WorldWideScience

Sample records for applications conceptual vehicle

  1. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications: Conceptual vehicle design report pure fuel cell powertrain vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Oei, D.; Kinnelly, A.; Sims, R.; Sulek, M.; Wernette, D.

    1997-02-01

    In partial fulfillment of the Department of Energy (DOE) Contract No. DE-AC02-94CE50389, {open_quotes}Direct-Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell for Transportation Applications{close_quotes}, this preliminary report addresses the conceptual design and packaging of a fuel cell-only powered vehicle. Three classes of vehicles are considered in this design and packaging exercise, the Aspire representing the small vehicle class, the Taurus or Aluminum Intensive Vehicle (AIV) Sable representing the mid-size vehicle and the E-150 Econoline representing the van-size class. A fuel cell system spreadsheet model and Ford`s Corporate Vehicle Simulation Program (CVSP) were utilized to determine the size and the weight of the fuel cell required to power a particular size vehicle. The fuel cell power system must meet the required performance criteria for each vehicle. In this vehicle design and packaging exercise, the following assumptions were made: fuel cell power system density of 0.33 kW/kg and 0.33 kg/liter, platinum catalyst loading less than or equal to 0.25 mg/cm{sup 2} total and hydrogen tanks containing gaseous hydrogen under 340 atm (5000 psia) pressure. The fuel cell power system includes gas conditioning, thermal management, humidity control, and blowers or compressors, where appropriate. This conceptual design of a fuel cell-only powered vehicle will help in the determination of the propulsion system requirements for a vehicle powered by a PEMFC engine in lieu of the internal combustion (IC) engine. Only basic performance level requirements are considered for the three classes of vehicles in this report. Each vehicle will contain one or more hydrogen storage tanks and hydrogen fuel for 560 km (350 mi) driving range. Under these circumstances, the packaging of a fuel cell-only powered vehicle is increasingly difficult as the vehicle size diminishes.

  2. Slipstream Cooperative Adaptive Cruise Control - A Conceptual ITS Application for Electric Vehicles

    OpenAIRE

    Kloiber, Bernhard; Strang, Thomas; de Ponte Müller, Fabian

    2012-01-01

    The Electric Vehicle is seen to be one of the most important enablers for a more environmentally friendly mobility of people. Unfortunately, state of the art electric vehicles suffer from a series of problems, with facing a very limited traveling distance compared to gasoline vehicles being one of the most relevant ones. In this paper we present an approach how to reduce the energy consumption while traveling over longer distances by using the slipstream effect behind a vehicle ahead. We show...

  3. Aircraft Conceptual Design Using Vehicle Sketch Pad

    Science.gov (United States)

    Fredericks, William J.; Antcliff, Kevin R.; Costa, Guillermo; Deshpande, Nachiket; Moore, Mark D.; Miguel, Edric A. San; Snyder, Alison N.

    2010-01-01

    Vehicle Sketch Pad (VSP) is a parametric geometry modeling tool that is intended for use in the conceptual design of aircraft. The intent of this software is to rapidly model aircraft configurations without expending the expertise and time that is typically required for modeling with traditional Computer Aided Design (CAD) packages. VSP accomplishes this by using parametrically defined components, such as a wing that is defined by span, area, sweep, taper ratio, thickness to cord, and so on. During this phase of frequent design builds, changes to the model can be rapidly visualized along with the internal volumetric layout. Using this geometry-based approach, parameters such as wetted areas and cord lengths can be easily extracted for rapid external performance analyses, such as a parasite drag buildup. At the completion of the conceptual design phase, VSP can export its geometry to higher fidelity tools. This geometry tool was developed by NASA and is freely available to U.S. companies and universities. It has become integral to conceptual design in the Aeronautics Systems Analysis Branch (ASAB) here at NASA Langley Research Center and is currently being used at over 100 universities, aerospace companies, and other government agencies. This paper focuses on the use of VSP in recent NASA conceptual design studies to facilitate geometry-centered design methodology. Such a process is shown to promote greater levels of creativity, more rapid assessment of critical design issues, and improved ability to quickly interact with higher order analyses. A number of VSP vehicle model examples are compared to CAD-based conceptual design, from a designer perspective; comparisons are also made of the time and expertise required to build the geometry representations as well.

  4. Conceptual Integration using Wrapped Applications

    OpenAIRE

    Gassner, Christian; Österle, Hubert; Hotaka, Ryosuke

    1996-01-01

    This paper describes how object-oriented concepts can be used throughout system development for integration purposes. Based on the distinction of physical and conceptual integration the concept of object wrapping is discussed for the integration of non-object-oriented systems. By regarding applications as high-level objects, i.e. wrapped applications, integration is achieved by modelling so-called integration relationships between these wrapped applications. While in conceptual integration re...

  5. Conceptual design of flapping-wing micro air vehicles

    International Nuclear Information System (INIS)

    Traditional micro air vehicles (MAVs) are miniature versions of full-scale aircraft from which their design principles closely follow. The first step in aircraft design is the development of a conceptual design, where basic specifications and vehicle size are established. Conceptual design methods do not rely on specific knowledge of the propulsion system, vehicle layout and subsystems; these details are addressed later in the design process. Non-traditional MAV designs based on birds or insects are less common and without well-established conceptual design methods. This paper presents a conceptual design process for hovering flapping-wing vehicles. An energy-based accounting of propulsion and aerodynamics is combined with a one degree-of-freedom dynamic flapping model. Important results include simple analytical expressions for flight endurance and range, predictions for maximum feasible wing size and body mass, and critical design space restrictions resulting from finite wing inertia. A new figure-of-merit for wing structural-inertial efficiency is proposed and used to quantify the performance of real and artificial insect wings. The impact of these results on future flapping-wing MAV designs is discussed in detail. (paper)

  6. Vehicle-to-anything application (v2anything app) for electric vehicles

    OpenAIRE

    João C. Ferreira; Monteiro, Vítor Duarte Fernandes; Afonso, João L.

    2014-01-01

    This paper presents a mobile information system denominated as Vehicle-to-Anything Application (V2Anything App), and explains its conceptual aspects. This application is aimed at giving relevant information to Full Electric Vehicle (FEV) drivers, by supporting the integration of several sources of data in a mobile application, thus contributing to the deployment of the electric mobility process. The V2Anything App provides recommendations to the drivers about the FEV range autonomy, location ...

  7. System of systems oriented flight vehicle conceptual design: Perspectives and progresses

    Directory of Open Access Journals (Sweden)

    Liu Hu

    2015-06-01

    Full Text Available In order to obtain optimized flight vehicle concepts which meet system of systems (SoS operation requirements, designers have to pay high attention to the impact of SoS at conceptual design stage since operation environment goes increasingly complex. Based on this tendency, perspectives and progresses of SoS oriented flight vehicle conceptual design, which is abbreviate as SoSed design, are reviewed in this paper. Such basic concepts of SoS as definition, characteristics, differences between systems engineering and SoS engineering, as well as SoSed design process are introduced, then SoS engineering process model for research and development of flight vehicles and SoSed design wheel model for conceptual design are proposed. Related literature is classified and analyzed in accordance with four major elements including requirements, design concept, design analysis, and trade studies and optimization: typical SoS architectures, description and quantization of indexes are introduced; Application of inverse design in designing concept is analyzed; Modeling and simulation (M&S-based methods and their applications in SoSed effectiveness evaluation are highlighted; According to SoSed trade studies and optimization related research, the importance of such points as decision-making and using multidisciplinary design optimization for reference are emphasized. Finally, the value of SoSed design is concluded, and five directions which are worthy of attention in this field are presented.

  8. Development of a conceptual flight vehicle design weight estimation method library and documentation

    Science.gov (United States)

    Walker, Andrew S.

    The state of the art in estimating the volumetric size and mass of flight vehicles is held today by an elite group of engineers in the Aerospace Conceptual Design Industry. This is not a skill readily accessible or taught in academia. To estimate flight vehicle mass properties, many aerospace engineering students are encouraged to read the latest design textbooks, learn how to use a few basic statistical equations, and plunge into the details of parametric mass properties analysis. Specifications for and a prototype of a standardized engineering "tool-box" of conceptual and preliminary design weight estimation methods were developed to manage the growing and ever-changing body of weight estimation knowledge. This also bridges the gap in Mass Properties education for aerospace engineering students. The Weight Method Library will also be used as a living document for use by future aerospace students. This "tool-box" consists of a weight estimation method bibliography containing unclassified, open-source literature for conceptual and preliminary flight vehicle design phases. Transport aircraft validation cases have been applied to each entry in the AVD Weight Method Library in order to provide a sense of context and applicability to each method. The weight methodology validation results indicate consensus and agreement of the individual methods. This generic specification of a method library will be applicable for use by other disciplines within the AVD Lab, Post-Graduate design labs, or engineering design professionals.

  9. Estimating Logistics Support of Reusable Launch Vehicles During Conceptual Design

    Science.gov (United States)

    Morris, W. D.; White, N. H.; Davies, W. T.; Ebeling, C. E.

    1997-01-01

    Methods exist to define the logistics support requirements for new aircraft concepts but are not directly applicable to new launch vehicle concepts. In order to define the support requirements and to discriminate among new technologies and processing choices for these systems, NASA Langley Research Center (LaRC) is developing new analysis methods. This paper describes several methods under development, gives their current status, and discusses the benefits and limitations associated with their use.

  10. Conceptual Model of User Adaptive Enterprise Application

    Directory of Open Access Journals (Sweden)

    Inese Šūpulniece

    2015-07-01

    Full Text Available The user adaptive enterprise application is a software system, which adapts its behavior to an individual user on the basis of nontrivial inferences from information about the user. The objective of this paper is to elaborate a conceptual model of the user adaptive enterprise applications. In order to conceptualize the user adaptive enterprise applications, their main characteristics are analyzed, the meta-model defining the key concepts relevant to these applications is developed, and the user adaptive enterprise application and its components are defined in terms of the meta-model. Modeling of the user adaptive enterprise application incorporates aspects of enterprise modeling, application modeling, and design of adaptive characteristics of the application. The end-user and her expectations are identified as two concepts of major importance not sufficiently explored in the existing research. Understanding these roles improves the adaptation result in the user adaptive applications.

  11. Advanced Usage of Vehicle Sketch Pad for CFD-Based Conceptual Design

    Science.gov (United States)

    Ordaz, Irian; Li, Wu

    2013-01-01

    Conceptual design is the most fluid phase of aircraft design. It is important to be able to perform large scale design space exploration of candidate concepts that can achieve the design intent to avoid more costly configuration changes in later stages of design. This also means that conceptual design is highly dependent on the disciplinary analysis tools to capture the underlying physics accurately. The required level of analysis fidelity can vary greatly depending on the application. Vehicle Sketch Pad (VSP) allows the designer to easily construct aircraft concepts and make changes as the design matures. More recent development efforts have enabled VSP to bridge the gap to high-fidelity analysis disciplines such as computational fluid dynamics and structural modeling for finite element analysis. This paper focuses on the current state-of-the-art geometry modeling for the automated process of analysis and design of low-boom supersonic concepts using VSP and several capability-enhancing design tools.

  12. A Conceptual Aerospace Vehicle Structural System Modeling, Analysis and Design Process

    Science.gov (United States)

    Mukhopadhyay, Vivek

    2007-01-01

    A process for aerospace structural concept analysis and design is presented, with examples of a blended-wing-body fuselage, a multi-bubble fuselage concept, a notional crew exploration vehicle, and a high altitude long endurance aircraft. Aerospace vehicle structures must withstand all anticipated mission loads, yet must be designed to have optimal structural weight with the required safety margins. For a viable systems study of advanced concepts, these conflicting requirements must be imposed and analyzed early in the conceptual design cycle, preferably with a high degree of fidelity. In this design process, integrated multidisciplinary analysis tools are used in a collaborative engineering environment. First, parametric solid and surface models including the internal structural layout are developed for detailed finite element analyses. Multiple design scenarios are generated for analyzing several structural configurations and material alternatives. The structural stress, deflection, strain, and margins of safety distributions are visualized and the design is improved. Over several design cycles, the refined vehicle parts and assembly models are generated. The accumulated design data is used for the structural mass comparison and concept ranking. The present application focus on the blended-wing-body vehicle structure and advanced composite material are also discussed.

  13. RFID-based vehicle positioning and its applications in connected vehicles.

    Science.gov (United States)

    Wang, Jianqiang; Ni, Daiheng; Li, Keqiang

    2014-01-01

    This paper proposed an RFID-based vehicle positioning approach to facilitate connected vehicles applications. When a vehicle passes over an RFID tag, the vehicle position is given by the accurate position stored in the tag. At locations without RFID coverage, the vehicle position is estimated from the most recent tag location using a kinematics integration algorithm till updates from the next tag. The accuracy of RFID positioning is verified empirically in two independent ways with one using radar and the other a photoelectric switch. The former is designed to verify whether the dynamic position obtained from RFID tags matches the position measured by radar that is regarded as accurate. The latter aims to verify whether the position estimated from the kinematics integration matches the position obtained from RFID tags. Both means supports the accuracy of RFID-based positioning. As a supplement to GPS which suffers from issues such as inaccuracy and loss of signal, RFID positioning is promising in facilitating connected vehicles applications. Two conceptual applications are provided here with one in vehicle operational control and the other in Level IV intersection control. PMID:24599188

  14. Conceptual chains and their didactic applications in physics

    Science.gov (United States)

    López Campos, Carlos Enrique

    2010-02-01

    It is presented the definition of graphical schemas called of conceptual dependency and their particular cases, the conceptual chains, which are useful for the representation of conceptual structures during the learning of a topic or the process of solving problems in physics. We review and we contrast their characteristics in relation to other cognitive structural models as the conceptual maps and the conceptual networks. Finally we discuss points of difference and coincidence between the three schematic models and about various possible applications of the conceptual dependency schemas and the conceptual chains, such as, didactic applications for teaching and learning, detection of conceptual faults in apprentices and as a research tool of the cognition process, showing results obtained of studies realized on the degree of difficulty of problems that were proposed to diverse populations of students. )

  15. A conceptual holding model for veterinary applications

    Directory of Open Access Journals (Sweden)

    Nicola Ferrè

    2014-05-01

    Full Text Available Spatial references are required when geographical information systems (GIS are used for the collection, storage and management of data. In the veterinary domain, the spatial component of a holding (of animals is usually defined by coordinates, and no other relevant information needs to be interpreted or used for manipulation of the data in the GIS environment provided. Users trying to integrate or reuse spatial data organised in such a way, frequently face the problem of data incompatibility and inconsistency. The root of the problem lies in differences with respect to syntax as well as variations in the semantic, spatial and temporal representations of the geographic features. To overcome these problems and to facilitate the inter-operability of different GIS, spatial data must be defined according to a “schema” that includes the definition, acquisition, analysis, access, presentation and transfer of such data between different users and systems. We propose an application “schema” of holdings for GIS applications in the veterinary domain according to the European directive framework (directive 2007/2/EC - INSPIRE. The conceptual model put forward has been developed at two specific levels to produce the essential and the abstract model, respectively. The former establishes the conceptual linkage of the system design to the real world, while the latter describes how the system or software works. The result is an application “schema” that formalises and unifies the information-theoretic foundations of how to spatially represent a holding in order to ensure straightforward information-sharing within the veterinary community.

  16. Conceptual Design and Cost Estimate of a Subsonic NASA Testbed Vehicle (NTV) for Aeronautics Research

    Science.gov (United States)

    Nickol, Craig L.; Frederic, Peter

    2013-01-01

    A conceptual design and cost estimate for a subsonic flight research vehicle designed to support NASA's Environmentally Responsible Aviation (ERA) project goals is presented. To investigate the technical and economic feasibility of modifying an existing aircraft, a highly modified Boeing 717 was developed for maturation of technologies supporting the three ERA project goals of reduced fuel burn, noise, and emissions. This modified 717 utilizes midfuselage mounted modern high bypass ratio engines in conjunction with engine exhaust shielding structures to provide a low noise testbed. The testbed also integrates a natural laminar flow wing section and active flow control for the vertical tail. An eight year program plan was created to incrementally modify and test the vehicle, enabling the suite of technology benefits to be isolated and quantified. Based on the conceptual design and programmatic plan for this testbed vehicle, a full cost estimate of $526M was developed, representing then-year dollars at a 50% confidence level.

  17. Switched reluctance drives for electric vehicle applications

    OpenAIRE

    Andrada Gascón, Pedro; Torrent Burgués, Marcel; Blanqué Molina, Balduino; Perat Benavides, Josep Ignasi

    2003-01-01

    Electric vehicles are the only alternative for a clean, efficient and environmentally friendly urban transport system. With the increasing interest in electric drives for electric vehicle propulsion. This paper first tries to explain why the switched reluctance drive is a strong candidate for electric vehicle applications. It then gives switched reluctance drive design guidelines for battery or fuel cell operated electric vehicles. Finally, it presents the design and simulation of a switched ...

  18. Vehicle dynamics theory and application

    CERN Document Server

    Jazar, Reza N

    2014-01-01

    This textbook is appropriate for senior undergraduate and first year graduate students in mechanical and automotive engineering. The contents in this book are presented at a theoretical-practical level. It explains vehicle dynamics concepts in detail, concentrating on their practical use. Related theorems and formal proofs are provided, as are real-life applications. Students, researchers and practicing engineers alike will appreciate the user-friendly presentation of a wealth of topics, most notably steering, handling, ride, and related components. This book also: Illustrates all key concepts with examples Includes exercises for each chapter Covers front, rear, and four wheel steering systems, as well as the advantages and disadvantages of different steering schemes Includes an emphasis on design throughout the text, which provides a practical, hands-on approach

  19. An applications guide to vehicle SNM monitors

    International Nuclear Information System (INIS)

    The applications guide introduces its readers to the vehicle special nuclear material (SNM) monitors that are becoming part of safeguards and security measures for nuclear material control at DOE facilities. Building on the foundation provided by an applications guide to pedestrian SNM monitors published in 1986 and a technical report on vehicle monitoring published in 1982, the guide provides an overview of vehicle monitoring in Part 1, a discussion of technical aspects of vehicle monitoring in Part 2, and a catalog of vehicle SNM monitors available to DOE facilities in Part 3. Vehicle monitor upkeep, calibration, testing, and performance are important topics in Part 1. The short technical discussion in Part 2 is devoted to new developments and unique features of vehicle monitors

  20. Conceptual Design Report for the NGNP Tensile Test Vehicle

    International Nuclear Information System (INIS)

    A conceptual design was preformed to determine the feasibility of irradiating silicon carbide fiber reinforced/silicon carbide (SiCf/SiC) and carbon fiber reinforced /carbon (Cf/C) tensile test specimens for the Next Generation Nuclear Production (NGNP) program. The design was based on the Flux Trap, Large and Small B irradiation positions in the Advanced Test Reactor. The Test Specimens investigated were 50% SiCf/SiC composites and 50% Cf/C composites. The specimens geometry were either tapered or fillet type dog bone shape, 25 to 35 mm long with a gauge length of 20 mm, width 6 mm, and 3 mm thick. The width of the support end of the specimens was 10-12 mm. The test specimens require finite temperature control from 600 to 1,000 C. Due to the high temperatures required for the test specimens, the adjacent components will need to be fabricated from composite or graphitic materials. One-third to one-half of the specimens will be unloaded but will have the same geometry and irradiation conditions as the tensile specimens. The desired specimen irradiations damage was 9 dpa and the desired tensile stress limits were from 10 to 30 MPa. One of the design objectives was to load the test train so that single or multiple specimen failures would not compromise the entire test train. This need was realized from previous irradiations where the specimens were all loaded through a single load path. Any specimen failure along the load path resulted in the entire test train to become unloaded. Another design objective was to determine the best irradiation position that would maximize the target space but still provide the neutron flux needed to complete the irradiations in a reasonable amount of time. A rough order of magnitude cost estimate and schedule was completed based on previous experiments. The corresponding risk assessment was performed to identify possible items that may affect the overall project success. Depending upon how the risks are mitigated, the cost and schedules

  1. Conceptual Design of a Vertical Takeoff and Landing Unmanned Aerial Vehicle with 24-HR Endurance

    Science.gov (United States)

    Fredericks, William J.

    2010-01-01

    This paper describes a conceptual design study for a vertical takeoff and landing (VTOL) unmanned aerial vehicle (UAV) that is able to carry a 25-lb science payload for 24 hr and is able to land and take off at elevations as high as 15,000 ft without human intervention. In addition to the science payload, this vehicle must be able to carry a satellite communication system, and the vehicle must be able to be transported in a standard full-size pickup truck and assembled by only two operators. This project started with a brainstorming phase to devise possible vehicle configurations that might satisfy the requirements. A down select was performed to select a near-term solution and two advanced vehicle concepts that are better suited to the intent of the mission. Sensitivity analyses were also performed on the requirements and the technology levels to obtain a better understanding of the design space. This study found that within the study assumptions the mission is feasible; the selected concepts are recommended for further development.

  2. Vehicle density in VANET Applications

    OpenAIRE

    Reyes Muñoz, María Angélica; Barrado Muxí, Cristina; Lopez, Marco; Excelente Toledo, Cora Beatriz

    2013-01-01

    This paper analyzes how street-level traffic data affects routing in VANETs applications. First, we offer a general review about which protocols and techniques would fit best for VANET applications. We selected five main technical aspects (Transmission, Routing, Quality of Service, Security and Location) that we consider are differential aspects of VANETs from current Ad-Hoc Networks. Second, the paper analyzes how to configure each technical aspect according to the goal of a wide range of VA...

  3. Nanocomposites for Vehicle Structural Applications

    OpenAIRE

    Njuguna, James; Silva, Francesco; Sachse, Sophia

    2011-01-01

    Advancements in the nanotechnology industry promise to offer improvements in capabilities across a spectrum of applications. This is of immense strategic importance to the high performance sector which has historically leveraged technological advances. The uses of polymer nanocomposites in structures have several predictable impacts on structural design and applications, primarily by providing a safer, faster, and eventually cheaper transportation in the future. In this chapter, special atten...

  4. A conceptual design methodology for low speed high altitude long endurance unmanned aerial vehicles

    OpenAIRE

    Altman, Aaron

    2000-01-01

    A conceptual design methodology was produced and subsequently coded into a Visual C++ (GUI) environment to facilitate the rapid comparison of several possible configurations to satisfy High Altitude Long Endurance (FIALE) unmanned aircraft (UAV) missions in the Low Speed (propeller driven aircraft) regime. Several comparative studies were performed to verify the applicability of traditional design methods. The traditional computational design methodologies fail in several areas...

  5. Application of Harmony Search to Vehicle Routing

    Directory of Open Access Journals (Sweden)

    Zong W.  Geem

    2005-01-01

    Full Text Available A phenomenon-inspired meta-heuristic algorithm, harmony search, imitating music improvisation process, is introduced and applied to vehicle routing problem, then compared with one of the popular evolutionary algorithms, genetic algorithm. The harmony search algorithm conceptualized a group of musicians together trying to search for better state of harmony. This algorithm was applied to a test traffic network composed of one bus depot, one school and ten bus stops with demand by commuting students. This school bus routing example is a multi-objective problem to minimize both the number of operating buses and the total travel time of all buses while satisfying bus capacity and time window constraints. Harmony search could find good solution within the reasonable amount of time and computation.

  6. Vehicle to Grid Services: Potential and Applications

    Directory of Open Access Journals (Sweden)

    Saeed Lotfifard

    2012-10-01

    Full Text Available Electric Vehicle (EV technology is expected to take a major share in the light-vehicle market in the coming decades. Charging of EVs will put an extra burden on the distribution grid and in some cases adjustments will need to be made. On the other hand, EVs have the potential to support the grid under various conditions. This paper studies possible potential and applications of Vehicle to Grid (V2G services, including active power services, which discharge the EV batteries, and power quality services, which do not engage the battery or require only small amounts of battery charge. The advantages and disadvantages of each service and the likelihood that a given service will be effective and beneficial for the grid in the future are discussed. Further, the infrastructure cost, duration, and value of V2G services are compared qualitatively.

