WorldWideScience

Sample records for applications inherent healing

  1. Self-Healing for Mobile Applications

    Directory of Open Access Journals (Sweden)

    Ion Ivan

    2012-06-01

    Full Text Available The reliability and security of a software application are two of the most important software quality characteristics because they describe the ability of the software to run without failures and to protect user data. Mobile applications concur with desktop applications in terms of rich interfaces and functionalities and are becoming one the most used type of software applications. Based on the “anytime, anywhere” paradigm, mobile applications must provide special measures to avoid failures and to preserve a high level of reliability and security because mobile operating systems provide limited or none access to administrative or system tools that will allow a user with an IT background to access temporary or persistent data. A high level of software reliability is directly influenced by a low level of failures. We there-fore describe self-healing as a required quality characteristic for mobile applications and we propose a metric for measuring it. This approach is included in the general context of mobile applications quality and the papers describes types of mobile applications, their development cycle and features that are particular to mobile applications quality.

  2. Chitosan as a starting material for wound healing applications.

    Science.gov (United States)

    Patrulea, V; Ostafe, V; Borchard, G; Jordan, O

    2015-11-01

    Chitosan and its derivatives have attracted great attention due to their properties beneficial for application to wound healing. The main focus of the present review is to summarize studies involving chitosan and its derivatives, especially N,N,N-trimethyl-chitosan (TMC), N,O-carboxymethyl-chitosan (CMC) and O-carboxymethyl-N,N,N-trimethyl-chitosan (CMTMC), used to accelerate wound healing. Moreover, formulation strategies for chitosan and its derivatives, as well as their in vitro, in vivo and clinical applications in wound healing are described. PMID:26614560

  3. Novel self-healing materials chemistries for targeted applications

    Science.gov (United States)

    Wilson, Gerald O.

    Self-healing materials of the type developed by White and co-workers [1] were designed to autonomically heal themselves when damaged, thereby extending the lifetime of various applications in which such material systems are employed. The system was based on urea-formaldehyde microcapsules containing dicyclopentadiene (DCPD) and Grubbs' catalyst particles embedded together in an epoxy matrix. When a crack propagates through the material, it ruptures the microcapsules, releasing DCPD into the crack plane, where it comes in contact and reacts with the catalyst to initiate a ring opening metathesis polymerization (ROMP), bonding the crack and restoring structural continuity. The present work builds on this concept in several ways. Firstly, it expands the scope and versatility of the ROMP self-healing chemistry by incorporation into epoxy vinyl ester matrices. Major technical challenges in this application include protection of the catalyst from deactivation by aggressive curing agents, and optimization of the concentration of healing agents in the matrix. Secondly, new ruthenium catalysts are evaluated for application in ROMP-based self-healing materials. The use of alternative derivatives of Grubbs' catalyst gave rise to self-healing systems with improved healing efficiencies and thermal properties. Evaluation of the stability of these new catalysts to primary amine curing agents used in the curing of common epoxy matrices also led to the discovery and characterization of new ruthenium catalysts which exhibited ROMP initiation kinetics superior to those of first and second generation Grubbs' catalysts. Finally, free radical polymerization was evaluated for application in the development of bio-compatible self-healing materials. [1] White, S. R.; Sottos, N. R.; Geubelle, P. R.; Moore, J. S.; Kessler, M. R.; Sriram, S. R.; Brown, E. N.; Viswanathan, S. Nature 2001, 409, 794.

  4. Chitosan as a starting material for wound healing applications

    OpenAIRE

    Patrulea, Viorica; Ostafe, V.; Borchard, Gerrit; Jordan, Olivier

    2015-01-01

    Chitosan and its derivatives have attracted great attention due to their properties beneficial for application to wound healing. The main focus of the present review is to summarize studies involving chitosan and its derivatives, especially N,N,N-trimethyl-chitosan (TMC), N,O-carboxymethyl-chitosan (CMC) and O-carboxymethyl-N,N,N-trimethyl-chitosan (CMTMC), used to accelerate wound healing. Moreover, formulation strategies for chitosan and its derivatives, as well as their in vitro, in vivo a...

  5. Safety assessment in plant layout design using indexing approach: implementing inherent safety perspective. Part 1 - guideword applicability and method description.

    Science.gov (United States)

    Tugnoli, Alessandro; Khan, Faisal; Amyotte, Paul; Cozzani, Valerio

    2008-12-15

    Layout planning plays a key role in the inherent safety performance of process plants since this design feature controls the possibility of accidental chain-events and the magnitude of possible consequences. A lack of suitable methods to promote the effective implementation of inherent safety in layout design calls for the development of new techniques and methods. In the present paper, a safety assessment approach suitable for layout design in the critical early phase is proposed. The concept of inherent safety is implemented within this safety assessment; the approach is based on an integrated assessment of inherent safety guideword applicability within the constraints typically present in layout design. Application of these guidewords is evaluated along with unit hazards and control devices to quantitatively map the safety performance of different layout options. Moreover, the economic aspects related to safety and inherent safety are evaluated by the method. Specific sub-indices are developed within the integrated safety assessment system to analyze and quantify the hazard related to domino effects. The proposed approach is quick in application, auditable and shares a common framework applicable in other phases of the design lifecycle (e.g. process design). The present work is divided in two parts: Part 1 (current paper) presents the application of inherent safety guidelines in layout design and the index method for safety assessment; Part 2 (accompanying paper) describes the domino hazard sub-index and demonstrates the proposed approach with a case study, thus evidencing the introduction of inherent safety features in layout design. PMID:18406519

  6. Safety assessment in plant layout design using indexing approach: implementing inherent safety perspective. Part 1 - guideword applicability and method description.

    Science.gov (United States)

    Tugnoli, Alessandro; Khan, Faisal; Amyotte, Paul; Cozzani, Valerio

    2008-12-15

    Layout planning plays a key role in the inherent safety performance of process plants since this design feature controls the possibility of accidental chain-events and the magnitude of possible consequences. A lack of suitable methods to promote the effective implementation of inherent safety in layout design calls for the development of new techniques and methods. In the present paper, a safety assessment approach suitable for layout design in the critical early phase is proposed. The concept of inherent safety is implemented within this safety assessment; the approach is based on an integrated assessment of inherent safety guideword applicability within the constraints typically present in layout design. Application of these guidewords is evaluated along with unit hazards and control devices to quantitatively map the safety performance of different layout options. Moreover, the economic aspects related to safety and inherent safety are evaluated by the method. Specific sub-indices are developed within the integrated safety assessment system to analyze and quantify the hazard related to domino effects. The proposed approach is quick in application, auditable and shares a common framework applicable in other phases of the design lifecycle (e.g. process design). The present work is divided in two parts: Part 1 (current paper) presents the application of inherent safety guidelines in layout design and the index method for safety assessment; Part 2 (accompanying paper) describes the domino hazard sub-index and demonstrates the proposed approach with a case study, thus evidencing the introduction of inherent safety features in layout design.

  7. Puncture Self-Healing Polymers for Aerospace Applications

    Science.gov (United States)

    Gordon, Keith L.; Penner, Ronald K.; Bogert, Phil B.; Yost, W. T.; Siochi, Emilie J.

    2011-01-01

    Space exploration launch costs on the order of $10K per pound provide ample incentive to seek innovative, cost-effective ways to reduce structural mass without sacrificing safety and reliability. Damage-tolerant structural systems can provide a route to avoiding weight penalty while enhancing vehicle safety and reliability. Self-healing polymers capable of spontaneous puncture repair show great promise to mitigate potentially catastrophic damage from events such as micrometeoroid penetration. Effective self-repair requires these materials to heal instantaneously following projectile penetration while retaining structural integrity. Poly(ethylene-co-methacrylic acid) (EMMA), also known as Surlyn is an ionomer-based copolymer that undergoes puncture reversal (self-healing) following high impact puncture at high velocities. However EMMA is not a structural engineering polymer, and will not meet the demands of aerospace applications requiring self-healing engineering materials. Current efforts to identify candidate self-healing polymer materials for structural engineering systems are reported. Rheology, high speed thermography, and high speed video for self-healing semi-crystalline and amorphous polymers will be reported.

  8. New Guar Biopolymer Silver Nanocomposites for Wound Healing Applications

    Directory of Open Access Journals (Sweden)

    Runa Ghosh Auddy

    2013-01-01

    Full Text Available Wound healing is an innate physiological response that helps restore cellular and anatomic continuity of a tissue. Selective biodegradable and biocompatible polymer materials have provided useful scaffolds for wound healing and assisted cellular messaging. In the present study, guar gum, a polymeric galactomannan, was intrinsically modified to a new cationic biopolymer guar gum alkylamine (GGAA for wound healing applications. Biologically synthesized silver nanoparticles (Agnp were further impregnated in GGAA for extended evaluations in punch wound models in rodents. SEM studies showed silver nanoparticles well dispersed in the new guar matrix with a particle size of ~18 nm. In wound healing experiments, faster healing and improved cosmetic appearance were observed in the new nanobiomaterial treated group compared to commercially available silver alginate cream. The total protein, DNA, and hydroxyproline contents of the wound tissues were also significantly higher in the treated group as compared with the silver alginate cream (P<0.05. Silver nanoparticles exerted positive effects because of their antimicrobial properties. The nanobiomaterial was observed to promote wound closure by inducing proliferation and migration of the keratinocytes at the wound site. The derivatized guar gum matrix additionally provided a hydrated surface necessary for cell proliferation.

  9. Conceptual design of a passive, inherently safe emergency shutdown rod for high-temperature reactor applications

    International Nuclear Information System (INIS)

    The concept of a passive, inherently safe, and fail-safe design for an emergency control rod is presented. The functioning of the rod is based solely on inexorable physical laws. The operation of the rod in its emergency function does not require the intervention of a human operator, nor does it rely on any signal from a monitoring or safety system. Although the concept could be applicable to a variety of reactors (provided a normal temperature range is specified), in this paper, the concept is applied to the emergency shutdown of a pebble-bed reactor. The preliminary study presented here demonstrates that the proposed Electro-Magnetic Optimally Scramming Control Rod (EM-OSCR) naturally operates when needed. The rod is held out of the core region by the force of an electromagnet. The force is generated by a current carried by a conductor, a portion of which passes near or through the reactor core region. When the temperature in the conductor increases because of an increase in temperature in the reactor, the conductor resistivity increases. This, in turn, leads to a current decrease. When the current decreases below the level necessary to hold the rod up, the rod is released and it falls into the core under the effect of gravity. (author)

  10. 42 CFR 60.31 - The application to be a HEAL lender or holder.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false The application to be a HEAL lender or holder. 60... HEALTH EDUCATION ASSISTANCE LOAN PROGRAM The Lender and Holder § 60.31 The application to be a HEAL lender or holder. (a) In order to be a HEAL lender or holder, an eligible organization must submit...

  11. Inherent Tracers for Carbon Capture and Storage in Sedimentary Formations: Composition and Applications.

    Science.gov (United States)

    Flude, Stephanie; Johnson, Gareth; Gilfillan, Stuart M V; Haszeldine, R Stuart

    2016-08-01

    Inherent tracers-the "natural" isotopic and trace gas composition of captured CO2 streams-are potentially powerful tracers for use in CCS technology. This review outlines for the first time the expected carbon isotope and noble gas compositions of captured CO2 streams from a range of feedstocks, CO2-generating processes, and carbon capture techniques. The C-isotope composition of captured CO2 will be most strongly controlled by the feedstock, but significant isotope fractionation is possible during capture; noble gas concentrations will be controlled by the capture technique employed. Comparison with likely baseline data suggests that CO2 generated from fossil fuel feedstocks will often have δ(13)C distinguishable from storage reservoir CO2. Noble gases in amine-captured CO2 streams are likely to be low concentration, with isotopic ratios dependent on the feedstock, but CO2 captured from oxyfuel plants may be strongly enriched in Kr and Xe which are potentially valuable subsurface tracers. CO2 streams derived from fossil fuels will have noble gas isotope ratios reflecting a radiogenic component that will be difficult to distinguish in the storage reservoir, but inheritance of radiogenic components will provide an easily recognizable signature in the case of any unplanned migration into shallow aquifers or to the surface. PMID:27379462

  12. Inherent Tracers for Carbon Capture and Storage in Sedimentary Formations: Composition and Applications.

    Science.gov (United States)

    Flude, Stephanie; Johnson, Gareth; Gilfillan, Stuart M V; Haszeldine, R Stuart

    2016-08-01

    Inherent tracers-the "natural" isotopic and trace gas composition of captured CO2 streams-are potentially powerful tracers for use in CCS technology. This review outlines for the first time the expected carbon isotope and noble gas compositions of captured CO2 streams from a range of feedstocks, CO2-generating processes, and carbon capture techniques. The C-isotope composition of captured CO2 will be most strongly controlled by the feedstock, but significant isotope fractionation is possible during capture; noble gas concentrations will be controlled by the capture technique employed. Comparison with likely baseline data suggests that CO2 generated from fossil fuel feedstocks will often have δ(13)C distinguishable from storage reservoir CO2. Noble gases in amine-captured CO2 streams are likely to be low concentration, with isotopic ratios dependent on the feedstock, but CO2 captured from oxyfuel plants may be strongly enriched in Kr and Xe which are potentially valuable subsurface tracers. CO2 streams derived from fossil fuels will have noble gas isotope ratios reflecting a radiogenic component that will be difficult to distinguish in the storage reservoir, but inheritance of radiogenic components will provide an easily recognizable signature in the case of any unplanned migration into shallow aquifers or to the surface.

  13. Local Application of Ibandronate/Gelatin Sponge Improves Osteotomy Healing in Rabbits

    OpenAIRE

    Yang, Zongyou; Chen, Wei; Xia, Zhidao; Liu, Yueju; Peggrem, Shaun; Geng, Tao; Yang, Zhaoxu; Li, Han; Xu, Bin; Zhang, Chi; Triffitt, James T.; Zhang, Yingze

    2015-01-01

    Delayed healing or non-union of skeletal fractures are common clinical complications. Ibandronate is a highly potent anti-catabolic reagent used for treatment of osteopenia and fracture prevention. We hypothesized that local application of ibandronate after fracture fixation may improve and sustain callus formation and therefore prevent delayed healing or non-union. This study tested the effect of local application of an ibandronate/gelatin sponge composite on osteotomy healing. A right-side ...

  14. From Waste to Healing Biopolymers: Biomedical Applications of Bio-Collagenic Materials Extracted from Industrial Leather Residues in Wound Healing

    Directory of Open Access Journals (Sweden)

    Rafael Luque

    2013-04-01

    Full Text Available The biomedical properties of a porous bio-collagenic polymer extracted from leather industrial waste residues have been investigated in wound healing and tissue regeneration in induced wounds in rats. Application of the pure undiluted bio-collagen to induced wounds in rats dramatically improved its healing after 7 days in terms of collagen production and wound filling as well as in the migration and differentiation of keratinocytes. The formulation tested was found to be three times more effective than the commercial reference product Catrix® (Heal Progress (HP: 8 ± 1.55 vs. 2.33 ± 0.52, p < 0.001; Formation of Collagen (FC: 7.5 ± 1.05 vs. 2.17 ± 0.75, p < 0.001; Regeneration of Epidermis (RE: 13.33 ± 5.11 vs. 5 ± 5.48, p < 0.05.

  15. High efficiency isolated DC/DC converter inherently optimized for fuel cell applications

    DEFF Research Database (Denmark)

    Petersen, Lars Press; Jensen, Lasse Crone; Larsen, Martin Norgaard

    2013-01-01

    The isolated full-bridge boost converter has been suggested as the best choice for fuel cell applications. Comparisons have been carried out in the literature using both stress factors and experimental verified designs to determine the optimal converter. Never the less, this paper suggests a diff...

  16. Clinical Application of Growth Factors and Cytokines in Wound Healing

    OpenAIRE

    Barrientos, Stephan; Brem, Harold; Stojadinovic, Olivera; Tomic-Canic, Marjana

    2014-01-01

    Wound healing is a complex and dynamic biological process that involves the coordinated efforts of multiple cell types and is executed and regulated by numerous growth factors and cytokines. There has been a drive in the past two decades to study the therapeutic effects of various growth factors in the clinical management of non-healing wounds (e.g. pressure ulcers, chronic venous ulcers, diabetic foot ulcers). For this review, we conducted a nonline search of Medline and Pub Medical and crit...

  17. Self-healing interconnects for flexible electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Baliga, Sunil R., E-mail: sunil.baliga@asu.edu; Ren, Minghan; Kozicki, Michael N.

    2011-01-31

    In this paper, we present the results of a study of self-healing flexible interconnect structures which utilize silver metallization on thin solid electrolyte films. Silver/electrolyte (Ag-Ge-Se) bilayers were fabricated on polyimide substrates and subsequently damaged by small radius bending. A small bias was used to stimulate Ag electrodeposition in the stress-induced cracks, thereby repairing the electrical discontinuity and returning the interconnect to a resistance close to its initial (unbroken) value. The healed structures were shown to be stable for small signal DC and AC conditions but were unable to withstand long periods of increased DC voltage stress due to interconnect erosion by ion migration.

  18. Self-healing polymer systems: Properties, synthesis and applications

    NARCIS (Netherlands)

    Garcia, S.J.; Fischer, H.R.

    2014-01-01

    After millions of years of evolution, nature has developed materials and systems based on the concept of damage management (healing) in order to extend survival possibilities. In the last 20 years, the dream of implementing this concept to engineering systems to extend service lifetime has become a

  19. Biomimetic, Self-Healing Nanocomposites for Aerospace Applications

    Science.gov (United States)

    Morse, Daniel E.

    2003-01-01

    This final report contains a summary of significant findings, and bibliographies of publications and patents resulting from the research. The findings are grouped as follows: A) Lustrin-Mimetic Self-Healing Polymer Networks; B) Nanostructure-Directing Catalysis of Synthesis of Electronically and Optoelectronically Active Metallo-oxanes and Organometallics; C) New Discovery that Molecular Stencils Control Directional Growth to Form Light-Weight Mineral Foams.

  20. Clinical application of growth factors and cytokines in wound healing.

    Science.gov (United States)

    Barrientos, Stephan; Brem, Harold; Stojadinovic, Olivera; Tomic-Canic, Marjana

    2014-01-01

    Wound healing is a complex and dynamic biological process that involves the coordinated efforts of multiple cell types and is executed and regulated by numerous growth factors and cytokines. There has been a drive in the past two decades to study the therapeutic effects of various growth factors in the clinical management of nonhealing wounds (e.g., pressure ulcers, chronic venous ulcers, diabetic foot ulcers). For this review, we conducted an online search of Medline/PubMed and critically analyzed the literature regarding the role of growth factors and cytokines in the management of these wounds. We focused on currently approved therapies, emerging therapies, and future research possibilities. In this review, we discuss four growth factors and cytokines currently being used on and off label for the healing of wounds. These include granulocyte-macrophage colony-stimulating factor, platelet-derived growth factor, vascular endothelial growth factor, and basic fibroblast growth factor. While the clinical results of using growth factors and cytokines are encouraging, many studies involved a small sample size and are disparate in measured endpoints. Therefore, further research is required to provide definitive evidence of efficacy.

  1. Wound Healing Activity of Topical Application Forms Based on Ayurveda

    Directory of Open Access Journals (Sweden)

    Hema Sharma Datta

    2011-01-01

    Full Text Available The traditional Indian medicine—Ayurveda, describes various herbs, fats, oils and minerals with anti-aging as well as wound healing properties. With aging, numerous changes occur in skin, including decrease in tissue cell regeneration, decrease in collagen content, loss of skin elasticity and mechanical strength. We prepared five topical anti-aging formulations using cow ghee, flax seed oil, Phyllanthus emblica fruits, Shorea robusta resin, Yashada bhasma as study materials. For preliminary efficacy evaluation of the anti-aging activity we chose excision and incision wound healing animal models and studied the parameters including wound contraction, collagen content and skin breaking strength which in turn is indicative of the tissue cell regeneration capacity, collagenation capacity and mechanical strength of skin. The group treated with the formulations containing Yashada bhasma along with Shorea robusta resin and flax seed oil showed significantly better wound contraction (P < .01, higher collagen content (P < .05 and better skin breaking strength (P < .01 as compared to control group; thus proposing them to be effective prospective anti-aging formulations.

  2. Wound healing activity of topical application forms based on ayurveda.

    Science.gov (United States)

    Datta, Hema Sharma; Mitra, Shankar Kumar; Patwardhan, Bhushan

    2011-01-01

    The traditional Indian medicine-Ayurveda, describes various herbs, fats, oils and minerals with anti-aging as well as wound healing properties. With aging, numerous changes occur in skin, including decrease in tissue cell regeneration, decrease in collagen content, loss of skin elasticity and mechanical strength. We prepared five topical anti-aging formulations using cow ghee, flax seed oil, Phyllanthus emblica fruits, Shorea robusta resin, Yashada bhasma as study materials. For preliminary efficacy evaluation of the anti-aging activity we chose excision and incision wound healing animal models and studied the parameters including wound contraction, collagen content and skin breaking strength which in turn is indicative of the tissue cell regeneration capacity, collagenation capacity and mechanical strength of skin. The group treated with the formulations containing Yashada bhasma along with Shorea robusta resin and flax seed oil showed significantly better wound contraction (P skin breaking strength (P < .01) as compared to control group; thus proposing them to be effective prospective anti-aging formulations. PMID:19252191

  3. In vivo toxicity of enoxaparin encapsulated in mucoadhesive nanoparticles: Topical application in a wound healing model

    Science.gov (United States)

    Huber, S. C.; Marcato, P. D.; Barbosa, R. M.; Duran, N.; Annichino-Bizzacchi, J. M.

    2013-04-01

    Wound healing comprises four distinct phases and involves many cell events and biologic markers. The use of nanoparticles for topical application has gaining attention due to its deeper penetration in the skin and the retention capacity of the drug in the site of application. In this study the effect and toxicity of mucoadhesive polymeric nanoparticles loaded with enoxaparin was evaluated in in vivo model of skin ulcer. Our results showed an interesting formulation based on mucoadhesive nanoparticles with enoxaparin that improved wound healing without cytotoxicity in vitro in all endpoint evaluated. Then, this semi-solid formulation is a promising option for skin ulcer treatment.

  4. The inherence heuristic is inherent in humans

    OpenAIRE

    Hampton, J A

    2014-01-01

    [Open Peer Commentary] The inherence heuristic is too broad as a theoretical notion. The authors are at risk of applying their own heuristic in supporting itself. Nonetheless the article provides useful insight into the ways in which people overestimate the coherence and completeness of their understanding of the world.

  5. Self-Healing Glassy Thin Coating for High-Temperature Applications.

    Science.gov (United States)

    Castanié, Sandra; Carlier, Thibault; Méar, François O; Saitzek, Sébastien; Blach, Jean-François; Podor, Renaud; Montagne, Lionel

    2016-02-17

    Glass thin films (with nanometer to micrometer thicknesses) are promising in numerous applications, both as passive coatings and as active components. Self-healing is a feature of many current technological developments as a means of increasing the lifetime of materials. In the context of these developments, we report on the elaboration of the first self-healing glassy thin-film coating developed specifically for high-temperature applications. This coating is obtained by pulsed laser deposition of alternating layers of vanadium boride (VB) and a multicomponent oxide glass. Self-healing is obtained through the oxidation of VB at the operating temperature. The investigation of the effect of elaboration parameters on the coating composition and morphology made it possible to obtain up to seven-layer coatings, with good homogeneity and perfect interfaces, and with a total thickness of less than 1 μm. The autonomic self-healing capacity of the coating has been demonstrated by an in situ experiment, which shows that a crack of nanometric dimension can be healed within a few minutes at 700 °C. PMID:26808059

  6. Application of Coenzyme Q10 for Accelerating Soft Tissue Wound Healing after Tooth Extraction in Rats

    Directory of Open Access Journals (Sweden)

    Toshiki Yoneda

    2014-12-01

    Full Text Available Accelerating wound healing after tooth extraction is beneficial in dental treatment. Application of antioxidants, such as reduced coenzyme Q10 (rCoQ10, may promote wound healing after tooth extraction. In this study, we examined the effects of topical application of rCoQ10 on wound healing after tooth extraction in rats. After maxillary first molars were extracted, male Fischer 344 rats (8 weeks old (n = 27 received topical application of ointment containing 5% rCoQ10 (experimental group or control ointment (control group to the sockets for 3 or 8 days (n = 6–7/group. At 3 days after extraction, the experimental group showed higher collagen density and lower numbers of polymorphonuclear leukocytes in the upper part of socket, as compared to the control group (p < 0.05. Gene expression of interleukin-1β, tumor necrosis factor-α and nuclear factor-κB were also lower in the experimental group than in the control group (p < 0.05. At 8 days after tooth extraction, there were no significant differences in collagen density, number of polymorphonuclear leukocytes and bone fill between the groups. Our results suggest that topical application of rCoQ10 promotes wound healing in the soft tissue of the alveolar socket, but that rCoQ10 has a limited effect on bone remodeling in rats.

  7. Chlorhexidine-calcium phosphate nanoparticles - Polymer mixer based wound healing cream and their applications.

    Science.gov (United States)

    Viswanathan, Kaliyaperumal; Monisha, P; Srinivasan, M; Swathi, D; Raman, M; Dhinakar Raj, G

    2016-10-01

    In this work, we developed a wound healing cream composed of two different polymers, namely chitosan and gelatin with chlorhexidine along with calcium phosphate nanoparticles. The physicochemical properties of the prepared cream were investigated based on SEM, EDX, Raman, FTIR and the results indicated that the cream contained gelatin, chitosan, calcium phosphate nanoparticles and chlorhexidine. The maximum swelling ratio studies indicated that the ratio was around of 52±2.2 at pH7.4 and the value was increased in acidic and alkaline pH. The antimicrobial activity was tested against bacteria and the results indicated that, both chlorhexidine and the hybrid cream devoid of chlorhexidine exhibited antimicrobial activity but the chlorhexidine impregnated cream showed three fold higher antimicrobial activity than without chlorhexidine. In vivo wound healing promoting activities of hybrid cream containing 0.4mg/L chlorhexidine were evaluated on surgically induced dermal wounds in mice. The results indicated that the cream with incorporated chlorhexidine significantly enhanced healing compared with the control samples. For the field validations, the veterinary clinical animals were treated with the cream and showed enhanced healing capacity. In conclusion, a simple and efficient method for design of a novel wound healing cream has been developed for veterinary applications.

  8. Topical Application of Sadat-Habdan Mesenchymal Stimulating Peptide (SHMSP Accelerates Wound Healing in Diabetic Rabbits

    Directory of Open Access Journals (Sweden)

    Abdulmohsen H. Al-Elq

    2012-01-01

    Full Text Available Objective. Diminished wound healing is a common problem in diabetic patients due to diminished angiogenesis. SHMSP was found to promote angiogenesis. The present study was carried out to examine the effect of this peptide in healing of wounds in diabetic rabbits. Materials and Methods. Twenty male New Zealand rabbits were used in this study. Diabetes mellitus was induced and the rabbits were randomly divided into two equal groups: control group and peptide group. A-full thickness punch biopsy was made to create a wound of about 10 mm on the right ears of all rabbits. Every day, the wound was cleaned with saline in control groups. In the peptide group, 15 mg of SHMSP was applied after cleaning. On day 15th, all animals were sacrificed, and the wounds were excised with a rim of 5 mm of normal surrounding tissue. Histo-pathological assessment of wound healing, inflammatory cell infiltration, blood vessel proliferation, and collagen deposition was performed. Results. There were no deaths among the groups. There was significant increase in wound healing, blood vessel proliferation and collagen deposition, and significant decrease in inflammatory cell infiltration in the peptide group compared to the control group. Conclusion. Topical application of SHMSP improves wound healing in diabetic rabbits.

  9. Chlorhexidine-calcium phosphate nanoparticles - Polymer mixer based wound healing cream and their applications.

    Science.gov (United States)

    Viswanathan, Kaliyaperumal; Monisha, P; Srinivasan, M; Swathi, D; Raman, M; Dhinakar Raj, G

    2016-10-01

    In this work, we developed a wound healing cream composed of two different polymers, namely chitosan and gelatin with chlorhexidine along with calcium phosphate nanoparticles. The physicochemical properties of the prepared cream were investigated based on SEM, EDX, Raman, FTIR and the results indicated that the cream contained gelatin, chitosan, calcium phosphate nanoparticles and chlorhexidine. The maximum swelling ratio studies indicated that the ratio was around of 52±2.2 at pH7.4 and the value was increased in acidic and alkaline pH. The antimicrobial activity was tested against bacteria and the results indicated that, both chlorhexidine and the hybrid cream devoid of chlorhexidine exhibited antimicrobial activity but the chlorhexidine impregnated cream showed three fold higher antimicrobial activity than without chlorhexidine. In vivo wound healing promoting activities of hybrid cream containing 0.4mg/L chlorhexidine were evaluated on surgically induced dermal wounds in mice. The results indicated that the cream with incorporated chlorhexidine significantly enhanced healing compared with the control samples. For the field validations, the veterinary clinical animals were treated with the cream and showed enhanced healing capacity. In conclusion, a simple and efficient method for design of a novel wound healing cream has been developed for veterinary applications. PMID:27287150

  10. A bacteria-based bead for possible self-healing marine concrete applications

    Science.gov (United States)

    Palin, D.; Wiktor, V.; Jonkers, H. M.

    2016-08-01

    This work presents a bacteria-based bead for potential self-healing concrete applications in low-temperature marine environments. The bead consisting of calcium alginate encapsulated bacterial spores and mineral precursor compounds was assessed for: oxygen consumption, swelling, and its ability to form a biocomposite in a simulative marine concrete crack solution (SMCCS) at 8 °C. After six days immersion in the SMCCS the bacteria-based beads formed a calcite crust on their surface and calcite inclusions in their network, resulting in a calcite-alginate biocomposite. Beads swelled by 300% to a maximum diameter of 3 mm, while theoretical calculations estimate that 0.112 g of the beads were able to produce ˜1 mm3 of calcite after 14 days immersion; providing the bead with considerable crack healing potential. The bacteria-based bead shows great potential for the development of self-healing concrete in low-temperature marine environments, while the formation of a biocomposite healing material represents an exciting avenue for self-healing concrete research.

  11. Source-optimized irregular repeat accumulate codes with inherent unequal error protection capabilities and their application to scalable image transmission.

    Science.gov (United States)

    Lan, Ching-Fu; Xiong, Zixiang; Narayanan, Krishna R

    2006-07-01

    The common practice for achieving unequal error protection (UEP) in scalable multimedia communication systems is to design rate-compatible punctured channel codes before computing the UEP rate assignments. This paper proposes a new approach to designing powerful irregular repeat accumulate (IRA) codes that are optimized for the multimedia source and to exploiting the inherent irregularity in IRA codes for UEP. Using the end-to-end distortion due to the first error bit in channel decoding as the cost function, which is readily given by the operational distortion-rate function of embedded source codes, we incorporate this cost function into the channel code design process via density evolution and obtain IRA codes that minimize the average cost function instead of the usual probability of error. Because the resulting IRA codes have inherent UEP capabilities due to irregularity, the new IRA code design effectively integrates channel code optimization and UEP rate assignments, resulting in source-optimized channel coding or joint source-channel coding. We simulate our source-optimized IRA codes for transporting SPIHT-coded images over a binary symmetric channel with crossover probability p. When p = 0.03 and the channel code length is long (e.g., with one codeword for the whole 512 x 512 image), we are able to operate at only 9.38% away from the channel capacity with code length 132380 bits, achieving the best published results in terms of average peak signal-to-noise ratio (PSNR). Compared to conventional IRA code design (that minimizes the probability of error) with the same code rate, the performance gain in average PSNR from using our proposed source-optimized IRA code design is 0.8759 dB when p = 0.1 and the code length is 12800 bits. As predicted by Shannon's separation principle, we observe that this performance gain diminishes as the code length increases. PMID:16830898

  12. Fabrication of Hyaluronan-Poly(vinylphosphonic acid)-Chitosan Hydrogel for Wound Healing Application

    OpenAIRE

    Dang Hoang Phuc; Nguyen Thi Hiep; Do Ngoc Phuc Chau; Nguyen Thi Thu Hoai; Huynh Chan Khon; Vo Van Toi; Nguyen Dai Hai; Bui Chi Bao

    2016-01-01

    A new hydrogel made of hyaluronan, poly(vinylphosphonic acid), and chitosan (HA/PVPA/CS hydrogel) was fabricated and characterized to be used for skin wound healing application. Firstly, the component ratio of hydrogel was studied to optimize the reaction effectiveness. Next, its microstructure was observed by light microscope. The chemical interaction in hydrogel was evaluated by nuclear magnetic resonance spectroscopy and Fourier transform-infrared spectroscopy. Then, a study on its degrada...

  13. A high efficacy antimicrobial acrylate based hydrogels with incorporated copper for wound healing application

    Energy Technology Data Exchange (ETDEWEB)

    Vuković, Jovana S.; Babić, Marija M.; Antić, Katarina M.; Miljković, Miona G.; Perić-Grujić, Aleksandra A.; Filipović, Jovanka M.; Tomić, Simonida Lj., E-mail: simonida@tmf.bg.ac.rs

    2015-08-15

    In this study, three series of hydrogels based on 2-hydroxyethyl acrylate and itaconic acid, unloaded, with incorporated copper(II) ions and reduced copper, were successfully prepared, characterized and evaluated as novel wound healing materials. Fourier transform infrared spectroscopy (FTIR) confirmed the expected structure of obtained hydrogels. Scanning electron microscopy (SEM) revealed porous morphology of unloaded hydrogels, and the morphological modifications in case of loaded hydrogels. Thermal characteristics were examined by differential scanning calorimetry (DSC) and the glass transition temperatures were observed in range of 12–50 °C. Swelling study was conducted in wide range of pHs at 37 °C, confirming pH sensitive behaviour for all three series of hydrogels. The in vitro copper release was investigated and the experimental data were analysed using several models in order to elucidate the transport mechanism. The antimicrobial assay revealed excellent antimicrobial activity, over 99% against Escherichia coli, Staphylococcus aureus and Candida albicans, as well as good correlation with the copper release experiments. In accordance with potential application, water vapour transmission rate, oxygen penetration, dispersion characteristics, fluid retention were observed and the suitability of the hydrogels for wound healing application was discussed. - Graphical abstract: Display Omitted - Highlights: • Design and evaluation of novel pH responsive hydrogel series. • Structural, morphological, thermal characterization and controlled copper release. • Antibacterial activity against Escherichia coli and Staphylococcus aureus over 99%. • Antifungal activity against Candida albicans over 99%. • In vitro evaluation studies revealed great potential for wound healing application.

  14. Local application of ibandronate/gelatin sponge improves osteotomy healing in rabbits.

    Directory of Open Access Journals (Sweden)

    Zongyou Yang

    Full Text Available Delayed healing or non-union of skeletal fractures are common clinical complications. Ibandronate is a highly potent anti-catabolic reagent used for treatment of osteopenia and fracture prevention. We hypothesized that local application of ibandronate after fracture fixation may improve and sustain callus formation and therefore prevent delayed healing or non-union. This study tested the effect of local application of an ibandronate/gelatin sponge composite on osteotomy healing. A right-side distal-femoral osteotomy was created surgically, with fixation using a k-wire, in forty adult male rabbits. The animals were divided into four groups of ten animals and treated by: (i intravenous injection of normal saline (Control; (ii local implantation of absorbable gelatin sponge (GS; (iii local implantation of absorbable GS containing ibandronate (IB+GS, and (iv intravenous injection of ibandronate (IB i.v.. At two and four weeks the affected femora were harvested for X-ray photography, computed tomography (CT, biomechanical testing and histopathology. At both time-points the results showed that the calluses in both the ibandronate-treated groups, but especially in the IB+GS group, were significantly larger than in the control and GS groups. At four weeks the cross sectional area (CSA and mechanical test results of ultimate load and energy in the IB+GS group were significantly higher than in other groups. Histological procedures showed a significant reduction in osteoclast numbers in the IB+GS and IB i.v. groups at day 14. The results indicate that local application of an ibandronate/gelatin sponge biomaterial improved early osteotomy healing after surgical fixation and suggest that such treatment may be a valuable local therapy to enhance fracture repair and potentially prevent delayed or non-union.

  15. Novel sodium fusidate-loaded film-forming hydrogel with easy application and excellent wound healing.

    Science.gov (United States)

    Kim, Dong Wuk; Kim, Kyung Soo; Seo, Youn Gee; Lee, Beom-Jin; Park, Young Joon; Youn, Yu Seok; Kim, Jong Oh; Yong, Chul Soon; Jin, Sung Giu; Choi, Han-Gon

    2015-11-10

    To develop a novel sodium fusidate-loaded film-forming hydrogel (FFH) for easy application and excellent wound healing, various FFH formulations and corresponding FFH dried films were prepared with drug, polyvinylalcohol (PVA), polyvinylpyrrolidone (PVP), propylene glycol, ethanol and water, and their film forming times, mechanical properties, drug release, in vivo wound healing in rat and histopathology were assessed. The sodium fusidate-loaded FFH composed of sodium fusidate/PVP/PVA/propylene glycol/ethanol/water at the weight ratio of 1/2/12/3/8/74 could form a corresponding dried film in the wound sites promptly due to fast film-forming time of about 4 min. This FFH showed an appropriate hardness and adhesiveness. Furthermore, this corresponding dried film provided an excellent flexibility and elasticity, and gave relatively high drug release. As compared with the sodium fusidate-loaded commercial product, it significantly improved excision and infection wound healing in rats. This FFH was stable at 45°C for at least 6 months. Therefore, this novel sodium fusidate-loaded FFH would be an effective pharmaceutical product with easy application for the treatment of wounds.

  16. Application Research on Self-healing Technology with Microcapsules for Automobile Brake Pad

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; DONG Xiuping; ZHANG Heng

    2009-01-01

    In order to improve the performance of non-asbestos composite auto brake pads that are composed of matrix resin, reinforced material and fillers, a novel method with new technology of self-heal microcapsules was proposed. Nano reinforced fillers' effects were also considered in the experiment project. Five recipe designs for new composite auto brake pads were carried out and cor-responding samples were prepared as well. The friction coefficient and wearing properties at certain temperature, impact intensity and hardness were comparatively studied. Investigations indicate that properties of such composite auto brake pads meet the requirements of the national standards while microcapsule's weight content varies from 5.5wt%-1.09wt% of matrix resin and microcapsule's loca-tion varies in the pads. Nano reinforced fillers have the effects of increasing composites' impact in-tensity and hardness. Application of self-healing microcapsules in auto brake pads is feasible.

  17. Thermally responsive polymer systems for self-healing, reversible adhesion and shape memory applications

    Science.gov (United States)

    Luo, Xiaofan

    Responsive polymers are "smart" materials that are capable of performing prescribed, dynamic functions under an applied stimulus. In this dissertation, we explore several novel design strategies to develop thermally responsive polymers and polymer composites for self-healing, reversible adhesion and shape memory applications. In the first case described in Chapters 2 and 3, a thermally triggered self-healing material was prepared by blending a high-temperature epoxy resin with a thermoplastic polymer, poly(epsilon-caprolactone) (PCL). The initially miscible system undergoes polymerization induced phase separation (PIPS) during the curing of epoxy and yields a variety of compositionally dependent morphologies. At a particular PCL loading, the cured blend displays a "bricks-and-mortar" morphology in which epoxy exists as interconnected spheres ("bricks") within a continuous PCL matrix ("mortar"). A heat induced "bleeding" phenomenon was observed in the form of spontaneous wetting of all free surfaces by the molten PCL, and is attributed to the volumetric thermal expansion of PCL above its melting point in excess of epoxy brick expansion, which we term differential expansive bleeding (DEB). This DEB is capable of healing damage such as cracks. In controlled self-healing experiments, heating of a cracked specimen led to PCL bleeding from the bulk that yields a liquid layer bridging the crack gap. Upon cooling, a "scar" composed of PCL crystals was formed at the site of the crack, restoring a significant portion of mechanical strength. We further utilized DEB to enable strong and thermally-reversible adhesion of the material to itself and to metallic substrates, without any requirement for macroscopic softening or flow. After that, Chapters 4--6 present a novel composite strategy for the design and fabrication of shape memory polymer composites. The basic approach involves physically combining two or more functional components into an interpenetrating fiber

  18. Vowel Inherent Spectral Change

    CERN Document Server

    Assmann, Peter

    2013-01-01

    It has been traditional in phonetic research to characterize monophthongs using a set of static formant frequencies, i.e., formant frequencies taken from a single time-point in the vowel or averaged over the time-course of the vowel. However, over the last twenty years a growing body of research has demonstrated that, at least for a number of dialects of North American English, vowels which are traditionally described as monophthongs often have substantial spectral change. Vowel Inherent Spectral Change has been observed in speakers’ productions, and has also been found to have a substantial effect on listeners’ perception. In terms of acoustics, the traditional categorical distinction between monophthongs and diphthongs can be replaced by a gradient description of dynamic spectral patterns. This book includes chapters addressing various aspects of vowel inherent spectral change (VISC), including theoretical and experimental studies of the perceptually relevant aspects of VISC, the relationship between ar...

  19. Triflate-functionalized calix[6]arenes as versatile building-blocks: application to the synthesis of an inherently chiral Zn(ii) complex.

    Science.gov (United States)

    Zahim, Sara; Lavendomme, Roy; Reinaud, Olivia; Luhmer, Michel; Evano, Gwilherm; Jabin, Ivan

    2016-02-14

    Cavity-based metal complexes can find many applications notably in the fields of catalysis and biomimicry. In this context, it was shown that metal complexes of calix[6]arenes bearing three aza-coordinating arms at the small rim provide excellent structural models of the poly-imidazole sites found in the active site of many metallo-enzymes. All these N-donor ligands were synthesized from the 1,3,5-tris-methoxy-p-tBu-calix[6]arene platform, which presents some limitations in terms of functionalization. Therefore, there is a need for the development of new calix[6]arene-based building-blocks selectively protected at the small rim. Herein we describe the regioselective one step synthesis of two calix[6]arenes decorated with triflate groups, i.e. X6H4Tf2 and X6H3Tf3, from the parent calix[6]arene X6H6. It is shown that the triflate groups can either act as protecting or deactivating groups, allowing the elaboration of sophisticated calixarene-based systems selectively functionalized at the large and/or at the small rim. In addition, X6H3Tf3 is functionalized on the A, B, and D rings and thus gives access to inherently chiral compounds, as demonstrated by the synthesis of a rare example of inherently chiral cavity-based metal complex. PMID:26751614

  20. Stem Cells in Skin Regeneration, Wound Healing, and Their Clinical Applications

    Directory of Open Access Journals (Sweden)

    Nkemcho Ojeh

    2015-10-01

    Full Text Available The skin is the largest organ of the body and has an array of functions. Skin compartments, epidermis, and hair follicles house stem cells that are indispensable for skin homeostasis and regeneration. These stem cells also contribute to wound repair, resulting in restoration of tissue integrity and function of damaged tissue. Unsuccessful wound healing processes often lead to non-healing wounds. Chronic wounds are caused by depletion of stem cells and a variety of other cellular and molecular mechanisms, many of which are still poorly understood. Current chronic wound therapies are limited, so the search to develop better therapeutic strategies is ongoing. Adult stem cells are gaining recognition as potential candidates for numerous skin pathologies. In this review, we will discuss epidermal and other stem cells present in the skin, and highlight some of the therapeutic applications of epidermal stem cells and other adult stem cells as tools for cell/scaffold-based therapies for non-healing wounds and other skin disorders. We will also discuss emerging concepts and offer some perspectives on how skin tissue-engineered products can be optimized to provide efficacious therapy in cutaneous repair and regeneration.

  1. Sodium carboxymethylation-functionalized chitosan fibers for cutaneous wound healing application

    Science.gov (United States)

    Yan, Dong; Zhou, Zhong-Zheng; Jiang, Chang-Qing; Cheng, Xiao-Jie; Kong, Ming; Liu, Ya; Feng, Chao; Chen, Xi-Guang

    2016-09-01

    A water absorption biomaterial, sodium carboxymethylation-functionalized chitosan fibers (Na-NOCC fibers) were prepared, applied for cutaneous wound repair, and characterized by FTIR and NMR. The water absorption of Na-NOCC fibers increased significantly with substitution degree rising, from 3.2 to 6.8 g/g, and higher than that of chitosan fibers (2.2 g/g) confirmed by swelling behavior. In the antibacterial action, the high degree of substitution of Na-NOCC fibers exhibited stronger antibacterial activities against E. coli (from 66.54% up to 88.86%). The inhibition of Na-NOCC fibers against S. aureus were above 90%, and more effective than E. coli. The cytotoxicity assay demonstrated that Na-NOCC2 fibers were no obvious cytotoxicity to mouse fibroblasts. Wound healing test and histological examination showed that significantly advanced granulation tissue and capillary formation in the healing-impaired wounds treated with Na-NOCC fibers, as compared to those treated with gauze, which demonstrated that Na- NOCC fibers could promote skin repair and might have great application for wound healing.

  2. Non-thermal atmospheric-pressure plasma possible application in wound healing.

    Science.gov (United States)

    Haertel, Beate; von Woedtke, Thomas; Weltmann, Klaus-Dieter; Lindequist, Ulrike

    2014-11-01

    Non-thermal atmospheric-pressure plasma, also named cold plasma, is defined as a partly ionized gas. Therefore, it cannot be equated with plasma from blood; it is not biological in nature. Non-thermal atmospheric-pressure plasma is a new innovative approach in medicine not only for the treatment of wounds, but with a wide-range of other applications, as e.g. topical treatment of other skin diseases with microbial involvement or treatment of cancer diseases. This review emphasizes plasma effects on wound healing. Non-thermal atmospheric-pressure plasma can support wound healing by its antiseptic effects, by stimulation of proliferation and migration of wound relating skin cells, by activation or inhibition of integrin receptors on the cell surface or by its pro-angiogenic effect. We summarize the effects of plasma on eukaryotic cells, especially on keratinocytes in terms of viability, proliferation, DNA, adhesion molecules and angiogenesis together with the role of reactive oxygen species and other components of plasma. The outcome of first clinical trials regarding wound healing is pointed out.

  3. Polylactic acid with improved heat deflection temperatures and self-healing properties for durable goods applications.

    Science.gov (United States)

    Wertz, J T; Mauldin, T C; Boday, D J

    2014-11-12

    A method to recover fracture toughness after failure and increase thermal properties of polylactic acid (PLA) for use within durable goods applications is presented. Microcapsules were incorporated into PLA to form a composite material in which the microcapsules served the dual purpose of (1) releasing self-healing additives to fracture regions and (2) serving as nucleating agents to improve the PLA composite's thermal tolerance. Self-healing was achieved though embedment of dicyclopentadiene-filled microcapsules and Grubbs' first generation ruthenium metathesis catalyst, the former being autonomically released into damage volumes and undergoing polymerization in the presence of the catalyst. This approach led to up to 84% recovery of the polymer composite's initial fracture toughness. Additionally, PLA's degree of crystallinity and heat deflection temperature were improved by ∼ 11% and ∼ 21 °C, respectively, relative to nonfilled virgin PLA, owing to microcapsule-induced nucleation. The self-healing system developed here overcomes many property limitations of PLA that can potentially lead to its incorporation into various durable goods.

  4. Therapeutic ultrasound - The healing sound and its applications in oral diseases: The review of literature

    Directory of Open Access Journals (Sweden)

    Jyothirmai Koneru

    2012-01-01

    Full Text Available The application of medical ultrasound was mainly centered on the soft tissue diagnostic imaging until now. Recently, its use has been widened and adopted for various therapeutic purposes. It has been reported to facilitate the healing of bone fractures, wounds, apthous ulcers and temporomandibular disorders. In addition, ultrasound has also been shown to facilitate delivery of chemotherapeutic drugs into tumors, promote gene therapy to targeted tissues, and deliver thrombolytic drugs into blood clots. This article reviews the principles and current status of ultrasound-based treatments.

  5. Topical application of amelogenin extracellular matrix protein in non-healing venous ulcers

    Directory of Open Access Journals (Sweden)

    Burçin Abud

    2014-12-01

    Full Text Available Background and Design: Treatment of chronic venous ulcers of the lower extremity is still an important difficulty. The principal treatment of these ulcers includes compression therapy, local wound care and surgery. Unresponsiveness to these standard treatments is a frequent situation with negative effects on life quality and reductions in personal productivity. Therefore, there is a need for new applications to increase the effectiveness of treatment in treatment-resistant cases. In the present study, we retrospectively evaluated the results of topical application of amelogenin extracellular matrix protein in resistant venous ulcers. Materials and Methods: We analyzed the records of patients with treatment-resistant venous ulceration who were treated with amelogenin extracellular matrix protein between June 2011 and December 2012.. Results: 26 patients (21 male and 5 female with a total number of 28 ulcers (24 patients with 1 ulcer, 2 patients with two ulcers were evaluated. The patients were treated with topically applied amelogenin extracellular matrix protein and regional four bandage compression. Bandages were changed weekly. Each cure continued for six weeks. In fourteen patients (15 ulcers, we observed a complete healing by the end of the first cure. In another twelve cases (13 ulcers, the same period resulted with a reduction in wound diameter. We continued to the second cure for these patients. By the end of the second cure, complete healing was achieved in five cases (6 ulcers. Conclusion: Topical application of amelogenin extracellular matrix protein may be considered as an effective therapeutic choice for refractory venous ulcers.

  6. In vitro assessment of biopolymer-modified porous silicon microparticles for wound healing applications.

    Science.gov (United States)

    Mori, Michela; Almeida, Patrick V; Cola, Michela; Anselmi, Giulia; Mäkilä, Ermei; Correia, Alexandra; Salonen, Jarno; Hirvonen, Jouni; Caramella, Carla; Santos, Hélder A

    2014-11-01

    The wound healing stands as very complex and dynamic process, aiming the re-establishment of the damaged tissue's integrity and functionality. Thus, there is an emerging need for developing biopolymer-based composites capable of actively promoting cellular proliferation and reconstituting the extracellular matrix. The aims of the present work were to prepare and characterize biopolymer-functionalized porous silicon (PSi) microparticles, resulting in the development of drug delivery microsystems for future applications in wound healing. Thermally hydrocarbonized PSi (THCPSi) microparticles were coated with both chitosan and a mixture of chondroitin sulfate/hyaluronic acid, and subsequently loaded with two antibacterial model drugs, vancomycin and resveratrol. The biopolymer coating, drug loading degree and drug release behavior of the modified PSi microparticles were evaluated in vitro. The results showed that both the biopolymer coating and drug loading of the THCPSi microparticles were successfully achieved. In addition, a sustained release was observed for both the drugs tested. The viability and proliferation profiles of a fibroblast cell line exposed to the modified THCPSi microparticles and the subsequent reactive oxygen species (ROS) production were also evaluated. The cytotoxicity and proliferation results demonstrated less toxicity for the biopolymer-coated THCPSi microparticles at different concentrations and time points comparatively to the uncoated counterparts. The ROS production by the fibroblasts exposed to both uncoated and biopolymer-coated PSi microparticles showed that the modified PSi microparticles did not induce significant ROS production at the concentrations tested. Overall, the biopolymer-based PSi microparticles developed in this study are promising platforms for wound healing applications.

  7. Raman spectroscopy and the spectral correlation index for predicting wound healing outcome: towards in vivo application

    Science.gov (United States)

    Berger, Adam G.; Crane, Nicole J.; Elster, Eric A.

    2016-03-01

    Combat wounds are sometimes confounded by healing complications that are not as prevalent in civilian wounds due to their high energy etiology. One complication of wound healing is dehiscence, where a surgically closed wound reopens after closure. This complication can have serious consequences for the patient, but knowledge about the molecular composition of the wound bed beyond what is readily visible may help clinicians mitigate these complications. It is necessary to develop techniques that can be used in vivo to assess and predict wound healing pointof- care so that care-takers can decide the best way to make informed clinical decisions regarding their patient's healing. Raman spectroscopy is a perfect candidate for predicting wound healing due to its ability to provide a detailed molecular fingerprint of the wound bed noninvasively. Here, we study the spectral correlation index, a measure of orthogonality, with ten reference tissue components to stratify wounds based on how they heal. We analyze these indexes over time to show the modulation of these tissue components over the wound healing process. Results show that qualitative observation of the spectra cannot reveal major differences between the dehisced and normal healing wounds, but the spectral correlation index can. Analysis of the spectral correlations across the wound healing process demonstrates the changes throughout the wound healing process, showing that early differences in tissue components may portend wound healing. Furthermore, Raman spectroscopy coupled with the spectral correlation index presents as a possible point-of-care tool for enabling discrimination of wounds with impaired healing.

  8. Review of animal models used to study effects of bee products on wound healing: findings and applications

    Directory of Open Access Journals (Sweden)

    Hananeh Wael M.

    2015-09-01

    Full Text Available Non-healing wounds are associated with high morbidity and might greatly impact a patient’s well-being and economic status. For many years, scientific research has focused on developing and testing several natural and synthetic materials that enhance the rate of wound healing or eliminate healing complications. Honey has been used for thousands of years as a traditional remedy for many ailments. Recently, honey has reemerged as a promising wound care product especially for infected wounds and for wounds in diabetic patients. In addition to its proposed potent broad-spectrum antibacterial properties, honey has been claimed to promote wound healing by reducing wound hyperaemia, oedema, and exudate, and by stimulating angiogenesis, granulation tissue formation and epithelialisation. Several animal models, including large animals, dogs and cats, and different species of laboratory animals have been used to investigate the efficacy and safety of various natural and synthetic agents for wound healing enhancement. Interpreting the results obtained by these studies is, however, rather difficult and usually hampered by many limiting factors including great variation in types and origins of honey, the type of animal species used as models, the type of wounds, the number of animals, the number and type of controls, and variation in treatment protocols. In this article, we provide a comprehensive review of the most recent findings and applications of published experimental and clinical trials using honey as an agent for wound healing enhancement in different animal models.

  9. Stimulatory effects of topical application of radioactive lantern mantle powder on wound healing

    International Nuclear Information System (INIS)

    Full text: Poor educated people in some parts of Iran use burned mantles as a wound healing powder to prevent the bleeding and infections caused by injuries. Over the past 3 years we have studied the bio-stimulatory effects of the topical application of radioactive lantern mantle powder on rats' neck wounds. In this paper the overall bio-stimulatory effects of burned radioactive lantern mantles on wound healing are presented. To perform surface area measurement, twenty rats were divided randomly into two groups of 10 animals each. After inducing general anesthesia, full thickness excision wound was made on the dorsal neck in all animals. The 1st group received topical burned radioactive lantern mantle powder at 1st-3rd day after making excision wounds. The 2nd group received non-radioactive lantern mantle powder at the same days. Accurate blind surface measurement of the wounds by transparency tracing was used for assessment of the wound healing at 1st, 3rd, 7th, 10th and 15th days after making wounds. For histological study, 36 male rats randomly divided into two groups of 18 animals each. Full thickness excision wound (314±31.4 mm2) was made on the dorsal neck in all animals after inducing general anesthesia. For the first 3 days, cases received topical application of the radioactive lantern mantle powder while controls received non-radioactive lantern mantle powder. Three, seven and fourteen days after wounding, 6 rats were chosen by random in each group for wound sampling. Finally, to measure the tensile strength, an incision was made on the dorsal neck of the rats. Samples were obtained at 14th, 21st and 31th days after making incisions. Surface area measurement of the wounds showed a progressive surface reduction in both groups. However, for thorium treated group, the rate of recovery was significantly enhanced compared to that of the control group. Although the wound area in the thorium group was not significantly different from that of the control group at

  10. Is human fracture hematoma inherently angiogenic?

    LENUS (Irish Health Repository)

    Street, J

    2012-02-03

    This study attempts to explain the cellular events characterizing the changes seen in the medullary callus adjacent to the interfragmentary hematoma during the early stages of fracture healing. It also shows that human fracture hematoma contains the angiogenic cytokine vascular endothelial growth factor and has the inherent capability to induce angiogenesis and thus promote revascularization during bone repair. Patients undergoing emergency surgery for isolated bony injury were studied. Raised circulating levels of vascular endothelial growth factor were seen in all injured patients, whereas the fracture hematoma contained significantly higher levels of vascular endothelial growth factor than did plasma from these injured patients. However, incubation of endothelial cells in fracture hematoma supernatant significantly inhibited the in vitro angiogenic parameters of endothelial cell proliferation and microtubule formation. These phenomena are dependent on a local biochemical milieu that does not support cytokinesis. The hematoma potassium concentration is cytotoxic to endothelial cells and osteoblasts. Subcutaneous transplantation of the fracture hematoma into a murine wound model resulted in new blood vessel formation after hematoma resorption. This angiogenic effect is mediated by the significant concentrations of vascular endothelial growth factor found in the hematoma. This study identifies an angiogenic cytokine involved in human fracture healing and shows that fracture hematoma is inherently angiogenic. The differences between the in vitro and in vivo findings may explain the phenomenon of interfragmentary hematoma organization and resorption that precedes fracture revascularization.

  11. Application-Aware Optimization of Redundant Resources for the Reconfigurable Self-Healing eDNA Hardware Architecture

    DEFF Research Database (Denmark)

    Boesen, Michael Reibel; Madsen, Jan; Pop, Paul

    2011-01-01

    In this paper we are interested in the mapping of embedded applications on a dynamically reconfigurable self-healing hardware architecture known as the eDNA (electronic DNA) architecture. The architecture consists of an array of cells interconnected through a 2D-mesh topology. Each cell consists...

  12. Topical application of Katupila (Securinega leucopyrus) in Dushta Vrana (chronic wound) showing excellent healing effect: A case study

    OpenAIRE

    Ajmeer, Ahamed Shahan; Dudhamal, Tukaram S.; Gupta, Sanjay Kumar; Mahanta, Vyasadeva

    2014-01-01

    Securinega leucopyrus (Willd.) Muell. is known as Humari in India, Katupila in Sri Lanka and Spinous fluggea in English. It is a desert climatic plant used topically in paste form for healing of chronic and non-healing wounds. Application of Katupila Kalka (paste) is used commonly in the management of acute as well as chronic wounds in Sri Lanka as a folklore medicine. The aim of this study is to evaluate the role of herbal paste of Katupila in the treatment of Dushta Vrana (chronic wound). I...

  13. High bacterial load in asymptomatic diabetic patients with neurotrophic ulcers retards wound healing after application of Dermagraft.

    Science.gov (United States)

    Browne, A C; Vearncombe, M; Sibbald, R G

    2001-10-01

    Diabetic neuropathic foot ulcers are a major healthcare burden. These chronic wounds always have a bacterial load, and although normal flora is not harmful, increased tissue burden may impede healing before clinical signs of infection are evident. In this study, chronic noninfected diabetic neuropathic foot ulcers (those with adequate blood supply and pressure offloading) were assessed for bacterial burden immediately before the application of a skin substitute. Eight patients with diabetic neuropathic foot ulcers greater than 1 cm2 and free of necrotic tissue had 3-mm tissue biopsies taken from the ulcer base for quantitative bacteriology. Five of the eight patients (75%) had greater or equal to 10(5) colony forming units/gram organisms present despite the absence of clinical signs of infection. Wound healing rates were linked to bacterial load as determined from quantitative biopsy--no growth was associated with a wound healing rate of 0.2 cm per week, 10(5) to 10(6) colony forming units/gram was associated with a healing rate of 0.15 cm per week, and greater than 10(6) colony forming units/gram was associated with 0.05 cm/per week healing rate. High bacterial burden impeded healing both before and after the application of the skin substitute. The authors will change their clinical practice to assess all diabetic neuropathic foot ulcers using quantitative skin biopsies before applying skin substitutes. All patients will be treated with combination antibiotics and repeat biopsies obtained with decreased bacterial burden (< 10(6) colony forming units/gram) prior to using any bioengineered skin substitute or growth factor treatment.

  14. Antibiotic eluting clay mineral (Laponite®) for wound healing application: an in vitro study.

    Science.gov (United States)

    Ghadiri, M; Chrzanowski, W; Rohanizadeh, R

    2014-11-01

    Different materials in form of sponge, hydrogel and film have been developed and formulated for treating and dressing burn wounds. In this study, the potential of Laponite, a gel forming clay, in combination with an antimicrobial agent (mafenide), as a wound dressing material was tested in vitro. Laponite/mafenide (Lap/Maf) hydrogel was formulated in three different ratios of Lap/Maf 1:1, 1:2, 1:3. Laponite/mafenide/alginate (Lap/Maf/Alg) film was also formulated by combining Lap/Maf gel (1:1) with alginate. Intercalation rate of mafenide into the layers of Laponite nanoparticles and physico-chemical properties, including wound dressing characteristics of materials were studied using various analytical methods. Furthermore, the degradation of materials and the release profile of mafenide were investigated in simulated wound exudates fluid and antibacterial effectiveness of the eluted mafenide was tested on a range of bacterial species. The cytotoxicity of materials was also evaluated in skin fibroblast culture. The results showed that mafenide molecules were intercalated between the nano-sized layers of Laponite. The eluted mafenide showed active antibacterial effects against all three tested bacteria. All intercalated mafenide released from Lap/Maf 1:1 and 1:2 gel formulations and nearly 80% release from 1:3 formulation during test period. No significant difference was observed in release profile of mafenide between Lap/Maf/Alg film and Lap/Maf formulations. Wound dressing tests on Lap/Maf/Alg film showed it is a breathable dressing and has capacity to absorb wound exudates. The study showed that prepared Lap/Maf composite has the potential to be used as an antibiotic eluting gel or film for wound healing application. Additionally, Laponite has shown benefits in wound healing processes by releasing Mg(2+) ions and thereby reducing the cytotoxic effect of mafenide on fibroblast cells. PMID:25027303

  15. Periodontal healing following guided tissue regeneration with citric acid and fibronectin application.

    Science.gov (United States)

    Caffesse, R G; Nasjleti, C E; Anderson, G B; Lopatin, D E; Smith, B A; Morrison, E C

    1991-01-01

    This study was undertaken to determine the effects of guided tissue regeneration (GTR) with and without citric acid conditioning and autologous fibronectin application. The study subjects were four female beagle dogs with spontaneous periodontitis. The dogs were given thorough root debridement and 4 weeks later, mucoperiosteal flaps were raised on both sides of the mandible involving the 2nd, 3rd, and 4th premolar and 1st molar teeth. After debridement, notches were placed on the roots at the level of supporting bone. Citric acid (pH 1) was topically applied for 3 minutes on the exposed root surfaces of one side (experimental). The roots were irrigated with normal saline solution. Both the root surfaces and the inner surface of the flap were then bathed in autologous fibronectin in saline. Following this, Gore-Tex periodontal material was adapted to the roots of each tooth and sutured. The contralateral side, serving as control, was treated by surgery and application of Gore-Tex periodontal material only. All membranes were removed 1 month after surgery, and the dogs sacrificed at 3 months. Both mesio-distal and bucco-lingual microscopic histological sections were evaluated by descriptive histology, and linear measurements and surface area determination of the furcal tissues were made. Periodontal healing following the use of GTR procedure resulted in an increase in connective tissue and alveolar bone regeneration. Adjunctive critic acid plus autologous fibronectin produced slightly better results, but these differences were not statistically significant for this sample. PMID:2002428

  16. Application of an effective medium theory for modeling ultrasound wave propagation in healing long bones.

    Science.gov (United States)

    Potsika, Vassiliki T; Grivas, Konstantinos N; Protopappas, Vasilios C; Vavva, Maria G; Raum, Kay; Rohrbach, Daniel; Polyzos, Demosthenes; Fotiadis, Dimitrios I

    2014-07-01

    Quantitative ultrasound has recently drawn significant interest in the monitoring of the bone healing process. Several research groups have studied ultrasound propagation in healing bones numerically, assuming callus to be a homogeneous and isotropic medium, thus neglecting the multiple scattering phenomena that occur due to the porous nature of callus. In this study, we model ultrasound wave propagation in healing long bones using an iterative effective medium approximation (IEMA), which has been shown to be significantly accurate for highly concentrated elastic mixtures. First, the effectiveness of IEMA in bone characterization is examined: (a) by comparing the theoretical phase velocities with experimental measurements in cancellous bone mimicking phantoms, and (b) by simulating wave propagation in complex healing bone geometries by using IEMA. The original material properties of cortical bone and callus were derived using serial scanning acoustic microscopy (SAM) images from previous animal studies. Guided wave analysis is performed for different healing stages and the results clearly indicate that IEMA predictions could provide supplementary information for bone assessment during the healing process. This methodology could potentially be applied in numerical studies dealing with wave propagation in composite media such as healing or osteoporotic bones in order to reduce the simulation time and simplify the study of complicated geometries with a significant porous nature.

