex C.; McDermid, Sonali; Rosenzweig, Cynthia; Baigorria, Guillermo A.; Jones, James W.; Romero, Consuelo C.; Cecil, L. DeWayne

    2014-01-01

    Climate change is projected to push the limits of cropping systems and has the potential to disrupt the agricultural sector from local to global scales. This article introduces the Coordinated Climate-Crop Modeling Project (C3MP), an initiative of the Agricultural Model Intercomparison and Improvement Project (AgMIP) to engage a global network of crop modelers to explore the impacts of climate change via an investigation of crop responses to changes in carbon dioxide concentration ([CO2]), temperature, and water. As a demonstration of the C3MP protocols and enabled analyses, we apply the Decision Support System for Agrotechnology Transfer (DSSAT) CROPGRO-Peanut crop model for Henry County, Alabama, to evaluate responses to the range of plausible [CO2], temperature changes, and precipitation changes projected by climate models out to the end of the 21st century. These sensitivity tests are used to derive crop model emulators that estimate changes in mean yield and the coefficient of variation for seasonal yields across a broad range of climate conditions, reproducing mean yields from sensitivity test simulations with deviations of ca. 2% for rain-fed conditions. We apply these statistical emulators to investigate how peanuts respond to projections from various global climate models, time periods, and emissions scenarios, finding a robust projection of modest (20%) losses and larger uncertainty at the end of the century under the more severe representative concentration pathway (RCP8.5). This projection is not substantially altered by the selection of the AgMERRA global gridded climate dataset rather than the local historical observations, differences between the Third and Fifth Coupled Model Intercomparison Project (CMIP3 and CMIP5), or the use of the delta method of climate impacts analysis rather than the C3MP impacts response surface and emulator approach.

  18. Applying the Science of Science Communication to Climate Change and Clean Energy: Lessons Learned from the NSF- and PBS-supported "Earth: The Operators' Manual"

    Science.gov (United States)

    Haines-Stiles, G.; Akuginow, E.; Sanford, C.

    2014-12-01

    Yale legal scholar and professor of psychology Dan Kahan has criticized the climate change science community for not applying what's known about effective communications strategies to topics with potentially controversial content. "Earth: The Operators' Manual," funded by NSF's Informal Science Education program and appearing on PBS was hosted by Penn State geoscientist Richard Alley. From the initial proposal forward into airing on public television in 2011 and 2012, ETOM aimed to be authoritative and apolitical while still being engaging to general audiences. Based on social scientific insights from project Advisor, Suzanne Moser, and others, ETOM aimed to avoid "climate porn" scare tactics and over-used footage, and to enlist a diverse group of "messengers" in addition to Alley. An important design criterion was to give equal time to clean energy solutions while pulling no punches as to the consensus findings of leading climate scientists. With the ETOM project now completed and final reports submitted to NSF, what results can be shared to inform future efforts? And how did ETOM compare in audience impact with other major media efforts such as Al Gore's "An Inconvenient Truth" or Showtime's more recent "Years of Living Dangerously"? Results reported draw on the external evaluation by Rockman Et Al, and include both quantitative and qualitative data. Key findings are the importance of including Texan ranchers enthusiastic about wind power alongside Navy Admirals adamant that climate change is human-caused and Marines implementing solar energy to reduce casualties incurred while transporting fossil fuels. In-person presentations by Alley and others at science centers served as de facto focus groups for scripting the TV programs, along with actual focus groups convened by Rockman. The 3rd program, ENERGY QUEST USA, documented 5 quite different communities, from Alaska to Forth Worth, Baltimore, Portland and Kansas, all using competition, local values, and economic

  19. Financing climate change adaptation.

    Science.gov (United States)

    Bouwer, Laurens M; Aerts, Jeroen C J H

    2006-03-01

    This paper examines the topic of financing adaptation in future climate change policies. A major question is whether adaptation in developing countries should be financed under the 1992 United Nations Framework Convention on Climate Change (UNFCCC), or whether funding should come from other sources. We present an overview of financial resources and propose the employment of a two-track approach: one track that attempts to secure climate change adaptation funding under the UNFCCC; and a second track that improves mainstreaming of climate risk management in development efforts. Developed countries would need to demonstrate much greater commitment to the funding of adaptation measures if the UNFCCC were to cover a substantial part of the costs. The mainstreaming of climate change adaptation could follow a risk management path, particularly in relation to disaster risk reduction. 'Climate-proofing' of development projects that currently do not consider climate and weather risks could improve their sustainability.

  20. Criminality and climate change

    Science.gov (United States)

    White, Rob

    2016-08-01

    The impacts of climate change imply a reconceptualization of environment-related criminality. Criminology can offer insight into the definitions and dynamics of this behaviour, and outline potential areas of redress.

  1. Communities under climate change

    DEFF Research Database (Denmark)

    Nogues, David Bravo; Rahbek, Carsten

    2011-01-01

    The distribution of species on Earth and the interactions among them are tightly linked to historical and contemporary climate, so that global climate change will transform the world in which we live. Biological models can now credibly link recent decadal trends in field data to climate change......, but predicting future impacts on biological communities is a major challenge. Attempts to move beyond general macroecological predictions of climate change impact on one hand, and observations from specific, local-scale cases, small-scale experiments, or studies of a few species on the other, raise a plethora...... of unanswered questions. On page 1124 of this issue, Harley (1) reports results that cast new light on how biodiversity, across different trophic levels, responds to climate change....

  2. Students' evaluations about climate change

    Science.gov (United States)

    Lombardi, Doug; Brandt, Carol B.; Bickel, Elliot S.; Burg, Colin

    2016-05-01

    Scientists regularly evaluate alternative explanations of phenomena and solutions to problems. Students should similarly engage in critical evaluation when learning about scientific and engineering topics. However, students do not often demonstrate sophisticated evaluation skills in the classroom. The purpose of the present study was to investigate middle school students' evaluations when confronted with alternative explanations of the complex and controversial topic of climate change. Through a qualitative analysis, we determined that students demonstrated four distinct categories of evaluation when writing about the connections between evidence and alternative explanations of climate change: (a) erroneous evaluation, (b) descriptive evaluation, (c) relational evaluation, and (d) critical evaluation. These categories represent different types of evaluation quality. A quantitative analysis revealed that types of evaluation, along with plausibility perceptions about the alternative explanations, were significant predictors of postinstructional knowledge about scientific principles underlying the climate change phenomenon. Specifically, more robust evaluations and greater plausibility toward the scientifically accepted model of human-induced climate change predicted greater knowledge. These findings demonstrate that instruction promoting critical evaluation and plausibility appraisal may promote greater understanding of socio-scientific topics and increased use of scientific thinking when considering alternative explanations, as is called for by recent science education reform efforts.

  3. Climate change and shareholder value

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-03-16

    During 2005, the Carbon Trust worked with Cairneagle Associates to develop a methodology for analysing shareholder value at risk from climate change. The model developed offers a robust, replicable, top-down approach to analysing such value at risk. In addition to a company's own energy linked ('direct' and electricity linked 'indirect') carbon emissions, it looks further along the value chain and considers broader potential risk. In calculating the financial impact, the analysis quantifies the potential impact on profits, using the shape of the business in 2004, but applying a potential 2013 emissions regulatory regime. 2013 was chosen as the first year after the end of the 2008-2012 Kyoto compliance period (which also equates to Phase Two in the EU Emissions Trading Scheme). A major uncertainty is to what extent countries not currently regulated by the Kyoto Protocol (particularly the USA, India and China) will be brought into committed emission reduction targets from 2013. 2013 therefore represents the earliest year under this uncertain, but likely tougher, regulatory regime. However, although this report focuses on 2013, it needs to be recognised that, for many sectors, financial impacts will be seen significantly before this time. Ten 'case study companies' have been studied, from a range of sectors. In some cases, the 'case study company' analysed is strictly linked to a single company within that sector. In others, just a single corporate division has been reviewed, and in others yet again, characteristics from several companies have been combined to produce a more representative example. In order to enable analysis on a strictly like-for-like basis, the research has been based entirely upon public sources of information. This analysis illustrates what a determined shareholder (or other onlooker) could derive about value at risk from climate change, based upon what companies disclose today. A summary of the

  4. Where is the South in security discourse on climate change? An analysis of India

    NARCIS (Netherlands)

    Boas, I.J.C.

    2014-01-01

    There is an emerging research trend to incorporate views from the Global South in the analysis of the discourse on climate security. This type of research can enrich mainstream literature that often centres on the role and perceptions of actors from the Global North. This article aims to make explic

  5. National Water Infrastructure Adaptation Assessment, Part I: Climate Change Adaptation Readiness Analysis

    Science.gov (United States)

    The report “National Water Infrastructure Adaptation Assessment” is comprised of four parts (Part I to IV), each in an independent volume. The Part I report presented herein describes a preliminary regulatory and technical analysis of water infrastructure and regulations in the ...

  6. Assessing urban climate change resilience

    Science.gov (United States)

    Voskaki, Asimina

    2016-04-01

    Recent extreme weather events demonstrate that many urban environments are vulnerable to climate change impacts and as a consequence designing systems for future climate seems to be an important parameter in sustainable urban planning. The focus of this research is the development of a theoretical framework to assess climate change resilience in urban environments. The methodological approach used encompasses literature review, detailed analysis, and combination of data, and the development of a series of evaluation criteria, which are further analyzed into a list of measures. The choice of the specific measures is based upon various environmental, urban planning parameters, social, economic and institutional features taking into consideration key vulnerabilities and risk associated with climate change. The selected criteria are further prioritized to incorporate into the evaluation framework the level of importance of different issues towards a climate change resilient city. The framework could support decision making as regards the ability of an urban system to adapt. In addition it gives information on the level of adaptation, outlining barriers to sustainable urban planning and pointing out drivers for action and reaction.

  7. International business and global climate change

    NARCIS (Netherlands)

    Pinkse, J.; Kolk, A.

    2008-01-01

    Climate change has become an important topic on the business agenda with strong pressure being placed on companies to respond and contribute to finding solutions to this urgent problem. This text provides a comprehensive analysis of international business responses to global climate change and clima

  8. Climate change and daily press : Italy vs Usa parallel analysis; Stampa e cambiamento climatico : un confronto internazionale

    Energy Technology Data Exchange (ETDEWEB)

    Borrelli, G.; Mazzotta, V. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Ambiente; Falconi, C.; Grossi, R.; Farabollini, F.

    1996-06-01

    Among ENEA (Italian National Agency for New Technologies, Energy, and the Environment) activities, one deals with analysis and strategies of environmental information. A survey of four daily newspaper coverage, on an issue (Global Climate Change) belonging to this area, has been realized. The involved newspapers are: two Italian ones, namely `La Repubblica` and `Il Corriere della Sera`, two North-American ones, namely `New York Times` and `Washington Post`. Purpose of the work was that of detecting the qualitative and quantitative level of consciousness of the Italian press via a comparison with the North-American press, notoriously sensible and careful on environmental issues. The number of articled analyzed is partitioned in the following numerical data: 319 for the `New York Times`, 309 for the `Washington Post`, 146 for the `Corriere della Sera`, 81 articles for `La Repubblica`. The time period covered for the analysis spans from 1989, initiatic year for the organization of the 1992 Rio Conference, to December 1994, deadline date for the submission of national

  9. Sensitivity analysis of modelled responses of vegetation dynamics on the Tibetan Plateau to doubled CO2 and associated climate change

    Science.gov (United States)

    Qiu, Linjing; Liu, Xiaodong

    2016-04-01

    Increases in the atmospheric CO2 concentration affect both the global climate and plant metabolism, particularly for high-altitude ecosystems. Because of the limitations of field experiments, it is difficult to evaluate the responses of vegetation to CO2 increases and separate the effects of CO2 and associated climate change using direct observations at a regional scale. Here, we used the Community Earth System Model (CESM, version 1.0.4) to examine these effects. Initiated from bare ground, we simulated the vegetation composition and productivity under two CO2 concentrations (367 and 734 ppm) and associated climate conditions to separate the comparative contributions of doubled CO2 and CO2-induced climate change to the vegetation dynamics on the Tibetan Plateau (TP). The results revealed whether the individual effect of doubled CO2 and its induced climate change or their combined effects caused a decrease in the foliage projective cover (FPC) of C3 arctic grass on the TP. Both doubled CO2 and climate change had a positive effect on the FPC of the temperate and tropical tree plant functional types (PFTs) on the TP, but doubled CO2 led to FPC decreases of C4 grass and broadleaf deciduous shrubs, whereas the climate change resulted in FPC decrease in C3 non-arctic grass and boreal needleleaf evergreen trees. Although the combination of the doubled CO2 and associated climate change increased the area-averaged leaf area index (LAI), the effect of doubled CO2 on the LAI increase (95 %) was larger than the effect of CO2-induced climate change (5 %). Similarly, the simulated gross primary productivity (GPP) and net primary productivity (NPP) were primarily sensitive to the doubled CO2, compared with the CO2-induced climate change, which alone increased the regional GPP and NPP by 251.22 and 87.79 g C m-2 year-1, respectively. Regionally, the vegetation response was most noticeable in the south-eastern TP. Although both doubled CO2 and associated climate change had a

  10. Mediterranean versus Red sea corals facing climate change, a transcriptome analysis

    Science.gov (United States)

    Maor-Landaw, Keren; Waldman Ben-Asher, Hiba; Karako-Lampert, Sarit; Salmon-Divon, Mali; Prada, Fiorella; Caroselli, Erik; Goffredo, Stefano; Falini, Giuseppe; Dubinsky, Zvy; Levy, Oren

    2017-02-01

    The anthropogenic increase in atmospheric CO2 that drives global warming and ocean acidification raises serious concerns regarding the future of corals, the main carbonate biomineralizers. Here we used transcriptome analysis to study the effect of long-term gradual temperature increase (annual rate), combined with lowered pH values, on a sub-tropical Red Sea coral, Stylophora pistillata, and on a temperate Mediterranean symbiotic coral Balanophyllia europaea. The gene expression profiles revealed a strong effect of both temperature increase and pH decrease implying for synergism response. The temperate coral, exposed to a twice as high range of seasonal temperature fluctuations than the Red Sea species, faced stress more effectively. The compensatory strategy for coping apparently involves deviating cellular resources into a massive up-regulation of genes in general, and specifically of genes involved in the generation of metabolic energy. Our results imply that sub-lethal, prolonged exposure to stress can stimulate evolutionary increase in stress resilience.

  11. The Impact Of Climate Change On Production Of Multiple Food Crops In The 21st Century- An Analysis Based On Two Land Surface Models

    Science.gov (United States)

    Song, Y.; Jain, A. K.; Lawrence, P.; Kheshgi, H. S.

    2015-12-01

    Climate change presents potential risks to global food supply. To date, understanding of climate change effects on crop production remains uncertain due to (1) uncertainties in projected climate change trends and their spatial and temporal variability; (2) uncertainties in the physiological, genetic and molecular basis of crop adaptation to climate change and adaptive management practices and (3) uncertainties in current land surface models to estimate crop adaptation to climate change. We apply the process-based land surface model, the Integrated Science Assessment model (ISAM), to assess the impact of climate change on the production of row crops (corn, soybean, rice, cotton, sugarcane and wheat) at global and regional scales. The results are compared to the corresponding simulations performed with the crop model in the Community Land Model (CLM4.5). Three questions are addressed: (1) what is the impact of different climate change projections on global crop production; (2) what is the effect of crop adaptation and adaptive management practices on projected crop production; and (3) how do model differences in ISAM and CLM4.5 impact projected global crop production and adaptive management practices over the 21st century. ISAM and CLM4.5 have been included in the Agricultural Model Intercomparison and Improvement Project (AgMIP). Both models consider the effects of temperature, light and soil water and nitrogen availability on crop photosynthesis and temperature control on crop phenology and carbon allocation. ISAM also considers the adaptation of crop phenology, carbon allocation and structures growth to drought, light stress and N stress. The effects of model differences on projected crop production are evaluated by performing the following experiments. Each model is driven with historical atmospheric forcing data (1901-2005) and projected atmospheric forcing data (2006-2100) under RCP 4.5 or RCP 8.5 from CESM CMIP5 simulations to estimate the effects of different

  12. Predictive analysis of landslide susceptibility in the Kao-Ping watershed, Taiwan under climate change conditions

    Directory of Open Access Journals (Sweden)

    K. J. Shou

    2015-01-01

    Full Text Available Among the most critical issues, climatic abnormalities caused by global warming also affect Taiwan significantly for the past decade. The increasing frequency of extreme rainfall events, in which concentrated and intensive rainfalls generally cause geohazards including landslides and debris flows. The extraordinary Typhoon Morakot hit Southern Taiwan on 8 August 2009 and induced serious flooding and landslides. In this study, the Kao-Ping River watershed was adopted as the study area, and the typical events 2007 Krosa Typhoon and 2009 Morakot Typhoon were adopted to train the susceptibility model. This study employs rainfall frequency analysis together with the atmospheric general circulation model (AGCM downscaling estimation to understand the temporal rainfall trends, distributions, and intensities in the Kao-Ping River watershed. The rainfall estimates were introduced in the landslide susceptibility model to produce the predictive landslide susceptibility for various rainfall scenarios, including abnormal climate conditions. These results can be used for hazard remediation, mitigation, and prevention plans for the Kao-Ping River watershed.

  13. Multi-Factor Impact Analysis of Agricultural Production in Bangladesh with Climate Change

    Science.gov (United States)

    Ruane, Alex C.; Major, David C.; Yu, Winston H.; Alam, Mozaharul; Hussain, Sk. Ghulam; Khan, Abu Saleh; Hassan, Ahmadul; Al Hossain, Bhuiya Md. Tamim; Goldberg, Richard; Horton, Radley M.; Rosenzweig, Cynthia

    2012-01-01

    Diverse vulnerabilities of Bangladesh's agricultural sector in 16 sub-regions are assessed using experiments designed to investigate climate impact factors in isolation and in combination. Climate information from a suite of global climate models (GCMs) is used to drive models assessing the agricultural impact of changes in temperature, precipitation, carbon dioxide concentrations, river floods, and sea level rise for the 2040-2069 period in comparison to a historical baseline. Using the multi-factor impacts analysis framework developed in Yu et al. (2010), this study provides new sub-regional vulnerability analyses and quantifies key uncertainties in climate and production. Rice (aman, boro, and aus seasons) and wheat production are simulated in each sub-region using the biophysical Crop Environment REsource Synthesis (CERES) models. These simulations are then combined with the MIKE BASIN hydrologic model for river floods in the Ganges-Brahmaputra-Meghna (GBM) Basins, and the MIKE21Two-Dimensional Estuary Model to determine coastal inundation under conditions of higher mean sea level. The impacts of each factor depend on GCM configurations, emissions pathways, sub-regions, and particular seasons and crops. Temperature increases generally reduce production across all scenarios. Precipitation changes can have either a positive or a negative impact, with a high degree of uncertainty across GCMs. Carbon dioxide impacts on crop production are positive and depend on the emissions pathway. Increasing river flood areas reduce production in affected sub-regions. Precipitation uncertainties from different GCMs and emissions scenarios are reduced when integrated across the large GBM Basins' hydrology. Agriculture in Southern Bangladesh is severely affected by sea level rise even when cyclonic surges are not fully considered, with impacts increasing under the higher emissions scenario.

  14. Flood risk and adaptation strategies under climate change and urban expansion: A probabilistic analysis using global data.

    Science.gov (United States)

    Muis, Sanne; Güneralp, Burak; Jongman, Brenden; Aerts, Jeroen C J H; Ward, Philip J

    2015-12-15

    An accurate understanding of flood risk and its drivers is crucial for effective risk management. Detailed risk projections, including uncertainties, are however rarely available, particularly in developing countries. This paper presents a method that integrates recent advances in global-scale modeling of flood hazard and land change, which enables the probabilistic analysis of future trends in national-scale flood risk. We demonstrate its application to Indonesia. We develop 1000 spatially-explicit projections of urban expansion from 2000 to 2030 that account for uncertainty associated with population and economic growth projections, as well as uncertainty in where urban land change may occur. The projections show that the urban extent increases by 215%-357% (5th and 95th percentiles). Urban expansion is particularly rapid on Java, which accounts for 79% of the national increase. From 2000 to 2030, increases in exposure will elevate flood risk by, on average, 76% and 120% for river and coastal floods. While sea level rise will further increase the exposure-induced trend by 19%-37%, the response of river floods to climate change is highly uncertain. However, as urban expansion is the main driver of future risk, the implementation of adaptation measures is increasingly urgent, regardless of the wide uncertainty in climate projections. Using probabilistic urban projections, we show that spatial planning can be a very effective adaptation strategy. Our study emphasizes that global data can be used successfully for probabilistic risk assessment in data-scarce countries.

  15. The power of advice: experts in Chinese climate change politics

    Energy Technology Data Exchange (ETDEWEB)

    Wuebbeke, Jost

    2010-07-01

    This study examines the role of experts in Chinas climate change policy. With the beginning of the UNFCCC process, many semi-official institutes and universities emerged, dealing with the scientific, economic and political aspects of climate change. The major argument presented here is that experts are important actors in Chinese climate change politics, and that they have been underestimated in research on China. This analysis has two aims: first, applying a science, policy interface model from regime theory, it examines the political impact of various research organizations during different stages of the policy-making process. In the second step, analysis turns to the causes behind the degree of impact. These include the relevance of administrative links, the quality of knowledge, and personal ties. The results show that, in particular, semi-official institutes and certain universities can have a very high impact on political action.(auth)

  16. Predicting the Response of Electricity Load to Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Patrick [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Colman, Jesse [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kalendra, Eric [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-07-28

    Our purpose is to develop a methodology to quantify the impact of climate change on electric loads in the United States. We perform simple linear regression, assisted by geospatial smoothing, on paired temperature and load time-series to estimate the heating- and coolinginduced sensitivity to temperature across 300 transmission zones and 16 seasonal and diurnal time periods. The estimated load sensitivities can be coupled with climate scenarios to quantify the potential impact of climate change on load, with a primary application being long-term electricity scenarios. The method allows regional and seasonal differences in climate and load response to be reflected in the electricity scenarios. While the immediate product of this analysis was designed to mesh with the spatial and temporal resolution of a specific electricity model to enable climate change scenarios and analysis with that model, we also propose that the process could be applied for other models and purposes.

  17. Managing Climate Change Refugia for Climate Adaptation

    Science.gov (United States)

    The concept of refugia has long been studied from theoretical and paleontological perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change ref...

  18. Climate Change in Prehistory

    Science.gov (United States)

    Burroughs, William James

    2005-06-01

    How did humankind deal with the extreme challenges of the last Ice Age? How have the relatively benign post-Ice Age conditions affected the evolution and spread of humanity across the globe? By setting our genetic history in the context of climate change during prehistory, the origin of many features of our modern world are identified and presented in this illuminating book. It reviews the aspects of our physiology and intellectual development that have been influenced by climatic factors, and how features of our lives - diet, language and the domestication of animals - are also the product of the climate in which we evolved. In short: climate change in prehistory has in many ways made us what we are today. Climate Change in Prehistory weaves together studies of the climate with anthropological, archaeological and historical studies, and will fascinate all those interested in the effects of climate on human development and history.

  19. Climate Change Adaptation

    DEFF Research Database (Denmark)

    Hudecz, Adriána

    -operation and research into the common problems of the Northern Periphery. This report is an output of the ROADEX “Implementing Accessibility” project (2009-2012). It gives a summary of the results of research into adaptation measures to combat climate change effects on low volume roads in the Northern Periphery....... The research was carried out between January 2000 and March 2012. One of the biggest challenges that mankind has to face is the prospect of climate change resulting from emissions of greenhouse gases. These gases trap energy in the atmosphere and cause global surface temperatures to rise. This warming in turn...... causes changes in other climatic variables such as rainfall, humidity and wind speed that impact on the functioning of infrastructure such road networks. This paper discusses the climate changes predicted by the world’s meteorological organisations and considers how these may impact on the public...

  20. Bottom-"wide" Approach to Climate Change - Typology and Analysis on Climate Vulnerability Reduction through Voluntary Actions

    Directory of Open Access Journals (Sweden)

    Kiyoto Yamaura

    2013-07-01

    Full Text Available Climate change risk is mostly and often unfairly cast upon those who are vulnerable. As one of the effective and spreadable means in reducing human vulnerability to climate change, this paper and its findings address the role, strength and limitations of voluntary actions. Through an extensive review of various climate change literature, projects and interviews among practitioners, the authors looked at thetypes of interventions and results that voluntary actions have achieved. The paperintroducesvarious types of voluntary activities such as awareness raising, community mobilization and empowerment, community-based adaptation and mitigation, and voluntary environmental regulations and schemes. Such bottom-"wide" approach to climate change is closely linked with civil environmentalism with broad focus and also scientifically strengthened by its engagement with civic science. It urges shifting the mind-set of international development agencies to flexibly accommodate and maximize the potential of voluntary, bottom-wide actions in combating climate change. Finally, the paper lists out pieces of recommendation to further improve and fully utilize voluntary actions in reducing vulnerabilityon the ground, by emphasizing long-term orientation, capacity development, monitoring and evaluation and building partnerships at the local level.

  1. Climate change and cities

    Energy Technology Data Exchange (ETDEWEB)

    Satterthwaite, David

    2006-10-15

    What is done, or not done, in cities in relation to climate change over the next 5-10 years will affect hundreds of millions of people, because their lives and livelihoods are at risk from global warming. What is done in cities will also have a major influence on whether the escalating risks for the whole planet will be reduced or eliminated. Climate change needs to be considered in all development plans and investments - local, regional, national and international. Urban growth must be made more climate-resilient and help reduce, rather than increase, greenhouse gas emissions. This will not be done by the market; it can only be done by governments.

  2. Perception-based analysis of climate change effect on forest-based livelihood: The case of Vhembe District in South Africa

    Directory of Open Access Journals (Sweden)

    Chidiebere Ofoegbu

    2016-03-01

    Full Text Available Forests are vulnerable to climate change and are also major sources of livelihood for many rural households in Africa. This study examines rural people’s perceptions of climate change impacts on forest-based livelihoods using rural communities of Vhembe District in South Africa as a case study. The study was based on the principles of perceived impact-based assessment, and sustainable livelihoods framework. Using the stratified proportionate random sampling procedure in combination with weighted Enumeration Area for the selected communities, 366 households were chosen and interviewed. Data analysis involved computing frequencies and conducting the Chi-square, binomial tests and binary logistic regression analysis. The respondents identified erratic rainfall, extreme temperature, extreme drought and flooding as key climatic events in their community. But not all identified key climatic events were perceived to constitute risk to forest products and forest-based livelihood. Only extreme drought was indicated to constitute risk to availability of forest products. In addition, the binary logistic regression showed a significant difference (p < 0.05 in the perceived risk of climate change to the availability of essential forest products across the three municipalities. Hence the need for forest development initiatives that target vulnerable forest products per community as a means of enhancing resilience of forest-based livelihood to climate change impacts in rural community development in South Africa.

  3. Urban Vulnerability and Climate Change in Africa

    DEFF Research Database (Denmark)

    Jørgensen, Gertrud

    Urbanisation and climate change are among the major challenges for sustainable development in Africa. The overall aim of this book is to present innovative approaches to vulnerability analysis and for enhancing the resilience of African cities against climate change-induced risks. Locally adapted...... IPCC climate change scenarios, which also consider possible changes in urban population, have been developed. Innovative strategies to land use and spatial planning are proposed that seek synergies between the adaptation to climate change and the need to solve social problems. Furthermore, the book...... explores the role of governance in successfully coping with climate-induced risks in urban areas. The book is unique in that it combines: a top-down perspective of climate change modeling with a bottom-up perspective of vulnerability assessment; quantitative approaches from engineering sciences...

  4. Resilience of sewage services to climate change uncertainty: analysis of the management of sewer overflows in two Parisian suburban areas.

    Science.gov (United States)

    Rioust, E.; Deroubaix, J. F.; Barroca, B.; Bonierbale, T.; de Gouvello, B.; Deutsch, J. C.; Hubert, G.

    2009-04-01

    This paper considers the resilience perspective as an approach for understanding social and political vulnerabilities of urban services. The authors examine to what extend uncertainty due to climate change may affect the resilience of these urban services. The resilience perspective is increasingly used for analysing social groups' capacities to adapt to and live with disturbances. A lot of work on resilience has focused on the capacity to absorb shocks and still maintain functions. But there is also another aspect of resilience, which leads to take into account systems vulnerabilities and to aim at understanding their equilibrium and re-organization capacity. The purpose with this paper is to assess sewage systems capacities to adapt to climate change. Indeed, climate change could cause an increase of extreme rain events and, as a matter of consequence, an increase of sewer overflows and flooding of urbanised areas. Sewer systems have to cope with this change that may gravely affect urban planning. In recent studies of political science, risk management has been considered as a public policy involving and resulting from complex social, political and technical processes (Gilbert et al. 2003). From this point of view, the management of wastewaters and storm waters has to be considered not only as a technical but also as a political and a social system. Therefore, political science can be a fruitful perspective to understand the stakeholders perceptions of uncertainty and the way they are going to integrate this issue in their practices. The authors analyse the adaptive capacities of two sewer systems located in the Parisian suburban area. The chosen areas are highly populated. Each network is managed within a political and administrative unit called "Département". Both authorities of these "Départements" implement a public sewage service. Nonetheless these networks are connected and part of the greater Paris sewage policy. In both areas a real time control of

  5. Energy and Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-15

    Climate change, and more specifically the carbon emissions from energy production and use, is one of the more vexing problems facing society today. The Intergovernmental Panel on Climate Change (IPCC) has just completed its latest assessment on the state of the science of climate change, on the potential consequences related to this change, and on the mitigation steps that could be implemented beginning now, particularly in the energy sector. Few people now doubt that anthropogenic climate change is real or that steps must be taken to deal with it. The World Energy Council has long recognized this serious concern and that in its role as the world's leading international energy organization, it can address the concerns of how to provide adequate energy for human well-being while sustaining our overall quality of life. It has now performed and published 15 reports and working papers on this subject. This report examines what has worked and what is likely to work in the future in this regard and provides policymakers with a practical roadmap to a low-carbon future and the steps needed to achieve it.

  6. Evaporation and Climate Change

    NARCIS (Netherlands)

    Brandsma, T.

    1993-01-01

    In this article the influence of climate change on evaporation is discussed. The emphasis is on open water evaporation. Three methods for calculating evaporation are compared considering only changes in temperature and factors directly dependent on temperature. The Penman-method is used to investiga

  7. Olivine and climate change

    NARCIS (Netherlands)

    Schuiling, R.D.

    2012-01-01

    The greenhouse effect, thanks mainly to the water vapor in our atmosphere, has created a livable climate on Earth. Climate change, however, may potentially have dire consequences. It is generally assumed that the rise in CO2 levels in the atmosphere is the main culprit, although several other greenh

  8. Climate change matters.

    Science.gov (United States)

    Macpherson, Cheryl Cox

    2014-04-01

    One manifestation of climate change is the increasingly severe extreme weather that causes injury, illness and death through heat stress, air pollution, infectious disease and other means. Leading health organisations around the world are responding to the related water and food shortages and volatility of energy and agriculture prices that threaten health and health economics. Environmental and climate ethics highlight the associated challenges to human rights and distributive justice but rarely address health or encompass bioethical methods or analyses. Public health ethics and its broader umbrella, bioethics, remain relatively silent on climate change. Meanwhile global population growth creates more people who aspire to Western lifestyles and unrestrained socioeconomic growth. Fulfilling these aspirations generates more emissions; worsens climate change; and undermines virtues and values that engender appreciation of, and protections for, natural resources. Greater understanding of how virtues and values are evolving in different contexts, and the associated consequences, might nudge the individual and collective priorities that inform public policy toward embracing stewardship and responsibility for environmental resources necessary to health. Instead of neglecting climate change and related policy, public health ethics and bioethics should explore these issues; bring transparency to the tradeoffs that permit emissions to continue at current rates; and offer deeper understanding about what is at stake and what it means to live a good life in today's world.

  9. Adaptation to climate change

    NARCIS (Netherlands)

    Carmin, J.; Tierney, K.; Chu, E.; Hunter, L.M.; Roberts, J.T.; Shi, L.; Dunlap, R.E.; Brulle, R.J.

    2015-01-01

    Climate change adaptation involves major global and societal challenges such as finding adequate and equitable adaptation funding and integrating adaptation and development programs. Current funding is insufficient. Debates between the Global North and South center on how best to allocate the financ

  10. Tackling Climate Change

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Representatives from nearly 200 countries and regions have gathered in Durban,South Africa,for the 17th session of the Conference of the Parties to the United Nations Framework Convention on Climate Change (UNFCCC) and the 7th session of the Meeting of the Parties to the Kyoto Protocol.The meeting is the follow-up conference to tacklin

  11. Learning Progressions & Climate Change

    Science.gov (United States)

    Parker, Joyce M.; de los Santos, Elizabeth X.; Anderson, Charles W.

    2015-01-01

    Our society is currently having serious debates about sources of energy and global climate change. But do students (and the public) have the requisite knowledge to engage these issues as informed citizenry? The learning-progression research summarized here indicates that only 10% of high school students typically have a level of understanding…

  12. DTU Climate Change Technologies

    DEFF Research Database (Denmark)

    During 2008 and 2009, DTU held a workshop series focusing on assessment of and adaption to climate changes as well as on mitigation of green house gasses. In the workshops, a total of 1500 scientists, government officials and business leaders have outlined scenarios for technology development...

  13. Greenhouse gas emissions from swine operations: evaluation of the Intergovernmental Panel on Climate Change approaches through meta-analysis.

    Science.gov (United States)

    Liu, Z; Powers, W; Liu, H

    2013-08-01

    The objective was to provide a systematic review of the literature on greenhouse gas (GHG) emissions from swine operations, with a meta-analysis that integrates results of independent studies. A total of 53 studies that measured GHG emissions from swine operations were included in the analyses. Results showed that the Intergovernmental Panel on Climate Change (IPCC) approaches were effective in estimating the overall CH4 and N2O emission levels from swine operations, but the variation of the measured emissions is not adequately captured. An overestimation by the IPCC approaches for CH4 emissions was observed for swine buildings with pit systems in European studies and the average percentage relative difference (PRD) between the measured and the IPCC values is -21.1%. The observed CH4 emissions from lagoons were lower than the IPCC estimated values and the average PRD is -33.9%. In North American studies the observed N2O emission factors for swine buildings with pit systems were significantly lower than the IPCC default values whereas in European studies they were significantly greater than the IPCC default values. The measured CH4 and N2O emissions were significantly affected by stage of production (P = 0.05 and <0.01, respectively) and geographic regions (P = 0.04 and 0.02, respectively). The IPCC approaches were effective in simulating the effect of temperature on CH4 emissions from outdoor slurry storage facilities whereas they could overestimate CH4 emissions from lagoons at low temperatures. The CH4 emissions from pits inside swine buildings were not significantly affected by average ambient temperatures. A positive relationship between diet CP content and CH4 emissions was confirmed in the meta-analysis. The obtained knowledge can be helpful in efforts to improve estimation of GHG emissions from swine operations.

  14. Climate change and skin.

    Science.gov (United States)

    Balato, N; Ayala, F; Megna, M; Balato, A; Patruno, C

    2013-02-01

    Global climate appears to be changing at an unprecedented rate. Climate change can be caused by several factors that include variations in solar radiation received by earth, oceanic processes (such as oceanic circulation), plate tectonics, and volcanic eruptions, as well as human-induced alterations of the natural world. Many human activities, such as the use of fossil fuel and the consequent accumulation of greenhouse gases in the atmosphere, land consumption, deforestation, industrial processes, as well as some agriculture practices are contributing to global climate change. Indeed, many authors have reported on the current trend towards global warming (average surface temperature has augmented by 0.6 °C over the past 100 years), decreased precipitation, atmospheric humidity changes, and global rise in extreme climatic events. The magnitude and cause of these changes and their impact on human activity have become important matters of debate worldwide, representing climate change as one of the greatest challenges of the modern age. Although many articles have been written based on observations and various predictive models of how climate change could affect social, economic and health systems, only few studies exist about the effects of this change on skin physiology and diseases. However, the skin is the most exposed organ to environment; therefore, cutaneous diseases are inclined to have a high sensitivity to climate. For example, global warming, deforestation and changes in precipitation have been linked to variations in the geographical distribution of vectors of some infectious diseases (leishmaniasis, lyme disease, etc) by changing their spread, whereas warm and humid environment can also encourage the colonization of the skin by bacteria and fungi. The present review focuses on the wide and complex relationship between climate change and dermatology, showing the numerous factors that are contributing to modify the incidence and the clinical pattern of many

  15. Analysing responses to climate change through the lens of reflexivity.

    Science.gov (United States)

    Davidson, Debra

    2012-12-01

    Sociologists are increasingly directing attention toward social responses to climate change. As is true of any new field of inquiry, theoretical frameworks guiding the research to date have room for improvement. One advance could be achieved through closer engagement with Reflexivity Theory, particularly the work of Margaret Archer, who asks just how individuals come to give attention to certain problems, and formulate responses to them. Individuals vary significantly in regard to their understanding of and concern for anthropogenic climate change, and these standpoints in turn influence commitment to mitigation and adaptation. The emergent social interactions among all such agents in turn influence the morphogenetic trajectories through which social structures will evolve, but the role of 'meta-reflexives' is particularly crucial. Identifying pathways of individual climate change reflexivity can make a valuable contribution to our understanding of the potential for and nature of collective responses. In this paper, I explore climate change reflexivity, with particular attention to climate change meta-reflexives, through a qualitative analysis of personal interviews with residents of two small communities in Alberta, Canada. Applying Reflexivity Theory to this context articulates dimensions of reflexive processing not elaborated in current theoretical treatments, including future outlook and comfort with uncertainty, among others.

