WorldWideScience

Sample records for applied climate-change analysis

  1. The reduction method of statistic scale applied to study of climatic change

    International Nuclear Information System (INIS)

    Bernal Suarez, Nestor Ricardo; Molina Lizcano, Alicia; Martinez Collantes, Jorge; Pabon Jose Daniel

    2000-01-01

    In climate change studies the global circulation models of the atmosphere (GCMAs) enable one to simulate the global climate, with the field variables being represented on a grid points 300 km apart. One particular interest concerns the simulation of possible changes in rainfall and surface air temperature due to an assumed increase of greenhouse gases. However, the models yield the climatic projections on grid points that in most cases do not correspond to the sites of major interest. To achieve local estimates of the climatological variables, methods like the one known as statistical down scaling are applied. In this article we show a case in point by applying canonical correlation analysis (CCA) to the Guajira Region in the northeast of Colombia

  2. Analysis and detection of climate change

    International Nuclear Information System (INIS)

    Thejll, P.; Stendel, M.

    2001-01-01

    The authors first discuss the concepts 'climate' and 'climate change detection', outlining the difficulties of the latter in terms of the properties of the former. In more detail they then discuss the analysis and detection, carried out at the Danish Climate Centre, of anthropogenic climate change and the nonanthropogenic changes regarding anthropogenic climate change the emphasis is on the improvement of global and regional climate models, and the reconstruction of past climates regarding non-anthropogenic changes the authors describe two case studies of potential solar influence on climate. (LN)

  3. Analysis of Nigerian insurers’ perceptions of climate change

    Directory of Open Access Journals (Sweden)

    Zelda Anne Elum

    2016-11-01

    Full Text Available In recent times, global agricultural productivity has been increasingly affected by climate change. It is believed that societal adoption of insurance as an adaptive response to climate change can have significant implications for insurers. The study investigates empirically insurers’ perceptions of climate change and the challenges they face in Nigeria. It examines the proposition that insurance firms in Nigeria are not mindful of the impact of climate change. The study applied the use of descriptive statistics, Kendall’s coefficient of concordance and principal component analysis on collected primary data. It was found that insurers in Nigeria were highly aware of climate change and its impact but did not believe it affects their operational costs and payments of claims. Although there is great scope for insurers to increase their client base in the Nigerian market, insurers face challenges of insurance rate-cutting, low patronage and environmental factors. The study concludes that there is a need for insurance regulators to enforce a level playing field for all firms. It also advocates for public support of private insurers to enhance insurance coverage for agriculture, the largest employer of labour in the country.

  4. Applying "Climate" system to teaching basic climatology and raising public awareness of climate change issues

    Science.gov (United States)

    Gordova, Yulia; Okladnikov, Igor; Titov, Alexander; Gordov, Evgeny

    2016-04-01

    While there is a strong demand for innovation in digital learning, available training programs in the environmental sciences have no time to adapt to rapid changes in the domain content. A joint group of scientists and university teachers develops and implements an educational environment for new learning experiences in basics of climatic science and its applications. This so-called virtual learning laboratory "Climate" contains educational materials and interactive training courses developed to provide undergraduate and graduate students with profound understanding of changes in regional climate and environment. The main feature of this Laboratory is that students perform their computational tasks on climate modeling and evaluation and assessment of climate change using the typical tools of the "Climate" information-computational system, which are usually used by real-life practitioners performing such kind of research. Students have an opportunity to perform computational laboratory works using information-computational tools of the system and improve skills of their usage simultaneously with mastering the subject. We did not create an artificial learning environment to pass the trainings. On the contrary, the main purpose of association of the educational block and computational information system was to familiarize students with the real existing technologies for monitoring and analysis of data on the state of the climate. Trainings are based on technologies and procedures which are typical for Earth system sciences. Educational courses are designed to permit students to conduct their own investigations of ongoing and future climate changes in a manner that is essentially identical to the techniques used by national and international climate research organizations. All trainings are supported by lectures, devoted to the basic aspects of modern climatology, including analysis of current climate change and its possible impacts ensuring effective links between

  5. Climate change, uncertainty and investment in flood risk reduction

    OpenAIRE

    Pol, van der, T.D.

    2015-01-01

    Economic analysis of flood risk management strategies has become more complex due to climate change. This thesis investigates the impact of climate change on investment in flood risk reduction, and applies optimisation methods to support identification of optimal flood risk management strategies. Chapter 2 provides an overview of cost-benefit analysis (CBA) of flood risk management strategies under climate change uncertainty and new information. CBA is applied to determine optimal dike height...

  6. Informing the NCA: EPA's Climate Change Impact and Risk Analysis Framework

    Science.gov (United States)

    Sarofim, M. C.; Martinich, J.; Kolian, M.; Crimmins, A. R.

    2017-12-01

    The Climate Change Impact and Risk Analysis (CIRA) framework is designed to quantify the physical impacts and economic damages in the United States under future climate change scenarios. To date, the framework has been applied to 25 sectors, using scenarios and projections developed for the Fourth National Climate Assessment. The strength of this framework has been in the use of consistent climatic, socioeconomic, and technological assumptions and inputs across the impact sectors to maximize the ease of cross-sector comparison. The results of the underlying CIRA sectoral analyses are informing the sustained assessment process by helping to address key gaps related to economic valuation and risk. Advancing capacity and scientific literature in this area has created opportunity to consider future applications and strengthening of the framework. This presentation will describe the CIRA framework, present results for various sectors such as heat mortality, air & water quality, winter recreation, and sea level rise, and introduce potential enhancements that can improve the utility of the framework for decision analysis.

  7. Consistent economic cross-sectoral climate change impact scenario analysis: Method and application to Austria

    Directory of Open Access Journals (Sweden)

    Karl W. Steininger

    2016-03-01

    Full Text Available Climate change triggers manifold impacts at the national to local level, which in turn have various economy-wide implications (e.g. on welfare, employment, or tax revenues. In its response, society needs to prioritize which of these impacts to address and what share of resources to spend on each respective adaptation. A prerequisite to achieving that end is an economic impact analysis that is consistent across sectors and acknowledges intersectoral and economy-wide feedback effects. Traditional Integrated Assessment Models (IAMs are usually operating at a level too aggregated for this end, while bottom-up impact models most often are not fully comprehensive, focusing on only a subset of climate sensitive sectors and/or a subset of climate change impact chains. Thus, we develop here an approach which applies climate and socioeconomic scenario analysis, harmonized economic costing, and sector explicit bandwidth analysis in a coupled framework of eleven (biophysical impact assessment models and a uniform multi-sectoral computable general equilibrium model. In applying this approach to the alpine country of Austria, we find that macroeconomic feedbacks can magnify sectoral climate damages up to fourfold, or that by mid-century costs of climate change clearly outweigh benefits, with net costs rising two- to fourfold above current damage cost levels. The resulting specific impact information – differentiated by climate and economic drivers – can support sector-specific adaptation as well as adaptive capacity building. Keywords: climate impact, local impact, economic evaluation, adaptation

  8. Climate Change Education in Earth System Science

    Science.gov (United States)

    Hänsel, Stephanie; Matschullat, Jörg

    2013-04-01

    The course "Atmospheric Research - Climate Change" is offered to master Earth System Science students within the specialisation "Climate and Environment" at the Technical University Bergakademie Freiberg. This module takes a comprehensive approach to climate sciences, reaching from the natural sciences background of climate change via the social components of the issue to the statistical analysis of changes in climate parameters. The course aims at qualifying the students to structure the physical and chemical basics of the climate system including relevant feedbacks. The students can evaluate relevant drivers of climate variability and change on various temporal and spatial scales and can transform knowledge from climate history to the present and the future. Special focus is given to the assessment of uncertainties related to climate observations and projections as well as the specific challenges of extreme weather and climate events. At the end of the course the students are able to critically reflect and evaluate climate change related results of scientific studies and related issues in media. The course is divided into two parts - "Climate Change" and "Climate Data Analysis" and encompasses two lectures, one seminar and one exercise. The weekly "Climate change" lecture transmits the physical and chemical background for climate variation and change. (Pre)historical, observed and projected climate changes and their effects on various sectors are being introduced and discussed regarding their implications for society, economics, ecology and politics. The related seminar presents and discusses the multiple reasons for controversy in climate change issues, based on various texts. Students train the presentation of scientific content and the discussion of climate change aspects. The biweekly lecture on "Climate data analysis" introduces the most relevant statistical tools and methods in climate science. Starting with checking data quality via tools of exploratory

  9. Economic analysis of adaptive strategies for flood risk management under climate change

    NARCIS (Netherlands)

    Pol, van der T.D.; Ierland, van E.C.; Gabbert, S.G.M.

    2017-01-01

    Climate change requires reconsideration of flood risk management strategies. Cost-benefit analysis (CBA), an economic decision-support tool, has been widely applied to assess these strategies. This paper aims to describe and discuss probabilistic extensions of CBA to identify welfare-maximising

  10. Applying a Comprehensive Contextual Climate Change Vulnerability Framework to New Zealand's Tourism Industry.

    Science.gov (United States)

    Hopkins, Debbie

    2015-03-01

    Conceptualisations of 'vulnerability' vary amongst scholarly communities, contributing to a wide variety of applications. Research investigating vulnerability to climate change has often excluded non-climatic changes which may contribute to degrees of vulnerability perceived or experienced. This paper introduces a comprehensive contextual vulnerability framework which incorporates physical, social, economic and political factors which could amplify or reduce vulnerability. The framework is applied to New Zealand's tourism industry to explore its value in interpreting a complex, human-natural environment system with multiple competing vulnerabilities. The comprehensive contextual framework can inform government policy and industry decision making, integrating understandings of climate change within the broader context of internal and external social, physical, economic, and institutional stressors.

  11. Climate change and the macroeconomic structure in pre-industrial europe: new evidence from wavelet analysis.

    Science.gov (United States)

    Pei, Qing; Zhang, David D; Li, Guodong; Lee, Harry F

    2015-01-01

    The relationship between climate change and the macroeconomy in pre-industrial Europe has attracted considerable attention in recent years. This study follows the combined paradigms of evolutionary economics and ecological economics, in which wavelet analysis (spectrum analysis and coherence analysis) is applied as the first attempt to examine the relationship between climate change and the macroeconomic structure in pre-industrial Europe in the frequency domain. Aside from confirming previous results, this study aims to further substantiate the association between climate change and macroeconomy by presenting new evidence obtained from the wavelet analysis. Our spectrum analysis shows a consistent and continuous frequency band of 60-80 years in the temperature, grain yield ratio, grain price, consumer price index, and real wage throughout the study period. Besides, coherence analysis shows that the macroeconomic structure is shaped more by climate change than population change. In addition, temperature is proven as a key climatic factor that influences the macroeconomic structure. The analysis reveals a unique frequency band of about 20 years (15-35 years) in the temperature in AD1600-1700, which could have contributed to the widespread economic crisis in pre-industrial Europe. Our findings may have indications in re-examining the Malthusian theory.

  12. Including climate change in energy investment decisions

    International Nuclear Information System (INIS)

    Ybema, J.R.; Boonekamp, P.G.M.; Smit, J.T.J.

    1995-08-01

    To properly take climate change into account in the analysis of energy investment decisions, it is required to apply decision analysis methods that are capable of considering the specific characteristics of climate change (large uncertainties, long term horizon). Such decision analysis methods do exist. They can explicitly include evolving uncertainties, multi-stage decisions, cumulative effects and risk averse attitudes. Various methods are considered in this report and two of these methods have been selected: hedging calculations and sensitivity analysis. These methods are applied to illustrative examples, and its limitations are discussed. The examples are (1a) space heating and hot water for new houses from a private investor perspective and (1b) as example (1a) but from a government perspective, (2) electricity production with an integrated coal gasification combined cycle (ICGCC) with or without CO 2 removal, and (3) national energy strategy to hedge for climate change. 9 figs., 21 tabs., 42 refs., 1 appendix

  13. Carbon-Temperature-Water Change Analysis for Peanut Production Under Climate Change: A Prototype for the AgMIP Coordinated Climate-Crop Modeling Project (C3MP)

    Science.gov (United States)

    Ruane, Alex C.; McDermid, Sonali; Rosenzweig, Cynthia; Baigorria, Guillermo A.; Jones, James W.; Romero, Consuelo C.; Cecil, L. DeWayne

    2014-01-01

    Climate change is projected to push the limits of cropping systems and has the potential to disrupt the agricultural sector from local to global scales. This article introduces the Coordinated Climate-Crop Modeling Project (C3MP), an initiative of the Agricultural Model Intercomparison and Improvement Project (AgMIP) to engage a global network of crop modelers to explore the impacts of climate change via an investigation of crop responses to changes in carbon dioxide concentration ([CO2]), temperature, and water. As a demonstration of the C3MP protocols and enabled analyses, we apply the Decision Support System for Agrotechnology Transfer (DSSAT) CROPGRO-Peanut crop model for Henry County, Alabama, to evaluate responses to the range of plausible [CO2], temperature changes, and precipitation changes projected by climate models out to the end of the 21st century. These sensitivity tests are used to derive crop model emulators that estimate changes in mean yield and the coefficient of variation for seasonal yields across a broad range of climate conditions, reproducing mean yields from sensitivity test simulations with deviations of ca. 2% for rain-fed conditions. We apply these statistical emulators to investigate how peanuts respond to projections from various global climate models, time periods, and emissions scenarios, finding a robust projection of modest (20%) losses and larger uncertainty at the end of the century under the more severe representative concentration pathway (RCP8.5). This projection is not substantially altered by the selection of the AgMERRA global gridded climate dataset rather than the local historical observations, differences between the Third and Fifth Coupled Model Intercomparison Project (CMIP3 and CMIP5), or the use of the delta method of climate impacts analysis rather than the C3MP impacts response surface and emulator approach.

  14. Decision analysis of shoreline protection under climate change uncertainty

    Science.gov (United States)

    Chao, Philip T.; Hobbs, Benjamin F.

    1997-04-01

    If global warming occurs, it could significantly affect water resource distribution and availability. Yet it is unclear whether the prospect of such change is relevant to water resources management decisions being made today. We model a shoreline protection decision problem with a stochastic dynamic program (SDP) to determine whether consideration of the possibility of climate change would alter the decision. Three questions are addressed with the SDP: (l) How important is climate change compared to other uncertainties?, (2) What is the economic loss if climate change uncertainty is ignored?, and (3) How does belief in climate change affect the timing of the decision? In the case study, sensitivity analysis shows that uncertainty in real discount rates has a stronger effect upon the decision than belief in climate change. Nevertheless, a strong belief in climate change makes the shoreline protection project less attractive and often alters the decision to build it.

  15. Managing climate change refugia for climate adaptation

    Science.gov (United States)

    Toni Lyn Morelli; Christopher Daly; Solomon Z. Dobrowski; Deanna M. Dulen; Joseph L. Ebersole; Stephen T. Jackson; Jessica D. Lundquist; Connie Millar; Sean P. Maher; William B. Monahan; Koren R. Nydick; Kelly T. Redmond; Sarah C. Sawyer; Sarah Stock; Steven R. Beissinger

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that...

  16. Managing Climate Change Refugia for Climate Adaptation

    Science.gov (United States)

    Daly, Christopher; Dobrowski, Solomon Z.; Dulen, Deanna M.; Ebersole, Joseph L.; Jackson, Stephen T.; Lundquist, Jessica D.; Millar, Constance I.; Maher, Sean P.; Monahan, William B.; Nydick, Koren R.; Redmond, Kelly T.; Sawyer, Sarah C.; Stock, Sarah; Beissinger, Steven R.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  17. Managing climate change refugia for climate adaptation

    Science.gov (United States)

    Morelli, Toni L.; Jackson, Stephen T.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.

  18. Climate change, uncertainty and investment in flood risk reduction

    NARCIS (Netherlands)

    Pol, van der T.D.

    2015-01-01

    Economic analysis of flood risk management strategies has become more complex due to climate change. This thesis investigates the impact of climate change on investment in flood risk reduction, and applies optimisation methods to support identification of optimal flood risk management strategies.

  19. Measuring the Dynamics of Climate Change Communication in Mass Media and Social Networks with Computer-Assisted Content Analysis

    Science.gov (United States)

    Kirilenko, A.; Stepchenkova, S.

    2012-12-01

    To date, multiple authors have examined media representations of and public attitudes towards climate change, as well as how these representations and attitudes differ from scientific knowledge on the issue of climate change. Content analysis of newspaper publications, TV news, and, recently, Internet blogs has allowed for identification of major discussion themes within the climate change domain (e.g., newspaper trends, comparison of climate change discourse in different countries, contrasting liberal vs. conservative press). The majority of these studies, however, have processed texts manually, limiting textual population size, restricting the analysis to a relatively small number of themes, and using time-expensive coding procedures. The use of computer-assisted text analysis (CATA) software is important because the difficulties with manual processing become more severe with an increased volume of data. We developed a CATA approach that allows a large body of text materials to be surveyed in a quantifiable, objective, transparent, and time-efficient manner. While staying within the quantitative tradition of content analysis, the approach allows for an interpretation of the public discourse closer to one of more qualitatively oriented methods. The methodology used in this study contains several steps: (1) sample selection; (2) data preparation for computer processing and obtaining a matrix of keyword frequencies; (3) identification of themes in the texts using Exploratory Factor Analysis (EFA); (4) combining identified themes into higher order themes using Confirmatory Factor Analysis (CFA); (5) interpretation of obtained public discourse themes using factor scores; and (6) tracking the development of the main themes of the climate change discourse through time. In the report, we concentrate on two examples of CATA applied to study public perception of climate change. First example is an analysis of temporal change in public discourse on climate change. Applying

  20. Applying Bayesian modelling to assess climate change effects on biofuel production

    CSIR Research Space (South Africa)

    Peter, C

    2009-12-01

    Full Text Available the resilience of a strategy that meets the new South African national biofuel production target can be assessed in relation to climate change. Cross-disciplinary consideration of variables may be enhanced through the sensitivity analysis enabled by Bayesian...

  1. Economic impacts of climate change in Australia: framework and analysis

    International Nuclear Information System (INIS)

    Ford, Melanie

    2007-01-01

    Full text: There is growing interest in understanding the potential impacts of climate change in Australia, and especially the economic impacts of 'inaction'. In this study, a preliminary analysis of the possible economic impacts of future climate change in Australia is undertaken using ABARE's general equilibrium model of the global economy, GTEM. In order to understand the potential economy-wide economic impacts, the broad climatic trends that Australia is likely to experience over the next several decades are canvassed and the potential economic and non-economic impacts on key risk areas, such as water resources, agriculture and forests, health, industry and human settlements and the ecosystems, are identified. A more detailed analysis of the economic impacts of climate change are undertaken by developing two case studies. In the first case study, the economic impact of climate change and reduced water availability on the agricultural sector is assessed in the Murray-Darling Basin. In the second case study, the sectoral economic impacts on the Australian resources sector of a projected decline in global economic activity due to climate change is analysed. The key areas of required development to more fully understand the economy-wide and sectoral impacts of climate change are also discussed including issues associated with estimating both non-market and market impacts. Finally, an analytical framework for undertaking integrated assessment of climate change impacts domestically and globally is developed

  2. Regional climate projections for the MENA-CORDEX domain: analysis of projected temperature and precipitation changes

    Science.gov (United States)

    Hänsler, Andreas; Weber, Torsten; Eggert, Bastian; Saeed, Fahad; Jacob, Daniela

    2014-05-01

    Within the CORDEX initiative a multi-model suite of regionalized climate change information will be made available for several regions of the world. The German Climate Service Center (CSC) is taking part in this initiative by applying the regional climate model REMO to downscale global climate projections of different coupled general circulation models (GCMs) for several CORDEX domains. Also for the MENA-CORDEX domain, a set of regional climate change projections has been established at the CSC by downscaling CMIP5 projections of the Max-Planck-Institute Earth System Model (MPI-ESM) for the scenarios RCP4.5 and RCP8.5 with the regional model REMO for the time period from 1950 to 2100 to a horizontal resolution of 0.44 degree. In this study we investigate projected changes in future climate conditions over the domain towards the end of the 21st century. Focus in the analysis is given to projected changes in the temperature and rainfall characteristics and their differences for the two scenarios will be highlighted.

  3. Vulnerability of Thai rice production to simultaneous climate and socioeconomic changes: a double exposure analysis

    Science.gov (United States)

    Sangpenchan, R.

    2011-12-01

    This research explores the vulnerability of Thai rice production to simultaneous exposure by climate and socioeconomic change -- so-called "double exposure." Both processes influence Thailand's rice production system, but the vulnerabilities associated with their interactions are unknown. To understand this double exposure, I adopts a mixed-method, qualitative-quantitative analytical approach consisting of three phases of analysis involving a Vulnerability Scoping Diagram, a Principal Component Analysis, and the EPIC crop model using proxy datasets collected from secondary data sources at provincial scales.The first and second phases identify key variables representing each of the three dimensions of vulnerability -- exposure, sensitivity, and adaptive capacity indicating that the greatest vulnerability in the rice production system occurs in households and areas with high exposure to climate change, high sensitivity to climate and socioeconomic stress, and low adaptive capacity. In the third phase, the EPIC crop model simulates rice yields associated with future climate change projected by CSIRO and MIROC climate models. Climate change-only scenarios project the decrease in yields by 10% from the current productivity during 2016-2025 and 30% during 2045-2054. Scenarios applying both climate change and improved technology and management practices show that a 50% increase in rice production is possible, but requires strong collaboration between sectors to advance agricultural research and technology and requires strong adaptive capacity in the rice production system characterized by well-developed social capital, social networks, financial capacity, and infrastructure and household mobility at the local scale. The vulnerability assessment and climate and crop adaptation simulations used here provide useful information to decision makers developing vulnerability reduction plans in the face of concurrent climate and socioeconomic change.

  4. Applying & Publishing GRI framework in Transport Companies Rethink. Redesign. Rebuild. CSR Reporting and Climate Change

    Directory of Open Access Journals (Sweden)

    Lilian Soares Outtes Wanderley

    2010-08-01

    Full Text Available Corporations with systematic relationships to tourism are developing activities and publishing CSR reports applying the GRI framework (GRI, 2009. The contribution of tourism to climate change is estimated at between 5% and 12% and by 2050 the amount spent on the tourism sector will consume the entire carbon budget required to avoid dangerous climate change (Scott et al. 2009, UNWTO-UNEP-WMO 2008. This study defines the TC-8 group, a group of transport in tourism related companies, in order to answer the main questions:To what extent is climate change addressed in the CSR reports of transport companies? Climate change is mentioned and receives attention in all of the company reports analysed, however,overall the transport sector shows that in comparison to the GRI/KPMG (2007 survey, it under-performs. Are the companies just reporting direct emissions from production or also broader emissions from the use of the products? Half of these companies report emissions; some include direct and indirect emissions. Further actions can be mentioned such as, companies participating in forums discussing solutions to climate change, assuming shared responsibilities and employing measures such as reducing energy consumption by runningtheir own photovoltaic power unit or planning for a CO2 neutral operation by 2012.

  5. Computer models and the evidence of anthropogenic climate change: An epistemology of variety-of-evidence inferences and robustness analysis.

    Science.gov (United States)

    Vezér, Martin A

    2016-04-01

    To study climate change, scientists employ computer models, which approximate target systems with various levels of skill. Given the imperfection of climate models, how do scientists use simulations to generate knowledge about the causes of observed climate change? Addressing a similar question in the context of biological modelling, Levins (1966) proposed an account grounded in robustness analysis. Recent philosophical discussions dispute the confirmatory power of robustness, raising the question of how the results of computer modelling studies contribute to the body of evidence supporting hypotheses about climate change. Expanding on Staley's (2004) distinction between evidential strength and security, and Lloyd's (2015) argument connecting variety-of-evidence inferences and robustness analysis, I address this question with respect to recent challenges to the epistemology robustness analysis. Applying this epistemology to case studies of climate change, I argue that, despite imperfections in climate models, and epistemic constraints on variety-of-evidence reasoning and robustness analysis, this framework accounts for the strength and security of evidence supporting climatological inferences, including the finding that global warming is occurring and its primary causes are anthropogenic. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Incorporating Student Activities into Climate Change Education

    Science.gov (United States)

    Steele, H.; Kelly, K.; Klein, D.; Cadavid, A. C.

    2013-12-01

    Under a NASA grant, Mathematical and Geospatial Pathways to Climate Change Education, students at California State University, Northridge integrated Geographic Information Systems (GIS), remote sensing, satellite data technologies, and climate modelling into the study of global climate change under a Pathway for studying the Mathematics of Climate Change (PMCC). The PMCC, which is an interdisciplinary option within the BS in Applied Mathematical Sciences, consists of courses offered by the departments of Mathematics, Physics, and Geography and is designed to prepare students for careers and Ph.D. programs in technical fields relevant to global climate change. Under this option students are exposed to the science, mathematics, and applications of climate change science through a variety of methods including hands-on experience with computer modeling and image processing software. In the Geography component of the program, ESRI's ArcGIS and ERDAS Imagine mapping, spatial analysis and image processing software were used to explore NASA satellite data to examine the earth's atmosphere, hydrosphere and biosphere in areas that are affected by climate change or affect climate. These technology tools were incorporated into climate change and remote sensing courses to enhance students' knowledge and understanding of climate change through hands-on application of image processing techniques to NASA data. Several sets of exercises were developed with specific learning objectives in mind. These were (1) to increase student understanding of climate change and climate change processes; (2) to develop student skills in understanding, downloading and processing satellite data; (3) to teach remote sensing technology and GIS through applications to climate change; (4) to expose students to climate data and methods they can apply to solve real world problems and incorporate in future research projects. In the Math and Physics components of the course, students learned about

  7. Climate change experiments in Hamburg

    Energy Technology Data Exchange (ETDEWEB)

    Gubasch, U [DKRZ, Hamburg (Germany)

    1996-12-31

    Nowadays the anthropogenic climate change is been simulated world wide with a fair number of coupled ocean atmosphere general circulation models (IPCC, 1995). Typical model problems do not only blur the estimates of the anthropogenic climate change, but they also cause errors in the estimates of the natural variability. An accurate representation of the natural variability of the climate system is, however, essential for the detection of the anthropogenic climate change. All model simulations world wide show, even though they differ considerably in their technical details and the experimental setup and the forcing data, similar amplitudes and pattern of the predicted climate change. In the model world it is already at the beginning of the next century possible to detect the anthropogenic climate change in the global mean. If the model results are applied in a `fingerprint analysis`, then it is possible to prove that the climate change during the last 30 years is with a significance of 95 % larger than any other climate change during the last 100 years. The experiments performed in Hamburg show that the experimental conditions are of great importance for the estimate of the future climate. The usual starting point of most of the simulations with present day conditions (1980-1990) is too late, because then a considerable part of the warming since the beginning of the industrialization (ca. 1750) has been neglected. Furthermore it has only recently become clear that the sulphat-aerosols play an important role in the present day climate and in the future climate. The effect of the sulphat aerosols has first been simulated in a number of equilibrium simulations with mixed layer models, but nowadays with globally coupled ocean-atmosphere circulation models

  8. Climate change experiments in Hamburg

    Energy Technology Data Exchange (ETDEWEB)

    Gubasch, U. [DKRZ, Hamburg (Germany)

    1995-12-31

    Nowadays the anthropogenic climate change is been simulated world wide with a fair number of coupled ocean atmosphere general circulation models (IPCC, 1995). Typical model problems do not only blur the estimates of the anthropogenic climate change, but they also cause errors in the estimates of the natural variability. An accurate representation of the natural variability of the climate system is, however, essential for the detection of the anthropogenic climate change. All model simulations world wide show, even though they differ considerably in their technical details and the experimental setup and the forcing data, similar amplitudes and pattern of the predicted climate change. In the model world it is already at the beginning of the next century possible to detect the anthropogenic climate change in the global mean. If the model results are applied in a `fingerprint analysis`, then it is possible to prove that the climate change during the last 30 years is with a significance of 95 % larger than any other climate change during the last 100 years. The experiments performed in Hamburg show that the experimental conditions are of great importance for the estimate of the future climate. The usual starting point of most of the simulations with present day conditions (1980-1990) is too late, because then a considerable part of the warming since the beginning of the industrialization (ca. 1750) has been neglected. Furthermore it has only recently become clear that the sulphat-aerosols play an important role in the present day climate and in the future climate. The effect of the sulphat aerosols has first been simulated in a number of equilibrium simulations with mixed layer models, but nowadays with globally coupled ocean-atmosphere circulation models

  9. A Meta-Analysis of Urban Climate Change Adaptation ...

    Science.gov (United States)

    The concentration of people, infrastructure, and ecosystem services in urban areas make them prime sites for climate change adaptation. While advances have been made in developing frameworks for adaptation planning and identifying both real and potential barriers to action, empirical work evaluating urban adaptation planning processes has been relatively piecemeal. Existing assessments of current experience with urban adaptation provide necessarily broad generalizations based on the available peer-reviewed literature. This paper uses a meta-analysis of U.S. cities’ current experience with urban adaptation planning drawing from 54 sources that include peer-reviewed literature, government reports, white papers, and reports published by non-governmental organizations. The analysis specifically evaluates the institutional support structures being developed for urban climate change adaptation. The results demonstrate that adaptation planning is driven by a desire to reduce vulnerability and often catalyzes new collaborations and coordination mechanisms in urban governance. As a result, building capacity for urban climate change adaptation planning requires a focus not only on city governments themselves but also on the complex horizontal and vertical networks that have arisen around such efforts. Existing adaptation planning often lacks attention to equity issues, social vulnerability, and the influence of non-climatic factors on vulnerability. Engaging city govern

  10. Regional climate change mitigation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rowlands, Ian H [UNEP Collaborating Centre on Energy and Environment, and Univ. of Waterloo (Canada)

    1998-10-01

    The purpose of this paper is to explore some of the key methodological issues that arise from an analysis of regional climate change mitigation options. The rationale for any analysis of regional mitigation activities, emphasising both the theoretical attractiveness and the existing political encouragement and the methodology that has been developed are reviewed. The differences arising from the fact that mitigation analyses have been taken from the level of the national - where the majority of the work has been completed to date - to the level of the international - that is, the `regional` - will be especially highlighted. (EG)

  11. Regional climate change mitigation analysis

    International Nuclear Information System (INIS)

    Rowlands, Ian H.

    1998-01-01

    The purpose of this paper is to explore some of the key methodological issues that arise from an analysis of regional climate change mitigation options. The rationale for any analysis of regional mitigation activities, emphasising both the theoretical attractiveness and the existing political encouragement and the methodology that has been developed are reviewed. The differences arising from the fact that mitigation analyses have been taken from the level of the national - where the majority of the work has been completed to date - to the level of the international - that is, the 'regional' - will be especially highlighted. (EG)

  12. Ensemble catchment hydrological modelling for climate change impact analysis

    Science.gov (United States)

    Vansteenkiste, Thomas; Ntegeka, Victor; Willems, Patrick

    2014-05-01

    It is vital to investigate how the hydrological model structure affects the climate change impact given that future changes not in the range for which the models were calibrated or validated are likely. Thus an ensemble modelling approach which involves a diversity of models with different structures such as spatial resolutions and process descriptions is crucial. The ensemble modelling approach was applied to a set of models: from the lumped conceptual models NAM, PDM and VHM, an intermediate detailed and distributed model WetSpa, to the highly detailed and fully distributed model MIKE-SHE. Explicit focus was given to the high and low flow extremes. All models were calibrated for sub flows and quick flows derived from rainfall and potential evapotranspiration (ETo) time series. In general, all models were able to produce reliable estimates of the flow regimes under the current climate for extreme peak and low flows. An intercomparison of the low and high flow changes under changed climatic conditions was made using climate scenarios tailored for extremes. Tailoring was important for two reasons. First, since the use of many scenarios was not feasible it was necessary to construct few scenarios that would reasonably represent the range of extreme impacts. Second, scenarios would be more informative as changes in high and low flows would be easily traced to changes of ETo and rainfall; the tailored scenarios are constructed using seasonal changes that are defined using different levels of magnitude (high, mean and low) for rainfall and ETo. After simulation of these climate scenarios in the five hydrological models, close agreement was found among the models. The different models predicted similar range of peak flow changes. For the low flows, however, the differences in the projected impact range by different hydrological models was larger, particularly for the drier scenarios. This suggests that the hydrological model structure is critical in low flow predictions

  13. Managing Climate Change Refugia for Climate Adaptation

    Science.gov (United States)

    The concept of refugia has long been studied from theoretical and paleontological perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change ref...

  14. Climate change induced risk analysis of Dar es Salaam city (Tanzania)

    Science.gov (United States)

    Topa, Maria Elena; Herslund, Lise; Cavan, Gina; Printz, Andreas; Simonis, Ingo; Bucchignani, Edoardo; Jean-Baptiste, Nathalie; Hellevik, Siri; Johns, Regina; Kibassa, Deusdedit; Kweka, Clara; Magina, Fredrick; Mangula, Alpha; Mbuya, Elinorata; Uhinga, Guido; Kassenga, Gabriel; Kyessi, Alphonce; Shemdoe, Riziki; Kombe, Wilbard

    2013-04-01

    CLUVA (CLimate change and Urban Vulnerability in Africa; http://www.cluva.eu/) is a 3 years project, funded by the European Commission in 2010. The main objective of CLUVA is to develop context-centered methods and knowledge to be applied to African cities to assess vulnerabilities and increase knowledge on managing climate related risks. The project estimates the impacts of climate changes in the next 40 years at urban scale and downscales IPCC climate projections to evaluate specific threats to selected African test cities. These are mainly from floods, sea-level rise, droughts, heat waves, and desertification. The project evaluates and links: social vulnerability; urban green structures and ecosystem services; urban-rural interfaces; vulnerability of urban built environment and lifelines; and related institutional and governance dimensions of adaptation. The multi-scale and multi-disciplinary qualitative, quantitative and probabilistic approach of CLUVA is currently being applied to selected African test cities (Addis Ababa - Ethiopia; Dar es Salaam - Tanzania; Douala - Cameroun; Ouagadougou - Burkina Faso; St. Louis - Senegal). In particular, the poster will present preliminary findings for the Dar es Salaam case study. Dar es Salaam, which is Tanzania's largest coastal city, is exposed to floods, coastal erosion, droughts and heat waves, and highly vulnerable to impacts as a result of ineffective urban planning (about 70% unplanned settlements), poverty and lack of basic infrastructure (e.g. lack of or poor quality storm water drainage systems). Climate change could exacerbate the current situation increasing hazard-exposure alongside the impacts of development pressures which act to increase urban vulnerability for example because of informal (unregulated) urbanization. The CLUVA research team - composed of climate and environmental scientists, risk management experts, urban planners and social scientists from both European and African institutions - has

  15. Changing habits, changing climate : a foundation analysis

    International Nuclear Information System (INIS)

    Enright, W.

    2001-03-01

    If Canada intends to meet its greenhouse gas reduction target of 6 per cent below 1990 levels, a fundamental shift in energy use by Canadians is required. The health sector will also be required to change. Global climate change is expected to affect regions differently, some might get wetter, some might get warmer, and others still might get colder. Climate changes will influence a number of health determinants: the geographical range of disease organisms and vectors; temperature extremes and violent weather events; air, food and water quality; the stability of ecosystems. There is a requirement to strongly regulate the emissions of carbon dioxide, methane and other greenhouse gases to limit health risks. Increased air pollution could negatively affect large numbers of people, especially asthma sufferers and people suffering from chronic respiratory ailments and cardiovascular diseases. Changes in precipitation and temperature could increase insect-borne diseases. Water sources could be badly affected by drought, flooding or increased glacial runoff. The thinning of the ozone layer could result in additional skin cancers, impaired vision and other diseases. The document explores the various impacts resulting from climate change. A chapter is devoted to each topic: air pollution, temperature extremes, extreme weather events, vector borne diseases, drought and increased evaporation, food supply and ecosystem range, sea level rise, stratospheric ozone depletion and describes the health impacts. In addition, a chapter deals with aboriginal communities. The topic of environmental refugees is discussed, followed by an historical perspective into climate change policy in Canada. The author concludes with adaptation measures. Further emphasis must be placed on priority topics such as the estimation of future emissions and modelling of climate processes. refs., tabs., figs

  16. A quantitative analysis of the causes of the global climate change research distribution

    DEFF Research Database (Denmark)

    Pasgaard, Maya; Strange, Niels

    2013-01-01

    investigates whether the need for knowledge on climate changes in the most vulnerable regions of the world is met by the supply of knowledge measured by scientific research publications from the last decade. A quantitative analysis of more than 15,000 scientific publications from 197 countries investigates...... the poorer, fragile and more vulnerable regions of the world. A quantitative keywords analysis of all publications shows that different knowledge domains and research themes dominate across regions, reflecting the divergent global concerns in relation to climate change. In general, research on climate change...... the distribution of climate change research and the potential causes of this distribution. More than 13 explanatory variables representing vulnerability, geographical, demographical, economical and institutional indicators are included in the analysis. The results show that the supply of climate change knowledge...

  17. Deducing Climatic Elasticity to Assess Projected Climate Change Impacts on Streamflow Change across China

    Science.gov (United States)

    Liu, Jianyu; Zhang, Qiang; Zhang, Yongqiang; Chen, Xi; Li, Jianfeng; Aryal, Santosh K.

    2017-10-01

    Climatic elasticity has been widely applied to assess streamflow responses to climate changes. To fully assess impacts of climate under global warming on streamflow and reduce the error and uncertainty from various control variables, we develop a four-parameter (precipitation, catchment characteristics n, and maximum and minimum temperatures) climatic elasticity method named PnT, based on the widely used Budyko framework and simplified Makkink equation. We use this method to carry out the first comprehensive evaluation of the streamflow response to potential climate change for 372 widely spread catchments in China. The PnT climatic elasticity was first evaluated for a period 1980-2000, and then used to evaluate streamflow change response to climate change based on 12 global climate models under Representative Concentration Pathway 2.6 (RCP2.6) and RCP 8.5 emission scenarios. The results show that (1) the PnT climatic elasticity method is reliable; (2) projected increasing streamflow takes place in more than 60% of the selected catchments, with mean increments of 9% and 15.4% under RCP2.6 and RCP8.5 respectively; and (3) uncertainties in the projected streamflow are considerable in several regions, such as the Pearl River and Yellow River, with more than 40% of the selected catchments showing inconsistent change directions. Our results can help Chinese policy makers to manage and plan water resources more effectively, and the PnT climatic elasticity should be applied to other parts of the world.

  18. Cinematic climate change, a promising perspective on climate change communication.

    Science.gov (United States)

    Sakellari, Maria

    2015-10-01

    Previous research findings display that after having seen popular climate change films, people became more concerned, more motivated and more aware of climate change, but changes in behaviors were short-term. This article performs a meta-analysis of three popular climate change films, The Day after Tomorrow (2005), An Inconvenient Truth (2006), and The Age of Stupid (2009), drawing on research in social psychology, human agency, and media effect theory in order to formulate a rationale about how mass media communication shapes our everyday life experience. This article highlights the factors with which science blends in the reception of the three climate change films and expands the range of options considered in order to encourage people to engage in climate change mitigation actions. © The Author(s) 2014.

  19. Uncertainty and global climate change research

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, B.E. [Oak Ridge National Lab., TN (United States); Weiher, R. [National Oceanic and Atmospheric Administration, Boulder, CO (United States)

    1994-06-01

    The Workshop on Uncertainty and Global Climate Change Research March 22--23, 1994, in Knoxville, Tennessee. This report summarizes the results and recommendations of the workshop. The purpose of the workshop was to examine in-depth the concept of uncertainty. From an analytical point of view, uncertainty is a central feature of global climate science, economics and decision making. The magnitude and complexity of uncertainty surrounding global climate change has made it quite difficult to answer even the most simple and important of questions-whether potentially costly action is required now to ameliorate adverse consequences of global climate change or whether delay is warranted to gain better information to reduce uncertainties. A major conclusion of the workshop is that multidisciplinary integrated assessments using decision analytic techniques as a foundation is key to addressing global change policy concerns. First, uncertainty must be dealt with explicitly and rigorously since it is and will continue to be a key feature of analysis and recommendations on policy questions for years to come. Second, key policy questions and variables need to be explicitly identified, prioritized, and their uncertainty characterized to guide the entire scientific, modeling, and policy analysis process. Multidisciplinary integrated assessment techniques and value of information methodologies are best suited for this task. In terms of timeliness and relevance of developing and applying decision analytic techniques, the global change research and policy communities are moving rapidly toward integrated approaches to research design and policy analysis.

  20. Predicting the Response of Electricity Load to Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Patrick [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Colman, Jesse [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kalendra, Eric [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-07-28

    Our purpose is to develop a methodology to quantify the impact of climate change on electric loads in the United States. We perform simple linear regression, assisted by geospatial smoothing, on paired temperature and load time-series to estimate the heating- and coolinginduced sensitivity to temperature across 300 transmission zones and 16 seasonal and diurnal time periods. The estimated load sensitivities can be coupled with climate scenarios to quantify the potential impact of climate change on load, with a primary application being long-term electricity scenarios. The method allows regional and seasonal differences in climate and load response to be reflected in the electricity scenarios. While the immediate product of this analysis was designed to mesh with the spatial and temporal resolution of a specific electricity model to enable climate change scenarios and analysis with that model, we also propose that the process could be applied for other models and purposes.

  1. Climate change and transnational corporations. Analysis and trends

    International Nuclear Information System (INIS)

    1992-01-01

    In Economic and Social Council resolution 1989/25, the Council requested an analytic study of the main sectors of activity that have adverse effects on environmental preservation and the factors that determine the allocation of activities between developed and developing countries. The present report, entitled Climate Change and Transnational Corporations: Analysis and Trends, is in response to that request. The problem of global warming and the dangers it presents to global survival are being given high priority by the United Nations. Discussions are under way leading to a convention on global climate change under the auspices of United Nations intergovernmental bodies. The study was designed as a contribution to that process. It focuses on six transnational energy-producing and energy-consuming industrial sectors, in which corporate practices have a direct and major impact on the problems associated with global climate change. The sectors are fossil fuel production, transportation, electricity-generation, energy-intensive metals production, chlorofluorocarbons and other ozone-depleting chemicals, and inorganic nitrogen fertilizers. The study explores the relative differential impacts between industrialized and developing countries of each sector, and asks how each sector would have to be restructured in order to limit global climate change and ozone depletion. It concludes that major changes in the technical processes and investment patterns of the transnational corporations in those sectors would be necessary if catastrophic environmental changes are to be avoided

  2. Climate change and watershed mercury export: a multiple projection and model analysis

    Science.gov (United States)

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. We apply an ensemble of watershed models to simulate and assess the responses of hydrological and total Hg (HgT) fluxes and concentrations to two climate change projections in the US Co...

  3. Modeling technical change in climate analysis: evidence from agricultural crop damages.

    Science.gov (United States)

    Ahmed, Adeel; Devadason, Evelyn S; Al-Amin, Abul Quasem

    2017-05-01

    This study accounts for the Hicks neutral technical change in a calibrated model of climate analysis, to identify the optimum level of technical change for addressing climate changes. It demonstrates the reduction to crop damages, the costs to technical change, and the net gains for the adoption of technical change for a climate-sensitive Pakistan economy. The calibrated model assesses the net gains of technical change for the overall economy and at the agriculture-specific level. The study finds that the gains of technical change are overwhelmingly higher than the costs across the agriculture subsectors. The gains and costs following technical change differ substantially for different crops. More importantly, the study finds a cost-effective optimal level of technical change that potentially reduces crop damages to a minimum possible level. The study therefore contends that the climate policy for Pakistan should consider the role of technical change in addressing climate impacts on the agriculture sector.

  4. Applying network theory to prioritize multispecies habitat networks that are robust to climate and land-use change.

    Science.gov (United States)

    Albert, Cécile H; Rayfield, Bronwyn; Dumitru, Maria; Gonzalez, Andrew

    2017-12-01

    Designing connected landscapes is among the most widespread strategies for achieving biodiversity conservation targets. The challenge lies in simultaneously satisfying the connectivity needs of multiple species at multiple spatial scales under uncertain climate and land-use change. To evaluate the contribution of remnant habitat fragments to the connectivity of regional habitat networks, we developed a method to integrate uncertainty in climate and land-use change projections with the latest developments in network-connectivity research and spatial, multipurpose conservation prioritization. We used land-use change simulations to explore robustness of species' habitat networks to alternative development scenarios. We applied our method to 14 vertebrate focal species of periurban Montreal, Canada. Accounting for connectivity in spatial prioritization strongly modified conservation priorities and the modified priorities were robust to uncertain climate change. Setting conservation priorities based on habitat quality and connectivity maintained a large proportion of the region's connectivity, despite anticipated habitat loss due to climate and land-use change. The application of connectivity criteria alongside habitat-quality criteria for protected-area design was efficient with respect to the amount of area that needs protection and did not necessarily amplify trade-offs among conservation criteria. Our approach and results are being applied in and around Montreal and are well suited to the design of ecological networks and green infrastructure for the conservation of biodiversity and ecosystem services in other regions, in particular regions around large cities, where connectivity is critically low. © 2017 Society for Conservation Biology.

  5. CLIMATE CHANGE – BETWEEN COSTS AND BENEFITS

    Directory of Open Access Journals (Sweden)

    CARMEN VALENTINA RĂDULESCU

    2011-03-01

    Full Text Available Climate change – between costs and benefits. At global and regional levels the effects of climate change start to show up. While some of the countries make efforts to alleviate these effects and to find solutions, others are facing economic or political restrains that prevent them in applying the principle of common responsibility. The complex social, economic, and environmental implications of climate change’s effects focused a growing part of research on the analysis of costs and benefits. Although controversial, one of the methods used – the cost-benefit analysis – revealed that in most of the cases the prevention costs are lower than the costs of inaction. Prevention measures bring benefits by anticipating the impact and minimizing the risks for ecosystems and economy. The paper presents in its first part the controversies regarding the cost-benefit analysis, and continues, in the second part, with estimations on costs and benefits of certain policy instruments that target emission reduction.

  6. Climate of Tajikistan in connection with global climate change

    International Nuclear Information System (INIS)

    Khakimov, F.Kh.; Mirzokhonova, S.O.; Mirzokhonava, N.A.

    2006-01-01

    The analysis of global climate change for different periods and its consequences on regional climate is given. The chronology of climate change in Tajikistan in various regions and the reasons leading or resulted to these changes are changes are shown as well

  7. Quantifying Vulnerability to Extreme Heat in Time Series Analyses: A Novel Approach Applied to Neighborhood Social Disparities under Climate Change.

    Science.gov (United States)

    Benmarhnia, Tarik; Grenier, Patrick; Brand, Allan; Fournier, Michel; Deguen, Séverine; Smargiassi, Audrey

    2015-09-22

    We propose a novel approach to examine vulnerability in the relationship between heat and years of life lost and apply to neighborhood social disparities in Montreal and Paris. We used historical data from the summers of 1990 through 2007 for Montreal and from 2004 through 2009 for Paris to estimate daily years of life lost social disparities (DYLLD), summarizing social inequalities across groups. We used Generalized Linear Models to separately estimate relative risks (RR) for DYLLD in association with daily mean temperatures in both cities. We used 30 climate scenarios of daily mean temperature to estimate future temperature distributions (2021-2050). We performed random effect meta-analyses to assess the impact of climate change by climate scenario for each city and compared the impact of climate change for the two cities using a meta-regression analysis. We show that an increase in ambient temperature leads to an increase in social disparities in daily years of life lost. The impact of climate change on DYLLD attributable to temperature was of 2.06 (95% CI: 1.90, 2.25) in Montreal and 1.77 (95% CI: 1.61, 1.94) in Paris. The city explained a difference of 0.31 (95% CI: 0.14, 0.49) on the impact of climate change. We propose a new analytical approach for estimating vulnerability in the relationship between heat and health. Our results suggest that in Paris and Montreal, health disparities related to heat impacts exist today and will increase in the future.

  8. Integrated risk analysis of global climate change

    International Nuclear Information System (INIS)

    Shlyakhter, Alexander; Wilson, Richard; Valverde A, L.J. Jr.

    1995-01-01

    This paper discusses several factors that should be considered in integrated risk analyses of global climate change. We begin by describing how the problem of global climate change can be subdivided into largely independent parts that can be linked together in an analytically tractable fashion. Uncertainty plays a central role in integrated risk analyses of global climate change. Accordingly, we consider various aspects of uncertainty as they relate to the climate change problem. We also consider the impacts of these uncertainties on various risk management issues, such as sequential decision strategies, value of information, and problems of interregional and intergenerational equity. (author)

  9. A Meta-Analysis of Local Climate Change Adaptation Actions ...

    Science.gov (United States)

    Local governments are beginning to take steps to address the consequences of climate change, such as sea level rise and heat events. However, we do not have a clear understanding of what local governments are doing -- the extent to which they expect climate change to affect their community, the types of actions they have in place to address climate change, and the resources at their disposal for implementation. Several studies have been conducted by academics, non-governmental organizations, and public agencies to assess the status of local climate change adaptation. This project collates the findings from dozens of such studies to conduct a meta-analysis of local climate change adaptation actions. The studies will be characterized along several dimensions, including (a) methods used, (b) timing and geographic scope, (c) topics covered, (d) types of adaptation actions identified, (e) implementation status, and (f) public engagement and environmental justice dimensions considered. The poster presents the project's rationale and approach and some illustrative findings from early analyses. [Note: The document being reviewed is an abstract in which a poster is being proposed. The poster will enter clearance if the abstract is accepted] The purpose of this poster is to present the research framework and approaches I am developing for my ORISE postdoctoral project, and to get feedback on early analyses.

  10. Climate Change and Poverty Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Simon

    2011-08-15

    Climate change will make it increasingly difficult to achieve and sustain development goals. This is largely because climate effects on poverty remain poorly understood, and poverty reduction strategies do not adequately support climate resilience. Ensuring effective development in the face of climate change requires action on six fronts: investing in a stronger climate and poverty evidence base; applying the learning about development effectiveness to how we address adaptation needs; supporting nationally derived, integrated policies and programmes; including the climate-vulnerable poor in developing strategies; and identifying how mitigation strategies can also reduce poverty and enable adaptation.

  11. Climate Change Vulnerability Analysis of Baluran National Park

    Directory of Open Access Journals (Sweden)

    Beny Harjadi

    2016-12-01

    Full Text Available Every ecosystem has a different level of susceptibility to environmental disturbances it receives, both from natural factors or anthropogenic disturbance. National Park (NP Baluran is one national park that has a representation of a complete ecosystem that includes upland forest ecosystems, lowland forests, coastal forests, mangroves, savanna and evergreen forest. The objective of this study is to get a formula calculation of vulnerability analysis of constant and dynamic factors. Baluran NP vulnerability assessment to climate change done by looking at the dynamic and fixed factors. Vulnerability remains a vulnerability factor to the condition of the original (control, whereas vulnerability is the vulnerability of the dynamic change factors which affected the condition from the outside. Constant Vulnerability (CV in  Baluran NP dominated resistant conditions (61%, meaning that the geomorphology and other fixed factors (slope and slope direction/aspect, then the condition in Baluran NP sufficiently resilient to climate change. Dynamic Vulnerability (DV is the vulnerability of an area or areas that change because of pressure from external factors. DV is influenced by climatic factors (WI = Wetness Index, soil (SBI = Soil Brightness Index, and vegetation (GI = Greenness Index. DV in  Baluran NP from 1999 to 2010 shifted from the original category of being (84.76% and shifted to the susceptible (59.88%.  The role of remote sensing for the analysis of raster digital system, while the geographic information system to display the results of cartographic maps.

  12. Guiding climate change adaptation within vulnerable natural resource management systems.

    Science.gov (United States)

    Bardsley, Douglas K; Sweeney, Susan M

    2010-05-01

    Climate change has the potential to compromise the sustainability of natural resources in Mediterranean climatic systems, such that short-term reactive responses will increasingly be insufficient to ensure effective management. There is a simultaneous need for both the clear articulation of the vulnerabilities of specific management systems to climate risk, and the development of appropriate short- and long-term strategic planning responses that anticipate environmental change or allow for sustainable adaptive management in response to trends in resource condition. Governments are developing climate change adaptation policy frameworks, but without the recognition of the importance of responding strategically, regional stakeholders will struggle to manage future climate risk. In a partnership between the South Australian Government, the Adelaide and Mt Lofty Ranges Natural Resource Management Board and the regional community, a range of available research approaches to support regional climate change adaptation decision-making, were applied and critically examined, including: scenario modelling; applied and participatory Geographical Information Systems modelling; environmental risk analysis; and participatory action learning. As managers apply ideas for adaptation within their own biophysical and socio-cultural contexts, there would be both successes and failures, but a learning orientation to societal change will enable improvements over time. A base-line target for regional responses to climate change is the ownership of the issue by stakeholders, which leads to an acceptance that effective actions to adapt are now both possible and vitally important. Beyond such baseline knowledge, the research suggests that there is a range of tools from the social and physical sciences available to guide adaptation decision-making.

  13. Guiding Climate Change Adaptation Within Vulnerable Natural Resource Management Systems

    Science.gov (United States)

    Bardsley, Douglas K.; Sweeney, Susan M.

    2010-05-01

    Climate change has the potential to compromise the sustainability of natural resources in Mediterranean climatic systems, such that short-term reactive responses will increasingly be insufficient to ensure effective management. There is a simultaneous need for both the clear articulation of the vulnerabilities of specific management systems to climate risk, and the development of appropriate short- and long-term strategic planning responses that anticipate environmental change or allow for sustainable adaptive management in response to trends in resource condition. Governments are developing climate change adaptation policy frameworks, but without the recognition of the importance of responding strategically, regional stakeholders will struggle to manage future climate risk. In a partnership between the South Australian Government, the Adelaide and Mt Lofty Ranges Natural Resource Management Board and the regional community, a range of available research approaches to support regional climate change adaptation decision-making, were applied and critically examined, including: scenario modelling; applied and participatory Geographical Information Systems modelling; environmental risk analysis; and participatory action learning. As managers apply ideas for adaptation within their own biophysical and socio-cultural contexts, there would be both successes and failures, but a learning orientation to societal change will enable improvements over time. A base-line target for regional responses to climate change is the ownership of the issue by stakeholders, which leads to an acceptance that effective actions to adapt are now both possible and vitally important. Beyond such baseline knowledge, the research suggests that there is a range of tools from the social and physical sciences available to guide adaptation decision-making.

  14. The role of social norms on preferences towards climate change policies: A meta-analysis

    International Nuclear Information System (INIS)

    Alló, Maria; Loureiro, Maria L.

    2014-01-01

    The present study provides a review of existing assessments of preferences for climate change mitigation and adaptation policies through a worldwide meta-analysis. In this study, we analyze the impact of social values and norms on preferences towards climate change adaptation and mitigation policies. In a sample of 58 international studies, we found that mitigation actions were preferred over adaptation actions, and that preferences towards climate change policies are affected by attitudes towards time and social norms. In particular, societies with a long-term orientation display greater support towards climate change policies. These results therefore reveal the role of social factors as being crucial in order to understand the acceptability of climate change policies at a worldwide level. - highlights: • Effective policy design is required in order to curb climate change. • Using a meta-analysis, we find that mitigation actions are preferred over adaptation actions. • Economic conditions play a crucial role for supporting efforts to combat climate change. • Cultural and social dimensions are relevant for the acceptability of climate policies. • Understanding social norms and cultural variables may help with the climate change debate

  15. Vulnerability of European freshwater catchments to climate change.

    Science.gov (United States)

    Markovic, Danijela; Carrizo, Savrina F; Kärcher, Oskar; Walz, Ariane; David, Jonathan N W

    2017-09-01

    Climate change is expected to exacerbate the current threats to freshwater ecosystems, yet multifaceted studies on the potential impacts of climate change on freshwater biodiversity at scales that inform management planning are lacking. The aim of this study was to fill this void through the development of a novel framework for assessing climate change vulnerability tailored to freshwater ecosystems. The three dimensions of climate change vulnerability are as follows: (i) exposure to climate change, (ii) sensitivity to altered environmental conditions and (iii) resilience potential. Our vulnerability framework includes 1685 freshwater species of plants, fishes, molluscs, odonates, amphibians, crayfish and turtles alongside key features within and between catchments, such as topography and connectivity. Several methodologies were used to combine these dimensions across a variety of future climate change models and scenarios. The resulting indices were overlaid to assess the vulnerability of European freshwater ecosystems at the catchment scale (18 783 catchments). The Balkan Lakes Ohrid and Prespa and Mediterranean islands emerge as most vulnerable to climate change. For the 2030s, we showed a consensus among the applied methods whereby up to 573 lake and river catchments are highly vulnerable to climate change. The anthropogenic disruption of hydrological habitat connectivity by dams is the major factor reducing climate change resilience. A gap analysis demonstrated that the current European protected area network covers climate change. Priority should be placed on enhancing stakeholder cooperation at the major basin scale towards preventing further degradation of freshwater ecosystems and maintaining connectivity among catchments. The catchments identified as most vulnerable to climate change provide preliminary targets for development of climate change conservation management and mitigation strategies. © 2017 John Wiley & Sons Ltd.

  16. Coupled Ethical-Epistemic Analysis of Climate Change

    Science.gov (United States)

    Vezer, M.

    2015-12-01

    Are there inherent limitations to what we can know about how the climate will change in the years ahead? How can we use what is known about the future climate in a way that promotes ethical decision-making? These questions call for urgent attention because important policy decisions need to be made in order to prepare for climate change in North America and around the world. While the science of climate change is central to this line of inquiry, the fields of epistemology, moral, political and environmental philosophy may provide insights on how these issues should be addressed. Detailing the relationship between evidential and ethical dimensions of climate change, this research aims to improve our understanding of the interconnections among several lines of inquiry and to develop solutions to problems of decision-making under conditions of scientific uncertainty.

  17. Modelling pesticide leaching under climate change: parameter vs. climate input uncertainty

    Directory of Open Access Journals (Sweden)

    K. Steffens

    2014-02-01

    Full Text Available Assessing climate change impacts on pesticide leaching requires careful consideration of different sources of uncertainty. We investigated the uncertainty related to climate scenario input and its importance relative to parameter uncertainty of the pesticide leaching model. The pesticide fate model MACRO was calibrated against a comprehensive one-year field data set for a well-structured clay soil in south-western Sweden. We obtained an ensemble of 56 acceptable parameter sets that represented the parameter uncertainty. Nine different climate model projections of the regional climate model RCA3 were available as driven by different combinations of global climate models (GCM, greenhouse gas emission scenarios and initial states of the GCM. The future time series of weather data used to drive the MACRO model were generated by scaling a reference climate data set (1970–1999 for an important agricultural production area in south-western Sweden based on monthly change factors for 2070–2099. 30 yr simulations were performed for different combinations of pesticide properties and application seasons. Our analysis showed that both the magnitude and the direction of predicted change in pesticide leaching from present to future depended strongly on the particular climate scenario. The effect of parameter uncertainty was of major importance for simulating absolute pesticide losses, whereas the climate uncertainty was relatively more important for predictions of changes of pesticide losses from present to future. The climate uncertainty should be accounted for by applying an ensemble of different climate scenarios. The aggregated ensemble prediction based on both acceptable parameterizations and different climate scenarios has the potential to provide robust probabilistic estimates of future pesticide losses.

  18. Climate change impacts on food system

    Science.gov (United States)

    Zhang, X.; Cai, X.; Zhu, T.

    2014-12-01

    Food system includes biophysical factors (climate, land and water), human environments (production technologies and food consumption, distribution and marketing), as well as the dynamic interactions within them. Climate change affects agriculture and food systems in various ways. Agricultural production can be influenced directly by climatic factors such as mean temperature rising, change in rainfall patterns, and more frequent extreme events. Eventually, climate change could cause shift of arable land, alteration of water availability, abnormal fluctuation of food prices, and increase of people at risk of malnutrition. This work aims to evaluate how climate change would affect agricultural production biophysically and how these effects would propagate to social factors at the global level. In order to model the complex interactions between the natural and social components, a Global Optimization model of Agricultural Land and Water resources (GOALW) is applied to the analysis. GOALW includes various demands of human society (food, feed, other), explicit production module, and irrigation water availability constraint. The objective of GOALW is to maximize global social welfare (consumers' surplus and producers' surplus).Crop-wise irrigation water use in different regions around the world are determined by the model; marginal value of water (MVW) can be obtained from the model, which implies how much additional welfare benefit could be gained with one unit increase in local water availability. Using GOALW, we will analyze two questions in this presentation: 1) how climate change will alter irrigation requirements and how the social system would buffer that by price/demand adjustment; 2) how will the MVW be affected by climate change and what are the controlling factors. These results facilitate meaningful insights for investment and adaptation strategies in sustaining world's food security under climate change.

  19. Climate change response framework overview: Chapter 1

    Science.gov (United States)

    Chris Swanston; Maria Janowiak; Patricia Butler

    2012-01-01

    Managers currently face the immense challenge of anticipating the effects of climate change on forest ecosystems and then developing and applying management responses for adapting forests to future conditions. The Climate Change Response Framework (CCRF) is a highly collaborative approach to helping land managers understand the potential effects of climate change on...

  20. Distributed Research Center for Analysis of Regional Climatic Changes and Their Impacts on Environment

    Science.gov (United States)

    Shiklomanov, A. I.; Okladnikov, I.; Gordov, E. P.; Proussevitch, A. A.; Titov, A. G.

    2016-12-01

    Presented is a collaborative project carrying out by joint team of researchers from the Institute of Monitoring of Climatic and Ecological Systems, Russia and Earth Systems Research Center, University of New Hampshire, USA. Its main objective is development of a hardware and software prototype of Distributed Research Center (DRC) for monitoring and projecting of regional climatic and and their impacts on the environment over the Northern extratropical areas. In the framework of the project new approaches to "cloud" processing and analysis of large geospatial datasets (big geospatial data) are being developed. It will be deployed on technical platforms of both institutions and applied in research of climate change and its consequences. Datasets available at NCEI and IMCES include multidimensional arrays of climatic, environmental, demographic, and socio-economic characteristics. The project is aimed at solving several major research and engineering tasks: 1) structure analysis of huge heterogeneous climate and environmental geospatial datasets used in the project, their preprocessing and unification; 2) development of a new distributed storage and processing model based on a "shared nothing" paradigm; 3) development of a dedicated database of metadata describing geospatial datasets used in the project; 4) development of a dedicated geoportal and a high-end graphical frontend providing intuitive user interface, internet-accessible online tools for analysis of geospatial data and web services for interoperability with other geoprocessing software packages. DRC will operate as a single access point to distributed archives of spatial data and online tools for their processing. Flexible modular computational engine running verified data processing routines will provide solid results of geospatial data analysis. "Cloud" data analysis and visualization approach will guarantee access to the DRC online tools and data from all over the world. Additionally, exporting of data

  1. Multi-criteria evaluation of CMIP5 GCMs for climate change impact analysis

    Science.gov (United States)

    Ahmadalipour, Ali; Rana, Arun; Moradkhani, Hamid; Sharma, Ashish

    2017-04-01

    Climate change is expected to have severe impacts on global hydrological cycle along with food-water-energy nexus. Currently, there are many climate models used in predicting important climatic variables. Though there have been advances in the field, there are still many problems to be resolved related to reliability, uncertainty, and computing needs, among many others. In the present work, we have analyzed performance of 20 different global climate models (GCMs) from Climate Model Intercomparison Project Phase 5 (CMIP5) dataset over the Columbia River Basin (CRB) in the Pacific Northwest USA. We demonstrate a statistical multicriteria approach, using univariate and multivariate techniques, for selecting suitable GCMs to be used for climate change impact analysis in the region. Univariate methods includes mean, standard deviation, coefficient of variation, relative change (variability), Mann-Kendall test, and Kolmogorov-Smirnov test (KS-test); whereas multivariate methods used were principal component analysis (PCA), singular value decomposition (SVD), canonical correlation analysis (CCA), and cluster analysis. The analysis is performed on raw GCM data, i.e., before bias correction, for precipitation and temperature climatic variables for all the 20 models to capture the reliability and nature of the particular model at regional scale. The analysis is based on spatially averaged datasets of GCMs and observation for the period of 1970 to 2000. Ranking is provided to each of the GCMs based on the performance evaluated against gridded observational data on various temporal scales (daily, monthly, and seasonal). Results have provided insight into each of the methods and various statistical properties addressed by them employed in ranking GCMs. Further; evaluation was also performed for raw GCM simulations against different sets of gridded observational dataset in the area.

  2. On multi-fingerprint detection and attribution of greenhouse gas- and aerosol forced climate change

    Energy Technology Data Exchange (ETDEWEB)

    Hegerl, G C [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Hasselmann, K [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Cubasch, U [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Mitchell, J F.B. [Hadley Centre for Climate Prediction and Research, Bracknell (United Kingdom). Meteorological Office; Roeckner, E [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Voss, R [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Waszkewitz, J [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany)

    1996-07-01

    A multi-fingerprint analysis is applied to the detection and attribution of anthropogenic climate change. While a single fingerprint, as applied in a previous paper by Hegerl et al. (1996), is optimal for detecting a significant climate change, the simultaneous use of several fingerprints allows one to investigate additionally the consistency between observations and model predicted climate change signals for competing candidate forcing mechanisms. Thus the multi-fingerprint method is a particularly useful technique for attributing an observed climate change to a proposed cause. Different model-predicted climate change signals are derived from three global warming simulations for the period 1880 to 2049. In one simulation, the forcing was by greenhouse gases only, while in the remaining two simulations the influence of aerosols was also included. The two dominant climate change signals derived from these simulations are optimized statistically by weighting the model-predicted climate change pattern towards low-noise directions. These optimized fingerprints are then applied to observed near surface temperature trends. The space-time structure of natural climate variability (needed to determine the signal-to-noise ratio) is estimated from several multi-century control simulations with different CGCMs and from instrumental data over the last 134 years. (orig.)

  3. Climate change and marine life

    DEFF Research Database (Denmark)

    Richardson, Anthony J.; Brown, Christopher J.; Brander, Keith

    2012-01-01

    A Marine Climate Impacts Workshop was held from 29 April to 3 May 2012 at the US National Center of Ecological Analysis and Synthesis in Santa Barbara. This workshop was the culmination of a series of six meetings over the past three years, which had brought together 25 experts in climate change...... ecology, analysis of large datasets, palaeontology, marine ecology and physical oceanography. Aims of these workshops were to produce a global synthesis of climate impacts on marine biota, to identify sensitive habitats and taxa, to inform the current Intergovernmental Panel on Climate Change (IPCC......) process, and to strengthen research into ecological impacts of climate change...