  17. The stimulatory effects of topical application of radioactive lantern mantle powder on wound healing.

    Science.gov (United States)

    Mortazavi, S M J; Rahmani, M R; Rahnama, A; Saeed-Pour, A; Nouri, E; Hosseini, N; Aghaiee, M M

    2009-01-01

    Some people in different parts of Iran use burned mantles as a wound healing medicine. To perform surface area measurement, twenty rats were divided randomly into two groups of 10 animals each. The 1st group received topical burned radioactive lantern mantle powder at 1st-3rd day after making excision wounds. The 2nd group received non-radioactive lantern mantle powder. For histological study, 36 male rats randomly divided into two groups of 18 animals each. Full thickness excision wound (314+/-31.4 mm(2)) was made on the dorsal neck in all animals after inducing general anesthesia. For the first 3 days, cases received topical application of the radioactive lantern mantle powder. Finally, to measure the tensile strength, an incision was made on the dorsal neck of the rats. Surface area measurement of the wounds showed a progressive surface reduction in both groups. Histological study showed a significant statistically difference between cases and controls with respect to fibrinoid necrosis and neutrophilic exudate at the days 3 and 14. Considering the existence of granulation tissue, a significant difference was observed between case and control groups at days 3 and 7. Tensile strength study showed no significant difference between the cases and controls until 30 days after excision.

  18. Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications

    International Nuclear Information System (INIS)

    This study describes the design and synthesis of bacterial cellulose/hydroxyapatite nanocomposites for bone healing applications using a biomimetic approach. Bacterial cellulose (BC) with various surface morphologies (pellicles and tubes) was negatively charged by the adsorption of carboxymethyl cellulose (CMC) to initiate nucleation of calcium-deficient hydroxyapatite (cdHAp). The cdHAp was grown in vitro via dynamic simulated body fluid (SBF) treatments over a one week period. Characterization of the mineralized samples was done with X-ray Photoelectron Spectroscopy (XPS) and Field Emission Scanning Electron Microscopy (FESEM) with Energy Dispersive Spectroscopy (EDS). The amount of cdHAp observed varied among different samples. XPS demonstrated that the atomic presence of calcium and phosphorus ranged from 0.44 at.% to 7.71 at.% Ca and 0.27 at.% to 11.18 at.% P. The Ca/P overall ratio ranged from 1.22 to 1.92. FESEM images showed that the cdHAp crystal size increased with increasing nanocellulose fibril density. To determine the viability of the scaffolds in vitro, the morphology and differentiation of osteoprogenitor cells was analyzed using fluorescence microscopy and alkaline phosphatase gene expression. The presence of cdHAp crystals on BC surfaces resulted in increased cell attachment.

  19. Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Kristen A., E-mail: kazimmer@vt.edu [Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24060 (United States); School of Biomedical Engineering Sciences, Virginia Tech, Blacksburg, VA 24060 (United States); LeBlanc, Jill M.; Sheets, Kevin T.; Fox, Robert W. [Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24060 (United States); Gatenholm, Paul [Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24060 (United States); School of Biomedical Engineering Sciences, Virginia Tech, Blacksburg, VA 24060 (United States)

    2011-01-01

    This study describes the design and synthesis of bacterial cellulose/hydroxyapatite nanocomposites for bone healing applications using a biomimetic approach. Bacterial cellulose (BC) with various surface morphologies (pellicles and tubes) was negatively charged by the adsorption of carboxymethyl cellulose (CMC) to initiate nucleation of calcium-deficient hydroxyapatite (cdHAp). The cdHAp was grown in vitro via dynamic simulated body fluid (SBF) treatments over a one week period. Characterization of the mineralized samples was done with X-ray Photoelectron Spectroscopy (XPS) and Field Emission Scanning Electron Microscopy (FESEM) with Energy Dispersive Spectroscopy (EDS). The amount of cdHAp observed varied among different samples. XPS demonstrated that the atomic presence of calcium and phosphorus ranged from 0.44 at.% to 7.71 at.% Ca and 0.27 at.% to 11.18 at.% P. The Ca/P overall ratio ranged from 1.22 to 1.92. FESEM images showed that the cdHAp crystal size increased with increasing nanocellulose fibril density. To determine the viability of the scaffolds in vitro, the morphology and differentiation of osteoprogenitor cells was analyzed using fluorescence microscopy and alkaline phosphatase gene expression. The presence of cdHAp crystals on BC surfaces resulted in increased cell attachment.

  20. Inherently safe light water reactors

    International Nuclear Information System (INIS)

    Today's large nuclear power reactors of world-wise use have been designed based on the philosophy. It seems that recent less electricity demand rates, higher capital cost and the TMI accident let us acknowledge relative small and simplified nuclear plants with safer features, and that Chernobyl accident in 1983 underlines the needs of intrinsic and passive safety characteristics. In such background, several inherently safe reactor concepts have been presented abroad and domestically. First describing 'Can inherently safe reactors be designed,' then I introduce representative reactor concepts of inherently safe LWRs advocated abroad so far. All of these innovative reactors employ intrinsic and passive features in their design, as follows: (1) PIUS, an acronym for Process Inherent Ultimate Safety, or an integral PWR with passive heat sink and passive shutdown mechanism, advocated by ASEA-ATOM of Sweden. (2) MAP(Minimum Attention Plant), or a self-pressurized, natural circulation integral PWR, promoted by CE Inc. of the U.S. (3) TPS(TRIGA Power System), or a compact PWR with passive heat sink and inherent fuel characteristics of large prompt temperature coefficient, prompted by GA Technologies Inc. of the U.S. (4) PIUS-BWR, or an inherently safe BWR employing passively actuated fluid valves, in competition with PIUS, prompted by ORNL of the U.S. Then, I will describe the domestic trends in Japan and the innovative inherently safe LWRs presented domestically so far. (author)

  1. Topical Application of Sadat-Habdan Mesenchymal Stimulating Peptide (SHMSP) Accelerates Wound Healing in Diabetic Rabbits

    OpenAIRE

    Abdulmohsen H Al-Elq; Mir Sadat-Ali; Mohamed Elsharawy; Ibrahim Al-Habdan; Fatin Othman Al-Aqeel; Naim, Magda M.

    2012-01-01

    Objective. Diminished wound healing is a common problem in diabetic patients due to diminished angiogenesis. SHMSP was found to promote angiogenesis. The present study was carried out to examine the effect of this peptide in healing of wounds in diabetic rabbits. Materials and Methods. Twenty male New Zealand rabbits were used in this study. Diabetes mellitus was induced and the rabbits were randomly divided into two equal groups: control group and peptide group. A-full thickness punch biopsy...

  2. Stem Cells in Skin Regeneration, Wound Healing, and Their Clinical Applications

    OpenAIRE

    Nkemcho Ojeh; Irena Pastar; Marjana Tomic-Canic; Olivera Stojadinovic

    2015-01-01

    The skin is the largest organ of the body and has an array of functions. Skin compartments, epidermis, and hair follicles house stem cells that are indispensable for skin homeostasis and regeneration. These stem cells also contribute to wound repair, resulting in restoration of tissue integrity and function of damaged tissue. Unsuccessful wound healing processes often lead to non-healing wounds. Chronic wounds are caused by depletion of stem cells and a variety of other cellular and molecular...

  3. Application of laser scan microscopy in vivo for wound healing characterization

    International Nuclear Information System (INIS)

    Considering the advancing age of the population, wound healing disturbances are becoming increasingly important in clinical routine. The development of wound healing creams and lotions as well as therapy control require an objective evaluation of the wound healing process, which represents the destruction of the barrier. Therefore, transepidermal water loss measurements are often carried out. These measurements have the disadvantage that they are disturbed by the interstitial fluid, which is located on the surface of chronic wounds and also by water components of the creams and lotions. Additionally, the TEWL measurements are very sensitive to temperature changes and to the anxiety of the volunteers. In the present study, in vivo laser scanning microscopy was used to analyze the reepithelialization and barrier recovery of standardized wounds produced by the suction blister technique. It was demonstrated that this non-invasive, on-line spectroscopic method allows the evaluation of the wound healing process, without any disturbances. It was found that the wound healing starts not only from the edges of the wound, but also out of the hair follicles. The in vivo laser scanning microscopy is well suited to evaluate the efficacy of wound healing creams and for therapy control

  4. Self-healing Characteristics of Collagen Coatings with Respect to Surface Abrasion

    Science.gov (United States)

    Kim, Chang-Lae; Kim, Dae-Eun

    2016-03-01

    A coating based on collagen with self-healing properties was developed for applications in mechanical components that are prone to abrasion due to contact with a counter surface. The inherent swelling behavior of collagen in water was exploited as the fundamental mechanism behind self-healing of a wear scar formed on the surface. The effects of freeze-drying process and water treatment of the collagen coatings on their mechanical and self-healing properties were analyzed. Water was also used as the medium to trigger the self-healing effect of the collagen coatings after the wear test. It was found that collagen coatings without freeze-drying did not demonstrate any self-healing effect whereas the coatings treated by freeze-drying process showed remarkable self-healing effect. Overall, collagen coatings that were freeze-dried and water treated showed the best friction and self-healing properties. Repeated self-healing ability of these coatings with respect to wear scar was also demonstrated. It was also confirmed that the self-healing property of the collagen coating was effective over a relatively wide range of temperature.

  5. UV-Triggered Self-Healing of a Single Robust SiO2 Microcapsule Based on Cationic Polymerization for Potential Application in Aerospace Coatings.

    Science.gov (United States)

    Guo, Wanchun; Jia, Yin; Tian, Kesong; Xu, Zhaopeng; Jiao, Jiao; Li, Ruifei; Wu, Yuehao; Cao, Ling; Wang, Haiyan

    2016-08-17

    UV-triggered self-healing of single microcapsules has been a good candidate to enhance the life of polymer-based aerospace coatings because of its rapid healing process and healing chemistry based on an accurate stoichiometric ratio. However, free radical photoinitiators used in single microcapsules commonly suffer from possible deactivation due to the presence of oxygen in the space environment. Moreover, entrapment of polymeric microcapsules into coatings often involves elevated temperature or a strong solvent, probably leading to swelling or degradation of polymer shell, and ultimately the loss of active healing species into the host matrix. We herein describe the first single robust SiO2 microcapsule self-healing system based on UV-triggered cationic polymerization for potential application in aerospace coatings. On the basis of the similarity of solubility parameters of the active healing species and the SiO2 precursor, the epoxy resin and cationic photoinitiator are successfully encapsulated into a single SiO2 microcapsule via a combined interfacial/in situ polymerization. The single SiO2 microcapsule shows solvent resistance and thermal stability, especially a strong resistance for thermal cycling in a simulated space environment. In addition, the up to 89% curing efficiency of the epoxy resin in 30 min, and the obvious filling of scratches in the epoxy matrix demonstrate the excellent UV-induced healing performance of SiO2 microcapsules, attributed to a high load of healing species within the capsule (up to 87 wt %) and healing chemistry based on an accurate stoichiometric ratio of the photoinitiator and epoxy resin at 9/100. More importantly, healing chemistry based on a UV-triggered cationic polymerization mechanism is not sensitive to oxygen, extremely facilitating future embedment of this single SiO2 microcapsule in spacecraft coatings to achieve self-healing in a space environment with abundant UV radiation and oxygen.

  6. UV-Triggered Self-Healing of a Single Robust SiO2 Microcapsule Based on Cationic Polymerization for Potential Application in Aerospace Coatings.

    Science.gov (United States)

    Guo, Wanchun; Jia, Yin; Tian, Kesong; Xu, Zhaopeng; Jiao, Jiao; Li, Ruifei; Wu, Yuehao; Cao, Ling; Wang, Haiyan

    2016-08-17

    UV-triggered self-healing of single microcapsules has been a good candidate to enhance the life of polymer-based aerospace coatings because of its rapid healing process and healing chemistry based on an accurate stoichiometric ratio. However, free radical photoinitiators used in single microcapsules commonly suffer from possible deactivation due to the presence of oxygen in the space environment. Moreover, entrapment of polymeric microcapsules into coatings often involves elevated temperature or a strong solvent, probably leading to swelling or degradation of polymer shell, and ultimately the loss of active healing species into the host matrix. We herein describe the first single robust SiO2 microcapsule self-healing system based on UV-triggered cationic polymerization for potential application in aerospace coatings. On the basis of the similarity of solubility parameters of the active healing species and the SiO2 precursor, the epoxy resin and cationic photoinitiator are successfully encapsulated into a single SiO2 microcapsule via a combined interfacial/in situ polymerization. The single SiO2 microcapsule shows solvent resistance and thermal stability, especially a strong resistance for thermal cycling in a simulated space environment. In addition, the up to 89% curing efficiency of the epoxy resin in 30 min, and the obvious filling of scratches in the epoxy matrix demonstrate the excellent UV-induced healing performance of SiO2 microcapsules, attributed to a high load of healing species within the capsule (up to 87 wt %) and healing chemistry based on an accurate stoichiometric ratio of the photoinitiator and epoxy resin at 9/100. More importantly, healing chemistry based on a UV-triggered cationic polymerization mechanism is not sensitive to oxygen, extremely facilitating future embedment of this single SiO2 microcapsule in spacecraft coatings to achieve self-healing in a space environment with abundant UV radiation and oxygen. PMID:27463101

  7. Self-healing supramolecular bioelastomers with shape memory property as a multifunctional platform for biomedical applications via modular assembly.

    Science.gov (United States)

    Wu, Yaobin; Wang, Ling; Zhao, Xin; Hou, Sen; Guo, Baolin; Ma, Peter X

    2016-10-01

    Mimicking native functional dynamics for traditional biomaterials such as thermoset elastomers is limited due to their lack of responsiveness to biological stimuli and difficulties to incorporate biofunctionalities. Furthermore, the mechanical fracture of traditional thermoset elastomers caused by irreversible covalent bond rupture would lead to their permanent loss of properties. To overcome these challenges, degradable self-healed supramolecular bioelastomers are designed by an elastic poly(glycerol sebacate) (PGS) backbone and multiple hydrogen-bonding ureido-pyrimidinone (UPy) grafts. These supramolecular elastic polymers exhibit efficient self-healing, rapid shape-memory abilities and highly tunable mechanical properties due to the dynamic supramolecular interactions, and perform a good biocompatibility in vitro and a mild host response in vivo. By combining modular approaches, these supramolecular bioelastomers have been further assembled into a multifunctional platform to expand their applications in different biomedical fields. These include a complex 3D scaffold with shape-memory capacity and anisotropic mechanical properties, a controllable drug delivery model via a layer-by-layer technique, a surface antibacterial composite by physical modification, and a spatial oriented cell co-culture system via incorporating different cell-laden self-healing films, demonstrating their potential as building blocks in a wide range of biomedical applications where dynamic properties and biological functions are desired.

  8. Self-healing supramolecular bioelastomers with shape memory property as a multifunctional platform for biomedical applications via modular assembly.

    Science.gov (United States)

    Wu, Yaobin; Wang, Ling; Zhao, Xin; Hou, Sen; Guo, Baolin; Ma, Peter X

    2016-10-01

    Mimicking native functional dynamics for traditional biomaterials such as thermoset elastomers is limited due to their lack of responsiveness to biological stimuli and difficulties to incorporate biofunctionalities. Furthermore, the mechanical fracture of traditional thermoset elastomers caused by irreversible covalent bond rupture would lead to their permanent loss of properties. To overcome these challenges, degradable self-healed supramolecular bioelastomers are designed by an elastic poly(glycerol sebacate) (PGS) backbone and multiple hydrogen-bonding ureido-pyrimidinone (UPy) grafts. These supramolecular elastic polymers exhibit efficient self-healing, rapid shape-memory abilities and highly tunable mechanical properties due to the dynamic supramolecular interactions, and perform a good biocompatibility in vitro and a mild host response in vivo. By combining modular approaches, these supramolecular bioelastomers have been further assembled into a multifunctional platform to expand their applications in different biomedical fields. These include a complex 3D scaffold with shape-memory capacity and anisotropic mechanical properties, a controllable drug delivery model via a layer-by-layer technique, a surface antibacterial composite by physical modification, and a spatial oriented cell co-culture system via incorporating different cell-laden self-healing films, demonstrating their potential as building blocks in a wide range of biomedical applications where dynamic properties and biological functions are desired. PMID:27424213

  9. Self healing materials. Concept and applications; Zelf herstellende materialen. Concept en toepassingen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-06-15

    In 2010, self healing materials are far beyond the science fiction stage. Indeed, the Netherlands is front-runner in the development of these materials. And that is what this booklet is about. Readers who would like to know the basic ideas of self healing materials will find them in the first chapter. If you are already familiar with self healing materials and would like to know the state of the art of technological developments in the Netherlands, please read chapter two. If you are interested in the (future) possibilities of self healing materials, please read the third chapter. [Dutch] Het Nederlandse Innovatiegerichte Onderzoeksprogramma (IOP) 'Self Healing Materials' houdt zich bezig met de ontwikkeling van zelfherstellend gedrag in vijf verschillende materiaalklassen: Plastics en Composieten, Beton en Asfalt, Coatings, Metalen en Keramiek, en materialen voor energieopwekking en energieopslag (zonnecellen, batterijen e.d.) en microelectronica. In dit rapport wordt een overzicht gegeven van de huidige en nabije stand van zaken op het gebied van onderzoek naar zelfherstellende materialen in Nederland.

  10. In Vitro Wound Healing Improvement by Low-Level Laser Therapy Application in Cultured Gingival Fibroblasts

    Directory of Open Access Journals (Sweden)

    Fernanda G. Basso

    2012-01-01

    Full Text Available The aim of this study was to determine adequate energy doses using specific parameters of LLLT to produce biostimulatory effects on human gingival fibroblast culture. Cells (3×104 cells/cm2 were seeded on 24-well acrylic plates using plain DMEM supplemented with 10% fetal bovine serum. After 48-hour incubation with 5% CO2 at 37°C, cells were irradiated with a InGaAsP diode laser prototype (LASERTable; 780±3 nm; 40 mW with energy doses of 0.5, 1.5, 3, 5, and 7 J/cm2. Cells were irradiated every 24 h totalizing 3 applications. Twenty-four hours after the last irradiation, cell metabolism was evaluated by the MTT assay and the two most effective doses (0.5 and 3 J/cm2 were selected to evaluate the cell number (trypan blue assay and the cell migration capacity (wound healing assay; transwell migration assay. Data were analyzed by the Kruskal-Wallis and Mann-Whitney nonparametric tests with statistical significance of 5%. Irradiation of the fibroblasts with 0.5 and 3 J/cm2 resulted in significant increase in cell metabolism compared with the nonrradiated group (P<0.05. Both energy doses promoted significant increase in the cell number as well as in cell migration (P<0.05. These results demonstrate that, under the tested conditions, LLLT promoted biostimulation of fibroblasts in vitro.

  11. 基因治疗在创伤愈合中的应用%Gene therapy in wound healing applications

    Institute of Scientific and Technical Information of China (English)

    曹大勇; 陈斌; 付晋凤

    2011-01-01

    创伤修复是一个复杂的生物学过程,各种生长因子、炎症介质等在创面愈合过程中扮演着重要角色.基因治疗是现代生物治疗的一项重要技术,在创伤修复,尤其是难愈性创面的治疗中具有广阔的应用前景.基因治疗分为病毒载体导入系统(逆转录病毒、慢病毒、腺病毒、单纯疱疹病毒和腺病毒相关病毒等)和非病毒载体导入系统的基因感染(直接注射、显微注射、基因枪、电穿孔、脂质体和脂质体复合物、阳离子多聚物等).本文对创伤修复及基因治疗在该领域的应用进行文献综述.%Wound healing is a complex biological process, during which various growth factors, inflammatory mediators, and so on, play an important role. Gene therapy is an important technology in modern biological treatment. In the future, gene therapy wiu have a widely application prospects in the treatment of wound healing, especially non-healing wounds. Gene therapy could be realized via viral vector transfer system ( Retrovirus, lentivirus, adenovirus, herpes simplex virus and adeno-associated virus, etc ), or non-viral vector transfer system ( direct injection, microinjection, gene gun, electroporation, liposomes and liposome complexes, cationic polymers, etc ). In this paper, the applications of gene therapy in wound healing will be reviewed.

  12. Kinetic and Reaction Pathway Analysis in the Application of Botulinum Toxin A for Wound Healing

    Directory of Open Access Journals (Sweden)

    Frank J. Lebeda

    2012-01-01

    Full Text Available A relatively new approach in the treatment of specific wounds in animal models and in patients with type A botulinum toxin is the focus of this paper. The indications or conditions include traumatic wounds (experimental and clinical, surgical (incision wounds, and wounds such as fissures and ulcers that are signs/symptoms of disease or other processes. An objective was to conduct systematic literature searches and take note of the reactions involved in the healing process and identify corresponding pharmacokinetic data. From several case reports, we developed a qualitative model of how botulinum toxin disrupts the vicious cycle of muscle spasm, pain, inflammation, decreased blood flow, and ischemia. We transformed this model into a minimal kinetic scheme for healing chronic wounds. The model helped us to estimate the rate of decline of this toxin's therapeutic effect by calculating the rate of recurrence of clinical symptoms after a wound-healing treatment with this neurotoxin.

  13. Curcumin-Loaded Chitosan/Gelatin Composite Sponge for Wound Healing Application

    Directory of Open Access Journals (Sweden)

    Van Cuong Nguyen

    2013-01-01

    Full Text Available Three composite sponges were made with 10% of curcumin and by using polymers, namely, chitosan and gelatin with various ratios. The chemical structure and morphology were evaluated by FTIR and SEM. These sponges were evaluated for water absorption capacity, antibacterial activity, in vitro drug release, and in vivo wound healing studies by excision wound model using rabbits. The in vivo study presented a greater wound closure in wounds treated with curcumin-composite sponge than those with composite sponge without curcumin and untreated group. These obtained results showed that combination of curcumin, chitosan and gelatin could improve the wound healing activity in comparison to chitosan, and gelatin without curcumin.

  14. Development and application of bacteria-based self-healing materials

    NARCIS (Netherlands)

    Jonkers, H.M.

    2012-01-01

    In 2006 a research program was launched at Delft University of Technology aiming for the development of a new class of materials, i.e. materials with an inbuilt healing mechanism. The idea is that these novel materials can self repair damage resulting in substantially decreased maintenance and repai

  15. Shaping single photons and biphotons by inherent losses

    Science.gov (United States)

    Su, Wei-Ming; Chinnarasu, Ravikumar; Kuo, Chang-Hau; Chuu, Chih-Sung

    2016-09-01

    Inherent loss is always to be avoided in generating single photons or biphotons, but interestingly it provides opportunities for manipulating the photon wave packet. In this paper we show how inherent loss in parametric down-conversion can be employed to tailor the wave packets of single photons and biphotons. As an example, we propose a scheme to realize a single photon in a single cycle using inherent loss. Our work has potential applications in quantum communication, quantum computation, and quantum interface.

  16. Developing Flexible, High Performance Polymers with Self-Healing Capabilities

    Science.gov (United States)

    Jolley, Scott T.; Williams, Martha K.; Gibson, Tracy L.; Caraccio, Anne J.

    2011-01-01

    Flexible, high performance polymers such as polyimides are often employed in aerospace applications. They typically find uses in areas where improved physical characteristics such as fire resistance, long term thermal stability, and solvent resistance are required. It is anticipated that such polymers could find uses in future long duration exploration missions as well. Their use would be even more advantageous if self-healing capability or mechanisms could be incorporated into these polymers. Such innovative approaches are currently being studied at the NASA Kennedy Space Center for use in high performance wiring systems or inflatable and habitation structures. Self-healing or self-sealing capability would significantly reduce maintenance requirements, and increase the safety and reliability performance of the systems into which these polymers would be incorporated. Many unique challenges need to be overcome in order to incorporate a self-healing mechanism into flexible, high performance polymers. Significant research into the incorporation of a self-healing mechanism into structural composites has been carried out over the past decade by a number of groups, notable among them being the University of I1linois [I]. Various mechanisms for the introduction of self-healing have been investigated. Examples of these are: 1) Microcapsule-based healant delivery. 2) Vascular network delivery. 3) Damage induced triggering of latent substrate properties. Successful self-healing has been demonstrated in structural epoxy systems with almost complete reestablishment of composite strength being achieved through the use of microcapsulation technology. However, the incorporation of a self-healing mechanism into a system in which the material is flexible, or a thin film, is much more challenging. In the case of using microencapsulation, healant core content must be small enough to reside in films less than 0.1 millimeters thick, and must overcome significant capillary and surface

  17. Effect of Topical Application of Silymarin (Silybum marianum on Excision Wound Healing in Albino Rats

    Directory of Open Access Journals (Sweden)

    Naghmeh Ghannadian

    2012-09-01

    Full Text Available Silymarin, an extract from Silybum marianum, has been shown to have antioxidant properties. However, there is no scientific report on wound healing activity of the silymarin. The purpose of this study was to evaluate the effect of topical administration of silymarin on excision wound healing in rats. Excision wounds were made on the back of rats. Rats were divided into three groups, as control, vehicle, and treatment. Vehicle and treatment groups received polyethylene glycol and silymarin dissolved in polyethylene glycol, respectively. The control group did not receive any treatment. The wound tissues were removed on 5th, 10th and 15th day for histopathological analysis and total collagen determination by hydroxyproline assay. Results showed that silymarin increased epithelialization and decreased inflammation but did not have any effect on percentage of wound contraction, collagenization and hydroxyproline levels. It was concluded that silymarin can significantly stimulate epithelialization and reduce inflammation in full-thickness wounds in rats.

  18. Raman Microscopy and Imaging: Applications to Skin Pharmacology and Wound Healing

    Science.gov (United States)

    Flach, Carol R.; Zhang, Guojin; Mendelsohn, Richard

    The utility of confocal Raman microscopy to study biological events in skin is demonstrated with three examples. (i) monitoring the spatial and structural differences between native and cultured skin, (ii) tracking the permeation and biochemical transformation in skin of a Vitamin E derivative and (iii) tracking the spatial distribution of three major skin proteins (keratin, collagen, and elastin) during wound healing in an explant skin model.

  19. Application of laser scanning microscopy for the characterization of wound healing

    OpenAIRE

    Antoniou, Christina; Sterry, Wolfram; Patzelt, Alexa; Kramer, Axel; Meyer, Lars; Lademann, Jürgen; Alborova, Alena

    2007-01-01

    Optical non-invasive methods have become more and more important for the characterization of skin lesions and for therapy control. In vivo laser scanning microscopy is a promising method which can be used for the analysis of cellular structures in the skin up to a depth of 250 µm. Therefore, laser scanning microscopy (LSM) is well-suited for the characterization of wound healing processes. In contrast to measurements of the transepidermal waterloss (TEWL) the laser scanning microscopy allows ...

  20. Inherent emotional quality of human speech sounds.

    Science.gov (United States)

    Myers-Schulz, Blake; Pujara, Maia; Wolf, Richard C; Koenigs, Michael

    2013-01-01

    During much of the past century, it was widely believed that phonemes-the human speech sounds that constitute words-have no inherent semantic meaning, and that the relationship between a combination of phonemes (a word) and its referent is simply arbitrary. Although recent work has challenged this picture by revealing psychological associations between certain phonemes and particular semantic contents, the precise mechanisms underlying these associations have not been fully elucidated. Here we provide novel evidence that certain phonemes have an inherent, non-arbitrary emotional quality. Moreover, we show that the perceived emotional valence of certain phoneme combinations depends on a specific acoustic feature-namely, the dynamic shift within the phonemes' first two frequency components. These data suggest a phoneme-relevant acoustic property influencing the communication of emotion in humans, and provide further evidence against previously held assumptions regarding the structure of human language. This finding has potential applications for a variety of social, educational, clinical, and marketing contexts.

  1. Application of modified-alginate encapsulated carbonate producing bacteria in concrete: a promising strategy for crack self-healing

    Directory of Open Access Journals (Sweden)

    Jianyun eWang

    2015-10-01

    Full Text Available Self-healing concrete holds promising benefits to reduce the cost for concrete maintenance and repair as cracks are autonomously repaired without any human intervention. In this study, the application of a carbonate precipitating bacterium Bacillus sphaericus was explored. Regarding the harsh condition in concrete, B. sphaericus spores were first encapsulated into a modified-alginate based hydrogel (AM-H which was proven to have a good compatibility with the bacteria and concrete regarding the influence on bacterial viability and concrete strength. Experimental results show that the spores were still viable after encapsulation. Encapsulated spores can precipitate a large amount of CaCO3 in/on the hydrogel matrix (around 70% by weight. Encapsulated B. sphaericus spores were added into mortar specimens and bacterial in-situ activity was demonstrated by the oxygen consumption on the mimicked crack surface. Specimens with free spores added showed no oxygen consumption. This indicates the efficient protection of the hydrogel for spores in concrete. To conclude, the AM-H encapsulated carbonate precipitating bacteria have great potential to be used for crack self-healing in concrete applications.

  2. Bacterial cellulose-kaolin nanocomposites for application as biomedical wound healing materials

    Science.gov (United States)

    Wanna, Dwi; Alam, Catharina; Toivola, Diana M.; Alam, Parvez

    2013-12-01

    This short communication provides preliminary experimental details on the structure-property relationships of novel biomedical kaolin-bacterial cellulose nanocomposites. Bacterial cellulose is an effective binding agent for kaolin particles forming reticulated structures at kaolin-cellulose interfaces and entanglements when the cellulose fraction is sufficiently high. The mechanical performance of these materials hence improves with an increased fraction of bacterial cellulose, though this also causes the rate of blood clotting to decrease. These composites have combined potential as both short-term (kaolin) and long-term (bacterial cellulose) wound healing materials.

  3. Symbiosis theory-directed green synthesis of silver nanoparticles and their application in infected wound healing

    Directory of Open Access Journals (Sweden)

    Wen L

    2016-06-01

    Full Text Available Lu Wen,1 Pei Zeng,1 Liping Zhang,1 Wenli Huang,1 Hui Wang,2 Gang Chen1 1Department of Pharmaceutics, School of Pharmacy, 2School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China Abstract: In this study, silver nanoparticles (AgNPs were synthesized for the first time using an antibacterial endophytic fungus of Chinese medicinal herb Orchidantha chinensis, which has anti-inflammatory and antimicrobial activities. The AgNPs were analyzed by various characterization techniques to reveal their morphology, chemical composition, and stability. Also, the relationship between Chinese medicinal herbs, endophytic fungi, and the property of AgNPs was investigated for the first time. Interestingly, an experiment performed in this study revealed the proteins produced by the endophytic fungus to be capped on the nanoparticles, which led to an increase in the stability of spherical and polydispersed AgNPs with low aggregation for over 6 months. More importantly, further study demonstrated that the AgNPs possessed superior antibacterial activity and effectively promoted wound healing. Altogether, the biosynthesis of active AgNPs using the endophytic fungus from Chinese medicinal herb based on the symbiosis theory is simple, eco-friendly, and promising. Keywords: silver nanoparticles, Orchidantha chinensis, endophytic fungi, symbiosis theory, wound healing

  4. Self Healing Coating/Film Project

    Science.gov (United States)

    Summerfield, Burton; Thompson, Karen; Zeitlin, Nancy; Mullenix, Pamela; Calle, Luz; Williams, Martha

    2015-01-01

    Kennedy Space Center (KSC) has been developing self healing materials and technologies. This project seeks to further develop self healing functionality in thin films for applications such as corrosion protective coatings, inflatable structures, space suit materials, and electrical wire insulation.

  5. Self healing in polymers and polymer composites. Concepts, realization and outlook: A review

    Directory of Open Access Journals (Sweden)

    2008-04-01

    Full Text Available Formation of microcracks is a critical problem in polymers and polymer composites during their service in structural applications. Development and coalescence of microcracks would bring about catastrophic failure of the materials and then reduce their lifetimes. Therefore, early sensing, diagnosis and repair of microcracks become necessary for removing the latent perils. In this context, the materials possessing self-healing function are ideal for long-term operation. Self-repairing polymers and polymer composites have attracted increasing research interests. Attempts have been made to develop solutions in this field. The present article reviews state-of-art of the achievements on the topic. According to the ways of healing, the smart materials are classified into two categories: (i intrinsic self-healing ones that are able to heal cracks by the polymers themselves, and (ii extrinsic in which healing agent has to be pre-embedded. The advances in this field show that selection and optimization of proper repair mechanisms are prerequisites for high healing efficiency. It is a challenging job to either invent new polymers with inherent crack repair capability or integrate existing materials with novel healing system.

  6. Healing singing

    OpenAIRE

    Gretsch, Renate

    2013-01-01

    This study confirms the hypothesis that healing singing leads to positive emotional experiences in relation to other people through social resonance and a strong shared bond. People who have had negative interpersonal relationship experiences that have led to depression and fear respond favourably to healing singing, because it makes a positive encounter possible. Even if their resonance ability is limited by their illness, they can be reached through music, which allows them to slowly start ...

  7. Inherently Unstable Internal Gravity Waves

    CERN Document Server

    Liang, Y

    2016-01-01

    Here we show that there exist internal gravity waves that are inherently unstable, that is, they cannot exist in nature for a long time. The instability mechanism is a one-way (irreversible) harmonic-generation resonance that permanently transfers the energy of an internal wave to its higher harmonics. We show that, in fact, there are countably infinite number of such unstable waves. For the harmonic-generation resonance to take place, nonlinear terms in the free surface boundary condition play a pivotal role, and the instability does not obtain if a simplified boundary condition such as rigid lid or linear form is employed. Harmonic-generation resonance presented here also provides a mechanism for the transfer of the energy of the internal waves to the higher-frequency part of the spectrum where internal waves are more prone to breaking, hence losing energy to turbulence and heat and contributing to oceanic mixing.

  8. Data on glycerol/tartaric acid-based copolymer containing ciprofloxacin for wound healing applications

    Directory of Open Access Journals (Sweden)

    E. De Giglio

    2016-06-01

    Full Text Available This data article is related to our recently published research paper “Exploiting a new glycerol-based copolymer as a route to wound healing: synthesis, characterization and biocompatibility assessment", De Giglio et al. (Colloids and Surfaces B: Biointerfaces 136 (2015 600–611 [1]. The latter described a new copolymer derived from glycerol and tartaric acid (PGT. Herein, an investigation about the PGT-ciprofloxacin (CIP interactions by means of Fourier Transform Infrared Spectroscopy (FT-IR acquired in Attenuated Total Reflectance (ATR mode and Differential Scanning Calorimetry (DSC was reported. Moreover, CIP release experiments on CIP-PGT patches were performed by High Performance Liquid Chromatography (HPLC at different pH values.

  9. Fabrication, Characterization, and Evaluation of Bionanocomposites Based on Natural Polymers and Antibiotics for Wound Healing Applications

    Directory of Open Access Journals (Sweden)

    Marius Rădulescu

    2016-06-01

    Full Text Available The aim of our research activity was to obtain a biocompatible nanostructured composite based on naturally derived biopolymers (chitin and sodium alginate loaded with commercial antibiotics (either Cefuroxime or Cefepime with dual functions, namely promoting wound healing and assuring the local delivery of the loaded antibiotic. Compositional, structural, and morphological evaluations were performed by using the thermogravimetric analysis (TGA, scanning electron microscopy (SEM, and fourier transform infrared spectroscopy (FTIR analytical techniques. In order to quantitatively and qualitatively evaluate the biocompatibility of the obtained composites, we performed the tetrazolium-salt (MTT and agar diffusion in vitro assays on the L929 cell line. The evaluation of antimicrobial potential was evaluated by the viable cell count assay on strains belonging to two clinically relevant bacterial species (i.e., Escherichia coli and Staphylococcus aureus.

  10. Robust synthesis of epoxy resin-filled microcapsules for application to self-healing materials.

    Science.gov (United States)

    Bolimowski, Patryk A; Bond, Ian P; Wass, Duncan F

    2016-02-28

    Mechanically and thermally robust microcapsules containing diglycidyl ether bisphenol A-based epoxy resin and a high-boiling-point organic solvent were synthesized in high yield using in situ polymerization of urea and formaldehyde in an oil-in-water emulsion. Microcapsules were characterized in terms of their size and size distribution, shell surface morphology and thermal resistance to the curing cycles of commercially used epoxy polymers. The size distribution of the capsules and characteristics such as shell thickness can be controlled by the specific parameters of microencapsulation, including concentrations of reagents, stirrer speed and sonication. Selected microcapsules, and separated core and shell materials, were analysed using thermogravimetric analysis and differential scanning calorimetry. It is demonstrated that capsules lose minimal 2.5 wt% at temperatures no higher than 120°C. These microcapsules can be applied to self-healing carbon fibre composite structural materials, with preliminary results showing promising performance. PMID:26755765

  11. A novel hypothesis: the application of platelet-rich plasma can promote the clinical healing of white-white meniscal tears.

    Science.gov (United States)

    Wei, Li-Cheng; Gao, Shu-Guang; Xu, Mai; Jiang, Wei; Tian, Jian; Lei, Guang-Hua

    2012-08-01

    The white-white tears (meniscus lesion completely in the avascular zone) are without blood supply and theoretically cannot heal. Basal research has demonstrated that menisci are unquestionably important in load bearing, load redistribution, shock absorption, joint lubrication and the stabilization of the knee joint. It has been proven that partial or all-meniscusectomy results in an accelerated degeneration of cartilage and an increased rate of early osteoarthritis. Knee surgeons must face the difficult decision of removing or, if possible, retaining the meniscus; if it is possible to retain the meniscus, surgeons must address the difficulties of meniscal healing. Some preliminary approaches have progressed to improve meniscal healing. However, the problem of promoting meniscal healing in the avascular area has not yet been resolved. The demanding nature of the approach as well as its low utility and efficacy has impeded the progress of these enhancement techniques. Platelet-rich plasma (PRP) is a platelet concentration derived from autologous blood. In recent years, PRP has been used widely in preclinical and clinical applications for bone regeneration and wound healing. Therefore, we hypothesize that the application of platelet-rich plasma for white-white meniscal tears will be a simple and novel technique of high utility in knee surgery.

  12. High Temperature Lightweight Self-Healing Ceramic Composites for Aircraft Engine Applications

    Science.gov (United States)

    Raj, Sai V.; Singh, Mrityunjay; Bhatt, Ramakrishna T.

    2014-01-01

    The present research effort was undertaken to develop a new generation of SiC fiber- reinforced engineered matrix composites (EMCs) with sufficient high temperature plasticity to reduce crack propagation and self-healing capabilities to fill surface-connected cracks to prevent the oxygen ingress to the fibers. A matrix engineered with these capabilities is expected to increase the load bearing capabilities of SiCSiC CMCs at high temperatures. Several matrix compositions were designed to match the coefficient of thermal expansion (CTE) of the SiC fibers using a rule of mixture (ROM) approach. The CTE values of these matrices were determined and it was demonstrated that they were generally in good agreement with that of monolithic SiC between room temperature and 1525 K. The parameters to hot press the powders were optimized, and specimens were fabricated for determining bend strength, CTE, oxidation and microstructural characteristics of the engineered matrices. The oxidation tests revealed that some of the matrices exhibited catastrophic oxidation, and therefore, these were eliminated from further consideration. Two promising compositions were down selected based on these results for further development. Four-point bend tests were conducted on these two promising matrices between room temperature and 1698 K. Although theses matrices were brittle and failed at low stresses at room temperature, they exhibited high temperature ductility and higher stresses at the higher temperatures. The effects of different additives on the self-healing capabilities of these matrices were investigated. The results of preliminary studies conducted to slurry and melt infiltration trials with CrSi2 are described.

  13. Rapid self-healing hydrogels

    Science.gov (United States)

    Phadke, Ameya; Zhang, Chao; Arman, Bedri; Hsu, Cheng-Chih; Mashelkar, Raghunath A.; Lele, Ashish K.; Tauber, Michael J.; Arya, Gaurav; Varghese, Shyni

    2012-01-01

    Synthetic materials that are capable of autonomous healing upon damage are being developed at a rapid pace because of their many potential applications. Despite these advancements, achieving self-healing in permanently cross-linked hydrogels has remained elusive because of the presence of water and irreversible cross-links. Here, we demonstrate that permanently cross-linked hydrogels can be engineered to exhibit self-healing in an aqueous environment. We achieve this feature by arming the hydrogel network with flexible-pendant side chains carrying an optimal balance of hydrophilic and hydrophobic moieties that allows the side chains to mediate hydrogen bonds across the hydrogel interfaces with minimal steric hindrance and hydrophobic collapse. The self-healing reported here is rapid, occurring within seconds of the insertion of a crack into the hydrogel or juxtaposition of two separate hydrogel pieces. The healing is reversible and can be switched on and off via changes in pH, allowing external control over the healing process. Moreover, the hydrogels can sustain multiple cycles of healing and separation without compromising their mechanical properties and healing kinetics. Beyond revealing how secondary interactions could be harnessed to introduce new functions to chemically cross-linked polymeric systems, we also demonstrate various potential applications of such easy-to-synthesize, smart, self-healing hydrogels. PMID:22392977

  14. Effect of Aloe vera application on the content and molecular arrangement of glycosaminoglycans during calcaneal tendon healing.

    Science.gov (United States)

    Aro, Andrea Aparecida de; Esquisatto, Marcelo Augusto Marretto; Nishan, Umar; Perez, Mylena Oliveira; Rodrigues, Rodney Alexandre Ferreira; Foglio, Mary Ann; Carvalho, João Ernesto de; Gomes, Laurecir; Vidal, Benedicto De Campos; Pimentel, Edson Rosa

    2014-12-01

    Although several treatments for tendon lesions have been proposed, successful tendon repair remains a great challenge for orthopedics, especially considering the high incidence of re-rupture of injured tendons. Our aim was to evaluate the pharmacological potential of Aloe vera on the content and arrangement of glycosaminoglycans (GAGs) during tendon healing, which was based on the effectiveness of A. vera on collagen organization previously observed by our group. In rats, a partial calcaneal tendon transection was performed with subsequent topical A. vera application at the injury site. The tendons were treated with A. vera ointment for 7 days and excised on the 7(th) , 14(th) , or 21(st) day post-surgery. Control rats received ointment without A. vera. A higher content of GAGs and a lower amount of dermatan sulfate were detected in the A. vera-treated group on the 14(th) day compared with the control. Also at 14 days post-surgery, a lower dichroic ratio in toluidine blue stained sections was observed in A. vera-treated tendons compared with the control. No differences were observed in the chondroitin-6-sulfate and TGF-β1 levels between the groups, and higher amount of non-collagenous proteins was detected in the A. vera-treated group on the 21(st) day, compared with the control group. No differences were observed in the number of fibroblasts, inflammatory cells and blood vessels between the groups. The application of A. vera during tendon healing modified the arrangement of GAGs and increased the content of GAGs and non-collagenous proteins.

  15. Review of animal models used to study effects of bee products on wound healing: findings and applications

    OpenAIRE

    Hananeh Wael M.; Ismail Zuhair Bani; Alshehabat Musa A.; Ali Ja’afar

    2015-01-01

    Non-healing wounds are associated with high morbidity and might greatly impact a patient’s well-being and economic status. For many years, scientific research has focused on developing and testing several natural and synthetic materials that enhance the rate of wound healing or eliminate healing complications. Honey has been used for thousands of years as a traditional remedy for many ailments. Recently, honey has reemerged as a promising wound care product especially for infected wounds and ...

  16. Applicability of confocal laser scanning microscopy for evaluation and monitoring of cutaneous wound healing

    Science.gov (United States)

    Lange-Asschenfeldt, Susanne; Bob, Adrienne; Terhorst, Dorothea; Ulrich, Martina; Fluhr, Joachim; Mendez, Gil; Roewert-Huber, Hans-Joachim; Stockfleth, Eggert; Lange-Asschenfeldt, Bernhard

    2012-07-01

    There is a high demand for noninvasive imaging techniques for wound assessment. In vivo reflectance confocal laser scanning microscopy (CLSM) represents an innovative optical technique for noninvasive evaluation of normal and diseased skin in vivo at near cellular resolution. This study was designed to test the feasibility of CLSM for noninvasive analysis of cutaneous wound healing in 15 patients (7 male/8 female), including acute and chronic, superficial and deep dermal skin wounds. A commercially available CLSM system was used for the assessment of wound bed and wound margins in order to obtain descriptive cellular and morphological parameters of cutaneous wound repair noninvasively and over time. CLSM was able to visualize features of cutaneous wound repair in epidermal and superficial dermal wounds, including aspects of inflammation, neovascularisation, and tissue remodelling in vivo. Limitations include the lack of mechanic fixation of the optical system on moist surfaces restricting the analysis of chronic skin wounds to the wound margins, as well as a limited optical resolution in areas of significant slough formation. By describing CLSM features of cutaneous inflammation, vascularisation, and epithelialisation, the findings of this study support the role of CLSM in modern wound research and management.

  17. High-Temperature, Lightweight, Self-Healing Ceramic Composites for Aircraft Engine Applications

    Science.gov (United States)

    Raj, Sai V.; Bhatt, Ramkrishna

    2013-01-01

    The use of reliable, high-temperature, lightweight materials in the manufacture of aircraft engines is expected to result in lower fossil and biofuel consumption, thereby leading to cost savings and lower carbon emissions due to air travel. Although nickel-based superalloy blades and vanes have been successfully used in aircraft engines for several decades, there has been an increased effort to develop high-temperature, lightweight, creep-resistant substitute materials under various NASA programs over the last two decades. As a result, there has been a great deal of interest in developing SiC/SiC ceramic matrix composites (CMCs) due to their higher damage tolerance compared to monolithic ceramics. Current-generation SiC/SiC ceramic matrix composites rely almost entirely on the SiC fibers to carry the load, owing to the premature cracking of the matrix during loading. Thus, the high-temperature usefulness of these CMCs falls well below their theoretical capabilities. The objective of this work is to develop a new class of high-temperature, lightweight, self-healing, SiC fiber-reinforced, engineered matrix ceramic composites.

  18. Healing Architecture

    DEFF Research Database (Denmark)

    Folmer, Mette Blicher; Mullins, Michael; Frandsen, Anne Kathrine

    2012-01-01

    The project examines how architecture and design of space in the intensive unit promotes or hinders interaction between relatives and patients. The primary starting point is the relatives. Relatives’ support and interaction with their loved ones is important in order to promote the patients healing...... process. Therefore knowledge on how space can support interaction is fundamental for the architect, in order to make the best design solutions. Several scientific studies document that the hospital's architecture and design are important for human healing processes, including how the physical environment...... architectural and design solutions in order to improve quality of interaction between relative and patient in the hospital's intensive unit....

  19. Polyurethanes as self-healing materials

    Directory of Open Access Journals (Sweden)

    Tomasz Szmechtyk

    2015-03-01

    Full Text Available The current development of polyurethane self-healing materials has been evaluated and reviewed. Three main ways of self-healing – microcontainers, microvascular networks and reversible polymers - are described, and recent most prominent examples of self-healing materials applications presented.

  20. Preparation and optimization of bio-based and light weight aggregate-based healing agent for application in concrete

    NARCIS (Netherlands)

    Tziviloglou, E.; Wiktor, V.A.C.; Jonkers, H.M.; Schlangen, E.

    2015-01-01

    The innovative technology of self-healing concrete allows the material to repair the open micro-cracks that can endanger the structure’s durability, due to ingress of aggressive liquids. Various concepts of self-healing concrete use encapsulation techniques, in order to immobilize and protect the he

  1. The Effect of Control-released Basic Fibroblast Growth Factor in Wound Healing: Histological Analyses and Clinical Application

    Directory of Open Access Journals (Sweden)

    Shigeru Matsumoto, MD

    2013-09-01

    Conclusions: These findings suggest that control-released bFGF using gelatin sheet is effective for promoting wound healing. Such therapeutic strategy was considered to offer several clinical advantages including rapid healing and reduction of the dressing change with less patient discomfort.

  2. Polymer damage mitigation---predictive lifetime models of polymer insulation degradation and biorenewable thermosets through cationic polymerization for self-healing applications

    Science.gov (United States)

    Hondred, Peter Raymond

    Over the past 50 years, the industrial development and applications for polymers and polymer composites has become expansive. However, as with any young technology, the techniques for predicting material damage and resolving material failure are in need of continued development and refinement. This thesis work takes two approaches to polymer damage mitigation---material lifetime prediction and spontaneous damage repair through self-healing while incorporating bio-renewable feedstock. First, material lifetime prediction offers the benefit of identifying and isolating material failures before the effects of damage results in catastrophic failure. Second, self-healing provides a systematic approach to repairing damaged polymer composites, specifically in applications where a hands-on approach or removing the part from service are not feasible. With regard to lifetime prediction, we investigated three specific polymeric materials---polytetrafluoroethylene (PTFE), poly(ethylene-alt-tetrafluoroethylene) (ETFE), and Kapton. All three have been utilized extensively in the aerospace field as a wire insulation coating. Because of the vast amount of electrical wiring used in aerospace constructions and the potential for electrical and thermal failure, this work develops mathematical models for both the thermal degradation kinetics as well as a lifetime prediction model for electrothermal breakdown. Isoconversional kinetic methods, which plot activation energy as a function of the extent of degradation, present insight into the development each kinetic model. The models for PTFE, ETFE, and Kapton are one step, consecutive three-step, and competitive and consecutive five-step respectively. Statistical analysis shows that an nth order autocatalytic reaction best defined the reaction kinetics for each polymer's degradation. Self-healing polymers arrest crack propagation through the use of an imbedded adhesive that reacts when cracks form. This form of damage mitigation focuses on

  3. Synthetic Self-Healing Methods

    Energy Technology Data Exchange (ETDEWEB)

    Bello, Mollie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-06-02

    Given enough time, pressure, temperature fluctuation, and stress any material will fail. Currently, synthesized materials make up a large part of our everyday lives, and are used in a number of important applications such as; space travel, under water devices, precise instrumentation, transportation, and infrastructure. Structural failure of these material scan lead to expensive and dangerous consequences. In an attempt to prolong the life spans of specific materials and reduce efforts put into repairing them, biologically inspired, self-healing systems have been extensively investigated. The current review explores recent advances in three methods of synthesized self-healing: capsule based, vascular, and intrinsic. Ideally, self-healing materials require no human intervention to promote healing, are capable of surviving all the steps of polymer processing, and heal the same location repeatedly. Only the vascular method holds up to all of these idealities.

  4. Static and fatigue tensile properties of cross-ply laminates containing vascules for self-healing applications

    Science.gov (United States)

    Luterbacher, R.; Trask, R. S.; Bond, I. P.

    2016-01-01

    The effect of including hollow channels (vascules) within cross-ply laminates on static tensile properties and fatigue performance is investigated. No change in mechanical properties or damage formation is observed when a single vascule is included in the 0/90 interface, representing 0.5% of the cross sectional area within the specimen. During tensile loading, matrix cracks develop in the 90° layers leading to a reduction of stiffness and strength (defined as the loss of linearity) and a healing agent is injected through the vascules in order to heal them and mitigate the caused degradation. Two different healing agents, a commercial low viscosity epoxy resin (RT151, Resintech) and a toughened epoxy blend (bespoke, in-house formulation) have been used to successfully recover stiffness under static loading conditions. The RT151 system recovered 75% of the initial failure strength, whereas the toughened epoxy blend achieved a recovery of 67%. Under fatigue conditions, post healing, a rapid decay of stiffness was observed as the healed damage re-opened within the first 2500 cycles. This was caused by the high fatigue loading intensity, which was near the static failure strength of the healing resin. However, the potential for ameliorating (via self-healing or autonomous repair) more diffuse transverse matrix damage via a vascular network has been shown.

  5. An Entropy-Based Automated Cell Nuclei Segmentation and Quantification: Application in Analysis of Wound Healing Process

    Directory of Open Access Journals (Sweden)

    Varun Oswal

    2013-01-01

    Full Text Available The segmentation and quantification of cell nuclei are two very significant tasks in the analysis of histological images. Accurate results of cell nuclei segmentation are often adapted to a variety of applications such as the detection of cancerous cell nuclei and the observation of overlapping cellular events occurring during wound healing process in the human body. In this paper, an automated entropy-based thresholding system for segmentation and quantification of cell nuclei from histologically stained images has been presented. The proposed translational computation system aims to integrate clinical insight and computational analysis by identifying and segmenting objects of interest within histological images. Objects of interest and background regions are automatically distinguished by dynamically determining 3 optimal threshold values for the 3 color components of an input image. The threshold values are determined by means of entropy computations that are based on probability distributions of the color intensities of pixels and the spatial similarity of pixel intensities within neighborhoods. The effectiveness of the proposed system was tested over 21 histologically stained images containing approximately 1800 cell nuclei, and the overall performance of the algorithm was found to be promising, with high accuracy and precision values.

  6. 42 CFR 60.61 - Responsibilities of a HEAL school.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Responsibilities of a HEAL school. 60.61 Section 60... EDUCATION ASSISTANCE LOAN PROGRAM The School § 60.61 Responsibilities of a HEAL school. (a) A HEAL school is required to carry out the following activities for each HEAL applicant or borrower: (1) Conduct...

  7. Application of a silver-olefin coordination polymer as a catalytic curing agent for self-healing epoxy polymers

    Science.gov (United States)

    Everitt, D. T.; Coope, T. S.; Trask, R. S.; Wass, D. F.; Bond, I. P.

    2015-05-01

    A silver-olefin based coordination polymer was prepared in a simple, one step process to act as an initiator to facilitate the ring-opening polymerization of epoxides. Thermal analysis found the complex to be capable of curing a range of commercially available epoxy resins used in the manufacture of conventional composite materials. Curing of the oligomeric diglycidyl ether bisphenol A resin, Epon 828, in combination with a non-toxic solvent, ethyl phenylacetate, was studied by differential scanning calorimetry. The mechanical characterization of the resultant cured polymers was conducted by single lap shear tests. Tapered double cantilever beam (TDCB) test specimens containing 2.5 pph of silver-olefin initiator, both with and without embedded microcapsules, were analyzed for their healing performance. Healing efficiency values were found to be strongly dependent on the applied healing temperature. A mean recovery of 74% fracture load was found in TDCB samples after being healed at 70 °C for 48 h.

  8. Effect of autologous platelet-rich plasma application on cutaneous wound healing in dogs

    OpenAIRE

    Jee, Cho-Hee; Eom, Na-Young; Jang, Hyo-Mi; Jung, Hae-Won; Choi, Eul-Soo; Won, Jin-Hee; Hong, Il-Hwa; Kang, Byeong-Teck; Jeong, Dong Wook; Jung, Dong-In

    2016-01-01

    This study was conducted to identify the effectiveness of platelet-rich plasma (PRP) and efficacy of intralesional injection as a method of application to acute cutaneous wounds in dogs. Healthy adult beagles (n = 3) were used in this study. Autologous PRP was separated from anticoagulant treated whole blood in three dogs. Cutaneous wounds were created and then treated by intralesional injection of PRP in the experimental group, while they were treated with saline in the control group on days...

  9. Topical application of amelogenin extracellular matrix protein in non-healing venous ulcers

    OpenAIRE

    Burçin Abud; Kemal Karaarslan; Işıl Kılınç Karaarslan; Süreyya Talay; Soysal Turhan

    2014-01-01

    Background and Design: Treatment of chronic venous ulcers of the lower extremity is still an important difficulty. The principal treatment of these ulcers includes compression therapy, local wound care and surgery. Unresponsiveness to these standard treatments is a frequent situation with negative effects on life quality and reductions in personal productivity. Therefore, there is a need for new applications to increase the effectiveness of treatment in treatment-resistant cases. In the prese...

  10. Self-healing epoxy composites: preparation, characterization and healing performance

    OpenAIRE

    Reaz A. Chowdhury; Mahesh V. Hosur; Md. Nuruddin; Alfred Tcherbi-Narteh; Ashok Kumar; Veera Boddu; Shaik Jeelani

    2015-01-01

    Low velocity impact damage is common in fiber reinforced composites, which leads to micro-crack and interfacial debonding, where damage is microscopic and invisible. The concept of self-healing composites can be a way of overcoming this limitation and extending the life expectancy while expanding their usage in structural applications. In the current study, extrinsic self-healing concept was adopted using urea-formaldehyde microcapsules containing room temperature curing epoxy resin system (S...

  11. Self-Healing Nanocomposites for Reusable Composite Cryotanks

    Science.gov (United States)

    Eberly, Daniel; Ou, Runqing; Karcz, Adam; Skandan, Ganesh

    2013-01-01

    Composite cryotanks, or composite overwrapped pressure vessels (COPVs), offer advantages over currently used aluminum-lithium cryotanks, particularly with respect to weight savings. Future NASA missions are expected to use COPVs in spaceflight propellant tanks to store fuels, oxidizers, and other liquids for launch and space exploration vehicles. However, reliability, reparability, and reusability of the COPVs are still being addressed, especially in cryogenic temperature applications; this has limited the adoption of COPVs in reusable vehicle designs. The major problem with composites is the inherent brittleness of the epoxy matrix, which is prone to microcrack formation, either from exposure to cryogenic conditions or from impact from different sources. If not prevented, the microcracks increase gas permeation and leakage. Accordingly, materials innovations are needed to mitigate microcrack damage, and prevent damage in the first place, in composite cryotanks. The self-healing technology being developed is capable of healing the microcracks through the use of a novel engineered nanocomposite, where a uniquely designed nanoparticle additive is incorporated into the epoxy matrix. In particular, this results in an enhancement in the burst pressure after cryogenic cycling of the nanocomposite COPVs, relative to the control COPVs. Incorporating a novel, self-healing, epoxy-based resin into the manufacture of COPVs allows repeatable self-healing of microcracks to be performed through the simple application of a low-temperature heat source. This permits COPVs to be reparable and reusable with a high degree of reliability, as microcracks will be remediated. The unique phase-separated morphology that was imparted during COPV manufacture allows for multiple self-healing cycles. Unlike single-target approaches where one material property is often improved at the expense of another, robustness has been introduced to a COPV by a combination of a modified resin and

  12. Application of Antrodia camphorata Promotes Rat’s Wound Healing In Vivo and Facilitates Fibroblast Cell Proliferation In Vitro

    Directory of Open Access Journals (Sweden)

    Zahra A. Amin

    2015-01-01

    Full Text Available Antrodia camphorata is a parasitic fungus from Taiwan, it has been documented to possess a variety of pharmacological and biological activities. The present study was undertaken to evaluate the potential of Antrodia camphorata ethanol extract to accelerate the rate of wound healing closure and histology of wound area in experimental rats. The safety of Antrodia camphorata was determined in vivo by the acute toxicity test and in vitro by fibroblast cell proliferation assay. The scratch assay was used to evaluate the in vitro wound healing in fibroblast cells and the excision model of wound healing was tested in vivo using four groups of adult Sprague Dawley rats. Our results showed that wound treated with Antrodia camphorata extract and intrasite gel significantly accelerates the rate of wound healing closure than those treated with the vehicle. Wounds dressed with Antrodia camphorata extract showed remarkably less scar width at wound closure and granulation tissue contained less inflammatory cell and more fibroblast compared to wounds treated with the vehicle. Masson’s trichrom stain showed granulation tissue containing more collagen and less inflammatory cell in Antrodia camphorata treated wounds. In conclusion, Antrodia camphorata extract significantly enhanced the rate of the wound enclosure in rats and promotes the in vitro healing through fibroblast cell proliferation.

  13. In Situ Synthesis of Antimicrobial Silver Nanoparticles within Antifouling Zwitterionic Hydrogels by Catecholic Redox Chemistry for Wound Healing Application.

    Science.gov (United States)

    GhavamiNejad, Amin; Park, Chan Hee; Kim, Cheol Sang

    2016-03-14

    A multifunctional hydrogel that combines the dual functionality of both antifouling and antimicrobial capacities holds great potential for many bioapplications. Many approaches and different materials have been employed to synthesize such a material. However, a systematic study, including in vitro and in vivo evaluation, on such a material as wound dressings is highly scarce at present. Herein, we report on a new strategy that uses catecholic chemistry to synthesize antimicrobial silver nanoparticles impregnated into antifouling zwitterionic hydrogels. For this purpose, hydrophobic dopamine methacrylamide monomer (DMA) was mixed in an aqueous solution of sodium tetraborate decahydrate and DMA monomer became soluble after increasing pH to 9 due to the complexation between catechol groups and boron. Then, cross-linking polymerization of zwitterionic monomer was carried out with the solution of the protected dopamine monomer to produce a new hydrogel. When this new hydrogel comes in contact with a silver nitrate solution, silver nanoparticles (AgNPs) are formed in its structure as a result of the redox property of the catechol groups and in the absence of any other external reducing agent. The results obtained from TEM and XRD measurements indicate that AgNPs with diameters of around 20 nm had formed within the networks. FESEM images confirmed that the silver nanoparticles were homogeneously incorporated throughout the hydrogel network, and FTIR spectroscopy demonstrated that the catechol moiety in the polymeric backbone of the hydrogel is responsible for the reduction of silver ions into the AgNPs. Finally, the in vitro and in vivo experiments suggest that these mussel-inspired, antifouling, antibacterial hydrogels have great potential for use in wound healing applications.

  14. The inherent politics of quality in public park management

    DEFF Research Database (Denmark)

    Lindholst, Andrej Christian; Konijnendijk, Cecil Cornelius; Fors, Hanna;

    2012-01-01

    In this paper, we highlight and illustrate the inherent politics embedded in “quality” as a concept for managing public parks. Reflecting more generic quality concepts, contemporary quality models in park management include concepts for both operational, strategic and stakeholder management as well...... managing the park organisation itself. However, quality concepts and their application through various management models include as well as exclude the access, values and worldviews of particular interests. In this way, any particular quality concept and model embeds its own politics by inherent...... allocations of ‘who gets what, when and how’. We illustrate the inherent politics by providing a case study of a widely adopted quality model for operational management that has been adopted and implemented in Denmark as part of new public management reforms. In perspective, other quality concepts and models...

  15. PLATELET-RICH PLASMA (PRP AND ITS APPLICATION IN THE TREATMENT OF CHRONIC AND HARD-TO-HEAL SKIN WOUNDS. A Review.

    Directory of Open Access Journals (Sweden)

    Tsvetan Sokolov

    2015-12-01

    Full Text Available In the last few years various methods are being applied in the use of platelet-rich plasma (PRP during treatment in different orthopedic disease. They allow improvement of local biological condition and regeneration of different types of tissues. PRP is a modern treatment strategy with worldwide recognition. There is a high concentration of platelet growth factors in small amounts of plasma. PRP and its various forms have become one of the best methods to support the healing process of various tissues. PRP is used in regenerative medicine, because it provides two of three components (growth factors and scaffolds necessary for complete tissue regeneration. The particular reason for the appearance of lesions is important in order to select an appropriate treatment method and technical application. PRP may be used for treatment of various chronic and hard-to-heal cutaneous wounds, especially when standard conventional therapy is not good enough and surgical treatment is not possible. It reduces the duration, cost of treatment and the hospital stay. There is reduction of wound pain after starting the treatment, reduced risk of blood-borne disease transmission, wound healing is restored, and local immunity is activated.