  16. Future PMP Estimation in Korea under AR5 RCP 8.5 climate change scenarios and its Changes Cause Analysis

    Science.gov (United States)

    Kim, S.; Lee, J.; Okjeong, L.; Bogyeong, C.; Park, M. W.

    2015-12-01

    In this presentation, Korea's probable maximum precipitations (PMPs) which reflects all of the storm data until recently are calculated, and are compared to the existing PMPs which were calculated at 2000. In Korea, abnormal weather phenomena such as typhoon Rusa and Maemi, and the extreme rainfall event occurred on the east coast of the northern region, that can have a significant impact on the PMP estimation, have frequently happened since 2000. After selecting 240 major storm events from 1973 to 2012, new PMPs are proposed with respect to storm areas (25, 100, 225, 400, 900, 2025, 4900, 10000 and 19600 km2) and storm durations (1, 2, 4, 6, 8, 12, 18, 24, 48 and 72 hours) using the Korea hydro-meteorological method. After estimating future PMPs using future rainfall and dew point temperature information under the Korea Meteorological Administration AR5 RCP 8.5, changes in the PMPs under climate change will be investigated by comparison with present and future PMPs. By separating the changes in PMPs under climate change into the changes caused by rainfall and dew point temperature, the relative impact of future rainfall and dew point temperature information under climate change on future PMPs is quantified. This research was supported by a grant 'Development of the Evaluation Technology for Complex Causes of Inundation Vulnerability and the Response Plans in Coastal Urban Areas for Adaptation to Climate Change' [MPSS-NH-2015-77] from the Natural Hazard Mitigation Research Group, Ministry of Public Safety and Security of Korea.

  17. A multi-model analysis of change in potential yield of major crops in China under climate change

    Science.gov (United States)

    Yin, Y.; Tang, Q.; Liu, X.

    2015-02-01

    Climate change may affect crop growth and yield, which consequently casts a shadow of doubt over China's food self-sufficiency efforts. In this study, we used the projections derived from four global gridded crop models (GGCropMs) to assess the effects of future climate change on the yields of the major crops (i.e., maize, rice, soybean and wheat) in China. The GGCropMs were forced with the bias-corrected climate data from five global climate models (GCMs) under Representative Concentration Pathway (RCP) 8.5, which were made available through the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). The results show that the potential yields of the crops would decrease in the 21st century without carbon dioxide (CO2) fertilization effect. With the CO2 effect, the potential yields of rice and soybean would increase, while the potential yields of maize and wheat would decrease. The uncertainty in yields resulting from the GGCropMs is larger than the uncertainty derived from GCMs in the greater part of China. Climate change may benefit rice and soybean yields in high-altitude and cold regions which are not in the current main agricultural area. However, the potential yields of maize, soybean and wheat may decrease in the major food production area. Development of new agronomic management strategies may be useful for coping with climate change in the areas with a high risk of yield reduction.

  18. Offshore CCS and ocean acidification : A global long-term probabilistic cost-benefit analysis of climate change mitigation

    NARCIS (Netherlands)

    van der Zwaan, B.C.C.; Gerlagh, Reyer

    2016-01-01

    Public fear over environmental and health impacts of CO2 storage, or over potential leakage of CO2 from geological reservoirs, is among the reasons why over the past decade CCS has not yet been deployed on a scale large enough so as to meaningfully contribute to mitigate climate change. Storage of C

  19. Sporopollen analysis of Core B10 in the southern Yellow Sea and the reflected characteristics of climate changes

    Institute of Scientific and Technical Information of China (English)

    FUMingzuo; LIZhen; XUXiaowei; SHIXuefa

    2003-01-01

    Eight sporopollen zones have been divided based on the results of high-resolution sporopollen analysis of Core B10 in the southern Yellow Sea. Based on the results along with 14C datings and the subbottom profiling data,climatic and environmental changes since the last stage of late Pleistocene are discussed. The main conclusions are drawn as follows: (1) the vegetation evolved in the process of coniferous forest-grassland containing broad-leaved trees→coniferous and broad-leaved mixed forest→coniferons and broad-leaved mixed forest-grassland prevailed by coniferous trees→coniferous and broad-leaved mixed forest-grassland containing evergreen broad-leaved trees→coniferons and broad-leaved mixed forest-grassland prevailed by broadleaved trees→deciduous broad-leaved forest-meadow containing evergreen broad-leaved trees→coniferous and broadleaved mixed forest-grassland prevailed by broad-leaved trees→coniferous and broad-leaved mixed forest containing evergreen broad-leaved trees; (2) eight stages of climate changes are identified as the cold and dry stage, the temperate and wet stage, the cold and dry stage, the warm and dry stage, the temperate and wet stage, the hot and dry stage, the temperate and dry stage, then the warm and dry stage in turn; (3) the sedimentary environment developed from land,to littoral zone, to land again, then to shore-neritic zone; and (4) the Yellow Sea Warm Current formed during early-Holocene rather than Atlantic stage.

  20. Sporopollen analysis of Core B10 in the southern Yellow Sea and the reflected characteristics of climate changes

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Eight sporopollen zones have been divided based on the results of high-resolution sporopollen analysis of Core B10 in the southern Yellow Sea. Based on the results along with 14C datings and the subbottom profiling data, climatic and environmental changes since the last stage of late Pleistocene are discussed. The main conclusions are drawn as follows: (1) the vegetation evolved in the process of coniferous forest-grassland containing broad-leaved trees→coniferous and broad-leaved mixed forest→coniferous and broad-leaved mixed forest-grassland prevailed by coniferous trees→coniferous and broad-leaved mixed forest-grassland containing evergreen broad-leaved trees→coniferous and broad-leaved mixed forest-grassland prevailed by broad- leaved trees→deciduous broad-leaved forest-meadow containing evergreen broad-leaved trees→coniferous and broad- leaved mixed forest-grassland prevailed by broad-leaved trees→coniferous and broad-leaved mixed forest containing evergreen broad-leaved trees;(2) eight stages of climate changes are identified as the cold and dry stage, the temperate and wet stage, the cold and dry stage, the warm and dry stage, the temperate and wet stage, the hot and dry stage, the temperate and dry stage, then the warm and dry stage in turn; (3) the sedimentary environment developed from land, to littoral zone, to land again, then to shore-neritic zone; and (4) the Yellow Sea Warm Current formed during early- Holocene rather than Atlantic stage.

  1. Climate change mitigation in China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bo

    2012-07-01

    China has been experiencing great economic development and fast urbanisation since its reforms and opening-up policy in 1978. However, these changes are reliant on consumption of primary energy, especially coal, characterised by high pollution and low efficiency. China's greenhouse gas (GHG) emissions, with carbon dioxide (CO{sub 2}) being the most significant contributor, have also been increasing rapidly in the past three decades. Responding to both domestic challenges and international pressure regarding energy, climate change and environment, the Chinese government has made a point of addressing climate change since the early 2000s. This thesis provides a comprehensive analysis of China's CO{sub 2} emissions and policy instruments for mitigating climate change. In the analysis, China's CO{sub 2} emissions in recent decades were reviewed and the Environmental Kuznets Curve (EKC) hypothesis examined. Using the mostly frequently studied macroeconomic factors and time-series data for the period of 1980-2008, the existence of an EKC relationship between CO{sub 2} per capita and GDP per capita was verified. However, China's CO{sub 2} emissions will continue to grow over coming decades and the turning point in overall CO{sub 2} emissions will appear in 2078 according to a crude projection. More importantly, CO{sub 2} emissions will not spontaneously decrease if China continues to develop its economy without mitigating climate change. On the other hand, CO{sub 2} emissions could start to decrease if substantial efforts are made. China's present mitigation target, i.e. to reduce CO{sub 2} emissions per unit of GDP by 40-45 % by 2020 compared with the 2005 level, was then evaluated. Three business-as-usual (BAU) scenarios were developed and compared with the level of emissions according to the mitigation target. The calculations indicated that decreasing the CO{sub 2} intensity of GDP by 40-45 % by 2020 is a challenging but hopeful target. To

  2. Analysis and projections of climate change impacts on flood risks in the Dniester river basin based on the ENSEMBLES RCM data

    Science.gov (United States)

    Krakovska, S.; Balabukh, V.; Palamarchuk, L.; Djukel, G.; Gnatiuk, N.

    2012-04-01

    The pilot project "Reducing vulnerability to extreme floods and climate change in the Dniester river basin" started in May 2010 in the frame of the Dniester-III project which is implemented by OSCE, UNECE and UNEP in close collaboration with authorities and NGOs from Moldova and Ukraine. The project is a part of the Environment and Security initiative (ENVSEC) and aims to reduce risks from climate change - and specifically flooding - for security by improving the adaptive capacity of Ukraine and the Republic of Moldova, taking into account both current climate variability and long-term impacts of climate change on flood risks (http://www1.unece.org/ehlm/platform/display/ClimateChange/Dniester). The Dniester is a river in Eastern Europe, one of the largest rivers of the Carpathians. The Dniester flows from northwest to southeast on the territory of Ukraine, Moldova and Transdniestria. The length of the Dniester is 1352 km with basin area of 72100 km2. The river starts in the Carpathian Mountains at an altitude of 900 m above the sea level and flows into the Dniester estuary, which is connected to the Black Sea. In order to reduce impacts from extreme floods in the Dniester river basin under transient climate conditions the first task of the project was to assess the recent climate changes and particularly extreme precipitation events. For this purpose database of the specially worked out system with inputs from observational data from 1980 up to now of all stations within the Dniester basin was applied. Retrospective analysis of severe hydrometeorological events has revealed that more than 30% of precipitation at warm half of the year are heavy and very heavy rains. And input of such extreme precipitation to annual sum increased during last 30 year by about 7% per decade in the region. Possible reason for this is an intensification of convection in bottom 5km layer of the troposphere which is observed from the middle 90th of the 20th century. During this period an

  3. Climate change mitigation in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, G.A.; Turkson, J.K.; Davidson, O.R. [eds.

    1998-10-01

    The UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Southern Centre for Energy and Environment (SCEE) hosted a conference on `Climate Change Mitigation in Africa` between 18 and 20 May. The Conference set out to address the following main objectives: to present to a wider audience the results of UNEP/GEF and related country studies; to present results of regional mitigation analysis; exchange of information with similar projects in the region; to expose countries to conceptual and methodological issues related to climate change mitigation; to provide input to national development using climate change related objectives. This volume contains reports of the presentations and discussions, which took place at the conference at Victoria Falls between 18 and 20 May 1998. Representatives of 11 country teams made presentations and in addition two sub-regions were discussed: the Maghreb region and SADC. The conference was attended by a total of 63 people, representing 22 African countries as well as international organisations. (EG)

  4. Climate Change: a Theoretical Review

    Directory of Open Access Journals (Sweden)

    Muhammad Ishaq-ur Rahman

    2013-01-01

    Full Text Available Climate Change has been undoubtedly the most illustrious environmental issue since late 20th century. But neither the discourse merely emerged during that time, nor it was problematized in the same way since its onset. History of Climate Change discourse reveals that from a purely scientific concern it has turned into a public agenda that is nowadays more inclined to be development problem. Transformations have brought about a complete new paradigm every time. This article presents a theoretical analysis of the Climate Change discourse and to do so it captured the underlying philosophy of the issue using Thomas Kuhn’s well-known thesis of ‘paradigm shift’. In particular it discusses about the crisis that lead the issue towards transformations; explores key perspectives around the crisis thus representation of the issue in the environmental discourse over the time. While this paper establishes that with the beginning of the 21st century, the discourse entered into a new paradigm and will reach to a critical point by the end of 2012, it finally postulates some measures that the discourse might integrate with the existing to advance beyond that point.

  5. Topologies of climate change

    DEFF Research Database (Denmark)

    Blok, Anders

    2010-01-01

    Climate change is quickly becoming a ubiquitous socionatural reality, mediating extremes of sociospatial scale from the bodily to the planetary. Although environmentalism invites us to ‘think globally and act locally', the meaning of these scalar designations remains ambiguous. This paper explores...... the topological presuppositions of social theory in the context of global climate change, asking how carbon emissions ‘translate' into various sociomaterial forms. Staging a meeting between Tim Ingold's phenomenology of globes and spheres and the social topologies of actor-network theory (ANT), the paper advances...... a ‘relational-scalar' analytics of spatial practices, technoscience, and power. As technoscience gradually constructs a networked global climate, this ‘grey box' comes to circulate within fluid social spaces, taking on new shades as it hybridizes knowledges, symbols, and practices. Global climates thus come...

  6. Climate Change Justice

    OpenAIRE

    Sunstein, Cass R.; Posner, Eric A.

    2007-01-01

    Greenhouse gas reductions would cost some nations much more than others and benefit some nations far less than others. Significant reductions would impose especially large costs on the United States, and recent projections suggest that the United States has relatively less to lose from climate change. In these circumstances, what does justice require the United States to do? Many people believe that the United States is required to reduce its greenhouse gas emissions beyond the point that is ...

  7. Confronting Climate Change

    Science.gov (United States)

    Mintzer, Irving M.

    1992-06-01

    This book, which was published in time for the Earth Summit in Brazil in June 1992, is likely to make a huge impact on the political and economic agendas of international policy makers. It summarizes the scientific findings of Working Group I of the IPCC in the first part of the book. While acknowledging the uncertainties in subsequent chapters, it challenges and expands upon the existing views on how we should tackle the problems of climate change.

  8. Cuba confronts climate change.

    Science.gov (United States)

    Alonso, Gisela; Clark, Ismael

    2015-04-01

    Among environmental problems, climate change presents the greatest challenges to developing countries, especially island nations. Changes in climate and the resulting effects on human health call for examination of the interactions between environmental and social factors. Important in Cuba's case are soil conditions, food availability, disease burden, ecological changes, extreme weather events, water quality and rising sea levels, all in conjunction with a range of social, cultural, economic and demographic conditions.

  9. Climate change and amphibians

    Directory of Open Access Journals (Sweden)

    Corn, P. S.

    2005-01-01

    Full Text Available Amphibian life histories are exceedingly sensitive to temperature and precipitation, and there is good evidence that recent climate change has already resulted in a shift to breeding earlier in the year for some species. There are also suggestions that the recent increase in the occurrence of El Niño events has caused declines of anurans in Central America and is linked to elevated mortality of amphibian embryos in the northwestern United States. However, evidence linking amphibian declines in Central America to climate relies solely on correlations, and the mechanisms underlying the declines are not understood. Connections between embryo mortality and declines in abundance have not been demonstrated. Analyses of existing data have generally failed to find a link between climate and amphibian declines. It is likely, however, that future climate change will cause further declines of some amphibian species. Reduced soil moisture could reduce prey species and eliminate habitat. Reduced snowfall and increased summer evaporation could have dramatic effects on the duration or occurrence of seasonal wetlands, which are primary habitat for many species of amphibians. Climate change may be a relatively minor cause of current amphibian declines, but it may be the biggest future challenge to the persistence of many species

  10. Integrated analysis of the climate change effects on water availability for catchment management. The case of the Ésera River (Spain)

    Science.gov (United States)

    Solera, Abel; Segura, Carlos; Bussi, Gianbattista; Momblanch, Andrea; Francés, Félix

    2014-05-01

    The analysis of the impact of climate change on water resources is of primary importance in Mediterranean Areas. Mean precipitation is expected to decrease, although an increase in its torrentiality is foreseen, and temperature is expected to increase. In addition, growing urban water demand and new environmental requirements also contribute to increase water stress. To achieve an improved use of water resources, new and detailed studies of the impact of the climate change are needed. Due to the high complexity of rainfall-runoff processes and the need to incorporate climate change effect in them, physically based distributed models are proposed as a tool for assessing and analysing the climate change impact on water discharge. In this case, the distributed conceptual TETIS model was employed. This model was previously calibrated and validated in order to reproduce the hydrological cycle of a Mediterranean-influenced catchment, the Ésera River (Spain), under current climate conditions. Then, the TETIS model was driven by the results of a climatic model (precipitation and temperature series) under three climatic scenarios: current climate (or control scenario), A2 and B2 of the Special Report on Emission Scenarios. Water discharge series were generated at different points of the catchment. The model results pointed out that a global decrease in water yield is devised, being around 33% and 37% for scenario A2 and B2 respectively. Water discharge series were subsequently used in the analysis of climate change impact on water resources and water use in the studied river basin. To do so, a water allocation model was built, calibrated and validated under current streamflow conditions for the Ésera River. It considered all the water management infrastructures, water uses and environmental requirements. The results from TETIS for the three different scenarios were introduced as inputs to the water management model, what allowed performing three simulations. The outcomes

  11. CLIMATE CHANGE – BETWEEN COSTS AND BENEFITS

    Directory of Open Access Journals (Sweden)

    CARMEN VALENTINA RĂDULESCU

    2011-03-01

    Full Text Available Climate change – between costs and benefits. At global and regional levels the effects of climate change start to show up. While some of the countries make efforts to alleviate these effects and to find solutions, others are facing economic or political restrains that prevent them in applying the principle of common responsibility. The complex social, economic, and environmental implications of climate change’s effects focused a growing part of research on the analysis of costs and benefits. Although controversial, one of the methods used – the cost-benefit analysis – revealed that in most of the cases the prevention costs are lower than the costs of inaction. Prevention measures bring benefits by anticipating the impact and minimizing the risks for ecosystems and economy. The paper presents in its first part the controversies regarding the cost-benefit analysis, and continues, in the second part, with estimations on costs and benefits of certain policy instruments that target emission reduction.

  12. On multi-fingerprint detection and attribution of greenhouse gas- and aerosol forced climate change

    Energy Technology Data Exchange (ETDEWEB)

    Hegerl, G.C. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Hasselmann, K. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Cubasch, U. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Mitchell, J.F.B. [Hadley Centre for Climate Prediction and Research, Bracknell (United Kingdom). Meteorological Office; Roeckner, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Voss, R. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Waszkewitz, J. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany)

    1996-07-01

    A multi-fingerprint analysis is applied to the detection and attribution of anthropogenic climate change. While a single fingerprint, as applied in a previous paper by Hegerl et al. (1996), is optimal for detecting a significant climate change, the simultaneous use of several fingerprints allows one to investigate additionally the consistency between observations and model predicted climate change signals for competing candidate forcing mechanisms. Thus the multi-fingerprint method is a particularly useful technique for attributing an observed climate change to a proposed cause. Different model-predicted climate change signals are derived from three global warming simulations for the period 1880 to 2049. In one simulation, the forcing was by greenhouse gases only, while in the remaining two simulations the influence of aerosols was also included. The two dominant climate change signals derived from these simulations are optimized statistically by weighting the model-predicted climate change pattern towards low-noise directions. These optimized fingerprints are then applied to observed near surface temperature trends. The space-time structure of natural climate variability (needed to determine the signal-to-noise ratio) is estimated from several multi-century control simulations with different CGCMs and from instrumental data over the last 134 years. (orig.)

  13. On the relevance of ideology and environmental values for climate change beliefs, climate policy support, and climate protection activities: An empirical cross country analysis

    OpenAIRE

    Ziegler, Andreas

    2015-01-01

    Based on unique data from representative computer-based surveys among more than 3400 citizens, this paper empirically examines the determinants of climate change beliefs, climate policy support, and climate protection activities in three countries which are key players in international climate policy, namely the USA, Germany (as largest country in the European Union), and China. Our econometric analysis focuses on the effect of ideological and political identification and especially considers...

  14. General Chemistry Students' Understanding of Climate Change and the Chemistry Related to Climate Change

    Science.gov (United States)

    Versprille, Ashley N.; Towns, Marcy H.

    2015-01-01

    While much is known about secondary students' perspectives of climate change, rather less is known about undergraduate students' perspectives. The purpose of this study is to investigate general chemistry students' understanding of the chemistry underlying climate change. Findings that emerged from the analysis of the 24 interviews indicate that…

  15. Scenario Analysis on Climate Change Impacts of Urban Land Expansion under Different Urbanization Patterns: A Case Study of Wuhan Metropolitan

    Directory of Open Access Journals (Sweden)

    Xinli Ke

    2013-01-01

    Full Text Available Urban land expansion plays an important role in climate change. It is significant to select a reasonable urban expansion pattern to mitigate the impact of urban land expansion on the regional climate in the rapid urbanization process. In this paper, taking Wuhan metropolitan as the case study area, and three urbanization patterns scenarios are designed to simulate spatial patterns of urban land expansion in the future using the Partitioned and Asynchronous Cellular Automata Model. Then, simulation results of land use are adjusted and inputted into WRF (Weather Research and Forecast model to simulate regional climate change. The results show that: (1 warming effect is strongest under centralized urbanization while it is on the opposite under decentralized scenario; (2 the warming effect is stronger and wider in centralized urbanization scenario than in decentralized urbanization scenario; (3 the impact trends of urban land use expansion on precipitation are basically the same under different scenarios; (4 and spatial distribution of rainfall was more concentrated under centralized urbanization scenario, and there is a rainfall center of wider scope, greater intensity. Accordingly, it can be concluded that decentralized urbanization is a reasonable urbanization pattern to mitigate climate change in rapid urbanization period.

  16. An Analysis of the Climate Change Mitigation Potential through Soil Organic Carbon Sequestration in a Corn Belt Watershed.

    Science.gov (United States)

    Bhattarai, Mukesh Dev; Secchi, Silvia; Schoof, Justin

    2017-01-01

    Land-based carbon sequestration constitutes a major low cost and immediately viable option in climate change mitigation. Using downscaled data from eight atmosphere-ocean general circulation models for a simulation period between 2015 and 2099, we examine the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed and the impact of climate change on crop yields. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 192.1 MtCO2 eq of soil organic carbon per hectare with a sequestration rate of 2.26 MtCO2 eq ha(-1) yr(-1). Our results also indicate that switchgrass can sequester the equivalent of 310.7 MtCO2 eq of soil organic carbon per hectare with a sequestration rate of 3.65 MtCO2 eq ha(-1) yr(-1). Our findings suggest that, unlike for corn and soybean yields, climate change does not have a significant effect on switchgrass yields, possibly due to the carbon fertilization effect.

  17. An ensemble approach to assess hydrological models' contribution to uncertainties in the analysis of climate change impact on water resources

    Directory of Open Access Journals (Sweden)

    J. A. Velázquez

    2013-02-01

    Full Text Available Over the recent years, several research efforts investigated the impact of climate change on water resources for different regions of the world. The projection of future river flows is affected by different sources of uncertainty in the hydro-climatic modelling chain. One of the aims of the QBic3 project (Québec-Bavarian International Collaboration on Climate Change is to assess the contribution to uncertainty of hydrological models by using an ensemble of hydrological models presenting a diversity of structural complexity (i.e., lumped, semi distributed and distributed models. The study investigates two humid, mid-latitude catchments with natural flow conditions; one located in Southern Québec (Canada and one in Southern Bavaria (Germany. Daily flow is simulated with four different hydrological models, forced by outputs from regional climate models driven by global climate models over a reference (1971–2000 and a future (2041–2070 period. The results show that, for our hydrological model ensemble, the choice of model strongly affects the climate change response of selected hydrological indicators, especially those related to low flows. Indicators related to high flows seem less sensitive on the choice of the hydrological model.

  18. An ensemble approach to assess hydrological models' contribution to uncertainties in the analysis of climate change impact on water resources

    Directory of Open Access Journals (Sweden)

    J. A. Velázquez

    2012-06-01

    Full Text Available Over the recent years, several research efforts investigated the impact of climate change on water resources for different regions of the world. The projection of future river flows is affected by different sources of uncertainty in the hydro-climatic modelling chain. One of the aims of the QBic3 project (Québec-Bavarian International Collaboration on Climate Change is to assess the contribution to uncertainty of hydrological models by using an ensemble of hydrological models presenting a diversity of structural complexity (i.e. lumped, semi distributed and distributed models. The study investigates two humid, mid-latitude catchments with natural flow conditions; one located in Southern Québec (Canada and one in Southern Bavaria (Germany. Daily flow is simulated with four different hydrological models, forced by outputs from regional climate models driven by a given number of GCMs' members over a reference (1971–2000 and a future (2041–2070 periods. The results show that the choice of the hydrological model does strongly affect the climate change response of selected hydrological indicators, especially those related to low flows. Indicators related to high flows seem less sensitive on the choice of the hydrological model. Therefore, the computationally less demanding models (usually simple, lumped and conceptual give a significant level of trust for high and overall mean flows.

  19. Quantitative analysis of oyster larval proteome provides new insights into the effects of multiple climate change stressors

    KAUST Repository

    Dineshram, Ramadoss

    2016-03-19

    The metamorphosis of planktonic larvae of the Pacific oyster (Crassostrea gigas) underpins their complex life-history strategy by switching on the molecular machinery required for sessile life and building calcite shells. Metamorphosis becomes a survival bottleneck, which will be pressured by different anthropogenically induced climate change-related variables. Therefore, it is important to understand how metamorphosing larvae interact with emerging climate change stressors. To predict how larvae might be affected in a future ocean, we examined changes in the proteome of metamorphosing larvae under multiple stressors: decreased pH (pH 7.4), increased temperature (30 °C), and reduced salinity (15 psu). Quantitative protein expression profiling using iTRAQ-LC-MS/MS identified more than 1300 proteins. Decreased pH had a negative effect on metamorphosis by down-regulating several proteins involved in energy production, metabolism, and protein synthesis. However, warming switched on these down-regulated pathways at pH 7.4. Under multiple stressors, cell signaling, energy production, growth, and developmental pathways were up-regulated, although metamorphosis was still reduced. Despite the lack of lethal effects, significant physiological responses to both individual and interacting climate change related stressors were observed at proteome level. The metamorphosing larvae of the C. gigas population in the Yellow Sea appear to have adequate phenotypic plasticity at the proteome level to survive in future coastal oceans, but with developmental and physiological costs. © 2016 John Wiley & Sons Ltd.

  20. An analysis of the risk of cocoa moniliasis occurrence in Brazil as the result of climate change

    Directory of Open Access Journals (Sweden)

    Wanderson Bucker Moraes

    2012-03-01

    Full Text Available The aim of this study was to evaluate the potential risk of moniliasis occurrence and the impacts of climate change on this disease in the coming decades, should this pathogen be introduced in Brazil. To this end, climate favorability maps were devised for the occurrence of moniliasis, both for the present and future time. The future scenarios (A2 and B2 focused on the decades of 2020, 2050 and 2080. These scenarios were obtained from six global climate models (GCMs made available by the third assessment report of Intergovernmental Panel on Climate Change (IPCC. Currently, there are large areas with favorable climate conditions for moniliasis in Brazil, especially in regions at high risk of introduction of that pathogen. Considering the global warming scenarios provided by the IPCC, the potential risk of moniliasis occurrence in Brazil will be reduced. This decrease is predicted for both future scenarios, but will occur more sharply in scenario A2. However, there will still be areas with favorable climate conditions for the development of the disease, particularly in Brazil's main producing regions. Moreover, pathogen and host alike may undergo alterations due to climate change, which will affect the extent of their impacts on this pathosystem.

  1. An Analysis of the Climate Change Mitigation Potential through Soil Organic Carbon Sequestration in a Corn Belt Watershed

    Science.gov (United States)

    Bhattarai, Mukesh Dev; Secchi, Silvia; Schoof, Justin

    2017-01-01

    Land-based carbon sequestration constitutes a major low cost and immediately viable option in climate change mitigation. Using downscaled data from eight atmosphere-ocean general circulation models for a simulation period between 2015 and 2099, we examine the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed and the impact of climate change on crop yields. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 192.1 MtCO2 eq of soil organic carbon per hectare with a sequestration rate of 2.26 MtCO2 eq ha-1 yr-1. Our results also indicate that switchgrass can sequester the equivalent of 310.7 MtCO2 eq of soil organic carbon per hectare with a sequestration rate of 3.65 MtCO2 eq ha-1 yr-1. Our findings suggest that, unlike for corn and soybean yields, climate change does not have a significant effect on switchgrass yields, possibly due to the carbon fertilization effect.

  2. Quantitative analysis of oyster larval proteome provides new insights into the effects of multiple climate change stressors.

    Science.gov (United States)

    Dineshram, Ramadoss; Chandramouli, Kondethimmanahalli; Ko, Ginger Wai Kuen; Zhang, Huoming; Qian, Pei-Yuan; Ravasi, Timothy; Thiyagarajan, Vengatesen

    2016-06-01

    The metamorphosis of planktonic larvae of the Pacific oyster (Crassostrea gigas) underpins their complex life-history strategy by switching on the molecular machinery required for sessile life and building calcite shells. Metamorphosis becomes a survival bottleneck, which will be pressured by different anthropogenically induced climate change-related variables. Therefore, it is important to understand how metamorphosing larvae interact with emerging climate change stressors. To predict how larvae might be affected in a future ocean, we examined changes in the proteome of metamorphosing larvae under multiple stressors: decreased pH (pH 7.4), increased temperature (30 °C), and reduced salinity (15 psu). Quantitative protein expression profiling using iTRAQ-LC-MS/MS identified more than 1300 proteins. Decreased pH had a negative effect on metamorphosis by down-regulating several proteins involved in energy production, metabolism, and protein synthesis. However, warming switched on these down-regulated pathways at pH 7.4. Under multiple stressors, cell signaling, energy production, growth, and developmental pathways were up-regulated, although metamorphosis was still reduced. Despite the lack of lethal effects, significant physiological responses to both individual and interacting climate change related stressors were observed at proteome level. The metamorphosing larvae of the C. gigas population in the Yellow Sea appear to have adequate phenotypic plasticity at the proteome level to survive in future coastal oceans, but with developmental and physiological costs.

  3. Climate change and disaster management.

    Science.gov (United States)

    O'Brien, Geoff; O'Keefe, Phil; Rose, Joanne; Wisner, Ben

    2006-03-01

    Climate change, although a natural phenomenon, is accelerated by human activities. Disaster policy response to climate change is dependent on a number of factors, such as readiness to accept the reality of climate change, institutions and capacity, as well as willingness to embed climate change risk assessment and management in development strategies. These conditions do not yet exist universally. A focus that neglects to enhance capacity-building and resilience as a prerequisite for managing climate change risks will, in all likelihood, do little to reduce vulnerability to those risks. Reducing vulnerability is a key aspect of reducing climate change risk. To do so requires a new approach to climate change risk and a change in institutional structures and relationships. A focus on development that neglects to enhance governance and resilience as a prerequisite for managing climate change risks will, in all likelihood, do little to reduce vulnerability to those risks.

  4. Climate Change: Good for Us?

    Science.gov (United States)

    Oblak, Jackie

    2000-01-01

    Presents an activity with the objective of encouraging students to think about the effects of climate change. Explains background information on dependence to climate and discuses whether climate change is important. Provides information for the activity, extensions, and evaluation. (YDS)

  5. Climate change in the Pacific - is it real or not?

    Science.gov (United States)

    Kuleshov, Yuriy

    2013-04-01

    In this presentation, novel approaches and new ideas for students and young researchers to appreciate the importance of climate science are discussed. These approaches have been applied through conducting a number of training workshops in the Pacific Island Countries and teaching a course on climate change international law and climate change science at the University of the South Pacific (USP) - the first course on this type in the Pacific. Particular focus of this presentation is on broadening students' experience with application of web-based information tools for analysis of climatic extremes and natural hazards such as tropical cyclones. Over the past few years, significant efforts of Australian climate scientists have been dedicated to improving understanding of climate in the Pacific through the International Climate Change Adaptation Initiative (the Australian Government Initiative to assist with high priority climate adaptation needs in vulnerable countries in the Asia-Pacific region). The first comprehensive scientific report about the Pacific climate has been published in 2011, as an outcome of the Pacific Climate Change Science Program (PCCSP). A range of web-based information tools such as the Pacific Tropical Cyclone Data Portal, the Pacific Climate Change Data Portal and the Pacific Seasonal Climate Prediction Portal has been also developed through the PCCSP and the Pacific Adaptation Strategy Assistance Program. Currently, further advancement in seasonal climate prediction science and developing enhanced software tools for the Pacific is undertaken through the Theme 1 of the Pacific Australia Climate Change Science and Adaptation Planning (PACCSAP) Program. This new scientific knowledge needs to be transferred to students to provide them with true information about climate change and its impact on the Pacific Island Countries. Teachers and educators need their knowledge-base regularly updated and tools that will help their students critically

  6. Analysis of the Role of Information and Communication Technologies (ICTs) in Climate Change Awareness in Seke and Murewa Districts of Zimbabwe

    DEFF Research Database (Denmark)

    Muchie, Mammo; Mudombi, Shakespear

    The paper provides an analysis of the role of Information and Communication Technologies (ICTs) in contributing to climate change awareness in rural areas namely Seke and Murewa districts in Zimbabwe. The literature review showed that for successful adaptation and mitigation by individuals...... and communities, information and knowledge about the nature of the problem, its causes, its effects and possible solutions, are a prerequiste. Agricultural communities can get information from the traditional agricultural extension system, however due to various constraints to the extension system, ICTs have...... the potential to reach a wider audience including even those with no access to extension. Of importance is to package the climate and climate change information in an appropriate form, language and time and ensure it is credible, legitimate, and salient as highlighted by various authors. The paper is based...

  7. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    The absence of a global agreement on the reduction of greenhouse gas emissions calls for adaptation to climate change. The associated paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change...

  8. Climate Change and Natural Disasters

    NARCIS (Netherlands)

    Merkouris, Panos; Negri, Stefania; Maljean-Dubois, Sandrine

    2014-01-01

    Only 21 years ago, in 1992, the first ever convention on climate change, the United Nations Framework Convention on Climate Change (UNFCCC) was signed. The science behind studying climate change and its effects on the environment is not only mind-boggling but still in its infancy. It should come the

  9. Climate Change Impact Assessments for International Market Systems (CLIMARK)

    Science.gov (United States)

    Winkler, J. A.; Andresen, J.; Black, J.; Bujdoso, G.; Chmielewski, F.; Kirschke, D.; Kurlus, R.; Liszewska, M.; Loveridge, S.; Niedzwiedz, T.; Nizalov, D.; Rothwell, N.; Tan, P.; Ustrnul, Z.; von Witzke, H.; Zavalloni, C.; Zhao, J.; Zhong, S.

    2012-12-01

    The vast majority of climate change impact assessments evaluate how local or regional systems and processes may be affected by a future climate. Alternative strategies that extend beyond the local or regional scale are needed when assessing the potential impacts of climate change on international market systems, including agricultural commodities. These industries have multiple production regions that are distributed worldwide and are likely to be differentially impacted by climate change. Furthermore, for many industries and market systems, especially those with long-term climate-dependent investments, temporal dynamics need to be incorporated into the assessment process, including changing patterns of international trade, consumption and production, and evolving adaptation strategies by industry stakeholder groups. A framework for conducting climate change assessments for international market systems, developed as part of the CLIMARK (Climate Change and International Markets) project is outlined, and progress toward applying the framework for an impact assessment for the international tart cherry industry is described. The tart cherry industry was selected for analysis in part because tart cherries are a perennial crop requiring long-term investments by the producer. Components of the project include the preparation of fine resolution climate scenarios, evaluation of phenological models for diverse production regions, the development of a yield model for tart cherry production, new methods for incorporating individual decision making and adaptation options into impact assessments, and modification of international trade models for use in impact studies. Innovative aspects of the project include linkages between model components and evaluation of the mega-uncertainty surrounding the assessment outcomes. Incorporation of spatial and temporal dynamics provides a more comprehensive evaluation of climate change impacts and an assessment product of potentially greater

  10. Hantaviruses and climate change.

    Science.gov (United States)

    Klempa, B

    2009-06-01

    Most hantaviruses are rodent-borne emerging viruses. They cause two significant human diseases, haemorrhagic fever with renal syndrome in Asia and Europe, and hantavirus cardiopulmonary syndrome in the Americas. Very recently, several novel hantaviruses with unknown pathogenic potential have been identified in Africa and in a variety of insectivores (shrews and a mole). Because there is very limited information available on the possible impact of climate change on all of these highly dangerous pathogens, it is timely to review this aspect of their epidemiology. It can reasonably be concluded that climate change should influence hantaviruses through impacts on the hantavirus reservoir host populations. We can anticipate changes in the size and frequency of hantavirus outbreaks, the spectrum of hantavirus species and geographical distribution (mediated by changes in population densities), and species composition and geographical distribution of their reservoir hosts. The early effects of global warming have already been observed in different geographical areas of Europe. Elevated average temperatures in West-Central Europe have been associated with more frequent Puumala hantavirus outbreaks, through high seed production (mast year) and high bank vole densities. On the other hand, warm winters in Scandinavia have led to a decline in vole populations as a result of the missing protective snow cover. Additional effects can be caused by increased intensity and frequency of extreme climatic events, or by changes in human behaviour leading to higher risk of human virus exposure. Regardless of the extent of climate change, it is difficult to predict the impact on hantavirus survival, emergence and epidemiology. Nevertheless, hantaviruses will undoubtedly remain a significant public health threat for several decades to come.