  7. 1997 update for the applications guide to vehicle SNM monitors

    International Nuclear Information System (INIS)

    Ten years have elapsed since the publication of the original applications guide to vehicle special nuclear material (SNM) monitors. During that interval, use of automatic vehicle monitors has become more commonplace, and formal procedures for monitor upkeep and evaluation have become available. New concepts for vehicle monitoring are being explored, as well. This update report reviews the basics of vehicle SNM monitoring, discusses what is new in vehicle SNM monitoring, and catalogs the vehicle SNM monitors that are commercial available

  8. Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles

    OpenAIRE

    Burke, Andy

    2009-01-01

    This paper focuses on ultracapactors (electrochemical capacitors) as energy storage in vehicle applications and thus evaluates the present state-of-the-art of ultracapacitor technologies and their suitability for use in electric and hybrid drivelines of various types of vehicles. A key consideration in determining the applicability of ultracapacitors for a particular vehicle application is the proper assessment of the energy storage and power requirements. For hybrid-electric vehicles, the ke...

  9. A Conceptual Design of Mobile Learning Applications for Preschool Children

    OpenAIRE

    Kraleva, Radoslava; Kralev, Velin; Kostadinova, Dafina

    2016-01-01

    This article focuses on the possibilities of using mobile learning in the Bulgarian preschool education of young children. The state preschool educational regulations are presented and discussed. The problem concerning the children's safety when using mobile devices in terms of access to information on the Internet is revealed and analyzed. Two conceptual models of applications for mobile learning aimed at preschool children are designed. Their advantages and disadvantages are outlined and di...

  10. Vehicle Sketch Pad: a Parametric Geometry Modeler for Conceptual Aircraft Design

    Science.gov (United States)

    Hahn, Andrew S.

    2010-01-01

    The conceptual aircraft designer is faced with a dilemma, how to strike the best balance between productivity and fidelity? Historically, handbook methods have required only the coarsest of geometric parameterizations in order to perform analysis. Increasingly, there has been a drive to upgrade analysis methods, but these require considerably more precise and detailed geometry. Attempts have been made to use computer-aided design packages to fill this void, but their cost and steep learning curve have made them unwieldy at best. Vehicle Sketch Pad (VSP) has been developed over several years to better fill this void. While no substitute for the full feature set of computer-aided design packages, VSP allows even novices to quickly become proficient in defining three-dimensional, watertight aircraft geometries that are adequate for producing multi-disciplinary meta-models for higher order analysis methods, wind tunnel and display models, as well as a starting point for animation models. This paper will give an overview of the development and future course of VSP.

  11. Innovative applications of cars connectivity network – way to intelligent vehicle

    OpenAIRE

    Milan Kovac; Andrea Leskova

    2012-01-01

    The presented article focuses on characteristic of possibilities to use of ICT tools in automotive traffic. There are specified selected potentialities for a network connected to automotive integration in near future. There is also considerable innovation in the field of Internet-enabled in-car systems. In this contribution we want illustrating affects of Internet networking in automobiles by examples of applications. The goal is to present conceptual model of vehicle connected to external in...

  12. APPLICATION OF MOUNTING FRAMES IN SPECIAL VEHICLES

    Directory of Open Access Journals (Sweden)

    Grzegorz SZCZĘŚNIAK

    2015-06-01

    Full Text Available The paper presents the design solutions and fastening mounting frames in special vehicles. Special Vehicles is an interesting and growing market in the production of heavy vehicles. Due to the nature of the use of these vehicles of their design solutions require constant change and adaptation, which opens up the possibility of a utilitarian research

  13. Conceptual Design and Simulation of a Multibody Passive-Legged Crawling Vehicle

    OpenAIRE

    Stulce, John R.

    2002-01-01

    Rugged terrains, including much of the earthâ s surface, other planets, and many man-made structures, are inaccessible to wheeled and tracked vehicles. This has inspired research into legged vehicles. Prior to the research described here, virtually all legged vehicle designs relied on the concept of mounting actuated leg-type mechanisms onto a single rigid frame or chassis. This dissertation research explores and advances a novel vehicle concept that uses passive legs attached to an actu...

  14. The Application of Conceptual Metaphor Theory in English Polysemy Teaching

    Institute of Scientific and Technical Information of China (English)

    刘璨

    2014-01-01

    Conceptual Metaphor Theory advanced by Lakoff and Johnson is a systematic and complete theory of metaphor.This paper discusses some methods to apply the Conceptual Metaphor Theory to English polysemy teaching.

  15. An advanced unmanned vehicle for remote applications

    International Nuclear Information System (INIS)

    An autonomous mobile robotic capability is critical to developing remote work applications for hazardous environments. A few potential applications include humanitarian demining and ordnance neutralization, extraterrestrial science exploration, and hazardous waste cleanup. The ability of the remote platform to sense and maneuver within its environment is a basic technology requirement which is currently lacking. This enabling technology will open the door for force multiplication and cost effective solutions to remote operations. The ultimate goal of this work is to develop a mobile robotic platform that can identify and avoid local obstacles as it traverses from its current location to a specified destination. This goal directed autonomous navigation scheme uses the Global Positioning System (GPS) to identify the robot's current coordinates in space and neural network processing of LADAR range images for local obstacle detection and avoidance. The initial year funding provided by this LDRD project has developed a small exterior mobile robotic development platform and a fieldable version of Sandia's Scannerless Range Imager (SRI) system. The robotic testbed platform is based on the Surveillance And Reconnaissance ground Equipment (SARGE) robotic vehicle design recently developed for the US DoD. Contingent upon follow-on funding, future enhancements will develop neural network processing of the range map data to traverse unstructured exterior terrain while avoiding obstacles. The SRI will provide real-time range images to a neural network for autonomous guidance. Neural network processing of the range map data will allow real-time operation on a Pentium based embedded processor board

  16. Initialization, conceptualization, and application in the generalized (fractional) calculus.

    Science.gov (United States)

    Lorenzo, Carl F; Hartley, Tom T

    2007-01-01

    This paper provides a formalized basis for initialization in the fractional calculus. The intent is to make the fractional calculus readily accessible to engineering and the sciences. A modified set of definitions for the fractional calculus is provided which formally include the effects of initialization. Conceptualizations of fractional derivatives and integrals are shown. Physical examples of the basic elements from electronics are presented along with examples from dynamics, material science, viscoelasticity, filtering, instrumentation, and electrochemistry to indicate the broad application of the theory and to demonstrate the use of the mathematics. The fundamental criteria for a generalized calculus established by Ross (1974) are shown to hold for the generalized fractional calculus under appropriate conditions. A new generalized form for the Laplace transform of the generalized differintegral is derived. The concept of a variable structure (order) differintegral is presented along with initial efforts toward meaningful definitions. PMID:19583533

  17. Intitialization, Conceptualization, and Application in the Generalized Fractional Calculus

    Science.gov (United States)

    Lorenzo, Carl F.; Hartley, Tom T.

    1998-01-01

    This paper provides a formalized basis for initialization in the fractional calculus. The intent is to make the fractional calculus readily accessible to engineering and the sciences. A modified set of definitions for the fractional calculus is provided which formally include the effects of initialization. Conceptualizations of fractional derivatives and integrals are shown. Physical examples of the basic elements from electronics are presented along with examples from dynamics, material science, viscoelasticity, filtering, instrumentation, and electrochemistry to indicate the broad application of the theory and to demonstrate the use of the mathematics. The fundamental criteria for a generalized calculus established by Ross (1974) are shown to hold for the generalized fractional calculus under appropriate conditions. A new generalized form for the Laplace transform of the generalized differintegral is derived. The concept of a variable structure (order) differintegral is presented along with initial efforts toward meaningful definitions.

  18. A conceptual design study of a hovering system controller for an Autonomous Underwater Vehicle

    OpenAIRE

    Thompson, Chris A.

    1987-01-01

    Approved for public release; distribution is unlimited. Hovering, Stationkeeping, Underwater Vehicles, Control Systems, Configurations, Control, Horsepower, Oceans, Position (Location), Redundancy, Scenarios, Theses, Thrusters, Transitions Hovering, Stationkeeping, Underwater Vehicles, Control Systems, Configurations, Control, Horsepower, Oceans, Position (Location), Redundancy, Scenarios, Theses, Thrusters, Transitions http://archive.org/details/conceptualdesign00thom Lieutenant Com...

  19. UNMANNED AERIAL VEHICLE IN CADASTRAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    M. Manyoky

    2012-09-01

    Full Text Available This paper presents the investigation of UAVs (Unmanned Aerial Vehicles for use in cadastral surveying. Within the scope of a pilot study UAVs were tested for capturing geodata and compared with conventional data acquisition methods for cadastral surveying. Two study sites were therefore surveyed with a tachymeter-GNSS combination as well as a UAV system. The workflows of both methods were investigated and the resulting data were compared with the requirements of Swiss cadastral surveying. Concerning data acquisition and evaluation, the two systems are found to be comparable in terms of time expenditure, accuracy, and completeness. In conclusion, the UAV image orientation proved to be the limiting factor for the obtained accuracy due to the low- cost camera including camera calibration, image quality, and definition of the ground control points (natural or artificial. However, the required level of accuracy for cadastral surveying was reached. The advantage of UAV systems lies in their high flexibility and efficiency in capturing the surface of an area from a low flight altitude. In addition, further information such as orthoimages, elevation models and 3D objects can easily be gained from UAV images. Altogether, this project endorses the benefit of using UAVs in cadastral applications and the new opportunities they provide for cadastral surveying.

  20. Conceptual model of an application and its use for application documentation

    Directory of Open Access Journals (Sweden)

    Martin Vonka

    2015-04-01

    Full Text Available Following article proposes methodology for conceptual design of a software application. This form of design is suitable for dynamic development environment and agile principles of software development. Article discus the required scope and style used for description of the application. Unification of a documentation significantly reduces the time required for communication within the development team. Some part of the documentation are obtained using the method of reverse engineering, for example by analysis of the application structure or its source code.

  1. An advanced unmanned vehicle for remote applications

    Energy Technology Data Exchange (ETDEWEB)

    Pletta, J.B.; Sackos, J.

    1998-03-01

    An autonomous mobile robotic capability is critical to developing remote work applications for hazardous environments. A few potential applications include humanitarian demining and ordnance neutralization, extraterrestrial science exploration, and hazardous waste cleanup. The ability of the remote platform to sense and maneuver within its environment is a basic technology requirement which is currently lacking. This enabling technology will open the door for force multiplication and cost effective solutions to remote operations. The ultimate goal of this work is to develop a mobile robotic platform that can identify and avoid local obstacles as it traverses from its current location to a specified destination. This goal directed autonomous navigation scheme uses the Global Positioning System (GPS) to identify the robot`s current coordinates in space and neural network processing of LADAR range images for local obstacle detection and avoidance. The initial year funding provided by this LDRD project has developed a small exterior mobile robotic development platform and a fieldable version of Sandia`s Scannerless Range Imager (SRI) system. The robotic testbed platform is based on the Surveillance And Reconnaissance ground Equipment (SARGE) robotic vehicle design recently developed for the US DoD. Contingent upon follow-on funding, future enhancements will develop neural network processing of the range map data to traverse unstructured exterior terrain while avoiding obstacles. The SRI will provide real-time range images to a neural network for autonomous guidance. Neural network processing of the range map data will allow real-time operation on a Pentium based embedded processor board.

  2. Variable-Fidelity Conceptual Design System for Advanced Unconventional Air Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ongoing work in unconventional air-vehicles, i.e. deformable mold-lines and bio-mimetics, is beginning to provide the insight necessary to exploit performance...

  3. The Application of Pedagogic Knowledge to Teaching: A Conceptual Framework

    Science.gov (United States)

    Loo, Sai Y.

    2012-01-01

    This article uses a conceptual approach to understand how qualified teachers in England with occupational experience use pedagogic and occupational knowledge and experiences in their teaching practices. The conceptual approach consists of two parts: (1.) "Putting Knowledge to Work" (PKtW), a generic concept which uses "recontextualisation"…

  4. Conceptual model of an application and its use for application documentation

    OpenAIRE

    Martin Vonka

    2015-01-01

    Following article proposes methodology for conceptual design of a software application. This form of design is suitable for dynamic development environment and agile principles of software development. Article discus the required scope and style used for description of the application. Unification of a documentation significantly reduces the time required for communication within the development team. Some part of the documentation are obtained using the method of reverse engineering, for exa...

  5. Conceptual design and selection of a biodiesel fuel processor for a vehicle fuel cell auxiliary power unit

    Science.gov (United States)

    Specchia, S.; Tillemans, F. W. A.; van den Oosterkamp, P. F.; Saracco, G.

    Within the European project BIOFEAT (biodiesel fuel processor for a fuel cell auxiliary power unit for a vehicle), a complete modular 10 kW e biodiesel fuel processor capable of feeding a PEMFC will be developed, built and tested to generate electricity for a vehicle auxiliary power unit (APU). Tail pipe emissions reduction, increased use of renewable fuels, increase of hydrogen-fuel economy and efficient supply of present and future APU for road vehicles are the main project goals. Biodiesel is the chosen feedstock because it is a completely natural and thus renewable fuel. Three fuel processing options were taken into account at a conceptual design level and compared for hydrogen production: (i) autothermal reformer (ATR) with high and low temperature shift (HTS/LTS) reactors; (ii) autothermal reformer (ATR) with a single medium temperature shift (MTS) reactor; (iii) thermal cracker (TC) with high and low temperature shift (HTS/LTS) reactors. Based on a number of simulations (with the AspenPlus® software), the best operating conditions were determined (steam-to-carbon and O 2/C ratios, operating temperatures and pressures) for each process alternative. The selection of the preferential fuel processing option was consequently carried out, based on a number of criteria (efficiency, complexity, compactness, safety, controllability, emissions, etc.); the ATR with both HTS and LTS reactors shows the most promising results, with a net electrical efficiency of 29% (LHV).

  6. Electric vehicle machines and drives design, analysis and application

    CERN Document Server

    Chau, K

    2015-01-01

    A timely comprehensive reference consolidates the research and development of electric vehicle machines and drives for electric and hybrid propulsions • Focuses on electric vehicle machines and drives • Covers the major technologies in the area including fundamental concepts and applications • Emphasis the design criteria, performance analyses and application examples or potentials of various motor drives and machine systems • Accompanying website includes the simulation models and outcomes as supplementary material

  7. Radio channel measurements at street intersections for vehicle-to-vehicle applications

    OpenAIRE

    Kåredal, Johan; Tufvesson, Fredrik; Abbas, Taimoor; Klemp, Oliver; Paier, Alexander; Bernadó, Laura; Molisch, Andreas

    2010-01-01

    This paper presents the results of an empirical study of wireless propagation channels for vehicle-to-vehicle communications in street intersections, a scenario especially important for collision avoidance applications. The results are derived from a channel measurement campaign performed at 5.6 GHz in four different types of urban intersections. We present results on typical power delay profiles, pathloss and delay spreads and discuss important propagation mechanisms. By comparing the res...

  8. Complexity measures for object-oriented conceptual models of an application domain

    OpenAIRE

    Poels, Geert; Dedene, Guido

    1997-01-01

    According to Norman Fenton few work has been done on measuring the complexity of the problems underlying software development. Nonetheless, it is believed that this attribute has a significant impact on software quality and development effort. A substantial portion of the underlying problems are captured in the conceptual model of the application domain. Based on previous work on conceptual modelling of aplication domains, the attribute 'complexity of a conceptual model' is formally define...

  9. Vehicle antenna development for mobile satellite applications

    Science.gov (United States)

    Woo, K.

    1988-01-01

    The paper summarizes results of a vehicle antenna program at JPL in support of a developing U.S. mobile satellite services (MSS) designed to provide telephone and data services for the continental United States. Two classes of circularly polarized vehicle antennas have been considered for the MSS: medium-gain, satellite-tracking antennas with 10-12-dBic gain; and low-gain, azimuthally omnidirectional antennas with 3-5-dBic gain. The design and performance of these antennas are described, and the two antennas are shown to have peculiar advantages and disadvantages.

  10. Lithium batteries for electric road vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Bo; Hallgren, B.; Johansson, Arne; Selaanger, P. [Catella Generics, Kista (Sweden)

    1995-12-31

    Lithium is one of the most promising negative electrode materials to be used for the manufacturing of batteries. It is the most electronegative material in the table of standard potentials and its low weight will facilitate a high gravimetric coulombic density. Theoretically, as high values as 6 kWh/kg could be reached for lithium based batteries. The aim of this study has been to make an inventory of what is internationally known about lithium batteries suitable for electric vehicle applications. It is representative for the development status by the summer of 1995. Both high and ambient temperature lithium batteries are described in the study even if the analysis is concentrated on the latter. Ambient temperature systems has gathered the major interest, especially from manufacturers in the `3Cs` market segment (Consumer electronics, Communications and Computers). There is no doubt, a bright future for lithium rechargeable batteries. Depending on the ambition of a national research programme, one can await the ongoing development of batteries for the 3Cs market segment or take the lead in a near-term or advanced system R and D for EV batteries. In the zero ambition EV battery programme, we recommend allocation of funds to follow the development within the 3Cs sector. The corresponding funding level is 1-2 MSEK/year granted to a stable receiver. In a low ambition EV programme, we recommend to keep a few groups active in the front-line of specific research areas. The purpose is to keep a link for communication open to the surrounding battery world. The cost level is 4-6 MSEK per year continually. In a high ambition programme we recommend the merging of Swedish resources with international EV battery R and D programmes, e.g. the EUCAR project. The research team engaged should be able to contribute to the progress of the overall project. The cost for the high ambition programme is estimated at the level 15-20 MSEK per year continually. 47 refs, 17 figs, 16 tabs

  11. Mass Properties Calculation and Fuel Analysis in the Conceptual Design of Uninhabited Air Vehicles

    OpenAIRE

    Ohanian, Osgar John

    2003-01-01

    The determination of an aircraft's mass properties is critical during its conceptual design phase. Obtaining reliable mass property information early in the design of an aircraft can prevent design mistakes that can be extremely costly further along in the development process. In this thesis, several methods are presented in order to automatically calculate the mass properties of aircraft structural components and fuel stored in tanks. The first method set forth calculates the mass prope...

  12. Labview Application For A Vehicle Control

    Directory of Open Access Journals (Sweden)

    Douglas Paladine Vieira

    2002-01-01

    Full Text Available This article deals with the construction of a vehicle driven by electric motors and that is automated, that is, that can move anywhere without human intervention. The control was done using the software Labview, with data acquisition and generation of control signs. The vehicle has an infrared sensors system that indicates the existence of an obstacle ahead the vehicle, informing it that it should stop and bypass the obstacle. The program is the responsible for the engine control, making it possible for the prototype to run and bypass the objects that block its way. The possibility of remote-controlling a vehicle is very important is risky situations for human beings, for example in radioactive places. The main advantage of this system is the total flexibility for making alterations in the control software, without being necessary to touch the physical part of the prototype. The conclusion of this work is that the system is efficient and able to move in a room with objects without touching them.

  13. Rich Vehicle Routing Problems and Applications

    DEFF Research Database (Denmark)

    Wen, Min

    given set of customers. The VRP is a computationally hard combinatorial problem and has been intensively studied by numerous researchers in the last fifty years. Due to the significant economic benefit that can be achieved by optimizing the routing problems in practice, more and more attention has been......The Vehicle Routing Problem (VRP) is one of the most important and challenging optimization problems in the field of Operations Research. It was introduced by Dantzig and Ramser (1959) and defined as the problem of designing the optimal set of routes for a fleet of vehicles in order to serve a...... problems in the sense that consolidation decisions have to be made at the depot and these decisions interact with the planning of pickup and delivery routes. We presented a mathematical model and proposed a Tabu Search based heuristic to solve it. It is shown that the approach can produce near-optimal...

  14. A conceptual framework for the vehicle-to-grid (V2G) implementation

    International Nuclear Information System (INIS)

    The paper focuses on presenting a proposed framework to effectively integrate the aggregated battery vehicles into the grid as distributed energy resources to act as controllable loads to levelize the demand on the system during off-peak conditions and as a generation/storage device during the day to provide capacity and energy services to the grid. The paper also presents practical approaches for two key implementation steps - computer/communication/control network and incentive program.

  15. Flight Vehicle Control and Aerobiological Sampling Applications

    OpenAIRE

    Techy, Laszlo

    2009-01-01

    Aerobiological sampling using unmanned aerial vehicles (UAVs) is an exciting research field blending various scientific and engineering disciplines. The biological data collected using UAVs helps to better understand the atmospheric transport of microorganisms. Autopilot-equipped UAVs can accurately sample along pre-defined flight plans and precisely regulated altitudes. They can provide even greater utility when they are networked together in coordinated sampling missions: such measurements ...

  16. Continuously variable transmission: Assessment of applicability to advance electric vehicles

    Science.gov (United States)

    Loewenthal, S. H.; Parker, R. J.

    1981-01-01

    A brief historical account of the evolution of continuously variable transmissions (CVT) for automotive use is given. The CVT concepts which are potentially suitable for application with electric and hybrid vehicles are discussed. The arrangement and function of several CVT concepts are cited along with their current developmental status. The results of preliminary design studies conducted on four CVT concepts for use in advanced electric vehicles are discussed.

  17. PEMS Light Duty Vehicles Application: Experiences in Downtown Milan

    OpenAIRE

    RUBINO LAURETTA; BONNEL PIERRE; HUMMEL RUDOLF; KRASENBRINK ALOIS; MANFREDI URBANO; DE SANTI GIOVANNI; Perotti, M.; G Bomba

    2007-01-01

    ABSTRACT Portable Emissions Measurement Systems (PEMS) are becoming an important regulatory tool to monitor the in-use compliance of large sources like heavyduty vehicles (HDV) or non-road mobile machinery (NRMM). Legislative research programmes in Europe, United States and Japan are introducing PEMS in the regulations. The application of PEMS to light-duty vehicles (LDVs) is not part of or driven by official legislative requirements. However, as the vehicleengine operation points in the l...

  18. Impression Management Training: Conceptualization and Application to Personal Selling.

    Science.gov (United States)

    Leathers, Dale G.

    1988-01-01

    Discusses the importance of impression management, an individual's conscious attempt to exercise control over selected communicative behaviors and cues for purposes of making a desired impression. Provides a comprehensive conceptualization of the impression-management process, and demonstrates how this process can facilitate effective training of…

  19. Innovative applications of cars connectivity network – way to intelligent vehicle

    Directory of Open Access Journals (Sweden)

    Milan Kovac

    2012-10-01

    Full Text Available The presented article focuses on characteristic of possibilities to use of ICT tools in automotive traffic. There are specified selected potentialities for a network connected to automotive integration in near future. There is also considerable innovation in the field of Internet-enabled in-car systems. In this contribution we want illustrating affects of Internet networking in automobiles by examples of applications. The goal is to present conceptual model of vehicle connected to external interfaces. Subject of article covered the tendencies in the development of the specific application in automotive sector. Objectives is an increased public perception and customer acceptance of cars network systems which is suitable for multiple application domains – external connectivity, networking, security, diagnosis, integrated safety management etc.

  20. Plug engine systems for future launch vehicle applications

    Science.gov (United States)

    Immich, H.; Parsley, R. C.

    1993-06-01

    Based on improved viability resulting from modern analysis techniques, plug nozzle rocket engines are once again being investigated with respect to advanced launch vehicle concepts. The advantage of these engines is the external expansion, which self-adapts to external pressure variation, as well as the short compact design for high expansion ratios. This paper describes feasible design options ranging from a plug nozzle engine with an annular combustion chamber to a segmented modular design, to the integration of a number of conventional engines around a common plug. The advantages and disadvantages of these options are discussed for a range of potential applications including single-stage-to-orbit (SSTO) vehicles, as well as upper stage vehicles such as the second stage of the SAeNGER HTOL launch vehicle concept. Also included is a discussion of how maturing computational fluid dynamic (CFD) modeling techniques could significantly reduce installed performance uncertainties, reducing plug engine development risk.

  1. The application of a lifetime observer in vehicle technology

    Energy Technology Data Exchange (ETDEWEB)

    Wedman, S.; Wallaschek, J. [Paderborn Univ. (Gesamthochschule) (Germany). Heinz-Nixdorf Inst.

    2001-07-01

    This paper presents the concept of a lifetime observer for mobile systems and discusses some pilot applications in vehicle technology. The idea is to expand the basic mechanical system by sensors and electronic information-processing components in order to monitor the stress in critical components. Potential damage, upcoming failures, and the remaining lifetime of the system can then be predicted on-line by using a mathematical damage model. In particular, system aspects in the design of lifetime observers and condition monitoring systems are discussed. The application of a lifetime observer in a newly developed railway vehicle is presented as a detailed example. (orig.)