  16. Application of encapsulated lightweight aggregate impregnated with sodium monofluorophosphate as a self-healing agent in blast furnace slag mortar

    NARCIS (Netherlands)

    Sisomphon, K.; Copuroglu, O.; Fraaij, A.

    2011-01-01

    This paper studies the potential of using expanded clay lightweight aggregate impregnated with sodium monofluorophosphate (Na2FPO3) solution which is eventually encapsulated by a cement paste layer to produce a self-healing system in blast furnace slag cement mortars. It was found that the technique

  17. 42 CFR 60.33 - Making a HEAL loan.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Making a HEAL loan. 60.33 Section 60.33 Public... LOAN PROGRAM The Lender and Holder § 60.33 Making a HEAL loan. The loan-making process includes the... applicant and the HEAL school contained in the loan application papers, except where those statements are...

  18. Implications of inherent safe nuclear power system

    International Nuclear Information System (INIS)

    The safety of present day nuclear power reactors and research reactors depends on a combination of design features of passive and active systems, and the alert judgement of their operators. A few inherently safe designs of nuclear reactors for power plants are currently under development. In these designs, the passive systems are emphasized, and the active systems are minimized. Also efforts are made to eliminate the potential for human failures that initiate the series of accidents. If a major system fails in these designs, the core is flooded automatically with coolants that flow by gravity, not by mechanical pumps or electromagnetic actuators. Depending on the choice of the coolants--water, liquid metal and helium gas--there are three principal types of inherently safe reactors. In this paper, these inherently safe reactor designs are reviewed and their implications are discussed. Further, future perspectives of their acceptance by nuclear industries are discussed. (author)

  19. Effects of microcurrent application and 670 nm InGaP low-level laser irradiation on experimental wound healing in healthy and diabetic Wistar rats

    International Nuclear Information System (INIS)

    This study evaluated the effects of microcurrent application and 670 nm InGaP laser irradiation on wound healing in healthy and alloxan diabetic rats. The animals were divided into eight groups: healthy control (HC); diabetic control (DC); healthy treated with microcurrent (HMC); diabetic treated with microcurrent (DMC); healthy irradiated with laser (HL); diabetic irradiated with laser (DL); healthy receiving laser and microcurrent application (HLMC) and diabetic receiving laser and microcurrent application (DLMC). Wound samples were collected on days 2, 6, 10 and 14 of treatment for structural analysis, morphometry, and Western blotting to quantify the expression of TGF-β1 and VEGF. Comparison of animals receiving laser and microcurrent therapy showed a reduction in the number of inflammatory cells in diabetic animals, as well as an increase of fibroblasts in healthy animals and of newly formed vessels in healthy and diabetic animals. Expression of TGF-β1 was increased on day 6 in all groups, especially diabetic animals. A reduction in the expression of this protein was observed on day 10 in all groups. VEGF expression was higher on day 6 in treated and control diabetic animals when compared to healthy animals. Analysis of VEGF expression in the laser- and microcurrent-treated groups on day 10 showed a decrease in diabetic animals and an increase in healthy animals. In conclusion, laser therapy and microcurrent stimulation exert beneficial effects on wound healing in both healthy and diabetic animals. (paper)

  20. Effects of microcurrent application and 670 nm InGaP low-level laser irradiation on experimental wound healing in healthy and diabetic Wistar rats

    Science.gov (United States)

    Neves, L. M. G.; Matheus, R. L.; Santos, G. M. T.; Esquisatto, M. A. M.; Amaral, M. E. C.; Mendonça, F. A. S.

    2013-03-01

    This study evaluated the effects of microcurrent application and 670 nm InGaP laser irradiation on wound healing in healthy and alloxan diabetic rats. The animals were divided into eight groups: healthy control (HC); diabetic control (DC); healthy treated with microcurrent (HMC); diabetic treated with microcurrent (DMC); healthy irradiated with laser (HL); diabetic irradiated with laser (DL); healthy receiving laser and microcurrent application (HLMC) and diabetic receiving laser and microcurrent application (DLMC). Wound samples were collected on days 2, 6, 10 and 14 of treatment for structural analysis, morphometry, and Western blotting to quantify the expression of TGF-β1 and VEGF. Comparison of animals receiving laser and microcurrent therapy showed a reduction in the number of inflammatory cells in diabetic animals, as well as an increase of fibroblasts in healthy animals and of newly formed vessels in healthy and diabetic animals. Expression of TGF-β1 was increased on day 6 in all groups, especially diabetic animals. A reduction in the expression of this protein was observed on day 10 in all groups. VEGF expression was higher on day 6 in treated and control diabetic animals when compared to healthy animals. Analysis of VEGF expression in the laser- and microcurrent-treated groups on day 10 showed a decrease in diabetic animals and an increase in healthy animals. In conclusion, laser therapy and microcurrent stimulation exert beneficial effects on wound healing in both healthy and diabetic animals.

  1. SELF-HEALING POLYMERIC MATERIALS TOWARDS STRENGTH RECOVERY FOR STRUCTURAL APPLICATIONS%结构用自修复型高分子材料的制备

    Institute of Scientific and Technical Information of China (English)

    章明秋; 容敏智

    2012-01-01

    Living organisms possess the ability of self-healing for nonfatal harm, like regeneration of the cut skin and broken bone, guided by instinct. As a result, their injury tolerance is substantially enhanced, which ensures healthy growth and breeding from generation to generation. Inspired by the functionality of naturally occurring species, self-healing polymers have been prepared as a member of intelligent materials family. They are coupled with built-in capability of rehabilitating tiny damages produced during manufacturing and/or usage. In recent years, the authors' lab systematically studied strength recovery of self-healing polymeric materials for structural application. By using knowledge of polymer chemistry, polymer physics, materials mechanics,etc. ,a series of extrinsic and intrinsic self-healing polymers and polymer composites were developed and characterized. The proposed strategies turn out to be feasible for typical thermosetting and thermoplastics polymers. Accordingly, topics including synthesis techniques,formulation optimization, processing, structure and properties relationship, healing mechanisms, stability and durability were carefully investigated. The present article briefly reviews the works carried out by the authors' team. Innovative routes that correlate materials chemistry to full capacity restoration are discussed for further development from bioinspired toward biomimetic repair.%自修复型高分子材料属于智能材料的一类,仿照生物体损伤自愈合的功能,通过材料内部的自诊断和自响应机制,及时修复材料在成型加工或使用过程产生的微小裂纹,避免其进一步扩展.近年来本课题组针对结构用自修复型高分子材料的强度恢复问题,综合利用高分子化学、高分子物理、材料力学等学科的理论和方法,设计、合成了一系列外植型和本征型自修复高分子材料,提出的自修复策略适用于典型热固性和热塑性高分子材料.此外,

  2. Histologic Evaluation of Bone Healing Following Application of Anorganic Bovine Bone and β-tricalcium Phosphate in Rabbit Calvaria

    OpenAIRE

    AR. Rokn; Moslemi, N.; B. Eslami; H. Khandagh Abadi; M. Paknejad

    2012-01-01

    Objective: Both anorganic bovine bone (ABB) and β-tricalcium phosphate (β-TCP) are used in clinical practice as bone substitute materials, but there is limited data comparing these two materials in standardized defects. The aim of this study was to histologically evaluate the effectiveness of ABB and β-TCP in the healing of experimentally induced bone defects. Materials and Methods: Eighteen bone defects were created on the calvaria of six rabbits. In each animal, one defect was left untreate...

  3. Measurement of welding residual stresses of reactor vessel by inherent strain method. Diagnosis of inherent strain distribution function

    International Nuclear Information System (INIS)

    Fundamental objective of this study is to ensure safety of nuclear reactor. A few accidents of leak from welded zones at pipe penetration part of reactor vessel or at coolant pipe are reported at home or abroad. One of the main causes is welding residual stress. Therefore, it is very important to know the welding residual stress in order to maintain high safety of the plant, estimate plant life cycle and design effective maintenance plan. Welded joints of nuclear reactor vessel have complex shapes, and the welding residual stresses also have three-dimensional complex distributions. In this study, inherent strain-based theory and method are applied to measure the welding residual stresses. The inherent strain method is one of analytical method as inverse problem, using least squares method, based on finite element method. So the method gives most probable value and deviation of residual stress. Reliability of estimated result can be discussed. In this method, inherent strains are unknowns. When residual stresses are distributed complexly in 3-dimensional stress-state, the number of unknowns becomes very large. So, inherent strain distribution is expressed with appropriate function to decrease largely the number. A mock-up is idealized for a welded joint at pipe penetration part of actual reactor vessel. The inherent strain method is applied to measure residual stress of the joint. In this paper, applicability of inherent strain distribution function is diagnosed. 10 kinds of functions are applied to estimate the residual stress, and accuracy and reliability of analyzed results are judged from 3 points of view, that is, residuals, unbiased estimate of variance of errors and welding mechanics. Most suitable function is selected, which brings most reliable result. (author)

  4. Fibromodulin Enhances Angiogenesis during Cutaneous Wound Healing

    Directory of Open Access Journals (Sweden)

    Zhong Zheng, PhD

    2014-12-01

    Conclusions: Altogether, we demonstrated that in addition to reducing scar formation, FMOD also promotes angiogenesis. As blood vessels organize and regulate wound healing, its potent angiogenic properties will further expand the clinical application of FMOD for cutaneous healing of poorly vascularized wounds.

  5. Critical Social Theory: Core Tenets, Inherent Issues

    Science.gov (United States)

    Freeman, Melissa; Vasconcelos, Erika Franca S.

    2010-01-01

    This chapter outlines the core tenets of critical social theory and describes inherent issues facing evaluators conducting critical theory evaluation. Using critical pedagogy as an example, the authors describe the issues facing evaluators by developing four of the subtheories that comprise a critical social theory: (a) a theory of false…

  6. Dental resin cure monitoring by inherent fluorescence

    Science.gov (United States)

    Li, Qun; Zhou, Jack X.; Li, Qingxiong; Wang, Sean X.

    2008-02-01

    It is demonstrated that the inherent fluorescence of a dental composite resin can be utilized to monitor the curing status, i.e. degree of conversion of the resin. The method does not require any sample preparation and is potentially very fast for real time cure monitoring. The method is verified by Raman spectroscopy analysis.

  7. Impact of single-dose application of TGF-β, copper peptide, stanozolol and ascorbic acid in hydrogel on midline laparatomy wound healing in a diabetic mouse model.

    Science.gov (United States)

    Konerding, Moritz A; Ziebart, Thomas; Wolloscheck, Tanja; Wellmann, Axel; Ackermann, Maximilian

    2012-08-01

    Despite numerous advances and improvements in surgical techniques the incidence of incisional hernias after laparotomy remains high. The aim of this study was to investigate possible effects of single application of ascorbic acid, stanozolol, a synthetic anabolic steroid, copper peptide and transforming growth factor-β (TGF-β) on laparotomy wound healing in an incisional wound model in diabetic mice. After diabetes induction with streptozotozin in Balb-c mice, midline laparatomies were carried out. Closure of the linea alba was followed by single-dose application of the agents dissolved in a hydrogel before skin closure. The functional outcome was assessed in terms of maximum tensile strength. In addition, vessel densities, collagen contents and proliferation, were measured. The breaking strength of the skin 14 days after surgery was significantly higher in ascorbic acid (ΑΑ)-treated incisional wounds, whereas the other agents did not show a significantly better functional outcome. No significant differences were seen in vessel densities. Collagen type III contents was higher in the ΑΑ-treated animals, whereas the percentage of Ki67-positive nuclei was lower compared to the other groups. These data underline the positive effect of topically applied ascorbic acid in wound healing. PMID:22614259

  8. Inherent safety aspects of metal fuelled FBR

    International Nuclear Information System (INIS)

    Highlights: Inherent safety of metal fuelled FBR is studied by static and dynamic methodology of reactor physics and thermal-hydraulics. ► It is discovered that FBR with metal fuel is inherently safe against ULOFA. ► Sensitive parameters are core radial expansion feedback, sodium void effect and flow halving time. ► Sensitivity analyses are carried out with 20% uncertainty. ► Inherent safety of 1000 MWe with the extended flow coast down is recommended to avoid cliff edge effects. -- Abstract: Static and dynamic studies of metal fuelled fast breeder reactors (MFBR) are carried out to verify the passive shutdown capability and its inherent safety parameters. Static calculations are carried out to determine the vested reactivity feedback parameters from the fuel and coolant temperature rise separately. Power reactivity decrement of metal fuel reactor is found to be small as compared to oxide fuel reactor of same size. ULOF analysis of metal (U–Pu–6% Zr) 1000 MWe pool type MFBR is studied with a flow halving time of 8 s. The study is also made with considering uncertainties on the sensitive feedback parameters such as core radial expansion feedback and sodium void reactivity effect. Inference of the study is, nominal transient behaviour of 1000 MWe core is benign under unprotected loss of flow accident (ULOFA) and the transient power reduces to natural circulation based Safety Grade Decay Heat Removal System (SGDHRS) capacity before the initiation of boiling. From the study, it is concluded that if the sodium void reactivity is limited (4.6$) then the inherent safety of 1000 MWe design is assured, even with 20% uncertainty on the sensitive parameters and also it is found out higher primary pump flow halving time (15 s instead of 8 s) can avoid cliff edge effects in 1000 MWe MFBR transient behaviour

  9. Inherent safety aspects of metal fuelled FBR

    Energy Technology Data Exchange (ETDEWEB)

    Sathiyasheela, T., E-mail: thangavel.sathiyasheela@gmail.com [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Kanchipuram District, Tamil Nadu (India); Riyas, A., E-mail: rias@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Kanchipuram District, Tamil Nadu (India); Sukanya, R., E-mail: kanya@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Kanchipuram District, Tamil Nadu (India); Mohanakrishnan, P., E-mail: Mohan_parat@yahoo.com [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Kanchipuram District, Tamil Nadu (India); Chetal, S.C., E-mail: dir@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Kanchipuram District, Tamil Nadu (India)

    2013-12-15

    Highlights: Inherent safety of metal fuelled FBR is studied by static and dynamic methodology of reactor physics and thermal-hydraulics. ► It is discovered that FBR with metal fuel is inherently safe against ULOFA. ► Sensitive parameters are core radial expansion feedback, sodium void effect and flow halving time. ► Sensitivity analyses are carried out with 20% uncertainty. ► Inherent safety of 1000 MWe with the extended flow coast down is recommended to avoid cliff edge effects. -- Abstract: Static and dynamic studies of metal fuelled fast breeder reactors (MFBR) are carried out to verify the passive shutdown capability and its inherent safety parameters. Static calculations are carried out to determine the vested reactivity feedback parameters from the fuel and coolant temperature rise separately. Power reactivity decrement of metal fuel reactor is found to be small as compared to oxide fuel reactor of same size. ULOF analysis of metal (U–Pu–6% Zr) 1000 MWe pool type MFBR is studied with a flow halving time of 8 s. The study is also made with considering uncertainties on the sensitive feedback parameters such as core radial expansion feedback and sodium void reactivity effect. Inference of the study is, nominal transient behaviour of 1000 MWe core is benign under unprotected loss of flow accident (ULOFA) and the transient power reduces to natural circulation based Safety Grade Decay Heat Removal System (SGDHRS) capacity before the initiation of boiling. From the study, it is concluded that if the sodium void reactivity is limited (4.6$) then the inherent safety of 1000 MWe design is assured, even with 20% uncertainty on the sensitive parameters and also it is found out higher primary pump flow halving time (15 s instead of 8 s) can avoid cliff edge effects in 1000 MWe MFBR transient behaviour.

  10. 煤矿本质安全管理综合评价的SVM模型及应用%SVM Model for Comprehensive Evaluation of Coal Mine Inherent Safety Management and Its Application

    Institute of Scientific and Technical Information of China (English)

    李斌; 王志军

    2013-01-01

    为评价煤矿本质安全管理水平,根据煤矿本质安全管理的内涵,构建了评价指标体系。鉴于目前评价方法主观设置指标权重的缺陷,考虑到支持向量机算法的诸多优势,建立了基于支持向量机的煤矿本质安全管理综合评价模型。根据以往煤矿本质安全管理评价资料,构建了学习样本。采用留一法交互校验表明,该评估方法具有较高的精度,且无需人为设置指标权重,避免了人的主观因素对评价结果的影响,能够更客观、准确地得出评价结果。应用SVM模型对煤矿本质安全管理进行综合评价,可以将定性的问题进行定量评价,合理地反映煤矿本质安全管理的现状,有利于监管部门评价煤矿安全管理水平和企业内部的评比及管理,对建立煤矿安全管理机制具有重要作用。%An evaluation index system was constituted according to the connotation of the mine inherent safety management in order to evaluate the level of the mine inherent safety management. In view of the disadvantage of subjectively setting the index weight in the current evaluation method and in consideration of many advantages of the support vector machine algorithm, an integrated evaluation model for coal mine inherent safety management was established based on the support vector machine. A learning sample was constructed according to the previous data of mine inherent safety management evaluation. The cross validation with leave-one out of procedure showed this evaluation method had a high accuracy,need not to artificially set the index weight, can avoid the influence of the person's subjective factors on the evaluation results,and thus get objective and accurate evaluation results. When SVM model was used for the integrate evaluation of the mine inherent safety management system,the quantitative assessment can be done to a qualitative problem so as to rationally reflect the status of the mine

  11. Self healing of defected graphene

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jianhui; Shi, Tuwan; Cai, Tuocheng; Wu, Xiaosong; Yu, Dapeng [School of Physics, Peking University, Beijing 100871 (China); State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Peking University, Beijing 100871 (China); Xu, Tao; Sun, Litao [SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096 (China)

    2013-03-11

    For electronics applications, defects in graphene are usually undesirable because of their ability to scatter charge carriers, thereby reduce the carrier mobility. It would be extremely useful if the damage can be repaired. In this work, we employ Raman spectroscopy, X-ray photoemission spectroscopy, transmission electron microscopy, and electrical measurements to study defects in graphene introduced by argon plasma bombardment. We have found that majority of these defects can be cured by a simple thermal annealing process. The self-healing is attributed to recombination of mobile carbon adatoms with vacancies. With increasing level of plasma induced damage, the self-healing becomes less effective.

  12. Inherently safe technologies-chemical and nuclear

    International Nuclear Information System (INIS)

    Probabilistic risk assessments show an inverse relationship between the likelihood and the consequences of nuclear and chemical plant accidents, but the Bhopal accident has change public complacency about the safety of chemical plants to such an extent that public confidence is now at the same low level as with nuclear plants. The nuclear industry's response was to strengthen its institutions and improve its technologies, but the public may not be convinced. One solution is to develop reactors which do not depend upon the active intervention of humans of electromechanical devices to deal with emergencies, but which have physical properties that limit the possible temperature and power of a reactor. The Process Inherent Ultimately Safe and the modular High-Temperature Gas-Cooled reactors are two possibilities. the chemical industry needs to develop its own inherently safe design precepts that incorporate smallness, safe processes, and hardening against sabotage. 5 references

  13. Multiple Antenna Systems with Inherently Decoupled Radiators

    DEFF Research Database (Denmark)

    Pelosi, Mauro; Knudsen, Mikael B.; Pedersen, Gert Frølund

    2012-01-01

    In multiple antenna systems mutual coupling needs to be minimized. We propose an alternative novel decoupling technique, investigating several multiple antenna configurations for small handsets through measurements and numerical simulations. The influence of different novel designs on performance...... inherently decoupled when integrated on the same handset, while also other parameters such as frequency duplex distance and interaction with the users body influence the mutual coupling....

  14. The inherent ethics and integrity of education

    OpenAIRE

    Godon, Rafal; Hogan, Padraig

    2014-01-01

    The paper begins with some introductory remarks that explain why understanding education as a coherent human practice is necessary for a proper account of ethics in the field of education. The authors take three steps: presenting education as a practice in its own right, discussing the concept of thinking in the context of educational practice and finally revealing some practical consequences of the inherent ethics of education. The paper invites readers to further investigatio...

  15. Inherent randomicity in 4-symbolic dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yagang [Department of Applied Mathematics, School of Mathematics and Physics, North China Electric Power University, Box 235, Baoding, Hebei 071003 (China); Center for Nonlinear Complex Systems, Department of Physics, Yunnan University, Kunming, Yunnan 650091 (China); E-mail: ygzhg@163.com; Wang Changjiang [Department of Physics, Yunnan University, Kunming, Yunnan 650091 (China); Zhou Zhong [Center for Nonlinear Complex Systems, Department of Physics, Yunnan University, Kunming, Yunnan 650091 (China)

    2006-04-01

    The inherent randomicity in 4-symbolic dynamics will be clarified in this paper. The symbolic sequences bear three characteristics. The distribution of frequency, inter-occurrence times and the alignment of two random sequences are amplified in detail. By using transfer probability of Markov chain (MC), we obtain analytic expressions of generating functions in four probabilities stochastic wander model, which can be applied to all 4-symbolic systems. We hope to offer a symbolic platform that satisfies these stochastic properties and to study some properties of DNA sequences.

  16. Prevention of domino effect: from active and passive strategies to inherently safer design.

    Science.gov (United States)

    Cozzani, Valerio; Tugnoli, Alessandro; Salzano, Ernesto

    2007-01-10

    The possible application of an inherent safety approach to the prevention of domino accidents was explored. The application of the inherent safety guidewords to the definition of effective actions for the prevention of domino events was analyzed. Due to the constraints originated by the conventional approach to process design, the "limitation of effects" guideword resulted the more effective in the identification of inherent safety actions to avoid domino events. Detailed design criteria for the improvement of layout in the framework of inherent safety were identified and discussed. Simple rules of thumbs were obtained for the preliminary assessment of safety distances and of critical inventories with respect to the escalation of fires and explosions. The results evidenced that the integration of inherent safety criteria with conventional passive or active protections seems a promising route for the prevention of severe domino accidental scenarios in chemical and process plants.

  17. Inherently safe in situ uranium recovery.

    Energy Technology Data Exchange (ETDEWEB)

    Krumhansl, James Lee; Beauheim, Richard Louis; Brady, Patrick Vane; Arnold, Bill Walter; Kanney, Joseph F.; McKenna, Sean Andrew

    2009-05-01

    Expansion of uranium mining in the United States is a concern to some environmental groups and sovereign Native American Nations. An approach which may alleviate some problems is to develop inherently safe in situ uranium recovery ('ISR') technologies. Current ISR technology relies on chemical extraction of trace levels of uranium from aquifers that, once mined, can still contain dissolved uranium and other trace metals that are a health concern. Existing ISR operations are few in number; however, high uranium prices are driving the industry to consider expanding operations nation-wide. Environmental concerns and enforcement of the new 30 ppb uranium drinking water standard may make opening new mining operations more difficult and costly. Here we propose a technological fix: the development of inherently safe in situ recovery (ISISR) methods. The four central features of an ISISR approach are: (1) New 'green' leachants that break down predictably in the subsurface, leaving uranium, and associated trace metals, in an immobile form; (2) Post-leachant uranium/metals-immobilizing washes that provide a backup decontamination process; (3) An optimized well-field design that increases uranium recovery efficiency and minimizes excursions of contaminated water; and (4) A combined hydrologic/geochemical protocol for designing low-cost post-extraction long-term monitoring. ISISR would bring larger amounts of uranium to the surface, leave fewer toxic metals in the aquifer, and cost less to monitor safely - thus providing a 'win-win-win' solution to all stakeholders.

  18. Ruthenium Grubbs' catalyst nanostructures grown by UV-excimer-laser ablation for self-healing applications

    Energy Technology Data Exchange (ETDEWEB)

    Aiessa, B., E-mail: brahim.aissa@mpbc.ca [Department of Smart Materials and Sensors for Space Missions, MPB Technologies Inc., 151 Hymus Blvd., Montreal H9R 1E9 (Canada); Nechache, R. [Centre Energie, Materiaux et Telecommunications. Institut National de la Recherche Scientifique, INRS-EMT, 1650, Blvd. Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada); Haddad, E.; Jamroz, W. [Department of Smart Materials and Sensors for Space Missions, MPB Technologies Inc., 151 Hymus Blvd., Montreal H9R 1E9 (Canada); Merle, P.G. [Concordia Center for Composites, Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Quebec H3G 2M8 (Canada); Rosei, F., E-mail: rosei@emt.inrs.ca [Centre Energie, Materiaux et Telecommunications. Institut National de la Recherche Scientifique, INRS-EMT, 1650, Blvd. Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer Successful preparation of 5-Ethylidene-2-Norbornene (5E2N) monomer reacted with Ruthenium Grubbs' Catalyst (RGC) composite. Black-Right-Pointing-Pointer The kinetics of the 5E2N ring opening metathesis polymerization (ROMP) is effective in a large temperature range (-20 to 45 Degree-Sign C). Black-Right-Pointing-Pointer The kinetics of the 5E2N ROMP is occurring at very short time scales (<1 min at 40 Degree-Sign C). Black-Right-Pointing-Pointer Successful preparation of RGC nanoparticles (NPs) by UV-excimer laser ablation approach. Black-Right-Pointing-Pointer The ROMP reaction associated to RGC-NPs was achieved at an unprecedented extreme low RGC, equivalent to 0.00117 Vol.%. - Abstract: A self healing composite material consisting of 5-Ethylidene-2-Norbornene (5E2N) monomer reacted with Ruthenium Grubbs' Catalyst (RGC) was prepared. First, the kinetics of the 5E2N ring opening metathesis polymerization (ROMP) reaction RGC was studied as a function of temperature. We show that the polymerization reaction is still effective in a large temperature range (-15 to 45 Degree-Sign C), occurring at short time scales (less than 1 min at 40 Degree-Sign C). Second, the amount of RGC required for ROMP reaction significantly decreased through its nanostructuration by means of a UV-excimer laser ablation process. RGC nanostructures of few nanometers in size where successfully obtained directly on silicon substrates. The X-ray photoelectron spectroscopy data strongly suggest that the RGC still keep its original stoichiometry after nanostructuration. More importantly, the associated ROMP reaction was successfully achieved at an extreme low RGC concentration equivalent to (11.16 {+-} 1.28) Multiplication-Sign 10{sup -4} Vol.%, occurring at very short time reaction. This approach opens new prospects for using healing agent nanocomposite materials for self-repair functionality, thereby obtaining a higher catalytic efficiency per

  19. “Sugar-coating wound repair: A review of FGF-10 and dermatan sulfate in wound healing and their potential application in burn wounds”

    OpenAIRE

    Plichta, Jennifer K.; Katherine A Radek

    2012-01-01

    Thousands of patients suffer from burn injuries each year, yet few therapies have been developed to accelerate the wound healing process. Most fibroblast growth factors (FGFs) have been extensively evaluated, but only a few have been found to participate in wound healing. In particular, FGF-10 is robustly increased in the wound microenvironment following injury and has demonstrated some ability to promote wound healing in vitro and in vivo. Glycosaminoglycans (GAGs) are linear carbohydrates t...

  20. Poly(3-hydroxybutyrate)-ethyl cellulose based bio-composites with novel characteristics for infection free wound healing application.

    Science.gov (United States)

    Iqbal, Hafiz M N; Kyazze, Godfrey; Locke, Ian Charles; Tron, Thierry; Keshavarz, Tajalli

    2015-11-01

    A series of bio-composites including poly3-hydroxybutyrate [P(3HB)] grafted ethyl cellulose (EC) stated as P(3HB)-EC were successfully synthesised. Furthermore, natural phenols e.g., p-4-hydroxybenzoic acid (HBA) and ferulic acid (FA) were grafted onto the newly developed P(3HB)-EC-based bio-composites under laccase-assisted environment without the use of additional initiators or crosslinking agents. The phenol grafted bio-composites were critically evaluated for their antibacterial and biocompatibility features as well as their degradability in soil. In particular, the results of the antibacterial evaluation for the newly developed bio-composites indicated that 20HBA-g-P(3HB)-EC and 15FA-g-P(3HB)-EC bio-composites exerted strong bactericidal and bacteriostatic activity against Gram(-)E. coli NTCT 10418 as compared to the Gram(+)B. subtilis NCTC 3610. This study shows further that at various phenolic concentrations the newly synthesised bio-composites remained cytocompatible with human keratinocyte-like HaCaT skin cells, as 100% cell viability was recorded, in vitro. As for the degradation, an increase in the degradation rate was recorded during the soil burial analyses over a period of 42 days. These findings suggest that the reported bio-composites have great potential for use in wound healing; covering the affected skin area which may favour tissue repair over shorter periods.

  1. Human organ markets and inherent human dignity.

    Science.gov (United States)

    MacKellar, Calum

    2014-01-01

    It has been suggested that human organs should be bought and sold on a regulated market as any other material property belongingto an individual. This would have the advantage of both addressing the grave shortage of organs available for transplantation and respecting the freedom of individuals to choose to do whatever they want with their body parts. The old arguments against such a market in human organs are, therefore, being brought back into question. The article examines the different arguments both in favour and against the sale of human organs. It concludes that the body and any of its elements is a full expression of the whole person. As such, they cannot have a price if the individual is to retain his or her full inherent dignity and if society is to retain and protect this very important concept.

  2. Inherently safe in situ uranium recovery

    Science.gov (United States)

    Krumhansl, James L; Brady, Patrick V

    2014-04-29

    An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

  3. Factors Affecting Wound Healing

    OpenAIRE

    Guo, S; DiPietro, L. A.

    2010-01-01

    Wound healing, as a normal biological process in the human body, is achieved through four precisely and highly programmed phases: hemostasis, inflammation, proliferation, and remodeling. For a wound to heal successfully, all four phases must occur in the proper sequence and time frame. Many factors can interfere with one or more phases of this process, thus causing improper or impaired wound healing. This article reviews the recent literature on the most significant factors that affect cutane...

  4. Self-healing epoxy composites: preparation, characterization and healing performance

    Directory of Open Access Journals (Sweden)

    Reaz A. Chowdhury

    2015-01-01

    Full Text Available Low velocity impact damage is common in fiber reinforced composites, which leads to micro-crack and interfacial debonding, where damage is microscopic and invisible. The concept of self-healing composites can be a way of overcoming this limitation and extending the life expectancy while expanding their usage in structural applications. In the current study, extrinsic self-healing concept was adopted using urea-formaldehyde microcapsules containing room temperature curing epoxy resin system (SC-15 as the healing agent prepared by in situ polymerization. Microcapsules were characterized using Fourier transform infrared spectroscopy (FTIR for structural analysis. Size and shape of microcapsules were studied using optical microscopy and scanning electron microscopy (SEM. Size of the microcapsules was between 30 and 100 μm. Thermal characterization was carried out using thermogravimetric analysis. Microcapsules were thermally stable till 210 °C without any significant decomposition. Fiber reinforced composite fabrication was carried out in three different steps. In the first step, epoxy resin was encapsulated in urea-formaldehyde shell material, which was confirmed by FTIR analysis. In the next step, encapsulation of amine hardener was achieved by vacuum infiltration method. These two different microcapsules were added with epoxy at 10:3 ratio and composite fabrication was done with hand layup method. Finally, healing performance was measured in terms of low velocity impact test and thermoscopy analysis. Low velocity impact test with 30 J and 45 J impact loads confirmed the delamination and micro-crack in composite materials and subsequent healing recovery observed in terms of damaged area reduction and restoration of mechanical properties.

  5. Histologic Evaluation of Bone Healing Following Application of Anorganic Bovine Bone and β-tricalcium Phosphate in Rabbit Calvaria

    Directory of Open Access Journals (Sweden)

    AR. Rokn

    2012-01-01

    Full Text Available Objective: Both anorganic bovine bone (ABB and β-tricalcium phosphate (β- TCP are used in clinical practice as bone substitute materials, but there is limited data comparing these two materials in standardized defects.The aim of this study was to histologically evaluate the effectiveness of ABB and β-TCP in the healing of experimentally induced bone defects.Materials and Methods: Eighteen bone defects were created on the calvaria of six rabbits. In each animal, one defect was left untreated and the other two werefilled with ABB and β-TCP. After one month, histological sections were prepared.Type and vitality of newly formed bone, percentage of new bone formation and residual material, thickness of trabeculae, inflammation and foreign body reaction were assessed.Results: The newly formed osseous tissue was vital in all defects and consisted of woven and lamellar bone. Mean percentages of new bone formation were 30.83±14.29%, 16.83±11.07% and 14.00±8.17% in β-TCP, ABB and control groups, respectively and the mean percentages of residual biomaterial were 24.17±14.01% and 36.50±8.43% in β-TCP and ABB groups, respectively. However,the differences were not statistically significant (all ps>0.05. Inflammatoryinfiltration was statistically higher in β-TCP compared to the control group (p=0.025, but the difference was not significant between β-TCP and ABB groups (p=0.083. Trabeculation thickness and foreign body reaction were not statistically different between β-TCP and ABB groups.Conclusion: β-TCP and ABB were not different with regard to the quantity and quality of newly formed osseous tissue. However, inflammatory infiltration washigher in sites filled with β-TCP.

  6. Welding Distortion Prediction in 5A06 Aluminum Alloy Complex Structure via Inherent Strain Method

    Directory of Open Access Journals (Sweden)

    Zhi Zeng

    2016-09-01

    Full Text Available Finite element (FE simulation with inherent deformation is an ideal and practical computational approach for predicting welding stress and distortion in the production of complex aluminum alloy structures. In this study, based on the thermal elasto-plastic analysis, FE models of multi-pass butt welds and T-type fillet welds were investigated to obtain the inherent strain distribution in a 5A06 aluminum alloy cylindrical structure. The angular distortion of the T-type joint was used to investigate the corresponding inherent strain mechanism. Moreover, a custom-designed experimental system was applied to clarify the magnitude of inherent deformation. With the mechanism investigation of welding-induced buckling by FE analysis using inherent deformation, an application for predicting and mitigating the welding buckling in fabrication of complex aluminum alloy structure was developed.

  7. Inherent safety, ethics and human error.

    Science.gov (United States)

    Papadaki, Maria

    2008-02-11

    stated. The reason this article is presented here is that I believe that often, complex accidents, similarly to insignificant ones, often demonstrate an attitude which can be characterized as "inherently unsafe". I take the view that the enormous human potential and the human ability to minimize accidents needs to become a focal point towards inherent safety. Restricting ourselves to human limitations and how we could "treat" or prevent humans from not making accidents needs to be re-addressed. The purpose of this presentation is to highlight observations and provoke a discussion on how we could possibly improve the understanding of safety related issues. I do not intent to reject or criticize existing methodologies. (The entire presentation is strongly influenced by Trevor Kletz's work although our views are often different.).

  8. Coblation tonsillectomy: is it inherently bloody?

    Science.gov (United States)

    Khan, I; Abelardo, E; Scott, N W; Shakeel, M; Menakaya, O; Jaramillo, M; Mahmood, K

    2012-02-01

    The aim of the study was to compare a single surgeon's post-tonsillectomy haemorrhage rates using cold steel dissection and coblation tonsillectomy techniques. Retrospective study on patients, who underwent tonsillectomy at West Wales General Hospital (WWGH) performed by a single surgeon from 2006 to 2010 employing both cold steel and coblation tonsillectomies. Data were analysed using Mann-Whitney and Chi-squared tests. The nominated surgeon performed 239 tonsillectomies at WWGH from 2006 to 2010. 119 patients underwent cold steel dissection and 120 had coblation tonsillectomy. There was no demographic difference between the two groups. There was no statistically significant difference in the length of hospital stay between the two groups (median 1 day in each group). 6/119 (5.0%) patients in the cold steel group, and 7/120 (5.8%) in the coblation group had post-operative bleeding (p = 1.00). The return to theatre rate for cold steel dissection was 1/119 (0.84%) and for coblation surgery was 1/120 (0.83%) (p = 1.00). Among the first 60 cases of coblation tonsillectomies, 4 patients (6.6%) had post-operative haemorrhage and the latter 60 cases had 3 patients (5%). There was no evidence of a difference in the overall post-operative bleeding between those who had cold steel dissection and coblation tonsillectomies. These data suggest that higher post-operative haemorrhage is not inherent to coblation tonsillectomy.

  9. Conceptual design of inherently safe integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. I.; Chang, M. H.; Lee, D. J. and others

    1999-03-01

    The design concept of a 300 MWt inherently safe integral reactor(ISIR) for the propulsion of extra large and superhigh speed container ship was developed in this report. The scope and contents of this report are as follows : 1. The state of the art of the technology for ship-mounted reactor 2. Design requirements for ISIR 3. Fuel and core design 4. Conceptual design of fluid system 5. Conceptual design of reactor vessel assembly and primary components 6. Performance analyses and safety analyses. Installation of two ISIRs with total thermal power of 600MWt and efficiency of 21% is capable of generating shaft power of 126,000kW which is sufficient to power a container ship of 8,000TEU with 30knot cruise speed. Larger and speedier ship can be considered by installing 4 ISIRs. Even though the ISIR was developed for ship propulsion, it can be used also for a multi-purpose nuclear power plant for electricity generation, local heating, or seawater desalination by mounting on a movable floating barge. (author)

  10. Biomarkers for wound healing and their evaluation.

    Science.gov (United States)

    Patel, S; Maheshwari, A; Chandra, A

    2016-01-01

    A biological marker (biomarker) is a substance used as an indicator of biological state. Advances in genomics, proteomics and molecular pathology have generated many candidate biomarkers with potential clinical value. Research has identified several cellular events and mediators associated with wound healing that can serve as biomarkers. Macrophages, neutrophils, fibroblasts and platelets release cytokines molecules including TNF-α, interleukins (ILs) and growth factors, of which platelet-derived growth factor (PDGF) holds the greatest importance. As a result, various white cells and connective tissue cells release both matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs). Studies have demonstrated that IL-1, IL-6, and MMPs, levels above normal, and an abnormally high MMP/TIMP ratio are often present in non-healing wounds. Clinical examination of wounds for these mediators could predict which wounds will heal and which will not, suggesting use of these chemicals as biomarkers of wound healing. There is also evidence that the application of growth factors like PDGF will alleviate the recuperating process of chronic, non-healing wounds. Finding a specific biomarker for wound healing status would be a breakthrough in this field and helping treat impaired wound healing.

  11. Fatigue crack arrest in a self-healing polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Brown, E. N. (Eric N.); White, S. R. (Scott R.); Sottos, Nancy R.

    2004-01-01

    A comprehensive experimental program is performed to assess the in situ fatigue behavior of a self-healing polymer. A fatigue-life-extension protocol is established for characterizing healing efficiency of the self-healing epoxy under cyclic loading. At moderate {Delta}K{sub I} and at high {Delta}K{sub I}, when a rest period is employed, in situ healing extends fatigue life though temporary crack arrest and retardation. In situ self-healing permanently arrests crack growth at low {delta}K{sub I} and at moderate {Delta}K{sub I}, when a rest period is employed. Fatigue crack retardation and arrest result from two primary crack-tip shielding mechanisms: hydrodynamic pressure in the viscous healing agent and artificial crack closure. Application of self-healing functionality to fatigue slows the crack growth rate and increases the fatigue threshold.

  12. Measurement of inherent optical properties in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Desa, E.; Kurian, J.; Mascarenhas, A.A.M.Q.

    Inherent optical properties, absorption and began attenuation were measured in situ using a reflective tube absorption meter at nint wavelength, 412, 440, 488, 510, 555, 630, 650, 676 and 715 nm, in the Arabian Sea during March. Since inherent...

  13. Distribution of Longitudinal Inherent Strains in Multiple-passes Welding

    Institute of Scientific and Technical Information of China (English)

    Peng HE; Jiuhai ZHANG; Toshio Terasaki; Testuya Akiyama

    2001-01-01

    A fundamental theory for the analysis of residual welding stresses and deformation based on the inherent strain distribution along the welded joint is introduced. The computing method of distribution of longitudinal inherent strains in multiple-passes welding in heavy plate weldment is proposed. Distribution of longitudinal inherent strains in one-pass welding and two-passes welding are compared and analyzed. The effect of cutting on inherent strain is discussed.

  14. Food plant toxicants and safety - Risk assessment and regulation of inherent toxicants in plant foods

    DEFF Research Database (Denmark)

    Essers, A.J.A.; Alink, G.M.; Speijers, G.J.A.;

    1998-01-01

    The ADI as a tool for risk management and regulation of food additives and pesticide residues is not readily applicable to inherent food plant toxicants: The margin between actual intake and potentially toxic levels is often small; application of the default uncertainty factors used to derive ADI...... values, particularly when extrapolating from animal data, would prohibit the utilisation of the food, which may have an overall beneficial health effect. Levels of inherent toxicants are difficult to control; their complete removal is not always wanted, due to their function for the plant or for human...... health. The health impact of the inherent toxicant is often modified by factors in the food, e.g. the bioavailability from the matrix and interaction with other inherent constituents. Risk-benefit analysis should be made for different consumption scenarios, without the use of uncertainty factors. Crucial...

  15. A comprehensive review of advanced biopolymeric wound healing systems.

    Science.gov (United States)

    Mayet, Naeema; Choonara, Yahya E; Kumar, Pradeep; Tomar, Lomas K; Tyagi, Charu; Du Toit, Lisa C; Pillay, Viness

    2014-08-01

    Wound healing is a complex and dynamic process that involves the mediation of many initiators effective during the healing process such as cytokines, macrophages and fibroblasts. In addition, the defence mechanism of the body undergoes a step-by-step but continuous process known as the wound healing cascade to ensure optimal healing. Thus, when designing a wound healing system or dressing, it is pivotal that key factors such as optimal gaseous exchange, a moist wound environment, prevention of microbial activity and absorption of exudates are considered. A variety of wound dressings are available, however, not all meet the specific requirements of an ideal wound healing system to consider every aspect within the wound healing cascade. Recent research has focussed on the development of smart polymeric materials. Combining biopolymers that are crucial for wound healing may provide opportunities to synthesise matrices that are inductive to cells and that stimulate and trigger target cell responses crucial to the wound healing process. This review therefore outlines the processes involved in skin regeneration, optimal management and care required for wound treatment. It also assimilates, explores and discusses wound healing drug-delivery systems and nanotechnologies utilised for enhanced wound healing applications. PMID:24985412

  16. Self-healing networks: redundancy and structure.

    Directory of Open Access Journals (Sweden)

    Walter Quattrociocchi

    Full Text Available We introduce the concept of self-healing in the field of complex networks modelling; in particular, self-healing capabilities are implemented through distributed communication protocols that exploit redundant links to recover the connectivity of the system. We then analyze the effect of the level of redundancy on the resilience to multiple failures; in particular, we measure the fraction of nodes still served for increasing levels of network damages. Finally, we study the effects of redundancy under different connectivity patterns-from planar grids, to small-world, up to scale-free networks-on healing performances. Small-world topologies show that introducing some long-range connections in planar grids greatly enhances the resilience to multiple failures with performances comparable to the case of the most resilient (and least realistic scale-free structures. Obvious applications of self-healing are in the important field of infrastructural networks like gas, power, water, oil distribution systems.

  17. Self-Healing Networks: Redundancy and Structure

    Science.gov (United States)

    Quattrociocchi, Walter; Caldarelli, Guido; Scala, Antonio

    2014-01-01

    We introduce the concept of self-healing in the field of complex networks modelling; in particular, self-healing capabilities are implemented through distributed communication protocols that exploit redundant links to recover the connectivity of the system. We then analyze the effect of the level of redundancy on the resilience to multiple failures; in particular, we measure the fraction of nodes still served for increasing levels of network damages. Finally, we study the effects of redundancy under different connectivity patterns—from planar grids, to small-world, up to scale-free networks—on healing performances. Small-world topologies show that introducing some long-range connections in planar grids greatly enhances the resilience to multiple failures with performances comparable to the case of the most resilient (and least realistic) scale-free structures. Obvious applications of self-healing are in the important field of infrastructural networks like gas, power, water, oil distribution systems. PMID:24533065

  18. Clinical Application of Mucosal Healing in Inflammatory Bowel Disease%黏膜愈合在炎症性肠病中的临床应用

    Institute of Scientific and Technical Information of China (English)

    邱云

    2011-01-01

    Until the late-1990s, symptomatic remission has been the key parameter for efficacy evaluation of inflammatory bowel disease (IBD).In recent years, mucosal healing (MH) has been included into efficacy evaluation of IBD, and has been used as an important endpoint and treatment goal in clinical trails.MH may change the natural course of IBD, so as to achieve sustaining clinical remission, reduction of hospitalization rate and surgical risk of IBD patients.This article reviewed the clinical application of MH in IBD.%至上世纪90年代末,症状缓解仍是炎症性肠病(IBD)疗效评估的重要指标.近年,黏膜愈合(MH)逐渐被纳入IBD的疗效评估,并作为临床试验的重要终点和治疗目标.MH可改变IBD的自然病程,以达持续临床缓解,由此降低患者的住院率和手术风险.本文就MH在IBD临床应用中的价值作一综述.

  19. Clinical Applications of S53P4 Bioactive Glass in Bone Healing and Osteomyelitic Treatment: A Literature Review

    Directory of Open Access Journals (Sweden)

    N. A. P. van Gestel

    2015-01-01

    Full Text Available Nowadays, S53P4 bioactive glass is indicated as a bone graft substitute in various clinical applications. This review provides an overview of the current published clinical results on indications such as craniofacial procedures, grafting of benign bone tumour defects, instrumental spondylodesis, and the treatment of osteomyelitis. Given the reported results that are based on examinations, such as clinical examinations by the surgeons, radiographs, CT, and MRI images, S53P4 bioactive glass may be beneficial in the various reported applications. Especially in craniofacial reconstructions like mastoid obliteration and orbital floor reconstructions, in grafting bone tumour defects, and in the treatment of osteomyelitis very promising results are obtained. Randomized clinical trials need to be performed in order to determine whether bioactive glass would be able to replace the current golden standard of autologous bone usage or with the use of antibiotic containing PMMA beads (in the case of osteomyelitis.

  20. The Inherently Three-Dimensional Nature of Magnetized Plasma Turbulence

    CERN Document Server

    Howes, Gregory G

    2013-01-01

    It is often asserted or implicitly assumed, without justification, that the results of two-dimensional investigations of plasma turbulence are applicable to the three-dimensional plasma environments of interest. A projection method is applied to derive two scalar equations that govern the nonlinear evolution of the Alfvenic and pseudo-Alfvenic components of ideal incompressible magnetohydrodynamic (MHD) plasma turbulence. The mathematical form of these equations makes clear the inherently three-dimensional nature of plasma turbulence, enabling an analysis of the nonlinear properties of two-dimensional limits often used to study plasma turbulence. In the anisotropic limit k_perp >>k_parallel that naturally arises in magnetized plasma systems, the perpendicular 2D limit retains the dominant nonlinearities that are mediated only by the Alfvenic fluctuations but lacks the wave physics associated with the linear term that is necessary to capture the anisotropic cascade of turbulent energy. In the in-plane 2D limit...

  1. Cutaneous wound healing: Current concepts and advances in wound care

    OpenAIRE

    Kenneth C Klein; Somes Chandra Guha

    2014-01-01

    A non-healing wound is defined as showing no measurable signs of healing for at least 30 consecutive treatments with standard wound care. [1] It is a snapshot of a patient′s total health as well as the ongoing battle between noxious factors and the restoration of optimal macro and micro circulation, oxygenation and nutrition. In practice, standard therapies for non-healing cutaneous wounds include application of appropriate dressings, periodic debridement and eliminating causative factors. [2...

  2. [Translation medicine in wound healing: successful cases and personal deliberation].

    Science.gov (United States)

    Fu, Xiaobing

    2014-02-01

    Local wound care is the key step in wound management, and it is affected by many factors. The innovation and translation application of some new theories and skills may help accelerate local wound healing velocity and improve wound healing quality. In this paper, the translation medicine in wound healing, such as debridement, dressings, and tissue engineering products, are reviewed. In the meantime, personal consideration concerning their successful and future development is given. PMID:24684981

  3. Healing Childhood Trauma Worldwide

    Science.gov (United States)

    Kuban, Caelan

    2012-01-01

    Millions of the world's children are exposed to traumatic events and relationships every day. Whatever the cause, this overwhelming stress produces a host of unsettling symptoms and reactions. The author highlights six practical principles that undergird healing interventions.

  4. Organic semiconductors: Healing contact

    Science.gov (United States)

    Risko, Chad; Brédas, Jean-Luc

    2013-12-01

    Traps in organic semiconducting crystals are healed when a perfluoropolyether oil is deposited on the surface of these materials, thus making possible the detection of intrinsic features of charge-carrier transport in rubrene and tetracene.

  5. How wounds heal

    Science.gov (United States)

    ... PA: Mosby Elsevier; 2010: chap. 7. Richardson M. Acute wounds: an overview of the physiological healing process. Nursing Times . 2004; 100(4): 50. Von Der Heyde RL, Evans RB. Wound classification ...

  6. 面向容忍入侵的自治愈应用服务器设计与实现%Design and implementation of intrusion-tolerant oriented self-healing application server

    Institute of Scientific and Technical Information of China (English)

    周睿鹏; 郭渊博; 刘伟

    2011-01-01

    针对现有容忍入侵应用服务器在自治愈方面的不足,提出了一种面向容忍入侵的自治愈应用服务器的构建方法.在容忍入侵应用服务器的基础上,设计了自治愈功能组件,包括检测部件、管理部件和执行部件,将自治愈功能透明地加入到容忍入侵应用服务器中,解决了容忍入侵应用服务器中存在的隐性入侵、软件老化以及容侵前提条件易遭破坏的问题,进一步提高了容忍入侵应用服务器的可靠性和生存性.最后在项目组研发的容忍入侵应用服务器平台--JANTM中实现了对自治愈功能的支持.%Aiming at the current intrusion-tolerant application server' s limitation for self-healing, a method to design an intrusiontolerant oriented self-healing application server is proposed.By the way of establishing a self-healing functional components, including the detection components, management components and implementation components, we add self-healing capabilities into the intrusiontolerant application server.It solves some problems in the intrusion-tolerant application servers, for example the hidden intrusion,software aging, and the vulnerable prerequisite of intrusion tolerance, and further enhances the reliability and survivability of the intrusiontolerant application server.Finally, an intrusion-tolerant oriented self-healing application server is realized, JANTM is built (J2EE based adaptive intrusion tolerant middleware) which is developed by our project team.

  7. Diabetes and wound healing

    OpenAIRE

    Svendsen, Rikke; Irakunda, Gloire; Knudsen List, Karoline Cecilie; Sønderstup-Jensen, Marie; Hölmich Rosca, Mette Maria

    2014-01-01

    Diabetes is a disease where the glucose level in the blood is high, due to either insulin resistance, impaired insulin sensitivity or no insulin production. The high glucose level causes several complications, one of them being an impaired wound healing process, which might lead to chronic wounds, ulcers. Several factors play a role in the development of ulcers, and recent research indicates that microRNA might play a significant role in skin development and wound healing. The purpose of this...

  8. Investigation of Regenerated Cellulose/Poly(acrylic acid Composite Films for Potential Wound Healing Applications: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Manjula Bajpai

    2014-01-01

    Full Text Available Regenerated cellulose/poly(acrylic acid composite films have been synthesized for wound dressing applications. The water absorbency of these films was studied as a function of amount of cross-linker N,N′-methylenebisacrylamide and cellulose contents in the feed mixture. The samples, having different compositions, showed tensile strength and percent elongation in the range of 9.98×105 to 13.40×105 N/m2 and 110 to 265, respectively. The water vapor transmission rate (WVTR for various films was found to be in the range of 2.03 to 7.18 mg/cm2/h. These films were loaded with antibacterial drug miconazole nitrate and their release was studied in the physiological pH at 37°C. The release data was found to fit well the diffusion controlled Higuchi model. Finally the films demonstrated fair antibacterial and antifungal action, thus establishing their strong candidature as wound dressing materials.

  9. A self-healing polymer composite for extended fatigue life

    Energy Technology Data Exchange (ETDEWEB)

    Brown, E. N. (Eric N.); Jones, A. S. (Alan S.); White, S. R. (Scott R.); Sottos, Nancy R.

    2004-01-01

    A novel approach is explored for improving the fatigue life of thermosetting polymers through the addition of self-healing functionality. Thermosetting polymers are used in a wide variety of applications, but are susceptible to the initiation and propagation of small cracks deep within the structure where detection is difficult and repair is virtually impossible. The material under investigation is an epoxy matrix composite, which utilizes embedded microcapsules to store a healing agent and an embedded catalyst. A propagating crack exposes particles of catalyst and ruptures the microcapsules, which release healing agent into the crack plane. Polymerization of the healing agent is triggered by contact with the catalyst. Fatigue crack retardation and arrest from self-healing functionality result from crack-tip shielding mechanisms, such as hydrodynamic pressure and artificial-crack closure. In situ healing is observed to significantly extended fatigue life or permanently arrested fatigue crack growth over a wide range of loading conditions.

  10. Development of inherent core technologies for advanced reactor

    International Nuclear Information System (INIS)

    Recently, the developed countries made their effort on developing the advanced reactor which will result in significantly enhanced safety and economy. However, they will protect the advanced reactor and its design technology with patent and proprietary right. Therefore, it is very important to develop our own key core concepts and inherent core design technologies which can form a foundation of indigenous technologies for development of the domestic advanced reactor in order to keep the superiority in the nuclear plant building market among the developing countries. In order to provide the basic technology for the core design of advanced reactor, this project is for developing the inherent core design concepts with enhanced safety and economy, and associated methodologies and technologies for core analyses. The feasibility study of constructing domestic critical facilities are performed by surveying the status and utilization of foreign facilities and by investigating the demand for domestic facilities. The research results developed in this project, such as core analysis methodologies for hexagonal core, conceptual core design based on hexagonal fuel assemblies and soluble boron core design and control strategies, will provide a technical foundation in developing core design of domestic advanced reactor. Furthermore, they will strengthen the competitiveness of Korean nuclear technology. We also expect that some of the design concepts developed in this project to improve the reactor safety and economy can be applicable to the design of advanced reactor. This will significantly reduce the public anxiety on the nuclear power plant, and will contribute to the economy of construction and operation for the future domestic reactors. Even though the critical facility will not be constructed right now, the investigation of the status and utilization of foreign critical facility will contribute to the future critical facility construction. (author). 150 refs., 34 tabs., 103

  11. Development of inherent core technologies for advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Keung Koo; Noh, J.M.; Hwang, D.H. [and others

    1999-03-01

    Recently, the developed countries made their effort on developing the advanced reactor which will result in significantly enhanced safety and economy. However, they will protect the advanced reactor and its design technology with patent and proprietary right. Therefore, it is very important to develop our own key core concepts and inherent core design technologies which can form a foundation of indigenous technologies for development of the domestic advanced reactor in order to keep the superiority in the nuclear plant building market among the developing countries. In order to provide the basic technology for the core design of advanced reactor, this project is for developing the inherent core design concepts with enhanced safety and economy, and associated methodologies and technologies for core analyses. The feasibility study of constructing domestic critical facilities are performed by surveying the status and utilization of foreign facilities and by investigating the demand for domestic facilities. The research results developed in this project, such as core analysis methodologies for hexagonal core, conceptual core design based on hexagonal fuel assemblies and soluble boron core design and control strategies, will provide a technical foundation in developing core design of domestic advanced reactor. Furthermore, they will strengthen the competitiveness of Korean nuclear technology. We also expect that some of the design concepts developed in this project to improve the reactor safety and economy can be applicable to the design of advanced reactor. This will significantly reduce the public anxiety on the nuclear power plant, and will contribute to the economy of construction and operation for the future domestic reactors. Even though the critical facility will not be constructed right now, the investigation of the status and utilization of foreign critical facility will contribute to the future critical facility construction. (author). 150 refs., 34 tabs., 103

  12. Self-healing networks: redundancy and structure

    CERN Document Server

    Quattrociocchi, Walter; Scala, Antonio

    2013-01-01

    We introduce the concept of self-healing in the field of complex networks. Obvious applications range from infrastructural to technological networks. By exploiting the presence of redundant links in recovering the connectivity of the system, we introduce self-healing capabilities through the application of distributed communication protocols granting the "smartness" of the system. We analyze the interplay between redundancies and smart reconfiguration protocols in improving the resilience of networked infrastructures to multiple failures; in particular, we measure the fraction of nodes still served for increasing levels of network damages. We study the effects of different connectivity patterns (planar square-grids, small-world, scale-free networks) on the healing performances. The study of small-world topologies shows us that the introduction of some long-range connections in the planar grids greatly enhances the resilience to multiple failures giving results comparable to the most resilient (but less realis...

  13. The Advantages of Traditional Chumash Healing

    OpenAIRE

    Cecilia Garcia; Adams, James D.

    2005-01-01

    Chumash healing has been practiced in California for ∼13 000 years. Chumash healers treat their patients with prayer, laughter, dreaming, phytotherapy, aromatherapy, healing ceremonies and other techniques. Healing involves first healing the spirit, then healing the body. Chumash people still maintain their unique identity. Chumash Healers still practice the ancient healing arts in California. This lecture is a brief introduction to Chumash Healing.

  14. Tikkun Olam: A Model for Healing the World.

    Science.gov (United States)

    Berman, Dene S.; Davis-Berman, Jennifer

    1999-01-01

    Discusses Tikkun Olam--the Jewish tenet of healing the world through individual good deeds--and its applicability to the practice of adventure therapy. Focuses on the therapeutic relationship, as it develops in group settings, and the role of adventure leaders and therapists in nourishing such relationships to provide a vehicle for healing or…

  15. Recent Advances in Thermoplastic Puncture-Healing Polymers

    Science.gov (United States)

    Bogert, Philip B.; Working, Dennis C.; Wise, Kristopher E.; Smith, Janice Y.; Topping, Crystal C.; Britton, Sean M.; Bagby, Paul R.; Siochi, Emilie J.

    2010-01-01

    The motivation for this work is to develop self-healing polymeric materials to enable damage tolerant systems, and to tailor puncture healing for use temperatures and applications. This will be a benefit in environments and conditions where access for manual repair is limited or impossible, or where damage may not be detected.

  16. Self-healing composites: in-situ repair solutions

    NARCIS (Netherlands)

    Coope, T.S.; Luterbacher, R.; Turkenburg, D.H.; Fischer, H.R.; Bond, I.P.

    2015-01-01

    Realising self-healing composites in a commercial environment remains a challenge for the transport sector. Herein, this research considers the design envelope and the implications of embedding self-healing agents into commercially relevant fibre reinforced polymer (FRP) composite applications. A no

  17. Healing relationships and the existential philosophy of Martin Buber

    Directory of Open Access Journals (Sweden)

    Stange Kurt C

    2009-08-01

    Full Text Available Abstract The dominant unspoken philosophical basis of medical care in the United States is a form of Cartesian reductionism that views the body as a machine and medical professionals as technicians whose job is to repair that machine. The purpose of this paper is to advocate for an alternative philosophy of medicine based on the concept of healing relationships between clinicians and patients. This is accomplished first by exploring the ethical and philosophical work of Pellegrino and Thomasma and then by connecting Martin Buber's philosophical work on the nature of relationships to an empirically derived model of the medical healing relationship. The Healing Relationship Model was developed by the authors through qualitative analysis of interviews of physicians and patients. Clinician-patient healing relationships are a special form of what Buber calls I-Thou relationships, characterized by dialog and mutuality, but a mutuality limited by the inherent asymmetry of the clinician-patient relationship. The Healing Relationship Model identifies three processes necessary for such relationships to develop and be sustained: Valuing, Appreciating Power and Abiding. We explore in detail how these processes, as well as other components of the model resonate with Buber's concepts of I-Thou and I-It relationships. The resulting combined conceptual model illuminates the wholeness underlying the dual roles of clinicians as healers and providers of technical biomedicine. On the basis of our analysis, we argue that health care should be focused on healing, with I-Thou relationships at its core.

  18. Implementation of inherence calculus in the PowerLoom environment

    Science.gov (United States)

    Wachulski, Marcin F.; Mulawka, Jan J.; Nieznański, Edward

    The article describes an attempt to implement abstract and concrete inherence calculi in the PowerLoom technology. Issues in the field of artificial intelligence, ontology and philosophy have been addressed. The inherence calculus is a type of a formal logic system. The PowerLoom technology consists of a knowledge representation language and an inference engine. Six inherence calculi have been implemented and an appropriate testing environment has been developed. The inherence calculus has been also extended by categorical properties and a theoretical discussion of ontological Boolean algebra has been conducted. Carried out experiments showed properties of the inherence calculi and also verified capabilities of PowerLoom to construct such logic systems. It occurred that expert system operational mode of PowerLoom outperforms its abilities to work as a mathematical theorem prover.

  19. Autologous skin substitute for hard-to-heal ulcers: Retrospective analysis on safety, applicability, and efficacy in an outpatient and hospitalized setting

    NARCIS (Netherlands)

    C.S. Blok; L. Vink; E.M. de Boer; C. van Montfrans; H.M. van den Hoogenband; M.C. Mooij; S.A. Gauw; J.A.F.P.M. Vloemans; I. Bruynzeel; I. van Kraan; J. Kuik; T. Waaijman; R.J. Scheper; S. Gibbs

    2013-01-01

    Chronic ulcers ((arterio)venous, decubitus, or postoperative) have no tendency to heal within a period of at least 3 months despite optimal therapy according to internationally accepted guidelines. This retrospective study evaluates the safety and efficacy of an autologous, dermal-epidermal skin sub

  20. Healing the nations

    Directory of Open Access Journals (Sweden)

    Karl Dortzbach

    2004-10-01

    Full Text Available This article gives the motivations, methodology and some results of a study done in Christian healing interventions in African contexts of� stress and violence. Healing in community has been viewed through the prism of �shalom�. Shalom occurs when people who are in a� right� relationship with God� and� each other enjoy and share together the resources of the earth� in ways� that� show Christ� is Lord of all creation. Charts are given showing� the various kinds of community needs, ways to intervene, and some indications of ways to evaluate the interventions.

  1. 42 CFR 60.32 - The HEAL lender or holder insurance contract.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false The HEAL lender or holder insurance contract. 60.32... EDUCATION ASSISTANCE LOAN PROGRAM The Lender and Holder § 60.32 The HEAL lender or holder insurance contract. (a)(1) If the Secretary approves an application to be a HEAL lender or holder, the Secretary and...