  11. Renewable energy and climate change

    CERN Document Server

    Quaschning, Volker

    2010-01-01

    This dazzling introductory textbook encompasses the full range of today's important renewable energy technologies. Solar thermal, photovoltaic, wind, hydro, biomass and geothermal energy receive balanced treatment with one exciting and informative chapter devoted to each. As well as a complete overview of these state-of-the-art technologies, the chapters provide: clear analysis on their development potentials; an evaluation of the economic aspects involved; concrete guidance for practical implementation; how to reduce your own energy waste. If we do not act now to stop climate change, the cons.

  12. Climate change and health

    Energy Technology Data Exchange (ETDEWEB)

    Last, J.M. [Ottawa Univ., ON (Canada); Chiotti, Q.P. [Environment Canada, Ottawa, ON (Canada)

    2001-12-31

    Adverse effects such as heat-related illnesses are felt on human health as a result of climate change. Those effects can also be the increased frequency and severity of extreme weather resulting in injury and death, a wider array of insect vectors for diseases, as well as increased risk of allergic, food-borne and water-borne diseases. Coastal ecosystems are altered, sea levels are rising and millions of people will need to relocate in the next century as a result of global warming. Keeping disaster plans, maintaining epidemiological monitoring and surveillance, and issuing advisory messages concerning the risks to human health are some of the responses required from public health officials. The establishment of standards, the development of policies on food and nutrition and the defining of priorities for research are important aspects that must be kept in mind. The authors indicated that multidisciplinary approaches are better suited to find solutions to the challenges encountered due to climate change than the narrow methods used in the past. refs., 4 tabs.

  13. Teaching Climate Change

    Science.gov (United States)

    O'Donoghue, A.

    2011-09-01

    In giving public presentations about climate change, we face the barriers of mis-information in the political debate and lack of science literacy that extends to science phobia for some. In climate issues, the later problem is compounded by the fact that the science - reconstruction of past climate through the use of proxy sources, such as isotopes of oxygen and hydrogen - is complex, making it more challenging for general audiences. Also, the process of science, particularly peer review, is suspected by some to be a way of keeping science orthodox instead of keeping it honest. I approach these barriers by focusing on the data and the fact that the data have been carefully acquired over decades and centuries by dedicated people with no political agenda. I have taught elderhostel courses twice and have given many public talks on this topic. Thus I have experience in this area to share with others. I would also like to learn of others' approaches to the vast amount of scientific information and getting past the politics. A special interest group on climate change will allow those of us to speak on this important topic to share how we approach both the science and the politics of this issue.

  14. Communicating Climate Change (Invited)

    Science.gov (United States)

    Mann, M. E.

    2009-12-01

    I will discuss the various challenges scientists must confront in efforts to communicate the science and implications of climate change to the public. Among these challenges is the stiff headwind we must fight of a concerted disinformation effort designed to confuse the public about the nature of our scientific understanding of the problem and the reality of the underlying societal threat. We also must fight the legacy of the public’s perception of the scientist. That is to say, we must strive to communicate in plainspoken language that neither insults the intelligence of our audience, nor hopelessly loses them in jargon and science-speak. And through all of this, we must maintain our composure and good humor even in the face of what we might consider the vilest of tactics by our opposition. When it comes to how best to get our message out to the broader public, I don’t pretend to have all of the answers. But I will share some insights and anecdotes that I have accumulated over the course of my own efforts to inform the public about the reality of climate change and the potential threat that it represents.

  15. Impact of climate change and human activity on the eco-environment. An analysis of the Xisha Islands

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Liqiang [Heifei Univ. of Technology (China). School of Resources and Environmental Engineering

    2015-06-01

    This study describes the fundamentals of assessing the vulnerability of coral islands, as well as environmental management and resource exploitation. Using seabird subfossils, such as bones, guano, eggshells etc., which have been well preserved on the Xisha Islands in the South China Sea, the author identifies the influences of climate change and human activity on seabird populations and diets. Understanding the past is of great importance for predicting the future, and seabird subfossils provide valuable information, which can be used to study changes in seabird ecology, paleoceanography and palaeoclimate. Furthermore, this study proposes examining the biogeochemical cycling of some elements present in the geosphere, hydrosphere, biosphere and atmosphere.

  16. Handling Interdependencies in Climate Change Risk Assessment

    Directory of Open Access Journals (Sweden)

    Richard J. Dawson

    2015-12-01

    Full Text Available Typically, a climate change risk assessment focuses on individual sectors or hazards. However, interdependencies between climate risks manifest themselves via functional, physical, geographical, economic, policy and social mechanisms. These can occur over a range of spatial or temporal scales and with different strengths of coupling. Three case studies are used to demonstrate how interdependencies can significantly alter the nature and magnitude of risk, and, consequently, investment priorities for adaptation. The three examples explore interdependencies that arise from (1 climate loading dependence; (2 mediation of two climate impacts by physical processes operating over large spatial extents; and, (3 multiple risks that are influenced by shared climatic and socio-economic drivers. Drawing upon learning from these case studies, and other work, a framework for the analysis and consideration of interdependencies in climate change risk assessment has been developed. This is an iterative learning loop that involves defining the system, scoping interaction mechanisms, applying appropriate modelling tools, identifying vulnerabilities and opportunities, and assessing the performance of adaptation interventions.

  17. Statistical analysis and ANN modeling for predicting hydrological extremes under climate change scenarios: the example of a small Mediterranean agro-watershed.

    Science.gov (United States)

    Kourgialas, Nektarios N; Dokou, Zoi; Karatzas, George P

    2015-05-01

    The purpose of this study was to create a modeling management tool for the simulation of extreme flow events under current and future climatic conditions. This tool is a combination of different components and can be applied in complex hydrogeological river basins, where frequent flood and drought phenomena occur. The first component is the statistical analysis of the available hydro-meteorological data. Specifically, principal components analysis was performed in order to quantify the importance of the hydro-meteorological parameters that affect the generation of extreme events. The second component is a prediction-forecasting artificial neural network (ANN) model that simulates, accurately and efficiently, river flow on an hourly basis. This model is based on a methodology that attempts to resolve a very difficult problem related to the accurate estimation of extreme flows. For this purpose, the available measurements (5 years of hourly data) were divided in two subsets: one for the dry and one for the wet periods of the hydrological year. This way, two ANNs were created, trained, tested and validated for a complex Mediterranean river basin in Crete, Greece. As part of the second management component a statistical downscaling tool was used for the creation of meteorological data according to the higher and lower emission climate change scenarios A2 and B1. These data are used as input in the ANN for the forecasting of river flow for the next two decades. The final component is the application of a meteorological index on the measured and forecasted precipitation and flow data, in order to assess the severity and duration of extreme events.

  18. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    . This absence of an agreement calls for adaptation to climate change. Emphasis should be put on buildings, as they play a vital economic and social role in society and are vulnerable to climate change. Therefore, the building stock deserves its own policy and implementation plans as well as tools that enable...... adequate and cost-efficient adaptation to climate change. This paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change adaptation needed. The suggested and presented need of a strategic approach is based...... on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant stakeholders...

  19. An Analysis of Historical Records of Solar Variability, Volcanic Eruptions, and Climate Change in the Last Millennium

    Science.gov (United States)

    Pang, K. D.

    2003-12-01

    Studying past climate changes can help us better understand present natural variations and predict future trends. However, various reconstructions of the climate of the last 1000 years have given only broad similarities [Briffa, JGR 106, 2929, 2001]. The variances are partly due to uncertainties in the past radiative and aerosol forcing, and gaps in regional coverage. Another outstanding question is whether we are in a time similar to the Medieval Warm Period. From the frequencies of sunspot and aurora sightings, abundance of carbon-14 in the rings of long-lived trees, and beryllium-10 in the annual layers of polar ice cores, we have reconstructed the recent history of a variable Sun. In the past 1800 years the Sun has gone through nine cycles of changes in brightness. While these long-term changes account for less than 1% of the total irradiance, there is clear evidence that they affect the climate [Pang and Yau, Eos, 83, No. 43, 481, 2002]. We have analyzed Chinese historical weather records to fill the data void in this region. Reports of unseasonable cold are classified by the degree of severity: (1) Late (April-June) or early (July-Sept) killing frosts; (2) Bitter cold/heavy snowfall; and (3) heavy sustained snowfall, bitter cold with frozen wells, lakes, rivers, and icebound seas. The latter cases were often widespread and multi-year. All categories occurred most frequently during the coldest part of the Little Ice Age, with the coldest episodes in 1652-54, 1656, 1664, 1670-72, 1676-77, 1683, 1688-91, 1716 and 1718-19. They thus coincide with Maunder Minimum (1645-1715), when very few sunspots were seen-about one in ten years from China or Europe-indicative of a weakened Sun. There was only one Category 3 episode between the Maunder and Dalton Minima-in 1761, and two in the Dalton Minimum (1795-1825)-in 1796 and 1814-7. Analysis of proxy data has shown that the 1810's were among the coldest years in Europe [Briffa and Jones, in ``The Year Without a Summer

  20. Local impact analysis of climate change on precipitation extremes: are high-resolution climate models needed for realistic simulations?

    Science.gov (United States)

    Tabari, Hossein; De Troch, Rozemien; Giot, Olivier; Hamdi, Rafiq; Termonia, Piet; Saeed, Sajjad; Brisson, Erwan; Van Lipzig, Nicole; Willems, Patrick

    2016-09-01

    This study explores whether climate models with higher spatial resolutions provide higher accuracy for precipitation simulations and/or different climate change signals. The outputs from two convection-permitting climate models (ALARO and CCLM) with a spatial resolution of 3-4 km are compared with those from the coarse-scale driving models or reanalysis data for simulating/projecting daily and sub-daily precipitation quantiles. Validation of historical design precipitation statistics derived from intensity-duration-frequency (IDF) curves shows a better match of the convection-permitting model results with the observations-based IDF statistics compared to the driving GCMs and reanalysis data. This is the case for simulation of local sub-daily precipitation extremes during the summer season, while the convection-permitting models do not appear to bring added value to simulation of daily precipitation extremes. Results moreover indicate that one has to be careful in assuming spatial-scale independency of climate change signals for the delta change downscaling method, as high-resolution models may show larger changes in extreme precipitation. These larger changes appear to be dependent on the timescale, since such intensification is not observed for daily timescales for both the ALARO and CCLM models.

  1. Towards a Seamless Framework for Drought Analysis and Prediction from Seasonal to Climate Change Time Scales (Plinius Medal Lecture)

    Science.gov (United States)

    Sheffield, Justin

    2013-04-01

    Droughts arguably cause the most impacts of all natural hazards in terms of the number of people affected and the long-term economic costs and ecosystem stresses. Recent droughts worldwide have caused humanitarian and economic problems such as food insecurity across the Horn of Africa, agricultural economic losses across the central US and loss of livelihoods in rural western India. The prospect of future increases in drought severity and duration driven by projected changes in precipitation patterns and increasing temperatures is worrisome. Some evidence for climate change impacts on drought is already being seen for some regions, such as the Mediterranean and east Africa. Mitigation of the impacts of drought requires advance warning of developing conditions and enactment of drought plans to reduce vulnerability. A key element of this is a drought early warning system that at its heart is the capability to monitor evolving hydrological conditions and water resources storage, and provide reliable and robust predictions out to several months, as well as the capacity to act on this information. At longer time scales, planning and policy-making need to consider the potential impacts of climate change and its impact on drought risk, and do this within the context of natural climate variability, which is likely to dominate any climate change signal over the next few decades. There are several challenges that need to be met to advance our capability to provide both early warning at seasonal time scales and risk assessment under climate change, regionally and globally. Advancing our understanding of drought predictability and risk requires knowledge of drought at all time scales. This includes understanding of past drought occurrence, from the paleoclimate record to the recent past, and understanding of drought mechanisms, from initiation, through persistence to recovery and translation of this understanding to predictive models. Current approaches to monitoring and

  2. Technologies for climate change adaptation. Agriculture sector

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X. (ed.) (UNEP Risoe Centre, Roskilde (Denmark)); Clements, R.; Quezada, A.; Torres, J. (Practical Action Latin America, Lima (Peru)); Haggar, J. (Univ. of Greenwich, London (United Kingdom))

    2011-08-15

    This guidebook presents a selection of technologies for climate change adaptation in the agriculture sector. A set of 22 adaptation technologies are showcased. These are based primarily on the principles of agroecology, but also include scientific technologies of climate and biological sciences complemented by important sociological and institutional capacity building processes that are required for climate change to function. The technologies cover: 1) Planning for climate change and variability. 2) Sustainable water use and management. 3) Soil management. 4) Sustainable crop management. 5) Sustainable livestock management. 6) Sustainable farming systems. 7) Capacity building and stakeholder organisation. Technologies that tend to homogenise the natural environment and agricultural production have low possibilities of success in environmental stress conditions that are likely to result from climate change. On the other hand, technologies that allow for, and promote diversity are more likely to provide a strategy which strengthens agricultural production in the face of uncertain future climate change scenarios. The 22 technologies showcased in this guidebook have been selected because they facilitate the conservation and restoration of diversity while also providing opportunities for increasing agricultural productivity. Many of these technologies are not new to agricultural production practices, but they are implemented based on the assessment of current and possible future impacts of climate change in a particular location. agroecology is an approach that encompasses concepts of sustainable production and biodiversity promotion and therefore provides a useful framework for identifying and selecting appropriate adaptation technologies for the agriculture sector. The guidebook provides a systematic analysis of the most relevant information available on climate change adaptation technologies in the agriculture sector. It has been compiled based on a literature

  3. THE IMPACT OF CLIMATE CHANGE UPON WINTER RAINFALL

    Directory of Open Access Journals (Sweden)

    Numan Shehadeh

    2013-01-01

    Full Text Available Climatic models that project the impact of climate change upon rainfall in the Eastern Mediterranean region predict that the negative impact will be more pronounced upon winter rainfall rather than Fall or Spring rainfall where instability conditions become more pronounced. Those models, also, predict that, due to the great geographical diversity, projected rainfall trends in the above region will show great spatial variability. Therefore, this study aims to analyze the possible impact of climate change upon winter rainfall (December, January and February in Jordan. Data from six meteorological stations that represent well the spatial variation of rainfall in the country is used. Various statistical techniques are applied in this study including, linear regression, t- test, moving averages and CUSUM charts. Results of the analysis reveal a decreasing rainfall trend in all the sample stations. However, the decreasing trends are significant at the 0.05 level in three stations only (Salt, Amman and Irbid. The negative impact of climate change upon winter rainfall totals in the northern and central parts of Jordan, where most of winter rainfall is associated with Mediterranean depressions, is statistically significant at the 0.05 level. However, such impact is not significant in the southern and eastern parts of the country, where a greater portion of winter rainfall is associated with khamasini depressions and instability conditions. Further research analyzing the impact of climate change upon other climatic elements such as temperature, relative humidity and dust storms is needed.

  4. How will climate change modify river flow regimes in Europe?

    Directory of Open Access Journals (Sweden)

    C. Schneider

    2013-01-01

    Full Text Available Worldwide, flow regimes are being modified by various anthropogenic impacts and climate change induces an additional risk. Rising temperatures, declining snow cover and changing precipitation patterns will interact differently at different locations. Consequently, in distinct climate zones, unequal consequences can be expected in matters of water stress, flood risk, water quality, and food security. In particular, river ecosystems and their vital ecosystem services will be compromised as their species richness and composition have evolved over long time under natural flow conditions. This study aims at evaluating the exclusive impacts of climate change on river flow regimes in Europe. Various flow characteristics are taken into consideration and diverse dynamics are identified for each distinct climate zone in Europe. In order to simulate present-day natural flow regimes and future flow regimes under climate change, the global hydrology model WaterGAP3 is applied. All calculations for current and future conditions (2050s are carried out on a 5' × 5' European grid. To address uncertainty, bias-corrected climate forcing data of three different global climate models are used to drive WaterGAP3. Finally, the hydrological alterations of different flow characteristics are quantified by the Indicators of Hydrological Alteration approach. Results of our analysis indicate that on the European scale, climate change can be expected to modify flow regimes remarkably. This is especially the case in the Mediterranean (due to drier conditions with reduced precipitation across the year and in the boreal climate zone (due to reduced snowmelt, increased precipitation, and strong temperature rises. In the temperate climate zone, impacts increase from oceanic to continental. Regarding single flow characteristics, strongest impacts on timing were found for the boreal climate zone. This applies for both high and low flows. Flow magnitudes, in turn, will be

  5. Climate change and human health

    DEFF Research Database (Denmark)

    Warren, John A; Berner, James E; Curtis, Tine

    2005-01-01

    or degradation of permafrost. Climate change can result in damage to sanitation infrastructure resulting in the spread of disease or threatening a community's ability to maintain its economy, geographic location and cultural tradition, leading to mental stress. Through monitoring of some basic indicators...... communities can begin to develop a response to climate change. With this information, planners, engineers, health care professionals and governments can begin to develop approaches to address the challenges related to climate change....

  6. Sewer Systems and Climate Change

    OpenAIRE

    Brandsma, T.

    1993-01-01

    In this article the impact of climate change on the overflows of sewer systems is assessed. The emphasis is on the overflows of combined sewer systems. The purpose is twofold: first, to obtain a first-order estimate of the impact of climate change on overflows of sewer systems; and second, to obtain insight into the relevant meteorological variables that are important with respect to climate change. A reservoir model is used to assess the impact of climate change on several combinations of st...

  7. Multi-pattern fingerprint method for detection and attribution of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Hasselmann, K.

    1996-08-01

    The multivariate optimal fingerprint method for the detection of an externally forced climate change signal in the presence of natural internal variability is extended to the attribution problem. To determine whether a climate change signal which has been detected in observed climate data can be attributed to a particular climate forcing mechanism, or combination of mechanisms, the predicted space-time dependent climate change signal patterns for the candidate climate forcings must be specified. In addition to the signal patterns, the method requires input information on the space-time dependent covariance matrices of the natural climate variability and the predicted signal pattern errors. The detection and attribution problem is treated as a sequence of individual consistency tests applied to all candidate forcing mechanisms, as well as to the null hypothesis that no climate change has taken place, within the phase space spanned by the predicted climate change patterns. As output the method yields a significance level for the detection of a climate change signal in the observed data and individual confidence levels for the consistency of the retrieved climate change signal with each of the forcing mechanisms. A statistically significant climate change signal is regarded as consistent with a given forcing mechanism if the statistical confidence level exceeds a given critical value, but is attributed to that forcing only if all other climate change mechanisms are rejected at that confidence level. The analysis is carried out using tensor notation, with a metric given by the natural-variability covariance matrix. This clarifies the relation between the covariant signal patterns and their contravariant fingerprint counterparts. The signal patterns define the vector space in which the climate trajectories are analyzed, while the fingerprints are needed to project the climate trajectories onto this space. (orig.)

  8. Assessing reservoir operations risk under climate change

    Science.gov (United States)

    Brekke, L.D.; Maurer, E.P.; Anderson, J.D.; Dettinger, M.D.; Townsley, E.S.; Harrison, A.; Pruitt, T.

    2009-01-01

    Risk-based planning offers a robust way to identify strategies that permit adaptive water resources management under climate change. This paper presents a flexible methodology for conducting climate change risk assessments involving reservoir operations. Decision makers can apply this methodology to their systems by selecting future periods and risk metrics relevant to their planning questions and by collectively evaluating system impacts relative to an ensemble of climate projection scenarios (weighted or not). This paper shows multiple applications of this methodology in a case study involving California's Central Valley Project and State Water Project systems. Multiple applications were conducted to show how choices made in conducting the risk assessment, choices known as analytical design decisions, can affect assessed risk. Specifically, risk was reanalyzed for every choice combination of two design decisions: (1) whether to assume climate change will influence flood-control constraints on water supply operations (and how), and (2) whether to weight climate change scenarios (and how). Results show that assessed risk would motivate different planning pathways depending on decision-maker attitudes toward risk (e.g., risk neutral versus risk averse). Results also show that assessed risk at a given risk attitude is sensitive to the analytical design choices listed above, with the choice of whether to adjust flood-control rules under climate change having considerably more influence than the choice on whether to weight climate scenarios. Copyright 2009 by the American Geophysical Union.

  9. Climate Change and Civil Violence

    Science.gov (United States)

    van der Vink, G.; Plancherel, Y.; Hennet, C.; Jones, K. D.; Abdullah, A.; Bradshaw, J.; Dee, S.; Deprez, A.; Pasenello, M.; Plaza-Jennings, E.; Roseman, D.; Sopher, P.; Sung, E.

    2009-05-01

    The manifestations of climate change can result in humanitarian impacts that reverse progress in poverty- reduction, create shortages of food and resources, lead to migration, and ultimately result in civil violence and conflict. Within the continent of Africa, we have found that environmentally-related variables are either the cause or the confounding factor for over 80% of the civil violence events during the last 10 years. Using predictive climate models and land-use data, we are able to identify populations in Africa that are likely to experience the most severe climate-related shocks. Through geospatial analysis, we are able to overlay these areas of high risk with assessments of both the local population's resiliency and the region's capacity to respond to climate shocks should they occur. The net result of the analysis is the identification of locations that are becoming particularly vulnerable to future civil violence events (vulnerability hotspots) as a result of the manifestations of climate change. For each population group, over 600 social, economic, political, and environmental indicators are integrated statistically to measures the vulnerability of African populations to environmental change. The indicator time-series are filtered for data availability and redundancy, broadly ordered into four categories (social, political, economic and environmental), standardized and normalized. Within each category, the dominant modes of variability are isolated by principal component analysis and the loadings of each component for each variable are used to devise composite index scores. Comparisons of past vulnerability with known environmentally-related conflicts demonstrates the role that such vulnerability hotspot maps can play in evaluating both the potential for, and the significance of, environmentally-related civil violence events. Furthermore, the analysis reveals the major variables that are responsible for the population's vulnerability and therefore

  10. Soils, climate change and the OECD.

    Science.gov (United States)

    Lynch, J M; Schepers, J S

    2008-01-01

    Some concepts of sustainability applied to soils are given in relation to the Organisation for Economic Co-operation and Development (OECD) Co-operative Research Programme 'Biological Resource Management for Sustainable Agricultural Systems'. The application of these concepts to climate change will be discussed in relation to seven high-profile papers published over the past 12 months. It is argued that multi-disciplinary (including social science) approaches are needed to address the issues. There is also a brief discussion on biomass energy in terms of soil sustainability and climate change.

  11. Water Resource Management in Dry Zonal Paddy Cultivation in Mahaweli River Basin, Sri Lanka: An Analysis of Spatial and Temporal Climate Change Impacts and Traditional Knowledge

    Directory of Open Access Journals (Sweden)

    Sisira S. Withanachchi

    2014-11-01

    Full Text Available Lack of attention to spatial and temporal cross-scale dynamics and effects could be understood as one of the lacunas in scholarship on river basin management. Within the water-climate-food-energy nexus, an integrated and inclusive approach that recognizes traditional knowledge about and experiences of climate change and water resource management can provide crucial assistance in confronting problems in megaprojects and multipurpose river basin management projects. The Mahaweli Development Program (MDP, a megaproject and multipurpose river basin management project, is demonstrating substantial failures with regards to the spatial and temporal impacts of climate change and socioeconomic demands for water allocation and distribution for paddy cultivation in the dry zone area, which was one of the driving goals of the project at the initial stage. This interdisciplinary study explores how spatial and temporal climatic changes and uncertainty in weather conditions impact paddy cultivation in dry zonal areas with competing stakeholders’ interest in the Mahaweli River Basin. In the framework of embedded design in the mixed methods research approach, qualitative data is the primary source while quantitative analyses are used as supportive data. The key findings from the research analysis are as follows: close and in-depth consideration of spatial and temporal changes in climate systems and paddy farmers’ socioeconomic demands altered by seasonal changes are important factors. These factors should be considered in the future modification of water allocation, application of distribution technologies, and decision-making with regards to water resource management in the dry zonal paddy cultivation of Sri Lanka.

  12. Analysis to significant climate change in aerosol influence domain of Beijing and its peripheral areas by EOF mode

    Institute of Scientific and Technical Information of China (English)

    SHI; Xiaohui; XU; Xiangde; ZHANG; Shengjun; DING; Guoan

    2005-01-01

    Using the total ozone mapping spectrometer (TOMS) aerosol optical depth (AOD)data and the sunshine duration, fog days, Iow cloud cover (LCC), etc. meteorological data in 1979-2000 in North China, as well as empirical orthogonal function (EOF) mode statistical analyses method, the winter aerosol distributive character of Beijing and peripheral city agglomeration and its influence effect on regional climate are investigated in this paper, especially the relation between aerosol influence effect and distinct change regions of eigenvectors of EOF mode. It is found from analyzing the regional distribution of the long-term averaged winter TOMS AOD that there is a large-scale relatively stable high value zone of aerosol concentration in the valley of the Beijing and peripheral U-shape megarelief. A high correlation area of AOD between Beijing and its southern peripheral exists in winter, and in this significant region of aerosol interaction, there is "in-phase" character of the interannual variations of winter AOD, fog days, and LCCs. It indicates that the variations of aerosol in Beijing and its peripheral areas have impacts on interannual changes of fog days and LCCs in this area. The EOF analyses of the meteorological data further reveal the climate change regions and long-term trends of winter sunshine duration-reducing, and LCC- and fog days-increasing in North China. The areas of significant changes of the first EOF eigenvectors (FEE) of sunshine duration, fog days, LCCs almost superpose on corresponding marked regions of interdecadal differences between the 1990s and 1980s, and all accord with the S-N zonal high value pattern and high correlation region of winter AOD in Beijing and its peripheral areas. Interannual variations of their associated time coefficients (ATC) are in phase with that of regional mean AOD, and both of them have a secular rising trend. Results by EOF mode analyses depict the regional climatic change principal character of winter sunshine

  13. Applied longitudinal analysis

    CERN Document Server

    Fitzmaurice, Garrett M; Ware, James H

    2012-01-01

    Praise for the First Edition "". . . [this book] should be on the shelf of everyone interested in . . . longitudinal data analysis.""-Journal of the American Statistical Association   Features newly developed topics and applications of the analysis of longitudinal data Applied Longitudinal Analysis, Second Edition presents modern methods for analyzing data from longitudinal studies and now features the latest state-of-the-art techniques. The book emphasizes practical, rather than theoretical, aspects of methods for the analysis of diverse types of lo

  14. Climate change adaptation: Uncovering constraints to the use of adaptation strategies among food crop farmers in South-west, Nigeria using principal component analysis (PCA

    Directory of Open Access Journals (Sweden)

    Moradeyo Adebanjo Otitoju

    2016-12-01

    Full Text Available This study focused on the constraints to the use of climate variability/change adaptation strategies in South-west Nigeria. Multistage random technique was employed to select the location and the respondents. Descriptive statistics and principal component analysis (PCA were the analytical tools engaged in this study. The constraints to climate variability and change examined before did not use PCA but generalized factor analysis. Hence, there is need to examine these constraints extensively using PCA. Uncovering the constraints to the use of climate variability/change adaptation strategies among crop framers is important to give a realistic direction in the development of farmer-inclusive climate policies in Nigeria. The PCA result showed that the principal constraints that the farmers faced in climate change adaptation were public, institutional and labour constraint; land, neighbourhood norms and religious beliefs constraint; high cost of inputs, technological and information constraint; farm distance, access to climate information, off-farm job and credit constraint; and poor agricultural programmes and service delivery constraint. These findings pointed out the need for both the government and non-government organizations to intensify efforts on institutional, technological and farmers’ friendly land tenure and information systems as effective measures to guide inclusive climate change adaptation policies and development in South-west Nigeria.

  15. A genotype, environment and management (GxExM) analysis of adaptation in winter wheat to climate change in Denmark

    DEFF Research Database (Denmark)

    Montesino-San Martin, M; Olesen, Jørgen E; Porter, John Roy

    2014-01-01

    latitudes. Climate change projections from three General Circulation Models or GCMs (UKMO-HadGEM1, INM-GM3.0 and CSIRO-Mk3.1) for the A1FI SRES emission scenario for 2000 to 2100 were downscaled at a northern latitude location (Foulum, Denmark) using LARS-WG5.3. The scenarios accounted for changes...... version of AFRCWHEAT2 to model several combinations of genotypes (varying in crop growth, development and tolerance to water and nitrogen scarcity) and management (sowing dates and nitrogen fertilization rate). The simulations showed a slight improvement of grain yields (0.3–1.2 Mg ha−1) in the medium...... consistently points towards need for cultivars with a longer reproductive phases (2.9–7.5% per 1 °C) and lower photoperiod sensitivities. Due to the positive synergies between several genotypic characteristics, multiple-target breeding programmes would be necessary, possibly assisted by model-based assessments...

  16. Sewer Systems and Climate Change

    NARCIS (Netherlands)

    Brandsma, T.

    1993-01-01

    In this article the impact of climate change on the overflows of sewer systems is assessed. The emphasis is on the overflows of combined sewer systems. The purpose is twofold: first, to obtain a first-order estimate of the impact of climate change on overflows of sewer systems; and second, to obtain

  17. Politics of climate change belief

    Science.gov (United States)

    2017-01-01

    Donald Trump's actions during the election and his first weeks as US president-elect send a strong message about his belief in climate change, or lack thereof. However, these actions may reflect polarization of climate change beliefs, not climate mitigation behaviour.

  18. Dune erosion under climate change

    NARCIS (Netherlands)

    de Winter, R.C.

    2014-01-01

    This PhD-thesis investigated the effect of future climate change on dune erosion in the Netherlands. At present, dune erosion occurs under a combination of large storm surge and high waves, which are both generated by a storm event. Therefore to investigate the affect of future climate change on dun

  19. Generating Arguments about Climate Change

    Science.gov (United States)

    Golden, Barry; Grooms, Jonathon; Sampson, Victor; Oliveri, Robin

    2012-01-01

    This unit is a different and fun way to engage students with an extremely important topic, climate change, which cuts across scientific and nonscientific disciplines. While climate change itself may not be listed in the curriculum of every science class, the authors contend that such a unit is appropriate for virtually any science curriculum.…

  20. Climate change, responsibility, and justice.

    Science.gov (United States)

    Jamieson, Dale

    2010-09-01

    In this paper I make the following claims. In order to see anthropogenic climate change as clearly involving moral wrongs and global injustices, we will have to revise some central concepts in these domains. Moreover, climate change threatens another value ("respect for nature") that cannot easily be taken up by concerns of global justice or moral responsibility.

  1. Teaching about Global Climate Change

    Science.gov (United States)

    Heffron, Susan Gallagher; Valmond, Kharra

    2011-01-01

    Students are exposed to many different media reports about global climate change. Movies such as "The Day After Tomorrow" and "Ice Age" are examples of instances when movie producers have sought to capture the attention of audiences by augmenting the challenges that climate change poses. Students may receive information from a wide range of media…

  2. Climate change challenges for SEA

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen

    This paper takes a theoretical perspective on the challenges that climate changes pose for SEA. The theoretical framework used is the sociologist Ulrich Beck’s theory of risk society and the aspects that characterise this society. Climate change is viewed as a risk, and the theory is used to derive...

  3. Preparing for climate change.

    Science.gov (United States)

    Holdgate, M

    1989-01-01

    There is a distinct probability that humankind is changing the climate and at the same time raising the sea level of the world. The most plausible projections we have now suggest a rise in mean world temperature of between 1 degree Celsius and 2 degrees Celsius by 2030--just 40 years hence. This is a bigger change in a smaller period than we know of in the experience of the earth's ecosystems and human societies. It implies that by 2030 the earth will be warmer than at any time in the past 120,000 years. In the same period, we are likely to see a rise of 15-30 centimeters in sea level, partly due to the melting of mountain glaciers and partly to the expansion of the warmer seas. This may not seem much--but it comes on top of the 12-centimeter rise in the past century and we should recall that over 1/2 the world's population lives in zones on or near coasts. A quarter meter rise in sea level could have drastic consequences for countries like the Maldives or the Netherlands, where much of the land lies below the 2-meter contour. The cause of climate change is known as the 'greenhouse effect'. Greenhouse glass has the property that it is transparent to radiation coming in from the sun, but holds back radiation to space from the warmed surfaces inside the greenhouse. Certain gases affect the atmosphere in the same way. There are 5 'greenhouse gases' and we have been roofing ourselves with them all: carbon dioxide concentrations in the atmosphere have increased 25% above preindustrial levels and are likely to double within a century, due to tropical forest clearance and especially to the burning of increasing quantities of coal and other fossil fuels; methane concentrations are now twice their preindustrial levels as a result of releases from agriculture; nitrous oxide has increased due to land clearance for agriculture, use of fertilizers, and fossil fuel combustion; ozone levels near the earth's surface have increased due mainly to pollution from motor vehicles; and

  4. Climate Change and Collective Violence.

    Science.gov (United States)

    Levy, Barry S; Sidel, Victor W; Patz, Jonathan A

    2017-03-20

    Climate change is causing increases in temperature, changes in precipitation and extreme weather events, sea-level rise, and other environmental impacts. It is also causing or contributing to heat-related disorders, respiratory and allergic disorders, infectious diseases, malnutrition due to food insecurity, and mental health disorders. In addition, increasing evidence indicates that climate change is causally associated with collective violence, generally in combination with other causal factors. Increased temperatures and extremes of precipitation with their associated consequences, including resultant scarcity of cropland and other key environmental resources, are major pathways by which climate change leads to collective violence. Public health professionals can help prevent collective violence due to climate change (a) by supporting mitigation measures to reduce greenhouse gas emissions, (b) by promoting adaptation measures to address the consequences of climate change and to improve community resilience, and

  5. Malaria ecology and climate change

    Science.gov (United States)

    McCord, G. C.

    2016-05-01

    Understanding the costs that climate change will exact on society is crucial to devising an appropriate policy response. One of the channels through while climate change will affect human society is through vector-borne diseases whose epidemiology is conditioned by ambient ecology. This paper introduces the literature on malaria, its cost on society, and the consequences of climate change to the physics community in hopes of inspiring synergistic research in the area of climate change and health. It then demonstrates the use of one ecological indicator of malaria suitability to provide an order-of-magnitude assessment of how climate change might affect the malaria burden. The average of Global Circulation Model end-of-century predictions implies a 47% average increase in the basic reproduction number of the disease in today's malarious areas, significantly complicating malaria elimination efforts.

  6. Hands-on Approach to Prepare Specialists in Climate Changes Modeling and Analysis Using an Information-Computational Web-GIS Portal "Climate"

    Science.gov (United States)

    Shulgina, T. M.; Gordova, Y. E.; Martynova, Y. V.

    2014-12-01

    A problem of making education relevant to the workplace tasks is a key problem of higher education in the professional field of environmental sciences. To answer this challenge several new courses for students of "Climatology" and "Meteorology" specialties were developed and implemented at the Tomsk State University, which comprises theoretical knowledge from up-to-date environmental sciences with computational tasks. To organize the educational process we use an open-source course management system Moodle (www.moodle.org). It gave us an opportunity to combine text and multimedia in a theoretical part of educational courses. The hands-on approach is realized through development of innovative trainings which are performed within the information-computational web GIS platform "Climate" (http://climate.scert.ru/). The platform has a set of tools and data bases allowing a researcher to perform climate changes analysis on the selected territory. The tools are also used for students' trainings, which contain practical tasks on climate modeling and climate changes assessment and analysis. Laboratory exercises are covering three topics: "Analysis of regional climate changes"; "Analysis of climate extreme indices on the regional scale"; and "Analysis of future climate". They designed to consolidate students' knowledge of discipline, to instill in them the skills to work independently with large amounts of geophysical data using modern processing and analysis tools of web-GIS platform "Climate" and to train them to present results obtained on laboratory work as reports with the statement of the problem, the results of calculations and logically justified conclusion. Thus, students are engaged in n the use of modern tools of the geophysical data analysis and it cultivates dynamic of their professional learning. The approach can help us to fill in this gap because it is the only approach that offers experience, increases students involvement, advance the use of modern

  7. Heat waves and climate change: applying the health belief model to identify predictors of risk perception and adaptive behaviours in adelaide, australia.