  4. Handling Interdependencies in Climate Change Risk Assessment

    Directory of Open Access Journals (Sweden)

    Richard J. Dawson

    2015-12-01

    Full Text Available Typically, a climate change risk assessment focuses on individual sectors or hazards. However, interdependencies between climate risks manifest themselves via functional, physical, geographical, economic, policy and social mechanisms. These can occur over a range of spatial or temporal scales and with different strengths of coupling. Three case studies are used to demonstrate how interdependencies can significantly alter the nature and magnitude of risk, and, consequently, investment priorities for adaptation. The three examples explore interdependencies that arise from (1 climate loading dependence; (2 mediation of two climate impacts by physical processes operating over large spatial extents; and, (3 multiple risks that are influenced by shared climatic and socio-economic drivers. Drawing upon learning from these case studies, and other work, a framework for the analysis and consideration of interdependencies in climate change risk assessment has been developed. This is an iterative learning loop that involves defining the system, scoping interaction mechanisms, applying appropriate modelling tools, identifying vulnerabilities and opportunities, and assessing the performance of adaptation interventions.

  5. Limitations and pitfalls of climate change impact analysis on urban rainfall extremes

    DEFF Research Database (Denmark)

    Willems, P.; Olsson, J.; Arnbjerg-Nielsen, Karsten

    Under the umbrella of the IWA/IAHR Joint Committee on Urban Drainage, the International Working Group on Urban Rainfall (IGUR) has reviewed existing methodologies for the analysis of long-term historical and future trends in urban rainfall extremes and their effects on urban drainage systems, due...... to anthropogenic climate change. Current practices have several limitations and pitfalls, which are important to be considered by trend or climate change impact modellers and users of trend/impact results. Climate change may well be the driver that ensures that changes in urban drainage paradigms are identified...... and suitable solutions implemented. Design and optimization of urban drainage infrastructure considering climate change impacts and co-optimizing with other objectives will become ever more important to keep our cities liveable into the future....

  6. Gender Perspectives on Climate Change & Human Security in India: An Analysis of National Missions on Climate Change

    Directory of Open Access Journals (Sweden)

    Jyoti K Parikh

    2012-04-01

    Full Text Available Women play a crucial role in many activities essential for coping with climate change. Indian women appear to be more vulnerable than men to differential impacts of climate change because they share most of the household managing responsibilities but have limited access to participation in decision making and governance. Most of the policies for climate change adaptation and mitigation do not specifically address the vulnerability of women. The National Action Plan for Climate Change (NAPCC, formulated to shape future discourse of climate change adaptation and development, recognizes the differential impacts of climate change on society, but incorporates merely a few gender specific measures. The paper suggests gender specific measures for each mission of the NAPCC to make the adaptation and development process more inclusive and sustainable in India.

  7. Forest responses to tropospheric ozone and global climate change: an analysis.

    Science.gov (United States)

    Kickert, R N; Krupa, S V

    1990-01-01

    In this paper an analysis is provided on: what we know, what we need to know, and what we need to do, to further our understanding of the relationships between tropospheric ozone (O(3)), global climate change and forest responses. The relationships between global geographic distributions of forest ecosystems and potential geographic regions of high photochemical smog by the year 2025 AD are described. While the emphasis is on the effects of tropospheric O(3) on forest ecosystems, discussion is presented to understand such effects in the context of global climate change. One particular strong point of this paper is the audit of published surface O(3) data by photochemical smog region that reveals important forest/woodland geographic regions where little or no O(3) data exist even though the potential threat to forests in those regions appears to be large. The concepts and considerations relevant to the examination of ecosystem responses as a whole, rather than simply tree stands alone are reviewed. A brief argument is provided to stimulate the modification of the concept of simple cause and effect relationships in viewing total ecosystems. Our knowledge of O(3) exposure and its effects on the energy, nutrient and hydrological flow within the ecosystem are described. Modeling strategies for such systems are reviewed. A discussion of responses of forests to potential multiple climatic changes is provided. An important concept in this paper is that changes in water exchange processes throughout the hydrological cycle can be used as early warning indicators of forest responses to O(3). Another strength of this paper is the integration of information on structural and functional processes of ecosystems and their responses to O(3). An admitted weakness of this analysis is that the information on integrated ecosystem responses is based overwhelmingly on the San Bernardino Forest ecosystem research program of the 1970s because of a lack of similar studies. In the final

  8. The American Climate Prospectus: a risk-centered analysis of the economic impacts of climate change

    Science.gov (United States)

    Jina, A.; Houser, T.; Hsiang, S. M.; Kopp, R. E., III; Delgado, M.; Larsen, K.; Mohan, S.; Rasmussen, D.; Rising, J.; Wilson, P. S.; Muir-Wood, R.

    2014-12-01

    The American Climate Prospectus (ACP), the analysis underlying the Risky Business project, quantitatively assessed the climate risks posed to the United States' economy in six sectors - crop yields, energy demand, coastal property, crime, labor productivity, and mortality [1]. The ACP is unique in its characterization of the full probability distribution of economic impacts of climate change throughout the 21st century, making it an extremely useful basis for risk assessments. Three key innovations allow for this characterization. First, climate projections from CMIP5 models are scaled to a temperature probability distribution derived from a coarser climate model (MAGICC). This allows a more accurate representation of the whole distribution of future climates (in particular the tails) than a simple ensemble average. These are downscaled both temporally and spatially. Second, a set of local sea level rise and tropical cyclone projections are used in conjunction with the most detailed dataset of coastal property in the US in order to capture the risks of rising seas and storm surge. Third, we base many of our sectors on empirically-derived responses to temperature and precipitation. Each of these dose-response functions is resampled many times to populate a statistical distribution. Combining these with uncertainty in emissions scenario, climate model, and weather, we create the full probability distribution of climate impacts from county up to national levels, as well as model the effects upon the economy as a whole. Results are presented as likelihood ranges, as well as changes to return intervals of extreme events. The ACP analysis allows us to compare between sectors to understand the magnitude of required policy responses, and also to identify risks through time. Many sectors displaying large impacts at the end of the century, like those of mortality, have smaller changes in the near-term, due to non-linearities in the response functions. Other sectors, like

  9. Climate analysis at local scale in the context of climate change

    International Nuclear Information System (INIS)

    Quenol, H.

    2013-01-01

    Issues related to climate change increasingly concern the functioning of local scale geo-systems. A global change will necessarily affect local climates. In this context, the potential impacts of climate change lead to numerous inter rogations concerning adaptation. Despite numerous studies on the impact of projected global warming on different regions global atmospheric models (GCM) are not adapted to local scales and, as a result, impacts at local scales are still approximate. Although real progress in meso-scale atmospheric modeling was realized over the past years, no operative model is in use yet to simulate climate at local scales (ten or so meters). (author)

  10. Climate change and compensation

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint; Flanagan, Tine Bech

    2013-01-01

    This paper presents a case for compensation of actual harm from climate change in the poorest countries. First, it is shown that climate change threatens to reverse the fight to eradicate poverty. Secondly, it is shown how the problems raised in the literature for compensation to some extent...... are based on misconceptions and do not apply to compensation of present actual harm. Finally, two arguments are presented to the effect that, in so far as developed countries accept a major commitment to mitigate climate change, they should also accept a commitment to address or compensate actual harm from...... climate change. The first argument appeals to the principle that if it is an injustice to cause risk of incurring harm in the future, then it is also an injustice to cause a similar harm now. The second argument appeals to the principle that if there is moral reason to reduce the risk of specific harms...

  11. Challenges and potentials in using alternative landscape futures during climate change: A literature review and survey study

    Directory of Open Access Journals (Sweden)

    Amin Rastandeh

    2015-12-01

    Full Text Available This study focuses on the feasibility of applying alternative futures and scenario analysis in landscape planning during climate change to provide a wider perspective and deeper understanding of this approach for better use and more effective application in the future. The study consists of a literature review and an analysis of recent applied projects carried out worldwide. In addition, an electronic survey was conducted from March to September 2014 to examine viewpoints on the use and application of this approach with reference to climate-change impacts. The survey participants were a group of highly experienced researchers from eighteen countries involved in at least one applied project since 2000 relating to this topic. After analysis of more than forty applied projects, the survey results were incorporated into the analysis to create a comprehensive picture regarding the potentials and limitations of alternative futures and scenario analysis in landscape planning with particular attention to climate change. The findings show that this method is one of the most effective decision-making approaches for adopting landscape policies where landscapes change rapidly under the pressure of urbanisation and climate change. Nevertheless, there is a gap between the advances offered by the approach in various dimensions and the complexity of patterns, uncertainties and upheavals in landscapes due to climate-change impacts in the urbanising world. The research indicates that the approach opens up a great opportunity for decision-makers to expand their perspective and adopt appropriate landscape policies before reaching a point of no return from the sustainability point of view. Meanwhile, there are challenges and barriers in the application of alternative futures and scenario analysis for envisioning the landscapes influenced by climate change and urbanisation that should be pushed back. Although informative, this research raises new questions about this

  12. Valuing Precaution in Climate Change Policy Analysis (Invited)

    Science.gov (United States)

    Howarth, R. B.

    2010-12-01

    The U.N. Framework Convention on Climate Change calls for stabilizing greenhouse gas concentrations to prevent “dangerous anthropogenic interference” (DAI) with the global environment. This treaty language emphasizes a precautionary approach to climate change policy in a setting characterized by substantial uncertainty regarding the timing, magnitude, and impacts of climate change. In the economics of climate change, however, analysts often work with deterministic models that assign best-guess values to parameters that are highly uncertain. Such models support a “policy ramp” approach in which only limited steps should be taken to reduce the future growth of greenhouse gas emissions. This presentation will explore how uncertainties related to (a) climate sensitivity and (b) climate-change damages can be satisfactorily addressed in a coupled model of climate-economy dynamics. In this model, capping greenhouse gas concentrations at ~450 ppm of carbon dioxide equivalent provides substantial net benefits by reducing the risk of low-probability, catastrophic impacts. This result formalizes the intuition embodied in the DAI criterion in a manner consistent with rational decision-making under uncertainty.

  13. Climate Change and Algal Blooms =

    Science.gov (United States)

    Lin, Shengpan

    Algal blooms are new emerging hazards that have had important social impacts in recent years. However, it was not very clear whether future climate change causing warming waters and stronger storm events would exacerbate the algal bloom problem. The goal of this dissertation was to evaluate the sensitivity of algal biomass to climate change in the continental United States. Long-term large-scale observations of algal biomass in inland lakes are challenging, but are necessary to relate climate change to algal blooms. To get observations at this scale, this dissertation applied machine-learning algorithms including boosted regression trees (BRT) in remote sensing of chlorophyll-a with Landsat TM/ETM+. The results show that the BRT algorithm improved model accuracy by 15%, compared to traditional linear regression. The remote sensing model explained 46% of the total variance of the ground-measured chlorophyll- a in the first National Lake Assessment conducted by the US Environmental Protection Agency. That accuracy was ecologically meaningful to study climate change impacts on algal blooms. Moreover, the BRT algorithm for chlorophyll- a would not have systematic bias that is introduced by sediments and colored dissolved organic matter, both of which might change concurrently with climate change and algal blooms. This dissertation shows that the existing atmospheric corrections for Landsat TM/ETM+ imagery might not be good enough to improve the remote sensing of chlorophyll-a in inland lakes. After deriving long-term algal biomass estimates from Landsat TM/ETM+, time series analysis was used to study the relations of climate change and algal biomass in four Missouri reservoirs. The results show that neither temperature nor precipitation was the only factor that controlled temporal variation of algal biomass. Different reservoirs, even different zones within the same reservoir, responded differently to temperature and precipitation changes. These findings were further

  14. Human values and beliefs and concern about climate change: a Bayesian longitudinal analysis.

    Science.gov (United States)

    Prati, Gabriele; Pietrantoni, Luca; Albanesi, Cinzia

    2018-01-01

    The aim of this study was to investigate the influence of human values on beliefs and concern about climate change using a longitudinal design and Bayesian analysis. A sample of 298 undergraduate/master students filled out the same questionnaire on two occasions at an interval of 2 months. The questionnaire included measures of beliefs and concern about climate change (i.e., perceived consequences, risk perception, and skepticism) and human values (i.e., the Portrait Values Questionnaire). After controlling for gender and the respective baseline score, universalism at Time 1 was associated with higher levels of perceived consequences of climate change and lower levels of climate change skepticism. Self-direction at Time 1 predicted Time 2 climate change risk perception and perceived consequences of climate change. Hedonism at Time 1 was associated with Time 2 climate change risk perception. The other human values at Time 1 were not associated with any of the measures of beliefs and concern about climate change at Time 2. The results of this study suggest that a focus on universalism and self-direction values seems to be a more successful approach to stimulate public engagement with climate change than a focus on other human values.

  15. Changing climate, changing frames

    International Nuclear Information System (INIS)

    Vink, Martinus J.; Boezeman, Daan; Dewulf, Art; Termeer, Catrien J.A.M.

    2013-01-01

    Highlights: ► We show development of flood policy frames in context of climate change attention. ► Rising attention on climate change influences traditional flood policy framing. ► The new framing employs global-scale scientific climate change knowledge. ► With declining attention, framing disregards climate change, using local knowledge. ► We conclude that frames function as sensemaking devices selectively using knowledge. -- Abstract: Water management and particularly flood defence have a long history of collective action in low-lying countries like the Netherlands. The uncertain but potentially severe impacts of the recent climate change issue (e.g. sea level rise, extreme river discharges, salinisation) amplify the wicked and controversial character of flood safety policy issues. Policy proposals in this area generally involve drastic infrastructural works and long-term investments. They face the difficult challenge of framing problems and solutions in a publicly acceptable manner in ever changing circumstances. In this paper, we analyse and compare (1) how three key policy proposals publicly frame the flood safety issue, (2) the knowledge referred to in the framing and (3) how these frames are rhetorically connected or disconnected as statements in a long-term conversation. We find that (1) framings of policy proposals differ in the way they depict the importance of climate change, the relevant timeframe and the appropriate governance mode; (2) knowledge is selectively mobilised to underpin the different frames and (3) the frames about these proposals position themselves against the background of the previous proposals through rhetorical connections and disconnections. Finally, we discuss how this analysis hints at the importance of processes of powering and puzzling that lead to particular framings towards the public at different historical junctures

  16. Climate change: against despair

    OpenAIRE

    McKinnon, Catriona

    2014-01-01

    In the face of accelerating climate change and the parlous state of its politics, despair is tempting. This paper analyses two manifestations of despair about climate change related to (1) the inefficacy of personal emissions reductions, and (2) the inability to make a difference to climate change through personal emissions reductions. On the back of an analysis of despair as a loss of hope, the paper argues that the judgements grounding each form of despair are unsound. The paper concludes w...

  17. The influence of climate change on flood risks in France ­- first estimates and uncertainty analysis

    OpenAIRE

    Dumas , Patrice; Hallegatte , Sréphane; Quintana-Seguí , Pere; Martin , Eric

    2013-01-01

    International audience; Abstract. This paper proposes a methodology to project the possible evolution of river flood damages due to climate change, and applies it to mainland France. Its main contributions are (i) to demonstrate a methodology to investigate the full causal chain from global climate change to local economic flood losses; (ii) to show that future flood losses may change in a very significant manner over France; (iii) to show that a very large uncertainty arises from the climate...

  18. Competing actors in the climate change arena in Mexico: A network analysis.

    Science.gov (United States)

    Ortega Díaz, Araceli; Gutiérrez, Erika Casamadrid

    2018-06-01

    This paper analyzes the actors in the climate change arena and their influence in directing Mexico toward policies that decrease greenhouse gas emissions, such as the carbon tax and climate change law. The network analysis of the agreement of these laws and public policies in Mexico is a lesson for any country that is in the process of designing and adopting environmental laws. The research is performed using a network analysis that is derived from interviews with various main actors and a discourse analysis of the media. Results show that actors do not coordinate their efforts-they meet frequently but in different inter-ministerial commissions-and do not enforce the same policies. The actors in the industry have formed strong coalitions against the carbon tax and the General Law on Climate Change, whereas international institutions have formed coalitions that support these policies and laws. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Climate change research in Canada

    International Nuclear Information System (INIS)

    Dawson, K.

    1994-01-01

    The current consensus on climatic change in Canada is briefly summarized, noting the results of modelling of the effects of a doubling of atmospheric CO 2 , the nonuniformity of climate change across the country, the uncertainties in local responses to change, and the general agreement that 2-4 degrees of warming will occur for each doubling of CO 2 . Canadian government response includes programs aimed at reducing the uncertainties in the scientific understanding of climate change and in the socio-economic response to such change. Canadian climate change programs include participation in large-scale experiments on such topics as heat transport in the ocean, and sources and sinks of greenhouse gases; development of next-generation climate models; studying the social and economic effects of climate change in the Great Lakes Basin and Mackenzie River Basin; investigation of paleoclimates; and analysis of climate data for long-term trends

  20. Potential analysis reveals changing number of climate states during the last 60 kyr

    Directory of Open Access Journals (Sweden)

    V. N. Livina

    2010-02-01

    Full Text Available We develop and apply a new statistical method of potential analysis for detecting the number of states of a geophysical system, from its recorded time series. Estimation of the degree of a polynomial potential allows us to derive the number of potential wells in a system. The method correctly detects changes in the number of wells in artificial data. In ice-core proxy records of Greenland paleotemperature, a reduction in the number of climate states from two to one is detected sometime prior to the last glacial maximum (LGM, 23–19 kyr BP. This result is also found in analysis of Greenland Ca data. The bifurcation can be interpreted as loss of stability of the warm interstadial state of the Dansgaard-Oeschger (DO events. The proposed method can be applied to a wide range of geophysical time series exhibiting bifurcations.

  1. Climate change issues in China

    Energy Technology Data Exchange (ETDEWEB)

    Ye Ruqiu (China National Environmental Protection Agency, Beijing (China))

    China is vulnerable to global climate change because of its specific geographical and climatic conditions. Recent climate change trends in China are briefly described. To deal with climate change and reduce the increase in greenhouse gas emissions, a set of strategic measures aimed at harmonizing environmental protection and economic development have been worked out. Special attention has been given to the analysis of problems of energy efficiency and energy structure. Preliminary policy consideration is discussed. 8 refs., 3 tabs.

  2. Southern voices on climate policy choices: Analysis of and lessons learned from civil society advocacy on climate change

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Hannah; Ampomah, Gifty; Prera, Maria Isabel Olazabal; Rabbani, Golam; Zvigadza, Shepard

    2012-05-15

    This report provides an analysis of the tools and tactics advocacy groups use to influence policy responses to climate change at international, regional, national and sub-national levels. More than 20 climate networks and their member organisations have contributed to the report with their experiences of advocacy on climate change, including over 70 case studies from a wide range of countries - including many of the poorest - in Africa, Asia, Latin America and the Pacific. These advocacy activities primarily target national governments, but also international and regional processes, donors and the private sector. Analyses and case studies show how civil society plays key roles in pushing for new laws, programmes, policies or strategies on climate change, in holding governments to account on their commitments; in identifying the lack of joined-up government responses to climate change; and in ensuring that national policy making does not forget the poor and vulnerable. The report is the first joint product of the Southern Voices Capacity Building Programme, or for short: Southern Voices on Climate Change.

  3. A probabilistic assessment of climate change impacts on yield and nitrogen leaching from winter wheat in Denmark

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Olesen, Jørgen E

    2011-01-01

    Climate change will impact agricultural production both directly and indirectly, but uncertainties related to likely impacts constrain current political decision making on adaptation. This analysis focuses on a methodology for applying probabilistic climate change projections to assess modelled...... the importance of including soil information for regional studies of climate change impacts on cropping systems....

  4. Detection of Greenhouse-Gas-Induced Climatic Change

    Energy Technology Data Exchange (ETDEWEB)

    Jones, P.D.; Wigley, T.M.L.

    1998-05-26

    The objective of this report is to assemble and analyze instrumental climate data and to develop and apply climate models as a basis for (1) detecting greenhouse-gas-induced climatic change, and (2) validation of General Circulation Models.

  5. Climate Change and Transportation

    OpenAIRE

    Yevdokimov, Yuri

    2010-01-01

    As stated at the beginning of this chapter, the relationship between transportation and climate is two-directional. Based on our statistical analysis performed for Canada, we can make some general conclusions about this relationship. On the one hand, transportation is one of the largest contributors to GHG emissions which, in turn, cause various changes in climate. On the other hand, these climate changes negatively affect transportation in terms of its infrastructure and operations. Therefor...

  6. Climate change issues in China

    International Nuclear Information System (INIS)

    Ye Ruqiu

    1994-01-01

    China is vulnerable to global climate change because of its specific geographical and climatic conditions. Recent climate change trends in China are briefly described. To deal with climate change and reduce the increase in greenhouse gas emissions, a set of strategic measures aimed at harmonizing environmental protection and economic development have been worked out. Special attention has been given to the analysis of problems of energy efficiency and energy structure. Preliminary policy consideration is discussed. (author). 8 refs, 3 tabs

  7. Climate change and watershed mercury export: a multiple projection and model analysis.

    Science.gov (United States)

    Golden, Heather E; Knightes, Christopher D; Conrads, Paul A; Feaster, Toby D; Davis, Gary M; Benedict, Stephen T; Bradley, Paul M

    2013-09-01

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. An ensemble of watershed models was applied in the present study to simulate and evaluate the responses of hydrological and total Hg (THg) fluxes from the landscape to the watershed outlet and in-stream THg concentrations to contrasting climate change projections for a watershed in the southeastern coastal plain of the United States. Simulations were conducted under stationary atmospheric deposition and land cover conditions to explicitly evaluate the effect of projected precipitation and temperature on watershed Hg export (i.e., the flux of Hg at the watershed outlet). Based on downscaled inputs from 2 global circulation models that capture extremes of projected wet (Community Climate System Model, Ver 3 [CCSM3]) and dry (ECHAM4/HOPE-G [ECHO]) conditions for this region, watershed model simulation results suggest a decrease of approximately 19% in ensemble-averaged mean annual watershed THg fluxes using the ECHO climate-change model and an increase of approximately 5% in THg fluxes with the CCSM3 model. Ensemble-averaged mean annual ECHO in-stream THg concentrations increased 20%, while those of CCSM3 decreased by 9% between the baseline and projected simulation periods. Watershed model simulation results using both climate change models suggest that monthly watershed THg fluxes increase during the summer, when projected flow is higher than baseline conditions. The present study's multiple watershed model approach underscores the uncertainty associated with climate change response projections and their use in climate change management decisions. Thus, single-model predictions can be misleading, particularly in developmental stages of watershed Hg modeling. Copyright © 2013 SETAC.

  8. Climate change and watershed mercury export: a multiple projection and model analysis

    Science.gov (United States)

    Golden, Heather E.; Knightes, Christopher D.; Conrads, Paul; Feaster, Toby D.; Davis, Gary M.; Benedict, Stephen T.; Bradley, Paul M.

    2013-01-01

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. An ensemble of watershed models was applied in the present study to simulate and evaluate the responses of hydrological and total Hg (THg) fluxes from the landscape to the watershed outlet and in-stream THg concentrations to contrasting climate change projections for a watershed in the southeastern coastal plain of the United States. Simulations were conducted under stationary atmospheric deposition and land cover conditions to explicitly evaluate the effect of projected precipitation and temperature on watershed Hg export (i.e., the flux of Hg at the watershed outlet). Based on downscaled inputs from 2 global circulation models that capture extremes of projected wet (Community Climate System Model, Ver 3 [CCSM3]) and dry (ECHAM4/HOPE-G [ECHO]) conditions for this region, watershed model simulation results suggest a decrease of approximately 19% in ensemble-averaged mean annual watershed THg fluxes using the ECHO climate-change model and an increase of approximately 5% in THg fluxes with the CCSM3 model. Ensemble-averaged mean annual ECHO in-stream THg concentrations increased 20%, while those of CCSM3 decreased by 9% between the baseline and projected simulation periods. Watershed model simulation results using both climate change models suggest that monthly watershed THg fluxes increase during the summer, when projected flow is higher than baseline conditions. The present study's multiple watershed model approach underscores the uncertainty associated with climate change response projections and their use in climate change management decisions. Thus, single-model predictions can be misleading, particularly in developmental stages of watershed Hg modeling.

  9. Capturing Tweets on Climate Change: What is the role of Twitter in Climate Change Communication?

    Science.gov (United States)

    Ngo, A. M.; McNeal, K.; Luginbuhl, S.; Enteen, J.

    2015-12-01

    Climate change is a major environmental issue that is often discussed throughout the world using social media outlets such as Twitter. This research followed and collected tweets about climate change as they related to two events: (i) the June 18, 2015 release of the Encyclical by Pope Francis which included content about climate change and (ii) the upcoming COP21 conference, a United Nations climate change conference, to be held on Dec. 7-8, 2015 in Paris. Using a Twitter account and Ncapture we were able to collect tens of thousands of climate change related tweets that were then loaded into a program called Nvivo which stored the tweets and associated publically available user information. We followed a few major hashtags such as COP21, UNFCCC, @climate, and the Pope. We examined twitter users, the information sources, locations, number of re-tweets, and frequency of tweets as well as the category of the tweet in regard to positive, negative, and neutral positions about climate. Frequency analysis of tweets over a 10 day period of the Encyclical event showed that ~200 tweets per day were made prior to the event, with ~1000 made on the day of the event, and ~100 per day following the event. For the COP21 event, activity ranged from 2000-3000 tweets per day. For the Encyclical event, an analysis of 1100 tweets on the day of release indicated that 47% of the tweets had a positive perspective about climate change, 50% were neutral, 1% negative, and 2% were unclear. For the COP21 event, an analysis of 342 tweets randomly sampled from 31,721 tweets, showed that 53% of the tweets had a positive perspective about climate change, 12% were neutral, 13% negative, and 22% were unclear. Differences in the frequency and perspectives of tweets were likely due to the nature of the events, one a long-term and recurring international event and the other a single international religious-oriented event. We tabulated the top 10 tweets about climate change as they relate to these two

  10. The power of advice: experts in Chinese climate change politics

    Energy Technology Data Exchange (ETDEWEB)

    Wuebbeke, Jost

    2010-07-01

    This study examines the role of experts in Chinas climate change policy. With the beginning of the UNFCCC process, many semi-official institutes and universities emerged, dealing with the scientific, economic and political aspects of climate change. The major argument presented here is that experts are important actors in Chinese climate change politics, and that they have been underestimated in research on China. This analysis has two aims: first, applying a science, policy interface model from regime theory, it examines the political impact of various research organizations during different stages of the policy-making process. In the second step, analysis turns to the causes behind the degree of impact. These include the relevance of administrative links, the quality of knowledge, and personal ties. The results show that, in particular, semi-official institutes and certain universities can have a very high impact on political action.(auth)

  11. Climate Change and Market Collapse: A Model Applied to Darfur

    Directory of Open Access Journals (Sweden)

    Ola Olsson

    2016-03-01

    Full Text Available A recurring argument in the global debate is that climate deterioration is likely to make social conflicts over diminishing natural resources more common in the future. The exact mechanism behind such a development has so far not been successfully characterized in the literature. In this paper, we present a general model of a community populated by farmers and herders who can either divide up land in a market economy or in autarky. The key insight from our model is that decreasing resources can make trade between the two groups collapse, which in turn makes each group’s welfare independent of that of the other. Predictions from the model are then applied to the conflict in Darfur. Our analysis suggests that three decades of drought in the area can at least partially explain the observed disintegration of markets and the subsequent rise of social tensions.

  12. Climate change and nutrition: creating a climate for nutrition security.

    Science.gov (United States)

    Tirado, M C; Crahay, P; Mahy, L; Zanev, C; Neira, M; Msangi, S; Brown, R; Scaramella, C; Costa Coitinho, D; Müller, A

    2013-12-01

    Climate change further exacerbates the enormous existing burden of undernutrition. It affects food and nutrition security and undermines current efforts to reduce hunger and promote nutrition. Undernutrition in turn undermines climate resilience and the coping strategies of vulnerable populations. The objectives of this paper are to identify and undertake a cross-sectoral analysis of the impacts of climate change on nutrition security and the existing mechanisms, strategies, and policies to address them. A cross-sectoral analysis of the impacts of climate change on nutrition security and the mechanisms and policies to address them was guided by an analytical framework focused on the three 'underlying causes' of undernutrition: 1) household food access, 2) maternal and child care and feeding practices, 3) environmental health and health access. The analytical framework includes the interactions of the three underlying causes of undernutrition with climate change,vulnerability, adaptation and mitigation. Within broad efforts on climate change mitigation and adaptation and climate-resilient development, a combination of nutrition-sensitive adaptation and mitigation measures, climate-resilient and nutrition-sensitive agricultural development, social protection, improved maternal and child care and health, nutrition-sensitive risk reduction and management, community development measures, nutrition-smart investments, increased policy coherence, and institutional and cross-sectoral collaboration are proposed as a means to address the impacts of climate change to food and nutrition security. This paper proposes policy directions to address nutrition in the climate change agenda and recommendations for consideration by the UN Framework Convention on Climate Change (UNFCCC). Nutrition and health stakeholders need to be engaged in key climate change adaptation and mitigation initiatives, including science-based assessment by the Intergovernmental Panel on Climate Change (IPCC

  13. Climate change analysis relevant to Jabiluka. Supervising Scientist report 141

    International Nuclear Information System (INIS)

    Jones, R.N.; Abbs, D.J.; Hennessy, K.J.

    1999-01-01

    The aim of the work presented here is to quantify the effects of climate change on rainfall and temperature, and its implications for parameters used in the design of water storage facilities to be used for the next 30 years at the Jabiluka Project, Northern Territory. Changes to average rainfall and temperature, and rainfall variability on decadal to scales of less than one day are investigated. Climate change scenarios have been constructed where projections of climate change can be quantified. Some submissions to the Draft Jabiluka Environmental Impact Statement (EIS) raised concerns about the impact of climate change on the design of hydrologic structures for the Jabiluka project (eg Supplement to the Draft EIS, Kinhill and ERAES 1997, p5-27; Wasson et al 1998). Six General Circulation Model (GCM) simulations were analysed to determine possible temperature and rainfall changes over the region surrounding the Jabiluka mine site: two simulations of the CSIRO GCM, one from the CSIRO limited area model, DARLAM, and single GCM simulations from the Deutsches Klimarechenzentrum (DKRZ), UK Meteorological Office (Hadley Centre) and Canadian Centre for Climate Modelling and Analysis. Due to uncertainties resulting from differing emission scenarios and climate sensitivities these climate models will give different answers. However, under climate change, the hydrological cycle is expected to become more intense (IPCC 1996) through higher evaporation, an increase in the water-holding capacity of the atmosphere and heavier rainfall. GCM output is required to show how this may change on the regional scale, so CSIRO has investigated the models listed above to create scenarios for seasonal rainfall. This involves deriving patterns of local change calculated from the models. The methods used are described in section 2.2. In addition to the enhanced greenhouse effect, natural climatic variability can also have implications for the design of water retention structures. Decadal

  14. Development of Distributed Research Center for analysis of regional climatic and environmental changes

    Science.gov (United States)

    Gordov, E.; Shiklomanov, A.; Okladnikov, I.; Prusevich, A.; Titov, A.

    2016-11-01

    We present an approach and first results of a collaborative project being carried out by a joint team of researchers from the Institute of Monitoring of Climatic and Ecological Systems, Russia and Earth Systems Research Center UNH, USA. Its main objective is development of a hardware and software platform prototype of a Distributed Research Center (DRC) for monitoring and projecting of regional climatic and environmental changes in the Northern extratropical areas. The DRC should provide the specialists working in climate related sciences and decision-makers with accurate and detailed climatic characteristics for the selected area and reliable and affordable tools for their in-depth statistical analysis and studies of the effects of climate change. Within the framework of the project, new approaches to cloud processing and analysis of large geospatial datasets (big geospatial data) inherent to climate change studies are developed and deployed on technical platforms of both institutions. We discuss here the state of the art in this domain, describe web based information-computational systems developed by the partners, justify the methods chosen to reach the project goal, and briefly list the results obtained so far.

  15. "Climate change" and vulnerability analysis: poor will become poorer

    OpenAIRE

    Ozer, Pierre

    2013-01-01

    The recent Intergovernmental Panel on Climate Change’s Fifth Assessment Report (IPCC-AR5) considers new evidence of climate change based on many independent scientific analyses from observations of the climate system, paleoclimate archives, theoretical studies of climate processes and simulations using climate models. “Warming of the climate system is unequivocal, and since the 1950s, many of the observed changes are unprecedented over decades to millennia. The atmosphere and ocean have warme...

  16. Climate Change Through a Poverty Lens

    Science.gov (United States)

    Rozenberg, J.; Hallegatte, S.

    2017-12-01

    Analysis of the economic impact of climate change typically considers regional or national economies and assesses its impact on macroeconomic aggregates such as gross domestic product. These studies therefore do not investigate the distributional impacts of climate change within countries or the impacts on poverty. This Perspective aims to close this gap and provide an assessment of climate change impacts at the household level to investigate the consequences of climate change for poverty and for poor people. It does so by combining assessments of the physical impacts of climate change in various sectors with household surveys. In particular, it highlights how rapid and inclusive development can reduce the future impact of climate change on poverty.

  17. Hydrospatial Analysis of Inundation Patterns for a Restored Floodplain to Evaluate Potential Climate Change Impacts

    Science.gov (United States)

    Whipple, A. A.; Viers, J. H.

    2017-12-01

    Interaction between rivers and their floodplains create dynamic physical conditions supporting freshwater ecosystems. The natural flood regimes to which native species are adapted are often profoundly altered by interacting factors including water management, land use change, and climate change. Reintroducing dynamic flood regimes through enhancing river-floodplain connectivity is a common floodplain restoration objective. However, it is often difficult to determine how various actions (or a combination of actions), such as levee setbacks or environmental flow releases, will impact physical conditions relevant to ecological functions, such as depth, velocity, duration, timing, and connectivity, and how these might change in the future. Understanding changes to these dynamic conditions requires improved quantification of spatiotemporal variability of floodplain inundation patterns, in essence a floodplain's hydrospatial regime. The research presented here develops this concept by quantifying the hydrospatial regime of a floodplain along the lower Cosumnes River, California, both before and after levee-removal restoration, and uses this to evaluate how effects of restoration may be altered with changing hydrology due to climate change. This approach uses spatial analysis in R to summarize metrics based on estimated spatially-distributed depth and velocity, derived from 2D hydrodynamic modeling output for pre- and post-restoration conditions. This is performed for an historical and two future periods of daily flow of the largely unregulated Cosumnes River, driven by a subset of global climate models. We show that responses to restoration vary across the hydrospatial domain and further consider these differences in floodplain dynamics in relation to hydroclimatic change. This research refines expectations for restoration and overall provides readily applied methods to inform planning and management of floodplain ecosystems within the context of climate change

  18. When climate science became climate politics: British media representations of climate change in 1988.

    Science.gov (United States)

    Jaspal, Rusi; Nerlich, Brigitte

    2014-02-01

    Climate change has become a pressing environmental concern for scientists, social commentators and politicians. Previous social science research has explored media representations of climate change in various temporal and geographical contexts. Through the lens of Social Representations Theory, this article provides a detailed qualitative thematic analysis of media representations of climate change in the 1988 British broadsheet press, given that this year constitutes an important juncture in this transition of climate change from the domain of science to that of the socio-political sphere. The following themes are outlined: (i) "Climate change: a multi-faceted threat"; (ii) "Collectivisation of threat"; (iii) "Climate change and the attribution of blame"; and (iv) "Speculative solutions to a complex socio-environmental problem." The article provides detailed empirical insights into the "starting-point" for present-day disputes concerning climate change and lays the theoretical foundations for tracking the continuities and discontinuities characterising social representations of climate change in the future.

  19. A probabilistic assessment of climate change impacts on yield and nitrogen leaching from winter wheat in Denmark

    Directory of Open Access Journals (Sweden)

    C. D. Børgesen

    2011-09-01

    Full Text Available Climate change will impact agricultural production both directly and indirectly, but uncertainties related to likely impacts constrain current political decision making on adaptation. This analysis focuses on a methodology for applying probabilistic climate change projections to assess modelled wheat yields and nitrate leaching from arable land in Denmark. The probabilistic projections describe a range of possible changes in temperature and precipitation. Two methodologies to apply climate projections in impact models were tested. Method A was a straightforward correction of temperature and precipitation, where the same correction was applied to the baseline weather data for all days in the year, and method B used seasonal changes in precipitation and temperature to correct the baseline weather data. Based on climate change projections for the time span 2000 to 2100 and two soil types, the mean impact and the uncertainty of the climate change projections were analysed. Combining probability density functions of climate change projections with crop model simulations, the uncertainty and trends in nitrogen (N leaching and grain yields with climate change were quantified. The uncertainty of climate change projections was the dominating source of uncertainty in the projections of yield and N leaching, whereas the methodology to seasonally apply climate change projections had a minor effect. For most conditions, the probability of large yield reductions and large N leaching losses tracked trends in mean yields and mean N leaching. The impacts of the uncertainty in climate change were higher for loamy sandy soil than for sandy soils due to generally higher yield levels for loamy sandy soils. There were large differences between soil types in response to climate change, illustrating the importance of including soil information for regional studies of climate change impacts on cropping systems.

  20. Climate change - An uncertainty factor in risk analysis of contaminated land

    International Nuclear Information System (INIS)

    Augustsson, Anna; Filipsson, Monika; Oberg, Tomas; Bergbaeck, Bo

    2011-01-01

    Metals frequently occur at contaminated sites, where their potential toxicity and persistence require risk assessments that consider possible long-term changes. Changes in climate are likely to affect the speciation, mobility, and risks associated with metals. This paper provides an example of how the climate effect can be inserted in a commonly used exposure model, and how the exposure then changes compared to present conditions. The comparison was made for cadmium (Cd) exposure to 4-year-old children at a highly contaminated iron and steel works site in southeastern Sweden. Both deterministic and probabilistic approaches (through probability bounds analysis, PBA) were used in the exposure assessment. Potential climate-sensitive variables were determined by a literature review. Although only six of the total 39 model variables were assumed to be sensitive to a change in climate (groundwater infiltration, hydraulic conductivity, soil moisture, soil:water distribution, and two bioconcentration factors), the total exposure was clearly affected. For example, by altering the climate-sensitive variables in the order of 15% to 20%, the deterministic estimate of exposure increased by 27%. Similarly, the PBA estimate of the reasonable maximum exposure (RME, defined as the upper bound of the 95th percentile) increased by almost 20%. This means that sites where the exposure in present conditions is determined to be slightly below guideline values may in the future exceed these guidelines, and risk management decisions could thus be affected. The PBA, however, showed that there is also a possibility of lower exposure levels, which means that the changes assumed for the climate-sensitive variables increase the total uncertainty in the probabilistic calculations. This highlights the importance of considering climate as a factor in the characterization of input data to exposure assessments at contaminated sites. The variable with the strongest influence on the result was the

  1. Climate variability and vulnerability to climate change: a review

    Science.gov (United States)

    Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J

    2014-01-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802

  2. Hands-on Approach to Prepare Specialists in Climate Changes Modeling and Analysis Using an Information-Computational Web-GIS Portal "Climate"

    Science.gov (United States)

    Shulgina, T. M.; Gordova, Y. E.; Martynova, Y. V.

    2014-12-01

    A problem of making education relevant to the workplace tasks is a key problem of higher education in the professional field of environmental sciences. To answer this challenge several new courses for students of "Climatology" and "Meteorology" specialties were developed and implemented at the Tomsk State University, which comprises theoretical knowledge from up-to-date environmental sciences with computational tasks. To organize the educational process we use an open-source course management system Moodle (www.moodle.org). It gave us an opportunity to combine text and multimedia in a theoretical part of educational courses. The hands-on approach is realized through development of innovative trainings which are performed within the information-computational web GIS platform "Climate" (http://climate.scert.ru/). The platform has a set of tools and data bases allowing a researcher to perform climate changes analysis on the selected territory. The tools are also used for students' trainings, which contain practical tasks on climate modeling and climate changes assessment and analysis. Laboratory exercises are covering three topics: "Analysis of regional climate changes"; "Analysis of climate extreme indices on the regional scale"; and "Analysis of future climate". They designed to consolidate students' knowledge of discipline, to instill in them the skills to work independently with large amounts of geophysical data using modern processing and analysis tools of web-GIS platform "Climate" and to train them to present results obtained on laboratory work as reports with the statement of the problem, the results of calculations and logically justified conclusion. Thus, students are engaged in n the use of modern tools of the geophysical data analysis and it cultivates dynamic of their professional learning. The approach can help us to fill in this gap because it is the only approach that offers experience, increases students involvement, advance the use of modern

  3. General Chemistry Students' Understanding of Climate Change and the Chemistry Related to Climate Change

    Science.gov (United States)

    Versprille, Ashley N.; Towns, Marcy H.

    2015-01-01

    While much is known about secondary students' perspectives of climate change, rather less is known about undergraduate students' perspectives. The purpose of this study is to investigate general chemistry students' understanding of the chemistry underlying climate change. Findings that emerged from the analysis of the 24 interviews indicate that…

  4. Climate Change and Agricultural Vulnerability

    International Nuclear Information System (INIS)

    Fischer, G.; Shah, M.; Van Velthuizen, H.

    2002-08-01

    After the introduction Chapter 2 presents details of the ecological-economic analysis based on the FAO/IIASA agro-ecological zones (AEZ) approach for evaluation of biophysical limitations and agricultural production potentials, and IIASA's Basic Linked System (BLS) for analyzing the world's food economy and trade system. The BLS is a global general equilibrium model system for analyzing agricultural policies and food system prospects in an international setting. BLS views national agricultural systems as embedded in national economies, which interact with each other through trade at the international level. The combination of AEZ and BLS provides an integrated ecological-economic framework for the assessment of the impact of climate change. We consider climate scenarios based on experiments with four General Circulation Models (GCM), and we assess the four basic socioeconomic development pathways and emission scenarios as formulated by the Intergovernmental Panel on Climate Change (IPCC) in its Third Assessment Report. Chapter 3 presents the main AEZ results of the impact of climate change on agriculture. Results comprise environmental constraints to crop agriculture; climate variability and the variability of rain-fed cereal production; changes in potential agricultural land; changes in crop-production patterns; and the impact of climate change on cereal-production potential. Chapter 4 discusses the AEZ-BLS integrated ecological-economic analysis of climate change on the world food system. This includes quantification of scale and location of hunger, international agricultural trade, prices, production, land use, etc. It assesses trends in food production, trade, and consumption, and the impact on poverty and hunger of alternative development pathways and varying levels of climate change. Chapter 5 presents the main conclusions and policy implications of this study

  5. Climate variability and climate change vulnerability and adaptation. Workshop summary

    International Nuclear Information System (INIS)

    Bhatti, N.; Cirillo, R.R.; Dixon, R.K.

    1995-01-01

    Representatives from fifteen countries met in Prague, Czech Republic, on September 11-15, 1995, to share results from the analysis of vulnerability and adaptation to global climate change. The workshop focused on the issues of global climate change and its impacts on various sectors of a national economy. The U.N. Framework Convention on Climate Change (FCCC), which has been signed by more than 150 governments worldwide, calls on signatory parties to develop and communicate measures they are implementing to respond to global climate change. An analysis of a country's vulnerability to changes in the climate helps it identify suitable adaptation measures. These analyses are designed to determine the extent of the impacts of global climate change on sensitive sectors such as agricultural crops, forests, grasslands and livestock, water resources, and coastal areas. Once it is determined how vulnerable a country may be to climate change, it is possible to identify adaptation measures for ameliorating some or all of the effects.The objectives of the vulnerability and adaptation workshop were to: The objectives of the vulnerability and adaptation workshop were to: Provide an opportunity for countries to describe their study results; Encourage countries to learn from the experience of the more complete assessments and adjust their studies accordingly; Identify issues and analyses that require further investigation; and Summarize results and experiences for governmental and intergovernmental organizations

  6. Climate variability and climate change vulnerability and adaptation. Workshop summary

    Energy Technology Data Exchange (ETDEWEB)

    Bhatti, N.; Cirillo, R.R. [Argonne National Lab., IL (United States); Dixon, R.K. [U.S. Country Studies Program, Washington, DC (United States)] [and others

    1995-12-31

    Representatives from fifteen countries met in Prague, Czech Republic, on September 11-15, 1995, to share results from the analysis of vulnerability and adaptation to global climate change. The workshop focused on the issues of global climate change and its impacts on various sectors of a national economy. The U.N. Framework Convention on Climate Change (FCCC), which has been signed by more than 150 governments worldwide, calls on signatory parties to develop and communicate measures they are implementing to respond to global climate change. An analysis of a country`s vulnerability to changes in the climate helps it identify suitable adaptation measures. These analyses are designed to determine the extent of the impacts of global climate change on sensitive sectors such as agricultural crops, forests, grasslands and livestock, water resources, and coastal areas. Once it is determined how vulnerable a country may be to climate change, it is possible to identify adaptation measures for ameliorating some or all of the effects.The objectives of the vulnerability and adaptation workshop were to: The objectives of the vulnerability and adaptation workshop were to: Provide an opportunity for countries to describe their study results; Encourage countries to learn from the experience of the more complete assessments and adjust their studies accordingly; Identify issues and analyses that require further investigation; and Summarize results and experiences for governmental and intergovernmental organizations.

  7. How to ensure that the results of climate risk analysis make a difference? - Experience from applied research addressing the challenges of climate change

    Science.gov (United States)

    Schneiderbauer, Stefan; Zebisch, Marc; Becker, Daniel; Pedoth, Lydia; Renner, Kathrin; Kienberger, Stefan

    2016-04-01

    Changing climate conditions may have beneficial or adverse effects on the social-ecological systems we are living in. In any case, the possible effects result from complex and interlinked physical and social processes embedded in these systems. Traditional research addresses these bio-physical and societal issues in a separate way. Therefore, in general, studies on risks related to climate change are still mono-disciplinary in nature with an increasing amount of work following a multi-disciplinary approach. The quality and usefulness of the results of such research for policy or decision making in practice may further be limited by study designs that do not acknowledge appropriately the significance of integrating or at least mixing qualitative and quantitative information and knowledge. Finally, the acceptance of study results - particularly when containing some kind of assessments - is often endangered by insufficient and / or late involvement of stakeholders and users. The above mentioned limitations have often been brought up in the recent past. However, despite that a certain consensus could be achieved in the last years recognising the need to tackle these issues, little progress has been made in terms of implementation within the context of (research) studies. This paper elaborates in detail on reasons that hamper the application of - interdisciplinary (i.e. natural and social science), - trans-disciplinary (i.e. co-production of knowledge) and - integrative (i.e. combining qualitative and quantitative approaches) work. It is based on the experience gained through a number of applied climate change vulnerability studies carried out within the context of various GIZ-financed development cooperation projects, a consultancy project for the German Environment Agency as well as the workshop series INQUIMUS, which tackles particularly the issues of mixing qualitative and quantitative research approaches. Potentials and constraints of possible attempts for

  8. A climate profile indicator based comparative analysis of climate change scenarios with regard to maize (Zea mays L.) cultures

    Energy Technology Data Exchange (ETDEWEB)

    Dios, N.; Szenteleki, K.; Ferenczy, A.; Petranyl, G. [Corvinus Univ. of Budapest (Hungary). Dept. of Mathematics and Informatics; Hufnagel, L. [Hungarian Academy of Sciences, Budapest (Hungary). Adaptation to Climate Change Research Group

    2009-07-01

    Recent research results let us conclude that climate change might have a significant effect on the yield of wheat, barley, rye, potato and maize, and the borderlines of their area of cultivation might shift 100--150 kilometers to the north. The possible mass occurrence of new aggressive pest, pathogen and weed species in Hungary might also create a problem from plant protection. Maize is one of the most important fodder-plants. Hungary has close to the largest total cultivating area in Europe. Maize is used in many ways, thus being of outstanding economic importance. In Hungary the conditions of maize cultivation are -- except for dry years -- quite favorable in most cultural regions and complex cultivating technologies are available. It also might gain a significant role in the line of new environment-friendly alternative sources of energy. For these reasons, it is important to examine the influence of meteorological factors on maize ecosystems and this examination should include as many climate change scenarios and as long a time series as possible. Using ecological data compiled from scientific literature on pest, pathogen and weed species characteristic in maize cultures in Hungary, we defined monthly climate profile indicators and applied them to complete a comparative analysis of the historical and modelled climate change scenario meteorological data of the city of Debrecen. Our results call attention to a drastic decline of the competitive ability of maize as compared to several C{sub 4} and especially C{sub 3} plants. According to the stricter scenarios, the frequency of potential pest and pathogen damage emergency situations will grow significantly by the end of the century.

  9. Climate Changes and Their Impact on Agricultural Market Systems: Examples from Nepal

    Directory of Open Access Journals (Sweden)

    Andrea Karin Barrueto

    2017-11-01

    Full Text Available Global climate models foresee changes in temperature and precipitation regimes that shift regional climate zones and influence the viability of agricultural market systems. Understanding the influence of climate change on the different sub-sectors and functions of a market system is crucial to increasing the systems’ climate resilience and to ensuring the long-term viability of the sectors. Our research applies a new approach to climate change analysis to better understand the influence of climate change on each step of an agricultural market system—on its core (processing units, storage facilities and sales and support functions (sapling supply, research, insurance and agricultural policy. We use spatial climate analyses to investigate current and projected changes in climate for different regions in Nepal. We then analyse the risks and vulnerabilities of the sub-sectors banana, charcoal, coffee, macadamia, orange, vegetables and walnut. Our results show that temperatures and precipitation levels will change differently depending on the climatic regions, and that climate change elicits different responses from the market functions both between and within each of the different sub-sectors. We conclude that climate-related interventions in market systems must account for each different market function’s specific response and exposure to climate change, in order to select adaptation measures that ensure long-term climate resilience.

  10. Climate change and the economics of biomass energy feedstocks in semi-arid agricultural landscapes: A spatially explicit real options analysis.

    Science.gov (United States)

    Regan, Courtney M; Connor, Jeffery D; Raja Segaran, Ramesh; Meyer, Wayne S; Bryan, Brett A; Ostendorf, Bertram

    2017-05-01

    The economics of establishing perennial species as renewable energy feedstocks has been widely investigated as a climate change adapted diversification option for landholders, primarily using net present value (NPV) analysis. NPV does not account for key uncertainties likely to influence relevant landholder decision making. While real options analysis (ROA) is an alternative method that accounts for the uncertainty over future conditions and the large upfront irreversible investment involved in establishing perennials, there have been limited applications of ROA to evaluating land use change decision economics and even fewer applications considering climate change risks. Further, while the influence of spatially varying climate risk on biomass conversion economic has been widely evaluated using NPV methods, effects of spatial variability and climate on land use change have been scarcely assessed with ROA. In this study we applied a simulation-based ROA model to evaluate a landholder's decision to convert land from agriculture to biomass. This spatially explicit model considers price and yield risks under baseline climate and two climate change scenarios over a geographically diverse farming region. We found that underlying variability in primary productivity across the study area had a substantial effect on conversion thresholds required to trigger land use change when compared to results from NPV analysis. Areas traditionally thought of as being quite similar in average productive capacity can display large differences in response to the inclusion of production and price risks. The effects of climate change, broadly reduced returns required for land use change to biomass in low and medium rainfall zones and increased them in higher rainfall areas. Additionally, the risks posed by climate change can further exacerbate the tendency for NPV methods to underestimate true conversion thresholds. Our results show that even under severe drying and warming where crop yield

  11. Risk of severe climate change impact on the terrestrial biosphere

    International Nuclear Information System (INIS)

    Heyder, Ursula; Schaphoff, Sibyll; Gerten, Dieter; Lucht, Wolfgang

    2011-01-01

    The functioning of many ecosystems and their associated resilience could become severely compromised by climate change over the 21st century. We present a global risk analysis of terrestrial ecosystem changes based on an aggregate metric of joint changes in macroscopic ecosystem features including vegetation structure as well as carbon and water fluxes and stores. We apply this metric to global ecosystem simulations with a dynamic global vegetation model (LPJmL) under 58 WCRP CMIP3 climate change projections. Given the current knowledge of ecosystem processes and projected climate change patterns, we find that severe ecosystem changes cannot be excluded on any continent. They are likely to occur (in > 90% of the climate projections) in the boreal-temperate ecotone where heat and drought stress might lead to large-scale forest die-back, along boreal and mountainous tree lines where the temperature limitation will be alleviated, and in water-limited ecosystems where elevated atmospheric CO 2 concentration will lead to increased water use efficiency of photosynthesis. Considerable ecosystem changes can be expected above 3 K local temperature change in cold and tropical climates and above 4 K in the temperate zone. Sensitivity to temperature change increases with decreasing precipitation in tropical and temperate ecosystems. In summary, there is a risk of substantial restructuring of the global land biosphere on current trajectories of climate change.

  12. Risk of severe climate change impact on the terrestrial biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Heyder, Ursula; Schaphoff, Sibyll; Gerten, Dieter; Lucht, Wolfgang, E-mail: Ursula.Heyder@pik-potsdam.de, E-mail: Sibyll.Schaphoff@pik-potsdam.de [Potsdam Institute for Climate Impact Research, Telegraphenberg A62, 14473 Potsdam (Germany)

    2011-07-15

    The functioning of many ecosystems and their associated resilience could become severely compromised by climate change over the 21st century. We present a global risk analysis of terrestrial ecosystem changes based on an aggregate metric of joint changes in macroscopic ecosystem features including vegetation structure as well as carbon and water fluxes and stores. We apply this metric to global ecosystem simulations with a dynamic global vegetation model (LPJmL) under 58 WCRP CMIP3 climate change projections. Given the current knowledge of ecosystem processes and projected climate change patterns, we find that severe ecosystem changes cannot be excluded on any continent. They are likely to occur (in > 90% of the climate projections) in the boreal-temperate ecotone where heat and drought stress might lead to large-scale forest die-back, along boreal and mountainous tree lines where the temperature limitation will be alleviated, and in water-limited ecosystems where elevated atmospheric CO{sub 2} concentration will lead to increased water use efficiency of photosynthesis. Considerable ecosystem changes can be expected above 3 K local temperature change in cold and tropical climates and above 4 K in the temperate zone. Sensitivity to temperature change increases with decreasing precipitation in tropical and temperate ecosystems. In summary, there is a risk of substantial restructuring of the global land biosphere on current trajectories of climate change.

  13. Exploring the Multifaceted Topic of Climate Change in Our Changing Climate and Living With Our Changing Climate

    Science.gov (United States)

    Brey, J. A.; Kauffman, C.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.

    2015-12-01

    As the effects of climate change become more profound, climate literacy becomes increasingly important. The American Meteorological Society (AMS) responds to this need through the publication of Our Changing Climate and Living With Our Changing Climate. Both publications incorporate the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the USGCRP's Third National Climate Assessment. Topic In Depth sections appear throughout each chapter and lead to more extensive, multidisciplinary information related to various topics. Additionally, each chapter closes with a For Further Exploration essay, which addresses specific topics that complement a chapter concept. Web Resources, which encourage additional exploration of chapter content, and Scientific Literature, from which chapter content was derived can also be found at the conclusion of each chapter. Our Changing Climate covers a breadth of topics, including the scientific principles that govern Earth's climate system and basic statistics and geospatial tools used to investigate the system. Released in fall 2015, Living With Our Changing Climate takes a more narrow approach and investigates human and ecosystem vulnerabilities to climate change, the role of energy choices in affecting climate, actions humans can take through adaption, mitigation, and policy to lessen vulnerabilities, and psychological and financial reasons behind climate change denial. While Living With Our Changing Climate is intended for programs looking to add a climate element into their curriculum, Our Changing Climate is part of the AMS Climate Studies course. In a 2015 survey of California University of Pennsylvania undergraduate students using Our Changing Climate, 82% found it comfortable to read and utilized its interactive components and resources. Both ebooks illuminate the multidisciplinary aspect of climate change, providing the opportunity for a more sustainable future.

  14. Observations: Oceanic climate change and sea level

    Digital Repository Service at National Institute of Oceanography (India)

    Bindoff, N.L.; Willebrand, J.; Artale, V.; Cazenave, A; Gregory, J.; Gulev, S.; Hanawa, K.; LeQuere, C.; Levitus, S.; Nojiri, Y.; Shum, C.K.; Talley, L.D.; Unnikrishnan, A

    change is 10.9 ± 3.1 × 10 22 J or 0.14 ± 0.04 W m –2 (data from Levitus et al., 2005a). All of these estimates are per unit area of Earth surface. Despite the fact that there are differences between these three ocean heat content estimates due... to the data used, quality control applied, instrumental biases, temporal and spatial averaging and analysis methods (Appendix 5.A.1), they are consistent with each other giving a high degree of confidence for their use in climate change studies. The global...

  15. Climate change in Australia: technical report 2007

    International Nuclear Information System (INIS)

    2007-01-01

    The purpose of this report is to provide an up-to-date assessment of observed climate change over Australia, the likely causes, and projections of future changes to Australia's climate. It also provides information on how to apply the projections in impact studies and in risk assessments. The two main strategies for managing climate risk are mitigation (net reductions in greenhouse gas emissions) to slow climate change and adaptation to climate impacts that are unavoidable. A number of major advances have been made since the last report on climate change projections in Australia (CSIRO 2001) including: a much larger number of climate and ocean variables are projected (21 and 6 respectively); a much larger number (23) of climate models are used; the provision of probabilistic information on some of the projections, including the probability of exceeding the 10th, 50th and 90th percentiles; greater emphasis on projections from models that are better able to simulate observed Australian climate; a detailed assessment of observed changes in Australian climate and likely causes; and information on risk assessment, to provide guidance for using climate projections in impact studies

  16. Climate Change Discourse in Mass Media: Application of Computer-Assisted Content Analysis

    Science.gov (United States)

    Kirilenko, Andrei P.; Stepchenkova, Svetlana O.

    2012-01-01

    Content analysis of mass media publications has become a major scientific method used to analyze public discourse on climate change. We propose a computer-assisted content analysis method to extract prevalent themes and analyze discourse changes over an extended period in an objective and quantifiable manner. The method includes the following: (1)…

  17. A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models

    Science.gov (United States)

    Gosling, S. N.; Taylor, R. G.; Arnell, N. W.; Todd, M. C.

    2011-01-01

    We present a comparative analysis of projected impacts of climate change on river runoff from two types of distributed hydrological model, a global hydrological model (GHM) and catchment-scale hydrological models (CHM). Analyses are conducted for six catchments that are global in coverage and feature strong contrasts in spatial scale as well as climatic and developmental conditions. These include the Liard (Canada), Mekong (SE Asia), Okavango (SW Africa), Rio Grande (Brazil), Xiangxi (China) and Harper's Brook (UK). A single GHM (Mac-PDM.09) is applied to all catchments whilst different CHMs are applied for each catchment. The CHMs include SLURP v. 12.2 (Liard), SLURP v. 12.7 (Mekong), Pitman (Okavango), MGB-IPH (Rio Grande), AV-SWAT-X 2005 (Xiangxi) and Cat-PDM (Harper's Brook). The CHMs typically simulate water resource impacts based on a more explicit representation of catchment water resources than that available from the GHM and the CHMs include river routing, whereas the GHM does not. Simulations of mean annual runoff, mean monthly runoff and high (Q5) and low (Q95) monthly runoff under baseline (1961-1990) and climate change scenarios are presented. We compare the simulated runoff response of each hydrological model to (1) prescribed increases in global-mean air temperature of 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 °C relative to baseline from the UKMO HadCM3 Global Climate Model (GCM) to explore response to different amounts of climate forcing, and (2) a prescribed increase in global-mean air temperature of 2.0 °C relative to baseline for seven GCMs to explore response to climate model structural uncertainty. We find that the differences in projected changes of mean annual runoff between the two types of hydrological model can be substantial for a given GCM (e.g. an absolute GHM-CHM difference in mean annual runoff percentage change for UKMO HadCM3 2 °C warming of up to 25%), and they are generally larger for indicators of high and low monthly runoff. However

  18. A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models

    Directory of Open Access Journals (Sweden)

    S. N. Gosling

    2011-01-01

    Full Text Available We present a comparative analysis of projected impacts of climate change on river runoff from two types of distributed hydrological model, a global hydrological model (GHM and catchment-scale hydrological models (CHM. Analyses are conducted for six catchments that are global in coverage and feature strong contrasts in spatial scale as well as climatic and developmental conditions. These include the Liard (Canada, Mekong (SE Asia, Okavango (SW Africa, Rio Grande (Brazil, Xiangxi (China and Harper's Brook (UK. A single GHM (Mac-PDM.09 is applied to all catchments whilst different CHMs are applied for each catchment. The CHMs include SLURP v. 12.2 (Liard, SLURP v. 12.7 (Mekong, Pitman (Okavango, MGB-IPH (Rio Grande, AV-SWAT-X 2005 (Xiangxi and Cat-PDM (Harper's Brook. The CHMs typically simulate water resource impacts based on a more explicit representation of catchment water resources than that available from the GHM and the CHMs include river routing, whereas the GHM does not. Simulations of mean annual runoff, mean monthly runoff and high (Q5 and low (Q95 monthly runoff under baseline (1961–1990 and climate change scenarios are presented. We compare the simulated runoff response of each hydrological model to (1 prescribed increases in global-mean air temperature of 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 °C relative to baseline from the UKMO HadCM3 Global Climate Model (GCM to explore response to different amounts of climate forcing, and (2 a prescribed increase in global-mean air temperature of 2.0 °C relative to baseline for seven GCMs to explore response to climate model structural uncertainty.

    We find that the differences in projected changes of mean annual runoff between the two types of hydrological model can be substantial for a given GCM (e.g. an absolute GHM-CHM difference in mean annual runoff percentage change for UKMO HadCM3 2 °C warming of up to 25%, and they are generally larger for indicators of high and low monthly runoff

  19. International trade and climate change policies

    International Nuclear Information System (INIS)

    Brack, D.; Grubb, M.; Windram, C.

    2000-01-01

    Can the World Trade Organisation deal with climate change? Can a world of liberalised trade implement the Kyoto Protocol? As trade and environment head for a global collision, this book provides an essential guide to one of the key confrontations. It analyzes the conflicts now intensifying. How will climate change policies, including energy and carbon taxation and the removal of energy subsidies, affect overall trade structures and volumes? Will countries tackling climate change become less competitive? What of taxing international aviation and marine fuels? Will the 'flexibility mechanisms' of the Kyoto Protocol, such as emissions trading, fall under WTO disciplines? Can trade restrictions be applied to enforce the Kyoto Protocol? (Author)

  20. Investigation of climate change impacts on Prairie's petroleum industry in Canada

    International Nuclear Information System (INIS)

    Li, J.B.; Huang, G.H.; Chakma, A.; Huang, Y.F.; Zeng, G.M.

    2002-01-01

    Alberta, Saskatchewan, and Manitoba, the three Prairie provinces of Canada, and their economies strongly depend on the petroleum industry. However, climate change may have potential impacts on the sector that could reverberate onto the socio-economic fabric of the provinces. The petroleum industry in the Prairies is faced with a big challenge: how to adapt to the changing climatic conditions so that they maintain or improve their economic and environmental efficiencies. The attitudes of the different stakeholders concerning climate change and the appropriate measures to be implemented by the petroleum industry were obtained through a questionnaire-based survey conducted between February and June 2001. Based on the responses received, a Chi-square statistical test was applied to look at the complex interactions in the results. An analysis of a number of petroleum-related processes and activities vulnerable to climate change was performed. A sound foundation was obtained for the decision-making process on the climate change measures required in the petroleum industry in the Prairies. 14 refs., 7 tabs

  1. Uncertainty in projected point precipitation extremes for hydrological impact analysis of climate change

    Science.gov (United States)

    Van Uytven, Els; Willems, Patrick

    2017-04-01

    Current trends in the hydro-meteorological variables indicate the potential impact of climate change on hydrological extremes. Therefore, they trigger an increased importance climate adaptation strategies in water management. The impact of climate change on hydro-meteorological and hydrological extremes is, however, highly uncertain. This is due to uncertainties introduced by the climate models, the internal variability inherent to the climate system, the greenhouse gas scenarios and the statistical downscaling methods. In view of the need to define sustainable climate adaptation strategies, there is a need to assess these uncertainties. This is commonly done by means of ensemble approaches. Because more and more climate models and statistical downscaling methods become available, there is a need to facilitate the climate impact and uncertainty analysis. A Climate Perturbation Tool has been developed for that purpose, which combines a set of statistical downscaling methods including weather typing, weather generator, transfer function and advanced perturbation based approaches. By use of an interactive interface, climate impact modelers can apply these statistical downscaling methods in a semi-automatic way to an ensemble of climate model runs. The tool is applicable to any region, but has been demonstrated so far to cases in Belgium, Suriname, Vietnam and Bangladesh. Time series representing future local-scale precipitation, temperature and potential evapotranspiration (PET) conditions were obtained, starting from time series of historical observations. Uncertainties on the future meteorological conditions are represented in two different ways: through an ensemble of time series, and a reduced set of synthetic scenarios. The both aim to span the full uncertainty range as assessed from the ensemble of climate model runs and downscaling methods. For Belgium, for instance, use was made of 100-year time series of 10-minutes precipitation observations and daily

  2. Optimal climate change: economics and climate science policy histories (from heuristic to normative).

    Science.gov (United States)

    Randalls, Samuel

    2011-01-01

    Historical accounts of climate change science and policy have reflected rather infrequently upon the debates, discussions, and policy advice proffered by economists in the 1980s. While there are many forms of economic analysis, this article focuses upon cost-benefit analysis, especially as adopted in the work of William Nordhaus. The article addresses the way in which climate change economics subtly altered debates about climate policy from the late 1970s through the 1990s. These debates are often technical and complex, but the argument in this article is that the development of a philosophy of climate change as an issue for cost-benefit analysis has had consequences for how climate policy is made today.