  2. Curcumin as a wound healing agent.

    Science.gov (United States)

    Akbik, Dania; Ghadiri, Maliheh; Chrzanowski, Wojciech; Rohanizadeh, Ramin

    2014-10-22

    Turmeric (Curcuma longa) is a popular Indian spice that has been used for centuries in herbal medicines for the treatment of a variety of ailments such as rheumatism, diabetic ulcers, anorexia, cough and sinusitis. Curcumin (diferuloylmethane) is the main curcuminoid present in turmeric and responsible for its yellow color. Curcumin has been shown to possess significant anti-inflammatory, anti-oxidant, anti-carcinogenic, anti-mutagenic, anti-coagulant and anti-infective effects. Curcumin has also been shown to have significant wound healing properties. It acts on various stages of the natural wound healing process to hasten healing. This review summarizes and discusses recently published papers on the effects of curcumin on skin wound healing. The highlighted studies in the review provide evidence of the ability of curcumin to reduce the body's natural response to cutaneous wounds such as inflammation and oxidation. The recent literature on the wound healing properties of curcumin also provides evidence for its ability to enhance granulation tissue formation, collagen deposition, tissue remodeling and wound contraction. It has become evident that optimizing the topical application of curcumin through altering its formulation is essential to ensure the maximum therapeutical effects of curcumin on skin wounds. PMID:25200875

  3. Augmentation of tendon-to-bone healing.

    Science.gov (United States)

    Atesok, Kivanc; Fu, Freddie H; Wolf, Megan R; Ochi, Mitsuo; Jazrawi, Laith M; Doral, M Nedim; Lubowitz, James H; Rodeo, Scott A

    2014-03-19

    Tendon-to-bone healing is vital to the ultimate success of the various surgical procedures performed to repair injured tendons. Achieving tendon-to-bone healing that is functionally and biologically similar to native anatomy can be challenging because of the limited regeneration capacity of the tendon-bone interface. Orthopaedic basic-science research strategies aiming to augment tendon-to-bone healing include the use of osteoinductive growth factors, platelet-rich plasma, gene therapy, enveloping the grafts with periosteum, osteoconductive materials, cell-based therapies, biodegradable scaffolds, and biomimetic patches. Low-intensity pulsed ultrasound and extracorporeal shockwave treatment may affect tendon-to-bone healing by means of mechanical forces that stimulate biological cascades at the insertion site. Application of various loading methods and immobilization times influence the stress forces acting on the recently repaired tendon-to-bone attachment, which eventually may change the biological dynamics of the interface. Other approaches, such as the use of coated sutures and interference screws, aim to deliver biological factors while achieving mechanical stability by means of various fixators. Controlled Level-I human trials are required to confirm the promising results from in vitro or animal research studies elucidating the mechanisms underlying tendon-to-bone healing and to translate these results into clinical practice. PMID:24647509

  4. Self-healing supramolecular nanocomposites

    OpenAIRE

    Liu, Z.

    2015-01-01

    The aim of this thesis is to execute a bottom-up design of the intrinsically self-healing nanocomposites. We briefly introduced the self-healing materials in chapter 1, covering classification and basic self-healing mechanism. In chapter 2, we have synthesized polyborosiloxane (PBS) according to the last century recipe as the self-healing supramolecular matrix. Additionally, we provided the long existing recipe with exclusive supplementary details, such as reaction kinetics, structural refine...

  5. Effect of topical application of fibronectin in duodenal wound healing in rats Efeito da aplicação tópica da fibronectina em feridas duodenais de ratos

    Directory of Open Access Journals (Sweden)

    Teresa Neuma de Souza Brito

    2003-03-01

    Full Text Available Fibronectin (FN, a large family of plasma and extracellular matrix glycoproteins, plays an important role in wound healing. PURPOSE: To evaluate the effect of fibronectin on the healing of sutured duodenal wounds, correlating with the serum and tissue level of the substance. METHODS: An experimental study was done in 30 adult Wistar rats divided into two group. In the control group (n=15 a duodenal suture was treated with saline solution 0,9% and in the test group the duodenal wounds were treated with 1% FN. The duodenal wound healing process was studied in the 5th, 7tn and 10th postoperative days, by histological sections stained by hematoxylin-eosin, Masson trichromic and immunohistochemical reaction for FN. A digital histological grading system was used to obtain a score for each group and to observe the healing process. RESULTS: the FN was present in the several layers of the duodenum and the cellular and plasmatic FN increased with the evolution of healing. In the test group the FN enhanced the wound healing within 5, 7 and 10 days after injury, when compared with the control group. CONCLUSION: The topical use of FN in duodenal sutured wounds in rats enhances healing by stimulating the appearence of fibroblasts into the wound site and development of granulation tissue. This acceleration of the repair process may have an important application in the healing of duodenal wounds.A fibronectina (FN, um componente da grande família das glicoproteínas do plasma e da matriz extracelular, desempenha um importante papel na cicatrização das feridas. OBJETIVO: Avaliar os efeitos da fibronectina na cicatrização de lesões duodenais suturadas, e estabelecer correlação dos parâmetros de cicatrização com os níveis tissulares e séricos da substância. MÉTODOS: Foi realizado estudo experimental com 30 ratos Wistar adultos dividos em dois grupos. No grupo de controle (n=15 uma lesão duodenal suturada foi tratada com aplicação tópica de 1ml

  6. Inherent Difference in Saliency for Generators with Different PM Materials

    Directory of Open Access Journals (Sweden)

    Sandra Eriksson

    2014-01-01

    Full Text Available The inherent differences between salient and nonsalient electrical machines are evaluated for two permanent magnet generators with different configurations. The neodymium based (NdFeB permanent magnets (PMs in a generator are substituted with ferrite magnets and the characteristics of the NdFeB generator and the ferrite generator are compared through FEM simulations. The NdFeB generator is a nonsalient generator, whereas the ferrite machine is a salient-pole generator, with small saliency. The two generators have almost identical properties at rated load operation. However, at overload the behaviour differs between the two generators. The salient-pole, ferrite generator has lower maximum torque than the NdFeB generator and a larger voltage drop at high current. It is concluded that, for applications where overload capability is important, saliency must be considered and the generator design adapted according to the behaviour at overload operation. Furthermore, if the maximum torque is the design criteria, additional PM mass will be required for the salient-pole machine.

  7. Amine-functionalized polypyrrole: Inherently cell adhesive conducting polymer.

    Science.gov (United States)

    Lee, Jae Y; Schmidt, Christine E

    2015-06-01

    Electrically conducting polymers (CPs) have been recognized as novel biomaterials that can electrically communicate with biological systems. For their tissue engineering applications, CPs have been modified to promote cell adhesion for improved interactions between biomaterials and cells/tissues. Conventional approaches to improve cell adhesion involve the surface modification of CPs with biomolecules, such as physical adsorption of cell adhesive proteins and polycationic polymers, or their chemical immobilization; however, these approaches require additional multiple modification steps with expensive biomolecules. In this study, as a simple and effective alternative to such additional biomolecule treatment, we synthesized amine-functionalized polypyrrole (APPy) that inherently presents cell adhesion-supporting positive charges under physiological conditions. The synthesized APPy provides electrical activity in a moderate range and a hydrophilic surface compared to regular polypyrrole (PPy) homopolymers. Under both serum and serum-free conditions, APPy exhibited superior attachment of human dermal fibroblasts and Schwann cells compared to PPy homopolymer controls. Moreover, Schwann cell adhesion onto the APPy copolymer was at least similar to that on poly-l-lysine treated PPy controls. Our results indicate that amine-functionalized CP substrates will be useful to achieve good cell adhesion and potentially electrically stimulate various cells. In addition, amine functionality present on CPs can further serve as a novel and flexible platform to chemically tether various bioactive molecules, such as growth factors, antibodies, and chemical drugs. PMID:25294089

  8. Design of a low-profile printed array of loaded dipoles with inherent frequency selectivity properties

    NARCIS (Netherlands)

    Cavallo, D.; Savoia, S.; Gerini, G.; Neto, A.; Galdi, V.

    2011-01-01

    This work presents the design of a low-profile array of printed dipoles with inherent filtering properties for radar applications. The antenna and the band-pass filter are integrated in a single module, which is small enough to fit within the array unit cell (with period of about 0.4 ? at the highes

  9. Healing Invisible Wounds

    Science.gov (United States)

    Adams, Erica J.

    2010-01-01

    As many as 9 in 10 justice-involved youth are affected by traumatic childhood experiences. According to "Healing Invisible Wounds: Why Investing in Trauma-Informed Care for Children Makes Sense," between 75 and 93 percent of youth currently incarcerated in the justice system have had at least one traumatic experience, including sexual abuse, war,…

  10. The arts as healing.

    Science.gov (United States)

    Kivnick, H Q; Erikson, J M

    1983-10-01

    The relationship between artistic involvement and individual mental health is considered, and the concept of "healing" is differentiated from that of "therapy." Seven properties of art experience are identified which, when developed, have contributed to patients' recovery from mental illness. Implications of these properties for clinical programs, and the related value of art experience for non-patients, are discussed. PMID:6638153

  11. Phytochemicals in Wound Healing

    OpenAIRE

    Thangapazham, Rajesh L.; Sharad, Shashwat; Radha K. Maheshwari

    2016-01-01

    Significance: Traditional therapies, including the use of dietary components for wound healing and skin regeneration, are very common in Asian countries such as China and India. The increasing evidence of health-protective benefits of phytochemicals, components derived from plants is generating a lot of interest, warranting further scientific evaluation and mechanistic studies.

  12. Impurities in Silicon Nanocrystals: The intentional and the inherent

    Science.gov (United States)

    Rowe, David J.

    Silicon nanocrystals (SiNCs) have become an important class of materials in the fields of photovoltaics, thermoelectrics, lighting, and medicine. Impurities within SiNCs dramatically alter the electrical and optical properties of the host material, whether the impurity is intentionally added in an attempt to manipulate properties, or is inherent to the material and its natural state. Despite such remarkable changes, impurity incorporation within SiNCs remains poorly understood, since concepts applied to understanding impurities in bulk materials may not completely translate to nanomaterials. Understanding the effect of SiNC impurities requires new technologies to produce materials suitable for study combined with new insights to expound the differences in the nanoscale physics. Nonthermal plasma-assisted gas-phase synthesis provides an excellent route to producing and investigating impurities within SiNCs due to the unique chemical reaction environment of the plasma. The robustness of such a technique allows for the production of very pure SiNCs or SiNCs with added impurities simply by adding different chemicals to the plasma. The chapters in this document focus on the effect that different impurities have on the properties of SiNCs. Chapter 2 focuses on heavily P-doped SiNCs exhibiting the first known observation of a unique electrical and optical property known as localized surface plasmon resonance (LSPR) within free-standing SiNCs. Chapter 3 explains the synthesis of B- and P-doped SiGeNC alloys and their deposition into thin films for thermoelectric applications. Chapter 4 highlights research which uses P-doped SiNCs to form emitter layers for pn-junction type solar cells, including device fabrication and optical characterization. Chapter 5 examines inherent impurities in the form of dangling bond defects which may be responsible for the quenching of SiNC photoluminescence, and their evolution during the process of air-ambient oxidation. Several appendices at

  13. Coherence Inherent in an Incoherent Synchrotron Radio Source

    Indian Academy of Sciences (India)

    Ashok K. Singal

    2011-12-01

    We show that a partial coherence due to antenna mechanism can be inherently present in any compact synchrotron source, which resolves many long-standing problems in the spectra and variability of compact extragalactic radio sources.

  14. Compact All Solid State Oceanic Inherent Optical Property Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Light propagation in the sea and the consequent remote sensing signals seen by aircraft and spacecraft is fundamentally governed by the inherent optical properties...

  15. Compact All Solid State Oceanic Inherent Optical Property Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This work concerns the development of a prototype of a Volume Scattering Function (VSF) sensor for measurement of this inherent optical property(IOP) of seawater....

  16. Inherent functionality:-a useful term for consumer information?

    OpenAIRE

    Gormley, T. R. (Thomas Ronan)

    2006-01-01

    Functional foods are broadly defined as those that offer 'something extra' in terms of health benefits than the basic food item, e.g. probiotic-enriched yoghurt versus ordinary yoghurt. The term functional food, by its very nature, tends to suggest that other foods are not functional and have less health benefit relative to functional foods. This is far from fact as many animal and plant foods are highly beneficial for health 'as consumed' and possess inherent functionality. The term inherent...

  17. Inherently safe reactors and a second nuclear era.

    Science.gov (United States)

    Weinberg, A M; Spiewak, I

    1984-06-29

    The Swedish PIUS reactor and the German-American small modular high-temperature gas-cooled reactor are inherently safe-that is, their safety relies not upon intervention of humans or of electromechanical devices but on immutable principles of physics and chemistry. A second nuclear era may require commercialization and deployment of such inherently safe reactors, even though existing light-water reactors appear to be as safe as other well-accepted sources of central electricity, particularly hydroelectric dams.

  18. Inherent-opening-controlled pattern formation in carbon nanotube arrays

    OpenAIRE

    Huang, Xiao; Zhou, Jijie J.; Sansom, Elijah; Gharib, Morteza; Haur, Sow Chorng

    2007-01-01

    We have introduced inherent openings into densely packed carbon nanotube arrays to study self-organized pattern formation when the arrays undergo a wetting–dewetting treatment from nanotube tips. These inherent openings, made of circular or elongated hollows in nanotube mats, serve as dewetting centres, from where liquid recedes from. As the dewetting centres initiate dry zones and the dry zones expand, surrounding nanotubes are pulled away from the dewetting centres by liquid surface tension...

  19. Fibrin Glue Does Not Improve Healing of Gastrointestinal Anastomoses

    DEFF Research Database (Denmark)

    Nordentoft, Tyge; Pommergaard, Hans-Christian; Rosenberg, Jacob;

    2015-01-01

    glue (FG), and the results in individual studies have been varying. The positive effect of anastomotic sealing with FG might be due to the mechanical/physical properties, the increased healing of the anastomoses or both. The aim of this systematic review was to evaluate the existing evidence...... on the healing effects of FG on gastrointestinal anastomoses. METHODS: PubMed, EMBASE and the Cochrane databases were searched for studies evaluating the healing process of gastrointestinal anastomoses after any kind of FG application. The search period was from 1953 to December 2013. RESULTS: Twenty......-eight studies were included in the qualitative synthesis. These studies were all experimental studies, since no human studies used histological or biochemical evaluation of healing. In 7 of the 28 studies, a positive effect of FG on healing was found, while 8 studies reported a negative effect and 11 studies...

  20. Cellular events and biomarkers of wound healing

    Directory of Open Access Journals (Sweden)

    Shah Jumaat Mohd. Yussof

    2012-01-01

    Full Text Available Researchers have identified several of the cellular events associated with wound healing. Platelets, neutrophils, macrophages, and fibroblasts primarily contribute to the process. They release cytokines including interleukins (ILs and TNF-α, and growth factors, of which platelet-derived growth factor (PDGF is perhaps the most important. The cytokines and growth factors manipulate the inflammatory phase of healing. Cytokines are chemotactic for white cells and fibroblasts, while the growth factors initiate fibroblast and keratinocyte proliferation. Inflammation is followed by the proliferation of fibroblasts, which lay down the extracellular matrix. Simultaneously, various white cells and other connective tissue cells release both the matrix metalloproteinases (MMPs and the tissue inhibitors of these metalloproteinases (TIMPs. MMPs remove damaged structural proteins such as collagen, while the fibroblasts lay down fresh extracellular matrix proteins. Fluid collected from acute, healing wounds contains growth factors, and stimulates fibroblast proliferation, but fluid collected from chronic, nonhealing wounds does not. Fibroblasts from chronic wounds do not respond to chronic wound fluid, probably because the fibroblasts of these wounds have lost the receptors that respond to cytokines and growth factors. Nonhealing wounds contain high levels of IL1, IL6, and MMPs, and an abnormally high MMP/TIMP ratio. Clinical examination of wounds inconsistently predicts which wounds will heal when procedures like secondary closure are planned. Surgeons therefore hope that these chemicals can be used as biomarkers of wounds which have impaired ability to heal. There is also evidence that the application of growth factors like PDGF will help the healing of chronic, nonhealing wounds.

  1. Self-healing polymers

    Science.gov (United States)

    Klein, Daniel J. (Inventor)

    2011-01-01

    A three dimensional structure fabricated from a self-healing polymeric material, comprising poly(ester amides) obtained from ethylene glycol, azelaic acid and 1,1-aminoundecanoic acid, wherein polymeric material has a melt index above 2.5 g/10 min. as determined by ASTM D1238 at 190.degree. C. and 2.16kg, impact resistance and ductility sufficient to resist cracking and brittle fracture upon impact by a 9 mm bullet fired at a temperature of about 29.degree. C. at subsonic speed in a range from about 800 feet/sec to about 1000 feet/sec. It has been determined that the important factors necessary for self-healing behavior of polymers include sufficient impact strength, control of the degree of crystallinity, low melting point and the ability to instantly melt at impacted area.

  2. Bone healing: little secrets

    OpenAIRE

    Einhorn, T. A.

    2011-01-01

    The development of new strategies to enhance the healing of fractures continues to evolve with the introduction of both locally and systemically delivered compounds. The recent refinement in the use of autologous bone marrow as a bone graft material has brought the field of stem cell biology into orthopaedic practice. New recombinant peptides such as platelet- derived growth factor and teriparatide show promise as local and systemic enhancers respectively. Finally, recent evidence that mutati...

  3. The Advantages of Traditional Chumash Healing

    Directory of Open Access Journals (Sweden)

    James D. Adams

    2005-01-01

    Full Text Available Chumash healing has been practiced in California for ∼13 000 years. Chumash healers treat their patients with prayer, laughter, dreaming, phytotherapy, aromatherapy, healing ceremonies and other techniques. Healing involves first healing the spirit, then healing the body. Chumash people still maintain their unique identity. Chumash Healers still practice the ancient healing arts in California. This lecture is a brief introduction to Chumash Healing.

  4. Healing responses following cryothermic and hyperthermic tissue ablation

    Science.gov (United States)

    Godwin, Braden L.; Coad, James E.

    2009-02-01

    Minimally invasive, thermally ablative, interventional technologies have been changing the practice of medicine since before the turn of the 20th century. More recently, cryothermic and hyperthermic therapies have expanded in terms of their spectrum of thermal generators, modes for controlling and monitoring the treatment zone and both benign and malignant medical applications. The final tissue, and hence clinical outcome, of a thermal ablation is determined by the summation of direct primary (thermal) and secondary (apoptosis, ischemia, free radical, inflammation, wound healing, etc.) injury followed by possible cellular regeneration and scar formation. The initial thermal lesion can be broadly divided into two major zones of cellular death: 1) the complete ablation zone closer to the thermal source and 2) the peripheral transition zone with a decreasing gradient of cell death. While not applicable to cryotherapy, hyperthermic complete ablation zones are subdivided into two zones: 1) thermal or heat fixation and 2) coagulative necrosis. It is important to clearly differentiate these tissue zones because of their substantially different healing responses. Therefore, the development of clinically successful thermal therapies requires an understanding of tissue healing responses. The healing responses can be affected by a number of additional factors such as the tissue's anatomy, organ specific healing differences, blood supply, protein vs. lipid content, and other factors. Thus, effective biomedical instrument development requires both an understanding of thermal cell injury/death and the body's subsequent healing responses. This paper provides a general overview of the healing pathways that follow thermal tissue treatment.

  5. Cost-competitive, inherently safe LMFBR pool plant

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, J.S.; Brunings, J.E.; Chang, Y.I.; Seidensticker, R.W.; Hren, R.R.

    1984-01-01

    The Cost-Competitive, Inherently Safe LMFBR Pool Plant design was prepared in GFY 1983 as a joint effort by Rockwell International and the Argonne National Laboratory with major contributions from the Bechtel Group, Inc.; Combustion Engineering, Inc.; the Chicago Bridge and Iron Company; and the General Electric Company. Using current LMFBR technology, many innovative features were developed and incorporated into the design to meet the ultimate objectives of the Breeder Program, i.e., energy costs competitive with LWRs and inherent safety features to maintain the plant in a safe condition following assumed accidents without requiring operator action. This paper provides a description of the principal features that were incorporated into the design to achieve low cost and inherent safety.

  6. [Advances in the effects of pH value of micro-environment on wound healing].

    Science.gov (United States)

    Tian, Ruirui; Li, Na; Wei, Li

    2016-04-01

    Wound healing is a complex regeneration process, which is affected by lots of endogenous and exogenous factors. Researches have confirmed that acid environment could prevent wound infection and accelerate wound healing by inhibiting bacteria proliferation, promoting oxygen release, affecting keratinocyte proliferation and migration, etc. In this article, we review the literature to identify the potential relationship between the pH value of wound micro-environment and the progress of wound healing, and summarize the clinical application of variation of pH value of micro-environment in wound healing, thereby to provide new treatment strategy for wound healing.

  7. Burn healing plants in Iranian Traditional Medicine

    Directory of Open Access Journals (Sweden)

    Sh. Fahimi

    2015-11-01

    Full Text Available Burns are known as one of the most common forms of injury with devastating consequences. Despite the discovery of several antiseptics, burn wound healing has still remained a challenge to modern medicine. Herbal products seem to possess moderate efficacy with no or less toxicity and are less expensive compared to synthetic drugs. Burn is a well-known disorder in Iranian Traditional Medicine (ITM. Iranian physicians have divided burns into various types based on the cause and recommended treatment for each type. According to ITM references, herbal therapy was the major treatment prescribed by Iranian physicians for burns. In the present study, seven ancient Iranian medical texts were screened for the herbs with burn healing effects along with their applied dosage forms. The medicinal herbs were listed and scored based on the frequency of their repetition. Moreover, the best scientific name that was suitable for each plant as well as surveying modern studies about their biological effects has been carried out. In our investigation eighteen plants with seven topical application categories have been obtained as the most frequent herbs for burn healing in ITM. Modern studies have revealed that these plants have shown some biological activities such as anti-inflammatory, antimicrobial and antioxidant effects which might establish the relationship between the mentioned activities and burn wound healing property. This list can provide a suitable resource for future researches in the field of burn treatment.

  8. Conceptual design of REMISE. Inherently safe modular reactor

    International Nuclear Information System (INIS)

    A new concept of a modular nuclear reactor is presented. The neutronic-thermohydraulic calculations for the steady state design of an inherently safe reactor (RE.M.I.SE., REactor Modular Inherentemente SEguro, in Spanish) are shown here. Primary system is subdivided in several modules with individual steam generator and fuel element. Enhanced safety is attained by means of passive safety systems and inherent safety features. The total power proposed (200 Mwe) is divided in a large number of units of reduced power (2 MWth). The main parameters established from conceptual design are shown here, and also lines proposed for future steps in the design. (author)

  9. On Four Ways against Cooperative Principle& Inherent Conversational Implicatures

    Institute of Scientific and Technical Information of China (English)

    白雪松

    2015-01-01

    By using methods of theoretical review,and example analysis,this paper aims at further analyzing Grice’s 4 ways of against the Cooperative Principle and inherent conversational implicatures in order to prove that once the Cooperative Principle is violated,the conversational implicatures arise.This will benefit the communicational practice.This paper finds out that any way against CP must cause conversational implicatures.There are limitations in this paper.It just covers the four ways of Grice introduced by Jiang Wangqi(2000),and inherent conversational implicatures found by the author.It might have other ways and implicatures as well.

  10. Combined application of low-intensity pulsed ultrasound and functional electrical stimulation accelerates bone-tendon junction healing in a rabbit model.

    Science.gov (United States)

    Hu, Jianzhong; Qu, Jin; Xu, Daqi; Zhang, Tao; Qin, Ling; Lu, Hongbin

    2014-02-01

    The objective of this study was to elucidate the combined use of low-intensity pulsed ultrasound (LIPUS) and functional electrical stimulation (FES) on patella-patellar tendon (PPT) junction healing using a partial patellectomy model in rabbits. LIPUS was delivered continuously starting day 3 postoperative until week 6. FES was applied on quadriceps muscles to induce tensile force to the repaired PPT junction 5 days per week for 6 weeks since week 7 postoperatively. Forty rabbits with partial patellectomy were randomly divided into four groups: control, LIPUS alone, FES alone, and LIPUS + FES groups. At week 12, the PPT complexes were harvested for histology, radiographs, peripheral quantitative computed tomography, and biomechanical testing. There was better remodeling of newly formed bone and fibrocartilage zone in the three treatment groups compared with the control group. LIPUS and/or FES treatments significantly increased the area and bone mineral content of new bone. The failure load and ultimate strength of PPT complex were also highly improved in the three treatment groups. More new bone formed and higher tensile properties were showed in the LIPUS + FES group compared with the LIPUS or FES alone groups. Early LIPUS treatment and later FES treatment showed the additive effects of accelerating PPT junction healing.

  11. Characterization and kinetic study of Diels-Alder reaction: Detailed study on N-phenylmaleimide and furan based benzoxazine with potential self-healing application

    Directory of Open Access Journals (Sweden)

    Z. Stirn

    2016-07-01

    Full Text Available The Diels-Alder reaction between N-phenylmaleimide and benzoxazine bearing furan group was investigated for the purpose of successful appliance of self-healing in benzoxazine polymer networks. The reaction as a function of temperature/time was performed in molten state and in a solution, where also the kinetic study was performed. The Diels-Alder reaction leads to a mixture of two diastereomers: endo presented at lower cyclo-reversion temperature and exo at higher. Therefore, the conversion rates and exo/endo ratio were studied in detail for both systems. For instance, in molten state the Diels-Alder reaction was triggered by the temperature of the melting point at 60 °C with exo/endo ratio preferable to the endo adduct. The study of the kinetics in a solution revealed that the Diels-Alder reaction followed typical bimolecular reversible second-order reaction. The activation energies were close to the previous literature data; 48.4 and 51.9 kJ·mol–1 for Diels-Alder reaction, and 91.0 and 102.3 kJ·mol–1 for retro-Diels-Alder reaction, in acetonitrile and chloroform, respectively. The reaction equilibrium in a solution is much more affected by the retro-Diels-Alder reaction than in a molten state. This study shows detailed investigation of DA reaction and provides beneficial knowledge for further use in self-healing polymer networks.

  12. WOUND HEALING IN DIABETIC ULCER

    OpenAIRE

    Ida Bagus Putra Pramana; Ketut Putu Yasa

    2013-01-01

    The mechanism of wound healing is a complex mechanism and involves a variety of cells. Injury is defined as a disruption of normal structure and function. Various types of growth factors and cytokines such as platelet derived growth factor and transforming growth factor beta involved in the mechanism of wound healing. There are four phases of wound healing mechanisms : hemostasis, inflammatory, proliferative, and remodeling. Diabetic ulcers is one major complication, occurring in 15% of patie...

  13. Cell Therapy for Wound Healing

    OpenAIRE

    You, Hi-Jin; Han, Seung-Kyu

    2014-01-01

    In covering wounds, efforts should include utilization of the safest and least invasive methods with goals of achieving optimal functional and cosmetic outcome. The recent development of advanced wound healing technology has triggered the use of cells to improve wound healing conditions. The purpose of this review is to provide information on clinically available cell-based treatment options for healing of acute and chronic wounds. Compared with a variety of conventional methods, such as skin...

  14. Self-healing biomaterials(3)

    OpenAIRE

    Brochu, Alice B. W.; Craig, Stephen L.; Reichert, William M.

    2010-01-01

    The goal of this review is to introduce the biomaterials community to the emerging field of self-healing materials, and also to suggest how one could utilize and modify self-healing approaches to develop new classes of biomaterials. A brief discussion of the in vivo mechanical loading and resultant failures experienced by biomedical implants is followed by presentation of the self-healing methods for combating mechanical failure. If conventional composite materials that retard failure may be ...

  15. Music Healing Rituals in Thailand

    Directory of Open Access Journals (Sweden)

    Bussakorn Binson

    2015-11-01

    Full Text Available This paper discusses the music healing rituals from North, Northeast and Southern Thailand. In general, these healing rituals bring together supportive elements from the family, the community and spiritual entities with the shaman as a conductor. Shaman utilizes music in corporate the community as a whole including elicits the support from the spiritual entitles. Traditional music healing process played the role as enticement to recruit spirits, distract the patients from experiencing unpleasant in their body. Even in today’s modern society these healing rituals have persisted, as they are inseparable from these regions’ animistic beliefs system.

  16. Self-Healing by Means of Runtime Execution Profiling

    CERN Document Server

    Fuad, Mohammad Muztaba; Baek, Jinsuk

    2012-01-01

    A self-healing application brings itself into a stable state after a failure put the software into an unstable state. For such self-healing software application, finding fix for a previously unseen fault is a grand challenge. Asking the user to provide fixes for every fault is bad for productivity, especially when the users are non-savvy in technical aspect of computing. If failure scenarios come into existence, the user wants the runtime environment to handle those situations autonomically. This paper presents a new technique of finding self-healing actions by matching a fault scenario to already established fault models. By profiling and capturing runtime parameters and execution pathWays, stable execution models are established and later are used to match with an unstable execution scenario. Experimentation and results are presented that showed that even with additional overheads; this technique can prove beneficial for autonomically healing faults and reliving system administrators from mundane troublesho...

  17. Cyto- and genotoxicological assessment and functional characterization of N-vinyl-2-pyrrolidone-acrylic acid-based copolymeric hydrogels with potential for future use in wound healing applications

    Energy Technology Data Exchange (ETDEWEB)

    Kirf, Dominik; Devery, Sinead M [Department of Life and Physical Science, Athlone Institute of Technology (Ireland); Higginbotham, Clement L [Materials Research Institute, Athlone Institute of Technology (Ireland); Rowan, Neil J, E-mail: sdevery@ait.i, E-mail: dkirf@ait.i, E-mail: chigginbotham@ait.i, E-mail: nrowan@ait.i [Department of Nursing and Health Science, Athlone Institute of Technology (Ireland)

    2010-06-01

    This study investigated the toxicity of N-vinyl-2-pyrrolidone-acrylic acid copolymer hydrogels crosslinked with ethylene glycol dimethacrylate or poly(ethylene glycol) dimethacrylate. There is a pressing need to establish the toxicity status of these new copolymers because they may find applications in future wound healing processes. Investigations revealed that the capacity of these hydrogels for swelling permitted the retention of high amounts of water yet still maintaining structural integrity. Reverse phase HPLC analysis suggested that unreacted monomeric base material was efficiently removed post-polymerization by applying an additional purification process. Subsequently, in vitro toxicity testing was performed utilizing direct and indirect contact exposure of the polymers to human keratinocytes (HaCaT) and human hepatoma (HepG2) cells. No indication of significant cell death was observed using the established MTT, neutral red (NR) and fluorescence-based toxicity endpoint indicators. In addition, the alkaline Comet assay showed no genotoxic effects following cell exposure to hydrogel extracts. Investigations at the nucleotide level using the Ames mutagenicity assay demonstrated no evidence of mutagenic activity associated with the polymers. Findings from this study demonstrated that these hydrogels are non-cytotoxic and further work can be carried out to investigate their potential as a wound-healing device that will impact positively on patient health and well-being.

  18. Innovation and wound healing.

    Science.gov (United States)

    Harding, Keith

    2015-04-01

    Innovation in medicine requires unique partnerships between academic research, biotech or pharmaceutical companies, and health-care providers. While innovation in medicine has greatly increased over the past 100 years, innovation in wound care has been slow, despite the fact that chronic wounds are a global health challenge where there is a need for technical, process and social innovation. While novel partnerships between research and the health-care system have been created, we still have much to learn about wound care and the wound-healing processes.

  19. Self-Healing Computation

    OpenAIRE

    Saad, George; Saia, Jared

    2014-01-01

    In the problem of reliable multiparty computation (RC), there are $n$ parties, each with an individual input, and the parties want to jointly compute a function $f$ over $n$ inputs. The problem is complicated by the fact that an omniscient adversary controls a hidden fraction of the parties. We describe a self-healing algorithm for this problem. In particular, for a fixed function $f$, with $n$ parties and $m$ gates, we describe how to perform RC repeatedly as the inputs to $f$ change. Our al...

  20. Tissue repair genes: the TiRe database and its implication for skin wound healing.

    Science.gov (United States)

    Yanai, Hagai; Budovsky, Arie; Tacutu, Robi; Barzilay, Thomer; Abramovich, Amir; Ziesche, Rolf; Fraifeld, Vadim E

    2016-04-19

    Wound healing is an inherent feature of any multicellular organism and recent years have brought about a huge amount of data regarding regular and abnormal tissue repair. Despite the accumulated knowledge, modulation of wound healing is still a major biomedical challenge, especially in advanced ages. In order to collect and systematically organize what we know about the key players in wound healing, we created the TiRe (Tissue Repair) database, an online collection of genes and proteins that were shown to directly affect skin wound healing. To date, TiRe contains 397 entries for four organisms: Mus musculus, Rattus norvegicus, Sus domesticus, and Homo sapiens. Analysis of the TiRe dataset of skin wound healing-associated genes showed that skin wound healing genes are (i) over-conserved among vertebrates, but are under-conserved in invertebrates; (ii) enriched in extracellular and immuno-inflammatory genes; and display (iii) high interconnectivity and connectivity to other proteins. The latter may provide potential therapeutic targets. In addition, a slower or faster skin wound healing is indicative of an aging or longevity phenotype only when assessed in advanced ages, but not in the young. In the long run, we aim for TiRe to be a one-station resource that provides researchers and clinicians with the essential data needed for a better understanding of the mechanisms of wound healing, designing new experiments, and the development of new therapeutic strategies. TiRe is freely available online at http://www.tiredb.org.

  1. Contracting for Independent Evaluation: Approaches to an Inherent Tension

    Science.gov (United States)

    Klerman, Jacob Alex

    2010-01-01

    There has recently been discussion of whether independent contract evaluation is possible. This article acknowledges the inherent tension in contract evaluation and in response suggests a range of constructive approaches to improving the independence of contract evaluation. In particular, a clear separation between the official evaluation report…

  2. Attenuated Realities: Pynchon's Trajectory from V. to Inherent Vice

    Directory of Open Access Journals (Sweden)

    Kathryn Hume

    2013-12-01

    Full Text Available Part of what established Pynchon as postmodern was his piling up of multiple realities. Hence, the surprise that 'Inherent Vice' retains only the most attenuated forms of such worlds alternative to our own. In earlier fiction, we find a world served by the Tristero postal system, a world inhabited by angels, by thanatoids and other forms of the dead, by Japanese film monsters, by giant vegetables. In Pynchon’s fictive realities, an airship can sail beneath desert sand or through the center of the globe via Symmes’s Hole, and the photograph of a corpse can be run backward in time to show its murderer. Up through 'Against the Day', Pynchon showered us with alternate realities that reached beyond the material world that most of us accept as 'alles, was der Fall ist'. 'Inherent Vice' departs from this vision. Has Pynchon simply grown up? Or grown old? Or is something else operating here? I will provide a brief taxonomy of Pynchon’s multiple worlds as characterized by paranoia, mysticism, religion, and humor and then analyze what remains of these in 'Inherent Vice'. Among the causes for his changed technique may be his choice of genre. The detective story is epistemological rather than ontological in its questions, so Pynchon concerns himself far more with what Doc Sportello can know than with making him navigate through multiple realities. I argue, however, that 'Inherent Vice' is surprisingly a worst-case scenario for Pynchon.

  3. Healing agent for self-healing cementious material

    NARCIS (Netherlands)

    Jonkers, H.M.

    2011-01-01

    The invention provides a process for the production of a cementious material. The process comprises mixing cement starting materials and a particulate healing agent to provide the cementious material. The healing agent comprises coated particles, wherein the coated particles comprise bacterial mater

  4. Chemical looping combustion. Fuel conversion with inherent CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Brandvoll, Oeyvind

    2005-07-01

    ONiAl do not rule out CLC as a viable alternative for CO2 capture, but long term durability studies along with realistic testing of the carrier in a continuous rig is needed to firmly conclude. For comparative purposes a perovskite was synthesized and tested in CLC, under similar conditions as NiONiAl. The results indicate that in a moving bed CLC application, perovskites have inherent disadvantages as compared to simpler compounds, by virtue of low relative oxygen content. (Author)

  5. The effects of caffeine on wound healing.

    Science.gov (United States)

    Ojeh, Nkemcho; Stojadinovic, Olivera; Pastar, Irena; Sawaya, Andrew; Yin, Natalie; Tomic-Canic, Marjana

    2016-10-01

    The purine alkaloid caffeine is a major component of many beverages such as coffee and tea. Caffeine and its metabolites theobromine and xanthine have been shown to have antioxidant properties. Caffeine can also act as adenosine-receptor antagonist. Although it has been shown that adenosine and antioxidants promote wound healing, the effect of caffeine on wound healing is currently unknown. To investigate the effects of caffeine on processes involved in epithelialisation, we used primary human keratinocytes, HaCaT cell line and ex vivo model of human skin. First, we tested the effects of caffeine on cell proliferation, differentiation, adhesion and migration, processes essential for normal wound epithelialisation and closure. We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) proliferation assay to test the effects of seven different caffeine doses ranging from 0·1 to 5 mM. We found that caffeine restricted cell proliferation of keratinocytes in a dose-dependent manner. Furthermore, scratch wound assays performed on keratinocyte monolayers indicated dose-dependent delays in cell migration. Interestingly, adhesion and differentiation remained unaffected in monolayer cultures treated with various doses of caffeine. Using a human ex vivo wound healing model, we tested topical application of caffeine and found that it impedes epithelialisation, confirming in vitro data. We conclude that caffeine, which is known to have antioxidant properties, impedes keratinocyte proliferation and migration, suggesting that it may have an inhibitory effect on wound healing and epithelialisation. Therefore, our findings are more in support of a role for caffeine as adenosine-receptor antagonist that would negate the effect of adenosine in promoting wound healing.

  6. 局部应用PTD-SOD对机械性创伤愈合的影响%Efficacy of topical application of PTD-SOD on wound healing in mice with mechanical injury

    Institute of Scientific and Technical Information of China (English)

    刘元刚; 程欲; 张晨; 刘树滔; 饶平凡

    2011-01-01

    protein PTD-SOD with different concentrations(1 000 U,3 000 U,6 000 U and 10 000 U)were used to deal with the wounds continuously for 13 days.The mice were divided into different concentration SOD treatment group and PTD-SOD treatment group,model control group,physiological saline treatment group and compound iodine solution control group.The wound healing situation and healing percentage of the fight and left skin wounds of each mouse in every group was recorded every day.At day 14 after wound,the wound healing skin of each group was removed and some were used to make 10%tissues homogenate for detecting the activities of superoxide dismutase(SOD),catalase(CAT),glutathione peroxidase(GSH-Px)and contents of malondialdehyde(MDA)and hydroxyproline(Hyp);in the meantime,the other removed skin were fixed in 10% formalin for observing the histopathological changes of the tissues. Results Compared with the model control group,the physiological saline treatment group and the compound iodine solution control group,the skin wound healing percentage was significantly(P<0.05 or P<0.01)improved,with increase of the activities of SOD,CAT,GSH-Px and contents of Hyp (P<0.05 or P<0.01)and decrease of MDA(P<0.05 or P<0.01) in the SOD groups or PTD-SOD groups (except for 10 000 U PTD-SOD group).When compared with the physiological saline treatment group or the compound iodine solution treatment group,the effect was similar to the model control group.In comparison to the SOD groups,under the same dosage and environment condition,the PTD-SOD groups were much better than SOD groups with regard to promoting skin wound healing percentage,increasing activities of antioxidases and contents of Hyp,decreasing contents of MDA.Among the PTD-SOD groups,the effect of high dosage 10 000 U on promoting skin wound healing was declined. Conclusions The oxidative stress may playan important role in the development of wound healing.Proper application of treatment with antioxidants is a alternative strategy in

  7. Effects of Dermal Multipotent Cell Transplantation on Skin Wound Healing

    Institute of Scientific and Technical Information of China (English)

    ShiChunmeng; ChengTianmin; SuYongping; RanXinze; MaiYue; QuJifu; LouShufen; XuHui; LuoChengji

    2005-01-01

    There is increasing evidence that dermis contains adult multipotent stem cells. To investigate the effects of dermis-derived multipotent cells on wound healing, we transplanted a clonal population of dermis-derived multipotent cells (termed as DMCs) by topical and systemic application into the skin wound of rats with simple wounds and rats with combined wound and radiation injury. Our results suggest that both topical and systemic transplantation of DMCs accelerate the healing process in rats with a simple wound; the promoting effect by topical transplantation occurs earlier than systemic transplantation. However, systemic transplantation of DMCs promotes the healing process in irradiated rats, while topical transplantation of DMCs fails. Further studies on the mechanisms of DMCs to promote wound healing indicate that the supernatant of DMCs could promote the proliferation of fibroblasts and epidermal cells; DMCs expressed transcripts of a serics of cytokincs and cxtraccllular matrix molecules, including VEGF, PDGF, HGF, TGF-β, ICAM-1, VCAM-1, and Fibronectin, which were closely related to the wound healing by DNA microarray analysis. The implanted DMCs can engraft into recipient skin wounded tissues after transplantation by the FISH analysis with Y-chromosome-specific probe. Systemic transplantation of DMCs also promotes the recovery of peripheral white blood cells in irradiated rats. These results demonstrate the different effects of DMCs on wound healing in nonirradiated and irradiated rats and illustrate the importance of optimizing wound healing via the topical or systemic transplantation of stem cells.

  8. Our Pathway toward Healing Racism

    Science.gov (United States)

    Honour, Robert

    2013-01-01

    In this article, Robert Honour, Training and Staff Development Manager, at the Fairfax, Virginia, Department of Family Services (DFS), reports on the outcome of "Healing Racism" training at his organization. Participants in "Healing Racism Institutes" are transforming relationships and creating an organizational culture that…

  9. Self-Healing Laminate System

    Science.gov (United States)

    Beiermann, Brett A. (Inventor); Keller, Michael W. (Inventor); White, Scott R. (Inventor); Sottos, Nancy R. (Inventor)

    2016-01-01

    A laminate material may include a first flexible layer, and a self-healing composite layer in contact with the first flexible layer. The composite layer includes an elastomer matrix, a plurality of first capsules including a polymerizer, and a corresponding activator for the polymerizer. The laminate material may self-heal when subjected to a puncture or a tear.

  10. Self-healing biomaterials(3)

    Science.gov (United States)

    Brochu, Alice B. W.; Craig, Stephen L.; Reichert, William M.

    2010-01-01

    The goal of this review is to introduce the biomaterials community to the emerging field of self-healing materials, and also to suggest how one could utilize and modify self-healing approaches to develop new classes of biomaterials. A brief discussion of the in vivo mechanical loading and resultant failures experienced by biomedical implants is followed by presentation of the self-healing methods for combating mechanical failure. If conventional composite materials that retard failure may be considered zeroth generation self-healing materials, then taxonomically-speaking, first generation self-healing materials describe approaches that “halt” and “fill” damage, whereas second generation self-healing materials strive to “fully restore” the pre-failed material structure. In spite of limited commercial use to date, primarily because the technical details have not been suitably optimized, it is likely from a practical standpoint that first generation approaches will be the first to be employed commercially, whereas second generation approaches may take longer to implement. For self-healing biomaterials the optimization of technical considerations is further compounded by the additional constraints of toxicity and biocompatibility, necessitating inclusion of separate discussions of design criteria for self-healing biomaterials. PMID:21171168

  11. Murine models of human wound healing.

    Science.gov (United States)

    Chen, Jerry S; Longaker, Michael T; Gurtner, Geoffrey C

    2013-01-01

    In vivo wound healing experiments remain the most predictive models for studying human wound healing, allowing an accurate representation of the complete wound healing environment including various cell types, environmental cues, and paracrine interactions. Small animals are economical, easy to maintain, and allow researchers to take advantage of the numerous transgenic strains that have been developed to investigate the specific mechanisms involved in wound healing and regeneration. Here we describe three reproducible murine wound healing models that recapitulate the human wound healing process.

  12. Management of impaired fracture healing: Historical aspects

    OpenAIRE

    Gajdobranski Đorđe; Micić Ivan; Mitković Milorad B.; Mladenović Desimir; Milankov Miroslav

    2005-01-01

    Introduction Establishing continuity of long bones in cases of impaired bone healing and pseudo-arthrosis is one of the most complex problems in orthopedics. Impaired bone healing The problem of impaired fracture healing is not new. As in other areas of human life, the roots of modern treatment of impaired bone healing lie in ancient medicine. A relatively high percentage of impaired bone healing, as well as unsatisfactory results of standard therapies of impaired bone healing and pseudoarthr...

  13. 局部应用胰岛素对糖尿病小鼠创面愈合的影响%Effects of topical application of insulin on wound healing in diabetic mice

    Institute of Scientific and Technical Information of China (English)

    李超飞; 刘琰; 陈雪莲; 章雄

    2012-01-01

    Objective To investigate the effects of topical application of iusulin on wound healing in diabetic mice. Methods Diabetes mellitus was induced in C57BL/6J inice( n = 10, each group ) by intraperitoneal injection of streptozotocin( STZ ) using multiple injections with low dose or single injection with high dose manner. Four weeks after treatment, glucose metabolism index was assessed to compare the characteristics of insulin resistance between the two groups. C57BL/6J( n =40 )mice were induced to diabeticmellitus using multiple low doses of STZ intrapcritonci.il injections. Eight weeks after induction, 4 fi ill-thickness skin wounds with diameter 7 mm were made on the hack of diabetic mice. Each wound was treated with 20 jxl NS,O. 1 unit insulin/20 jxl NS,O. 5 unit insulin/20 jxl NS and 20 (jj NS respectively. Each group of wounds were used with mentioned drugs immediately after wounds making, once a day, until complete healing. At 0,1 ,3 ,5,7 ,9 and 11 days, transparent membranes were used to record wound areas and to calculate the healing rates. Meanwhile,we observed the process of wound epithelialization and recorded the time of complete healing. At day 11 , wound tissues were collected. H&E staining and Masson staining were used to observe the structure of healed tissues. The angiogenesis of healed skin was qualified by CD31 I m mi mo hi sto chemistry. Results Compared to the single high dose injection group,the fasting blood glucose level, insulin level and homeostasis model assessment of insulin resistance were significantly increased in the multiple low doses injection group, while the insulin sensitivity index was markedly reduced( P < 0. 05 -0.01 ).The healing time in 0. 1 and 0.5 unit insulin groups were ( 10. 6 ± 1.5 )d and ( 11.3 ±0.9 )d, by contrast, the control group was ( 12 ± 1.2 )d( P <0. 05 ). The quality of wound healing in 0. 1 and 0. 5 unit insulin groups were significantly improved, which included the increased number of spikes in the

  14. Unveiling Cebuano Traditional Healing Practices

    Directory of Open Access Journals (Sweden)

    ZachiaRaiza Joy S. Berdon

    2016-02-01

    Full Text Available This study aims to identify the features of Cebuano’s traditional healing practices. Specifically, it also answers the following objectives: analyze traditional healing in Cebuano’s perspectives, explain the traditional healing process practiced in terms of the traditional healers’ belief, and extrapolate perceptions of medical practitioners toward traditional healing. This study made use of qualitative approach, among five traditional healers who performed healing for not less than ten years, in the mountain barangays of Cebu City. These healers served as the primary informants who were selected because of their popularity in healing. The use of open-ended interview in local dialect and naturalistic observation provided a free listing of their verbatim accounts were noted and as primary narratives. Participation in the study was voluntary and participants were interviewed privately after obtaining their consent. The Cebuano traditional healing practices or “panambal” comprise the use of “himolso” (pulse-checking, “palakaw” (petition, “pasubay” (determining what causes the sickness and its possible means of healing, “pangalap” (searching of medicinal plants for “palina” (fumigation, “tayhop” (gentle-blowing, “tutho” (saliva-blowing,“tuob” (boiling, “orasyon” (mystical prayers, “hilot” (massage, and “barang” (sorcery. Though traditional with medical science disapproval, it contributes to a mystical identity of Cebuano healers, as a manifestation of folk Catholicism belief, in order to do a good legacy to the community that needs help. For further study, researchers may conduct further the studies on the: curative effects of medicinal plants in Cebu, psychological effect pulsechecking healed persons by the mananambal, and unmasking the other features of traditional healing.

  15. Effect of fibroblast-seeded artificial dermis on wound healing.

    Science.gov (United States)

    Jang, Joon Chul; Choi, Rak-Jun; Han, Seung-Kyu; Jeong, Seong-Ho; Kim, Woo-Kyung

    2015-04-01

    In covering wounds, efforts should include use of the safest and least invasive methods with a goal of achieving optimal functional and cosmetic outcome. The recent development of advanced technology in wound healing has triggered the use of cells and/or biological dermis to improve wound healing conditions. The purpose of the study was to evaluate the effects of fibroblast-seeded artificial dermis on wound healing efficacy.Ten nude mice were used in this study. Four full-thickness 6-mm punch wounds were created on the dorsal surface of each mouse (total, 40 wounds). The wounds were randomly assigned to one of the following 4 treatments: topical application of Dulbecco phosphate-buffered saline (control), human fibroblasts (FB), artificial dermis (AD), and human fibroblast-seeded artificial dermis (AD with FB). On the 14th day after treatment, wound healing rate and wound contraction, which are the 2 main factors determining wound healing efficacy, were evaluated using a stereoimage optical topometer system, histomorphological analysis, and immunohistochemistry.The results of the stereoimage optical topometer system demonstrated that the FB group did not have significant influence on wound healing rate and wound contraction. The AD group showed reduced wound contraction, but wound healing was delayed. The AD with FB group showed decreased wound contraction without significantly delayed wound healing. Histomorphological analysis exhibited that more normal skin structure was regenerated in the AD with FB group. Immunohistochemistry demonstrated that the AD group and the AD with FB group produced less α-smooth muscle actin than the control group, but this was not shown in the FB group.Fibroblast-seeded artificial dermis may minimize wound contraction without significantly delaying wound healing in the treatment of skin and soft tissue defects.

  16. Speeding up local correlation methods: System-inherent domains.

    Science.gov (United States)

    Kats, Daniel

    2016-07-01

    A new approach to determine local virtual space in correlated calculations is presented. It restricts the virtual space in a pair-specific manner on the basis of a preceding approximate calculation adapting automatically to the locality of the studied problem. The resulting pair system-inherent domains are considerably smaller than the starting domains, without significant loss in the accuracy. Utilization of such domains speeds up integral transformations and evaluations of the residual and reduces memory requirements. The system-inherent domains are especially suitable in cases which require high accuracy, e.g., in generation of pair-natural orbitals, or for which standard domains are problematic, e.g., excited-state calculations. PMID:27394095

  17. Radiotherapy and wound healing.

    Science.gov (United States)

    Devalia, Haresh L; Mansfield, Lucy

    2008-03-01

    This review article discusses basic radiation physics and effects of radiation on wounds. It examines various postulated hypothesis on the role of circulatory decrease and radiation-induced direct cellular damage. The new concept related to the radiation pathogenesis proposes that there is a cascade of cytokines initiated immediately after the radiation. Sustained activation of myofibroblasts in the wound accounts for its chronicity. Recent advances highlight that transforming growth factor beta1 is the master switch in pathogenesis of radiation fibrosis. This articles overviews its role and summarises the available evidences related to radiation damage. The goal of this article was to provide its modern understanding, as future research will concentrate on antagonising the effects of cytokines to promote wound healing. PMID:18081782

  18. Tactical supply chain planning models with inherent flexibility

    DEFF Research Database (Denmark)

    Esmaeilikia, Masoud; Fahimnia, Behnam; Sarkis, Joeseph;

    2016-01-01

    Supply chains (SCs) can be managed at many levels. The use of tactical SC planning models with multiple flexibility options can help manage the usual operations efficiently and effectively, whilst improve the SC resiliency in response to inherent environmental uncertainties. This paper defines...... tactical SC flexibility and identifies tactical flexibility measures and options for development of flexible SC planning models. A classification of the existing literature of SC planning is introduced that highlights the characteristics of published flexibility inclusive models. Additional classifications...

  19. Legal problems and powers inherent in ecosystem management

    OpenAIRE

    Coggins, George Cameron

    1995-01-01

    The idea of ecosystem management is elusive, but it is not nearly as novel as many have assumed. There are difficulties inherent both in the lack of semantic precision and the multiple ownerships faced by ecosystem management. There are precedents for regulatory systems that transcend sovereign and ownership boundaries. At the federal level, Congress has adequate constitutional power to ordain ecosystem management. Exercise of that power will rarely if ever constitute a taking. Congress impli...

  20. Inherent Shear-Dilatation Coexistence in Metallic Glass

    Institute of Scientific and Technical Information of China (English)

    JIANG Min-Qiang; JIANG Si-Yue; DAI Lan-Hong

    2009-01-01

    Shear deformation can induce normal stress or hydrostatic stress in metallic glasses [Nature Mater. 2 (2003) 449, Intermetallics 14 (2006) 1033]. We perform the bulk deformation of three-dimensional Cu46Zr54 metallic glass (MG) and Cu single crystal model systems using molecular dynamics simulation. The results indicate that hydrostatic stress can incur shear stress in MG, but not in crystal. The resultant pronounced asymmetry between tension and compression originates from this inherent shear-dilatation coexistence in MG.

  1. EFFECT OF TASPINE ON WOUND HEALING AND FIBROBLAST PROLIFERATION

    Institute of Scientific and Technical Information of China (English)

    Dong Yalin; He Langchong; Chen Fang

    2005-01-01

    Objective To study the effect and mechanism of taspine on wound healing and fibroblast proliferation. Methods The effect of taspine on skin wound was observed in vivo. The different concentration of taspine hydrochloride was added to L929 fibroblast cultivated in vitro, and lactate dehydrogenase was detected and MTT method was applied to observe effect of taspine on fibroblast proliferation. Results The local application of taspine 3 mg/Ml and 1.5 mg/mL accelerated the healing of skin wounded. In vitro, 0.01~0.5 μg/mL of taspine hydrochloride showed no effect on the change of lactate dehydrogenase activity and fibroblast proliferation. Conclusion Taspine is a kind of active alkaloid from leontice robustum which can enhance wound healing, its mechanism on wound healing is not by means of accelerating the proliferation of fibroblast, other mechanisms are necessary for being further studied.

  2. Unusual inherent electrochemistry of graphene oxides prepared using permanganate oxidants.

    Science.gov (United States)

    Eng, Alex Yong Sheng; Ambrosi, Adriano; Chua, Chun Kiang; Saněk, Filip; Sofer, Zdeněk; Pumera, Martin

    2013-09-16

    Graphene and graphene oxides are materials of significant interest in electrochemical devices such as supercapacitors, batteries, fuel cells, and sensors. Graphene oxides and reduced graphenes are typically prepared by oxidizing graphite in strong mineral acid mixtures with chlorate (Staudenmaier, Hofmann) or permanganate (Hummers, Tour) oxidants. Herein, we reveal that graphene oxides pose inherent electrochemistry, that is, they can be oxidized or reduced at relatively mild potentials (within the range ±1 V) that are lower than typical battery potentials. This inherent electrochemistry of graphene differs dramatically from that of the used oxidants. Graphene oxides prepared using chlorate exhibit chemically irreversible reductions, whereas graphene oxides prepared through permanganate-based methods exhibit very unusual inherent chemically reversible electrochemistry of oxygen-containing groups. Insight into the electrochemical behaviour was obtained through cyclic voltammetry, chronoamperometry, and X-ray photoelectron spectroscopy experiments. Our findings are of extreme importance for the electrochemistry community as they reveal that electrode materials undergo cyclic changes in charge/discharge cycles, which has strong implications for energy-storage and sensing devices.

  3. Music and Healing During Post-Election Violence in Kenya

    Directory of Open Access Journals (Sweden)

    David Otieno Akombo

    2009-07-01

    Full Text Available The significance of music as a healing agent permeates across the cultural spectrum. Hitherto, we find people of many cultures incorporating music to transform those unhealthy individuals into healthy ones. This paper extrapolates from the events that led to Kenya's post-election violence of 2007 and enumerates how a Kenyan community musician embraced the therapeutic qualities inherent in the cultural music of the Kenyan people to help the violence victims who developed post-traumatic stress disorder following the disputed elections. The story adds nuance to our understanding of how community musicians are still an invaluable therapeutic resource albeit their lack of professional training.

  4. Progress in corneal wound healing.

    Science.gov (United States)

    Ljubimov, Alexander V; Saghizadeh, Mehrnoosh

    2015-11-01

    Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells and remodeling of the basement membrane. During stromal healing, keratocytes get transformed to motile and contractile myofibroblasts largely due to activation of transforming growth factor-β (TGF-β) system. Endothelial cells heal mostly by migration and spreading, with cell proliferation playing a secondary role. In the last decade, many aspects of wound healing process in different parts of the cornea have been elucidated, and some new therapeutic approaches have emerged. The concept of limbal stem cells received rigorous experimental corroboration, with new markers uncovered and new treatment options including gene and microRNA therapy tested in experimental systems. Transplantation of limbal stem cell-enriched cultures for efficient re-epithelialization in stem cell deficiency and corneal injuries has become reality in clinical setting. Mediators and course of events during stromal healing have been detailed, and new treatment regimens including gene (decorin) and stem cell therapy for excessive healing have been designed. This is a very important advance given the popularity of various refractive surgeries entailing stromal wound healing. Successful surgical ways of replacing the diseased endothelium have been clinically tested, and new approaches to accelerate endothelial healing and suppress endothelial-mesenchymal transformation have been proposed including Rho kinase (ROCK) inhibitor eye drops and gene therapy to activate TGF-β inhibitor SMAD7. Promising new technologies with potential for corneal wound healing manipulation including microRNA, induced pluripotent stem cells to generate corneal

  5. Progress in corneal wound healing.

    Science.gov (United States)

    Ljubimov, Alexander V; Saghizadeh, Mehrnoosh

    2015-11-01

    Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells and remodeling of the basement membrane. During stromal healing, keratocytes get transformed to motile and contractile myofibroblasts largely due to activation of transforming growth factor-β (TGF-β) system. Endothelial cells heal mostly by migration and spreading, with cell proliferation playing a secondary role. In the last decade, many aspects of wound healing process in different parts of the cornea have been elucidated, and some new therapeutic approaches have emerged. The concept of limbal stem cells received rigorous experimental corroboration, with new markers uncovered and new treatment options including gene and microRNA therapy tested in experimental systems. Transplantation of limbal stem cell-enriched cultures for efficient re-epithelialization in stem cell deficiency and corneal injuries has become reality in clinical setting. Mediators and course of events during stromal healing have been detailed, and new treatment regimens including gene (decorin) and stem cell therapy for excessive healing have been designed. This is a very important advance given the popularity of various refractive surgeries entailing stromal wound healing. Successful surgical ways of replacing the diseased endothelium have been clinically tested, and new approaches to accelerate endothelial healing and suppress endothelial-mesenchymal transformation have been proposed including Rho kinase (ROCK) inhibitor eye drops and gene therapy to activate TGF-β inhibitor SMAD7. Promising new technologies with potential for corneal wound healing manipulation including microRNA, induced pluripotent stem cells to generate corneal

  6. Congenital Self-Healing Reticulohistiocytosis

    Science.gov (United States)

    Lee, Young H.; Talekar, Mala K.; Chung, Catherine G.; Bell, Moshe D.

    2014-01-01

    Congenital self-healing reticulohistiocytosis, also known as congenital self-healing Langerhans cell histiocytosis or Hashimoto-Pritzker disease, is a Langerhans cell histiocytosis. It is characterized by skin lesions in the newborn period in an otherwise healthy infant that show a Langerhans cell infiltrate in the skin on histological analysis. These findings subsequently spontaneously involute. This report describes two newborns who presented at birth with differing presentations of congenital self-healing reticulohistiocytosis. A review of the disorder, including diagnosis and evaluation, is presented. PMID:24578781

  7. Healing defective CVD-graphene through vapor phase treatment

    Science.gov (United States)

    van Lam, Do; Kim, Sang-Min; Cho, Youngji; Kim, Jae-Hyun; Lee, Hak-Joo; Yang, Jun-Mo; Lee, Seung-Mo

    2014-05-01

    Structural defects present on chemical vapor deposition (CVD)-graphene have usually originated from the growth stage and transfer process. They limit the electronic transport properties of graphene and degrade performance of related devices. Here we report that these inherent atomic defects could be selectively healed by a simple vapor phase treatment performed in equipment conventionally used for atomic layer deposition (ALD). The unique chemistry of Al2O3 ALD facilitated selective depositions of AlxOy compounds on the defects, which could be readily probed and visualized using AFM imaging. The healing agent, AlxOy, was observed to bind tightly to the defects and lead to doping of the CVD-graphene, which was reflected in the noticeable improvement in electrical sheet resistance. In contrast with the chemically doped graphene, the ALD-treated graphenes revealed notable long-term stability under environmental conditions. Our approach promises selective healing of defects present in most materials and possibly ensures considerable improvement in electrical and mechanical properties. ALD with a broad spectrum of material selection could be a versatile tool for upgrading properties of materials.Structural defects present on chemical vapor deposition (CVD)-graphene have usually originated from the growth stage and transfer process. They limit the electronic transport properties of graphene and degrade performance of related devices. Here we report that these inherent atomic defects could be selectively healed by a simple vapor phase treatment performed in equipment conventionally used for atomic layer deposition (ALD). The unique chemistry of Al2O3 ALD facilitated selective depositions of AlxOy compounds on the defects, which could be readily probed and visualized using AFM imaging. The healing agent, AlxOy, was observed to bind tightly to the defects and lead to doping of the CVD-graphene, which was reflected in the noticeable improvement in electrical sheet resistance

  8. Self-Healing Materials Systems: Overview of Major Approaches and Recent Developed Technologies

    OpenAIRE

    Aïssa, B.; D. Therriault; Haddad, E.; Jamroz, W.

    2012-01-01

    The development of self-healing materials is now being considered for real engineering applications. Over the past few decades, there has been a huge interest in materials that can self-heal, as this property can increase materials lifetime, reduce replacement costs, and improve product safety. Self-healing systems can be made from a variety of polymers and metallic materials. This paper reviews the main technologies currently being developed, particularly on the thermosetting composite poly...

  9. Polyurethane microcapsule with glycerol as the polyol component for encapsulated self healing agent

    OpenAIRE

    Evi Triwulandari; Ahmad Randy; Athanasia Amanda Septevani; Dewi Sondari,

    2010-01-01

    Self healing property is the ability of a material to be able to heal damages automatically and autonomously. It has wide range of application from paint coating, anti-corrosion coating, space-shuttle material, construction (concrete), automotive, etc. Microcapsules containing reactive compound for use in self healing polymers are successfully fabricated via interfacial polymerization of polyurethane (PU). The possibility of glycerol as polyol monomer for polyurethane microcapsule shell in th...

  10. Self-Healing and Optimizing Adhoc Routing

    Directory of Open Access Journals (Sweden)

    Sunil Taneja

    2012-02-01

    Full Text Available Wireless networking is an emerging field with its potential applications in extremely unpredictable and dynamic environments. Individuals and industries choose wireless because it allows flexibility of location, whether that means mobility, portability, or just ease of installation at a fixed point. Wireless networks that fix their own broken communication links may speed up their widespread acceptance. The challenge for wireless communication is optimized handling of unpredictable environment through which commu¬nications travels. Despite early problems in overcoming this pitfall, the newest develop¬ments in self-healing wireless networks are solving the problem. The changes made to the network architectures are resulting in new methods of applica¬tion design for this medium. This paper presents an overview of self healing networks and a new scheme has been proposed that tries to heal the routing when a link failure occurs. The scheme can be incorporated into any adhoc on-demand unicast routing protocol. In this research work, the proposed scheme has been incorporated to AODV and observation is that the performance has been improved. The simulations have been carried over NS2 simulator with existing schemes and proposed scheme. Simulation results indicated that the proposed technique provides robustness.

  11. Activated protein C to heal pressure ulcers.

    Science.gov (United States)

    Wijewardena, Aruna; Lajevardi, Sepehr S; Vandervord, Elle; Vandervord, John; Lang, Thomas C; Fulcher, Gregory; Jackson, Christopher J

    2016-10-01

    Pressure ulcers present a major clinical challenge, are physically debilitating and place the patient at risk of serious comorbidities such as septic shock. Recombinant human activated protein C (APC) is an anticoagulant with anti-inflammatory, cytoprotective and angiogenic effects that promote rapid wound healing. Topical negative pressure wound therapy (TNP) has become widely used as a treatment modality in wounds although its efficacy has not been proven through randomised controlled trials. The aim of this study was to determine the preliminary efficacy and safety of treatment with APC for severe chronic pressure sores with and without TNP. This case presentation describes the history, management and outcome of two patients each with a severe chronic non-healing pressure ulcer that had failed to respond to conventional therapy. TNP was added to conservative management of both ulcers with no improvement seen. Then local application of small doses of APC was added to TNP and with conservative management, resulted in significant clinical improvement and rapid healing of both ulcers, displaying rapid growth of vascular granulation tissue with subsequent epithelialisation. Patients tolerated the treatment well and improvements suggested by long-term follow-up were provided. Randomised placebo-controlled double blind trials are needed to quantify the efficacy, safety, cost-effectiveness, optimal dose and quality of life changes seen from treatment with APC.