  2. The structure of conceptual models with application to the Aespoe HRL project

    International Nuclear Information System (INIS)

    In performance assessment a sequence of models is used to describe the function of the geological barrier. This report proposes a general structure and terminology for description of these models. A model description consists of the following components: A conceptual model which defines the geometric framework in which the problem is solved, the dimensions of the modelled volume, descriptions of the processes included in the model, and the boundary conditions; Data which are introduced into the conceptual model, and a mathematical or numerical tool used to produce output data. Contradictory to common practice in geohydrologic modelling it is proposed that the term conceptual model is restricted to define in what way the model is constructed, and that this is separated from any specific application of the conceptual model. Hence, the conceptual model should not include any specific data. 5 refs, 2 figs, 4 tabs

  3. A CONCEPTUAL TRAJECTORY MULTIDIMENSIONAL MODEL: AN APPLICATION TO PUBLIC TRANSPORTATION

    Directory of Open Access Journals (Sweden)

    FRANCISCO MORENO

    2011-01-01

    Full Text Available Actualmente, gracias a tecnologías como los sistemas de posicionamiento global y dispositivos móviles provistos de sensores, se puede recopilar una gran cantidad de datos sobre objetos móviles, e.g., datos relacionados con la trayectoria seguida por estos objetos. Por otra parte, las Bodegas de Datos (BDs, usualmente modeladas mediante una vista multidimensional de los datos, son bases de datos especializadas para ayudar en la toma de decisiones. Desafortunadamente, las BDs convencionales ofrecen poco soporte para la gestión de trayectorias. Aunque existen algunas propuestas que tratan con BDs de trayectorias, ninguna de ellas se enfoca en su modelamiento conceptual multidimensional. En este artículo se extiende un modelo conceptual multidimensional espacial donde se incorporan las trayectorias como conceptos de primera clase. Con el fi n de mostrar la conveniencia de la propuesta, se presenta un ejemplo relacionado con transporte público.

  4. APPLICATION OF KNOWLEDGE MANAGEMENT IN MANAGEMENT EDUCATION: A CONCEPTUAL FRAMEWORK

    OpenAIRE

    Jayanthi Ranjan; Saani Khalil

    2007-01-01

    The paper presents a conceptual framework in the context of Knowledge Management (KM) in Business Schools (B-schools) in India. We believe that if the framework is adopted in business schools, it will yield more benefits to increase the quality of knowledge sharing. There has been indeed a paradigm shift in management education in India. The new breed of management professionals need to be efficient to tackle problems from cross functional, cultural and ethical perspectives and equipped with ...

  5. Conceptual Design of In-Space Vehicles for Human Exploration of the Outer Planets

    Science.gov (United States)

    Adams, R. B.; Alexander, R. A.; Chapman, J. M.; Fincher, S. S.; Hopkins, R. C.; Philips, A. D.; Polsgrove, T. T.; Litchford, R. J.; Patton, B. W.; Statham, G.

    2003-01-01

    During FY-2002, a team of engineers from TD30/Advanced Concepts and TD40/Propulsion Research Center embarked on a study of potential crewed missions to the outer solar system. The study was conducted under the auspices of the Revolutionary Aerospace Systems Concepts activity administered by Langley Research Center (LaRC). The Marshall Space Flight Center (MSFC) team interacted heavily with teams from other Centers including Glenn Research Center, LaRC, Jet Propulsion Laboratory, and Johnson Space Center. The MSFC team generated five concept missions for this project. The concept missions use a variety of technologies, including magnetized target fusion (MTF), magnetoplasmadynamic thrusters, solid core reactors, and molten salt reactors in various combinations. The Technical Publication (TP) reviews these five concepts and the methods used to generate them. The analytical methods used are described for all significant disciplines and subsystems. The propulsion and power technologies selected for each vehicle are reviewed in detail. The MSFC team also expended considerable effort refining the MTF concept for use with this mission. The results from this effort are also contained within this TP. Finally, the lessons learned from this activity are summarized in the conclusions section.

  6. Depth perception camera for autonomous vehicle applications

    Science.gov (United States)

    Kornreich, Philipp

    2013-05-01

    An imager that can measure the distance from each pixel to the point on the object that is in focus at the pixel is described. Since it provides numeric information of the distance from the camera to all points in its field of view it is ideally suited for autonomous vehicle navigation and robotic vision. This eliminates the LIDAR conventionally used for range measurements. The light arriving at a pixel through a convex lens adds constructively only if it comes from the object point in focus at this pixel. The light from all other object points cancels. Thus, the lens selects the point on the object who's range is to be determined. The range measurement is accomplished by short light guides at each pixel. The light guides contain a p - n junction and a pair of contacts along its length. They, too, contain light sensing elements along the length. The device uses ambient light that is only coherent in spherical shell shaped light packets of thickness of one coherence length. Each of the frequency components of the broad band light arriving at a pixel has a phase proportional to the distance from an object point to its image pixel.

  7. Challenges of Integrating Unmanned Aerial Vehicles In Civil Application

    International Nuclear Information System (INIS)

    Unmanned Aerial Vehicle (UAV) has evolved rapidly over the past decade. There have been an increased number of studies aiming at improving UAV and in its use for different civil applications. This paper highlights the fundamentals of UAV system and examines the challenges related with the major components such as motors, drives, power systems, communication systems and image processing tools and equipment

  8. Application of uncertainty analysis in conceptual fusion reactor design

    International Nuclear Information System (INIS)

    The theories of sensitivity and uncertainty analysis are described and applied to a new conceptual tokamak fusion reactor design--NUWMAK. The responses investigated in this study include the tritium breeding ratio, first wall Ti dpa and gas productions, nuclear heating in the blanket, energy leakage to the magnet, and the dpa rate in the superconducting magnet aluminum stabilizer. The sensitivities and uncertainties of these responses are calculated. The cost/benefit feature of proposed integral measurements is also studied through the uncertainty reductions of these responses

  9. Application of Adaptive Autopilot Designs for an Unmanned Aerial Vehicle

    Science.gov (United States)

    Shin, Yoonghyun; Calise, Anthony J.; Motter, Mark A.

    2005-01-01

    This paper summarizes the application of two adaptive approaches to autopilot design, and presents an evaluation and comparison of the two approaches in simulation for an unmanned aerial vehicle. One approach employs two-stage dynamic inversion and the other employs feedback dynamic inversions based on a command augmentation system. Both are augmented with neural network based adaptive elements. The approaches permit adaptation to both parametric uncertainty and unmodeled dynamics, and incorporate a method that permits adaptation during periods of control saturation. Simulation results for an FQM-117B radio controlled miniature aerial vehicle are presented to illustrate the performance of the neural network based adaptation.

  10. Conceptual design of pressure relief systems for cryogenic application

    International Nuclear Information System (INIS)

    The conceptual design of pressure relief systems is an important aspect in the early phase of any cryogenic system design, because a prudent and responsible evaluation of relief systems involves much more than just relief devices. The conceptual design consists of various steps: At first, hazard scenarios must be considered and the worst-case scenario identified. Next, a staged interaction against pressure increase is to be defined. This is followed by the selection of the general type of pressure relief device for each stage, such as safety valve and rupture disc, respectively. Then, a decision concerning their locations, their capacities and specific features must be taken. Furthermore, it is mandatory to consider the inlet pressure drop and the back pressure in the exhaust line for sizing the safety devices. And last but not least, economic and environmental considerations must be made in case of releasing the medium to the atmosphere. The development of the system's safety concept calls for a risk management strategy based on identification and analysis of hazards, and consequent risk mitigation using a system-based approach in compliance with the standards

  11. Piezocomposites for unmanned underwater vehicle applications

    Science.gov (United States)

    Shin, Hoseop; Chang, Woosuk; Lee, Haksoo; Kim, Goonchil; Seo, Heesul

    2015-04-01

    This paper reviews feasibility of piezoceramic-polymer composite, so called piezocomposite, materials for UUV sonar application. Focus is not only placed on high electro-acoustic transformation performance, also on mass productivity, which is achieved by introducing Powder Injection Molding(PIM) process. Theoretical piezocomposite design method is introduced with FEM verification. Samples, produced via PIM process, are tested and proved their feasibility as UUV sonar sensors.

  12. SP-100 power system conceptual design for lunar base applications

    International Nuclear Information System (INIS)

    A conceptual design is presented for a nuclear power system utilizing an SP-100 reactor and multiple Stirling cycle engines for operation on the lunar surface. Based on the results of this study, it was concluded that this power plant could be a viable option for an evolutionary lunar base. The design concept consists of a 2500 kWt (kilowatt thermal) SP-100 reactor coupled to eight free-piston Stirling engines. Two of the engines are held in reserve to provide conversion system redundancy. The remaining engines operate at 91.7 percent of their rated capacity of 150 kWe. The design power level for this system is 825 kWe. Each engine has a pumped heat-rejection loop connected to a heat pipe radiator. Power system performance, sizing, layout configurations, shielding options, and transmission line characteristics are described. System components and integration options are compared for safety, high performance, low mass, and ease of assembly. The power plant was integrated with a proposed human lunar base concept to ensure mission compatibility. This study should be considered a preliminary investigation; further studies are planned to investigate the effect of different technologies on this baseline design

  13. Proton Exchange Membrane Fuel Cell Characterization for Electric Vehicle Applications

    OpenAIRE

    Swan, D.H.; Dickinson, B.E.; Arikara, M.P.

    1994-01-01

    This paper presents experimental data and an analysis of a proton exchange membrane fuel cell system for electric vehicle applications. The dependence of the fuel cell system's performance on air stoichiometry, operating temperature, and reactant gas pressure was assessed in terms of the fuel cell's polarity and power density-efficiency graphs. All the experiments were performed by loading the fuel cell with resistive heater coils which could be controlled to provide a constant current or con...

  14. Image-Based Vehicle Identification Technology for Homeland Security Applications

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G A

    2002-10-08

    The threat of terrorist attacks against US civilian populations is a very real, near-term problem that must be addressed, especially in response to possible use of Weapons of Mass Destruction. Several programs are now being funded by the US Government to put into place means by which the effects of a terrorist attack could be averted or limited through the use of sensors and monitoring technology. Specialized systems that detect certain threat materials, while effective within certain performance limits, cannot generally be used efficiently to track a mobile threat such as a vehicle over a large urban area. The key elements of an effective system are an image feature-based vehicle identification technique and a networked sensor system. We have briefly examined current uses of image and feature recognition techniques to the urban tracking problem and set forth the outlines of a proposal for application of LLNL technologies to this critical problem. The primary contributions of the proposed work lie in filling important needs not addressed by the current program: (1) The ability to create vehicle ''fingerprints,'' or feature information from images to allow automatic identification of vehicles. Currently, the analysis task is done entirely by humans. The goal is to aid the analyst by reducing the amount of data he/she must analyze and reduce errors caused by inattention or lack of training. This capability has broad application to problems associated with extraction of useful features from large data sets. (2) Improvements in the effectiveness of LLNL's WATS (Wide Area Tracking System) by providing it accurate threat vehicle location and velocity. Model predictability is likely to be enhanced by use of more information related to different data sets. We believe that the LLNL can accomplish the proposed tasks and enhance the effectiveness of the system now under development.

  15. Smart limbed vehicles for naval applications. Part I. Performance analysis

    Energy Technology Data Exchange (ETDEWEB)

    Weisberg, A.; Wood, L.

    1976-09-30

    Research work in smart, unmanned limbed vehicles for naval warfare applications performed during the latter part of FY76 and FY76T by the Special Studies Group of the LLL Physics Department for the Office of Naval Research is reported. Smart water-traversing limbed remotely navigated vehicles are interesting because: they are the only viable small vehicle usable in high sea states; they are small and work on the ocean surface, they are much harder to detect than any other conventional craft; they have no human pilot, are capable of high-g evasion, and will continue to operate after direct hits that would have crippled a human crew; they have the prospect of providing surface platforms possessing unprecedented speed and maneuverability; unlike manned information-gathering craft, they impose almost no penalty for missions in excess of 10 hours (no need to rotate shifts of crewmen, no food/lavatory requirements, etc.) and, in their ''loitering mode'', waterbugs could perhaps perform their missions for days to weeks; they are cheap enough to use for one-way missions; they are mass-producible; they are inherently reliable--almost impossible to sink and, in the event of in-use failure, the vehicle will not be destroyed; they maximally exploit continuing technological asymmetries between the U.S. and its potential opponents; and they are economically highly cost-effective for a wide spectrum of Navy missions. (TFD)

  16. Assessment of battery technologies for EV (Electric Vehicle) applications

    Science.gov (United States)

    Ratner, Elliot Z.; Henriksen, Gary L.; Warde, Charles J.

    To guide future R and D program planning, the U.S. Department of Energy (DOE) commissioned an assessment of all viable battery techniques for EV applications. Sixty-seven technology developers in the United States, Canada, Europe, Asia, and Africa were solicited to design a power pack for an Improved Dual-Shaft Electric Propulsions (IDSEP) van. A team of 10 consultants and 8 representatives from DOE's National Laboratories evaluated 43 developer responses and consultant-prepared conceptual designs. Using six criteria---five technical/economic criteria and a maturity/technical barriers criterion---the assessment identified 12 most promising battery technologies.

  17. Application of Artificial Intelligence Techniques in Uninhabited Aerial Vehicle Flight

    Science.gov (United States)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA Southeastearn University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  18. Application of Artificial Intelligence Techniques in Uninhabitated Aerial Vehicle Flight

    Science.gov (United States)

    Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA southeastern University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  19. Simplifying the in-vehicle connectivity for ITS applications

    Directory of Open Access Journals (Sweden)

    Sergio Tornell

    2015-08-01

    Full Text Available In-vehicle connectivity has experienced a big expansion in recent years; car manufacturers are very active in this sense, and are proposing OBU oriented solutions. This effort is justified by the user demands for always-on connectivity. However, currently available OBUs do not provide the desired flexibility and simplicity of use that would be desirable for ITS applications. For example, none of them considers the possibility for inter-vehicle device-to-device communications. In this paper we present GRCBox, an architecture that ex- tends the in-vehicle connectivity by providing inter and in- vehicular communication support. By creating private vehicular networks, GRCBox allows user devices’ applications to perform direct peer-to-peer communication. In this paper we describe the GRCBox design along with four case studies. We also include the experimental results obtained from a test-bed to show that our solution does not have a negative impact on the performance when compared to a centralized solution.

  20. Dynamic Surface Control and Its Application to Lateral Vehicle Control

    Directory of Open Access Journals (Sweden)

    Bongsob Song

    2014-01-01

    Full Text Available This paper extends the design and analysis methodology of dynamic surface control (DSC in Song and Hedrick, 2011, for a more general class of nonlinear systems. When rotational mechanical systems such as lateral vehicle control and robot control are considered for applications, sinusoidal functions are easily included in the equation of motions. If such a sinusoidal function is used as a forcing term for DSC, the stability analysis faces the difficulty due to highly nonlinear functions resulting from the low-pass filter dynamics. With modification of input variables to the filter dynamics, the burden of mathematical analysis can be reduced and stability conditions in linear matrix inequality form to guarantee the quadratic stability via DSC are derived for the given class of nonlinear systems. Finally, the proposed design and analysis approach are applied to lateral vehicle control for forward automated driving and backward parallel parking at a low speed as well as an illustrative example.

  1. Different control applications on a vehicle using fuzzy logic control

    Indian Academy of Sciences (India)

    Nurkan Yagiz; L Emir Sakman; Rahmi Guclu

    2008-02-01

    In this paper, the active suspension control of a vehicle model that has five degrees of freedom with a passenger seat using a fuzzy logic controller is studied. Three cases are taken into account as different control applications. In the first case, the vehicle model having passive suspensions with an active passenger seat is controlled. In the second case, active suspensions with passive passenger seat combination are controlled. In the third case, both the passenger seat and suspensions have active controllers. Vibrations of the passenger seat in the three cases due to road bump input are simulated. At the end of the study, the results are compared in order to select the combination that supplies the best ride comfort.

  2. The accommodation of science pedagogical knowledge: The application of conceptual change constructs to teacher education

    Science.gov (United States)

    Stofflett, René T.

    The purposes of this study were to (a) determine whether the conditions of the accommodation of a science conception (IPDF) could be applied to pedagogical conceptions of science, and (b) using this application, determine whether a group of elementary teacher candidates in a conceptual change methods course accommodated their didactic preconceptions of science teaching. This research was based on the assumption that, for teachers to learn to teach for conceptual change, they must undergo a process of pedagogical conceptual change themselves. The teacher candidates in this study were interviewed and observed teaching. Their lesson plans and reflective papers were analyzed. The course was also videotaped to provide contextual descriptions. The teacher candidates, as expected, held primarily didactic pedagogical conceptions and were resistant to the conceptual change strategies. However, at posttest they found the new strategies to be intelligible, plausible, and fruitful. They also expressed implicit dissatisfaction with their preexisting views. Cooperating teachers had significant influence in the development of both plausibility and fruitfulness. Recommendations for improving the use of the conceptual change constructs in future teacher education research are made.Received: 22 June 1993; Revised: 19 April 1994;

  3. A Shape Memory Alloy Application for Compact Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Salvatore Ameduri

    2016-05-01

    Full Text Available Shape memory alloys materials, SMA, offer several advantages that designers can rely on such as the possibility of transmitting large forces and deformations, compactness, and the intrinsic capability to absorb loads. Their use as monolithic actuators, moreover, can lead to potential simplifications of the system, through a reduction of number of parts and the removal of many free play gaps among mechanics. For these reasons, technological aerospace research is focusing on this kind of technology more and more, even though fatigue life, performance degradation, and other issues are still open. In the work at hand, landing gear for unmanned aerial vehicles, UAV, is presented, integrated with shape memory alloys springs as actuation devices. A conceptual prototype has been realized to verify the system ability in satisfying specs, in terms of deployment and retraction capability. Starting from the proposed device working principle and the main design parameters identification, the design phase is faced, setting those parameters to meet weight, deployment angle, energy consumption, and available room requirements. Then, system modeling and performance prediction is performed and finally a correlation between numerical and experimental results is presented.

  4. Status of Li-polymer batteries for vehicle applications

    Science.gov (United States)

    Srinivasan, Venkat

    Polymer-based batteries have the potential to revolutionize energy storage because of their ability to allow lithium metal anodes to be used, thereby promising higher energy densities. In addition, there have been vast strides in tuning polymers specific to battery applications, including the use of mixed conductors that provide both electronic and ionic conduction, and multifunctional polymers that serve as, for example, conductors and binders. There has been renewed interest in this topic recently, in the context of solid-state batteries. However, it is still not clear if the properties of presently available solid electrolytes are sufficient to meet the targets for electric vehicle applications. In this talk, we will present a material-to-cell level analysis of solid electrolytes to access the status of presently available materials. Continuum scale models will be used with experiments to understand the underlying processes in the battery and to project energy and power capabilities of solid-state cells based on their material properties. The models use appropriate material properties, where available, and are compared to experimental data to ensure validity. The validated model is then used to estimate the cell-level energy and power capability following the testing protocols specific to electric vehicle application. This analysis helps to identify existing challenges and provides guidelines for research at both material and cell levels for this promising class of next-generation batteries.

  5. TRIZ method application for improving the special vehicles maintenance

    Directory of Open Access Journals (Sweden)

    Petrović Saša

    2014-01-01

    Full Text Available TRIZ methodology provides an opportunity for improving the classical engineering approach based on personal knowledge and experience. This paper presents the application of TRIZ methods for improving vehicle maintenance where special equipment is installed. A specific problem is the maintenance of the periscopes with heating system. Protective glass panels with heating system are rectangular glass elements. Their purpose is to perform mechanical protection of built-in prisms and provide heating of the prisms. Aging and long-term use leads to failure of these elements. The practice requires solutions in order to extend the lifetime of the system. New solution is evaluated by simulation and experiment.

  6. Rotary-wing aeroelasticity with application to VTOL vehicles

    Science.gov (United States)

    Friedmann, Peretz P.

    1993-01-01

    A concise assessment is presented of the state of the art in the field of rotary-wing aeroelasticity (RWE). The basic ingredients of RWE are reviewed, including structural modeling, unsteady aerodynamic modeling, formulation of the equations of motion, and solution methods. Results illustrating these methods are presented for isolated blades and coupled rotor-fuselage problems. The application of active controls to suppress aeromechanical and aeroelastic instabilities and to reduce vibration in rotorcraft is discussed. Structural optimization with aeroelastic constraints, gust response analysis of helicopters, and aeroelastic problems in special VTOL vehicles are briefly examined.

  7. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications

    Science.gov (United States)

    Al-Hallaj, Said; Selman, J. R.

    A major obstacle to the development of commercially successful electric vehicles (EV) or hybrid electric vehicles (HEV) is the lack of a suitably sized battery. Lithium ion batteries are viewed as the solution if only they could be "scaled-up safely", i.e. if thermal management problems could be overcome so the batteries could be designed and manufactured in much larger sizes than the commercially available near-2-Ah cells. Here, we review a novel thermal management system using phase-change material (PCM). A prototype of this PCM-based system is presently being manufactured. A PCM-based system has never been tested before with lithium-ion (Li-ion) batteries and battery packs, although its mode of operation is exceptionally well suited for the cell chemistry of the most common commercially available Li-ion batteries. The thermal management system described here is intended specifically for EV/HEV applications. It has a high potential for providing effective thermal management without introducing moving components. Thereby, the performance of EV/HEV batteries may be improved without complicating the system design and incurring major additional cost, as is the case with "active" cooling systems requiring air or liquid circulation.

  8. DEVELOPING A CONCEPTUAL INFORMATION SYSTEMS (IS) SUCCESS MODEL FOR INTELLIGENT VEHICLE TRACKING SYSTEMS USED IN DEVELOPING COUNTRIES – THE CASE OF GHANA

    DEFF Research Database (Denmark)

    Adjin, Daniel Michael Okwabi

    deployed in Ghana have very limited communication network bandwidths, low speeds & capacities, poor GSM network coverage, etc. Thus, qualities of the tracking systems & services, and vehicle information were far below users' perceptions as against their expectations. Research Findings: Relevant seventeen......This research developed a conceptual Information Systems (IS) success model to address problems of Intelligent Vehicle Tracking Systems (IVTS) in developing countries – the, case of Ghana. The study was based on existing IS Success Models used in measuring the performance, usefulness and...... performance, usefulness, successfulness & the overall user satisfaction of IVTS users in developing nations, typically in Ghana. Four identified key IS concept are the Concepts of: ‘Perceived Tracking System Performance’, ‘User Expectation / Expectancy Disconfirmation’, ‘Overall User Satisfaction’ & ‘Is User...

  9. Development and applications of GREET 2.7 -- The Transportation Vehicle-CycleModel.

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, A.; Wang, M. Q.; Wu, Y.

    2006-12-20

    Argonne National Laboratory has developed a vehicle-cycle module for the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. The fuel-cycle GREET model has been cited extensively and contains data on fuel cycles and vehicle operations. The vehicle-cycle model evaluates the energy and emission effects associated with vehicle material recovery and production, vehicle component fabrication, vehicle assembly, and vehicle disposal/recycling. With the addition of the vehicle-cycle module, the GREET model now provides a comprehensive, lifecycle-based approach to compare the energy use and emissions of conventional and advanced vehicle technologies (e.g., hybrid electric vehicles and fuel cell vehicles). This report details the development and application of the GREET 2.7 model. The current model includes six vehicles--a conventional material and a lightweight material version of a mid-size passenger car with the following powertrain systems: internal combustion engine, internal combustion engine with hybrid configuration, and fuel cell with hybrid configuration. The model calculates the energy use and emissions that are required for vehicle component production; battery production; fluid production and use; and vehicle assembly, disposal, and recycling. This report also presents vehicle-cycle modeling results. In order to put these results in a broad perspective, the fuel-cycle model (GREET 1.7) was used in conjunction with the vehicle-cycle model (GREET 2.7) to estimate total energy-cycle results.