  3. Climate change

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In this paper, the authors discuss in brief the magnitude and rate of past changes in climate and examine the various factors influencing climate in order to place the potential warming due to increasing greenhouse gas concentrations in context. Feedback mechanisms that can amplify or lessen imposed climate changes are discussed next. The overall sensitivity of climate to changes in forcing is then considered, followed by a discussion of the time-dependent response of the Earth system. The focus is on global temperature as an indicator for the magnitude of climatic change

  4. MECCA coordinated research program: analysis of climate models uncertainties used for climatic changes study

    International Nuclear Information System (INIS)

    Caneill, J.Y.; Hakkarinen, C.

    1992-01-01

    An international consortium, called MECCA, (Model Evaluation Consortium for Climate Assessment) has been created in 1991 by different partners including electric utilities, government and academic groups to make available to the international scientific community, a super-computer facility for climate evolution studies. The first phase of the program consists to assess uncertainties of climate model simulations in the framework of global climate change studies. Fourteen scientific projects have been accepted on an international basis in this first phase. The second phase of the program will consist in the evaluation of a set of long climate simulations realized with coupled ocean/atmosphere models, in order to study the transient aspects of climate changes and the associated uncertainties. A particular attention will be devoted, on the consequences of these assessments on climate impact studies, and on the regional aspects of climate changes

  5. Climate change 101 : understanding and responding to global climate change

    Science.gov (United States)

    2009-01-01

    To inform the climate change dialogue, the Pew Center on Global Climate Change and the Pew Center on the States have developed a series of brief reports entitled Climate Change 101: Understanding and Responding to Global Climate Change. These reports...

  6. From Principle to Action. An Analysis of the Financial Sector's Approach to Addressing Climate Change

    International Nuclear Information System (INIS)

    Mudde, P.; Abadie, A.

    2008-05-01

    The Ministry of the Housing, Spatial Planning and the Environment of the Netherlands (VROM), has taken the initiative to commission a study to determine best practice approaches within the financial sector regarding climate change. This study focuses on the indirect climate change footprint of the financial sector, i.e. the impact of the financial sector's clients on climate change. The study sets out to further the body of knowledge relating to the financial sector's approach to understanding and managing the effects of climate change on their clients' business. Specifically, it offers recommendations and potential next steps for both the financial sector and the Dutch government to enable a more focused and definitive approach to understanding, addressing and incorporating climate change considerations into decision-making procedures and policy development. The paper comprises the following analysis: Chapter 1 is an introduction describing why climate change is relevant to the financial sector, and introduces 18 financial institutions which were selected as the basis for the study. Chapter 2 elaborates on challenges for the financial sector regarding the incorporation of climate change considerations into enhanced risk analysis and decision making. Chapter 3 provides a comprehensive overview of the main international business initiatives regarding climate change and sustainability. It can be seen as a summary of Annex I to this report, which identifies which initiatives the 18 financial institutions are involved in. Chapter 4 highlights selected best practices amongst the 18 financial institutions assessed. Chapter 5 provides the main conclusions of the study and puts forward general and specific recommendations and potential next steps for the Dutch government and the financial sector. The Annexes contain fact sheets containing information about the climate change strategy and main activities of these organisations

  7. The Northern Climate Exchange Gap Analysis Project : an assessment of the current state of knowledge about the impacts of climate change in northern Canada

    International Nuclear Information System (INIS)

    2002-01-01

    The Northern Climate ExChange (NCE) Gap Analysis Project was launched in 1999 with an objective to assess the state of knowledge on climate change in northern Canada. Resulting products of the project have included the Infosource Database, an on-line database of published climate change research related to the Canadian North, the Directory of Contacts, another on-line database of interested parties to climate change issues, and a set of tables that rate the level of available information on climate change as it relates to natural, economic and community systems. Other products include a report of a workshop on climate change research, 2 reports assessing the level of traditional northern knowledge about climate change, 2 reports assessing the completeness and value of the Infosource Database, a web site for NCE, and this report. All products are available to the public on the Internet or on a CD-ROM. The NCE Gap Analysis Project has shown there are inequalities in the amount of information across different systems, and that there is more knowledge on predicted temperature changes than for other climate components. The study notes that there are strong regional trends for compiled knowledge, with some regions having been better studied than others. The project revealed that traditional knowledge of climate change has not been well documented, and that more information exists about climate change impacts on biological systems with an economic component than those without economic significance. refs., tabs., figs

  8. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...... and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  9. Climate Change

    Science.gov (United States)

    Climate is the average weather in a place over a period of time. Climate change is major change in temperature, rainfall, snow, ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. ...

  10. Adaptation of thermal power plants: The (ir)relevance of climate (change) information

    International Nuclear Information System (INIS)

    Bogmans, Christian W.J.; Dijkema, Gerard P.J.; Vliet, Michelle T.H. van

    2017-01-01

    When does climate change information lead to adaptation? We analyze thermal power plant adaptation by means of investing in water-saving (cooling) technology to prevent a decrease in plant efficiency and load reduction. A comprehensive power plant investment model, forced with downscaled climate and hydrological projections, is then numerically solved to analyze the adaptation decisions of a selection of real power plants. We find that operators that base their decisions on current climatic conditions are likely to make identical choices and perform just as well as operators that are fully ‘informed’ about climate change. Where electricity supply is mainly generated by thermal power plants, heat waves, droughts and low river flow may impact electricity supply for decades to come. - Highlights: • We analyze adaptation to climate change by thermal power plants. • A numerical investment model is applied to a coal plant and a nuclear power plant. • The numerical analysis is based on climate and hydrological projections. • Climate change information has a relatively small effect on a power plant's NPV. • Uncertainty and no-regret benefits lower the value of climate change information.

  11. Alternative future analysis for assessing the potential impact of climate change on urban landscape dynamics.

    Science.gov (United States)

    He, Chunyang; Zhao, Yuanyuan; Huang, Qingxu; Zhang, Qiaofeng; Zhang, Da

    2015-11-01

    Assessing the impact of climate change on urban landscape dynamics (ULD) is the foundation for adapting to climate change and maintaining urban landscape sustainability. This paper demonstrates an alternative future analysis by coupling a system dynamics (SD) and a cellular automata (CA) model. The potential impact of different climate change scenarios on ULD from 2009 to 2030 was simulated and evaluated in the Beijing-Tianjin-Tangshan megalopolis cluster area (BTT-MCA). The results suggested that the integrated model, which combines the advantages of the SD and CA model, has the strengths of spatial quantification and flexibility. Meanwhile, the results showed that the influence of climate change would become more severe over time. In 2030, the potential urban area affected by climate change will be 343.60-1260.66 km(2) (5.55 -20.37 % of the total urban area, projected by the no-climate-change-effect scenario). Therefore, the effects of climate change should not be neglected when designing and managing urban landscape. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Fine-resolution conservation planning with limited climate-change information.

    Science.gov (United States)

    Shah, Payal; Mallory, Mindy L; Ando, Amy W; Guntenspergen, Glenn R

    2017-04-01

    Climate-change induced uncertainties in future spatial patterns of conservation-related outcomes make it difficult to implement standard conservation-planning paradigms. A recent study translates Markowitz's risk-diversification strategy from finance to conservation settings, enabling conservation agents to use this diversification strategy for allocating conservation and restoration investments across space to minimize the risk associated with such uncertainty. However, this method is information intensive and requires a large number of forecasts of ecological outcomes associated with possible climate-change scenarios for carrying out fine-resolution conservation planning. We developed a technique for iterative, spatial portfolio analysis that can be used to allocate scarce conservation resources across a desired level of subregions in a planning landscape in the absence of a sufficient number of ecological forecasts. We applied our technique to the Prairie Pothole Region in central North America. A lack of sufficient future climate information prevented attainment of the most efficient risk-return conservation outcomes in the Prairie Pothole Region. The difference in expected conservation returns between conservation planning with limited climate-change information and full climate-change information was as large as 30% for the Prairie Pothole Region even when the most efficient iterative approach was used. However, our iterative approach allowed finer resolution portfolio allocation with limited climate-change forecasts such that the best possible risk-return combinations were obtained. With our most efficient iterative approach, the expected loss in conservation outcomes owing to limited climate-change information could be reduced by 17% relative to other iterative approaches. © 2016 Society for Conservation Biology.

  13. Stress testing hydrologic models using bottom-up climate change assessment

    Science.gov (United States)

    Stephens, C.; Johnson, F.; Marshall, L. A.

    2017-12-01

    Bottom-up climate change assessment is a promising approach for understanding the vulnerability of a system to potential future changes. The technique has been utilised successfully in risk-based assessments of future flood severity and infrastructure vulnerability. We find that it is also an ideal tool for assessing hydrologic model performance in a changing climate. In this study, we applied bottom-up climate change to compare the performance of two different hydrologic models (an event-based and a continuous model) under increasingly severe climate change scenarios. This allowed us to diagnose likely sources of future prediction error in the two models. The climate change scenarios were based on projections for southern Australia, which indicate drier average conditions with increased extreme rainfall intensities. We found that the key weakness in using the event-based model to simulate drier future scenarios was the model's inability to dynamically account for changing antecedent conditions. This led to increased variability in model performance relative to the continuous model, which automatically accounts for the wetness of a catchment through dynamic simulation of water storages. When considering more intense future rainfall events, representation of antecedent conditions became less important than assumptions around (non)linearity in catchment response. The linear continuous model we applied may underestimate flood risk in a future climate with greater extreme rainfall intensity. In contrast with the recommendations of previous studies, this indicates that continuous simulation is not necessarily the key to robust flood modelling under climate change. By applying bottom-up climate change assessment, we were able to understand systematic changes in relative model performance under changing conditions and deduce likely sources of prediction error in the two models.

  14. Development of climate risk services under climate change scenarios in the North Adriatic coast (Italy).

    Science.gov (United States)

    Valentina, Gallina; Silvia, Torresan; Anna, Sperotto; Elisa, Furlan; Andrea, Critto; Antonio, Marcomini

    2014-05-01

    Nowadays, the challenge for coastal stakeholders and decision makers is to incorporate climate change in land and policy planning in order to ensure a sustainable integrated coastal zone management aimed at preserve coastal environments and socio-economic activities. Consequently, an increasing amount of information on climate variability and its impact on human and natural ecosystem is requested. Climate risk services allows to bridge the gap between climate experts and decision makers communicating timely science-based information about impacts and risks related to climate change that could be incorporated into land planning, policy and practice. Within the CLIM-RUN project (FP7), a participatory Regional Risk Assessment (RRA) methodology was applied for the evaluation of water-related hazards in coastal areas (i.e. pluvial flood and sea-level rise inundation risks) taking into consideration future climate change scenarios in the case study of the North Adriatic Sea for the period 2040-2050. Specifically, through the analysis of hazard, exposure, vulnerability and risk and the application of Multi-Criteria Decision Analysis (MCDA), the RRA methodology allowed to identify and prioritize targets (i.e. residential and commercial-industrial areas, beaches, infrastructures, wetlands, agricultural typology) and sub-areas that are more likely to be affected by pluvial flood and sea-level rise impacts in the same region. From the early stages of the climate risk services development and application, the RRA followed a bottom-up approach taking into account the needs, knowledge and perspectives of local stakeholders dealing with the Integrated Coastal Zone Management (ICZM), by means of questionnaires, workshops and focus groups organized within the project. Specifically, stakeholders were asked to provide their needs in terms of time scenarios, geographical scale and resolution, choice of receptors, vulnerability factors and thresholds that were considered in the

  15. Public Perception of Uncertainties Within Climate Change Science.

    Science.gov (United States)

    Visschers, Vivianne H M

    2018-01-01

    Climate change is a complex, multifaceted problem involving various interacting systems and actors. Therefore, the intensities, locations, and timeframes of the consequences of climate change are hard to predict and cause uncertainties. Relatively little is known about how the public perceives this scientific uncertainty and how this relates to their concern about climate change. In this article, an online survey among 306 Swiss people is reported that investigated whether people differentiate between different types of uncertainty in climate change research. Also examined was the way in which the perception of uncertainty is related to people's concern about climate change, their trust in science, their knowledge about climate change, and their political attitude. The results of a principal component analysis showed that respondents differentiated between perceived ambiguity in climate research, measurement uncertainty, and uncertainty about the future impact of climate change. Using structural equation modeling, it was found that only perceived ambiguity was directly related to concern about climate change, whereas measurement uncertainty and future uncertainty were not. Trust in climate science was strongly associated with each type of uncertainty perception and was indirectly associated with concern about climate change. Also, more knowledge about climate change was related to less strong perceptions of each type of climate science uncertainty. Hence, it is suggested that to increase public concern about climate change, it may be especially important to consider the perceived ambiguity about climate research. Efforts that foster trust in climate science also appear highly worthwhile. © 2017 Society for Risk Analysis.

  16. Climate change velocity underestimates climate change exposure in mountainous regions

    Science.gov (United States)

    Solomon Z. Dobrowski; Sean A. Parks

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not...

  17. Climate Trends and Farmers' Perceptions of Climate Change in Zambia.

    Science.gov (United States)

    Mulenga, Brian P; Wineman, Ayala; Sitko, Nicholas J

    2017-02-01

    A number of studies use meteorological records to analyze climate trends and assess the impact of climate change on agricultural yields. While these provide quantitative evidence on climate trends and the likely effects thereof, they incorporate limited qualitative analysis of farmers' perceptions of climate change and/or variability. The present study builds on the quantitative methods used elsewhere to analyze climate trends, and in addition compares local narratives of climate change with evidence found in meteorological records in Zambia. Farmers offer remarkably consistent reports of a rainy season that is growing shorter and less predictable. For some climate parameters-notably, rising average temperature-there is a clear overlap between farmers' observations and patterns found in the meteorological records. However, the data do not support the perception that the rainy season used to begin earlier, and we generally do not detect a reported increase in the frequency of dry spells. Several explanations for these discrepancies are offered. Further, we provide policy recommendations to help farmers adapt to climate change/variability, as well as suggestions to shape future climate change policies, programs, and research in developing countries.

  18. Climate change research in Bulgaria

    International Nuclear Information System (INIS)

    Iotova, A.; Koleva, E.

    1995-01-01

    Climate is traditionally one of the main fields of research interest and objects for study in Bulgaria. Therefore, many investigations on its genesis and specific features are carried out in the past and present. Recently, climate change research appears to be the most actual topic and it is in the centre of climatic studies. A major part of these studies are realized at the National Institute of Meteorology and Hydrology (NIMH) because of its essential role in collection and analysis of the basic climatic data for the country. A brief description of the climate change research at NIMH is presented and the obtained results are summarized

  19. Climate change and respiratory health.

    Science.gov (United States)

    Gerardi, Daniel A; Kellerman, Roy A

    2014-10-01

    To discuss the nature of climate change and both its immediate and long-term effects on human respiratory health. This review is based on information from a presentation of the American College of Chest Physicians course on Occupational and Environmental Lung Disease held in Toronto, Canada, June 2013. It is supplemented by a PubMed search for climate change, global warming, respiratory tract diseases, and respiratory health. It is also supplemented by a search of Web sites including the Environmental Protection Agency, National Oceanic and Atmospheric Administration, World Meteorological Association, National Snow and Ice Data Center, Carbon Dioxide Information Analysis Center, Inter-Governmental Panel on Climate Change, and the World Health Organization. Health effects of climate change include an increase in the prevalence of certain respiratory diseases, exacerbations of chronic lung disease, premature mortality, allergic responses, and declines in lung function. Climate change, mediated by greenhouse gases, causes adverse health effects to the most vulnerable patient populations-the elderly, children, and those in distressed socioeconomic strata.

  20. Applying a framework for landscape planning under climate change for the conservation of biodiversity in the Finnish boreal forest.

    Science.gov (United States)

    Mazziotta, Adriano; Triviño, Maria; Tikkanen, Olli-Pekka; Kouki, Jari; Strandman, Harri; Mönkkönen, Mikko

    2015-02-01

    Conservation strategies are often established without consideration of the impact of climate change. However, this impact is expected to threaten species and ecosystem persistence and to have dramatic effects towards the end of the 21st century. Landscape suitability for species under climate change is determined by several interacting factors including dispersal and human land use. Designing effective conservation strategies at regional scales to improve landscape suitability requires measuring the vulnerabilities of specific regions to climate change and determining their conservation capacities. Although methods for defining vulnerability categories are available, methods for doing this in a systematic, cost-effective way have not been identified. Here, we use an ecosystem model to define the potential resilience of the Finnish forest landscape by relating its current conservation capacity to its vulnerability to climate change. In applying this framework, we take into account the responses to climate change of a broad range of red-listed species with different niche requirements. This framework allowed us to identify four categories in which representation in the landscape varies among three IPCC emission scenarios (B1, low; A1B, intermediate; A2, high emissions): (i) susceptible (B1 = 24.7%, A1B = 26.4%, A2 = 26.2%), the most intact forest landscapes vulnerable to climate change, requiring management for heterogeneity and resilience; (ii) resilient (B1 = 2.2%, A1B = 0.5%, A2 = 0.6%), intact areas with low vulnerability that represent potential climate refugia and require conservation capacity maintenance; (iii) resistant (B1 = 6.7%, A1B = 0.8%, A2 = 1.1%), landscapes with low current conservation capacity and low vulnerability that are suitable for restoration projects; (iv) sensitive (B1 = 66.4%, A1B = 72.3%, A2 = 72.0%), low conservation capacity landscapes that are vulnerable and for which alternative conservation measures are required depending on the

  1. Understanding climatic change

    International Nuclear Information System (INIS)

    Fellous, J.L.; Gautier, C.; Andre, J.C.; Balstad, R.; Boucher, O.; Brasseur, G.; Chahine, M.T.; Chanin, M.L.; Ciais, P.; Corell, W.; Duplessy, J.C.; Hourcade, J.C.; Jouzel, J.; Kaufman, Y.J.; Laval, K.; Le Treut, H.; Minster, J.F.; Moore, B. III; Morel, P.; Rasool, S.I.; Remy, F.; Smith, R.C.; Somerville, R.C.J.; Wood, E.F.; Wood, H.; Wunsch, C.

    2007-01-01

    Climatic change is gaining ground and with no doubt is stimulated by human activities. It is therefore urgent to better understand its nature, importance and potential impacts. The chapters of this book have been written by US and French experts of the global warming question. After a description of the Intergovernmental Panel on Climate Change (IPCC, GIEC in French) consensus, they present the past and present researches on each of the main component of the climate system, on the question of climatic change impacts and on the possible answers. The conclusion summarizes the results of each chapter. Content: presentation of the IPCC; greenhouse effect, radiation balance and clouds; atmospheric aerosols and climatic change; global water cycle and climate; influence of climatic change on the continental hydrologic cycle; ocean and climate; ice and climate; global carbon cycle; about some impacts of climatic change on Europe and the Atlantic Ocean; interaction between atmospheric chemistry and climate; climate and society, the human dimension. (J.S.)

  2. CLIMATE CHANGE, Change International Negociations?

    Institute of Scientific and Technical Information of China (English)

    Gao Xiaosheng

    2009-01-01

    @@ Climate change is one of key threats to human beings who have to deal with.According to Bali Action Plan released after the 2007 Bali Climate Talk held in Indonesia,the United Nations Framework on Climate Change(UNFCCC) has launched a two-year process to negotiate a post-2012 climate arrangement after the Kyoto Protocol expires in 2012 and the Copenhagen Climate Change Conference will seal a final deal on post-2012 climate regime in December,2009.For this,the United Nation Chief Ban Ki Moon called 2009"the year ofclimate change".

  3. Politics of climate change: a European perspective

    International Nuclear Information System (INIS)

    O'Riordan, T.; Jaeger, Jill

    1996-01-01

    The Politics of Climate Change provides a critical analysis of the political, moral and legal response to climate change, in the midst of various other closely connected socio-economic policy shifts. Evolving from original EC commissioned research, it examines how climate change was put on the policy agenda with the evolution of the United Nations Framework Convention and subsequent Conference of Parties, and considers the uncertainties of climate futures in the context of changing social and industrial policies. (Author)

  4. Risk communication, public engagement, and climate change: a role for emotions.

    Science.gov (United States)

    Roeser, Sabine

    2012-06-01

    This article discusses the potential role that emotions might play in enticing a lifestyle that diminishes climate change. Climate change is an important challenge for society. There is a growing consensus that climate change is due to our behavior, but few people are willing to significantly adapt their lifestyle. Empirical studies show that people lack a sense of urgency: they experience climate change as a problem that affects people in distant places and in a far future. Several scholars have claimed that emotions might be a necessary tool in communication about climate change. This article sketches a theoretical framework that supports this hypothesis, drawing on insights from the ethics of risk and the philosophy of emotions. It has been shown by various scholars that emotions are important determinants in risk perception. However, emotions are generally considered to be irrational states and are hence excluded from communication and political decision making about risky technologies and climate change, or they are used instrumentally to create support for a position. However, the literature on the ethics of risk shows that the dominant, technocratic approach to risk misses the normative-ethical dimension that is inherent to decisions about acceptable risk. Emotion research shows that emotions are necessary for practical and moral decision making. These insights can be applied to communication about climate change. Emotions are necessary for understanding the moral impact of the risks of climate change, and they also paradigmatically provide for motivation. Emotions might be the missing link in effective communication about climate change. © 2012 Society for Risk Analysis.

  5. Climate change. Managing the risks

    International Nuclear Information System (INIS)

    Swart, R.J.

    1994-01-01

    In order to address the key question if a targeted approach to climate change response is feasible, different aspects of this question are analyzed. First, the scientific and political aspects of different options to determine specific long-term objectives for climate change are evaluated on the basis of the current scientific insights and the experiences over the last 5 years to develop climate objectives. Preliminary directions for such objectives are given. Next, important analytical tools are discussed that can be applied to analyze the different options and their implications in detail. In order to evaluate the implications of mitigation options, strategies that are consistent with the preliminary climate goals are analyzed in the third part. In chapter 2, the concept of long-term environmental goals, derived from critical levels of climate change, is discussed. Also a historical perspective is provided. A new, systematic regionalized and risk-based approach to elaborate the ultimate objective of the Framework Convention on Climate Change is proposed. In chapter 3 scenarios and integrated models are discussed. Central is the description of scenarios that were developed with RlVM's Integrated Model to Assess the Greenhouse Effect (IMAGE) and the US-EPA's Atmospheric Stabilization Framework (ASF). In chapter 4 potential long-term international emissions control strategies for the different sources and sinks of the most important greenhouse gases are analyzed. Carbon dioxide from energy, carbon dioxide from deforestation, and non-CO 2 greenhouse gases are dealt with subsequently. The dissertation ends with general conclusions and recommendations for the further design of a targeted approach to climate change response, the development of analytical tools to support policy development in the area of climate change, and strategies that are consistent with preliminary long-term environmental goals. 66 figs., 8 tabs., 417 refs., 1 appendix

  6. Analysis of reference evapotranspiration (ET0) trends under climate change in Bangladesh using observed and CMIP5 data sets

    Science.gov (United States)

    Rahman, Mohammad Atiqur; Yunsheng, Lou; Sultana, Nahid; Ongoma, Victor

    2018-03-01

    ET0 is an important hydro-meteorological phenomenon, which is influenced by changing climate like other climatic parameters. This study investigates the present and future trends of ET0 in Bangladesh using 39 years' historical and downscaled CMIP5 daily climatic data for the twenty-first century. Statistical Downscaling Model (SDSM) was used to downscale the climate data required to calculate ET0. Penman-Monteith formula was applied in ET0 calculation for both the historical and modelled data. To analyse ET0 trends and trend changing patterns, modified Mann-Kendall and Sequential Mann-Kendall tests were, respectively, done. Spatial variations of ET0 trends are presented by inverse distance weighting interpolation using ArcGIS 10.2.2. Results show that RCP8.5 (2061-2099) will experience the highest amount of ET0 totals in comparison to the historical and all other scenarios in the same time span of 39 years. Though significant positive trends were observed in the mid and last months of year from month-wise trend analysis of representative concentration pathways, significant negative trends were also found for some months using historical data in similar analysis. From long-term annual trend analysis, it was found that major part of the country represents decreasing trends using historical data, but increasing trends were observed for modelled data. Theil-Sen estimations of ET0 trends in the study depict a good consistency with the Mann-Kendall test results. The findings of the study would contribute in irrigation water management and planning of the country and also in furthering the climate change study using modelled data in the context of Bangladesh.

  7. The influence of climate change on flood risks in France - first estimates and uncertainty analysis

    Science.gov (United States)

    Dumas, P.; Hallegatte, S.; Quintana-Seguì, P.; Martin, E.

    2013-03-01

    This paper proposes a methodology to project the possible evolution of river flood damages due to climate change, and applies it to mainland France. Its main contributions are (i) to demonstrate a methodology to investigate the full causal chain from global climate change to local economic flood losses; (ii) to show that future flood losses may change in a very significant manner over France; (iii) to show that a very large uncertainty arises from the climate downscaling technique, since two techniques with comparable skills at reproducing reference river flows give very different estimates of future flows, and thus of future local losses. The main conclusion is thus that estimating future flood losses is still out of reach, especially at local scale, but that future national-scale losses may change significantly over this century, requiring policy changes in terms of risk management and land-use planning.

  8. Climatic Changes Effects On Spectral Vegetation Indices For Forested Areas Analysis From Satellite Data

    International Nuclear Information System (INIS)

    Zoran, M.; Stefan, S.

    2007-01-01

    Climate-induced changes at the land surface may in turn feed back on the climate itself through changes in soil moisture, vegetation, radiative characteristics, and surface-atmosphere exchanges of water vapor. Thresholding based on biophysical variables derived from time trajectories of satellite data is a new approach to classifying forest land cover via remote . sensing .The input data are composite values of the Normalized Difference Vegetation Index (NDVI). Classification accuracies are function of the class, comparison method and season of the year. The aim of the paper is forest biomass assessment and land-cover changes analysis due to climatic effects

  9. A top-down bottom-up modeling approach to climate change policy analysis

    International Nuclear Information System (INIS)

    Tuladhar, Sugandha D.; Yuan, Mei; Bernstein, Paul; Montgomery, W. David; Smith, Anne

    2009-01-01

    This paper analyzes macroeconomic impacts of U.S. climate change policies for three different emissions pathways using a top-down bottom-up integrated model. The integrated model couples a technology-rich, bottom-up model of the U.S. electricity sector with a fully dynamic, forward-looking general equilibrium model of the U.S. economy. Our model provides a unique and consistent modeling framework for climate change analysis. Because of the model's detail and flexibility, we use it to examine additional scenarios to analyze many of the major uncertainties surrounding the implementation and impact of climate change policies - the role of command-and-control measures, loss in flexibility mechanisms such as banking, limits on low-emitting technology, and availability of offsets. The results consistently demonstrate that those policies that combine market-oriented abatement incentives with full flexibility are the most cost-effective. (author)

  10. Climate Change Vulnerability of Agro-Ecosystems: Does socio-economic factors matters?

    Science.gov (United States)

    Surendran Nair, S.; Preston, B. L.; King, A. W.; Mei, R.; Post, W. M.

    2013-12-01

    Climate variability and change has direct impacts on agriculture. Despite continual adaptation to climate as well as gains in technology innovation and adoption, agriculture is still vulnerable to changes in temperature and precipitation expected in coming decades. Generally, researchers use two major methodologies to understand the vulnerability of agro-ecosystems to climate change: process-based crop models and empirical models. However, these models are not yet designed to capture the influence of socioeconomic systems on agro-ecosystem processes and outcomes.. However, socioeconomic processes are an important factor driving agro-ecological responses to biophysical processes (climate, topography and soil), because of the role of human agency in mediating the response of agro-ecosystems to climate. We have developed a framework that integrates socioeconomic and biophysical characteristics of agro-ecosystems using cluster analysis and GIS tools. This framework has been applied to the U.S. Southeast to define unique socio-ecological domains for agriculture. The results demonstrate that socioeconomic characteristics are an important factor influencing agriculture production. These results suggest that the lack of attention to socioeconomic conditions and human agency in agro-ecological modeling creates a potential bias with respect to the representation of climate change impacts.

  11. Time-series analysis of climatologic measurements: a method to distinguish future climatic changes

    International Nuclear Information System (INIS)

    Duband, D.

    1992-01-01

    Time-series analysis of climatic parameters as air temperature, rivers flow rate, lakes or seas level is an indispensable basis to detect a possible significant climatic change. These observations, when they are carefully analyzed and criticized, constitute the necessary reference for testing and validation numerical climatic models which try to simulate the physical and dynamical process of the ocean-atmosphere couple, taking continents into account. 32 refs., 13 figs

  12. Changing Climate in the MENA Means Changing Energy Needs

    Directory of Open Access Journals (Sweden)

    Adam Fenech

    2015-12-01

    Full Text Available The leading authority on climate change, the Intergovernmental Panel on Climate Change (IPCC hasconcluded that warming of the climate system is unequivocal, and will continue for centuries. The regionsin the Middle East and Northern Africa (MENA have experienced numerous extreme climate events overthe past few years including the 2009 flooding in Jeddah, Kingdom of Saudi Arabia; the 2005 dust stormin Al Asad, Iraq; water scarcity throughout the Arab MENA; and the rising sea levels on the Nile Deltacoast, Egypt. A climate baseline can be developed for regions in the MENA by locating climate stations inthe study area using observations made in the Global Climate Observing System (GCOS. For projectionsof future climate, global climate models (GCMs, mathematical equations that describe the physics, fluidmotion and chemistry of the atmosphere, are the most advanced science available. The Climate ResearchLab at the University of Prince Edward Island has a dataset available to researchers, called the Climate,Ocean and Atmosphere Data Exchange (COADE, that provides easy access to the output from fortyglobal climate models used in the deliberations of the Intergovernmental Panel on Climate Change’s(IPCC Fifth Assessment Report (AR5 including monthly global climate model projections of future climatechange for a number of climate parameters including temperature and precipitation. Over the past 50years, climate changes in the MENA Region have led to increases in annual mean temperatures anddecreases in annual total precipitation. Applying all four greenhouse gas emission futures on a baseclimate normal of 1981-2010 to an ensemble of forty global climate models used in the Fifth AssessmentReport of the Intergovernmental Panel on Climate Change (IPCC AR5 results in future temperatureincreases for the MENA Region ranging from 1.6 to 2.3 degrees Celsius, and in a range of futureprecipitation changes from reductions of 11 percent to increases of 36 percent

  13. Climate change

    Science.gov (United States)

    Cronin, Thomas M.

    2016-01-01

    Climate change (including climate variability) refers to regional or global changes in mean climate state or in patterns of climate variability over decades to millions of years often identified using statistical methods and sometimes referred to as changes in long-term weather conditions (IPCC, 2012). Climate is influenced by changes in continent-ocean configurations due to plate tectonic processes, variations in Earth’s orbit, axial tilt and precession, atmospheric greenhouse gas (GHG) concentrations, solar variability, volcanism, internal variability resulting from interactions between the atmosphere, oceans and ice (glaciers, small ice caps, ice sheets, and sea ice), and anthropogenic activities such as greenhouse gas emissions and land use and their effects on carbon cycling.

  14. 75 FR 6289 - Commission Guidance Regarding Disclosure Related to Climate Change

    Science.gov (United States)

    2010-02-08

    ... Regarding Disclosure Related to Climate Change; Final Rule #0;#0;Federal Register / Vol. 75 , No. 25... Disclosure Related to Climate Change AGENCY: Securities and Exchange Commission. ACTION: Interpretation... requirements as they apply to climate change matters. DATES: Effective Date: February 8, 2010. FOR FURTHER...

  15. Discounting in economics and climate change

    International Nuclear Information System (INIS)

    Nordhaus, W.D.

    1997-01-01

    This paper examines the complexity of the issues surrounding the discounting issue as applied to the economics of climatic change. It is assumed that living standards will continue to improve, and that future generations will be more able to resource environmental improvements than our own. Measures to counter climate change now may have a deleterious effect on economic growth. Approaches to this situation include: lowering the discount rate; differential discounting; climate targeting; and emissions or concentrations limitations. Policies that focus directly on reducing pollutants are likely to have fewer deleterious economic effects than those that manipulate the discount rate on goods. 3 refs., 2 figs

  16. Climate change: Causes, effects and mitigation measures- A review ...

    African Journals Online (AJOL)

    Global Journal of Pure and Applied Sciences ... far more than at any time in the last 650,000 years resulting in climate change or global warming. Both natural and human causes of climate change including the earth's orbital changes, ... food production, loss of biodiversity, food insecurity, decreased animal health et cetera.

  17. Climate variability and climate change

    International Nuclear Information System (INIS)

    Rind, D.

    1990-01-01

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century

  18. Developing the evidence base for mainstreaming adaptation of stormwater systems to climate change.

    Science.gov (United States)

    Gersonius, B; Nasruddin, F; Ashley, R; Jeuken, A; Pathirana, A; Zevenbergen, C

    2012-12-15

    In a context of high uncertainty about hydro-climatic variables, the development of updated methods for climate impact and adaptation assessment is as important, if not more important than the provision of improved climate change data. In this paper, we introduce a hybrid method to facilitate mainstreaming adaptation of stormwater systems to climate change: i.e., the Mainstreaming method. The Mainstreaming method starts with an analysis of adaptation tipping points (ATPs), which is effect-based. These are points of reference where the magnitude of climate change is such that acceptable technical, environmental, societal or economic standards may be compromised. It extends the ATP analysis to include aspects from a bottom-up approach. The extension concerns the analysis of adaptation opportunities in the stormwater system. The results from both analyses are then used in combination to identify and exploit Adaptation Mainstreaming Moments (AMMs). Use of this method will enhance the understanding of the adaptive potential of stormwater systems. We have applied the proposed hybrid method to the management of flood risk for an urban stormwater system in Dordrecht (the Netherlands). The main finding of this case study is that the application of the Mainstreaming method helps to increase the no-/low-regret character of adaptation for several reasons: it focuses the attention on the most urgent effects of climate change; it is expected to lead to potential cost reductions, since adaptation options can be integrated into infrastructure and building design at an early stage instead of being applied separately; it will lead to the development of area-specific responses, which could not have been developed on a higher scale level; it makes it possible to take account of local values and sensibilities, which contributes to increased public and political support for the adaptive strategies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. The Analysis of the Relationship between Clean Technology Transfer and Chinese Intellectual Property Countering the Climate Changes

    DEFF Research Database (Denmark)

    Min, Hao

    This report discusses the relationship between the Chinese intellectual property systems which counter with the climate change and the transfer of clean technology, and states how to encourage the developed countries transfer the clean technology to the developing countries according to the relat...... property countering the climate changes; the analysis of current technology transfer modes relating to the climate; the difficulties of Chinese countering climate changes technology transfer and strategic thinking....

  20. International business and global climate change

    NARCIS (Netherlands)

    Pinkse, J.; Kolk, A.

    2008-01-01

    Climate change has become an important topic on the business agenda with strong pressure being placed on companies to respond and contribute to finding solutions to this urgent problem. This text provides a comprehensive analysis of international business responses to global climate change and

  1. A Multi-Risk Approach to Climate Change Adaptation, Based on an Analysis of South Korean Newspaper Articles

    Directory of Open Access Journals (Sweden)

    Youngeun Kang

    2018-05-01

    Full Text Available The risks caused by climate change are worsening worldwide, and it is recognized that national and regional responses to climate change are essential. This study therefore explores climate change risks that have been recognized as fatal to people and the environment by analyzing multi-influence factors that appear in multiple risk indicators. The climate change risks in this study are based on 73 existing risk indicators; the frame data for multi-influence risk factors are based on 3098 newspaper articles published over 24 years on the impact of climate change in South Korea. The main outcomes for this study were finding climate change risk trend from newspaper articles regarding climate change impacts through text-mining, and figuring out the multi-risk indicators that are likely to occur at the same time with other risk indicators using network analysis. From the network analysis, we found that the major risk indicators have a high degree of interrelationship among risk indicators, including “increase in mortality rate from disaster”, “increase in flood areas due to coastal flooding”, and “destruction of repair facilities due to flooding (river bank, etc.”. The main risk indicators derived from this study can therefore be used as a reasonable standard when identifying the main risks posed by climate change and defining future adaptation planning priorities.

  2. Using Web GIS "Climate" for Adaptation to Climate Change

    Science.gov (United States)

    Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara

    2015-04-01

    A work is devoted to the application of an information-computational Web GIS "Climate" developed by joint team of the Institute of Monitoring of Climatic and Ecological Systems SB RAS and Tomsk State University to raise awareness about current and future climate change as a basis for further adaptation. Web-GIS "Climate» (http://climate.scert.ru/) based on modern concepts of Web 2.0 provides opportunities to study regional climate change and its consequences by providing access to climate and weather models, a large set of geophysical data and means of processing and visualization. Also, the system is used for the joint development of software applications by distributed research teams, research based on these applications and undergraduate and graduate students training. In addition, the system capabilities allow creating information resources to raise public awareness about climate change, its causes and consequences, which is a necessary step for the subsequent adaptation to these changes. Basic information course on climate change is placed in the public domain and is aimed at local population. Basic concepts and problems of modern climate change and its possible consequences are set out and illustrated in accessible language. Particular attention is paid to regional climate changes. In addition to the information part, the course also includes a selection of links to popular science network resources on current issues in Earth Sciences and a number of practical tasks to consolidate the material. These tasks are performed for a particular territory. Within the tasks users need to analyze the prepared within the "Climate" map layers and answer questions of direct interest to the public: "How did the minimum value of winter temperatures change in your area?", "What are the dynamics of maximum summer temperatures?", etc. Carrying out the analysis of the dynamics of climate change contributes to a better understanding of climate processes and further adaptation

  3. Drought, flood and rainfall analysis under climate change in Crete, Greece

    Science.gov (United States)

    Tapoglou, Evdokia; Vozinaki, Anthi-Eirini; Tsanis, Ioannis; Nerantzaki, Sofia; Nikolaidis, Nikolaos

    2017-04-01

    In this study an analysis on the drought frequency and magnitude under climate change in Crete, Greece is performed. The analysis was performed for the time period from 1983-2100, divided into three sub-periods (1983-1999, 2000-2049 and 2050-2099) for inter-comparison. Two climate models were studied MPI-ESM-LR-r1-CSC-REMO and EC-EARTH-r12-SMHI-RCA4, following three possible representative concentration pathways (+2.6, +4.5 and +8.5 W/m2). In order to perform the analysis the results of a SWAT simulation which covered the entity of Crete using 352 subbasins, was used. Drought events are recognized by using the Standardized Precipitation Index (SPI) to identify the meteorological drought events and Standardized Runoff Index (SRI) for hydrological droughts. SPI and SRI drought indices, were used in order to identify the number of drought events for each climate model and scenario. In all cases, an increase in both severity and number of drought events was calculated for the future periods, compared to the baseline period 1983-1999. This increase was smaller for the +2.6 W/m2 scenario and largest for the +8.5 W/m2. The magnitude of events with 10 and 100 years return period was calculated for the subbasins of Crete and the most vulnerable were identified, both in terms of severity and the change throughout the years in index magnitude. Next a flood frequency analysis was performed for the entity of Crete Island in order to calculate the magnitude of events with 10 and 100 years return period. In order to perform the flood frequency analysis, the results of the SWAT simulation in terms of runoff in each subbasin are used. By calculating the magnitude of flood events with 10 and 100 years return period and the change in the magnitude throughout the time periods the most vulnerable subbasins are identified. The same frequency analysis was performed for the precipitation at each subbasin, and the magnitude of extreme precipitation events with 10 and 100 years return

  4. Can We Consume Our Way Out of Climate Change? A Call for Analysis

    OpenAIRE

    Grant, Lyle K

    2011-01-01

    The problem of climate change is analyzed as a manifestation of economic growth, and the steady-state economy of ecological economics is proposed as a system-wide solution. Four classes of more specific solutions are described. In the absence of analysis, cultural inertia will bias solutions in favor of green consumption as a generalized solution strategy. By itself, green consumption is a flawed solution to climate change because it perpetuates or even accelerates economic growth that is inc...

  5. Detection and attribution of streamflow timing changes to climate change in the Western United States

    Science.gov (United States)

    Hidalgo, H.G.; Das, T.; Dettinger, M.D.; Cayan, D.R.; Pierce, D.W.; Barnett, T.P.; Bala, G.; Mirin, A.; Wood, A.W.; Bonfils, Celine; Santer, B.D.; Nozawa, T.

    2009-01-01

    This article applies formal detection and attribution techniques to investigate the nature of observed shifts in the timing of streamflow in the western United States. Previous studies have shown that the snow hydrology of the western United States has changed in the second half of the twentieth century. Such changes manifest themselves in the form of more rain and less snow, in reductions in the snow water contents, and in earlier snowmelt and associated advances in streamflow "center" timing (the day in the "water-year" on average when half the water-year flow at a point has passed). However, with one exception over a more limited domain, no other study has attempted to formally attribute these changes to anthropogenic increases of greenhouse gases in the atmosphere. Using the observations together with a set of global climate model simulations and a hydrologic model (applied to three major hydrological regions of the western United States_the California region, the upper Colorado River basin, and the Columbia River basin), it is found that the observed trends toward earlier "center" timing of snowmelt-driven streamflows in the western United States since 1950 are detectably different from natural variability (significant at the p analysis, and it is the only basin that showed a detectable signal when the analysis was performed on individual basins. It should be noted that although climate change is an important signal, other climatic processes have also contributed to the hydrologic variability of large basins in the western United States. ?? 2009 American Meteorological Society.

  6. Climate for Change?

    DEFF Research Database (Denmark)

    Wejs, Anja

    Cities rather than national governments take the lead in acting on climate change. Several cities have voluntarily created climate change plans to prevent and prepare for the effects of climate change. In the literature climate change has been examined as a multilevel governance area taking place...... around international networks. Despite the many initiatives taken by cities, existing research shows that the implementation of climate change actions is lacking. The reasons for this scarcity in practice are limited to general explanations in the literature, and studies focused on explaining...... the constraints on climate change planning at the local level are absent. To understand these constraints, this PhD thesis investigates the institutional dynamics that influence the process of the integration of climate change into planning practices at the local level in Denmark. The examination of integration...

  7. Climate variability and climate change

    International Nuclear Information System (INIS)

    Rind, D.

    1991-01-01

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century. 19 refs.; 3 figs.; 2 tabs

  8. Climate change adaptation in Tanjung Mas – Semarang: a comparison between male- and female-headed households

    Science.gov (United States)

    Handayani, W.; Ananda, M. R.; Esariti, L.; Anggraeni, M.

    2018-03-01

    Mainly due to its complexity, the effort to mainstream gender in addressing climate change issues has been far from the satisfying result. However, there is an urgent call to accommodate gender lens issues and to become more gender sensitive in an attempt to have an effective intervention in responding climate change impact. To enrich the reports on gender and climate change adaptation in city-based case, this paper aims to elaborate climate change adaptation in Tanjung Mas – Semarang city focusing on the gender perspective analysis in male- and female-headed households. The quantitative descriptive method is applied to carry out the analyses, including adaptive strategy and gender role analyses. The research result indicates there are not any significant differences in the climate change adaptation strategies applied in male- and female-headed households. This shows that women in the female-headed households, with their double burden, performed well in managing their roles. Therefore, in particular perspective, it may not be relevant to state that woman and female-headed households are likely to be more vulnerable compared with their counterparts.

  9. Land use allocation model considering climate change impact

    Science.gov (United States)

    Lee, D. K.; Yoon, E. J.; Song, Y. I.

    2017-12-01

    In Korea, climate change adaptation plans are being developed for each administrative district based on impact assessments constructed in various fields. This climate change impact assessments are superimposed on the actual space, which causes problems in land use allocation because the spatial distribution of individual impacts may be different each other. This implies that trade-offs between climate change impacts can occur depending on the composition of land use. Moreover, the actual space is complexly intertwined with various factors such as required area, legal regulations, and socioeconomic values, so land use allocation in consideration of climate change can be very difficult problem to solve (Liu et al. 2012; Porta et al. 2013).Optimization techniques can generate a sufficiently good alternatives for land use allocation at the strategic level if only the fitness function of relationship between impact and land use composition are derived. It has also been noted that land use optimization model is more effective than the scenario-based prediction model in achieving the objectives for problem solving (Zhang et al. 2014). Therefore in this study, we developed a quantitative tool, MOGA (Multi Objective Genetic Algorithm), which can generate a comprehensive land use allocations considering various climate change impacts, and apply it to the Gangwon-do in Korea. Genetic Algorithms (GAs) are the most popular optimization technique to address multi-objective in land use allocation. Also, it allows for immediate feedback to stake holders because it can run a number of experiments with different parameter values. And it is expected that land use decision makers and planners can formulate a detailed spatial plan or perform additional analysis based on the result of optimization model. Acknowledgments: This work was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program (Project number: 2014001310006)"

  10. An evidence-based public health approach to climate change adaptation.

    Science.gov (United States)

    Hess, Jeremy J; Eidson, Millicent; Tlumak, Jennifer E; Raab, Kristin K; Luber, George

    2014-11-01

    Public health is committed to evidence-based practice, yet there has been minimal discussion of how to apply an evidence-based practice framework to climate change adaptation. Our goal was to review the literature on evidence-based public health (EBPH), to determine whether it can be applied to climate change adaptation, and to consider how emphasizing evidence-based practice may influence research and practice decisions related to public health adaptation to climate change. We conducted a substantive review of EBPH, identified a consensus EBPH framework, and modified it to support an EBPH approach to climate change adaptation. We applied the framework to an example and considered implications for stakeholders. A modified EBPH framework can accommodate the wide range of exposures, outcomes, and modes of inquiry associated with climate change adaptation and the variety of settings in which adaptation activities will be pursued. Several factors currently limit application of the framework, including a lack of higher-level evidence of intervention efficacy and a lack of guidelines for reporting climate change health impact projections. To enhance the evidence base, there must be increased attention to designing, evaluating, and reporting adaptation interventions; standardized health impact projection reporting; and increased attention to knowledge translation. This approach has implications for funders, researchers, journal editors, practitioners, and policy makers. The current approach to EBPH can, with modifications, support climate change adaptation activities, but there is little evidence regarding interventions and knowledge translation, and guidelines for projecting health impacts are lacking. Realizing the goal of an evidence-based approach will require systematic, coordinated efforts among various stakeholders.

  11. The radiative heating response to climate change

    Science.gov (United States)

    Maycock, Amanda

    2016-04-01

    The structure and magnitude of radiative heating rates in the atmosphere can change markedly in response to climate forcings; diagnosing the causes of these changes can aid in understanding parts of the large-scale circulation response to climate change. This study separates the relative drivers of projected changes in longwave and shortwave radiative heating rates over the 21st century into contributions from radiatively active gases, such as carbon dioxide, ozone and water vapour, and from changes in atmospheric and surface temperatures. Results are shown using novel radiative diagnostics applied to timeslice experiments from the UM-UKCA chemistry-climate model; these online estimates are compared to offline radiative transfer calculations. Line-by-line calculations showing spectrally-resolved changes in heating rates due to different gases will also be presented.

  12. A changing climate of skepticism: The factors shaping climate change coverage in the US press.

    Science.gov (United States)

    Schmid-Petri, Hannah; Adam, Silke; Schmucki, Ivo; Häussler, Thomas

    2017-05-01

    Skepticism toward climate change has a long tradition in the United States. We focus on mass media as the conveyors of the image of climate change and ask: Is climate change skepticism still a characteristic of US print media coverage? If so, to what degree and in what form? And which factors might pave the way for skeptics entering mass media debates? We conducted a quantitative content analysis of US print media during one year (1 June 2012 to 31 May 2013). Our results show that the debate has changed: fundamental forms of climate change skepticism (such as denial of anthropogenic causes) have been abandoned in the coverage, being replaced by more subtle forms (such as the goal to avoid binding regulations). We find no evidence for the norm of journalistic balance, nor do our data support the idea that it is the conservative press that boosts skepticism.

  13. International Business and Global Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Kolk, A.; Pinkse, J.

    2008-11-15

    Climate change has become an important topic on the business agenda with strong pressure being placed on companies to respond and contribute to finding solutions to this urgent problem. This text provides a comprehensive analysis of international business responses to global climate change and climate change policy. Embedded in relevant management literature, this book gives a concise treatment of developments in policy and business activity on global, regional and national levels, using examples and systematic data from a large number of international companies. The first part outlines the international climate policy landscape and voluntary initiatives taken by companies, both alone and together with others. The second part examines companies' strategies, covering innovation for climate change, as well as compensation via emissions trading and carbon offsetting. Written by well-known experts in the field, International Business and Global Climate Change illustrates how an environmental topic becomes strategically important in a mainstream sense, affecting corporate decision-making, business processes, products, reputation, advertising, communication, accounting and finance.

  14. International Business and Global Climate Change

    International Nuclear Information System (INIS)

    Kolk, A.; Pinkse, J.

    2008-11-01

    Climate change has become an important topic on the business agenda with strong pressure being placed on companies to respond and contribute to finding solutions to this urgent problem. This text provides a comprehensive analysis of international business responses to global climate change and climate change policy. Embedded in relevant management literature, this book gives a concise treatment of developments in policy and business activity on global, regional and national levels, using examples and systematic data from a large number of international companies. The first part outlines the international climate policy landscape and voluntary initiatives taken by companies, both alone and together with others. The second part examines companies' strategies, covering innovation for climate change, as well as compensation via emissions trading and carbon offsetting. Written by well-known experts in the field, International Business and Global Climate Change illustrates how an environmental topic becomes strategically important in a mainstream sense, affecting corporate decision-making, business processes, products, reputation, advertising, communication, accounting and finance

  15. Climatic Data Integration and Analysis - Regional Approaches to Climate Change for Pacific Northwest Agriculture (REACCH PNA)

    Science.gov (United States)

    Seamon, E.; Gessler, P. E.; Flathers, E.; Sheneman, L.; Gollberg, G.

    2013-12-01

    The Regional Approaches to Climate Change for Pacific Northwest Agriculture (REACCH PNA) is a five-year USDA/NIFA-funded coordinated agriculture project to examine the sustainability of cereal crop production systems in the Pacific Northwest, in relationship to ongoing climate change. As part of this effort, an extensive data management system has been developed to enable researchers, students, and the public, to upload, manage, and analyze various data. The REACCH PNA data management team has developed three core systems to encompass cyberinfrastructure and data management needs: 1) the reacchpna.org portal (https://www.reacchpna.org) is the entry point for all public and secure information, with secure access by REACCH PNA members for data analysis, uploading, and informational review; 2) the REACCH PNA Data Repository is a replicated, redundant database server environment that allows for file and database storage and access to all core data; and 3) the REACCH PNA Libraries which are functional groupings of data for REACCH PNA members and the public, based on their access level. These libraries are accessible thru our https://www.reacchpna.org portal. The developed system is structured in a virtual server environment (data, applications, web) that includes a geospatial database/geospatial web server for web mapping services (ArcGIS Server), use of ESRI's Geoportal Server for data discovery and metadata management (under the ISO 19115-2 standard), Thematic Realtime Environmental Distributed Data Services (THREDDS) for data cataloging, and Interactive Python notebook server (IPython) technology for data analysis. REACCH systems are housed and maintained by the Northwest Knowledge Network project (www.northwestknowledge.net), which provides data management services to support research. Initial project data harvesting and meta-tagging efforts have resulted in the interrogation and loading of over 10 terabytes of climate model output, regional entomological data

  16. Climate change implications for wind power resources in the Northwest United States

    International Nuclear Information System (INIS)

    Sailor, David J.; Smith, Michael; Hart, Melissa

    2008-01-01

    Using statistically downscaled output from four general circulation models (GCMs), we have investigated scenarios of climate change impacts on wind power generation potential in a five-state region within the Northwest United States (Idaho, Montana, Oregon, Washington, and Wyoming). All GCM simulations were extracted from the standardized set of runs created for the Intergovernmental Panel on Climate Change (IPCC). Analysis of model runs for the 20th century (20c3m) simulations revealed that the direct output of wind statistics from these models is of relatively poor quality compared with observations at airport weather stations within each state. When the GCM output was statistically downscaled, the resulting estimates of current climate wind statistics are substantially better. Furthermore, in looking at the GCM wind statistics for two IPCC future climate scenarios from the Special Report on Emissions Scenarios (SRES A1B and A2), there was significant disagreement in the direct model output from the four GCMs. When statistical downscaling was applied to the future climate simulations, a more coherent story unfolded related to the likely impact of climate change on the region's wind power resource. Specifically, the results suggest that summertime wind speeds in the Northwest may decrease by 5-10%, while wintertime wind speeds may decrease by relatively little, or possibly increase slightly. When these wind statistics are projected to typical turbine hub heights and nominal wind turbine power curves are applied, the impact of the climate change scenarios on wind power may be as high as a 40% reduction in summertime generation potential. (author)

  17. Climate Change, Disaster and Sentiment Analysis over Social Media Mining

    Science.gov (United States)

    Lee, J.; McCusker, J. P.; McGuinness, D. L.

    2012-12-01

    Accelerated climate change causes disasters and disrupts people living all over the globe. Disruptive climate events are often reflected in expressed sentiments of the people affected. Monitoring changes in these sentiments during and after disasters can reveal relationships between climate change and mental health. We developed a semantic web tool that uses linked data principles and semantic web technologies to integrate data from multiple sources and analyze them together. We are converting statistical data on climate change and disaster records obtained from the World Bank data catalog and the International Disaster Database into a Resource Description Framework (RDF) representation that was annotated with the RDF Data Cube vocabulary. We compare these data with a dataset of tweets that mention terms from the Emotion Ontology to get a sense of how disasters can impact the affected populations. This dataset is being gathered using an infrastructure we developed that extracts term uses in Twitter with controlled vocabularies. This data was also converted to RDF structure so that statistical data on the climate change and disasters is analyzed together with sentiment data. To visualize and explore relationship of the multiple data across the dimensions of time and location, we use the qb.js framework. We are using this approach to investigate the social and emotional impact of climate change. We hope that this will demonstrate the use of social media data as a valuable source of understanding on global climate change.

  18. A Meta-Analysis of Local Climate Change Adaptation Actions

    Science.gov (United States)

    Local governments are beginning to take steps to address the consequences of climate change, such as sea level rise and heat events. However, we do not have a clear understanding of what local governments are doing -- the extent to which they expect climate change to affect their...

  19. Characterization of the Dynamics of Climate Systems and Identification of Missing Mechanisms Impacting the Long Term Predictive Capabilities of Global Climate Models Utilizing Dynamical Systems Approaches to the Analysis of Observed and Modeled Climate

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Uma S. [Univ. of Alaska, Fairbanks, AK (United States). Dept. of Atmospheric Sciences; Wackerbauer, Renate [Univ. of Alaska, Fairbanks, AK (United States). Dept. of Physics; Polyakov, Igor V. [Univ. of Alaska, Fairbanks, AK (United States). Dept. of Atmospheric Sciences; Newman, David E. [Univ. of Alaska, Fairbanks, AK (United States). Dept. of Physics; Sanchez, Raul E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fusion Energy Division; Univ. Carlos III de Madrid (Spain)

    2015-11-13

    The goal of this research was to apply fractional and non-linear analysis techniques in order to develop a more complete characterization of climate change and variability for the oceanic, sea ice and atmospheric components of the Earth System. This research applied two measures of dynamical characteristics of time series, the R/S method of calculating the Hurst exponent and Renyi entropy, to observational and modeled climate data in order to evaluate how well climate models capture the long-term dynamics evident in observations. Fractional diffusion analysis was applied to ARGO ocean buoy data to quantify ocean transport. Self organized maps were applied to North Pacific sea level pressure and analyzed in ways to improve seasonal predictability for Alaska fire weather. This body of research shows that these methods can be used to evaluate climate models and shed light on climate mechanisms (i.e., understanding why something happens). With further research, these methods show promise for improving seasonal to longer time scale forecasts of climate.

  20. Climate Change Adaptation Practices in Various Countries

    Science.gov (United States)

    Tanik, A.; Tekten, D.

    2017-08-01

    The paper will be a review work on the recent strategies of EU in general, and will underline the inspected sectoral based adaptation practices and action plans of 7 countries; namely Germany, France, Spain, Italy, Denmark, USA and Kenya from Africa continent. Although every countries’ action plan have some similarities on sectoral analysis, each country in accordance with the specific nature of the problem seems to create its own sectoral analysis. Within this context, green and white documents of EU adaptation to climate change, EU strategy on climate change, EU targets of 2020 on climate change and EU adaptation support tools are investigated.

  1. CECILIA Regional Climate Simulations for Future Climate: Analysis of Climate Change Signal

    Czech Academy of Sciences Publication Activity Database

    Belda, M.; Skalák, Petr; Farda, Aleš; Halenka, T.; Déqué, M.; Csima, G.; Bartholy, J.; Torma, C.; Boroneant, C.; Caian, M.; Spiridonov, V.

    2015-01-01

    Roč. 2015, č. 2015 (2015), s. 354727 ISSN 1687-9309 Institutional support: RVO:67179843 Keywords : climate change * project Cecilia * modelling activities * aladin Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.107, year: 2015

  2. Climate change affects rainmakers' predictions | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-10-08

    Oct 8, 2010 ... English · Français ... animals, associated with seasonal changes,” Mary O'Neill of Climate Change Adaptation in Africa ( CCAA ) told MediaGlobal. ... and the meteorologists forecast apply on the national and regional level.

  3. [Lake eutrophication modeling in considering climatic factors change: a review].

    Science.gov (United States)

    Su, Jie-Qiong; Wang, Xuan; Yang, Zhi-Feng

    2012-11-01

    Climatic factors are considered as the key factors affecting the trophic status and its process in most lakes. Under the background of global climate change, to incorporate the variations of climatic factors into lake eutrophication models could provide solid technical support for the analysis of the trophic evolution trend of lake and the decision-making of lake environment management. This paper analyzed the effects of climatic factors such as air temperature, precipitation, sunlight, and atmosphere on lake eutrophication, and summarized the research results about the lake eutrophication modeling in considering in considering climatic factors change, including the modeling based on statistical analysis, ecological dynamic analysis, system analysis, and intelligent algorithm. The prospective approaches to improve the accuracy of lake eutrophication modeling with the consideration of climatic factors change were put forward, including 1) to strengthen the analysis of the mechanisms related to the effects of climatic factors change on lake trophic status, 2) to identify the appropriate simulation models to generate several scenarios under proper temporal and spatial scales and resolutions, and 3) to integrate the climatic factors change simulation, hydrodynamic model, ecological simulation, and intelligent algorithm into a general modeling system to achieve an accurate prediction of lake eutrophication under climatic change.

  4. Towards a Better Understanding of Climate Change Negotiations

    Directory of Open Access Journals (Sweden)

    Bryndís Arndal Woods

    2012-12-01

    Full Text Available The bulk of environmental economics literature applies non-cooperative game theory to examine the stability of International Environmental Agreements. Recently, a new trend has emerged in the literature whereby scholars use modified economic approaches to better account for ‘reality’ as such. This article builds upon the work of Hugh Ward, Frank Grundig and Ethan Zorick who conducted a mixed-method analysis to create a model of international climate change negotiations which could explain why policy change has been minimal in this issue area. The purpose of this article is to further develop the mixed-method approach in order to gain a better understanding of international climate change negotiations. Using the progression of the 2011 Durban negotiation session as our raw data, we demonstrate the usefulness of conducting qualitative and quantitative analyses simultaneously to best represent reality. Content and discourse analyses are applied to the Durban negotiations to identify the properties of the underlying game. The results are applied to the future of the negotiations in order to identify trends which need to be addressed to reach more progressive outcomes in the future. The main results of the qualitative analyses of the Durban negotiations included that players had modest expectations at the outset of the negotiations, which influenced the issues they addressed. The quantitative analysis demonstrated that players achieved a high degree of success at Durban; all players achieved their desired outcomes on at least half of the issues they addressed. Finally, the mixed-method approach identified important trends from the negotiations, most importantly the cracks exposed within the BASIC bloc and the role of the ‘middle ground’ alliance.

  5. Climate change-induced impacts on urban flood risk influenced by concurrent hazards

    DEFF Research Database (Denmark)

    Pedersen, A. N.; Mikkelsen, Peter Steen; Arnbjerg-Nielsen, Karsten

    2012-01-01

    hazards, rainfall and sea surge, are both important. The core in the methodology is the application of copula functions as an extension of one-dimensional risk analysis and projections of future climatic changes. The results for Greater Copenhagen indicate that the dependence between the hazards is weak......In coastal regions, several hazards may lead to floods, and if they occur concurrently, the damage will be higher than for the hazards individually. The paper outlines an approach for carrying out a risk analysis with several hazards and applies it on a case study in Greater Copenhagen where two...... and that climate change most likely will not increase the correlation. The overall change in flood return periods over a forecast horizon of 110 years are estimated to decrease by one to three orders of magnitude....

  6. Land Use Change and Global Adaptations to Climate Change

    Directory of Open Access Journals (Sweden)

    Roxana Juliá

    2013-12-01

    Full Text Available This paper uses the World Trade Model with Climate Sensitive Land (WTMCL to evaluate possible future land-use changes associated with adaptations to climate change in a globalized world. In this approach, changes in regional agricultural production, which are based on comparative advantage, define patterns of land use change in agriculture in all regions of the world. We evaluate four scenarios that combine assumptions about future increases in food demand and future changes in land endowments of different productivities associated with climatic conditions: each scenario generates distinct patterns of regional specialization in the production of agricultural commodities and associated land-use change. The analysis also projects future food availability under the simulated conditions and the direction of likely changes in prices of the major agricultural commodity groups.

  7. RURAL FARMERS’ PERCEPTION OF CLIMATE CHANGE IN CENTRAL AGRICULTURAL ZONE OF DELTA STATE, NIGERIA

    Directory of Open Access Journals (Sweden)

    A.U. Ofuoku

    2011-10-01

    Full Text Available Farmer perception of their environment is a factor of climate change. Adaptation to climate change requires farmers to realize that the climate has changed and they must identify useful adaptations and implement them. This study analyzed the per-ception of climate change among rural farmers in central agri-cultural zone of Delta State, Nigeria. Climate change studies often assume certain adaptations and minimal examination of how, when, why, and conditions under which adaptations usually take place in any economic and social systems. The study was conducted by survey method on 131 respondents using struc-tured interview schedule and questionnaire. Data were analyzed with descriptive statistics and linear regression model to test that education, gender, and farming experience influenced farmers’ perception of climate change. The results showed that the farmers were aware of climate change. The identified causes of climate change were ranging from intensified agriculture, population explosion, increased use of fossil fuel, loss of in-digenous know practice to gas flaring. The effects of climate change on crops and livestocks were also identified by the rural farmers. Many of the farmers adapted to climate change by planting trees, carrying out soil conservation practice, changing planting dates, using different crop varieties, installing fans in livestock pens, and applying irrigation. Almost half of them did not adapt to climate change. The linear regression analysis revealed that education, gender, and farming experience influ-enced farmers’ perception of climate change. The major barriers to adaptation to climate change included lack of information, lack of money, and inadequate land.

  8. Climate change and health effects in Northwest Alaska

    Directory of Open Access Journals (Sweden)

    Michael Brubaker

    2011-10-01

    Full Text Available This article provides examples of adverse health effects, including weather-related injury, food insecurity, mental health issues, and water infrastructure damage, and the responses to these effects that are currently being applied in two Northwest Alaska communities.In Northwest Alaska, warming is resulting in a broad range of unusual weather and environmental conditions, including delayed freeze-up, earlier breakup, storm surge, coastal erosion, and thawing permafrost. These are just some of the climate impacts that are driving concerns about weather-related injury, the spread of disease, mental health issues, infrastructure damage, and food and water security. Local leaders are challenged to identify appropriate adaptation strategies to address climate impacts and related health effects.The tribal health system is combining local observations, traditional knowledge, and western science to perform community-specific climate change health impact assessments. Local leaders are applying this information to develop adaptation responses.The Alaska Native Tribal Health Consortium will describe relationships between climate impacts and health effects and provide examples of community-scaled adaptation actions currently being applied in Northwest Alaska.Climate change is increasing vulnerability to injury, disease, mental stress, food insecurity, and water insecurity. Northwest communities are applying adaptation approaches that are both specific and appropriate.The health impact assessment process is effective in raising awareness, encouraging discussion, engaging partners, and implementing adaptation planning. With community-specific information, local leaders are applying health protective adaptation measures.

  9. Guidelines for the adaptation to floods in changing climate

    Science.gov (United States)

    Doroszkiewicz, Joanna; Romanowicz, Renata J.

    2017-08-01

    A decrease of flood damages in the future requires not only adaptation to flood caused by present day climate, but also climate change effects on floods should be taken into account. The paper illustrates the need to take into account changing climate conditions in flood adaptation strategies and to apply in practice the concept of integrated water resource management (IWRM). IWRM is based on a number of policy instruments, economic instruments, political signals, and also, on the effects of climate change on floods and collaboration across national, regional and local administrative units. The guidelines for a country adaptation to floods in a changing climate are outlined. A comparison of the adaptive capacities in Poland and Norway is used to illustrate the need for the implementation of proposed guidelines to assure flood risk management under climate change in a sustainable way.

  10. Applying information network analysis to fire-prone landscapes: implications for community resilience

    Directory of Open Access Journals (Sweden)

    Derric B. Jacobs

    2017-03-01

    Full Text Available Resilient communities promote trust, have well-developed networks, and can adapt to change. For rural communities in fire-prone landscapes, current resilience strategies may prove insufficient in light of increasing wildfire risks due to climate change. It is argued that, given the complexity of climate change, adaptations are best addressed at local levels where specific social, cultural, political, and economic conditions are matched with local risks and opportunities. Despite the importance of social networks as key attributes of community resilience, research using social network analysis on coupled human and natural systems is scarce. Furthermore, the extent to which local communities in fire-prone areas understand climate change risks, accept the likelihood of potential changes, and have the capacity to develop collaborative mitigation strategies is underexamined, yet these factors are imperative to community resiliency. We apply a social network framework to examine information networks that affect perceptions of wildfire and climate change in Central Oregon. Data were collected using a mailed questionnaire. Analysis focused on the residents' information networks that are used to gain awareness of governmental activities and measures of community social capital. A two-mode network analysis was used to uncover information exchanges. Results suggest that the general public develops perceptions about climate change based on complex social and cultural systems rather than as patrons of scientific inquiry and understanding. It appears that perceptions about climate change itself may not be the limiting factor in these communities' adaptive capacity, but rather how they perceive local risks. We provide a novel methodological approach in understanding rural community adaptation and resilience in fire-prone landscapes and offer a framework for future studies.