    Science.gov (United States)

    Akompab, Derick A; Bi, Peng; Williams, Susan; Grant, Janet; Walker, Iain A; Augoustinos, Martha

    2013-05-29

    Heat waves are considered a health risk and they are likely to increase in frequency, intensity and duration as a consequence of climate change. The effects of heat waves on human health could be reduced if individuals recognise the risks and adopt healthy behaviours during a heat wave. The purpose of this study was to determine the predictors of risk perception using a heat wave scenario and identify the constructs of the health belief model that could predict adaptive behaviours during a heat wave. A cross-sectional study was conducted during the summer of 2012 among a sample of persons aged between 30 to 69 years in Adelaide. Participants' perceptions were assessed using the health belief model as a conceptual frame. Their knowledge about heat waves and adaptive behaviours during heat waves was also assessed. Logistic regression analyses were performed to determine the predictors of risk perception to a heat wave scenario and adaptive behaviours during a heat wave. Of the 267 participants, about half (50.9%) had a high risk perception to heat waves while 82.8% had good adaptive behaviours during a heat wave. Multivariate models found that age was a significant predictor of risk perception. In addition, participants who were married (OR = 0.21; 95% CI, 0.07-0.62), who earned a gross annual household income of ≥$60,000 (OR = 0.41; 95% CI, 0.17-0.94) and without a fan (OR = 0.29; 95% CI, 0.11-0.79) were less likely to have a high risk perception to heat waves. Those who were living with others (OR = 2.87; 95% CI, 1.19-6.90) were more likely to have a high risk perception to heat waves. On the other hand, participants with a high perceived benefit (OR = 2.14; 95% CI, 1.00-4.58), a high "cues to action" (OR = 3.71; 95% CI, 1.63-8.43), who had additional training or education after high school (OR = 2.65; 95% CI, 1.25-5.58) and who earned a gross annual household income of ≥$60,000 (OR = 2.66; 95% CI, 1.07-6.56) were more likely to have good adaptive behaviours

  8. Heat Waves and Climate Change: Applying the Health Belief Model to Identify Predictors of Risk Perception and Adaptive Behaviours in Adelaide, Australia

    Directory of Open Access Journals (Sweden)

    Martha Augoustinos

    2013-05-01

    Full Text Available Heat waves are considered a health risk and they are likely to increase in frequency, intensity and duration as a consequence of climate change. The effects of heat waves on human health could be reduced if individuals recognise the risks and adopt healthy behaviours during a heat wave. The purpose of this study was to determine the predictors of risk perception using a heat wave scenario and identify the constructs of the health belief model that could predict adaptive behaviours during a heat wave. A cross-sectional study was conducted during the summer of 2012 among a sample of persons aged between 30 to 69 years in Adelaide. Participants’ perceptions were assessed using the health belief model as a conceptual frame. Their knowledge about heat waves and adaptive behaviours during heat waves was also assessed. Logistic regression analyses were performed to determine the predictors of risk perception to a heat wave scenario and adaptive behaviours during a heat wave. Of the 267 participants, about half (50.9% had a high risk perception to heat waves while 82.8% had good adaptive behaviours during a heat wave. Multivariate models found that age was a significant predictor of risk perception. In addition, participants who were married (OR = 0.21; 95% CI, 0.07–0.62, who earned a gross annual household income of ≥$60,000 (OR = 0.41; 95% CI, 0.17–0.94 and without a fan (OR = 0.29; 95% CI, 0.11–0.79 were less likely to have a high risk perception to heat waves. Those who were living with others (OR = 2.87; 95% CI, 1.19–6.90 were more likely to have a high risk perception to heat waves. On the other hand, participants with a high perceived benefit (OR = 2.14; 95% CI, 1.00–4.58, a high “cues to action” (OR = 3.71; 95% CI, 1.63–8.43, who had additional training or education after high school (OR = 2.65; 95% CI, 1.25–5.58 and who earned a gross annual household income of ≥$60,000 (OR = 2.66; 95% CI, 1.07–6.56 were more likely to

  9. The impact of climate change on the BRICS economies: The case of insurance demand.

    Science.gov (United States)

    Ranger, N.; Surminski, S.

    2012-04-01

    Session ERE5.1 Climate change impact on economical and industrial activities The impact of climate change on the BRICS economies: The case of insurance demand. Over the past decade, growth in the BRICS (Brazil, Russia, India, China and South Africa) economies has been a key driver of global economic growth. Current forecasts suggest that these markets will continue to be areas of significant growth for a large number of industries. We consider how climate change may influence these trends in the period to 2030, a time horizon that is long in terms of strategic planning in industry, but relatively short for climate change analysis, where the impacts are predicted to be most significant beyond around 2050. Based on current evidence, we expect climate change to affect the BRICS economies in four main ways: 1. The impact of physical climatic changes on the productivity of climate-sensitive economic activity, the local environment, human health and wellbeing, and damages from extreme weather. 2. Changing patterns of investment in climate risk management and adaptation 3. Changing patterns of investments in areas affected by greenhouse gas (GHG) mitigation policy, 4. The impacts of the above globally, including on international trade, growth, investment, policy, migration and commodity prices, and their impacts on the BRICS. We review the evidence on the impacts of climate change in the BRICS and then apply this to one particular industry sector: non-life insurance. We propose five potential pathways through which climate change could influence insurance demand: economic growth; willingness to pay for insurance; public policy and regulation; the insurability of natural catastrophe risks; and new opportunities associated with adaptation and greenhouse gas mitigation. We conclude that, with the exception of public policy and regulation, the influence of climate change on insurance demand to 2030 is likely to be small when compared with the expected growth due to rising

  10. Permafrost Meta-Omics and Climate Change

    Science.gov (United States)

    Mackelprang, Rachel; Saleska, Scott R.; Jacobsen, Carsten Suhr; Jansson, Janet K.; Taş, Neslihan

    2016-06-01

    Permanently frozen soil, or permafrost, covers a large portion of the Earth's terrestrial surface and represents a unique environment for cold-adapted microorganisms. As permafrost thaws, previously protected organic matter becomes available for microbial degradation. Microbes that decompose soil carbon produce carbon dioxide and other greenhouse gases, contributing substantially to climate change. Next-generation sequencing and other -omics technologies offer opportunities to discover the mechanisms by which microbial communities regulate the loss of carbon and the emission of greenhouse gases from thawing permafrost regions. Analysis of nucleic acids and proteins taken directly from permafrost-associated soils has provided new insights into microbial communities and their functions in Arctic environments that are increasingly impacted by climate change. In this article we review current information from various molecular -omics studies on permafrost microbial ecology and explore the relevance of these insights to our current understanding of the dynamics of permafrost loss due to climate change.

  11. A mechanistic-bioclimatic modeling analysis of the potential impact of climate change on biomes of the Tibetan Plateau.

    Science.gov (United States)

    Ye, Jian-Sheng; Reynolds, James F; Li, Feng-Min

    2014-08-01

    The Tibetan Plateau (TP) is experiencing high rates of climatic change. We present a novel combined mechanistic-bioclimatic modeling approach to determine how changes in precipitation and temperature on the TP may impact net primary production (NPP) in four major biomes (forest, shrub, grass, desert) and if there exists a maximum rain use efficiency (RUE(MAX)) that represents Huxman et al.'s "boundary that constrain[s] site-level productivity and efficiency." We used a daily mechanistic ecosystem model to generate 40-yr outputs using observed climatic data for scenarios of decreased precipitation (25-100%); increased air temperature (1 degrees - 6 degrees C); simultaneous changes in both precipitation (+/- 50%, +/- 25%) and air temperature (+1 to +6 degrees C) and increased interannual variability (IAV) of precipitation (+1 sigma to +3 sigma, with fixed means, where sigma is SD). We fitted model output from these scenarios to Huxman et al.'s RUE(MAX) bioclimatic model, NPP = alpha + RUE x PPT (where alpha is the intercept, RUE is rain use efficiency, and PPT is annual precipitation). Based on these analyses, we conclude that there is strong support (when not explicit, then trend-wise) for Huxman et al.'s assertion that biomes converge to a common RUE(MAX) during the driest years at a site, thus representing the boundary for highest rain use efficiency; the interactive effects of simultaneously decreasing precipitation and increasing temperature on NPP for the TP is smaller than might be expected from additive, single-factor changes in these drivers; and that increasing IAV of precipitation may ultimately have a larger impact on biomes of the Tibetan Plateau than changing amounts of rainfall and air temperature alone.

  12. Spatial analysis of plague in California: niche modeling predictions of the current distribution and potential response to climate change

    Directory of Open Access Journals (Sweden)

    Tucker James R

    2009-06-01

    Full Text Available Abstract Background Plague, caused by the bacterium Yersinia pestis, is a public and wildlife health concern in California and the western United States. This study explores the spatial characteristics of positive plague samples in California and tests Maxent, a machine-learning method that can be used to develop niche-based models from presence-only data, for mapping the potential distribution of plague foci. Maxent models were constructed using geocoded seroprevalence data from surveillance of California ground squirrels (Spermophilus beecheyi as case points and Worldclim bioclimatic data as predictor variables, and compared and validated using area under the receiver operating curve (AUC statistics. Additionally, model results were compared to locations of positive and negative coyote (Canis latrans samples, in order to determine the correlation between Maxent model predictions and areas of plague risk as determined via wild carnivore surveillance. Results Models of plague activity in California ground squirrels, based on recent climate conditions, accurately identified case locations (AUC of 0.913 to 0.948 and were significantly correlated with coyote samples. The final models were used to identify potential plague risk areas based on an ensemble of six future climate scenarios. These models suggest that by 2050, climate conditions may reduce plague risk in the southern parts of California and increase risk along the northern coast and Sierras. Conclusion Because different modeling approaches can yield substantially different results, care should be taken when interpreting future model predictions. Nonetheless, niche modeling can be a useful tool for exploring and mapping the potential response of plague activity to climate change. The final models in this study were used to identify potential plague risk areas based on an ensemble of six future climate scenarios, which can help public managers decide where to allocate surveillance resources

  13. Maintaining a clear line of sight through regional climate change analysis: the importance of distinguishing knowledge and data

    Science.gov (United States)

    Whetton, P.

    2014-12-01

    Developing, or choosing, appropriate climate projections for use in a particular context is challenging. To help with this, it is useful to distinguish between two types of climate projection information. First there is scientific knowledge about the range of plausible climate change. Such knowledge can synthesise a range of relevant evidence, may convey messages in qualitative terms only, and may also have attached confidence (e.g. as in IPCC assessments).This knowledge can be used in context setting but may also be sufficient information for qualitative impact applications aimed at narrative development. Secondly, there are projection data sets tailored for use in technical risk assessments. Although these two products draw on similar source material (primarily global and regional climate model output), the information they can contain about future climate can be quite different. Often in meeting user needs, only a subset of the range of plausible future climate is considered in application-ready products. This may be due to user needs for downscaled information which comes from limited models, or their need to work with a small number of multivariate scenarios which are best provided by the outputs of single climate models. In the push to create sophisticated datasets that meet demanding technical needs, the larger perspective of representativeness can go by the wayside, and there is a risk that data users will tacitly believe their data are representative of future change when in fact they may not be. Thus a key challenge for risk assessment is for projection providers and users to work in unison to ensure that the two aspects of knowledge and data are as harmonised as possible. These concepts will be illustrated using projection products from the Australian context, including a range of new national climate projection products developed recently to support applications in natural resources management planning.

  14. How does climate change influence Arctic mercury?

    Science.gov (United States)

    Stern, Gary A; Macdonald, Robie W; Outridge, Peter M; Wilson, Simon; Chételat, John; Cole, Amanda; Hintelmann, Holger; Loseto, Lisa L; Steffen, Alexandra; Wang, Feiyue; Zdanowicz, Christian

    2012-01-01

    Recent studies have shown that climate change is already having significant impacts on many aspects of transport pathways, speciation and cycling of mercury within Arctic ecosystems. For example, the extensive loss of sea-ice in the Arctic Ocean and the concurrent shift from greater proportions of perennial to annual types have been shown to promote changes in primary productivity, shift foodweb structures, alter mercury methylation and demethylation rates, and influence mercury distribution and transport across the ocean-sea-ice-atmosphere interface (bottom-up processes). In addition, changes in animal social behavior associated with changing sea-ice regimes can affect dietary exposure to mercury (top-down processes). In this review, we address these and other possible ramifications of climate variability on mercury cycling, processes and exposure by applying recent literature to the following nine questions; 1) What impact has climate change had on Arctic physical characteristics and processes? 2) How do rising temperatures affect atmospheric mercury chemistry? 3) Will a decrease in sea-ice coverage have an impact on the amount of atmospheric mercury deposited to or emitted from the Arctic Ocean, and if so, how? 4) Does climate affect air-surface mercury flux, and riverine mercury fluxes, in Arctic freshwater and terrestrial systems, and if so, how? 5) How does climate change affect mercury methylation/demethylation in different compartments in the Arctic Ocean and freshwater systems? 6) How will climate change alter the structure and dynamics of freshwater food webs, and thereby affect the bioaccumulation of mercury? 7) How will climate change alter the structure and dynamics of marine food webs, and thereby affect the bioaccumulation of marine mercury? 8) What are the likely mercury emissions from melting glaciers and thawing permafrost under climate change scenarios? and 9) What can be learned from current mass balance inventories of mercury in the Arctic? The

  15. Undergraduate Students' Conceptions of Natural and Anthropogenic Climate Change

    Science.gov (United States)

    Trenbath, K. L.

    2011-12-01

    Scientists and educators strive to improve climate literacy throughout society, whether through communication of research findings or though classroom teaching. Despite these efforts, climate change misconceptions exist in students and the general public. When educators present evidence that contradicts misconceptions, students may begin to struggle with their inaccurate ideas and perhaps transition towards a scientifically-accepted understanding. These transitions, called conceptual change, can occur in college climate change courses. The purpose of this presentation is to describe college students' ideas of natural and anthropogenic climate change and the way these ideas change throughout a climate change course. This presentation is based on five case studies of undergraduate students in a large lecture-hall course dedicated to climate change. Each case study student represents a different level of climate change understanding at the beginning of the semester. These case studies and subsequent cross-case analyses result from a qualitative research study using interviews, field notes, artifact analysis, coding and categorization, and research memos. The cases show shifts in all five students' ideas of natural and anthropogenic climate change. During the first month of class, the three lower achieving students expressed uncertainty about the increase in average global temperatures due to anthropogenic climate change. At the end of the semester, these students explained that warming from climate change is natural, yet the rate of this warming is increasing due to human activities. Two of the lower achieving students constructed definitions of climate change different than the definition used by the professor in the classroom. These students solidified the idea that the term "climate change" describes the change that results from natural forcings only, while the term "global warming" describes change in the climate that results from human-caused forcings. Their

  16. Far Away, So Close:A Legal Analysis of the Increasing Interactions between the Convention on Biological Diversity and Climate Change Law

    OpenAIRE

    Morgera, Elisa

    2011-01-01

    This article discuss the possible legal bases to support synergies between international biodiversity law and climate change law. The central section of the article analyse sthe multiple climate-change-related outcomes of the 10th meeting of the Conference of the Parties to the Convention on Biological Diversity, focusing on the legal relevance of the significant rapprochement of international biodiversity law and climate change law.

  17. Long-term Records of Pacific Salmon Abundance From Sediment Core Analysis: Relationships to Past Climatic Change, and Implications for the Future

    Science.gov (United States)

    Finney, B.

    2002-12-01

    The response of Pacific salmon to future climatic change is uncertain, but will have large impacts on the economy, culture and ecology of the North Pacific Rim. Relationships between sockeye salmon populations and climatic change can be determined by analyzing sediment cores from lakes where sockeye return to spawn. Sockeye salmon return to their natal lake system to spawn and subsequently die following 2 - 3 years of feeding in the North Pacific Ocean. Sockeye salmon abundance can be reconstructed from stable nitrogen isotope analysis of lake sediment cores as returning sockeye transport significant quantities of N, relatively enriched in N-15, from the ocean to freshwater systems. Temporal changes in the input of salmon-derived N, and hence salmon abundance, can be quantified through downcore analysis of N isotopes. Reconstructions of sockeye salmon abundance from lakes in several regions of Alaska show similar temporal patterns, with variability occurring on decadal to millennial timescales. Over the past 2000 years, shifts in sockeye salmon abundance far exceed the historical decadal-scale variability. A decline occurred from about 100 BC - 800 AD, but salmon were consistently more abundant 1200 - 1900 AD. Declines since 1900 AD coincide with the period of extensive commercial fishing. Correspondence between these records and paleoclimatic data suggest that changes in salmon abundance are related to large scale climatic changes over the North Pacific. For example, the increase in salmon abundance c.a. 1200 AD corresponds to a period of glacial advance in southern Alaska, and a shift to drier conditions in western North America. Although the regionally coherent patterns in reconstructed salmon abundance are consistent with the hypothesis that climate is an important driver, the relationships do not always follow patterns observed in the 20th century. A main feature of recorded climate variability in this region is the alternation between multi-decade periods of

  18. Several Suggestions on the Climate Change and Its Studies

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    According to the abundant studies,the relevant information and comprehensive analysis of the climate changes,several important problems on the climate changes and its studies were proposed.Based on the temporal distribution of the meteorological disaster of agriculture,the wave theory was expounded so as to draw people's attention on climate changes and to be objective,just and careful about the study.

  19. Strategic risk assessment: A case study of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Beer, T. [CSIRO, Mordialloc, Victoria (Australia). Div. of Atmospheric Research

    1996-12-31

    The philosophical basis for the on-going international and Australian action on climate change is the precautionary principle. The version of this relevant to Australia is that agreed to by the Australian States and by the Commonwealth of Australia as expressed in the Inter-Governmental Agreement on the Environment (IGAE). This study addresses the following questions: 1. What form of assessment of the risk-weighted consequences of climate change has been undertaken, as required under the precautionary principle? This paper claims that the IPCC process constitutes the risk-weighted assessment that is needed to justify the use of the precautionary principle. 2. Reducing the risk due to climate change requires actions on the basis of some combination of environmental integrity, equity, and economic efficiency as measured by cost-benefit analysis. Is the concept of intergenerational equity consistent with cost-benefit analysis? This paper claims that the problems of valuation over future time-scales, which may range from decades to centuries, make it difficult to apply cost-benefit analysis to the problem.

  20. Evaluating European Climate Change Policy: An Ecological Justice Approach

    Science.gov (United States)

    Muhovic-Dorsner, Kamala

    2005-01-01

    To date, the concept of ecological justice, when applied to international climate change policy, has largely focused on the North-South dichotomy and has yet to be extended to Central and Eastern European countries. This article argues that current formulations of climate change policy cannot address potential issues of ecological injustice to…

  1. CLIMATE CHANGE, Change International Negociations?

    Institute of Scientific and Technical Information of China (English)

    Gao Xiaosheng

    2009-01-01

    @@ Climate change is one of key threats to human beings who have to deal with.According to Bali Action Plan released after the 2007 Bali Climate Talk held in Indonesia,the United Nations Framework on Climate Change(UNFCCC) has launched a two-year process to negotiate a post-2012 climate arrangement after the Kyoto Protocol expires in 2012 and the Copenhagen Climate Change Conference will seal a final deal on post-2012 climate regime in December,2009.For this,the United Nation Chief Ban Ki Moon called 2009"the year ofclimate change".

  2. Risk communication on climate change

    Energy Technology Data Exchange (ETDEWEB)

    Wardekker, J.A.

    2004-10-01

    For the title study use has been made of available scientific literature, results of new surveys and interviews. In the first part of the study attention is paid to the exchange of information between parties involved in climate change and differences in supply and demand of information. In the second part citizens' views on climate change, problems with communication on climate change, and the resulting consequences and options for communication are dealt with. In this second part also barriers to action that are related or influenced by communication are taken into consideration.

  3. Climatic change; Le Changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    Perthuis, Ch. de [Universite de Paris-Dauphine, 75 - Paris (France); Caisse des depots, Mission climat, 75 - Paris (France); Delbosc, A. [Caisse des depots, Mission climat, 75 - Paris (France)

    2009-07-01

    Received ideas about climatic change are a mixture of right and wrong information. The authors use these ideas as starting points to shade light on what we really know and what we believe to know. The book is divided in three main chapters: should we act in front of climatic change? How can we efficiently act? How can we equitably act? For each chapter a series of received ideas is analyzed in order to find those which can usefully contribute to mitigate the environmental, economical and social impacts of climatic change. (J.S.)

  4. Climate change sentiment on Twitter: An unsolicited public opinion poll

    CERN Document Server

    Cody, Emily M; Mitchell, Lewis; Dodds, Peter Sheridan; Danforth, Christopher M

    2015-01-01

    The consequences of anthropogenic climate change are extensively debated through scientific papers, newspaper articles, and blogs. Newspaper articles may lack accuracy, while the severity of findings in scientific papers may be too opaque for the public to understand. Social media, however, is a forum where individuals of diverse backgrounds can share their thoughts and opinions. As consumption shifts from old media to new, Twitter has become a valuable resource for analyzing current events and headline news. In this research, we analyze tweets containing the word "climate" collected between September 2008 and July 2014. We determine how collective sentiment varies in response to climate change news, events, and natural disasters. Words uncovered by our analysis suggest that responses to climate change news are predominately from climate change activists rather than climate change deniers, indicating that Twitter is a valuable resource for the spread of climate change awareness.

  5. Beyond dichotomies: Gender and intersecting inequalities in climate change studies.

    Science.gov (United States)

    Djoudi, Houria; Locatelli, Bruno; Vaast, Chloe; Asher, Kiran; Brockhaus, Maria; Basnett Sijapati, Bimbika

    2016-12-01

    Climate change and related adaptation strategies have gender-differentiated impacts. This paper reviews how gender is framed in 41 papers on climate change adaptation through an intersectionality lens. The main findings show that while intersectional analysis has demonstrated many advantages for a comprehensive study of gender, it has not yet entered the field of climate change and gender. In climate change studies, gender is mostly handled in a men-versus-women dichotomy and little or no attention has been paid to power and social and political relations. These gaps which are echoed in other domains of development and gender research depict a 'feminization of vulnerability' and reinforce a 'victimization' discourse within climate change studies. We argue that a critical intersectional assessment would contribute to unveil agency and emancipatory pathways in the adaptation process by providing a better understanding of how the differential impacts of climate change shape, and are shaped by, the complex power dynamics of existing social and political relations.

  6. Multi-pattern fingerprint method for detection and attribution of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Hasselmann, K. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1997-09-01

    To determine whether a climate change signal which has been detected in observed climate data can be attributed to a particular climate forcing mechanism, or combination of mechanisms, the predicted space-time dependent climate change signal patterns for the candidate climate forcings must be specified. In addition to the signal patterns, the method requires input information on the space-time dependent covariance matrices of the natural climate variability and of the errors of the predicted signal patterns. The detection and attribution problem is treated as a sequence of individual consistency tests applied to all candidate forcing mechanisms, as well as to the null hypothesis that no climate change has taken place, within the phase space spanned by the predicted climate change patterns. As output the method yields a significance level for the detection of a climate change signal in the observed data and individual confidence levels for the consistency of the retrieved climate change signal with each of the forcing mechanisms. A statistically significant climate change signal is regarded as consistent with a given forcing mechanism if the statistical confidence level exceeds a given critical value, but is attributed to that forcing only if all other candidate climate change mechanisms (from a finite set of proposed mechanisms) are rejected at that confidence level. Although all relations can be readily expressed in standard matrix notation, the analysis is carried out using tensor notation, with a metric given by the natural-variability covariance matrix. This simplifies the derivations and clarifies the invariant relation between the covariant signal patterns and their contravariant fingerprint counterparts. The signal patterns define the reduced vector space in which the climate trajectories are analyzed, while the fingerprints are needed to project the climate trajectories onto this reduced space. (orig.) With 1 fig., 19 refs.

  7. How will climate change modify river flow regimes in Europe?

    Directory of Open Access Journals (Sweden)

    C. Schneider

    2012-08-01

    Full Text Available Worldwide, flow regimes are being modified by various anthropogenic impacts and climate change induces an additional risk. Rising evapotranspiration rates, declining snow cover and changing precipitation patterns will interact differently at different locations. Consequently, in distinct climate zones, unequal consequences can be expected in matters of water stress, flood risk, water quality, and food security. In particular, river ecosystems and their vital ecosystem services will be compromised as their species richness and composition have evolved over long time under natural flow conditions. This study aims at evaluating the exclusive impacts of climate change on river flow regimes in Europe. Various flow characteristics are taken into consideration and diverse dynamics are identified for each distinct climate zone in Europe. In order to simulate natural and modified flow regimes, the global hydrology model WaterGAP3 is applied. All calculations for current and future conditions (2050s are carried out on a 5' × 5' European grid. To address uncertainty, climate forcing data of three different global climate models are used to drive WaterGAP3. Finally, the hydrological alterations of different flow characteristics are quantified by the Indicators of Hydrological Alteration approach. Results of our analysis indicate that on European scale, climate change can be expected to modify flow regimes significantly. This is especially the case in the Mediterranean climate zone (due to drier conditions with reduced precipitation across the year and in the continental climate zone (due to reduced snowmelt and drier summers. Regarding single flow characteristics, strongest impacts on timing were found for the boreal climate zone. This applies for both, high and low flows. While low flow magnitudes are likely to be stronger influenced in the Mediterranean climate, high flow magnitudes will be mainly altered in snow climates with warmer summers. At the end

  8. Climate change and group dynamics

    NARCIS (Netherlands)

    Postmes, Tom

    2015-01-01

    The characteristics and views of people sceptical about climate change have been analysed extensively. A study now confirms that sceptics in the US have some characteristics of a social movement, but shows that the same group dynamics propel believers

  9. Cities lead on climate change

    Science.gov (United States)

    Pancost, Richard D.

    2016-04-01

    The need to mitigate climate change opens up a key role for cities. Bristol's year as a Green Capital led to great strides forward, but it also revealed that a creative and determined partnership across cultural divides will be necessary.

  10. Climate change and water resources

    Energy Technology Data Exchange (ETDEWEB)

    Younos, Tamim [The Cabell Brand Center for Global Poverty and Resource Sustainability Studies, Salem, VA (United States); Grady, Caitlin A. (ed.) [Purdue Univ., West Lafayette, IN (United States). Ecological Sciences and Engineering Program

    2013-07-01

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  11. Climate Change Science Program Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Change Science Program (CCSP) Collection consists of publications and other resources produced between 2007 and 2009 by the CCSP with the intention of...

  12. Climate change: Unattributed hurricane damage

    Science.gov (United States)

    Hallegatte, Stéphane

    2015-11-01

    In the United States, hurricanes have been causing more and more economic damage. A reanalysis of the disaster database using a statistical method that accounts for improvements in resilience opens the possibility that climate change has played a role.

  13. Making Sense of Climate Change

    DEFF Research Database (Denmark)

    Blichfeldt, Nikolaj Vendelbo

    The thesis is an ethnographic description of a climate change mitigation campaign among retirees in the urban residential community Dongping Lane in central Hangzhou, and an examination of local understandings of connections between everyday life in the community and global climate change......, as a point of departure for an examination of what happens when a requirement to save energy and resources, as a response to global climate change, encounters local ways of knowing the world. Developed through meetings, workshops, competitions and the promotion of exemplary individuals, the campaign...... is conceived as part of wider state-sponsored efforts to foster civilized behavior and a sense of belonging to the residential community among urban citizens in China. The campaigners connect unspectacular everyday consumer practices with climate change and citizenship by showing that among them, making...

  14. Welfare impacts of climate change

    NARCIS (Netherlands)

    Hof, Andries F.

    2015-01-01

    Climate change can affect well-being in poor economies more than previously shown if its effect on economic growth, and not only on current production, is considered. But this result does not necessarily suggest greater mitigation efforts are required.

  15. Climate change or variable weather

    DEFF Research Database (Denmark)

    Baron, Nina; Kjerulf Petersen, Lars

    2015-01-01

    Climate scenarios predict that an effect of climate change will be more areas at risk of extensive flooding. This article builds on a qualitative case study of homeowners in the flood-prone area of Lolland in Denmark and uses the theories of Tim Ingold and Bruno Latour to rethink the way we...... understand homeowners’ perception of climate change and local flood risk. Ingold argues that those perceptions are shaped by people’s experiences with and connections to their local landscape. People experience the local variability of the weather, and not global climate change as presented in statistical...... data and models. This influences the way they understand the future risks of climate change. Concurrently, with the theory of Latour, we can understand how those experiences with the local landscape are mediated by the existing water-managing technologies such as pumps and dikes. These technologies...

  16. Climate Change and Water Tools

    Science.gov (United States)

    EPA tools and workbooks guide users to mitigate and adapt to climate change impacts. Various tools can help manage risks, others can visualize climate projections in maps. Included are comprehensive tool kits hosted by other federal agencies.

  17. Climate Change and Water Training

    Science.gov (United States)

    To take action on climate impacts, practitioners must understand how climate change will effect their region, and the country. Training provided here by EPA and partners allow users to better grasp the issues and make decisions based on current science.

  18. Capturing Tweets on Climate Change: What is the role of Twitter in Climate Change Communication?

    Science.gov (United States)

    Ngo, A. M.; McNeal, K.; Luginbuhl, S.; Enteen, J.

    2015-12-01

    Climate change is a major environmental issue that is often discussed throughout the world using social media outlets such as Twitter. This research followed and collected tweets about climate change as they related to two events: (i) the June 18, 2015 release of the Encyclical by Pope Francis which included content about climate change and (ii) the upcoming COP21 conference, a United Nations climate change conference, to be held on Dec. 7-8, 2015 in Paris. Using a Twitter account and Ncapture we were able to collect tens of thousands of climate change related tweets that were then loaded into a program called Nvivo which stored the tweets and associated publically available user information. We followed a few major hashtags such as COP21, UNFCCC, @climate, and the Pope. We examined twitter users, the information sources, locations, number of re-tweets, and frequency of tweets as well as the category of the tweet in regard to positive, negative, and neutral positions about climate. Frequency analysis of tweets over a 10 day period of the Encyclical event showed that ~200 tweets per day were made prior to the event, with ~1000 made on the day of the event, and ~100 per day following the event. For the COP21 event, activity ranged from 2000-3000 tweets per day. For the Encyclical event, an analysis of 1100 tweets on the day of release indicated that 47% of the tweets had a positive perspective about climate change, 50% were neutral, 1% negative, and 2% were unclear. For the COP21 event, an analysis of 342 tweets randomly sampled from 31,721 tweets, showed that 53% of the tweets had a positive perspective about climate change, 12% were neutral, 13% negative, and 22% were unclear. Differences in the frequency and perspectives of tweets were likely due to the nature of the events, one a long-term and recurring international event and the other a single international religious-oriented event. We tabulated the top 10 tweets about climate change as they relate to these two

  19. Identification and Categorization of Climate Change Risks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yuehong; WU Shaohong; DAI Erfu; LIU Dengwei; YIN Yunhe

    2008-01-01

    The scientific evidence that climate is changing due to greenhouse gas emission is now incontestable,which may put many social,biological,and geophysical systems in the world at risk.In this paper,we first identified main risks induced from or aggravated by climate change.Then we categorized them applying a new risk categorization system brought forward by Renn in a framework of International Risk Governance Council.We proposed that "uncertainty" could be treated as the classification criteria.Based on this,we established a quantitative method with fuzzy set theory,in which "confidence" and "likelihood",the main quantitative terms for expressing uncertainties in IPCC,were used as the feature parameters to construct the fuzzy membership functions of four risk types.According to the maximum principle,most climate change risks identified were classified into the appropriate risk types.In the mean time,given that not all the quantitative terms are available,a qualitative approach was also adopted as a complementary classification method.Finally,we get the preliminary results of climate change risk categorization,which might lay the foundation for the future integrated risk management of climate change.

  20. Climate Changes around the world

    Energy Technology Data Exchange (ETDEWEB)

    Kahl, J.

    2009-07-01

    This presentation addresses several important aspects of the climate changes that are occurring around the globe. the causes of climate change are first reviewed, with illustrations of orbital oscillations, the atmospheric greenhouse effect, and aerosol effects. Observed changes in climate are next reviewed, both thought many millenia and during the past century. Distinctions are made between global warming and regional changes in temperature and precipitation. Changes in the frequency of weather extremes, including heat waves and tropical storms, are also discussed. (Author)

  1. Responsible Reaction To Climate Change

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    China calls for turning UNFCCC provisions into concrete actions Never before has climate change been as prominent on the public agenda as it is today.Its rele- vance was highlighted once again when more than 10,000 delegates from over 180 countries flocked to Bali early this month to discuss the topic.Environment officials as well as representatives from intergovernmental and nongovernmental organizations gath- ered on the Indonesian island on December 3-14 for the UN Climate Change Conference.

  2. Climate Change and Future World

    Science.gov (United States)

    2013-03-01

    fresh water. Movements of migrants from northern Africa and the Middle-East are already a security problem for Europe . This phenomenon is likely to be...Climate Change Science Program , Climate Literacy – The Essential Principles of Climate Sciences, 3. (http://library.globalchange.gov/climate...06/2013. 21 U.S. Climate Change Science Program , Climate Literacy – The Essential Principles of Climate Sciences, 3. (http

  3. Climate Change and National Security

    Science.gov (United States)

    2013-02-01

    atmosphere, which is causing warming of global temperatures as well as more extreme and less predictable weather patterns. While this issue is debated in...develop unique, policy-relevant solutions to complex global challenges. About the CCAPS Program The Climate Change and African Political Stability...political circles, scientists overwhelmingly agree that human-induced or anthropogenic climate change is real. Given the complexity of the issue, there

  4. Social protection and climate change

    DEFF Research Database (Denmark)

    Johnson, Craig; Bansha Dulal, Hari; Prowse, Martin Philip

    2013-01-01

    This article lays the foundation for this special issue on social protection and climate change, introducing and evaluating the ways in which the individual articles contribute to our understanding of the subject.......This article lays the foundation for this special issue on social protection and climate change, introducing and evaluating the ways in which the individual articles contribute to our understanding of the subject....

  5. The consequences of climatic change in Germany. What can we do, and how much does it cost?; Die Folgen des Klimawandels in Deutschland. Was koennen wir tun und was kostet es? Hintergrundpapier

    Energy Technology Data Exchange (ETDEWEB)

    Hasse, Clemens

    2012-09-15

    The background information under consideration discusses the impact of climate change in Germany. It is shown, how measures for the adaptation to the climatic change may be subjected to a cost-benefit-analysis. An extended cost-benefit analysis is applied on practical case studies. The background information primarily is aimed at policy makers at federal government, state governments and local governments analysing the risks of climate change and planning adaptation measures by thmselves.

  6. Global Megacities Differing Adaptation Responses to Climate Change: an Analysis of Annual Spend of Ten Major cities on the adaptation economy

    Science.gov (United States)

    Maslin, M. A.; Georgeson, L.

    2015-12-01

    Urban areas are increasingly at risk from climate change with negative impacts predicted for human health, the economy and ecosystems. These risks require responses from cities, to improve the resilience of their infrastructure, economy and environment to climate change. Policymakers need to understand what is already being spent on adaptation so that they can make more effective and comprehensive adaptation plans. Through the measurement of spend in the newly defined 'Adaptation Economy' we analysis the current efforts of 10 global megacities in adapting to climate change. These cities were chosen based on their size, geographical location and their developmental status. The cities are London, Paris, New York, Mexico City, Sao Paulo, Beijing, Mumbai, Jakarta, Lagos and Addis Ababa. It is important to study a range of cities in different regions of the world, with different climates and at different states of socio-economic development. While in economic terms, disaster losses from weather, climate and geophysical events are greater in developed countries, fatalities and economic losses as a proportion of GDP are higher in developing countries. In all cities examined the Adaptation Economy is still a small part of the overall economy accounting for a maximum of 0.3% of the Cities total GDP (GDPc). The differences in total spend are significant between cities in developed and rapidly emerging countries, compared to those in developing countries with a spend ranging from £16 million to £1,500 million. Comparing key sub sectors, we demonstrate that there are distinctive adaptation profiles with developing cities having a higher relative spend on health, while developed cities have a higher spend on disaster preparedness, ICT and professional services. Comparing spend per capita and as a percentage of GDPc demonstrates even more clearly disparities between the cities in the study; developing country cities spend half as much as a proportion of GPCc in some cases, and

  7. Economic Analysis of the Effects of Climate Change Induced by Greenhouse Gas Emissions on Agricultural Productions and Available Water Resources (Case Study: Down Lands of the Taleghan Dam

    Directory of Open Access Journals (Sweden)

    M.M. Mozaffari

    2016-03-01

    to survey the impacts of climate variables on the selected products yield. Changes in agricultural production, farmer’s gross profit and economic value of irrigation water were analyzed and compared with the base year by the regression analysis results in the Positive Mathematical Programming (PMP model. This methodology that was developed by Howitt (1995 to calibrate agricultural supply models has been used to link biophysical and economic information in an integrated biophysical and economic modeling framework and to assess the impacts of agricultural policies and scenarios. These models are also accepted for analyzing the impact of climate change and water resources management policies and scenarios. The PMP model used in this paper is a three-step procedure in which a non-linear cost function is calibrated to observe values of inputs usage in agricultural production. In the basic formulation, the first step is a linear program providing marginal values that are used in the second step to estimate the parameters for a non-linear cost function and a production function. In the third step, the calibrated production and cost functions are used in a non-linear optimization program. The solution to this non-linear program calibrates to observed values of production inputs and output. The required data in this paper were collected from meteorological stations and the relevant agencies in the Qazvin province. Regression functions estimated in Eviews software package and the PMP model were solved in GAMS (General Algebraic Modeling System software. Results and Discussion: The results obtained in this paper showed that with emissions of greenhouse gases under the studied scenarios (A1B, A2 and B1, the average annual climate variables of temperature and precipitation changes from 1.64 to 2.28 °C and from20.92 to 1.1 mm, respectively. With these change, the yield of the most selected products decreases in the down lands of Taleghan Dam. Moreover, the obtained results

  8. Multi-risk assessment: from natural hazards to climate change

    Science.gov (United States)

    Valentina, Gallina; Silvia, Torresan; Andrea, Critto; Antonio, Marcomini

    2014-05-01

    The World Bank report on the main hotspots of natural hazards highlights that million people in the world are relatively highly exposed to at least two hazards and additional impacts on natural and human systems can be posed by climate change. Therefore, a major challenge for natural hazard and climate impact research is to develop new methods and tools for the aggregation of cumulative effects expected from multiple impacts forced by natural and anthropogenic drivers across different regions and sectors, taking into account changing climate, exposure and vulnerability. So far, a hazard by hazard approach has been generally applied for evaluating the consequences of natural and climate change hazards on the analyzed region (e.g. heavy precipitations, floods, sea-level rise, coastal erosion, storm surges). However, different natural hazards and climate-related impacts affecting a region should be handled according to a multi-risk approach in order to aggregate, compare and rank different kinds of concurrent impacts caused by climate change. Several EU funded projects (e.g. ESPON-HAZARD, ARMONIA, MATRIX) were developed so far in order to provide sound scientific advancement towards the elaboration of multi-risk approaches. A full multi-risk approach entails both a multi-hazard and multi-vulnerability perspective. However, internationally, most of the work concerning multi-hazards focused especially on natural hazards (e.g. flooding, storm surges, landslides, seismicity, droughts) affecting the same area. Moreover, multi-risk approaches developed so far refer only to the assessment of different hazards and rely on the analysis of static vulnerability (i.e. no time-dependent vulnerabilities for different exposed elements), also called multi-hazard risk assessment. A relevant challenge is therefore to develop a comprehensive formal approach for the assessment of different natural and climate-induced hazards and risks at the regional scale. A critical review of existing

  9. Multi-criteria decision analysis tools for prioritising emerging or re-emerging infectious diseases associated with climate change in Canada.