  10. Development and applications of GREET 2.7 -- The Transportation Vehicle-Cycle Model

    International Nuclear Information System (INIS)

    Argonne National Laboratory has developed a vehicle-cycle module for the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. The fuel-cycle GREET model has been cited extensively and contains data on fuel cycles and vehicle operations. The vehicle-cycle model evaluates the energy and emission effects associated with vehicle material recovery and production, vehicle component fabrication, vehicle assembly, and vehicle disposal/recycling. With the addition of the vehicle-cycle module, the GREET model now provides a comprehensive, lifecycle-based approach to compare the energy use and emissions of conventional and advanced vehicle technologies (e.g., hybrid electric vehicles and fuel cell vehicles). This report details the development and application of the GREET 2.7 model. The current model includes six vehicles--a conventional material and a lightweight material version of a mid-size passenger car with the following powertrain systems: internal combustion engine, internal combustion engine with hybrid configuration, and fuel cell with hybrid configuration. The model calculates the energy use and emissions that are required for vehicle component production; battery production; fluid production and use; and vehicle assembly, disposal, and recycling. This report also presents vehicle-cycle modeling results. In order to put these results in a broad perspective, the fuel-cycle model (GREET 1.7) was used in conjunction with the vehicle-cycle model (GREET 2.7) to estimate total energy-cycle results

  11. Development of Constraint Force Equation Methodology for Application to Multi-Body Dynamics Including Launch Vehicle Stage Seperation

    Science.gov (United States)

    Pamadi, Bandu N.; Toniolo, Matthew D.; Tartabini, Paul V.; Roithmayr, Carlos M.; Albertson, Cindy W.; Karlgaard, Christopher D.

    2016-01-01

    The objective of this report is to develop and implement a physics based method for analysis and simulation of multi-body dynamics including launch vehicle stage separation. The constraint force equation (CFE) methodology discussed in this report provides such a framework for modeling constraint forces and moments acting at joints when the vehicles are still connected. Several stand-alone test cases involving various types of joints were developed to validate the CFE methodology. The results were compared with ADAMS(Registered Trademark) and Autolev, two different industry standard benchmark codes for multi-body dynamic analysis and simulations. However, these two codes are not designed for aerospace flight trajectory simulations. After this validation exercise, the CFE algorithm was implemented in Program to Optimize Simulated Trajectories II (POST2) to provide a capability to simulate end-to-end trajectories of launch vehicles including stage separation. The POST2/CFE methodology was applied to the STS-1 Space Shuttle solid rocket booster (SRB) separation and Hyper-X Research Vehicle (HXRV) separation from the Pegasus booster as a further test and validation for its application to launch vehicle stage separation problems. Finally, to demonstrate end-to-end simulation capability, POST2/CFE was applied to the ascent, orbit insertion, and booster return of a reusable two-stage-to-orbit (TSTO) vehicle concept. With these validation exercises, POST2/CFE software can be used for performing conceptual level end-to-end simulations, including launch vehicle stage separation, for problems similar to those discussed in this report.

  12. POF hydrogen detection sensor systems for launch vehicles applications

    Science.gov (United States)

    Kazemi, Alex A.; Larson, David B.; Wuestling, Mark D.

    2011-06-01

    This paper describes the first successful Plastic Optical Fiber (POF) cable and glass fiber hydrogen detection sensor systems developed for Delta IV Launch Vehicle. Hydrogen detection in space application is very challenging; the hydrogen detection is priority for rocket industry and every transport device or any application where hydrogen is involved. H2 sensors are necessary to monitor the detection possible leak to avoid explosion, which can be highly dangerous. The hydrogen sensors had to perform in temperatures between -18° C to 60° C (0° F to 140° F). The response of the sensor in this temperature regime was characterized to ensure proper response of the sensors to fugitive hydrogen leakage during vehicle ground operations. We developed the first 75 m combination of POF and glass fiber H2 sensors. Performed detail investigation of POF-glass cables for attenuation loss, thermal, humidity, temperature, shock, accelerate testing for life expectancy. Also evaluated absorption, operating and high/low temperatures, and harsh environmental for glass-POF cables connectors. The same test procedures were performed for glass multi mode fiber part of the H2 and O2 sensors. A new optical waveguides was designed and developed to decrease the impact of both noise and long term drift of sensor. A field testing of sensors was performed at NASA Stennis on the Aerospike X-33 to quantify the element of the sensor package that was responsible for hydrogen detection and temperature.

  13. Image Transmission for Inter-Vehicle Safety Application

    Directory of Open Access Journals (Sweden)

    Yap Wei Yee

    2013-02-01

    Full Text Available Vision-based applications leveraged on the CMOS camera aim to provide the road condition sensing solution for inter-vehicle safety application as well as car drivers’ acknowledgement and notification. Using the Roborealm simulation environment, on-board camera detects the road boundaries beside the car for path prediction system and IR sensor used to interpret the car present location. The proposed system performed the prior informing function for the driver with different frequencies for events and the panel wording displayed. A thorough comparison in CCD and CMOS camera performance on the level of different pixel has been evaluated. Performance of the system is also evaluated in the case that the use different values of min variation filter as well as the definition to avoid erroneous data in order to get the best picture presentation. In the future, this system is to be integrating further with the vehicle accident report system for the authority and paramedics to dispatch the team in a short time.

  14. Experimental Investigation of Exhaust Thermoelectric System and Application for Vehicle

    Science.gov (United States)

    Liu, X.; Deng, Y. D.; Wang, W. S.; Su, C. Q.

    2015-06-01

    In this case study, an energy harvesting system using a thermoelectric power generator (TEG) has been constructed. Experimental investigation of the hot and cold sides of the thermoelectric modules (TMs) in this system has been undertaken to assess the feasibility for automotive applications. Two test benches have been developed to analyze the TM performance and the TEG system characteristics, especially the temperature difference, open-circuit voltage, and maximum power output of the TM and TEG system. As the performance of a TM is most influenced by the applied pressure and the temperature difference, a thermostatic heater, thermostatic water tank, and clamping devices are used in our experimental apparatus, increasing the output power of the TEG system. Based on the test bench, a new system called the "four-TEGs" system was designed and assembled into a prototype vehicle called "Warrior," and the characteristics of the system such as the maximum power output have been studied in road tests. The results show great potential for application of this technology in future vehicles.

  15. Novel Transverse Flux Machine for Vehicle Traction Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Z.; Ahmed, A.; Husain, I.; Muljadi, E.

    2015-04-02

    A novel transverse flux machine topology for electric vehicle traction applications using ferrite magnets is presented in this paper. The proposed transverse flux topology utilizes novel magnet arrangements in the rotor that are similar to the Halbach array to boost flux linkage; on the stator side, cores are alternately arranged around a pair of ring windings in each phase to make use of the entire rotor flux that eliminates end windings. Analytical design considerations and finite-element methods are used for an optimized design of a scooter in-wheel motor. Simulation results from finite element analysis (FEA) show that the motor achieved comparable torque density to conventional rare-earth permanent magnet (PM) machines. This machine is a viable candidate for direct-drive applications with low cost and high torque density.

  16. Conceptual design of thermal energy storage systems for near term electric utility applications

    Science.gov (United States)

    Hall, E. W.; Hausz, W.; Anand, R.; Lamarche, N.; Oplinger, J.; Katzer, M.

    1979-01-01

    Potential concepts for near term electric utility applications were identified. The most promising ones for conceptual design were evaluated for their economic feasibility and cost benefits. The screening process resulted in selecting two coal-fired and two nuclear plants for detailed conceptual design. The coal plants utilized peaking turbines and the nuclear plants varied the feedwater extraction to change power output. It was shown that the performance and costs of even the best of these systems could not compete in near term utility applications with cycling coal plants and typical gas turbines available for peaking power. Lower electricity costs, greater flexibility of operation, and other benefits can be provided by cycling coal plants for greater than 1500 hours of peaking or by gas turbines for less than 1500 hours if oil is available and its cost does not increase significantly.

  17. Application of Novel Lateral Tire Force Sensors to Vehicle Parameter Estimation of Electric Vehicles.

    Science.gov (United States)

    Nam, Kanghyun

    2015-01-01

    This article presents methods for estimating lateral vehicle velocity and tire cornering stiffness, which are key parameters in vehicle dynamics control, using lateral tire force measurements. Lateral tire forces acting on each tire are directly measured by load-sensing hub bearings that were invented and further developed by NSK Ltd. For estimating the lateral vehicle velocity, tire force models considering lateral load transfer effects are used, and a recursive least square algorithm is adapted to identify the lateral vehicle velocity as an unknown parameter. Using the estimated lateral vehicle velocity, tire cornering stiffness, which is an important tire parameter dominating the vehicle's cornering responses, is estimated. For the practical implementation, the cornering stiffness estimation algorithm based on a simple bicycle model is developed and discussed. Finally, proposed estimation algorithms were evaluated using experimental test data. PMID:26569246

  18. TIRE MODELS USED IN VEHICLE DYNAMIC APPLICATIONS AND THEIR USING IN VEHICLE ACCIDENT SIMULATIONS

    Directory of Open Access Journals (Sweden)

    Osman ELDOĞAN

    1995-01-01

    Full Text Available Wheel model is very important in vehicle modelling, it is because the contact between vehicle and road is achieved by wheel. Vehicle models can be dynamic models which are used in vehicle design, they can also be models used in accident simulations. Because of the importance of subject, many studies including theoretical, experimental and mixed type have been carried out. In this study, information is given about development of wheel modelling and research studies and also use of these modellings in traffic accident simulations.

  19. Conceptual design of coal-fueled diesel system for stationary power applications

    Energy Technology Data Exchange (ETDEWEB)

    1989-05-01

    A preliminary conceptual design of a coal-fueled diesel system was prepared as part of a previous systems study. Since then, our team has accumulated extensive results from testing coal-water slurry on the 13-inch bore JS engine (400 rpm) in 1987 and 1988. These results provided new insights into preferred design concepts for engine components. One objective, therefore, was to revise the preliminary design to incorporate these preferred design concepts. In addition there were certain areas where additional, more detailed analysis was required as a result of the previous conceptual design. Another objective, therefore was to perform additional detailed design efforts, such as: (1) market applications and engine sizes, (2) coal-water slurry cleaning and grinding processes, (3) emission controls and hot gas contaminant controls, (4) component durability, (5) cost and performance assessments. (VC)

  20. Modeling of electric vehicle battery for vehicle-to-grid applications

    DEFF Research Database (Denmark)

    Pang, Ying; Brady, Cormac; Pellegrino, Giustino;

    2013-01-01

    Electric vehicle battery models are essential when performing analysis of EV systems. The battery package of electric vehicles is complicated and unpredictable because of its chemical based functioning. In this paper, a battery model is presented with a number of internal and external factors taken...

  1. Mobile virtual synchronous machine for vehicle-to-grid applications

    Energy Technology Data Exchange (ETDEWEB)

    Pelczar, Christopher

    2012-03-20

    The Mobile Virtual Synchronous Machine (VISMA) is a power electronics device for Vehicle to Grid (V2G) applications which behaves like an electromechanical synchronous machine and offers the same beneficial properties to the power network, increasing the inertia in the system, stabilizing the grid voltage, and providing a short-circuit current in case of grid faults. The VISMA performs a real-time simulation of a synchronous machine and calculates the phase currents that an electromagnetic synchronous machine would produce under the same local grid conditions. An inverter with a current controller feeds the currents calculated by the VISMA into the grid. In this dissertation, the requirements for a machine model suitable for the Mobile VISMA are set, and a mathematical model suitable for use in the VISMA algorithm is found and tested in a custom-designed simulation environment prior to implementation on the Mobile VISMA hardware. A new hardware architecture for the Mobile VISMA based on microcontroller and FPGA technologies is presented, and experimental hardware is designed, implemented, and tested. The new architecture is designed in such a way that allows reducing the size and cost of the VISMA, making it suitable for installation in an electric vehicle. A simulation model of the inverter hardware and hysteresis current controller is created, and the simulations are verified with various experiments. The verified model is then used to design a new type of PWM-based current controller for the Mobile VISMA. The performance of the hysteresis- and PWM-based current controllers is evaluated and compared for different operational modes of the VISMA and configurations of the inverter hardware. Finally, the behavior of the VISMA during power network faults is examined. A desired behavior of the VISMA during network faults is defined, and experiments are performed which verify that the VISMA, inverter hardware, and current controllers are capable of supporting this

  2. Aerogel Insulation Applications for Liquid Hydrogen Launch Vehicle Tanks

    Science.gov (United States)

    Fesmire, J. E.; Sass, J.

    2007-01-01

    Aerogel based insulation systems for ambient pressure environments were developed for liquid hydrogen (LH2) tank applications. Solutions to thermal insulation problems were demonstrated for the Space Shuttle External Tank (ET) through extensive testing at the Cryogenics Test Laboratory. Demonstration testing was performed using a 1/10th scale ET LH2 intertank unit and liquid helium as the coolant to provide the 20 K cold boundary temperature. Cryopumping tests in the range of 20K were performed using both constant mass and constant pressure methods. Long-duration tests (up to 10 hours) showed that the nitrogen mass taken up inside the intertank is reduced by a factor of nearly three for the aerogel insulated case as compared to the un-insulated (bare metal flight configuration) case. Test results including thermal stabilization, heat transfer effectiveness, and cryopumping confirm that the aerogel system eliminates free liquid nitrogen within the intertank. Physisorption (or adsorption) of liquid nitrogen within the fine pore structure of aerogel materials was also investigated. Results of a mass uptake method show that the sorption ratio (liquid nitrogen to aerogel beads) is about 62 percent by volume. A novel liquid nitrogen production method of testing the liquid nitrogen physical adsorption capacity of aerogel beads was also performed to more closely approximate the actual launch vehicle cooldown and thermal stabilization effects within the aerogel material. The extraordinary insulating effectiveness of the aerogel material shows that cryopumping is not an open-cell mass transport issue but is strictly driven by thermal communication between warm and cold surfaces. The new aerogel insulation technology is useful to solve heat transfer problem areas and to augment existing thermal protection systems on launch vehicles. Examples are given and potential benefits for producing launch systems that are more reliable, robust, reusable, and efficient are outlined.

  3. Application of Artificial Intelligence Techniques in Unmanned Aerial Vehicle Flight

    Science.gov (United States)

    Bauer, Frank H. (Technical Monitor); Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in Artificial Intelligence (AI) at Nova southeastern University and as an adjunct to a project at NASA Goddard Space Flight Center's Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an AI method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed. A low cost approach was taken using freeware, gnu, software, and demo programs. The focus of this research has been to outline some of the AI techniques used for UAV flight control and discuss some of the tools used to apply AI techniques. The intent is to succeed with the implementation of applying AI techniques to actually control different aspects of the flight of an UAV.

  4. The Application of the NASA Advanced Concepts Office, Launch Vehicle Team Design Process and Tools for Modeling Small Responsive Launch Vehicles

    Science.gov (United States)

    Threet, Grady E.; Waters, Eric D.; Creech, Dennis M.

    2012-01-01

    The Advanced Concepts Office (ACO) Launch Vehicle Team at the NASA Marshall Space Flight Center (MSFC) is recognized throughout NASA for launch vehicle conceptual definition and pre-phase A concept design evaluation. The Launch Vehicle Team has been instrumental in defining the vehicle trade space for many of NASA s high level launch system studies from the Exploration Systems Architecture Study (ESAS) through the Augustine Report, Constellation, and now Space Launch System (SLS). The Launch Vehicle Team s approach to rapid turn-around and comparative analysis of multiple launch vehicle architectures has played a large role in narrowing the design options for future vehicle development. Recently the Launch Vehicle Team has been developing versions of their vetted tools used on large launch vehicles and repackaged the process and capability to apply to smaller more responsive launch vehicles. Along this development path the LV Team has evaluated trajectory tools and assumptions against sounding rocket trajectories and air launch systems, begun altering subsystem mass estimating relationships to handle smaller vehicle components, and as an additional development driver, have begun an in-house small launch vehicle study. With the recent interest in small responsive launch systems and the known capability and response time of the ACO LV Team, ACO s launch vehicle assessment capability can be utilized to rapidly evaluate the vast and opportune trade space that small launch vehicles currently encompass. This would provide a great benefit to the customer in order to reduce that large trade space to a select few alternatives that should best fit the customer s payload needs.

  5. Conceptual design of thermal energy storage systems for near-term electric utility applications

    Science.gov (United States)

    Hall, E. W.

    1980-01-01

    Promising thermal energy storage systems for midterm applications in conventional electric utilities for peaking power generation are evaluated. Conceptual designs of selected thermal energy storage systems integrated with conventional utilities are considered including characteristics of alternate systems for peaking power generation, viz gas turbines and coal fired cycling plants. Competitive benefit analysis of thermal energy storage systems with alternate systems for peaking power generation and recommendations for development and field test of thermal energy storage with a conventional utility are included. Results indicate that thermal energy storage is only marginally competitive with coal fired cycling power plants and gas turbines for peaking power generation.

  6. Cognitive Radio Network (CRN) System for Vehicle Safety Applications

    OpenAIRE

    Lim, Jae Han

    2014-01-01

    As the number of vehicle accidents increases, car manufacturers and academic researchers have developed a vehicular safety system. The key component of the safety system is vehicular communications, by which vehicles exchange their local status information with neighbor vehicles and disseminate a warning message within a specified area. The challenge lies in satisfying stringent communication requirements of the safety system, extremely reliable packet delivery and low communication latency. ...

  7. A probabilistic and multi-objective conceptual design methodology for the evaluation of thermal management systems on air-breathing hypersonic vehicles

    Science.gov (United States)

    Ordaz, Irian

    This thesis addresses the challenges associated with thermal management systems (TMS) evaluation and selection in the conceptual design of hypersonic, air-breathing vehicles with sustained cruise. The proposed methodology identifies analysis tools and techniques which allow the proper investigation of the design space for various thermal management technologies. The design space exploration environment and alternative multi-objective decision making technique defined as Pareto-based Joint Probability Decision Making (PJPDM) is based on the approximation of 3-D Pareto frontiers and probabilistic technology effectiveness maps. These are generated through the evaluation of a Pareto Fitness function and Monte Carlo analysis. In contrast to Joint Probability Decision Making (JPDM), the proposed PJPDM technique does not require preemptive knowledge of weighting factors for competing objectives or goal constraints which can introduce bias into the final solution. Preemptive bias in a complex problem can degrade the overall capabilities of the final design. The implementation of PJPDM in this thesis eliminates the need for the numerical optimizer which is required with JPDM in order to improve upon a solution. In addition, a physics-based formulation is presented for the quantification of TMS safety effectiveness corresponding to debris impact/damage and how it can be applied towards risk mitigation. Lastly, a formulation loosely based on non-preemptive Goal Programming with equal weighted deviations is provided for the resolution of the inverse design space. This key step helps link vehicle capabilities to TMS technology subsystems in a top-down design approach. The methodology provides the designer more knowledge up front to help make proper engineering decisions and assumptions in the conceptual design phase regarding which technologies show greatest promise, and how to guide future technology research.

  8. Evaluation Of Potential Hybrid Electric Vehicle Applications: Vol. II

    OpenAIRE

    Gris, Arturo

    1991-01-01

    Identifies potentially promising market segments for electric and hybrid vehicle technologies; covers topics including energy and power requirements, battery and range extender, propulsion system, and air conditioning

  9. Evaluation Of Potential Hybrid Electric Vehicle Applications: Vol I

    OpenAIRE

    Gris, Arturo E.

    1991-01-01

    Identifies potentially promising market segments for electric and hybrid vehicle technologies; covers topics including energy and power requirements, battery and range extender, propulsion system, and air conditioning

  10. Application of a Biodegradable Lubricant in a Diesel Vehicle

    DEFF Research Database (Denmark)

    Schramm, Jesper

    2003-01-01

    , NOx, THC, PM, lubricant-SOF and PAH from one diesel and one gasoline type vehicle using biodegradable lubricants and conventional lubricants. This paper describes the results of the experiments with the diesel type vehicle only. Lubricant consumption and fuel consumption are other important parameters...

  11. A Boosting Multi Flyback Converter for Electric Vehicle Application

    Directory of Open Access Journals (Sweden)

    J. Sangeetha

    2015-08-01

    Full Text Available The Flyback converter belongs to the primary switched converter family, which means there is isolation between input and output. Flyback converters have low number of components compared to other Switched Mode Power Supplies (SMPSs, they also have the advantage that several isolated output voltages can be regulated by one control circuit. This study proposes an efficient and cost effective Multi Flyback topology, an isolated DC-DC converter suitable for electric vehicle applications especially driven with induction motor. The converter topology forms a power interface between the battery and the motor and also capable of boosting the voltage from low voltage battery side to high voltage DC link. A Multi Flyback Converter topology implemented by paralleling three individual flyback converters at the battery input side and DC link output side. The topology will share the current across each individual converter and the individual power will be added up at the output side. The scheme incorporates a transformer winding technique which can reduce the leakage inductance of the coupled inductor to a satisfactory limit.

  12. Application of Machine Vision to Vehicle Automatic Collision Warning Algorithm

    Institute of Scientific and Technical Information of China (English)

    WANG Jiang-feng; GAO Feng; XU Guo-yan; YAO Sheng-zhuo

    2008-01-01

    Using the new technologies such as information technology, communication technology and electronic control technology, vehicle collision warning system(CWS) can acquire road condition, adjacent vehicle march condition as well as its dynamics performance continuously, then it can forecast the oncoming potential collision and give a warning. Based on the analysis of driver's driving behavior, algorithm's warning norms are determined. Based on warning norms adopting machine vision method, the cooperation collision warning algorithm(CWA) model with multi-input and multi-output is established which is used in supporting vehicle CWS. The CWA is tested using the actual data and the result shows that this algorithm can identify and carry out warning for vehicle collision efficiently, which has important meaning for improving the vehicle travel safety.

  13. A Driving Behavior Retrieval Application for Vehicle Surveillance System

    OpenAIRE

    Fu Xianping; Men Yugang; Yuan Guoliang

    2011-01-01

    Vehicle surveillance system provides a large range of informational services for the driver and administrator such as multiview road and driver surveillance videos from multiple cameras mounted on the vehicle, video shots monitoring driving behavior and highlighting the traffic conditions on the roads. How to retrieval driver’s specific behavior, such as ignoring pedestrian, operating infotainment, near collision or running the red light, is difficult in large scale driving data. Annotation a...

  14. A Driving Behavior Retrieval Application for Vehicle Surveillance System

    Directory of Open Access Journals (Sweden)

    Fu Xianping

    2011-03-01

    Full Text Available Vehicle surveillance system provides a large range of informational services for the driver and administrator such as multiview road and driver surveillance videos from multiple cameras mounted on the vehicle, video shots monitoring driving behavior and highlighting the traffic conditions on the roads. How to retrieval driver’s specific behavior, such as ignoring pedestrian, operating infotainment, near collision or running the red light, is difficult in large scale driving data. Annotation and retrieving of these video streams has an important role on visual aids for safety and driving behavior assessment. In a vehicle surveillance system, video as a primary data source requires effective ways of retrieving the desired clip data from a database. And data from naturalistic studies allow for an unparalleled breadth and depth of driver behavior analysis that goes beyond the quantification and description of driver distraction into a deeper understanding of how drivers interact with their vehicles. To do so, a model that classifies vehicle video data on the basis of traffic information and its semantic properties which were described by driver’s eye gaze orientation was developed in this paper. The vehicle data from OBD and sensors is also used to annotate the video. Then the annotated video data based on the model is organized and streamed by retrieval platform and adaptive streaming method. The experimental results show that this model is a good example for evidence-based traffic instruction programs and driving behavior assessment.

  15. Evaluation of Alternative Conceptual Models Using Interdisciplinary Information: An Application in Shallow Groundwater Recharge and Discharge

    Science.gov (United States)

    Lin, Y.; Bajcsy, P.; Valocchi, A. J.; Kim, C.; Wang, J.