  11. Lake sediment records of Quaternary climate change

    International Nuclear Information System (INIS)

    Moy, C.

    2012-01-01

    Lake sediment records provide an excellent means to reconstruct past climate and environmental change because they typically provide long, high-resolution and continuous archives of environmental change. Lake sediment records typically exhibit high sedimentation rates (centennial to millennial scale variability is common and annual resolution is possible in some sites), contain sedimentary components well-suited for a multi-proxy approach, multiple dating methods can be applied, tend to exhibit a broad geographic distribution, and are relatively accessible. Furthermore, a number of geochemical techniques can be applied to reconstruct components of the climate system based on the stable isotope geochemistry of carbonate or organic phases preserved and exposed in lacustrine sediment cores. Various stable isotope methods can be applied to lacustrine systems and these are a valuable tool that can be used to monitor physical processes (e.g. evaporation), vegetation dynamics within the watershed (C 3 vs C 4 plant distributions), biologic processes (aquatic productivity), all of which can be driven by a regional climate forcing. (author). 31 refs., 11 figs., 1 tab.

  12. Urban Vulnerability and Climate Change in Africa

    DEFF Research Database (Denmark)

    Urbanisation and climate change are among the major challenges for sustainable development in Africa. The overall aim of this book is to present innovative approaches to vulnerability analysis and for enhancing the resilience of African cities against climate change-induced risks. Locally adapted...... explores the role of governance in successfully coping with climate-induced risks in urban areas. The book is unique in that it combines: a top-down perspective of climate change modeling with a bottom-up perspective of vulnerability assessment; quantitative approaches from engineering sciences...

  13. Equality and CO2 emissions distribution in climate change integrated assessment modelling

    International Nuclear Information System (INIS)

    Cantore, Nicola; Padilla, Emilio

    2010-01-01

    The equity implications of alternative climate policy measures are an essential issue to be considered in the design of future international agreements to tackle global warming. This paper specifically analyses the future path of emissions and income distribution and its determinants in different scenarios. Whereas our analysis is driven by tools which are typically applied in the income distribution literature and which have recently been applied to the analysis of CO 2 emissions distribution, a new methodological approach is that our study is driven by simulations run with the popular regionalised optimal growth climate change model RICE99 over the 1995-2105 period. We find that the architecture of environmental policies, the implementation of flexible mechanisms and income concentration are key determinants of emissions distribution over time. In particular we find a robust positive relationship between measures of inequalities in the distribution of emissions and income and that their magnitude will essentially depend on technological change. (author)

  14. Climate Change Mitigation A Balanced Approach to Climate Change

    CERN Document Server

    2012-01-01

    This book provides a fresh and innovative perspective on climate change policy. By emphasizing the multiple facets of climate policy, from mitigation to adaptation, from technological innovation and diffusion to governance issues, it contains a comprehensive overview of the economic and policy dimensions of the climate problem. The keyword of the book is balance. The book clarifies that climate change cannot be controlled by sacrificing economic growth and many other urgent global issues. At the same time, action to control climate change cannot be delayed, even though gradually implemented. Therefore, on the one hand climate policy becomes pervasive and affects all dimensions of international policy. On the other hand, climate policy cannot be too ambitious: a balanced approach between mitigation and adaptation, between economic growth and resource management, between short term development efforts and long term innovation investments, should be adopted. I recommend its reading. Carlo Carraro, President, Ca�...

  15. Scenario analysis of climate change and tourism in Spain and other European regions

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, A.M.

    2005-06-15

    The aim of the study is to determine the possible impact of climate change on the tourist industry in Spain, with an especial focus on coastal regions. This includes the identification of potential areas suffering a decrease in the tourist flows, as well as different regions that could see a benefit on increasing temperatures and more reliable weather predictions. To do so, a Tourism Climate Index will be used, studying the potentiality of an area for tourism considering different elements of the climate which are relevant for the tourism activities. Current and future climatological scenarios over the main tourist sites in Spain will be built. In addition, the study will include an evaluation of the context around Spain, including case studies in other 5 different countries and a global description for the rest of the continent. Chapter 2 focuses mainly on the tourist sector. The global importance of this activity, together with the international tourism flows, serves as introduction to a more detailed assessment of the significant role that Spain plays as a tourist destination. The complex interrelations between climate (change) and tourism are reviewed in chapter 3. First, a brief introduction about climate change and descriptions of major projections about future climate world wide. This description is further detailed for Spain. Additionally, the interactions between tourism and climate are described thoroughly. Chapter 4 discusses the concept of 'Tourist Comfort Index', addressing key issues such as factors included and weighting. This section gives also a brief overview of the analysis and the data that was needed in the elaboration of the thesis. The implementation of the index and the results for current climate and future climate is presented. After the data analysis, chapter 5 provides an in-depth discussion of the results and compares them with other studies. This chapter is followed by the conclusions and recommendations in chapter 6.

  16. Detection of greenhouse-gas-induced climatic change

    International Nuclear Information System (INIS)

    Wigley, T.M.L.; Jones, P.D.

    1992-01-01

    The aims of the US Department of Energy's Carbon Dioxide Research Program are to improve assessments of greenhouse-gas-induced climatic change and to define and reduce uncertainties through selected research. This project will address: The regional and seasonal details of the expected climatic changes; how rapidly will these changes occur; how and when will the climatic effects of CO 2 and other greenhouse gases be first detected; and the relationships between greenhouse-gas-induced climatic change and changes caused by other external and internal factors. The present project addresses all of these questions. Many of the diverse facets of greenhouse-gas-related climate research can be grouped under three interlinked subject areas: modeling, first detection and supporting data. This project will include the analysis of climate forcing factors, the development and refinement of transient response climate models, and the use of instrumental data in validating General Circulation Models (GCMs)

  17. Lake sediment records of Quaternary climate change

    International Nuclear Information System (INIS)

    Moy, C.

    2016-01-01

    Lake sediments are excellent archives of climate and environmental change. Lakes typically exhibit high sedimentation rates, contain sedimentary components well-suited for a multi-proxy approach, multiple dating methods can be applied, exhibit a broad geographic distribution, and are relatively accessible for study. Furthermore, a number of geochemical techniques can be applied to recontsruct components of the climate system based on the stable isotope geochemistry of carbonate or organic phases preserved and exposed in lacustrine sedimentary cores. Various stable isotope methods can be applied to lacustrine systems and these are a valuable tool that can be used to monitor physical processes (e.g. evaporation), vegetation dynamics within the watershed (C 3 vs C 4 plant distributions), biologic processes (aquatic productivity), all of which can be driven by a regional climate forcing. (author).

  18. Lake sediment records of Quaternary climate change

    International Nuclear Information System (INIS)

    Moy, C.

    2014-01-01

    Lake sediments are excellent archives of climate and environmental change. Lakes typically exhibit high sedimentation rates, contain sedimentary components well-suited for a multi-proxy approach, multiple dating methods can be applied, exhibit a broad geographic distribution, and are relatively accessible for study. Furthermore, a number of geochemical techniques can be applied to recontsruct components of the climate system based on the stable isotope geochemistry of carbonate or organic phases preserved and exposed in lacustrine sedimentary cores. Various stable isotope methods can be applied to lacustrine systems and these are a valuable tool that can be used to monitor physical processes (e.g. evaporation), vegetation dynamics within the watershed (C 3 vs C 4 plant distributions), biologic processes (aquatic productivity), all of which can be driven by a regional climate forcing. (author)

  19. Lake sediment records of Quaternary climate change

    International Nuclear Information System (INIS)

    Moy, C.

    2015-01-01

    Lake sediments are excellent archives of climate and environmental change. Lakes typically exhibit high sedimentation rates, contain sedimentary components well-suited for a multi-proxy approach, multiple dating methods can be applied, exhibit a broad geographic distribution, and are relatively accessible for study. Furthermore, a number of geochemical techniques can be applied to recontsruct components of the climate system based on the stable isotope geochemistry of carbonate or organic phases preserved and exposed in lacustrine sedimentary cores. Various stable isotope methods can be applied to lacustrine systems and these are a valuable tool that can be used to monitor physical processes (e.g. evaporation), vegetation dynamics within the watershed (C 3 vs C 4 plant distributions), biologic processes (aquatic productivity), all of which can be driven by a regional climate forcing. (author)

  20. Climate change, human health, and biomedical research: analysis of the National Institutes of Health research portfolio.

    Science.gov (United States)

    Jessup, Christine M; Balbus, John M; Christian, Carole; Haque, Ehsanul; Howe, Sally E; Newton, Sheila A; Reid, Britt C; Roberts, Luci; Wilhelm, Erin; Rosenthal, Joshua P

    2013-04-01

    According to a wide variety of analyses and projections, the potential effects of global climate change on human health are large and diverse. The U.S. National Institutes of Health (NIH), through its basic, clinical, and population research portfolio of grants, has been increasing efforts to understand how the complex interrelationships among humans, ecosystems, climate, climate variability, and climate change affect domestic and global health. In this commentary we present a systematic review and categorization of the fiscal year (FY) 2008 NIH climate and health research portfolio. A list of candidate climate and health projects funded from FY 2008 budget appropriations were identified and characterized based on their relevance to climate change and health and based on climate pathway, health impact, study type, and objective. This analysis identified seven FY 2008 projects focused on climate change, 85 climate-related projects, and 706 projects that focused on disease areas associated with climate change but did not study those associations. Of the nearly 53,000 awards that NIH made in 2008, approximately 0.17% focused on or were related to climate. Given the nature and scale of the potential effects of climate change on human health and the degree of uncertainty that we have about these effects, we think that it is helpful for the NIH to engage in open discussions with science and policy communities about government-wide needs and opportunities in climate and health, and about how NIH's strengths in human health research can contribute to understanding the health implications of global climate change. This internal review has been used to inform more recent initiatives by the NIH in climate and health.

  1. Changing Minds about the Changing Climate: a Longitudinal Study of the Impacts of a Climate Change Curriculum on Undergraduate Student Knowledge and Attitudes.

    Science.gov (United States)

    Burkholder, K. C.; Mooney, S.

    2016-12-01

    In the fall of 2013, 24 sophomore students enrolled in a three-course Learning Community entitled "The Ethics and Science of Climate Change." This learning community was comprised of two disciplinary courses in environmental ethics and environmental science as well as a seminar course in which the students designed and delivered climate change education events in the community beyond campus. Students were surveyed prior to and upon completion of the semester using a variant of the Yale Climate Literacy Survey in order to assess their knowledge of and attitudes towards climate change. An analysis of those survey results demonstrated that the non-traditional curriculum resulted in significant improvements that extended beyond disciplinary knowledge of climate change: the student attitudes about climate change and our cultural response to the issues associated with climate change shifted as well. Finally, a third administration of the survey (n=17) plus follow up interviews with 10 of those original students conducted during the students' senior year in 2016 suggest that the changes that the students underwent as sophomores were largely retained.

  2. Forecasting conditional climate-change using a hybrid approach

    Science.gov (United States)

    Esfahani, Akbar Akbari; Friedel, Michael J.

    2014-01-01

    A novel approach is proposed to forecast the likelihood of climate-change across spatial landscape gradients. This hybrid approach involves reconstructing past precipitation and temperature using the self-organizing map technique; determining quantile trends in the climate-change variables by quantile regression modeling; and computing conditional forecasts of climate-change variables based on self-similarity in quantile trends using the fractionally differenced auto-regressive integrated moving average technique. The proposed modeling approach is applied to states (Arizona, California, Colorado, Nevada, New Mexico, and Utah) in the southwestern U.S., where conditional forecasts of climate-change variables are evaluated against recent (2012) observations, evaluated at a future time period (2030), and evaluated as future trends (2009–2059). These results have broad economic, political, and social implications because they quantify uncertainty in climate-change forecasts affecting various sectors of society. Another benefit of the proposed hybrid approach is that it can be extended to any spatiotemporal scale providing self-similarity exists.

  3. Modulation of sociotechnical change as climate change challenge

    International Nuclear Information System (INIS)

    Arentsen, M.J.; Eberg, J.W.

    2001-01-01

    Results of the MATRIC (Management of Technology Responses to the Climate Change Challenge) project are summarized. The project empirically studied technological change and innovation to learn more about the contingencies conditioning and influencing these processes with the aim to recommend national technology oriented climate change policies. The first chapter explains the background, the central research question, the structure and the methodology of Matric. The central research question was how to modulate the ongoing dynamics of socio-technical change to the climate change needs. Chapter two summarizes the core of the analytical framework of Matric. The fundamental idea of social embedding of technology has been the analytical point of departure of the Matric project. It says that innovations emerge and technology changes in close interaction with its social environment. The social environment turns out to be a strong conditioner of technological change and development and therefore, technology and its embedding social environment tend to co-evolve in the course of time. Co-evolution of technology and its social environment theoretically draws on evolutionary oriented economics and sociology. Both theoretical traditions are in turn inspired by biologically oriented. Chapter three summarizes the empirical findings of the analysis of socio-technical change patterns in three cases: electricity generation and use, car-based transport and mobility and eco-efficiency in industrial production. The cases have been selected for their climate change impact and for their social and economic significance. Chapter four comparatively analyzes the significance of the analytical and empirical findings of Matric for the central research question of the project. The chapter comparatively analysis the general pattern of the development, the change and development of the socio-technical regimes, the socio-technical governance arrangements and processes and the public policy

  4. Local governing of climate change in Denmark

    DEFF Research Database (Denmark)

    Berthou, Sara Kristine Gløjmar; Ebbesen, Betina Vind

    2016-01-01

    This paper is concerned with the ways in which Danish municipalities seek to mitigate climate change through a range of governance strategies. Through the analysis of ten municipal climate plans using the framework of Mitchell Dean, as well as extensive ethnographic fieldwork in two municipalities......, this paper explores how local climate change mitigation is shaped by particular rationalities and technologies of government, and thus seeks to illustrate how the strategies set out in the plans construe climate change mitigation from a certain perspective, thereby rendering some solutions more likely than...

  5. FUTURE CLIMATE ANALYSIS

    International Nuclear Information System (INIS)

    R.M. Forester

    2000-01-01

    This Analysis/Model Report (AMR) documents an analysis that was performed to estimate climatic variables for the next 10,000 years by forecasting the timing and nature of climate change at Yucca Mountain (YM), Nevada (Figure l), the site of a potential repository for high-level radioactive waste. The future-climate estimates are based on an analysis of past-climate data from analog meteorological stations, and this AMR provides the rationale for the selection of these analog stations. The stations selected provide an upper and a lower climate bound for each future climate, and the data from those sites will provide input to the infiltration model (USGS 2000) and for the total system performance assessment for the Site Recommendation (TSPA-SR) at YM. Forecasting long-term future climates, especially for the next 10,000 years, is highly speculative and rarely attempted. A very limited literature exists concerning the subject, largely from the British radioactive waste disposal effort. The discussion presented here is one method, among many, of establishing upper and lower bounds for future climate estimates. The method used here involves selecting a particular past climate from many past climates, as an analog for future climate. Other studies might develop a different rationale or select other past climates resulting in a different future climate analog

  6. FUTURE CLIMATE ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    R.M. Forester

    2000-03-14

    This Analysis/Model Report (AMR) documents an analysis that was performed to estimate climatic variables for the next 10,000 years by forecasting the timing and nature of climate change at Yucca Mountain (YM), Nevada (Figure l), the site of a potential repository for high-level radioactive waste. The future-climate estimates are based on an analysis of past-climate data from analog meteorological stations, and this AMR provides the rationale for the selection of these analog stations. The stations selected provide an upper and a lower climate bound for each future climate, and the data from those sites will provide input to the infiltration model (USGS 2000) and for the total system performance assessment for the Site Recommendation (TSPA-SR) at YM. Forecasting long-term future climates, especially for the next 10,000 years, is highly speculative and rarely attempted. A very limited literature exists concerning the subject, largely from the British radioactive waste disposal effort. The discussion presented here is one method, among many, of establishing upper and lower bounds for future climate estimates. The method used here involves selecting a particular past climate from many past climates, as an analog for future climate. Other studies might develop a different rationale or select other past climates resulting in a different future climate analog.

  7. A generalized theory of sun-climate/weather link and climatic change

    International Nuclear Information System (INIS)

    Njau, E.C.

    1988-07-01

    We generalize the theory of Sun-Climate/weather links and climatic change developed earlier by the author. On the basis of this theory, we show mathematically that key climatic/weather parameters are continuously subjected to determinable amplitude modulations and other variations which may be useful in climatic prediction work. A number of new and known terrestrial oscillations in climate and atmospheric behaviour in general, including the known quasi-biennial oscillations and many others, are deduced from the theory and accounted for in terms of their causative physical processes. Finally we briefly discuss the possibility of applying the theory to the planets Mars and Venus as well as Saturn's largest satellite, Titan. (author). 30 refs, 1 fig

  8. Climate Change Impact on Togo's Agriculture Performance: A ...

    African Journals Online (AJOL)

    Climate Change Impact on Togo's Agriculture Performance: A Ricardian Analysis Based on Time Series Data. ... Ethiopian Journal of Environmental Studies and Management ... Conclusively, the impact of climate change on agriculture seems to be varied with the temperature and precipitation in different seasons. Climate ...

  9. Changing heathlands in a changing climate

    DEFF Research Database (Denmark)

    Ransijn, Johannes

    Atmospheric CO2 concentrations and temperatures are rising and precipitation regimes are changing at global scale. How ecosystem will be affected by global climatic change is dependent on the responses of plants and plant communities. This thesis focuses on how climate change affects heathland...... plant communities. Many heathlands have shifted from dwarf shrub dominance to grass dominance and climatic change might affect the competitive balance between dwarf shrubs and grasses. We looked at heathland vegetation dynamics and heathland plant responses to climatic change at different spatial...... between C. vulgaris and D. flexuosa in the same climate change experiment and 5) a study where we compared the responses of shrubland plant communities to experimental warming and recurrent experimental droughts in seven climate change experiments across Europe. Heathland vegetation dynamics are slow...

  10. Global climate change impacts on forests and markets

    Science.gov (United States)

    Xiaohui Tian; Brent Sohngen; John B Kim; Sara Ohrel; Jefferson Cole

    2016-01-01

    This paper develops an economic analysis of climate change impacts in the global forest sector. It illustrates how potential future climate change impacts can be integrated into a dynamic forestry economics model using data from a global dynamic vegetation model, theMC2model. The results suggest that climate change will cause forest outputs (such as timber) to increase...

  11. Climate variability: Possible changes with climate change and impacts on crop yields

    International Nuclear Information System (INIS)

    Mearns, L.O.

    1991-01-01

    A pilot study was carried out of the sensitivity of the CERES wheat model, a deterministic crop-climate model, to changes in the interannual variability of temperature and precipitation. The study was designed to determine the effect of changed temperature variance on the mean and variance of the simulated yields, to compare the effect with the effect of mean temperature changes, and to determine the interacting effects of changes in mean and variance of temperature. The CERES model was applied to 29 cropping years (1952-1980), using three different soil types and two different management practices (fully irrigated and dryland). The coefficients of variation of the yields for irrigated and dryland conditions are plotted against variance change. It was found that in both management systems, the yield response is usually greater to increases rather than decreases in variance. The combined effect of mean and variance temperature changes are most striking under irrigated conditions, with a dramatic decrease in yield variability in the high mean climate change scenario with decreased temperature variance. This suggests that the variability decrease might mitigate the effect of a mean increase in temperature. This result is not found with the dryland case, where decreased temperature variability has little impact on yield variability. 12 refs., 4 figs

  12. Climate change and climate policy

    International Nuclear Information System (INIS)

    Alfsen, Knut H.; Kolshus, Hans H.; Torvanger, Asbjoern

    2000-08-01

    The climate issue is a great political and scientific challenge for several reasons: (1) There are many uncertain aspects of the climate problem, such as future emission of climate gases, the response of the climate system upon these gases, and the effects of climate changes. (2) It is probable, however, that anthropogenic emission of climate gases, deforestation etc. will cause noticeable climate changes in the future. This might be observed as increased frequency of extreme weather situations. This appears to be a greater threat than a gradual increase of temperature and precipitation. (3) Since the climate system is large and react only relatively slowly on changes in for instance the emission of climate gases, the climate problem can only be solved by means of long-term measures. (4) The climate changes may be irreversible. A rational short-term strategy is to ensure maximum flexibility, which can be done by ''slowing down'' (curtailing emissions) and by avoiding irreversible actions as much as possible. The long-term challenge is to develop an economically responsible alternative to the present fossil-based energy system that permits carbon-efficient technologies to compete on price with coal and unconventional oil and gas. Norway is in a special position by being a large exporter of fossil fuel and at the same time wanting to appear responsible in environmental matters. This combination may incur considerable expenses upon Norway and it is therefore important that environmental commitments like the Kyoto agreement can be honoured to the lowest possible cost. The costs can be minimized by: (1) minimizing the measure costs in Norway, (2) working to make the international quota price as low as possible, and (3) reducing the loss of petroleum income as much as possible. This report describes the earth's climate history, the forces behind climatic changes and what the prospects for the future look like. It also reviews what is being done to curtail the emission of

  13. Means and extremes: building variability into community-level climate change experiments.

    Science.gov (United States)

    Thompson, Ross M; Beardall, John; Beringer, Jason; Grace, Mike; Sardina, Paula

    2013-06-01

    Experimental studies assessing climatic effects on ecological communities have typically applied static warming treatments. Although these studies have been informative, they have usually failed to incorporate either current or predicted future, patterns of variability. Future climates are likely to include extreme events which have greater impacts on ecological systems than changes in means alone. Here, we review the studies which have used experiments to assess impacts of temperature on marine, freshwater and terrestrial communities, and classify them into a set of 'generations' based on how they incorporate variability. The majority of studies have failed to incorporate extreme events. In terrestrial ecosystems in particular, experimental treatments have reduced temperature variability, when most climate models predict increased variability. Marine studies have tended to not concentrate on changes in variability, likely in part because the thermal mass of oceans will moderate variation. In freshwaters, climate change experiments have a much shorter history than in the other ecosystems, and have tended to take a relatively simple approach. We propose a new 'generation' of climate change experiments using down-scaled climate models which incorporate predicted changes in climatic variability, and describe a process for generating data which can be applied as experimental climate change treatments. © 2013 John Wiley & Sons Ltd/CNRS.

  14. The economics of climate change

    International Nuclear Information System (INIS)

    1994-01-01

    An international Conference on the Economics of Climate Change was convened by the OECD and the International Energy Agency (IEA) in Paris, in June 1993. Participants included many of the world's foremost experts in the field, as well as representatives from business, labour, and other non-governmental organisations. The Conference sought to examine points of consensus and divergence among existing studies on the economics of climate change. Participants also focused on how economic analysis could contribute to meeting the obligations of OECD countries under the 1992 Framework Convention on Climate Change. Discussions centered on such topics as the economic costs and benefits of greenhouse gas mitigation strategies, the potential role of carbon taxes and other economic instruments in the policy mix, possibilities for technological change and diffusion, especially in the energy sector, and joint abatement action between industrialized and developing countries. This volume contains the papers presented at the Conference, as well as summaries of the subsequent discussions. It provides an overview of the 'state of the art' in the economics of climate change and several suggestions for future research. (author)

  15. Future Climate Analysis

    International Nuclear Information System (INIS)

    Cambell, C. G.

    2004-01-01

    This report documents an analysis that was performed to estimate climatic variables for the next 10,000 years by forecasting the timing and nature of climate change at Yucca Mountain, Nevada, the site of a repository for spent nuclear fuel and high-level radioactive waste. The future-climate estimates are based on an analysis of past-climate data from analog meteorological stations, and this report provides the rationale for the selection of these analog stations. The stations selected provide an upper and a lower climate bound for each future climate, and the data from those sites will provide input to the following reports: ''Simulation of Net Infiltration for Present-Day and Potential Future Climates'' (BSC 2004 [DIRS 170007]), ''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504]), ''Features, Events, and Processes in UZ Flow and Transport'' (BSC 2004 [DIRS 170012]), and ''Features, Events, and Processes in SZ Flow and Transport'' (BSC 2004 [DIRS 170013]). Forecasting long-term future climates, especially for the next 10,000 years, is highly speculative and rarely attempted. A very limited literature exists concerning the subject, largely from the British radioactive waste disposal effort. The discussion presented here is one available forecasting method for establishing upper and lower bounds for future climate estimates. The selection of different methods is directly dependent on the available evidence used to build a forecasting argument. The method used here involves selecting a particular past climate from many past climates, as an analog for future climate. While alternative analyses are possible for the case presented for Yucca Mountain, the evidence (data) used would be the same and the conclusions would not be expected to drastically change. Other studies might develop a different rationale or select other past climates resulting in a different future climate analog. Other alternative

  16. Operationalizing analysis of micro-level climate change vulnerability and adaptive capacity

    DEFF Research Database (Denmark)

    Jiao, Xi; Moinuddin, Hasan

    2016-01-01

    This paper explores vulnerability and adaptive capacity of rural communities in Southern Laos, where households are highly dependent on climate-sensitive natural resources and vulnerable to seasonal weather fluctuations. The speed and magnitude of climate-induced changes may seriously challenge...... their ability to adapt. Participatory group discussions and 271 household surveys in three villages highlight the current level of vulnerability and adaptive capacity towards climatic variability and risks. This paper visualizes three dimensions of the vulnerability framework at two levels using the Community...... Climate Vulnerability Index and household climate vulnerability cube. Results show that not only poor households are most at risk from climate change challenges, but also those better-off households highly dependent on specialized agricultural production are locally exposed to climate change risks...

  17. A Framework for Benefit-Cost Analysis of Adaptation to Climate Change and Climate Variability

    International Nuclear Information System (INIS)

    Leary, N.A.

    1999-01-01

    The potential damages of climate change and climate variability are dependent upon the responses or adaptations that people make to their changing environment. By adapting the management of resources, the mix and methods of producing goods and services, choices of leisure activities, and other behavior, people can lessen the damages that would otherwise result. A framework for assessing the benefits and costs of adaptation to both climate change and climate variability is described in the paper. The framework is also suitable for evaluating the economic welfare effects of climate change, allowing for autonomous adaptation by private agents. The paper also briefly addresses complications introduced by uncertainty regarding the benefits of adaptation and irreversibility of investments in adaptation. When investment costs are irreversible and there is uncertainty about benefits, the usual net present value criterion for evaluating the investment gives the wrong decision. If delaying an adaptation project is possible, and if delay will permit learning about future benefits of adaptation, it may be preferable to delay the project even if the expected net present value is positive. Implications of this result for adaptation policy are discussed in the paper. 11 refs

  18. Climate Change, Human Health, and Biomedical Research: Analysis of the National Institutes of Health Research Portfolio

    Science.gov (United States)

    Balbus, John M.; Christian, Carole; Haque, Ehsanul; Howe, Sally E.; Newton, Sheila A.; Reid, Britt C.; Roberts, Luci; Wilhelm, Erin; Rosenthal, Joshua P.

    2013-01-01

    Background: According to a wide variety of analyses and projections, the potential effects of global climate change on human health are large and diverse. The U.S. National Institutes of Health (NIH), through its basic, clinical, and population research portfolio of grants, has been increasing efforts to understand how the complex interrelationships among humans, ecosystems, climate, climate variability, and climate change affect domestic and global health. Objectives: In this commentary we present a systematic review and categorization of the fiscal year (FY) 2008 NIH climate and health research portfolio. Methods: A list of candidate climate and health projects funded from FY 2008 budget appropriations were identified and characterized based on their relevance to climate change and health and based on climate pathway, health impact, study type, and objective. Results: This analysis identified seven FY 2008 projects focused on climate change, 85 climate-related projects, and 706 projects that focused on disease areas associated with climate change but did not study those associations. Of the nearly 53,000 awards that NIH made in 2008, approximately 0.17% focused on or were related to climate. Conclusions: Given the nature and scale of the potential effects of climate change on human health and the degree of uncertainty that we have about these effects, we think that it is helpful for the NIH to engage in open discussions with science and policy communities about government-wide needs and opportunities in climate and health, and about how NIH’s strengths in human health research can contribute to understanding the health implications of global climate change. This internal review has been used to inform more recent initiatives by the NIH in climate and health. PMID:23552460

  19. Analysis of Climate Change Effect on Camellia Oil Content in Fujian Province of China

    Directory of Open Access Journals (Sweden)

    YU Hui-kang

    2015-02-01

    Full Text Available Fujian Province is one of the main camellia oleifera production areas in China. Camellia oleifera is also an important characteristic varieties of woody oil, which can produce the high quality seed oil. By using of 0.5°(E×0.5°(Nlattice data of China ground temperature and precipitation from 1961 to 2010 which came from National Meteorological Information Center in 2013, this paper extracted the corre-sponding decadal climate data of Fujian Province to carry on statistical and variation analysis, applied climate models of the integrated assess-ment for camellia oil content by using of ArcGIS geographic information technology and probability statistics method to regionalize the oil content of camellia oleifera temporal and spatial distribution from 1961s to 2010s in Fujian Province, analyzed the variation relationship be-tween the oil content and climate essential factor of the monthly decadal mean temperature and precipitation in September at the stage of the key growth period of camellia oil fat accumulation and transformation, evaluated the regional characteristics of camellia oil content variation affected by climate factors in Fujian Province from 1961s to 2010s. The results showed that the decadal mean precipitation in September had a positive significant correlation with oil content change and played a major role of camellia oleifera production in Fujian Province; the signif-icant characteristics of that oil content level in high or low followed the decadal alternate change. There were obviously different oil content level between high oil decadal(1960s, 1980s, 2000sand low oil decadal(1970s, 1990s, and its significant variation period was 20 years. The decadal difference was not significant in temperature coefficient of variation (CvT, which affected the oil content was not obvious either. But there had significant change between precipitation coefficient of variation(CvRand oil content coefficient of variation(Cvf, and their

  20. Connecting today's climates to future climate analogs to facilitate movement of species under climate change.

    Science.gov (United States)

    Littlefield, Caitlin E; McRae, Brad H; Michalak, Julia L; Lawler, Joshua J; Carroll, Carlos

    2017-12-01

    Increasing connectivity is an important strategy for facilitating species range shifts and maintaining biodiversity in the face of climate change. To date, however, few researchers have included future climate projections in efforts to prioritize areas for increasing connectivity. We identified key areas likely to facilitate climate-induced species' movement across western North America. Using historical climate data sets and future climate projections, we mapped potential species' movement routes that link current climate conditions to analogous climate conditions in the future (i.e., future climate analogs) with a novel moving-window analysis based on electrical circuit theory. In addition to tracing shifting climates, the approach accounted for landscape permeability and empirically derived species' dispersal capabilities. We compared connectivity maps generated with our climate-change-informed approach with maps of connectivity based solely on the degree of human modification of the landscape. Including future climate projections in connectivity models substantially shifted and constrained priority areas for movement to a smaller proportion of the landscape than when climate projections were not considered. Potential movement, measured as current flow, decreased in all ecoregions when climate projections were included, particularly when dispersal was limited, which made climate analogs inaccessible. Many areas emerged as important for connectivity only when climate change was modeled in 2 time steps rather than in a single time step. Our results illustrate that movement routes needed to track changing climatic conditions may differ from those that connect present-day landscapes. Incorporating future climate projections into connectivity modeling is an important step toward facilitating successful species movement and population persistence in a changing climate. © 2017 Society for Conservation Biology.

  1. Impact of Climate Change on Combined Solar and Run-of-River Power in Northern Italy

    Directory of Open Access Journals (Sweden)

    Baptiste François

    2018-01-01

    Full Text Available Moving towards energy systems with high variable renewable energy shares requires a good understanding of the impacts of climate change on the energy penetration. To do so, most prior impact studies have considered climate projections available from Global Circulation Models (GCMs. Other studies apply sensitivity analyses on the climate variables that drive the system behavior to inform how much the system changes due to climate change. In the present work, we apply the Decision Scaling approach, a framework merging these two approaches, for analyzing a renewables-only scenario for the electric system of Northern Italy where the main renewable sources are solar and hydropower. Decision Scaling explores the system sensibility to a range of future plausible climate states. GCM projections are considered to estimate probabilities of the future climate states. We focus on the likely future energy mix within the region (25% of solar photovoltaic and 75% of hydropower. We also carry out a sensitivity analysis according to the storage capacity. The results show that run-of-the river power generation from this Alpine area is expected to increase although the average inflow decreases under climate change. They also show that the penetration rate is expected to increase for systems with storage capacity less than one month of average load and inversely for higher storage capacity.

  2. Lake sediment records of Quaternary climate change

    International Nuclear Information System (INIS)

    Moy, C.

    2013-01-01

    Lake sediments are excellent archives of climate and environmental change. Lakes typically exhibit high sedimentation rates, contain sedimentary components well-suited for a multi-proxy approach, multiple dating methods can be applied, exhibit a broad geographic distribution, and are relatively accessible for study. Furthermore, a number of geochemical techniques can be applied to recontsruct components of the climate system based on the stable isotope geochemistry of carbonate or organic phases preserved and exposed in lacustrine sedimentary cores. Various stable isotope methods can be applied to lacustrine systems and these are a valuable tool that can be used to monitor physical processes (e.g. evaporation), vegetation dynamics within the watershed (C 3 vs C 4 plant distributions), biologic processes (aquatic productivity), all of which can be driven by a regional climate forcing. (author). 31 refs., 11 figs.

  3. Climatic change during historical times in japan : reconstruction from climatic hazard records

    OpenAIRE

    Maejima, Ikuo; Tagami, Yoshio

    1986-01-01

    A synoptic analysis of climatic hazard records in historical times of Japan is presented. The cool age (7-9c.), the warm age (10-14c.) and the cold age (15-19c.) are indicated. The relationship between summer and winter conditions in the climatic change is also shown. Thus, the knowledge of the climatic change in Japan from the 7th to the 19th century was systematically summarized.

  4. Development of the virtual research environment for analysis, evaluation and prediction of global climate change impacts on the regional environment

    Science.gov (United States)

    Okladnikov, Igor; Gordov, Evgeny; Titov, Alexander; Fazliev, Alexander

    2017-04-01

    Description and the first results of the Russian Science Foundation project "Virtual computational information environment for analysis, evaluation and prediction of the impacts of global climate change on the environment and climate of a selected region" is presented. The project is aimed at development of an Internet-accessible computation and information environment providing unskilled in numerical modelling and software design specialists, decision-makers and stakeholders with reliable and easy-used tools for in-depth statistical analysis of climatic characteristics, and instruments for detailed analysis, assessment and prediction of impacts of global climate change on the environment and climate of the targeted region. In the framework of the project, approaches of "cloud" processing and analysis of large geospatial datasets will be developed on the technical platform of the Russian leading institution involved in research of climate change and its consequences. Anticipated results will create a pathway for development and deployment of thematic international virtual research laboratory focused on interdisciplinary environmental studies. VRE under development will comprise best features and functionality of earlier developed information and computing system CLIMATE (http://climate.scert.ru/), which is widely used in Northern Eurasia environment studies. The Project includes several major directions of research listed below. 1. Preparation of geo-referenced data sets, describing the dynamics of the current and possible future climate and environmental changes in detail. 2. Improvement of methods of analysis of climate change. 3. Enhancing the functionality of the VRE prototype in order to create a convenient and reliable tool for the study of regional social, economic and political consequences of climate change. 4. Using the output of the first three tasks, compilation of the VRE prototype, its validation, preparation of applicable detailed description of

  5. An Exploratory Analysis of the Impact of Climate Change on Macedonian Agriculture

    Directory of Open Access Journals (Sweden)

    Jordan Hristov

    2017-12-01

    Full Text Available Using a mixed input–output model, this study examines potential changes in sector output and water requirements in Macedonia arising from climate change. By defining three climate change scenarios and exogenously specifying the warming shocks for five key agricultural sub-sectors, the effects on the economy were quantified. The results indicated that except for cereals and grapes, agricultural production would benefit from the low climate change scenario due to moderate changes in precipitation and temperature and longer cropping period, while there would be negligible effects on the rest of the economy. Contrary, the medium and high climate change scenarios would negatively affect agriculture due to increase in temperature and decline in precipitation, with severe losses in grape, apple and cereal production, but again with low effects on other economic sectors. As a result, water consumption by agriculture sector will increase by around 6% in the low climate change scenario, and decrease by around 8% and 16% in the medium and high climate change scenarios, respectively, relative to the current agriculture water consumption. Capital investment in irrigation equipment could mitigate the negative climate change impacts in the medium and high climate change scenarios. However, it would impose additional stresses on the existing limited water resource over time.

  6. Tracking Public Beliefs About Anthropogenic Climate Change.

    Science.gov (United States)

    Hamilton, Lawrence C; Hartter, Joel; Lemcke-Stampone, Mary; Moore, David W; Safford, Thomas G

    2015-01-01

    A simple question about climate change, with one choice designed to match consensus statements by scientists, was asked on 35 US nationwide, single-state or regional surveys from 2010 to 2015. Analysis of these data (over 28,000 interviews) yields robust and exceptionally well replicated findings on public beliefs about anthropogenic climate change, including regional variations, change over time, demographic bases, and the interacting effects of respondent education and political views. We find that more than half of the US public accepts the scientific consensus that climate change is happening now, caused mainly by human activities. A sizable, politically opposite minority (about 30 to 40%) concede the fact of climate change, but believe it has mainly natural causes. Few (about 10 to 15%) say they believe climate is not changing, or express no opinion. The overall proportions appear relatively stable nationwide, but exhibit place-to-place variations. Detailed analysis of 21 consecutive surveys within one fairly representative state (New Hampshire) finds a mild but statistically significant rise in agreement with the scientific consensus over 2010-2015. Effects from daily temperature are detectable but minor. Hurricane Sandy, which brushed New Hampshire but caused no disaster there, shows no lasting impact on that state's time series-suggesting that non-immediate weather disasters have limited effects. In all datasets political orientation dominates among individual-level predictors of climate beliefs, moderating the otherwise positive effects from education. Acceptance of anthropogenic climate change rises with education among Democrats and Independents, but not so among Republicans. The continuing series of surveys provides a baseline for tracking how future scientific, political, socioeconomic or climate developments impact public acceptance of the scientific consensus.

  7. Climate Change, Public Health, and Policy: A California Case Study.

    Science.gov (United States)

    Ganesh, Chandrakala; Smith, Jason A

    2018-04-01

    Anthropogenic activity will bring immediate changes and disruptions to the global climate with accompanying health implications. Although policymakers and public health advocates are beginning to acknowledge the health implications of climate change, current policy approaches are lagging behind. We proposed that 4 key policy principles are critical to successful policymaking in this arena: mainstreaming, linking mitigation and adaptation policy, applying population perspectives, and coordination. We explored California's progress in addressing the public health challenges of climate change in the San Joaquin Valley as an example. We discussed issues of mental health and climate change, and used the San Joaquin Valley of California as an example to explore policy approaches to health issues and climate change. The California experience is instructive for other jurisdictions.

  8. Climate Change, Public Health, and Policy: A California Case Study

    Science.gov (United States)

    Smith, Jason A.

    2018-01-01

    Anthropogenic activity will bring immediate changes and disruptions to the global climate with accompanying health implications. Although policymakers and public health advocates are beginning to acknowledge the health implications of climate change, current policy approaches are lagging behind. We proposed that 4 key policy principles are critical to successful policymaking in this arena: mainstreaming, linking mitigation and adaptation policy, applying population perspectives, and coordination. We explored California’s progress in addressing the public health challenges of climate change in the San Joaquin Valley as an example. We discussed issues of mental health and climate change, and used the San Joaquin Valley of California as an example to explore policy approaches to health issues and climate change. The California experience is instructive for other jurisdictions. PMID:29072936

  9. Climate Change, Agriculture and Food Security in Tanzania

    DEFF Research Database (Denmark)

    Arndt, Channing; Farmer, William; Strzepek, Kenneth

    2012-01-01

    Due to their reliance on rain-fed agriculture, both as a source of income and consumption, many low-income countries are considered to be the most vulnerable to climate change. Here, we estimate the impact of climate change on food security in Tanzania. Representative climate projections are used...... as the channel of impact, food security in Tanzania appears likely to deteriorate as a consequence of climate change. The analysis points to a high degree of diversity of outcomes (including some favorable outcomes) across climate scenarios, sectors, and regions. Noteworthy differences in impacts across...

  10. Climate change impacts on runoff and hydropower in the Nordic countries. Final report from the project 'Climate change and energy production'

    International Nuclear Information System (INIS)

    Roar Saelthun, N.; Aittoniemi, P.; Bergstroem, S.

    1998-01-01

    The Nordic research program 'Climate change and energy production' has been carried out in co-operation between the Nordic hydrological services and the Nordic hydroelectric power industry with funding from the Nordic Council of Ministers and participating institutions. The program has been running for the period 1991-1996. The main objective of the research program was to analyse the effects of a future global climate change on the Nordic system for hydroelectric power production due to increased anthropogenic emissions of greenhouse gases in the atmosphere. The main parts of the program have been: A. Testing and improvements of hydrological models, with special emphasis on evapotranspiration, snow melt and glacier mass balance submodels. B. Assessment of the capability of existing energy planning models to analyse climate change impacts. C. Establishment of state-of-art scenarios for meteorological variables. Estimation of runoff scenarios. D. Analysis of climate change impacts on electricity consumption. E. Analysis of impacts on the hydropower systems, on national and regional scale, including effects on floods and dam safety issues. F. Analysis of climatic variability and climatic trends of hydrological records, including annual, seasonal and extreme values. (au) 171 refs

  11. A climate for development. Climate change policy options for Africa

    International Nuclear Information System (INIS)

    Okoth-Ogendo, H.W.O.; Ojwang, J.B.

    1995-01-01

    The seriousness of the potential impacts of climate change on development in Africa is now well recognized within, and increasingly outside, scientific circles. The United Nations Framework Convention on Climate Change is a landmark in international environmental governance, providing a mechanism for exchange, negotiation and institution-building to re-direct development towards more efficient use of resources, especially energy. The message of 'A climate for Development' is that unless policy-makers fully understand both the international commitments made under the Convention and the essential national development priorities of their own countries, effective action on climate change is unlikely to be realized. The action needed, however, can at the same time stimulate capacity-building, planning and policy change which would strengthen the economic and ecological base of African countries. The climate change issue has hence brought us face to face with the urgency of the basic issues of sustainable development in Africa. The book discusses key issues that cut across all African countries, such as emissions and their impacts, financial resources and technology transfer for emissions abatement strategies. It then provides a sectoral analysis of greenhouse gas emissions and abatement options focusing on energy, industry, agriculture, forestry and transportation. The book concludes with guidelines for options which may be considered by African countries to ensure that climate change concerns are effectively dealt with in the context of their development priorities. 113 refs

  12. Climatic change

    International Nuclear Information System (INIS)

    Perthuis, Ch. de; Delbosc, A.

    2009-01-01

    Received ideas about climatic change are a mixture of right and wrong information. The authors use these ideas as starting points to shade light on what we really know and what we believe to know. The book is divided in three main chapters: should we act in front of climatic change? How can we efficiently act? How can we equitably act? For each chapter a series of received ideas is analyzed in order to find those which can usefully contribute to mitigate the environmental, economical and social impacts of climatic change. (J.S.)

  13. Climate Change and Civil Violence

    Science.gov (United States)

    van der Vink, G.; Plancherel, Y.; Hennet, C.; Jones, K. D.; Abdullah, A.; Bradshaw, J.; Dee, S.; Deprez, A.; Pasenello, M.; Plaza-Jennings, E.; Roseman, D.; Sopher, P.; Sung, E.

    2009-05-01

    The manifestations of climate change can result in humanitarian impacts that reverse progress in poverty- reduction, create shortages of food and resources, lead to migration, and ultimately result in civil violence and conflict. Within the continent of Africa, we have found that environmentally-related variables are either the cause or the confounding factor for over 80% of the civil violence events during the last 10 years. Using predictive climate models and land-use data, we are able to identify populations in Africa that are likely to experience the most severe climate-related shocks. Through geospatial analysis, we are able to overlay these areas of high risk with assessments of both the local population's resiliency and the region's capacity to respond to climate shocks should they occur. The net result of the analysis is the identification of locations that are becoming particularly vulnerable to future civil violence events (vulnerability hotspots) as a result of the manifestations of climate change. For each population group, over 600 social, economic, political, and environmental indicators are integrated statistically to measures the vulnerability of African populations to environmental change. The indicator time-series are filtered for data availability and redundancy, broadly ordered into four categories (social, political, economic and environmental), standardized and normalized. Within each category, the dominant modes of variability are isolated by principal component analysis and the loadings of each component for each variable are used to devise composite index scores. Comparisons of past vulnerability with known environmentally-related conflicts demonstrates the role that such vulnerability hotspot maps can play in evaluating both the potential for, and the significance of, environmentally-related civil violence events. Furthermore, the analysis reveals the major variables that are responsible for the population's vulnerability and therefore

  14. Analysis of magnitude and duration of floods and droughts in the context of climate change

    Science.gov (United States)

    Eshetu Debele, Sisay; Bogdanowicz, Ewa; Strupczewski, Witold

    2016-04-01

    Research and scientific information are key elements of any decision-making process. There is also a strong need for tools to describe and compare in a concise way the regime of hydrological extreme events in the context of presumed climate change. To meet these demands, two complementary methods for estimating high and low-flow frequency characteristics are proposed. Both methods deal with duration and magnitude of extreme events. The first one "flow-duration-frequency" (known as QdF) has already been applied successfully to low-flow analysis, flood flows and rainfall intensity. The second one called "duration-flow-frequency" (DqF) was proposed by Strupczewski et al. in 2010 to flood frequency analysis. The two methods differ in the treatment of flow and duration. In the QdF method the duration (d-consecutive days) is a chosen fixed value and the frequency analysis concerns the annual or seasonal series of mean value of flows exceeded (in the case of floods) or non-exceeded (in the case of droughts) within d-day period. In the second method, DqF, the flows are treated as fixed thresholds and the duration of flows exceeding (floods) and non-exceeding (droughts) these thresholds are a subject of frequency analysis. The comparison of characteristics of floods and droughts in reference period and under future climate conditions for catchments studied within the CHIHE project is presented and a simple way to show the results to non-professionals and decision-makers is proposed. The work was undertaken within the project "Climate Change Impacts on Hydrological Extremes (CHIHE)", which is supported by the Norway-Poland Grants Program administered by the Norwegian Research Council. The observed time series were provided by the Institute of Meteorology and Water Management (IMGW), Poland. Strupczewski, W. G., Kochanek, K., Markiewicz, I., Bogdanowicz, E., Weglarczyk, S., & Singh V. P. (2010). On the Tails of Distributions of Annual Peak Flow. Hydrology Research, 42, 171

  15. A spatio-temporal analysis of climatic drivers for observed changes in Sahelian vegetation productivity 1982-2007

    DEFF Research Database (Denmark)

    Kaspersen, Per; Fensholt, Rasmus; Huber Gharib, Silvia

    2011-01-01

    Linear trend analysis and seasonal trend analysis are performed on gridded data of vegetation, rainfall, solar radiation flux, and air temperature, in order to examine the influence of the past three decades of climate variability and change on the Sahelian vegetation dynamics. Per......-pixel correlation analyses are conducted on annual and monthly data, and analyses of change in the potential climatic constraints to the natural vegetation development from 1982–2007 are performed. The results reveal two distinct periods: (a) 1982–1994 marked by large increases in vegetation productivity...... and rainfall and little change in average air temperatures and solar radiation and (b) 1995–2007 characterized by no distinct trends in vegetation productivity and rainfall and increase in average air temperatures and decrease in solar radiation flux. Correlations between vegetation productivity and climatic...

  16. 'Changing climate, changing health, changing stories' profile: using an EcoHealth approach to explore impacts of climate change on inuit health.

    Science.gov (United States)

    Harper, S L; Edge, V L; Cunsolo Willox, A

    2012-03-01

    Global climate change and its impact on public health exemplify the challenge of managing complexity and uncertainty in health research. The Canadian North is currently experiencing dramatic shifts in climate, resulting in environmental changes which impact Inuit livelihoods, cultural practices, and health. For researchers investigating potential climate change impacts on Inuit health, it has become clear that comprehensive and meaningful research outcomes depend on taking a systemic and transdisciplinary approach that engages local citizens in project design, data collection, and analysis. While it is increasingly recognised that using approaches that embrace complexity is a necessity in public health, mobilizing such approaches from theory into practice can be challenging. In 2009, the Rigolet Inuit Community Government in Rigolet, Nunatsiavut, Canada partnered with a transdisciplinary team of researchers, health practitioners, and community storytelling facilitators to create the Changing Climate, Changing Health, Changing Stories project, aimed at developing a multi-media participatory, community-run methodological strategy to gather locally appropriate and meaningful data to explore climate-health relationships. The goal of this profile paper is to describe how an EcoHealth approach guided by principles of transdisciplinarity, community participation, and social equity was used to plan and implement this climate-health research project. An overview of the project, including project development, research methods, project outcomes to date, and challenges encountered, is presented. Though introduced in this one case study, the processes, methods, and lessons learned are broadly applicable to researchers and communities interested in implementing EcoHealth approaches in community-based research.

  17. Urban Heat Wave Vulnerability Analysis Considering Climate Change

    Science.gov (United States)

    JE, M.; KIM, H.; Jung, S.

    2017-12-01

    Much attention has been paid to thermal environments in Seoul City in South Korea since 2016 when the worst heatwave in 22 years. It is necessary to provide a selective measure by singling out vulnerable regions in advance to cope with the heat wave-related damage. This study aims to analyze and categorize vulnerable regions of thermal environments in the Seoul and analyzes and discusses the factors and risk factors for each type. To do this, this study conducted the following processes: first, based on the analyzed various literature reviews, indices that can evaluate vulnerable regions of thermal environment are collated. The indices were divided into climate exposure index related to temperature, sensitivity index including demographic, social, and economic indices, and adaptation index related to urban environment and climate adaptation policy status. Second, significant variables were derived to evaluate a vulnerable region of thermal environment based on the summarized indices in the above. this study analyzed a relationship between the number of heat-related patients in Seoul and variables that affected the number using multi-variate statistical analysis to derive significant variables. Third, the importance of each variable was calculated quantitatively by integrating the statistical analysis results and analytic hierarchy process (AHP) method. Fourth, a distribution of data for each index was identified based on the selected variables and indices were normalized and overlapped. Fifth, For the climate exposure index, evaluations were conducted as same as the current vulnerability evaluation method by selecting future temperature of Seoul predicted through the representative concentration pathways (RCPs) climate change scenarios as an evaluation variable. The results of this study can be utilized as foundational data to establish a countermeasure against heatwave in Seoul. Although it is limited to control heatwave occurrences itself completely, improvements

  18. Equitable cost-benefit analysis of climate change policies

    Energy Technology Data Exchange (ETDEWEB)

    Tol, R.S.J. [Centre for Marine and Climate Studies, Hamburg University, Bundesstrasse 55, 20146 Hamburg (Germany)

    2001-01-01

    The literature of welfare-maximising greenhouse gas emission reduction strategies pays remarkably little attention to equity. This paper introduces three ways to consider efficiency and equity simultaneously. The first method, inspired by Kant and Rawls, maximises net present welfare, without international cooperation, as if all regions share the fate of the region affected worst by climate change. Optimal emission abatement varies greatly depending on the spatial and temporal resolution, that is, the grid at which 'maximum impact' is defined. The second method is inspired by Varian's no-envy. Emissions are reduced so as to equalise total costs and benefits of climate change over all countries of the world and over all time periods. Emission reductions are substantial. This method approximately preserves the inequities that would occur in a world without climate change. The third method uses non-linear aggregations of welfare (the utilitarian default is linear) in a cooperative setting. This method cannot distinguish between sources of inequity. The higher the aversion to inequity, the higher optimal greenhouse gas emission reduction. 59 refs.

  19. Climate change governance

    Energy Technology Data Exchange (ETDEWEB)

    Knieling, Joerg [HafenCity Univ. Hamburg (Germany). Urban Planning and Regional Development; Leal Filho, Walter (eds.) [HAW Hamburg (Germany). Research and Transfer Centre Applications of Life Science

    2013-07-01

    Climate change is a cause for concern both globally and locally. In order for it to be tackled holistically, its governance is an important topic needing scientific and practical consideration. Climate change governance is an emerging area, and one which is closely related to state and public administrative systems and the behaviour of private actors, including the business sector, as well as the civil society and non-governmental organisations. Questions of climate change governance deal both with mitigation and adaptation whilst at the same time trying to devise effective ways of managing the consequences of these measures across the different sectors. Many books have been produced on general matters related to climate change, such as climate modelling, temperature variations, sea level rise, but, to date, very few publications have addressed the political, economic and social elements of climate change and their links with governance. This book will address this gap. Furthermore, a particular feature of this book is that it not only presents different perspectives on climate change governance, but it also introduces theoretical approaches and brings these together with practical examples which show how main principles may be implemented in practice.

  20. Climate change impact assessment of extreme precipitation on urban flash floods – case study, Aarhus, Denmark

    DEFF Research Database (Denmark)

    Madsen, Henrik; Sunyer Pinya, Maria Antonia; Rosbjerg, Dan

    projections for estimation of changes in extreme rainfall characteristics. Climate model projections from 20 regional climate models (RCM) from the ENSEMBLES data archive were used in the analysis. Two different estimation methods were applied, using, respectively, a direct estimation of the changes...... in the extreme value statistics of the RCM data, and application of a stochastic weather generator fitted to the changes in rainfall characteristics from the RCM data. The results show a large variability in the projected changes in extreme precipitation between the different RCMs and the two estimation methods...

  1. A new climate dataset for systematic assessments of climate change impacts as a function of global warming

    Directory of Open Access Journals (Sweden)

    J. Heinke

    2013-10-01

    Full Text Available In the ongoing political debate on climate change, global mean temperature change (ΔTglob has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines, systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalised patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 Atmosphere–Ocean General Circulation Models (AOGCMs. The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilise a simplified relationships between ΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.

  2. Analysis of Swedish Forest Owners' Information and Knowledge-Sharing Networks for Decision-Making: Insights for Climate Change Communication and Adaptation

    Science.gov (United States)

    André, Karin; Baird, Julia; Gerger Swartling, Åsa; Vulturius, Gregor; Plummer, Ryan

    2017-06-01

    To further the understanding of climate change adaptation processes, more attention needs to be paid to the various contextual factors that shape whether and how climate-related knowledge and information is received and acted upon by actors involved. This study sets out to examine the characteristics of forest owners' in Sweden, the information and knowledge-sharing networks they draw upon for decision-making, and their perceptions of climate risks, their forests' resilience, the need for adaptation, and perceived adaptive capacity. By applying the concept of ego-network analysis, the empirical data was generated by a quantitative survey distributed to 3000 private forest owners' in Sweden in 2014 with a response rate of 31%. The results show that there is a positive correlation, even though it is generally weak, between forest owner climate perceptions and (i) network features, i.e. network size and heterogeneity, and (ii) presence of certain alter groups (i.e. network members or actors). Results indicate that forest owners' social networks currently serve only a minimal function of sharing knowledge of climate change and adaptation. Moreover, considering the fairly infrequent contact between respondents and alter groups, the timing of knowledge sharing is important. In conclusion we suggest those actors that forest owners' most frequently communicate with, especially forestry experts providing advisory services (e.g. forest owner associations, companies, and authorities) have a clear role to communicate both the risks of climate change and opportunities for adaptation. Peers are valuable in connecting information about climate risks and adaptation to the actual forest property.

  3. International aspects of climate change: The intergovernmental panel on climate change

    International Nuclear Information System (INIS)

    Brydges, T.; Fenech, A.

    1990-01-01

    The impact of various international conferences concerning global climate change on international opinions and attitudes is discussed. A number of conferences over the past two decades have drawn attention to the large socio-economic consequences of climate change. There has been increasing attention given to the likely affect of anthropogenically derived greenhouse gases on the global climate. Some early uncertainty over the likely long term changes in global temperature have been replaced by a scientific consensus that global temperatures are increasing and will continue to do so into the next century. Public awareness of the possibility of climate change and severe socio-economic consequences has been increasing and was given a major impetus by the Toronto Conference on the Changing Atmosphere. An estimate of the possible time to solution of the climate change issue is given as 1988-2005, a span of 17 years. The Intergovernmental Panel on Climate Change has focused work into three working groups examining science, impacts and response strategies. 28 refs., 3 figs., 6 tabs

  4. Strategic Planning for Land Use under Extreme Climate Changes: A Case Study in Taiwan

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Huang

    2016-01-01

    Full Text Available Extreme weather caused by global climate change affects slope-land in Taiwan, causing soil loss, floods, and sediment hazards. Although Taiwan is a small island, the population density is ranked second highest worldwide. With three-fourths of the island area being slope-land, soil and water conservation (SWC is crucial. Therefore, because of the impact of climate and social change, the means of maintaining sustainable development of slope-land and the safety of the living environment in Taiwan is a developing and crucial issue. This study applied four foresight analysis tools that covered both qualitative and quantitative aspects, including international trend analysis, a focus group, the Delphi method, and a strategy roadmap. By combining the four analysis tools, we developed corresponding strategies to address climate change for use as references for policy-makers. The findings of this study can contribute to consensus-forming among multiple stakeholders on the sustainable development of soil and water resources and to devising foresight strategies for SWC in short-term, middle-term, and long-term bases. Ultimately, the goal of “considering climate and socioeconomic change, watershed resources being managed on a multiple-use basis to avoid disasters and to sustain SWC” can be realized by the year 2025.

  5. Climate change scenarios and Technology Transfer Protocols

    International Nuclear Information System (INIS)

    Kypreos, Socrates; Turton, Hal

    2011-01-01

    We apply a specific version of MERGE-ETL, an integrated assessment model, to study global climate policies supported by Technology Transfer Protocols (TTPs). We model a specific formulation of such a TTP where donor countries finance via carbon tax revenues, the diffusion of carbon-free technologies in developing countries (DCs) and quantify its benefits. Industrialized countries profit from increased technology exports, global diffusion of advanced technology (leading to additional technology learning and cost reductions) and reduced climate damages through the likelihood of greater global participation in a new international agreement. DCs experience increased welfare from access to subsidized technology, and profit from the reduction of damages related to climate change and expected secondary benefits of carbon abatement (such as reduced local and regional air pollution). The analysis identifies potential candidate technologies that could be supported under a TTP, and the impact of a TTP on economic development (including the flow of transfer subsidies) and global emissions. Although a TTP may encourage additional participation, such a proposal is only likely to be successful if an increased willingness to pay to avoid climate damages is accepted, first by the present and future generations of the industrialized world and later on, when sufficient economic growth is accumulated, by today's developing countries. - Research Highlights: → Climate policy scenarios are assessed with differentiated commitments in carbon emission control supported by Technology Transfer Protocols. → Donor countries finance, via carbon-tax revenues, the exports of carbon-free technologies in developing countries helping to get a new international agreement. → Developing countries experience increased welfare from access to subsidized technology, and profit from the reduction of damages related to climate change and secondary benefits. → Under Technology Protocols alone and

  6. Future Climate Analysis

    Energy Technology Data Exchange (ETDEWEB)

    C. G. Cambell

    2004-09-03

    This report documents an analysis that was performed to estimate climatic variables for the next 10,000 years by forecasting the timing and nature of climate change at Yucca Mountain, Nevada, the site of a repository for spent nuclear fuel and high-level radioactive waste. The future-climate estimates are based on an analysis of past-climate data from analog meteorological stations, and this report provides the rationale for the selection of these analog stations. The stations selected provide an upper and a lower climate bound for each future climate, and the data from those sites will provide input to the following reports: ''Simulation of Net Infiltration for Present-Day and Potential Future Climates'' (BSC 2004 [DIRS 170007]), ''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504]), ''Features, Events, and Processes in UZ Flow and Transport'' (BSC 2004 [DIRS 170012]), and ''Features, Events, and Processes in SZ Flow and Transport'' (BSC 2004 [DIRS 170013]). Forecasting long-term future climates, especially for the next 10,000 years, is highly speculative and rarely attempted. A very limited literature exists concerning the subject, largely from the British radioactive waste disposal effort. The discussion presented here is one available forecasting method for establishing upper and lower bounds for future climate estimates. The selection of different methods is directly dependent on the available evidence used to build a forecasting argument. The method used here involves selecting a particular past climate from many past climates, as an analog for future climate. While alternative analyses are possible for the case presented for Yucca Mountain, the evidence (data) used would be the same and the conclusions would not be expected to drastically change. Other studies might develop a different rationale or select other past

  7. Comparative analysis of climate change policy in a trans-Atlantic perspective, The implications of level of governance regarding climate change mitigation effectiveness

    NARCIS (Netherlands)

    Taminiau, Job

    2010-01-01

    The United States and the European Union address climate change in a fundamentally different manner. The US seems uninterested to address climate change from a federal level, but individual states within the US are definitely moving forward with climate c

  8. A simple approach to distinguish land-use and climate-change effects on watershed hydrology

    Science.gov (United States)

    Tomer, M.D.; Schilling, K.E.

    2009-01-01

    Impacts of climate change on watershed hydrology are subtle compared to cycles of drought and surplus precipitation (PPT), and difficult to separate from effects of land-use change. In the US Midwest, increasing baseflow has been more attributed to increased annual cropping than climate change. The agricultural changes have led to increased fertilizer use and nutrient losses, contributing to Gulf of Mexico hypoxia. In a 25-yr, small-watershed experiment in Iowa, when annual hydrologic budgets were accrued between droughts, a coupled water-energy budget (ecohydrologic) analysis showed effects of tillage and climate on hydrology could be distinguished. The fraction of PPT discharged increased with conservation tillage and time. However, unsatisfied evaporative demand (PET - Hargreaves method) increased under conservation tillage, but decreased with time. A conceptual model was developed and a similar analysis conducted on long-term (>1920s) records from four large, agricultural Midwest watersheds underlain by fine-grained tills. At least three of four watersheds showed decreases in PET, and increases in PPT, discharge, baseflow and PPT:PET ratios (p analysis of covariance showed the fraction of precipitation discharged increased, while unsatisfied evaporative demand decreased with time among the four watersheds (p agricultural changes were associated with ecohydrologic shifts that affected timing and significance, but not direction, of these trends. Thus, an ecohydrologic concept derived from small-watershed research, when regionally applied, suggests climate change has increased discharge from Midwest watersheds, especially since the 1970s. By inference, climate change has increased susceptibility of nutrients to water transport, exacerbating Gulf of Mexico hypoxia.

  9. Climate change impacts in Zhuoshui watershed, Taiwan

    Science.gov (United States)

    Chao, Yi-Chiung; Liu, Pei-Ling; Cheng, Chao-Tzuen; Li, Hsin-Chi; Wu, Tingyeh; Chen, Wei-Bo; Shih, Hung-Ju

    2017-04-01

    There are 5.3 typhoons hit Taiwan per year on average in last decade. Typhoon Morakot in 2009, the most severe typhoon, causes huge damage in Taiwan, including 677 casualty and roughly NT 110 billion (3.3 billion USD) in economic loss. Some researches documented that typhoon frequency will decrease but increase in intensity in western North Pacific region. It is usually preferred to use high resolution dynamical model to get better projection of extreme events; because coarse resolution models cannot simulate intense extreme events. Under that consideration, dynamical downscaling climate data was chosen to describe typhoon satisfactorily. One of the aims for Taiwan Climate Change Projection and Information Platform (TCCIP) is to demonstrate the linkage between climate change data and watershed impact models. The purpose is to understand relative disasters induced by extreme rainfall (typhoons) under climate change in watersheds including landslides, debris flows, channel erosion and deposition, floods, and economic loss. The study applied dynamic downscaling approach to release climate change projected typhoon events under RCP 8.5, the worst-case scenario. The Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability (TRIGRS) and FLO-2D models, then, were used to simulate hillslope disaster impacts in the upstream of Zhuoshui River. CCHE1D model was used to elevate the sediment erosion or deposition in channel. FVCOM model was used to asses a flood impact in urban area in the downstream. Finally, whole potential loss associate with these typhoon events was evaluated by the Taiwan Typhoon Loss Assessment System (TLAS) under climate change scenario. Results showed that the total loss will increase roughly by NT 49.7 billion (1.6 billion USD) in future in Zhuoshui watershed in Taiwan. The results of this research could help to understand future impact; however model bias still exists. Because typhoon track is a critical factor to consider regional

  10. Analysis of the Contribution Rate of Climate Change and Anthropogenic Activity to Runoff Variation in Nenjiang Basin, China

    Directory of Open Access Journals (Sweden)

    Liqin Dong

    2017-12-01

    Full Text Available The Pettitt abrupt change test method based on ArcGIS was used to undertake change-point analysis on climatic (precipitation and potential evapotranspiration; 39 meteorological stations and runoff data (27 hydrological stations from 1954–2015 in the Nenjiang basin. The hydrological sensitivity analysis method was also used to calculate the influential component of climate change upstream, mid-stream, and downstream of the Nenjiang basin, as well as the effect of anthropogenic activities on runoff. Our results show that the upstream area has the highest contribution rate of climate change, followed by the mid-stream area; the downstream area has the lowest contribution rate. Studying climate change contribution rates in various sites in the Nenjiang basin, in addition to anthropogenic activities affecting runoff, can provide the foundation for the protection and utilization of basin water resources, as well as the conservation and restoration of wetlands.

  11. Workshop: Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis: Modeling Climate Change Impacts and Associated Economic Damages (2010 - part 1)

    Science.gov (United States)

    The purpose of this workshop Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis. focused on conceptual and methodological issues - integrated assessment modeling and valuation.