    Directory of Open Access Journals (Sweden)

    Ruth Cox

    Full Text Available Global climate change is known to result in the emergence or re-emergence of some infectious diseases. Reliable methods to identify the infectious diseases of humans and animals and that are most likely to be influenced by climate are therefore required. Since different priorities will affect the decision to address a particular pathogen threat, decision makers need a standardised method of prioritisation. Ranking methods and Multi-Criteria Decision approaches provide such a standardised method and were employed here to design two different pathogen prioritisation tools. The opinion of 64 experts was elicited to assess the importance of 40 criteria that could be used to prioritise emerging infectious diseases of humans and animals in Canada. A weight was calculated for each criterion according to the expert opinion. Attributes were defined for each criterion as a transparent and repeatable method of measurement. Two different Multi-Criteria Decision Analysis tools were tested, both of which used an additive aggregation approach. These were an Excel spreadsheet tool and a tool developed in software 'M-MACBETH'. The tools were trialed on nine 'test' pathogens. Two different methods of criteria weighting were compared, one using fixed weighting values, the other using probability distributions to account for uncertainty and variation in expert opinion. The ranking of the nine pathogens varied according to the weighting method that was used. In both tools, using both weighting methods, the diseases that tended to rank the highest were West Nile virus, Giardiasis and Chagas, while Coccidioidomycosis tended to rank the lowest. Both tools are a simple and user friendly approach to prioritising pathogens according to climate change by including explicit scoring of 40 criteria and incorporating weighting methods based on expert opinion. They provide a dynamic interactive method that can help to identify pathogens for which a full risk assessment should

  10. Multi-criteria decision analysis tools for prioritising emerging or re-emerging infectious diseases associated with climate change in Canada.

    Science.gov (United States)

    Cox, Ruth; Sanchez, Javier; Revie, Crawford W

    2013-01-01

    Global climate change is known to result in the emergence or re-emergence of some infectious diseases. Reliable methods to identify the infectious diseases of humans and animals and that are most likely to be influenced by climate are therefore required. Since different priorities will affect the decision to address a particular pathogen threat, decision makers need a standardised method of prioritisation. Ranking methods and Multi-Criteria Decision approaches provide such a standardised method and were employed here to design two different pathogen prioritisation tools. The opinion of 64 experts was elicited to assess the importance of 40 criteria that could be used to prioritise emerging infectious diseases of humans and animals in Canada. A weight was calculated for each criterion according to the expert opinion. Attributes were defined for each criterion as a transparent and repeatable method of measurement. Two different Multi-Criteria Decision Analysis tools were tested, both of which used an additive aggregation approach. These were an Excel spreadsheet tool and a tool developed in software 'M-MACBETH'. The tools were trialed on nine 'test' pathogens. Two different methods of criteria weighting were compared, one using fixed weighting values, the other using probability distributions to account for uncertainty and variation in expert opinion. The ranking of the nine pathogens varied according to the weighting method that was used. In both tools, using both weighting methods, the diseases that tended to rank the highest were West Nile virus, Giardiasis and Chagas, while Coccidioidomycosis tended to rank the lowest. Both tools are a simple and user friendly approach to prioritising pathogens according to climate change by including explicit scoring of 40 criteria and incorporating weighting methods based on expert opinion. They provide a dynamic interactive method that can help to identify pathogens for which a full risk assessment should be pursued.

  11. Wave and tidal level analysis, maritime climate change, navigation's strategy and impact on the costal defences - Study case of São Paulo State Coastline Harbour Areas (Brazil)

    Science.gov (United States)

    Alfredini, P.; Pezzoli, A.; Cristofori, E. I.; Dovetta, A.; Arasaki, E.

    2012-04-01

    São Paulo State Coastline Harbour Area concentrates around of 40% of Brazilian GNP, Santos Harbour is the America South Atlantic Hub Port and São Sebastião Oil Maritime Terminal is the most important oil and gas facility of PETROBRAS, the Brazilian National Petroleum Company. Santos Harbour had in the last decade increased rapidly the container handling rate, being the first in Latin America. In the last decade important oil and gas reserves were discovered in the Santos Oceanic Basin and São Paulo Coastline received a big demand for supplier ships harbours for the petroleum industry. Santos Metropolitan Region is one of the most important of Brazilian Coastline, also considering the turism. For that great economic growth scenario it is very important to have the main maritime hydrodynamics forcing processes, wave climate and tidal levels, well known, considering the sea hazards influence in ship operations. Since the hindcast just represents the deep water wave climate, to make time-series of the waves parameters in coastal waters, for evaluation of sea hazards and ship operations, it is necessary to take into acount the variations of those parameters in shallow waters with coastal instrumental data. Analysis of long term wave data-base (1957-2002) generated by a comparison between wave's data modeled by a "deep water model" (ERA40-ECMWF) and measured wave's data in the years 1982-1984 by a coastal buoy in Santos littoral (São Paulo State, Brazil) was made. Calibration coefficients according to angular sectors of wave's direction were obtained by the comparison of the instrument data with the modeled ones, and applied to the original scenarios. Validation checking procedures with instrumental measurements of storm surges made in other years than 1982-1984 shows high level of confidence. The analysis of the wave climate change on the extreme storm surge wave's conditions, selecting cases of Hs > 3,0 m, using that virtual data-base shows an increase in the Hs

  12. Impact of Climate Change on Riverbank Erosion

    Directory of Open Access Journals (Sweden)

    Most. Nazneen Aktar

    2014-04-01

    2100. Assessment of the impact of climate change on riverbank erosion is essential for planning climate change mitigation measures for the country. Similar type of work could be applied to any other climate vulnerable countries which are prone to riverbank erosion.

  13. Extreme Weather Events and Climate Change Attribution

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Katherine [National Academy of Sciences, Washington, DC (United States)

    2016-03-31

    A report from the National Academies of Sciences, Engineering, and Medicine concludes it is now possible to estimate the influence of climate change on some types of extreme events. The science of extreme event attribution has advanced rapidly in recent years, giving new insight to the ways that human-caused climate change can influence the magnitude or frequency of some extreme weather events. This report examines the current state of science of extreme weather attribution, and identifies ways to move the science forward to improve attribution capabilities. Confidence is strongest in attributing types of extreme events that are influenced by climate change through a well-understood physical mechanism, such as, the more frequent heat waves that are closely connected to human-caused global temperature increases, the report finds. Confidence is lower for other types of events, such as hurricanes, whose relationship to climate change is more complex and less understood at present. For any extreme event, the results of attribution studies hinge on how questions about the event's causes are posed, and on the data, modeling approaches, and statistical tools chosen for the analysis.

  14. Applied multivariate statistical analysis

    CERN Document Server

    Härdle, Wolfgang Karl

    2015-01-01

    Focusing on high-dimensional applications, this 4th edition presents the tools and concepts used in multivariate data analysis in a style that is also accessible for non-mathematicians and practitioners.  It surveys the basic principles and emphasizes both exploratory and inferential statistics; a new chapter on Variable Selection (Lasso, SCAD and Elastic Net) has also been added.  All chapters include practical exercises that highlight applications in different multivariate data analysis fields: in quantitative financial studies, where the joint dynamics of assets are observed; in medicine, where recorded observations of subjects in different locations form the basis for reliable diagnoses and medication; and in quantitative marketing, where consumers’ preferences are collected in order to construct models of consumer behavior.  All of these examples involve high to ultra-high dimensions and represent a number of major fields in big data analysis. The fourth edition of this book on Applied Multivariate ...

  15. Newspaper Framing of Climate Change in Nigeria and Ghana

    Science.gov (United States)

    Nwabueze, Chinenye; Egbra, Stella

    2016-01-01

    This study is a content analysis of two newspapers from Nigeria and Ghana to determine the coverage and framing of climate change issues for a period of 7 months. The main objective of this study is to find out how climate change stories are framed in Nigerian and Ghanaian national dailies. It was found among others, that the overall dominant…

  16. Methane : its role in climate change and options for control

    NARCIS (Netherlands)

    Amstel, van A.R.

    2012-01-01

    This study on CH4, (its role in climate change and options for control), aimed at a scenario analysis to assess future climate change under reduced methane emissions. At the same time improving the quality of CH4 emission inventories and estimating the costs of emission reducti

  17. Climate Change Research in View of Bibliometrics.

    Science.gov (United States)

    Haunschild, Robin; Bornmann, Lutz; Marx, Werner

    2016-01-01

    This bibliometric study of a large publication set dealing with research on climate change aims at mapping the relevant literature from a bibliometric perspective and presents a multitude of quantitative data: (1) The growth of the overall publication output as well as (2) of some major subfields, (3) the contributing journals and countries as well as their citation impact, and (4) a title word analysis aiming to illustrate the time evolution and relative importance of specific research topics. The study is based on 222,060 papers (articles and reviews only) published between 1980 and 2014. The total number of papers shows a strong increase with a doubling every 5-6 years. Continental biomass related research is the major subfield, closely followed by climate modeling. Research dealing with adaptation, mitigation, risks, and vulnerability of global warming is comparatively small, but their share of papers increased exponentially since 2005. Research on vulnerability and on adaptation published the largest proportion of very important papers (in terms of citation impact). Climate change research has become an issue also for disciplines beyond the natural sciences. The categories Engineering and Social Sciences show the strongest field-specific relative increase. The Journal of Geophysical Research, the Journal of Climate, the Geophysical Research Letters, and Climatic Change appear at the top positions in terms of the total number of papers published. Research on climate change is quantitatively dominated by the USA, followed by the UK, Germany, and Canada. The citation-based indicators exhibit consistently that the UK has produced the largest proportion of high impact papers compared to the other countries (having published more than 10,000 papers). Also, Switzerland, Denmark and also The Netherlands (with a publication output between around 3,000 and 6,000 papers) perform top-the impact of their contributions is on a high level. The title word analysis shows that

  18. Tracking Public Beliefs About Anthropogenic Climate Change.

    Science.gov (United States)

    Hamilton, Lawrence C; Hartter, Joel; Lemcke-Stampone, Mary; Moore, David W; Safford, Thomas G

    2015-01-01

    A simple question about climate change, with one choice designed to match consensus statements by scientists, was asked on 35 US nationwide, single-state or regional surveys from 2010 to 2015. Analysis of these data (over 28,000 interviews) yields robust and exceptionally well replicated findings on public beliefs about anthropogenic climate change, including regional variations, change over time, demographic bases, and the interacting effects of respondent education and political views. We find that more than half of the US public accepts the scientific consensus that climate change is happening now, caused mainly by human activities. A sizable, politically opposite minority (about 30 to 40%) concede the fact of climate change, but believe it has mainly natural causes. Few (about 10 to 15%) say they believe climate is not changing, or express no opinion. The overall proportions appear relatively stable nationwide, but exhibit place-to-place variations. Detailed analysis of 21 consecutive surveys within one fairly representative state (New Hampshire) finds a mild but statistically significant rise in agreement with the scientific consensus over 2010-2015. Effects from daily temperature are detectable but minor. Hurricane Sandy, which brushed New Hampshire but caused no disaster there, shows no lasting impact on that state's time series-suggesting that non-immediate weather disasters have limited effects. In all datasets political orientation dominates among individual-level predictors of climate beliefs, moderating the otherwise positive effects from education. Acceptance of anthropogenic climate change rises with education among Democrats and Independents, but not so among Republicans. The continuing series of surveys provides a baseline for tracking how future scientific, political, socioeconomic or climate developments impact public acceptance of the scientific consensus.

  19. Tracking Public Beliefs About Anthropogenic Climate Change.

    Directory of Open Access Journals (Sweden)

    Lawrence C Hamilton

    Full Text Available A simple question about climate change, with one choice designed to match consensus statements by scientists, was asked on 35 US nationwide, single-state or regional surveys from 2010 to 2015. Analysis of these data (over 28,000 interviews yields robust and exceptionally well replicated findings on public beliefs about anthropogenic climate change, including regional variations, change over time, demographic bases, and the interacting effects of respondent education and political views. We find that more than half of the US public accepts the scientific consensus that climate change is happening now, caused mainly by human activities. A sizable, politically opposite minority (about 30 to 40% concede the fact of climate change, but believe it has mainly natural causes. Few (about 10 to 15% say they believe climate is not changing, or express no opinion. The overall proportions appear relatively stable nationwide, but exhibit place-to-place variations. Detailed analysis of 21 consecutive surveys within one fairly representative state (New Hampshire finds a mild but statistically significant rise in agreement with the scientific consensus over 2010-2015. Effects from daily temperature are detectable but minor. Hurricane Sandy, which brushed New Hampshire but caused no disaster there, shows no lasting impact on that state's time series-suggesting that non-immediate weather disasters have limited effects. In all datasets political orientation dominates among individual-level predictors of climate beliefs, moderating the otherwise positive effects from education. Acceptance of anthropogenic climate change rises with education among Democrats and Independents, but not so among Republicans. The continuing series of surveys provides a baseline for tracking how future scientific, political, socioeconomic or climate developments impact public acceptance of the scientific consensus.

  20. Climate Change Mitigation A Balanced Approach to Climate Change

    CERN Document Server

    2012-01-01

    This book provides a fresh and innovative perspective on climate change policy. By emphasizing the multiple facets of climate policy, from mitigation to adaptation, from technological innovation and diffusion to governance issues, it contains a comprehensive overview of the economic and policy dimensions of the climate problem. The keyword of the book is balance. The book clarifies that climate change cannot be controlled by sacrificing economic growth and many other urgent global issues. At the same time, action to control climate change cannot be delayed, even though gradually implemented. Therefore, on the one hand climate policy becomes pervasive and affects all dimensions of international policy. On the other hand, climate policy cannot be too ambitious: a balanced approach between mitigation and adaptation, between economic growth and resource management, between short term development efforts and long term innovation investments, should be adopted. I recommend its reading. Carlo Carraro, President, Ca�...

  1. An ethical response to climate change

    OpenAIRE

    Geoffrey William Lamberton

    2014-01-01

    This paper examines the ethical question of the responsibility of business organisations to respond to climate change. Ethical principles of ‘polluter pays‘, ‘historic culpability’ and ‘equitable distribution of the carbon budget’ are applied to the question of ‘should business respond to climate change’, using rights and utilitarian ethical analyses. An ethical argument is established for business organisations to decarbonise their production and distribution systems rather than delay action...

  2. A comparative analysis of the impacts of climate change and irrigation on land surface and subsurface hydrology in the North China Plain

    Energy Technology Data Exchange (ETDEWEB)

    Leng, Guoyong; Tang, Qiuhong; Huang, Maoyi; Leung, Lai-Yung R.

    2015-02-01

    The Community Land Model 4.0 (CLM4) was used to investigate and compare the effects of climate change and irrigation on terrestrial water cycle. Three climate change scenarios and one irrigation scenario (IRRIG) were simulated in the North China Plain (NCP), which is one of the most vulnerable regions to climate change and human perturbations in China. The climate change scenarios consist of (1) HOT (i.e. temperature increase by 2oC); (2) HOTWET (same with HOT but with an increase of precipitation by 15%); (3) HOTDRY (same with HOT but with a decrease of precipitation by 15%). In the IRRIG scenario, the irrigation scheme was calibrated to simulate irrigation amounts that match the actual irrigation amounts and irrigation was divided between surface water and groundwater withdrawals based on census data. Our results show that the impacts of climate change were more widespread while those of irrigation were concentrated only over the agricultural regions. Specifically, the mean water table depth was simulated to decline persistently by over 1 m annually due to groundwater exploitation during the period of 1980-2000, while much smaller effects were induced by climate change. Although irrigation has comparable effects on surface fluxes and surface soil moisture as climate change, it has much greater effects on water table depth and groundwater storage. Moreover, irrigation has much larger effects on the top layer soil moisture whereas increase in precipitation associated with climate change exerts more influence on lower layer soil moisture. This study emphasizes the need to accurately account for irrigation impacts in adapting to climate change.

  3. Urban Drainage System Improvement for Climate Change Adaptation

    Directory of Open Access Journals (Sweden)

    Narae Kang

    2016-06-01

    Full Text Available Recently, urban areas have experienced frequent, large-scale flooding, a situation that has been aggravated by climate change. This study aims to improve the urban drainage system to facilitate climate change adaptation. A methodology and a series of mitigation strategies are presented to efficiently improve the urban drainage system in light of climate change. In addition, we assess the impact of climate change and predict the scale of potential future flood damage by applying the methodology and mitigation strategies to urban areas. Based on the methodology presented, urban flood prevention measures for Gyeyang-gu (Province, Incheon, Korea, was established. The validity of the proposed alternatives is verified by assessing the economic feasibility of the projects to reduce flood damage. We expect that the methodology presented will aid the decision-making process and assist in the development of reasonable strategies to improve the urban drainage system for adaptation to climate change.

  4. Can Climate Change Negotiations Succeed?

    Directory of Open Access Journals (Sweden)

    Jon Hovi

    2013-09-01

    Full Text Available More than two decades of climate change negotiations have produced a series of global climate agreements, such as the Kyoto Protocol and the Copenhagen Accords, but have nevertheless made very limited progress in curbing global emissions of greenhouse gases. This paper considers whether negotiations can succeed in reaching an agreement that effectively addresses the climate change problem. To be effective, a climate agreement must cause substantial emissions reductions either directly (in the agreement's own lifetime or indirectly (by paving the way for a future agreement that causes substantial emissions reductions directly. To reduce global emissions substantially, an agreement must satisfy three conditions. Firstly, participation must be both comprehensive and stable. Secondly, participating countries must accept deep commitments. Finally, the agreement must obtain high compliance rates. We argue that three types of enforcement will be crucial to fulfilling these three conditions: (1 incentives for countries to ratify with deep commitments, (2 incentives for countries that have ratified with deep commitments to abstain from withdrawal, and (3 incentives for countries having ratified with deep commitments to comply with them. Based on assessing the constraints that characterize the climate change negotiations, we contend that adopting such three-fold potent enforcement will likely be politically infeasible, not only within the United Nations Framework Convention on Climate Change, but also in the framework of a more gradual approach. Therefore, one should not expect climate change negotiations to succeed in producing an effective future agreement—either directly or indirectly.

  5. Weather anomalies affect Climate Change microblogging intensity

    Science.gov (United States)

    Molodtsova, T.; Kirilenko, A.

    2012-12-01

    daily temperature from its 30-year mean exceeding one standard deviation of the mean daily temperatures collected for the same date throughout 1971-2000. In the same way, the days with "significant change" in the number of tweets on climate change were defined. Pearson correlation between the anomalies in blogging intensity and temperature index was 0.28 (significance 0.001, N=174); Spearman's ρ = 0.27 (significance 0.001, N=174). At the same time, the number of tweets originating from the entire USA, while following closely the New York frequency numbers (Pearson correlation 0.69), did not demonstrate a significant correlation with the New York area weather: Pearson correlation was 0.14 (significance 0.075); Spearman's ρ = 0.14 (significance 0.077).The preliminary analysis has confirmed that the weather anomalies experienced at a certain location is perceived by general public as proxy of climate change and is immediately reflected in the intensity of microblogging discussing climate change.

  6. Detection of Greenhouse-Gas-Induced Climatic Change

    Energy Technology Data Exchange (ETDEWEB)

    Jones, P.D.; Wigley, T.M.L.

    1998-05-26

    The objective of this report is to assemble and analyze instrumental climate data and to develop and apply climate models as a basis for (1) detecting greenhouse-gas-induced climatic change, and (2) validation of General Circulation Models.

  7. Retrospective analysis of associations between water quality and toxic blooms of golden alga (Prymnesium parvum) in Texas reservoirs: Implications for understanding dispersal mechanisms and impacts of climate change

    Science.gov (United States)

    Patino, Reynaldo; Dawson, D.; VanLandeghem, Matthew M.

    2014-01-01

    Toxic blooms of golden alga (GA, Prymnesium parvum) in Texas typically occur in winter or early spring. In North America, they were first reported in Texas in the 1980s, and a marked range expansion occurred in 2001. Although there is concern about the influence of climate change on the future distribution of GA, factors responsible for past dispersals remain uncertain. To better understand the factors that influence toxic bloom dispersal in reservoirs, this study characterized reservoir water quality associated with toxic GA blooms since 2001, and examined trends in water quality during a 20-year period bracketing the 2001 expansion. Archived data were analyzed for six impacted and six nonimpacted reservoirs from two major Texas basins: Brazos River and Colorado River. Data were simplified for analysis by pooling spatially (across sampling stations) and temporally (winter, December-February) within reservoirs and generating depth-corrected (1 m) monthly values. Classification tree analysis [period of record (POR), 2001-2010] using salinity-associated variables (specific conductance, chloride, sulfate), dissolved oxygen (DO), pH, temperature, total hardness, potassium, nitrate+nitrite, and total phosphorus indicated that salinity best predicts the toxic bloom occurrence. Minimum estimated salinities for toxic bloom formation were 0.59 and 1.02 psu in Brazos and Colorado River reservoirs, respectively. Principal component analysis (POR, 2001-2010) indicated that GA habitat is best defined by higher salinity relative to nonimpacted reservoirs, with winter DO and pH also being slightly higher and winter temperature slightly lower in impacted reservoirs. Trend analysis, however, did not reveal monotonic changes in winter water quality of GA-impacted reservoirs during the 20-year period (1991-2010) bracketing the 2001 dispersal. Therefore, whereas minimum levels of salinity are required for GA establishment and toxic blooms in Texas reservoirs, the lack of trends in

  8. Making Sense of Climate Change

    DEFF Research Database (Denmark)

    Blichfeldt, Nikolaj Vendelbo

    The thesis is an ethnographic description of a climate change mitigation campaign among retirees in the urban residential community Dongping Lane in central Hangzhou, and an examination of local understandings of connections between everyday life in the community and global climate change...... is conceived as part of wider state-sponsored efforts to foster civilized behavior and a sense of belonging to the residential community among urban citizens in China. The campaigners connect unspectacular everyday consumer practices with climate change and citizenship by showing that among them, making...... health, comfort and convenience. Conceived as pleasurable, easy to approach, and good for the body, low-carbon life comes to be seen as a series of hobby-like activities that residents can engage in as part of their quests for good and meaningful lives in old age. Campaigners engage engage in trans-historical...

  9. Climate change and game theory.

    Science.gov (United States)

    Wood, Peter John

    2011-02-01

    This paper examines the problem of achieving global cooperation to reduce greenhouse gas emissions. Contributions to this problem are reviewed from noncooperative game theory, cooperative game theory, and implementation theory. We examine the solutions to games where players have a continuous choice about how much to pollute, as well as games where players make decisions about treaty participation. The implications of linking cooperation on climate change with cooperation on other issues, such as trade, are also examined. Cooperative and noncooperative approaches to coalition formation are investigated in order to examine the behavior of coalitions cooperating on climate change. One way to achieve cooperation is to design a game, known as a mechanism, whose equilibrium corresponds to an optimal outcome. This paper examines some mechanisms that are based on conditional commitments, and their policy implications. These mechanisms could make cooperation on climate change mitigation more likely.

  10. Climate change impacts on Moroccan agriculture and the whole economy: An analysis of the impacts of the Plan Maroc Vert in Morocco

    OpenAIRE

    Ouraich, Ismail; Tyner, Wallace E.

    2014-01-01

    The paper provides estimates of economic impacts of climate change, compares these with historical impacts of drought spells, and estimates the extent to which the current Moroccan agricultural development and investment strategy, the Plan Maroc Vert, helps in agricultural adaptation to climate change and uncertainty. We develop a regionalized Morocco Computable General Equilibrium model to analyse the linkages of climate-induced productivity losses (gains) at the level of administrative and ...

  11. Perception-based analysis of climate change effect on forest-based livelihood: The case of Vhembe District in South Africa

    OpenAIRE

    Chidiebere Ofoegbu; Paxie W. Chirwa; Joseph Francis; Folarannmi D. Babalola

    2016-01-01

    Forests are vulnerable to climate change and are also major sources of livelihood for many rural households in Africa. This study examines rural people’s perceptions of climate change impacts on forest-based livelihoods using rural communities of Vhembe District in South Africa as a case study. The study was based on the principles of perceived impact-based assessment, and sustainable livelihoods framework. Using the stratified proportionate random sampling procedure in combination with weigh...

  12. Climate Change: A Regional Perspective

    OpenAIRE

    Inter-American Development Bank (IDB); Economic Commission for Latin America and the Caribbean (ECLAC)

    2010-01-01

    The purpose of this document is to contribute to the ongoing discussion on climate change in light of the available evidence on the possible channels of transmission of the economic impact of this phenomenon and the results of the latest session of the Conference of the Parties to the United Nations Framework Convention on Climate Change (COP 15), held in Copenhagen from 7 to 18 December 2009. This document has been prepared, at the request of the Government of Mexico, by the Economic Commiss...

  13. [Air quality and climate change].

    Science.gov (United States)

    Loft, Steffen

    2009-10-26

    Air quality, health and climate change are closely connected. Ozone depends on temperature and the greenhouse gas methane from cattle and biomass. Pollen presence depends on temperature and CO2. The effect of climate change on particulate air pollution is complex, but the likely net effect is greater health risks. Reduction of greenhouse-gas emissions by reduced livestock production and use of combustion for energy production, transport and heating will also improve air quality. Energy savings in buildings and use of CO2 neutral fuels should not deteriorate indoor and outdoor air quality.

  14. Climate Change in Developing Countries

    Energy Technology Data Exchange (ETDEWEB)

    Van Drunen, M.A.; Lasage, R.; Dorlands, C. (eds.) [Free University, Amsterdam (Netherlands)

    2006-09-15

    This book presents an overview of the studies conducted by the Netherlands Climate Change Studies Assistance programme. The programme was set up in recognition of the need for developing countries, in particular, to face the challenges confronting all countries under the UN Framework Convention on Climate Change. The book presents an overview of the main results in 13 countries: Bolivia, Colombia, Ecuador, Egypt, Ghana, Kazakhstan, Mali, Mongolia, Senegal, Surinam, Vietnam, Yemen and Zimbabwe. It provides a critical evaluation of the methodologies and approaches used, a cross-country synthesis and recommendations for further studies. Subjects dealt with include not only impact studies, but also vulnerability and adaptation, mitigation and climate related policy.

  15. Position Statement On Climate Change.

    Science.gov (United States)

    2016-05-01

    The North Carolina Environmental Justice Network (NCEJN), a coalition of grassroots organizations, developed a statement to explain our environmental justice perspective on climate change to predominantly white environmental groups that seek to partner with us. NCEJN opposes strategies that reduce greenhouse emissions while maintaining or magnifying existing social, economic, and environmental injustices. Wealthy communities that consume a disproportionate share of resources avoid the most severe consequences of their consumption by displacing pollution on communities of color and low income. Therefore, the success of climate change activism depends on building an inclusive movement based on principles of racial, social and economic justice, and self-determination for all people.

  16. Update on global climate change.

    Science.gov (United States)

    Weber, Carol J

    2010-01-01

    Global climate change brings new challenges to the control of infectious diseases. Since many waterborne and vector-borne pathogens are highly sensitive to temperature and rainfall, health risks resulting from a warming and more variable climate are potentially huge. Global climate change involves the entire world, but the poorest countries will suffer the most. Nations are coming together to address what can be done to reduce greenhouse gas emissions and cope with inevitable temperature increases. A key component of any comprehensive mitigation and adaptation plan is a strong public health infrastructure across the world. Nothing less than global public health security is at stake.

  17. Inhalation anaesthetics and climate change

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbæk; Sander, S P; Nielsen, O J

    2010-01-01

    Although the increasing abundance of CO(2) in our atmosphere is the main driver of the observed climate change, it is the cumulative effect of all forcing agents that dictate the direction and magnitude of the change, and many smaller contributors are also at play. Isoflurane, desflurane......, and sevoflurane are widely used inhalation anaesthetics. Emissions of these compounds contribute to radiative forcing of climate change. To quantitatively assess the impact of the anaesthetics on the forcing of climate, detailed information on their properties of heat (infrared, IR) absorption and atmospheric...

  18. Human Security Analysis as a Framework for Value-Oriented Governance – the example of climate change.

    NARCIS (Netherlands)

    D.R. Gasper (Des)

    2014-01-01

    markdownabstract__Abstract__ ‘Good governance’ may be viewed as governance which effectively promotes human rights, human security and human development. The paper discusses human security analysis, which in certain ways offers an integration of these ‘human’ perspectives and also a ‘social’ orient

  19. Climate Change Risks – Methodological Framework and Case Study of Damages from Extreme Events in Cambodia

    DEFF Research Database (Denmark)

    Halsnæs, Kirsten; Kaspersen, Per Skougaard; Trærup, Sara Lærke Meltofte

    2016-01-01

    framework is applied to a case study of severe storms in Cambodia based on statistical information on past storm events including information about buildings damaged and victims. Despite there is limited data available on the probability of severe storm events under climate change as well on the actual...... damage costs associated with the events in the case of Cambodia, we are using the past storm events as proxy data in a sensitivity analysis. It is here demonstrated how key assumptions on future climate change, income levels of victims, and income distribution over time, reflected in discount rates...

  20. Climate change scenarios and technology transfer protocols

    Energy Technology Data Exchange (ETDEWEB)

    Kypreos, Socrates; Turton, Hal [Energy Economics Group, Paul Scherrer Institute, Villigen PSI, CH-5232 (Switzerland)

    2011-02-15

    We apply a specific version of MERGE-ETL, an integrated assessment model, to study global climate policies supported by Technology Transfer Protocols (TTPs). We model a specific formulation of such a TTP where donor countries finance via carbon tax revenues, the diffusion of carbon-free technologies in developing countries (DCs) and quantify its benefits. Industrialized countries profit from increased technology exports, global diffusion of advanced technology (leading to additional technology learning and cost reductions) and reduced climate damages through the likelihood of greater global participation in a new international agreement. DCs experience increased welfare from access to subsidized technology, and profit from the reduction of damages related to climate change and expected secondary benefits of carbon abatement (such as reduced local and regional air pollution). The analysis identifies potential candidate technologies that could be supported under a TTP, and the impact of a TTP on economic development (including the flow of transfer subsidies) and global emissions. Although a TTP may encourage additional participation, such a proposal is only likely to be successful if an increased willingness to pay to avoid climate damages is accepted, first by the present and future generations of the industrialized world and later on, when sufficient economic growth is accumulated, by today's developing countries. (author)

  1. Spatial-Temporal Analysis of Air Pollution, Climate Change and Total Mortality in 120 Cities of China, 2012 - 2013

    Directory of Open Access Journals (Sweden)

    Longjian Liu

    2016-07-01

    Full Text Available China has had a rapid increase in its economy over the past 3 decades. However, the economic boom came at the cost of depleting air quality. In the study, we aimed to examine the burden of air pollution and its association with climatic factors and health outcomes using data from Chinese national and city level air quality and public health surveillance systems. City-level daily air pollution index (API, a sum weighted index of SO2, NO2, PM10, CO, and Ozone in 120 cities in 2012 and 2013, and its association with climate factors were analyzed using multiple linear regression analysis, spatial autocorrelation analysis and panel fixed models. City-level ecological association between annual average API and total mortality were examined using univariate and partial correlation analysis. Sensitivity analysis was conducted by taking the consideration of time-lag effect between exposures and outcomes. The results show that among the 120 cities, annual average API significantly increased from 2012 to 2013 (65.05 vs. 75.99, p100 (defined as ‘slightly polluted’, however, it increased to 21 cities (18% that experienced API >100 for ≥60 days in 2013. Furthermore, 16 cities (13% in 2012 and 35 (29% in 2013 experienced a maximum API >300 (defined as ‘severely polluted’. API was negatively and significantly correlated with heat index, precipitation and sunshine hours, but positively with air pressure. Cities with higher API concentrations had significantly higher total mortality rates than those with lower API. About a 4% to 7% of the variation in total mortality could be explained by the difference in API across the nation. In conclusion, the study highlights an increased trend of air pollution from 2012 to 2013 in China. The magnitude of air pollution vary by seasons and regions, and correlated with climatic factors and total mortality across the country.

  2. Spatiotemporal analysis of temperature-variation patterns under climate change in the upper reach of Mekong River basin.

    Science.gov (United States)

    Wu, Feifei; Wang, Xuan; Cai, Yanpeng; Yang, Zhifeng; Li, Chunhui

    2012-06-15

    Occurrence of temperature anomaly has greatly affected natural cycles of water resources in Lancang River basin in China, which is the upper reach of Mekong River. An integrated spatiotemporal decomposition and analysis method was proposed for the identification of temperature-variation patterns under changing climatic conditions in the basin. This method was based on the combination of S-mode empirical orthogonal function analysis, IDW interpolation, liner regression, weighted moving average and Mann Kendall methods. Results indicated that the first two modes extracted nearly 80% of spatiotemporal variations in temperature. Temperature in the whole basin followed the same variation trend through the first mode analysis. Sensitive areas were mainly located in the southwest of the basin, which occupied nearly half of the basin. The associated time series presented that the basin appeared transition from cold periods to warm periods. Temperature increased significantly over the period of 1960 to 2009 at annual and seasonal scales, particularly over 1990s. At the same time, the most significant rising occurred in winter and the least in summer. In the second mode, a west-east inverse phase pattern of temperature variations was a distinct feature in most of the basin. Temporal trend indicated that the increasing trend in the west region was slightly stronger than that in the east. This was particularly the case of edge areas almost vertical juncture with monsoons. This research is not only helpful in improving understanding of temperature response to global warming in the basin but also provides a basis for basin management.

  3. Probabilistic forecast for climate change over Northern Eurasia

    Science.gov (United States)

    Sokolov, Andrei; Monier, Erwan; Kicklighter, David; Scott, Jeffrey; Gao, Xiang; Schlosser, Adam

    2013-04-01

    660 ppm of CO2-equivalent stabilization scenarios are similar to, respectively, the Representative Concentration Pathways RCP8.5 and RCP4.5 scenarios. Values of climate sensitivity and net aerosol forcing used in the provide a good approximation for the median, and the lower and upper bound of 90% probability distribution of 21st century climate change. Five member ensembles were carried out for each choice of parameters using different initial conditions. Presented results show strong dependency of simulated changes in precipitation on initial conditions, indicating that multiple simulations a required to isolated forced climate system response from natural variability. Results of the IGSM-CAM simulations are compared with a pattern scaling method that extends the latitudinal projections of the IGSM 2D zonal-mean atmosphere by applying longitudinally resolved patterns from climate model projections archived from exercises carried out for the 4th Assessment Report (AR4) of the IPCC. The IGSM-CAM physically simulates climate change using probability distributions for climate parameters constrained by the observed climate record, but relies on one particular model. On the other hand, the pattern scaling approach produces a meta-ensemble that can be treated as a hybrid frequency distribution (HFD) that integrates the uncertainty in the IGSM ensemble and in the regional patterns of climate change of different climate models. Together, the two approaches provide a comprehensive analysis of possible climate change over Northern Eurasia and its potential impacts.