  12. An Inherent Probabilistic Aspect of the Hough Transform

    Institute of Scientific and Technical Information of China (English)

    HU Zhanyi; YANG Changjiang; YANG Yi; MA Songde

    1999-01-01

    In this paper, a new property of the Hough transform is discovered, namely an inherent probabilistic aspect which is independent of the input image and embedded in the transformation process from the image space to the parameter space. It is shown that such a probabilistic aspect has a wide range of implications concerning the specification of implementation schemes and the performance of Hough transform. In particular, it is shown that in order to make the Hough transform really meaningful, anappropriate curve (surface) density function must be, either explicitlyor implicitly, supplied during its implementation process, and that the widely used approach to uniformly discretizing parameter space in the literature is generally inadequate.

  13. Construction of IMEX methods with inherent Runge-Kutta stability

    Science.gov (United States)

    Braś, Michał; Izzo, Giuseppe; Jackiewicz, Zdzislaw

    2016-06-01

    We describe construction of implicit-explicit (IMEX) general linear methods (GLMs) with inherent Runge-Kutta stability (IRKS) for differential systems with non-stiff and stiff processes. We will use the extrapolation approach to remove implicitness in the non-stiff terms to compute unknown stage values in terms of stage derivatives at the previous step and those already computed in the current step. Highly stable IMEX GLMs of stage order equal to the order were derived up to the order four. These methods do not suffer from order reduction phenomenon which is confirmed by numerical experiments.

  14. THE BIOLOGY OF FRACTURE HEALING

    OpenAIRE

    Marsell, Richard; Einhorn, Thomas A.

    2011-01-01

    The biology of fracture healing is a complex biological process that follows specific regenerative patterns and involves changes in the expression of several thousand genes. Although there is still much to be learned to fully comprehend the pathways of bone regeneration, the over-all pathways of both the anatomical and biochemical events have been thoroughly investigated. These efforts have provided a general understanding of how fracture healing occurs. Following the initial trauma, bone hea...

  15. Modeling self-healing materials

    OpenAIRE

    Balazs, Anna C

    2007-01-01

    We describe recent computational studies to design such systems as ‘artificial leukocytes’ that facilitate the healing of damaged substrates, polymer nanocomposites where nanoparticles are driven to fill cracks in fractured surfaces, and polymer gels that effectively act as a ‘skin’ by signaling mechanical impact. Computational research into self-healing materials is still in its infancy. However, progress in this field can ultimately facilitate the fabrication of the next generation of adapt...

  16. Self-Healing Wire Insulation

    Science.gov (United States)

    Parrish, Clyde F. (Inventor)

    2012-01-01

    A self-healing system for an insulation material initiates a self-repair process by rupturing a plurality of microcapsules disposed on the insulation material. When the plurality of microcapsules are ruptured, reactants within the plurality of microcapsules react to form a replacement polymer in a break of the insulation material. This self-healing system has the ability to repair multiple breaks in a length of insulation material without exhausting the repair properties of the material.

  17. Congenital Self-Healing Reticulohistiocytosis

    OpenAIRE

    Lee, Young H.; Talekar, Mala K; Chung, Catherine G.; Bell, Moshe D.; Zaenglein, Andrea L

    2014-01-01

    Congenital self-healing reticulohistiocytosis, also known as congenital self-healing Langerhans cell histiocytosis or Hashimoto-Pritzker disease, is a Langerhans cell histiocytosis. It is characterized by skin lesions in the newborn period in an otherwise healthy infant that show a Langerhans cell infiltrate in the skin on histological analysis. These findings subsequently spontaneously involute. This report describes two newborns who presented at birth with differing presentations of congeni...

  18. Investigation of photon-magnetic therapy efficacy in prevention and treatment of experimental local radiation skin lesions. Communication 1. The peculiarities of the course of radiation dermatitis in rats at spontaneous healing and at application of photon-magnetic therapy

    International Nuclear Information System (INIS)

    Local x-ray exposure of the rats at a dose of 50.0 Gy caused development of radiation dermatitis with imperfect skin healing with scars and incomplete restoration of the fleece as a consequence. Administration of photon-magnetic therapy positively influenced healing of skin radiation lesions in locally irradiated animals

  19. Estimation of inherent optical properties from CZMIL lidar

    Science.gov (United States)

    Kim, Minsu; Feygels, Viktor; Kopilevich, Yuri; Park, Joong Yong

    2014-11-01

    Bathymetric lidar has been widely used for ocean floor mapping. By identifying two distinctive return peaks, one from the water surface and the other from the bottom, the water depth can be estimated. In addition to bathymetry, it is also possible to estimate the optical properties of the water by analyzing the lidar return waveform. Only the few systems (e.g. Optech's SHOALS and CZMIL systems) that have good radiometric calibration demonstrate the capability to product the water's inherent optical properties and bottom reflectance. As the laser pulse propagates through the water, it is scattered by the water constituents. The directional distribution of scattered radiant power is determined by the volume scattering function. Only the backscattering within a very narrow solid angle around the 180° scattering angle travels back to the detector. During the two-way travel it experiences the same optical interaction (absorption and scattering) with the water constituents. Thus, the lidar return waveform between the surface and bottom peak contains information about the vertical distribution of the water attenuation coefficient and the backscattering coefficient in the form of the rate of change of the return power. One challenge is how to estimate the inherent attenuation from the apparent attenuation. In this research we propose a technique to estimate the true water attenuation coefficient from the total system attenuation. We use a lidar waveform simulator that solves the irradiance distribution on the beam cross-section using an analytical Fourier transform of the radiance based on a single-scattering approximation.

  20. Basis, evidences and consequences of the inherent stellar encocooning

    CERN Document Server

    Celis, L

    2002-01-01

    Based on 7093 observations with photoelectrical photometrical measurements of 191 Mira stars, the following equations (from the papers [1] to [18]) give the basis to establish the Inherent Stellar Encocooning with the spectro-photometric characteristics of the red giant variable stars, especially the Miras, which have large amplitudes (approx 50% of giant variables). The specific basis that justifies a progressive covering with ionized molecules, cold gases, dust and grains are: The relation of the visual amplitudes A sub v =A sub r +E sub A whose real luminosity separate the intrinsic pulsation and amplitude excess effects due to the presence of molecules [145] and an opaque envelope of cool gases; The relation of the visual absolute magnitudes M sub v =M sub v sub r (P)+M sub a (delta sub T sub i sub O V) which is affected by an inherent absorption and/or occultation, and; The relation that defines the probable absolute luminosity and depends on the period and the (Sa) spectral type at maximum M sub v =-2.2...

  1. Wound healing properties and kill kinetics of Clerodendron splendens G. Don, a Ghanaian wound healing plant

    Directory of Open Access Journals (Sweden)

    Stephen Y Gbedema

    2010-01-01

    Full Text Available As part of our general objective of investigating indigenous plants used in wound healing in Ghana, we hereby report our findings from some in vitro and in vivo studies related to wound healing activities of Clerodendron splendens G. Don (Verbanaceae. Methanolic extract of the aerial parts of the plant was tested for antimicrobial activity against Gram positive bacteria (Bacillus subtilis, Staphylococcus aureus, Streptococcus faecalis, Micrococcus flavus, as well as resistant strains of Staph. aureus SA1199B, RN4220 and XU212, Gram negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Proteous mirabilis, Klebsiella pneumoniae and Candida albicans using the micro-well dilution method. Survivor-time studies of the microorganisms, radical scavenging activity using 2,2′-diphenylpicrylhydrazyl (DPPH and various in vivo wound healing activity studies were also conducted on the extract. The extract exhibited biostatic action against all the test microorganisms with a Minimum Inhibition Concentration (MIC ranging between 64 and 512 μg/ml and a free radical scavenging property with an IC 50 value of 103.2 μg/ml. The results of the in vivo wound healing tests showed that upon application of C. splendens ointment, there was a reduction in the epithelization period from 26.7 days (control to 13.6 days along with a marked decrease in the scar area from 54.2 mm 2 (control to 25.2 mm 2 . Significant increase in the tensile strength and hydroxyproline content were also observed as compared to the control and was comparable to nitrofurazone. The above results appear to justify the traditional use of C. splendens in wound healing and treatment of skin infections in Ghana.

  2. Investigations of Self-Healing Property of Chitosan-Reinforced Epoxy Dye Composite Coatings

    Directory of Open Access Journals (Sweden)

    Hüsnügül Yılmaz Atay

    2013-01-01

    Full Text Available Chitosan has a very wide application range in different parts of life such as in biomedical and antimicrobial areas. In recent years the self-healing property of chitosan becomes more of an issue. In the study chitosan was used to obtain a self-healing composite material. An epoxy dye was converted to a self-healing coating. Different types of samples were prepared by coating the glass substrates with a polymer matrix reinforced with various amounts of chitosan. The samples were characterized by fourier transform Infrared (FTIR and scanning electron microscope-energy dispersive spectroscopy (SEM-EDS. In addition, self-healing test was applied as a primary objective of this research. In this respect, the samples were scratched with a very thin pin, and they were analyzed by SEM periodically. It was observed that chitosan-reinforced dyes showed self-healing property. Mechanism of the self-healing process was also scrutinized.

  3. A FAULT TOLERANT FPGA BASED IMAGE ENHANCEMENT FILTER USING SELF HEALING ALGORITHM

    Directory of Open Access Journals (Sweden)

    K.SRI RAMA KRISHNA,

    2010-09-01

    Full Text Available An original approach to automatic design of image filters is presented in this paper. The proposed solution employs Field Programmable Gate Array reconfigurable hardware at simplified functional level and produces high quality image when image features are corrupted by different types of noise. In addition, parallel architectures can be used to ease the enormous computational load due to different operations conducted on image data sets. Self healing circuit is the one which can compete against traditional designs in terms of quality and implementation cost in Xilinx’s chips. During the first phase, schemes for testing the configured processing elements of a reconfigurable circuit evolved for image enhancement application is presented. In the second phase, the internal Processing Elements in evolved circuit found faulty, they are restructured such that the sparse processing elements replace the faulty processing elements both functionally and structurally. Simulation results show that the evolved circuit is inherently testable and can restructure itself by avoiding the faulty ProcessingElements and make use of sparse ones. In third phase implantation of FPGA based image enhancement filter using Virtex-IV application board.

  4. Materials chemical compatibility for the fabrication of small inherently safe nuclear reactors

    International Nuclear Information System (INIS)

    Aqueous nuclear fuels offer a unique set of characteristics for homogeneous reactor nuclear applications. Their advantages include high nuclear stability and inherent safety, high power density, high burn-up, simple preparation and reprocessing, easy fuel handling, high neutron economy, and simple control system leading to simple mechanical designs. The major disadvantages are corrosion, limited uranium concentration, and radiation decomposition of water. Likewise, organic coolants offer certain properties that are conducive for small reactor applications. These include reduced corrosion and activation, and low vapour pressures with good heat-transfer capabilities. Their major disadvantages are decomposition, fouling and flammability. A particular organic coolant, HB-40, has been extensively studied in Canada and was used for nineteen years in the 60-MWt organic-cooled WR-1 reactor at the Whiteshell Nuclear Research Establishment (WNRE) of Atomic Energy of Canada Limited (AECL). Proper attention to design and coolant chemistry in the nineteen years of operation in the WR-1 reactor kept the coolant aspects related to decomposition, fouling and flammability to acceptable levels. For small reactor applications, organic coolants are potentially superior to heavy water in terms of overall cost. The purpose of this thesis work was, through a literature review, to select the most suitable aqueous fuel and materials of construction for two proposed small inherently safe reactors, the QH-1 reactor and the homogeneous SLOWPOKE reactor under design at the Royal Military College of Canada.

  5. A self-healing hydrogel formation strategy via exploiting endothermic interactions between polyelectrolytes.

    Science.gov (United States)

    Ren, Ying; Lou, Ruyun; Liu, Xiaocen; Gao, Meng; Zheng, Huizhen; Yang, Ting; Xie, Hongguo; Yu, Weiting; Ma, Xiaojun

    2016-05-01

    We report a strategy to synthesize self-healing hydrogels via exploiting endothermic interactions between polyelectrolytes. Natural polysaccharides and their derivatives were used to form reversible polyelectrolyte complexes by selecting appropriately charged chemical groups and counterions. This simple and effective method to fabricate self-healing hydrogels will find applications in diverse fields such as surface coating and 3D printing. PMID:27078585

  6. Deep seawater inherent optical properties in the Southern Ionian Sea

    CERN Document Server

    Riccobene, G; Ambriola, M; Ameli, F; Amore, I; Anghinolfi, M; Anzalone, A; Avanzini, C; Barbarino, G C; Barbarito, E; Battaglieri, M; Bellotti, R; Beverini, N; Bonori, M; Bouhadef, B; Brescia, M; Cacopardo, G; Cafagna, F; Capone, A; Caponetto, L; Castorina, E; Ceres, A; Chiarusi, T; Circella, M; Cocimano, R; Coniglione, R; Cordelli, M; Costa, M; Cuneo, S; D'Amico, A; De Bonis, G; De Marzo, C; De Rosa, G; De Vita, R; Distefano, C; Falchini, E; Fiorello, C; Flaminio, V; Fratini, K; Gabrielli, A; Galeotti, S; Gandolfi, E; Grimaldi, A; Habel, R; Leonora, E; Lo Presti, D; Lonardo, A; Longo, G; Lucarelli, F; Maccioni, E; Margiotta, A; Martini, A; Masullo, R; Megna, R; Migneco, E; Mongelli, M; Montaruli, T; Morganti, M; Musumeci, M; Nicolau, C A; Orlando, A; Osipenko, M; Osteria, G; Papaleo, R; Pappalardo, V; Petta, C; Piattelli, P; Raffaelli, F; Raia, G; Randazzo, N; Reito, S; Ricco, G; Ripani, M; Rovelli, A; Ruppi, M; Russo, G V; Russo, S; Sapienza, P; Schuller, J P; Sedita, M; Shirokov, E; Simeone, F; Sipala, V; Spurio, M; Taiuti, M; Terreni, G; Trasatti, L; Urso, S; Valente, V; Vicini, P

    2006-01-01

    The NEMO (NEutrino Mediterranean Observatory) Collaboration has been carrying out since 1998 an evaluation programme of deep sea sites suitable for the construction of the future Mediterranean km3 Cerenkov neutrino telescope. We investigated the seawater optical and oceanographic properties of several deep sea marine areas close to the Italian Coast. Inherent optical properties (light absorption and attenuation coefficients) have been measured as a function of depth using an experimental apparatus equipped with standard oceanographic probes and the commercial transmissometer AC9 manufactured by WETLabs. This paper reports on the visible light absorption and attenuation coefficients measured in deep seawater of a marine region located in the Southern Ionian Sea, 60-100 km SE of Capo Passero (Sicily). Data show that blue light absorption coefficient is about 0.015 1/m (corresponding to an absorption length of 67 m) close to the one of optically pure water and it doe not show seasonal variation.

  7. A simple graphical method for measuring inherent safety.

    Science.gov (United States)

    Gupta, J P; Edwards, David W

    2003-11-14

    Inherently safer design (ISD) concepts have been with us for over two decades since their elaboration by Kletz [Chem. Ind. 9 (1978) 124]. Interest has really taken off globally since the early nineties after several major mishaps occurred during the eighties (Bhopal, Mexico city, Piper-alfa, Philips Petroleum, to name a few). Academic and industrial research personnel have been actively involved into devising inherently safer ways of production. The regulatory bodies have also shown deep interest since ISD makes the production safer and hence their tasks easier. Research funding has also been forthcoming for new developments as well as for demonstration projects.A natural question that arises is as to how to measure ISD characteristics of a process? Several researchers have worked on this [Trans. IChemE, Process Safety Environ. Protect. B 71 (4) (1993) 252; Inherent safety in process plant design, Ph.D. Thesis, VTT Publication Number 384, Helsinki University of Technology, Espoo, Finland, 1999; Proceedings of the Mary Kay O'Connor Process Safety Center Symposium, 2001, p. 509]. Many of the proposed methods are very elegant, yet too involved for easy adoption by the industry which is scared of yet another safety analysis regime. In a recent survey [Trans. IChemE, Process Safety Environ. Prog. B 80 (2002) 115], companies desired a rather simple method to measure ISD. Simplification is also an important characteristic of ISD. It is therefore desirable to have a simple ISD measurement procedure. The ISD measurement procedure proposed in this paper can be used to differentiate between two or more processes for the same end product. The salient steps are: Consider each of the important parameters affecting the safety (e.g., temperature, pressure, toxicity, flammability, etc.) and the range of possible values these parameters can have for all the process routes under consideration for an end product. Plot these values for each step in each process route and compare. No

  8. Game Over Interdependent Networks: Rationality Makes the System Inherent Deficient

    CERN Document Server

    Fan, Yuhang; He, Shibo; Chen, Jiming; Sun, Youxian

    2016-01-01

    Many real-world systems are composed of interdependent networks that rely on one another. Such networks are typically designed and operated by different entities, who aim at maximizing their own interest. In this paper, we study the game over interdependent networks, investigating how the rational behaviors of entities impact the whole system. We first introduce a mathematical model to quantify the interacting payoffs among varying entities. Then we study the Nash equilibrium and compare it with the optimal social welfare. We reveal that the cooperation between different entities can be reached to maximize the social welfare only when the average degree of each network is constant. Otherwise, there may be a huge gap between the Nash equilibrium and optimal social welfare. Therefore, the rationality of different entities that operates these networks makes the system inherently deficient and even extremely vulnerable in some cases. Furthermore, we uncover some factors (such as weakening coupled strength of inte...

  9. Inherent variability in lead and copper collected during standardized sampling.

    Science.gov (United States)

    Masters, Sheldon; Parks, Jeffrey; Atassi, Amrou; Edwards, Marc A

    2016-03-01

    Variability in the concentration of lead and copper sampled at consumers' taps poses challenges to assessing consumer health threats and the effectiveness of corrosion control. To examine the minimum variability that is practically achievable, standardized rigs with three lead and copper containing plumbing materials (leaded brass, copper tube with lead solder, and a lead copper connection) were deployed at five utilities and sampled with regimented protocols. Variability represented by relative standard deviation (RSD) in lead release was high in all cases. The brass had the lowest variability in lead release (RSD = 31 %) followed by copper-solder (RSD = 49%) and lead-copper (RSD = 80%). This high inherent variability is due to semi-random detachment of particulate lead to water, and represents a modern reality of water lead problems that should be explicitly acknowledged and considered in all aspects of exposure, public education, and monitoring.

  10. Determination of the cadmium and copper content inherent to metallothionein

    Energy Technology Data Exchange (ETDEWEB)

    Raspor, B.; Kozar, S.; Pavicic, J.; Juric, D. [Ruder Boskovic Institute, Center for Marine Research Zagreb, P.O.B. 1016, HR-10 001 Zagreb (Croatia)

    1998-05-01

    The reliability of the voltammetric determination of the cadmium and copper content (at pH 1.0), inherent to metallothionein (MT) isolated from the digestive gland of Mytilus galloprovincialis, was investigated. An artifact signal enhancement of copper, caused by the cupric-thionein complex adsorption at the mercury electrode, was established. This artifact was removed by UV-digestion of the sample for 15-20 h prior to analysis. A similar artifact was not detected for cadmium, because at this pH the cadmium-thionein complex has dissociated, and cadmium exists in the ionic form. Therefore, the voltammetric analysis of the cadmium content can be performed directly at pH 1.0, without prior UV-digestion of the sample. (orig.) With 3 figs., 1 tab., 12 refs.

  11. Deep seawater inherent optical properties in the Southern Ionian Sea

    Science.gov (United States)

    Riccobene, G.; Capone, A.; Aiello, S.; Ambriola, M.; Ameli, F.; Amore, I.; Anghinolfi, M.; Anzalone, A.; Avanzini, C.; Barbarino, G.; Barbarito, E.; Battaglieri, M.; Bellotti, R.; Beverini, N.; Bonori, M.; Bouhadef, B.; Brescia, M.; Cacopardo, G.; Cafagna, F.; Caponetto, L.; Castorina, E.; Ceres, A.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Cordelli, M.; Costa, M.; Cuneo, S.; D'Amico, A.; de Bonis, G.; de Marzo, C.; de Rosa, G.; de Vita, R.; Distefano, C.; Falchini, E.; Fiorello, C.; Flaminio, V.; Fratini, K.; Gabrielli, A.; Galeotti, S.; Gandolfi, E.; Grimaldi, A.; Habel, R.; Leonora, E.; Lonardo, A.; Longo, G.; Lo Presti, D.; Lucarelli, F.; Maccioni, E.; Margiotta, A.; Martini, A.; Masullo, R.; Megna, R.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Musumeci, M.; Nicolau, C. A.; Orlando, A.; Osipenko, M.; Osteria, G.; Papaleo, R.; Pappalardo, V.; Petta, C.; Piattelli, P.; Raffaelli, F.; Raia, G.; Randazzo, N.; Reito, S.; Ricco, G.; Ripani, M.; Rovelli, A.; Ruppi, M.; Russo, G. V.; Russo, S.; Russo, S.; Sapienza, P.; Sedita, M.; Schuller, J.-P.; Shirokov, E.; Simeone, F.; Sipala, V.; Spurio, M.; Taiuti, M.; Terreni, G.; Trasatti, L.; Urso, S.; Valente, V.; Vicini, P.

    2007-02-01

    The NEMO (NEutrino Mediterranean Observatory) Collaboration has been carrying out since 1998 an evaluation programme of deep sea sites suitable for the construction of the future Mediterranean km3 Čerenkov neutrino telescope. We investigated the seawater optical and oceanographic properties of several deep sea marine areas close to the Italian Coast. Inherent optical properties (light absorption and attenuation coefficients) have been measured as a function of depth using an experimental apparatus equipped with standard oceanographic probes and the commercial transmissometer AC9 manufactured by WETLabs. This paper reports on the visible light absorption and attenuation coefficients measured in deep seawater of a marine region located in the Southern Ionian Sea, 60 100 km SE of Capo Passero (Sicily). Data show that blue light absorption coefficient is about 0.015 m-1 (corresponding to an absorption length of 67 m) close to the one of optically pure water and it does not show seasonal variation.

  12. Self-healing materials with microvascular networks.

    Science.gov (United States)

    Toohey, Kathleen S; Sottos, Nancy R; Lewis, Jennifer A; Moore, Jeffrey S; White, Scott R

    2007-08-01

    Self-healing polymers composed of microencapsulated healing agents exhibit remarkable mechanical performance and regenerative ability, but are limited to autonomic repair of a single damage event in a given location. Self-healing is triggered by crack-induced rupture of the embedded capsules; thus, once a localized region is depleted of healing agent, further repair is precluded. Re-mendable polymers can achieve multiple healing cycles, but require external intervention in the form of heat treatment and applied pressure. Here, we report a self-healing system capable of autonomously repairing repeated damage events. Our bio-inspired coating-substrate design delivers healing agent to cracks in a polymer coating via a three-dimensional microvascular network embedded in the substrate. Crack damage in the epoxy coating is healed repeatedly. This approach opens new avenues for continuous delivery of healing agents for self-repair as well as other active species for additional functionality.

  13. Healing defective CVD-graphene through vapor phase treatment.

    Science.gov (United States)

    Van Lam, Do; Kim, Sang-Min; Cho, Youngji; Kim, Jae-Hyun; Lee, Hak-Joo; Yang, Jun-Mo; Lee, Seung-Mo

    2014-06-01

    Structural defects present on chemical vapor deposition (CVD)-graphene have usually originated from the growth stage and transfer process. They limit the electronic transport properties of graphene and degrade performance of related devices. Here we report that these inherent atomic defects could be selectively healed by a simple vapor phase treatment performed in equipment conventionally used for atomic layer deposition (ALD). The unique chemistry of Al2O3 ALD facilitated selective depositions of AlxOy compounds on the defects, which could be readily probed and visualized using AFM imaging. The healing agent, AlxOy, was observed to bind tightly to the defects and lead to doping of the CVD-graphene, which was reflected in the noticeable improvement in electrical sheet resistance. In contrast with the chemically doped graphene, the ALD-treated graphenes revealed notable long-term stability under environmental conditions. Our approach promises selective healing of defects present in most materials and possibly ensures considerable improvement in electrical and mechanical properties. ALD with a broad spectrum of material selection could be a versatile tool for upgrading properties of materials. PMID:24756318

  14. Self-healing phenomena in cement-based materials state-of-the-art report of RILEM Technical Committee 221-SHC Self-Healing Phenomena in Cement-Based Materials

    CERN Document Server

    Tittelboom, Kim; Belie, Nele; Schlangen, Erik

    2013-01-01

    Self-healing materials are man-made materials which have the built-in capability to repair damage. Failure in materials is often caused by the occurrence of small microcracks throughout the material. In self-healing materials phenomena are triggered to counteract these microcracks. These processes are ideally triggered by the occurrence of damage itself. Thus far, the self-healing capacity of cement-based materials has been considered as something "extra". This could be called passive self-healing, since it was not a designed feature of the material, but an inherent property of it. Centuries-old buildings have been said to have survived these centuries because of the inherent self-healing capacity of the binders used for cementing building blocks together. In this State-of-the-Art Report a closer look is taken at self-healing phenomena in cement-based materials. It is shown what options are available to design for this effect rather than have it occur as a "coincidental extra".

  15. Hindlimb unloading alters ligament healing

    Science.gov (United States)

    Provenzano, Paolo P.; Martinez, Daniel A.; Grindeland, Richard E.; Dwyer, Kelley W.; Turner, Joanne; Vailas, Arthur C.; Vanderby, Ray Jr

    2003-01-01

    We investigated the hypothesis that hindlimb unloading inhibits healing in fibrous connective tissue such as ligament. Male rats were assigned to 3- and 7-wk treatment groups with three subgroups each: sham control, ambulatory healing, and hindlimb-suspended healing. Ambulatory and suspended animals underwent surgical rupture of their medial collateral ligaments, whereas sham surgeries were performed on control animals. After 3 or 7 wk, mechanical and/or morphological properties were measured in ligament, muscle, and bone. During mechanical testing, most suspended ligaments failed in the scar region, indicating the greatest impairment was to ligament and not to bone-ligament insertion. Ligament testing revealed significant reductions in maximum force, ultimate stress, elastic modulus, and low-load properties in suspended animals. In addition, femoral mineral density, femoral strength, gastrocnemius mass, and tibialis anterior mass were significantly reduced. Microscopy revealed abnormal scar formation and cell distribution in suspended ligaments with extracellular matrix discontinuities and voids between misaligned, but well-formed, collagen fiber bundles. Hence, stress levels from ambulation appear unnecessary for formation of fiber bundles yet required for collagen to form structurally competent continuous fibers. Results support our hypothesis that hindlimb unloading impairs healing of fibrous connective tissue. In addition, this study provides compelling morphological evidence explaining the altered structure-function relationship in load-deprived healing connective tissue.

  16. Healing texts and healing techniques in indigenous Balinese medicine.

    Science.gov (United States)

    McCauley, A P

    1988-01-01

    Case histories of three prominent Balinese healers illustrate various ways that indigenous medical texts are used in healing. Most healers employ mantras, spells and inscriptions from the texts because they believe them to have innate power which can heal. A smaller group of healers are literate in the archaic language used in the palm-leaf medical manuscripts. However, their use of these manuscripts often differs from the literal and unambiguous way that Westerners read medical documents. An examination of Balinese medical manuscripts, in the context of the conventions of Balinese literature, demonstrates the use of these texts to align the body with the macrocosm and to reaffirm the beliefs of the ancestors.

  17. Influence of the key parameters of suspended structures on the inherent frequency of oil and gas pipelines

    Science.gov (United States)

    Tao, S. Y.; Liu, Q. Y.; Wang, G. R.; Jiang, J. C.

    2015-10-01

    Inherent frequency is an important parameter that reflects the dynamic stability of fluid-conveying pipelines. In engineering applications, the inherent frequency of pipelines is usually increased to improve their dynamic stability. The flow velocity and pressure of oil and gas pipelines cannot be altered freely. Among all of the parameters that affect the inherent frequency of suspended pipelines, the flexural stiffness of the stiffening girder, the tensile force of the cable system, and the pipe-axial precompression force are the most important. Revealing the influence laws of these three parameters could provide theoretical support for engineering designs. In this paper, a suspended crossing pipeline project was simplified as a Hetenyi's elastic foundation model. The flexural stiffness of the stiffening girder and the tensile force of the cable system were simplified as the foundation parameters G and K, respectively. The influence regularities of G, K, and the pipe-axial precompression force T on the pipeline inherent frequency were analyzed. According to the numerical simulation results, the ranks of these three parameters in descending order of importance were G, T, and K. During construction, G should be increased as much as possible. If the inherent frequency needs to be improved while pipelines have already been built up, it should be firstly considered to increase T, to values higher than zero if possible. On this basis, the further improvement of K could achieve a better result.

  18. Interior design and healing architecture

    DEFF Research Database (Denmark)

    Mogensen, Jeppe; Poulsen, Søren Bolvig; Hansen, Allan Grutt

    2015-01-01

    and materials are rather limited. To compliment research in hospital interior design with particular focus on the use of interior textiles, this pilot study explores if the patients’ preferences for more home-like hospital interiors can be linked to a preference for textile-based furniture and materials...... the interpretation of the quantitative and qualitative data. 21% of the participants requested interior design improvements, and had a pronounced preference for the textile-based furniture and materials. For this particular group, the link between home-like hospital interiors and textile materials were thus......Hospital design is today influenced by the design concept healing architecture, stating that the patients’ healing process is promoted through accommodating physical surroundings. However, despite the increasing amount of research in the field of healing architecture, research on interior design...

  19. Modeling self-healing materials

    Directory of Open Access Journals (Sweden)

    Anna C. Balazs

    2007-09-01

    Full Text Available We describe recent computational studies to design such systems as ‘artificial leukocytes’ that facilitate the healing of damaged substrates, polymer nanocomposites where nanoparticles are driven to fill cracks in fractured surfaces, and polymer gels that effectively act as a ‘skin’ by signaling mechanical impact. Computational research into self-healing materials is still in its infancy. However, progress in this field can ultimately facilitate the fabrication of the next generation of adaptive materials that both monitor their structural integrity and mend themselves before any catastrophic failure can occur.

  20. Communicating uncertainty: managing the inherent probabilistic character of hazard estimates

    Science.gov (United States)

    Albarello, Dario

    2013-04-01

    Science is much more fixing the limits of our knowledge about possible occurrences than the identification of any "truth". This is particularly true when scientific statements concern prediction of natural phenomena largely exceeding the laboratory scale as in the case of seismogenesis. In these cases, many scenarios about future occurrences result possible (plausible) and the contribution of scientific knowledge (based on the available knowledge about underlying processes or the phenomenological studies) mainly consists in attributing to each scenario a different level of likelihood (probability). In other terms, scientific predictions in the field of geosciences (hazard assessment) are inherently probabilistic. However, despite of this, many scientist (seismologists, etc.) in communicating their position in public debates tend to stress the " truth" of their statements against the fancy character of pseudo-scientific assertions: stronger is the opposition of science and pseudo-science, more hidden becomes the probabilistic character of scientific statements. The problem arises when this kind of "probabilistic" knowledge becomes the basis of any political action (e.g., to impose expensive form of risk reducing activities): in these cases the lack of any definitive "truth" requires a direct assumption of responsibility by the relevant decider (being the single citizen or the legitimate expression of a larger community) to choose among several possibilities (however characterized by different levels of likelihood). In many cases, this can be uncomfortable and strong is the attitude to delegate to the scientific counterpart the responsibility of these decisions. This "transfer" from the genuine political field to an improper scientific context is also facilitated by the lack of a diffuse culture of "probability" outside the scientific community (and in many cases inside also). This is partially the effect of the generalized adoption (by media and scientific

  1. Inherently flushing piston rod for a reciprocating pump

    Energy Technology Data Exchange (ETDEWEB)

    Besic, D.; Smith, W.C.

    1990-10-23

    This patent describes an inherently flushing piston rod for use in a reciprocating pump. It comprises: a piston portion having an axial bore formed therethrough, the axial bore having a first end and a second end, the first end of the axial bore lying in fluid contact with the external environment of the piston portion; a flexible diaphragm disposed within the axial bore through the piston portion whereby the flexible diaphragm and the piston portion define a reserve flushing zone; a pair of annular wiper elements extending radially from the piston portion, the annular wiper elements and the piston portion defining an annular flushing space therebetween; the piston portion having a radially-extending channel formed therethrough, the radially-extending channel fluidly connecting the axial bore through the piston portion and the annular flushing space; and a means for providing flushing fluid to the second end of the axial bore through the piston portion; a means for preventing flow from the axial bore through the piston portion to the means for supplying flushing fluid.

  2. Inherently analog quantity representations in olive baboons (Papio anubis

    Directory of Open Access Journals (Sweden)

    Allison M Barnard

    2013-05-01

    Full Text Available Strong evidence indicates that non-human primates possess a numerical representation system, but the inherent nature of that system is still debated. Two cognitive mechanisms have been proposed to account for non-human primate numerical performance: (1 a discrete object-file system limited to quantities <4, and (2 an analog system which represents quantities comparatively but is limited by the ratio between two quantities. To test the underlying nature of non-human primate quantification, we asked eight experiment -naive olive baboons (Papio anubis to discriminate between number pairs containing small (<4, large (>4, or span (small vs. large numbers of food items presented simultaneously or sequentially. The prediction from the object-file hypothesis is that baboons will only accurately choose the larger quantity in small pairs, but not large or span pairs. Conversely, the analog system predicts that baboons will be successful with all numbers, and that success will be dependent on numerical ratio. We found that baboons successfully discriminated all pair types at above chance levels. In addition, performance significantly correlated with the ratio between the numerical values. Although performance was better for simultaneous trials than sequential trials, evidence favoring analog numerical representation emerged from both conditions, and was present even in the first exposure to number pairs. Together, these data favor the interpretation that a single, coherent analog representation system underlies spontaneous quantitative abilities in primates.

  3. Managing inherent complexity for sustainable walleye fisheries in Lake Erie

    Science.gov (United States)

    Roseman, Edward F.; Drouin, Richard; Gaden, Marc; Knight, Roger; Tyson, Jeff; Zhao, Yingming; Taylor, William W.; Lynch, Abigail J.; Leonard, Nancy J.

    2012-01-01

    In Lake Erie, Walleye (Sander vitreus vitreus) is king. The naturally occurring species is the foundation of commercial fishing operations on the Canadian side of the lake and is a much-prized sport fish on the American side. Management of Lake Erie walleye fisheries is complex and takes place in an inter-jurisdictional setting composed of resource agencies from the states of Michigan (MDNR), Ohio (ODNR), Pennsylvania (PFBC), and New York (NYDEC) and the province of Ontario (OMNR). The complexity of walleye management is exacerbated by interactions among environmental and ecological changes in Lake Erie, complex life-history characteristics of the species, public demand for walleye, and cultural/governance differences among managing groups and their respective constituents. Success of future management strategies will largely hinge upon our ability to understand these inherent complexities and to employ tactics that successfully accommodate stock productivity and human demand in a highly dynamic environment. In this report, we review the history of Lake Erie walleye management, outline the multi-jurisdictional process for international management of walleye, and discuss strategies to address challenges facing managers.

  4. Energy storage inherent in large tidal turbine farms.

    Science.gov (United States)

    Vennell, Ross; Adcock, Thomas A A

    2014-06-01

    While wind farms have no inherent storage to supply power in calm conditions, this paper demonstrates that large tidal turbine farms in channels have short-term energy storage. This storage lies in the inertia of the oscillating flow and can be used to exceed the previously published upper limit for power production by currents in a tidal channel, while simultaneously maintaining stronger currents. Inertial storage exploits the ability of large farms to manipulate the phase of the oscillating currents by varying the farm's drag coefficient. This work shows that by optimizing how a large farm's drag coefficient varies during the tidal cycle it is possible to have some flexibility about when power is produced. This flexibility can be used in many ways, e.g. producing more power, or to better meet short predictable peaks in demand. This flexibility also allows trading total power production off against meeting peak demand, or mitigating the flow speed reduction owing to power extraction. The effectiveness of inertial storage is governed by the frictional time scale relative to either the duration of a half tidal cycle or the duration of a peak in power demand, thus has greater benefits in larger channels. PMID:24910516

  5. Dualheap Selection Algorithm: Efficient, Inherently Parallel and Somewhat Mysterious

    CERN Document Server

    Sepesi, Greg

    2007-01-01

    An inherently parallel algorithm is proposed that efficiently performs selection: finding the K-th largest member of a set of N members. Selection is a common component of many more complex algorithms and therefore is a widely studied problem. Not much is new in the proposed dualheap selection algorithm: the heap data structure is from J.W.J.Williams, the bottom-up heap construction is from R.W. Floyd, and the concept of a two heap data structure is from J.W.J. Williams and D.E. Knuth. The algorithm's novelty is limited to a few relatively minor implementation twists: 1) the two heaps are oriented with their roots at the partition values rather than at the minimum and maximum values, 2)the coding of one of the heaps (the heap of smaller values) employs negative indexing, and 3) the exchange phase of the algorithm is similar to a bottom-up heap construction, but navigates the heap with a post-order tree traversal. When run on a single processor, the dualheap selection algorithm's performance is competitive wit...

  6. External noise control in inherently stochastic biological systems.

    Science.gov (United States)

    Zheng, Likun; Chen, Meng; Nie, Qing

    2012-11-01

    Biological systems are often subject to external noise from signal stimuli and environmental perturbations, as well as noises in the intracellular signal transduction pathway. Can different stochastic fluctuations interact to give rise to new emerging behaviors? How can a system reduce noise effects while still being capable of detecting changes in the input signal? Here, we study analytically and computationally the role of nonlinear feedback systems in controlling external noise with the presence of large internal noise. In addition to noise attenuation, we analyze derivatives of Fano factor to study systems' capability of differentiating signal inputs. We find effects of internal noise and external noise may be separated in one slow positive feedback loop system; in particular, the slow loop can decrease external noise and increase robustness of signaling with respect to fluctuations in rate constants, while maintaining the signal output specific to the input. For two feedback loops, we demonstrate that the influence of external noise mainly depends on how the fast loop responds to fluctuations in the input and the slow loop plays a limited role in determining the signal precision. Furthermore, in a dual loop system of one positive feedback and one negative feedback, a slower positive feedback always leads to better noise attenuation; in contrast, a slower negative feedback may not be more beneficial. Our results reveal interesting stochastic effects for systems containing both extrinsic and intrinsic noises, suggesting novel noise filtering strategies in inherently stochastic systems. PMID:23213267

  7. Functionalised inherently conducting polymers as low biofouling materials.

    Science.gov (United States)

    Zhang, Binbin; Nagle, Alex R; Wallace, Gordon G; Hanks, Timothy W; Molino, Paul J

    2015-01-01

    Diatoms are a major component of microbial biofouling layers that develop on man-made surfaces placed in aquatic environments, resulting in significant economic and environmental impacts. This paper describes surface functionalisation of the inherently conducting polymers (ICPs) polypyrrole (PPy) and polyaniline (PANI) with poly(ethylene glycol) (PEG) and their efficacy as fouling resistant materials. Their ability to resist interactions with the model protein bovine serum albumin (BSA) was tested using a quartz crystal microbalance with dissipation monitoring (QCM-D). The capacity of the ICP-PEG materials to prevent settlement and colonisation of the fouling diatom Amphora coffeaeformis (Cleve) was also assayed. Variations were demonstrated in the dopants used during ICP polymerisation, along with the PEG molecular weight, and the ICP-PEG reaction conditions, all playing a role in guiding the eventual fouling resistant properties of the materials. Optimised ICP-PEG materials resulted in a significant reduction in BSA adsorption, and > 98% reduction in diatom adhesion.

  8. Energy storage inherent in large tidal turbine farms.

    Science.gov (United States)

    Vennell, Ross; Adcock, Thomas A A

    2014-06-01

    While wind farms have no inherent storage to supply power in calm conditions, this paper demonstrates that large tidal turbine farms in channels have short-term energy storage. This storage lies in the inertia of the oscillating flow and can be used to exceed the previously published upper limit for power production by currents in a tidal channel, while simultaneously maintaining stronger currents. Inertial storage exploits the ability of large farms to manipulate the phase of the oscillating currents by varying the farm's drag coefficient. This work shows that by optimizing how a large farm's drag coefficient varies during the tidal cycle it is possible to have some flexibility about when power is produced. This flexibility can be used in many ways, e.g. producing more power, or to better meet short predictable peaks in demand. This flexibility also allows trading total power production off against meeting peak demand, or mitigating the flow speed reduction owing to power extraction. The effectiveness of inertial storage is governed by the frictional time scale relative to either the duration of a half tidal cycle or the duration of a peak in power demand, thus has greater benefits in larger channels.

  9. The Role of Iron in the Skin & Cutaneous Wound Healing

    Directory of Open Access Journals (Sweden)

    Josephine Anne Wright

    2014-07-01

    Full Text Available In this review article we discuss current knowledge about iron in the skin and the cutaneous wound healing process. Iron plays a key role in both oxidative stress and photo-induced skin damage. The main causes of oxidative stress in the skin include reactive oxygen species (ROS generated in the skin by ultraviolet (UVA 320-400 nm portion of the ultraviolet spectrum and biologically available iron. We also discuss the relationships between iron deficiency, anaemia and cutaneous wound healing. Studies looking at this fall into two distinct groups. Early studies investigated the effect of anaemia on wound healing using a variety of experimental methodology to establish anaemia or iron deficiency and focused on wound-strength rather than effect on macroscopic healing or re-epithelialisation. More recent animal studies have investigated novel treatments aimed at correcting the effects of systemic iron deficiency and localised iron overload. Iron overload is associated with local cutaneous iron deposition, which has numerous deleterious effects in chronic venous disease and hereditary haemochromatosis. Iron plays a key role in chronic ulceration and conditions such as Rheumatoid Arthritis (RA and Lupus Erythematosus are associated with both anaemia of chronic disease and dysregulation of local cutaneous iron haemostasis. Iron is a potential therapeutic target in the skin by application of topical iron chelators and novel pharmacological agents, and in delayed cutaneous wound healing by treatment of iron deficiency or underlying systemic inflammation.

  10. Effect of 15-hydroxyprostaglandin dehydrogenase inhibitor on wound healing.

    Science.gov (United States)

    Seo, Seung Yong; Han, Song-Iy; Bae, Chun Sik; Cho, Hoon; Lim, Sung Chul

    2015-06-01

    PGE2 is an important mediator of wound healing. It is degraded and inactivated by 15-hydroxyprostaglandin dehydrogenase (15-PGDH). Various growth factors, type IV collagen, TIMP-2 and PGE2 are important mediators of inflammation involving wound healing. Overproduction of TGF-β and suppression of PGE2 are found in excessive wound scarring. If we make the condition downregulating growth factors and upregulating PGE2, the wound will have a positive effect which results in little scar formation after healing. TD88 is a 15-PGDH inhibitor based on thiazolinedione structure. We evaluated the effect of TD88 on wound healing. In 10 guinea pigs (4 control and 6 experimental groups), we made four 1cm diameter-sized circular skin defects on each back. TD88 and vehicle were applicated on the wound twice a day for 4 days in the experimental and control groups, respectively. Tissue samples were harvested for qPCR and histomorphometric analyses on the 2nd and 4th day after treatment. Histomorphometric analysis showed significant reepithelization in the experimental group. qPCR analysis showed significant decrease of PDGF, CTGF and TIMP-2, but significant increase of type IV collagen in the experimental group. Taken together TD88 could be a good effector on wound healing, especially in the aspects of prevention of scarring.

  11. Tissue repair genes: the TiRe database and its implication for skin wound healing.

    Science.gov (United States)

    Yanai, Hagai; Budovsky, Arie; Tacutu, Robi; Barzilay, Thomer; Abramovich, Amir; Ziesche, Rolf; Fraifeld, Vadim E

    2016-04-19

    Wound healing is an inherent feature of any multicellular organism and recent years have brought about a huge amount of data regarding regular and abnormal tissue repair. Despite the accumulated knowledge, modulation of wound healing is still a major biomedical challenge, especially in advanced ages. In order to collect and systematically organize what we know about the key players in wound healing, we created the TiRe (Tissue Repair) database, an online collection of genes and proteins that were shown to directly affect skin wound healing. To date, TiRe contains 397 entries for four organisms: Mus musculus, Rattus norvegicus, Sus domesticus, and Homo sapiens. Analysis of the TiRe dataset of skin wound healing-associated genes showed that skin wound healing genes are (i) over-conserved among vertebrates, but are under-conserved in invertebrates; (ii) enriched in extracellular and immuno-inflammatory genes; and display (iii) high interconnectivity and connectivity to other proteins. The latter may provide potential therapeutic targets. In addition, a slower or faster skin wound healing is indicative of an aging or longevity phenotype only when assessed in advanced ages, but not in the young. In the long run, we aim for TiRe to be a one-station resource that provides researchers and clinicians with the essential data needed for a better understanding of the mechanisms of wound healing, designing new experiments, and the development of new therapeutic strategies. TiRe is freely available online at http://www.tiredb.org. PMID:27049721

  12. Chemokine Regulation of Angiogenesis During Wound Healing

    OpenAIRE

    Bodnar, Richard J.

    2015-01-01

    Significance: Angiogenesis plays a critical role in wound healing. A defect in the formation of a neovasculature induces ulcer formation. One of the challenges faced by the clinician when devising strategies to promote healing of chronic wounds is the initiation of angiogenesis and the formation of a stable vasculature to support tissue regeneration. Understanding the molecular factors regulating angiogenesis during wound healing will lead to better therapies for healing chronic wounds.

  13. Comparison of removal torques of SLActive® implant and blasted, laser-treated titanium implant in rabbit tibia bone healed with concentrated growth factor application

    Science.gov (United States)

    Park, Sang-Hun; Park, Kyung-Soon

    2016-01-01

    PURPOSE The purpose of this study was to compare the removal torques of a chemically modified SLActive implant and a blasted, laser-treated (BLT) implant, which were soaked in saline for 2 weeks after their surface modifications. The removal torques of the two implants were measured 4 weeks after their implantation into the bone defect area in rabbit tibias with concentrated growth factor (CGF) application. MATERIALS AND METHODS To make artificial bone defects in the cortical layers of both tibias, an 8-mm diameter trephine bur was used. Then, prepared CGF was applied to the bony defect of the left tibia, and the bony defect of the right tibia was left unfilled. Four weeks later, the surgical sites of 16 rabbits were re-exposed. For 8 rabbits, the SLActive implants (Straumann, Switzerland) were inserted in the left tibia, and the BLT implants (CSM implant, Daegu, Korea) were inserted in the right tibia. For other rabbits, the BLT implants were inserted in the left tibia, and the SLActive implants were inserted in the right. Four weeks afger the insertion, torque removal was measured from 4 rabbits exterminated via CO2 inhalation. RESULTS No significant difference was observed between removal torques of the BLT implant and the SLActive implant (P>.05). CONCLUSION It was found that BLT surface modification exhibited excellent osseointegration. In addition, CGF application did not affect the insertion and removal torque of the implants. PMID:27141254

  14. Parathyroid hormone and bone healing

    DEFF Research Database (Denmark)

    Ellegaard, M; Jørgensen, N R; Schwarz, P

    2010-01-01

    , no pharmacological treatments are available. There is therefore an unmet need for medications that can stimulate bone healing. Parathyroid hormone (PTH) is the first bone anabolic drug approved for the treatment of osteoporosis, and intriguingly a number of animal studies suggest that PTH could be beneficial...

  15. Gastronomy healing after transgastric peritoneoscopy

    DEFF Research Database (Denmark)

    Donatsky, Anders Meller; Andersen, Luise; Nielsen, Ole Lerberg;

    2015-01-01

    INTRODUCTION: Reliable closure and infection prevention are the main barriers for implementation of pure transgastric peritoneoscopy. The primary aim of this study was to assess healing of over the scope clip (OTSC) closed gastrotomies. MATERIALS AND METHODS: Pure transgastric peritoneoscopy was ...

  16. Wound Healing Devices Brief Vignettes

    OpenAIRE

    Anderson, Caesar A.; Hare, Marc A.; Perdrizet, George A.

    2016-01-01

    Significance: The demand for wound care therapies is increasing. New wound care products and devices are marketed at a dizzying rate. Practitioners must make informed decisions about the use of medical devices for wound healing therapy. This paper provides updated evidence and recommendations based on a review of recent publications.

  17. Repetitive Biomimetic Self-healing of Ca(2+)-Induced Nanocomposite Protein Hydrogels.

    Science.gov (United States)

    Chen, Jun; Dong, Qiuchen; Ma, Xiaoyu; Fan, Tai-Hsi; Lei, Yu

    2016-01-01

    Self-healing is a capacity observed in most biological systems in which the healing processes are autonomously triggered after the damage. Inspired by this natural behavior, researchers believed that a synthetic material possessing similar self-recovery capability could also be developed. Albeit various intrinsic self-healing systems have been developed over the past few decades, restriction on the biocompatibility due to the required synthetic conditions under extreme pH and with poisonous cross-linker significantly limits their application in biomedical field. In this study, a highly biocompatible nanocomposite protein hydrogel with excellent biomimetic self-healing property is presented. The self-healing protein gel is made by inducing calcium ions into the mixture of heat-induced BSA nano-aggregates and pristine BSA molecules at room temperature and under physiological pH due to the ion-mediated protein-protein association and the bridging effect of divalent Ca(2+) ions. The as-prepared protein hydrogel shows excellent repetitive self-healing properties without using any external stimuli at ambient condition. Such outstanding self-recovery performance was quantitatively evaluated/validated by both dynamic and oscillatory rheological analysis. Moreover, with the presence of calcium ions, the self-healing behavior can be significantly facilitated/enhanced. Finally, the superior biocompatibility demonstrated by in vitro cytotoxicity analysis suggests that it is a promising self-healing material well-suited for biomedical applications. PMID:27545280

  18. Repetitive Biomimetic Self-healing of Ca2+-Induced Nanocomposite Protein Hydrogels

    Science.gov (United States)

    Chen, Jun; Dong, Qiuchen; Ma, Xiaoyu; Fan, Tai-Hsi; Lei, Yu

    2016-08-01

    Self-healing is a capacity observed in most biological systems in which the healing processes are autonomously triggered after the damage. Inspired by this natural behavior, researchers believed that a synthetic material possessing similar self-recovery capability could also be developed. Albeit various intrinsic self-healing systems have been developed over the past few decades, restriction on the biocompatibility due to the required synthetic conditions under extreme pH and with poisonous cross-linker significantly limits their application in biomedical field. In this study, a highly biocompatible nanocomposite protein hydrogel with excellent biomimetic self-healing property is presented. The self-healing protein gel is made by inducing calcium ions into the mixture of heat-induced BSA nano-aggregates and pristine BSA molecules at room temperature and under physiological pH due to the ion-mediated protein-protein association and the bridging effect of divalent Ca2+ ions. The as-prepared protein hydrogel shows excellent repetitive self-healing properties without using any external stimuli at ambient condition. Such outstanding self-recovery performance was quantitatively evaluated/validated by both dynamic and oscillatory rheological analysis. Moreover, with the presence of calcium ions, the self-healing behavior can be significantly facilitated/enhanced. Finally, the superior biocompatibility demonstrated by in vitro cytotoxicity analysis suggests that it is a promising self-healing material well-suited for biomedical applications.

  19. Helping, healing rays

    International Nuclear Information System (INIS)

    Radioisotopes are used in the scan diagnosis and therapy of the thyroid. At the top of the using there is the scintiscanning. With the aid of this method the diagnosis of neoplasmas is possible. There are many other fields of applications in the medicine for radioisotopes: the renography gives information about normal and pathology criterias; bone scanning permits the early diagnosis of osseous change; heart, lung and cardiovascular system offer an additionally range of application. The scintiscanning of the heart muscle (myocardium) indicates the change in the structure of the coronaries (myocardial infarction, angina pectoris). Lung scanning is a method for diagnose of embolies. Nuclear medicine gets a steadly increasing importance in the field of diagnosis. 2 figs. (eva)

  20. Distribution of Inherent Strains and Residual Stresses in Medium Thickness Plate Weldment

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A fundamental theory for the analysis of residual weldingstresses and deformation based on the inherent strain distribution along the welded joint is introduced. Distribution of inherent strains and longitudinal residual stresses in medium thickness plate weldment is calculated and analyzed.A new method of calculating inherent strains and longitudinal residual stresses is proposed.

  1. Effective material parameter retrieval of anisotropic elastic metamaterials with inherent nonlocality

    Science.gov (United States)

    Lee, Hyung Jin; Lee, Heung Son; Ma, Pyung Sik; Kim, Yoon Young

    2016-09-01

    In this paper, the scattering (S-) parameter retrieval method is presented specifically for anisotropic elastic metamaterials; so far, no retrieval has been accomplished when elastic metamaterials exhibit fully anisotropic behavior. Complex constitutive property and intrinsic scattering behavior of elastic metamaterials make their characterization far more complicated than that for acoustic and electromagnetic metamaterials. In particular, elastic metamaterials generally exhibit anisotropic scattering behavior due to higher scattering modes associated with shear deformation. They also exhibit nonlocal responses to some degrees, which originate from strong multiple scattering interactions even in the long wavelength limit. Accordingly, the conventional S-parameter retrieval methods cannot be directly used for elastic metamaterials, because they determine only the diagonal components in effective tensor property. Also, the conventional methods simply use the analytic inversion formulae for the material characterization so that inherent nonlocality cannot be taken into account. To establish a retrieval method applicable to anisotropic elastic metamaterials, we propose an alternative S-parameter method to deal with full anisotropy of elastic metamaterials. To retrieve the whole effective anisotropic parameter, we utilize not only normal but also oblique wave incidences. For the retrieval, we first retrieve the ratio of the effective stiffness tensor to effective density and then determine the effective density. The proposed retrieval method is validated by characterizing the effective material parameters of various types of non-resonant anisotropic metamaterials. It is found that the whole effective parameters are retrieved consistently regardless of used retrieval conditions in spite of inherent nonlocality.

  2. Registration of optical imagery and LiDAR data using an inherent geometrical constraint.

    Science.gov (United States)

    Zhang, Wuming; Zhao, Jing; Chen, Mei; Chen, Yiming; Yan, Kai; Li, Linyuan; Qi, Jianbo; Wang, Xiaoyan; Luo, Jinghui; Chu, Qing

    2015-03-23

    A novel method for registering imagery with Light Detection And Ranging (LiDAR) data is proposed. It is based on the phenomenon that the back-projection of LiDAR point cloud of an object should be located within the object boundary in the image. Using this inherent geometrical constraint, the registration parameters computation of both data sets only requires LiDAR point clouds of several objects and their corresponding boundaries in the image. The proposed registration method comprises of four steps: point clouds extraction, boundary extraction, back-projection computation and registration parameters computation. There are not any limitations on the geometrical and spectral properties of the object. So it is suitable not only for structured scenes with man-made objects but also for natural scenes. Moreover, the proposed method based on the inherent geometrical constraint can register two data sets derived from different parts of an object. It can be used to co-register TLS (Terrestrial Laser Scanning) LiDAR point cloud and UAV (Unmanned aerial vehicle) image, which are obtaining more attention in the forest survey application. Using initial registration parameters comparable to POS (position and orientation system) accuracy, the performed experiments validated the feasibility of the proposed registration method. PMID:25837107

  3. Preparation of guar gum scaffold film grafted with ethylenediamine and fish scale collagen, cross-linked with ceftazidime for wound healing application.

    Science.gov (United States)

    Jana, Piyali; Mitra, Tapas; Selvaraj, Thirupathi Kumara Raja; Gnanamani, A; Kundu, P P

    2016-11-20

    Present study describes the synthesis of carboxymethyl guar gum (CMGG) from the native guar gum (GG) and the prepared CMGG is grafted with ethylenediamine (EDA) to form aminated CMGG. Then, fish scale collagen and aminated CMGG are cross-linked by ceftazidime drug through non- covalent ionic interaction. The resultant cross-linked film is subjected to the analysis of (1)HNMR, ATR-FTIR, TGA, SEM and XRD. The TNBS results revealed that 45% of interaction between EDA and CMGG and 90-95% of Ceftazidime is released from aminated CMGG-Ceftazidime-Collagen (ACCC) film after 96h of incubation at physiological pH. In vitro cell line studies reveal the biocompatibility of the cross-linked film and the antimicrobial studies display the growth inhibition against Staphylococcus aureus and Pseudomonas aeruginosa organisms. Overall, the study indicates that the incorporation of Ceftazidime into collagen and aminated CMGG can improve the functional property of aminated CMGG as well as collagen, leading to its biomedical applications. PMID:27561530

  4. Come and play with HEAL in Microcosm!

    CERN Multimedia

    Stefania Pandolfi

    2016-01-01

    A new interactive game in Microcosm informs about hadron therapy – come and test it!   HEAL is a new interactive game currently under evaluation at Microcosm to inform visitors about hadron therapy, one aspect of the CERN-related contributions to the medical field. Microcosm is continuously evolving and new content is installed regularly. One of the most recent exhibits is called HEAL - an interactive game with the aim of informing visitors about the hadron therapy to treat cancer. It has been developed by Jenny Rompa, a PhD student at CERN, within the activities of MediaLab.  The application is controlled through body movements and the player is asked to set the right energy and the right angle of the hadron beam to make the (brain) cancer disappear. As part of her doctoral thesis, Jenny also built a questionnaire to hand out to visitors in order to examine their user experience. The goal of the study is to evaluate the effectiveness of using inter...

  5. Grand challenge in Biomaterials-wound healing.

    Science.gov (United States)

    Salamone, Joseph C; Salamone, Ann Beal; Swindle-Reilly, Katelyn; Leung, Kelly Xiaoyu-Chen; McMahon, Rebecca E

    2016-06-01

    Providing improved health care for wound, burn and surgical patients is a major goal for enhancing patient well-being, in addition to reducing the high cost of current health care treatment. The introduction of new and novel biomaterials and biomedical devices is anticipated to have a profound effect on the future improvement of many deleterious health issues. This publication will discuss the development of novel non-stinging liquid adhesive bandages in healthcare applications developed by Rochal Industries. The scientists/engineers at Rochal have participated in commercializing products in the field of ophthalmology, including rigid gas permeable contact lenses, soft hydrogel contact lenses, silicone hydrogel contact lenses, contact lens care solutions and cleaners, intraocular lens materials, intraocular controlled drug delivery, topical/intraocular anesthesia, and in the field of wound care, as non-stinging, spray-on liquid bandages to protect skin from moisture and body fluids and medical adhesive-related skin injuries. Current areas of entrepreneurial activity at Rochal Industries pertain to the development of new classes of biomaterials for wound healing, primarily in regard to microbial infection, chronic wound care, burn injuries and surgical procedures, with emphasis on innovation in product creation, which include cell-compatible substrates/scaffolds for wound healing, antimicrobial materials for opportunistic pathogens and biofilm reduction, necrotic wound debridement, scar remediation, treatment of diabetic ulcers, amelioration of pressure ulcers, amelioration of neuropathic pain and adjuvants for skin tissue substitutes. PMID:27047680

  6. Grand challenge in Biomaterials-wound healing

    Science.gov (United States)

    Salamone, Joseph C.; Salamone, Ann Beal; Swindle-Reilly, Katelyn; Leung, Kelly Xiaoyu-Chen; McMahon, Rebecca E.

    2016-01-01

    Providing improved health care for wound, burn and surgical patients is a major goal for enhancing patient well-being, in addition to reducing the high cost of current health care treatment. The introduction of new and novel biomaterials and biomedical devices is anticipated to have a profound effect on the future improvement of many deleterious health issues. This publication will discuss the development of novel non-stinging liquid adhesive bandages in healthcare applications developed by Rochal Industries. The scientists/engineers at Rochal have participated in commercializing products in the field of ophthalmology, including rigid gas permeable contact lenses, soft hydrogel contact lenses, silicone hydrogel contact lenses, contact lens care solutions and cleaners, intraocular lens materials, intraocular controlled drug delivery, topical/intraocular anesthesia, and in the field of wound care, as non-stinging, spray-on liquid bandages to protect skin from moisture and body fluids and medical adhesive-related skin injuries. Current areas of entrepreneurial activity at Rochal Industries pertain to the development of new classes of biomaterials for wound healing, primarily in regard to microbial infection, chronic wound care, burn injuries and surgical procedures, with emphasis on innovation in product creation, which include cell-compatible substrates/scaffolds for wound healing, antimicrobial materials for opportunistic pathogens and biofilm reduction, necrotic wound debridement, scar remediation, treatment of diabetic ulcers, amelioration of pressure ulcers, amelioration of neuropathic pain and adjuvants for skin tissue substitutes. PMID:27047680

  7. Photobiomodulation in promoting wound healing: a review.

    Science.gov (United States)

    Kuffler, Damien P

    2016-01-01

    Despite diverse methods being applied to induce wound healing, many wounds remain recalcitrant to all treatments. Photobiomodulation involves inducing wound healing by illuminating wounds with light emitting diodes or lasers. While used on different animal models, in vitro, and clinically, wound healing is induced by many different wavelengths and powers with no optimal set of parameters yet being identified. While data suggest that simultaneous multiple wavelength illumination is more efficacious than single wavelengths, the optimal single and multiple wavelengths must be better defined to induce more reliable and extensive healing of different wound types. This review focuses on studies in which specific wavelengths induce wound healing and on their mechanisms of action.

  8. Application of joint debridement and wet healing theory in acute leukemia patients with skin infections%湿性愈合理论联合清创在急性白血病患者皮肤感染中的应用

    Institute of Scientific and Technical Information of China (English)

    曾淑凝; 叶玉蝶; 钟思嫦; 邹丽梅

    2012-01-01

    目的:探讨一种有效治疗白血病患者皮肤感染的方法.方法:采取联合清创并应用湿性愈合原理,对白血病患者的皮肤感染进行治疗.结果:本组6例11处皮肤感染切口,应用联合清创并湿性愈合疗法,全部愈合.结论:联合清创并湿性愈合理论对白血病患者皮肤感染切口护理效果满意,值得临床推广.%Objective:To explore an effective treatment of leukemia patients with skin infection method. Methods;By using the joint debridement and wet healing principle, the treatment of cutaneous infection of leukemia patients. Results: 11 skin infection of incision in these 6 cases, joint debridement and application of wet heding therapies, all healing. Conclusion; Moist healing theories of joint debridement and effects on wound care skin infections in leukemia patients skin infection of incision nursing satisfaction,it is worthy of clinical application.