    2007-12-01

    Natural systems are complex, thus extensive data are needed for their characterization. However, data acquisition is expensive; consequently we develop models using sparse, uncertain information. When all uncertainties in the system are considered, the number of alternative conceptual models is large. Traditionally, the development of a conceptual model has relied on subjective professional judgment. Good judgment is based on experience in coordinating and understanding auxiliary information which is correlated to the model but difficult to be quantified into the mathematical model. For example, groundwater recharge and discharge (R&D) processes are known to relate to multiple information sources such as soil type, river and lake location, irrigation patterns and land use. Although hydrologists have been trying to understand and model the interaction between each of these information sources and R&D processes, it is extremely difficult to quantify their correlations using a universal approach due to the complexity of the processes, the spatiotemporal distribution and uncertainty. There is currently no single method capable of estimating R&D rates and patterns for all practical applications. Chamberlin (1890) recommended use of "multiple working hypotheses" (alternative conceptual models) for rapid advancement in understanding of applied and theoretical problems. Therefore, cross analyzing R&D rates and patterns from various estimation methods and related field information will likely be superior to using only a single estimation method. We have developed the Pattern Recognition Utility (PRU), to help GIS users recognize spatial patterns from noisy 2D image. This GIS plug-in utility has been applied to help hydrogeologists establish alternative R&D conceptual models in a more efficient way than conventional methods. The PRU uses numerical methods and image processing algorithms to estimate and visualize shallow R&D patterns and rates. It can provide a fast initial

  16. Nationwide impact and vehicle to grid application of electric vehicles mobility using an activity based model

    OpenAIRE

    Álvaro, Roberto; González, Jairo; Fraile Ardanuy, José Jesús; Knapen, Luk; JANSSENS, Davy

    2013-01-01

    This paper describes the impact of electric mobility on the transmission grid in Flanders region (Belgium), using a micro-simulation activity based models. These models are used to provide temporal and spatial estimation of energy and power demanded by electric vehicles (EVs) in different mobility zones. The increment in the load demand due to electric mobility is added to the background load demand in these mobility areas and the effects over the transmission substations are analyzed. From t...

  17. Design and evaluation of safety-critical applications based on inter-vehicle communication

    OpenAIRE

    An, Natalya

    2015-01-01

    Inter-vehicle communication has a potential to improve road traffic safety and efficiency. Technical feasibility of communication between vehicles has been extensively studied, but due to the scarcity of application-level research, communication's impact on the road traffic is still unclear. This thesis addresses this uncertainty by designing and evaluating two fail-safe applications, namely, Rear-End Collision Avoidance and Virtual Traffic Lights.

  18. A high capability teleoperated vehicle for hazardous applications

    International Nuclear Information System (INIS)

    The Robotics Development Group at the Savannah River Site is developing a high performance teleoperated vehicle for use in radioactive and hazardous environments. The three-wheeled vehicle incorporates a highly dexterous 6 degree-of-freedom (DOF), hydraulically-powered manipulator made by Schilling Development, Inc. The teleoperator is called Little MoRT (MObile Radio-controlled Teleoperator) and is a modified version of a commercially available, battery-powered, warehouse vehicle. Little MoRT is controlled remotely by a universal robot controller either through a radio frequency link or a tethered cable. Six video cameras and a microphone provide the operator with audio-visual feedback of the vehicle and its surrounding environment. The vehicle also incorporates a hydraulic power unit consisting of a propane-driven engine for powering the Schilling manipulator. Little MoRT is capable of operating in outdoor as well as indoor environments and is well suited for decontamination and decommissioning activities such as dismantling, sorting, and surveying of radioactive waste

  19. Post-vehicle-application lithium-ion battery remanufacturing, repurposing and recycling capacity: Modeling and analysis

    Directory of Open Access Journals (Sweden)

    Charles Robert Standridge

    2015-05-01

    Full Text Available Purpose: A mathematical model is used to help determine the manufacturing capacity needed to support post-vehicle-application remanufacturing, repurposing, and recycling of lithium-ion batteries over time.  Simulation is used in solving the model to estimate capacity in kWh.  Lithium-ion batteries that are commonly used in the electrification of vehicles cannot be simply discarded post-vehicle-application due to the materials of which they are composed.  Eventually, each will fail to hold a charge and will need to be recycled.  Remanufacturing, allowing a battery to return to a vehicle application, and repurposing, transforming a battery for use in a non-vehicle application, postpone recycling and increase value. The mathematical model and its solution using simulation test the hypothesis that the capacity needed for remanufacturing, repurposing, and recycling as well as new battery production is a function of a single parameter:  the percent of post-vehicle-application batteries that are remanufactured. Design/methodology/approach: Equations in the mathematical model represent the capacity needed for remanufacturing, repurposing, and recycling as well as new battery production as dependent variables.  Independent variables are exogenous quantities as such as the demand for electrified vehicles of all types, physical properties of batteries such as their application life distribution including the time to recycling, and a single decision variable:  the percent of post-vehicle-application batteries that are remanufactured.  Values of the dependent variables over time are estimated by simulation for values of the percent of post-vehicle-application batteries ranging from 0% to 85% in steps of 5%. Findings and Originality/value: The simulation results support important insights for investment in capacity for remanufacturing, repurposing, and recycling of post-vehicle-application batteries as well as new batteries.  The capacity needed for

  20. Optimal steering for kinematic vehicles with applications to spatially distributed agents

    Science.gov (United States)

    Brown, Scott; Praeger, Cheryl E.; Giudici, Michael

    While there is no universal method to address control problems involving networks of autonomous vehicles, there exist a few promising schemes that apply to different specific classes of problems, which have attracted the attention of many researchers from different fields. In particular, one way to extend techniques that address problems involving a single autonomous vehicle to those involving teams of autonomous vehicles is to use the concept of Voronoi diagram. The Voronoi diagram provides a spatial partition of the environment the team of vehicles operate in, where each element of this partition is associated with a unique vehicle from the team. The partition induces a graph abstraction of the operating space that is in an one-to-one correspondence with the network abstraction of the team of autonomous vehicles; a fact that can provide both conceptual and analytical advantages during mission planning and execution. In this dissertation, we propose the use of a new class of Voronoi-like partitioning schemes with respect to state-dependent proximity (pseudo-) metrics rather than the Euclidean distance or other generalized distance functions, which are typically used in the literature. An important nuance here is that, in contrast to the Euclidean distance, state-dependent metrics can succinctly capture system theoretic features of each vehicle from the team (e.g., vehicle kinematics), as well as the environment-vehicle interactions, which are induced, for example, by local winds/currents. We subsequently illustrate how the proposed concept of state-dependent Voronoi-like partition can induce local control schemes for problems involving networks of spatially distributed autonomous vehicles by examining a sequential pursuit problem of a maneuvering target by a group of pursuers distributed in the plane. The construction of generalized Voronoi diagrams with respect to state-dependent metrics poses some significant challenges. First, the generalized distance metric

  1. Research and Development of Proton-Exchange Membrane (PEM) Fuel Cell System for Transportation Applications: Initial Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-30

    This report addresses Task 1.1, model development and application, and Task 1.2, vehicle mission definition. Overall intent is to produce a methanol-fueled 10-kW power source, and to evaluate electrochemical engine (ECE) use in transportation. Major achievements include development of an ECE power source model and its integration into a comprehensive power source/electric vehicle propulsion model, establishment of candidate FCV (fuel cell powered electric vehicle) mission requirements, initial FCV studies, and a candidate FCV recommendation for further study.

  2. Nonlinear approaches in engineering applications advanced analysis of vehicle related technologies

    CERN Document Server

    Dai, Liming

    2016-01-01

    This book looks at the broad field of engineering science through the lens of nonlinear approaches. Examples focus on issues in vehicle technology, including vehicle dynamics, vehicle-road interaction, steering, and control for electric and hybrid vehicles. Also included are discussions on train and tram systems, aerial vehicles, robot-human interaction, and contact and scratch analysis at the micro/nanoscale. Chapters are based on invited contributions from world-class experts in the field who advance the future of engineering by discussing the development of more optimal, accurate, efficient, and cost and energy effective systems. This book is appropriate for researchers, students, and practicing engineers who are interested in the applications of nonlinear approaches to solving engineering and science problems.

  3. Testing the usability of Microsoft Photosynth, an application with a complex and unfamiliar conceptual model

    OpenAIRE

    Vesuvala, Chirag Xerxes

    2009-01-01

    How do we test the usability of software whose design features an unprecedented and complex conceptual model? Current usability practices ask users for objective and subjective responses, which do not explicitly test how well a conceptual model is understood. An example of software with a complex conceptual model is Microsoft Photosynth. This is a Web-based tool that stitches together multiple photographs of a particular object into a three dimensional view. I tested its usability in two phas...

  4. Application of Hopfield Neural Networks Approach in Solar Energy Product Conceptual Design

    Institute of Scientific and Technical Information of China (English)

    XIA Zhi-qiu; WANG Ling; REN Na; WEI Xiao-peng; ZHANG Qiang; ZHAO Ting-ting

    2013-01-01

    A new product conceptual design approach is put forward based on Hopfield neural networks models. By research on the mechanisms of Hopfield neural networks, the associative simulation approaches are proposed. The approach is given by Hebb learn-ing law, Hopfield neural networks and crossover and mutation. The calculating models and the calculating formulas for the concep-tual design are put forward. Finally, an example for the conceptual design of a solar energy lamp is given. The better results are ob-tained in the conceptual design.

  5. Lightweight lead acid batteries for hybrid electric vehicle applications

    OpenAIRE

    Wallis, Lauren

    2015-01-01

    This report presents architectures, designs and chemistries for novel static soluble lead acid batteries, with the objective of producing a lightweight lead acid battery for improved specific energy. The demands for lightweight lead-acid batteries come from an expanding hybrid electric vehicle market demanding improved battery specific energy. There are several avenues for improving battery specific energy; the main two are improved active material utilisation efficiency and grid weight reduc...

  6. The Delta and Thor/Agena launch vehicles for scientific and applications satellites.

    Science.gov (United States)

    Gunn, C. R.

    1971-01-01

    Description of the Delta Model 904 and the Thor/Agena Model 9A4 scientific and applications satellite launch vehicles, with projections of future growth and launch costs. These launch vehicles are shown to offer scientific and applications satellite mission planners a broad spectrum in performance capabilities together with unprecedented mission flexibility. Depending on the mission, these two medium class launch vehicles can be configured on the new universal boattail (UBT) Thor booster in either two or three stages with thrust augmentation of the UBT ranging from three to nine strap-on solid propellant motors. Both vehicles incorporate strapdown inertial guidance systems that allow flexible mission programming by computer so ftware changes rather than by adjustments.

  7. Feasibility assessment of remanufacturing, repurposing, and recycling of end of vehicle application lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Meaghan Foster

    2014-06-01

    Full Text Available Purpose: Lithium-ion batteries that are commonly used in electric vehicles and plug-in electric hybrid vehicles cannot be simply discarded at the end of vehicle application due to the materials of which they are composed. In addition the US Department of Energy has estimated that the cost per kWh of new lithium-ion batteries for vehicle applications is four times too high, creating an economic barrier to the widespread commercialization of plug-in electric vehicles. (USDOE 2014. Thus, reducing this cost by extending the application life of these batteries appears to be necessary. Even with an extension of application life, all batteries will eventually fail to hold a charge and thus become unusable. Thus environmentally safe disposition must be accomplished. Addressing these cost and environmental issues can be accomplished by remanufacturing end of vehicle life lithium ion batteries for return to vehicle applications as well as repurposing them for stationary applications such as energy storage systems supporting the electric grid. In addition, environmental safe, “green” disposal processes are required that include disassembly of batteries into component materials for recycling. The hypotheses that end of vehicle application remanufacturing, repurposing, and recycling are each economic are examined. This assessment includes a forecast of the number of such batteries to ensure sufficient volume for conducting these activities.Design/methodology/approach: The hypotheses that end of vehicle application remanufacturing, repurposing, and recycling are economic are addressed using cost-benefit analysis applied independently to each. Uncertainty is associated with all future costs and benefits. Data from a variety of sources are combined and reasonable assumptions are made. The robustness of the results is confirmed by sensitivity analysis regarding each key parameter. Determining that a sufficient volume of end of vehicle application lithium

  8. A computer-aided design system geared toward conceptual design in a research environment. [for hypersonic vehicles

    Science.gov (United States)

    STACK S. H.

    1981-01-01

    A computer-aided design system has recently been developed specifically for the small research group environment. The system is implemented on a Prime 400 minicomputer linked with a CDC 6600 computer. The goal was to assign the minicomputer specific tasks, such as data input and graphics, thereby reserving the large mainframe computer for time-consuming analysis codes. The basic structure of the design system consists of GEMPAK, a computer code that generates detailed configuration geometry from a minimum of input; interface programs that reformat GEMPAK geometry for input to the analysis codes; and utility programs that simplify computer access and data interpretation. The working system has had a large positive impact on the quantity and quality of research performed by the originating group. This paper describes the system, the major factors that contributed to its particular form, and presents examples of its application.

  9. Infrastructure Pavement Assessment & Management Applications Enabled by the Connected Vehicles Environment – Proof-of-Concept

    OpenAIRE

    Flintsch, Gerardo; Smith, Brian

    2015-01-01

    The objective of this project was to develop prototypes and conduct a field test of system level applications of a connected vehicle pavement condition measurement system. This allowed the research team to: (1) investigate different approaches to a connected vehicle pavement measurement system; and (2) determine the optimum procedures for collecting, processing, aggregating, and storing the data to support engineering and management decisions. The study found that roughness measures obtain...

  10. An intelligent power management system for unmanned earial vehicle propulsion applications

    OpenAIRE

    Karunarathne, L

    2013-01-01

    Electric powered Unmanned Aerial Vehicles (UAVs) have emerged as a promi- nent aviation concept due to the advantageous such as stealth operation and zero emission. In addition, fuel cell powered electric UAVs are more attrac- tive as a result of the long endurance capability of the propulsion system. This dissertation investigates novel power management architecture for fuel cell and battery powered unmanned aerial vehicle propulsion application. The research work focused o...

  11. A REVIEW ON WIRELESS POWER TRANSFER (WPT) FOR ELECTRIC VEHICLE (EV) APPLICATIONS

    OpenAIRE

    Mr. Sujay R. Kale*; Mr. Santosh Rayarao

    2016-01-01

    This paper provides the wireless power transfer (WPT) or contactless power transfer (CPT) for charging electric vehicles (EV). This technology is recent method in electrification for transportation, useful for the environment. This type of system mainly consists of two parts such as transmission unit and receiving unit, transmission unit send power or electricity and receiving unit received this power and charge the battery of electric vehicle (EV). WPT is applicable for mobile devices, house...

  12. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    OpenAIRE

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    Proton Exchange Membrane fuel cell (PEMFC) technology for use in fuel cell vehicles and other applications has been extensively developed in recent decades. Besides the fuel cell stack, air and fuel control, and thermal and water management are major challenges in the fuel cell vehicle development. The air supply system can have a major impact on overall system efficiency. In this report, a fuel cell system model for optimizing system operating conditions was developed which includes the tran...

  13. Conceptual framework of public health surveillance and action and its application in health sector reform

    Directory of Open Access Journals (Sweden)

    Alemu Wondi

    2002-01-01

    Full Text Available Abstract Background Because both public health surveillance and action are crucial, the authors initiated meetings at regional and national levels to assess and reform surveillance and action systems. These meetings emphasized improved epidemic preparedness, epidemic response, and highlighted standardized assessment and reform. Methods To standardize assessments, the authors designed a conceptual framework for surveillance and action that categorized the framework into eight core and four support activities, measured with indicators. Results In application, country-level reformers measure both the presence and performance of the six core activities comprising public health surveillance (detection, registration, reporting, confirmation, analyses, and feedback and acute (epidemic-type and planned (management-type responses composing the two core activities of public health action. Four support activities – communications, supervision, training, and resource provision – enable these eight core processes. National, multiple systems can then be concurrently assessed at each level for effectiveness, technical efficiency, and cost. Conclusions This approach permits a cost analysis, highlights areas amenable to integration, and provides focused intervention. The final public health model becomes a district-focused, action-oriented integration of core and support activities with enhanced effectiveness, technical efficiency, and cost savings. This reform approach leads to sustained capacity development by an empowerment strategy defined as facilitated, process-oriented action steps transforming staff and the system.

  14. Broadband sonar considerations for small underwater vehicle applications

    Science.gov (United States)

    Benjamin, Kim C.

    2003-10-01

    As underwater vehicles become more prevalent, so too does the design and integration of compact broadband sonar arrays. Rather than rely on conventional tonpilz technology, where the bandwidth is governed by the width of the transducer's mechanical resonance, designers must consider other transducer technologies that are better suited to small vehicle packaging constraints. These constraints include operational ruggedness, light weight, conformability, and low cost. This talk advocates the use of 1-3 piezocomposite and discusses the rationale behind such a selection. In going to a wideband material such as a 1-3 piezocomposite, with typical mechanical quality factors (Qm) around 2, the selection of where to place the resonance frequency differs from that of its tonpilz counterpart. For the tonpilz array, the sonar operational bandwidth is totally governed by the resonance response of the array element and is typically limited to approximately its 3-dB or half power points. Relaxor-based ferroelectric materials such as single crystal PMN-PT, which exhibit extremely large electromechanical coupling coefficients, cannot attain 3-dB bandwidths of a decade or more when configured in a tonpilz design. This presentation will discuss a 1-3 piezocomposite-based approach that places mechanical resonance near the upper band edge of an operational bandwidth of 1 decade (10-100 kHz).

  15. Microstrip Yagi array antenna for mobile satellite vehicle application

    Science.gov (United States)

    Huang, John; Densmore, Arthur C.

    1991-01-01

    A novel antenna structure formed by combining the Yagi-Uda array concept and the microstrip radiator technique is discussed. This antenna, called the microstrip Yagi array, has been developed for the mobile satellite (MSAT) system as a low-profile, low-cost, and mechanically steered medium-gain land-vehicle antenna. With the antenna's active patches (driven elements) and parasitic patches (reflector and director elements) located on the same horizontal plane, the main beam of the array can be tilted, by the effect of mutual coupling, in the elevation direction providing optimal coverage for users in the continental United States. Because the parasitic patches are not connected to any of the lossy RF power distributing circuit the antenna is an efficient radiating system. With the complete monopulse beamforming and power distributing circuits etched on a single thin stripline board underneath the microstrip Yagi array, the overall L-band antenna system has achieved a very low profile for vehicle's rooftop mounting, as well as a low manufacturing cost. Experimental results demonstrate the performance of this antenna.

  16. Application of parallelized software architecture to an autonomous ground vehicle

    Science.gov (United States)

    Shakya, Rahul; Wright, Adam; Shin, Young Ho; Momin, Orko; Petkovsek, Steven; Wortman, Paul; Gautam, Prasanna; Norton, Adam

    2011-01-01

    This paper presents improvements made to Q, an autonomous ground vehicle designed to participate in the Intelligent Ground Vehicle Competition (IGVC). For the 2010 IGVC, Q was upgraded with a new parallelized software architecture and a new vision processor. Improvements were made to the power system reducing the number of batteries required for operation from six to one. In previous years, a single state machine was used to execute the bulk of processing activities including sensor interfacing, data processing, path planning, navigation algorithms and motor control. This inefficient approach led to poor software performance and made it difficult to maintain or modify. For IGVC 2010, the team implemented a modular parallel architecture using the National Instruments (NI) LabVIEW programming language. The new architecture divides all the necessary tasks - motor control, navigation, sensor data collection, etc. into well-organized components that execute in parallel, providing considerable flexibility and facilitating efficient use of processing power. Computer vision is used to detect white lines on the ground and determine their location relative to the robot. With the new vision processor and some optimization of the image processing algorithm used last year, two frames can be acquired and processed in 70ms. With all these improvements, Q placed 2nd in the autonomous challenge.

  17. General concept of a remote multipurpose vehicle for nuclear applications

    International Nuclear Information System (INIS)

    A remotely operated autonomous system is presently developed for inspection and intervention inside the reactor building of nuclear power plants. The vehicle is also suitable for other nuclear and non-nuclear energy related task areas where inspection and intervention operations are taking place in hazardous environment. The goal of this remote robot is to significantly reduce personnel exposure to radiation or other risks. The system consists of five major items: an autonomous motorized carrier, two slave manipulators mounted on an interface structure, optical and environmental sensors, the digital electronic control and communication module, the man-machine interface. Main design and performance characteristics of the system are described as well as a description of the evaluation and test program

  18. PWM Inverter control and the application thereof within electric vehicles

    Science.gov (United States)

    Geppert, Steven

    1982-01-01

    An inverter (34) which provides power to an A.C. machine (28) is controlled by a circuit (36) employing PWM control strategy whereby A.C. power is supplied to the machine at a preselectable frequency and preselectable voltage. This is accomplished by the technique of waveform notching in which the shapes of the notches are varied to determine the average energy content of the overall waveform. Through this arrangement, the operational efficiency of the A.C. machine is optimized. The control circuit includes a micro-computer and memory element which receive various parametric inputs and calculate optimized machine control data signals therefrom. The control data is asynchronously loaded into the inverter through an intermediate buffer (38). In its preferred embodiment, the present invention is incorporated within an electric vehicle (10) employing a 144 VDC battery pack (32) and a three-phase induction motor (18).

  19. Exploring the application of a conceptual framework in a social MALL app

    OpenAIRE

    Read, Timothy; Bárcena, Elena; Kukulska-Hulme, Agnes

    2016-01-01

    This article presents a prototype social Mobile Assisted Language Learning (henceforth, MALL) app based on Kukulska-Hulme’s (2012) conceptual framework. This research allows the exploration of time, place and activity type as key factors in the design of MALL apps, and is the first step toward a systematic analysis of such a framework in this type of app in the future. Firstly, the selected conceptual framework is discussed, emphasizing the adequacy of its development (or even adaptation) for...

  20. Conceptual design of a 100-MW fuel cell power plant for urban utility applications: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Handley, L.M.; Healy, H.C.; Clausi, J.V.; Hall, E.W.; May, G.W.; Oesterich, L.C.

    1988-12-01

    This report summarizes the results of EPRI Research Project RP1777-1, Amendment 13. The objective of this work was to define the performance, cost, and configuration of conceptual 100-megawatt fuel cell stations for in-city generation. The study assumed an IFC-developed scenario for introduction of multi-megawatt phosphoric acid fuel cells for electric utility applications. The technology basis of the designs is the IFC 11-megawatt PC23 fuel cell power plant. The PC23 design was extended to produce a 25-megawatt module from the PC23 frame. Two 100-megawatt stations made up of four 25-megawatt modules each were chosen as examples of urban installations. One is intended for unconstrained sites on open land; the other is suitable for constrained sites such as existing buildings. The study concluded that large fuel cell plants can be derived from current technology and that they would have attractive characteristics. There is the potential for hundreds of megawatts of fuel cell capacity in the New York metropolitan area on Con Edison property. The installed cost is less than $1000 per kilowatt (1987 dollars) at reasonably low production rates. The O and M cost is in the range of 7--8 mills per kilowatt-hour. An advanced PAFC system design was defined which could evolve from the baseline 100-megawatt plant. Performance and cost characteristics of that system appear even more attractive and provide a strong incentive for continued R and D and investment in PAFC technology. 32 figs., 37 tabs.

  1. Individual Mobility Profiles: Methods and Application on Vehicle Sharing

    OpenAIRE

    Trasarti, Roberto; Pinelli, Fabio; Nanni, Mirco; Giannotti, Fosca

    2012-01-01

    In this paper we present a methodology for extracting mobility profiles of individuals from raw digital traces (in particular, GPS traces), and study criteria to match individuals based on profiles. We instantiate the profile matching problem to a specific application context, namely proactive car pooling services, and therefore develop a matching criterion that satisfies various basic constraints obtained from the background knowledge of the application domain. In order to evaluate the impac...

  2. Conceptual chains and its application to study solving problems in physics

    Science.gov (United States)

    Lopez Campos, Carlos Enrique

    2010-03-01

    This work reports a theoretical model developed with the aim to explain the mental mechanisms of knowledge building during the problem-solving process in physics using a hybrid approach of assimilation- formation of concepts. The model has been termed conceptual chains and represents graphic diagrams of conceptual dependency, which have yielded information about the background knowledge required during the learning process, as well as about the formation of diverse structures that correspond to distinct forms of networking concepts. Additionally, the conceptual constructs of the model have been classified according to five types of knowledge. Evidence was found about the influence of these structures, as well as of the distinct types of knowledge about the degree of difficulty of the problems.