  4. Attribution of irreversible loss to anthropogenic climate change

    Science.gov (United States)

    Huggel, Christian; Bresch, David; Hansen, Gerrit; James, Rachel; Mechler, Reinhard; Stone, Dáithí; Wallimann-Helmer, Ivo

    2016-04-01

    The Paris Agreement (2015) under the UNFCCC has anchored loss and damage in a separate article which specifies that understanding and support should be enhanced in areas addressing loss and damage such as early warning, preparedness, insurance and resilience. Irreversible loss is a special category under loss and damage but there is still missing clarity over what irreversible loss actually includes. Many negative impacts of climate change may be handled or mitigated by existing risk management, reduction and absorption approaches. Irreversible loss, however, is thought to be insufficiently addressed by risk management. Therefore, countries potentially or actually affected by irreversible loss are calling for other measures such as compensation, which however is highly contested in international climate policy. In Paris (2015) a decision was adopted that loss and damage as defined in the respective article of the agreement does not involve compensation and liability. Nevertheless, it is likely that some sort of mechanism will eventually need to come into play for irreversible loss due to anthropogenic climate change, which might involve compensation, other forms of non-monetary reparation, or transformation. Furthermore, climate litigation has increasingly been attempted to address negative effects of climate change. In this context, attribution is important to understand the drivers of change, what counts as irreversible loss due to climate change, and, possibly, who or what is responsible. Here we approach this issue by applying a detection and attribution perspective on irreversible loss. We first analyze detected climate change impacts as assessed in the IPCC Fifth Assessment Report. We distinguish between irreversible loss in physical, biological and human systems, and accordingly identify the following candidates of irreversible loss in these systems: loss of glaciers and ice sheets, loss of subsurface ice (permafrost) and related loss of lake systems; loss

  5. Spatial-Temporal Analysis of Air Pollution, Climate Change, and Total Mortality in 120 Cities of China, 2012-2013.

    Science.gov (United States)

    Liu, Longjian; Yang, Xuan; Liu, Hui; Wang, Mingquan; Welles, Seth; Márquez, Shannon; Frank, Arthur; Haas, Charles N

    2016-01-01

    China has had a rapid increase in its economy over the past three decades. However, the economic boom came at a certain cost of depleting air quality. In the study, we aimed to examine the burden of air pollution and its association with climatic factors and health outcomes using data from Chinese national and city-level air quality and public health surveillance systems. City-level daily air pollution index (API, a sum weighted index of SO2, NO2, PM10, CO, and Ozone) in 120 cities in 2012 and 2013, and its association with climate factors were analyzed using multiple linear regression analysis, spatial autocorrelation analysis, and panel fixed models. City-level ecological association between annual average API and total mortality were examined using univariate and partial correlation analysis. Sensitivity analysis was conducted by taking the consideration of time-lag effect between exposures and outcomes. The results show that among the 120 cities, annual average API significantly increased from 2012 to 2013 (65.05 vs. 75.99, p China in 2012 and with the highest in east China in 2013. In 2012, 5 (4%) of the 120 cities had ≥60 days with API >100 (defined as "slightly polluted"), however, it increased to 21 cities (18%) that experienced API >100 for ≥60 days in 2013. Furthermore, 16 cities (13%) in 2012 and 35 (29%) in 2013 experienced a maximum API >300 (defined as "severely polluted"). API was negatively and significantly correlated with heat index, precipitation, and sunshine hours, but positively with air pressure. Cities with higher API concentrations had significantly higher total mortality rates than those with lower API. About a 4-7% of the variation in total mortality could be explained by the difference in API across the nation. In conclusion, the study highlights an increased trend of air pollution from 2012 to 2013 in China. The magnitude of air pollution varied by seasons and regions and correlated with climatic factors and total mortality

  6. A Policy Analysis and Quantitative Assessment of Key Issues Arising from Climate Change Negotiations Following COP 7

    Energy Technology Data Exchange (ETDEWEB)

    Sager, J. M

    2003-04-01

    This paper aims to assess the consequences of the amendments made to the Kyoto Protocol during COP 7 in Marrakech. Following a comprehensive policy analysis, the major issue of 'hot air' and CDM transaction costs is examined using the CERT model. This was done to show that primary supply regions, typically those with 'hot air' availability, might control the emissions reduction permit supply market and maximise net export revenues of permit supply by withholding 40 to 60% of available 'hot air' credits. The assumption that primary permit suppliers control permit price via a restriction of 'hot air' supply to the market will inadvertently leave a portion of the market share open to Non-Annex B CDM supply, despite potentially extreme variance in CDM transaction costs. A summary table of policy implications on the emissions reduction permit market is also included in the Appendix. (author)

  7. Maritime Archaeology and Climate Change: An Invitation

    Science.gov (United States)

    Wright, Jeneva

    2016-12-01

    Maritime archaeology has a tremendous capacity to engage with climate change science. The field is uniquely positioned to support climate change research and the understanding of past human adaptations to climate change. Maritime archaeological data can inform on environmental shifts and submerged sites can serve as an important avenue for public outreach by mobilizing public interest and action towards understanding the impacts of climate change. Despite these opportunities, maritime archaeologists have not fully developed a role within climate change science and policy. Moreover, submerged site vulnerabilities stemming from climate change impacts are not yet well understood. This article discusses potential climate change threats to maritime archaeological resources, the challenges confronting cultural resource managers, and the contributions maritime archaeology can offer to climate change science. Maritime archaeology's ability to both support and benefit from climate change science argues its relevant and valuable place in the global climate change dialogue, but also reveals the necessity for our heightened engagement.

  8. Maritime Archaeology and Climate Change: An Invitation

    Science.gov (United States)

    Wright, Jeneva

    2016-08-01

    Maritime archaeology has a tremendous capacity to engage with climate change science. The field is uniquely positioned to support climate change research and the understanding of past human adaptations to climate change. Maritime archaeological data can inform on environmental shifts and submerged sites can serve as an important avenue for public outreach by mobilizing public interest and action towards understanding the impacts of climate change. Despite these opportunities, maritime archaeologists have not fully developed a role within climate change science and policy. Moreover, submerged site vulnerabilities stemming from climate change impacts are not yet well understood. This article discusses potential climate change threats to maritime archaeological resources, the challenges confronting cultural resource managers, and the contributions maritime archaeology can offer to climate change science. Maritime archaeology's ability to both support and benefit from climate change science argues its relevant and valuable place in the global climate change dialogue, but also reveals the necessity for our heightened engagement.

  9. Adapting agriculture to climate change

    NARCIS (Netherlands)

    Howden, S.M.; Soussana, J.F.; Tubiello, F.N.; Chhetri, N.; Dunlop, M.; Meinke, H.B.

    2007-01-01

    The strong trends in climate change already evident, the likelihood of further changes occurring, and the increasing scale of potential climate impacts give urgency to addressing agricultural adaptation more coherently. There are many potential adaptation options available for marginal change of exi

  10. Double Exposure: Photographing Climate Change

    Science.gov (United States)

    Arnold, D. P.; Wake, C. P.; Romanow, G. B.

    2008-12-01

    Double Exposure, Photographing Climate Change, is a fine-art photography exhibition that examines climate change through the prism of melting glaciers. The photographs are twinned shots of glaciers, taken in the mid-20th century by world-renowned photographer Brad Washburn, and in the past two years by Boston journalist/photographer David Arnold. Arnold flew in Washburn's aerial "footprints", replicating stunning black and white photographs, and documenting one irreversible aspect of climate change. Double Exposure is art with a purpose. It is designed to educate, alarm and inspire its audiences. Its power lies in its beauty and the shocking changes it has captured through a camera lens. The interpretive text, guided by numerous experts in the fields of glaciology, global warming and geology, helps convey the message that climate change has already forced permanent changes on the face of our planet. The traveling exhibit premiered at Boston's Museum of Science in April and is now criss-crossing the nation. The exhibit covers changes in the 15 glaciers that have been photographed as well as related information about global warming's effect on the planet today.

  11. A Lesson on Climate Change.

    Science.gov (United States)

    Lewis, Jim

    This cooperative learning activity, for grades 7-12, promotes critical thinking skills within the context of learning about the causes and effects of climate change. Objectives include: (1) understanding factors that reduce greenhouse gases; (2) understanding the role of trees in reducing greenhouse gases; (3) identifying foods that produce…

  12. Climate Change: Meeting the Challenge

    Science.gov (United States)

    Chance, Paul; Heward, William L.

    2010-01-01

    In "Climate Change: Meeting the Challenge," we conclude the special section by assuming that you have been persuaded by Thompson's paper or other evidence that global warming is real and poses a threat that must be dealt with, and that for now the only way to deal with it is by changing behavior. Then we ask what you, as behavior analysts, can do…

  13. Hydrological response to climate change

    NARCIS (Netherlands)

    Yan, Dan; Werners, S.E.; Ludwig, Fulco; Huang, He Qing

    2015-01-01

    Study region: The Pearl River, located in the south of China, is the second largest river in China in terms of streamflow. Study focus: The study aims to assess the impact of climate change on seasonal discharge and extreme flows. For the assessment we use the variable infiltration capacity (VIC)

  14. Ground water and climate change

    NARCIS (Netherlands)

    Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Beek, R. van; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; Konikow, L.; Green, T.R.; Chen, J.; Taniguchi, M.; Bierkens, M.F.P.; MacDonald, A.; Fan, Y.; Maxwell, R.M.; Yechieli, Y.; Gurdak, J.J.; Allen, D.M.; Shamsudduha, M.; Hiscock, K.; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate chang

  15. Climate change, zoonoses and India.

    Science.gov (United States)

    Singh, B B; Sharma, R; Gill, J P S; Aulakh, R S; Banga, H S

    2011-12-01

    Economic trends have shaped our growth and the growth of the livestock sector, but atthe expense of altering natural resources and systems in ways that are not always obvious. Now, however, the reverse is beginning to happen, i.e. environmental trends are beginning to shape our economy and health status. In addition to water, air and food, animals and birds play a pivotal role in the maintenance and transmission of important zoonotic diseases in nature. It is generally considered that the prevalence of vector-borne and waterborne zoonoses is likely to increase in the coming years due to the effects of global warming in India. In recent years, vector-borne diseases have emerged as a serious public health problem in countries of the South-East Asia region, including India. Vector-borne zoonoses now occur in epidemic form almost on an annual basis, causing considerable morbidity and mortality. New reservoir areas of cutaneous leishmaniosis in South India have been recognised, and the role of climate change in its re-emergence warrants further research, as does the role of climate change in the ascendancy of waterborne and foodborne illness. Similarly, climate change that leads to warmer and more humid conditions may increase the risk of transmission of airborne zoonoses, and hot and drier conditions may lead to a decline in the incidence of disease(s). The prevalence of these zoonotic diseases and their vectors and the effect of climate change on important zoonoses in India are discussed in this review.

  16. Health Effects of Climate Change

    Science.gov (United States)

    ... resulting health effects. Extreme weather events due to climate change may cause people to experience geographic displacement, damage to their property, loss of loved ones, and chronic stress—all of which can negatively affect ... change may be associated with staple food shortages, malnutrition, ...

  17. Climate Change: Evidence and Causes

    Science.gov (United States)

    Wolff, Eric

    2014-01-01

    The fundamentals of climate change are well established: greenhouse gases warm the planet; their concentrations in the atmosphere are increasing; Earth has warmed, and is going to continue warming with a range of impacts. This article summarises the contents of a recent publication issued by the UK's Royal Society and the US National Academy…

  18. The Science of Climate Change

    Science.gov (United States)

    Oppenheimer, Michael; Anttila-Hughes, Jesse K.

    2016-01-01

    Michael Oppenheimer and Jesse Anttila-Hughes begin with a primer on how the greenhouse effect works, how we know that Earth is rapidly getting warmer, and how we know that the recent warming is caused by human activity. They explain the sources of scientific knowledge about climate change as well as the basis for the models scientists use to…

  19. Indigenous Peoples and Climate Change

    Directory of Open Access Journals (Sweden)

    Shelton H. Davis

    2010-05-01

    Full Text Available There has been a growing attention on the need to take into account the effects of global climate change. This is particularly so with respect to the increasing amount of green house gas emissions from the Untied States and Europe affecting poor peoples, especially those in developing countries. In 2003, for example, the experts of several international development agencies, including the World Bank, prepared a special report titled “Poverty and Climate Change: Reducing the Vulnerability of the Poor through Adaptation” (OECD 2003. This report followed the Eighth Session of the Conference of Parties (COP8 to the United Nations Framework Convention on Climate Change (UNFCCC in New Delhi, India in October 2002. It showed that poverty reduction is not only one of the major challenges of the 21st century, but also that climate change is taking place in many developing countries and is increasingly affecting, in a negative fashion, both the economic conditions and the health of poor people and their communities.

  20. The Whiteness of Climate Change

    DEFF Research Database (Denmark)

    Jensen, Lars

    2011-01-01

    This article examines two major debates in contemporary Australian discourses on the nation: climate change and whiteness studies. It is primarily concerned with establishing a framework for connecting the two discourses, and in that process it raises pivotal questions about how narratives about...

  1. Climate Change: Evidence and Causes

    Science.gov (United States)

    Wolff, Eric

    2014-01-01

    The fundamentals of climate change are well established: greenhouse gases warm the planet; their concentrations in the atmosphere are increasing; Earth has warmed, and is going to continue warming with a range of impacts. This article summarises the contents of a recent publication issued by the UK's Royal Society and the US National Academy of…

  2. Western water and climate change.

    Science.gov (United States)

    Dettinger, Michael; Udall, Bradley; Georgakakos, Aris

    2015-12-01

    The western United States is a region long defined by water challenges. Climate change adds to those historical challenges, but does not, for the most part, introduce entirely new challenges; rather climate change is likely to stress water supplies and resources already in many cases stretched to, or beyond, natural limits. Projections are for continued and, likely, increased warming trends across the region, with a near certainty of continuing changes in seasonality of snowmelt and streamflows, and a strong potential for attendant increases in evaporative demands. Projections of future precipitation are less conclusive, although likely the northern-most West will see precipitation increases while the southernmost West sees declines. However, most of the region lies in a broad area where some climate models project precipitation increases while others project declines, so that only increases in precipitation uncertainties can be projected with any confidence. Changes in annual and seasonal hydrographs are likely to challenge water managers, users, and attempts to protect or restore environmental flows, even where annual volumes change little. Other impacts from climate change (e.g., floods and water-quality changes) are poorly understood and will likely be location dependent. In this context, four iconic river basins offer glimpses into specific challenges that climate change may bring to the West. The Colorado River is a system in which overuse and growing demands are projected to be even more challenging than climate-change-induced flow reductions. The Rio Grande offers the best example of how climate-change-induced flow declines might sink a major system into permanent drought. The Klamath is currently projected to face the more benign precipitation future, but fisheries and irrigation management may face dire straits due to warming air temperatures, rising irrigation demands, and warming waters in a basin already hobbled by tensions between endangered fisheries

  3. Analysis of Climate Change Affecting German Forests by Combination of Meteorological and Phenological Data within a GIS Environment

    Directory of Open Access Journals (Sweden)

    Winfried Schröder

    2007-01-01

    Full Text Available The regional assessment of global change effects on plant phenology usually relies on local observations that need to be up-scaled. Therefore, methodological difficulties mostly related to data spatial resolution and congruency arise while performing broader-scale evaluations. Geostatiscs could be a useful tool to solve this type of problem, provided that a database with adequate spatial and temporal resolution is available. An assessment of variations in air temperature and plant phenology was carried out at the country level by using two German datasets regarding spring phenological phases of 15 plant species and air temperature. The data were collected from 1961–2002 at 1,279 and 675 sites, respectively. The annual mean air temperature in Germany was found to rise from 8.3°C in the 1961–1990 period to 9.1°C in the 1991–2002 term. The overall 15-species mean for the start of spring was found to be 6 days earlier in the latter period. The geostatistical analysis of the data revealed the suitability of Syringa vulgaris to be used as an indicator species to detect phenological changes in German forests. Moreover, their spatial patterns were found to be related to altitude and latitude. Therefore, geostatistics proved to be a useful tool to overcome some of the methodological problems related to the regional assessments of global change impacts on terrestrial ecosystems.

  4. LandCaRe DSS--an interactive decision support system for climate change impact assessment and the analysis of potential agricultural land use adaptation strategies.

    Science.gov (United States)

    Wenkel, Karl-Otto; Berg, Michael; Mirschel, Wilfried; Wieland, Ralf; Nendel, Claas; Köstner, Barbara

    2013-09-01

    Decision support to develop viable climate change adaptation strategies for agriculture and regional land use management encompasses a wide range of options and issues. Up to now, only a few suitable tools and methods have existed for farmers and regional stakeholders that support the process of decision-making in this field. The interactive model-based spatial information and decision support system LandCaRe DSS attempts to close the existing methodical gap. This system supports interactive spatial scenario simulations, multi-ensemble and multi-model simulations at the regional scale, as well as the complex impact assessment of potential land use adaptation strategies at the local scale. The system is connected to a local geo-database and via the internet to a climate data server. LandCaRe DSS uses a multitude of scale-specific ecological impact models, which are linked in various ways. At the local scale (farm scale), biophysical models are directly coupled with a farm economy calculator. New or alternative simulation models can easily be added, thanks to the innovative architecture and design of the DSS. Scenario simulations can be conducted with a reasonable amount of effort. The interactive LandCaRe DSS prototype also offers a variety of data analysis and visualisation tools, a help system for users and a farmer information system for climate adaptation in agriculture. This paper presents the theoretical background, the conceptual framework, and the structure and methodology behind LandCaRe DSS. Scenario studies at the regional and local scale for the two Eastern German regions of Uckermark (dry lowlands, 2600 km(2)) and Weißeritz (humid mountain area, 400 km(2)) were conducted in close cooperation with stakeholders to test the functionality of the DSS prototype. The system is gradually being transformed into a web version (http://www.landcare-dss.de) to ensure the broadest possible distribution of LandCaRe DSS to the public. The system will be continuously

  5. Lightning Strikes and Attribution of Climatic Change

    CERN Document Server

    Webster, Anthony J

    2015-01-01

    Using lightning strikes as an example, two possible schemes are discussed for the attribution of changes in event frequency to climate change, and estimating the cost associated with them. The schemes determine the fraction of events that should be attributed to climatic change, and the fraction that should be attributed to natural chance. They both allow for the expected increase in claims and the fluctuations about this expected value. Importantly, the attribution fraction proposed in the second of these schemes is necessarily different to that found in epidemiological studies. This ensures that the statistically expected fraction of attributed claims is correctly equal to the expected increase in claims. The analysis of lightning data highlights two particular difficulties with data-driven, as opposed to modeled, attribution studies. The first is the possibility of unknown "confounding" variables that can influence the strike frequency. This is partly accounted for here by considering the influence of temp...

  6. Framing climate change in a popularised setting:

    DEFF Research Database (Denmark)

    Laursen, Anne Lise; Rasmussen, Kirsten Wølch; Engberg, Jan

    Framing climate change in a popularised setting: The case of the COP conferences The major project from which this presentation has emerged intends to analyze the media communication in connection with mainly the COP15 conference in Copenhagen on climate change 2009 in a number of European...... of the conference. In our part of the project, we look at how knowledge is created via the choice of metaphors. On the basis of an analysis of the framing of the COP15 conference and its goals as presented in the introductory statements by the two Danish presidents of the conference we have found a range of salient...... and with the introductory statement by the president of the Cancún conference in 2010 in order to assess possible influences in the framing from the national and the political setting....

  7. Development of spatial water resources vulnerability index considering climate change impacts.

    Science.gov (United States)

    Jun, Kyung Soo; Chung, Eun-Sung; Sung, Jin-Young; Lee, Kil Seong

    2011-11-15

    This study developed a new framework to quantify spatial vulnerability for sustainable water resources management. Four hydrologic vulnerability indices--potential flood damage (PFDC), potential drought damage (PDDC), potential water quality deterioration (PWQDC), and watershed evaluation index (WEIC)--were modified to quantify flood damage, drought damage, water quality deterioration, and overall watershed risk considering the impact of climate change, respectively. The concept of sustainability in the Driver-Pressure-State-Impact-Response (DPSIR) framework was applied in selecting all appropriate indicators (criteria) of climate change impacts. In the examination of climate change, future meteorological data was obtained using CGCM3 (Canadian Global Coupled Model) and SDSM (Statistical Downscaling Model), and future stream run-off and water quality were simulated using HSPF (Hydrological Simulation Program - Fortran). The four modified indices were then calculated using TOPSIS, a multi-attribute method of decision analysis. As a result, the ranking obtained can be changed in consideration of climate change impacts. This study represents a new attempt to quantify hydrologic vulnerability in a manner that takes into account both climate change impacts and the concept of sustainability.

  8. Climate change vulnerability to agrarian ecosystem of small Island: evidence from Sagar Island, India

    Science.gov (United States)

    Mandal, S.; Satpati, L. N.; Choudhury, B. U.; Sadhu, S.

    2017-03-01

    The present study assessed climate change vulnerability in agricultural sector of low-lying Sagar Island of Bay of Bengal. Vulnerability indices were estimated using spatially aggregated biophysical and socio-economic parameters by applying principal component analysis and equal weight method. The similarities and differences of outputs of these two methods were analysed across the island. From the integration of outputs and based on the severity of vulnerability, explicit vulnerable zones were demarcated spatially. Results revealed that life subsistence agriculture in 11.8% geographical area (2829 ha) of the island along the western coast falls under very high vulnerable zone (VHVZ VI of 84-99%) to climate change. Comparatively higher values of exposure (0.53 ± 0.26) and sensitivity (0.78 ± 0.14) subindices affirmed that the VHV zone is highly exposed to climate stressor with very low adaptive capacity (ADI= 0.24 ± 0.16) to combat vulnerability to climate change. Hence, food security for a population of >22 thousands comprising >3.7 thousand agrarian households are highly exposed to climate change. Another 17% area comprising 17.5% population covering 20% villages in north-western and eastern parts of the island also falls under high vulnerable (VI= 61%-77%) zone. Findings revealed large spatial heterogeneity in the degree of vulnerability across the island and thus, demands devising area specific planning (adaptation and mitigation strategies) to address the climate change impact implications both at macro and micro levels.

  9. Impact of climate change on soil thermal and moisture regimes in Serbia: An analysis with data from regional climate simulations under SRES-A1B.

    Science.gov (United States)

    Mihailović, D T; Drešković, N; Arsenić, I; Ćirić, V; Djurdjević, V; Mimić, G; Pap, I; Balaž, I

    2016-11-15

    We considered temporal and spatial variations to the thermal and moisture regimes of the most common RSGs (Reference Soil Groups) in Serbia under the A1B scenario for the 2021-2050 and 2071-2100 periods, with respect to the 1961-1990 period. We utilized dynamically downscaled global climate simulations from the ECHAM5 model using the coupled regional climate model EBU-POM (Eta Belgrade University-Princeton Ocean Model). We analysed the soil temperature and moisture time series using simple statistics and a Kolmogorov complexity (KC) analysis. The corresponding metrics were calculated for 150 sites. In the future, warmer and drier regimes can be expected for all RSGs in Serbia. The calculated soil temperature and moisture variations include increases in the mean annual soil temperature (up to 3.8°C) and decreases in the mean annual soil moisture (up to 11.3%). Based on the KC values, the soils in Serbia are classified with respect to climate change impacts as (1) less sensitive (Vertisols, Umbrisols and Dystric Cambisols) or (2) more sensitive (Chernozems, Eutric Cambisols and Planosols).

  10. Climate Change Impacts on Rainfall Extremes and Urban Drainage: a State-of-the-Art Review

    DEFF Research Database (Denmark)

    Willems, Patrick; Olsson, Jonas; Arnbjerg-Nielsen, Karsten;

    2013-01-01

    to anthropogenic climate change. Current practices have several limitations and pitfalls, which are important to be considered by trend or climate change impact modellers and users of trend or impact results. The review (Willems et al., 2012) considers the following aspects: analysis of long-term historical trends...... due to anthropogenic climate change, analysis of long-term future trends due to anthropogenic climate change, and implications for urban drainage infrastructure design and management. A summary is provided in this paper....

  11. Adaptation to Climate Change in Risk and Vulnerability Analysis on a Municipal Level, a basis for further work; Anpassning till klimatfoeraendringar i risk- och saarbarhetsanalyser paa kommunal nivaa, underlag foer fortsatt arbete

    Energy Technology Data Exchange (ETDEWEB)

    Mossberg Sonnek, Karin; Lindberg, Anna; Lindgren, Johan

    2007-12-15

    The aim of Risk and Vulnerability Analysis (RVA) at local authority level in Sweden is to increase the capacity of local authorities to handle crises and to reduce vulnerability in the community. RVA processes could be an appropriate starting-point for discussions on how the community is influenced by climate change and how its effects could be reduced using various adjustment measures. In the report we present four methods: ROSA, MVA, IBERO and the Car Dun AB method. These have all been developed to support Swedish local authority RVA processes. We also present five international frameworks that have been developed by the organisations UNDP, USAID, UKCIP, C-CIARN and CSIRO to help decision-makers and stakeholders to adapt to climate change. Together, these descriptions form a foundation for continuing the work being done within the project Climatools, in which tools are being produced to be used by local authorities in adapting to climate change. In the report, we also discuss the concepts 'risk', 'vulnerability' and 'adaptation' and how analysis of adaptation to climate change has changed in recent years.

  12. Modeling climate change impacts on overwintering bald eagles

    OpenAIRE

    Chris J. Harvey; Moriarty, Pamela E.; Salathé Jr, Eric P

    2012-01-01

    Bald eagles (Haliaeetus leucocephalus) are recovering from severe population declines, and are exerting pressure on food resources in some areas. Thousands of bald eagles overwinter near Puget Sound, primarily to feed on chum salmon (Oncorhynchus keta) carcasses. We used modeling techniques to examine how anticipated climate changes will affect energetic demands of overwintering bald eagles. We applied a regional downscaling method to two global climate change models to obtain hourly temperat...

  13. The direct impact of climate change on regional labour productivity

    OpenAIRE

    Kjellstrom, Tord; Kovats, R Sari; Simon J. Lloyd; Holt, Tom; Richard S.J. Tol

    2008-01-01

    Global climate change will increase outdoor and indoor heat loads, and may impair health and productivity for millions of working people. This study applies physiological evidence about effects of heat, climate guidelines for safe work environments, climate modelling and global distributions of working populations, to estimate the impact of two climate scenarios on future labour productivity. In most regions, climate change will decrease labour productivity, under the simple assumption of no ...

  14. Climate-change driven increase in high intensity rainfall events: Analysis of development in the last decades and towards an extrapolation of future progression

    Science.gov (United States)

    Müller, Eva; Pfister, Angela; Gerd, Büger; Maik, Heistermann; Bronstert, Axel

    2015-04-01

    Hydrological extreme events can be triggered by rainfall on different spatiotemporal scales: river floods are typically caused by event durations of between hours and days, while urban flash floods as well as soil erosion or contaminant transport rather result from storms events of very short duration (minutes). Still, the analysis of climate change impacts on rainfall-induced extreme events is usually carried out using daily precipitation data at best. Trend analyses of extreme rainfall at sub-daily or even sub-hourly time scales are rare. In this contribution two lines of research are combined: first, we analyse sub-hourly rainfall data for several decades in three European regions.Second, we investigate the scaling behaviour of heavy short-term precipitation with temperature, i.e. the dependence of high intensity rainfall on the atmospheric temperature at that particular time and location. The trend analysis of high-resolution rainfall data shows for the first time that the frequency of short and intensive storm events in the temperate lowland regions in Germany has increased by up to 0.5 events per year over the last decades. I.e. this trend suggests that the occurrence of these types of storms have multiplied over only a few decades. Parallel to the changes in the rainfall regime, increases in the annual and seasonal average temperature and changes in the occurrence of circulation patterns responsible for the generation of high-intensity storms have been found. The analysis of temporally highly resolved rainfall records from three European regions further indicates that extreme precipitation events are more intense with warmer temperatures during the rainfall event. These observations follow partly the Clausius-Clapeyron relation. Based on this relation one may derive a general rule of maximum rainfall intensity associated to the event temperature, roughly following the Clausius-Clapeyron (CC) relation. This rule might be used for scenarios of future maximum

  15. Climate change effects for phenological processes

    Directory of Open Access Journals (Sweden)

    Lilla Dede

    2010-12-01

    Full Text Available Climate change may shift dates of phenological phase of plants. We can even demonstrate changes in plant growth due to climate change by model simulations. Earth warming will accelerate appearance of the phenological phases earlier. However, not only temperature can affect on that, but some other meteorological factors as well.The theoretical implications of climate change is the main goal of the present work using strategic modeling and a 140 years long temperature data set. Analysis of the Geophyton Phenology Database of the ELTE Botanical Garden is also made for 24 meteorological factors’ effect on the first bud appearance, the beginning of flowering, and the end of flowering. The found regression models show the relationships between phenological phase’ dates and meteorological factors.Finally, the rising temperatures are variously influencing phenological dates of selected species involved a Theoretical ecosístem. The daily fluctuation of temperature and the frosty day number are strongly influence geophyton plants and their pheonological phase’ dates.

  16. CLIMATE CHANGES: CAUSES AND IMPACT

    Directory of Open Access Journals (Sweden)

    Camelia Slave

    2013-07-01

    Full Text Available Present brings several environmental problems for people. Many of these are closely related, but by far the most important problem is the climate change. In the course of Earth evolution, climate has changed many times, sometimes dramatically. Warmer eras always replaced and were in turn replaced by glacial ones. However, the climate of the past almost ten thousand years has been very stable. During this period human civilization has also developed. In the past nearly 100 years - since the beginning of industrialization - the global average temperature has increased by approx. 0.6 ° C (after IPCC (Intergovernmental Panel on Climate Change, faster than at any time in the last 1000 years.

  17. Climate Change and Intertidal Wetlands

    Directory of Open Access Journals (Sweden)

    Pauline M. Ross

    2013-03-01

    Full Text Available Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause—the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the “squeeze” experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change.

  18. Teaching Climate Change Through Music

    Science.gov (United States)

    Weiss, P. S.

    2007-12-01

    During 2006, Peter Weiss aka "The Singing Scientist" performed many music assemblies for elementary schools (K-5) in Santa Cruz County, California, USA. These assemblies were an opportunity for him to mix a discussion of climate change with rock n' roll. In one song called "Greenhouse Glasses", Peter and his band the "Earth Rangers" wear over-sized clown glasses with "molecules" hanging off them (made with Styrofoam balls and pipe cleaners). Each molecule is the real molecular structure of a greenhouse gas, and the song explains how when the wearer of these glasses looks up in the sky, he/she can see the "greenhouse gases floating by." "I've seen more of them this year than the last / 'Cuz fossil fuels are burning fast / I wish everyone could see through these frames / Then maybe we could prevent climate change" Students sing, dance and get a visual picture of something that is invisible, yet is part of a very real problem. This performance description is used as an example of an educational style that can reach a wide audience and provide a framework for the audience as learners to assimilate future information on climate change. The hypothesis is that complex socio-environmental issues like climate change that must be taught in order to achieve sustainability are best done so through alternative mediums like music. Students develop awareness which leads to knowledge about chemistry, physics, and biology. These kinds of experiences which connect science learning to fun activities and community building are seriously lacking in primary and secondary schools and are a big reason why science illiteracy is a current social problem. Science education is also paired with community awareness (including the local plant/animal community) and cooperation. The Singing Scientist attempts to create a culture where it is cool to care about the environment. Students end up gardening in school gardens together and think about their "ecological footprint".

  19. Climate change adaptation in Ethiopia

    DEFF Research Database (Denmark)

    Weldegebriel, Zerihun Berhane; Prowse, Martin

    Ethiopia is vulnerable to climate change due to its limited development and dependence on agriculture. Social protection schemes like the Productive Safety Net Programme (PSNP) can play a positive role in promoting livelihoods and enhancing households’ risk management. This article examines......, they suggest the PSNP may not be helping smallholders diversify income sources in a positive manner for climate adaptation. The article concludes by arguing for further investigation of the PSNP’s influence on smallholders’ adaptation strategies....

  20. A Social Science Guide for Communication on Climate Change

    Science.gov (United States)

    St John, C.; Marx, S.; Markowitz, E.

    2014-12-01

    Researchers from the Center for Research on Environmental Decisions (CRED) published "The Psychology of Climate Change Communication: A Guide for Scientists, Journalists, Educators, Political Aides, and the Interested Public" in 2009. This landmark guide provided climate change communicators a synthesis of the social science research that was pertinent to understanding how people think about climate change and how the practice could be improved. In the fall of 2014 this guide will be rereleased, with a new title, and in a partnership between CRED and ecoAmerica. The updated guide addresses how and why Americans respond in certain ways to climate change and explains how communicators can apply best practices to their own work. The guide, which includes research from a range of social science fields including psychology, anthropology, communications, and behavioral economics, is designed to be useful for experienced and novice communicators alike. Included in the guide are strategies to boost engagement, common mistakes to avoid, and best practices that organizations around the world have used to meaningfully engage individuals and groups on climate change. The proposed presentation will provide an overview of the main findings and tips from the 2014 climate change communication guide. It will provide a deeper look at a few of the key points that are crucial for increasing audience engagement with climate change including understanding how identity shapes climate change, how to lead with solutions, and how to bring the impacts of climate change close to home. It will highlight tips for motivating positive behavior change that will lead people down the path toward solutions. Finally, it will address the benefits and challenges associated with producing a communication guide and insight into synthesizing social science research findings into a usable format for a variety of audiences.

  1. Western water and climate change

    Science.gov (United States)

    Dettinger, Michael; Udall, Bradley; Georgakakos, Aris P.

    2015-01-01

    The western United States is a region long defined by water challenges. Climate change adds to those historical challenges, but does not, for the most part, introduce entirely new challenges; rather climate change is likely to stress water supplies and resources already in many cases stretched to, or beyond, natural limits. Projections are for continued and, likely, increased warming trends across the region, with a near certainty of continuing changes in seasonality of snowmelt and streamflows, and a strong potential for attendant increases in evaporative demands. Projections of future precipitation are less conclusive, although likely the northernmost West will see precipitation increases while the southernmost West sees declines. However, most of the region lies in a broad area where some climate models project precipitation increases while others project declines, so that only increases in precipitation uncertainties can be projected with any confidence. Changes in annual and seasonal hydrographs are likely to challenge water managers, users, and attempts to protect or restore environmental flows, even where annual volumes change little. Other impacts from climate change (e.g., floods and water-quality changes) are poorly understood and will likely be location dependent.

  2. Fair division theory and climate change policy

    Energy Technology Data Exchange (ETDEWEB)

    Helm, C. [Technical University Darmstadt (Germany). Department of Law and Economics

    2008-09-30

    This paper analyzes the fair division of common property resources when monetary compensations are feasible. A prominent example is the fair division of the atmosphere's limited absorptive capacity for greenhouse gases. I propose a solution that is Pareto efficient and satisfies the axiomatic fair division criteria of individual rationality, stand-alone upper bound, and a version of envy-freeness. The latter criterion is adapted to problems where monetary compensations can be used to facilitate the fair division of the common resource. Applied to climate change, the solution implies that developing countries should participate in emission reduction efforts, but should be fully compensated for their incremental abatement costs.

  3. An ethical response to climate change

    Directory of Open Access Journals (Sweden)

    Geoffrey William Lamberton

    2014-09-01

    Full Text Available This paper examines the ethical question of the responsibility of business organisations to respond to climate change. Ethical principles of ‘polluter pays‘, ‘historic culpability’ and ‘equitable distribution of the carbon budget’ are applied to the question of ‘should business respond to climate change’, using rights and utilitarian ethical analyses. An ethical argument is established for business organisations to decarbonise their production and distribution systems rather than delay action. Government policies required to remove barriers which are delaying a widespread and meaningful response by business to humankind’s greatest moral challenge together with the ethical implications are discussed.

  4. Uncertainty in Simulating Wheat Yields Under Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, Jerry; Ruane, Alex; Boote, K. J.; Thorburn, Peter; Rotter, R.P.; Cammarano, D.; Brisson, N.; Basso, B.; Martre, P.; Aggarwal, P.K.; Angulo, C.; Bertuzzi, P.; Biernath, C.; Challinor, AJ; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, Robert; Heng, L.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, Roberto C.; Kersebaum, K.C.; Mueller, C.; Naresh Kumar, S.; Nendel, C.; O' Leary, G.O.; Olesen, JE; Osborne, T.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stockle, Claudio O.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J.W.; Williams, J.R.; Wolf, J.

    2013-09-01

    Anticipating the impacts of climate change on crop yields is critical for assessing future food security. Process-based crop simulation models are the most commonly used tools in such assessments1,2. Analysis of uncertainties in future greenhouse gas emissions and their impacts on future climate change has been increasingly described in the literature3,4 while assessments of the uncertainty in crop responses to climate change are very rare. Systematic and objective comparisons across impact studies is difficult, and thus has not been fully realized5. Here we present the largest coordinated and standardized crop model intercomparison for climate change impacts on wheat production to date. We found that several individual crop models are able to reproduce measured grain yields under current diverse environments, particularly if sufficient details are provided to execute them. However, simulated climate change impacts can vary across models due to differences in model structures and algorithms. The crop-model component of uncertainty in climate change impact assessments was considerably larger than the climate-model component from Global Climate Models (GCMs). Model responses to high temperatures and temperature-by-CO2 interactions are identified as major sources of simulated impact uncertainties. Significant reductions in impact uncertainties through model improvements in these areas and improved quantification of uncertainty through multi-model ensembles are urgently needed for a more reliable translation of climate change scenarios into agricultural impacts in order to develop adaptation strategies and aid policymaking.

  5. Mainstreaming Climate Change Into Geosciences Curriculum of Tertiary Educational Systems in Ghana

    Science.gov (United States)

    Nyarko, B. K.