  12. Climate change and international tourism: a simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, J.M. [University of Hamburg (Germany). Centre for Marine and Climate Research, Research Unit Sustainability and Global Change; Maddison, D.J. [University of Southern Denmark, Odense (Denmark). Economics Institute; Centre for Cultural Economics and Management, London (United Kingdom); Tol, R.S.J. [University of Hamburg (Germany). Centre for Marine and Climate Research, Research Unit Sustainability and Global Change; Vrije Universiteit, Amsterdam (Netherlands). Institute for Environmental Studies; Carnegie Mellon University, Pittsburgh (United States). Center for Integrated Study of the Human Dimensions of Global Change

    2005-10-01

    The literature on tourism and climate change lacks an analysis of the global changes in tourism demand. Here, a simulation model of international tourism is presented that fills that gasp. The current pattern of international tourist flows is modelled using 1995 data on departures and arrivals for 207 countries. Using this basic model the impact on arrivals and departures through changes un population, per capita income and climate change are analysed. In the medium to long term, tourism will grow, however, the change from climate change is smaller than from population and income changes. (author)

  13. Assessing reservoir operations risk under climate change

    Science.gov (United States)

    Brekke, L.D.; Maurer, E.P.; Anderson, J.D.; Dettinger, M.D.; Townsley, E.S.; Harrison, A.; Pruitt, T.

    2009-01-01

    Risk-based planning offers a robust way to identify strategies that permit adaptive water resources management under climate change. This paper presents a flexible methodology for conducting climate change risk assessments involving reservoir operations. Decision makers can apply this methodology to their systems by selecting future periods and risk metrics relevant to their planning questions and by collectively evaluating system impacts relative to an ensemble of climate projection scenarios (weighted or not). This paper shows multiple applications of this methodology in a case study involving California's Central Valley Project and State Water Project systems. Multiple applications were conducted to show how choices made in conducting the risk assessment, choices known as analytical design decisions, can affect assessed risk. Specifically, risk was reanalyzed for every choice combination of two design decisions: (1) whether to assume climate change will influence flood-control constraints on water supply operations (and how), and (2) whether to weight climate change scenarios (and how). Results show that assessed risk would motivate different planning pathways depending on decision-maker attitudes toward risk (e.g., risk neutral versus risk averse). Results also show that assessed risk at a given risk attitude is sensitive to the analytical design choices listed above, with the choice of whether to adjust flood-control rules under climate change having considerably more influence than the choice on whether to weight climate scenarios. Copyright 2009 by the American Geophysical Union.

  14. Climate change and climate variability: personal motivation for adaptation and mitigation.

    Science.gov (United States)

    Semenza, Jan C; Ploubidis, George B; George, Linda A

    2011-05-21

    Global climate change impacts on human and natural systems are predicted to be severe, far reaching, and to affect the most physically and economically vulnerable disproportionately. Society can respond to these threats through two strategies: mitigation and adaptation. Industry, commerce, and government play indispensable roles in these actions but so do individuals, if they are receptive to behavior change. We explored whether the health frame can be used as a context to motivate behavioral reductions of greenhouse gas emissions and adaptation measures. In 2008, we conducted a cross-sectional survey in the United States using random digit dialing. Personal relevance of climate change from health threats was explored with the Health Belief Model (HBM) as a conceptual frame and analyzed through logistic regressions and path analysis. Of 771 individuals surveyed, 81% (n = 622) acknowledged that climate change was occurring, and were aware of the associated ecologic and human health risks. Respondents reported reduced energy consumption if they believed climate change could affect their way of life (perceived susceptibility), Odds Ratio (OR) = 2.4 (95% Confidence Interval (CI): 1.4-4.0), endanger their life (perceived severity), OR = 1.9 (95% CI: 1.1-3.1), or saw serious barriers to protecting themselves from climate change, OR = 2.1 (95% CI: 1.2-3.5). Perceived susceptibility had the strongest effect on reduced energy consumption, either directly or indirectly via perceived severity. Those that reported having the necessary information to prepare for climate change impacts were more likely to have an emergency kit OR = 2.1 (95% CI: 1.4-3.1) or plan, OR = 2.2 (95% CI: 1.5-3.2) for their household, but also saw serious barriers to protecting themselves from climate change or climate variability, either by having an emergency kit OR = 1.6 (95% CI: 1.1-2.4) or an emergency plan OR = 1.5 (95%CI: 1.0-2.2). Motivation for voluntary mitigation is mostly dependent on

  15. The effect of climate change on urban drainage

    DEFF Research Database (Denmark)

    Grum, M.; Jørgensen, A.T.; Johansen, R.M.

    2006-01-01

    and consequences of climate change on urban drainage and urban runoff pollution issues. This study uses predictions from a regional climate model to look at the effects of climate change on extreme precipitation events. Results are presented in terms of point rainfall extremes. The analysis involves three steps......That we are in a period of extraordinary rates of climate change is today evident. These climate changes are likely to impact local weather conditions with direct impacts on precipitation patterns and urban drainage. In recent years several studies have focused on revealing the nature, extent...... to urban drainage. However, in spite of these uncertainties, and others raised in the discussion, the tendency is clear: extreme precipitation events effecting urban drainage and causing flooding will become more frequent as a result of climate change....

  16. Climate change scenario data for the national parks

    International Nuclear Information System (INIS)

    Scott, D.

    2003-01-01

    This report presents daily scenario data obtained from monthly time scale climate change scenarios. The scenarios were applied to a stochastic weather generator, a statistical tool that simulates daily weather data for a range of climates at a particular location. The weather generators simulate weather that is statistically similar to observed climate data from climate stations. They can also generate daily scenario data for monthly time scales. This low cost computational method offers site-specific, multi-year climate change scenarios at a daily temporal level. The data is useful for situations that rely on climate thresholds such as forest fire season, drought conditions, or recreational season length. Data sets for temperature, precipitation and frost days was provided for 3 national parks for comparative evaluations. Daily scenarios for other parks can be derived using global climate model (GCM) output data through the Long Ashton Research Station (LARS) weather generator program. tabs

  17. Modeling climate change impact in hospitality sector, using building resources consumption signature

    Science.gov (United States)

    Pinto, Armando; Bernardino, Mariana; Silva Santos, António; Pimpão Silva, Álvaro; Espírito Santo, Fátima

    2016-04-01

    Hotels are one of building types that consumes more energy and water per person and are vulnerable to climate change because in the occurrence of extreme events (heat waves, water stress) same failures could compromise the hotel services (comfort) and increase energy cost or compromise the landscape and amenities due to water use restrictions. Climate impact assessments and the development of adaptation strategies require the knowledge about critical climatic variables and also the behaviour of building. To study the risk and vulnerability of buildings and hotels to climate change regarding resources consumption (energy and water), previous studies used building energy modelling simulation (BEMS) tools to study the variation in energy and water consumption. In general, the climate change impact in building is evaluated studying the energy and water demand of the building for future climate scenarios. But, hotels are complex buildings, quite different from each other and assumption done in simplified BEMS aren't calibrated and usually neglect some important hotel features leading to projected estimates that do not usually match hotel sector understanding and practice. Taking account all uncertainties, the use of building signature (statistical method) could be helpful to assess, in a more clear way, the impact of Climate Change in the hospitality sector and using a broad sample. Statistical analysis of the global energy consumption obtained from bills shows that the energy consumption may be predicted within 90% confidence interval only with the outdoor temperature. In this article a simplified methodology is presented and applied to identify the climate change impact in hospitality sector using the building energy and water signature. This methodology is applied to sixteen hotels (nine in Lisbon and seven in Algarve) with four and five stars rating. The results show that is expect an increase in water and electricity consumption (manly due to the increase in

  18. Crowdsourcing Analysis of Twitter Data on Climate Change: Paid Workers vs. Volunteers

    Directory of Open Access Journals (Sweden)

    Andrei P. Kirilenko

    2017-11-01

    Full Text Available Web based crowdsourcing has become an important method of environmental data processing. Two alternatives are widely used today by researchers in various fields: paid data processing mediated by for-profit businesses such as Amazon’s Mechanical Turk, and volunteer data processing conducted by amateur citizen-scientists. While the first option delivers results much faster, it is not quite clear how it compares with volunteer processing in terms of quality. This study compares volunteer and paid processing of social media data originating from climate change discussions on Twitter. The same sample of Twitter messages discussing climate change was offered for processing to the volunteer workers through the Climate Tweet project, and to the paid workers through the Amazon MTurk platform. We found that paid crowdsourcing required the employment of a high redundancy data processing design to obtain quality that was comparable with volunteered processing. Among the methods applied to improve data processing accuracy, limiting the geographical locations of the paid workers appeared the most productive. Conversely, we did not find significant geographical differences in the accuracy of data processed by volunteer workers. We suggest that the main driver of the found pattern is the differences in familiarity of the paid workers with the research topic.

  19. The essential interactions between understanding climate variability and climate change

    Science.gov (United States)

    Neelin, J. D.

    2017-12-01

    Global change is sometimes perceived as a field separate from other aspects of atmospheric and oceanic sciences. Despite the long history of communication between the scientific communities studying global change and those studying interannual variability and weather, increasing specialization and conflicting societal demands on the fields can put these interactions at risk. At the same time, current trajectories for greenhouse gas emissions imply substantial adaptation to climate change will be necessary. Instead of simply projecting effects to be avoided, the field is increasingly being asked to provide regional-level information for specific adaptation strategies—with associated requirements for increased precision on projections. For extreme events, challenges include validating models for rare events, especially for events that are unprecedented in the historical record. These factors will be illustrated with examples of information transfer to climate change from work on fundamental climate processes aimed originally at timescales from hours to interannual. Work to understand the effects that control probability distributions of moisture, temperature and precipitation in historical weather can yield new factors to examine for the changes in the extremes of these distributions under climate change. Surprisingly simple process models can give insights into the behavior of vastly more complex climate models. Observation systems and model ensembles aimed at weather and interannual variations prove valuable for global change and vice versa. Work on teleconnections in the climate system, such as the remote impacts of El Niño, is informing analysis of projected regional rainfall change over California. Young scientists need to prepare to work across the full spectrum of climate variability and change, and to communicate their findings, as they and our society head for future that is more interesting than optimal.

  20. Global Climate Change, Food Security, and Local Sustainability: Increasing Climate Literacy in Urban Students

    Science.gov (United States)

    Boger, R. A.; Low, R.; Gorokhovich, Y.

    2011-12-01

    Three higher education institutions, University of Nebraska-Lincoln (UNL), Brooklyn College, and Lehman College, are working together to share expertise and resources to expand climate change topics offered to undergraduate and graduate students in New York City (NYC). This collaboration combines existing UNL educational learning resources and infrastructure in virtual coursework. It will supply global climate change education and locally-based research experiences to the highly diverse undergraduate students of Brooklyn and Lehman Colleges and to middle and high school teachers in NYC. Through the university partnership, UNL materials are being adapted and augmented to include authentic research experiences for undergraduates and teachers using NASA satellite data, geographic information system (GIS) tools, and/or locally collected microclimate data from urban gardens. Learners download NASA data, apply an Earth system approach, and employ GIS in the analysis of food production landscapes in a dynamically changing climate system. The resulting course will be offered via Blackboard courseware, supported by Web 2.0 technologies designed specifically to support dialogue, data, and web publication sharing between partners, teachers and middle school, high school and undergraduate student researchers. NYC is in the center of the urban farming movement. By exploring water and food topics of direct relevance to students' lives and community, we anticipate that students will be motivated and more empowered to make connections between climate change and potential impacts on the health and happiness of people in their community, in the United States and around the world. Final course will be piloted in 2012.

  1. Global vs climate change

    International Nuclear Information System (INIS)

    Watson, H.L.; Bach, M.C.; Goklany, I.M.

    1991-01-01

    The various agents of global change that will affect the state of natural resources 50-100 years from now are discussed. These include economic and population growth, technological progress, and climatic change. The importance of climatic change lies in its effects on natural resources and on human activities that depend on those resources. Other factors affecting those resources include the demand on those resources from an increasing population and from a growing economy, and a more efficient use of those resources that comes from technological changes and from the consequences of economic growth itself. It is shown that there is a considerable ability to adapt to climatic change, since humans already have an intrinsic ability to adapt to the wide variations in climates that already exist and since technological developments can make it easier to cope with climatic variability. It appears that agents other than climatic change are more significant to the future state of natural resources than climatic change. Criteria for selecting options for addressing climatic change are outlined. Technological change and economic growth are seen to be key response options, since the vulnerability to climatic change depends on economic resources and technological progress. Specific options to stimulate sustainable economic growth and technological progress are listed. 16 refs., 1 fig., 2 tabs

  2. Climate for change

    International Nuclear Information System (INIS)

    Newell, P.

    2000-01-01

    Climate for Change: Non-State Actors and the Global Politics of the Greenhouse provides a challenging explanation of the forces that have shaped the international global warming debate. Unlike existing books on the politics of climate change, this book concentrates on how non-stage actors, such as scientific, environmental and industry groups, as opposed to governmental organisations, affect political outcomes in global fora on climate change. It also provides insights in to the role of the media in influencing the agenda. The book draws on a range of analytical approaches to assess and explain the influence of these non-governmental organisations in the course of global climate change politics. The book will be of interest to all researchers and policy-makers associated with climate change, and will be used on university courses in international relations, politics and environmental studies. (Author)

  3. Reviewing Bayesian Networks potentials for climate change impacts assessment and management: A multi-risk perspective.

    Science.gov (United States)

    Sperotto, Anna; Molina, José-Luis; Torresan, Silvia; Critto, Andrea; Marcomini, Antonio

    2017-11-01

    The evaluation and management of climate change impacts on natural and human systems required the adoption of a multi-risk perspective in which the effect of multiple stressors, processes and interconnections are simultaneously modelled. Despite Bayesian Networks (BNs) are popular integrated modelling tools to deal with uncertain and complex domains, their application in the context of climate change still represent a limited explored field. The paper, drawing on the review of existing applications in the field of environmental management, discusses the potential and limitation of applying BNs to improve current climate change risk assessment procedures. Main potentials include the advantage to consider multiple stressors and endpoints in the same framework, their flexibility in dealing and communicate with the uncertainty of climate projections and the opportunity to perform scenario analysis. Some limitations (i.e. representation of temporal and spatial dynamics, quantitative validation), however, should be overcome to boost BNs use in climate change impacts assessment and management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Climate change

    International Nuclear Information System (INIS)

    2006-01-01

    This paper presented indicators of climate change for British Columbia (BC) with an emphasis on the coastal region. An overview of global effects of climate change was presented, as well as details of BC's current climate change action plan. Indicators examined in the paper for the BC coastal region included long-term trends in air temperature; long-term trends in precipitation; coastal ocean temperatures; sea levels on the BC coast; and the sensitivity of the BC coast to sea level rise and erosion. Data suggested that average air temperatures have become higher in many areas, and that Springtime temperatures have become warmer over the whole province. Winters have become drier in many areas of the province. Sea surface temperature has risen over the entire coast, with the North Coast and central Strait of Georgia showing the largest increases. Deep-water temperatures have also increased in 5 inlets on the South Coast. Results suggested that the direction and spatial pattern of the climate changes reported for British Columbia are consistent with broader trends in North America and the type of changes predicted by climate models for the region. Climate change will likely result in reduced snow-pack in southern BC. An earlier spring freshet on many snow-dominated river systems is anticipated as well as glacial retreat and disappearance. Warmer temperatures in some lakes and rivers are expected, as well as the increased frequency and severity of natural disturbances such as the pine mountain beetle. Large-scale shifts in ecosystems and the loss of certain ecosystems may also occur. BC's current climate plan includes cost effective actions that address GHG emissions and support efficient infrastructure and opportunities for innovation. Management programs for forest and agricultural lands have been initiated, as well as programs to reduce emissions from government operations. Research is also being conducted to understand the impacts of climate change on water

  5. Climate challenge 2012: growth and climate change - Socio-economical impacts of climate change. Conference proceedings

    International Nuclear Information System (INIS)

    Orange-Louboutin, Mylene; Robinet, Olivier; Delalande, Daniel; Reysset, Bertrand; De Perthuis, Christian; Le Treut, Herve; Cottenceau, Jean-Baptiste; Ayong, Alain; Daubaire, Aurelien; Gaudin, Thomas

    2012-01-01

    The contributions of this conference session proposed comments and discussion on the relationship between climate change and 'green' growth, on the status of scientific knowledge on climate change (from global to local), on the way to perform carbon print assessment and to decide which actions to implement, on the costs and opportunity of impacts of climate change, on the economy of adaptation, on the benefits and costs of the adaptation policy, and on impacts of climate change on employment in quantitative terms and in terms of profession types

  6. Uncertainty in simulating wheat yields under climate change : Letter

    NARCIS (Netherlands)

    Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Supit, I.

    2013-01-01

    Projections of climate change impacts on crop yields are inherently uncertain1. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate2. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic

  7. A meta-analysis of soil exoenzyme responses to simulated climate change

    Science.gov (United States)

    Gebhardt, M.; Espinosa, N. J.; Blankinship, J. C.; Gallery, R. E.

    2017-12-01

    Microorganisms produce extracellular enzymes to decompose plant matter and drive biogeochemical transformations in soils. Climate change factors, such as warming and altered precipitation patterns, can impact enzyme activity through both direct and indirect mechanisms. Although many individual studies have examined how soil exoenzyme activities respond to climate change manipulations, there is disagreement surrounding the direction of these responses. We performed a synthesis of published studies to examine the influence of warming and altered precipitation on microbial exoenzyme activity. We found that warming increased enzyme activity with a more pronounced effect for oxidative relative to hydrolytic enzymes. Reduced precipitation consistently decreased exoenzyme activity. These responses, however, varied by season, biome, and enzyme type. The majority of studies fitting our criteria (e.g., experiments lasting a minimum of one growing season, paired treatments and controls) were located in North America and Europe. Inferences from this analysis therefore exclude many important ecosystems such as hyper-arid, wetlands, and artic systems. Carbon degrading enzyme activities were less sensitive to climate change manipulations when compared to phosphorus and nitrogen degrading enzyme activities. Linking enzyme activity to biogeochemical processes requires concomitant measurements of organic and inorganic carbon pools, mineralogy, nutrients, microbial biomass and community structure, and heterotrophic respiration within individual studies. Furthermore, linking these parameters to climate and environmental factors will require a comprehensive and consistent inclusion of biotic and abiotic variables among researchers and experiments. Globally, soils contain the largest carbon pools. Understanding the impacts of large-scale perturbations on soil enzyme activity will help to constrain predictions on the fate of biogeochemical transformations and improve model projections.

  8. Climate Change, Social Justice and Development

    OpenAIRE

    Terry Barker; Şerban Scrieciu; David Taylor

    2008-01-01

    Terry Barker, Şerban Scrieciu and David Taylor discuss the implications of climate change for social justice and the prospects for more sustainable development pathways. They state that the analysis and discussions surrounding the climate change problem, particularly those drawing on the traditional economics literature, have relied on a crude economic utilitarianism that no moral philosopher would endorse. Such arguments have typically ignored the concept of justice itself and wider e...

  9. Analysis of farmers' adaptation strategies to climate change in cocoa ...

    African Journals Online (AJOL)

    Changing climate and weather patterns are predicted to have severe negative impacts on food production, food security and natural resources in the immediate and coming years. Climate change alters the development of cocoa pods, insect pests and pathogens which translate into lower crop yields and impact farm ...

  10. Contributions of changes in climatology and perturbation and the resulting nonlinearity to regional climate change.

    Science.gov (United States)

    Adachi, Sachiho A; Nishizawa, Seiya; Yoshida, Ryuji; Yamaura, Tsuyoshi; Ando, Kazuto; Yashiro, Hisashi; Kajikawa, Yoshiyuki; Tomita, Hirofumi

    2017-12-20

    Future changes in large-scale climatology and perturbation may have different impacts on regional climate change. It is important to understand the impacts of climatology and perturbation in terms of both thermodynamic and dynamic changes. Although many studies have investigated the influence of climatology changes on regional climate, the significance of perturbation changes is still debated. The nonlinear effect of these two changes is also unknown. We propose a systematic procedure that extracts the influences of three factors: changes in climatology, changes in perturbation and the resulting nonlinear effect. We then demonstrate the usefulness of the procedure, applying it to future changes in precipitation. All three factors have the same degree of influence, especially for extreme rainfall events. Thus, regional climate assessments should consider not only the climatology change but also the perturbation change and their nonlinearity. This procedure can advance interpretations of future regional climates.

  11. Deciphering the spatio-temporal complexity of climate change of the last deglaciation: a model analysis

    Directory of Open Access Journals (Sweden)

    D. M. Roche

    2011-06-01

    Full Text Available Understanding the sequence of events occuring during the last major glacial to interglacial transition (21 ka BP to 9 ka BP is a challenging task that has the potential to unveil the mechanisms behind large scale climate changes. Though many studies have focused on the understanding of the complex sequence of rapid climatic change that accompanied or interrupted the deglaciation, few have analysed it in a more theoretical framework with simple forcings. In the following, we address when and where the first significant temperature anomalies appeared when using slow varying forcing of the last deglaciation. We used here coupled transient simulations of the last deglaciation, including ocean, atmosphere and vegetation components to analyse the spatial timing of the deglaciation. To keep the analysis in a simple framework, we did not include freshwater forcings that potentially cause rapid climate shifts during that time period. We aimed to disentangle the direct and subsequent response of the climate system to slow forcing and moreover, the location where those changes are more clearly expressed. In a data – modelling comparison perspective, this could help understand the physically plausible phasing between known forcings and recorded climatic changes. Our analysis of climate variability could also help to distinguish deglacial warming signals from internal climate variability. We thus are able to better pinpoint the onset of local deglaciation, as defined by the first significant local warming and further show that there is a large regional variability associated with it, even with the set of slow forcings used here. In our model, the first significant hemispheric warming occurred simultaneously in the North and in the South and is a direct response to the obliquity forcing.

  12. Simulation of future stream alkalinity under changing deposition and climate scenarios

    International Nuclear Information System (INIS)

    Welsch, Daniel L.; Jack Cosby, B.; Hornberger, George M.

    2006-01-01

    Models of soil and stream water acidification have typically been applied under scenarios of changing acidic deposition, however, climate change is usually ignored. Soil air CO 2 concentrations have potential to increase as climate warms and becomes wetter, thus affecting soil and stream water chemistry by initially increasing stream alkalinity at the expense of reducing base saturation levels on soil exchange sites. We simulate this change by applying a series of physically based coupled models capable of predicting soil air CO 2 and stream water chemistry. We predict daily stream water alkalinity for a small catchment in the Virginia Blue Ridge for 60 years into the future given stochastically generated daily climate values. This is done for nine different combinations of climate and deposition. The scenarios for both climate and deposition include a static scenario, a scenario of gradual change, and a scenario of abrupt change. We find that stream water alkalinity continues to decline for all scenarios (average decrease of 14.4 μeq L - 1 ) except where climate is gradually warming and becoming more moist (average increase of 13 μeq L - 1 ). In all other scenarios, base cation removal from catchment soils is responsible for limited alkalinity increase resulting from climate change. This has implications given the extent that acidification models are used to establish policy and legislation concerning deposition and emissions

  13. The increased atmospheric greenhouse effect and regional climate change

    Energy Technology Data Exchange (ETDEWEB)

    Groenaas, S. [Bergen Univ. (Norway)

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. The main information for predicting future climate changes comes from integrating coupled climate models of the atmosphere, ocean and cryosphere. Regional climate change may be studied from the global integrations, however, resolution is coarse because of insufficient computer power. Attempts are being made to get more regional details out of the global integrations by ``downscaling`` the latter. This can be done in two ways. Firstly, limited area models with high resolution are applied, driven by the global results as boundary values. Secondly, statistical relationships have been found between observed meteorological parameters, like temperature and precipitation, and analyzed large scale gridded fields. The derived relations are then used on similar data from climate runs to give local interpretations. A review is given of literature on recent observations of climate variations and on predicted regional climate change. 18 refs., 4 figs.

  14. Climate change and food security in Tanzania: analysis of current ...

    African Journals Online (AJOL)

    A review of literature was conducted in order to identify knowledge gaps in climate change and food security research in Tanzania. The review focused on published literature covering the past 20 years addressing climate change effects on various components of the food security. The review of literature reveals, among ...

  15. Climate change, nuclear power, and the adaptation-mitigation dilemma

    International Nuclear Information System (INIS)

    Kopytko, Natalie; Perkins, John

    2011-01-01

    Many policy-makers view nuclear power as a mitigation for climate change. Efforts to mitigate and adapt to climate change, however, interact with existing and new nuclear power plants, and these installations must contend with dilemmas between adaptation and mitigation. This paper develops five criteria to assess the adaptation-mitigation dilemma on two major points: (1) the ability of nuclear power to adapt to climate change and (2) the potential for nuclear power operation to hinder climate change adaptation. Sea level rise models for nine coastal sites in the United States, a review of US Nuclear Regulatory Commission documents, and reports from France's nuclear regulatory agency provided insights into issues that have arisen from sea level rise, shoreline erosion, coastal storms, floods, and heat waves. Applying the criteria to inland and coastal nuclear power plants reveals several weaknesses. Safety stands out as the primary concern at coastal locations, while inland locations encounter greater problems with interrupted operation. Adapting nuclear power to climate change entails either increased expenses for construction and operation or incurs significant costs to the environment and public health and welfare. Mere absence of greenhouse gas emissions is not sufficient to assess nuclear power as a mitigation for climate change. - Research Highlights: → The adaptation-mitigation criteria reveal nuclear power's vulnerabilities. → Climate change adaptation could become too costly at many sites. → Nuclear power operation jeopardizes climate change adaptation. → Extreme climate events pose a safety challenge.

  16. Workshop: Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis: Modeling Climate Change Impacts and Associated Economic Damages (2011 - part 2)

    Science.gov (United States)

    The purpose of this workshop Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis. focused on conceptual and methodological issues - estimating impacts and valuing damages on a sectoral basis.

  17. The causality analysis of climate change and large-scale human crisis.

    Science.gov (United States)

    Zhang, David D; Lee, Harry F; Wang, Cong; Li, Baosheng; Pei, Qing; Zhang, Jane; An, Yulun

    2011-10-18

    Recent studies have shown strong temporal correlations between past climate changes and societal crises. However, the specific causal mechanisms underlying this relation have not been addressed. We explored quantitative responses of 14 fine-grained agro-ecological, socioeconomic, and demographic variables to climate fluctuations from A.D. 1500-1800 in Europe. Results show that cooling from A.D. 1560-1660 caused successive agro-ecological, socioeconomic, and demographic catastrophes, leading to the General Crisis of the Seventeenth Century. We identified a set of causal linkages between climate change and human crisis. Using temperature data and climate-driven economic variables, we simulated the alternation of defined "golden" and "dark" ages in Europe and the Northern Hemisphere during the past millennium. Our findings indicate that climate change was the ultimate cause, and climate-driven economic downturn was the direct cause, of large-scale human crises in preindustrial Europe and the Northern Hemisphere.

  18. Climate change and precipitation: Detecting changes Climate change and precipitation: Detecting changes

    International Nuclear Information System (INIS)

    Van Boxel, John H

    2001-01-01

    Precipitation is one of the most, if not the most important climate parameter In most studies on climate change the emphasis is on temperature and sea level rise. Often too little attention is given to precipitation. For a large part this is due to the large spatial en temporal variability of precipitation, which makes the detection of changes difficult. This paper describes methods to detect changes in precipitation. In order to arrive at statistically significant changes one must use long time series and spatial averages containing the information from several stations. In the Netherlands the average yearly precipitation increased by 11% during the 20th century .In the temperate latitudes on the Northern Hemisphere (40-60QN) the average increase was about 7% over the 20th century and the globally averaged precipitation increased by about 3%. During the 20th century 38% of the land surface of the earth became wetter, 42% experienced little change (less than 5% change) and 20% became dryer. More important than the average precipitation is the occurrence of extremes. In the Netherlands there is a tendency to more extreme precipitations, whereas the occurrence of relatively dry months has not changed. Also in many other countries increases in heavy precipitation events are observed. All climate models predict a further increase of mean global precipitation if the carbon dioxide concentration doubles. Nevertheless some areas get dryer, others have little change and consequently there are also areas where the increase is much more than the global average. On a regional scale however there are large differences between the models. Climate models do not yet provide adequate information on changes in extreme precipitations

  19. Voluntary climate change mitigation actions of young adults: a classification of mitigators through latent class analysis.

    Science.gov (United States)

    Korkala, Essi A E; Hugg, Timo T; Jaakkola, Jouni J K

    2014-01-01

    Encouraging individuals to take action is important for the overall success of climate change mitigation. Campaigns promoting climate change mitigation could address particular groups of the population on the basis of what kind of mitigation actions the group is already taking. To increase the knowledge of such groups performing similar mitigation actions we conducted a population-based cross-sectional study in Finland. The study population comprised 1623 young adults who returned a self-administered questionnaire (response rate 64%). Our aims were to identify groups of people engaged in similar climate change mitigation actions and to study the gender differences in the grouping. We also determined if socio-demographic characteristics can predict group membership. We performed latent class analysis using 14 mitigation actions as manifest variables. Three classes were identified among men: the Inactive (26%), the Semi-active (63%) and the Active (11%) and two classes among women: the Semi-active (72%) and the Active (28%). The Active among both genders were likely to have mitigated climate change through several actions, such as recycling, using environmentally friendly products, preferring public transport, and conserving energy. The Semi-Active had most probably recycled and preferred public transport because of climate change. The Inactive, a class identified among men only, had very probably done nothing to mitigate climate change. Among males, being single or divorced predicted little involvement in climate change mitigation. Among females, those without tertiary degree and those with annual income €≥16801 were less involved in climate change mitigation. Our results illustrate to what extent young adults are engaged in climate change mitigation, which factors predict little involvement in mitigation and give insight to which segments of the public could be the audiences of targeted mitigation campaigns.

  20. Voluntary climate change mitigation actions of young adults: a classification of mitigators through latent class analysis.

    Directory of Open Access Journals (Sweden)

    Essi A E Korkala

    Full Text Available Encouraging individuals to take action is important for the overall success of climate change mitigation. Campaigns promoting climate change mitigation could address particular groups of the population on the basis of what kind of mitigation actions the group is already taking. To increase the knowledge of such groups performing similar mitigation actions we conducted a population-based cross-sectional study in Finland. The study population comprised 1623 young adults who returned a self-administered questionnaire (response rate 64%. Our aims were to identify groups of people engaged in similar climate change mitigation actions and to study the gender differences in the grouping. We also determined if socio-demographic characteristics can predict group membership. We performed latent class analysis using 14 mitigation actions as manifest variables. Three classes were identified among men: the Inactive (26%, the Semi-active (63% and the Active (11% and two classes among women: the Semi-active (72% and the Active (28%. The Active among both genders were likely to have mitigated climate change through several actions, such as recycling, using environmentally friendly products, preferring public transport, and conserving energy. The Semi-Active had most probably recycled and preferred public transport because of climate change. The Inactive, a class identified among men only, had very probably done nothing to mitigate climate change. Among males, being single or divorced predicted little involvement in climate change mitigation. Among females, those without tertiary degree and those with annual income €≥16801 were less involved in climate change mitigation. Our results illustrate to what extent young adults are engaged in climate change mitigation, which factors predict little involvement in mitigation and give insight to which segments of the public could be the audiences of targeted mitigation campaigns.

  1. Climate Change Impacts on Crop Production in Nigeria

    Science.gov (United States)

    Mereu, V.; Gallo, A.; Carboni, G.; Spano, D.

    2011-12-01

    The agricultural sector in Nigeria is particularly important for the country's food security, natural resources, and growth agenda. The cultivable areas comprise more than 70% of the total area; however, the cultivated area is about the 35% of the total area. The most important components in the food basket of the nation are cereals and tubers, which include rice, maize, corn, millet, sorghum, yam, and cassava. These crops represent about 80% of the total agricultural product in Nigeria (from NPAFS). The major crops grown in the country can be divided into food crops (produced for consumption) and export products. Despite the importance of the export crops, the primary policy of agriculture is to make Nigeria self-sufficient in its food and fiber requirements. The projected impacts of future climate change on agriculture and water resources are expected to be adverse and extensive in these area. This implies the need for actions and measures to adapt to climate change impacts, and especially as they affect agriculture, the primary sector for Nigerian economy. In the framework of the Project Climate Risk Analysis in Nigeria (founded by World Bank Contract n.7157826), a study was made to assess the potential impact of climate change on the main crops that characterize Nigerian agriculture. The DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, version 4.5 was used for the analysis. Crop simulation models included in DSSAT are tools that simulate physiological processes of crop growth, development and production by combining genetic crop characteristics and environmental (soil and weather) conditions. For each selected crop, the models were calibrated to evaluate climate change impacts on crop production. The climate data used for the analysis are derived by the Regional Circulation Model COSMO-CLM, from 1971 to 2065, at 8 km of spatial resolution. The RCM model output was "perturbed" with 10 Global Climate Models to have

  2. Biotic and Climatic Velocity Identify Contrasting Areas of Vulnerability to Climate Change

    Science.gov (United States)

    Carroll, Carlos; Lawler, Joshua J.; Roberts, David R.; Hamann, Andreas

    2015-01-01

    Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth’s surface to maintain constant climatic conditions. However, “analog-based” velocities, which represent the actual distance to where analogous climates will be found in the future, may provide contrasting results to the more common form of velocity based on local climate gradients. Additionally, whereas climatic velocity reflects the exposure of organisms to climate change, resultant biotic effects are dependent on the sensitivity of individual species as reflected in part by their climatic niche width. This has motivated development of biotic velocity, a metric which uses data on projected species range shifts to estimate the velocity at which species must move to track their climatic niche. We calculated climatic and biotic velocity for the Western Hemisphere for 1961–2100, and applied the results to example ecological and conservation planning questions, to demonstrate the potential of such analog-based metrics to provide information on broad-scale patterns of exposure and sensitivity. Geographic patterns of biotic velocity for 2954 species of birds, mammals, and amphibians differed from climatic velocity in north temperate and boreal regions. However, both biotic and climatic velocities were greatest at low latitudes, implying that threats to equatorial species arise from both the future magnitude of climatic velocities and the narrow climatic tolerances of species in these regions, which currently experience low seasonal and interannual climatic variability. Biotic and climatic velocity, by approximating

  3. Risk Assessment in Relation to the Effect of Climate Change on Water Shortage in the Taichung Area

    Science.gov (United States)

    Hsiao, J.; Chang, L.; Ho, C.; Niu, M.

    2010-12-01

    Rapid economic development has stimulated a worldwide greenhouse effect and induced global climate change. Global climate change has increased the range of variation in the quantity of regional river flows between wet and dry seasons, which effects the management of regional water resources. Consequently, the influence of climate change has become an important issue in the management of regional water resources. In this study, the Monte Carlo simulation method was applied to risk analysis of shortage of water supply in the Taichung area. This study proposed a simulation model that integrated three models: weather generator model, surface runoff model, and water distribution model. The proposed model was used to evaluate the efficiency of the current water supply system and the potential effectiveness of two additional plans for water supply: the “artificial lakes” plan and the “cross-basin water transport” plan. A first-order Markov Chain method and two probability distribution models, exponential distribution and normal distribution, were used in the weather generator model. In the surface runoff model, researchers selected the Generalized Watershed Loading Function model (GWLF) to simulate the relationship between quantity of rainfall and basin outflow. A system dynamics model (SD) was applied to the water distribution model. Results of the simulation indicated that climate change could increase the annual quantity of river flow in the Dachia River and Daan River basins. However, climate change could also increase the difference in the quantity of river flow between wet and dry seasons. Simulation results showed that in current system case or in the additional plan cases, shortage status of water for both public and agricultural uses with conditions of climate change will be mostly worse than that without conditions of climate change except for the shortage status for the public use in the current system case. With or without considering the effect of

  4. Climate Change, Politics and Religion: Australian Churchgoers’ Beliefs about Climate Change

    Directory of Open Access Journals (Sweden)

    Miriam Pepper

    2016-05-01

    Full Text Available A growing literature has sought to understand the relationships between religion, politics and views about climate change and climate change policy in the United States. However, little comparative research has been conducted in other countries. This study draws on data from the 2011 Australian National Church Life Survey to examine the beliefs of Australian churchgoers from some 20 denominations about climate change—whether or not it is real and whether it is caused by humans—and political factors that explain variation in these beliefs. Pentecostals, Baptist and Churches of Christ churchgoers, and people from the smallest Protestant denominations were less likely than other churchgoers to believe in anthropogenic climate change, and voting and hierarchical and individualistic views about society predicted beliefs. There was some evidence that these views function differently in relation to climate change beliefs depending on churchgoers’ degree of opposition to gay rights. These findings are of interest not only for the sake of international comparisons, but also in a context where Australia plays a role in international climate change politics that is disproportionate to its small population.

  5. Selection of climate change scenario data for impact modelling

    DEFF Research Database (Denmark)

    Sloth Madsen, M; Fox Maule, C; MacKellar, N

    2012-01-01

    Impact models investigating climate change effects on food safety often need detailed climate data. The aim of this study was to select climate change projection data for selected crop phenology and mycotoxin impact models. Using the ENSEMBLES database of climate model output, this study...... illustrates how the projected climate change signal of important variables as temperature, precipitation and relative humidity depends on the choice of the climate model. Using climate change projections from at least two different climate models is recommended to account for model uncertainty. To make...... the climate projections suitable for impact analysis at the local scale a weather generator approach was adopted. As the weather generator did not treat all the necessary variables, an ad-hoc statistical method was developed to synthesise realistic values of missing variables. The method is presented...

  6. Climate changes your business

    International Nuclear Information System (INIS)

    2008-01-01

    Businesses face much bigger climate change costs than they realise. That is the conclusion of Climate Changes Your Business. The climate change risks that companies should be paying more attention to are physical risks, regulatory risks as well as risk to reputation and the emerging risk of litigation, says the report. It argues that the risks associated with climate change tend to be underestimated

  7. Climate change and climate variability: personal motivation for adaptation and mitigation

    Directory of Open Access Journals (Sweden)

    Ploubidis George B

    2011-05-01

    Full Text Available Abstract Background Global climate change impacts on human and natural systems are predicted to be severe, far reaching, and to affect the most physically and economically vulnerable disproportionately. Society can respond to these threats through two strategies: mitigation and adaptation. Industry, commerce, and government play indispensable roles in these actions but so do individuals, if they are receptive to behavior change. We explored whether the health frame can be used as a context to motivate behavioral reductions of greenhouse gas emissions and adaptation measures. Methods In 2008, we conducted a cross-sectional survey in the United States using random digit dialing. Personal relevance of climate change from health threats was explored with the Health Belief Model (HBM as a conceptual frame and analyzed through logistic regressions and path analysis. Results Of 771 individuals surveyed, 81% (n = 622 acknowledged that climate change was occurring, and were aware of the associated ecologic and human health risks. Respondents reported reduced energy consumption if they believed climate change could affect their way of life (perceived susceptibility, Odds Ratio (OR = 2.4 (95% Confidence Interval (CI: 1.4 - 4.0, endanger their life (perceived severity, OR = 1.9 (95% CI: 1.1 - 3.1, or saw serious barriers to protecting themselves from climate change, OR = 2.1 (95% CI: 1.2 - 3.5. Perceived susceptibility had the strongest effect on reduced energy consumption, either directly or indirectly via perceived severity. Those that reported having the necessary information to prepare for climate change impacts were more likely to have an emergency kit OR = 2.1 (95% CI: 1.4 - 3.1 or plan, OR = 2.2 (95% CI: 1.5 -3.2 for their household, but also saw serious barriers to protecting themselves from climate change or climate variability, either by having an emergency kit OR = 1.6 (95% CI: 1.1 - 2.4 or an emergency plan OR = 1.5 (95%CI: 1.0 - 2

  8. Evaluating Changes in Climate Literacy among Middle and High School Students who Participate in Climate Change Education Modules

    Science.gov (United States)

    DeWaters, J.; Powers, S.; Dhaniyala, S.; Small, M.

    2012-12-01

    Middle school (MS) and high school (HS) teachers have developed and taught instructional modules that were created through their participation in Clarkson University's NASA-funded Project-Based Global Climate Change Education project. A quantitative survey was developed to help evaluate the project's impact on students' climate literacy, which includes content knowledge as well as affective and behavioral attributes. Content objectives were guided primarily by the 2009 document, Climate Literacy: The Essential Principles of Climate Sciences. The survey was developed according to established psychometric principles and methodologies in the sociological and educational sciences which involved developing and evaluating a pool of survey items, adapted primarily from existing climate surveys and questionnaires; preparing, administering, and evaluating two rounds of pilot tests; and preparing a final instrument with revisions informed by both pilot assessments. The resulting survey contains three separate subscales: cognitive, affective, and behavioral, with five self-efficacy items embedded within the affective subscale. Cognitive items use a multiple choice format with one correct response; non-cognitive items use a 5-point Likert-type scale with options generally ranging from "strongly agree" to "strongly disagree" (affective), or "almost always" to "hardly ever" (behavioral). Three versions of the survey were developed and administered using an on-line Zoomerang™ platform to college students/adults; HS students; and MS students, respectively. Instrument validity was supported by using items drawn from existing surveys, by reviewing/applying prior research in climate literacy, and through comparative age-group analysis. The internal consistency reliability of each subscale, as measured by Cronbach's alpha, ranges from 0.78-0.86 (cognitive), 0.87-0.89 (affective) and 0.84-0.85 (behavioral), all satisfying generally accepted criteria for internal reliability of

  9. Cost Analysis of Water Transport for Climate Change Impact Assessment

    Science.gov (United States)

    Szaleniec, V.; Buytaert, W.

    2012-04-01

    It is expected that climate change will have a strong impact on water resources worldwide. Many studies exist that couple the output of global climate models with hydrological models to assess the impact of climate change on physical water availability. However, the water resources topology of many regions and especially that of cities can be very complex. Changes in physical water availability do therefore not translate easily into impacts on water resources for cities. This is especially the case for cities with a complex water supply topology, for instance because of geographical barriers, strong gradients in precipitation patterns, or competing water uses. In this study we explore the use of cost maps to enable the inclusion of water supply topologies in climate change impact studies. We use the city of Lima as a case study. Lima is the second largest desert city in the world. Although Peru as a whole has no water shortage, extreme gradients exist. Most of the economic activities including the city of Lima are located in the coastal desert. This region is geographically disconnected from the wet Amazon basin because of the Andes mountain range. Hence, water supply is precarious, provided by a complex combination of high mountain ecosystems including wetlands and glaciers, as well as groundwater aquifers depending on recharge from the mountains. We investigate the feasibility and costs of different water abstraction scenarios and the impact of climate change using cost functions for different resources. The option of building inter basins tunnels across the Andes is compared to the costs of desalinating seawater from the Pacific Ocean under different climate change scenarios and population growth scenarios. This approach yields recommendations for the most cost-effective options for the future.

  10. Construction of climate change scenarios from transient climate change experiments for the IPCC impacts assessment

    International Nuclear Information System (INIS)

    Viner, D.; Hulme, M.; Raper, S.C.B.; Jones, P.D.

    1994-01-01

    This paper outlines the different methods which may be used for the construction of regional climate change scenarios. The main focus of the paper is the construction of global climate change scenarios from climate change experiments carried out using General Circulation Models (GCMS) An introduction to some GCM climate change experiments highlights the difference between model types and experiments (e.g., equilibrium or transient). The latest generation of climate change experiments has been performed using fully coupled ocean-atmosphere GCMS. These allow transient simulations of climate change to be performed with respect to a given greenhouse gas forcing scenario. There are, however, a number of problems with these simulations which pose difficulties for the construction of climate change scenarios for use in climate change impacts assessment. The characteristics of the transient climate change experiments which pose difficulties for the construction of climate change scenarios are discussed. Three examples of these problems are: different climate change experiments use different greenhouse gas concentration scenarios; the 'cold-start' problem makes it difficult to link future projections of climate change to a given calendar year; a drift of the climate is noticeable in the control simulations. In order to construct climate change scenarios for impacts assessment a method has therefore to be employed which addresses these problems. At present the climate modeling and climate change impacts communities are somewhat polarized in their approach to spatial scales. Current GCMs model the climate at resolutions larger than 2.5 x 3.75 degree, while the majority of impacts assessment studies are undertaken at scales below 50km (or 0.5 degree). This paper concludes by addressing the problems in bringing together these two different modeling perspectives by presenting a number of regional climate change scenarios. 35 refs., 8 figs., 2 tabs

  11. Primer on climate change and sustainable development: facts, policy analysis, and applications

    National Research Council Canada - National Science Library

    Munasinghe, Mohan; Swart, Rob

    2005-01-01

    ... between climate change and sustainable development. Building on the main findings of the last series of Intergovernmental Panel on Climate Change (IPCC) assessment reports, in which both authors were involved, the book summarizes the latest research linking the two. Our current knowledge of the basic science of climate change is described, be...

  12. Climate change feedbacks on future oceanic acidification

    International Nuclear Information System (INIS)

    McNeil, Ben I.; Matear, Richard J.

    2007-01-01

    Oceanic anthropogenic CO 2 uptake will decrease both the pH and the aragonite saturation state (Oarag) of seawater leading to an oceanic acidification. However, the factors controlling future changes in pH and Oarag are independent and will respond differently to oceanic climate change feedbacks such as ocean warming, circulation and biological changes. We examine the sensitivity of these two CO 2 -related parameters to climate change feedbacks within a coupled atmosphere-ocean model. The ocean warming feedback was found to dominate the climate change responses in the surface ocean. Although surface pH is projected to decrease relatively uniformly by about 0.3 by the year 2100, we find pH to be insensitive to climate change feedbacks, whereas Oarag is buffered by ∼15%. Ocean carbonate chemistry creates a situation whereby the direct pH changes due to ocean warming are almost cancelled by the pH changes associated with dissolved inorganic carbon concentrations changes via a reduction in CO 2 solubility from ocean warming. We show that the small climate change feedback on future surface ocean pH is independent to the amount of ocean warming. Our analysis therefore implies that future projections of surface ocean acidification only need to consider future atmospheric CO 2 levels, not climate change induced modifications in the ocean

  13. Diarrheal Diseases and Climate Change in Cambodia.

    Science.gov (United States)

    McIver, Lachlan J; Imai, Chisato; Buettner, Petra G; Gager, Paul; Chan, Vibol S; Hashizume, Masahiro; Iddings, Steven N; Kol, Hero; Raingsey, Piseth P; Lyne, K

    2016-10-01

    The DRIP-SWICCH (Developing Research and Innovative Policies Specific to the Water-related Impacts of Climate Change on Health) project aimed to increase the resilience of Cambodian communities to the health risks posed by climate change-related impacts on water. This article follows a review of climate change and water-related diseases in Cambodia and presents the results of a time series analysis of monthly weather and diarrheal disease data for 11 provinces. In addition, correlations of diarrheal disease incidence with selected demographic, socioeconomic, and water and sanitation indicators are described, with results suggesting education and literacy may be most protective against disease. The potential impact of climate change on the burden of diarrheal disease in Cambodia is considered, along with the implications of these findings for health systems adaptation.

  14. The Availability Heuristic, Intuitive Cost-Benefit Analysis, and Climate Change

    International Nuclear Information System (INIS)

    Sunstein, C.R.

    2006-01-01

    Because risks are on all sides of social situations, it is not possible to be 'precautionary' in general. The availability heuristic ensures that some risks stand out as particularly salient, whatever their actual magnitude. Taken together with intuitive cost-benefit balancing, the availability heuristic helps to explain differences across groups, cultures, and even nations in the assessment of precautions to reduce the risks associated with climate change. There are complex links among availability, social processes for the spreading of information, and predispositions. If the United States is to take a stronger stand against climate change, it is likely to be a result of available incidents that seem to show that climate change produces serious and tangible harm

  15. The influence of climate change on meteorological drought characteristic in Taiwan

    International Nuclear Information System (INIS)

    Pao-Shan Yu; Chun-Chao Kuo; Chi-Wen Sung

    2004-01-01

    Global climate change and its influence on water resource are the worldwide issues. This study aims at investigating the impacts of climate change on drought characteristic in western Taiwan. This analysis on local climate change, may provide the reference for climate change study on Asia region. Thirty-one rainfall stations with at least 80 years records over western Taiwan provide the data set to analysis trend and change in the long term rainfall series. As the area of Taiwan is too small, the GCM is not suitable for our investigation on climate change. Therefore, the statistical methods of Cumulative Deviations test, Kruskal-Wallis test and Mann-Whitney-Pettitt test were applied to detect the change points of annual rainfall depth and detect whether the long-term rainfall series exist variation and tendency in the historical records. The analytical results reveal that a significant change point occurs during about 1960s for annual rainfall series. Two samples in the long- tern rainfall series are further divided based on this change point. Yearly rainfall depth increases in northern Taiwan and decreases in middle and southern Taiwan. Average values and standard deviation of monthly rainfall depth in these two samples are compared. A stable reducing tendency of average rainfall in the wet seasons (May to October) is found in middle and southern Taiwan and increasing tendency in northern Taiwan. We further investigate whether drought characteristic is difference before and after 1960. Nine irrigation areas in Taiwan are divided based on its irrigation system. Standardized Precipitation Index (SPI) is estimated and compared with historical agriculture drought. It is found that 3-month SPI has better characteristic than 1-month SPI to respond the agriculture drought characteristic. Therefore, 3-month SPI for each irrigation area is estimated both before and after 1960. It is found that the frequency and duration of moderate dry (3-month SPI<-1.0) and severely dry

  16. Several Suggestions on the Climate Change and Its Studies

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    According to the abundant studies,the relevant information and comprehensive analysis of the climate changes,several important problems on the climate changes and its studies were proposed.Based on the temporal distribution of the meteorological disaster of agriculture,the wave theory was expounded so as to draw people's attention on climate changes and to be objective,just and careful about the study.

  17. Measuring perceptions of climate change in northern Alaska: pairing ethnography with cultural consensus analysis

    Directory of Open Access Journals (Sweden)

    Courtney Carothers

    2014-12-01

    Full Text Available Given current and projected warming trends in the Arctic and the important role played by subsistence hunting and fishing in the life of northern rural communities, it is increasingly important to document local observations of climate change and its impacts on livelihood practices. We describe ethnographic research exploring local observations of climate changes and related impacts on subsistence fisheries in three Iñupiat communities in northwest Alaska and six Athabascan communities in the Yukon River drainage. We found consistent agreement among perceptions concerning a broad range of environmental changes affecting subsistence practices in these communities. These observations of environmental changes are not experienced in isolation but within the context of accompanying social changes that are continually reshaping rural Alaskan communities and subsistence economies. In this paper we reflect on our research approach combining multiple methods of inquiry. Participant observation and semidirected interviews provided the conceptual framework for broadening our focus from climate and environmental change to community residents' understanding of climate change in the context of their holistic human-environment worldview. Cultural consensus analysis allowed us to assess the extent to which perceptions of change are shared among hunters and fishers within and between villages and regions and to identify those phenomena occurring or experienced at smaller scales. Reflecting on this multimethods approach, we highlight important questions that have emerged about how we understand, synthesize, and represent local knowledge, especially as it is used in regulatory or management arenas.

  18. Climate Change and Human Occupation in Denmark and Syria

    DEFF Research Database (Denmark)

    Schrøder, Niels; Jensen, Gitte; Limborg, Magnus

    2007-01-01

    the main changes in human activities in the areas. It also confirms that the climatic histories of the sites are closely correlated - with strong ties to global causes of climate change. The NAO (North Atlantic Oscillation) caused contrasting rainfall conditions in Denmark and Levant. Over a period of one......Classical sites for studies of human occupation and climatic changes in Denmark and Syria - have been re-examined. A detailed geological/geophysical mapping of selected sites and geochemical /palynological analysis of cores/profiles confirms that climate change has been the decisive factor behind....... The changes in human occupation in Syria and in Denmark both seems to correlate with the proxies of climate change esp. the change from Atlantic to Subboreal around 4000BC, the change from Subboreal to Subatlantic around 500 BC are marked in as well the climate record and archaeological records (monsoon...

  19. Readying Health Services for Climate Change: A Policy Framework for Regional Development

    Science.gov (United States)

    2011-01-01

    Climate change presents the biggest threat to human health in the 21st century. However, many public health leaders feel ill equipped to face the challenges of climate change and have been unable to make climate change a priority in service development. I explore how to achieve a regionally responsive whole-of-systems approach to climate change in the key operational areas of a health service: service governance and culture, service delivery, workforce development, asset management, and financing. The relative neglect of implementation science means that policymakers need to be proactive about sourcing and developing models and processes to make health services ready for climate change. Health research funding agencies should urgently prioritize applied, regionally responsive health services research for a future of climate change. PMID:21421953

  20. Readying health services for climate change: a policy framework for regional development.

    Science.gov (United States)

    Bell, Erica

    2011-05-01

    Climate change presents the biggest threat to human health in the 21st century. However, many public health leaders feel ill equipped to face the challenges of climate change and have been unable to make climate change a priority in service development. I explore how to achieve a regionally responsive whole-of-systems approach to climate change in the key operational areas of a health service: service governance and culture, service delivery, workforce development, asset management, and financing. The relative neglect of implementation science means that policymakers need to be proactive about sourcing and developing models and processes to make health services ready for climate change. Health research funding agencies should urgently prioritize applied, regionally responsive health services research for a future of climate change.

  1. Climate change and shareholder value

    International Nuclear Information System (INIS)

    2006-01-01

    During 2005, the Carbon Trust worked with Cairneagle Associates to develop a methodology for analysing shareholder value at risk from climate change. The model developed offers a robust, replicable, top-down approach to analysing such value at risk. In addition to a company's own energy linked ('direct' and electricity linked 'indirect') carbon emissions, it looks further along the value chain and considers broader potential risk. In calculating the financial impact, the analysis quantifies the potential impact on profits, using the shape of the business in 2004, but applying a potential 2013 emissions regulatory regime. 2013 was chosen as the first year after the end of the 2008-2012 Kyoto compliance period (which also equates to Phase Two in the EU Emissions Trading Scheme). A major uncertainty is to what extent countries not currently regulated by the Kyoto Protocol (particularly the USA, India and China) will be brought into committed emission reduction targets from 2013. 2013 therefore represents the earliest year under this uncertain, but likely tougher, regulatory regime. However, although this report focuses on 2013, it needs to be recognised that, for many sectors, financial impacts will be seen significantly before this time. Ten 'case study companies' have been studied, from a range of sectors. In some cases, the 'case study company' analysed is strictly linked to a single company within that sector. In others, just a single corporate division has been reviewed, and in others yet again, characteristics from several companies have been combined to produce a more representative example. In order to enable analysis on a strictly like-for-like basis, the research has been based entirely upon public sources of information. This analysis illustrates what a determined shareholder (or other onlooker) could derive about value at risk from climate change, based upon what companies disclose today. A summary of the analysis for each sector case study is given, with

  2. Vulnerability of Agriculture to Climate Change as Revealed by Relationships between Simulated Crop Yield and Climate Change Indices

    Science.gov (United States)

    King, A. W.; Absar, S. M.; Nair, S.; Preston, B. L.

    2012-12-01

    The vulnerability of agriculture is among the leading concerns surrounding climate change. Agricultural production is influenced by drought and other extremes in weather and climate. In regions of subsistence farming, worst case reductions in yield lead to malnutrition and famine. Reduced surplus contributes to poverty in agrarian economies. In more economically diverse and industrialized regions, variations in agricultural yield can influence the regional economy through market mechanisms. The latter grows in importance as agriculture increasingly services the energy market in addition to markets for food and fiber. Agriculture is historically a highly adaptive enterprise and will respond to future changes in climate with a variety of adaptive mechanisms. Nonetheless, the risk, if not expectation, of increases in climate extremes and hazards exceeding historical experience motivates scientifically based anticipatory assessment of the vulnerability of agriculture to climate change. We investigate the sensitivity component of that vulnerability using EPIC, a well established field-scale model of cropping systems that includes the simulation of economic yield. The core of our analysis is the relationship between simulated yield and various indices of climate change, including the CCI/CLIVAR/JCOM ETCCDI indices, calculated from weather inputs to the model. We complement this core with analysis using the DSSAT cropping system model and exploration of relationships between historical yield statistics and climate indices calculated from weather records. Our analyses are for sites in the Southeast/Gulf Coast region of the United States. We do find "tight" monotonic relationships between annual yield and climate for some indices, especially those associated with available water. More commonly, however, we find an increase in the variability of yield as the index value becomes more extreme. Our findings contribute to understanding the sensitivity of crop yield as part of

  3. Natural and anthropogenic climate change

    International Nuclear Information System (INIS)

    Ko, M.K.W.; Clough, S.A.; Molnar, G.I.; Iacono, M.; Wang, W.C.; State Univ. of New York, Albany, NY

    1992-03-01

    This report consists of two parts: (1) progress for the period 9/1/91--3/31/92 and (2) the plan for the remaining period 4/1/92--8/31/92. The project includes two tasks: atmospheric radiation and improvement of climate models to evaluate the climatic effects of radiation changes. The atmospheric radiation task includes four subtasks: (1) Intercomparison of Radiation Codes in Climate Models (ICRCCM), (2) analysis of the water vapor continuum using line-by-line calculations to develop a parameterization for use in climate models, (3) parameterization of longwave radiation and (4) climate/radiation interactions of desert aerosols. Our effort in this period is focused on the first three subtasks. The improvement of climate models to evaluate the subtasks: (1) general circulation model study and (2) 2- D model development and application

  4. Targeting climate diversity in conservation planning to build resilience to climate change

    Science.gov (United States)

    Heller, Nicole E.; Kreitler, Jason R.; Ackerly, David; Weiss, Stuart; Recinos, Amanda; Branciforte, Ryan; Flint, Lorraine E.; Flint, Alan L.; Micheli, Elisabeth

    2015-01-01

    consistently show greater climate stability than homogenous areas. The analysis suggests that utilizing high-resolution climate and hydrological data in conservation planning improves the likely resilience of biodiversity to climate change. We used these analyses to suggest new conservation priorities for the San Francisco Bay Area.

  5. Social and Policy Aspects of Climate Change Adaptation in Urban Forests of Belgrade

    Directory of Open Access Journals (Sweden)

    Ivana Živojinović

    2015-10-01

    Full Text Available Background and Purpose: Climate change has an impact on economic and natural systems as well as human health. These impacts are particularly visible in urbanised areas. Urban forests, which are one of the main natural features of the cities, are threatened by climate change. Generally, the role of forests in combating climate change is widely recognised and its significance is recognised also in urban areas. However, appropriate responses to climate change are usually lacking in their management. Climate change adaptation in relation to urban forests has been studied less often in comparison to climate change mitigation. Adaptive capacity of forests to climate change consists of adaptive capacity of forests as an ecological system and adaptive capacity of related socio-economic factors. The latter determines the capacity of a system and its actors to implement planned actions. This paper studies social and policy aspects of adaptation processes in urban forests of Belgrade. Materials and Methods: For the purpose of this study content analysis of urban forest policy and management documents was applied. Furthermore, in-depth interviews with urban forest managers and Q-methodology surveys with urban forestry stakeholders were conducted. Triangulation of these data is used to assure validity of results. Results: The results show weak integration of climate change issues in urban forest policy and management documents, as well as weak responses by managers. A comprehensive and systematic approach to this challenge does not exist. Three perspectives towards climate change are distinguished: (I ‘sceptics’ - do not perceive climate change as a challenge, (II ‘general-awareness perspective’ - aware of climate change issues but without concrete concerns toward urban forests, (III ‘management-oriented perspective’ - highlights specific challenges related to urban forest management. Awareness of urban forest managers and stakeholders towards

  6. A cross-sectoral analysis of climate change risk drivers based on companies' responses to the CDP's climate change information request

    OpenAIRE

    Groth, Markus; Brunsmeier, Annette

    2016-01-01

    Companies are increasingly concerned with current and future climate change risks that have the potential to generate a substantial change in their business operations, revenue and/or expenditure. Therefore, the paper focusses on the companies' perspective and aims to create a higher awareness of companies' risk drivers when it comes to specific challenges of different sectors as well as each company within its sector. Based on companies' responses to the CDP's climate change information requ...

  7. Development and Climate Change in Tanzania. Focus on Mount Kilimanjaro

    International Nuclear Information System (INIS)

    Agrawala, S.; Moehner, A.; Van Aalst, M.; Smith, J.; Hitz, S.; Hemp, A.; Meena, H.; Mwakifwamba, S.M.; Hyera, T.; Mwaipopo, O.U.

    2003-01-01

    This document is an output from the OECD Development and Climate Change project, an activity jointly overseen by the EPOC Working Party on Global and Structural Policies (WPGSP), and the DAC Network on Environment and Development Co-operation (ENVIRONET). The overall objective of the project is to provide guidance on how to mainstream responses to climate change within economic development planning and assistance policies, with natural resource management as an overarching theme. This report presents the integrated case study for Tanzania carried out under an OECD project on Development and Climate Change. The report is structured around a three-tiered framework. First, recent climate trends and climate change scenarios for Tanzania are assessed, and key sectoral impacts are identified and ranked along multiple indicators to establish priorities for adaptation. Second, donor portfolios in Tanzania are analyzed to examine the proportion of donor activities affected by climate risks. A desk analysis of donor strategies and project documents as well as national plans is conducted to assess the degree of attention to climate change concerns in development planning and assistance. Third, an in-depth analysis is conducted for climate change impacts and response strategies for Mount Kilimanjaro - a critical ecosystem, biodiversity hotspot, and source of freshwater. This part of the analysis draws upon extended field research by a case study consultant in collaboration with national and international partners

  8. Climate change discourses and citizen participation

    DEFF Research Database (Denmark)

    Lassen, Inger; Horsbøl, Anders; Bonnen, Kersten

    2011-01-01

    of Denmark. We analyze how central actors are called upon to act, and how citizens are addressed in the call for action in the two sets of data. Paving the way for the empirical analysis, the first part of the article gives a review of contemporary literature on climate change typologies and discourses......Citizen participation is a recurrent and democratically important issue in the ongoing debate about climate change. However, different meanings are ascribed to citizen participation in different contexts and discourses, ranging from top-down involvement to bottom-up engagement. This article...... within different research fields, assessing how citizen participation is articulated within these discourses. Finally, we address some needs for increased citizen participation in the climate change debate....

  9. Gender and climate change-induced migration: proposing a framework for analysis

    International Nuclear Information System (INIS)

    Chindarkar, Namrata

    2012-01-01

    This paper proposes frameworks to analyze the gender dimensions of climate change-induced migration. The experiences, needs and priorities of climate migrants will vary by gender and these differences need to be accounted for if policies are to be inclusive. Among the vulnerable groups, women are likely to be disproportionately affected due to climate change because on average women tend to be poorer, less educated, have a lower health status and have limited direct access to or ownership of natural resources. Both the process (actual movement) and the outcomes (rural–rural or rural–urban migration, out-migration mainly of men) of climate change-induced migration are also likely to be highly gendered. (letter)

  10. Understanding Resistance to Climate Change Resistance.

    Science.gov (United States)

    Coyle, Maureen

    2014-12-01

    Fifty years after the emergence of warnings over the effects of the environmental impacts of industrialization and other conditions of a planet subjugated by humans, we are still entertaining discussions about the existence of the phenomena of climate change. Worse still, we have not checked the behaviors and conditions that exacerbate the rate of environmental destruction. Older people, particularly those who are economically vulnerable, are among those most at risk in disasters, including events resulting from climate change. By applying the "epistemologies of ignorance" outlined by Nancy Tuana, I attempt to understand the rooted ignorance that prevents acceptance of the environmental impact of human kind's unrepentant misuse of the world's natural resources and the refusal to curb the excesses that have lead to environmental damage that has had, and that will continue to have, dire consequences on the planet and for the most vulnerable denizens of Earth. Far from being a pessimistic project of abjection and despair, this article proposes that an examination of climate change denial can provide guidance for the development of a better counter-narrative. © The Author(s) 2015.

  11. Agricultural Intensification as a Mechanism of Adaptation to Climate Change Impacts

    Science.gov (United States)

    Kyle, P.; Calvin, K. V.; le Page, Y.; Patel, P.; West, T. O.; Wise, M. A.

    2015-12-01

    The research, policy, and NGO communities have devoted significant attention to the potential for agricultural intensification, or closure of "yield gaps," to alleviate future global hunger, poverty, climate change impacts, and other threats. However, because the research to this point has focused on biophysically attainable yields—assuming optimal choices under ideal conditions—the presently available work has not yet addressed the likely responses of the agricultural sector to real-world conditions in the future. This study investigates endogenous agricultural intensification in response to global climate change impacts—that is, intensification independent of policies or other exogenous interventions to promote yield gap closure. The framework for the analysis is a set of scenarios to 2100 in the GCAM global integrated assessment model, enhanced to include endogenous irrigation, fertilizer application, and yields, in each of 283 land use regions, with maximum yields based on the 95th percentile of attainable yields in a recent global assessment. We assess three levels of agricultural climate impacts, using recent global gridded crop model datasets: none, low (LPJmL), and high (Pegasus). Applying formulations for decomposition of climate change impacts response developed in prior AgMIP work, we find that at the global level, availability of high-yielding technologies mitigates price shocks and shifts the agricultural sector's climate response modestly towards intensification, away from cropland expansion and reduced production. At the regional level, the behavior is more complex; nevertheless, availability of high-yielding production technologies enhances the inter-regional shifts in agricultural production that are induced by climate change, complemented by commensurate changes in trade patterns. The results highlight the importance of policies to facilitate yield gap closure and inter-regional trade as mechanisms for adapting to climate change

  12. Social and health dimensions of climate change in the Amazon.

    Science.gov (United States)

    Brondízio, Eduardo S; de Lima, Ana C B; Schramski, Sam; Adams, Cristina

    2016-07-01

    The Amazon region has been part of climate change debates for decades, yet attention to its social and health dimensions has been limited. This paper assesses literature on the social and health dimensions of climate change in the Amazon. A conceptual framework underscores multiple stresses and exposures created by interactions between climate change and local social-environmental conditions. Using the Thomson-Reuter Web of Science, this study bibliometrically assessed the overall literature on climate change in the Amazon, including Physical Sciences, Social Sciences, Anthropology, Environmental Science/Ecology and Public, Environmental/Occupational Health. From this assessment, a relevant sub-sample was selected and complemented with literature from the Brazilian database SciELO. This sample discusses three dimensions of climate change impacts in the region: livelihood changes, vector-borne diseases and microbial proliferation, and respiratory diseases. This analysis elucidates imbalance and disconnect between ecological, physical and social and health dimensions of climate change and between continental and regional climate analysis, and sub-regional and local levels. Work on the social and health implications of climate change in the Amazon falls significantly behind other research areas, limiting reliable information for analytical models and for Amazonian policy-makers and society at large. Collaborative research is called for.