  3. Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology. Volume 2

    Science.gov (United States)

    Williams, R. W. (Compiler)

    1996-01-01

    This conference publication includes various abstracts and presentations given at the 13th Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology held at the George C. Marshall Space Flight Center April 25-27 1995. The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  4. NIR fluorescent dyes: versatile vehicles for marker and probe applications

    Science.gov (United States)

    Patonay, Gabor; Chapman, Gala; Beckford, Garfield; Henary, Maged

    2013-02-01

    The use of the NIR spectral region (650-900 nm) is advantageous due to the inherently lower background interference and the high molar absorptivities of NIR chromophores. Near-Infrared (NIR) dyes are increasingly used in the biological and medical field. The binding characteristics of NIR dyes to biomolecules are possibly controlled by several factors, including hydrophobicity, size and charge just to mention a few parameters. Binding characteristics of symmetric carbocyanines and found that the hydrophobic nature of the NIR dye is only partially responsible for the binding strength. Upon binding to biomolecules significant fluorescence enhancement can be observed for symmetrical carbocyanines. This fluorescence amplification facilitates the detection of the NIR dye and enhances its utility as NIR reporter. This manuscript discusses some probe and marker applications of such NIR fluorescent dyes. One application discussed here is the use of NIR dyes as markers. For labeling applications the fluorescence intensity of the NIR fluorescent label can significantly be increased by enclosing several dye molecules in nanoparticles. To decrease self quenching dyes that have relatively large Stokes' shift needs to be used. This is achieved by substituting meso position halogens with amino moiety. This substitution can also serve as a linker to covalently attach the dye molecule to the nanoparticle backbone. We report here on the preparation of NIR fluorescent silica nanoparticles. Silica nanoparticles that are modified with aminoreactive moieties can be used as bright fluorescent labels in bioanalytical applications. A new bioanalytical technique to detect and monitor the catalytic activity of the sulfur assimilating enzyme using NIR dyes is reported as well. In this spectroscopic bioanalytical assay a family of Fischer based n-butyl sulfonate substituted dyes that exhibit distinct variation in absorbance and fluorescence properties and strong binding to serum albumin as its

  5. Flourishing across Europe: Application of a New Conceptual Framework for Defining Well-Being

    Science.gov (United States)

    Huppert, Felicia A.; So, Timothy T. C.

    2013-01-01

    Governments around the world are recognising the importance of measuring subjective well-being as an indicator of progress. But how should well-being be measured? A conceptual framework is offered which equates high well-being with positive mental health. Well-being is seen as lying at the opposite end of a spectrum to the common mental disorders…

  6. Exploring the Application of a Conceptual Framework in a Social MALL App

    Science.gov (United States)

    Read, Timothy; Bárcena, Elena; Kukulska-Hulme, Agnes

    2016-01-01

    This article presents a prototype social Mobile Assisted Language Learning (henceforth, MALL) app based on Kukulska-Hulme's (2012) conceptual framework. This research allows the exploration of time, place and activity type as key factors in the design of MALL apps, and is the first step toward a systematic analysis of such a framework in this type…

  7. An Exploratory Study on the Application of Conceptual Knowledge and Critical Thinking to Technological Issues

    Science.gov (United States)

    Yu, Kuang-Chao; Lin, Kuen-Yi; Fan, Szu-Chun

    2015-01-01

    This study explored how senior high school students apply their conceptual knowledge, consisting of theoretical and system knowledge, to think critically when confronted with technological issues. We employed a curriculum on the history of communication technology to teach students about basic concepts in communication technology and to cultivate…

  8. The Third Mission of Higher Education Institutions: Conceptual Framework and Application in the Czech Republic

    Science.gov (United States)

    Krcmárová, Jana

    2011-01-01

    This article summarizes the process of conceptualizing the third mission of higher education institutions. First, the relevant changes in the socio-economical context of higher education are enumerated and institutional responses are described. Next, the main trends in defining the third mission are delineated, and the ways in which the various…

  9. A method to reduce ambiguities of qualitative reasoning for conceptual design applications

    OpenAIRE

    D' Amelio, V.; Chmarra, M.K.; Tomiyama, T

    2013-01-01

    Qualitative reasoning can generate ambiguous behaviors due to the lack of quantitative information. Despite many different research results focusing on ambiguities reduction, fundamentally it is impossible to totally remove ambiguities with only qualitative methods and to guarantee the consistency of results. This prevents the wide use of qualitative reasoning techniques in practical situations, particularly in conceptual design, where qualitative reasoning is considered intrinsically useful....

  10. Development and application of a vehicle for operating spent radioactive sources

    International Nuclear Information System (INIS)

    A vehicle for operating spent radioactive sources were designed and manufactured according to the operational process requirements. The vehicle, acting as a mobile open-type facility for radiological operation, is composed of two rooms, a change room and an operation room. The change room also serves as the personnel entrance pathway, equipped with wardrobe and storage space for monitoring instruments. The operation room is designed for packaging, welding, leaking test and temporary storage of radioactive sources, equipped with glovebox, stainless steel welding machine, lead-shielding containers, leaking test device, steel drums with concrete-shield, and work benches. The application for nearly one year demonstrates that the specially designed vehicle can meet the needs of practical operation and the relevant requirements. (authors)

  11. Interacting Conceptual Spaces

    OpenAIRE

    Bolt, Josef; Coecke, Bob; Genovese, Fabrizio; Lewis, Martha; Marsden, Daniel; Piedeleu, Robin

    2016-01-01

    We propose applying the categorical compositional scheme of [6] to conceptual space models of cognition. In order to do this we introduce the category of convex relations as a new setting for categorical compositional semantics, emphasizing the convex structure important to conceptual space applications. We show how conceptual spaces for composite types such as adjectives and verbs can be constructed. We illustrate this new model on detailed examples.

  12. Application of CART3D to Complex Propulsion-Airframe Integration with Vehicle Sketch Pad

    Science.gov (United States)

    Hahn, Andrew S.

    2012-01-01

    Vehicle Sketch Pad (VSP) is an easy-to-use modeler used to generate aircraft geometries for use in conceptual design and analysis. It has been used in the past to generate metageometries for aerodynamic analyses ranging from handbook methods to Navier-Stokes computational fluid dynamics (CFD). As desirable as it is to bring high order analyses, such as CFD, into the conceptual design process, this has been difficult and time consuming in practice due to the manual nature of both surface and volume grid generation. Over the last couple of years, VSP has had a major upgrade of its surface triangulation and export capability. This has enhanced its ability to work with Cart3D, an inviscid, three dimensional fluid flow toolset. The combination of VSP and Cart3D allows performing inviscid CFD on complex geometries with relatively high productivity. This paper will illustrate the use of VSP with Cart3D through an example case of a complex propulsion-airframe integration (PAI) of an over-wing nacelle (OWN) airliner configuration.

  13. Current status of environmental, health, and safety issues of electrochemical capacitors for advanced vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, L J; Hammel, C J

    1997-04-01

    Electrochemical capacitors are a candidate for traction power assists in hybrid electric vehicles (HEVs). Other advanced automotive applications, while not the primary focus of current development efforts, are also possible. These include load leveling high-energy batteries, power conditioning electronics, electrically hated catalysts, electric power steering, and engine starter power. Higher power and longer cycle life are expected for electrochemical capacitors than for batteries. Evaluation of environmental, health, and safety (EH and S) issues of electrochemical capacitors is an essential part of the development and commercialization of electrochemical capacitors for advanced vehicles. This report provides an initial EH and S assessment. This report presents electrochemical capacitor electrochemistry, materials selection, intrinsic material hazards, mitigation of those hazards, environmental requirements, pollution control options, and shipping requirements. Most of the information available for this assessment pertains to commercial devices intended for application outside the advanced vehicle market and to experiment or prototype devices. Electrochemical capacitors for power assists in HEVs are not produced commercially now. Therefore, materials for advanced vehicle electrochemical capacitors may change, and so would the corresponding EH and S issues. Although changes are possible, this report describes issues for likely electrochemical capacitor designs.

  14. Application of Recommended Design Practices for Conceptual Nuclear Fusion Space Propulsion Systems

    Science.gov (United States)

    Williams, Craig H.

    2004-01-01

    An AIAA Special Project Report was recently produced by AIAA's Nuclear and Future Flight Propulsion Technical Committee and is currently in peer review. The Report provides recommended design practices for conceptual engineering studies of nuclear fusion space propulsion systems. Discussion and recommendations are made on key topics including design reference missions, degree of technological extrapolation and concomitant risk, thoroughness in calculating mass properties (nominal mass properties, weight-growth contingency and propellant margins, and specific impulse), and thoroughness in calculating power generation and usage (power-flow, power contingencies, specific power). The report represents a general consensus of the nuclear fusion space propulsion system conceptual design community and proposes 15 recommendations. This paper expands on the Report by providing specific examples illustrating how to apply each of the recommendations.

  15. Conceptual framework of public health surveillance and action and its application in health sector reform

    OpenAIRE

    Alemu Wondi; Carande-Kulis Vilma; Nsubuga Peter; Wuhib Tadesse; Ryan Mike; Chungong Stella; McNabb Scott JN; Rodier Guenael

    2002-01-01

    Abstract Background Because both public health surveillance and action are crucial, the authors initiated meetings at regional and national levels to assess and reform surveillance and action systems. These meetings emphasized improved epidemic preparedness, epidemic response, and highlighted standardized assessment and reform. Methods To standardize assessments, the authors designed a conceptual framework for surveillance and action that categorized the framework into eight core and four sup...

  16. Comparison of Conceptual Graphs for Modelling Knowledge of Multiple Experts : Application to Traffic Accident Analysis

    OpenAIRE

    Dieng, Rose

    1997-01-01

    When modelling knowledge of multiple experts, it is interesting to build a common expertise model corresponding to the kernel of knowledge common to the experts. Therefore the expertise conflicts between the expertise models of the different experts must be tackled. The domain level of an expertise model can be described through concepts linked by relations, and represented through Sowa's conceptual graph formalism. This report presents a method for conflict management during knowledge modell...

  17. A Conceptual-KDD approach and its application to cultural heritage

    OpenAIRE

    Stanley, Renzo; Astudillo, Hernan; Codocedo, Victor; Napoli, Amedeo

    2013-01-01

    Several governmental and non-governmental organizations (NGOs), motivated by the UNESCO have undertaken the task of documenting the intangible cultural heritage of their communities. However, this has proven to be a difficult task. In this work we present a conceptual knowledge discovery in databases (CKDD) approach to aid a particular organization in this task (which has already started). Because of the dynamism of the cultural heritage domain, the design of the database used to store the do...

  18. Flourishing Across Europe: Application of a New Conceptual Framework for Defining Well-Being

    OpenAIRE

    Huppert, Felicia A.; So, Timothy T. C.

    2011-01-01

    Governments around the world are recognising the importance of measuring subjective well-being as an indicator of progress. But how should well-being be measured? A conceptual framework is offered which equates high well-being with positive mental health. Well-being is seen as lying at the opposite end of a spectrum to the common mental disorders (depression, anxiety). By examining internationally agreed criteria for depression and anxiety (DSM and ICD classifications), and defining the oppos...

  19. A Conceptual Cost Benefit Analysis of Tailings Matrices Use in Construction Applications

    OpenAIRE

    Mahmood Ali A.; Elektorowicz Maria

    2016-01-01

    As part of a comprehensive research program, new tailings matrices are formulated of combinations of tailings and binder materials. The research program encompasses experimental and numerical analysis of the tailings matrices to investigate the feasibility of using them as construction materials in cold climates. This paper discusses a conceptual cost benefit analysis for the use of these new materials. It is shown here that the financial benefits of using the proposed new tailings matrices i...

  20. Enery Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Zwitter; Phillip Nash; Xiaoyan Xu; Chadwick Johnson

    2011-03-31

    This is the final technical report for the Department of Energy NETL project NT01931 Energy Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications. Titanium has been identified as one of the key materials with the required strength that can reduce the weight of automotive components and thereby reduce fuel consumption. Working with newly developed sources of titanium powder, Webster-Hoff will develop the processing technology to manufacture low cost vehicle components using the single press/single sinter techniques developed for iron based powder metallurgy today. Working with an automotive or truck manufacturer, Webster-Hoff will demonstrate the feasibility of manufacturing a press and sinter titanium component for a vehicle application. The project objective is two-fold, to develop the technology for manufacturing press and sinter titanium components, and to demonstrate the feasibility of producing a titanium component for a vehicle application. The lowest cost method for converting metal powder into a net shape part is the Powder Metallurgy Press and Sinter Process. The method involves compaction of the metal powder in a tool (usually a die and punches, upper and lower) at a high pressure (up to 60 TSI or 827 MPa) to form a green compact with the net shape of the final component. The powder in the green compact is held together by the compression bonds between the powder particles. The sinter process then converts the green compact to a metallurgically bonded net shape part through the process of solid state diffusion. The goal of this project is to expand the understanding and application of press and sinter technology to Titanium Powder applications, developing techniques to manufacture net shape Titanium components via the press and sinter process. In addition, working with a vehicle manufacturer, demonstrate the feasibility of producing a titanium component for a vehicle. This is not a research program, but rather a

  1. Evolutionary Maps: A new model for the analysis of conceptual development, with application to the diurnal cycle

    Science.gov (United States)

    Navarro, Manuel

    2014-05-01

    This paper presents a model of how children generate concrete concepts from perception through processes of differentiation and integration. The model informs the design of a novel methodology (evolutionary maps or emaps), whose implementation on certain domains unfolds the web of itineraries that children may follow in the construction of concrete conceptual knowledge and pinpoints, for each conception, the architecture of the conceptual change that leads to the scientific concept. Remarkably, the generative character of its syntax yields conceptions that, if unknown, amount to predictions that can be tested experimentally. Its application to the diurnal cycle (including the sun's trajectory in the sky) indicates that the model is correct and the methodology works (in some domains). Specifically, said emap predicts a number of exotic trajectories of the sun in the sky that, in the experimental work, were drawn spontaneously both on paper and a dome. Additionally, the application of the emaps theoretical framework in clinical interviews has provided new insight into other cognitive processes. The field of validity of the methodology and its possible applications to science education are discussed.

  2. The Persuasion Model of conceptual change and its application to misconceptions in evolution

    Science.gov (United States)

    Garner, Joanna Kate

    Previous work has attempted to account for the factors involved in conceptual change (e.g. Posner, Strike, Hewson & Gertzog, 1982; Pintrich, Marx & Boyle, 1993). While progress has been made, cognitive restructuring remains to be positioned within a unifying theory of change. Here, a new model of conceptual change is put forward. The Persuasion Model of conceptual change builds on previous frameworks (Posner, Strike, Hewson & Gertzog, 1982; Pintrich, Marx & Boyle, 1993; Vosniadou, 1994) including the psychology of persuasion (Heuristic-Systematic Model, Chaiken, 1980; Elaboration Likelihood Model, Petty & Cacioppo, 1986; Social Judgement Theory, Sherif & Hovland, 1953) and cognitive and motivational theories of learning (Johnson-Laird, 1983; Mayer & Moreno, 1988; Wittrock, 1974b). High quality, elaborative processing of a persuasive message leads to change. Mental models are positioned as the mechanism by which meaning is created, manipulated, inspected and evaluated. These processes result in a continuum of cognitive restructuring. A study of conceptual change in Evolutionary Biology examined the viability of the Persuasion Model. It was predicted that knowledge, beliefs, interest and cognitive style would predict elaborative processing. Processing was hypothesized to influence information comprehensibility, plausibility, fruitfulness and compatibility with prior knowledge. Judgments were hypothesized to influence learning outcomes. Evolutionary knowledge and beliefs were assessed at pre- and posttest in 375 college students using multiple choice, likert-scale and extended response items. Need for Cognition, Need for Cognitive Closure, Epistemological Beliefs, Religiosity, Dogmatism, Moral Values and Argument Evaluation Ability were measured using paper-and-pencil questionnaires. Participants read a text and indicated elaborative processing and information evaluation. Ninety percent of participants held at least one misconception at pre-test. Significant gains on

  3. Comparative study for "36 V" vehicle applications: advantages of lead-acid batteries

    Science.gov (United States)

    Lailler, Patrick; Sarrau, Jean-François; Sarrazin, Christian

    From thermal engine equipped vehicles to completely electric ones, evolution of light weight vehicles in the future will take several steps in so far as there is no adequate battery or fuel cell presently available to power these vehicles for "on the road" driving. On the other hand, for city driving, vehicles can be improved a lot in terms of fuel efficiency as well as air pollution, if partly or totally electric propulsion can be developed, manufactured and marketed for appropriate applications. The 36-42 V battery is part of this orientation towards improving the efficiency of thermal vehicles in city driving, while keeping adequate autonomy on the roads. Actually, in city traffic, thermal engines are idle most of the time and stop periods represent a large part of the time spent "driving", using up fuel and polluting air for no use at all. The idea of stopping the engine during these periods, if appropriately managed, might potentially lead to a large improvement in fuel economy as well as air pollution reduction. The association of a higher voltage battery to an alternator-starter device in thermal vehicles, seems to be an interesting way towards that end. In this paper, we are presenting our results of a study we have just completed in relationship with RENAULT & VALEO, supported by the French Ministry of Industry, concerning a comparative evaluation of different automobile energy storage systems, and the definition of specifications as the final step of this study. The main conclusion is that lead-acid will still remain dominant in this role, since its operational cost versus efficiency is by far the lowest of every battery presently considered, more particularly in the less expensive car segments.

  4. Nano-Scale Interpenetrating Phase Composites (IPC S) for Industrial and Vehicle Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James Gordon [ORNL; Hu, Michael Z. [ORNL

    2010-06-01

    A one-year project was completed at Oak Ridge National Laboratory (ORNL) to explore the technical and economic feasibility of producing nano-scale Interpenetrating Phase Composite (IPC) components of a usable size for actual testing/implementation in a real applications such as high wear/corrosion resistant refractory shapes for industrial applications, lightweight vehicle braking system components, or lower cost/higher performance military body and vehicle armor. Nano-scale IPC s with improved mechanical, electrical, and thermal properties have previously been demonstrated at the lab scale, but have been limited in size. The work performed under this project was focused on investigating the ability to take the current traditional lab scale processes to a manufacturing scale through scaling of these processes or through the utilization of an alternative high-temperature process.

  5. Prospects for the application of GaN power devices in hybrid electric vehicle drive systems

    International Nuclear Information System (INIS)

    GaN, a wide bandgap semiconductor successfully implemented in optical and high-speed electronic devices, has gained momentum in recent years for power electronics applications. Along with rapid progress in material and device processing technologies, high-voltage transistors over 600 V have been reported by a number of teams worldwide. These advances make GaN highly attractive for the growing market of electrified vehicles, which currently employ bipolar silicon devices in the 600–1200 V class for the traction inverter. However, to capture this billion-dollar power market, GaN has to compete with existing IGBT products and deliver higher performance at comparable or lower cost. This paper reviews key achievements made by the GaN semiconductor industry, requirements of the automotive electric drive system and remaining challenges for GaN power devices to fit in the inverter application of hybrid vehicles. (invited review)

  6. Prospects for the application of GaN power devices in hybrid electric vehicle drive systems

    Science.gov (United States)

    Su, Ming; Chen, Chingchi; Rajan, Siddharth

    2013-07-01

    GaN, a wide bandgap semiconductor successfully implemented in optical and high-speed electronic devices, has gained momentum in recent years for power electronics applications. Along with rapid progress in material and device processing technologies, high-voltage transistors over 600 V have been reported by a number of teams worldwide. These advances make GaN highly attractive for the growing market of electrified vehicles, which currently employ bipolar silicon devices in the 600-1200 V class for the traction inverter. However, to capture this billion-dollar power market, GaN has to compete with existing IGBT products and deliver higher performance at comparable or lower cost. This paper reviews key achievements made by the GaN semiconductor industry, requirements of the automotive electric drive system and remaining challenges for GaN power devices to fit in the inverter application of hybrid vehicles.

  7. Dynamic Modeling and Simulation on a Hybrid Power System for Electric Vehicle Applications

    OpenAIRE

    Hong-Wen He; Rui Xiong; Yu-Hua Chang

    2010-01-01

    Hybrid power systems, formed by combining high-energy-density batteries and high-power-density ultracapacitors in appropriate ways, provide high-performance and high-efficiency power systems for electric vehicle applications. This paper first establishes dynamic models for the ultracapacitor, the battery and a passive hybrid power system, and then based on the dynamic models a comparative simulation between a battery only power system and the proposed hybrid power system was done under the UD...

  8. Research on green vehicle and powertrain technologies and their intended application to green ships

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Z. [Victoria Univ., BC (Canada). Dept. of Mechanical Engineering

    2009-07-01

    This presentation discussed fuel cell vehicle and backup power system applications for ships. The technology was based on proton exchange membrane (PEM) fuel cell and membrane electrode assembly (MEA) system designs. Technical problems related to the designs included issues related to heat and water management, as well as process and materials costs. Use of the technologies is inhibited by a lack of infrastructure and certification, as well as the problems associated with hydrogen fuel supply, transportation, distribution and storage. Modelling studies for other public transport applications are being modified for use in marine applications. Fuel cell models include empirical; theoretical-empirical; theoretical; and simulation-based computational fluid dynamics (CFD) and mass transfer models. Theoretical models are used to determine parasitic loads as well as to account for fuel storage. Testing results for various PEM fuel cell vehicles were provided. Research on next-generation hybrid powertrains was also discussed. Research is now being conducted on new architectures for multi-regime hybrid vehicles as well as on advanced hybrid energy storage systems. Various performance evaluation simulations were outlined. Details of a new powertrain and stationary components for a green boat design were also outlined. tabs., figs.

  9. A Conceptual Cost Benefit Analysis of Tailings Matrices Use in Construction Applications

    Directory of Open Access Journals (Sweden)

    Mahmood Ali A.

    2016-01-01

    Full Text Available As part of a comprehensive research program, new tailings matrices are formulated of combinations of tailings and binder materials. The research program encompasses experimental and numerical analysis of the tailings matrices to investigate the feasibility of using them as construction materials in cold climates. This paper discusses a conceptual cost benefit analysis for the use of these new materials. It is shown here that the financial benefits of using the proposed new tailings matrices in terms of environmental sustainability are much higher when compared to normal sand matrices.

  10. Conceptual painting

    OpenAIRE

    Bracey, Andrew

    2012-01-01

    Conceptual Painting is an essay that examines if the notion of conceptual painting is a misnomer or if painting is a conceptual approach to art, akin to other mediums. It looks at this through 3 artists, Ben Cook, Pavel Buchler and Anikam Toren.

  11. Conceptual study of the application software manager using the Xlet model in the nuclear fields

    International Nuclear Information System (INIS)

    In order to reduce the cost of software maintenance including software modification, we suggest the object oriented program with checking the version of application program using the Java language and the technique of executing the downloaded application program via network using the application manager. In order to change the traditional scheduler to the application manager we have adopted the Xlet concept in the nuclear fields using the network. In usual Xlet means a Java application that runs on the digital television receiver. The Java TV Application Program Interface(API) defines an application model called the Xlet application lifecycle. Java applications that use this lifecycle model are called Xlets. The Xlet application lifecycle is compatible with the existing application environment and virtual machine technology. The Xlet application lifecycle model defines the dialog (protocol) between an Xlet and its environment

  12. VISTA -- A Vehicle for Interplanetary Space Transport Application Powered by Inertial Confinement Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Orth, C D

    2005-03-31

    Inertial Confinement Fusion (ICF) is an ideal technology to power self-contained single-stage piloted (manned) spacecraft within the solar system because of its inherently high power/mass ratios and high specific impulses (i.e., high exhaust velocities). These technological advantages are retained when ICF is utilized with a magnetic thrust chamber, which avoids the plasma thermalization and resultant degradation of specific impulse that are unavoidable with the use of mechanical thrust chambers. We started with Rod Hyde's 1983 description of an ICF-powered engine concept using a magnetic thrust chamber, and conducted a more detailed systems study to develop a viable, realistic, and defensible spacecraft concept based on ICF technology projected to be available in the first half of the 21st century. The results include an entirely new conical spacecraft conceptual design utilizing near-existing radiator technology. We describe the various vehicle systems for this new concept, estimate the missions performance capabilities for general missions to the planets within the solar system, and describe in detail the performance for the baseline mission of a piloted roundtrip to Mars with a 100-ton payload. For this mission, we show that roundtrips totaling {ge}145 days are possible with advanced DT fusion technology and a total (wet) spacecraft mass of about 6000 metric tons. Such short-duration missions are advantageous to minimize the known cosmic-radiation hazards to astronauts, and are even more important to minimize the physiological deteriorations arising from zero gravity. These ICF-powered missions are considerably faster than those available using chemical or nuclear-electric-propulsion technologies with minimum-mass vehicle configurations. VISTA also offers onboard artificial gravity and propellant-based shielding from cosmic rays, thus reducing the known hazards and physiological deteriorations to insignificant levels. We emphasize, however, that the degree

  13. Solid-state, rechargeable Li/LiFePO4 polymer battery for electric vehicle application

    International Nuclear Information System (INIS)

    A solid-state polymer lithium metal battery having a LiFePO4/C composite cathode and a poly(ethylene oxide) PEO-based solid polymer electrolyte was assembled and characterized in terms of specific energy and power according to the protocol for electric vehicle (EV) application set by the USABC-DOE. The results of these tests show that this polymer battery surpasses the goals stated by USABC-DOE and, hence, may be suitable for application in the evolving EV market. (author)

  14. Polymers for hydrogen infrastructure and vehicle fuel systems : applications, properties, and gap analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Rachel Reina; Simmons, Kevin L. [Pacific Northwest National Laboratory, Richland, WA; San Marchi, Christopher W.