  9. Mitigation of Severe Accident Consequences Using Inherent Safety Principles

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Wigeland; J. E. Cahalan

    2009-12-01

    Sodium-cooled fast reactors are designed to have a high level of safety. Events of high probability of occurrence are typically handled without consequence through reliable engineering systems and good design practices. For accidents of lower probability, the initiating events are characterized by larger and more numerous challenges to the reactor system, such as failure of one or more major engineered systems and can also include a failure to scram the reactor in response. As the initiating conditions become more severe, they have the potential for creating serious consequences of potential safety significance, including fuel melting, fuel pin disruption and recriticality. If the progression of such accidents is not mitigated by design features of the reactor, energetic events and dispersal of radioactive materials may result. For severe accidents, there are several approaches that can be used to mitigate the consequences of such severe accident initiators, which typically include fuel pin failures and core disruption. One approach is to increase the reliability of the reactor protection system so that the probability of an ATWS event is reduced to less than 1 x 10-6 per reactor year, where larger accident consequences are allowed, meeting the U.S. NRC goal of relegating such accident consequences as core disruption to these extremely low probabilities. The main difficulty with this approach is to convincingly test and guarantee such increased reliability. Another approach is to increase the redundancy of the reactor scram system, which can also reduce the probability of an ATWS event to a frequency of less than 1 x 10-6 per reactor year or lower. The issues with this approach are more related to reactor core design, with the need for a greater number of control rod positions in the reactor core and the associated increase in complexity of the reactor protection system. A third approach is to use the inherent reactivity feedback that occurs in a fast reactor to

  10. Chitosan-based dressings loaded with neurotensin—an efficient strategy to improve early diabetic wound healing

    OpenAIRE

    Moura, Liane I. F.; Dias, Ana M. A.; Ermelindo C. Leal; Carvalho, Lina; Sousa, Hermínio C. de; Carvalho, Eugénia

    2014-01-01

    One important complication of diabetes mellitus is chronic, non-healing diabetic foot ulcers (DFUs). This study aims to develop and use dressings based on chitosan derivatives for the sustained delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. Three different derivatives, namely N-carboxymethyl chitosan, 5-methyl pyrrolidinone chitosan (MPC) and N-succinyl chitosan, are presented as potential biomaterials for wound healing applications. Our ...

  11. Self-healing composites: A review

    Directory of Open Access Journals (Sweden)

    Yongjing Wang

    2015-12-01

    Full Text Available Self-healing composites are composite materials capable of automatic recovery when damaged. They are inspired by biological systems such as the human skin which are naturally able to heal themselves. This paper reviews work on self-healing composites with a focus on capsule-based and vascular healing systems. Complementing previous survey articles, the paper provides an updated overview of the various self-healing concepts proposed over the past 15 years, and a comparative analysis of healing mechanisms and fabrication techniques for building capsules and vascular networks. Based on the analysis, factors that influence healing performance are presented to reveal key barriers and potential research directions.

  12. Effects of the Four-Herb Compound ANBP on Wound Healing Promotion in Diabetic Mice.

    Science.gov (United States)

    Hou, Qian; He, Wen-Jun; Chen, Li; Hao, Hao-Jie; Liu, Jie-Jie; Dong, Liang; Tong, Chuan; Li, Mei-Rong; Zhou, Zhong-Zhi; Han, Wei-Dong; Fu, Xiao-Bing

    2015-12-01

    Wound healing is a troublesome problem in diabetic patients. Besides, there is also an increased risk of postsurgical wound complications for diabetic patient. It has been revealed that traditional Chinese medicine may promote healing and inhibit scar formation, while the changes of morphology and physiology of wounds on such medicine treatment still remain elusive. In this study, we first used the ultralow temperature preparation method to produce mixed superfine powder from Agrimonia pilosa (A), Nelumbo nucifera (N), Boswellia carteri (B), and Pollen typhae (P), named as ANBP. Applying ANBP on 40 streptozotocin (STZ)-induced diabetic C57BL/6 mice (4-6 weeks, 20 ± 2 g), we observed that the wound healing process was accelerated and the wound healing time was shortened (14 days, P wound healing, promote vascularization, and inhibit inflammation, suggesting the potential clinic application of ANBP for diabetes mellitus and refractory wounds.

  13. Progress in the remote-controlled activation of self-healing processes

    Science.gov (United States)

    Shaaban, Ahmad; Schmidt, Annette M.

    2016-08-01

    Self-healing materials, able to heal themselves either spontaneously or after activation, and ultimately restore diverse properties such as mechanical, optical or electrical properties, are under intense investigation for various classes of material, including polymers, cementous materials, asphalts, metals, composites, and more. Among these, on-command self-healing systems can be classified as an approach towards a spatially resolved, externally controlled activation of self-healing behavior. Towards this goal, the last decade has experienced significant progress. Various methods, mainly based on indirect heating mechanisms, such as resistive, induction, or photo-induced heating, have been presented, depending on different antenna materials and energy sources, and tailored for different applications. This review discusses the up-to-date achievements in the field of on-command self-healing materials with a focus on electromagnetic and mechanochemical activation.

  14. Self-Healing Materials Systems: Overview of Major Approaches and Recent Developed Technologies

    Directory of Open Access Journals (Sweden)

    B. Aïssa

    2012-01-01

    Full Text Available The development of self-healing materials is now being considered for real engineering applications. Over the past few decades, there has been a huge interest in materials that can self-heal, as this property can increase materials lifetime, reduce replacement costs, and improve product safety. Self-healing systems can be made from a variety of polymers and metallic materials. This paper reviews the main technologies currently being developed, particularly on the thermosetting composite polymeric systems. An overview of various self-healing concepts over the past decade is then presented. Finally, a perspective on future self-healing approaches using this biomimetic technique is offered. The intention is to stimulate debate and reinforce the importance of a multidisciplinary approach in this exciting field.

  15. Self-healing hyperbranched poly(aroyltriazole)s

    Science.gov (United States)

    Wei, Qiang; Wang, Jian; Shen, Xiaoyuan; Zhang, Xiao A.; Sun, Jing Zhi; Qin, Anjun; Tang, Ben Zhong

    2013-01-01

    The research on self-healing polymers has been a hot topic. The encapsulated-monomer/catalyst, supramolecular self-assembly, and reversible or dynamic covalent bond formation are the prevailingly adopted strategies. The alternative of irreversible covalent bond formation is, however, to be further developed. In this contribution, self-healing hyperbranched poly(aroyltriazole)s of PI and PII sharing such mechanism were developed. The polymers were synthesized by our developed metal-free click polymerizations of bis(aroylacetylene)s and triazide. They are processible and have excellent film-forming ability. High quality homogeneous films and sticks free from defects could be obtained by casting. The scratched films could be self-repaired upon general heating. The cut films and sticks could be healed by stacking or pressing the halves together at elevated temperature. Thus, these hyperbranched polymers could find broad applications in diverse areas, and our design concept for self-healing materials should be generally applicable to other hyperbranched polymers with reactive groups on their peripheries.

  16. Cutaneous wound healing: Current concepts and advances in wound care

    Directory of Open Access Journals (Sweden)

    Kenneth C Klein

    2014-01-01

    Full Text Available A non-healing wound is defined as showing no measurable signs of healing for at least 30 consecutive treatments with standard wound care. [1] It is a snapshot of a patient′s total health as well as the ongoing battle between noxious factors and the restoration of optimal macro and micro circulation, oxygenation and nutrition. In practice, standard therapies for non-healing cutaneous wounds include application of appropriate dressings, periodic debridement and eliminating causative factors. [2] The vast majority of wounds would heal by such approach with variable degrees of residual morbidity, disability and even mortality. Globally, beyond the above therapies, newer tools of healing are selectively accessible to caregivers, for various logistical or financial reasons. Our review will focus on the use of hyperbaric oxygen therapy (HBOT, as used at our institution (CAMC, and some other modalities that are relatively accessible to patients. HBOT is a relatively safe and technologically simpler way to deliver care worldwide. However, the expense for including HBOT as standard of care for recognized indications per UHMS(Undersea and Hyperbaric Medical Society may vary widely from country to country and payment system. [3] In the USA, CMS (Centers for Medicare and Medicaid Services approved indications for HBOT vary from that of the UHMS for logistical reasons. [1] We shall also briefly look into other newer therapies per current clinical usage and general acceptance by the medical community. Admittedly, there would be other novel tools with variable success in wound healing worldwide, but it would be difficult to include all in this treatise.

  17. Biologic agents for anterior cruciate ligament healing: A systematic review

    Science.gov (United States)

    Di Matteo, Berardo; Loibl, Markus; Andriolo, Luca; Filardo, Giuseppe; Zellner, Johannes; Koch, Matthias; Angele, Peter

    2016-01-01

    AIM To systematically review the currently available literature concerning the application of biologic agents such as platelet-rich plasma (PRP) and stem cells to promote anterior cruciate ligament (ACL) healing. METHODS A systematic review of the literature was performed on the use of biologic agents (i.e., PRP or stem cells) to favor ACL healing during reconstruction or repair. The following inclusion criteria for relevant articles were used: Clinical reports of any level of evidence, written in English language, on the use of PRP or stem cells during ACL reconstruction/repair. Exclusion criteria were articles written in other languages, reviews, or studies analyzing other applications of PRP/stem cells in knee surgery not related to promoting ACL healing. RESULTS The database search identified 394 records that were screened. A total of 23 studies were included in the final analysis: In one paper stem cells were applied for ACL healing, in one paper there was a concomitant application of PRP and stem cells, whereas in the remaining 21 papers PRP was used. Based on the ACL injury pattern, two papers investigated biologic agents in ACL partial tears whereas 21 papers in ACL reconstruction. Looking at the quality of the available literature, 17 out of 21 studies dealing with ACL reconstruction were randomized controlled trials. Both studies on ACL repair were case series. CONCLUSION There is a paucity of clinical trials investigating the role of stem cells in promoting ACL healing both in case of partial and complete tears. The role of PRP is still controversial and the only advantage emerging from the literature is related to a better graft maturation over time, without documenting beneficial effects in terms of clinical outcome, bone-graft integration and prevention of bony tunnel enlargement. PMID:27672573

  18. The healing of fractured bones

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, G.E. [Central Electricity Generating Board, Cheltenham (United Kingdom)

    1997-04-01

    A method utilising neutron beams of width 1 mm, used on D1B (2.4 A) and D20 (1.3 A) to study the healing of fractured bones is presented. It is found that the callus bone uniting the fractured tibia of a sheep, whose healing had been encouraged by daily mechanical vibration over a period of three months, showed no trace of the large preferential vertical orientation of the apatite crystals which is characteristic of the normal bone. Nevertheless the bone had regained about 60% of its mechanical strength and the callus bone, although not oriented, was well crystallized. It is considered that the new monochromator for D20, expected to give increased intensity at 2.5 A, will be of considerable advantage. (author). 2 refs.

  19. Vasculogenic Cytokines in Wound Healing

    Directory of Open Access Journals (Sweden)

    Victor W. Wong

    2013-01-01

    Full Text Available Chronic wounds represent a growing healthcare burden that particularly afflicts aged, diabetic, vasculopathic, and obese patients. Studies have shown that nonhealing wounds are characterized by dysregulated cytokine networks that impair blood vessel formation. Two distinct forms of neovascularization have been described: vasculogenesis (driven by bone-marrow-derived circulating endothelial progenitor cells and angiogenesis (local endothelial cell sprouting from existing vasculature. Researchers have traditionally focused on angiogenesis but defects in vasculogenesis are increasingly recognized to impact diseases including wound healing. A more comprehensive understanding of vasculogenic cytokine networks may facilitate the development of novel strategies to treat recalcitrant wounds. Further, the clinical success of endothelial progenitor cell-based therapies will depend not only on the delivery of the cells themselves but also on the appropriate cytokine milieu to promote tissue regeneration. This paper will highlight major cytokines involved in vasculogenesis within the context of cutaneous wound healing.

  20. A novel methodology for self-healing at the nanoscale in CNT/epoxy composites

    Science.gov (United States)

    Quigley, E.; Datta, S.; Chattopadhyay, A.

    2016-04-01

    Self-healing materials have the potential to repair induced damage and extend the service life of aerospace or civil components as well as prevent catastrophic failure. A novel technique to provide self-healing capabilities at the nanoscale in carbon nanotube/epoxy nanocomposites is presented in this paper. Carbon nanotubes (CNTs) functionalized with the healing agent (dicyclopentadiene) were used to fabricate self-healing CNT/epoxy nanocomposite films. The structure of CNTs was considered suitable for this application since they are nanosized, hollow, and provide a more consistent size distribution than polymeric nanocapsules. Specimens with different weight fractions of the functionalized CNTs were fabricated to explore the effect of weight fraction of functionalized CNTs on the extent of healing. Optical micrographs with different fluorescent filters showed partial or complete healing of damage approximately two to three weeks after damage was induced. Results indicate that by using CNTs to encapsulate a healing agent, crack growth in self-healing CNT/epoxy nanocomposites can be retarded, leading to safer materials that can autonomously repair itself.

  1. Karanga Traditional Medicine and Healing

    OpenAIRE

    Shoko, Tabona

    2007-01-01

    In this paper we present the Karanga traditional system of therapy of illness and disease manifest in the treatments administered by the medical practitioners. In order to establish the traditional system of therapy of illness and disease, numerous interviews were carried out with healers, herbalists and elders in the field area. This enabled a systematic compilation of cases. There was also the pressing need to be present at rituals and instances where healing was effected and to observe the...

  2. DEX: self-healing expanders

    OpenAIRE

    Pandurangan, Gopal; Robinson, Peter,; Trehan, Amitabh

    2016-01-01

    We present a fully-distributed self-healing algorithm dex that maintains a constant degree expander network in a dynamic setting. To the best of our knowledge, our algorithm provides the first efficient distributed construction of expanders—whose expansion properties holddeterministically—that works even under an all-powerful adaptive adversary that controls the dynamic changes to the network (the adversary has unlimited computational power and knowledge of the entire network state, can decid...

  3. DEX: self-healing expanders

    OpenAIRE

    Pandurangan, Gopal; Robinson, Peter,; Trehan, Amitabh

    2015-01-01

    We present a fully-distributed self-healing algorithm DEX, that maintains a constant degree expander network in a dynamic setting. To the best of our knowledge, our algorithm provides the first efficient distributed construction of expanders --- whose expansion properties hold {\\em deterministically} --- that works even under an all-powerful adaptive adversary that controls the dynamic changes to the network (the adversary has unlimited computational power and knowledge of the entire network ...

  4. Effect of topical application of fibronectin in duodenal wound healing in rats Efeito da aplicação tópica da fibronectina em feridas duodenais de ratos

    OpenAIRE

    Teresa Neuma de Souza Brito; Luiz Reginaldo Menezes da Rocha; Carlos André Nunes Jatobá; Maurício Pereira Sales; Aldo da Cunha Medeiros

    2003-01-01

    Fibronectin (FN), a large family of plasma and extracellular matrix glycoproteins, plays an important role in wound healing. PURPOSE: To evaluate the effect of fibronectin on the healing of sutured duodenal wounds, correlating with the serum and tissue level of the substance. METHODS: An experimental study was done in 30 adult Wistar rats divided into two group. In the control group (n=15) a duodenal suture was treated with saline solution 0,9% and in the test group the duodenal wounds were t...

  5. Robust, superamphiphobic fabric with multiple self-healing ability against both physical and chemical damages.

    Science.gov (United States)

    Wang, Hongxia; Zhou, Hua; Gestos, Adrian; Fang, Jian; Lin, Tong

    2013-10-23

    Superamphiphobic coatings with excellent repellency to low surface tension liquids and multiple self-healing abilities are very useful for practical applications, but remain challenging to realize. Previous papers on self-healing superamphiphobic coatings have demonstrated limited liquid repellency with single self-healing ability against either physical or chemical damage. Herein, we describe a superamphiphobic fabric that has remarkable multi-self-healing ability against both physical and chemical damages. The superamphiphobicity was prepared by a two-step surface coating technique. Fabric after coating treatment showed exceptional liquid-repellency to low surface tension liquids including ethanol. The fabric coating was also durable to withstand 200 cycles of laundries and 5000 cycles of Martindale abrasion without apparently changing the superamphiphobicity. This highly robust, superamphiphobic fabric may find applications for the development of "smart" functional textiles for various applications. PMID:24073919

  6. Novel advancements in wound healing

    Directory of Open Access Journals (Sweden)

    reza Ghaderi

    2014-05-01

    Full Text Available Maintaining skin integrity is vital in humans and animals to protect the organisms against dehydration, bleeding, and ingress of microorganisms. In order to do this, in Man and other evolved animals a sophisticated mechanism of wound healing occurs. At first the gap is quickly filled with a thin layer of fibrinous exudate, re-epithelialized, and rapidly replaced by new matrix. It is obvious that the speed of wound healing depends upon many factors such as the size of the wound, blood supply to the area, presence or absence of foreign bodies and microorganisms, age, health and nutritional status of the patient of the patient. Acute and chronic wounds care has extremely changed in recent years. Recenly, some traditional medications honey and other herbal medications( and new procedures are available that can be used to accelerate the healing of skin wounds.In the present article the most novel advances made in wound care and management in recent years were reviewed.

  7. Understanding the Spatiotemporal Variability of Inherent Water Use Efficiency

    Science.gov (United States)

    Boese, Sven; Jung, Martin; Carvalhais, Nuno; Reichstein, Markus

    2015-04-01

    The global carbon and water cycles are coupled via plant physiology. However, the resulting spatial and temporal covariability of both fluxes on a global scale lacks sufficient understanding. This is required to estimate the impact of atmospheric drought on photosynthesis in water-limited ecosystems. Water use efficiency (WUE) is an essential ecosystem diagnostic defined as the ratio between gross primary productivity (GPP) and transpiration (T). WUE is known to vary with vapour-pressure deficit (VPD) and therefore also in time. The inherent water use efficiency (iWUE) accounts for the VPD effect on WUE and aims at representing a largely time-invariant ecosystem property. However, different ways of describing the functional response of iWUE to VPD are found in the literature. One established iWUE definition was proposed by Beer et al. (2009) and takes the form of iWUE = GPP--VPD- . T (1) A similar definition can be derived from stomatal conductance theories such as Katul et al. (2010) and takes the form of √ -- GPP---VPD- iWUE = T . (2) Here, we use eddy covariance measurements from the FLUXNET database to evaluate both approaches for a globally representative set of biomes including tropical, temperate and semi-arid ecosystems. Testing both definitions in a model-data fusion setup indicated that (2) is more consistent with FLUXNET observations than (1). However, there still remains considerable temporal variability of iWUE which is linked to seasonal changes in VPD. To explore up to which extent the temporal variability of iWUE may be related to the prescribed functional responses to VPD, we treated the exponent of VPD as a global parameter, here termed γ. When γ = 1 the functional response is equivalent to (1), while when γ = 0.5 it corresponds to formulation of model (2)). The global estimate was found to be significantly lower than 0.5, which would have been expected from stomatal conductance theory at leaf level. We assessed whether adding γ as site

  8. Moving to different streams of healing praxis: A reformed missionary approach of healing in the African context

    OpenAIRE

    Thinandavha D. Mashau

    2016-01-01

    There are different streams of healing praxis in Africa today, namely African traditional healing, biomedical healing and spiritual healing (which includes the more recent �touch your TV screen� healing method) among others. These streams offer contemporary African people diverse alternatives with regard to healing. As much as the hegemony of Western biomedicine, as endorsed by missionaries in the past, can no longer serve as a norm in the area of healing, we can also not use the African trad...

  9. Regenerative Medicine: Charting a New Course in Wound Healing

    Science.gov (United States)

    Gurtner, Geoffrey C.; Chapman, Mary Ann

    2016-01-01

    Significance: Chronic wounds are a prevalent and costly problem in the United States. Improved treatments are needed to heal these wounds and prevent serious complications such as infection and amputation. Recent Advances: In wound healing, as in other areas of medicine, technologies that have the potential to regenerate as opposed to repair tissue are gaining ground. These include customizable nanofiber matrices incorporating novel materials; a variety of autologous and allogeneic cell types at various stages of differentiation (e.g., pluripotent, terminally differentiated); peptides; proteins; small molecules; RNA inhibitors; and gene therapies. Critical Issues: Wound healing is a logical target for regenerative medicine due to the accessibility and structure of skin, the regenerative nature of healing, the lack of good limb salvage treatments, and the current use of cell therapies. However, more extensive knowledge of pathophysiologic targets is needed to inform regenerative strategies, and new technologies must demonstrate value in terms of outcomes and related health economic measures to achieve successful market access and penetration. Future Directions: Due to similarities in cell pathways and developmental mechanisms, regenerative technologies developed in one therapeutic area may be applicable to others. Approaches that proceed from human genomic or other big data sources to models are becoming increasingly common and will likely suggest novel therapeutic avenues. To fully capitalize on the advances in regenerative medicine, studies must demonstrate the value of new therapies in identified patient populations, and sponsors must work with regulatory agencies to develop appropriate dossiers supporting timely approval. PMID:27366592

  10. The influence of the anabolic agent flavichromin on osteotomy healing

    International Nuclear Information System (INIS)

    In this work it was attempted to attain a quicker consolidation of bone fragments in rabbits after they had undergone a lower jaw osteotomy and fragment fixation and had been treated with the usual osteosynthetic medications as well as doses of the anabolic agent flavichromin to stimulate bone healing. The healing progress of the first four post-operative weeks was clinically, radiologically, and also histologically assessed and it was also attempted to test the value of densitometrically studying the X-ray pictures as a quantitative measurement of the re-mineralisation of the fracture line. Although animal-specific studies do not allow themselves to be directly applied to humans, because the osteogenesis rates differ too greatly from humans and though further studies on dogs should be undertaken, in order to make a more conclusive statement, flavichromin because of its easy applicability should be considered for future use on humans, especially in cases with healing complications. In the healing of bone defects, flavichromin should be considered. (TRV)

  11. 积雪苷在妇科腹腔镜术后患者促进伤口愈合应用中的效果观察%Effects Observed of Asiaticoside Cream Ointment in Patients after Laparoscopic Applications to Promote Wound Healing

    Institute of Scientific and Technical Information of China (English)

    李霞; 安志洁; 李楠

    2014-01-01

    目的:观察积雪苷霜软膏促进妇科腹腔镜手术后患者伤口愈合,减少瘢痕形成,提高患者形象自我满意度的效果。方法随机选取妇科腹腔镜手术后100例患者分成两组,实验组患者给予指导应用积雪苷霜软膏,对照组患者未予应用积雪苷软膏,伤口自然愈合。观察患者术后4周伤口愈合时间,创面色素沉着及患者对创面外观自身感受主观评价的差别。结果应用积雪苷霜软膏患者伤口愈合时间短,色素沉着发生率小,患者对创面外观自我满意度高。结论积雪苷霜软膏可以有效促进伤口愈合,减少瘢痕形成及色素沉着,能够满足女性患者对腹部创面外观的要求,有效减轻对术后自我形象的心理顾虑。%Objective To observe asiaticoside cream ointment to promote wound healing after gynecological laparoscopic surgery patients, reduce scar formation, improve the effect of patient image of self satisfaction. Methods After gynecological laparoscopic surgery were randomly selected 100 patients into two groups, experimental group patients give guidance application asiaticoside cream ointment, control group patients did not apply asiaticoside cream ointment, wounds heal. Observe patients postoperative wound healing time, 4 weeks treatment of pigmentation and patients feel the difference of subjective evaluation on wound appearance itself. Results Application results asiaticoside cream ointment patients shorter wound healing time, incidence of pigmentation is small, for patients with wound look high self satisfaction. Conclusion Asiaticoside cream ointment can promote wound healing, effectively reduce scar formation and pigmentation, can satisfy the requirements of the female patients for abdominal wound appearance, alleviate psychological concerns of postoperative self-image.

  12. Bioelectrical Impedance Assessment of Wound Healing

    OpenAIRE

    Lukaski, Henry C.; Moore, Micheal

    2012-01-01

    Objective assessment of wound healing is fundamental to evaluate therapeutic and nutritional interventions and to identify complications. Despite availability of many techniques to monitor wounds, there is a need for a safe, practical, accurate, and effective method. A new method is localized bioelectrical impedance analysis (BIA) that noninvasively provides information describing cellular changes that occur during healing and signal complications to wound healing. This article describes the ...

  13. Healing Rituals for Survivors of Rape

    OpenAIRE

    Colleen Galambos

    2001-01-01

    Therapeutic rituals focus on clinical healing within different contexts and client populations. This article explores the use of therapeutic ritual at individual and collective levels to help survivors of rape to heal. This technique is applied to both levels through a discussion of two rituals developed for rape survivors. Results of a study that examined participant comments about a collective ritual for healing are discussed. Findings indicate that participants attend the ritual to be supp...

  14. What is New in Wound Healing?

    OpenAIRE

    Kumar, Senthil; WONG, Peng Foo; LEAPER, David John

    2004-01-01

    Wound biology is complex. Wounds which were until recently seen only as defects in tissues are now increasingly interpreted in cellular and molecular terms. Growth factors, cytokines, proteases and adhesion molecules which participate in wound healing are discussed in this article. From a clinical perspective, conceptual shifts of importance, including moist wound healing, wound bed preparation and wound assessment, are presented. The frontiers of therapeutics employed in wound healing contin...

  15. The history of methods of healing

    OpenAIRE

    Bauer, Biljana; Kostik, Vesna; Cekovska, Svetlana

    2015-01-01

    Different methods of healing that have been developed over time have increased the ability of medicinal professionals to meet the challenges that arise with expansion of their professional roles. The methods of healing of cave people were undeveloped. The methods of Chinese medicine were focused on balancing the internal and external energies. Holistic and sophisticated system of healing represents Ayurveda. Egyptian medicinal texts show a close relationship betw...

  16. Self-Healing Supramolecular Hydrogels Based on Reversible Physical Interactions

    Directory of Open Access Journals (Sweden)

    Satu Strandman

    2016-04-01

    Full Text Available Dynamic and reversible polymer networks capable of self-healing, i.e., restoring their mechanical properties after deformation and failure, are gaining increasing research interest, as there is a continuous need towards extending the lifetime and improving the safety and performance of materials particularly in biomedical applications. Hydrogels are versatile materials that may allow self-healing through a variety of covalent and non-covalent bonding strategies. The structural recovery of physical gels has long been a topic of interest in soft materials physics and various supramolecular interactions can induce this kind of recovery. This review highlights the non-covalent strategies of building self-repairing hydrogels and the characterization of their mechanical properties. Potential applications and future prospects of these materials are also discussed.

  17. Influence of oxygen on wound healing.

    Science.gov (United States)

    Yip, Wai Lam

    2015-12-01

    Oxygen has an important role in normal wound healing. This article reviews the evidence concerning the role of oxygen in wound healing and its influence on the different stages of wound healing. The evidence reviewed has demonstrated that improving oxygenation may be helpful in limiting wound infection, although there is a lack of good quality studies on the role of oxygen in the proliferative phase and in reepithelialisation. Overall, the relationship between oxygen and wound healing is complex. Knowledge of this aspect is important as many treatment modalities for refractory wounds are based on these principles.

  18. Therapeutic ultrasound to promote healing of lower extremity venous ulcers: CAT

    Directory of Open Access Journals (Sweden)

    Raúl Alberto Aguilera Eguía

    2013-10-01

    Full Text Available Purpose. The aim of this CAT (Critically Appraised Topic was to check the validity of the results and applicability regarding the effectiveness of therapeutic ultrasound in increasing healing of lower extremity ulcers and to answer the question: In subjects that have lower extremity venous ulcers, does high-frequency therapeutic ultrasound improve healing rate compared to placebo? Method. We conducted an analysis of the article "Therapeutic Ultrasound for lower extremity venous ulcers, Cochrane Systematic Review" of Cullum, et al (2010. Results. The application of high-frequency therapeutic ultrasound could increase healing in patients with lower extremity venous ulcers, RR = 1.40 (95% CI 1.00 to 1.96. Conclusion. The use of therapeutic ultrasound to promote healing in lower extremity venous ulcers is neither endorsed nor discouraged.

  19. Effect of pH Buffer on Self-Healing Hydrogel

    International Nuclear Information System (INIS)

    Autonomous healing of damage is a common phenomenon in living organisms but is hardly ever encountered in synthetic materials. Disulfide chemistry is used to introduce a self-healing ability in a covalently cross-linked hydrogel. This result is achieved by introducing disulfide groups in the network that are able to exchange, leading to renewal of cross-links across the damaged surfaces. ATR results showed that C=C had disappeared once the gel was formed and the percentage of gel fraction is 86 %. The gel being cut shows highest healing efficiency in borax-sodium hydroxide buffer (pH 10) which is 95 %. The combination of this unique self-healing properties and applicability for a large variety of polymers makes this approach ideal for biomedical applications. (author)

  20. Inherent structures of phase-separating binary mixtures: nucleation, spinodal decomposition, and pattern formation.

    Science.gov (United States)

    Sarkar, Sarmistha; Bagchi, Biman

    2011-03-01

    An energy landscape view of phase separation and nonideality in binary mixtures is developed by exploring their potential energy landscape (PEL) as functions of temperature and composition. We employ molecular dynamics simulations to study a model that promotes structure breaking in the solute-solvent parent binary liquid, at low temperatures. The PEL of the system captures the potential energy distribution of the inherent structures (IS) of the system and is obtained by removing the kinetic energy (including that of intermolecular vibrations). The broader distribution of the inherent structure energy for structure breaking liquid than that of the structure making liquid demonstrates the larger role of entropy in stabilizing the parent liquid of the structure breaking type of binary mixtures. At high temperature, although the parent structure of the structure breaking binary mixture is homogenous, the corresponding inherent structure is found to be always phase separated, with a density pattern that exhibits marked correlation with the energy of its inherent structure. Over a broad range of intermediate inherent structure energy, bicontinuous phase separation prevails with interpenetrating stripes as signatures of spinodal decomposition. At low inherent structure energy, the structure is largely phase separated with one interface where as at high inherent structure energy we find nucleation type growth. Interestingly, at low temperature, the average inherent structure energy () exhibits a drop with temperature which signals the onset of crystallization in one of the phases while the other remains in the liquid state. The nonideal composition dependence of viscosity is anticorrelated with average inherent structure energy. PMID:21517506

  1. Inherent structures of phase-separating binary mixtures: Nucleation, spinodal decomposition, and pattern formation

    Science.gov (United States)

    Sarkar, Sarmistha; Bagchi, Biman

    2011-03-01

    An energy landscape view of phase separation and nonideality in binary mixtures is developed by exploring their potential energy landscape (PEL) as functions of temperature and composition. We employ molecular dynamics simulations to study a model that promotes structure breaking in the solute-solvent parent binary liquid, at low temperatures. The PEL of the system captures the potential energy distribution of the inherent structures (IS) of the system and is obtained by removing the kinetic energy (including that of intermolecular vibrations). The broader distribution of the inherent structure energy for structure breaking liquid than that of the structure making liquid demonstrates the larger role of entropy in stabilizing the parent liquid of the structure breaking type of binary mixtures. At high temperature, although the parent structure of the structure breaking binary mixture is homogenous, the corresponding inherent structure is found to be always phase separated, with a density pattern that exhibits marked correlation with the energy of its inherent structure. Over a broad range of intermediate inherent structure energy, bicontinuous phase separation prevails with interpenetrating stripes as signatures of spinodal decomposition. At low inherent structure energy, the structure is largely phase separated with one interface where as at high inherent structure energy we find nucleation type growth. Interestingly, at low temperature, the average inherent structure energy () exhibits a drop with temperature which signals the onset of crystallization in one of the phases while the other remains in the liquid state. The nonideal composition dependence of viscosity is anticorrelated with average inherent structure energy.

  2. Synchrotron Infrared Spectroscopy with Multivariate Spectral Analyses Potentially Facilitates the Classification of Inherent Structures of Feed-Type of Sorghum

    International Nuclear Information System (INIS)

    The objective of this study was to investigate the inherent structural-chemical features of Chinese feed-type sorghum seed using synchrotron-radiation Fourier transform infrared microspectroscopy (SRFTIRM) with two multivariate molecular spectral analysis techniques: Agglomerative Hierarchical cluster (AHCA) and principal component analyses (PCA). The results show that by application of these two multivariate techniques with the infrared spectroscopy of the SRFTIRM, it makes possible to discriminate and classify the inherent molecular structural features among the different layers of sorghum with a great efficiency. With the SRFTIRM, images of the molecular chemistry of sorghum could be generated at an ultra-spatial resolution. The features of nutrient matrix and nutrient make-up and interactions could be revealed.

  3. Simultaneous, inherently temperature and strain insensitive bio-sensors based on dual-resonance long-period gratings

    CERN Document Server

    Tripathi, Saurabh Mani; Bock, Wojtek J; Mikulic, Predrag

    2016-01-01

    Addressing the temperature and strain induced cross-talks simultaneously, we propose an inherently strain and temperature insensitive fiber-optic bio-sensor. The insensitivity has been achieved by properly adjusting the dopants and their concentrations in the optical fiber core region, and by optimizing the grating period and the strength of concatenated dual-resonance long-period-gratings. The simulations have been carried out using the same fiber parameters as used in our earlier experimental studies, which matched excellently with the experimental results. The proposed sensor has a theoretical refractive-index sensitivity of 4607 nm/RIU, which can be used to detect changes as small as 2.2 x10^-7 in ambient refractive indices using a detection system with spectral resolution of 1 pm. Our work finds application in developing precision biosensors with inherent insensitivity towards temperature and axial strain fluctuations. The sensor is currently under fabrication at our lab.

  4. Advances in Wound Healing: A Review of Current Wound Healing Products

    OpenAIRE

    Murphy, Patrick S.; Gregory R.D. Evans

    2012-01-01

    Successful wound care involves optimizing patient local and systemic conditions in conjunction with an ideal wound healing environment. Many different products have been developed to influence this wound environment to provide a pathogen-free, protected, and moist area for healing to occur. Newer products are currently being used to replace or augment various substrates in the wound healing cascade. This review of the current state of the art in wound-healing products looks at the latest appl...

  5. Silver Nanoparticles as Real Topical Bullets for Wound Healing

    OpenAIRE

    Gunasekaran, Thirumurugan; Nigusse, Tadele; Dhanaraju, Magharla Dasaratha

    2012-01-01

    Nanotechnology is on the threshold of providing a host of new materials and approaches, revolutionizing the medical and pharmaceutical fields. Several areas of medical care are already profiting from the advantage that nanotechnology offers. Recently, silver nanoparticles are attracting interest for a clinical application because of its potential biological properties such as antibacterial activity, anti-inflammatory effects, and wound healing efficacy, which could be exploited in developing ...

  6. 载荷内部子空间缩比方法在水面舰船水下爆炸鞭状响应试验上的应用%Application of the Loading Inherent Subspace Scaling Method on the Whipping Responses Test of a Surface Ship to Underwater Explosions

    Institute of Scientific and Technical Information of China (English)

    刘建湖; 吴有生; 王海坤; 潘建强

    2013-01-01

      水下爆炸载荷作用下舰船结构的鞭状运动不仅受冲击波载荷的影响,而且与气泡脉动载荷密切相关。理想条件下,水面舰船鞭状响应的缩比模型试验预测必须在离心机或增压水池内进行,这样才能保证冲击与气泡载荷在整个力学空间上的一致性,这对于通常采用的大尺度模型鞭状试验来说,显然不切实际。之前,作者提出一个专门的称为载荷内部子空间的缩比模型方法(LIS Scaling Method),能够在与原型载荷条件紧密相连的特定子空间内模拟水下爆炸载荷与鞭状响应。文中将该方法用于水面舰船,通过精心设计的“原型”和“子模型”水下爆炸鞭状响应模型对比试验研究进行验证,结果表明,原型与子模型的鞭状响应通过LIS方法换算后,有非常好的一致性。此外,发现阻尼随模型鞭状响应的幅值而变化。%The whipping response of a ship structure to underwater explosion is relevant not only to the shock wave load but also to the bubble load. So the ideal subscale underwater explosion test for whipping responses of a surface ship must be executed on a centrifuge machine or in an air pressure modifiable pond that can insure the consistency of shock wave and bubble load in the whole me-chanical space, and it is not practical for big model that is usually used for whipping responses test. Previously, a special scaling method called Loading Inherent Subspace (LIS) scaling method was pro-posed by authors, which can simulate the underwater explosion loadings and the whipping responses in a specific subspace that is concerned with load condition of prototype. In this paper, the LIS scal-ing method was applied to a surface ship, and two experiments including one prototype and one sub-scale model of whipping responses to underwater explosion were carried out and the responses were compared with each other. The results show that the responses are

  7. The concept of passive cooling systems for inherently safe BWRs

    International Nuclear Information System (INIS)

    The Fukushima Daiichi Nuclear Power Plant accident and its consequences have led to extensive rethinking about the safety technologies used in boiling water reactors (BWRs). As one of the options of the safety technologies, we have been developing passive cooling systems consisting of a water-cooling system and an infinite-time air-cooling system. These systems achieve core cooling without electricity and are intended to cope with a long-term station blackout (SBO). Both these cooling systems remove relatively high decay heat for the initial 10 days after an accident, and then the infinite-time air-cooling system continues to remove attenuated decay heat after this period. To obtain heat transfer data for the design of the water-cooling system, we conducted heat transfer tests using a full-scale U-shaped single tube. The data were obtained at a system pressure of 0.2 to 3.0 MPa (absolute) and inlet steam velocity of 5 to 56 m/s. To enhance heat transfer of the air-cooling system, we successfully implemented some air-cooling enhancing technologies. The performance was evaluated by heat transfer data obtained from the element heat transfer tests. The heat transfer performance increased at least 100% with the enhancement technologies compared with a bare tube. From these test results, we confirmed good feasibility for application of the cooling systems. (author)

  8. Total Particulate Matter and Wound Healing: An in vivo Study with Histological Insights

    Institute of Scientific and Technical Information of China (English)

    SOHAIL EJAZ; MUHAMMAD ASHRAF; MUHAMMAD NAWAZ; CHAE WOONG LIM

    2009-01-01

    Objectives Wound healing in the skin is a multifarious orchestration of cellular processes and cigarette smoking may be a cause for delayed wound healing. The aim of this study was to investigate the plausible association between exposures of cigarette total particulate matter (TPM) and wound healing. Methods An in vivo wound healing model of mice was established for determination of assorted events of wound healing, dermal matrix regeneration, re-epithelialization, and neovascularization. A total of 72 adult mice, separated in eight groups, were exposed to TPM for 12 days. Results A highly considerable diminution in wound closure (P<0.001) was pragmatic among all TPM-treated mice from day 6 to day 8 post-wounding. Histological investigations unveiled a noteworthy impede in the outcome of re-epithelialization, dermal matrix regeneration and maturation of collagen bundles among all TPM-exposed wounds. Delayed commencement of neovascularization was pragmatic among all TPM-treated mice, on day 12 post wounding. Abbot curve, angular spectrum, and other different parameters of 3D surface behavior of wounds revealed a very highly significant reduction (P<0.001) in angiogenesis on days 6 and 8 post-wounding, which points that application of TPM instigates extensive delay in trigging the progression of angiogenesis, resulting in delayed onset of wound healing. Conclusion Our annotations validate the damaging effects of TPM on wound healing and excessive use of TPM may lead to the production of chronic wounds and oral ulcers.

  9. Acceleration of diabetic wound healing using a novel protease-anti-protease combination therapy.

    Science.gov (United States)

    Gao, Ming; Nguyen, Trung T; Suckow, Mark A; Wolter, William R; Gooyit, Major; Mobashery, Shahriar; Chang, Mayland

    2015-12-01

    Nonhealing chronic wounds are major complications of diabetes resulting in >70,000 annual lower-limb amputations in the United States alone. The reasons the diabetic wound is recalcitrant to healing are not fully understood, and there are limited therapeutic agents that could accelerate or facilitate its repair. We previously identified two active forms of matrix metalloproteinases (MMPs), MMP-8 and MMP-9, in the wounds of db/db mice. We argued that the former might play a role in the body's response to wound healing and that the latter is the pathological consequence of the disease with detrimental effects. Here we demonstrate that the use of compound ND-336, a novel highly selective inhibitor of gelatinases (MMP-2 and MMP-9) and MMP-14, accelerates diabetic wound healing by lowering inflammation and by enhancing angiogenesis and re-epithelialization of the wound, thereby reversing the pathological condition. The detrimental role of MMP-9 in the pathology of diabetic wounds was confirmed further by the study of diabetic MMP-9-knockout mice, which exhibited wounds more prone to healing. Furthermore, topical administration of active recombinant MMP-8 also accelerated diabetic wound healing as a consequence of complete re-epithelialization, diminished inflammation, and enhanced angiogenesis. The combined topical application of ND-336 (a small molecule) and the active recombinant MMP-8 (an enzyme) enhanced healing even more, in a strategy that holds considerable promise in healing of diabetic wounds.

  10. Structural interpretation of seismic data and inherent uncertainties

    Science.gov (United States)

    Bond, Clare

    2013-04-01

    Geoscience is perhaps unique in its reliance on incomplete datasets and building knowledge from their interpretation. This interpretation basis for the science is fundamental at all levels; from creation of a geological map to interpretation of remotely sensed data. To teach and understand better the uncertainties in dealing with incomplete data we need to understand the strategies individual practitioners deploy that make them effective interpreters. The nature of interpretation is such that the interpreter needs to use their cognitive ability in the analysis of the data to propose a sensible solution in their final output that is both consistent not only with the original data but also with other knowledge and understanding. In a series of experiments Bond et al. (2007, 2008, 2011, 2012) investigated the strategies and pitfalls of expert and non-expert interpretation of seismic images. These studies focused on large numbers of participants to provide a statistically sound basis for analysis of the results. The outcome of these experiments showed that a wide variety of conceptual models were applied to single seismic datasets. Highlighting not only spatial variations in fault placements, but whether interpreters thought they existed at all, or had the same sense of movement. Further, statistical analysis suggests that the strategies an interpreter employs are more important than expert knowledge per se in developing successful interpretations. Experts are successful because of their application of these techniques. In a new set of experiments a small number of experts are focused on to determine how they use their cognitive and reasoning skills, in the interpretation of 2D seismic profiles. Live video and practitioner commentary were used to track the evolving interpretation and to gain insight on their decision processes. The outputs of the study allow us to create an educational resource of expert interpretation through online video footage and commentary with

  11. Towards an understanding of thermally activated self-healing of an ionomer system during ballistic penetration

    Energy Technology Data Exchange (ETDEWEB)

    Varley, Russell J. [CSIRO Materials Science and Engineering, Private Bag 33, Clayton South, Victoria 3169 (Australia)], E-mail: russell.varley@csiro.au; Zwaag, Sybrand van der [Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands)

    2008-11-15

    The self-healing phenomenon exhibited by the ionomer known as Surlyn 8940 (DuPont), a partially neutralized poly(ethylene-co-methacrylic acid) random co-polymer, during high-energy impact has been investigated here according to three separate strategies. The first consisted of a post-mortem scanning electron microscopy examination of impact surfaces of actual ballistic impacts for a range of bullets with different shapes, sizes and velocities. A complex range of competing and/or complementary processes based upon elastic and viscous responses was observed. The elastic response to impact provides for a polymer rebound or shape memory effect, while the viscous response provides for the final sealing of the cavity and is dependent upon the level of thermal frictional forces transferred during impact. The balance of these influences determines healing, and is shown to be altered by the size and shape of the bullet or indeed by the polymer morphology itself. The second strategy investigated the healing mechanism using a method that mimics the elastic response to impact in a controlled environment. This work highlighted the importance of the ionic clusters present in the ionomer and the gradient of viscoelastic properties formed at varying distances from the impact zone particularly when compared to non-ionic polymers. The repeatability of elastic healing was demonstrated, and reinforced the notion that healing arose from the inherent polymer structure of the ionomer. The third strategy investigated the role of the viscous response during impact and found that increased molecular mobility in the melt was critical to achieving optimal healing, although again the ionic clusters were found to be critical to maintaining sufficient structural integrity and preventing excess viscous flow.

  12. 负压封闭引流技术在创面愈合应用中的护理措施%Nursing care in the application of vacuum sealing drainage in in wound healing

    Institute of Scientific and Technical Information of China (English)

    张燕

    2015-01-01

    目的:探讨负压封闭引流技术在烧伤矫形科创面愈合中的应用效果及护理措施.方法:对47例患者彻底清洁创面后行负压封闭术治疗7~33d.结果:经负压封闭引流技术后,感染得到控制,骨外露面积逐渐缩小,引导肉芽组织覆盖创面后植皮,全部愈合.结论:负压封闭引流刺激创面促进新鲜肉芽的生长,加速伤口愈合,提高了治愈率,密切的观察和全方位的护理是成功的关键.%Objective To investigate the effect of vacuum sealing drainage on wound healing in depart?ment of burn and nursing measures. Methods 47 patients were treated with wound healing drainage after the debridement for 7-33 days. Results After the vacuum sealing drainage the infection was con?trolled.The area of bone exposed gradually reduced and all the wounds were healed by guiding the granulation tissue to cover the wounds and skin grafting. Conclusion Vacuum sealing drainage can stimulate the wound promote the growth of fresh granulation,accelerate the wound healing and improve the cure rate.Meanwhile a close observation and all-round nursing care are the key to success.

  13. "Healing is a Done Deal": Temporality and Metabolic Healing Among Evangelical Christians in Samoa.

    Science.gov (United States)

    Hardin, Jessica

    2016-01-01

    Drawing on fieldwork in independent Samoa, in this article, I analyze the temporal dimensions of evangelical Christian healing of metabolic disorders. I explore how those suffering with metabolic disorders draw from multiple time-based notions of healing, drawing attention to the limits of biomedicine in contrast with the effectiveness of Divine healing. By simultaneously engaging evangelical and biomedical temporalities, I argue that evangelical Christians create wellness despite sickness and, in turn, re-signify chronic suffering as a long-term process of Christian healing. Positioning biomedical temporality and evangelical temporality as parallel yet distinctive ways of practicing healing, therefore, influences health care choices. PMID:26436693

  14. Inherent reward & risk (Part I): Towards a universal paradigm for investment analysis

    NARCIS (Netherlands)

    L. Zou

    2000-01-01

    In this paper, a new paradigm is developed for analyzinginvestment strategies and pricing financial assets. This paradigmassumes that any investment strategy has its own "inherent reward"and "inherent risk" that can be judged with common sense. Ijustify axiomatically the existence and uniqueness (ra

  15. 40 CFR 88.313-93 - Incentives for the purchase of Inherently Low-Emission Vehicles.

    Science.gov (United States)

    2010-07-01

    ... Inherently Low-Emission Vehicles. 88.313-93 Section 88.313-93 Protection of Environment ENVIRONMENTAL...-93 Incentives for the purchase of Inherently Low-Emission Vehicles. (a) Administration. (1) The...—Fleet Credit Table Based on Reduction in NMOG+NOX. Vehicle Equivalents for Light-Duty Vehicles and...

  16. Strategische keuzen in verkeersveiligheidsbeleid en onderzoek : naar een inherent veiliger wegverkeer.

    NARCIS (Netherlands)

    Roszbach, R.

    1990-01-01

    In the Multiyear plan for traffic safety the terms "inherent safe" and "systematic management" were used. This report explains why these terms can be used and shows their correlation in the traffic safety theories. Some elements which can be a part of an inherent safe traffic and transport system ar

  17. Wound Healing and Infection in Surgery

    DEFF Research Database (Denmark)

    Sørensen, Lars Tue

    2012-01-01

    To clarify the evidence on smoking and postoperative healing complications across surgical specialties and to determine the impact of perioperative smoking cessation intervention.......To clarify the evidence on smoking and postoperative healing complications across surgical specialties and to determine the impact of perioperative smoking cessation intervention....

  18. Wound healing and infection in surgery

    DEFF Research Database (Denmark)

    Sørensen, Lars Tue

    2012-01-01

    : The aim was to clarify how smoking and nicotine affects wound healing processes and to establish if smoking cessation and nicotine replacement therapy reverse the mechanisms involved.......: The aim was to clarify how smoking and nicotine affects wound healing processes and to establish if smoking cessation and nicotine replacement therapy reverse the mechanisms involved....

  19. BURN WOUND HEALING ACTIVITY OF Euphorbia hirta

    OpenAIRE

    Jaiprakash, B.; Chandramohan,; Reddy, D. Narishma

    2006-01-01

    The Ethanolic extract of whole plant of Euphorbia hirta was screened for burn wound healing activity in rats as 2% W/W cream. The study was carried out based on the assessment of percentage reduction in original wound. It showed significant burn wound healing activity.

  20. Engineered Biopolymeric Scaffolds for Chronic Wound Healing.

    Science.gov (United States)

    Dickinson, Laura E; Gerecht, Sharon

    2016-01-01

    Skin regeneration requires the coordinated integration of concomitant biological and molecular events in the extracellular wound environment during overlapping phases of inflammation, proliferation, and matrix remodeling. This process is highly efficient during normal wound healing. However, chronic wounds fail to progress through the ordered and reparative wound healing process and are unable to heal, requiring long-term treatment at high costs. There are many advanced skin substitutes, which mostly comprise bioactive dressings containing mammalian derived matrix components, and/or human cells, in clinical use. However, it is presently hypothesized that no treatment significantly outperforms the others. To address this unmet challenge, recent research has focused on developing innovative acellular biopolymeric scaffolds as more efficacious wound healing therapies. These biomaterial-based skin substitutes are precisely engineered and fine-tuned to recapitulate aspects of the wound healing milieu and target specific events in the wound healing cascade to facilitate complete skin repair with restored function and tissue integrity. This mini-review will provide a brief overview of chronic wound healing and current skin substitute treatment strategies while focusing on recent engineering approaches that regenerate skin using synthetic, biopolymeric scaffolds. We discuss key polymeric scaffold design criteria, including degradation, biocompatibility, and microstructure, and how they translate to inductive microenvironments that stimulate cell infiltration and vascularization to enhance chronic wound healing. As healthcare moves toward precision medicine-based strategies, the potential and therapeutic implications of synthetic, biopolymeric scaffolds as tunable treatment modalities for chronic wounds will be considered. PMID:27547189

  1. Self-healing cable for extreme environments

    Science.gov (United States)

    Huston, Dryver R. (Inventor); Tolmie, Bernard R. (Inventor)

    2009-01-01

    Self-healing cable apparatus and methods disclosed. The self-healing cable has a central core surrounded by an adaptive cover that can extend over the entire length of the self-healing cable or just one or more portions of the self-healing cable. The adaptive cover includes an axially and/or radially compressible-expandable (C/E) foam layer that maintains its properties over a wide range of environmental conditions. A tape layer surrounds the C/E layer and is applied so that it surrounds and axially and/or radially compresses the C/E layer. When the self-healing cable is subjected to a damaging force that causes a breach in the outer jacket and the tape layer, the corresponding localized axially and/or radially compressed portion of the C/E foam layer expands into the breach to form a corresponding localized self-healed region. The self-healing cable is manufacturable with present-day commercial self-healing cable manufacturing tools.

  2. Introducing HEAL: The Health Education Assets Library.

    Science.gov (United States)

    Candler, Chris S.; Uijtdehaage, Sebastian H. J.; Dennis, Sharon E.

    2003-01-01

    Describes the development of a new Health Education Assets Library (HEAL), a freely accessible, national library of high-quality digital multimedia to support all levels of health sciences education. HEAL's primary mission is to provide educators with high-quality and free multimedia materials (such as images and videos) to augment health science…

  3. Holistic nurses' stories of personal healing.

    Science.gov (United States)

    Smith, Marlaine C; Zahourek, Rothlyn; Hines, Mary Enzman; Engebretson, Joan; Wardell, Diane Wind

    2013-09-01

    The purpose of this study was to uncover the nature, experiences, and meaning of personal healing for holistic nurses through their narrative accounts. The study employed a qualitative descriptive design with methods of narrative and story inquiry. Participants were nurse attendees at an American Holistic Nurses' Association conference who volunteered for the study. They were invited to share a story about healing self or another. Twenty-five stories were collected; seven were about personal healing, and these are the focus of this analysis. Data were analyzed using a hybrid approach from narrative and story inquiry methods. Eleven themes were clustered under three story segments. The themes within the Call to the Healing Encounter are the following: recognition of the need to resolve a personal or health crisis, knowledge of or engagement in self-care practices, and reliance on intuitive knowing. Themes under the Experience of Healing are the following: connections; profound sensations, perceptions, and events; awareness of the reciprocal nature of healing; inner resolution: forgiveness, awakening, and acceptance; use of multiple holistic approaches; and witnessing manifestations of healing. The themes for Insights are the following: gratitude and appreciation and ongoing journey. A metastory synthesizing the themes is presented, and findings are related to existing literature on healing. PMID:23463813

  4. Energy Healing for Cancer: A Critical Review

    DEFF Research Database (Denmark)

    Agdal, Rita; von Bornemann Hjelmborg, Jacob; Johannessen, Helle

    2011-01-01

    of energy healing are reiki, therapeutic touch and healing touch. Material and Methods: PubMed, AMED, JStor, Social Science Citation Index and PsycInfo databases were searched, and articles were rated according to the SIGN (Scottish Intercollegiate Guidelines Network) quality scale. Six quantitative and two...

  5. Regional disturbances in blood flow and metabolism in equine limb wound healing with formation of exuberant granulation tissue

    DEFF Research Database (Denmark)

    Sørensen, Mette A.; Petersen, Lars; Bundgaard, Louise;

    2014-01-01

    As in other fibroproliferative disorders, hypoxia has been suggested to play a key role in the pathogenesis of exuberant granulation tissue (EGT). The purpose of this study was to investigate metabolism and blood flow locally in full-thickness wounds healing with (limb wounds) and without (body...... a significant difference between body and limb wounds. In conclusion, the metabolic disturbances may suggest an inadequate oxygen supply during the wound healing process in equine limb wounds healing with EGT. This may be related to the inherently decreased perfusion in the wound bed of limb wounds....... wounds) formation of EGT. Microdialysis was used to recover endogenous metabolites from the wounds, and laser Doppler flowmetry was used to measure blood flow. Measurements were performed before wounding and 1-28 days after wounding. Blood flow was consistently lower in limb wounds than in body wounds...

  6. Effects of inherent alkali and alkaline earth metallic species on biomass pyrolysis at different temperatures.

    Science.gov (United States)

    Hu, Song; Jiang, Long; Wang, Yi; Su, Sheng; Sun, Lushi; Xu, Boyang; He, Limo; Xiang, Jun

    2015-09-01

    This work aimed to investigate effects of inherent alkali and alkaline earth metallic species (AAEMs) on biomass pyrolysis at different temperatures. The yield of CO, H2 and C2H4 was increased and that of CO2 was suppressed with increasing temperature. Increasing temperature could also promote depolymerization and aromatization reactions of active tars, forming heavier polycyclic aromatic hydrocarbons, leading to decrease of tar yields and species diversity. Diverse performance of inherent AAEMs at different temperatures significantly affected the distribution of pyrolysis products. The presence of inherent AAEMs promoted water-gas shift reaction, and enhanced the yield of H2 and CO2. Additionally, inherent AAEMs not only promoted breakage and decarboxylation/decarbonylation reaction of thermally labile hetero atoms of the tar but also enhanced thermal decomposing of heavier aromatics. Inherent AAEMs could also significantly enhance the decomposition of levoglucosan, and alkaline earth metals showed greater effect than alkali metals. PMID:26005925

  7. Electrical Stimulation and Cutaneous Wound Healing: A Review of Clinical Evidence

    Directory of Open Access Journals (Sweden)

    Sara Ud-Din

    2014-10-01

    Full Text Available Electrical stimulation (ES has been shown to have beneficial effects in wound healing. It is important to assess the effects of ES on cutaneous wound healing in order to ensure optimization for clinical practice. Several different applications as well as modalities of ES have been described, including direct current (DC, alternating current (AC, high-voltage pulsed current (HVPC, low-intensity direct current (LIDC and electrobiofeedback ES. However, no one method has been advocated as the most optimal for the treatment of cutaneous wound healing. Therefore, this review aims to examine the level of evidence (LOE for the application of different types of ES to enhance cutaneous wound healing in the skin. An extensive search was conducted to identify relevant clinical studies utilising ES for cutaneous wound healing since 1980 using PubMed, Medline and EMBASE. A total of 48 studies were evaluated and assigned LOE. All types of ES demonstrated positive effects on cutaneous wound healing in the majority of studies. However, the reported studies demonstrate contrasting differences in the parameters and types of ES application, leading to an inability to generate sufficient evidence to support any one standard therapeutic approach. Despite variations in the type of current, duration, and dosing of ES, the majority of studies showed a significant improvement in wound area reduction or accelerated wound healing compared to the standard of care or sham therapy as well as improved local perfusion. The limited number of LOE-1 trials for investigating the effects of ES in wound healing make critical evaluation and assessment somewhat difficult. Further, better-designed clinical trials are needed to improve our understanding of the optimal dosing, timing and type of ES to be used.

  8. Providing Self-Healing Ability for Wireless Sensor Node by Using Reconfigurable Hardware

    Directory of Open Access Journals (Sweden)

    Weiwei Yang

    2012-10-01

    Full Text Available Wireless sensor networks (WSNs have received tremendous attention over the past ten years. In engineering applications of WSNs, a number of sensor nodes are usually spread across some specific geographical area. Some of these nodes have to work in harsh environments. Dependability of the Wireless Sensor Network (WSN is very important for its successful applications in the engineering area. In ordinary research, when a node has a failure, it is usually discarded and the network is reorganized to ensure the normal operation of the WSN. Using appropriate WSN re-organization methods, though the sensor networks can be reorganized, this causes additional maintenance costs and sometimes still decreases the function of the networks. In those situations where the sensor networks cannot be reorganized, the performance of the whole WSN will surely be degraded. In order to ensure the reliable and low cost operation of WSNs, a method to develop a wireless sensor node with self-healing ability based on reconfigurable hardware is proposed in this paper. Two self-healing WSN node realization paradigms based on reconfigurable hardware are presented, including a redundancy-based self-healing paradigm and a whole FPAA/FPGA based self-healing paradigm. The nodes designed with the self-healing ability can dynamically change their node configurations to repair the nodes’ hardware failures. To demonstrate these two paradigms, a strain sensor node is adopted as an illustration to show the concepts. Two strain WSN sensor nodes with self-healing ability are developed respectively according to the proposed self-healing paradigms. Evaluation experiments on self-healing ability and power consumption are performed. Experimental results show that the developed nodes can self-diagnose the failures and recover to a normal state automatically. The research presented can improve the robustness of WSNs and reduce the maintenance cost of WSNs in engineering applications.

  9. Providing Self-Healing Ability for Wireless Sensor Node by Using Reconfigurable Hardware

    Science.gov (United States)

    Yuan, Shenfang; Qiu, Lei; Gao, Shang; Tong, Yao; Yang, Weiwei

    2012-01-01

    Wireless sensor networks (WSNs) have received tremendous attention over the past ten years. In engineering applications of WSNs, a number of sensor nodes are usually spread across some specific geographical area. Some of these nodes have to work in harsh environments. Dependability of the Wireless Sensor Network (WSN) is very important for its successful applications in the engineering area. In ordinary research, when a node has a failure, it is usually discarded and the network is reorganized to ensure the normal operation of the WSN. Using appropriate WSN re-organization methods, though the sensor networks can be reorganized, this causes additional maintenance costs and sometimes still decreases the function of the networks. In those situations where the sensor networks cannot be reorganized, the performance of the whole WSN will surely be degraded. In order to ensure the reliable and low cost operation of WSNs, a method to develop a wireless sensor node with self-healing ability based on reconfigurable hardware is proposed in this paper. Two self-healing WSN node realization paradigms based on reconfigurable hardware are presented, including a redundancy-based self-healing paradigm and a whole FPAA/FPGA based self-healing paradigm. The nodes designed with the self-healing ability can dynamically change their node configurations to repair the nodes' hardware failures. To demonstrate these two paradigms, a strain sensor node is adopted as an illustration to show the concepts. Two strain WSN sensor nodes with self-healing ability are developed respectively according to the proposed self-healing paradigms. Evaluation experiments on self-healing ability and power consumption are performed. Experimental results show that the developed nodes can self-diagnose the failures and recover to a normal state automatically. The research presented can improve the robustness of WSNs and reduce the maintenance cost of WSNs in engineering applications. PMID:23202176

  10. Self-healing of hierarchical materials.

    Science.gov (United States)

    Bosia, Federico; Abdalrahman, Tamer; Pugno, Nicola M

    2014-02-01

    We present a theoretical and numerical analysis of the mechanical behavior of self-healing materials using an analytical model and numerical calculations both based on a Hierarchical Fiber Bundle Model, and applying them to graphene- or carbon-nanotube-based materials. The self-healing process can be described essentially through a single parameter, that is, the healing rate, but numerical simulations also highlight the influence of the location of the healing process on the overall strengthening and toughening of the material. The role of hierarchy is discussed, showing that full-scale hierarchical structures can in fact acquire more favorable properties than smaller, nonhierarchical ones through interaction with the self-healing process, thus inverting the common notion in fracture mechanics that specimen strength increases with decreasing size. Further, the study demonstrates that the developed analytical and numerical tools can be useful to develop strategies for the optimization of strength and toughness of synthetic bioinspired materials. PMID:24364755

  11. Why Cancer Patients Seek Islamic Healing.

    Science.gov (United States)

    Suhami, Norhasmilia; Muhamad, Mazanah Bt; Krauss, Steven Eric

    2016-10-01

    Islamic healing is frequently referred to as the treatment of choice by many Muslim cancer patients in Malaysia. Despite its widespread use, there is limited information relating to patients' healing preferences. With rising cancer rates in the country, this issue has become a concern to public health policy makers. The purpose of this study was to understand why cancer patients seek Islamic healing. This qualitative study utilized in-depth interviews with 18 cancer patients. The findings indicate three main reasons: (1) recommendations from family, friends and doctors; (2) belief in Islamic healing and (3) the perceived ineffectiveness and dissatisfaction with conventional treatments. Islamic healing will likely continue to be popular complementary cancer treatment in Malaysia as it is grounded in strong cultural and religious beliefs. PMID:26391242

  12. Effects of the application of Aloe vera (L. and microcurrent on the healing of wounds surgically induced in Wistar rats Efeitos da aplicação de Aloe vera (L. e microcorrente no reparo de lesões cirúrgicas induzidas em ratos Wistar

    Directory of Open Access Journals (Sweden)

    Cristina Cruz Franchini

    2009-04-01

    Full Text Available PURPOSE: To investigate the effects of topical application of an Aloe vera gel combined or not with microcurrent application on the healing of skin wounds surgically induced in Wistar rats. METHODS: The animals were randomly divided into the following groups: control group, animals topically treated with Aloe vera, animals treated with a microcurrent, and animals receiving topical application of Aloe vera combined with microcurrent application. RESULTS: The results indicated differences in wound healing between the various treatments when compared to the control group. Tissue hyperplasia was lower in the control group compared to the other treated groups. Accelerated wound healing was observed in the group treated with Aloe vera compared to control. Animals submitted to microcurrent application only and the group treated with microcurrent plus Aloe vera presented an earlier onset of the proliferative phase compared to the control group and animals treated with Aloe vera gel alone. Morphometric data confirmed the structural findings. CONCLUSION: Simultaneous application of Aloe vera gel and microcurrent is an excellent choice for the treatment of open wounds thus indicating a synergistic action of these two applications.OBJETIVO: Investigar os efeitos da aplicação tópica do gel de Aloe vera, combinada ou não com a aplicação de microcorrente no reparo de lesões cutâneas induzidas cirurgicamente em ratos Wistar. MÉTODOS: Os animais foram distribuídos aleatoriamente em: grupo controle, tratado topicamente com gel in natura de Aloe vera, tratado com microcorrente e tratado com aplicação tópica de Aloe vera associada à microcorrente. RESULTADOS: Os resultados do presente trabalho indicaram que o reparo tecidual ocorreu de forma diferenciada nos vários tratamentos empregados quando comparados ao grupo controle. A hiperplasia tecidual no grupo controle foi menor que a observada nos demais grupos tratados. No grupo tratado com aplica

  13. Encapsulation methods for photo-polymerisable self-healing formulations.

    Science.gov (United States)

    Ballout, Wael; Périchaud, Alain; Caserta, Laura; Devassine, Mickael; Nistor, Cristina Lavinia; Iskakov, Rinat

    2016-06-01

    The aim of this work is to encapsulate a self-healing photo-polymerisable material for aerospace applications. To meet the technical requirements of space applications - low and high temperatures: -120 °C (dark side) to +250 °C (solar side); UV radiations: 200-400 nm; low pressure: 10(-4 )Pa - we chose trimethylolpropane triacrylate as healing agent. This monomer polymerises at 190 °C. To avoid its earlier thermal polymerisation, an inhibitor was added to the monomer/photo-initiator formulation. Moreover, among several microencapsulation techniques tested, we chose the sol-gel process to form silica microcapsules containing the self-healing formulation. These microcapsules were characterised by different analysis (scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), Fourier transform infra-red spectroscopy (FTIR), etc.) and satisfied our requirements (size 1-30 μm, thermal stability >250 °C). After the microcapsules breakage, the generation of poly(TMPTA) film by radical photopolymerisation of the released TMPTA monomer was proved by disappearance of the IR peak at 1635 cm(-1) (assigned to TMPTA). The obtained film has a thermal stability above 300 °C. PMID:27283106

  14. Electron beam-assisted healing of nanopores in magnesium alloys

    Science.gov (United States)

    Zheng, He; Liu, Yu; Cao, Fan; Wu, Shujing; Jia, Shuangfeng; Cao, Ajing; Zhao, Dongshan; Wang, Jianbo

    2013-01-01

    Nanopore-based sensing has emerged as a promising candidate for affordable and powerful DNA sequencing technologies. Herein, we demonstrate that nanopores can be successfully fabricated in Mg alloys via focused electron beam (e-beam) technology. Employing in situ high-resolution transmission electron microscopy techniques, we obtained unambiguous evidence that layer-by-layer growth of atomic planes at the nanopore periphery occurs when the e-beam is spread out, leading to the shrinkage and eventual disappearance of nanopores. The proposed healing process was attributed to the e-beam-induced anisotropic diffusion of Mg atoms in the vicinity of nanopore edges. A plausible diffusion mechanism that describes the observed phenomena is discussed. Our results constitute the first experimental investigation of nanopores in Mg alloys. Direct evidence of the healing process has advanced our fundamental understanding of surface science, which is of great practical importance for many technological applications, including thin film deposition and surface nanopatterning. PMID:23719630

  15. Influence of the inherent properties of drinking water treatment residuals on their phosphorus adsorption capacities.