  13. The national adaptation plan to climate change

    International Nuclear Information System (INIS)

    Galliot, M.

    2013-01-01

    Adaptation to climate change is a necessity, as well as reducing emissions of greenhouse gases. Since 2001, the National Observatory on the effects of global warming gathers and disseminates news on the effects of climate change and drive implementation of adaptation in France. A national strategy was adopted in 2006, followed by an analysis of the impacts of climate change and associated costs that could amount to several billion euros per year at the end of the century. Preceded by extensive consultation that involved stakeholders Grenelle Environment the National Adaptation Plan was published in mid-2011. It covers all sectors and many areas. He has more than 80 concrete actions that will commit France to adapt to the new climate. (author)

  14. Our changing climate

    International Nuclear Information System (INIS)

    Kandel, R.

    1990-01-01

    The author presents an overview of the changing climate. Attention is focused on the following: meteorology; weather; climate anomalies; changes in atmospheric composition and global warming; ozone; mathematical models; and climate and politics. In its conclusion, it asks researchers to stay out of a game in which, ultimately, neither science nor politics stands to gain anything

  15. Climate change risk perception and communication: addressing a critical moment?

    Science.gov (United States)

    Pidgeon, Nick

    2012-06-01

    Climate change is an increasingly salient issue for societies and policy-makers worldwide. It now raises fundamental interdisciplinary issues of risk and uncertainty analysis and communication. The growing scientific consensus over the anthropogenic causes of climate change appears to sit at odds with the increasing use of risk discourses in policy: for example, to aid in climate adaptation decision making. All of this points to a need for a fundamental revision of our conceptualization of what it is to do climate risk communication. This Special Collection comprises seven papers stimulated by a workshop on "Climate Risk Perceptions and Communication" held at Cumberland Lodge Windsor in 2010. Topics addressed include climate uncertainties, images and the media, communication and public engagement, uncertainty transfer in climate communication, the role of emotions, localization of hazard impacts, and longitudinal analyses of climate perceptions. Climate change risk perceptions and communication work is critical for future climate policy and decisions. © 2012 Society for Risk Analysis.

  16. Climate change and skin disease.

    Science.gov (United States)

    Lundgren, Ashley D

    2018-04-01

    Despite commanding essentially universal scientific consensus, climate change remains a divisive and poorly understood topic in the United States. Familiarity with this subject is not just for climate scientists. The impact of climate change on human morbidity and mortality may be considerable; thus, physicians also should be knowledgeable in this realm. Climate change science can seem opaque and inferential, creating fertile ground for political polemics and undoubtedly contributing to confusion among the general public. This puts physicians in a pivotal position to facilitate a practical understanding of climate change in the public sphere by discussing changes in disease patterns and their possible relationship to a changing climate. This article provides a background on climate change for dermatologists and highlights how climate change may impact the management of skin disease across the United States.

  17. Building Partnerships and Research Collaborations to Address the Impacts of Arctic Change: The North Atlantic Climate Change Collaboration (NAC3)

    Science.gov (United States)

    Polk, J.; North, L. A.; Strenecky, B.

    2015-12-01

    Changes in Arctic warming influence the various atmospheric and oceanic patterns that drive Caribbean and mid-latitude climate events, including extreme events like drought, tornadoes, and flooding in Kentucky and the surrounding region. Recently, the establishment of the North Atlantic Climate Change Collaboration (NAC3) project at Western Kentucky University (WKU) in partnership with the University of Akureyri (UNAK), Iceland Arctic Cooperation Network (IACN), and Caribbean Community Climate Change Centre (CCCCC) provides a foundation from which to engage students in applied research from the local to global levels and more clearly understand the many tenets of climate change impacts in the Arctic within both a global and local community context. The NAC3 project encompasses many facets, including joint international courses, student internships, economic development, service learning, and applied research. In its first phase, the project has generated myriad outcomes and opportunities for bridging STEM disciplines with other fields to holistically and collaboratively address specific human-environmental issues falling under the broad umbrella of climate change. WKU and UNAK students desire interaction and exposure to other cultures and regions that are threatened by climate change and Iceland presents a unique opportunity to study influences such as oceanic processes, island economies, sustainable harvest of fisheries, and Arctic influences on climate change. The project aims to develop a model to bring partners together to conduct applied research on the complex subject of global environmental change, particularly in the Arctic, while simultaneously focusing on changing how we learn, develop community, and engage internationally to understand the impacts and find solutions.

  18. Simulation of Optimal Decision-Making Under the Impacts of Climate Change

    DEFF Research Database (Denmark)

    Møller, Lea Ravnkilde; Drews, Martin; Larsen, Morten Andreas Dahl

    2017-01-01

    Climate change causes transformations to the conditions of existing agricultural practices appointing farmers to continuously evaluate their agricultural strategies, e.g., towards optimising revenue. In this light, this paper presents a framework for applying Bayesian updating to simulate decision...... crops, irrigated crops and livestock) by a continuous updating of beliefs relative to realised trajectories of climate (change), represented by projections of temperature and precipitation. The climate data is based on combinations of output from three global/regional climate model combinations and two...

  19. Adaptation to Climate Change in Risk and Vulnerability Analysis on a Municipal Level, a basis for further work

    International Nuclear Information System (INIS)

    Mossberg Sonnek, Karin; Lindberg, Anna; Lindgren, Johan

    2007-12-01

    The aim of Risk and Vulnerability Analysis (RVA) at local authority level in Sweden is to increase the capacity of local authorities to handle crises and to reduce vulnerability in the community. RVA processes could be an appropriate starting-point for discussions on how the community is influenced by climate change and how its effects could be reduced using various adjustment measures. In the report we present four methods: ROSA, MVA, IBERO and the Car Dun AB method. These have all been developed to support Swedish local authority RVA processes. We also present five international frameworks that have been developed by the organisations UNDP, USAID, UKCIP, C-CIARN and CSIRO to help decision-makers and stakeholders to adapt to climate change. Together, these descriptions form a foundation for continuing the work being done within the project Climatools, in which tools are being produced to be used by local authorities in adapting to climate change. In the report, we also discuss the concepts 'risk', 'vulnerability' and 'adaptation' and how analysis of adaptation to climate change has changed in recent years

  20. Climate change scenarios and key climate indices in the Swiss Alpine region

    Science.gov (United States)

    Zubler, Elias; Croci-Maspoli, Mischa; Frei, Christoph; Liniger, Mark; Scherrer, Simon; Appenzeller, Christof

    2013-04-01

    For climate adaption and to support climate mitigation policy it is of outermost importance to demonstrate the consequences of climate change on a local level and in user oriented quantities. Here, a framework is presented to apply the Swiss national climate change scenarios CH2011 to climate indices with direct relevance to applications, such as tourism, transportation, agriculture and health. This framework provides results on a high spatial and temporal resolution and can also be applied in mountainous regions such as the Alps. Results are shown for some key indices, such as the number of summer days and tropical nights, growing season length, number of frost days, heating and cooling degree days, and the number of days with fresh snow. Particular focus is given to changes in the vertical distribution for the future periods 2020-2049, 2045-2074 and 2070-2099 relative to the reference period 1980-2009 for the A1B, A2 and RCP3PD scenario. The number of days with fresh snow is approximated using a combination of temperature and precipitation as proxies. Some findings for the latest scenario period are: (1) a doubling of the number of summer days by the end of the century under the business-as-usual scenario A2, (2) tropical nights appear above 1500 m asl, (3) the number of frost days may be reduced by more than 3 months at altitudes higher than 2500 m, (4) an overall reduction of heating degree days of about 30% by the end of the century, but on the other hand an increase in cooling degree days in warm seasons, and (5) the number of days with fresh snow tends to go towards zero at low altitudes. In winter, there is little change in snowfall above 2000 m asl (roughly -3 days) in all scenarios. The largest impact on snowfall is found along the Northern Alpine flank and the Jura (-10 days or roughly -50% in A1B for the winter season). It is also highlighted that the future projections for all indices strongly depend on the chosen scenario and on model uncertainty

  1. climate change: causes, effects and mitigation measures-a review

    African Journals Online (AJOL)

    BARTH EKWUEME

    Both natural and human causes of climate change including the earth's orbital changes, solar variations .... analysis supported by climate models have revealed that cloud ... clouds could actually exert a small cooling effect as temperature ...

  2. The Climate Change Consortium of Wales (C3W)

    Science.gov (United States)

    Hendry, K. R.; Reis, J.; Hall, I. R.

    2011-12-01

    In response to the complexity and multidisciplinary nature of climate change research, the Climate Change Consortium of Wales (C3W) was formed in 2009 by the Welsh universities of Aberystwyth, Bangor, Cardiff and Swansea. Initially funded by Welsh Government, through the Higher Education Funding Council for Wales, the Countryside Council for Wales and the universities, C3W aims to bring together climate change researchers from a wide range of disciplines to explore scientific and sociological drivers, impacts and implications at local, national and international scale. The specific aims are to i) improve our fundamental understanding of the causes, nature, timing and consequences of climate change on Planet Earth's environment and on humanity, and ii) to reconfigure climate research in Wales as a recognisable centre of excellence on the world stage. In addition to improving the infrastructure for climate change research, we aim to improve communication, networking, collaborative research, and multidisciplinary data assimilation within and between the Welsh universities, and other UK and international institutions. Furthermore, C3W aims to apply its research by actively contributing towards national policy development, business development and formal and informal education activities within and beyond Wales.

  3. Farmer’s perception of climate change and responsive strategies in three selected provinces of South Africa

    Directory of Open Access Journals (Sweden)

    Zelda A. Elum

    2017-01-01

    Full Text Available The world has responded to climate change phenomenon through two broad response mechanisms (mitigation and adaptation strategies with the aim of moderating the adverse effects of climate change and/or to exploit any arising beneficial opportunities. The paper aims to examine the trend in climate parameters, farmers’ perception of climate change, constraints faced in production and to identify the strategies (if any that farmers have adopted to cope with the effects of changing climate. A one-way analysis of variance, percentage analysis and Garrett ranking technique were applied to a set of primary data collected from 150 randomly sampled farmers with the aid of questionnaires in three purposively selected provinces through the months of June to August 2015. The analytical results of obtained recent weather data revealed that the climate parameters have significantly changed over time and these were substantiated by farmers’ experiences. The farmers are engaging in various climate-response strategies, among which, the planting of drought-tolerant varieties is most common. Therefore, it is important to enhance farmers’ access to improved drought-tolerant seeds and efficient irrigation systems. Also observed, is that the lack of awareness of insurance products and inability to afford insurance premiums were the principal reasons majority of the farmers did not have insurance. These present a need to strengthen insurance adoption among farmers through various supporting programmes that may include premium subsidies and media outreach. The paper under one platform provides evidence of changing climate, farmers’ responses towards mitigating perceived adverse effects of the changed climate, and South Africa’s national policy on adaptation and mitigation.

  4. Fat-tailed risk about climate change and climate policy

    International Nuclear Information System (INIS)

    Hwang, In Chang; Tol, Richard S.J.; Hofkes, Marjan W.

    2016-01-01

    This paper investigates the role of emissions control in welfare maximization under fat-tailed risk about climate change. We provide a classification of fat tails and discuss the effect of fat-tailed risk on climate policy. One of the main findings is that emissions control may prevent the “strong” tail-effect from arising, at least under some conditions such as bounded temperature increases, low risk aversion, low damage costs, and bounded utility function. More specifically, the fat-tailed risk with respect to a climate parameter does not necessarily lead to an unbounded carbon tax. In this case, the basic principle of cost-benefit analysis maintains its applicability. - Highlights: • A fat tail is classified and the tail effect on climate policy is discussed. • The optimal carbon tax is not necessarily unbounded. • The basic principle of cost-benefit analysis maintains its applicability. • This is a numerical confirmation of the recent theoretical research.

  5. Expansion Under Climate Change: The Genetic Consequences.

    Science.gov (United States)

    Garnier, Jimmy; Lewis, Mark A

    2016-11-01

    Range expansion and range shifts are crucial population responses to climate change. Genetic consequences are not well understood but are clearly coupled to ecological dynamics that, in turn, are driven by shifting climate conditions. We model a population with a deterministic reaction-diffusion model coupled to a heterogeneous environment that develops in time due to climate change. We decompose the resulting travelling wave solution into neutral genetic components to analyse the spatio-temporal dynamics of its genetic structure. Our analysis shows that range expansions and range shifts under slow climate change preserve genetic diversity. This is because slow climate change creates range boundaries that promote spatial mixing of genetic components. Mathematically, the mixing leads to so-called pushed travelling wave solutions. This mixing phenomenon is not seen in spatially homogeneous environments, where range expansion reduces genetic diversity through gene surfing arising from pulled travelling wave solutions. However, the preservation of diversity is diminished when climate change occurs too quickly. Using diversity indices, we show that fast expansions and range shifts erode genetic diversity more than slow range expansions and range shifts. Our study provides analytical insight into the dynamics of travelling wave solutions in heterogeneous environments.

  6. Impact of Climate Change Effects on Contamination of Cereal Grains with Deoxynivalenol

    DEFF Research Database (Denmark)

    van der Fels-Klerx, H J; van Asselt, E D; Madsen, M S

    2013-01-01

    Climate change is expected to aggravate feed and food safety problems of crops; however, quantitative estimates are scarce. This study aimed to estimate impacts of climate change effects on deoxynivalenol contamination of wheat and maize grown in the Netherlands by 2040. Quantitative modelling...... the impacts of climate change effects on food safety, and of considering both direct and indirect effects when assessing climate change impacts on crops and related food safety hazards....... two different global and regional climate model combinations were used. A weather generator was applied for downscaling climate data to local conditions. Crop phenology models and prediction models for DON contamination used, each for winter wheat and grain maize. Results showed that flowering...

  7. Future changes in extratropical storm tracks and baroclinicity under climate change

    International Nuclear Information System (INIS)

    Lehmann, Jascha; Coumou, Dim; Frieler, Katja; Eliseev, Alexey V; Levermann, Anders

    2014-01-01

    The weather in Eurasia, Australia, and North and South America is largely controlled by the strength and position of extratropical storm tracks. Future climate change will likely affect these storm tracks and the associated transport of energy, momentum, and water vapour. Many recent studies have analyzed how storm tracks will change under climate change, and how these changes are related to atmospheric dynamics. However, there are still discrepancies between different studies on how storm tracks will change under future climate scenarios. Here, we show that under global warming the CMIP5 ensemble of coupled climate models projects only little relative changes in vertically averaged mid-latitude mean storm track activity during the northern winter, but agree in projecting a substantial decrease during summer. Seasonal changes in the Southern Hemisphere show the opposite behaviour, with an intensification in winter and no change during summer. These distinct seasonal changes in northern summer and southern winter storm tracks lead to an amplified seasonal cycle in a future climate. Similar changes are seen in the mid-latitude mean Eady growth rate maximum, a measure that combines changes in vertical shear and static stability based on baroclinic instability theory. Regression analysis between changes in the storm tracks and changes in the maximum Eady growth rate reveal that most models agree in a positive association between the two quantities over mid-latitude regions. (letter)

  8. Quality Climate Change Professional Development Translates into Quality Climate Change Education (Invited)

    Science.gov (United States)

    Holzer, M. A.

    2013-12-01

    Perhaps one of the reasons we have so many climate change deniers in the United States is that to them climate change is not occurring. This is a valid claim about climate change deniers considering that the effects of climate change in the mid-latitudes are quite subtle as compared to those found in low-latitude and high-latitude regions. A mid-latitude classroom teacher is saddled with the challenge of enlightening students about our changing climate and empowering students to assist in making necessary lifestyle changes, all the while the students don't understand the urgency in doing so. Quality climate change data and resources from the Polar Regions and low latitudes, as well as connections to researchers from these regions help to bridge the understanding of our changing climate from the extreme latitudes to the mid-latitudes. Connecting science teachers with data, resources, and researchers is one way of ensuring our mid-latitude students understand the urgency in taking appropriate actions to adapt, mitigate, and show resilience. This presentation will highlight a few of the many impacts of an authentic research experience for teachers that not only provides teachers with data, resources, and researchers, but changes the way a science teacher teaches where the methods they use mirror the methods used by scientists. National projects like PolarTREC connect educators with the science of climate change as well as the reality of impacts of climate change. For example, research expeditions in the Arctic and in Antarctica connect teachers with the content and practices of climate change science preparing them to replicate their experiences with their students. A PolarTREC experience does not end with the close of the expedition. Teachers continue their connections with the program through their educator network, the integration of PolarTREC resources into their curriculums, and communications with their principal investigators either virtually or with school

  9. Trade and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Tamiotti, L.; Teh, R.; Kulacoglu, V. (World Trade Organization (WTO), Geneva (Switzerland)); Olhoff, A.; Simmons, B.; Abaza, H. (United Nations Environment Programme (UNEP) (Denmark))

    2009-06-15

    The Report aims to improve understanding about the linkages between trade and climate change. It shows that trade intersects with climate change in a multitude of ways. For example, governments may introduce a variety of policies, such as regulatory measures and economic incentives, to address climate change. This complex web of measures may have an impact on international trade and the multilateral trading system. The Report begins with a summary of the current state of scientific knowledge on climate change and on the options available for responding to the challenge of climate change. The scientific review is followed by a part on the economic aspects of the link between trade and climate change, and these two parts set the context for the subsequent parts of the Report, which looks at the policies introduced at both the international and national level to address climate change. The part on international policy responses to climate change describes multilateral efforts to reduce greenhouse gas emissions and to adapt to the effects of climate change, and also discusses the role of the current trade and environment negotiations in promoting trade in technologies that aim to mitigate climate change. The final part of the Report gives an overview of a range of national policies and measures that have been used in a number of countries to reduce greenhouse gas emissions and to increase energy efficiency. It presents key features in the design and implementation of these policies, in order to draw a clearer picture of their overall effect and potential impact on environmental protection, sustainable development and trade. It also gives, where appropriate, an overview of the WTO rules that may be relevant to such measures. (author)

  10. The climate is changing

    International Nuclear Information System (INIS)

    Alfsen, Knut H.

    2001-01-01

    The Intergovernmental Panel on Climate Change (IPCC) has finalized its Third Assessment Report. Among its conclusions is that we must expect continued changes in our climate, despite our efforts to reduce greenhouse gas emissions. Planning for and adapting to climate change are therefore necessary. As a starting point, CICERO has written this short note on expected impacts in Norway. The main conclusions are that (1) Adaptation to climate change is necessary (2) Substantial impacts are expected for several important sectors in Norway (3) The local and central authorities should now consider and start planning for adaptation measures. (4) There is still a need for more knowledge about potential impacts of climate change in Norway. (author)

  11. Climate equivalence scales and the effects of climate change on Russian welfare and well-being

    Energy Technology Data Exchange (ETDEWEB)

    Frijters, P. [Tinbergen Institute, University of Amsterdam, Amsterdam (Netherlands)] Van Praag, B.M.S. [Foundation for Economic Research SEO, Faculty of Economics and Econometrics, University of Amsterdam, Amsterdam (Netherlands)

    1996-12-31

    The concepts of welfare and well-being are made operational and are measured for two large Russian household surveys, carried out in 1993 and 1994. Welfare refers to satisfaction with income and well-being refers to satisfaction with life as a whole. The main question in this paper is how different climatic conditions in various parts of Russia affect the cost of living and well-being. This approach yields climate equivalence scales for both welfare and well-being. Finally we apply the result to assess the impact of a climate change. Under the assumption that the climate cost structure is invariant under climate change, an increase of 2 Celsius in average temperature could mean an effective decrease in the cost of living of 32% on average in Russia. 5 tabs., 1 app., 28 refs.

  12. Agricultural development in the context of climate change

    Science.gov (United States)

    Mueller, N. D.; Gerber, J. S.; Ray, D. K.; Ramankutty, N.; Foley, J. A.

    2012-12-01

    Global climate change and continued intensification of agriculture are two "mega-trends" that will impact agricultural systems in the coming decades. While often these two trends are analyzed in isolation, recent work describes how climate change has historically offset some crop yield gains that would have otherwise occurred. Here we spatially analyze how these interactions between climate change and agricultural development may continue to 2025. We highlight areas that will be hit hardest by climate change and require aggressive management changes, as well as areas where large productivity increases are likely given current trends. To carry out our analysis we rely on a recently developed climate analog model to produce projections of climate-induced yield changes, projections of business-as-usual crop yield trends utilizing time-series data from ~13,500 agricultural census units, and published estimates of possible crop yield increases from aggressive intervention to close yield gaps. We find that a rich picture of agriculture in 2025 emerges when analyzing these multiple critical drivers. In many regions, existing yield trends or more aggressive management interventions (closing yield gaps) can overcome negative impacts from climate change. Thus, intensification can provide a buffer from near-term climate impacts, but it is unclear how long society may be able to rely on this buffering capacity.

  13. How can a climate change perspective be integrated into public health surveillance?

    Science.gov (United States)

    Pascal, M; Viso, A C; Medina, S; Delmas, M C; Beaudeau, P

    2012-08-01

    Climate change may be considered as a key factor for environmental change, exposure to health risks and pathogens, consequently impairing the state of health among populations. Efficient health surveillance systems are required to support adaptation to climate change. However, despite a growing awareness, the public health surveillance sector has had very little involvement in the drafting of adaptation plans. This paper proposes a method to raise awareness about climate change in the public health community, to identify possible health risks and to assess the needs for reinforced health surveillance systems. A working group was set up comprising surveillance experts in the following fields: environmental health; chronic diseases and; infectious diseases. Their goal was to define common objectives, to propose a framework for risk analysis, and to apply it to relevant health risks in France. The framework created helped to organize available information on climate-sensitive health risks, making a distinction between three main determinants as follows: (1) environment; (2) individual and social behaviours; and (3) demography and health status. The process is illustrated using two examples: heatwaves and airborne allergens. Health surveillance systems can be used to trigger early warning systems, to create databases which improve scientific knowledge about the health impacts of climate change, to identify and prioritize needs for intervention and adaptation measures, and to evaluate these measures. Adaptation requires public health professionals to consider climate change as a concrete input parameter in their studies and to create partnerships with professionals from other disciplines. Copyright © 2012 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  14. Climate change mitigation in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, G A; Turkson, J K; Davidson, O R [eds.

    1998-10-01

    The UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Southern Centre for Energy and Environment (SCEE) hosted a conference on `Climate Change Mitigation in Africa` between 18 and 20 May. The Conference set out to address the following main objectives: to present to a wider audience the results of UNEP/GEF and related country studies; to present results of regional mitigation analysis; exchange of information with similar projects in the region; to expose countries to conceptual and methodological issues related to climate change mitigation; to provide input to national development using climate change related objectives. This volume contains reports of the presentations and discussions, which took place at the conference at Victoria Falls between 18 and 20 May 1998. Representatives of 11 country teams made presentations and in addition two sub-regions were discussed: the Maghreb region and SADC. The conference was attended by a total of 63 people, representing 22 African countries as well as international organisations. (EG)

  15. Climate change mitigation in Africa

    International Nuclear Information System (INIS)

    Mackenzie, G.A.; Turkson, J.K.; Davidson, O.R.

    1998-10-01

    The UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Southern Centre for Energy and Environment (SCEE) hosted a conference on 'Climate Change Mitigation in Africa' between 18 and 20 May. The Conference set out to address the following main objectives: to present to a wider audience the results of UNEP/GEF and related country studies; to present results of regional mitigation analysis; exchange of information with similar projects in the region; to expose countries to conceptual and methodological issues related to climate change mitigation; to provide input to national development using climate change related objectives. This volume contains reports of the presentations and discussions, which took place at the conference at Victoria Falls between 18 and 20 May 1998. Representatives of 11 country teams made presentations and in addition two sub-regions were discussed: the Maghreb region and SADC. The conference was attended by a total of 63 people, representing 22 African countries as well as international organisations. (EG)

  16. Climate change and the water cycle in newly irrigated areas.

    Science.gov (United States)

    Abrahão, Raphael; García-Garizábal, Iker; Merchán, Daniel; Causapé, Jesús

    2015-02-01

    Climate change is affecting agriculture doubly: evapotranspiration is increasing due to increments in temperature while the availability of water resources is decreasing. Furthermore, irrigated areas are expanding worldwide. In this study, the dynamics of climate change impacts on the water cycle of a newly irrigated watershed are studied through the calculation of soil water balances. The study area was a 752-ha watershed located on the left side of the Ebro river valley, in Northeast Spain. The soil water balance procedures were carried out throughout 1827 consecutive days (5 years) of hydrological and agronomical monitoring in the study area. Daily data from two agroclimatic stations were used as well. Evaluation of the impact of climate change on the water cycle considered the creation of two future climate scenarios for comparison: 2070 decade with climate change and 2070 decade without climate change. The main indicators studied were precipitation, irrigation, reference evapotranspiration, actual evapotranspiration, drainage from the watershed, and irrigation losses. The aridity index was also applied. The results represent a baseline scenario in which adaptation measures may be included and tested to reduce the impacts of climate change in the studied area and other similar areas.

  17. Multiscale connectivity and graph theory highlight critical areas for conservation under climate change.

    Science.gov (United States)

    Dilt, Thomas E; Weisberg, Peter J; Leitner, Philip; Matocq, Marjorie D; Inman, Richard D; Nussear, Kenneth E; Esque, Todd C

    2016-06-01

    Conservation planning and biodiversity management require information on landscape connectivity across a range of spatial scales from individual home ranges to large regions. Reduction in landscape connectivity due changes in land use or development is expected to act synergistically with alterations to habitat mosaic configuration arising from climate change. We illustrate a multiscale connectivity framework to aid habitat conservation prioritization in the context of changing land use and climate. Our approach, which builds upon the strengths of multiple landscape connectivity methods, including graph theory, circuit theory, and least-cost path analysis, is here applied to the conservation planning requirements of the Mohave ground squirrel. The distribution of this threatened Californian species, as for numerous other desert species, overlaps with the proposed placement of several utility-scale renewable energy developments in the American southwest. Our approach uses information derived at three spatial scales to forecast potential changes in habitat connectivity under various scenarios of energy development and climate change. By disentangling the potential effects of habitat loss and fragmentation across multiple scales, we identify priority conservation areas for both core habitat and critical corridor or stepping stone habitats. This approach is a first step toward applying graph theory to analyze habitat connectivity for species with continuously distributed habitat and should be applicable across a broad range of taxa.

  18. Climate Change Portal - Home Page

    Science.gov (United States)

    Science Partnerships Contact Us Take Action Climate change is already having significant and widespread of climate change. Business Businesses throughout California are taking action to address climate climate change impacts and informing policies to reduce greenhouse gases, adapt to changing environments

  19. Research on Greenhouse-Gas-Induced Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, M. E.

    2001-07-15

    During the 5 years of NSF grant ATM 95-22681 (Research on Greenhouse-Gas-Induced Climate Change, $1,605,000, 9/15/1995 to 8/31/2000) we have performed work which we are described in this report under three topics: (1) Development and Application of Atmosphere, Ocean, Photochemical-Transport, and Coupled Models; (2) Analysis Methods and Estimation; and (3) Climate-Change Scenarios, Impacts and Policy.

  20. Climate change and forest diseases

    Science.gov (United States)

    R.N. Sturrock; Susan Frankel; A. V. Brown; Paul Hennon; J. T. Kliejunas; K. J. Lewis; J. J. Worrall; A. J. Woods

    2011-01-01

    As climate changes, the effects of forest diseases on forest ecosystems will change. We review knowledge of relationships between climate variables and several forest diseases, as well as current evidence of how climate, host and pathogen interactions are responding or might respond to climate change. Many forests can be managed to both adapt to climate change and...

  1. Climatic change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-02-15

    In spite of man's remarkable advances in technology, ultimately he is still dependent on the Earth's climatic system for food and fresh water. The recent occurrences in certain regions of the world of climatic extremes such as excessive rain or droughts and unseasonably high or low temperatures have led to speculation that a major climatic change is occurring on a global scale. Some point to the recent drop in temperatures in the northern hemisphere as an indication that the Earth is entering a new ice age. Others see a global warming trend that may be due to a build-up of carbon dioxide in the atmosphere. An authoritative report on the subject has been prepared by a World Meteorological Organization Panel of Experts on Climatic Change. Excerpts from the report are given. (author)

  2. Climatic change

    International Nuclear Information System (INIS)

    1977-01-01

    In spite of man's remarkable advances in technology, ultimately he is still dependent on the Earth's climatic system for food and fresh water. The recent occurrences in certain regions of the world of climatic extremes such as excessive rain or droughts and unseasonably high or low temperatures have led to speculation that a major climatic change is occurring on a global scale. Some point to the recent drop in temperatures in the northern hemisphere as an indication that the Earth is entering a new ice age. Others see a global warming trend that may be due to a build-up of carbon dioxide in the atmosphere. An authoritative report on the subject has been prepared by a World Meteorological Organization Panel of Experts on Climatic Change. Excerpts from the report are given. (author)

  3. Assessment of weather indicators for possible climate change

    International Nuclear Information System (INIS)

    Maqssood, H.; Ahmed, S.I.

    2014-01-01

    From 20 century onwards, a great concern has been expressed regarding global climate change. This study attempts to perform detailed analysis of temperature and precipitation for Karachi city of Pakistan, to assess the possible climate change, using two data sets (51-year data: 1961-2012 and 31-year data: 1981-2012) for different parameters. Trends were generated using linear regression (LR) and Mann-Kendall (MK), which depicted that daily and annual temperatures were increasing, with changes in minimum temperature being more significant than maximum temperature. Analyses also showed increase in extreme temperature at night and during winter, showing that urbanization was a major factor, as the heat from buildings trapped in between dissipates at nights. The daily and monthly precipitation levels increased in contrast to annual precipitation trend, which is justified by the averaged monthly analysis showing that decreasing trends were much more significant than increasing trends. In addition, monthly precipitation showed an increase of 4.3 mm, using LR and MK test. It can be noticed that two extreme winter months (December and January) and two extreme hot months (May and October) received increased rainfall. However, statistical analyses showed overall annual decrease in rainfall. Furthermore, decadal analysis indicated sinusoidal behaviour of change in climate indicators; making climatic change evident but cyclic in nature. (author)

  4. Future Climate Analysis

    International Nuclear Information System (INIS)

    James Houseworth

    2001-01-01

    This Analysis/Model Report (AMR) documents an analysis that was performed to estimate climatic variables for the next 10,000 years by forecasting the timing and nature of climate change at Yucca Mountain (YM), Nevada (Figure 1), the site of a potential repository for high-level radioactive waste. The future-climate estimates are based on an analysis of past-climate data from analog meteorological stations, and this AMR provides the rationale for the selection of these analog stations. The stations selected provide an upper and a lower climate bound for each future climate, and the data from those sites will provide input to the infiltration model (USGS 2000) and for the total system performance assessment for the Site Recommendation (TSPA-SR) at YM. Forecasting long-term future climates, especially for the next 10,000 years, is highly speculative and rarely attempted. A very limited literature exists concerning the subject, largely from the British radioactive waste disposal effort. The discussion presented here is one method, among many, of establishing upper and lower bounds for future climate estimates. The method used here involves selecting a particular past climate from many past climates, as an analog for future climate. Other studies might develop a different rationale or select other past climates resulting in a different future climate analog. Revision 00 of this AMR was prepared in accordance with the ''Work Direction and Planning Document for Future Climate Analysis'' (Peterman 1999) under Interagency Agreement DE-AI08-97NV12033 with the U.S. Department of Energy (DOE). The planning document for the technical scope, content, and management of ICN 01 of this AMR is the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (BSC 2001a). The scope for the TBV resolution actions in this ICN is described in the ''Technical Work Plan for: Integrated Management of Technical Product Input Department''. (BSC 2001b, Addendum B

  5. Future Climate Analysis

    Energy Technology Data Exchange (ETDEWEB)

    James Houseworth

    2001-10-12

    This Analysis/Model Report (AMR) documents an analysis that was performed to estimate climatic variables for the next 10,000 years by forecasting the timing and nature of climate change at Yucca Mountain (YM), Nevada (Figure 1), the site of a potential repository for high-level radioactive waste. The future-climate estimates are based on an analysis of past-climate data from analog meteorological stations, and this AMR provides the rationale for the selection of these analog stations. The stations selected provide an upper and a lower climate bound for each future climate, and the data from those sites will provide input to the infiltration model (USGS 2000) and for the total system performance assessment for the Site Recommendation (TSPA-SR) at YM. Forecasting long-term future climates, especially for the next 10,000 years, is highly speculative and rarely attempted. A very limited literature exists concerning the subject, largely from the British radioactive waste disposal effort. The discussion presented here is one method, among many, of establishing upper and lower bounds for future climate estimates. The method used here involves selecting a particular past climate from many past climates, as an analog for future climate. Other studies might develop a different rationale or select other past climates resulting in a different future climate analog. Revision 00 of this AMR was prepared in accordance with the ''Work Direction and Planning Document for Future Climate Analysis'' (Peterman 1999) under Interagency Agreement DE-AI08-97NV12033 with the U.S. Department of Energy (DOE). The planning document for the technical scope, content, and management of ICN 01 of this AMR is the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (BSC 2001a). The scope for the TBV resolution actions in this ICN is described in the ''Technical Work Plan for: Integrated Management of Technical

  6. CLIMATE CHANGE: LONG-TERM TRENDS AND SHORT-TERM OSCILLATIONS

    Institute of Scientific and Technical Information of China (English)

    GAO Xin-quan; ZHANG Xin; QIAN Wei-hong

    2006-01-01

    Identifying the Northern Hemisphere (NH) temperature reconstruction and instrumental data for the past 1000 years shows that climate change in the last millennium includes long-term trends and various oscillations. Two long-term trends and the quasi-70-year oscillation were detected in the global temperature series for the last 140 years and the NH millennium series. One important feature was emphasized that temperature decreases slowly but it increases rapidly based on the analysis of different series. Benefits can be obtained of climate change from understanding various long-term trends and oscillations. Millennial temperature proxies from the natural climate system and time series of nonlinear model system are used in understanding the natural climate change and recognizing potential benefits by using the method of wavelet transform analysis. The results from numerical modeling show that major oscillations contained in numerical solutions on the interdecadal timescale are consistent with that of natural proxies. It seems that these oscillations in the climate change are not directly linked with the solar radiation as an external forcing. This investigation may conclude that the climate variability at the interdecadal timescale strongly depends on the internal nonlinear effects in the climate system.

  7. Modelling plant invasion pathways in protected areas under climate change: implication for invasion management

    Directory of Open Access Journals (Sweden)

    C.-J. Wang

    2017-12-01

    Full Text Available Global climate change may enable invasive plant species (IPS to invade protected areas (PAs, but plant invasion on a global scale has not yet been explicitly addressed. Here, we mapped the potential invasion pathways for IPS in PAs across the globe and explored potential factors determining the pathways of plant invasion under climate change. We used species distribution modelling to estimate the suitable habitats of 386 IPS and applied a corridor analysis to compute the potential pathways of IPS in PAs under climate change. Subsequently, we analysed the potential factors affecting the pathways in PAs. According to our results, the main potential pathways of IPS in PAs are in Europe, eastern Australia, New Zealand, southern Africa, and eastern regions of South America and are strongly influenced by changes in temperature and precipitation. Protected areas can play an important role in preventing and controlling the spread of IPS under climate change. This is due to the fact that measures are taken to monitor climate change in detail, to provide effective management near or inside PAs, and to control the introduction of IPS with a high capacity for natural dispersal. A review of conservation policies in PAs is urgently needed.

  8. Weathercasters' views on climate change: A state-of-the-community review

    Science.gov (United States)

    Timm, K.; Perkins, D. R., IV; Myers, T.; Maibach, E.

    2017-12-01

    As a community of practice, TV weathercasters are positioned at a crucial intersection between climate scientists and the general public. Weathercasters have the opportunity to use their scientific training and public communication skills to educate viewers about climate change. Though early research found high rates of skepticism about climate change among TV weathercasters, the most current and comprehensive analysis to date of TV weathercasters' views on climate change suggests that their views have evolved in several important ways. Surveys of all working TV weathercasters in the United States conducted in 2015, 2016 and 2017 show that the weathercaster community now holds views of climate change that are similar to that of climate scientists—in particular, that human-caused climate change is happening today and it is impacting American communities in many harmful ways. Ninety-five percent of TV weathercasters now believe that climate change (as defined by the American Meteorological Society) is occurring, and certainty in that belief has grown. Nearly 50% of TV weathercasters believe the climate change that has occurred over the past 50 years has been caused mostly (34%), or largely to entirely (15%), by human activity. Additionally, surveys suggest that weathercasters tend to underestimate the scientific consensus on climate change. Weathercasters, on average, estimate 75% of climate scientists believe humans have caused the majority of recent climate change as compared to the actual value of 97%. Despite convergence in weathercasters' climate change beliefs, this analysis suggests that opportunities remain for building climate literacy among America's TV weathercasters. Increasing this personal knowledge of climate change is one of several factors that empower weathercasters to become public climate educators to increase understanding of climate change causes in communities around the country.

  9. Strategic plant choices can alleviate climate change impacts: A review.

    Science.gov (United States)

    Espeland, Erin K; Kettenring, Karin M

    2018-06-01

    Ecosystem-based adaptation (EbA) uses biodiversity and ecosystem services to reduce climate change impacts to local communities. Because plants can alleviate the abiotic and biotic stresses of climate change, purposeful plant choices could improve adaptation. However, there has been no systematic review of how plants can be applied to alleviate effects of climate change. Here we describe how plants can modify climate change effects by altering biological and physical processes. Plant effects range from increasing soil stabilization to reducing the impact of flooding and storm surges. Given the global scale of plant-related activities such as farming, landscaping, forestry, conservation, and restoration, plants can be selected strategically-i.e., planting and maintaining particular species with desired impacts-to simultaneously restore degraded ecosystems, conserve ecosystem function, and help alleviate effects of climate change. Plants are a tool for EbA that should be more broadly and strategically utilized. Copyright © 2018. Published by Elsevier Ltd.

  10. Explaining topic prevalence in answers to open-ended survey questions about climate change

    Science.gov (United States)

    Tvinnereim, Endre; Fløttum, Kjersti

    2015-08-01

    Citizens’ opinions are crucial for action on climate change, but are, owing to the complexity of the issue, diverse and potentially unformed. We contribute to the understanding of public views on climate change and to knowledge needed by decision-makers by using a new approach to analyse answers to the open survey question `what comes to mind when you hear the words `climate change’?’. We apply automated text analysis, specifically structural topic modelling, which induces distinct topics based on the relative frequencies of the words used in 2,115 responses. From these data, originating from the new, nationally representative Norwegian Citizen Panel, four distinct topics emerge: Weather/Ice, Future/Impact, Money/Consumption and Attribution. We find that Norwegians emphasize societal aspects of climate change more than do respondents in previous US and UK studies. Furthermore, variables that explain variation in closed questions, such as gender and education, yield different and surprising results when employed to explain variation in what respondents emphasize. Finally, the sharp distinction between scepticism and acceptance of conventional climate science, often seen in previous studies, blurs in many textual responses as scepticism frequently turns into ambivalence.

  11. Climate Change and Malaria

    OpenAIRE

    Goklany;, I. M.

    2004-01-01

    Sir David A. King's claim that "Climate change is the most severe problem that we are facing today—more serious even than the threat of terrorism" "Climate change is the most severe problem that we are facing today—more serious even than the threat of terrorism" ("Climate change

  12. Climate change and Finland. Summary of the Finnish research programme on climate change (SILMU)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Anthropogenic impacts on the Earth`s atmosphere are expected to cause significant global climate changes during the next few decades. These changes will have many consequences both in nature and on human activities. In order to investigate the implications of such changes in Finland, a six-year multidisciplinary national research programme on climate and global change, the Finnish Research Programme on Climate Change (SILMU), was initiated in 1990. The key research areas were: (1) quantification of the greenhouse effect and the magnitude of anticipated climate changes, (2) assessment of the effects of changing climate on terrestrial and aquatic ecosystems, and (3) development of mitigation and adaptation strategies

  13. Climate change and Finland. Summary of the Finnish research programme on climate change (SILMU)

    International Nuclear Information System (INIS)

    1996-01-01

    Anthropogenic impacts on the Earth's atmosphere are expected to cause significant global climate changes during the next few decades. These changes will have many consequences both in nature and on human activities. In order to investigate the implications of such changes in Finland, a six-year multidisciplinary national research programme on climate and global change, the Finnish Research Programme on Climate Change (SILMU), was initiated in 1990. The key research areas were: (1) quantification of the greenhouse effect and the magnitude of anticipated climate changes, (2) assessment of the effects of changing climate on terrestrial and aquatic ecosystems, and (3) development of mitigation and adaptation strategies

  14. Uncertainty in Simulating Wheat Yields Under Climate Change

    Science.gov (United States)

    Asseng, S.; Ewert, F.; Rosenzweig, Cynthia; Jones, J. W.; Hatfield, J. W.; Ruane, A. C.; Boote, K. J.; Thornburn, P. J.; Rotter, R. P.; Cammarano, D.; hide

    2013-01-01

    Projections of climate change impacts on crop yields are inherently uncertain1. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate2. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models1,3 are difficult4. Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development and policymaking.

  15. Chatham Islands Climate Change

    International Nuclear Information System (INIS)

    Mullan, B.; Salinger, J.; Thompson, C.; Ramsay, D.; Wild, M.

    2005-06-01

    This brief report provides guidance on climate change specific to the Chatham Islands, to complement the information recently produced for local government by the Ministry for the Environment in 'Climate Change Effects and Impacts Assessment: A guidance manual for Local Government in New Zealand' and 'Coastal Hazards and Climate Change: A guidance manual for Local Government in New Zealand'. These previous reports contain a lot of generic information on climate change, and how to assess associated risks, that is relevant to the Chatham Islands Council.

  16. Velocity of climate change algorithms for guiding conservation and management.

    Science.gov (United States)

    Hamann, Andreas; Roberts, David R; Barber, Quinn E; Carroll, Carlos; Nielsen, Scott E

    2015-02-01

    The velocity of climate change is an elegant analytical concept that can be used to evaluate the exposure of organisms to climate change. In essence, one divides the rate of climate change by the rate of spatial climate variability to obtain a speed at which species must migrate over the surface of the earth to maintain constant climate conditions. However, to apply the algorithm for conservation and management purposes, additional information is needed to improve realism at local scales. For example, destination information is needed to ensure that vectors describing speed and direction of required migration do not point toward a climatic cul-de-sac by pointing beyond mountain tops. Here, we present an analytical approach that conforms to standard velocity algorithms if climate equivalents are nearby. Otherwise, the algorithm extends the search for climate refugia, which can be expanded to search for multivariate climate matches. With source and destination information available, forward and backward velocities can be calculated allowing useful inferences about conservation of species (present-to-future velocities) and management of species populations (future-to-present velocities). © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  17. Climate Change In Indonesia (Case Study : Medan, Palembang, Semarang)

    Science.gov (United States)

    Suryadi, Yadi; Sugianto, Denny Nugroho; Hadiyanto

    2018-02-01

    Indonesia's maritime continent is one of the most vulnerable regions regarding to climate change impacts. One of the vulnerable areas affected are the urban areas, because they are home to almost half of Indonesia's population where they live and earn a living, so that environmental management efforts need to be done. To support such efforts, climate change analysis is required. The analysis was carried out in several big cities in Indonesia. The method used in the research was trend analysis of temperature, rainfall, shifts in rainfall patterns, and extreme climatic trend. The data of rainfall and temperature were obtained from Meteorology and Geophysics Agency (BMKG). The result shows that the air temperature and rainfall have a positive trend, except in Semarang City which having a negative rainfall trend. The result also shows heavy rainfall trends. These indicate that climate is changing in these three cities.

  18. Plant community responses to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Kongstad, J.

    2012-07-01

    Climate change is expected to affect terrestrial ecosystems across the globe with increased atmospheric CO{sub 2} concentration, higher temperatures and changes in precipitation patterns. These environmental factors are drivers of many important ecosystem processes, and changes in ecosystem function are therefore expected in the future. The aim of this PhD-thesis was to examine the effects of climate change on aboveground plant growth, plant composition and plant phenology in Danish heathland ecosystems. Two sites were investigated in large-scale field experiments: 1) the CLIMAITE site, 'Brandbjerg' and 2) the INCREASE site at Mols. Field manipulations lasted years and included: Warming, summer drought and (CLIMAITE only) elevated CO{sub 2} concentrations. The treatments were applied individually and in all possible combinations. Further, at Brandbjerg, but outside the treatment plots, a study was performed on the effects nitrogen and phosphorus addition on phenology, chemistry and growth of the dominant grass Deschampsia flexuosa (Wavy Hairgrass). In general, the aboveground vegetation responded less than expected to changing climatic conditions; even though Calluna vulgaris (Heather) increased in biomass over the study period, the biomass was not affected by the manipulations, indicating that C. vulgaris, has a strong resistance to changes in climate. Also, the grass biomass (primarily D. flexuosa) was not affected and was relatively constant over the period. I argue that the resilience of D. flexuosa towards the climatic treatments came from the plants ability to let the tissue die back, and then quickly recover once conditions again became favourable. That gave the plant a high resilience to changes in climatic factors. Calluna vulgaris, on the other hand, showed a resistance to changes by constantly maintaining the growth during the whole season, probably because of its evergreen status. Together, the two different strategies made the heathland

  19. Climate Change Amplifications of Climate-Fire Teleconnections in the Southern Hemisphere

    Science.gov (United States)

    Mariani, Michela; Holz, Andrés.; Veblen, Thomas T.; Williamson, Grant; Fletcher, Michael-Shawn; Bowman, David M. J. S.

    2018-05-01

    Recent changes in trend and variability of the main Southern Hemisphere climate modes are driven by a variety of factors, including increasing atmospheric greenhouse gases, changes in tropical sea surface temperature, and stratospheric ozone depletion and recovery. One of the most important implications for climatic change is its effect via climate teleconnections on natural ecosystems, water security, and fire variability in proximity to populated areas, thus threatening human lives and properties. Only sparse and fragmentary knowledge of relationships between teleconnections, lightning strikes, and fire is available during the observed record within the Southern Hemisphere. This constitutes a major knowledge gap for undertaking suitable management and conservation plans. Our analysis of documentary fire records from Mediterranean and temperate regions across the Southern Hemisphere reveals a critical increased strength of climate-fire teleconnections during the onset of the 21st century including a tight coupling between lightning-ignited fire occurrences, the upward trend in the Southern Annular Mode, and rising temperatures across the Southern Hemisphere.

  20. Water demand management: A policy response to climate change

    International Nuclear Information System (INIS)

    Rivers, R.; Tate, D.

    1990-01-01

    The impacts of climate change on the water resources of the Great Lakes region are discussed. It is predicted that there will be a relative water scarcity in the Great Lakes basin of Ontario as climate changes occur over the next two decades. Declines in water supply will be accompanied by deterioration in the quality of fresh water as higher temperatures and higher relative quantities of discharged wastewater to water bodies reduce both assimilative and dilutive capacity. The most cost effective policy is to encourage water conservation through programs of water demand management. Water should be priced at the point at which its marginal cost is equal to its marginal product, ie. if priced any higher, less efficient substitutes would be used. Not only would water usage, and subsequent degradation of used water, be reduced, but energy and other cost savings would be achieved. The additional costs that apply to water users could be returned to the communities as additional revenue to be applied against sewage treatment upgrades and other environmental enhancements. Communities involved in water study should consider the development of water use analysis models to assist with decision making about allocation, pricing and availability of water supplies. 10 refs

  1. The impact of climate change on hydro-electricity generation

    International Nuclear Information System (INIS)

    Musy, A.; Music, B.; Roy, R.

    2008-01-01

    Hydropower is the leading source of electrical production in many countries. It is a clean and renewable source and certainly will continue to play an important role in the future energy supply. However, the effects of climate change on this valuable resource remain questionable. In order to identify the potential initiatives that the hydropower industry may undertake, it is important to determine the current state of knowledge of the impacts of climate change on hydrological variables at regional and local scales. Usually, the following steps are taken. First, general circulation models (GCMs) are used to simulate future climate under assumed greenhouse gas emission scenarios. Then, different techniques (statistical downscaling/regional climate models) are applied to downscale the GCM outputs to the appropriate scales of hydrological models. Finally, hydrologic models are employed to simulate the effects of climate change at regional and local scales. Outputs from these models serve as inputs to water management models that give more details about hydropower production. In the present study, realized by OURANOS upon the request of CEATI, a critical review of the methods used to determine impact of climate change on water resources and hydropower generation is carried out. The major results from recent studies worldwide are reported and future scientific actions to better understand climate change impacts on the hydrological regime are identified. The study is expected to provide direction for the hydropower industry to mitigate the impacts of climate change. (author)

  2. Vegetation-climate feedbacks modulate rainfall patterns in Africa under future climate change

    Science.gov (United States)

    Wu, Minchao; Schurgers, Guy; Rummukainen, Markku; Smith, Benjamin; Samuelsson, Patrick; Jansson, Christer; Siltberg, Joe; May, Wilhelm

    2016-07-01

    Africa has been undergoing significant changes in climate and vegetation in recent decades, and continued changes may be expected over this century. Vegetation cover and composition impose important influences on the regional climate in Africa. Climate-driven changes in vegetation structure and the distribution of forests versus savannah and grassland may feed back to climate via shifts in the surface energy balance, hydrological cycle and resultant effects on surface pressure and larger-scale atmospheric circulation. We used a regional Earth system model incorporating interactive vegetation-atmosphere coupling to investigate the potential role of vegetation-mediated biophysical feedbacks on climate dynamics in Africa in an RCP8.5-based future climate scenario. The model was applied at high resolution (0.44 × 0.44°) for the CORDEX-Africa domain with boundary conditions from the CanESM2 general circulation model. We found that increased tree cover and leaf-area index (LAI) associated with a CO2 and climate-driven increase in net primary productivity, particularly over subtropical savannah areas, not only imposed important local effect on the regional climate by altering surface energy fluxes but also resulted in remote effects over central Africa by modulating the land-ocean temperature contrast, Atlantic Walker circulation and moisture inflow feeding the central African tropical rainforest region with precipitation. The vegetation-mediated feedbacks were in general negative with respect to temperature, dampening the warming trend simulated in the absence of feedbacks, and positive with respect to precipitation, enhancing rainfall reduction over the rainforest areas. Our results highlight the importance of accounting for vegetation-atmosphere interactions in climate projections for tropical and subtropical Africa.

  3. Scaling Climate Change Communication for Behavior Change

    Science.gov (United States)

    Rodriguez, V. C.; Lappé, M.; Flora, J. A.; Ardoin, N. M.; Robinson, T. N.

    2014-12-01

    Ultimately, effective climate change communication results in a change in behavior, whether the change is individual, household or collective actions within communities. We describe two efforts to promote climate-friendly behavior via climate communication and behavior change theory. Importantly these efforts are designed to scale climate communication principles focused on behavior change rather than soley emphasizing climate knowledge or attitudes. Both cases are embedded in rigorous evaluations (randomized controlled trial and quasi-experimental) of primary and secondary outcomes as well as supplementary analyses that have implications for program refinement and program scaling. In the first case, the Girl Scouts "Girls Learning Environment and Energy" (GLEE) trial is scaling the program via a Massive Open Online Course (MOOC) for Troop Leaders to teach the effective home electricity and food and transportation energy reduction programs. The second case, the Alliance for Climate Education (ACE) Assembly Program, is advancing the already-scaled assembly program by using communication principles to further engage youth and their families and communities (school and local communities) in individual and collective actions. Scaling of each program uses online learning platforms, social media and "behavior practice" videos, mastery practice exercises, virtual feedback and virtual social engagement to advance climate-friendly behavior change. All of these communication practices aim to simulate and advance in-person train-the-trainers technologies.As part of this presentation we outline scaling principles derived from these two climate change communication and behavior change programs.

  4. Simulating Climate Change in Ireland

    Science.gov (United States)

    Nolan, P.; Lynch, P.

    2012-04-01

    At the Meteorology & Climate Centre at University College Dublin, we are using the CLM-Community's COSMO-CLM Regional Climate Model (RCM) and the WRF RCM (developed at NCAR) to simulate the climate of Ireland at high spatial resolution. To address the issue of model uncertainty, a Multi-Model Ensemble (MME) approach is used. The ensemble method uses different RCMs, driven by several Global Climate Models (GCMs), to simulate climate change. Through the MME approach, the uncertainty in the RCM projections is quantified, enabling us to estimate the probability density function of predicted changes, and providing a measure of confidence in the predictions. The RCMs were validated by performing a 20-year simulation of the Irish climate (1981-2000), driven by ECMWF ERA-40 global re-analysis data, and comparing the output to observations. Results confirm that the output of the RCMs exhibit reasonable and realistic features as documented in the historical data record. Projections for the future Irish climate were generated by downscaling the Max Planck Institute's ECHAM5 GCM, the UK Met Office HadGEM2-ES GCM and the CGCM3.1 GCM from the Canadian Centre for Climate Modelling. Simulations were run for a reference period 1961-2000 and future period 2021-2060. The future climate was simulated using the A1B, A2, B1, RCP 4.5 & RCP 8.5 greenhouse gas emission scenarios. Results for the downscaled simulations show a substantial overall increase in precipitation and wind speed for the future winter months and a decrease during the summer months. The predicted annual change in temperature is approximately 1.1°C over Ireland. To date, all RCM projections are in general agreement, thus increasing our confidence in the robustness of the results.

  5. Simulation of Optimal Decision-Making Under the Impacts of Climate Change.

    Science.gov (United States)

    Møller, Lea Ravnkilde; Drews, Martin; Larsen, Morten Andreas Dahl

    2017-07-01

    Climate change causes transformations to the conditions of existing agricultural practices appointing farmers to continuously evaluate their agricultural strategies, e.g., towards optimising revenue. In this light, this paper presents a framework for applying Bayesian updating to simulate decision-making, reaction patterns and updating of beliefs among farmers in a developing country, when faced with the complexity of adapting agricultural systems to climate change. We apply the approach to a case study from Ghana, where farmers seek to decide on the most profitable of three agricultural systems (dryland crops, irrigated crops and livestock) by a continuous updating of beliefs relative to realised trajectories of climate (change), represented by projections of temperature and precipitation. The climate data is based on combinations of output from three global/regional climate model combinations and two future scenarios (RCP4.5 and RCP8.5) representing moderate and unsubstantial greenhouse gas reduction policies, respectively. The results indicate that the climate scenario (input) holds a significant influence on the development of beliefs, net revenues and thereby optimal farming practices. Further, despite uncertainties in the underlying net revenue functions, the study shows that when the beliefs of the farmer (decision-maker) opposes the development of the realised climate, the Bayesian methodology allows for simulating an adjustment of such beliefs, when improved information becomes available. The framework can, therefore, help facilitating the optimal choice between agricultural systems considering the influence of climate change.

  6. Asking about climate change

    DEFF Research Database (Denmark)

    Nielsen, Jonas Østergaard; D'haen, Sarah Ann Lise

    2014-01-01

    and the number and types of interviews conducted are, for example, not always clear. Information on crucial aspects of qualitative research like researcher positionality, social positions of key informants, the use of field assistants, language issues and post-fieldwork treatment of data is also lacking in many...... with climate change? On the basis of a literature review of all articles published in Global Environmental Change between 2000 and 2012 that deal with human dimensions of climate change using qualitative methods this paper provides some answers but also raises some concerns. The period and length of fieldwork......There is increasing evidence that climate change will strongly affect people across the globe. Likely impacts of and adaptations to climate change are drawing the attention of researchers from many disciplines. In adaptation research focus is often on perceptions of climate change...

  7. At a global scale, do climate change threatened species also face a greater number of non-climatic threats?

    Science.gov (United States)

    Fortini, Lucas B.; Dye, Kaipo

    2017-01-01

    For many species the threats of climate change occur in a context of multiple existing threats. Given the current focus of global change ecology in identifying and understanding species vulnerable to climate change, we performed a global analysis to characterize the multi-threat context for species threatened by climate change. Utilizing 30,053 species from the International Union for Conservation of Nature’s (IUCN) Red List of Threatened Species, we sought to evaluate if species threatened by climate change are more likely threatened by a greater number of non-climatic threats than species not threatened by climate change. Our results show that species threatened by climate change are generally impacted by 21% more non-climatic threats than species not threatened by climate change. Across all species, this pattern is related to IUCN risk status, where endangered species threatened by climate change face 33% more non-climatic threats than endangered species not threatened by climate change. With the clear challenges of assessing current and projected impacts of climate change on species and ecosystems, research often requires reductionist approaches that result in downplaying this multi-threat context. This cautionary note bears relevance beyond climate change threatened species as we also

  8. A Social Science Guide for Communication on Climate Change

    Science.gov (United States)

    St John, C.; Marx, S.; Markowitz, E.

    2014-12-01

    Researchers from the Center for Research on Environmental Decisions (CRED) published "The Psychology of Climate Change Communication: A Guide for Scientists, Journalists, Educators, Political Aides, and the Interested Public" in 2009. This landmark guide provided climate change communicators a synthesis of the social science research that was pertinent to understanding how people think about climate change and how the practice could be improved. In the fall of 2014 this guide will be rereleased, with a new title, and in a partnership between CRED and ecoAmerica. The updated guide addresses how and why Americans respond in certain ways to climate change and explains how communicators can apply best practices to their own work. The guide, which includes research from a range of social science fields including psychology, anthropology, communications, and behavioral economics, is designed to be useful for experienced and novice communicators alike. Included in the guide are strategies to boost engagement, common mistakes to avoid, and best practices that organizations around the world have used to meaningfully engage individuals and groups on climate change. The proposed presentation will provide an overview of the main findings and tips from the 2014 climate change communication guide. It will provide a deeper look at a few of the key points that are crucial for increasing audience engagement with climate change including understanding how identity shapes climate change, how to lead with solutions, and how to bring the impacts of climate change close to home. It will highlight tips for motivating positive behavior change that will lead people down the path toward solutions. Finally, it will address the benefits and challenges associated with producing a communication guide and insight into synthesizing social science research findings into a usable format for a variety of audiences.

  9. A Methodology for Meta-Analysis of Local Climate Change Adaptation Policies

    Science.gov (United States)

    Local governments are beginning to take steps to address the consequences of climate change, such as sea level rise and heat events. However, we donot have a clear understanding of what local governments are doing -- the extent to which they expect climate change to affect their ...

  10. Economics of climate change : sensitivity analysis of social cost of carbon

    OpenAIRE

    Torniainen, Sami

    2016-01-01

    Social cost of carbon (SCC) is the key concept in the economics of climate change. It measures the economic cost of climate impacts. SCC has influence on how beneficial it is to prevent climate change: if the value of SCC increases, investments to low-carbon technology become more attractive and profitable. This paper examines the sensitivity of two important assumptions that affect to SCC: the choice of a discount rate and time horizon. Using the integrated assessment model, ...

  11. Development and Climate Change in Fiji. Focus on Coastal Mangroves

    International Nuclear Information System (INIS)

    Agrawala, S.; Ota, Tomoko; Van Aalst, M.; Smith, J.; Hagenstad, M.; Risbey, J.; Koshy, K.; Prasad, B.

    2003-01-01

    This document is an output from the OECD Development and Climate Change project, an activity jointly overseen by the EPOC Working Party on Global and Structural Policies (WPGSP), and the DAC Network on Environment and Development Co-operation (ENVIRONET). The overall objective of the project is to provide guidance on how to mainstream responses to climate change within economic development planning and assistance policies, with natural resource management as an overarching theme. This report presents the integrated case study for Fiji carried out under an OECD project on Development and Climate Change. The report is structured around a three-tier framework. First, recent climate trends and climate change scenarios for Fiji are assessed, and key sectoral impacts are identified and ranked along multiple indicators to establish priorities for adaptation. Second, donor portfolios are analyzed to examine the proportion of donor activities affected by climate risks. A desk analysis of donor strategies and project documents as well as national plans is conducted to assess the degree of attention to climate change concerns in development planning and assistance. Third, an in-depth analysis is conducted for Fiji's coastal mangroves which help reduce coastal inundation and storm surge damages, but are also themselves vulnerable to climate change

  12. Visualizing and communicating climate change using the ClimateWizard: decision support and education through web-based analysis and mapping

    Science.gov (United States)

    Girvetz, E. H.; Zganjar, C.; Raber, G. T.; Maurer, E. P.; Duffy, P.

    2009-12-01

    Virtually all fields of study and parts of society—from ecological science and nature conservation, to global development, multinational corporations, and government bodies—need to know how climate change has and may impact specific locations of interest. Our ability to respond to climate change depends on having convenient tools that make past and projected climate trends available to planners, managers, scientists and the general public, at scales ranging from global to local scales. Web-mapping applications provide an effective platform for communicating climate change impacts in specific geographic areas of interest to the public. Here, we present one such application, the ClimateWizard, that allows users to analyze, visualize and explore climate change maps for specific geographic areas of interest throughout the world (http://ClimateWizard.org). Built on Web 2.0 web-services (SOAP), Google Maps mash-up, and cloud computing technologies, the ClimateWizard analyzes large databases of climate information located on remote servers to create synthesized information and useful products tailored to geographic areas of interest (e.g. maps, graphs, tables, GIS layers). We demonstrate how the ClimateWizard can be used to assess projected changes to temperature and precipitation across all states in the contiguous United States and all countries of the world using statistically downscaled general circulation models from the CMIP3 dataset. We then go on to show how ClimateWizard can be used to analyze changes to other climate related variables, such as moisture stress and water production. Finally, we discuss how this tool can be adapted to develop a wide range of web-based tools that are targeted at informing specific audiences—from scientific research and natural resource management, to K-12 and higher education—about how climate change may affect different aspects of human and natural systems.

  13. Climate engineering and the risk of rapid climate change

    International Nuclear Information System (INIS)

    Ross, Andrew; Damon Matthews, H

    2009-01-01

    Recent research has highlighted risks associated with the use of climate engineering as a method of stabilizing global temperatures, including the possibility of rapid climate warming in the case of abrupt removal of engineered radiative forcing. In this study, we have used a simple climate model to estimate the likely range of temperature changes associated with implementation and removal of climate engineering. In the absence of climate engineering, maximum annual rates of warming ranged from 0.015 to 0.07 deg. C/year, depending on the model's climate sensitivity. Climate engineering resulted in much higher rates of warming, with the temperature change in the year following the removal of climate engineering ranging from 0.13 to 0.76 deg. C. High rates of temperature change were sustained for two decades following the removal of climate engineering; rates of change of 0.5 (0.3,0.1) deg. C/decade were exceeded over a 20 year period with 15% (75%, 100%) likelihood. Many ecosystems could be negatively affected by these rates of temperature change; our results suggest that climate engineering in the absence of deep emissions cuts could arguably constitute increased risk of dangerous anthropogenic interference in the climate system under the criteria laid out in the United Nations Framework Convention on Climate Change.

  14. Future Projection of Ocean Wave Climate: Analysis of SST Impacts on Wave Climate Changes in the Western North Pacific

    OpenAIRE

    Shimura, Tomoya; Mori, Nobuhito; Mase, Hajime

    2015-01-01

    Changes in ocean surface waves elicit a variety of impacts on coastal environments. To assess the future changes in the ocean surface wave climate, several future projections of global wave climate have been simulated in previous studies. However, previously there has been little discussion about the causes behind changes in the future wave climate and the differences between projections. The objective of this study is to estimate the future changes in mean wave climate and the sensitivity of...

  15. Climate change and human health: what are the research trends? A scoping review protocol.

    Science.gov (United States)

    Herlihy, Niamh; Bar-Hen, Avner; Verner, Glenn; Fischer, Helen; Sauerborn, Rainer; Depoux, Anneliese; Flahault, Antoine; Schütte, Stefanie

    2016-12-23

    For 28 years, the Intergovernmental Panel on Climate Change (IPCC) has been assessing the potential risks associated with anthropogenic climate change. Although interest in climate change and health is growing, the implications arising from their interaction remain understudied. Generating a greater understanding of the health impacts of climate change could be key step in inciting some of the changes necessary to decelerate global warming. A long-term and broad overview of the existing scientific literature in the field of climate change and health is currently missing in order to ensure that all priority areas are being adequately addressed. In this paper we outline our methods to conduct a scoping review of the published peer-reviewed literature on climate change and health between 1990 and 2015. A detailed search strategy will be used to search the PubMed and Web of Science databases. Specific inclusion and exclusion criteria will be applied in order to capture the most relevant literature in the time frame chosen. Data will be extracted, categorised and coded to allow for statistical analysis of the results. No ethical approval was required for this study. A searchable database of climate change and health publications will be developed and a manuscript will be complied for publication and dissemination of the findings. We anticipate that this study will allow us to map the trends observed in publications over the 25-year time period in climate change and health research. It will also identify the research areas with the highest volume of publications as well as highlight the research trends in climate change and health. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  16. Management Under Anarchy. The International Politics of Climate Change

    International Nuclear Information System (INIS)

    Thompson, A.

    2006-01-01

    This article analyzes climate change from the perspective of international politics. In the anarchy of the international system, various cooperation problems have stalled the formation of an effective climate regime at the international level. Obstacles occur at three stages of regime formation: the bargaining stage, the transition stage, and the implementation stage. The importance of the transition stage of cooperation, which takes place between the signing of an agreement and its entry into force, has been overlooked by international relations scholars and is particularly important in the climate case. The article assesses the possibility of applying 'adaptive management' principles to climate change as a partial response to these political obstacles. While such an approach has significant appeal given the uncertainty surrounding the human-climate interface, its experimental, top-down characteristics are not politically feasible at the international level. I recommend certain modifications of existing institutions and practices to improve international information sharing and facilitate efficient learning. These changes would serve to promote a decentralized and passive - and thus politically viable - version of adaptive management, an effective approach to dealing with climate change at the global level

  17. A comparative review of multi-risk modelling methodologies for climate change adaptation in mountain regions

    Science.gov (United States)

    Terzi, Stefano; Torresan, Silvia; Schneiderbauer, Stefan

    2017-04-01

    Keywords: Climate change, mountain regions, multi-risk assessment, climate change adaptation. Climate change has already led to a wide range of impacts on the environment, the economy and society. Adaptation actions are needed to cope with the impacts that have already occurred (e.g. storms, glaciers melting, floods, droughts) and to prepare for future scenarios of climate change. Mountain environment is particularly vulnerable to the climate changes due to its exposure to recent climate warming (e.g. water regime changes, thawing of permafrost) and due to the high degree of specialization of both natural and human systems (e.g. alpine species, valley population density, tourism-based economy). As a consequence, the mountain local governments are encouraged to undertake territorial governance policies to climate change, considering multi-risks and opportunities for the mountain economy and identifying the best portfolio of adaptation strategies. This study aims to provide a literature review of available qualitative and quantitative tools, methodological guidelines and best practices to conduct multi-risk assessments in the mountain environment within the context of climate change. We analyzed multi-risk modelling and assessment methods applied in alpine regions (e.g. event trees, Bayesian Networks, Agent Based Models) in order to identify key concepts (exposure, resilience, vulnerability, risk, adaptive capacity), climatic drivers, cause-effect relationships and socio-ecological systems to be integrated in a comprehensive framework. The main outcomes of the review, including a comparison of existing techniques based on different criteria (e.g. scale of analysis, targeted questions, level of complexity) and a snapshot of the developed multi-risk framework for climate change adaptation will be here presented and discussed.