    2013-10-01

    This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

  15. Unitary Transformations in the Quantum Model for Conceptual Conjunctions and its Application to Data Representation

    Directory of Open Access Journals (Sweden)

    Tomas eVeloz

    2015-11-01

    Full Text Available Quantum models of concept combinations have been successful in representing various experimental situations that cannot be accommodated by traditional models based on classical probability or fuzzy set theory. In many cases, the focus has been on producing a representation that fits experimental results to validate quantum models. However, these representations are not always consistent with the cognitive modeling principles. Moreover, some important issues related to the representation of concepts such as the dimensionality of the realization space, the uniqueness of solutions, and the compatibility of measurements, have been overlooked.In this paper, we provide a dimensional analysis of the realization space for the two-sector Fock space model for conjunction of concepts focusing on the first and second sectors separately. We then introduce various representation of concepts that arise from the use of unitary operators in the realization space. In these concrete representations, a pair of concepts and their combination are modeled by a single conceptual state, and by a collection of exemplar-dependent operators. Therefore, they are consistent with cognitive modeling principles. %Moreover, we show that each representation is unique up to change of basis. This framework not only provides a uniform approach to model an entire data set, but, because all measurement operators are expressed in the same basis, allows us to address the question of compatibility of measurements. In particular, we present evidence that it may be possible to predict non-commutative effects from partial measurements of conceptual combinations.

  16. Application of the multi-objective cross-entropy method to the vehicle routing problem with soft time windows

    Directory of Open Access Journals (Sweden)

    C Hauman

    2014-06-01

    Full Text Available The vehicle routing problem with time windows is a widely studied problem with many real-world applications. The problem considered here entails the construction of routes that a number of identical vehicles travel to service different nodes within a certain time window. New benchmark problems with multi-objective features were recently suggested in the literature and the multi-objective optimisation cross-entropy method is applied to these problems to investigate the feasibility of the method and to determine and propose reference solutions for the benchmark problems. The application of the cross-entropy method to the multi-objective vehicle routing problem with soft time windows is investigated. The objectives that are evaluated include the minimisation of the total distance travelled, the number of vehicles and/or routes, the total waiting time and delay time of the vehicles and the makespan of a route.

  17. Conceptual design of a high-power infrared free electron laser for the applications in nuclear industry

    International Nuclear Information System (INIS)

    Free electron lasers are tuneable over a wide-range of spectrum, and can generate high aver power of laser beam. The free electron lasers can be used in many fields of nuclear industry such as production of heavy water, extraction of tritium from heavy water, production of isotopes for medical and industrial applications, partioning and extraction of valuable elements from nuclear waste, and so on. In this paper, the conceptual design of a high average power infrared free electron laser for the application in nuclear industry is described. The tunable range of output wavelength of the free electron laser is 1-30 μm, and the average power is 10-100 kW. A 100-MeV recirculating RF accelerator with energy recovery will be used as a driver of the free electron laser. Details of the electron accelerator, optical cavity, undulator, etc. are described in this paper

  18. Simultaneous Assimilation of Multiple Data into a Conceptual Rainfall-Runoff Model using Variational Methods for Hydrological Forecasting Applications

    Science.gov (United States)

    Schwanenberg, D.; Alvarado Montero, R.; Sensoy Sorman, A.; Krahe, P.

    2015-12-01

    Data assimilation methods applied to hydrological applications have primarily focused on assimilating streamflow and, more recently, soil moisture observations. Few cases actually assimilate both observations, and even fewer incorporate additional observations into the assimilation procedure. This is despite extensive developments in remote sensing information. Most research on data assimilation has focused on the implementation of sequential assimilation using Kalman filters. We present an alternative approach using variational methods based on Moving Horizon Estimation (MHE) to simultaneously assimilate streamflow data and remote sensing information obtained from the Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF) community, namely snow-covered area, snow water equivalent and soil moisture. This approach enables a highly flexible formulation of distance metrics for the introduction of noise into the model and the agreement between simulated and observed variables. The application of MHE on data assimilation is tested at two data-dense test sites in Germany and one data-sparse environment in Turkey. The assessment of results is based on the lead time performance of state variables of the conceptual rainfall-runoff model, i.e. not limited to the performance of streamflow forecast but also applicable to snow and soil moisture forecast skills. Results show a potential improvement on the performance of the forecasted streamflow when using a perfect time series of state variables generated through the simulation of the conceptual rainfall-runoff model HBV. The assimilation of H-SAF data, in combination with streamflow, reduces the performance of the forecasted streamflow compared to the assimilation using only streamflow data. However, other forecasted quantities such as the snow water equivalent or soil moisture are improved. Recommendations based on the test cases are given following the length of the assimilation

  19. Advanced microsystems for automotive applications 2013 smart systems for safe and green vehicles

    CERN Document Server

    Meyer, Gereon

    2013-01-01

    The road vehicle of the future will embrace innovations from three major automotive technology fields: driver assistance systems, vehicle networking and alternative propulsion. Smart systems such as adaptive ICT components and MEMS devices, novel network architectures, integrated sensor systems, intelligent interfaces and functional materials form the basis of these features and permit their successful and synergetic integration. They increasingly appear to be the key enabling technologies for safe and green road mobility. For more than fifteen years the International Forum on Advanced Microsystems for Automotive Applications (AMAA) has been successful in detecting novel trends and in discussing the technological implications from early on. The topic of the AMAA 2013 will be “Smart Systems for Safe and Green Vehicles”. This book contains peer-reviewed papers written by leading engineers and researchers which all address the ongoing research and novel developments in the field. www.amaa.de.

  20. System Interface for an Integrated Intelligent Safety System (ISS for Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Mahammad A. Hannan

    2010-01-01

    Full Text Available This paper deals with the interface-relevant activity of a vehicle integrated intelligent safety system (ISS that includes an airbag deployment decision system (ADDS and a tire pressure monitoring system (TPMS. A program is developed in LabWindows/CVI, using C for prototype implementation. The prototype is primarily concerned with the interconnection between hardware objects such as a load cell, web camera, accelerometer, TPM tire module and receiver module, DAQ card, CPU card and a touch screen. Several safety subsystems, including image processing, weight sensing and crash detection systems, are integrated, and their outputs are combined to yield intelligent decisions regarding airbag deployment. The integrated safety system also monitors tire pressure and temperature. Testing and experimentation with this ISS suggests that the system is unique, robust, intelligent, and appropriate for in-vehicle applications.

  1. On the Theory of Nonlinear Dynamics and its Applications in Vehicle Systems Dynamics

    DEFF Research Database (Denmark)

    True, Hans

    1999-01-01

    We present a brief outline of nonlinear dynamics and its applications to vehicle systems dynamics problems. The concept of a phase space is introduced in order to illustrate the dynamics of nonlinear systems in a way that is easy to perceive. Various equilibrium states are defined, and the...... important case of multiple equilibrium states and their dependence on a parameter is discussed. It is argued that the analysis of nonlinear dynamic problems always should start with an analysis of the equilibrium states of the full nonlinear problem whereby great care must be taken in the choice of the...... nonlinear dynamics in vehicle simulations is discussed, and it is argued that it is necessary to know the equilibrium states of the full nonlinear system before the simulation calculations are performed....

  2. Advanced state prediction of lithium-ion traction batteries in hybrid and battery electric vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Jadidi, Yasser

    2011-07-01

    Automotive power trains with high energy efficiencies - particularly to be found in battery and hybrid electric vehicles - find increasing attention in the focus of reduction of exhaust emissions and increase of mileage. The underlying concept, the electrification of the power train, is subject to the traction battery and its battery management system since the capability of the battery permits and restricts electric propulsion. Consequently, the overall vehicle efficiency and in particular the operation strategy performance strongly depends on the quality of information about the battery. Besides battery technology, the key challenges are given by both the accurate prediction of battery behaviour and the electrochemical battery degradation that leads to power and capacity fade of the traction battery. This book provides the methodology for development of a battery state monitoring and prediction algorithm for application in a battery management system that accounts for the effects of electrochemical degradation. (orig.)

  3. CONCEPTUAL DESIGN FOR A RADICALLY SMALLER, HIGHLY ADAPTIVE AND APPLICATION-FLEXIBLE MINING MACHINE FOR UTILITY AND DEVELOPMENT WORK

    Energy Technology Data Exchange (ETDEWEB)

    Andrew H. Stern

    2004-12-20

    The aim of this research project was to develop a preliminary ''conceptual design'' for a radically smaller, highly adaptive and application-flexible underground coal mining machine, for performing non-production utility work and/or also undertake limited production mining for the recovery of reserves that would otherwise be lost. Whereas historically, mining philosophies have reflected a shift to increasing larger mechanized systems [such as the continuous miner (CM)], specific mining operations that do not benefit from the economy of the large mining equipment are often ignored or addressed with significant inefficiencies. Developing this prototype concept will create a new class of equipment that can provide opportunities to re-think the very structure of the mining system across a broad range of possibilities, not able to be met by existing machinery. The approach involved pooling the collective input from mining professionals, using a structured listing of desired inputs in the form of a questionnaire, which was used to define the range of desired design specifications. From these inputs, a conceptual specification was blended, by the author, to embody the general concurrence of mission concepts for this machine.

  4. Application of theoretical vehicle dynamic results for experimental validation of vehicle characteristics in autonomous vehicle guidance; Aehnlichkeitstheoretische Modelluebertragung zur experimentellen Eigenschaftsabsicherung in der autonomen Fahrzeugfuehrung

    Energy Technology Data Exchange (ETDEWEB)

    Hilgert, J.; Bertram, T. [Univ. Duisburg (Germany). Fachbereich Maschinenbau

    2002-07-01

    The validation and verification of theoretical vehicle dynamic results for autonomous driving can be seen as a major challenge. The main reasons are the high cost of driving tests and the risk of damaging or destroying the test vehicle and the involved persons. One possibility for avoiding these problems and simultaneously to ensure good experimental results lies in the use of scaled model vehicles. Of special relevance is the transfer of relevant parameters to the full size vehicle. In this paper a method based on similitude analysis is developed for validation and verification of driving tests for autonomous vehicles. This method is described for a lane change manoeuvre for a 1:5 scaled vehicle belonging to the Institute of Mechatronics and System Dynamics at the Gerhard-Mercator-Universitaet Duisburg. (orig.) [German] In der autonomen Fahrzeugfuehrung stellt die experimentelle Verifikation und Validierung von theoretischen Ergebnissen hinsichtlich fahrdynamischer Eigenschaften eine grosse Herausforderung dar. Die Ursachen hierfuer liegen zum einen in den hohen Kosten, welche bei Fahrversuchen entstehen, und zum anderen im Unfallrisiko fuer den Versuchstraeger und die am Versuch beteiligten Personen. Eine Moeglichkeit diese Nachteile zu umgehen und gleichzeitig experimentelle Ergebnisse zu bekommen, besteht in der Verwendung massstabgetreuer Modellfahrzeuge. Von besonderer Bedeutung ist hier die Uebertragung relevanter Parameter auf das reale Fahrzeug. In diesem Beitrag wird daher mit Hilfe von aehnlichkeitstheoretischen Ueberlegungen ein Konzept zur experimentellen Verifikation und Validierung von Fahrversuchen auf Basis eines am Institut fuer Mechatronik und Systemdynamik der Gerhard-Mercator-Universitaet Duisburg vorhandenen Fahrzeugmodells (Massstab 1:5) anhand eines Spurwechselmanoevers vorgestellt. (orig.)

  5. Vehicle to Vehicle Services

    DEFF Research Database (Denmark)

    Brønsted, Jeppe Rørbæk

    2008-01-01

    location aware infotainment, increase safety, and lessen environmental strain. This dissertation is about service oriented architecture for pervasive computing with an emphasis on vehicle to vehicle applications. If devices are exposed as services, applications can be created by composing a set of services...... connectivity, mobility, and availability of services. The dissertation consists of two parts. Part I gives an overview of service oriented architecture for pervasive computing systems and describes the contributions of the publications listed in part II. We investigate architecture for vehicular technology...... and governing the flow of data among them. In pervasive computing, composing services is, however, not the whole story. To fully realize their potential, applications must also deal with challenges such as device heterogeneity, context awareness, openendedness, and resilience to dynamism in network...

  6. Uncertainty in diffusion of competing technologies and application to electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Ploetz, Patrick [Fraunhofer Institute for Systems and Innovation Research, Karlsruhe (Germany). Competence Center Energy Policy and Energy Systems

    2011-07-01

    The diffusion of innovations is an important process and its models have applications in many fields, with particular relevance in technological forecast. The logistic equation is one of most important models in this context. Extensions of this approach as the Lotka-Volterra model have been developed to include the effect of mutual influences between technologies such as competition. However, many of the parameters entering this description are uncertain, difficult to estimate or simply unknown, particularly at early stages of the diffusion. Here, a systematic way to study the effect of uncertain or unknown parameters on the future diffusion of interacting innovations is proposed. The input required is a general qualitative understanding of the system: is the mutual influence positive or negative and does it apply symmetrically to either technology? Since the parameters enter the problem via a set of coupled non-linear differential equations, the approach proposed here goes beyond simple Monte-Carlo-like methods where the result is an explicit function of the parameters. The methodology is developed in detail and applied the case of three types of upcoming electric vehicle propulsion technologies. The findings indicate that competition between electric vehicles and mild hybrid vehicles implies a slow decline of the latter. The approach can easily be generalised to include other initial conditions, more technologies or other technological areas to find stable results for future market evolution independent of specific parameters. (orig.)

  7. Application of solar panels in vehicle parking under the concept of distributed generation

    International Nuclear Information System (INIS)

    An analysis of solar panels technologies is realized to implement an application of distributed generation in vehicle parking. The different technologies available in the market about solar panels are investigated. The climatological and geographical conditions are studied for the use of solar energy. The electrical requirements are determined for the implementation of solar panels as a distributed generation system. The benefit/cost is analyzed in establishments of vehicle parking for the implementation of solar panels. A photovoltaic system was developed in a vehicle parking attached at the Colegio Federado de Ingenieros y Arquitectos, and also the technical feasibility has been determined. The photovoltaic systems about roofs of buildings every day have been more viable, due that the cost of the systems has been lower and more efficient. Crystalline silicon ''mono'' or ''poly'' has been the most reliable option in the development of new technologies in solar cells. Costa Rica is found in a zone where the photovoltaic solar energy is harnessed and should to be fostered by the engineering sector. The installation of photovoltaic systems has contributed to reduce the carbon footprint in the distributed generation

  8. Safety and environmental aspects of zinc--chlorine hydrate batteries for electric-vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Kodali, S.; Henriksen, G.L.; Whittlesey, C.C.; Warde, C.J.; Carr, P.; Symons, P.C.

    1978-03-01

    Public acceptance of high-performance cost-effective zinc--chlorine hydrate batteries for the random-use electric-vehicle application will require meeting stringent safety and environmental requirements. These requirements revolve mainly around the question of accidental release and spread of toxic amounts of chlorine gas, the only potential hazard in this battery system. Available information in the areas of physiological effects, environmental impact, and governmental regulation of chlorine were reviewed. The design, operation, and safety features of a first commercial electric-vehicle battery were conceived and analyzed from the chlorine release aspect. Two types of accident scenarios were analyzed in terms of chlorine release rates, atmospheric dispersion, health hazard, and possible clean-up operations. The worst-case scenario, a quite improbable accident, involves the spillage of chlorine hydrate onto the ground, while the other scenario, a more probable accident, involves the release of chlorine gas from a ruptured battery case. Heat-transfer and chlorine-dispersion models, developed to analyze these scenarios, establish a firm basis for a comprehenive and factual position statement on this topic. The results of this preliminary study suggest that electric vehicles powered by appropriately designed zinc--chlorine hydrate batteries will pose negligible health or environmental hazards on the nation's streets and highways. 8 figures, 14 tables.

  9. Application of PCA-based data compression in the ANN-supported conceptual cost estimation of residential buildings

    Science.gov (United States)

    Juszczyk, Michał

    2016-06-01

    The paper presents concisely some research results on the application of principal component analysis for the data compression and the use of compressed data as the variables describing the model in the issue of conceptual cost estimation of residential buildings. The goal of the research was to investigate the possibility of use of compressed input data of the model in neural modelling - the basic information about residential buildings available in the early stage of design and construction cost. The results for chosen neural networks that were trained with use of the compressed input data are presented in the paper. In the summary the results obtained for the neural networks with PCA-based data compression are compared with the results obtained in the previous stage of the research for the network committees.

  10. Analysis and Control Aspects of a PMSynRel Drive in a Hybrid Electric Vehicle Application

    OpenAIRE

    Zhao, Shuang

    2013-01-01

    This thesis deals withmodeling and control of an electric drive equipped with a permanentmagnet assisted synchronous reluctance (PMSynRel) machine for a plug-in hybrid electric vehicle application. In the first part of the thesis, a special use of the PMSynRel machine in consideration, known as an integrated charger concept, is investigated. The integrated charger feature allows using the PMSynRel machine as a part of the vehicle’s on-board charging system when charging the battery from the g...

  11. Development and application of ride-quality criteria. [considering vehicle vibration damping design

    Science.gov (United States)

    Stephens, D. G.

    1974-01-01

    Ride quality vibration criteria applicable to the design and evaluation of air and surface transportation systems are described. Consideration is given to the magnitude of vehicle vibration experienced by the passenger, the frequency of vibration, the direction of vibration measurements are presented for a variety of air and surface transportation systems. In addition, simulator data on seat dynamics and passenger response are presented. Results suggest the relative merits of various physical descriptors and measurement locations for characterizing the vibration in terms suitable for the design and/or evaluation of transportation systems.

  12. Application of Fault Management Theory to the Quantitative Selection of a Launch Vehicle Abort Trigger Suite

    Science.gov (United States)

    Lo, Yunnhon; Johnson, Stephen B.; Breckenridge, Jonathan T.

    2014-01-01

    This paper describes the quantitative application of the theory of System Health Management and its operational subset, Fault Management, to the selection of Abort Triggers for a human-rated launch vehicle, the United States' National Aeronautics and Space Administration's (NASA) Space Launch System (SLS). The results demonstrate the efficacy of the theory to assess the effectiveness of candidate failure detection and response mechanisms to protect humans from time-critical and severe hazards. The quantitative method was successfully used on the SLS to aid selection of its suite of Abort Triggers.

  13. Scenario-based, closed-loop model predictive control with application to emergency vehicle scheduling

    Science.gov (United States)

    Goodwin, Graham. C.; Medioli, Adrian. M.

    2013-08-01

    Model predictive control has been a major success story in process control. More recently, the methodology has been used in other contexts, including automotive engine control, power electronics and telecommunications. Most applications focus on set-point tracking and use single-sequence optimisation. Here we consider an alternative class of problems motivated by the scheduling of emergency vehicles. Here disturbances are the dominant feature. We develop a novel closed-loop model predictive control strategy aimed at this class of problems. We motivate, and illustrate, the ideas via the problem of fluid deployment of ambulance resources.

  14. Simulation and Optimization of Air-Cooled PEMFC Stack for Lightweight Hybrid Vehicle Application

    OpenAIRE

    Jingming Liang; Zefeng Wu

    2015-01-01

    A model of 2 kW air-cooled proton exchange membrane fuel cell (PEMFC) stack has been built based upon the application of lightweight hybrid vehicle after analyzing the characteristics of heat transfer of the air-cooled stack. Different dissipating models of the air-cooled stack have been simulated and an optimal simulation model for air-cooled stack called convection heat transfer (CHT) model has been figured out by applying the computational fluid dynamics (CFD) software, based on which, the...

  15. FPGA-Based Real-Time Moving Target Detection System for Unmanned Aerial Vehicle Application

    OpenAIRE

    Jia Wei Tang; Nasir Shaikh-Husin; Usman Ullah Sheikh; M. N. Marsono

    2016-01-01

    Moving target detection is the most common task for Unmanned Aerial Vehicle (UAV) to find and track object of interest from a bird’s eye view in mobile aerial surveillance for civilian applications such as search and rescue operation. The complex detection algorithm can be implemented in a real-time embedded system using Field Programmable Gate Array (FPGA). This paper presents the development of real-time moving target detection System-on-Chip (SoC) using FPGA for deployment on a UAV. The de...

  16. Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications

    OpenAIRE

    Burke, Andy; Gardiner, Monterey

    2005-01-01

    This report is concerned with the characterization and comparison of various technologies for hydrogen storage for light-duty vehicle applications. The storage technologies considered are compressed gas, cryogenic liquid, metallic and chemical hydrides, and activated carbon at 77 K. The technologies were evaluated in terms of weight and volume metrics - %wt H2/ system kg and gm H2/system and an energy intensity metric kJ/kg H2 for preparing the hydrogen fuel and placing it into storage for us...

  17. An Application of Computer Vision Systems to Solve the Problem of Unmanned Aerial Vehicle Control

    Directory of Open Access Journals (Sweden)

    Aksenov Alexey Y.

    2014-09-01

    Full Text Available The paper considers an approach for application of computer vision systems to solve the problem of unmanned aerial vehicle control. The processing of images obtained through onboard camera is required for absolute positioning of aerial platform (automatic landing and take-off, hovering etc. used image processing on-board camera. The proposed method combines the advantages of existing systems and gives the ability to perform hovering over a given point, the exact take-off and landing. The limitations of implemented methods are determined and the algorithm is proposed to combine them in order to improve the efficiency.

  18. An efficient wireless power transfer system with security considerations for electric vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhen; Chau, K. T., E-mail: ktchau@eee.hku.hk; Liu, Chunhua; Qiu, Chun; Lin, Fei [Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (China)

    2014-05-07

    This paper presents a secure inductive wireless power transfer (WPT) system for electric vehicle (EV) applications, such as charging the electric devices inside EVs and performing energy exchange between EVs. The key is to employ chaos theory to encrypt the wirelessly transferred energy which can then be decrypted by specific receptors in the multi-objective system. In this paper, the principle of encrypted WPT is first revealed. Then, computer simulation is conducted to validate the feasibility of the proposed system. Moreover, by comparing the WPT systems with and without encryption, the proposed energy encryption scheme does not involve noticeable power consumption.

  19. An efficient wireless power transfer system with security considerations for electric vehicle applications

    International Nuclear Information System (INIS)

    This paper presents a secure inductive wireless power transfer (WPT) system for electric vehicle (EV) applications, such as charging the electric devices inside EVs and performing energy exchange between EVs. The key is to employ chaos theory to encrypt the wirelessly transferred energy which can then be decrypted by specific receptors in the multi-objective system. In this paper, the principle of encrypted WPT is first revealed. Then, computer simulation is conducted to validate the feasibility of the proposed system. Moreover, by comparing the WPT systems with and without encryption, the proposed energy encryption scheme does not involve noticeable power consumption

  20. Improving the reliability and performance of FlexRay vehicle network applications using simulation techniques

    OpenAIRE

    Shaw, Robert

    2009-01-01

    Abstract Modern vehicles are becoming more and more sophisticated, with more functions being controlled by a microprocessor unit. As new functions are developed there is not only more of a demand on the control unit, but there is also more demand placed on the communication network(s) within a car. There is also a growing need for fast and dependable networks for new safety features such as X-by-wire applications. A trend in the automotive industry to make cars more eco-friendly has eme...