    2015-12-01

    The impact of Climate Change has a far-reaching implication for economies and people living in the fragile Regions of Africa analysts project that by 2020, between 75 million and 250 million people will be exposed various forms of Climate Change Stresses. Education as a key strategy identified under Agenda 21 has been incorporated into the efforts of various educational institutions as a means of mitigating climate change and enhancing sustainability. Climate Change education offers many opportunities and benefits for educators, researchers, learners, and for wider society, but there are also many challenges, which can hinder the successful mainstreaming of climate change education. The study aims at understanding barriers for Climate Change Education in selected tertiary institutions in Ghana. The study was conducted among Geoscience Departments of the 7 main public universities of Ghana and also juxtapose with the WASCAL graduate school curriculum. The transcript analysis identified issues that hinders the mainstreaming of Climate Change, these includes existing levels of knowledge and understanding of the concept of climate change, appreciating the threshold concepts, ineffective teaching of Climate Change and some Departments are slow in embracing Climate Change as a discipline. Hence to develop strategies to mainstream climate change education it is important to recognize that increasing the efficiency and delivery of Climate Change education requires greater attention and coordination of activities and updating the educators knowledge and skill's. Institutions and Educator should be encouraged to undertake co-curricula activities and finding ways to make Climate Change education practical.

  6. Marine water quality under climate change conditions/scenarios

    Science.gov (United States)

    Rizzi, Jonathan; Torresan, Silvia; Critto, Andrea; Zabeo, Alex; Brigolin, Daniele; Carniel, Sandro; Pastres, Roberto; Marcomini, Antonio

    2016-04-01

    The increase of sea temperature and the changes in marine currents are generating impacts on coastal waters such as changes in water biogeochemical and physical parameters (e.g. primary production, pH, salinity) leading to progressive degradation of the marine environment. With the main aim of analysing the potential impacts of climate change on coastal water quality, a Regional Risk Assessment (RRA) methodology was developed and applied to coastal marine waters of the North Adriatic (i.e. coastal water bodies of the Veneto and Friuli Venezia Giulia regions, Italy). RRA integrates the outputs of regional models providing information on macronutrients (i.e. dissolved inorganic nitrogen e reactive phosphorus), dissolved oxygen, pH, salinity and temperature, etc., under future climate change scenarios with site-specific environmental and socio-economic indicators (e.g. biotic index, presence and extension of seagrasses, presence of aquaculture). The presented approach uses Geographic Information Systems to manage, analyse, and visualize data and employs Multi-Criteria Decision Analysis for the integration of stakeholders preferences and experts judgments into the evaluation process. RRA outputs are hazard, exposure, vulnerability, risk and damage maps useful for the identification and prioritization of hot-spot areas and vulnerable targets in the considered region. Therefore, the main aim of this contribution is to apply the RRA methodology to integrate, visualize, and rank according to spatial distribution, physical and chemical data concerning the coastal waters of the North Adriatic Sea in order to predict possible changes of the actual water quality.

  7. The climate change agenda in Zambia: National interests and the role of development cooperation

    OpenAIRE

    Funder, Mikkel; Mweemba, Carol Emma; Nyambe, Imasiku

    2013-01-01

    In the past ten years a significant number of policies and projects have been implemented in African countries in order to address climate change. At the same time, African countries have become more vocal in the global climate change negotiations. And yet there has been little analysis of domestic climate change agendas in African countries. This working paper is a modest first step in understanding the climate change agenda in one particular country, namely Zambia. The paper focuses on thre...

  8. Uncertainties in extreme precipitation under climate change conditions

    DEFF Research Database (Denmark)

    Sunyer Pinya, Maria Antonia

    downscaling methods (SDMs). RCMs provide information on climate change at the regional scale. SDMs are used to bias-correct and downscale the outputs of the RCMs to the local scale of interest in adaptation strategies. In the first part of the study, a multi-model ensemble of RCMs from the European ENSEMBLES......The latest report from the Intergovernmental Panel on Climate Change (IPCC) states that it is unequivocal that climate change is occurring. One of the largest impacts of climate change is anticipated to be an increase in the severity of extreme events, such as extreme precipitation. Floods caused...... the uncertainty arising from SDMs for two applications: river flooding in eleven European catchments; and urban flooding in Denmark. A range of SDMs were applied at daily and hourly resolution to the RCMs in the ensemble. The results for Denmark from both applications showed that in general the SDMs agree...

  9. Turning climate change information into economic and health impacts

    DEFF Research Database (Denmark)

    Halsnæs, Kirsten; Kühl, J.; Olesen, J.E.

    2007-01-01

    The PRUDENCE project has generated a set of spatially and temporally high-resolution climate data, which provides new opportunities for assessing the impacts of climate variability and. change on economic and human systems in Europe. In this context, we initiated the development of new approaches...... of an analytical approach for assessing economic impacts of climate change and discuss how economic concepts and valuation paradigms can be applied to climate change impact evaluation. A number of methodological difficulties encountered in economic assessments of climate change impacts are described and a number...... for linking climate change information and economic studies. We have considered a number of case studies that illustrate how linkages can be established between geographically detailed climate data and economic information. The case studies included wheat production in agriculture, where regional climate data...

  10. Inter-specific competition in mixed forests of Douglas-fir (Pseudotsuga menziesii) and common beech (Fagus sylvatica) under climate change – a model-based analysis

    NARCIS (Netherlands)

    Reyer, C.; Lasch, P.; Mohren, G.M.J.; Sterck, F.J.

    2010-01-01

    Mixed forests feature competitive interactions of the contributing species which influence their response to environmental change. • We analyzed climate change effects on the inter-specific competition in a managed Douglas-fir/beech mixed forest. • Therefore, we initialised the process-based forest

  11. A Decision Tree Analysis to Support Potential Climate Change Adaptations of Striped Catfish (Pangasianodon hypophthalmus Sauvage) Farming in the Mekong Delta, Vietnam

    NARCIS (Netherlands)

    Nguyen, L.A.; Verreth, J.A.J.; Leemans, H.B.J.; Bosma, R.H.; Silva, De S.

    2016-01-01

    This study uses the decision tree framework to analyse possible climate change impact adaptation options for pangasius (Pangasianodon hypopthalmus Sauvage) farming in the Mekong Delta. Here we present the risks for impacts and the farmers' autonomous and planned public adaptation by using primary an

  12. The impact of climate change mitigation on water demand for energy and food: An integrated analysis based on the Shared Socioeconomic Pathways

    NARCIS (Netherlands)

    Mouratiadou, Ioanna; Biewald, Anne; Pehl, Michaja; Bonsch, Markus; Baumstark, Lavinia; Klein, David; Popp, Alexander; Luderer, Gunnar; Kriegler, Elmar

    2016-01-01

    Abstract Climate change mitigation, in the context of growing population and ever increasing economic activity, will require a transformation of energy and agricultural systems, posing significant challenges to global water resources. We use an integrated modelling framework of the water-energy-land

  13. The potential effects of climate change on the native vascular flora of North America. A preliminary climate envelopes analysis: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Morse, L.E.; Kutner, L.S.; Maddox, G.D.; Honey, L.L.; Thurman, C.M. [Nature Conservancy, Arlington, VA (United States); Kartesz, J.T. [North Carolina Botanical Garden, Chapel Hill, NC (United States); Chaplin, S.J. [Nature Conservancy, Minneapolis, MN (United States). Midwestern heritage Task Force

    1993-11-01

    To assess the potential effects of global warming on the North American flora, the reported geographical distributions of the 15,148 native North American vascular plant species were matched with climate data for 194 geographical areas to estimate the current ``climate envelope`` for each species. Three methods of analysis were used to construct these envelopes, all based on the limits of mean annual temperatures currently experienced by each species within its present range. Published models of future climates predict a possible increase in mean annual temperatures of 3{degree}C (5.4{degree}F) within the next century. Assuming that species might be eliminated from areas outside their present climate envelope, then about 7% to 11% of North America`s native plant species would be entirely out of their envelopes in a +3{degree}C climate. Rare species would be disproportionately affected -- between 10% and 18% of these species would be entirely out of their climate envelopes. However, some rare species may be able to persist at their present sites due to the availability of suitable microhabitats or genetic variation in climate tolerances. Of the more common species, only about 1% to 2% would be vulnerable in a +3{degree}C climate. The local effects of climate change on plant species would vary considerably if species withdraw from the southern or low-elevation portions of their ranges. Species may expand their ranges northwards as new areas become climatically suitable for them, producing significant changes in local floras. Species vary in their ability to make such migrations, depending upon limitations imposed by dispersal ability and/or specialized habitat requirements. An estimate of dispersibility suggests that species with narrow climate envelopes tend to lack characteristics promoting mobility.

  14. Challenges and potentials in using alternative landscape futures during climate change: A literature review and survey study

    Directory of Open Access Journals (Sweden)

    Amin Rastandeh

    2015-12-01

    Full Text Available This study focuses on the feasibility of applying alternative futures and scenario analysis in landscape planning during climate change to provide a wider perspective and deeper understanding of this approach for better use and more effective application in the future. The study consists of a literature review and an analysis of recent applied projects carried out worldwide. In addition, an electronic survey was conducted from March to September 2014 to examine viewpoints on the use and application of this approach with reference to climate-change impacts. The survey participants were a group of highly experienced researchers from eighteen countries involved in at least one applied project since 2000 relating to this topic. After analysis of more than forty applied projects, the survey results were incorporated into the analysis to create a comprehensive picture regarding the potentials and limitations of alternative futures and scenario analysis in landscape planning with particular attention to climate change. The findings show that this method is one of the most effective decision-making approaches for adopting landscape policies where landscapes change rapidly under the pressure of urbanisation and climate change. Nevertheless, there is a gap between the advances offered by the approach in various dimensions and the complexity of patterns, uncertainties and upheavals in landscapes due to climate-change impacts in the urbanising world. The research indicates that the approach opens up a great opportunity for decision-makers to expand their perspective and adopt appropriate landscape policies before reaching a point of no return from the sustainability point of view. Meanwhile, there are challenges and barriers in the application of alternative futures and scenario analysis for envisioning the landscapes influenced by climate change and urbanisation that should be pushed back. Although informative, this research raises new questions about this

  15. Expertly validated models and phylogenetically-controlled analysis suggests responses to climate change are related to species traits in the order lagomorpha.

    Directory of Open Access Journals (Sweden)

    Katie Leach

    Full Text Available Climate change during the past five decades has impacted significantly on natural ecosystems, and the rate of current climate change is of great concern among conservation biologists. Species Distribution Models (SDMs have been used widely to project changes in species' bioclimatic envelopes under future climate scenarios. Here, we aimed to advance this technique by assessing future changes in the bioclimatic envelopes of an entire mammalian order, the Lagomorpha, using a novel framework for model validation based jointly on subjective expert evaluation and objective model evaluation statistics. SDMs were built using climatic, topographical, and habitat variables for all 87 lagomorph species under past and current climate scenarios. Expert evaluation and Kappa values were used to validate past and current models and only those deemed 'modellable' within our framework were projected under future climate scenarios (58 species. Phylogenetically-controlled regressions were used to test whether species traits correlated with predicted responses to climate change. Climate change is likely to impact more than two-thirds of lagomorph species, with leporids (rabbits, hares, and jackrabbits likely to undertake poleward shifts with little overall change in range extent, whilst pikas are likely to show extreme shifts to higher altitudes associated with marked range declines, including the likely extinction of Kozlov's Pika (Ochotona koslowi. Smaller-bodied species were more likely to exhibit range contractions and elevational increases, but showing little poleward movement, and fecund species were more likely to shift latitudinally and elevationally. Our results suggest that species traits may be important indicators of future climate change and we believe multi-species approaches, as demonstrated here, are likely to lead to more effective mitigation measures and conservation management. We strongly advocate studies minimising data gaps in our knowledge of

  16. Visualizing and communicating climate change using the ClimateWizard: decision support and education through web-based analysis and mapping

    Science.gov (United States)

    Girvetz, E. H.; Zganjar, C.; Raber, G. T.; Maurer, E. P.; Duffy, P.

    2009-12-01

    Virtually all fields of study and parts of society—from ecological science and nature conservation, to global development, multinational corporations, and government bodies—need to know how climate change has and may impact specific locations of interest. Our ability to respond to climate change depends on having convenient tools that make past and projected climate trends available to planners, managers, scientists and the general public, at scales ranging from global to local scales. Web-mapping applications provide an effective platform for communicating climate change impacts in specific geographic areas of interest to the public. Here, we present one such application, the ClimateWizard, that allows users to analyze, visualize and explore climate change maps for specific geographic areas of interest throughout the world (http://ClimateWizard.org). Built on Web 2.0 web-services (SOAP), Google Maps mash-up, and cloud computing technologies, the ClimateWizard analyzes large databases of climate information located on remote servers to create synthesized information and useful products tailored to geographic areas of interest (e.g. maps, graphs, tables, GIS layers). We demonstrate how the ClimateWizard can be used to assess projected changes to temperature and precipitation across all states in the contiguous United States and all countries of the world using statistically downscaled general circulation models from the CMIP3 dataset. We then go on to show how ClimateWizard can be used to analyze changes to other climate related variables, such as moisture stress and water production. Finally, we discuss how this tool can be adapted to develop a wide range of web-based tools that are targeted at informing specific audiences—from scientific research and natural resource management, to K-12 and higher education—about how climate change may affect different aspects of human and natural systems.

  17. Managing Climate Change Refugia for Biodiversity Conservation

    Science.gov (United States)

    Climate change threatens to create fundamental shifts in in the distributions and abundances of species. Given projected losses, increased emphasis on management for ecosystem resilience to help buffer fish and wildlife populations against climate change is emerging. Such effort...

  18. Global climate change impacts on forests and markets

    Science.gov (United States)

    Tian, Xiaohui; Sohngen, Brent; Kim, John B.; Ohrel, Sara; Cole, Jefferson

    2016-03-01

    This paper develops an economic analysis of climate change impacts in the global forest sector. It illustrates how potential future climate change impacts can be integrated into a dynamic forestry economics model using data from a global dynamic vegetation model, the MC2 model. The results suggest that climate change will cause forest outputs (such as timber) to increase by approximately 30% over the century. Aboveground forest carbon storage also is projected to increase, by approximately 26 Pg C by 2115, as a result of climate change, potentially providing an offset to emissions from other sectors. The effects of climate mitigation policies in the energy sector are then examined. When climate mitigation in the energy sector reduces warming, we project a smaller increase in forest outputs over the timeframe of the analysis, and we project a reduction in the sink capacity of forests of around 12 Pg C by 2115.

  19. When climate science became climate politics: British media representations of climate change in 1988.

    Science.gov (United States)

    Jaspal, Rusi; Nerlich, Brigitte

    2014-02-01

    Climate change has become a pressing environmental concern for scientists, social commentators and politicians. Previous social science research has explored media representations of climate change in various temporal and geographical contexts. Through the lens of Social Representations Theory, this article provides a detailed qualitative thematic analysis of media representations of climate change in the 1988 British broadsheet press, given that this year constitutes an important juncture in this transition of climate change from the domain of science to that of the socio-political sphere. The following themes are outlined: (i) "Climate change: a multi-faceted threat"; (ii) "Collectivisation of threat"; (iii) "Climate change and the attribution of blame"; and (iv) "Speculative solutions to a complex socio-environmental problem." The article provides detailed empirical insights into the "starting-point" for present-day disputes concerning climate change and lays the theoretical foundations for tracking the continuities and discontinuities characterising social representations of climate change in the future.

  20. Partnering for climate change adaptations by Dutch housing associations

    Directory of Open Access Journals (Sweden)

    Martin Roders

    2015-06-01

    partnering. These integrated methods aim to involve the construction sector early in the development of plans so that they can contribute their expertise. This creates a more efficient construction and maintenance process and delivers dwellings of higher quality.The housing associations cannot pre-empt all the effects of climate change alone. For adaptation measures at the neighbourhood level, they are dependent on collaboration with other stakeholders such as municipalities, but there are measures that can be applied at the building level, which falls within their range of influence. An example is the application of lighter colours on building façades in order to reflect radiation and reduce the air temperature close to the façades. The hazards of overflowing sewage systems caused by extreme precipitation can be reduced by applying measures to retain water temporarily, such as ‘green roofs’ or to ensure effective drainage such as open pavements. These measures reduce the peak load on the sewage system. Another effective measure is the use of materials that are not negatively affected by water so that if, despite all the precautionary measures, flooding does occur, the consequences would be less severe.Problem formulationThis research assesses the potential of adopting a partnering approach as a governance tool with which to increase the implementation of climate change adaptation measures like those described above. The housing stock owned by Dutch housing associations is taken as a case study. Involving the construction sector through a partnering approach is promising, since construction companies are the ones who carry out the works. Their early commitment reduces the risks of miscommunication or  failure and enhances opportunities for innovative solutions. By doing this, not only do housing associations take responsibility for their actions, but the construction sector as a whole gains more responsibility for solving societal challenges and is enabled to co

  1. Forest Policies Addressing Climate Change in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    As a developing country with a large population and a fragile ecological environment, China is particularly vulnerable to the adverse effects of climate change. Beginning with the Rio Conference of 1992 China has played a progressively enhanced role in combating climate change. A series of policies and measures to address climate change have been taken in the overall context of national sustainable development strategy, making positive contributions to the mitigation and adaptation to climate change, among ...

  2. Applied functional analysis

    CERN Document Server

    Griffel, DH

    2002-01-01

    A stimulating introductory text, this volume examines many important applications of functional analysis to mechanics, fluid mechanics, diffusive growth, and approximation. Detailed enough to impart a thorough understanding, the text is also sufficiently straightforward for those unfamiliar with abstract analysis. Its four-part treatment begins with distribution theory and discussions of Green's functions. Essentially independent of the preceding material, the second and third parts deal with Banach spaces, Hilbert space, spectral theory, and variational techniques. The final part outlines the

  3. Applied functional analysis

    CERN Document Server

    Oden, J Tinsley

    2010-01-01

    The textbook is designed to drive a crash course for beginning graduate students majoring in something besides mathematics, introducing mathematical foundations that lead to classical results in functional analysis. More specifically, Oden and Demkowicz want to prepare students to learn the variational theory of partial differential equations, distributions, and Sobolev spaces and numerical analysis with an emphasis on finite element methods. The 1996 first edition has been used in a rather intensive two-semester course. -Book News, June 2010

  4. Methane : its role in climate change and options for control

    OpenAIRE

    2012-01-01

    This study on CH4, (its role in climate change and options for control), aimed at a scenario analysis to assess future climate change under reduced methane emissions. At the same time improving the quality of CH4 emission inventories and estimating the costs of emission reductions between 2010 and 2100. In this thesis 28 major options to control or mitigate methane emissions from different sources were identified. The effectiveness and costs of these options were assessed. This resulted in a ...

  5. Research on Greenhouse-Gas-Induced Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, M. E.

    2001-07-15

    During the 5 years of NSF grant ATM 95-22681 (Research on Greenhouse-Gas-Induced Climate Change, $1,605,000, 9/15/1995 to 8/31/2000) we have performed work which we are described in this report under three topics: (1) Development and Application of Atmosphere, Ocean, Photochemical-Transport, and Coupled Models; (2) Analysis Methods and Estimation; and (3) Climate-Change Scenarios, Impacts and Policy.

  6. Climate change and WTO : boundary mediation on certified emission reductions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Cheol

    2011-07-15

    This book mentions climate change and WTO with is climate change true? International effort for reduce of greenhouse gas with UNFCCC, Kyoto protocol, Copenhagen Accord and Cancun Agreement, WTO norm, discussion on introduction of boundary mediation on certified emission reductions, analysis on regulation related WTO norm, violation of regulation on border measure of prohibition, violation of principle on GATT, justification, except through Article 20 of GATT, assessment of policy and supplementation on the law.

  7. Risk Communication, Moral Emotions and Climate Change.

    NARCIS (Netherlands)

    Roeser, Sabine

    2012-01-01

    This article discusses the potential role that emotions might play in enticing a lifestyle that diminishes climate change. Climate change is an important challenge for society. There is a growing consensus that climate change is due to our behavior, but few people are willing to significantly adapt

  8. Climate Change Education for Mitigation and Adaptation

    Science.gov (United States)

    Anderson, Allison

    2012-01-01

    This article makes the case for the education sector an untapped opportunity to combat climate change. It sets forth a definition of Climate Change Education for Sustainable Development that is comprehensive and multidisciplinary and asserts that it must not only include relevant content knowledge on climate change, environmental and social…

  9. Climate Change Ignorance: An Unacceptable Legacy

    Science.gov (United States)

    Boon, Helen J.

    2015-01-01

    Climate change effects will be most acutely felt by future generations. Recent prior research has shown that school students' knowledge of climate change science is very limited in rural Australia. The purpose of this study was to assess the capacity of preservice teachers and parents to transmit climate change information and understanding to…

  10. Challenges and Possibilities in Climate Change Education

    Science.gov (United States)

    Pruneau,, Diane; Khattabi, Abdellatif; Demers, Melanie

    2010-01-01

    Educating and communicating about climate change is challenging. Researchers reported that climate change concepts are often misunderstood. Some people do not believe that climate change will have impacts on their own life. Other challenges may include people's difficulty in perceiving small or gradual environmental changes, the fact that…

  11. Tropical deforestation and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Ebeling, J.

    2006-08-15

    This dissertation evaluates recent proposals to include tropical deforestation into international climate change mitigation strategies. Deforestation is responsible for up to 25 percent of global greenhouse gas emissions. The research aim here is to evaluate implications of a range of policy options for the environmental effectiveness of a prospective agreement, as well as for its political and economic attractiveness for different countries and stakeholders. A literature review, 48 key stakeholder interviews, analyses of submissions to the United Nations Framework Convention on Climate Change (UNFCCC), modelling approaches and statistical analyses were carried out to answer these questions. On this basis the study identifies potential deal breakers and explores possible solutions to existing 'real' and perceived obstacles. Findings suggest that, given sufficient political will, an effective agreement between current UNFCCC Parties is feasible and that existing concerns can be addressed in pragmatic ways. Among the different policy alternatives, creating a new carbon trading mechanism under a post-2012 Kyoto regime is likely to deliver greatest economic and environmental benefits. Measuring emission reductions against national-level baselines based on historical base periods would increase the environmental integrity of resulting carbon credits. The study also finds that potential monetary benefits are distributed very unevenly between potential host countries, and that this may partly explain current negotiation positions. Complementary approaches, not based on emission trading, may have to be developed to foster broader support for an agreement. Finally, setting more ambitious emission reduction targets for industrialised countries would overcome concerns about 'flooding' of carbon markets, and would make the most of a unique opportunity to tackle both climate change and deforestation.

  12. Mars Recent Climate Change Workshop

    Science.gov (United States)

    Haberle, Robert M.; Owen, Sandra J.

    2012-11-01

    Mars Recent Climate Change Workshop NASA/Ames Research Center May 15-17, 2012 Climate change on Mars has been a subject of great interest to planetary scientists since the 1970's when orbiting spacecraft first discovered fluvial landforms on its ancient surfaces and layered terrains in its polar regions. By far most of the attention has been directed toward understanding how "Early Mars" (i.e., Mars >~3.5 Gya) could have produced environmental conditions favorable for the flow of liquid water on its surface. Unfortunately, in spite of the considerable body of work performed on this subject, no clear consensus has emerged on the nature of the early Martian climate system because of the difficulty in distinguishing between competing ideas given the ambiguities in the available geological, mineralogical, and isotopic records. For several reasons, however, the situation is more tractable for "Recent Mars" (i.e., Mars during past 20 My or so). First, the geologic record is better preserved and evidence for climate change on this time scale has been building since the rejuvenation of the Mars Exploration Program in the late 1990's. The increasing coverage of the planet from orbit and the surface, coupled with accurate measurements of surface topography, increasing spatial resolution of imaging cameras, improved spectral resolution of infrared sensors, and the ability to probe the subsurface with radar, gamma rays, and neutron spectroscopy, has not only improved the characterization of previously known climate features such as polar layered terrains and glacier-related landforms, but has also revealed the existence of many new features related to recent climate change such as polygons, gullies, concentric crater fill, and a latitude dependent mantle. Second, the likely cause of climate change - spin axis/orbital variations - is more pronounced on Mars compared to Earth. Spin axis/orbital variations alter the seasonal and latitudinal distribution of sunlight, which can

  13. NASA Nice Climate Change Education

    Science.gov (United States)

    Frink, K.; Crocker, S.; Jones, W., III; Marshall, S. S.; Anuradha, D.; Stewart-Gurley, K.; Howard, E. M.; Hill, E.; Merriweather, E.

    2013-12-01

    Authors: 1 Kaiem Frink, 4 Sherry Crocker, 5 Willie Jones, III, 7 Sophia S.L. Marshall, 6 Anuadha Dujari 3 Ervin Howard 1 Kalota Stewart-Gurley 8 Edwinta Merriweathe Affiliation: 1. Mathematics & Computer Science, Virginia Union University, Richmond, VA, United States. 2. Mathematics & Computer Science, Elizabeth City State Univ, Elizabeth City, NC, United States. 3. Education, Elizabeth City State University, Elizabeth City, NC, United States. 4. College of Education, Fort Valley State University , Fort Valley, GA, United States. 5. Education, Tougaloo College, Jackson, MS, United States. 6. Mathematics, Delaware State University, Dover, DE, United States. 7. Education, Jackson State University, Jackson, MS, United States. 8. Education, Alabama Agricultural and Mechanical University, Huntsville, AL, United States. ABSTRACT: In this research initiative, the 2013-2014 NASA NICE workshop participants will present best educational practices for incorporating climate change pedagogy. The presentation will identify strategies to enhance instruction of pre-service teachers to aligned with K-12 Science, Technology, Engineering and Mathematics (STEM) standards. The presentation of best practices should serve as a direct indicator to address pedagogical needs to include climate education within a K-12 curriculum Some of the strategies will include inquiry, direct instructions, and cooperative learning . At this particular workshop, we have learned about global climate change in regards to how this is going to impact our life. Participants have been charged to increase the scientific understanding of pre-service teachers education programs nationally to incorporate climate education lessons. These recommended practices will provide feasible instructional strategies that can be easily implemented and used to clarify possible misconceptions and ambiguities in scientific knowledge. Additionally, the presentation will promote an awareness to the many facets in which climate

  14. Virgin's Knight tackles climate change

    Science.gov (United States)

    Banks, Michael

    2008-11-01

    "There is no greater or more immediate challenge than that posed by climate change," said Sir Richard Branson, chairman of the Virgin group, via video-link at the 59th International Astronautical Congress (IAC) held in Glasgow in the UK at the end of September. That grand statement may seem like a lot of hot air for the entrepreneur best known for his attempt to circumnavigate the globe by balloon. But Branson went on to reveal that Virgin Galactic, which aims to fly passengers 100 km into space for 200 000 per trip, will also provide room on its craft for a series of scientific experiments to study the Earth's atmosphere.

  15. A history of climate change

    DEFF Research Database (Denmark)

    Hastrup, Kirsten Blinkenberg

    2017-01-01

    they were first described and became known to outsiders, it is shown how flexibility and mobility were always preconditions for survival in this environment. Then, they were trapped in too much ice, while now they have to negotiate a rapidly melting environment. In both cases their response is deeply......This article presents a small community of High Arctic hunters (the Inughuit in North West Greenland) who have always had to negotiate climatic changes with great impact on their living conditions. This points us toward the natural-social entanglements implied in the notion of the Anthropocene...

  16. Climate change and the Delta

    Science.gov (United States)

    Dettinger, Michael; Anderson, Jamie; Anderson, Michael L.; Brown, Larry R.; Cayan, Daniel; Maurer, Edwin P.

    2016-01-01

    Anthropogenic climate change amounts to a rapidly approaching, “new” stressor in the Sacramento–San Joaquin Delta system. In response to California’s extreme natural hydroclimatic variability, complex water-management systems have been developed, even as the Delta’s natural ecosystems have been largely devastated. Climate change is projected to challenge these management and ecological systems in different ways that are characterized by different levels of uncertainty. For example, there is high certainty that climate will warm by about 2°C more (than late-20th-century averages) by mid-century and about 4°C by end of century, if greenhouse-gas emissions continue their current rates of acceleration. Future precipitation changes are much less certain, with as many climate models projecting wetter conditions as drier. However, the same projections agree that precipitation will be more intense when storms do arrive, even as more dry days will separate storms. Warmer temperatures will likely enhance evaporative demands and raise water temperatures. Consequently, climate change is projected to yield both more extreme flood risks and greater drought risks. Sea level rise (SLR) during the 20th century was about 22cm, and is projected to increase by at least 3-fold this century. SLR together with land subsidence threatens the Delta with greater vulnerabilities to inundation and salinity intrusion. Effects on the Delta ecosystem that are traceable to warming include SLR, reduced snowpack, earlier snowmelt and larger storm-driven streamflows, warmer and longer summers, warmer summer water temperatures, and water-quality changes. These changes and their uncertainties will challenge the operations of water projects and uses throughout the Delta’s watershed and delivery areas. Although the effects of climate change on Delta ecosystems may be profound, the end results are difficult to predict, except that native species will fare worse than invaders. Successful

  17. Grapevine phenology and climate change in Georgia

    Science.gov (United States)

    Cola, G.; Failla, O.; Maghradze, D.; Megrelidze, L.; Mariani, L.

    2016-10-01

    While the climate of Western Europe has been deeply affected by the abrupt climate change that took place in the late `1980s of the twentieth century, a similar signal is detected only few years later, in 1994, in Georgia. Grapevine phenology is deeply influenced by climate and this paper aimed to analyze how phenological timing changed before and after the climatic change of 1994. Availability of thermal resources in the two climatic phases for the five altitudinal belts in the 0-1250-m range was analyzed. A phenological dataset gathered in two experimental sites during the period 2012-2014, and a suitable thermal dataset was used to calibrate a phenological model based on the normal approach and able to describe BBCH phenological stages 61 (beginning of flowering), 71 (fruit set), and 81 (veraison). Calibration was performed for four relevant Georgian varieties (Mtsvane Kakhuri, Rkatsiteli, Ojaleshi, and Saperavi). The model validation was performed on an independent 3-year dataset gathered in Gorizia (Italy). Furthermore, in the case of variety Rkatsiteli, the model was applied to the 1974-2013 thermal time series in order to obtain phenological maps of the Georgian territory. Results show that after the climate change of 1994, Rkatsiteli showed an advance, more relevant at higher altitudes where the whole increase of thermal resource was effectively translated in phenological advance. For instance the average advance of veraison was 5.9 days for 250-500 m asl belt and 18.1 days for 750-1000 m asl). On the other hand, at lower altitudes, phenological advance was depleted by superoptimal temperatures. As a final result, some suggestions for the adaptation of viticultural practices to the current climatic phase are provided.

  18. Uncertainty in simulating wheat yields under climate change

    DEFF Research Database (Denmark)

    Asseng, A; Ewert, F; Rosenzweig, C

    2013-01-01

    of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models...... than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi......Projections of climate change impacts on crop yields are inherently uncertain1. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate2. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic...

  19. Bioethics and Climate Change: A Response to Macpherson and Valles.

    Science.gov (United States)

    Resnik, David B

    2016-10-01

    Two articles published in Bioethics recently have explored the ways that bioethics can contribute to the climate change debate. Cheryl Cox Macpherson argues that bioethicists can play an important role in the climate change debate by helping the public to better understand the values at stake and the trade-offs that must be made in individual and social choices, and Sean Valles claims that bioethicists can contribute to the debate by framing the issues in terms of the public health impacts of climate change. While Macpherson and Valles make valid points concerning a potential role for bioethics in the climate change debate, it is important to recognize that much more than ethical analysis and reflection will be needed to significantly impact public attitudes and government policies.

  20. Selection of climate change scenario data for impact modelling

    DEFF Research Database (Denmark)

    Sloth Madsen, M; Fox Maule, C; MacKellar, N

    2012-01-01

    Impact models investigating climate change effects on food safety often need detailed climate data. The aim of this study was to select climate change projection data for selected crop phenology and mycotoxin impact models. Using the ENSEMBLES database of climate model output, this study...... illustrates how the projected climate change signal of important variables as temperature, precipitation and relative humidity depends on the choice of the climate model. Using climate change projections from at least two different climate models is recommended to account for model uncertainty. To make...... the climate projections suitable for impact analysis at the local scale a weather generator approach was adopted. As the weather generator did not treat all the necessary variables, an ad-hoc statistical method was developed to synthesise realistic values of missing variables. The method is presented...

  1. Linking Indigenous Knowledge and Observed Climate Change Studies

    Science.gov (United States)

    Alexander, Chief Clarence; Bynum, Nora; Johnson, Liz; King, Ursula; Mustonen, Tero; Neofotis, Peter; Oettle, Noel; Rosenzweig, Cynthia; Sakakibara, Chie; Shadrin, Chief Vyacheslav; Vicarelli, Marta; Waterhouse, Jon; Weeks, Brian

    2010-01-01

    We present indigenous knowledge narratives and explore their connections to documented temperature and other climate changes and observed climate change impact studies. We then propose a framework for enhancing integration of these indigenous narratives of observed climate change with global assessments. Our aim is to contribute to the thoughtful and respectful integration of indigenous knowledge with scientific data and analysis, so that this rich body of knowledge can inform science, and so that indigenous and traditional peoples can use the tools and methods of science for the benefit of their communities if they choose to do so. Enhancing ways of understanding such connections are critical as the Intergovernmental Panel on Climate Change Fifth Assessment process gets underway.

  2. Climate change impacts: Public policies and perception in Albania

    Directory of Open Access Journals (Sweden)

    Elona Pojani

    2013-12-01

    Full Text Available The purpose of this paper is to discuss some of the main impacts of climate change in Albania. More specifically the paper will try to analyze the public response toward these new challenges. This analysis will be preceded by a brief review of the international literature regarding climate change consequences. In addition, the paper will discuss public perception and awareness toward climate change. This discussion will be based on a survey which has involved a wide range of population. The main results of the survey show that the level of awareness of the study group (which consisted mainly on high educated participants about climate change and its relationship with the development is very low. Therefore more emphasis should be put to information regarding environmental issues, through education system and awareness campaigns.

  3. Climate Change, Agriculture and Food Security in Tanzania

    DEFF Research Database (Denmark)

    Arndt, Channing; Farmer, William; Strzepek, Kenneth

    2012-01-01

    Due to their reliance on rain-fed agriculture, both as a source of income and consumption, many low-income countries are considered to be the most vulnerable to climate change. Here, we estimate the impact of climate change on food security in Tanzania. Representative climate projections are used...... in calibrated crop models to predict crop yield changes for 110 districts in Tanzania. These results are in turn imposed on a highly disaggregated, recursive dynamic economy-wide model of Tanzania. We find that, relative to a no-climate-change baseline and considering domestic agricultural production...... as the channel of impact, food security in Tanzania appears likely to deteriorate as a consequence of climate change. The analysis points to a high degree of diversity of outcomes (including some favorable outcomes) across climate scenarios, sectors, and regions. Noteworthy differences in impacts across...

  4. Climate Change Effects on Agriculture: Economic Responses to Biophysical Shocks

    Science.gov (United States)

    Nelson, Gerald C.; Valin, Hugo; Sands, Ronald D.; Havlik, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina

    2014-01-01

    Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change's representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(sup 2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

  5. Climate change and the water cycle in newly irrigated areas.

    Science.gov (United States)

    Abrahão, Raphael; García-Garizábal, Iker; Merchán, Daniel; Causapé, Jesús

    2015-02-01

    Climate change is affecting agriculture doubly: evapotranspiration is increasing due to increments in temperature while the availability of water resources is decreasing. Furthermore, irrigated areas are expanding worldwide. In this study, the dynamics of climate change impacts on the water cycle of a newly irrigated watershed are studied through the calculation of soil water balances. The study area was a 752-ha watershed located on the left side of the Ebro river valley, in Northeast Spain. The soil water balance procedures were carried out throughout 1827 consecutive days (5 years) of hydrological and agronomical monitoring in the study area. Daily data from two agroclimatic stations were used as well. Evaluation of the impact of climate change on the water cycle considered the creation of two future climate scenarios for comparison: 2070 decade with climate change and 2070 decade without climate change. The main indicators studied were precipitation, irrigation, reference evapotranspiration, actual evapotranspiration, drainage from the watershed, and irrigation losses. The aridity index was also applied. The results represent a baseline scenario in which adaptation measures may be included and tested to reduce the impacts of climate change in the studied area and other similar areas.

  6. The challenges of communicating climate change

    Directory of Open Access Journals (Sweden)

    Emiliano Feresin

    2009-06-01

    Full Text Available The climate change issue has become increasingly present in our society in the last decade and central also to communication studies. In the e-book “Communicating Climate Change: Discourses, Mediations and Perceptions”, edited by Anabela Carvalho, various scholars investigate how climate change challenges communication by looking at three main aspects: the discourses of a variety of social actors on climate change; the reconstruction of those discourses in the media; the citizens’ perceptions, understandings and attitudes in relation to climate change.