  18. Spatial and temporal variations of Norwegian geohazards in a changing climate, the GeoExtreme Project

    Directory of Open Access Journals (Sweden)

    C. Jaedicke

    2008-08-01

    Full Text Available Various types of slope processes, mainly landslides and avalanches (snow, rock, clay and debris pose together with floods the main geohazards in Norway. Landslides and avalanches have caused more than 2000 casualties and considerable damage to infrastructure over the last 150 years. The interdisciplinary research project "GeoExtreme" focuses on investigating the coupling between meteorological factors and landslides and avalanches, extrapolating this into the near future with a changing climate and estimating the socioeconomic implications. The main objective of the project is to predict future geohazard changes in a changing climate. A database consisting of more than 20 000 recorded historical events have been coupled with a meteorological database to assess the predictability of landslides and avalanches caused by meteorological conditions. Present day climate and near future climate scenarios are modelled with a global climate model on a stretched grid, focusing on extreme weather events in Norway. The effects of climate change on landslides and avalanche activity are studied in four selected areas covering the most important climatic regions in Norway. The statistical analysis of historical landslide and avalanche events versus weather observations shows strong regional differences in the country. Avalanches show the best correlation with weather events while landslides and rockfalls are less correlated. The new climate modelling approach applying spectral nudging to achieve a regional downscaling for Norway proves to reproduce extreme events of precipitation much better than conventional modelling approaches. Detailed studies of slope stabilities in one of the selected study area show a high sensitivity of slope stability in a changed precipitation regime. The value of elements at risk was estimated in one study area using a GIS based approach that includes an estimation of the values within given present state hazard zones. The ongoing

  19. Climate change impact on available water resources obtained using multiple global climate and hydrology models

    Directory of Open Access Journals (Sweden)

    S. Hagemann

    2013-05-01

    Full Text Available Climate change is expected to alter the hydrological cycle resulting in large-scale impacts on water availability. However, future climate change impact assessments are highly uncertain. For the first time, multiple global climate (three and hydrological models (eight were used to systematically assess the hydrological response to climate change and project the future state of global water resources. This multi-model ensemble allows us to investigate how the hydrology models contribute to the uncertainty in projected hydrological changes compared to the climate models. Due to their systematic biases, GCM outputs cannot be used directly in hydrological impact studies, so a statistical bias correction has been applied. The results show a large spread in projected changes in water resources within the climate–hydrology modelling chain for some regions. They clearly demonstrate that climate models are not the only source of uncertainty for hydrological change, and that the spread resulting from the choice of the hydrology model is larger than the spread originating from the climate models over many areas. But there are also areas showing a robust change signal, such as at high latitudes and in some midlatitude regions, where the models agree on the sign of projected hydrological changes, indicative of higher confidence in this ensemble mean signal. In many catchments an increase of available water resources is expected but there are some severe decreases in Central and Southern Europe, the Middle East, the Mississippi River basin, southern Africa, southern China and south-eastern Australia.

  20. Uncertainty and Climate Change

    OpenAIRE

    Berliner, L. Mark

    2003-01-01

    Anthropogenic, or human-induced, climate change is a critical issue in science and in the affairs of humankind. Though the target of substantial research, the conclusions of climate change studies remain subject to numerous uncertainties. This article presents a very brief review of the basic arguments regarding anthropogenic climate change with particular emphasis on uncertainty.

  1. Climate@Home: Crowdsourcing Climate Change Research

    Science.gov (United States)

    Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

    2011-12-01

    Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate

  2. Climate change, species-area curves and the extinction crisis.

    Science.gov (United States)

    Lewis, Owen T

    2006-01-29

    An article published in the journal Nature in January 2004-in which an international team of biologists predicted that climate change would, by 2050, doom 15-37% of the earth's species to extinction-attracted unprecedented, worldwide media attention. The predictions conflict with the conventional wisdom that habitat change and modification are the most important causes of current and future extinctions. The new extinction projections come from applying a well-known ecological pattern, the species-area relationship (SAR), to data on the current distributions and climatic requirements of 1103 species. Here, I examine the scientific basis to the claims made in the Nature article. I first highlight the potential and pitfalls of using the SAR to predict extinctions in general. I then consider the additional complications that arise when applying SAR methods specifically to climate change. I assess the extent to which these issues call into question predictions of extinctions from climate change relative to other human impacts, and highlight a danger that conservation resources will be directed away from attempts to slow and mitigate the continuing effects of habitat destruction and degradation, particularly in the tropics. I suggest that the most useful contributions of ecologists over the coming decades will be in partitioning likely extinctions among interacting causes and identifying the practical means to slow the rate of species loss.

  3. Vulnerability to Climate Change in Rural Nicaragua

    Science.gov (United States)

    Byrne, T. R.; Townshend, I.; Byrne, J. M.; McDaniel, S. A.

    2013-12-01

    While there is a growing recognition of the impact that climate change may have on human development, there has been a shift in focus from an impacts-led assessment approach towards a vulnerability-led assessment approach. This research operationalizes the IPCC's definition of vulnerability in a sub-national assessment to understand how different factors that shape vulnerability to climate change vary spatially across rural Nicaragua. The research utilizes the Food and Agriculture Organization of the United Nations' (FAO UN) CropWat model to evaluate how the annual yield of two of Nicaragua's staple crops may change under projected changes in temperature and precipitation. This analysis of agricultural sensitivity under exposure to climate change is then overlain with an indicator-based assessment of adaptive capacity in rural Nicaraguan farming households. Adaptive capacity was evaluated using household survey data from the 2001 National Household Survey on Living Standards Measurement, which was provided to us by the FAO UN. The result is a map representing current vulnerability to future climate change, and can serve as a basis for targeting policy interventions in rural Nicaragua.

  4. Is the uncertainty about climate change too large for expected cost-benefit analysis?

    NARCIS (Netherlands)

    Tol, R.S.J.

    2003-01-01

    Cost-benefit analysis is only applicable if the variances of both costs and benefits are finite. In the case of climate change, the variances of the net present marginal costs and benefits of greenhouse gas emission reduction need to be finite. Finiteness is hard, if not impossible to prove. The

  5. China's response to climate change issues after Paris Climate Change Conference

    Directory of Open Access Journals (Sweden)

    Yun Gao

    2016-12-01

    Full Text Available The Paris Climate Change Conference was successfully concluded with the Paris Agreement, which is a milestone for the world in collectively combating climate change. By participating in IPCC assessments and conducting national climate change assessments, China has been increasing its understanding of the issue. For the first time, China's top leader attended the Conference of the Parties, which indicates the acknowledgement of the rationality and necessity of climate change response by China at different levels. Moreover, this participation reflects China's commitment to including climate change in its ecology improvement program and pursuing a low-carbon society and economy. In order to ensure the success of the Paris Conference, China has contributed significantly. China's constructive participation in global governance shows that China is a responsible power. These principles such as the creation of a future of win–win cooperation with each country contributing to the best of its ability; a future of the rule of law, fairness, and justice; and a future of inclusiveness, mutual learning, and common development will serve as China's guidelines in its efforts to facilitate the implementation of the Paris Agreement and participate in the design of international systems.

  6. China's response to climate change issues after Paris Climate Change Conference

    Institute of Scientific and Technical Information of China (English)

    GAO Yun

    2016-01-01

    The Paris Climate Change Conference was successfully concluded with the Paris Agreement, which is a milestone for the world in collectively combating climate change. By participating in IPCC assessments and conducting national climate change assessments, China has been increasing its understanding of the issue. For the first time, China's top leader attended the Conference of the Parties, which indicates the acknowledgement of the rationality and necessity of climate change response by China at different levels. Moreover, this participation reflects China's commitment to including climate change in its ecology improvement program and pursuing a low-carbon society and economy. In order to ensure the success of the Paris Conference, China has contributed significantly. China's constructive participation in global governance shows that China is a responsible power. These principles such as the creation of a future of winewin cooperation with each country contributing to the best of its ability;a future of the rule of law, fairness, and justice;and a future of inclusiveness, mutual learning, and common development will serve as China's guidelines in its efforts to facilitate the implementation of the Paris Agreement and participate in the design of international systems.

  7. Climate Impacts of Fire-Induced Land-Surface Changes

    Science.gov (United States)

    Liu, Y.; Hao, X.; Qu, J. J.

    2017-12-01

    One of the consequences of wildfires is the changes in land-surface properties such as removal of vegetation. This will change local and regional climate through modifying the land-air heat and water fluxes. This study investigates mechanism by developing and a parameterization of fire-induced land-surface property changes and applying it to modeling of the climate impacts of large wildfires in the United States. Satellite remote sensing was used to quantitatively evaluate the land-surface changes from large fires provided from the Monitoring Trends in Burning Severity (MTBS) dataset. It was found that the changes in land-surface properties induced by fires are very complex, depending on vegetation type and coverage, climate type, season and time after fires. The changes in LAI are remarkable only if the actual values meet a threshold. Large albedo changes occur in winter for fires in cool climate regions. The signs are opposite between the first post-fire year and the following years. Summer day-time temperature increases after fires, while nigh-time temperature changes in various patterns. The changes are larger in forested lands than shrub / grassland lands. In the parameterization scheme, the detected post-fire changes are decomposed into trends using natural exponential functions and fluctuations of periodic variations with the amplitudes also determined by natural exponential functions. The final algorithm is a combination of the trends, periods, and amplitude functions. This scheme is used with Earth system models to simulate the local and regional climate effects of wildfires.

  8. Uncertainty in Simulating Wheat Yields Under Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, Jerry; Ruane, Alex; Boote, K. J.; Thorburn, Peter; Rotter, R.P.; Cammarano, D.; Brisson, N.; Basso, B.; Martre, P.; Aggarwal, P.K.; Angulo, C.; Bertuzzi, P.; Biernath, C.; Challinor, AJ; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, Robert; Heng, L.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, Roberto C.; Kersebaum, K.C.; Mueller, C.; Naresh Kumar, S.; Nendel, C.; O' Leary, G.O.; Olesen, JE; Osborne, T.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stockle, Claudio O.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J.W.; Williams, J.R.; Wolf, J.

    2013-09-01

    Anticipating the impacts of climate change on crop yields is critical for assessing future food security. Process-based crop simulation models are the most commonly used tools in such assessments1,2. Analysis of uncertainties in future greenhouse gas emissions and their impacts on future climate change has been increasingly described in the literature3,4 while assessments of the uncertainty in crop responses to climate change are very rare. Systematic and objective comparisons across impact studies is difficult, and thus has not been fully realized5. Here we present the largest coordinated and standardized crop model intercomparison for climate change impacts on wheat production to date. We found that several individual crop models are able to reproduce measured grain yields under current diverse environments, particularly if sufficient details are provided to execute them. However, simulated climate change impacts can vary across models due to differences in model structures and algorithms. The crop-model component of uncertainty in climate change impact assessments was considerably larger than the climate-model component from Global Climate Models (GCMs). Model responses to high temperatures and temperature-by-CO2 interactions are identified as major sources of simulated impact uncertainties. Significant reductions in impact uncertainties through model improvements in these areas and improved quantification of uncertainty through multi-model ensembles are urgently needed for a more reliable translation of climate change scenarios into agricultural impacts in order to develop adaptation strategies and aid policymaking.

  9. Climate change mitigation in China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bo

    2012-07-01

    China has been experiencing great economic development and fast urbanisation since its reforms and opening-up policy in 1978. However, these changes are reliant on consumption of primary energy, especially coal, characterised by high pollution and low efficiency. China's greenhouse gas (GHG) emissions, with carbon dioxide (CO{sub 2}) being the most significant contributor, have also been increasing rapidly in the past three decades. Responding to both domestic challenges and international pressure regarding energy, climate change and environment, the Chinese government has made a point of addressing climate change since the early 2000s. This thesis provides a comprehensive analysis of China's CO{sub 2} emissions and policy instruments for mitigating climate change. In the analysis, China's CO{sub 2} emissions in recent decades were reviewed and the Environmental Kuznets Curve (EKC) hypothesis examined. Using the mostly frequently studied macroeconomic factors and time-series data for the period of 1980-2008, the existence of an EKC relationship between CO{sub 2} per capita and GDP per capita was verified. However, China's CO{sub 2} emissions will continue to grow over coming decades and the turning point in overall CO{sub 2} emissions will appear in 2078 according to a crude projection. More importantly, CO{sub 2} emissions will not spontaneously decrease if China continues to develop its economy without mitigating climate change. On the other hand, CO{sub 2} emissions could start to decrease if substantial efforts are made. China's present mitigation target, i.e. to reduce CO{sub 2} emissions per unit of GDP by 40-45 % by 2020 compared with the 2005 level, was then evaluated. Three business-as-usual (BAU) scenarios were developed and compared with the level of emissions according to the mitigation target. The calculations indicated that decreasing the CO{sub 2} intensity of GDP by 40-45 % by 2020 is a challenging but hopeful target. To

  10. Climate change effects on Chikungunya transmission in Europe: geospatial analysis of vector's climatic suitability and virus' temperature requirements.

    Science.gov (United States)

    Fischer, Dominik; Thomas, Stephanie M; Suk, Jonathan E; Sudre, Bertrand; Hess, Andrea; Tjaden, Nils B; Beierkuhnlein, Carl; Semenza, Jan C

    2013-11-12

    Chikungunya was, from the European perspective, considered to be a travel-related tropical mosquito-borne disease prior to the first European outbreak in Northern Italy in 2007. This was followed by cases of autochthonous transmission reported in South-eastern France in 2010. Both events occurred after the introduction, establishment and expansion of the Chikungunya-competent and highly invasive disease vector Aedes albopictus (Asian tiger mosquito) in Europe. In order to assess whether these outbreaks are indicative of the beginning of a trend or one-off events, there is a need to further examine the factors driving the potential transmission of Chikungunya in Europe. The climatic suitability, both now and in the future, is an essential starting point for such an analysis. The climatic suitability for Chikungunya outbreaks was determined by using bioclimatic factors that influence, both vector and, pathogen. Climatic suitability for the European distribution of the vector Aedes albopictus was based upon previous correlative environmental niche models. Climatic risk classes were derived by combining climatic suitability for the vector with known temperature requirements for pathogen transmission, obtained from outbreak regions. In addition, the longest potential intra-annual season for Chikungunya transmission was estimated for regions with expected vector occurrences.In order to analyse spatio-temporal trends for risk exposure and season of transmission in Europe, climate change impacts are projected for three time-frames (2011-2040, 2041-2070 and 2071-2100) and two climate scenarios (A1B and B1) from the Intergovernmental Panel on Climate Change (IPCC). These climatic projections are based on regional climate model COSMO-CLM, which builds on the global model ECHAM5. European areas with current and future climatic suitability of Chikungunya transmission are identified. An increase in risk is projected for Western Europe (e.g. France and Benelux-States) in the

  11. Introducing an integrated climate change perspective in POPs modelling, monitoring and regulation

    International Nuclear Information System (INIS)

    Lamon, L.; Dalla Valle, M.; Critto, A.; Marcomini, A.

    2009-01-01

    This paper presents a review on the implications of climate change on the monitoring, modelling and regulation of persistent organic pollutants (POPs). Current research gaps are also identified and discussed. Long-term data sets are essential to identify relationships between climate fluctuations and changes in chemical species distribution. Reconstructing the influence of climatic changes on POPs environmental behaviour is very challenging in some local studies, and some insights can be obtained by the few available dated sediment cores or by studying POPs response to inter-annual climate fluctuations. Knowledge gaps and future projections can be studied by developing and applying various modelling tools, identifying compounds susceptibility to climate change, local and global effects, orienting international policies. Long-term monitoring strategies and modelling exercises taking into account climate change should be considered when devising new regulatory plans in chemicals management. - Climate change implications on POPs are addressed here with special attention to monitoring, modelling and regulation issues.

  12. Communities under climate change

    DEFF Research Database (Denmark)

    Nogues, David Bravo; Rahbek, Carsten

    2011-01-01

    The distribution of species on Earth and the interactions among them are tightly linked to historical and contemporary climate, so that global climate change will transform the world in which we live. Biological models can now credibly link recent decadal trends in field data to climate change......, but predicting future impacts on biological communities is a major challenge. Attempts to move beyond general macroecological predictions of climate change impact on one hand, and observations from specific, local-scale cases, small-scale experiments, or studies of a few species on the other, raise a plethora...... of unanswered questions. On page 1124 of this issue, Harley (1) reports results that cast new light on how biodiversity, across different trophic levels, responds to climate change....

  13. Analysis of changes in crop farming in the Dudh Koshi (Nepal) driven by climate changes

    Science.gov (United States)

    Gianinetto, Marco; Polinelli, Francesco; Frassy, Federico; Aiello, Martina; Rota Nodari, Francesco; Soncini, Andrea; Bocchiola, Daniele

    2017-10-01

    Nepal is one of the poorest nations of the world and the Koshi Basin includes some of the poorest regions of this country. It's farming system is subsistence agriculture, mainly rainfed, with crop productivity among the lowest in South Asia. Nepal is also severely impacted by climate changes, such as retreat of glaciers, rise in temperature, erratic rainfalls and increase in frequency of extreme weather. This paper describes the spatio-temporal evolution of cultivated land in Dudh Koshi during the last four decades (1970s-2010s), by mapping the farming of its four main cereals in the districts of Solukhumbu, Okhaldunga and Kothang from space. The analysis of satellite time series showed a 10% of increment in farmland from 1970s to 1990s, and about 60% in the following twenty years. With a shift of cropping to higher altitudes. Data belonging to of the second twenty years are strongly correlated with the population growth observed in the same period (0.97demographic and socioeconomic pressures are driving the expansion, while climatic and topographic parameters are just channeling the expansion. Apart from any policies that could change the tack, Dudh Koshi should be able to meet the increasing demand of cereals in the near future and climate seems not being a limiting factor for further development as it will be the availability of an irrigation system.

  14. Understanding the school 'climate': secondary school children and climate change

    International Nuclear Information System (INIS)

    Kovacs, Susan; Bernier, Sandrine; Blanchet, Aymeric; Derkenne, Chantal; Clement, Florence; Petitjean, Leslie

    2012-01-01

    held in the school under study. A critical description of the nature and content of communicated messages, activities and projects follows. Individual and collective initiatives which foster an interdisciplinary approach to climate change education are identified, as are the various obstacles to this approach, including organizational obstacles and the longstanding traditions of the French educational system which tend to hinder pedagogical innovation. Lastly, the reception of these projects and activities by school children in the second year of secondary school is analyzed. The results of this analysis are somewhat, but not always, encouraging. School children interviewed do not clearly understand the scientific phenomena surrounding climate change, and have difficulty considering this issue within its wider socio-political context. School children's interest in climate change and environmental science is largely dependent upon a perceived link with their own centers of interest or hobbies. School children express nonetheless the need for more and better adult mediation on the question of climate change, even though they see environmentally conscious behavior as contrary to the modern lifestyle of comfort that society offers them. Certain school projects and activities which had a particular impact on school children are discussed, in order to suggest criteria for evaluating the effectiveness (or non-effectiveness) of climate change projects in school. This study can be considered to be a tool for reflection and for the evaluation of the potential impact of climate change programs and messages produced for youngsters in school today

  15. The origin of climate changes.

    Science.gov (United States)

    Delecluse, P

    2008-08-01

    Investigation on climate change is coordinated by the Intergovernmental Panel on Climate Change (IPCC), which has the delicate task of collecting recent knowledge on climate change and the related impacts of the observed changes, and then developing a consensus statement from these findings. The IPCC's last review, published at the end of 2007, summarised major findings on the present climate situation. The observations show a clear increase in the temperature of the Earth's surface and the oceans, a reduction in the land snow cover, and melting of the sea ice and glaciers. Numerical modelling combined with statistical analysis has shown that this warming trend is very likely the signature of increasing emissions of greenhouse gases linked with human activities. Given the continuing social and economic development around the world, the IPCC emission scenarios forecast an increasing greenhouse effect, at least until 2050 according to the most optimistic models. The model ensemble predicts a rising temperature that will reach dangerous levels for the biosphere and ecosystems within this century. Hydrological systems and the potential significant impacts of these systems on the environment are also discussed. Facing this challenging future, societies must take measures to reduce emissions and work on adapting to an inexorably changing environment. Present knowledge is sufficientto start taking action, but a stronger foundation is needed to ensure that pertinent long-term choices are made that will meet the demands of an interactive and rapidly evolving world.

  16. Scientific Uncertainties in Climate Change Detection and Attribution Studies

    Science.gov (United States)

    Santer, B. D.

    2017-12-01

    It has been claimed that the treatment and discussion of key uncertainties in climate science is "confined to hushed sidebar conversations at scientific conferences". This claim is demonstrably incorrect. Climate change detection and attribution studies routinely consider key uncertainties in observational climate data, as well as uncertainties in model-based estimates of natural variability and the "fingerprints" in response to different external forcings. The goal is to determine whether such uncertainties preclude robust identification of a human-caused climate change fingerprint. It is also routine to investigate the impact of applying different fingerprint identification strategies, and to assess how detection and attribution results are impacted by differences in the ability of current models to capture important aspects of present-day climate. The exploration of the uncertainties mentioned above will be illustrated using examples from detection and attribution studies with atmospheric temperature and moisture.

  17. The Distribution of Climate Change Public Opinion in Canada.

    Directory of Open Access Journals (Sweden)

    Matto Mildenberger

    Full Text Available While climate scientists have developed high resolution data sets on the distribution of climate risks, we still lack comparable data on the local distribution of public climate change opinions. This paper provides the first effort to estimate local climate and energy opinion variability outside the United States. Using a multi-level regression and post-stratification (MRP approach, we estimate opinion in federal electoral districts and provinces. We demonstrate that a majority of the Canadian public consistently believes that climate change is happening. Belief in climate change's causes varies geographically, with more people attributing it to human activity in urban as opposed to rural areas. Most prominently, we find majority support for carbon cap and trade policy in every province and district. By contrast, support for carbon taxation is more heterogeneous. Compared to the distribution of US climate opinions, Canadians believe climate change is happening at higher levels. This new opinion data set will support climate policy analysis and climate policy decision making at national, provincial and local levels.

  18. The Distribution of Climate Change Public Opinion in Canada.

    Science.gov (United States)

    Mildenberger, Matto; Howe, Peter; Lachapelle, Erick; Stokes, Leah; Marlon, Jennifer; Gravelle, Timothy

    2016-01-01

    While climate scientists have developed high resolution data sets on the distribution of climate risks, we still lack comparable data on the local distribution of public climate change opinions. This paper provides the first effort to estimate local climate and energy opinion variability outside the United States. Using a multi-level regression and post-stratification (MRP) approach, we estimate opinion in federal electoral districts and provinces. We demonstrate that a majority of the Canadian public consistently believes that climate change is happening. Belief in climate change's causes varies geographically, with more people attributing it to human activity in urban as opposed to rural areas. Most prominently, we find majority support for carbon cap and trade policy in every province and district. By contrast, support for carbon taxation is more heterogeneous. Compared to the distribution of US climate opinions, Canadians believe climate change is happening at higher levels. This new opinion data set will support climate policy analysis and climate policy decision making at national, provincial and local levels.

  19. Climate change and high-resolution whole-building numerical modelling

    NARCIS (Netherlands)

    Blocken, B.J.E.; Briggen, P.M.; Schellen, H.L.; Hensen, J.L.M.

    2010-01-01

    This paper briefly discusses the need of high-resolution whole-building numerical modelling in the context of climate change. High-resolution whole-building numerical modelling can be used for detailed analysis of the potential consequences of climate change on buildings and to evaluate remedial

  20. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    . This absence of an agreement calls for adaptation to climate change. Emphasis should be put on buildings, as they play a vital economic and social role in society and are vulnerable to climate change. Therefore, the building stock deserves its own policy and implementation plans as well as tools that enable...... adequate and cost-efficient adaptation to climate change. This paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change adaptation needed. The suggested and presented need of a strategic approach is based...... on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant stakeholders...

  1. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2014-01-01

    . This absence of an agreement calls for adaptation to climate change. Emphasis should be put on buildings, as they play a vital economic and social role in society and are vulnerable to climate change. Therefore, the building stock deserves its own policy and implementation plans as well as tools that enable...... adequate and cost-efficient adaptation to climate change. This paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change adaptation needed. The suggested and presented need of a strategic approach is based...... on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant stakeholders...

  2. Identifying stakeholder-relevant climate change impacts: a case study in the Yakima River Basin, Washington, USA

    Science.gov (United States)

    Jenni, K.; Graves, D.; Hardiman, Jill M.; Hatten, James R.; Mastin, Mark C.; Mesa, Matthew G.; Montag, J.; Nieman, Timothy; Voss, Frank D.; Maule, Alec G.

    2014-01-01

    Designing climate-related research so that study results will be useful to natural resource managers is a unique challenge. While decision makers increasingly recognize the need to consider climate change in their resource management plans, and climate scientists recognize the importance of providing locally-relevant climate data and projections, there often remains a gap between management needs and the information that is available or is being collected. We used decision analysis concepts to bring decision-maker and stakeholder perspectives into the applied research planning process. In 2009 we initiated a series of studies on the impacts of climate change in the Yakima River Basin (YRB) with a four-day stakeholder workshop, bringing together managers, stakeholders, and scientists to develop an integrated conceptual model of climate change and climate change impacts in the YRB. The conceptual model development highlighted areas of uncertainty that limit the understanding of the potential impacts of climate change and decision alternatives by those who will be most directly affected by those changes, and pointed to areas where additional study and engagement of stakeholders would be beneficial. The workshop and resulting conceptual model highlighted the importance of numerous different outcomes to stakeholders in the basin, including social and economic outcomes that go beyond the physical and biological outcomes typically reported in climate impacts studies. Subsequent studies addressed several of those areas of uncertainty, including changes in water temperatures, habitat quality, and bioenergetics of salmonid populations.

  3. Climate change and coastal environmental risk perceptions in Florida.

    Science.gov (United States)

    Carlton, Stuart J; Jacobson, Susan K

    2013-11-30

    Understanding public perceptions of climate change risks is a prerequisite for effective climate communication and adaptation. Many studies of climate risk perceptions have either analyzed a general operationalization of climate change risk or employed a case-study approach of specific adaptive processes. This study takes a different approach, examining attitudes toward 17 specific, climate-related coastal risks and cognitive, affective, and risk-specific predictors of risk perception. A survey of 558 undergraduates revealed that risks to the physical environment were a greater concern than economic or biological risks. Perceptions of greater physical environment risks were significantly associated with having more pro-environmental attitudes, being female, and being more Democratic-leaning. Perceptions of greater economic risks were significantly associated with having more negative environmental attitudes, being female, and being more Republican-leaning. Perceptions of greater biological risks were significantly associated with more positive environmental attitudes. The findings suggest that focusing on physical environment risks maybe more salient to this audience than communications about general climate change adaptation. The results demonstrate that climate change beliefs and risk perceptions are multifactorial and complex and are shaped by individuals' attitudes and basic beliefs. Climate risk communications need to apply this knowledge to better target cognitive and affective processes of specific audiences, rather than providing simple characterizations of risks. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Climate Change in China : Exploring Informants' Perceptions of Climate Change through a Qualitative Approach

    OpenAIRE

    Lipin, Tan

    2016-01-01

    Climate change is not only a natural phenomenon, but also a global social issue. Many studies try to explore the mechanisms behind climate change and the consequences of climate change, and provide information for developing the measures to mitigate or adapt to it. For example, the IPCC reviews and assesses climate-change-related scientific information produced worldwide, thus aiming to support decision-making from a scientific perspective. However, though various international and regional c...

  5. The social construct of climate and climate change

    International Nuclear Information System (INIS)

    Stehr, N.

    1994-01-01

    Different time scales of climate change and their differential perception in society are discussed. A historical examination of natural climate changes during the past millennium suggests that short-term changes, especially crucial changes, trigger a significant response in and by society. Short-term changes correspond to the 'time horizon of everyday life', that is, to a time scale from days and weeks to a few years. The anticipated anthropogenic climate changes, however, are expected to occur on a longer time scale. They require a response by society not on the basis of primary experience but on the basis of scientifically constructed scenarios and ways in which such information is represented in the modern media for example. Socio-economic impact research relies on concepts that are based on the premise of perfectly informed actors for the development of optimal adaptation strategies. In contrast to such a conception, we develop the concept of a 'social construct of climate' as decisive for the public perception of scientific knowledge about climate and for public policy on climate change. The concept is illustrated using a number of examples. (orig.)

  6. The neurobiology of climate change.

    Science.gov (United States)

    O'Donnell, Sean

    2018-01-06

    Directional climate change (global warming) is causing rapid alterations in animals' environments. Because the nervous system is at the forefront of animals' interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.

  7. The neurobiology of climate change

    Science.gov (United States)

    O'Donnell, Sean

    2018-02-01

    Directional climate change (global warming) is causing rapid alterations in animals' environments. Because the nervous system is at the forefront of animals' interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.

  8. Technologies for climate change adaptation. Agriculture sector

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X [ed.; UNEP Risoe Centre, Roskilde (Denmark); Clements, R; Quezada, A; Torres, J [Practical Action Latin America, Lima (Peru); Haggar, J [Univ. of Greenwich, London (United Kingdom)

    2011-08-15

    This guidebook presents a selection of technologies for climate change adaptation in the agriculture sector. A set of 22 adaptation technologies are showcased. These are based primarily on the principles of agroecology, but also include scientific technologies of climate and biological sciences complemented by important sociological and institutional capacity building processes that are required for climate change to function. The technologies cover: 1) Planning for climate change and variability. 2) Sustainable water use and management. 3) Soil management. 4) Sustainable crop management. 5) Sustainable livestock management. 6) Sustainable farming systems. 7) Capacity building and stakeholder organisation. Technologies that tend to homogenise the natural environment and agricultural production have low possibilities of success in environmental stress conditions that are likely to result from climate change. On the other hand, technologies that allow for, and promote diversity are more likely to provide a strategy which strengthens agricultural production in the face of uncertain future climate change scenarios. The 22 technologies showcased in this guidebook have been selected because they facilitate the conservation and restoration of diversity while also providing opportunities for increasing agricultural productivity. Many of these technologies are not new to agricultural production practices, but they are implemented based on the assessment of current and possible future impacts of climate change in a particular location. agroecology is an approach that encompasses concepts of sustainable production and biodiversity promotion and therefore provides a useful framework for identifying and selecting appropriate adaptation technologies for the agriculture sector. The guidebook provides a systematic analysis of the most relevant information available on climate change adaptation technologies in the agriculture sector. It has been compiled based on a literature

  9. Assessment of Coastal Governance for Climate Change Adaptation in Kenya

    Science.gov (United States)

    Ojwang, Lenice; Rosendo, Sergio; Celliers, Louis; Obura, David; Muiti, Anastasia; Kamula, James; Mwangi, Maina

    2017-11-01

    The coastline of Kenya already experiences effects of climate change, adding to existing pressures such as urbanization. Integrated coastal management (ICM) is increasingly recognized as a key policy response to deal with the multiple challenges facing coastal zones, including climate change. It can create an enabling governance environment for effective local action on climate change by facilitating a structured approach to dealing with coastal issues. It encompasses the actions of a wide range of actors, including local governments close to people and their activities affected by climate change. Functioning ICM also offers opportunities for reducing risks and building resilience. This article applied a modified capitals approach framework (CAF), consisting of five "capitals," to assess the status of county government capacity to respond to climate change within the context of coastal governance in three county governments in Kenya. The baseline was defined in terms of governance relating to the implementation of the interrelated policy systems of ICM and coastal climate change adaptation (CCA). The CAF framework provided a systematic approach to building a governance baseline against which to assess the progress of county governments in responding to climate change. It identified gaps in human capacity, financial resource allocation to adaptation and access to climate change information. Furthermore, it showed that having well-developed institutions, including regulatory frameworks at the national level can facilitate but does not automatically enable adaptation at the county level.

  10. Trees and Climate Change

    OpenAIRE

    Dettenmaier, Megan; Kuhns, Michael; Unger, Bethany; McAvoy, Darren

    2017-01-01

    This fact sheet describes the complex relationship between forests and climate change based on current research. It explains ways that trees can mitigate some of the risks associated with climate change. It details the impacts that forests are having on the changing climate and discuss specific ways that trees can be used to reduce or counter carbon emissions directly and indirectly.

  11. Changing climate states and stability: from Pliocene to present

    Energy Technology Data Exchange (ETDEWEB)

    Livina, V.N.; Lenton, T.M. [University of East Anglia, School of Environmental Sciences, Norwich (United Kingdom); Kwasniok, F. [University of Exeter, College of Engineering, Mathematics and Physical Sciences, Exeter (United Kingdom); Lohmann, G. [Alfred Wegener Institute for Polar and Marine Research, Bremerhaven (Germany); Kantelhardt, J.W. [Martin-Luther-Universitaet Halle-Wittenberg, Institute of Physics, Theory group, Halle (Germany)

    2011-12-15

    We present a recently developed method of potential analysis of time series data, which comprises (1) derivation of the number of distinct global states of a system from time series data, and (2) derivation of the potential coefficients describing the location and stability of these states, using the unscented Kalman filter (UKF). We test the method on artificial data and then apply it to climate records spanning progressively shorter time periods from 5.3 Myr ago to the recent observational record. We detect various changes in the number and stability of states in the climate system. The onset of Northern Hemisphere glaciation roughly 3 Myr BP is detected as the appearance of a second climate state. During the last ice age in Greenland, there is a bifurcation representing the loss of stability of the warm interstadial state, followed by the total loss of this state around 25 kyr BP. The Holocene is generally characterized by a single stable climate state, especially at large scales. However, in the historical record, at the regional scale, the European monthly temperature anomaly temporarily exhibits a second, highly degenerate (unstable) state during the latter half of the eighteenth century. At the global scale, temperature is currently undergoing a forced movement of a single stable state rather than a bifurcation. The method can be applied to a wide range of geophysical systems with time series of sufficient length and temporal resolution, to look for bifurcations and their precursors. (orig.)

  12. Implications of climate change on flow regime affecting Atlantic salmon

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available The UKCIP02 climate change scenarios (2070–2100 suggest that the UK climate will become warmer (an overall increase of 2.5–3°C, with temperature increases being greater in the summer and autumn than in the spring and winter seasons. In terms of precipitation, winters are expected to become wetter and summers drier throughout the UK. The effect of changes in the future climate on flow regimes are investigated for the Atlantic salmon, Salmo salar, in a case study in an upland UK river. Using a hydraulic modelling approach, flows simulated across the catchment are assessed in terms of hydraulic characteristics (discharge per metre width, flow depths, flow velocities and Froude number. These, compared with suitable characteristics published in the literature for various life stages of Atlantic salmon, enable assessment of habitat suitability. Climate change factors have been applied to meteorological observations in the Eden catchment (north-west England and effects on the flow regime have been investigated using the SHETRAN hydrological modelling system. High flows are predicted to increase by up to 1.5%; yet, a greater impact is predicted from decreasing low flows (e.g. a Q95 at the outlet of the study catchment may decrease to a Q85 flow. Reliability, Resilience and Vulnerability (RRV analysis provides a statistical indication of the extent and effect of such changes on flows. Results show that future climate will decrease the percentage time the ideal minimum physical habitat requirements will be met. In the case of suitable flow depth for spawning activity at the outlet of the catchment, the percentage time may decrease from 100% under current conditions to 94% in the future. Such changes will have implications for the species under the Habitats Directive and for catchment ecological flow management strategies.

  13. Climate Change Action Fund: public education and outreach. Change: think climate

    International Nuclear Information System (INIS)

    2001-05-01

    This illustrated booklet provides a glimpse of the many creative approaches being adopted by educators, community groups, industry associations and governments at all levels to inform Canadians about the causes and effects of climate change. It also provides suggestions about how each individual person can contribute to reduce greenhouse gas emissions through residential energy efficiency, by participating in ride-share programs, by planting trees and a myriad of other community action projects and public awareness campaigns. The booklet describes educational resources and training available to teachers, science presentations, climate change workshops, public awareness initiatives, community action on climate change, and sector-specific actions underway in the field of transportation and in improving energy efficiency in residential and large buildings. Descriptive summaries of the activities of organizations involved in climate change advocacy and promotion, and a list of contacts for individual projects also form part of the volume

  14. Changing Climates @ Colorado State: 100 (Multidisciplinary) Views of Climate Change

    Science.gov (United States)

    Campbell, S.; Calderazzo, J.; Changing Climates, Cmmap Education; Diversity Team

    2011-12-01

    We would like to talk about a multidisciplinary education and outreach program we co-direct at Colorado State University, with support from an NSF-funded STC, CMMAP, the Center for Multiscale Modeling of Atmospheric Processes. We are working to raise public literacy about climate change by providing information that is high quality, up to date, thoroughly multidisciplinary, and easy for non-specialists to understand. Our primary audiences are college-level students, their teachers, and the general public. Our motto is Climate Change is Everybody's Business. To encourage and help our faculty infuse climate-change content into their courses, we have organized some 115 talks given by as many different speakers-speakers drawn from 28 academic departments, all 8 colleges at CSU, and numerous other entities from campus, the community, and farther afield. We began with a faculty-teaching-faculty series and then broadened our attentions to the whole campus and surrounding community. Some talks have been for narrowly focused audiences such as extension agents who work on energy, but most are for more eclectic groups of students, staff, faculty, and citizens. We count heads at most events, and our current total is roughly 6,000. We have created a website (http://changingclimates.colostate.edu) that includes videotapes of many of these talks, short videos we have created, and annotated sources that we judge to be accurate, interesting, clearly written, and aimed at non-specialists, including books, articles and essays, websites, and a few items specifically for college teachers (such as syllabi). Pages of the website focus on such topics as how the climate works / how it changes; what's happening / what might happen; natural ecosystems; agriculture; impacts on people; responses from ethics, art, literature; communication; daily life; policy; energy; and-pulling all the pieces together-the big picture. We have begun working on a new series of very short videos that can be

  15. Climate change

    NARCIS (Netherlands)

    Marchal, V.; Dellink, R.; Vuuren, D.P. van; Clapp, C.; Chateau, J.; Magné, B.; Lanzi, E.; Vliet, J. van

    2012-01-01

    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth

  16. Impacts of climate change on paddy rice yield in a temperate climate.

    Science.gov (United States)

    Kim, Han-Yong; Ko, Jonghan; Kang, Suchel; Tenhunen, John

    2013-02-01

    The crop simulation model is a suitable tool for evaluating the potential impacts of climate change on crop production and on the environment. This study investigates the effects of climate change on paddy rice production in the temperate climate regions under the East Asian monsoon system using the CERES-Rice 4.0 crop simulation model. This model was first calibrated and validated for crop production under elevated CO2 and various temperature conditions. Data were obtained from experiments performed using a temperature gradient field chamber (TGFC) with a CO2 enrichment system installed at Chonnam National University in Gwangju, Korea in 2009 and 2010. Based on the empirical calibration and validation, the model was applied to deliver a simulated forecast of paddy rice production for the region, as well as for the other Japonica rice growing regions in East Asia, projecting for years 2050 and 2100. In these climate change projection simulations in Gwangju, Korea, the yield increases (+12.6 and + 22.0%) due to CO2 elevation were adjusted according to temperature increases showing variation dependent upon the cultivars, which resulted in significant yield decreases (-22.1% and -35.0%). The projected yields were determined to increase as latitude increases due to reduced temperature effects, showing the highest increase for any of the study locations (+24%) in Harbin, China. It appears that the potential negative impact on crop production may be mediated by appropriate cultivar selection and cultivation changes such as alteration of the planting date. Results reported in this study using the CERES-Rice 4.0 model demonstrate the promising potential for its further application in simulating the impacts of climate change on rice production from a local to a regional scale under the monsoon climate system. © 2012 Blackwell Publishing Ltd.

  17. Changes in the Perceived Risk of Climate Change: Evidence from Sudden Climatic Events

    Science.gov (United States)

    Anttila-Hughes, J. K.

    2009-12-01

    In the course of the past two decades the threat of anthropogenic climate change has moved from a scientific concern of relative obscurity to become one of the largest environmental and public goods problems in history. During this period public understanding of the risk of climate change has shifted from negligible to quite large. In this paper I propose a means of quantifying this change by examining how sudden events supporting the theory of anthropogenic climate change have affected carbon intensive companies' stock prices. Using CAPM event study methodology for companies in several carbon-intensive industries, I find strong evidence that markets have been reacting to changes in the scientific evidence for climate change for some time. Specifically, the change in magnitude of response over time seems to indicate that investors believed climate change was a potentially serious risk to corporate profits as early as the mid 1990s. Moreover, market reaction dependence on event type indicates that investors are differentiating between different advances in the scientific knowledge. Announcements by NASA GISS that the previous year was a “record hot year” for the globe are associated with negative excess returns, while news of ice shelf collapses are associated with strong positive excess returns. These results imply that investors are aware of how different aspects of climate change will affect carbon intensive companies, specifically in terms of the link between warming in general and polar ice cover. This implies that policy choices based on observable public opinion have lagged actual private concern over climate change's potential threat.

  18. Air Pollution and Climate Change Health Impact Assessment. The ACHIA Project

    International Nuclear Information System (INIS)

    Kinney, P.L.

    2013-01-01

    Climate change may affect human health via interactions with air pollutants such as ozone and PM 2.5 . These air pollutants are linked to climate because they can be both affected by and have effects on climate. In coming decades, substantial, cost-effective improvements in public health may be achieved with well-planned strategies to mitigate climate impacts while also reducing health effects of ozone and PM 2.5 . Climate mitigation actions affect greenhouse pollutant emissions, including methane and black carbon, but also may affect other key air pollution precursors such as NOx, CO, and SOx. To better understand the potential of such strategies, studies are needed that assess possible future health impacts under alternative assumptions about future emissions and climate across multiple spatial scales. The overall objective of this project is to apply state of the art climate, air quality, and health modelling tools to assess future health impacts of ozone and PM 2.5 under different IPCCs scenario of climate change, focusing specifically on pollution-related health co-benefits which could be achieved under alternative climate mitigation pathways in the period 2030-2050. This question will be explored at three spatial scales: global, regional (Europe), and urban (Paris). ACHIA is comprised of an integrated set of four work packages: WP1. Global Climate and Air Pollution Impacts of Alternative Emissions Pathways; WP2. Climate and Air Quality at Regional and Urban Scales: Results for Europe and Paris; WP3. Health Impact Assessment; WP4. Dissemination, Evaluation, Management. ACHIA is designed to create an interdisciplinary approach to the impacts of climate change on health through air quality changes, and to start longer-term collaborations between communities. We expect the project to advance state of art across all WPs, with important implications for research groups around the world. A particular innovation of the project is the multi-scale aspect, i.e., the

  19. Multi-scale connectivity and graph theory highlight critical areas for conservation under climate change

    Science.gov (United States)

    Dilts, Thomas E.; Weisberg, Peter J.; Leitner, Phillip; Matocq, Marjorie D.; Inman, Richard D.; Nussear, Ken E.; Esque, Todd C.

    2016-01-01

    Conservation planning and biodiversity management require information on landscape connectivity across a range of spatial scales from individual home ranges to large regions. Reduction in landscape connectivity due changes in land-use or development is expected to act synergistically with alterations to habitat mosaic configuration arising from climate change. We illustrate a multi-scale connectivity framework to aid habitat conservation prioritization in the context of changing land use and climate. Our approach, which builds upon the strengths of multiple landscape connectivity methods including graph theory, circuit theory and least-cost path analysis, is here applied to the conservation planning requirements of the Mohave ground squirrel. The distribution of this California threatened species, as for numerous other desert species, overlaps with the proposed placement of several utility-scale renewable energy developments in the American Southwest. Our approach uses information derived at three spatial scales to forecast potential changes in habitat connectivity under various scenarios of energy development and climate change. By disentangling the potential effects of habitat loss and fragmentation across multiple scales, we identify priority conservation areas for both core habitat and critical corridor or stepping stone habitats. This approach is a first step toward applying graph theory to analyze habitat connectivity for species with continuously-distributed habitat, and should be applicable across a broad range of taxa.

  20. Chemistry and climate change

    International Nuclear Information System (INIS)

    Bernier, Jean-Claude; Brasseur, Guy; Brechet, Yves; Candel, Sebastien; Cazenave, Anny; Courtillot, Vincent; Fontecave, Marc; Garnier, Emmanuel; Goebel, Philippe; Legrand, Jack; Legrand, Michel; Le Treut, Herve; Mauberger, Pascal; Dinh-Audouin, Minh-Thu; Olivier, Daniele; Rigny, Paul; Bigot, Bernard

    2016-01-01

    In its first part, this collective publication addresses the decennial and centuries-old variations of climate: perspectives and implications of climate change for the 21. century, questions remaining about the understanding of climate change from its sources to its modelling, extreme climate variations and societies during the last millennium. The contributions of the second part outline how chemistry is a tool to study climate change: ice chemistry as an archive of our past environment, observations and predictions on sea level rise, relationship between atmosphere chemistry and climate. The third set of contributions discusses the transformation of the energy system for a cleaner atmosphere and the management of the climate risk: the chemical processing of CO_2, actions of chemical companies to support the struggle against climate change, relationship between barrel price and renewable energies, relationship between grid complexity and green energy. The last part outlines the role chemistry can have to be able to do without fossil fuels: chemistry in front of challenges of transformation of the energy system, the use of micro-algae, the use of hydrogen as a vector of energy transition

  1. A preliminary study of mechanistic approach in pavement design to accommodate climate change effects

    Science.gov (United States)

    Harnaeni, S. R.; Pramesti, F. P.; Budiarto, A.; Setyawan, A.

    2018-03-01

    Road damage is caused by some factors, including climate changes, overload, and inappropriate procedure for material and development process. Meanwhile, climate change is a phenomenon which cannot be avoided. The effects observed include air temperature rise, sea level rise, rainfall changes, and the intensity of extreme weather phenomena. Previous studies had shown the impacts of climate changes on road damage. Therefore, several measures to anticipate the damage should be considered during the planning and construction in order to reduce the cost of road maintenance. There are three approaches generally applied in the design of flexible pavement thickness, namely mechanistic approach, mechanistic-empirical (ME) approach and empirical approach. The advantages of applying mechanistic approach or mechanistic-empirical (ME) approaches are its efficiency and reliability in the design of flexible pavement thickness as well as its capacity to accommodate climate changes in compared to empirical approach. However, generally, the design of flexible pavement thickness in Indonesia still applies empirical approach. This preliminary study aimed to emphasize the importance of the shifting towards a mechanistic approach in the design of flexible pavement thickness.

  2. Learning to adapt: Organisational adaptation to climate change impacts

    NARCIS (Netherlands)

    Berkhout, F.G.H.; Hertin, J.; Gann, D.M.

    2006-01-01

    Analysis of human adaptation to climate change should be based on realistic models of adaptive behaviour at the level of organisations and individuals. The paper sets out a framework for analysing adaptation to the direct and indirect impacts of climate change in business organisations with new

  3. Climate change refugia as a tool for climate adaptation

    Science.gov (United States)

    Climate change refugia, areas relatively buffered from contemporary climate change so as to increase persistence of valued physical, ecological, and cultural resources, are considered as potential adaptation options in the face of anthropogenic climate change. In a collaboration ...

  4. Variance analysis of forecasted streamflow maxima in a wet temperate climate

    Science.gov (United States)

    Al Aamery, Nabil; Fox, James F.; Snyder, Mark; Chandramouli, Chandra V.

    2018-05-01

    Coupling global climate models, hydrologic models and extreme value analysis provides a method to forecast streamflow maxima, however the elusive variance structure of the results hinders confidence in application. Directly correcting the bias of forecasts using the relative change between forecast and control simulations has been shown to marginalize hydrologic uncertainty, reduce model bias, and remove systematic variance when predicting mean monthly and mean annual streamflow, prompting our investigation for maxima streamflow. We assess the variance structure of streamflow maxima using realizations of emission scenario, global climate model type and project phase, downscaling methods, bias correction, extreme value methods, and hydrologic model inputs and parameterization. Results show that the relative change of streamflow maxima was not dependent on systematic variance from the annual maxima versus peak over threshold method applied, albeit we stress that researchers strictly adhere to rules from extreme value theory when applying the peak over threshold method. Regardless of which method is applied, extreme value model fitting does add variance to the projection, and the variance is an increasing function of the return period. Unlike the relative change of mean streamflow, results show that the variance of the maxima's relative change was dependent on all climate model factors tested as well as hydrologic model inputs and calibration. Ensemble projections forecast an increase of streamflow maxima for 2050 with pronounced forecast standard error, including an increase of +30(±21), +38(±34) and +51(±85)% for 2, 20 and 100 year streamflow events for the wet temperate region studied. The variance of maxima projections was dominated by climate model factors and extreme value analyses.

  5. Climate change. Climate in Medieval time.

    Science.gov (United States)

    Bradley, Raymond S; Hughes, Malcolm K; Diaz, Henry F

    2003-10-17

    Many papers have referred to a "Medieval Warm Period." But how well defined is climate in this period, and was it as warm as or warmer than it is today? In their Perspective, Bradley et al. review the evidence and conclude that although the High Medieval (1100 to 1200 A.D.) was warmer than subsequent centuries, it was not warmer than the late 20th century. Moreover, the warmest Medieval temperatures were not synchronous around the globe. Large changes in precipitation patterns are a particular characteristic of "High Medieval" time. The underlying mechanisms for such changes must be elucidated further to inform the ongoing debate on natural climate variability and anthropogenic climate change.

  6. Climate Change Impacts on Central China and Adaptation Measures

    Institute of Scientific and Technical Information of China (English)

    REN Yong-Jian; CUI Jiang-Xue; WAN Su-Qin; LIU Min; CHEN Zheng-Hong; LIAO Yu-Fang; WANG Ji-Jun

    2013-01-01

    In Central China, the obvious climate change has happened along with global warming. Based on the observational analysis, the climate change has significant effects, both positive and negative, in every field within the study area, and with the harmful effects far more prevalent. Under the scenario A1B, it is reported that temperature, precipitation, days of heat waves and extreme precipitation intensity will increase at respective rates of 0.38◦C per decade, 12.6 mm per decade, 6.4 d and 47 mm per decade in the 21st century. It is widely believed that these climate changes in the future will result in some apparent impacts on agro-ecosystems, water resources, wetland ecosystem, forest ecosystem, human health, energy sectors and other sensitive fields in Central China. Due to the limited scientific knowledge and researches, there are still some shortages in the climate change assessment methodologies and many uncertainties in the climate prediction results. Therefore, it is urgent and essential to increase the studies of the regional climate change adaptation, extend the research fields, and enhance the studies in the extreme weather and climate events to reduce the uncertainties of the climate change assessments.

  7. Development and Climate Change in Nepal. Focus on Water Resources and Hydropower

    International Nuclear Information System (INIS)

    Agrawala, S.; Raksakulthai, V.; Van Aalst, M.; Larsen, P.; Smith, J.; Reynolds, J.

    2003-01-01

    This document is an output from the OECD Development and Climate Change project, an activity jointly overseen by the EPOC Working Party on Global and Structural Policies (WPGSP), and the DAC Network on Environment and Development Co-operation (ENVIRONET). The overall objective of the project is to provide guidance on how to mainstream responses to climate change within economic development planning and assistance policies, with natural resource management as an overarching theme. This report presents the integrated case study for Nepal carried out under an OECD project on Development and Climate Change. The report is structured around a three-tier framework. First, recent climate trends and climate change scenarios for Nepal are assessed, and key sectoral impacts are identified and ranked along multiple indicators to establish priorities for adaptation. Second, donor portfolios in Nepal are analyzed to examine the proportion of donor activities affected by climate risks. A desk analysis of donor strategies and project documents as well as national plans is conducted to assess the degree of attention to climate change concerns in development planning and assistance. Third, an in-depth analysis is conducted for Nepal's water resources sector which was identified as most vulnerable to climate change. This part of the analysis also involved stakeholder consultation through an in-country workshop to identify key synergies and conflicts between climate change concerns and sectoral projects and plans

  8. Papers of the CWRA climate change symposium : understanding climate change impacts on Manitoba's water resources

    International Nuclear Information System (INIS)

    2003-01-01

    This symposium provided an opportunity for discussions on climate change issues with particular reference to the impacts on Manitoba's water resources. The presentations addressed issues of importance to governments, scientists, academics, managers, consultants and the general public. Topics of discussion ranged from climate change impacts on water quality, wetlands, hydropower, fisheries and drought, to adaptation to climate change. Recent advances in global and regional climate modelling were highlighted along with paleo-environmental indicators of climate change. The objective was to provide a better understanding of the science of climate change. The conference featured 16 presentations of which 1 was indexed separately for inclusion in this database. refs., tabs., figs

  9. Observations from old forests underestimate climate change effects on tree mortality.

    Science.gov (United States)

    Luo, Yong; Chen, Han Y H

    2013-01-01

    Understanding climate change-associated tree mortality is central to linking climate change impacts and forest structure and function. However, whether temporal increases in tree mortality are attributed to climate change or stand developmental processes remains uncertain. Furthermore, interpreting the climate change-associated tree mortality estimated from old forests for regional forests rests on an un-tested assumption that the effects of climate change are the same for young and old forests. Here we disentangle the effects of climate change and stand developmental processes on tree mortality. We show that both climate change and forest development processes influence temporal mortality increases, climate change-associated increases are significantly higher in young than old forests, and higher increases in younger forests are a result of their higher sensitivity to regional warming and drought. We anticipate our analysis to be a starting point for more comprehensive examinations of how forest ecosystems might respond to climate change.

  10. Global climate changes in the past and future

    International Nuclear Information System (INIS)

    Schoenwiese, C.D.

    1993-01-01

    Is man changing the climate of the Earth, and if so, is this at a global scale? This question with all its reunifications, usually referred to under the heading ''greenhouse effect'', deservedly stands in the focus of public attention. Besides fears and warnings reaching even to disaster scenarios there have recently also been sceptical voices pointing out the imponderabilities of filtering anthropogenic effects out of the climate data. This uncertainty is not surprising to the expert, as natural changes of climate always have, and will, superimpose anthropogenic influences. Therefore, it is not enough to peer into the future with the help of intricate climate models. Diagnostic analysis of the past climate is at least just as important. (orig.) [de

  11. Assessment of climate change impacts on climate variables using probabilistic ensemble modeling and trend analysis

    Science.gov (United States)

    Safavi, Hamid R.; Sajjadi, Sayed Mahdi; Raghibi, Vahid

    2017-10-01

    Water resources in snow-dependent regions have undergone significant changes due to climate change. Snow measurements in these regions have revealed alarming declines in snowfall over the past few years. The Zayandeh-Rud River in central Iran chiefly depends on winter falls as snow for supplying water from wet regions in high Zagrous Mountains to the downstream, (semi-)arid, low-lying lands. In this study, the historical records (baseline: 1971-2000) of climate variables (temperature and precipitation) in the wet region were chosen to construct a probabilistic ensemble model using 15 GCMs in order to forecast future trends and changes while the Long Ashton Research Station Weather Generator (LARS-WG) was utilized to project climate variables under two A2 and B1 scenarios to a future period (2015-2044). Since future snow water equivalent (SWE) forecasts by GCMs were not available for the study area, an artificial neural network (ANN) was implemented to build a relationship between climate variables and snow water equivalent for the baseline period to estimate future snowfall amounts. As a last step, homogeneity and trend tests were performed to evaluate the robustness of the data series and changes were examined to detect past and future variations. Results indicate different characteristics of the climate variables at upstream stations. A shift is observed in the type of precipitation from snow to rain as well as in its quantities across the subregions. The key role in these shifts and the subsequent side effects such as water losses is played by temperature.

  12. Climate change and human health

    DEFF Research Database (Denmark)

    Warren, John A; Berner, James E; Curtis, Tine

    2005-01-01

    In northern regions, climate change can include changes in precipitation magnitude and frequency, reductions in sea ice extent and thickness, and climate warming and cooling. These changes can increase the frequency and severity of storms, flooding, or erosion; other changes may include drought...... or degradation of permafrost. Climate change can result in damage to sanitation infrastructure resulting in the spread of disease or threatening a community's ability to maintain its economy, geographic location and cultural tradition, leading to mental stress. Through monitoring of some basic indicators...... communities can begin to develop a response to climate change. With this information, planners, engineers, health care professionals and governments can begin to develop approaches to address the challenges related to climate change....

  13. Study on the Impacts of Climate Change on China's Agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.; Li, Xiubin [Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101 (China); Fischer, G.; Sun, Laixiang [International Institute for Applied System Analysis IIASA, A-2361 Laxenburg (Austria)

    2004-07-01

    This paper measures the economic impacts of climate change on China's agriculture based on the Ricardian model. By using county-level cross-sectional data on agricultural net revenue, climate, and other economic and geographical data for 1275 agriculture dominated counties, we find that under most climate change scenarios both higher temperature and more precipitation would have an overall positive impact on China's agriculture. However, the impacts vary seasonally and regionally. Autumn effect is the most positive, but spring effect is the most negative. Applying the model to five climate scenarios in the year 2050 shows that the East, the Central part, the South, the northern part of the Northeast, and the Plateau would benefit from climate change, but the Southwest, the Northwest and the southern part of the Northeast may be negatively affected. In the North, most scenarios show that they may benefit from climate change. In summary, all of China would benefit from climate change in most scenarios.

  14. Assessing stand-level climate change risk using forest inventory data and species distribution models

    Science.gov (United States)

    Maria K. Janowiak; Louis R. Iverson; Jon Fosgitt; Stephen D. Handler; Matt Dallman; Scott Thomasma; Brad Hutnik; Christopher W. Swanston

    2017-01-01

    Climate change is having important effects on forest ecosystems, presenting a challenge for natural resource professionals to reduce climate-associated impacts while still achieving diverse management objectives. Regional projections of climate change and forest response are becoming more readily available, but managers are still searching for practical ways to apply...

  15. Climate change not to blame for late Quaternary megafauna extinctions in Australia.

    Science.gov (United States)

    Saltré, Frédérik; Rodríguez-Rey, Marta; Brook, Barry W; Johnson, Christopher N; Turney, Chris S M; Alroy, John; Cooper, Alan; Beeton, Nicholas; Bird, Michael I; Fordham, Damien A; Gillespie, Richard; Herrando-Pérez, Salvador; Jacobs, Zenobia; Miller, Gifford H; Nogués-Bravo, David; Prideaux, Gavin J; Roberts, Richard G; Bradshaw, Corey J A

    2016-01-29

    Late Quaternary megafauna extinctions impoverished mammalian diversity worldwide. The causes of these extinctions in Australia are most controversial but essential to resolve, because this continent-wide event presaged similar losses that occurred thousands of years later on other continents. Here we apply a rigorous metadata analysis and new ensemble-hindcasting approach to 659 Australian megafauna fossil ages. When coupled with analysis of several high-resolution climate records, we show that megafaunal extinctions were broadly synchronous among genera and independent of climate aridity and variability in Australia over the last 120,000 years. Our results reject climate change as the primary driver of megafauna extinctions in the world's most controversial context, and instead estimate that the megafauna disappeared Australia-wide ∼13,500 years after human arrival, with shorter periods of coexistence in some regions. This is the first comprehensive approach to incorporate uncertainty in fossil ages, extinction timing and climatology, to quantify mechanisms of prehistorical extinctions.

  16. Climate change not to blame for late Quaternary megafauna extinctions in Australia

    Science.gov (United States)

    Saltré, Frédérik; Rodríguez-Rey, Marta; Brook, Barry W.; Johnson, Christopher N; Turney, Chris S. M.; Alroy, John; Cooper, Alan; Beeton, Nicholas; Bird, Michael I.; Fordham, Damien A.; Gillespie, Richard; Herrando-Pérez, Salvador; Jacobs, Zenobia; Miller, Gifford H.; Nogués-Bravo, David; Prideaux, Gavin J.; Roberts, Richard G.; Bradshaw, Corey J. A.

    2016-01-01

    Late Quaternary megafauna extinctions impoverished mammalian diversity worldwide. The causes of these extinctions in Australia are most controversial but essential to resolve, because this continent-wide event presaged similar losses that occurred thousands of years later on other continents. Here we apply a rigorous metadata analysis and new ensemble-hindcasting approach to 659 Australian megafauna fossil ages. When coupled with analysis of several high-resolution climate records, we show that megafaunal extinctions were broadly synchronous among genera and independent of climate aridity and variability in Australia over the last 120,000 years. Our results reject climate change as the primary driver of megafauna extinctions in the world's most controversial context, and instead estimate that the megafauna disappeared Australia-wide ∼13,500 years after human arrival, with shorter periods of coexistence in some regions. This is the first comprehensive approach to incorporate uncertainty in fossil ages, extinction timing and climatology, to quantify mechanisms of prehistorical extinctions. PMID:26821754

  17. Climate Change Adaptation

    DEFF Research Database (Denmark)

    Hudecz, Adriána

    The European Union ROADEX Project 1998 – 2012 was a trans-national roads co-operation aimed at developing ways for interactive and innovative management of low traffic volume roads throughout the cold climate regions of the Northern Periphery Area of Europe. Its goals were to facilitate co......-operation and research into the common problems of the Northern Periphery. This report is an output of the ROADEX “Implementing Accessibility” project (2009-2012). It gives a summary of the results of research into adaptation measures to combat climate change effects on low volume roads in the Northern Periphery...... causes changes in other climatic variables such as rainfall, humidity and wind speed that impact on the functioning of infrastructure such road networks. This paper discusses the climate changes predicted by the world’s meteorological organisations and considers how these may impact on the public...

  18. Yukon Government climate change action plan

    International Nuclear Information System (INIS)

    2009-02-01

    This Climate Change Action Plan described the measures that are being taken by the Yukon Government to adapt to, understand, and reduce contributions to climate change. The action plan is the result of input received from more than 100 individuals and organizations and provides clear direction for a strategy that will minimize the negative impacts of climate change and provide economic, social and other environmental benefits through climate change mitigation. The Yukon government has already taken many actions that respond to climate change, such as: developing the Yukon Cold Climate Innovation Centre; supporting the Northern Climate Exchange for public education and outreach; funding community recycling depots and other groups that reduce waste generation, promote public awareness and divert solid waste; and working with provincial and territorial counterparts to enhance national building standards. The main objectives of the climate change actions are to enhance knowledge and understanding of climate change; adapt to climate change; reduce greenhouse gas emissions; and lead Yukon action in response to climate change. tabs., figs.

  19. Methodologies for assessing socio-economic impacts of climate change

    International Nuclear Information System (INIS)

    Smit, B.

    1993-01-01

    Much of the studies on climate change impacts have focused on physical and biological impacts, yet a knowledge of the social and economic impacts of climate change is likely to have a greater impact on the public and on policymakers. A conventional assessment of the impacts of climate change begins with scenarios of future climate, commonly derived from global climate models translated to a regional scale. Estimates of biophysical conditions provided by such scenarios provide a basis for analyses of human impacts, usually considered sector by sector. The scenario approach, although having considerable merit and appeal, has some noteworthy limitations. It encourages consideration of only a small set of scenarios, requires bold assumptions to be made about adjustments in human systems, provides little direct analysis of sensitivities of human social and economic systems to climate perturbations, and usually invokes the assumption that all factors other than climate are stable and have no synergistic effects on human systems. Conventional studies concentrate on average climate, yet climate is inherently variable. A common response to this situation is to propose further development of climate models, but this is not a sufficient or necessary condition for good and useful assessments of impacts on human activities. Different approaches to socioeconomic impact analysis are needed, and approaches should be considered that include identification of sensitivities in a social or ecological system, identification of critical threshold levels or critical speeds of change in variables, and exploration of alternative methodologies such as process studies, spatial and temporal analogues, and socio-economic systems modelling. 5 refs., 3 figs

  20. Potential impacts of climate change on water quality in a shallow reservoir in China.

    Science.gov (United States)

    Zhang, Chen; Lai, Shiyu; Gao, Xueping; Xu, Liping

    2015-10-01

    To study the potential effects of climate change on water quality in a shallow reservoir in China, the field data analysis method is applied to data collected over a given monitoring period. Nine water quality parameters (water temperature, ammonia nitrogen, nitrate nitrogen, nitrite nitrogen, total nitrogen, total phosphorus, chemical oxygen demand, biochemical oxygen demand and dissolved oxygen) and three climate indicators for 20 years (1992-2011) are considered. The annual trends exhibit significant trends with respect to certain water quality and climate parameters. Five parameters exhibit significant seasonality differences in the monthly means between the two decades (1992-2001 and 2002-2011) of the monitoring period. Non-parametric regression of the statistical analyses is performed to explore potential key climate drivers of water quality in the reservoir. The results indicate that seasonal changes in temperature and rainfall may have positive impacts on water quality. However, an extremely cold spring and high wind speed are likely to affect the self-stabilising equilibrium states of the reservoir, which requires attention in the future. The results suggest that land use changes have important impact on nitrogen load. This study provides useful information regarding the potential effects of climate change on water quality in developing countries.

  1. Distributional Aspects of Climate Change Impacts

    International Nuclear Information System (INIS)

    Tol, R.S.J. Tol; Kuik, O.J.; Downing, T.; Smith, J.B.