    Science.gov (United States)

    Bai, Leilei; Wang, Changhui; He, Liansheng; Pei, Yuansheng

    2014-12-01

    Batch experiments were conducted to investigate the phosphorus (P) adsorption and desorption on five drinking water treatment residuals (WTRs) collected from different regions in China. The physical and chemical characteristics of the five WTRs were determined. Combined with rotated principal component analysis, multiple regression analysis was used to analyze the relationship between the inherent properties of the WTRs and their P adsorption capacities. The results showed that the maximum P adsorption capacities of the five WTRs calculated using the Langmuir isotherm ranged from 4.17 to 8.20mg/g at a pH of 7 and further increased with a decrease in pH. The statistical analysis revealed that a factor related to Al and 200 mmol/L oxalate-extractable Al (Alox) accounted for 36.5% of the variations in the P adsorption. A similar portion (28.5%) was attributed to an integrated factor related to the pH, Fe, 200 mmol/L oxalate-extractable Fe (Feox), surface area and organic matter (OM) of the WTRs. However, factors related to other properties (Ca, P and 5 mmol/L oxalate-extractable Fe and Al) were rejected. In addition, the quantity of P desorption was limited and had a significant negative correlation with the (Feox+Alox) of the WTRs (p<0.05). Overall, WTRs with high contents of Alox, Feox and OM as well as large surface areas were proposed to be the best choice for P adsorption in practical applications.

  16. Personal utility is inherent to direct-to-consumer genomic testing.

    Science.gov (United States)

    Chung, Matthew Wai Heng; Ng, Joseph Chi Fung

    2016-10-01

    People for and against direct-to-consumer (DTC) genomic tests are arguing around two issues: first, on whether an autonomy-based account can justify the tests; second, on whether the tests bring any personal utility. Bunnik et al, in an article published in this journal, were doubtful on the latter, especially in clinically irrelevant and uninterpretable sequences, and how far this claim could go in the justification. Here we argue that personal utility is inherent to DTC genomic tests and their results. We discuss Bunnik et al's account of personal utility and identify problems in its motivation and application. We then explore concepts like utility and entertainment which suggest that DTC genomic tests bring personal utility to their consumers, both in the motivation and the content of the tests. This points to an alternative account of personal utility which entails that entertainment value alone is adequate to justify DTC genomic tests, given appropriate strategies to communicate tests results with the consumers. It supports the autonomy-based justification of the test by showing that DTC genomic test itself stands as a valuable option and facilitates meaningful choice of the people.

  17. Computability, Gödel's incompleteness theorem, and an inherent limit on the predictability of evolution.

    Science.gov (United States)

    Day, Troy

    2012-04-01

    The process of evolutionary diversification unfolds in a vast genotypic space of potential outcomes. During the past century, there have been remarkable advances in the development of theory for this diversification, and the theory's success rests, in part, on the scope of its applicability. A great deal of this theory focuses on a relatively small subset of the space of potential genotypes, chosen largely based on historical or contemporary patterns, and then predicts the evolutionary dynamics within this pre-defined set. To what extent can such an approach be pushed to a broader perspective that accounts for the potential open-endedness of evolutionary diversification? There have been a number of significant theoretical developments along these lines but the question of how far such theory can be pushed has not been addressed. Here a theorem is proven demonstrating that, because of the digital nature of inheritance, there are inherent limits on the kinds of questions that can be answered using such an approach. In particular, even in extremely simple evolutionary systems, a complete theory accounting for the potential open-endedness of evolution is unattainable unless evolution is progressive. The theorem is closely related to Gödel's incompleteness theorem, and to the halting problem from computability theory.

  18. Improved Accuracy of the Inherent Shrinkage Method for Fast and More Reliable Welding Distortion Calculations

    Science.gov (United States)

    Mendizabal, A.; González-Díaz, J. B.; San Sebastián, M.; Echeverría, A.

    2016-07-01

    This paper describes the implementation of a simple strategy adopted for the inherent shrinkage method (ISM) to predict welding-induced distortion. This strategy not only makes it possible for the ISM to reach accuracy levels similar to the detailed transient analysis method (considered the most reliable technique for calculating welding distortion) but also significantly reduces the time required for these types of calculations. This strategy is based on the sequential activation of welding blocks to account for welding direction and transient movement of the heat source. As a result, a significant improvement in distortion prediction is achieved. This is demonstrated by experimentally measuring and numerically analyzing distortions in two case studies: a vane segment subassembly of an aero-engine, represented with 3D-solid elements, and a car body component, represented with 3D-shell elements. The proposed strategy proves to be a good alternative for quickly estimating the correct behaviors of large welded components and may have important practical applications in the manufacturing industry.

  19. Computability, Gödel's incompleteness theorem, and an inherent limit on the predictability of evolution.

    Science.gov (United States)

    Day, Troy

    2012-04-01

    The process of evolutionary diversification unfolds in a vast genotypic space of potential outcomes. During the past century, there have been remarkable advances in the development of theory for this diversification, and the theory's success rests, in part, on the scope of its applicability. A great deal of this theory focuses on a relatively small subset of the space of potential genotypes, chosen largely based on historical or contemporary patterns, and then predicts the evolutionary dynamics within this pre-defined set. To what extent can such an approach be pushed to a broader perspective that accounts for the potential open-endedness of evolutionary diversification? There have been a number of significant theoretical developments along these lines but the question of how far such theory can be pushed has not been addressed. Here a theorem is proven demonstrating that, because of the digital nature of inheritance, there are inherent limits on the kinds of questions that can be answered using such an approach. In particular, even in extremely simple evolutionary systems, a complete theory accounting for the potential open-endedness of evolution is unattainable unless evolution is progressive. The theorem is closely related to Gödel's incompleteness theorem, and to the halting problem from computability theory. PMID:21849390

  20. Development of a Mechanistic-Based Healing Model for Self-Healing Glass Seals

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wei; Stephens, Elizabeth V.; Sun, Xin; Khaleel, Mohammad A.; Zbib, Hussein M.

    2012-10-01

    Self-healing glass, a recent development of hermetic sealant materials, has the ability to effectively repair damage when heated to elevated temperatures; thus, able to extend its service life. Since crack healing morphological changes in the glass material are usually temperature and stress dependent, quantitative studies to determine the effects of thermo-mechanical conditions on the healing behavior of the self-healing glass sealants are extremely useful to accommodate the design and optimization of the sealing systems within SOFCs. The goal of this task is to develop a mechanistic-based healing model to quantify the stress and temperature dependent healing behavior. A two-step healing mechanism was developed and implemented into finite element (FE) models through user-subroutines. Integrated experimental/kinetic Monte Carlo (kMC) simulation methodology was taken to calibrate the model parameters. The crack healing model is able to investigate the effects of various thermo-mechanical factors; therefore, able to determine the critical conditions under which the healing mechanism will be activated. Furthermore, the predicted results can be used to formulate the continuum damage-healing model and to assist the SOFC stack level simulations in predicting and evaluating the effectiveness and the performance of various engineering seal designs.

  1. Mast Cells Regulate Wound Healing in Diabetes.

    Science.gov (United States)

    Tellechea, Ana; Leal, Ermelindo C; Kafanas, Antonios; Auster, Michael E; Kuchibhotla, Sarada; Ostrovsky, Yana; Tecilazich, Francesco; Baltzis, Dimitrios; Zheng, Yongjun; Carvalho, Eugénia; Zabolotny, Janice M; Weng, Zuyi; Petra, Anastasia; Patel, Arti; Panagiotidou, Smaro; Pradhan-Nabzdyk, Leena; Theoharides, Theoharis C; Veves, Aristidis

    2016-07-01

    Diabetic foot ulceration is a severe complication of diabetes that lacks effective treatment. Mast cells (MCs) contribute to wound healing, but their role in diabetes skin complications is poorly understood. Here we show that the number of degranulated MCs is increased in unwounded forearm and foot skin of patients with diabetes and in unwounded dorsal skin of diabetic mice (P diabetic mice. Pretreatment with the MC degranulation inhibitor disodium cromoglycate rescues diabetes-associated wound-healing impairment in mice and shifts macrophages to the regenerative M2 phenotype (P diabetic mice deficient in MCs have delayed wound healing compared with their wild-type (WT) controls, implying that some MC mediator is needed for proper healing. MCs are a major source of vascular endothelial growth factor (VEGF) in mouse skin, but the level of VEGF is reduced in diabetic mouse skin, and its release from human MCs is reduced in hyperglycemic conditions. Topical treatment with the MC trigger substance P does not affect wound healing in MC-deficient mice, but improves it in WT mice. In conclusion, the presence of nondegranulated MCs in unwounded skin is required for proper wound healing, and therapies inhibiting MC degranulation could improve wound healing in diabetes. PMID:27207516

  2. Biological strategies to enhance rotator cuff healing.

    Science.gov (United States)

    Longo, Umile Giuseppe; Rizzello, Giacomo; Berton, Alessandra; Maltese, Ludovica; Fumo, Caterina; Khan, Wasim S; Denaro, Vincenzo

    2013-11-01

    Rotator cuff tear causes a high rate of morbidity. After surgical repair, the presence of a scar tissue reduces tendon biomechanical properties. Emerging strategies for enhancing tendon healing are growth factors, cytokines, gene therapy and tissue engineering. However their efficacy has to be proved. Growth factors help the process of tendon healing by aiding cells chemotaxis, differentiation and proliferation. Numerous growth factors, including the bone morphogenetic proteins and platelet-derived growth factor can be found during the early healing process of a rotator cuff repair. Growth factors are delivered to the repair site using tissue-engineered scaffolding, coated sutures, or dissolved in a fibrin sealant. Platelet-rich plasma is an autologous concentration of platelets and contains an high density of growth factors. There is some evidence that platelet-rich plasma may improve pain and recovery of function in a short time period, but it does not improve healing rates in rotator cuff. Thus the routine use of platelet-rich plasma in rotator cuff repair is not recommended. The addition of mesenchymal stem cells to scaffolds can lead to the production of a better quality healing tissue. Gene therapy is a gene transfer from a cell into another, in order to over-express the gene required. In this way, cultures of stem cells can over-express growth factors. Better understanding of the mechanisms of physiological tendon healing can promote the correct use of these new biological therapies for a better healing tissue.

  3. Current medical treatment strategies concerning fracture healing.

    Science.gov (United States)

    Giannotti, Stefano; Bottai, Vanna; Dell'osso, Giacomo; Pini, Erica; De Paola, Gaia; Bugelli, Giulia; Guido, Giulio

    2013-05-01

    The morbidity and socioeconomic costs associated with bone healing are considerable. A number of fractures are complicated by impaired healing. This is prevalent in certain risk groups such as elderly, osteoporotics, post-menopausal women, and in people with malnutrition. The biologic process of fracture healing is complex and impacted by multiple factors. Some of them, such as the nutritional and health conditions, are patient-dependent, while others depend on the trauma experienced and stability of the fracture. Fracture healing disorders negatively affect the patient's quality of life and result in high health-care costs, as a second surgery is required to stabilize the fracture and stimulate bone biology. Future biotechnologies that accelerate fracture healing may be useful tools, which might also prevent the onset of these disorders. We list the characteristics of the drugs used for osteoporosis, but we point out in particular the use of strontium ranelate and teriparatide in our clinical practice in elderly patients, especially females, who reported fractures with risk of nonunion. This medical treatment could impaired fracture healing however, most of the evidence is obtained in animal studies and very few studies have been done in humans. Thus one could hypothesize the possibility of a medical treatment both as a preventive and as support to the synthesis. However, no clinical studies are available so far, and such studies are warranted before any conclusions can be drawn. A positive effect of osteoporosis treatments on bone healing is an interesting possibility and merits further clinical research. PMID:24133528

  4. The role of passive and inherent safety properties in Siemens/KWU nuclear power plants

    International Nuclear Information System (INIS)

    In Siemens/KWU Nuclear Power Plants the applied safety concept consist of a well balanced combination of active, passive use well is inherent safety measures. In principle it is not possible to realise a safety concept exclusively with inherent and/or passive safety properties. The respective measures and arguments will be explained in detail in the presentation. In addition the Siemens/KWU safety concept with examples of the role of inherent and passive safety measures will be illustrated. (author). 9 refs, 9 figs

  5. Comparing the inherent safety of the modular LMRs and HTGRs and the PIUS concept

    International Nuclear Information System (INIS)

    Advanced design concepts, including a liquid-metal cooled reactor (LMR), a high temperature gas-cooled reactor (HTGR), and a light water reactor (LWR) are discussed and compared. Each provides inherent and/or passive safety to improve system safety. The focus is on two primary objectives: reactor shutdown and shutdown heat removal. The LMR an HTGR concepts rely upon inherent reactivity feedbacks to provide an inherent reactor response, whereas passive borated water injection shuts down the LWR (PIUS). For shutdown heat removal, the LMR and HTGR designs rely upon air cooling of the vessel, and the LWR relies upon a large tank of water for several days of cooling

  6. Long range stress correlations in the inherent structures of liquids at rest

    Science.gov (United States)

    Chowdhury, Sadrul; Abraham, Sneha; Hudson, Toby; Harrowell, Peter

    2016-03-01

    Simulation studies of the atomic shear stress in the local potential energy minima (inherent structures) are reported for binary liquid mixtures in 2D and 3D. These inherent structure stresses are fundamental to slow stress relaxation and high viscosity in supercooled liquids. We find that the atomic shear stress in the inherent structures (IS's) of both liquids at rest exhibits slowly decaying anisotropic correlations. We show that the stress correlations contribute significantly to the variance of the total shear stress of the IS configurations and consider the origins of the anisotropy and spatial extent of the stress correlations.

  7. The development of low-molecular weight hydrogels for applications in cancer therapy

    Science.gov (United States)

    Tian, Ran; Chen, Jin; Niu, Runfang

    2014-03-01

    To improve the anti-cancer efficacy and to counteract the side effects of chemotherapy, a variety of drug delivery systems have been invented in past decades, but few of these systems have succeeded in clinical trials due to their respective inherent shortcomings. Recently, low-molecular weight hydrogels of peptides that self-assemble via non-covalent interactions have attracted considerable attention due to their good biocompatibility, low toxicity, inherent biodegradability as well as their convenience of design. Low-molecular weight hydrogels have already shown promise in biomedical applications as diverse as 3D-cell culture, enzyme immobilization, controllable MSC differentiation, wound healing, drug delivery etc. Here we review the recent development in the use of low-molecular weight hydrogels for cancer therapy, which may be helpful in the design of soft materials for drug delivery.

  8. The Huichol offering: a shamanic healing journey.

    Science.gov (United States)

    Hammerschlag, Carl Allen

    2009-06-01

    An American transcultural psychiatrist, and a Mexican engineer deeply involved with the Huichol Indians, build a team that heals a decade-long epidemic caused by sorcery. Huichol children in boarding schools became possessed by demonic witchcraft that transformed them into aggressive animals. Many local shaman had been called in to treat the illness but had been unsuccessful. The team found a way to incorporate traditional belief and ritual, with modern psychological principles to weave a healing story. This article represents the ultimate integration of mind/body/spirit medicine to heal across cultures.

  9. Spirit, Mind and Body in Chumash Healing

    Directory of Open Access Journals (Sweden)

    James D. Adams

    2005-01-01

    Full Text Available This article discusses the importance of the spirit and mind in health and well-being among Chumash people. Prayer was the first step in healing since prayer invites the participation of God. Initiation practices are discussed that encouraged young people to develop the maturity and spiritual strength to become productive members of society. Pictographs were used in healing usually not only as a relaxation therapy, but also as a mode of education. A supportive environment was an important factor in Chumash health care, since the support of friends helps, comforts and relieves anxiety that is detrimental to healing.

  10. Healing Rituals for Survivors of Rape

    Directory of Open Access Journals (Sweden)

    Colleen Galambos

    2001-05-01

    Full Text Available Therapeutic rituals focus on clinical healing within different contexts and client populations. This article explores the use of therapeutic ritual at individual and collective levels to help survivors of rape to heal. This technique is applied to both levels through a discussion of two rituals developed for rape survivors. Results of a study that examined participant comments about a collective ritual for healing are discussed. Findings indicate that participants attend the ritual to be supportive of others and to be supported themselves. Family members attend to obtain information about rape. This article explores practice implications from a service planning and implementation perspective.

  11. Healing of experimentally created defects: a review

    DEFF Research Database (Denmark)

    Aaboe, M; Pinholt, E M; Hjørting-Hansen, E

    1995-01-01

    Within cranio-maxillofacial surgery and orthopedic surgery a bone graft or a bone substitute is required to recontour or assist bony healing in repair of osseous congenital deformities, or in repair of deformity due to trauma or to surgical excision after elimination of osseous disease processes...... of these materials questionable. Healing and degradation of alloplastic materials are inconsistent with subsequent restricted use. The principle of guided tissue regeneration excluding soft tissue cells from a certain area is not alone sufficient to insure complete bony healing. Recombinant bone morphogenetic...

  12. Extensive keloidal healing of pemphigus vulgaris

    Directory of Open Access Journals (Sweden)

    Khanna Neena

    1997-01-01

    Full Text Available Bullae of pemphigus vulgaris heal without scarring. We here report a patient of pemphigus vulgaris whose lesions healed with a one-month history of extensive flaccid bullae and uninfected erosions on the trunk and extremities along with superficial erosions in the oral mucosa. The clinical suspicion of pemphigus vulgaris was confirmed by histopathological and immunohistological examination. Pulse therapy with monthly parenteral dexamethasone and cyclophosphamide pulse was instituted. The cutaneous lesions on healing formed extensive keloidal scars despite high dose of monthly corticosteroid therapy.

  13. 烧伤膏外用对浅Ⅱ度水火烫伤创面愈后色素沉着的影响%Effects of burn ointment external application on the hyperpigmentation after healing wound of superficial Ⅱ degree burns of water and fire

    Institute of Scientific and Technical Information of China (English)

    黄树林; 徐茂奇

    2011-01-01

    Objective To investigate the effects of burn ointment external application on the hyperpigmenta-tion after healing wound of superficial II degree burns of water and fire. Methods 84 patients with burns of water and fire were randomly divided into two groups. Patients in two groups received basic therapy including debridement and antibiotics. 40 cases in treatment group received external application of burn ointment No. I at early period and burn ointment No. II at late period. Control group received external application of silver sulfadiazine cream. The frequency of dressing in two groups was a time every other day, a week for a course of treatment. After two courses wound healing time were recorded. The status of hyperpigmentation after wound healing was observed three months later. The ratio of hyperpigmentation area and burn area was calculated. Results Wound healing time, the incidence of hyperpigmentation and the ratio of hyperpigmentation area and burn area in the treatment group (13. 63 + 1.51 d, 20.0% , 15.25 ±3.80) were lower than those in control group (14.70 ±1.34 d, 40.9% , 25.60 ±5.40, P <0. 01, P <0.05). Conclusion External application of burn ointment can significantly reduce healing time, prevent and reduce hyperpigmentation.%目的 观察烧伤膏外用对浅Ⅱ度水火烫伤创面愈后色素沉着的影响.方法 将84例水火烫伤患者随机分为2组,2组均予常规清创、抗感染等基础治疗,治疗组40例早期予烧伤膏Ⅰ号外用,后期予烧伤膏Ⅱ号外用;对照组44例加磺胺嘧啶银乳膏外用治疗.2组均隔日换药1次,1周为1个疗程,治疗2个疗程.统计2组创面修复时间.嘱患者3个月后复诊,观察记录是否发生创面修复后色素沉着,统计色素沉着面积/烧伤面积值.结果 治疗组40例,创面修复时间( 13.63±1.51)d,色素沉着发生率20.0% (8/40),色素沉着面积/烧伤面积为5% ~ 30%,平均(15.25±3.80)%;对照组44例,创面修复时间(14.70±1

  14. SWAD: inherent photon counting performance of amorphous selenium multi-well avalanche detector

    Science.gov (United States)

    Stavro, Jann; Goldan, Amir H.; Zhao, Wei

    2016-03-01

    Photon counting detectors (PCDs) have the potential to improve x-ray imaging, however they are still hindered by several performance limitations and high production cost. By using amorphous Selenium (a-Se) the cost of PCDs can be significantly reduced compared to crystalline materials and enable large area detector fabrication. To overcome the problem of low carrier mobility and low charge conversion gain in a-Se, we are developing a novel direct conversion a- Se field-Shaping multi-Well Avalanche Detector (SWAD). SWAD circumvents the charge transport limitation by using a Frisch grid built within the readout circuit, reducing charge collection time to ~200 ns. Field shaping permits depth independent avalanche gain in wells, resulting in total conversion gain that is comparable to Si and CdTe. In the present work we investigate the effects of charge sharing and energy loss to understand the inherent photon counting performance for SWAD at x-ray energies used in breast imaging applications (20-50keV). The energy deposition profile for each interacting x-ray was determined with Monte Carlo simulation. For the energy ranges we are interested in, photoelectric interaction dominates, with a k-fluorescence yield of approximately 60%. Using a monoenergetic 45 keV beam incident on a target pixel in 400um of a-Se, our results show that only 20.42 % and 22.4 % of primary interacting photons have kfluorescence emissions which escape the target pixel for 100um and 85um pixel sizes respectively, demonstrating SWAD's potential for high spatial resolution applications.

  15. Have US Legislatures Fully Considered Causal Factors in Assigning Liability for Inherent Risk Accidents?

    Directory of Open Access Journals (Sweden)

    Terence J. Centner

    2014-09-01

    Full Text Available The public’s dissatisfaction with American tort rules has led US state legislatures to enact more than 120 statutes for assigning liability for accident losses. Many of these statutes address the liability of accidents involving inherent risks of activities where neither the activity provider nor injured participant was negligent. Due to business complaints about high insurance costs, legislatures decided that participants ought to bear the costs arising from inherent risk accidents. Yet, causal factors associated with sport activities may support an alternative liability rule to maximize social welfare. Because inherent risk statutes lead to increased activity levels, they are accompanied by increased accident costs. Factors causing incorrect liability results may be compared to offer a recommendation for a liability regime for inherent risk accidents.

  16. Phenomenological models for reactivity feedback calculations of LMR inherent safety transient type tests

    International Nuclear Information System (INIS)

    Reactor technology improvements have made the development of a liquid-metal reactor (LMR) with inherent safety capability possible. Various designers are using this technology to develop innovative reactor concepts. The purpose of this paper is to suggest mechanistic reactivity feedback models that can be used in computer code predictions of experiments that could potentially be performed in FFTF to validate LMR inherently safe response characteristics. A discussion is provided of the various considerations for performing inherent safety type predictions on a phenomenological basis. To do this, the evaluation is divided into the three time phases of initial, transition and long term periods. The initial period is emphasized since it is during this phase that the hypothetical core disrupture accidents took place in LMR designs not optimized for inherent safety. A description is provided for the relative importance of the various nuclear feedbacks and thermal-hydraulic phenomena

  17. 120 Years of Accelerators that Heal

    CERN Document Server

    CERN. Geneva

    2013-01-01

    The discovery of X rays was made possible by the intelligent use of the best accelerator of the time. Since then, the development of particle accelerators has been at the root of both fundamental discoveries in physics and unforeseeable medical applications. The lecture will describe the major steps in this 120-year history of diagnostics and tumour therapy.   The first attempts to heal tumours with X rays were made only one month after Röntgen’s discovery, but the understanding of the mechanisms by which the radiation kills the cells and the introduction of dose fractionation took much longer. The use of X rays in diagnostics developed much faster and its benefits were very visible during the First World War. Today no tumour could be treated and no patient could be operated without a CT scan, which employs an X ray tube that is not very different from the one introduced by William Coolidge in 1912.   On the particle therapy frontier, more sophisticated and larger pa...

  18. Self-Healing Elastin-Bioglass Hydrogels.

    Science.gov (United States)

    Zeng, Qiongyu; Desai, Malav S; Jin, Hyo-Eon; Lee, Ju Hun; Chang, Jiang; Lee, Seung-Wuk

    2016-08-01

    Tailorable hydrogels that are mechanically robust, injectable, and self-healable, are useful for many biomedical applications including tissue repair and drug delivery. Here we use biological and chemical engineering approaches to develop a novel in situ forming organic/inorganic composite hydrogel with dynamic aldimine cross-links using elastin-like polypeptides (ELP) and bioglass (BG). The resulting ELP/BG biocomposites exhibit tunable gelling behavior and mechanical characteristics in a composition and concentration dependent manner. We also demonstrate self-healing in the ELP/BG hydrogels by successfully reattaching severed pieces as well as through rheology. In addition, we show the strength of genetic engineering to easily customize ELP by fusing cell-stimulating "RGD" peptide motifs. We showed that the resulting composite materials are cytocompatible as they support the cellular growth and attachment. Our robust in situ forming ELP/BG composite hydrogels will be useful as injectable scaffolds for delivering cell and drug molecules to promote soft tissue regeneration in the future. PMID:27380227

  19. Stem cells and chronic wound healing: state of the art

    Directory of Open Access Journals (Sweden)

    Leavitt T

    2016-03-01

    Full Text Available Tripp Leavitt, Michael S Hu, Clement D Marshall, Leandra A Barnes, Michael T Longaker, H Peter Lorenz Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA Abstract: Currently available treatments for chronic wounds are inadequate. A clearly effective therapy does not exist, and treatment is often supportive. This is largely because the cellular and molecular processes underlying failure of wound repair are still poorly understood. With an increase in comorbidities, such as diabetes and vascular disease, as well as an aging population, the incidence of these intractable wounds is expected to rise. As such, chronic wounds, which are already costly, are rapidly growing as a tremendous burden to the health-care system. Stem cells have garnered much interest as a therapy for chronic wounds due to their inherent ability to differentiate into multiple lineages and promote regeneration. Herein, we discuss the types of stem cells used for chronic wound therapy, as well as the proposed means by which they do so. In particular, we highlight mesenchymal stem cells (including adipose-derived stem cells, endothelial progenitor cells, and induced pluripotent stem cells. We include the results of recent in vitro and in vivo studies in both animal models and human clinical trials. Finally, we discuss the current studies to improve stem cell therapies and the limitations of stem cell-based therapeutics. Stem cells promise improved therapies for healing chronic wounds, but further studies that are well-designed with standardized protocols are necessary for fruition. Keywords: stem cells, chronic wounds, cell therapy, wound healing

  20. Brain Activation Patterns at Exhaustion in Rats That Differ in Inherent Exercise Capacity

    OpenAIRE

    Foley, Teresa E.; Leah R Brooks; Gilligan, Lori J.; Burghardt, Paul R.; Koch, Lauren G.; Britton, Steven L.; Monika Fleshner

    2012-01-01

    In order to further understand the genetic basis for variation in inherent (untrained) exercise capacity, we examined the brains of 32 male rats selectively bred for high or low running capacity (HCR and LCR, respectively). The aim was to characterize the activation patterns of brain regions potentially involved in differences in inherent running capacity between HCR and LCR. Using quantitative in situ hybridization techniques, we measured messenger ribonuclease (mRNA) levels of c-Fos, a mark...

  1. Reduction of System Inherent Pressure Losses at Pressure Compensators of Hydraulic Load Sensing Systems

    OpenAIRE

    Siebert, Jan; Geimer, Marcus [Hrsg.

    2016-01-01

    In spite of their high technical maturity, load sensing systems (LS) have system-inherent energy losses that are largely due to the operation of parallel actuators with different loads at the same pressure level. Hereby, the pressure compensators of the system are crucial. So far, excessive hydraulic energy has been throttled at these compensators and been discharged as heat via the oil. The research project “Reduction of System Inherent Pressure Losses at Pressure Compensators of Hydraulic L...

  2. Monitoring of bone healing by piezoelectric-EMI method

    Science.gov (United States)

    Mazlina, M. H.; Sarpinah, Bibi; Tawie, Rudy; Daho, Claira Dalislone; Annuar, Ishak

    2016-02-01

    Smart Piezoelectric devices which have excellent piezoelectric properties have been employed for various sensor and actuators applications. The work presented here is an attempt to demonstrate the feasibility of bone healing monitoring by using piezoelectric-electromechanical impedance (EMI) method that have several advantages such as low cost, portable, light weight and simplicity in measurement. A Piezoelectric sensor (PZT) has been widely used in damage detection of various structures including concrete, pipes and bones due to their unique sensing and actuating properties. The EMI technique has emerged as a universal Structural Health Monitoring (SHM) tool suitable for almost all engineering materials and structures. The method used for this proposed study consists of put healing agent in the host structure in particular cracks bone to be monitored by PZT-needle sensor which is embedded to the host structure. The measurements were taken in the frequency range between 0.04 to 100 kHz at 1 kHz interval using AD5933 evaluation board. The signals retrieved from the AD5933 evaluation board, were quantify and analyse to obtain Root Mean Square Deviation (RMSD) percentage value. Measurements were taken every hour for 12 hours. The result from the study shows the feasibility of the piezoelectric-EMI method to effectively detect changes during bone-cracks healing process until the cracks bone is fully recovered.

  3. Wound healing and the effect of pineal gland and melatonin

    Directory of Open Access Journals (Sweden)

    Jacek Drobnik

    2012-02-01

    Full Text Available Wound healing is a complex phenomenon that is controlled by local and general regulatory mechanisms. The aim of the paper is to analyze recently-published data devoted to the regulation of wound repair by melatonin. The effect of melatonin has been reported in different wound types healed with various mechanisms. The action of the pineal indoleamine is dependent on the used dose, time of application and target organ. Moreover, melatonin influences different phases of wound repair such as inflammation, by regulating the release of inflammatory mediators, cell proliferation and migration, by influencing angiogenesis, and the proliferation of fibroblasts, as well as the synthesis phase, by regulating collagen and glycosaminoglycan accumulation in the wounded milieu. Thus, healing of the skin wound, myocardial infarction, bone fractures and gastric ulcer is influenced by melatonin. In patients with low levels of melatonin (elderly or β-blocker treated patients, its regulatory effects are expected to be impaired. Thus, the need for melatonin supplementation in those patients is postulated in the study. [J Exp Integr Med 2012; 2(1.000: 3-14

  4. Laser therapy in wound healing associated with diabetes mellitus - Review*

    Science.gov (United States)

    de Sousa, Raquel Gomes; Batista, Keila de Nazaré Madureira

    2016-01-01

    The article discusses the results of a literature review on the application of low intensity laser therapy on the healing of wounds associated diabetes mellitus in the last 10 years. Objective To determine the most effective parameter in healing wounds related to diabetes mellitus, as well as the most widely used type of laser. Methodology consisted of bibliographic searching the databases Bireme, SciELO, PubMed/Medline and Lilacs by using the keywords related to the topic. Were selected from these keywords, papers discussing the use of laser on wounds associated with diabetes, published in the period 2005-2014, in Portuguese or English. Results After analyzing the research, 12 studies consistent with the theme were selected. Conclusion Based on this review, the studies that showed more satisfactory results in healing diabetic wounds were those who applied energy densities in the range of 3-5 J/cm2, power densities equal to or below 0.2 W/cm2 and continuous emission. The He-Ne laser with a wavelength of 632.8 nm was used more often. PMID:27579745

  5. Regenerative Medicine: Novel Approach in Burn Wound Healing

    Directory of Open Access Journals (Sweden)

    Zare

    2015-06-01

    Full Text Available Context Burn wounds of the skin require a long period to healing, which very often is incomplete, with functional and esthetic consequences for the patients. Stem cells in the traumatized tissue represent the promoters of the healing process and are a primary focus for regenerative medicine, which aims to find and use the triggers for the activation of stem cells of sin tissue. Evidence Acquisition At present, tissue engineering, composite epithelial autografts, multipotent stem cells and combined gene delivery with stem cell therapy are the approaches used in regenerative medicine. Alongside, the development of 3D scaffolds or matrices is a promising adjunct, as studies investigate the multiple uses of these supports for wound repair. Results Application of cells to the burn wound could be performed, either by the bedside, as a non-invasive procedure, or in the operating room, with the use of a matrix, scaffold or dermal substitute. Cell spraying, although under use in clinical setting, is not yet supported by conclusive data. Magnetic resonance imaging, optical imaging and positron emission tomography are currently used to assess the viability and location of stem cells, after transplantation. Conclusions Stem cell therapies in wound care may lessen the morbidities associated with wound healing. An ideal method for the effective administration of stem cells for burn patients has not yet been elucidated. Further comparison of the local and systemic effects in burn patients, associated with each route of stem cell delivery, needs to be performed.

  6. Inhibiting and healing effects of potassium permanganate for silane films

    Energy Technology Data Exchange (ETDEWEB)

    She, Zuxin; Li, Qing, E-mail: liqingswu@yeah.net; Wang, Shaoyin; Luo, Fei; Chen, Funan; Li, Longqin

    2013-07-31

    In this study, the inhibiting and healing effects of potassium permanganate for silane films were investigated, and the optimal mole ratio of MnO{sub 4}{sup −}/Cl{sup −} was also obtained. The inhibiting process and healing mechanism were studied by electrochemical measurements and scanning electron microcopy coupled with energy dispersive spectroscopy. Results demonstrated that the introduction of potassium permanganate to electrolyte could stop the development of corrosion process and the optimal inhibiting mole ratio of MnO{sub 4}{sup −}/Cl{sup −} is 2 × 10{sup −1} with a protective efficiency about 99.24%. According to its high protective efficiency and the nice results of long-term immersion test, potassium permanganate as an inhibitor could prolong the lifetime of silane films and expand its scope of application. - Highlights: • Healing sol–gel film was obtained by adding KMnO{sub 4} into electrolyte. • An optimal inhibitor mole ratio of MnO{sub 4}{sup −}/Cl{sup −} for Si sol–gel was 2 × 10{sup −1}. • The best protective efficiency was approximately 99.24%. • The inhibiting effect may be due to production of insoluble manganese hydroxide/oxide.

  7. Bioconcrete: next generation of self-healing concrete.

    Science.gov (United States)

    Seifan, Mostafa; Samani, Ali Khajeh; Berenjian, Aydin

    2016-03-01

    Concrete is one of the most widely used construction materials and has a high tendency to form cracks. These cracks lead to significant reduction in concrete service life and high replacement costs. Although it is not possible to prevent crack formation, various types of techniques are in place to heal the cracks. It has been shown that some of the current concrete treatment methods such as the application of chemicals and polymers are a source of health and environmental risks, and more importantly, they are effective only in the short term. Thus, treatment methods that are environmentally friendly and long-lasting are in high demand. A microbial self-healing approach is distinguished by its potential for long-lasting, rapid and active crack repair, while also being environmentally friendly. Furthermore, the microbial self-healing approach prevails the other treatment techniques due to the efficient bonding capacity and compatibility with concrete compositions. This study provides an overview of the microbial approaches to produce calcium carbonate (CaCO3). Prospective challenges in microbial crack treatment are discussed, and recommendations are also given for areas of future research. PMID:26825821

  8. Bioconcrete: next generation of self-healing concrete.

    Science.gov (United States)

    Seifan, Mostafa; Samani, Ali Khajeh; Berenjian, Aydin

    2016-03-01

    Concrete is one of the most widely used construction materials and has a high tendency to form cracks. These cracks lead to significant reduction in concrete service life and high replacement costs. Although it is not possible to prevent crack formation, various types of techniques are in place to heal the cracks. It has been shown that some of the current concrete treatment methods such as the application of chemicals and polymers are a source of health and environmental risks, and more importantly, they are effective only in the short term. Thus, treatment methods that are environmentally friendly and long-lasting are in high demand. A microbial self-healing approach is distinguished by its potential for long-lasting, rapid and active crack repair, while also being environmentally friendly. Furthermore, the microbial self-healing approach prevails the other treatment techniques due to the efficient bonding capacity and compatibility with concrete compositions. This study provides an overview of the microbial approaches to produce calcium carbonate (CaCO3). Prospective challenges in microbial crack treatment are discussed, and recommendations are also given for areas of future research.

  9. Total flavones of Hippophae rhamnoides promotes early restoration of ultimate stress of healing patellar tendon in a rat model.

    Science.gov (United States)

    Fu, S C; Hui, C W C; Li, L C; Cheuk, Y C; Qin, L; Gao, J; Chan, K-M

    2005-05-01

    Traditional Chinese herbal medicine has long been used for treatment of tendon injuries. Comparing to the modern way of treatments, Traditional Chinese medicine also stresses on strategies to promote the inherent healing capacity of tendons. Hippophae rhamnoides, known as Shaji, is one of Chinese herbal drugs that are traditionally used to promote tendon and ligament injuries. The total flavones of H. rhamnoides (TFH), with major constituents including quercetin, isorhamnetin and kaempferol, have been demonstrated with most of the bioactive properties of Shaji. In the present study, we evaluated the potential effect of TFH in the restoration of ultimate stress of healing patellar tendon in a well-established gap wound model in rats. A 0.1 mg TFH was injected to wound 1 day after the injury, and the ultimate stress of the healing tendon was measured at day 14 post-injury. The results showed that the ultimate stress of the healing tendon was significantly promoted by injection of TFH, increasing from 30 to 50% as compared to saline control. Excessive fibrotic response was not found in TFH-treated animals, but an enhanced collagen deposition and a better fibre alignment were observed. The results suggest that TFH may improve the ultimate stress of healing tendons at early stages, which implies possible earlier rehabilitation programme and better recovery. PMID:15823472

  10. Foxo1 Inhibits Diabetic Mucosal Wound Healing but Enhances Healing of Normoglycemic Wounds

    OpenAIRE

    Xu, Fanxing; Othman, Badr; Lim, Jason; Batres, Angelika; Ponugoti, Bhaskar; Zhang, Chenying; Yi, Leah; Liu, Jian; Tian, Chen; Hameedaldeen, Alhassan; Alsadun, Sarah; Tarapore, Rohinton; Graves, Dana T.

    2014-01-01

    Re-epithelialization is an important part in mucosal wound healing. Surprisingly little is known about the impact of diabetes on the molecular events of mucosal healing. We examined the role of the transcription factor forkhead box O1 (Foxo1) in oral wounds of diabetic and normoglycemic mice with keratinocyte-specific Foxo1 deletion. Diabetic mucosal wounds had significantly delayed healing with reduced cell migration and proliferation. Foxo1 deletion rescued the negative impact of diabetes o...

  11. Self-healing metallopolymers: Detailed investigation of the self-healing properties by scratch testing

    OpenAIRE

    de Bode, S; Bose, R.K.; Sandmann, B.; Hager, M.D.; Garcia Espallargas, S.J.; Van der Zwaag, S.; Schubert, U.S.

    2013-01-01

    In the last decade several intrinsic self-healing materials have been developed in which the healing mechanism was mainly based on the reversibility of a certain structural element. For this purpose, reversible covalent bonds, e.g., based on the Diels-Alder reaction or weaker non-covalent interactions, e.g., hydrogen bonding, ionic interactions or π-π interactions, have been successfully utilized. In contrast, only few examples describe the self-healing of polymeric materials based on reversi...

  12. Diabetic foot disease: impact of ulcer location on ulcer healing

    DEFF Research Database (Denmark)

    Pickwell, KM; Siersma, Volkert Dirk; Kars, M;

    2013-01-01

    Healing of heel ulcers in patients with diabetes is considered to be poor, but there is relatively little information on the influence of ulcer location on ulcer healing.......Healing of heel ulcers in patients with diabetes is considered to be poor, but there is relatively little information on the influence of ulcer location on ulcer healing....

  13. 42 CFR 60.38 - Assignment of a HEAL loan.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Assignment of a HEAL loan. 60.38 Section 60.38... ASSISTANCE LOAN PROGRAM The Lender and Holder § 60.38 Assignment of a HEAL loan. A HEAL note may not be assigned except to another HEAL lender, the Student Loan Marketing Association (popularly known as...

  14. 42 CFR 60.18 - Consolidation of HEAL loans.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Consolidation of HEAL loans. 60.18 Section 60.18... ASSISTANCE LOAN PROGRAM The Loan § 60.18 Consolidation of HEAL loans. HEAL loans may be consolidated as... consolidation: (a) If a lender or holder holds two or more HEAL loans made to the same borrower, the lender...

  15. 42 CFR 60.34 - HEAL loan account servicing.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false HEAL loan account servicing. 60.34 Section 60.34... ASSISTANCE LOAN PROGRAM The Lender and Holder § 60.34 HEAL loan account servicing. HEAL loan account... inquiries and other communications from a borrower and any endorser of a HEAL loan. (b) Conversion of...

  16. [THE CYTOMETRIC TECHNIQUE OF BINDING OF EOSIN-5-MALEIMIDE IN DIAGNOSTIC OF INHERENT SPHEROCYTOSIS].

    Science.gov (United States)

    Kuzminova, J A; Plyasunova, S A; Jogov, V V; Smetanina, N S

    2016-03-01

    The laboratory diagnostic of inherent spherocytosis is based on detection of spherocytes in peripheral blood, decreasing of index of sphericity, decreasing of osmotic resistance of erythrocytes. The new test of diagnostic of hereditary spherocytosis build on molecular defect was developed on the basis of binding extracellular fragments of protein of band 3 with eosin-5-maleimide (EMA-test). The study was carried out to implement comparative analysis of sensitivity and specificity of techniques applied to diagnose inherent spherocytosis. The sampling of 94 patients with various forms of anemias was analyzed All patients were applied complex clinical laboratory examination including analysis of osmotic resistance of erythrocytes, erythrocytometry and EMA-test as specific techniques of diagnostic of inherent spherocytosis. In 51 out of 94 patients (54%) decreasing of values of EMA-test was detected and in 47 patients diagnosis of inherent spherocytosis was confirmed. The standard values of EMA-test were established in 43 patients (46%) and 12 patients out of them with established diagnosis of inherent spherocytosis. Therefore, sensitivity of EMA-test made up to 79% and specificity - 80%. The most sensitive techniques of diagnostic remain osmotic resistance of erythrocytes (91%) and index of sphericity (up to 96%). But the highest specificity in this respect has EMA-test (80%). Nowadays, none of implemented techniques of diagnostic of inherent spherocytosis can be applied as a universal one. The implementation of complex examination is needed for proper diagnostic of disease.

  17. Self healing nature of bilayer graphene

    Science.gov (United States)

    Debroy, Sanghamitra; Pavan Kumar Miriyala, V.; Vijaya Sekhar, K.; Acharyya, Swati Ghosh; Acharyya, Amit

    2016-08-01

    The phenomenon of self healing of cracks in bilayer graphene sheet has been studied using molecular dynamics simulations. The bilayer graphene sheet was subjected to uniaxial tensile load resulting in initiation and propagation of cracks on exceeding the ultimate tensile strength. Subsequently, all forces acting on the sheet were removed and sheet was relaxed. The cracks formed in the graphene sheet healed without any external aid within 0.4 ps The phenomenon of self healing of the cracks in graphene sheet was found to be independent of the length of the crack, but occurred for critical crack opening distance less than 5 Å for AA stacked sheet and 13 Å for AB stacked bilayer graphene sheet. Self healing was observed for both AB (mixed stacking of armchair and zigzag graphene sheet) and AA (both sheets of similar orientation i.e. either armchair-armchair or zigzag-zigzag) stacking of bilayer graphene sheet.

  18. Self Healing Capacity of Asphalt Binders

    Institute of Scientific and Technical Information of China (English)

    PANG Ling; JIANG Huan; WU Shuxiang; WU Shaopeng

    2012-01-01

    To test self healing capability of asphalt binders,three asphalt specimens (pure asphalt,modified asphalt and aged asphalt) were prepared.Every specimen was tested by dynamic shear rheometer (DSR).The temperature sweeps result indicates that both aging and SBS modifying influence the self healing capability of asphalt binder.The fatigue-heal-fatigue test was introduced to study the self healing capability of asphalt in its serving periods.Furthermore,three different periods (0.5 h,1 h,3 h) were set up to study the influence of rest time on fatigue time.It is concluded that longer rest time,less load will delay the appearance of cracks and extend the service life of asphalt binders.

  19. Self-Healing of biocompatible polymeric nanocomposities

    Science.gov (United States)

    Espino, Omar; Chipara, Dorina

    2014-03-01

    Polymers are vulnerable to damage in form of cracks deep within the structure, where detection is difficult and repair is near to impossible. These cracks lead to mechanical degradation of the polymer. A method has been created to solve this problem named polymeric self healing. Self healing capabilities implies the dispersion within the polymeric matrix of microcapsules filled with a monomer and of catalyst. Poly urea-formaldehyde microcapsules used in this method are filled with dicyclopentadiene that is liberated after being ruptured by the crack propagation in the material. Polymerization is assisted by a catalyst FGGC that ignites the self healing process. Nanocomposites, such as titanium oxide, will be used as an integration of these polymers that will be tested by rupturing mechanically slowly. In order to prove the self healing process, Raman spectroscopy, FTIR, and SEM are used.

  20. News in wound healing and management

    DEFF Research Database (Denmark)

    Gottrup, Finn; Jørgensen, Bo; Karlsmark, Tonny

    2009-01-01

    PURPOSE OF REVIEW: Nonhealing wounds are a significant problem in the healthcare system all over the world. The present review focuses on some recent developments and promising clinical progresses in wound management. RECENT FINDINGS: New findings have increased our knowledge in several wound areas......-TNFalpha) and Lactobacillus plantarum cultures have also been successfully used in hard to heal, atypical wounds. Knowledge on influencing factors as smoking and biofilm on the healing process has also been improved. Smoking results in delayed healing and increased risk of postoperative infection, whereas the role of biofilm...... is still at an exploratory level. Organizing models for optimal wound management are constantly being developed and refined. SUMMARY: Recent knowledge on the importance of new dressing materials containing active substances, new treatments for atypical wounds, influencing factors on the healing process...

  1. Self-healing cable apparatus and methods

    Science.gov (United States)

    Huston, Dryver (Inventor); Esser, Brian (Inventor)

    2007-01-01

    Self-healing cable apparatus and methods are disclosed. The cable has a central core surrounded by an adaptive cover that can extend over the entire length of the cable or just one or more portions of the cable. The adaptive cover includes a protective layer having an initial damage resistance, and a reactive layer. When the cable is subjected to a localized damaging force, the reactive layer responds by creating a corresponding localized self-healed region. The self-healed region provides the cable with enhanced damage resistance as compared to the cable's initial damage resistance. Embodiments of the invention utilize conventional epoxies or foaming materials in the reactive layer that are released to form the self-healed region when the damaging force reaches the reactive layer.

  2. Current wound healing procedures and potential care.

    Science.gov (United States)

    Dreifke, Michael B; Jayasuriya, Amil A; Jayasuriya, Ambalangodage C

    2015-03-01

    In this review, we describe current and future potential wound healing treatments for acute and chronic wounds. The current wound healing approaches are based on autografts, allografts, and cultured epithelial autografts, and wound dressings based on biocompatible and biodegradable polymers. The Food and Drug Administration approved wound healing dressings based on several polymers including collagen, silicon, chitosan, and hyaluronic acid. The new potential therapeutic intervention for wound healing includes sustained delivery of growth factors, and siRNA delivery, targeting microRNA, and stem cell therapy. In addition, environment sensors can also potentially utilize to monitor and manage microenvironment at wound site. Sensors use optical, odor, pH, and hydration sensors to detect such characteristics as uric acid level, pH, protease level, and infection - all in the hopes of early detection of complications.

  3. Topical 5-azacytidine accelerates skin wound healing in rats.

    Science.gov (United States)

    Gomes, Fabiana S; de-Souza, Gabriela F; Nascimento, Lucas F; Arantes, Eva L; Pedro, Rafael M; Vitorino, Daniele C; Nunez, Carla E; Melo Lima, Maria H; Velloso, Lício A; Araújo, Eliana P

    2014-01-01

    The development of new methods to improve skin wound healing may affect the outcomes of a number of medical conditions. Here, we evaluate the molecular and clinical effects of topical 5-azacytidine on wound healing in rats. 5-Azacytidine decreases the expression of follistatin-1, which negatively regulates activins. Activins, in turn, promote cell growth in different tissues, including the skin. Eight-week-old male Wistar rats were submitted to 8.0-mm punch-wounding in the dorsal region. After 3 days, rats were randomly assigned to receive either a control treatment or the topical application of a solution containing 5-azacytidine (10 mM) once per day. Photo documentation and sample collection were performed on days 5, 9, and 15. Overall, 5-azacytidine promoted a significant acceleration of complete wound healing (99.7% ± 0.7.0 vs. 71.2% ± 2.8 on day 15; n = 10; p < 0.01), accompanied by up to threefold reduction in follistatin expression. Histological examination of the skin revealed efficient reepithelization and cell proliferation, as evaluated by the BrdU incorporation method. 5-Azacytidine treatment also resulted in increased gene expression of transforming growth factor-beta and the keratinocyte markers involucrin and cytokeratin, as well as decreased expression of cytokines such as tumor necrosis factor-alpha and interleukin-10. Lastly, when recombinant follistatin was applied to the skin in parallel with topical 5-azacytidine, most of the beneficial effects of the drug were lost. Thus, 5-azacytidine acts, at least in part through the follistatin/activin pathway, to improve skin wound healing in rodents. PMID:25039304

  4. EVALUATION OF WOUND HEALING ACTIVITY OF HELIOTROPIUM INDICUM LEAVES

    Directory of Open Access Journals (Sweden)

    Shenoy Ashoka M

    2011-01-01

    Full Text Available Present study is about the wound healing activity of ethanol and aqueous extracts of H.indicum leaves in wistar rats. Three wound models viz incision, excision and dead space wound were used in this study. The biophysical parameters studied were breaking strength in case of incision wounds and granulation tissue dry weight, breaking strength and hydroxyproline content in dead space wound model. In excision wound model, rate of contraction and number of days for epithelialization and also the granulation tissue formed on day 4, 8 and 12 were used to estimate some biochemical parameters like protein, DNA, collagen and lipid peroxides. For tropical application, 2% w/w sodium alginate ointment was prepared with 5% of aqueous and ethanol extracts of leaves. For oral administration 1% gum tragacanth suspension with 500mg/ml of extract was used. In excision and incision wound models, the control groups of animals were left untreated and in dead space wound model the animals were treated with 1 ml of 1% gum tragacanth per Kg, body weight orally.Aqueous and ethanol leaf extracts induced significant wound-healing activity against all the wound models studied. High rate of wound contraction, decrease in the period for epithelialisation, high skin breaking strength and granulation strength, increase in dry granulation tissue weight were observed in treated animals when compared to the control group of animals. There was significant increase in hydroxyproline, protein, collagen contents and decrease in lipid peroxide level in treated animals. Results of the study confirmed the prominent wound healing activity of the test extracts. Ethanol extract of H.indicum possesses better wound healing property compared to the aqueous extract.

  5. Self-Healing Behavior of Ethylene-Based Ionomers

    Science.gov (United States)

    Kalista, Stephen J., Jr.; Ward, Thomas C.; Oyetunji, Zainab

    2004-01-01

    The self-healing behavior of poly(ethylene-co-methacrylic acid) (EMAA)-based ionomers holds tremendous potential for use in a wide variety of unique applications. However, to effectively utilize this self-healing behavior and to design novel materials which possess this ability, the mechanism by which they heal must first be understood ionomers are a class of polymers that can be described as copolymers containing less than 15 mol% ionic content whereby the bulk properties are governed by ionic interactions within the polymer. These ionic groups aggregate into discrete regions known as multiplets which overlap forming clusters that act as physical cross-links profoundly influencing the bulk physical properties. These clusters possess an order-disorder transition (T(sub i)) where the clustered regions may rearrange themselves given time and stimuli. Recognizing the strong influence of these ionic regions on other well understood ionomer properties, their role in self-heating behavior will be assessed. The self-healing behavior is observed following projectile puncture. It has been suggested that during impact energy is passed to the ionomer material, heating it to the melt state. After penetration, it is proposed that the ionic regions maintain their attractions and flow together patching the hole. Thus, the importance of this ionic character and is unique interaction must be established. This will be accomplished through examination of materials with varying ionic content and through the analysis of the T(sub i). The specific ionomer systems examined include a number of ethylene-based materials. Materials of varying ionic content, including the non-ionic base copolymers, will be examined by peel tests, projectile impact and DSC analysis. The information will also be compared with some basic data on LDPE material.

  6. Healing times and prediction of wound healing in neuropathic diabetic foot ulcers: a prospective study.

    Science.gov (United States)

    Zimny, S; Pfohl, M

    2005-02-01

    Time line of wound healing and prediction of healing times in diabetic foot ulcers is an important issue. Usually, the percentage of wounds healed within a defined period is used for characterization of wound healing. R=sqrtA/pi (R, radius; A, planimetric wound area; pi, constant 3.14), and the wound radius reduction was 0.39 mm/week which was previously established. The initial average wound area was 96.9+/-13.1 mm2 (mean+/-SEM), and 3.61+/-1.6 mm 2 after ten weeks with an average healing time of 75.9 (95 %-CI 71-81) days. Using the equation mentioned above and the calculated weekly wound radius reduction, the predicted healing time in the test group was 86.9 (95 %-CI 73-101) days. The predicted and the observed healing times were significantly correlated with each other (r=0.55, p=0.0002). Providing standard care, the time needed for wound healing can reliably be predicted in neuropathic diabetic foot ulcers. This may be a useful tool in daily clinical practice to predict wound healing and recognize ulcers who do not respond adequately to the treatment. PMID:15772900

  7. Physical and Numerical Simulation for Inner Crack Healing in Metals

    Institute of Scientific and Technical Information of China (English)

    Jingtao HAN; Dongbin WEI; Yongjun ZHANG

    2004-01-01

    The research purpose on the healing of inner crack in metallic materials is to provide an effective approach for improving their properties and prolonging their lifetime. The crack healing process of 20MnMo steel with inner pre-crack was analyzed. It was found that all inner cracks could be healed in different degree. There were very fine ferrite grains in healing region. The micro-crack healing process in single crystal of BBC-Fe was simulated by the molecule dynamics method, which showed that the critical temperature of crack healing in BBC-Fe is 673K. There were micro-voids, dislocations and twins left after crack healing.

  8. Evaluation of Topical Tocopherol Cream on Cutaneous Wound Healing in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Teoh Seong Lin

    2012-01-01

    Full Text Available Diabetes is a common cause of delayed wound healing. The aim of the study was to determine the effect of topical administration of tocopherol cream on the wound healing process in diabetic rats. The study was conducted using 18 male Sprague Dawley rats which were divided into three groups: (I diabetic rats receiving control cream , (II diabetic rats receiving 0.06% tocopherol cream , and (III diabetic rats receiving 0.29% tocopherol cream . Four cutaneous wounds were created at the dorsal region of the rats. Wound healing was assessed by total protein content, rate of wound closure estimation, and histological studies on the tenth day after wounding. Tocopherol treatment enhanced the wound healing process by increasing rate of wound closure and total protein content significantly compared to the control group. Histological observation also showed better organized epithelium and more collagen fibers in the tocopherol treated groups. Application of tocopherol cream enhances wound healing process in diabetic condition which is known to cause delay in wound healing.

  9. Evaluation of Topical Tocopherol Cream on Cutaneous Wound Healing in Streptozotocin-Induced Diabetic Rats

    Science.gov (United States)

    Lin, Teoh Seong; Abd Latiff, Azian; Abd Hamid, Noor Aini; Wan Ngah, Wan Zurinah bt; Mazlan, Musalmah

    2012-01-01

    Diabetes is a common cause of delayed wound healing. The aim of the study was to determine the effect of topical administration of tocopherol cream on the wound healing process in diabetic rats. The study was conducted using 18 male Sprague Dawley rats which were divided into three groups: (I) diabetic rats receiving control cream (n = 6), (II) diabetic rats receiving 0.06% tocopherol cream (n = 6), and (III) diabetic rats receiving 0.29% tocopherol cream (n = 6). Four cutaneous wounds were created at the dorsal region of the rats. Wound healing was assessed by total protein content, rate of wound closure estimation, and histological studies on the tenth day after wounding. Tocopherol treatment enhanced the wound healing process by increasing rate of wound closure and total protein content significantly (P < 0.05) compared to the control group. Histological observation also showed better organized epithelium and more collagen fibers in the tocopherol treated groups. Application of tocopherol cream enhances wound healing process in diabetic condition which is known to cause delay in wound healing. PMID:23097676

  10. Evaluation of the Mechanical Properties of Microcapsule-Based Self-Healing Composites

    Directory of Open Access Journals (Sweden)

    Liberata Guadagno

    2016-01-01

    Full Text Available Self-healing materials are beginning to be considered for applications in the field of structural materials. For this reason, in addition to self-healing efficiency, also mechanical properties such as tensile and compressive properties are beginning to become more and more important for this kind of materials. In this paper, three different systems based on epoxy-resins/ethylidene-norbornene (ENB/Hoveyda-Grubbs 1st-generation (HG1 catalyst are investigated in terms of mechanical properties and healing efficiency. The experimental results show that the mechanical properties of the self-healing systems are mainly determined by the chemical nature of the epoxy matrix. In particular, the replacement of a conventional flexibilizer (Heloxy 71 with a reactive diluent (1,4-butanediol diglycidyl ether allows obtaining self-healing materials with better mechanical properties and higher thermal stability. An increase in the curing temperature causes an increase in the elastic modulus and a slight reduction of the healing efficiency. These results can constitute the basis to design systems with high regenerative ability and appropriate mechanical performance.

  11. Stem Cells for Cutaneous Wound Healing

    OpenAIRE

    Giles T. S. Kirby; Stuart J. Mills; Cowin, Allison J.; Smith, Louise E.

    2015-01-01

    Optimum healing of a cutaneous wound involves a well-orchestrated cascade of biological and molecular processes involving cell migration, proliferation, extracellular matrix deposition, and remodelling. When the normal biological process fails for any reason, this healing process can stall resulting in chronic wounds. Wounds are a growing clinical burden on healthcare systems and with an aging population as well as increasing incidences of obesity and diabetes, this problem is set to increase...

  12. A wound healing model with sonographic monitoring.

    Science.gov (United States)

    Hoffmann, K; Winkler, K; el-Gammal, S; Altmeyer, P

    1993-05-01

    The methods used hitherto for quantification of skin repair processes only allow an examiner a two-dimensional assessment of superficial wound healing. With the recent advent of high frequency B-scan ultrasonography in dermatology it has become possible to follow the course of healing and evaluate the healing processes in deeper layers of the skin. In this investigation 80 patients received cryosurgery for treatment of basal cell carcinomas on the face or neck region. As the size of cryosurgical defects can be precisely controlled they are potentially useful as standardized wound healing models. The course of wound healing after cryosurgery using a digital ultrasound scanner (DUB 20, Taberna pro medicum, Lüneburg, Germany) was monitored. The usable depth of penetration of the echo signal is approximately 7 mm. The lateral resolution is approximately 200 microns, the axial resolution approximately 80 microns. The cryolesion and the repair processes were examined ultrasonographically and clinically over a period of at least 3 weeks or until the wound had completely healed. The depth of invasion and lateral extent of the basal cell carcinoma as well as the size of the induced cryolesion can be determined by ultrasound. The exudative phase after cryosurgery, with developing oedema and necrosis, can be quantified on the basis of the reduced reflectivity in the corium. The repair processes taking place in the region of necrosis can be visualized in the ultrasound scan. The ultrasonically monitored wound healing model which we have demonstrated is particularly suitable for investigating the efficacy of drugs which promote healing.

  13. Therapeutic touch for healing acute wounds

    OpenAIRE

    O'Mathuna, Donal; Ashford, Robert L

    2012-01-01

    Background Therapeutic Touch (TT) is an alternative therapy that has gained popularity over the past two decades for helping wounds to heal. Practitioners enter ameditative state and pass their hands above the patient’s body to find and correct any imbalances in the patient’s ’life energy’ or chi. Scientific instruments have been unable to detect this energy. The effect of TT on wound healing has been expounded in anecdotal publications. Objectives To identify and review all relevant...

  14. Cellular events and biomarkers of wound healing

    OpenAIRE

    Shah Jumaat Mohd Yussof; Effat Omar; Pai, Dinker R.; Suneet Sood

    2012-01-01

    Researchers have identified several of the cellular events associated with wound healing. Platelets, neutrophils, macrophages, and fibroblasts primarily contribute to the process. They release cytokines including interleukins (ILs) and TNF-α, and growth factors, of which platelet-derived growth factor (PDGF) is perhaps the most important. The cytokines and growth factors manipulate the inflammatory phase of healing. Cytokines are chemotactic for white cells and fibroblasts, while the growth f...

  15. New trends in healing chronic wounds

    OpenAIRE

    KREJSKOVÁ, Kamila

    2013-01-01

    Basic theoretical bases As a chronic wound is called a secondarily healing wound which despite adequate therapy does not tend to heal for a period of 6-9 weeks. The cause of the chronic wound occurrence and its transformation into an acute wound can be infection, influence of associated diseases, skin top layer microtraumatization or skin necrosis cavity. Among the most frequent types of chronic wounds there are aligned venous ulcerations, arterial rodent ulcers, decubitus ulcers and neuropat...