  7. Applying information network analysis to fire-prone landscapes: implications for community resilience

    Directory of Open Access Journals (Sweden)

    Derric B. Jacobs

    2017-03-01

    Full Text Available Resilient communities promote trust, have well-developed networks, and can adapt to change. For rural communities in fire-prone landscapes, current resilience strategies may prove insufficient in light of increasing wildfire risks due to climate change. It is argued that, given the complexity of climate change, adaptations are best addressed at local levels where specific social, cultural, political, and economic conditions are matched with local risks and opportunities. Despite the importance of social networks as key attributes of community resilience, research using social network analysis on coupled human and natural systems is scarce. Furthermore, the extent to which local communities in fire-prone areas understand climate change risks, accept the likelihood of potential changes, and have the capacity to develop collaborative mitigation strategies is underexamined, yet these factors are imperative to community resiliency. We apply a social network framework to examine information networks that affect perceptions of wildfire and climate change in Central Oregon. Data were collected using a mailed questionnaire. Analysis focused on the residents' information networks that are used to gain awareness of governmental activities and measures of community social capital. A two-mode network analysis was used to uncover information exchanges. Results suggest that the general public develops perceptions about climate change based on complex social and cultural systems rather than as patrons of scientific inquiry and understanding. It appears that perceptions about climate change itself may not be the limiting factor in these communities' adaptive capacity, but rather how they perceive local risks. We provide a novel methodological approach in understanding rural community adaptation and resilience in fire-prone landscapes and offer a framework for future studies.

  8. The science of climate change.

    Energy Technology Data Exchange (ETDEWEB)

    Doctor, R. D.

    1999-09-10

    A complex debate is underway on climate change linked to proposals for costly measures that would reshape our power grid. This confronts technical experts outside of the geophysical disciplines with extensive, but unfamiliar, data both supporting and refuting claims that serious action is warranted. For example, evidence is brought to the table from one group of astrophysicists concerned with sunspots--this group believes there is no issue man can manage; while another group of oceanographers concerned with the heat balance in the world's oceans are very alarmed at the loss of arctic ice. What is the evidence? In an effort to put some of these issues in perspective for a technical audience, without a background in geophysics, a brief survey will consider (1) an overview of the 300 years of scientific inquiry on man's relationship to climate; (2) a basic discussion of what is meant by the ''greenhouse'' and why there are concerns which include not only CO{sub 2}, but also CH{sub 4}, N{sub 2}O, and CFC's; (3) the geological record on CO{sub 2}--which likely was present at 1,000 times current levels when life began; (4) the solar luminosity and sunspot question; and (5) the current evidence for global climate change. We are at a juncture where we are attempting to understand the earth as an integrated dynamic system, rather than a collection of isolated components.

  9. Case grows for climate change

    Energy Technology Data Exchange (ETDEWEB)

    Hileman, B.

    1999-08-09

    In the four years since the IPCC stated that 'the balance of evidence suggests a discernible human influence on global climate', evidence for anomalous warming has become more compelling, and as a result scientists have become more concerned that human-induced climate change has already arrived. The article summarises recent extra evidence on global temperatures, carbon dioxide measurements, ice shelf breakup, coral bleaching, unstable climates and improved climate models. At the time of the Kyoto conference, the US became keen on the idea that enhancing forest and soil carbon sequestration was a good way to offset emissions reduction targets. Congress is however under the opinion on that the Kyoto protocol presents a threat to the US economy, and senate is very unlikely to ratify the protocol during the Clinton Administration. The debate as to whether the US government should mandate major emission reduction or wait for more scientific certainty may continue for a number of years, but, growing concern of scientists and the public for the harmful effects of climate change may cause a change. 4 figs., 8 photos.

  10. Dislocated interests and climate change

    Science.gov (United States)

    Davis, Steven J.; Diffenbaugh, Noah

    2016-06-01

    The predicted effects of climate change on surface temperatures are now emergent and quantifiable. The recent letter by Hansen and Sato (2016 Environ. Res. Lett. 11 034009) adds to a growing number of studies showing that warming over the past four decades has shifted the distribution of temperatures higher almost everywhere, with the largest relative effects on summer temperatures in developing regions such as Africa, South America, southeast Asia, and the Middle East (e.g., Diffenbaugh and Scherer 2011 Clim. Change 107 615-24 Anderson 2011 Clim. Change 108 581; Mahlstein et al 2012 Geophys. Res. Lett. 39 L21711). Hansen and Sato emphasize that although these regions are warming disproportionately, their role in causing climate change—measured by cumulative historical CO2 emissions produced—is small compared to the US and Europe, where the relative change in temperatures has been less. This spatial and temporal mismatch of climate change impacts and the burning of fossil fuels is a critical dislocation of interests that, as the authors note, has ‘substantial implications for global energy and climate policies.’ Here, we place Hansen and Sato’s ‘national responsibilities’ into a broader conceptual framework of problematically dislocated interests, and briefly discuss the related challenges for global climate mitigation efforts.

  11. Past and Current Climate Change

    Science.gov (United States)

    Mercedes Rodríguez Ruibal, Ma

    2014-05-01

    In 1837 the Swiss geologist and palaeontologist Louis Agassiz was the first scientist to propose the existence of an ice age in the Earth's past. Nearly two centuries after discussing global glacial periods... while the average global temperature is rising very quickly because of our economic and industrial model. In tribute to these pioneers, we have selected a major climate change of the past as the Snowball Earth and, through various activities in the classroom, compared to the current anthropogenic climate change. First, we include multiple geological processes that led to a global glaciation 750 million years ago as the decrease in the atmospheric concentration of greenhouse gases such as CO2 and CH4, the effect of climate variations in solar radiation due to emissions of volcanic dust and orbital changes (Milankovitch cycles), being an essential part of this model the feedback mechanism of the albedo of the ice on a geological scale. Moreover, from simple experiments and studies in the classroom this time we can compare the past with the current anthropogenic global warming we are experiencing and some of its consequences, highlighting that affect sea level rise, increased extreme and effects on health and the biosphere weather.

  12. Climate variability and climate change vulnerability and adaptation. Workshop summary

    Energy Technology Data Exchange (ETDEWEB)

    Bhatti, N.; Cirillo, R.R. [Argonne National Lab., IL (United States); Dixon, R.K. [U.S. Country Studies Program, Washington, DC (United States)] [and others

    1995-12-31

    Representatives from fifteen countries met in Prague, Czech Republic, on September 11-15, 1995, to share results from the analysis of vulnerability and adaptation to global climate change. The workshop focused on the issues of global climate change and its impacts on various sectors of a national economy. The U.N. Framework Convention on Climate Change (FCCC), which has been signed by more than 150 governments worldwide, calls on signatory parties to develop and communicate measures they are implementing to respond to global climate change. An analysis of a country`s vulnerability to changes in the climate helps it identify suitable adaptation measures. These analyses are designed to determine the extent of the impacts of global climate change on sensitive sectors such as agricultural crops, forests, grasslands and livestock, water resources, and coastal areas. Once it is determined how vulnerable a country may be to climate change, it is possible to identify adaptation measures for ameliorating some or all of the effects.The objectives of the vulnerability and adaptation workshop were to: The objectives of the vulnerability and adaptation workshop were to: Provide an opportunity for countries to describe their study results; Encourage countries to learn from the experience of the more complete assessments and adjust their studies accordingly; Identify issues and analyses that require further investigation; and Summarize results and experiences for governmental and intergovernmental organizations.

  13. Comparative analysis of the influence of climate change and nitrogen deposition on carbon sequestration in forest ecosystems in European Russia: simulation modelling approach

    OpenAIRE

    Komarov, A. S.; V. N. Shanin

    2012-01-01

    An individual-based simulation model, EFIMOD, was used to simulate the response of forest ecosystems to climate change and additional nitrogen deposition. The general scheme of the model includes forest growth depending on nitrogen uptake by plants and mineralization of soil organic matter. The mineralization rate is dependent on nitrogen content in litter and forest floor horizons. Three large forest areas in European Central Russia with a total area of about 17 000 km2

  14. Comparative analysis of the influence of climate change and nitrogen deposition on carbon sequestration in forest ecosystems in European Russia: simulation modelling approach

    OpenAIRE

    Komarov, A. S.; V. N. Shanin

    2012-01-01

    An individual-based simulation model, EFIMOD, was used to simulate the response of forest ecosystems to climate change and additional nitrogen deposition. The general scheme of the model includes forest growth depending on nitrogen uptake by plants and mineralization of soil organic matter. The mineralization rate is dependent on nitrogen content in litter and forest floor horizons. Three large forest areas in European Central Russia with a total area of about 17 000 km2 in ...

  15. Economics of nuclear power and climate change mitigation policies.

    Science.gov (United States)

    Bauer, Nico; Brecha, Robert J; Luderer, Gunnar

    2012-10-16

    The events of March 2011 at the nuclear power complex in Fukushima, Japan, raised questions about the safe operation of nuclear power plants, with early retirement of existing nuclear power plants being debated in the policy arena and considered by regulators. Also, the future of building new nuclear power plants is highly uncertain. Should nuclear power policies become more restrictive, one potential option for climate change mitigation will be less available. However, a systematic analysis of nuclear power policies, including early retirement, has been missing in the climate change mitigation literature. We apply an energy economy model framework to derive scenarios and analyze the interactions and tradeoffs between these two policy fields. Our results indicate that early retirement of nuclear power plants leads to discounted cumulative global GDP losses of 0.07% by 2020. If, in addition, new nuclear investments are excluded, total losses will double. The effect of climate policies imposed by an intertemporal carbon budget on incremental costs of policies restricting nuclear power use is small. However, climate policies have much larger impacts than policies restricting the use of nuclear power. The carbon budget leads to cumulative discounted near term reductions of global GDP of 0.64% until 2020. Intertemporal flexibility of the carbon budget approach enables higher near-term emissions as a result of increased power generation from natural gas to fill the emerging gap in electricity supply, while still remaining within the overall carbon budget. Demand reductions and efficiency improvements are the second major response strategy.

  16. Climate change threatens coexistence within communities of Mediterranean forested wetlands.

    Directory of Open Access Journals (Sweden)

    Arianna Di Paola

    Full Text Available The Mediterranean region is one of the hot spots of climate change. This study aims at understanding what are the conditions sustaining tree diversity in Mediterranean wet forests under future scenarios of altered hydrological regimes. The core of the work is a quantitative, dynamic model describing the coexistence of different Mediterranean tree species, typical of arid or semi-arid wetlands. Two kind of species, i.e. Hygrophilous (drought sensitive, flood resistant and Non-hygrophilous (drought resistant, flood sensitive, are broadly defined according to the distinct adaptive strategies of trees against water stress of summer drought and winter flooding. We argue that at intermediate levels of water supply the dual role of water (resource and stress results in the coexistence of the two kind of species. A bifurcation analysis allows us to assess the effects of climate change on the coexistence of the two species in order to highlight the impacts of predicted climate scenarios on tree diversity. Specifically, the model has been applied to Mediterranean coastal swamp forests of Central Italy located at Castelporziano Estate and Circeo National Park. Our results show that there are distinct rainfall thresholds beyond which stable coexistence becomes impossible. Regional climatic projections show that the lower rainfall threshold may be approached or crossed during the XXI century, calling for an urgent adaptation and mitigation response to prevent biodiversity losses.

  17. Climate change threatens coexistence within communities of Mediterranean forested wetlands.

    Science.gov (United States)

    Di Paola, Arianna; Valentini, Riccardo; Paparella, Francesco

    2012-01-01

    The Mediterranean region is one of the hot spots of climate change. This study aims at understanding what are the conditions sustaining tree diversity in Mediterranean wet forests under future scenarios of altered hydrological regimes. The core of the work is a quantitative, dynamic model describing the coexistence of different Mediterranean tree species, typical of arid or semi-arid wetlands. Two kind of species, i.e. Hygrophilous (drought sensitive, flood resistant) and Non-hygrophilous (drought resistant, flood sensitive), are broadly defined according to the distinct adaptive strategies of trees against water stress of summer drought and winter flooding. We argue that at intermediate levels of water supply the dual role of water (resource and stress) results in the coexistence of the two kind of species. A bifurcation analysis allows us to assess the effects of climate change on the coexistence of the two species in order to highlight the impacts of predicted climate scenarios on tree diversity. Specifically, the model has been applied to Mediterranean coastal swamp forests of Central Italy located at Castelporziano Estate and Circeo National Park. Our results show that there are distinct rainfall thresholds beyond which stable coexistence becomes impossible. Regional climatic projections show that the lower rainfall threshold may be approached or crossed during the XXI century, calling for an urgent adaptation and mitigation response to prevent biodiversity losses.

  18. Spatio-Temporal Changes in the Rice Planting Area and Their Relationship to Climate Change in Northeast China:A Model-Based Analysis

    Institute of Scientific and Technical Information of China (English)

    XIA Tian; WU Wen-bin; ZHOU Qing-bo; YU Qiang-yi; Peter H Verburg; YANG Peng; LU Zhong-jun; TANG Hua-jun

    2014-01-01

    Rice is one of the most important grain crops in Northeast China (NEC) and its cultivation is sensitive to climate change. This study aimed to explore the spatio-temporal changes in the NEC rice planting area over the period of 1980-2010 and to analyze their relationship to climate change. To do so, the CLUE-S (conversion of land use and its effects at small region extent) model was ifrst updated and used to simulate dynamic changes in the rice planting area in NEC to understand spatio-temporal change trends during three periods: 1980-1990, 1990-2000 and 2000-2010. The changing results in individual periods were then linked to climatic variables to investigate the climatic drivers of these changes. Results showed that the NEC rice planting area expanded quickly and increased by nearly 4.5 times during 1980-2010. The concentration of newly planted rice areas in NEC constantly moved northward and the changes were strongly dependent on latitude. This conifrmed that climate change, increases in temperature in particular, greatly inlfuenced the shift in the rice planting area. The shift in the north limit of the NEC rice planting area generally followed a 1°C isoline migration pattern, but with an obvious time-lag effect. These ifndings can help policy makers and crop producers take proper adaptation measures even when exposed to the global warming situation in NEC.

  19. Honey Bees, Satellites and Climate Change

    Science.gov (United States)

    Esaias, W.

    2008-05-01

    Life isn't what it used to be for honey bees in Maryland. The latest changes in their world are discussed by NASA scientist Wayne Esaias, a biological oceanographer with NASA Goddard Space Flight Center. At Goddard, Esaias has examined the role of marine productivity in the global carbon cycle using visible satellite sensors. In his personal life, Esaias is a beekeeper. Lately, he has begun melding his interest in bees with his professional expertise in global climate change. Esaias has observed that the period when nectar is available in central Maryland has shifted by one month due to local climate change. He is interested in bringing the power of global satellite observations and models to bear on the important but difficult question of how climate change will impact bees and pollination. Pollination is a complex, ephemeral interaction of animals and plants with ramifications throughout terrestrial ecosystems well beyond the individual species directly involved. Pollinators have been shown to be in decline in many regions, and the nature and degree of further impacts on this key interaction due to climate change are very much open questions. Honey bee colonies are used to quantify the time of occurrence of the major interaction by monitoring their weight change. During the peak period, changes of 5-15 kg/day per colony represent an integrated response covering thousands of hectares. Volunteer observations provide a robust metric for looking at spatial and inter-annual variations due to short term climate events, complementing plant phenology networks and satellite-derived vegetation phenology data. In central Maryland, the nectar flows are advancing by about -0.6 d/y, based on a 15 yr time series and a small regional study. This is comparable to the regional advancement in the spring green-up observed with MODIS and AVHRR. The ability to link satellite vegetation phenology to honey bee forage using hive weight changes provides a basis for applying satellite

  20. Adaptation to Climate Change in Developing Countries

    DEFF Research Database (Denmark)

    Mertz, Ole; Halsnæs, Kirsten; Olesen, Jørgen E.

    2009-01-01

    Adaptation to climate change is given increasing international attention as the confidence in climate change projections is getting higher. Developing countries have specific needs for adaptation due to high vulnerabilities, and they will in this way carry a great part of the global costs...... of climate change although the rising atmospheric greenhouse gas concentrations are mainly the responsibility of industrialized countries. This article provides a status of climate change adaptation in developing countries. An overview of observed and projected climate change is given, and recent literature...... on impacts, vulnerability, and adaptation are reviewed, including the emerging focus on mainstreaming of climate change and adaptation in development plans and programs. The article also serves as an introduction to the seven research articles of this special issue on climate change adaptation in developing...

  1. Analysis on Climate Change in Suixi County during 1961-2015%1961-2015年濉溪县气候变化分析

    Institute of Scientific and Technical Information of China (English)

    张学贤; 周景春; 张存岭

    2016-01-01

    Using sunshine, temperature, precipitation data in Suixi County during 1961-2015, the climate change was analyzed by using sta-tistical analysis method.The results showed that in recent 55 years in Suixi County, sunshine hours of whole year and winter, summer were ob-viously decreased, increased in Apr.; average tempearture of whole year, Jan.-Apr., Oct.was obviously increased, annual average maxi-mum temperature had no obvious change, minimum temperature of whole year, Jan.-Jun., Sep.-Oct., Dec.was significantly increased, tem-perature difference of whole year, Jan.-Mar., May-Aug., Dec.was obviously reduced; precipitation in Sep.was decreased, rain days of whole year and spring was obviously reduced; evaporation capacity of whole year, winter, spring, summer was significantly reduced; relative humidity, moisture index was slightly reduced, moisture index of Sep.was decreased.The climate in Suixi County in recent 55 years presen-ted warming and drying trend.%利用1961—2015年濉溪县日照、气温、降水等气象资料,采用统计分析方法对濉溪县气候变化进行分析。结果表明,近55年濉溪县全年和冬夏季日照时数明显减少,4月增加;全年和1—4、10月平均气温显著升高,年均最高气温无明显变化,全年和1—6、9—10、12月最低气温显著上升,全年和1—3、5—8、12月温差显著减少;9月降水量趋于减少,全年和春季雨日显著减少;全年和冬季、春季、夏季蒸发量显著减少;相对湿度、湿润指数略有降低,9月湿润指数趋于减少。可见,近55年濉溪县气候呈现“暖干化”趋势。

  2. Misconceptions Surrounding Climate Change: A Review of the Literature

    Science.gov (United States)

    Templeton, C. M.; McNeal, K. S.; Libarkin, J.

    2011-12-01

    Misconceptions about climate change abound in every corner of society. The result manifests itself ranging from apprehension to total disregard for climate change conditions. According to several sources, however, a large percentage of the U. S. population do, indeed indicate some concern over global warming and climate change in general. These climate change misconceptions are numerous and include, to name a few; confusion between weather and climate, how greenhouse gases are affecting the earth, the effects of ozone depletion, earth's natural cycles, volcanic activity, nuclear waste and a host of other anthropogenic influences. This paper is a review of the current research literature relating to climate change misconceptions. These errant views will be addressed, cataloged, enumerated, and ranked to get a grasp on where the general population, politicians, scientists, and educators as well as students stand on informed climate change information. The categories where misconceptions arise have been identified in this literature review study and include the following: Natural cycles of the earth, ecological which include deforestation, urban development and any human intervention on the environment, educational - including teacher strategies, student understanding and textbook updates, emotional, ozone layer and its interactions, polar ice, political regulations, mandates and laws, pollution from human sources as well as from nature, religious beliefs and dogma and social beliefs. We suggest appropriate solutions for addressing these misconceptions, especially in the classroom setting, and broadly include available funding sources for work in climate change education. Some solutions include need for compilation of appropriate education resources and materials for public use, need for the development of educational materials that appropriately address the variety of publics, and need for programs that are conducting climate change education research and EPO work to

  3. Reconstructing Student Conceptions of Climate Change; An Inquiry Approach

    Science.gov (United States)

    McClelland, J. Collin

    No other environmental issue today has as much potential to alter life on Earth as does global climate change. Scientific evidence continues to grow; indicating that climate change is occurring now, and that change is a result of human activities (National Research Council [NRC], 2010). The need for climate literacy in society has become increasingly urgent. Unfortunately, understanding the concepts necessary for climate literacy remains a challenge for most individuals. A growing research base has identified a number of common misconceptions people have about climate literacy concepts (Leiserowitz, Smith, & Marlon 2011; Shepardson, Niyogi, Choi, & Charusombat, 2009). However, few have explored this understanding in high school students. This sequential mixed methods study explored the changing conceptions of global climate change in 90 sophomore biology students through the course of their participation in an eight-week inquiry-based global climate change unit. The study also explored changes in students' attitudes over the course of the study unit, contemplating possible relationships between students' conceptual understanding of and attitudes toward global climate change. Phase I of the mixed methods study included quantitative analysis of pre-post content knowledge and attitude assessment data. Content knowledge gains were statistically significant and over 25% of students in the study shifted from an expressed belief of denial or uncertainty about global warming to one of belief in it. Phase II used an inductive approach to explore student attitudes and conceptions. Conceptually, very few students grew to a scientifically accurate understanding of the greenhouse effect or the relationship between global warming and climate change. However, they generally made progress in their conceptual understanding by adding more specific detail to explain their understanding. Phase III employed a case study approach with eight purposefully selected student cases

  4. Climate Change Sentiment on Twitter: An Unsolicited Public Opinion Poll.

    Science.gov (United States)

    Cody, Emily M; Reagan, Andrew J; Mitchell, Lewis; Dodds, Peter Sheridan; Danforth, Christopher M

    2015-01-01

    The consequences of anthropogenic climate change are extensively debated through scientific papers, newspaper articles, and blogs. Newspaper articles may lack accuracy, while the severity of findings in scientific papers may be too opaque for the public to understand. Social media, however, is a forum where individuals of diverse backgrounds can share their thoughts and opinions. As consumption shifts from old media to new, Twitter has become a valuable resource for analyzing current events and headline news. In this research, we analyze tweets containing the word "climate" collected between September 2008 and July 2014. Through use of a previously developed sentiment measurement tool called the Hedonometer, we determine how collective sentiment varies in response to climate change news, events, and natural disasters. We find that natural disasters, climate bills, and oil-drilling can contribute to a decrease in happiness while climate rallies, a book release, and a green ideas contest can contribute to an increase in happiness. Words uncovered by our analysis suggest that responses to climate change news are predominately from climate change activists rather than climate change deniers, indicating that Twitter is a valuable resource for the spread of climate change awareness.

  5. Climate Change Sentiment on Twitter: An Unsolicited Public Opinion Poll.

    Directory of Open Access Journals (Sweden)

    Emily M Cody

    Full Text Available The consequences of anthropogenic climate change are extensively debated through scientific papers, newspaper articles, and blogs. Newspaper articles may lack accuracy, while the severity of findings in scientific papers may be too opaque for the public to understand. Social media, however, is a forum where individuals of diverse backgrounds can share their thoughts and opinions. As consumption shifts from old media to new, Twitter has become a valuable resource for analyzing current events and headline news. In this research, we analyze tweets containing the word "climate" collected between September 2008 and July 2014. Through use of a previously developed sentiment measurement tool called the Hedonometer, we determine how collective sentiment varies in response to climate change news, events, and natural disasters. We find that natural disasters, climate bills, and oil-drilling can contribute to a decrease in happiness while climate rallies, a book release, and a green ideas contest can contribute to an increase in happiness. Words uncovered by our analysis suggest that responses to climate change news are predominately from climate change activists rather than climate change deniers, indicating that Twitter is a valuable resource for the spread of climate change awareness.

  6. Physiological plasticity increases resilience of ectothermic animals to climate change

    Science.gov (United States)

    Seebacher, Frank; White, Craig R.; Franklin, Craig E.

    2015-01-01

    Understanding how climate change affects natural populations remains one of the greatest challenges for ecology and management of natural resources. Animals can remodel their physiology to compensate for the effects of temperature variation, and this physiological plasticity, or acclimation, can confer resilience to climate change. The current lack of a comprehensive analysis of the capacity for physiological plasticity across taxonomic groups and geographic regions, however, constrains predictions of the impacts of climate change. Here, we assembled the largest database to date to establish the current state of knowledge of physiological plasticity in ectothermic animals. We show that acclimation decreases the sensitivity to temperature and climate change of freshwater and marine animals, but less so in terrestrial animals. Animals from more stable environments have greater capacity for acclimation, and there is a significant trend showing that the capacity for thermal acclimation increases with decreasing latitude. Despite the capacity for acclimation, climate change over the past 20 years has already resulted in increased physiological rates of up to 20%, and we predict further future increases under climate change. The generality of these predictions is limited, however, because much of the world is drastically undersampled in the literature, and these undersampled regions are the areas of greatest need for future research efforts.

  7. Climate Change Impacts on Central China and Adaptation Measures

    Institute of Scientific and Technical Information of China (English)

    REN Yong-Jian; CUI Jiang-Xue; WAN Su-Qin; LIU Min; CHEN Zheng-Hong; LIAO Yu-Fang; WANG Ji-Jun

    2013-01-01

    In Central China, the obvious climate change has happened along with global warming. Based on the observational analysis, the climate change has significant effects, both positive and negative, in every field within the study area, and with the harmful effects far more prevalent. Under the scenario A1B, it is reported that temperature, precipitation, days of heat waves and extreme precipitation intensity will increase at respective rates of 0.38◦C per decade, 12.6 mm per decade, 6.4 d and 47 mm per decade in the 21st century. It is widely believed that these climate changes in the future will result in some apparent impacts on agro-ecosystems, water resources, wetland ecosystem, forest ecosystem, human health, energy sectors and other sensitive fields in Central China. Due to the limited scientific knowledge and researches, there are still some shortages in the climate change assessment methodologies and many uncertainties in the climate prediction results. Therefore, it is urgent and essential to increase the studies of the regional climate change adaptation, extend the research fields, and enhance the studies in the extreme weather and climate events to reduce the uncertainties of the climate change assessments.

  8. Towards a Better Understanding of Climate Change Negotiations

    Directory of Open Access Journals (Sweden)

    Bryndís Arndal Woods

    2012-12-01

    Full Text Available The bulk of environmental economics literature applies non-cooperative game theory to examine the stability of International Environmental Agreements. Recently, a new trend has emerged in the literature whereby scholars use modified economic approaches to better account for ‘reality’ as such. This article builds upon the work of Hugh Ward, Frank Grundig and Ethan Zorick who conducted a mixed-method analysis to create a model of international climate change negotiations which could explain why policy change has been minimal in this issue area. The purpose of this article is to further develop the mixed-method approach in order to gain a better understanding of international climate change negotiations. Using the progression of the 2011 Durban negotiation session as our raw data, we demonstrate the usefulness of conducting qualitative and quantitative analyses simultaneously to best represent reality. Content and discourse analyses are applied to the Durban negotiations to identify the properties of the underlying game. The results are applied to the future of the negotiations in order to identify trends which need to be addressed to reach more progressive outcomes in the future. The main results of the qualitative analyses of the Durban negotiations included that players had modest expectations at the outset of the negotiations, which influenced the issues they addressed. The quantitative analysis demonstrated that players achieved a high degree of success at Durban; all players achieved their desired outcomes on at least half of the issues they addressed. Finally, the mixed-method approach identified important trends from the negotiations, most importantly the cracks exposed within the BASIC bloc and the role of the ‘middle ground’ alliance.

  9. Is climate change modifying precipitation extremes?

    Science.gov (United States)

    Montanari, Alberto; Papalexiou, Simon Michael

    2016-04-01

    The title of the present contribution is a relevant question that is frequently posed to scientists, technicians and managers of local authorities. Although several research efforts were recently dedicated to rainfall observation, analysis and modelling, the above question remains essentially unanswered. The question comes from the awareness that the frequency of floods and the related socio-economic impacts are increasing in many countries, and climate change is deemed to be the main trigger. Indeed, identifying the real reasons for the observed increase of flood risk is necessary in order to plan effective mitigation and adaptation strategies. While mitigation of climate change is an extremely important issue at the global level, at small spatial scales several other triggers may interact with it, therefore requiring different mitigation strategies. Similarly, the responsibilities of administrators are radically different at local and global scales. This talk aims to provide insights and information to address the question expressed by its title. High resolution and long term rainfall data will be presented, as well as an analysis of the frequency of their extremes and its progress in time. The results will provide pragmatic indications for the sake of better planning flood risk mitigation policies.

  10. Climate change; Le changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Based on contributions on 120 French and foreign scientists representing different disciplines (mathematics, physics, mechanics, chemistry, biology, medicine, and so on), this report proposes an overview of the scientific knowledge and debate about climate change. It discusses the various indicators of climate evolution (temperatures, ice surfaces, sea level, biological indicators) and the various factors which may contribute to climate evolution (greenhouse gases, solar radiation). It also comments climate evolutions in the past as they can be investigated through some geological, thermal or geochemical indicators. Then, the authors describe and discuss the various climate mechanisms: solar activity, oceans, ice caps, greenhouse gases. In a third part, the authors discuss the different types of climate models which differ by the way they describe processes, and the current validation process for these models

  11. Improving leadership on climate change

    Energy Technology Data Exchange (ETDEWEB)

    Chandani, Achala

    2011-03-15

    The upcoming UN conference on climate change in Durban, South Africa throws a spotlight on African climate policy. As part of a knowledge-sharing initiative in Southern Africa, we assessed parliamentarians' needs for more information on climate threats and responses, and ways to improve their capabilities as key stakeholders influencing national and global decisionmaking. Funded by the UK Foreign and Commonwealth Office and partnered with the Association of European Parliamentarians with Africa (AWEPA), IIED worked with parliamentarians in the Southern Africa Customs Union (SACU) — Botswana, Lesotho, Namibia, South Africa and Swaziland — through interviews, literature surveys, field trips and workshops. Similar studies in Malawi and Scotland also fed into this project.

  12. [Climate change and Kyoto protocol].

    Science.gov (United States)

    Ergasti, G; Pippia, V; Murzilli, G; De Luca D'Alessandro, E

    2009-01-01

    Due to industrial revolution and the heavy use of fossil fuels, the concentration of greenhouse gases in the atmosphere has increased dramatically during the last hundred years, and this has lead to an increase in mean global temperature. The environmental consequences of this are: the melting of the ice caps, an increase in mean sea-levels, catastrophic events such as floodings, hurricanes and earthquakes, changes to the animal and vegetable kingdoms, a growth in vectors and bacteria in water thus increasing the risk of infectious diseases and damage to agriculture. The toxic effects of the pollution on human health are both acute and chronic. The Kyoto Protocol is an important step in the campaign against climatic changes but it is not sufficient. A possible solution might be for the States which produce the most of pollution to adopt a better political stance for the environment and to use renewable resources for the production of energy.

  13. Arctic climate change in NORKLIMA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The NORKLIMA programme is the national Norwegian initiative on climate research established for the period 2004-2013. The programme seeks to generate key knowledge about climate trends, the impacts of climate change, and how Norway can adapt to these changes. The NORKLIMA programme also encompasses research on instruments and policies for reducing emissions. Large-scale Programmes As part of the effort to meet national research-policy priorities, the Research Council has established a special funding instrument called the Large-scale Programmes. This initiative is designed to build long-term knowledge in order to encourage innovation and enhance value creation as well as to help find solutions to important challenges facing society.(Author)

  14. Handbook of Climate Change Mitigation

    CERN Document Server

    Seiner, John; Suzuki, Toshio; Lackner, Maximilian

    2012-01-01

    There is a mounting consensus that human behavior is changing the global climate and its consequence could be catastrophic. Reducing the 24 billion metric tons of carbon dioxide emissions from stationary and mobile sources is a gigantic task involving both technological challenges and monumental financial and societal costs. The pursuit of sustainable energy resources, environment, and economy has become a complex issue of global scale that affects the daily life of every citizen of the world. The present mitigation activities range from energy conservation, carbon-neutral energy conversions, carbon advanced combustion process that produce no greenhouse gases and that enable carbon capture and sequestion, to other advanced technologies. From its causes and impacts to its solutions, the issues surrounding climate change involve multidisciplinary science and technology. This handbook will provide a single source of this information. The book will be divided into the following sections: Scientific Evidence of Cl...

  15. Precipitation extremes under climate change

    CERN Document Server

    O'Gorman, Paul A

    2015-01-01

    The response of precipitation extremes to climate change is considered using results from theory, modeling, and observations, with a focus on the physical factors that control the response. Observations and simulations with climate models show that precipitation extremes intensify in response to a warming climate. However, the sensitivity of precipitation extremes to warming remains uncertain when convection is important, and it may be higher in the tropics than the extratropics. Several physical contributions govern the response of precipitation extremes. The thermodynamic contribution is robust and well understood, but theoretical understanding of the microphysical and dynamical contributions is still being developed. Orographic precipitation extremes and snowfall extremes respond differently from other precipitation extremes and require particular attention. Outstanding research challenges include the influence of mesoscale convective organization, the dependence on the duration considered, and the need to...

  16. Ground Water and Climate Change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F. P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J. -F; Holman, Ian; Treidel, Holger

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  17. Climate change: believing and seeing implies adapting.

    Science.gov (United States)

    Blennow, Kristina; Persson, Johannes; Tomé, Margarida; Hanewinkel, Marc

    2012-01-01

    Knowledge of factors that trigger human response to climate change is crucial for effective climate change policy communication. Climate change has been claimed to have low salience as a risk issue because it cannot be directly experienced. Still, personal factors such as strength of belief in local effects of climate change have been shown to correlate strongly with responses to climate change and there is a growing literature on the hypothesis that personal experience of climate change (and/or its effects) explains responses to climate change. Here we provide, using survey data from 845 private forest owners operating in a wide range of bio-climatic as well as economic-social-political structures in a latitudinal gradient across Europe, the first evidence that the personal strength of belief and perception of local effects of climate change, highly significantly explain human responses to climate change. A logistic regression model was fitted to the two variables, estimating expected probabilities ranging from 0.07 (SD ± 0.01) to 0.81 (SD ± 0.03) for self-reported adaptive measures taken. Adding socio-demographic variables improved the fit, estimating expected probabilities ranging from 0.022 (SD ± 0.008) to 0.91 (SD ± 0.02). We conclude that to explain and predict adaptation to climate change, the combination of personal experience and belief must be considered.

  18. Climate change damage and international law. Prevention duties and state responsibility

    Energy Technology Data Exchange (ETDEWEB)

    Verheyen, R.

    2005-07-01

    This book is the first comprehensive assessment of the legal duties of states with regard to human induced climate change damage. By discussing the current state of climate science in the context of binding international law, it convincingly argues that compensation for such damage could indeed be recoverable. The author analyses legal duties requiring states to prevent climate change damage, and discusses to what extent a breach of these duties will give rise to state responsibility (international liability). The analysis includes the UN Framework Convention on Climate Change and the Kyoto Protocol, but also various nature/ biodiversity protection and law of the sea instruments, as well as the no-harm-rule as a key provision of customary international law. The challenge in applying the different aspects of the law on state responsibility, including causation and standard of proof, are discussed in three case studies, and the questions raised by multiple polluters explored in depth. Against this background, the author advocates an internationally negotiated solution to the issue of climate change damage.

  19. US Agriculture under Climate Change: An Examination of Climate Change Effects on Ease of Achieving RFS2

    Directory of Open Access Journals (Sweden)

    Yuquan W. Zhang

    2013-01-01

    Full Text Available The challenges and opportunities facing today's agriculture within the climate change context are at least twofold: in addition to adapting to a potentially more variable climate, agriculture may also take on the addition role of mitigating GHG emissions—such as providing renewable fuels to replace fossil fuels to some extent. For the US, a large-scale GHG mitigation effort through biofuels production pursuant to the Renewable Fuel Standard (RFS2 is already unfolding. A question thus naturally arises for the RFS2-relevant US agricultural sector: will climate change make it harder to meet the volume goals set in the RFS2 mandates, considering that both climate change and RFS2 may have significant impacts on US agriculture? The agricultural component of FASOMGHG that models the land use allocation within the conterminous US agricultural sector is employed to investigate the effects of climate change (with autonomous adaptation at farm level, coupled with RFS2, on US agriculture. The analysis shows that climate change eases the burden of meeting the RFS2 mandates increasing consumer welfare while decreasing producer welfare. The results also show that climate change encourages a more diversified use of biofuel feedstocks for cellulosic ethanol production, in particular crop residues.

  20. Modeling climate change impact in hospitality sector, using building resources consumption signature

    Science.gov (United States)

    Pinto, Armando; Bernardino, Mariana; Silva Santos, António; Pimpão Silva, Álvaro; Espírito Santo, Fátima

    2016-04-01

    Hotels are one of building types that consumes more energy and water per person and are vulnerable to climate change because in the occurrence of extreme events (heat waves, water stress) same failures could compromise the hotel services (comfort) and increase energy cost or compromise the landscape and amenities due to water use restrictions. Climate impact assessments and the development of adaptation strategies require the knowledge about critical climatic variables and also the behaviour of building. To study the risk and vulnerability of buildings and hotels to climate change regarding resources consumption (energy and water), previous studies used building energy modelling simulation (BEMS) tools to study the variation in energy and water consumption. In general, the climate change impact in building is evaluated studying the energy and water demand of the building for future climate scenarios. But, hotels are complex buildings, quite different from each other and assumption done in simplified BEMS aren't calibrated and usually neglect some important hotel features leading to projected estimates that do not usually match hotel sector understanding and practice. Taking account all uncertainties, the use of building signature (statistical method) could be helpful to assess, in a more clear way, the impact of Climate Change in the hospitality sector and using a broad sample. Statistical analysis of the global energy consumption obtained from bills shows that the energy consumption may be predicted within 90% confidence interval only with the outdoor temperature. In this article a simplified methodology is presented and applied to identify the climate change impact in hospitality sector using t