    2003-01-01

    This paper gives a brief review about the state of knowledge on the distributional aspects of climate change impacts. The paper is largely limited to the distribution of impacts between countries (in Section 2). Although there are virtually no estimates reported in the literature, the distribution of impacts within countries is also important. Impact estimates for different sectors (agriculture, health, sea level rise) provides little guidance for estimating differential impacts within countries. It is even harder to find estimates based on social classes. The paper restricts itself to equity about the consequences of climate change. Equity issues about the consequences of emission reduction are ignored here, but should of course be part of a policy analysis. Equity issues about procedures for decision making are also ignored. The paper is organised as follows. Section 2 reviews recent estimates of the regional impacts of climate change. Section 3 discusses alternative ways of aggregating regional impact estimates. Section 4 focusses on the vulnerability of the poor to climate change impacts, both with respect to exposure as well as to their limited capacity for adaptation. Section 5 discusses the impacts of economic development and other dynamic changes on vulnerability. The paper abstains from a discussion of aggregating climate change impacts over time, partly because the literature on that is too substantial to be reviewed here, and partly because, under virtually all scenarios, the current generation is the poorest and therefore particularly worthy in equity considerations. In Section 6 we present salient conclusions

  2. An overview of climate change

    International Nuclear Information System (INIS)

    Masson-Delmotte, V.; Paillard, D.

    2004-01-01

    We describe briefly here the main mechanisms and time scales involved in natural and anthropogenic climate variability, based on quantitative paleo-climatic reconstructions from natural archives and climate model simulations: the large glacial-interglacial cycles of the last million years (the Quaternary), lasting typically a hundred thousand years, triggered by changes in the solar radiation received by the Earth due to its position around the Sun; the century-long climatic changes occurring during last glacial period and triggered by recurrent iceberg discharges of the large northern hemisphere ice caps, massive freshwater flux to the north Atlantic, and changes in the ocean heat transport. We show the strong coupling between past climatic changes and global biogeochemical cycles, namely here atmospheric greenhouse gases. We also discuss the decadal climatic fluctuations during the last thousand years, showing an unprecedented warming attributed to the anthropogenic greenhouse gas emissions. We show the range of atmospheric greenhouse concentrations forecasted for the end of the 21. century and the climate model predictions for global temperature changes during the 21. century. We also discuss the possible climatic changes at longer time scales involving the possibility of north Atlantic heat transport collapse (possibility of abrupt climate change), and the duration of the current interglacial period. (author)

  3. Advances in risk assessment for climate change adaptation policy

    Science.gov (United States)

    Adger, W. Neil; Brown, Iain; Surminski, Swenja

    2018-01-01

    Climate change risk assessment involves formal analysis of the consequences, likelihoods and responses to the impacts of climate change and the options for addressing these under societal constraints. Conventional approaches to risk assessment are challenged by the significant temporal and spatial dynamics of climate change; by the amplification of risks through societal preferences and values; and through the interaction of multiple risk factors. This paper introduces the theme issue by reviewing the current practice and frontiers of climate change risk assessment, with specific emphasis on the development of adaptation policy that aims to manage those risks. These frontiers include integrated assessments, dealing with climate risks across borders and scales, addressing systemic risks, and innovative co-production methods to prioritize solutions to climate challenges with decision-makers. By reviewing recent developments in the use of large-scale risk assessment for adaptation policy-making, we suggest a forward-looking research agenda to meet ongoing strategic policy requirements in local, national and international contexts. This article is part of the theme issue ‘Advances in risk assessment for climate change adaptation policy’. PMID:29712800

  4. Advances in risk assessment for climate change adaptation policy.

    Science.gov (United States)

    Adger, W Neil; Brown, Iain; Surminski, Swenja

    2018-06-13

    Climate change risk assessment involves formal analysis of the consequences, likelihoods and responses to the impacts of climate change and the options for addressing these under societal constraints. Conventional approaches to risk assessment are challenged by the significant temporal and spatial dynamics of climate change; by the amplification of risks through societal preferences and values; and through the interaction of multiple risk factors. This paper introduces the theme issue by reviewing the current practice and frontiers of climate change risk assessment, with specific emphasis on the development of adaptation policy that aims to manage those risks. These frontiers include integrated assessments, dealing with climate risks across borders and scales, addressing systemic risks, and innovative co-production methods to prioritize solutions to climate challenges with decision-makers. By reviewing recent developments in the use of large-scale risk assessment for adaptation policy-making, we suggest a forward-looking research agenda to meet ongoing strategic policy requirements in local, national and international contexts.This article is part of the theme issue 'Advances in risk assessment for climate change adaptation policy'. © 2018 The Author(s).

  5. Advances in risk assessment for climate change adaptation policy

    Science.gov (United States)

    Adger, W. Neil; Brown, Iain; Surminski, Swenja

    2018-06-01

    Climate change risk assessment involves formal analysis of the consequences, likelihoods and responses to the impacts of climate change and the options for addressing these under societal constraints. Conventional approaches to risk assessment are challenged by the significant temporal and spatial dynamics of climate change; by the amplification of risks through societal preferences and values; and through the interaction of multiple risk factors. This paper introduces the theme issue by reviewing the current practice and frontiers of climate change risk assessment, with specific emphasis on the development of adaptation policy that aims to manage those risks. These frontiers include integrated assessments, dealing with climate risks across borders and scales, addressing systemic risks, and innovative co-production methods to prioritize solutions to climate challenges with decision-makers. By reviewing recent developments in the use of large-scale risk assessment for adaptation policy-making, we suggest a forward-looking research agenda to meet ongoing strategic policy requirements in local, national and international contexts. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.

  6. Implications of projected climate change for groundwater recharge in the western United States

    Science.gov (United States)

    Meixner, Thomas; Manning, Andrew H.; Stonestrom, David A.; Allen, Diana M.; Ajami, Hoori; Blasch, Kyle W.; Brookfield, Andrea E.; Castro, Christopher L.; Clark, Jordan F.; Gochis, David J.; Flint, Alan L.; Neff, Kirstin L.; Niraula, Rewati; Rodell, Matthew; Scanlon, Bridget R.; Singha, Kamini; Walvoord, Michelle A.

    2016-03-01

    Existing studies on the impacts of climate change on groundwater recharge are either global or basin/location-specific. The global studies lack the specificity to inform decision making, while the local studies do little to clarify potential changes over large regions (major river basins, states, or groups of states), a scale often important in the development of water policy. An analysis of the potential impact of climate change on groundwater recharge across the western United States (west of 100° longitude) is presented synthesizing existing studies and applying current knowledge of recharge processes and amounts. Eight representative aquifers located across the region were evaluated. For each aquifer published recharge budget components were converted into four standard recharge mechanisms: diffuse, focused, irrigation, and mountain-systems recharge. Future changes in individual recharge mechanisms and total recharge were then estimated for each aquifer. Model-based studies of projected climate-change effects on recharge were available and utilized for half of the aquifers. For the remainder, forecasted changes in temperature and precipitation were logically propagated through each recharge mechanism producing qualitative estimates of direction of changes in recharge only (not magnitude). Several key patterns emerge from the analysis. First, the available estimates indicate average declines of 10-20% in total recharge across the southern aquifers, but with a wide range of uncertainty that includes no change. Second, the northern set of aquifers will likely incur little change to slight increases in total recharge. Third, mountain system recharge is expected to decline across much of the region due to decreased snowpack, with that impact lessening with higher elevation and latitude. Factors contributing the greatest uncertainty in the estimates include: (1) limited studies quantitatively coupling climate projections to recharge estimation methods using detailed

  7. Implications of projected climate change for groundwater recharge in the western United States

    Science.gov (United States)

    Meixner, Thomas; Manning, Andrew H.; Stonestrom, David A.; Allen, Diana M.; Ajami, Hoori; Blasch, Kyle W.; Brookfield, Andrea E.; Castro, Christopher L.; Clark, Jordan F.; Gochis, David; Flint, Alan L.; Neff, Kirstin L.; Niraula, Rewati; Rodell, Matthew; Scanlon, Bridget R.; Singha, Kamini; Walvoord, Michelle Ann

    2016-01-01

    Existing studies on the impacts of climate change on groundwater recharge are either global or basin/location-specific. The global studies lack the specificity to inform decision making, while the local studies do little to clarify potential changes over large regions (major river basins, states, or groups of states), a scale often important in the development of water policy. An analysis of the potential impact of climate change on groundwater recharge across the western United States (west of 100° longitude) is presented synthesizing existing studies and applying current knowledge of recharge processes and amounts. Eight representative aquifers located across the region were evaluated. For each aquifer published recharge budget components were converted into four standard recharge mechanisms: diffuse, focused, irrigation, and mountain-systems recharge. Future changes in individual recharge mechanisms and total recharge were then estimated for each aquifer. Model-based studies of projected climate-change effects on recharge were available and utilized for half of the aquifers. For the remainder, forecasted changes in temperature and precipitation were logically propagated through each recharge mechanism producing qualitative estimates of direction of changes in recharge only (not magnitude). Several key patterns emerge from the analysis. First, the available estimates indicate average declines of 10–20% in total recharge across the southern aquifers, but with a wide range of uncertainty that includes no change. Second, the northern set of aquifers will likely incur little change to slight increases in total recharge. Third, mountain system recharge is expected to decline across much of the region due to decreased snowpack, with that impact lessening with higher elevation and latitude. Factors contributing the greatest uncertainty in the estimates include: (1) limited studies quantitatively coupling climate projections to recharge estimation methods using

  8. Expanding research capabilities with sea ice climate records for analysis of long-term climate change and short-term variability

    Science.gov (United States)

    Scott, D. J.; Meier, W. N.

    2008-12-01

    Recent sea ice analysis is leading to predictions of a sea ice-free summertime in the Arctic within 20 years, or even sooner. Sea ice topics, such as concentration, extent, motion, and age, are predominately studied using satellite data. At the National Snow and Ice Data Center (NSIDC), passive microwave sea ice data sets provide timely assessments of seasonal-scale variability as well as consistent long-term climate data records. Such data sets are crucial to understanding changes and assessing their impacts. Noticeable impacts of changing sea ice conditions on native cultures and wildlife in the Arctic region are now being documented. With continued deterioration in Arctic sea ice, global economic impacts will be seen as new shipping routes open. NSIDC is at the forefront of making climate data records available to address the changes in sea ice and its global impacts. By focusing on integrated data sets, NSIDC leads the way by broadening the studies of sea ice beyond the traditional cryospheric community.

  9. Climatic impact of aircraft induced ozone changes

    Energy Technology Data Exchange (ETDEWEB)

    Sausen, R; Feneberg, B; Ponater, M [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1998-12-31

    The effect of aircraft induced ozone changes on the global climate is studied by means of the general circulation model ECHAM4. The zonal mean temperature signal is considered. In order to estimate the statistical significance of the climatic impact a multivariate statistical test hierarchy combined with the fingerprint method has been applied. Sensitivity experiments show a significant coherent temperature response pattern in the northern extra-tropics for mid-latitude summer conditions. It consists of a tropospheric warming of about 0.2 K with a corresponding stratospheric cooling of the same magnitude. (author) 16 refs.

  10. Climatic impact of aircraft induced ozone changes

    Energy Technology Data Exchange (ETDEWEB)

    Sausen, R.; Feneberg, B.; Ponater, M. [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    The effect of aircraft induced ozone changes on the global climate is studied by means of the general circulation model ECHAM4. The zonal mean temperature signal is considered. In order to estimate the statistical significance of the climatic impact a multivariate statistical test hierarchy combined with the fingerprint method has been applied. Sensitivity experiments show a significant coherent temperature response pattern in the northern extra-tropics for mid-latitude summer conditions. It consists of a tropospheric warming of about 0.2 K with a corresponding stratospheric cooling of the same magnitude. (author) 16 refs.

  11. Climate Change Effects on Agriculture: Economic Responses to Biophysical Shocks

    Science.gov (United States)

    Nelson, Gerald C.; Valin, Hugo; Sands, Ronald D.; Havlik, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina

    2014-01-01

    Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change's representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(sup 2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

  12. Uncertainty of simulated groundwater levels arising from stochastic transient climate change scenarios

    Science.gov (United States)

    Goderniaux, Pascal; Brouyère, Serge; Blenkinsop, Stephen; Burton, Aidan; Fowler, Hayley; Dassargues, Alain

    2010-05-01

    The evaluation of climate change impact on groundwater reserves represents a difficult task because both hydrological and climatic processes are complex and difficult to model. In this study, we present an innovative methodology that combines the use of integrated surface - subsurface hydrological models with advanced stochastic transient climate change scenarios. This methodology is applied to the Geer basin (480 km²) in Belgium, which is intensively exploited to supply the city of Liège (Belgium) with drinking water. The physically-based, spatially-distributed, surface-subsurface flow model has been developed with the finite element model HydroGeoSphere . The simultaneous solution of surface and subsurface flow equations in HydroGeoSphere, as well as the internal calculation of the actual evapotranspiration as a function of the soil moisture at each node of the evaporative zone, enables a better representation of interconnected processes in all domains of the catchment (fully saturated zone, partially saturated zone, surface). Additionally, the use of both surface and subsurface observed data to calibrate the model better constrains the calibration of the different water balance terms. Crucially, in the context of climate change impacts on groundwater resources, the evaluation of groundwater recharge is improved. . This surface-subsurface flow model is combined with advanced climate change scenarios for the Geer basin. Climate change simulations were obtained from six regional climate model (RCM) scenarios assuming the SRES A2 greenhouse gases emission (medium-high) scenario. These RCM scenarios were statistically downscaled using a transient stochastic weather generator technique, combining 'RainSim' and the 'CRU weather generator' for temperature and evapotranspiration time series. This downscaling technique exhibits three advantages compared with the 'delta change' method usually used in groundwater impact studies. (1) Corrections to climate model output are

  13. Forests, fire, floods and fish: nonlinear biophysical responses to changing climate

    Science.gov (United States)

    Pierce, J. L.; Baxter, C.; Yager, E. M.; Fremier, A. K.; Crosby, B. T.; Smith, A. M.; Kennedy, B.; Hicke, J. A.; Feris, K.

    2009-12-01

    One goal of interdisciplinarity is to develop a more holistic understanding of a set of interlinked, complex system processes. Studies rarely couple both a mechanistic understanding of individual processes with their coupled influence on the entire system structure, yet the prospects for climate driven changes in western river systems provide justification for such an effort. We apply such a mechanistic and systems approach to understanding the effects of climate on fire frequency, plant-soil infiltration, sediment transport and stream community and ecosystem dynamics in a large wilderness setting that is likely to experience shifts in the timing or intensity of physical forces if projected climate change scenarios are realized. The Middle Fork Salmon River in central Idaho runs through the Frank Church Wilderness area and is the largest roadless area in the conterminous United States. The relatively southern continental position, complex mountain terrain and wealth of long-term landscape and ecological data in this region make it a tractable system to study the multifaceted and potentially non-linear processes of system change. This presents a unique opportunity to study the effects of climate change in the absence of substantial management effects in a system on the cusp of change. This collection of studies investigates the effects of climate-driven changes in hillslope processes on stream geomorphic and ecologic processes. We investigate 1) how wildfire alters the magnitude, timing and size of sediment delivered to stream channels, 2) how climate-driven changes in the proportion of rain vs. snow dominated basins alter stream hydrology, 3) how wildfire and insect disturbances modify aquatic ecosystems through inputs of nutrients and changes to habitat, 4) how paleo-records of drought, fire, and fire-related debris flows compare with recent data, 5) how fire-related inputs of sediment and wood influence the structure and dynamics of aquatic habitats, and their

  14. Vegetation response to climate change : implications for Canada's conservation lands

    International Nuclear Information System (INIS)

    Scott, D.; Lemieux, C.

    2003-01-01

    Studies have shown that Canada's national parks are vulnerable to the impacts of climate change. A wide range of biophysical climate change impacts could affect the integrity of conservation lands in each region of Canada. This report examines the potential impact of climate change on landscape alterations and vegetation distribution in Canada's wide network of conservation lands. It also presents several ways to integrate climate change into existing conservation policy and adaptation strategies. Canada's conservation lands include provincial parks, migratory bird sanctuaries, national wildlife areas and wildlife protected areas. This is the first study to examine biome changes by applying an equilibrium Global Vegetation Model (GVM) to Canada's network of national park systems. Some of the policy and planning challenges posed by changes in landscape level vegetation were also addressed. The report indicates that in terms of potential changes to the biome classification of Canada's national forests, more northern biomes are projected to decrease. These northern biomes include the tundra, taiga and boreal conifer forests. 56 refs., 8 tabs., 6 figs

  15. Climates Past, Present, and Yet-to-Come Shape Climate Change Vulnerabilities.

    Science.gov (United States)

    Nadeau, Christopher P; Urban, Mark C; Bridle, Jon R

    2017-10-01

    Climate change is altering life at multiple scales, from genes to ecosystems. Predicting the vulnerability of populations to climate change is crucial to mitigate negative impacts. We suggest that regional patterns of spatial and temporal climatic variation scaled to the traits of an organism can predict where and why populations are most vulnerable to climate change. Specifically, historical climatic variation affects the sensitivity and response capacity of populations to climate change by shaping traits and the genetic variation in those traits. Present and future climatic variation can affect both climate change exposure and population responses. We provide seven predictions for how climatic variation might affect the vulnerability of populations to climate change and suggest key directions for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Attribution of irreversible loss to anthropogenic climate change

    Science.gov (United States)

    Huggel, Christian; Bresch, David; Hansen, Gerrit; James, Rachel; Mechler, Reinhard; Stone, Dáithí; Wallimann-Helmer, Ivo

    2016-04-01

    The Paris Agreement (2015) under the UNFCCC has anchored loss and damage in a separate article which specifies that understanding and support should be enhanced in areas addressing loss and damage such as early warning, preparedness, insurance and resilience. Irreversible loss is a special category under loss and damage but there is still missing clarity over what irreversible loss actually includes. Many negative impacts of climate change may be handled or mitigated by existing risk management, reduction and absorption approaches. Irreversible loss, however, is thought to be insufficiently addressed by risk management. Therefore, countries potentially or actually affected by irreversible loss are calling for other measures such as compensation, which however is highly contested in international climate policy. In Paris (2015) a decision was adopted that loss and damage as defined in the respective article of the agreement does not involve compensation and liability. Nevertheless, it is likely that some sort of mechanism will eventually need to come into play for irreversible loss due to anthropogenic climate change, which might involve compensation, other forms of non-monetary reparation, or transformation. Furthermore, climate litigation has increasingly been attempted to address negative effects of climate change. In this context, attribution is important to understand the drivers of change, what counts as irreversible loss due to climate change, and, possibly, who or what is responsible. Here we approach this issue by applying a detection and attribution perspective on irreversible loss. We first analyze detected climate change impacts as assessed in the IPCC Fifth Assessment Report. We distinguish between irreversible loss in physical, biological and human systems, and accordingly identify the following candidates of irreversible loss in these systems: loss of glaciers and ice sheets, loss of subsurface ice (permafrost) and related loss of lake systems; loss

  17. Mainstreaming of Climate Change into the Ghanaian Tertiary Educational System

    Science.gov (United States)

    Nyarko, B. K.

    2013-12-01

    The impact of Climate Change has a far-reaching implication for economies and people living in the fragile Regions of Africa analysts project that by 2020, between 75 million and 250 million people will be exposed various forms of Climate Change Stresses. Education as a key strategy identified under Agenda 21 has been incorporated into the efforts of various educational institutions as a means of mitigating climate change and enhancing sustainability. Climate Change education offers many opportunities and benefits for educators, researchers, learners, and for wider society, but there are also many challenges, which can hinder the successful mainstreaming of climate change education. The study aims at understanding barriers for Climate Change Education in selected tertiary institutions in Ghana. The study was conducted among Geoscience Departments of the 7 main public universities of Ghana. The transcript analysis identified issues that hinders the mainstreaming of Climate Change, these includes existing levels of knowledge and understanding of the concept of climate change, appreciating the threshold concepts, ineffective teaching of Climate Change and some Departments are slow in embracing Climate Change as a discipline. Hence to develop strategies to mainstream climate change education it is important to recognise that increasing the efficiency and delivery of Climate Change education requires greater attention and coordination of activities and updating the educators knowledge and skill's. Various Ministries should be challenged to develop and integrate climate change into education policies. In the design of curriculum, there is a need to integrate Climate Change Education into curricula without compromising already overstretched programmes of study. There is a need to encourage and enhance innovative teaching approaches such as Problem-based learning (PBL) is an approach that challenges students to learn through engagement in a real problem. Institutions and

  18. The Inuit and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Fenge, T.

    2001-12-31

    Marked climate change has been forecast for regions in high latitudes by global climate models presented by the Intergovernmental Panel on Climate Change. Observations and reports of significant alterations to the natural environment of Canada's north have been reported by Inuit and other indigenous peoples using their traditional ecological knowledge as a reference. Global climate change appears to be the cause for the changes noted. Many aspects of climate change need to be addressed, such as research, outreach, impacts, adaptations and international negotiations. Based on the strong partnership that had been developed between the Inuit and four federal agencies, three territorial governments and four indigenous people's organizations in support of the Northern Contaminants Program, Inuit are now seeking a partnership with the federal government to address the issues mentioned above concerning climate change. refs., 1 tab.

  19. Adapting to climate change

    DEFF Research Database (Denmark)

    Arndt, Channing; Strzepek, Kenneth; Tarp, Finn

    2011-01-01

    Mozambique, like many African countries, is already highly susceptible to climate variability and extreme weather events. Climate change threatens to heighten this vulnerability. In order to evaluate potential impacts and adaptation options for Mozambique, we develop an integrated modeling...... framework that translates atmospheric changes from general circulation model projections into biophysical outcomes via detailed hydrologic, crop, hydropower and infrastructure models. These sector models simulate a historical baseline and four extreme climate change scenarios. Sector results are then passed...... down to a dynamic computable general equilibrium model, which is used to estimate economy-wide impacts on national welfare, as well as the total cost of damages caused by climate change. Potential damages without changes in policy are significant; our discounted estimates range from US2.3 to US2.3toUS7...

  20. Assessing risks and uncertainties in forest dynamics under different management scenarios and climate change

    Directory of Open Access Journals (Sweden)

    Matthias Albert

    2015-05-01

    Full Text Available Background Forest management faces a climate induced shift in growth potential and increasing current and emerging new risks. Vulnerability analysis provides decision support based on projections of natural resources taking risks and uncertainties into account. In this paper we (1 characterize differences in forest dynamics under three management scenarios, (2 analyse the effects of the three scenarios on two risk factors, windthrow and drought stress, and (3 quantify the effects and the amount of uncertainty arising from climate projections on height increment and drought stress. Methods In four regions in northern Germany, we apply three contrasting management scenarios and project forest development under climate change until 2070. Three climate runs (minimum, median, maximum based on the emission scenario RCP 8.5 control the site-sensitive forest growth functions. The minimum and maximum climate run define the range of prospective climate development. Results The projections of different management regimes until 2070 show the diverging medium-term effects of thinnings and harvests and long-term effects of species conversion on a regional scale. Examples of windthrow vulnerability and drought stress reveal how adaptation measures depend on the applied management path and the decision-maker’s risk attitude. Uncertainty analysis shows the increasing variability of drought risk projections with time. The effect of climate projections on height growth are quantified and uncertainty analysis reveals that height growth of young trees is dominated by the age-trend whereas the climate signal in height increment of older trees is decisive. Conclusions Drought risk is a serious issue in the eastern regions independent of the applied silvicultural scenario, but adaptation measures are limited as the proportion of the most drought tolerant species Scots pine is already high. Windthrow risk is no serious overall threat in any region, but adequate

  1. A New Time-varying Concept of Risk in a Changing Climate

    Science.gov (United States)

    Sarhadi, Ali; Ausín, María Concepción; Wiper, Michael P.

    2016-10-01

    In a changing climate arising from anthropogenic global warming, the nature of extreme climatic events is changing over time. Existing analytical stationary-based risk methods, however, assume multi-dimensional extreme climate phenomena will not significantly vary over time. To strengthen the reliability of infrastructure designs and the management of water systems in the changing environment, multidimensional stationary risk studies should be replaced with a new adaptive perspective. The results of a comparison indicate that current multi-dimensional stationary risk frameworks are no longer applicable to projecting the changing behaviour of multi-dimensional extreme climate processes. Using static stationary-based multivariate risk methods may lead to undesirable consequences in designing water system infrastructures. The static stationary concept should be replaced with a flexible multi-dimensional time-varying risk framework. The present study introduces a new multi-dimensional time-varying risk concept to be incorporated in updating infrastructure design strategies under changing environments arising from human-induced climate change. The proposed generalized time-varying risk concept can be applied for all stochastic multi-dimensional systems that are under the influence of changing environments.

  2. A New Time-varying Concept of Risk in a Changing Climate.

    Science.gov (United States)

    Sarhadi, Ali; Ausín, María Concepción; Wiper, Michael P

    2016-10-20

    In a changing climate arising from anthropogenic global warming, the nature of extreme climatic events is changing over time. Existing analytical stationary-based risk methods, however, assume multi-dimensional extreme climate phenomena will not significantly vary over time. To strengthen the reliability of infrastructure designs and the management of water systems in the changing environment, multidimensional stationary risk studies should be replaced with a new adaptive perspective. The results of a comparison indicate that current multi-dimensional stationary risk frameworks are no longer applicable to projecting the changing behaviour of multi-dimensional extreme climate processes. Using static stationary-based multivariate risk methods may lead to undesirable consequences in designing water system infrastructures. The static stationary concept should be replaced with a flexible multi-dimensional time-varying risk framework. The present study introduces a new multi-dimensional time-varying risk concept to be incorporated in updating infrastructure design strategies under changing environments arising from human-induced climate change. The proposed generalized time-varying risk concept can be applied for all stochastic multi-dimensional systems that are under the influence of changing environments.

  3. Mountain Rivers and Climate Change: Analysis of hazardous events in torrents of small alpine watersheds

    Science.gov (United States)

    Lutzmann, Silke; Sass, Oliver

    2016-04-01

    events dating back several decades is analysed. Precipitation thresholds varying in space and time are established using highly resolved INCA data of the Austrian weather service. Parameters possibly controlling the basic susceptibility of catchments are evaluated in a regional GIS analysis (vegetation, geology, topography, stream network, proxies for sediment availability). Similarity measures are then used to group catchments into sensitivity classes. Applying different climate scenarios, the spatiotemporal distribution of catchments sensitive towards heavier and more frequent precipitation can be determined giving valuable advice for planning and managing mountain protection zones.

  4. Climate change impact on river flows in Chitral watershed

    International Nuclear Information System (INIS)

    Shakir, A.S.; Rehman, H.U.; Ehsan, S.

    2010-01-01

    The impact of climate change has always been very important for water resources in the world. In countries like Pakistan where different weather conditions exist, the effects of climate change can be more crucial. Generally, the climate changes are considered in terms of global warming i.e. increase in the average temperature of earth's near surface air. The global warming can have a strong impact on river flows in Pakistan. This may be due to the melting of snow and glaciers at a higher rate and changes in precipitation patterns. Glaciers in Pakistan cover about 13,680 km/sup 2/, which is 13% of the mountainous regions of the Upper Indus Basin. Glacier and Snow melt water from these glaciers contributes significantly to the river flows in Pakistan. Due to climate change, the changes in temperature and the amount of precipitation could have diversified effects on river flows of arid and semi-arid regions of Pakistan. This paper reviews the existing research studies on climate change impact on water resources of Pakistan. The past trend of river flows in Pakistan has been discussed with respect to the available data. Further, different projections about future climate changes in terms of glacier melting and changes in temperature and precipitation have also been taken into consideration in order to qualitatively assess the future trend of river flows in Pakistan. As a case study, the flows were generated for the Chitral watershed using UBC Watershed Model. Model was calibrated for the year 2002, which is an average flow year. Model results show good agreement between simulated and observed flows. UBC watershed model was applied to a climate change scenario of 1 deg. C increase in temperature and 15% decrease in glaciated area. Results of the study reveal that the flows were decreased by about 4.2 %. (author)

  5. Managing Climate Change Risks

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R. [CSIRO Atmospheric Research, PMB1 Aspendale, Victoria 3195 (Australia)

    2003-07-01

    Issues of uncertainty, scale and delay between action and response mean that 'dangerous' climate change is best managed within a risk assessment framework that evolves as new information is gathered. Risk can be broadly defined as the combination of likelihood and consequence; the latter measured as vulnerability to greenhouse-induced climate change. The most robust way to assess climate change damages in a probabilistic framework is as the likelihood of critical threshold exceedance. Because vulnerability is dominated by local factors, global vulnerability is the aggregation of many local impacts being forced beyond their coping ranges. Several case studies, generic sea level rise and temperature, coral bleaching on the Great Barrier Reef and water supply in an Australian catchment, are used to show how local risk assessments can be assessed then expressed as a function of global warming. Impacts treated thus can be aggregated to assess global risks consistent with Article 2 of the UNFCCC. A 'proof of concept' example is then used to show how the stabilisation of greenhouse gases can constrain the likelihood of exceeding critical thresholds at both the both local and global scale. This analysis suggests that even if the costs of reducing greenhouse gas emissions and the benefits of avoiding climate damages can be estimated, the likelihood of being able to meet a cost-benefit target is limited by both physical and socio-economic uncertainties. In terms of managing climate change risks, adaptation will be most effective at reducing vulnerability likely to occur at low levels of warming. Successive efforts to mitigate greenhouse gases will reduce the likelihood of reaching levels of global warming from the top down, with the highest potential temperatures being avoided first, irrespective of contributing scientific uncertainties. This implies that the first cuts in emissions will always produce the largest economic benefits in terms of avoided

  6. Crop yield response to climate change varies with cropping intensity.

    Science.gov (United States)

    Challinor, Andrew J; Parkes, Ben; Ramirez-Villegas, Julian

    2015-04-01

    Projections of the response of crop yield to climate change at different spatial scales are known to vary. However, understanding of the causes of systematic differences across scale is limited. Here, we hypothesize that heterogeneous cropping intensity is one source of scale dependency. Analysis of observed global data and regional crop modelling demonstrate that areas of high vs. low cropping intensity can have systematically different yields, in both observations and simulations. Analysis of global crop data suggests that heterogeneity in cropping intensity is a likely source of scale dependency for a number of crops across the globe. Further crop modelling and a meta-analysis of projected tropical maize yields are used to assess the implications for climate change assessments. The results show that scale dependency is a potential source of systematic bias. We conclude that spatially comprehensive assessments of climate impacts based on yield alone, without accounting for cropping intensity, are prone to systematic overestimation of climate impacts. The findings therefore suggest a need for greater attention to crop suitability and land use change when assessing the impacts of climate change. © 2015 John Wiley & Sons Ltd.

  7. Applied behavior analysis: understanding and changing behavior in the community-a representative review.

    Science.gov (United States)

    Luyben, Paul D

    2009-01-01

    Applied behavior analysis, a psychological discipline, has been characterized as the science of behavior change (Chance, 2006). Research in applied behavior analysis has been published for approximately 40 years since the initial publication of the Journal of Applied Behavior Analysis in 1968. The field now encompasses a wide range of human behavior. Although much of the published research centers on problem behaviors that occur in schools and among people with disabilities, a substantial body of knowledge has emerged in community settings. This article provides a review of the behavioral community research published in the Journal of Applied Behavior Analysis as representative of this work, including research in the areas of home and family, health, safety, community involvement and the environment, recreation and sports, crime and delinquency, and organizations. In the interest of space, research in schools and with people with disabilities has been excluded from this review.

  8. Climate change research - Danish contributions

    International Nuclear Information System (INIS)

    Joergensen, A.M.K.; Fenger, J.; Halsnaes, K.

    2001-01-01

    The book describes a series of Danish scientific and technical studies. They broadly reflect the fields and disciplines embraced by assessments of the Intergovernmental Panel on Climate Change (IPCC), but with an emphasis on natural sciences (i.e. climate investigations and impact studies). After the general introduction, that presents the issue and gives a summary of the content of the book, the chapters are organised in four parts: 1. The Climate System and Climate Variations. 2. Climate Change Scenarios. 3. Impacts of Climate Change. 4. Policy Aspects. Each chapter is indexed separately. (LN)

  9. Impact of Climate Change on Water Resources in Taiwan

    OpenAIRE

    An-Yuan Tsai Wen-Cheng Huang

    2011-01-01

    This paper establishes a comprehensive assessment model to measure the regional impact of climate change on Taiwan¡¦s water resources. Working from future rainfall data simulated by Japan¡¦s high-resolution GCM model JMA/MRI TL959L60 in a SRES-A1B scenario, we first apply climate change to an assessment model of renewable water resources to estimate the volume of renewable water resources on a regional basis. We then conduct a water resources system simulation based on estimates of future wat...

  10. Climate engineering research : A precautionary response to climate change?

    NARCIS (Netherlands)

    Reynolds, J.L.; Fleurke, F.M.

    2013-01-01

    In the face of dire forecasts for anthropogenic climate change, climate engineering is increasingly discussed as a possible additional set of responses to reduce climate change’s threat. These proposals have been controversial, in part because they – like climate change itself – pose uncertain risks

  11. Learning to Adapt. Organisational Adaptation to Climate Change Impacts

    International Nuclear Information System (INIS)

    Berkhout, F.; Hertin, J.; Gann, D.M.

    2006-01-01

    Analysis of human adaptation to climate change should be based on realistic models of adaptive behaviour at the level of organisations and individuals. The paper sets out a framework for analysing adaptation to the direct and indirect impacts of climate change in business organisations with new evidence presented from empirical research into adaptation in nine case-study companies. It argues that adaptation to climate change has many similarities with processes of organisational learning. The paper suggests that business organisations face a number of obstacles in learning how to adapt to climate change impacts, especially in relation to the weakness and ambiguity of signals about climate change and the uncertainty about benefits flowing from adaptation measures. Organisations rarely adapt 'autonomously', since their adaptive behaviour is influenced by policy and market conditions, and draws on resources external to the organisation. The paper identifies four adaptation strategies that pattern organisational adaptive behaviour

  12. Impact of climate change estimated through statistical downscaling on crop productivity and soil water balance in Southern Italy

    Science.gov (United States)

    Ventrella, D.; Giglio, L.; Charfeddine, M.; Palatella, L.; Pizzigalli, C.; Vitale, D.; Paradisi, P.; Miglietta, M. M.; Rana, G.

    2010-09-01

    The climatic change induced by the global warming is expected to modify the agricultural activity and consequently the other social and economical sectors. In this context, an efficient management of the water resources is considered very important for Italy and in particular for Southern areas characterized by a typical Mediterranean climate in order to improve the economical and environmental sustainability of the agricultural activity. Climate warming could have a substantial impact on some agronomical practices as the choice of the crops to be included in the rotations, the sowing time and the irrigation scheduling. For a particular zone, the impact of climatic change on agricultural activity will depend also on the continuum "soil-plant-climate" and this continuum has to be included in the analysis for forecasting purposes. The Project CLIMESCO is structured in four workpackages (WP): (1) Identification of homogeneous areas, (2) Climatic change, (3) Optimization of water resources and (4) Scenarios analysis. In this study we applied a statistical downscaling method, Canonical Correlation Analysis after Principal Component Analysis filtering, to two sub-regions of agricultural interest in Sicily and Apulia (respectively, Delia basin and Capitanata). We adopt, as large scale predictors, the sea level pressure from the the EMULATE project dataset and the 1000 hPa temperature obtained from the NCEP reanalyses, while the predictands are monthly time series of maximum and minimum temperature and precipitation. As the crop growth models need daily datasets, a stochastic weather generator (the LARS-WG model) has been applied for this purpose. LARS-WG needs a preliminary calibration with daily time series of meteorological fields, that are available in the framework of CLIMESCO project. Then, the statistical relationships have been applied to two climate change scenarios (SRES A2 and B2), provided by three different GCM's: the Hadley Centre Coupled Model version 3 (Had

  13. Climate change, conflict and health.

    Science.gov (United States)

    Bowles, Devin C; Butler, Colin D; Morisetti, Neil

    2015-10-01

    Future climate change is predicted to diminish essential natural resource availability in many regions and perhaps globally. The resulting scarcity of water, food and livelihoods could lead to increasingly desperate populations that challenge governments, enhancing the risk of intra- and interstate conflict. Defence establishments and some political scientists view climate change as a potential threat to peace. While the medical literature increasingly recognises climate change as a fundamental health risk, the dimension of climate change-associated conflict has so far received little attention, despite its profound health implications. Many analysts link climate change with a heightened risk of conflict via causal pathways which involve diminishing or changing resource availability. Plausible consequences include: increased frequency of civil conflict in developing countries; terrorism, asymmetric warfare, state failure; and major regional conflicts. The medical understanding of these threats is inadequate, given the scale of health implications. The medical and public health communities have often been reluctant to interpret conflict as a health issue. However, at times, medical workers have proven powerful and effective peace advocates, most notably with regard to nuclear disarmament. The public is more motivated to mitigate climate change when it is framed as a health issue. Improved medical understanding of the association between climate change and conflict could strengthen mitigation efforts and increase cooperation to cope with the climate change that is now inevitable. © The Royal Society of Medicine.

  14. Analysis of regional natural flow for evaluation of flood risk according to RCP climate change scenarios

    Science.gov (United States)

    Lee, J. Y.; Chae, B. S.; Wi, S.; KIm, T. W.

    2017-12-01

    Various climate change scenarios expect the rainfall in South Korea to increase by 3-10% in the future. The future increased rainfall has significant effect on the frequency of flood in future as well. This study analyzed the probability of future flood to investigate the stability of existing and new installed hydraulic structures and the possibility of increasing flood damage in mid-sized watersheds in South Korea. To achieve this goal, we first clarified the relationship between flood quantiles acquired from the flood-frequency analysis (FFA) and design rainfall-runoff analysis (DRRA) in gauged watersheds. Then, after synthetically generating the regional natural flow data according to RCP climate change scenarios, we developed mathematical formulas to estimate future flood quantiles based on the regression between DRRA and FFA incorporated with regional natural flows in unguaged watersheds. Finally, we developed a flood risk map to investigate the change of flood risk in terms of the return period for the past, present, and future. The results identified that the future flood quantiles and risks would increase in accordance with the RCP climate change scenarios. Because the regional flood risk was identified to increase in future comparing with the present status, comprehensive flood control will be needed to cope with extreme floods in future.

  15. Costs of climate change: Economic value of Yakima River salmon

    International Nuclear Information System (INIS)

    Anderson, D.M.; Shankle, S.A.; Scott, M.J.; Neitzel, D.A.; Chatters, J.C.

    1992-07-01

    This work resulted from a continuing multidisciplinary analysis of species preservation and global change. The paper explores the economic cost of a potential regional warming as it affects one Pacific Northwest natural resource, the spring chinook salmon (Oncorhynchus tshcawytscha). Climate change and planned habitat improvements impact the production and economic value of soling chinook salmon of the Yakima River tributary of the Columbia River in eastern Washington. The paper presents a derivation of the total economic value of a chinook salmon, which includes the summation of the existence, commercial, recreational, and capital values of the fish. When currently available commercial, recreational, existence, and capital values for chinook salmon were applied to estimated population changes, the estimated change in the economic value per fish associated with reduction of one fish run proved significant

  16. The impact of climate change on the BRICS economies: The case of insurance demand.

    Science.gov (United States)

    Ranger, N.; Surminski, S.

    2012-04-01

    Session ERE5.1 Climate change impact on economical and industrial activities The impact of climate change on the BRICS economies: The case of insurance demand. Over the past decade, growth in the BRICS (Brazil, Russia, India, China and South Africa) economies has been a key driver of global economic growth. Current forecasts suggest that these markets will continue to be areas of significant growth for a large number of industries. We consider how climate change may influence these trends in the period to 2030, a time horizon that is long in terms of strategic planning in industry, but relatively short for climate change analysis, where the impacts are predicted to be most significant beyond around 2050. Based on current evidence, we expect climate change to affect the BRICS economies in four main ways: 1. The impact of physical climatic changes on the productivity of climate-sensitive economic activity, the local environment, human health and wellbeing, and damages from extreme weather. 2. Changing patterns of investment in climate risk management and adaptation 3. Changing patterns of investments in areas affected by greenhouse gas (GHG) mitigation policy, 4. The impacts of the above globally, including on international trade, growth, investment, policy, migration and commodity prices, and their impacts on the BRICS. We review the evidence on the impacts of climate change in the BRICS and then apply this to one particular industry sector: non-life insurance. We propose five potential pathways through which climate change could influence insurance demand: economic growth; willingness to pay for insurance; public policy and regulation; the insurability of natural catastrophe risks; and new opportunities associated with adaptation and greenhouse gas mitigation. We conclude that, with the exception of public policy and regulation, the influence of climate change on insurance demand to 2030 is likely to be small when compared with the expected growth due to rising

  17. DESYCO: a Decision Support System to provide climate services for coastal stakeholders dealing with climate change impacts.

    Science.gov (United States)

    Torresan, S.; Gallina, V.; Giannini, V.; Rizzi, J.; Zabeo, A.; Critto, A.; Marcomini, A.

    2012-04-01

    At the international level climate services are recognized as innovative tools aimed at providing and distributing climate data and information according to the needs of end-users. Furthermore, needs-based climate services are extremely effective to manage climate risks and take advantage of the opportunities associated with climate change impacts. To date, climate services are mainly related to climate models that supply climate data (e.g. temperature, precipitations) at different spatial and time scales. However, there is a significant gap of tools aimed at providing information about risks and impacts induced by climate change and allowing non-expert stakeholders to use both climate-model and climate-impact data. DESYCO is a GIS-Decision Support System aimed at the integrated assessment of multiple climate change impacts on vulnerable coastal systems (e.g. beaches, river deltas, estuaries and lagoons, wetlands, agricultural and urban areas). It is an open source software that manages different input data (e.g. raster or shapefiles) coming from climate models (e.g. global and regional climate projections) and high resolution impact models (e.g. hydrodynamic, hydrological and biogeochemical simulations) in order to provide hazard, exposure, susceptibility, risk and damage maps for the identification and prioritization of hot-spot areas and to provide a basis for the definition of coastal adaptation and management strategies. Within the CLIM-RUN project (FP7) DESYCO is proposed as an helpful tool to bridge the gap between climate data and stakeholder needs and will be applied to the coastal area of the North Adriatic Sea (Italy) in order to provide climate services for local authorities involved in coastal zone management. Accordingly, a first workshop was held in Venice (Italy) with coastal authorities, climate experts and climate change risk experts, in order to start an iterative exchange of information about the knowledge related to climate change, climate

  18. An analysis of factors that lead to better learning in an integrated and interdisciplinary course on climate change

    Science.gov (United States)

    Reed, D. E.; Lyford, M.; Schmidt, L. O.; Bowles-Terry, M.

    2012-12-01

    and we will apply a non-quantitative analysis to determine which section of the student body had difficulties and why. This work will show other higher education instructors both the methodology and results from this study of the interdisciplinary course on climate change. While this work is limited in only focusing on one introductory course, the large number of students and the diversity of those students allow for a study of which factors in the course are best for student learning.

  19. Textbooks of Doubt: Using Systemic Functional Analysis to Explore the Framing of Climate Change in Middle-School Science Textbooks

    Science.gov (United States)

    Román, Diego; Busch, K. C.

    2016-01-01

    Middle school students are learning about climate change in large part through textbooks used in their classes. Therefore, it is crucial to understand how the language employed in these materials frames this topic. To this end, we used systemic functional analysis to study the language of the chapters related to climate change in four sixth grade…

  20. Forestry Canada's perspectives on climate change

    International Nuclear Information System (INIS)

    Hall, J.P.; Carlson, L.W.

    1990-01-01

    The impacts of climatic change on Canada's forestry sector are discussed, in the context of major research priorities relating to forecasting climate, forecasting forest responses, monitoring changes, mitigating effects, and understanding the forest carbon balance. There are five major concerns that affect policy decisions: effects of climatic change on forests; adaptation to climate change; impacts of changing crops on forestry; changing forestry values in changing sociological settings; and international implications of the changing climate. A scientific program to respond to climate change issues is required, and should include the following concentrations of research effort. Planning requires projections of likely future climates, and efforts should concern relations between pre-historic climates and forest ecosystems and integrating data into predictive models. Forecasting of response of forests should include tree physiology, factors controlling reforestation, variations in forest trees, effects of pollutants, damage to forests, and forest decline

  1. Perception-based analysis of climate change effect on forest-based livelihood: The case of Vhembe District in South Africa

    Directory of Open Access Journals (Sweden)

    Chidiebere Ofoegbu

    2016-07-01

    Full Text Available Forests are vulnerable to climate change and are also major sources of livelihood for many rural households in Africa. This study examines rural people’s perceptions of climate change impacts on forest-based livelihoods using rural communities of Vhembe District in South Africa as a case study. The study was based on the principles of perceived impact-based assessment, and sustainable livelihoods framework. Using the stratified proportionate random sampling procedure in combination with weighted Enumeration Area for the selected communities, 366 households were chosen and interviewed. Data analysis involved computing frequencies and conducting the Chi-square, binomial tests and binary logistic regression analysis. The respondents identified erratic rainfall, extreme temperature, extreme drought and flooding as key climatic events in their community. But not all identified key climatic events were perceived to constitute risk to forest products and forest-based livelihood. Only extreme drought was indicated to constitute risk to availability of forest products. In addition, the binary logistic regression showed a significant difference (p < 0.05 in the perceived risk of climate change to the availability of essential forest products across the three municipalities. Hence the need for forest development initiatives that target vulnerable forest products per community as a means of enhancing resilience of forest-based livelihood to climate change impacts in rural community development in South Africa.

  2. Directionality of recent bird distribution shifts and climate change in Great Britain.

    Science.gov (United States)

    Gillings, Simon; Balmer, Dawn E; Fuller, Robert J

    2015-06-01

    There is good evidence that species' distributions are shifting poleward in response to climate change and wide interest in the magnitude of such responses for scientific and conservation purposes. It has been suggested from the directions of climatic changes that species' distribution shifts may not be simply poleward, but this has been rarely tested with observed data. Here, we apply a novel approach to measuring range shifts on axes ranging through 360°, to recent data on the distributions of 122 species of British breeding birds during 1988-1991 and 2008-2011. Although previously documented poleward range shifts have continued, with an average 13.5 km shift northward, our analysis indicates this is an underestimate because it ignores common and larger shifts that occurred along axes oriented to the north-west and north-east. Trailing edges contracted from a broad range of southerly directions. Importantly, these results are derived from systematically collected data so confounding observer-effort biases can be discounted. Analyses of climate for the same period show that whilst temperature trends should drive species along a north-north-westerly trajectory, directional responses to precipitation will depend on both the time of year that is important for determining a species' distribution, and the location of the range margin. Directions of species' range centroid shift were not correlated with spatial trends in any single climate variable. We conclude that range shifts of British birds are multidirectional, individualistic and probably determined by species-specific interactions of multiple climate factors. Climate change is predicted to lead to changes in community composition through variation in the rates that species' ranges shift; our results suggest communities could change further owing to constituent species shifting along different trajectories. We recommend more studies consider directionality in climate and range dynamics to produce more

  3. Climate change vulnerability to agrarian ecosystem of small Island: evidence from Sagar Island, India

    Science.gov (United States)

    Mandal, S.; Satpati, L. N.; Choudhury, B. U.; Sadhu, S.

    2018-04-01

    The present study assessed climate change vulnerability in agricultural sector of low-lying Sagar Island of Bay of Bengal. Vulnerability indices were estimated using spatially aggregated biophysical and socio-economic parameters by applying principal component analysis and equal weight method. The similarities and differences of outputs of these two methods were analysed across the island. From the integration of outputs and based on the severity of vulnerability, explicit vulnerable zones were demarcated spatially. Results revealed that life subsistence agriculture in 11.8% geographical area (2829 ha) of the island along the western coast falls under very high vulnerable zone (VHVZ VI of 84-99%) to climate change. Comparatively higher values of exposure (0.53 ± 0.26) and sensitivity (0.78 ± 0.14) subindices affirmed that the VHV zone is highly exposed to climate stressor with very low adaptive capacity (ADI= 0.24 ± 0.16) to combat vulnerability to climate change. Hence, food security for a population of >22 thousands comprising >3.7 thousand agrarian households are highly exposed to climate change. Another 17% area comprising 17.5% population covering 20% villages in north-western and eastern parts of the island also falls under high vulnerable (VI= 61%-77%) zone. Findings revealed large spatial heterogeneity in the degree of vulnerability across the island and thus, demands devising area specific planning (adaptation and mitigation strategies) to address the climate change impact implications both at macro and micro levels.

  4. "Intelligent Ensemble" Projections of Precipitation and Surface Radiation in Support of Agricultural Climate Change Adaptation

    Science.gov (United States)

    Taylor, Patrick C.; Baker, Noel C.

    2015-01-01

    Earth's climate is changing and will continue to change into the foreseeable future. Expected changes in the climatological distribution of precipitation, surface temperature, and surface solar radiation will significantly impact agriculture. Adaptation strategies are, therefore, required to reduce the agricultural impacts of climate change. Climate change projections of precipitation, surface temperature, and surface solar radiation distributions are necessary input for adaption planning studies. These projections are conventionally constructed from an ensemble of climate model simulations (e.g., the Coupled Model Intercomparison Project 5 (CMIP5)) as an equal weighted average, one model one vote. Each climate model, however, represents the array of climate-relevant physical processes with varying degrees of fidelity influencing the projection of individual climate variables differently. Presented here is a new approach, termed the "Intelligent Ensemble, that constructs climate variable projections by weighting each model according to its ability to represent key physical processes, e.g., precipitation probability distribution. This approach provides added value over the equal weighted average method. Physical process metrics applied in the "Intelligent Ensemble" method are created using a combination of NASA and NOAA satellite and surface-based cloud, radiation, temperature, and precipitation data sets. The "Intelligent Ensemble" method is applied to the RCP4.5 and RCP8.5 anthropogenic climate forcing simulations within the CMIP5 archive to develop a set of climate change scenarios for precipitation, temperature, and surface solar radiation in each USDA Farm Resource Region for use in climate change adaptation studies.

  5. Climate Change Indicators

    Science.gov (United States)

    Presents information, charts and graphs showing measured climate changes across 40 indicators related to greenhouse gases, weather and climate, oceans, snow and ice, heath and society, and ecosystems.

  6. Computing and Systems Applied in Support of Coordinated Energy, Environmental, and Climate Planning

    Science.gov (United States)

    This talk focuses on how Dr. Loughlin is applying Computing and Systems models, tools and methods to more fully understand the linkages among energy systems, environmental quality, and climate change. Dr. Loughlin will highlight recent and ongoing research activities, including: ...

  7. An Addendum to "A New Tool for Climatic Analysis Using Köppen Climate Classification"

    Science.gov (United States)

    Larson, Paul R.; Lohrengel, C. Frederick, II

    2014-01-01

    The Köppen climatic classification system in a modified format is the most widely applied system in use today. Mapping and analysis of hundreds of arid and semiarid climate stations has made the use of the additional fourth letter in BW/BS climates essential. The addition of "s," "w," or "f" to the standard…

  8. Climate change impacts on risks of groundwater pollution by herbicides: a regional scale assessment

    Science.gov (United States)

    Steffens, Karin; Moeys, Julien; Lindström, Bodil; Kreuger, Jenny; Lewan, Elisabet; Jarvis, Nick

    2014-05-01

    Groundwater contributes nearly half of the Swedish drinking water supply, which therefore needs to be protected both under present and future climate conditions. Pesticides are sometimes found in Swedish groundwater in concentrations exceeding the EU-drinking water limit and thus constitute a threat. The aim of this study was to assess the present and future risks of groundwater pollution at the regional scale by currently approved herbicides. We identified representative combinations of major crop types and their specific herbicide usage (product, dose and application timing) based on long-term monitoring data from two agricultural catchments in the South-West of Sweden. All these combinations were simulated with the regional version of the pesticide fate model MACRO (called MACRO-SE) for the periods 1970-1999 and 2070-2099 for a major crop production region in South West Sweden. To represent the uncertainty in future climate data, we applied a five-member ensemble based on different climate model projections downscaled with the RCA3-model (Swedish Meteorological and Hydrological Institute). In addition to the direct impacts of changes in the climate, the risks of herbicide leaching in the future will also be affected by likely changes in weed pressure and land use and management practices (e.g. changes in crop rotations and application timings). To assess the relative importance of such factors we performed a preliminary sensitivity analysis which provided us with a hierarchical structure for constructing future herbicide use scenarios for the regional scale model runs. The regional scale analysis gave average concentrations of herbicides leaching to groundwater for a large number of combinations of soils, crops and compounds. The results showed that future scenarios for herbicide use (more autumn-sown crops, more frequent multiple applications on one crop, and a shift from grassland to arable crops such as maize) imply significantly greater risks of herbicide

  9. Climate change policies analysis of sectoral changes in Europe

    International Nuclear Information System (INIS)

    Barbier, C.; Baron, R.; Colombier, M.; Boemare, C.

    2004-01-01

    This study addresses the following question, at the core of Europe's climate policy: Beyond the question of the European Union's ability to meet its emissions commitments under the Kyoto Protocol, are sectoral emissions trends displaying structural changes deemed necessary to reduce emissions, and to attain levels that are consistent with the UNFCCC greenhouse gas concentration stabilisation objectives? What lessons can we draw from emissions trends for the EU future climate policy? Greenhouse gas emissions have been stable for the last decade, but mostly due to events and policy developments unrelated to climate policy, and unlikely to be reproduced in other countries: Germany's reunification, substitution from coal to gas in the United Kingdom driven by power market reform. We should not expect changes of such magnitude in the near future. The issue of our future climate policy hence requires a closer look at underlying trends. Industry's direct emissions decreased thanks to constant improvements in energy efficiency and to the substitution of electricity to direct fossil fuel use. In spite of efficiency gains in the residential sector, increasing floor space and level of equipment entail growing energy consumption. Smaller-size households are now spreading to Southern European countries and should be expected in new Member states as well. Turning to the tertiary/services sector, we find that value added and floor space grew significantly over the decade - 35% and 32% respectively in the EU-15. There again, energy efficiency improvements do not compensate for growing floor spaces. Transport's growth, especially freight, has been significant in all countries. The highest rates of traffic growth per unit of gross domestic product are in Spain and Portugal, two countries where rail infrastructure is fairly limited. CO 2 emissions from transport grew by 18% in the EU between 1990 and 2000. Power generation's CO 2 emissions have decreased slightly in spite of strong

  10. At a global scale, do climate change threatened species also face a greater number of non-climatic threats?

    Directory of Open Access Journals (Sweden)

    Lucas B. Fortini

    2017-07-01

    Full Text Available For many species the threats of climate change occur in a context of multiple existing threats. Given the current focus of global change ecology in identifying and understanding species vulnerable to climate change, we performed a global analysis to characterize the multi-threat context for species threatened by climate change. Utilizing 30,053 species from the International Union for Conservation of Nature’s (IUCN Red List of Threatened Species, we sought to evaluate if species threatened by climate change are more likely threatened by a greater number of non-climatic threats than species not threatened by climate change. Our results show that species threatened by climate change are generally impacted by 21% more non-climatic threats than species not threatened by climate change. Across all species, this pattern is related to IUCN risk status, where endangered species threatened by climate change face 33% more non-climatic threats than endangered species not threatened by climate change. With the clear challenges of assessing current and projected impacts of climate change on species and ecosystems, research often requires reductionist approaches that result in downplaying this multi-threat context. This cautionary note bears relevance beyond climate change threatened species as we also found other (but not all anthropogenic threats are also similarly associated with more threats. Our findings serve as a reminder that ecological research should seriously consider these potential threat interactions, especially for species under elevated conservation concern.

  11. Validation and quantification of uncertainty in coupled climate models using network analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bracco, Annalisa [Georgia Inst. of Technology, Atlanta, GA (United States)

    2015-08-10

    We developed a fast, robust and scalable methodology to examine, quantify, and visualize climate patterns and their relationships. It is based on a set of notions, algorithms and metrics used in the study of graphs, referred to as complex network analysis. This approach can be applied to explain known climate phenomena in terms of an underlying network structure and to uncover regional and global linkages in the climate system, while comparing general circulation models outputs with observations. The proposed method is based on a two-layer network representation, and is substantially new within the available network methodologies developed for climate studies. At the first layer, gridded climate data are used to identify ‘‘areas’’, i.e., geographical regions that are highly homogeneous in terms of the given climate variable. At the second layer, the identified areas are interconnected with links of varying strength, forming a global climate network. The robustness of the method (i.e. the ability to separate between topological distinct fields, while identifying correctly similarities) has been extensively tested. It has been proved that it provides a reliable, fast framework for comparing and ranking the ability of climate models of reproducing observed climate patterns and their connectivity. We further developed the methodology to account for lags in the connectivity between climate patterns and refined our area identification algorithm to account for autocorrelation in the data. The new methodology based on complex network analysis has been applied to state-of-the-art climate model simulations that participated to the last IPCC (International Panel for Climate Change) assessment to verify their performances, quantify uncertainties, and uncover changes in global linkages between past and future projections. Network properties of modeled sea surface temperature and rainfall over 1956–2005 have been constrained towards observations or reanalysis data sets

  12. Perceptions on climate change and its impact on livelihoods in Hwange district, Zimbabwe

    Directory of Open Access Journals (Sweden)

    Charles Nhemachena

    2014-12-01

    Full Text Available This study investigated perceptions of rural communities on climate change and its impacts on livelihoods. The research was conducted in the semi-arid Hwange district in Matebelel and North province of Zimbabwe. The perceptions were compared with empirical evidence from climatic studies on trends on temperature and rainfall, and impacts on livelihoods in the country and region. The findings from the current study are generally in agreement with those of other studies that indicate changes in the climate, especially in terms of rainfall. This largely applies to short-term periods; however, for long-term periods it is difficult to accurately relate rural community perceptions to changes in rainfall over time. Despite perceived changes and impacts of climate change on local livelihood activities, mainly agriculture, there are multiple stressors that the communities face which also affect their livelihoods. Further evidence-based research is required to disentangle climate change impacts on livelihoods, including livelihood impacts arising from interactions of climate and non-climatic factors.

  13. Our knowledge on climate change

    International Nuclear Information System (INIS)

    Turkenburg, W.C.; Van Wijk, A.J.M.

    1991-01-01

    A workshop was organised to evaluate and discuss the report 'Scientific Assessment of Climate Change (1990)' of the Intergovernmental Panel on Climate Change (IPCC). Thirty prominent Dutch experts in the field attended the workshop. The introductions and discussions held on our knowledge of climatic change as a result of the growth of the greenhouse effect caused by the emission of greenhouse gases from human actions are presented. It is concluded that the IPCC-report shows in a clear and balanced way the certainties and uncertainties in our knowledge of climate change. There is a large chance that the earth's climate will change considerably, if the policy remains unamended. 15 figs., 2 apps

  14. Assessment of achievements of the Lima Climate Change Conference and perspectives on the future

    Directory of Open Access Journals (Sweden)

    Xue-Du Lü

    2014-12-01

    Full Text Available The Lima call for climate action adopted at the Lima Climate Conference on Climate Change specifies that the principles of the United Nations Framework Convention on Climate Change, including the principle of common but differentiated responsibilities, shall apply to the new climate agreement to be adopted at the Paris Conference on Climate Change in 2015. Decisions on other heavily debated items, including the intended nationally determined contributions, were also made at the Lima Conference. The significant achievements in Lima and the positive momentum have laid a solid foundation for the adoption of a new climate agreement in the Paris Climate Conference. Four measures are proposed for China to meet great challenges in addressing climate change beyond 2020, including early formulation and issuance of a climate change law, establishment of a greenhouse gas emission trading scheme, promotion of advanced climate technology investments, and further international engagement for climate change.

  15. Improve Climate Change Literacy At Minority Institutions Through Problem-based Teaching And Learning

    Science.gov (United States)

    yang, Z.; Williams, H.

    2013-12-01

    Climate change is one of most popular topics in the U.S. Currently we are implementing our funded NASA climate change education grant entitled as 'Preparing Science Educators with Climate Change Literacy through Problem-based Teaching and Learning'. This project aims to prepare underrepresented STEM (Science, Technology, Engineering and Mathematics) teachers that are competent for teaching the contents of the Earth, climate, and climate change. In this project, we first developed lectures, assignments, and lab exercises which are related to climate change and then applied those materials in courses which are usually selected by pre-service teachers after modification based on students' evaluation. Also field visits to sites such as landfill and hog farm were provided to North Carolina Central University (NCCU) students in order to help them have better understanding on sources and amount of greenhouse gases emitted from human activities. In addition, summer interns are specifically trained to enhance and improve their knowledge and skills in climate change science. Those strategies have effectively improved climate change literacy of pre-service teachers at NCCU in spite of some challenges.

  16. Climate Change Risks – Methodological Framework and Case Study of Damages from Extreme Events in Cambodia

    DEFF Research Database (Denmark)

    Halsnæs, Kirsten; Kaspersen, Per Skougaard; Trærup, Sara Lærke Meltofte

    2016-01-01

    Climate change imposes some special risks on Least Developed Countries, and the chapter presents a methodological framework, which can be used to assess the impacts of key assumptions related to damage costs, risks and equity implications on current and future generations. The methodological...... framework is applied to a case study of severe storms in Cambodia based on statistical information on past storm events including information about buildings damaged and victims. Despite there is limited data available on the probability of severe storm events under climate change as well on the actual...... damage costs associated with the events in the case of Cambodia, we are using the past storm events as proxy data in a sensitivity analysis. It is here demonstrated how key assumptions on future climate change, income levels of victims, and income distribution over time, reflected in discount rates...

  17. Workshop in economics - the problem of climate change benefit-cost analysis

    International Nuclear Information System (INIS)

    Kosobud, R.F.

    1992-01-01

    Could benefit-cost analysis play a larger role in the discussion of policies to deal with the greenhouse effect? The paper also investigates the causes of this lack of influence. Selected forms of benefit-cost research are probed, particularly the critical discussions raised by this type of research, in an effort to suggest where the chances of greater acceptance lie. The paper begins by discussing the search for an appropriate policy: optimal, targeted, or incremental. It then describes the work being done in specifying and estimating climate change damage relationships. A consideration of the work being done in specifying and estimating abatement (both mitigation and adaptation) cost relationships follows. Finally, the paper ends with an examination of the search for the appropriate policy instrument. International and methodological concerns cut across these areas and are discussed in each section. This paper concludes that there seem to be a number of reasons that benefit-cost results play only a limited role in policy development. There is some evidence that the growing interest in market-based approaches to climate change policy and to other environmental control matters is a sign of increased acceptance. Suggestions about research directions are made throughout this paper

  18. Effects of Simulated Forest Cover Change on Projected Climate Change – a Case Study of Hungary

    Directory of Open Access Journals (Sweden)

    GÁLOS, Borbála

    2011-01-01

    Full Text Available Climatic effects of forest cover change have been investigated for Hungary applying theregional climate model REMO. For the end of the 21st century (2071–2100 case studies have beenanalyzed assuming maximal afforestation (forests covering all vegetated area and completedeforestation (forests replaced by grasslands of the country. For 2021–2025, the climatic influence ofthe potential afforestation based on a detailed national survey has been assessed. The simulationresults indicate that maximal afforestation may reduce the projected climate change through coolerand moister conditions for the entire summer period. The magnitude of the simulated climate changemitigating effect of the forest cover increase differs among regions. The smallest climatic benefit wascalculated in the southwestern region, in the area with the potentially strongest climate change. Thestrongest effects of maximal afforestation are expected in the northeastern part of the country. Here,half of the projected precipitation decrease could be relieved and the probability of summer droughtscould be reduced. The potential afforestation has a very slight feedback on the regional climatecompared to the maximal afforestation scenario.

  19. Brownfield redevelopment as a measure for climate changes mitigation

    Directory of Open Access Journals (Sweden)

    Cizler Jasna

    2013-01-01

    Full Text Available This paper explores brownfield renewal as a measure of sustainable land use. The aim was to highlight the brownfield redevelopment as a strategy for mitigation of negative effects of climate changes. Emphasis was put on innovative concepts in brownfield redevelopment, which involve land recycling, application of ecological and sustainable solutions. Main case studies are from Austria. Their analysis and evaluation show which concepts and strategies are used in successful redevelopment projects, and which strategies give the best results. This shows that brownfield renewal can have positive effects on regulation and mitigation of climate changes. Finally, guidelines for climate changes accountable and redevelopment will be derived. Research methodology is qualitative and combined, comprising of data analysis, case studies (field work, interviews with relevant actors, analysis of case studies and evaluation according to previously defined criteria, synthesis of results and generalisation and interpretation of results.

  20. Accounting for health in climate change policies: a case study of Fiji.

    Science.gov (United States)

    Morrow, Georgina; Bowen, Kathryn

    2014-01-01

    Climate change is expected to affect the health of most populations in the coming decades, having the greatest impact on the poorest and most disadvantaged people in the world. The Pacific islands, including Fiji, are particularly vulnerable to the effects of climate change. The three major health impacts of climate change in Fiji explored in this study were dengue fever, diarrhoeal disease, and malnutrition, as they each pose a significant threat to human health. The aim of this study was to investigate to what extent the Fiji National Climate Change Policy, and a selection of relevant sectoral policies, account for these human health effects of climate change. The study employed a three-pronged policy analysis to evaluate: 1) the content of the Fijian National Climate Change Policy and to what extent health was incorporated within this; 2) the context within which the policy was developed; 3) the relevant processes; and 4) the actors involved. A selection of relevant sectoral policies were also analysed to assess the extent to which these included climate change and health considerations. The policy analysis showed that these three health impacts of climate change were only considered to a minor extent, and often indirectly, in both the Fiji National Climate Change Policy and the corresponding National Climate Change Adaptation Strategy, as well as the Public Health Act. Furthermore, supporting documents in relevant sectors including water and agriculture made no mention of climate change and health impacts. The projected health impacts of climate change should be considered as part of reviewing the Fiji National Climate Change Policy and National Climate Change Adaptation Strategy, and the Public Health Act. In the interest of public health, this should include strategies for combating dengue fever, malnutrition, and water-borne disease. Related sectoral policies in water and agriculture should also be revised to consider climate change and its impact on human