  16. Wound healing properties of Artocarpus heterophyllus Lam.

    Science.gov (United States)

    Gupta, Nilesh; Jain, U K; Pathak, A K

    2009-04-01

    The studies on excision wound healing model reveals significant wound healing activity of the methanolic leaf extract (simple ointment 5%) of "Artocarpus heterophyllus" ham which is comparable with standard (Betadine). In the excision model, the period of epithelization, of the extract treated group was found to be higher than the controlgroup and slightly lesser than standard treated group of animals on the up to 16(th) post wounding day. PMID:22557331

  17. Wound healing properties of Artocarpus heterophyllus Lam

    OpenAIRE

    Gupta, Nilesh; Jain, U.K.; A. K. Pathak

    2009-01-01

    The studies on excision wound healing model reveals significant wound healing activity of the methanolic leaf extract (simple ointment 5%) of “Artocarpus heterophyllus” ham which is comparable with standard (Betadine). In the excision model, the period of epithelization, of the extract treated group was found to be higher than the controlgroup and slightly lesser than standard treated group of animals on the up to 16th post wounding day.

  18. Molecular Imaging of Healing After Myocardial Infarction

    OpenAIRE

    Naresh, Nivedita K; Ben-Mordechai, Tamar; Leor, Jonathan; Epstein, Frederick H

    2011-01-01

    The progression from acute myocardial infarction (MI) to heart failure continues to be a major cause of morbidity and mortality. Potential new therapies for improved infarct healing such as stem cells, gene therapy, and tissue engineering are being investigated. Noninvasive imaging plays a central role in the evaluation of MI and infarct healing, both clinically and in preclinical research. Traditionally, imaging has been used to assess cardiac structure, function, perfusion, and viability. H...

  19. Wound healing following radiation therapy: a review

    International Nuclear Information System (INIS)

    Radiation therapy may interrupt normal wound healing mechanisms. Changes in vasculature, effects on fibroblasts, and varying levels of regulatory growth factors result in the potential for altered wound healing whether radiation is given before or after surgery. Surgical factors, such as incision size, as well as radiation parameters, including dose and fractionation, are important considerations in developing overall treatment plans. Experience suggests that certain practical measures may diminish the risk of morbidity, and investigations are ongoing

  20. Roles of Antioxidative Enzymes in Wound Healing

    OpenAIRE

    Toshihiro Kurahashi; Junichi Fujii

    2015-01-01

    Since skin is the first barrier separating the body from the external environment, impaired wound healing can be life threatening to living organisms. Delayed healing processes are observed in animals under certain circumstances, such as advanced age, diabetes, and immunosuppression, but the underlying mechanisms of the abnormality remain elusive. Redox homeostasis is defined as the balance between the levels of reactive oxygen species (ROS) and antioxidants in which antioxidative enzymes pla...

  1. Impaired Fracture Healing after Hemorrhagic Shock

    Directory of Open Access Journals (Sweden)

    Philipp Lichte

    2015-01-01

    Full Text Available Impaired fracture healing can occur in severely injured patients with hemorrhagic shock due to decreased soft tissue perfusion after trauma. We investigated the effects of fracture healing in a standardized pressure controlled hemorrhagic shock model in mice, to test the hypothesis that bleeding is relevant in the bone healing response. Male C57/BL6 mice were subjected to a closed femoral shaft fracture stabilized by intramedullary nailing. One group was additionally subjected to pressure controlled hemorrhagic shock (HS, mean arterial pressure (MAP of 35 mmHg for 90 minutes. Serum cytokines (IL-6, KC, MCP-1, and TNF-α were analyzed 6 hours after shock. Fracture healing was assessed 21 days after fracture. Hemorrhagic shock is associated with a significant increase in serum inflammatory cytokines in the early phase. Histologic analysis demonstrated a significantly decreased number of osteoclasts, a decrease in bone quality, and more cartilage islands after hemorrhagic shock. μCT analysis showed a trend towards decreased bone tissue mineral density in the HS group. Mechanical testing revealed no difference in tensile failure. Our results suggest a delay in fracture healing after hemorrhagic shock. This may be due to significantly diminished osteoclast recruitment. The exact mechanisms should be studied further, particularly during earlier stages of fracture healing.

  2. How do bisphosphonates affect fracture healing?

    Science.gov (United States)

    Kates, Stephen L; Ackert-Bicknell, Cheryl L

    2016-01-01

    Bisphosphonates (BPs) have been in use for many years for the treatment of osteoporosis, multiple myeloma, Paget's disease, as well as a variety of other diseases in which there is reduced bone mineral density. Given that bisphosphonates inhibit bone resorption, an important stage of fracture healing; this class of compounds has been widely studied in preclinical models regarding their influence on fracture healing. In animal models, bisphosphonate treatment is associated with a larger fracture callus, coincident with a delay in remodeling from primary woven bone to lamellar bone, but there is no delay in formation of the fracture callus. In humans, de novo use of bisphosphonate therapy after fracture does not appear to have a significant effect on fracture healing. Rarely, patients with long term use of Bisphosphonates may develop an atypical fracture and delay in fracture healing has been observed. In summary, bisphosphonates appear safe for use in the setting of acute fracture management in the upper and lower extremity in humans. While much remains unknown about the effects on healing of long-term bisphosphonates, use prior to "typical" fracture, in the special case of atypical fracture, evidence suggests that bisphosphonates negatively influence healing. PMID:26768295

  3. Self-healing coatings containing microcapsule

    Science.gov (United States)

    Zhao, Yang; Zhang, Wei; Liao, Le-ping; Wang, Si-jie; Li, Wu-jun

    2012-01-01

    Effectiveness of epoxy resin filled microcapsules was investigated for healing of cracks generated in coatings. Microcapsules were prepared by in situ polymerization of urea-formaldehyde resin to form shell over epoxy resin droplets. Characteristics of these capsules were studied by 3D measuring laser microscope, particle size analyzer, Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimeter (DSC) to investigate their surface morphology, size distribution, chemical structure and thermal stability, respectively. The results indicate that microcapsules containing epoxy resins can be synthesized successfully. The size is around 100 μm. The rough outer surface of microcapsule is composed of agglomerated urea-formaldehyde nanoparticles. The size and surface morphology of microcapsule can be controlled by selecting different processing parameters. The microcapsules basically exhibit good storage stability at room temperature, and they are chemically stable before the heating temperature is up to approximately 200 °C. The model system of self-healing coating consists of epoxy resin matrix, 10 wt% microencapsulated healing agent, 2 wt% catalyst solution. The self-healing function of this coating system is evaluated through self-healing testing of damaged and healed coated steel samples.

  4. Ritual healing and mental health in India.

    Science.gov (United States)

    Sax, William

    2014-12-01

    Ritual healing is very widespread in the Indian state of Uttarakhand, and is by far the most common option for those with serious behavioral disturbances. Although ritual healing thus accounts for a very large part of the actual health care system, the state and its regulatory agencies have, for the most part, been structurally blind to its existence. A decade of research on in this region, along with a number of shorter research trips to healing shrines and specialists elsewhere in the subcontinent, and a thorough study of the literature, suggest that such techniques are often therapeutically effective. However, several considerations suggest that ritual healing may not be usefully combined with mainstream "Western" psychiatry: (a) psychiatry is deeply influenced by the ideology of individualism, which is incompatible with South Asian understandings of the person; (b) social asymmetries between religious healers and health professionals are too great to allow a truly respectful relationship between them; and (c) neither the science of psychiatry nor the regulatory apparatus of the state can or will acknowledge the validity of "ritual therapy"--and even if they did so, regulation would most likely destroy what is most valuable about ritual healing. This suggests that it is best if the state maintain its structural blindness to ritual healing. PMID:24572292

  5. Mechanistic Studies of Solid State Self-Healing Systems

    International Nuclear Information System (INIS)

    The kinetics of diffusion and healing efficiency of healable resins at different healing times or with different concentrations of healing agent (HA) were studied. The reduction in healing efficiency at concentrations of HA greater than 8.0 weight total percentage was demonstrated to be caused by phase separation. Thus, the HA need to be soluble in the epoxy resin network for optimum healing efficiency. (author)

  6. Relationships between inherent optical properties in the Baltic Sea for application to the underwater imaging problem

    Directory of Open Access Journals (Sweden)

    Sławomir Sagan

    2013-02-01

    Full Text Available Statistical relationships between coefficients of light attenuation, scattering and backscattering at wavelength 550 nm derived from series of optical measurements performed in Baltic Sea waters are presented. The relationships were derived primarily to support data analysis from underwater imaging systems. Comparison of these relations with analogous empirical data from the Atlantic and Pacific Oceans shows that the two sets of relationships are similar, despite the different water types and the various experimental procedures and instrumentation applied. The apparently universal character of the relationships enables an approximate calculation of other optical properties and subsequently of the contrast, signal/noise ratio, visibility range and spatial resolution of underwater imaging systems based on attenuation coefficients at wavelength 550 nm only.

  7. X-ray observation on how axial compression stimulates tibial fracture healing

    Institute of Scientific and Technical Information of China (English)

    CHEN Hai-bin; WANG Zheng-guo; XIAO Kai; CHU Tong-wei; QIU Jun; ZHANG Liang; ZHOU Ji-hong

    2010-01-01

    Objective: To validate the hypothesis that there exists an optimal axial compression stress range to enhance tibial fracture healing.Methods: Rabbits with a surgically induced V-shaped tibial fracture were separated into 2 main groups: the control group (C Group, n=6) without application of any axial compression stress stimulation postoperatively and the stimulation group ( S Group, n=90). The S Group was further divided into 20 subgroups (S11 to S54) in terms of 5 axial compression stress stimulation levels (112.8 kPa, 289.8kPa, 396.5 kPa, 472.7 kPa, and 602.3 kPa) and 4 experimental endpoints (1, 3, 5 and 8 weeks after operation). A custom made circular external fixator was used to provide the axial compression stress of the fracture sites. Based on X-ray observation, a fracture healing scoring system was created to evaluate the fracture healing process.Results: At 8 weeks after operation, there existed a "⌒-shape" relationship between healing score and axial compression stress stimulation level of fracture site. The optimal axial compression stress stimulation ranged from 289.8 kPa to 472.7 kPa, accompanying the best fracture healing, i.e. the fracture line became indistinct or almost disappeared, and a lot of callus jointed the two fracture ends. Meanwhile, at 5 weeks after operation, corresponding to the relatively low healing scores, there was a fracture healing performance similar to that at 8 weeks. Besides, at 1 or 3 weeks after operation, for all the axial compression stress levels (0-602.3 kPa), no obvious healing effect was found.Conclusions: It is implied from the stated X-ray observation results in this study that the potential optimal axial compression stress stimulation and optimal fracture healing time are available. The axial compression stress level of 289.8-472.7 kPa and fracture healing time of more than 8 weeks jointly comprise the optimal axial compression stress stimulation conditions to enhance tibial fracture healing.

  8. Recent Advances in Thermoplastic Puncture-Healing Polymers

    Science.gov (United States)

    Gordon, K. L.; Working, D. C.; Wise, K. E.; Bogert, P. B.; Britton, S. M.; Topping, C.C.; Smith, J. Y.; Siochi, E. J.

    2009-01-01

    Self-healing materials provide a route for enhanced damage tolerance in materials for aerospace applications. In particular, puncture-healing upon impact has the potential to mitigate significant damage caused by high velocity micrometeoroid impacts. This type of material also has the potential to improve damage tolerance in load bearing structures to enhance vehicle health and aircraft durability. The materials being studied are those capable of instantaneous puncture healing, providing a mechanism for mechanical property retention in lightweight structures. These systems have demonstrated healing capability following penetration of fast moving projectiles -- velocities that range from 9 mm bullets shot from a gun (approx.330 m/sec) to close to micrometeoroid debris velocities of 4800 m/sec. In this presentation, we report on a suite of polymeric materials possessing this characteristic. Figure 1 illustrates the puncture healing concept. Puncture healing in these materials is dependent upon how the combination of a polymer's viscoelastic properties responds to the energy input resulting from the puncture event. Projectile penetration increases the temperature in the vicinity of the impact. Self-healing behavior occurs following puncture, whereby energy must be transferred to the material during impact both elastically and inelastically, thus establishing two requirements for puncture healing to occur: a.) The need for the puncture event to produce a local melt state in the polymer material and b.) The molten material has to have sufficient melt elasticity to snap back and close the hole. 1,2 Previous ballistic testing studies revealed that Surlyn materials warmed up to a temperature approx.98 C during projectile puncture (3 C higher than it s melting temperature). 1,2 The temperature increase produces a localized flow state and the melt elasticity to snap back thus sealing the hole. Table 1 lists the commercially polymers studied here, together with their physical

  9. Influence of the inherent properties of drinking water treatment residuals on their phosphorus adsorption capacities

    Institute of Scientific and Technical Information of China (English)

    Leilei Bai; Changhui Wang; Liansheng He; Yuansheng Pei

    2014-01-01

    Batch experiments were conducted to investigate the phosphorus (P) adsorption and desorption on five drinking water treatment residuals (WTRs) collected from different regions in China.The physical and chemical characteristics of the five WTRs were determined.Combined with rotated principal component analysis,multiple regression analysis was used to analyze the relationship between the inherent properties of the WTRs and their P adsorption capacities.The results showed that the maximum P adsorption capacities of the five WTRs calculated using the Langmuir isotherm ranged from 4.17 to 8.20 mg/g at a pH of 7 and further increased with a decrease in pH.The statistical analysis revealed that a factor related to Al and 200 mmol/L oxalate-extractable Al (Alox) accounted for 36.5% of the variations in the P adsorption.A similar portion (28.5%) was attributed to an integrated factor related to the pH,Fe,200 mmol/L oxalate-extractable Fe (Feox),surface area and organic matter (OM) of the WTRs.However,factors related to other properties (Ca,P and 5 mmol/L oxalate-extractable Fe and Al) were rejected.In addition,the quantity of P desorption was limited and had a significant negative correlation with the (Feox + Alox) of the WTRs (p < 0.05).Overall,WTRs with high contents of Alox,Feox and OM as well as large surface areas were proposed to be the best choice for P adsorption in practical applications.

  10. Split thickness skin grafts for the treatment of non-healing foot and leg ulcers in patients with diabetes: a retrospective review

    OpenAIRE

    John J. Anderson; Wallin, Kelly J.; Spencer, Loren

    2012-01-01

    We retrospectively reviewed 107 diabetic patients who received a split thickness skin graft (STSG) for treatment of a non-healing diabetic foot or leg ulcer to describe healing times based on patient characteristics, comorbidities or complications. The minimum follow-up was 6 months from the time of STSG application. The mean time to healing among all patients was 5.1 weeks (3 to 16 weeks). The mean healing time for patients with complications was 12.0 weeks (10 to 16 weeks) while the mean he...

  11. Chinese Food and Cancer Healing

    Directory of Open Access Journals (Sweden)

    Hong Xu

    2006-01-01

    Full Text Available In cancer treatment, apart from studying the effectiveness of chemo or radiotherapy in killing cancer cells, studies should examine ways of reducing drug side effects on patients and ways of enhancing the bodies’ immune system at the same time. Our defence system not only includes immune response, there are also detoxifying enzymes, antioxidant mechanisms, the ability for DNA damage repair and regulation of the hormone metabolism. Harmful environmental oestrogens that enter the human body can cause an increase of 16-α-hydroxyestrone as a harmful estradiol metabolite, the ratio between 16-α-hydroxyestrone and 2-hydroxyestrone relates to the risk of breast cancer. It is suggested that choosing nutritional products (that decrease the amount of 16-α-hydroxyestrone to regulate the hormone metabolism can help with prevention of breast cancer. Increasing the ratio of monounsaturated fatty acid omega-3 (Ω-3 benefits health. Unsaturated fatty acid omega-6 (Ω-6 appears to be easily oxidised which can lead to DNA damage and increase the occurrence of cancer. The most important aspect to this approach is to reduce the ratio between saturated fatty acid and polyunsaturated fatty acid Ω-6, which is harmful to health. Olive oil has a high content of Ω-3 that benefits health. Ω-3 fatty acid can also be obtained from some fish, green vegetables and nuts. Linoleic acid is the most important source of Ω-6 fatty acid. Linolenic acid is the most important source of Ω-3 fatty acid. Natural foods e.g., purslane, is rich in Ω-3; the mustard family vegetables can increase the activity of detoxifying enzymes. Chinese Kiwi fruit drink reduces the side effects of the chemotherapy drug cyclophosphamide, which is also a DNA damaging agent. Soybean, job’s tears, garlic, mushroom varieties and tea have anti-cancer effects. Properly used nutritional products may assist treatment and recovery. Good balanced nutrition is essential for cancer healing.

  12. The effect of three hemostatic agents on early bone healing in an animal model

    Directory of Open Access Journals (Sweden)

    Dry Sarah M

    2010-12-01

    Full Text Available Abstract Background Resorbable bone hemostasis materials, oxidized regenerated cellulose (ORC and microfibrillar collagen (MFC, remain at the site of application for up to 8 weeks and may impair osteogenesis. Our experimental study compared the effect of a water-soluble alkylene oxide copolymer (AOC to ORC and MFC versus no hemostatic material on early bone healing. Methods Two circular 2.7 mm non-critical defects were made in each tibia of 12 rabbits. Sufficient AOC, ORC or MFC was applied to achieve hemostasis, and effectiveness recorded. An autologous blood clot was applied to control defects. Rabbits were sacrificed at 17 days, tibiae excised and fixed. Bone healing was quantitatively measured by micro-computed tomography (micro-CT expressed as fractional bone volume, and qualitatively assessed by histological examination of decalcified sections. Results Hemostasis was immediate after application of MFC and AOC, after 1-2 minutes with ORC, and >5 minutes for control. At 17 days post-surgery, micro-CT analysis showed near-complete healing in control and AOC groups, partial healing in the ORC group and minimal healing in the MFC group. Fractional bone volume was 8 fold greater in the control and AOC groups than in the MFC group (0.42 ± 0.06, 0.40 ± 0.03 vs 0.05 ± 0.01, P P Conclusions Early healing appeared to be impaired by the presence of MFC and impeded by the presence of ORC. In contrast, AOC did not inhibit bone healing and suggest that AOC may be a better bone hemostatic material for procedures where bony fusion is critical and immediate hemostasis required.

  13. Advances in the effects of pH value of micro-environment on wound healing%微环境pH值对创面愈合的作用研究进展

    Institute of Scientific and Technical Information of China (English)

    田瑞瑞; 李娜; 魏力

    2016-01-01

    Wound healing is a complex regeneration process,which is affected by lots of endogenous and exogenous factors.Researches have confirmed that acid environment could prevent wound infection and accelerate wound healing by inhibiting bacteria proliferation,promoting oxygen release,affecting keratinocyte proliferation and migration,etc.In this article,we review the literature to identify the potential relationship between the pH value of wound micro-environment and the progress of wound healing,and summarize the clinical application of variation of pH value of micro-environment in wound healing,thereby to provide new treatment strategy for wound healing.

  14. Nanoparticles for Tendon Healing and Regeneration: Literature Review

    Science.gov (United States)

    Parchi, Paolo D.; Vittorio, Orazio; Andreani, Lorenzo; Battistini, Pietro; Piolanti, Nicola; Marchetti, Stefano; Poggetti, Andrea; Lisanti, Michele

    2016-01-01

    Tendon injuries are commonly met in the emergency department. Unfortunately, tendon tissue has limited regeneration potential and usually the consequent formation of scar tissue causes inferior mechanical properties. Nanoparticles could be used in different way to improve tendon healing and regeneration, ranging from scaffolds manufacturing (increasing the strength and endurance or anti-adhesions, anti-microbial, and anti-inflammatory properties) to gene therapy. This paper aims to summarize the most relevant studies showing the potential application of nanoparticles for tendon tissue regeneration. PMID:27597828

  15. Nanoparticles for Tendon Healing and Regeneration: Literature Review.

    Science.gov (United States)

    Parchi, Paolo D; Vittorio, Orazio; Andreani, Lorenzo; Battistini, Pietro; Piolanti, Nicola; Marchetti, Stefano; Poggetti, Andrea; Lisanti, Michele

    2016-01-01

    Tendon injuries are commonly met in the emergency department. Unfortunately, tendon tissue has limited regeneration potential and usually the consequent formation of scar tissue causes inferior mechanical properties. Nanoparticles could be used in different way to improve tendon healing and regeneration, ranging from scaffolds manufacturing (increasing the strength and endurance or anti-adhesions, anti-microbial, and anti-inflammatory properties) to gene therapy. This paper aims to summarize the most relevant studies showing the potential application of nanoparticles for tendon tissue regeneration. PMID:27597828

  16. Nanoparticles for tendon healing and regeneration: literature review.

    Directory of Open Access Journals (Sweden)

    Paolo Domenico Parchi

    2016-08-01

    Full Text Available Tendon injuries are commonly met in the emergency department. Unfortunately, tendon tissue has limited regeneration potential and usually the consequent formation of scar tissue causes inferior mechanical properties Nanoparticles could be used in different way to improve tendon healing and regeneration, ranging from scaffolds manufacturing (increasing the strength and endurance or anti-adhesions, anti-microbial and anti-inflammatory properties to gene therapy. This paper aims to summarize the most relevant studies showing the potential application of nanoparticles for tendon tissue regeneration

  17. Processing and damage recovery of intrinsic self-healing glass fiber reinforced composites

    Science.gov (United States)

    Sordo, Federica; Michaud, Véronique

    2016-08-01

    Glass fiber reinforced composites with a self-healing, supramolecular hybrid network matrix were produced using a modified vacuum assisted resin infusion moulding process adapted to high temperature processing. The quality and fiber volume fraction (50%) of the obtained materials were assessed through microscopy and matrix burn-off methods. The thermo-mechanical properties were quantified by means of dynamic mechanical analysis, revealing very high damping properties compared to traditional epoxy-based glass fiber reinforced composites. Self-healing properties were assessed by three-point bending tests. A high recovery of the flexural properties, around 72% for the elastic modulus and 65% of the maximum flexural stress, was achieved after a resting period of 24 h at room temperature. Recovery after low velocity impact events was also visually observed. Applications for this intrinsic and autonomic self-healing highly reinforced composite material point towards semi-structural applications where high damping and/or integrity recovery after impact are required.

  18. Is the Inherent Potential of Maize Roots Efficient for Soil Phosphorus Acquisition?

    Science.gov (United States)

    Deng, Yan; Chen, Keru; Teng, Wan; Zhan, Ai; Tong, Yiping; Feng, Gu; Cui, Zhenling; Zhang, Fusuo; Chen, Xinping

    2014-01-01

    Sustainable agriculture requires improved phosphorus (P) management to reduce the overreliance on P fertilization. Despite intensive research of root adaptive mechanisms for improving P acquisition, the inherent potential of roots for efficient P acquisition remains unfulfilled, especially in intensive agriculture, while current P management generally focuses on agronomic and environmental concerns. Here, we investigated how levels of soil P affect the inherent potential of maize (Zea mays L.) roots to obtain P from soil. Responses of root morphology, arbuscular mycorrhizal colonization, and phosphate transporters were characterized and related to agronomic traits in pot and field experiments with soil P supply from deficiency to excess. Critical soil Olsen-P level for maize growth approximated 3.2 mg kg−1, and the threshold indicating a significant environmental risk was about 15 mg kg−1, which represented the lower and upper levels of soil P recommended in current P management. However, most root adaptations involved with P acquisition were triggered when soil Olsen-P was below 10 mg kg−1, indicating a threshold for maximum root inherent potential. Therefore, to maintain efficient inherent potential of roots for P acquisition, we suggest that the target upper level of soil P in intensive agriculture should be reduced from the environmental risk threshold to the point maximizing the inherent potential of roots. PMID:24594677

  19. Is the inherent potential of maize roots efficient for soil phosphorus acquisition?

    Directory of Open Access Journals (Sweden)

    Yan Deng

    Full Text Available Sustainable agriculture requires improved phosphorus (P management to reduce the overreliance on P fertilization. Despite intensive research of root adaptive mechanisms for improving P acquisition, the inherent potential of roots for efficient P acquisition remains unfulfilled, especially in intensive agriculture, while current P management generally focuses on agronomic and environmental concerns. Here, we investigated how levels of soil P affect the inherent potential of maize (Zea mays L. roots to obtain P from soil. Responses of root morphology, arbuscular mycorrhizal colonization, and phosphate transporters were characterized and related to agronomic traits in pot and field experiments with soil P supply from deficiency to excess. Critical soil Olsen-P level for maize growth approximated 3.2 mg kg(-1, and the threshold indicating a significant environmental risk was about 15 mg kg(-1, which represented the lower and upper levels of soil P recommended in current P management. However, most root adaptations involved with P acquisition were triggered when soil Olsen-P was below 10 mg kg(-1, indicating a threshold for maximum root inherent potential. Therefore, to maintain efficient inherent potential of roots for P acquisition, we suggest that the target upper level of soil P in intensive agriculture should be reduced from the environmental risk threshold to the point maximizing the inherent potential of roots.

  20. Self-healing metallopolymers: Detailed investigation of the self-healing properties by scratch testing

    NARCIS (Netherlands)

    Bode, S.; Bose, R.K.; Sandmann, B.; Hager, M.D.; Garcia Espallargas, S.J.; Van der Zwaag, S.; Schubert, U.S.

    2013-01-01

    In the last decade several intrinsic self-healing materials have been developed in which the healing mechanism was mainly based on the reversibility of a certain structural element. For this purpose, reversible covalent bonds, e.g., based on the Diels-Alder reaction or weaker non-covalent interactio

  1. Lap shear strength and healing capability of self-healing adhesive containing epoxy/mercaptan microcapsules

    Science.gov (United States)

    Ghazali, Habibah; Ye, Lin; Zhang, Ming-Qiu

    2016-03-01

    The aim of this work is to develop a self-healing polymeric adhesive formulation with epoxy/mercaptan microcapsules. Epoxy/mercaptan microcapsules were dispersed into a commercialize two-part epoxy adhesive for developing self-healing epoxy adhesive. The influence of different content of microcapsules on the shear strength and healing capability of epoxy adhesive were investigated using single-lap-joints with average thickness of adhesive layer of about 180 µm. This self-healing adhesive was used in bonding of 5000 series aluminum alloys adherents after mechanical and alkaline cleaning surface treatment. The adhesion strength was measured and presented as function of microcapsules loading. The results indicated that the virgin lap shear strength was increased by about 26% with addition of 3 wt% of self-healing microcapsules. 12% to 28% recovery of the shear strength is achieved after self-healing depending on the microcapsules content. Scanning electron microscopy was used to study fracture surface of the joints. The self-healing adhesives exhibit recovery of both cohesion and adhesion properties with room temperature healing.

  2. Solid State Self-Healing System: Effects of Using Immiscible Healing Agents

    International Nuclear Information System (INIS)

    The solid state self-healing system was obtained by employs a thermosetting epoxy resin, into which a thermoplastic is dissolved. The aim of this study is to identify the effect of using immiscible healing agents, which are polyvinyl chloride and polyvinyl alcohol, on solid state self-healing system. Healing was achieved by heating the fractured resins to a specific temperature; above their glass transition temperature (Tg) which obtained from dynamic mechanical analysis (DMA) in order for thermal expansion to occur. The thermal properties and bonding formed in the epoxy resins were characterized by means of Fourier Transform Infrared Spectroscopy (FTIR). Izod impact test was performed in preliminary work. Further work then has been done using compact tension test to demonstrate details self-healing capability of the different specimens. Under compact tension test, it was found that healable resin with PVC has highest healing efficiency followed PVA with 7.4 % and 3 % of average percentage healing efficiencies respectively. These results are due to the different solubility parameters of the thermoset/ network and thermoplastic polymer which led to the phase separation. Morphological studies using microscope optic prove the fracture-healing process and morphological properties of the resins. (author)

  3. General concept of wound healing, revisited

    Directory of Open Access Journals (Sweden)

    Theddeus O.H. Prasetyono

    2009-09-01

    Full Text Available Wound healing is a transition of processes which is also recognized as one of the most complex processes in human physiology. Complex series of reactions and interactions among cells and mediators take place in the healing process of wound involving cellular and molecular events. The inflammatory phase is naturally intended to remove devitalized tissue and prevent invasive infection. The proliferative phase is characterized by the formation of granulation tissue within the wound bed, composed of new capillary network, fibroblast, and macrophages in a loose arrangement of supporting structure. This second phase lasts from day 8 to 21 after the injury is also the phase for epithelialisation. The natural period of proliferative phase is a reflection for us in treating wound to reach the goal which ultimately defines as closed wound. The final maturation phase is also characterized by the balancing between deposition of collagen and its degradation. There are at least three prerequisites which are ideal local conditions for the nature of wound to go on a normal process of healing i.e. 1 all tissue involved in the wound and surrounding should be vital, 2 no foreign bodies in the wound, and 3 free from excessive contamination/infection. The author formulated a step ladder of thinking in regards of healing intentions covering all acute and chronic wounds. Regarding the “hierarchy” of healing intention, the fi rst and ideal choice to heal wounds is by primary intention followed by tertiary intention and lastly the secondary intention. (Med J Indones 2009;18:206-14Key words: inflammatory mediator, epithelialisation, growth factor, wound healing

  4. Self-Healing Audio System

    OpenAIRE

    Sharma, Shubham; Sridhar, Aditya; Krishnia, Jai Prakash

    2015-01-01

    Installed sound applications typically involve a large number of audio processors, amplifiers and speaker systems spread across the venue. They could be spatially distributed at the venue across different rack rooms and floors. These systems are commissioned and configured by sound engineers using software application(s). This is essentially a one-time activity, following which, the audio systems run independently. Detection of faults and reconfiguration of any audio device(s) that fail(s) is...

  5. Sundew-Inspired Adhesive Hydrogels Combined with Adipose-Derived Stem Cells for Wound Healing.

    Science.gov (United States)

    Sun, Leming; Huang, Yujian; Bian, Zehua; Petrosino, Jennifer; Fan, Zhen; Wang, Yongzhong; Park, Ki Ho; Yue, Tao; Schmidt, Michael; Galster, Scott; Ma, Jianjie; Zhu, Hua; Zhang, Mingjun

    2016-01-27

    The potential to harness the unique physical, chemical, and biological properties of the sundew (Drosera) plant's adhesive hydrogels has long intrigued researchers searching for novel wound-healing applications. However, the ability to collect sufficient quantities of the sundew plant's adhesive hydrogels is problematic and has eclipsed their therapeutic promise. Inspired by these natural hydrogels, we asked if sundew-inspired adhesive hydrogels could overcome the drawbacks associated with natural sundew hydrogels and be used in combination with stem-cell-based therapy to enhance wound-healing therapeutics. Using a bioinspired approach, we synthesized adhesive hydrogels comprised of sodium alginate, gum arabic, and calcium ions to mimic the properties of the natural sundew-derived adhesive hydrogels. We then characterized and showed that these sundew-inspired hydrogels promote wound healing through their superior adhesive strength, nanostructure, and resistance to shearing when compared to other hydrogels in vitro. In vivo, sundew-inspired hydrogels promoted a "suturing" effect to wound sites, which was demonstrated by enhanced wound closure following topical application of the hydrogels. In combination with mouse adipose-derived stem cells (ADSCs) and compared to other therapeutic biomaterials, the sundew-inspired hydrogels demonstrated superior wound-healing capabilities. Collectively, our studies show that sundew-inspired hydrogels contain ideal properties that promote wound healing and suggest that sundew-inspired-ADSCs combination therapy is an efficacious approach for treating wounds without eliciting noticeable toxicity or inflammation. PMID:26731614

  6. Craniofacial Wound Healing with Photobiomodulation Therapy: New Insights and Current Challenges.

    Science.gov (United States)

    Arany, P R

    2016-08-01

    The fundamental pathophysiologic response for the survival of all organisms is the process of wound healing. Inadequate or lack of healing constitutes the etiopathologic basis of many oral and systemic diseases. Among the numerous efforts to promote wound healing, biophotonics therapies have shown much promise. Advances in photonic technologies and a better understanding of light-tissue interactions, from parallel biophotonics fields such as in vivo optical imaging and optogenetics, are spearheading their popularity in biology and medicine. Use of high-dose lasers and light devices in dermatology, ophthalmology, oncology, and dentistry are now popular for specific clinical applications, such as surgery, skin rejuvenation, ocular and soft tissue recontouring, and antitumor and antimicrobial photodynamic therapy. However, a less well-known clinical application is the therapeutic use of low-dose biophotonics termed photobiomodulation (PBM) therapy, which is aimed at alleviating pain and inflammation, modulating immune responses, and promoting wound healing and tissue regeneration. Despite significant volumes of scientific literature from clinical and laboratory studies noting the phenomenological evidence for this innovative therapy, limited mechanistic insights have prevented rigorous and reproducible PBM clinical protocols. This article briefly reviews current evidence and focuses on gaps in knowledge to identify potential paths forward for clinical translation with PBM therapy with an emphasis on craniofacial wound healing. PBM offers a novel opportunity to examine fundamental nonvisual photobiological processes as well as develop innovative clinical therapies, thereby presenting an opportunity for a paradigm shift from conventional restorative/prosthetic approaches to regenerative modalities in clinical dentistry. PMID:27161014

  7. Acceleration of skin wound healing with tragacanth (Astragalus preparation: an experimental pilot study in rats.

    Directory of Open Access Journals (Sweden)

    Ehsan Fayazzadeh

    2014-01-01

    Full Text Available Gum tragacanth is a natural complex mixture of polysaccharides and alkaline minerals extracted from species of Astragalus plant, which is found widely in arid regions of the Middle East. In a pilot experimental study we examined the effects of its topical application on wound healing in ten albino adult male rats. Two similar parasagittal elliptical full-thickness wounds (control vs. test samples were created on the dorsum of each animal. Test group samples were fully covered by a thin layer of gum tragacanth daily. The extent of wound healing was evaluated by planimetric analysis on multiple occasions during the 10-day study period. On the 7th day of the study, the percent of wound closure was significantly higher in gum tragacanth-treated specimens compared to the control samples (87%±2% vs. 70%±4%, P<0.001. The majority of wounds in the test group were completely closed by the 10th day of the study. The difference in wound healing index measured by histological examination on day 10 of the study was also statistically meaningful between the two groups (0.624±0.097 vs. 0.255±0.063, P<0.05. The results of this study clearly showed the useful effects of topical application of gum tragacanth in acceleration of skin wound contraction and healing. More studies are encouraged to identify the implicating agents and precisely understand the mechanism by which they exert their wound healing effects.

  8. Inherent safety of nuclear power plants: A lifesaver or a pacifier?

    International Nuclear Information System (INIS)

    Based on interviews with scientists, representatives of ministries, politicians, the press and environmentalists it has been investigated whether the development of inherent safe nuclear power plants contributes to an improved acceptation of nuclear energy or not. The most important controversies appear to be the organization and planning of the Dutch electric power supply, the role of nuclear energy in the electric power supply, the arguments pro nuclear energy, the definition and interpretation of the notion inherent safety, and the value attached to inherent safety. In appendix one the physical backgrounds of nuclear energy, several types of nuclear reactors, and the safety aspects of nuclear energy are discussed. In appendix two an overview is given of regulations for the use of nuclear energy. 4 appendices, 35 refs

  9. Mechanoregulation of Wound Healing and Skin Homeostasis.

    Science.gov (United States)

    Rosińczuk, Joanna; Taradaj, Jakub; Dymarek, Robert; Sopel, Mirosław

    2016-01-01

    Basic and clinical studies on mechanobiology of cells and tissues point to the importance of mechanical forces in the process of skin regeneration and wound healing. These studies result in the development of new therapies that use mechanical force which supports effective healing. A better understanding of mechanobiology will make it possible to develop biomaterials with appropriate physical and chemical properties used to treat poorly healing wounds. In addition, it will make it possible to design devices precisely controlling wound mechanics and to individualize a therapy depending on the type, size, and anatomical location of the wound in specific patients, which will increase the clinical efficiency of the therapy. Linking mechanobiology with the science of biomaterials and nanotechnology will enable in the near future precise interference in abnormal cell signaling responsible for the proliferation, differentiation, cell death, and restoration of the biological balance. The objective of this study is to point to the importance of mechanobiology in regeneration of skin damage and wound healing. The study describes the influence of rigidity of extracellular matrix and special restrictions on cell physiology. The study also defines how and what mechanical changes influence tissue regeneration and wound healing. The influence of mechanical signals in the process of proliferation, differentiation, and skin regeneration is tagged in the study. PMID:27413744

  10. Stem Cells for Cutaneous Wound Healing

    Directory of Open Access Journals (Sweden)

    Giles T. S. Kirby

    2015-01-01

    Full Text Available Optimum healing of a cutaneous wound involves a well-orchestrated cascade of biological and molecular processes involving cell migration, proliferation, extracellular matrix deposition, and remodelling. When the normal biological process fails for any reason, this healing process can stall resulting in chronic wounds. Wounds are a growing clinical burden on healthcare systems and with an aging population as well as increasing incidences of obesity and diabetes, this problem is set to increase. Cell therapies may be the solution. A range of cell based approaches have begun to cross the rift from bench to bedside and the supporting data suggests that the appropriate administration of stem cells can accelerate wound healing. This review examines the main cell types explored for cutaneous wound healing with a focus on clinical use. The literature overwhelmingly suggests that cell therapies can help to heal cutaneous wounds when used appropriately but we are at risk of clinical use outpacing the evidence. There is a need, now more than ever, for standardised methods of cell characterisation and delivery, as well as randomised clinical trials.

  11. Mechanoregulation of Wound Healing and Skin Homeostasis

    Directory of Open Access Journals (Sweden)

    Joanna Rosińczuk

    2016-01-01

    Full Text Available Basic and clinical studies on mechanobiology of cells and tissues point to the importance of mechanical forces in the process of skin regeneration and wound healing. These studies result in the development of new therapies that use mechanical force which supports effective healing. A better understanding of mechanobiology will make it possible to develop biomaterials with appropriate physical and chemical properties used to treat poorly healing wounds. In addition, it will make it possible to design devices precisely controlling wound mechanics and to individualize a therapy depending on the type, size, and anatomical location of the wound in specific patients, which will increase the clinical efficiency of the therapy. Linking mechanobiology with the science of biomaterials and nanotechnology will enable in the near future precise interference in abnormal cell signaling responsible for the proliferation, differentiation, cell death, and restoration of the biological balance. The objective of this study is to point to the importance of mechanobiology in regeneration of skin damage and wound healing. The study describes the influence of rigidity of extracellular matrix and special restrictions on cell physiology. The study also defines how and what mechanical changes influence tissue regeneration and wound healing. The influence of mechanical signals in the process of proliferation, differentiation, and skin regeneration is tagged in the study.

  12. The effects of smoking on fracture healing.

    Science.gov (United States)

    Sloan, A; Hussain, I; Maqsood, M; Eremin, O; El-Sheemy, M

    2010-04-01

    Tobacco smoking is the single most avoidable cause of premature death worldwide. In fracture healing, it has been found to be a contributory factor to delayed union, and smokers are significantly disadvantaged, as healing times are often prolonged. The orthopaedic surgeon is likely to be knowledgeable about the detrimental effects of smoking on healing bones, as the problem has been known for some time. Smoking adversely affects bone mineral density, lumbar disc degeneration, the incidences of hip fractures and the dynamics of bone and wound healing. Clinical trials and demographic studies have been more widespread than biochemical analyses, and have reported poor prognosis for fracture patients who smoke. Scientific research has elucidated some of the negative impacts of tobacco use and investigations involving several animal models in cellular and humoral analyses have shown damage caused by various toxicological processes. Cessation of the habit perioperatively, therefore, is routinely advised to improve outcomes for patients. The current review describes some of the consequences of tobacco smoking in fracture healing. PMID:20303894

  13. Physics of Wound Healing I: Energy Considerations

    CERN Document Server

    Apell, S Peter; Papazoglou, Elisabeth S; Pizziconi, Vincent

    2012-01-01

    Wound healing is a complex process with many components and interrelated processes on a microscopic level. This paper addresses a macroscopic view on wound healing based on an energy conservation argument coupled with a general scaling of the metabolic rate with body mass M as M^{\\gamma} where 0 <{\\gamma}<1. Our three main findings are 1) the wound healing rate peaks at a value determined by {\\gamma} alone, suggesting a concept of wound acceleration to monitor the status of a wound. 2) We find that the time-scale for wound healing is a factor 1/(1 -{\\gamma}) longer than the average internal timescale for producing new material filling the wound cavity in corresondence with that it usually takes weeks rather than days to heal a wound. 3) The model gives a prediction for the maximum wound mass which can be generated in terms of measurable quantities related to wound status. We compare our model predictions to experimental results for a range of different wound conditions (healthy, lean, diabetic and obses...

  14. Nutrient support of the healing wound.

    Science.gov (United States)

    Meyer, N A; Muller, M J; Herndon, D N

    1994-05-01

    Wound healing is a series of complex physicochemical interactions that require various micronutrients at every step. In the critically ill or severely injured patient, wound healing is impaired by the protein-catabolic, hypermetabolic response to stress. The hypothalamus responds to cytokine stimulation by increasing the thermoregulatory set-point and by augmenting elaboration of stress hormones (catecholamines, cortisol, and glucagon). In turn, the stress hormones induce thermogenic futile substrate cycling, lipolysis, and proteolysis. Increased glucose production results at the expense of skeletal muscle degradation, producing amino acid substrate for hepatic gluconeogenesis. Nutritional support of the hypermetabolic state is an essential part of ensuring efficient wound healing in these patients. Protein catabolism cannot be reversed by increased amino acid availability alone, due partly to a defect in amino acid transport. This defect can be reversed by anabolic agents, such as growth hormone and insulin-like growth factor-1. Growth hormone treatment dramatically improves wound healing in severely burned children. Supplementation with protein and vitamins, specifically arginine and vitamins A, B, and C, provides optimum nutrient support of the healing wound. PMID:7922445

  15. Wound healing of intestinal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Masahiro Iizuka; Shiho Konno

    2011-01-01

    The intestinal epithelial cells (IECs) form a selective permeability barrier separating luminal content from underlying tissues. Upon injury, the intestinal epithelium undergoes a wound healing process. Intestinal wound healing is dependent on the balance of three cellular events;restitution, proliferation, and differentiation of epithelial cells adjacent to the wounded area. Previous studies have shown that various regulatory peptides, including growth factors and cytokines, modulate intestinal epithelial wound healing. Recent studies have revealed that novel factors, which include toll-like receptors (TLRs), regulatory peptides, particular dietary factors, and some gastroprotective agents, also modulate intestinal epithelial wound repair. Among these factors, the activation of TLRs by commensal bacteria is suggested to play an essential role in the maintenance of gut homeostasis. Recent studies suggest that mutations and dysregulation of TLRs could be major contributing factors in the predisposition and perpetuation of inflammatory bowel disease. Additionally, studies have shown that specific signaling pathways are involved in IEC wound repair. In this review, we summarize the function of IECs, the process of intestinal epithelial wound healing, and the functions and mechanisms of the various factors that contribute to gut homeostasis and intestinal epithelial wound healing.

  16. Arrayed SU-8 polymer thermal actuators with inherent real-time feedback for actively modifying MEMS’ substrate warpage

    Science.gov (United States)

    Wang, Xinghua; Xiao, Dingbang; Chen, Zhihua; Wu, Xuezhong

    2016-09-01

    This paper describes the design, fabrication and characterization of a batch-fabricated micro-thermal actuators array with inherent real-time self-feedback, which can be used to actively modify micro-electro-mechanical systems’ (MEMS’) substrate warpage. Arrayed polymer thermal actuators utilize SU-8 polymer (a thick negative photoresist) as a functional material with integrated Ti/Al film-heaters as a microscale heat source. The electro-thermo-mechanical response of a micro-fabricated actuator was measured. The resistance of the Al/Ti film resistor varies obviously with ambient temperature, which can be used as inherent feedback for observing real-time displacement of activated SU-8 bumps (0.43 μm Ω-1). Due to the high thermal expansion coefficient, SU-8 bumps tend to have relatively large deflection at low driving voltage and are very easily integrated with MEMS devices. Experimental results indicated that the proposed SU-8 polymer thermal actuators (array) are able to achieve accurate rectification of MEMS’ substrate warpage, which might find potential applications for solving stress-induced problems in MEMS.

  17. {sup 1}H NMR-based metabolic profiling reveals inherent biological variation in yeast and nematode model systems

    Energy Technology Data Exchange (ETDEWEB)

    Szeto, Samuel S. W.; Reinke, Stacey N.; Lemire, Bernard D., E-mail: bernard.lemire@ualberta.ca [University of Alberta, Department of Biochemistry, School of Molecular and Systems Medicine (Canada)

    2011-04-15

    The application of metabolomics to human and animal model systems is poised to provide great insight into our understanding of disease etiology and the metabolic changes that are associated with these conditions. However, metabolomic studies have also revealed that there is significant, inherent biological variation in human samples and even in samples from animal model systems where the animals are housed under carefully controlled conditions. This inherent biological variability is an important consideration for all metabolomics analyses. In this study, we examined the biological variation in {sup 1}H NMR-based metabolic profiling of two model systems, the yeast Saccharomyces cerevisiae and the nematode Caenorhabditis elegans. Using relative standard deviations (RSD) as a measure of variability, our results reveal that both model systems have significant amounts of biological variation. The C. elegans metabolome possesses greater metabolic variance with average RSD values of 29 and 39%, depending on the food source that was used. The S. cerevisiae exometabolome RSD values ranged from 8% to 12% for the four strains examined. We also determined whether biological variation occurs between pairs of phenotypically identical yeast strains. Multivariate statistical analysis allowed us to discriminate between pair members based on their metabolic phenotypes. Our results highlight the variability of the metabolome that exists even for less complex model systems cultured under defined conditions. We also highlight the efficacy of metabolic profiling for defining these subtle metabolic alterations.

  18. Effect of Calendula officinalis cream on achilles tendon healing.

    Science.gov (United States)

    Aro, A A; Perez, M O; Vieira, C P; Esquisatto, M A M; Rodrigues, R A F; Gomes, L; Pimentel, E R

    2015-02-01

    In recent years, the scientific community has undertaken research on plant extracts, searching for compounds with pharmacological activities that can be used in diverse fields of medicine. Calendula officinalis L. is known to have antioxidant, anti-inflammatory, antibacterial, and wound healing properties when used to treat skin burns. Therefore, the purpose of this study was to analyze the effects of C. officinalis on the initial phase of Achilles tendon healing. Wistar rats were separated in three groups: Calendula (Cal)-rats with a transected tendon were treated with topical applications of C. officinalis cream and then euthanized 7 days after injury; Control (C)-rats were treated with only vehicle after transection; and Normal (N)-rats without tenotomy. Higher concentrations of hydroxyproline (an indicator of total collagen) and non-collagenous proteins were observed in the Cal group in relation to the C group. Zymography showed no difference in the amount of the isoforms of metalloproteinase-2 and of metalloproteinase-9, between C and Cal groups. Polarization microscopy images analysis showed that the Cal group presented a slightly higher birefringence compared with the C group. In sections of tendons stained with toluidine blue, the transected groups presented higher metachromasy as compared with the N group. Immunocytochemistry analysis for chondroitin-6-sulfate showed no difference between the C and Cal groups. In conclusion, the topical application of C. officinalis after tendon transection increases the concentrations of collagen and non-collagenous proteins, as well as the collagen organization in the initial phase of healing. PMID:25266273

  19. Initial endosseous healing response to lactide/glycolide copolymer

    Directory of Open Access Journals (Sweden)

    João César ZIELAK

    2009-06-01

    Full Text Available Introduction: The search for less invasive treatments, with fast and effective bone regeneration, has lead to the development of synthetic bioresorbable alternatives for bone graft. The commercial product FisiograftTM gel (Ghimas Spa, Italy, based on lactide-glycolide copolymer, is used as an injectable biocompatible and bioresorbable material for filling bone defects in dental surgery applications. These polymers are also used in the production of suture threads, pins and plates for bone fixation, and barriers for guided tissue regeneration. Objective: The main objective of this pilot study was to observe the initial bone healing response after the application of polylactide-glycolide graft material in adult animals. Material and methods: Bone defects were prepared in right and left femora of 12 month-old male Wistar rats. The defects in one leg received the synthetic graft material and the contra-lateral defects did not receive any treatment. After four days, the animals were subjected to euthanasia, the femora were removed, and tissue blocks were prepared for histological analysis. Results: Blood clot remained in the centre of control defects with initial connective tissue organization on the edges. The graft material was observed in the centre of the treated defects, restricted to the area where it was applied, with neovascularization next to the graft material. The pattern of bone healing did not differ between groups, starting from the margins of the defects and from bone fragments, with neovascularization followed by deposition of non-mineralized bone matrix towards the centre. Conclusion: The results indicate that the lactide-glycolide copolymer gel was effective as a filling and osteoconductive material, allowing tissue healing during its resorption process. Additional studies are necessary to verify its capacity to promote bone regeneration.

  20. Skeletal ligament healing using the recombinant human amelogenin protein.

    Science.gov (United States)

    Hanhan, Salem; Ejzenberg, Ayala; Goren, Koby; Saba, Faris; Suki, Yarden; Sharon, Shay; Shilo, Dekel; Waxman, Jacob; Spitzer, Elad; Shahar, Ron; Atkins, Ayelet; Liebergall, Meir; Blumenfeld, Anat; Deutsch, Dan; Haze, Amir

    2016-05-01

    Injuries to ligaments are common, painful and debilitating, causing joint instability and impaired protective proprioception sensation around the joint. Healing of torn ligaments usually fails to take place, and surgical replacement or reconstruction is required. Previously, we showed that in vivo application of the recombinant human amelogenin protein (rHAM(+) ) resulted in enhanced healing of the tooth-supporting tissues. The aim of this study was to evaluate whether amelogenin might also enhance repair of skeletal ligaments. The rat knee medial collateral ligament (MCL) was chosen to prove the concept. Full thickness tear was created and various concentrations of rHAM(+) , dissolved in propylene glycol alginate (PGA) carrier, were applied to the transected MCL. 12 weeks after transection, the mechanical properties, structure and composition of transected ligaments treated with 0.5 μg/μl rHAM(+) were similar to the normal un-transected ligaments, and were much stronger, stiffer and organized than control ligaments, treated with PGA only. Furthermore, the proprioceptive free nerve endings, in the 0.5 μg/μl rHAM(+) treated group, were parallel to the collagen fibres similar to their arrangement in normal ligament, while in the control ligaments the free nerve endings were entrapped in the scar tissue at different directions, not parallel to the axis of the force. Four days after transection, treatment with 0.5 μg/μl rHAM(+) increased the amount of cells expressing mesenchymal stem cell markers at the injured site. In conclusion application of rHAM(+) dose dependently induced mechanical, structural and sensory healing of torn skeletal ligament. Initially the process involved recruitment and proliferation of cells expressing mesenchymal stem cell markers. PMID:26917487

  1. Quasi-static reactivity balance interpretations of inherent safety response in fast and thermal reactors

    International Nuclear Information System (INIS)

    The quasi-static reactivity balance provides a useful way to codify the inherent response of a reactor to unprotected accident initiators. This approach has been used to illuminate the underlying physics of passive reactivity shutdown in liquid-metal-cooled fast reactors (LMRs) and has facilitated the design effort to configure LMR reactor cores for favorable inherent safety features. The purpose of this paper is to extend the quasi-static reactivity balance methodology to thermal reactor types - and in particular to the modular high-temperature gas-cooled reactor (MHTGR) where, as in LMRs, passive reactivity shutdown is a design goal

  2. Government can regulate food advertising to children because cognitive research shows that it is inherently misleading.

    Science.gov (United States)

    Graff, Samantha; Kunkel, Dale; Mermin, Seth E

    2012-02-01

    The childhood obesity crisis has prompted repeated calls for government action to curb the marketing of unhealthy food to children. Food and entertainment industry groups have asserted that the First Amendment prohibits such regulation. However, case law establishes that the First Amendment does not protect "inherently misleading" commercial speech. Cognitive research indicates that young children cannot effectively recognize the persuasive intent of advertising or apply the critical evaluation required to comprehend commercial messages. Given this combination--that government can prohibit "inherently misleading" advertising and that children cannot adequately understand commercial messages--advertising to children younger than age twelve should be considered beyond the scope of constitutional protection. PMID:22323170

  3. Self-healing polymers---The importance of choosing an adequate healing monomer, and the olefin metathesis polymerization of agricultural oils

    Science.gov (United States)

    Mauldin, Timothy C.

    Modern society's immense and ill-fated reliance on petrochemical-based polymeric materials will likely necessitate a shift in polymer production paradigms in the near future. The work presented herein attempts to address this issue via a two-pronged approach. First, efforts to improve the duration of composite materials by incorporation of a self-healing function are discussed, the fruitful application of which can potentially reduce or eliminate the massive carbon footprints associated with the repair/replacement of damaged materials. And second, polymeric materials derived predominately from natural and renewable feedstock---namely vegetable oils---are developed. Early microcapsule-based self-healing materials utilized dicyclopentadiene-filled microcapsules and Grubbs' olefin metathesis catalyst to initiate the healing mechanism. However, the patent-protected catalyst, made from the precious metal ruthenium and sometimes costly ligands, will likely never be inexpensive and therefore limit large-scale applications. Hence, clever approaches to reduce the healing catalyst loading in self-healing polymers are of great interest. To this end, our efforts have revolved around solving the problem of the relatively inefficient use of Grubbs' catalyst during the healing mechanism. Given that the mismatch of the olefin metathesis polymerization and Grubbs' catalyst dissolution (in monomer) kinetics is a known cause of this inefficient use of the catalyst, we attempted to tune the "latency" (i.e. pot life) of the olefin metathesis polymerization to ensure more complete dissolution of catalyst in monomer. In an alternative approach to improving efficient catalyst dissolution, we developed a simple model to predict relative dissolution rates of Grubbs' catalyst in a small library of healing monomers. This model was shown experimentally to be able to aid in the selection of, for example, reactive monomer additives that can yield impressive improvements in catalyst dissolution

  4. 830 nm light-emitting diode low level light therapy (LED-LLLT) enhances wound healing: a preliminary study

    OpenAIRE

    Min, Pok Kee; Goo, Boncheol Leo

    2013-01-01

    Background and aims: The application of light-emitting diodes in a number of clinical fields is expanding rapidly since the development in the late 1990s of the NASA LED. Wound healing is one field where low level light therapy with LEDs (LED-LLLT) has attracted attention for both accelerating wound healing and controlling sequelae. The present study evaluated LED-LLLT in 5 wounds of various etiologies.

  5. Effect of Carapa guianensis Aublet (Andiroba) and Orbignya phalerata (Babassu) in colonic healing in rats

    OpenAIRE

    Cícero Evandro Soares Silva; Orlando Jose dos Santos; Jurandir Marcondes Ribas-Filho; Fernando Issamu Tabushi; Marcio Hiroaki Kume; Leandro Bressianini Jukonis; Igor Furlan Cella

    2015-01-01

    Objective: to evaluate the healing effect of the babassu aqueous extract and andiroba oil on open wounds in the cecum of rats. Methods: fifty-four Wistar rats were divided into three groups of 18: 1) babassu group with application of aqueous extract of babassu; 2) andiroba group with application of the oil; and 3) control group, with application of saline solution. All procedures were done by gavage. Each group was divided into three subgroups of six animals according to the observation per...

  6. SUFI HEALING: TERAPI DALAM LITERATUR TASAWUF

    Directory of Open Access Journals (Sweden)

    Muhammad Amin Syukur

    2012-12-01

    Kajian ini mengungkap tentang sufi healing, yaitu terapi di dalam literatur tentang sifisme. Kajian ini memfokuskan pada perilaku yang berasosiasi dengan sufi healing atau pencegahan penyakit, baik secara fisik maupun mental, dan kemudian menentukan aspek-aspek yang mendukung sistem terapi rasional dan empirik. Hasil yang diperoleh dari kajian ini adalah penemuan treatment alternatif atau preventif terhadap penyakit secara tepat yang sesuai dengan tuntutan masyarakat saat ini. Ditemukan bahwa sufi healing merupakan bentuk terapi alternatif yang dilakukan dengan menggunakan nilai-nilai sufisme se­bagai cara treatment atau pencegahan. Model ini telah dikenal dalam ma­syarakat sejak Islam dan sufisme berkembang. Rujukan ilmiah dari mengenai sistem kerja peng­obatan­nya dapat ditemukan dalam berbagai teori psikologi transpersonal, di mana kesadaran menjadi fokus kajian. Secara medis, pengobatan ini juga disebut psycho-neurons-endocrine-immunology, yang kesimpulannya adalah adanya hubungan antara fikiran dan tubuh dalam kesehatan manusia,

  7. Working with Children to Heal Interpersonal Trauma: The Power of Play

    Science.gov (United States)

    Gil, Eliana, Ed.

    2010-01-01

    Featuring in-depth case presentations from master clinicians, this volume highlights the remarkable capacity of traumatized children to guide their own healing process. The book describes what posttraumatic play looks like and how it can foster resilience and coping. Demonstrated are applications of play, art, and other expressive therapies with…

  8. The inherence heuristic: a key theoretical addition to understanding social stereotyping and prejudice.

    Science.gov (United States)

    Bigler, Rebecca S; Clark, Caitlin

    2014-10-01

    Prior work has detailed the constructivist processes that lead individuals to categorize others along particular dimensions (e.g., gender) and generate the content (e.g., stereotypes) and affect (e.g., prejudices) associated with social groups. The inherence heuristic is a novel mechanism that appears to shape the content and rigidity of children's social stereotypes and prejudices.

  9. Incorporating Risk Assessment and Inherently Safer Design Practices into Chemical Engineering Education

    Science.gov (United States)

    Seay, Jeffrey R.; Eden, Mario R.

    2008-01-01

    This paper introduces, via case study example, the benefit of including risk assessment methodology and inherently safer design practices into the curriculum for chemical engineering students. This work illustrates how these tools can be applied during the earliest stages of conceptual process design. The impacts of decisions made during…

  10. Child as Totem: Redressing the Myth of Inherent Creativity in Early Childhood

    Science.gov (United States)

    McClure, Marissa

    2011-01-01

    In this article, I present a reexamination of the myth of inherent creativity in early childhood to elucidate how still-dominant discourses of optimization such as child development, individualism, expression, creativity, and visual realism exert limiting pressures on understandings of the art and visual culture that children consume and create.…

  11. Efficiency of inherent protection mechanisms for an improved HTR safety concept

    International Nuclear Information System (INIS)

    For a preliminary design of a 350 MWsub(th) annular core derived from AVR-reactor the efficiency of inherent protection mechanisms is discussed. After-heat removal and auto-shut down potential are demonstrated for intact and complete failure of core heat sinks

  12. 16 CFR 1211.13 - Inherent force activated secondary door sensors.

    Science.gov (United States)

    2010-01-01

    ... sensors. 1211.13 Section 1211.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT... § 1211.13 Inherent force activated secondary door sensors. (a) Normal operation test. (1) A force activated door sensor of a door system installed according to the installation instructions shall...

  13. Making the Grade: Describing Inherent Requirements for the Initial Teacher Education Practicum

    Science.gov (United States)

    Sharplin, Elaine; Peden, Sanna; Marais, Ida

    2016-01-01

    This study explores the development, description, and illustration of inherent requirement (IR) statements to make explicit the requirements for performance on an initial teacher education (ITE) practicum. Through consultative group processes with stakeholders involved in ITE, seven IR domains were identified. From interviews with academics,…

  14. Experimental evidence for inherent Lévy search behaviour in foraging animals

    NARCIS (Netherlands)

    Kölzsch, A.; Alzate, A.; Bartumeus, F.; Jager, de M.; Weerman, E.J.; Hengeveld, G.M.; Naguib, M.; Nolet, B.A.; Koppel, van de J.

    2015-01-01

    Recently, Lévy walks have been put forward as a new paradigm for animal search and many cases have been made for its presence in nature. However, it remains debated whether Lévy walks are an inherent behavioural strategy or emerge from the animal reacting to its habitat. Here, we demonstrate signatu

  15. Unlocking variability: inherent variation and developmental traits of garlic plants originated from sexual reproduction

    NARCIS (Netherlands)

    Shemesh, E.; Scholten, O.E.; Rabinowitch, H.D.; Kamenetsky, R.

    2008-01-01

    Recent collections of fertile garlic (Allium sativum) accessions from Central Asia allow a detailed study of seedling developments and the evaluation of inherent variations. We hereby provide a comprehensive account of the ontogenesis of a population of garlic seedlings and their vegetative and repr

  16. Inherent and apparent optical measurements in the Hudson/Raritan estuary

    NARCIS (Netherlands)

    Bagheri, S.; Rijkeboer, M.; Gons, H.J.

    2002-01-01

    During an August, 1999 field campaign, measurements were made to establish hydrologic optical properties of the Hudson/Raritan Estuary (New York-New Jersey): 1) concurrent above-and below-surface spectral irradiance; 2) sampling for laboratory determination of inherent optical properties; and 3) con

  17. Evaluation of the role of inherent Ca(2+) in phosphorus removal from wastewater system.

    Science.gov (United States)

    Han, Chong; Wang, Zhen; Wu, Qianqian; Yang, Wangjin; Yang, He; Xue, Xiangxin

    2016-01-01

    The role of inherent Ca(2+) in phosphorus removal from wastewater was evaluated by batch tests. Precipitates were characterized by an X-ray diffractometer (XRD), Fourier transform infrared spectrophotometer (FT-IR) and scanning electron microscope with an energy dispersive spectrometer (EDS) system. Effects of inherent Ca(2+) on phosphorus removal through basic oxygen furnace slag (BOFS) were also analyzed. The results show that upon adjusting the pH to higher than 7.0, inherent Ca(2+) can remove phosphorus from wastewater and form Ca-P precipitates. Residual phosphorus exhibited a linear decreasing trend with increasing the pH from 7.0 to 10.0 and then remained unchanged at higher pH than 10.0. EDS determined that the precipitates contained the elements Ca, P and O. FT-IR spectra demonstrated that the functional groups of precipitates involved PO4(3-), OH(-) and CO3(2-). XRD indicated that the precipitates may consist of CaCO3 and some Ca-P phosphates such as CaHPO4, Ca4H(PO4)3, Ca3(PO4)2, and Ca5(PO4)3(OH). During the removal process of phosphorus by BOFS, due to the presence of inherent Ca(2+) in wastewater, the removal efficiency and rate of phosphorus increased by 15.5% and by a factor of about 3.0, respectively. PMID:27054736

  18. The Inherent Politics of Managing the Quality of Urban Green Spaces

    DEFF Research Database (Denmark)

    Lindholst, Andrej Christian; Sullivan, Sidney George; Konijnendijk, Cecil Cornelis;

    2015-01-01

    of such ‘inherent politics’ through a case study of a widespread approach to operationalizing quality in urban green space management. We conclude that adoption of any quality model has both limiting and enabling implications for public participation and decision-making and that a critical stance is needed within...

  19. The attractive Achilles heel of germ cell tumours : an inherent sensitivity to apoptosis-inducing stimuli

    NARCIS (Netherlands)

    Spierings, DCJ; de Vries, EGE; Vellenga, E; de Jong, S

    2003-01-01

    Testicular germ cell tumours (TGCTs) are extremely sensitive to cisplatin-containing chemotherapy. The rapid time course of apoptosis induction after exposure to cisplatin suggests that TGCT cells are primed to undergo programmed cell death as an inherent property of the cell of origin. In fact, apo

  20. Self-healing of damage in fibre-reinforced polymer-matrix composites

    OpenAIRE

    Hayes, S.A; Zhang, W; Branthwaite, M; Jones, F R

    2007-01-01

    Self-healing resin systems have been discussed for over a decade and four different technologies had been proposed. However, little work on their application as composite matrices has been published although this was one of the stated aims of the earliest work in the field. This paper reports on the optimization of a solid-state self-healing resin system and its subsequent use as a matrix for high volume fraction glass fibre-reinforced composites. The resin system was optimized using Charpy i...