  1. The application of environmental economics in marine functional zoning and coastal city conceptual planning

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    There are a lot of functions of marine resources.The various and competing conflicts between different users and different sectors in th euse of marine resources will cause the disorderly development of marine resources,and even destroy the marine ecosystem.Marine functional zoning is an effective tool to solve the conflicts.However,there are some shortcomings in the current understanding on marine functional zoning and its practice.In this paper,a case study on the resource-oriented marine functional zoning of Xiangshan Port is introduced.By the prmeiples of resource-oriented and public participation,Xiangshan Pon is divided into seven zones.and the main function of the whole port and seven zones are determined by the environmental economics analysis.A case study of Xiamen is also introduced for how to integrate marine functional zoning into a coastal city conceptual planning.Under the conservation prmciple,resources-oriented principle and so on,the advantages and disadvantages of natural ecosystem,social ecosystem and econnomic ecosystem are holistically analyzed,the urban orientation of Xiamen is determined as a regional international tourism ciif,and the whole city is divided into five function zones according to its leading industry-tourism.Resource-oriented marine functional zoning has a long-term guidance for sustainable use of marine resources and development strategy of a coastal city.And environmental economics analysis is an effective tool for resource-orientation.

  2. Robust vehicle detection even in poor visibility conditions using infrared thermal images and its application to road traffic flow monitoring

    International Nuclear Information System (INIS)

    We propose an algorithm for detecting vehicle positions and their movements by using thermal images obtained through an infrared thermography camera. The infrared thermography camera offers high contrast images even in poor visibility conditions like snow and thick fog. The proposed algorithm specifies the area of moving vehicles based on the standard deviations of pixel values along the time direction of spatio-temporal images. It also specifies vehicle positions by applying the pattern recognition algorithm which uses Haar-like features per frame of the images. Moreover, to increase the accuracy of vehicle detection, correction procedures for misrecognition of vehicles are employed. The results of our experiments at three different temperatures show that the information about both vehicle positions and their movements can be obtained by combining those two kinds of detection, and the vehicle detection accuracy is 96.2%. Moreover, the proposed algorithm detects the vehicles robustly in the 222 continuous frames taken in poor visibility conditions like snow and thick fog. As an application of the algorithm, we also propose a method for estimating traffic flow conditions based on the results obtained by the algorithm. By using the method for estimating traffic flow conditions, automatic traffic flow monitoring can be achieved

  3. Conceptual Design of an APT Reusable Spaceplane

    Science.gov (United States)

    Corpino, S.; Viola, N.

    Safety characteristics. Several applications of this conceptual design methodology have been carried out in order to validate it. Here we will show one of the most challenging case studies: the APT73 spaceplane. Today the demand for getting access to space is increasing and fully reusable launch vehicles are likely to play a key role in future space activities, but up until now this kind of space system has not been successfully developed. The ideal reusable launcher should be a vehicle able to maintain physical integrity during its mission, to takeoff and land at any conventional airport, to be operated with a minimum maintenance effort and to guarantee an adequate safety level. Thanks to its flexibility it should be able to enter the desired orbital plane and to abort its mission any time in case of mishap. Moreover considerable cost reduction could be expected only by having extremely high launch rates comparable to today's aircraft fleets in the commercial airlines business. In our opinion the solution which better meets these specifications is the Aerial Propellant Transfer spaceplane concept, the so called "one stage and a half" space vehicle, which takes off and climbs to meet a tanker aircraft to be aerially re-fuelled and then, after disconnecting from the tanker, it flies to reach the orbit. The APT73 has been designed to reach the Low Earth Orbit to perform two kinds of mission: 1) to release payloads; 2) to be flown as crew return vehicle from the ISS. The concept has emerged from a set of preliminary choices established at the beginning of the project: Possible variants to the basic plan have been investigated and a trade off analysis has been carried out in order to obtain the optimum configuration. Listed below are the options that have been evaluated: This paper provides a technical description of the APT73 and illustrates the design challenges encountered in the development of the project.

  4. Analysis of a Single-Phase Z-Source Inverter for Battery Discharging in Vehicle to Grid Applications

    OpenAIRE

    Shumei Cui; Xiaofei Liu; Yifan Yu; Bin Liang; Qianfan Zhang

    2011-01-01

    Vehicle to Grid technology allows the batteries of electric vehicles to operate as energy storage elements for renewable energy power systems. The Z-Source inverter is a new and attractive topology for the power electronics interface. In this paper, the equivalent DC-link voltage ripple of a single-phase Z-Source inverter for Vehicle to Grid applications is analyzed in this paper before deriving a general design approach for the Z-Source network. These theoretical findings, and design rule fo...

  5. Fracture Analysis of the Ribeirao Preto Basalts, SP: Application for Developing a Conceptual Hydrogeological Model

    Directory of Open Access Journals (Sweden)

    Amélia João Fernandes

    2011-12-01

    Full Text Available The study of the physical geology and geochemistry of the Ribeirão Preto basalts was part of a hydrogeologicalresearch, which aimed to investigate the recharge of the Guarani Aquifer System (SAG through the basalts of the SerraGeral Aquifer (ASG, a project shortly named FRATASG. In addition to the hydrogeological research, a detailed geologicalinvestigation was conducted to develop a conceptual model of groundwater fl ow in complex aquifers, as is the case ofthe fractured basalts of the ASG. Therefore, this study included a thorough structural survey and analysis of horizontaland subvertical fractures, which resulted in the identifi cation of four tectonic events. It was concluded that the verticalgroundwater flow is important up to 10 m in depth and, secondarily, up to 25 m. Horizontal fl ow, more evident up to thedepth of 50 m, predominates and occurs along sub-horizontal fractures, which occur mainly at the contact between basalts2 and 3 and in its vicinity. Because the great majority of subvertical fractures do not propagate into the vesicular layers,which occur at the basalt contacts, it is suggested that these layers act as regional hydraulic barriers, and greatly hamperthe recharge of the SAG through the ASG. As a consequence, groundwater flow in the basalt stack is of stratabound type,as it occurs mainly along the basalt contacts. Based on diagnostic features of the fl ow, it is proposed in this study that the vertical flow,which crosses the basalt stack reaching the SAG, is local and probably occurs along NE structures.

  6. Application of Fault Management Theory to the Quantitative Selection of a Launch Vehicle Abort Trigger Suite

    Science.gov (United States)

    Lo, Yunnhon; Johnson, Stephen B.; Breckenridge, Jonathan T.

    2014-01-01

    , the abort triggers must have low false negative rates to be sure that real crew-threatening failures are detected, and also low false positive rates to ensure that the crew does not abort from non-crew-threatening launch vehicle behaviors. The analysis process described in this paper is a compilation of over six years of lessons learned and refinements from experiences developing abort triggers for NASA's Constellation Program (Ares I Project) and the SLS Program, as well as the simultaneous development of SHM/FM theory. The paper will describe the abort analysis concepts and process, developed in conjunction with SLS Safety and Mission Assurance (S&MA) to define a common set of mission phase, failure scenario, and Loss of Mission Environment (LOME) combinations upon which the SLS Loss of Mission (LOM) Probabilistic Risk Assessment (PRA) models are built. This abort analysis also requires strong coordination with the Multi-Purpose Crew Vehicle (MPCV) and SLS Structures and Environments (STE) to formulate a series of abortability tables that encapsulate explosion dynamics over the ascent mission phase. The design and assessment of abort conditions and triggers to estimate their Loss of Crew (LOC) Benefits also requires in-depth integration with other groups, including Avionics, Guidance, Navigation and Control(GN&C), the Crew Office, Mission Operations, and Ground Systems. The outputs of this analysis are a critical input to SLS S&MA's LOC PRA models. The process described here may well be the first full quantitative application of SHM/FM theory to the selection of a sensor suite for any aerospace system.

  7. Applications of a Controller Design Method for Nonholonomic Systems to Auto-Steering Vehicles

    Science.gov (United States)

    Hamamatsu, Masanori; Kubota, Tetsuya; Kohno, Yukinobu; Iwata, Shinichi

    In the industrial field of motion control, many systems are nonholonomic, and thefore are difficult to control by static state feedback. As a controller design method for nonholonomic systems, a time-state control form that is applicable to a broad class of nonholonomic systems has been proposed. This paper describes three applications of controllers designed to utilize the time-state control form for the motion control of the following ground vehicles: a large-scale transfer crane, a rotary snow remover, and the mobile field of the Sapporo Dome stadium. In the first two examples, we develop a control function in a time-state control form into an integral type, and a combination of a filter and the Smith compensator. In the third example, we confirm the validity of the motion control by computer simulations and actual experiments.

  8. Target localization techniques for vehicle-based electromagnetic induction array applications

    Science.gov (United States)

    Miller, Jonathan S.; Schultz, Gregory M.; Shubitidze, Fridon; Marble, Jay A.

    2010-04-01

    State-of-the-art electromagnetic induction (EMI) arrays provide significant capability enhancement to landmine, unexploded ordnance (UXO), and buried explosives detection applications. Arrays that are easily configured for integration with a variety of mobile platforms offer improved safety and efficiency to personnel conducting detection operations including site remediation, explosive ordnance disposal, and humanitarian demining missions. We present results from an evaluation of two vehicle-based frequency domain EMI arrays. Our research includes implementation of a simple circuit model to estimate target location from sensor measurements of the scattered vertical magnetic field component. Specifically, we characterize any conductive or magnetic target using a set of parameters that describe the eddy current and magnetic polarizations induced about a set of orthogonal axes. Parameter estimations are based on the fundamental resonance mode of a series inductance and resistance circuit. This technique can be adapted to a variety of EMI array configurations, and thus offers target localization capabilities to a number of applications.

  9. Didactics of Information Technology (IT) in a Science Degree: Conceptual Issues and Practical Application

    Science.gov (United States)

    Miliszewska, Iwona; Venables, Anne; Tan, Grace

    2010-01-01

    Information technology has been transforming various disciplines of life sciences and physical sciences as a tool (for "doing" science) and a technique (for conducting experiments and creating models). This evolution in the application of IT in science demands that science students be equipped with appropriate IT skills and that the development of…

  10. Designing Applications for Physics Learning: Facilitating High School Students' Conceptual Understanding by Using Tablet PCs

    Science.gov (United States)

    Wang, June-Yi; Wu, Hsin-Kai; Chien, Sung-Pei; Hwang, Fu-Kwun; Hsu, Ying-Shao

    2015-01-01

    So far relatively little research in education has explored the pedagogical and learning potentials of applications (Apps) on tablet PCs (TPCs). Drawing upon research on learning technologies and taking an embodied perspective, this study first identified educational functionalities of TPCs and generated guidelines to design educational Apps for…

  11. FOCAL GROUPS ON-LINE: FROM THE CONCEPTUAL REFLECTIONS TO THE VIRTUAL ENVIRONMENT APPLICATION

    Directory of Open Access Journals (Sweden)

    Sônia M. Guedes Gondim

    2009-07-01

    Full Text Available Communication technologies have a renovating role in contemporaneity with regard to human interaction. One can however highlight their influence on other everyday aspects, like their influence in research. The objective of this paper is to describe and discuss the aspects that involve the application of focal groups in a virtual environment, denominated on-line focal groups, with the aim of highlighting factors that can guide their use in research, especially for research which is geared towards investigating opinions and perceptions of social players. The aspects broached in this paper are based in part on the application experience of the players, with a view to elaborating a doctorate thesis. The theoretical fundamentals of presential focal groups and their migration to the virtual environment are also broached. Finally some suggestions are presented to those who are interested in this research strategy, based on the results obtained through this experience.

  12. Application of Vehicle Dynamic Modeling in Uavs for Precise Determination of Exterior Orientation

    Science.gov (United States)

    Khaghani, M.; Skaloud, J.

    2016-06-01

    Advances in unmanned aerial vehicles (UAV) and especially micro aerial vehicle (MAV) technology together with increasing quality and decreasing price of imaging devices have resulted in growing use of MAVs in photogrammetry. The practicality of MAV mapping is seriously enhanced with the ability to determine parameters of exterior orientation (EO) with sufficient accuracy, in both absolute and relative senses (change of attitude between successive images). While differential carrier phase GNSS satisfies cm-level positioning accuracy, precise attitude determination is essential for both direct sensor orientation (DiSO) and integrated sensor orientation (ISO) in corridor mapping or in block configuration imaging over surfaces with low texture. Limited cost, size, and weight of MAVs represent limitations on quality of onboard navigation sensors and puts emphasis on exploiting full capacity of available resources. Typically short flying times (10-30 minutes) also limit the possibility of estimating and/or correcting factors such as sensor misalignment and poor attitude initialization of inertial navigation system (INS). This research aims at increasing the accuracy of attitude determination in both absolute and relative senses with no extra sensors onboard. In comparison to classical INS/GNSS setup, novel approach is presented here to integrated state estimation, in which vehicle dynamic model (VDM) is used as the main process model. Such system benefits from available information from autopilot and physical properties of the platform in enhancing performance of determination of trajectory and parameters of exterior orientation consequently. The navigation system employs a differential carrier phase GNSS receiver and a micro electro-mechanical system (MEMS) grade inertial measurement unit (IMU), together with MAV control input from autopilot. Monte-Carlo simulation has been performed on trajectories for typical corridor mapping and block imaging. Results reveal

  13. The Application of a Free Swimming Remotely Operated Vehicle in Aquaculture

    Directory of Open Access Journals (Sweden)

    R. Klepaker

    1987-01-01

    Full Text Available In 1985, SINTEF and SIMRAD Subsea A/S started to develop an autonomous free swimming vehicle. The project was to develop a prototype of a small vehicle, in order to obtain knowledge and experience in designing, controlling and operating such vehicles. This was ready for testing at the end of 1985. The vehicle is controlled by an acoustic data telemetry system. The vehicle has a built-in television camera and containers for other sensors. It is suitable for inspection purposes. This paper describes the vehicle and some of the principles used.

  14. Conceptual design

    International Nuclear Information System (INIS)

    This report documents the TFE Conceptual Design, which provided the design guidance for the TFE Verification program. The primary goals of this design effort were: (1) establish the conceptual design of an in-core thermionic reactor for a 2 Mw(e) space nuclear power system with a 7-year operating lifetime; (2) demonstrate scalability of the above concept over the output power range of 500 kW(e) to 5 MW(e); and (3) define the TFE which is the basis for the 2 MW (e) reactor design. This TFE specification provided the basis for the test program. These primary goals were achieved. The technical approach taking in the conceptual design effort is discussed in Section 2, and the results are discussed in Section 3. The remainder of this introduction draws a perspective on the role that this conceptual design task played in the TFE Verification Program

  15. Tannin-based flax fibre reinforced composites for structural applications in vehicles

    Science.gov (United States)

    Zhu, J.; Abhyankar, H.; Nassiopoulos, E.; Njuguna, J.

    2012-09-01

    Innovation is often driven by changes in government policies regulating the industries, especially true in case of the automotive. Except weight savings, the strict EU regulation of 95% recyclable material-made vehicles drives the manufactures and scientists to seek new 'green materials' for structural applications. With handing at two major drawbacks (production cost and safety), ECHOSHELL is supported by EU to develop and optimise structural solutions for superlight electric vehicles by using bio-composites made of high-performance natural fibres and resins, providing enhanced strength and bio-degradability characteristics. Flax reinforced tannin-based composite is selected as one of the candidates and were firstly investigated with different fabric lay-up angles (non-woven flax mat, UD, [0, 90°]4 and [0, +45°, 90°, -45°]2) through authors' work. Some of the obtained results, such as tensile properties and SEM micrographs were shown in this conference paper. The UD flax reinforced composite exhibits the best tensile performance, with tensile strength and modulus of 150 MPa and 9.6 MPa, respectively. It was observed that during tension the oriented-fabric composites showed some delamination process, which are expected to be eliminated through surface treatment (alkali treatment etc.) and nanotechnology, such as the use of nano-fibrils. Failure mechanism of the tested samples were identified through SEM results, indicating that the combination of fibre pull-out, fibre breakage and brittle resins failure mainly contribute to the fracture failure of composites.

  16. Tannin-based flax fibre reinforced composites for structural applications in vehicles

    International Nuclear Information System (INIS)

    Innovation is often driven by changes in government policies regulating the industries, especially true in case of the automotive. Except weight savings, the strict EU regulation of 95% recyclable material-made vehicles drives the manufactures and scientists to seek new 'green materials' for structural applications. With handing at two major drawbacks (production cost and safety), ECHOSHELL is supported by EU to develop and optimise structural solutions for superlight electric vehicles by using bio-composites made of high-performance natural fibres and resins, providing enhanced strength and bio-degradability characteristics. Flax reinforced tannin-based composite is selected as one of the candidates and were firstly investigated with different fabric lay-up angles (non-woven flax mat, UD, [0, 90°]4 and [0, +45°, 90°, −45°]2) through authors' work. Some of the obtained results, such as tensile properties and SEM micrographs were shown in this conference paper. The UD flax reinforced composite exhibits the best tensile performance, with tensile strength and modulus of 150 MPa and 9.6 MPa, respectively. It was observed that during tension the oriented-fabric composites showed some delamination process, which are expected to be eliminated through surface treatment (alkali treatment etc.) and nanotechnology, such as the use of nano-fibrils. Failure mechanism of the tested samples were identified through SEM results, indicating that the combination of fibre pull-out, fibre breakage and brittle resins failure mainly contribute to the fracture failure of composites.

  17. Comparison of Models Needed for Conceptual Design of Man-Machine Systems in Different Application Domains

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    and subjective preferences. For design of man-machine systems in process control, a framework has been developed in terms of separate representation of the problem domain, the decision task, and the information processing strategies required. The author analyzes the application of this framework to a......For systematic and computer-aided design of man-machine systems, a consistent framework is needed, i. e. , a set of models which allows the selection of system characteristics which serve the individual user not only to satisfy his goal, but also to select mental processes that match his resources...

  18. Conceptual design and modeling of particle-matter interaction cooling systems for muon based applications

    CERN Document Server

    Stratakis, Diktys; Rogers, Chris T; Alekou, Androula; Pasternak, Jaroslaw

    2014-01-01

    An ionization cooling channel is a tightly spaced lattice containing absorbers for reducing the momentum of the muon beam, rf cavities for restoring the longitudinal momentum, and strong solenoids for focusing. Such a lattice can be an essential feature for fundamental high-energy physics applications. In this paper we design, simulate, and compare four individual cooling schemes that rely on ionization cooling. We establish a scaling characterizing the impact of rf gradient limitations on the overall performance and systematically compare important lattice parameters such as the required magnetic fields and the number of cavities and absorber lengths for each cooling scenario. We discuss approaches for reducing the peak magnetic field inside the rf cavities by either increasing the lattice cell length or adopting a novel bucked-coil configuration. We numerically examine the performance of our proposed channels with two independent codes that fully incorporate all basic particle-matter-interaction physical pr...

  19. FreedomCAR :electrical energy storage system abuse test manual for electric and hybrid electric vehicle applications.

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, Daniel Harvey; Crafts, Chris C.

    2006-08-01

    This manual defines a complete body of abuse tests intended to simulate actual use and abuse conditions that may be beyond the normal safe operating limits experienced by electrical energy storage systems used in electric and hybrid electric vehicles. The tests are designed to provide a common framework for abuse testing various electrical energy storage systems used in both electric and hybrid electric vehicle applications. The manual incorporates improvements and refinements to test descriptions presented in the Society of Automotive Engineers Recommended Practice SAE J2464 ''Electric Vehicle Battery Abuse Testing'' including adaptations to abuse tests to address hybrid electric vehicle applications and other energy storage technologies (i.e., capacitors). These (possibly destructive) tests may be used as needed to determine the response of a given electrical energy storage system design under specifically defined abuse conditions. This manual does not provide acceptance criteria as a result of the testing, but rather provides results that are accurate and fair and, consequently, comparable to results from abuse tests on other similar systems. The tests described are intended for abuse testing any electrical energy storage system designed for use in electric or hybrid electric vehicle applications whether it is composed of batteries, capacitors, or a combination of the two.

  20. A Multi-Function Conversion Technique for Vehicle-to-Grid Applications

    Directory of Open Access Journals (Sweden)

    Ying Fan

    2015-07-01

    Full Text Available This paper presents a new multi-function conversion technique for vehicle-to-grid (V2G applications. The proposed bi-directional charger can achieve three functions, including EV battery charging, grid-connection and reactive compensation, which are keys for energy management of the grid. With the proposed multi-function technology, the bi-directional charger will benefit both the grid and electricity customers. A hybrid regulation of energy bi-directional transfer for V2G systems is proposed in this paper, which consists of the battery-side controller and the grid-side controller. This proposed multi-function conversion technique improves the whole system performance with proportional-resonant (PR control and achieves reactive power compensation with instantaneous reactive theory and a deadbeat control scheme. Simulation and experimental results demonstrate the validity of this new multi-function technique in a V2G system.

  1. An efficiency improved single-phase PFC converter for electric vehicle charger applications

    DEFF Research Database (Denmark)

    Zhu, Dexuan; Tang, Yi; Jin, Chi;

    2013-01-01

    This paper presents an efficiency improved single-phase power factor correction (PFC) converter with its target application to plug-in hybrid electric vehicle (PHEV) charging systems. The proposed PFC converter features sinusoidal input current, three-level output characteristic, and wide range of...... output DC voltage. Moreover, the involved DC/DC buck conversion stage may only need to convert partial input power rather than full scale of input power, and therefore the system overall efficiency can be much improved. Through proper control of the buck converter, it is also possible to mitigate the...... double-line frequency ripple power that is inherent in a single-phase AC/DC system. Both simulation and experimental results are presented to show the effectiveness of this converter....

  2. Dynamic Modeling and Simulation on a Hybrid Power System for Electric Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Hong-Wen He

    2010-11-01

    Full Text Available Hybrid power systems, formed by combining high-energy-density batteries and high-power-density ultracapacitors in appropriate ways, provide high-performance and high-efficiency power systems for electric vehicle applications. This paper first establishes dynamic models for the ultracapacitor, the battery and a passive hybrid power system, and then based on the dynamic models a comparative simulation between a battery only power system and the proposed hybrid power system was done under the UDDS (Urban Dynamometer Driving Schedule. The simulation results showed that the hybrid power system could greatly optimize and improve the efficiency of the batteries and their dynamic current was also decreased due to the participation of the ultracapacitors, which would have a good influence on batteries’ cycle life. Finally, the parameter matching for the passive hybrid power system was studied by simulation and comparisons.

  3. Performance and life evaluation of advanced battery technologies for electric vehicle applications

    Science.gov (United States)

    Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.

    Advanced battery technology evaluations are performed under simulated electric vehicle (EV) operating conditions at the Argonne Analysis and Diagnostic Laboratory (ADL). The ADL provides a common basis for both performance characterization and life evaluation with unbiased application of tests and analyses. This paper summarizes the performance characterizations and life evaluations conducted in 1990 on nine single cells and fifteen 3- to 360-cell modules that encompass six technologies: (Na/S, Zn/Br, Ni/Fe, Ni/Cd, Ni-metal hydride, and lead-acid). These evaluations were performed for the Department of Energy and Electric Power Research Institute. The results provide battery users, developers, and program managers an interim measure of the progress being made in battery R and D programs, a comparison of battery technologies, and a source of basic data for modelling and continuing R and D.

  4. Environmental Recognition and Guidance Control for Autonomous Vehicles using Dual Vision Sensor and Applications

    Science.gov (United States)

    Moriwaki, Katsumi; Koike, Issei; Sano, Tsuyoshi; Fukunaga, Tetsuya; Tanaka, Katsuyuki

    We propose a new method of environmental recognition around an autonomous vehicle using dual vision sensor and navigation control based on binocular images. We consider to develop a guide robot that can play the role of a guide dog as the aid to people such as the visually impaired or the aged, as an application of above-mentioned techniques. This paper presents a recognition algorithm, which finds out the line of a series of Braille blocks and the boundary line between a sidewalk and a roadway where a difference in level exists by binocular images obtained from a pair of parallelarrayed CCD cameras. This paper also presents a tracking algorithm, with which the guide robot traces along a series of Braille blocks and avoids obstacles and unsafe areas which exist in the way of a person with the guide robot.

  5. Fast reconstruction of an unmanned engineering vehicle and its application to carrying rocket

    OpenAIRE

    Jun Qian; Huabing Zhu; Shuwang Wang; Yishan Zeng

    2014-01-01

    Engineering vehicle is widely used as a huge moving platform for transporting heavy goods. However, traditional human operations have a great influence on the steady movement of the vehicle. In this Letter, a fast reconstruction process of an unmanned engineering vehicle is carried out. By adding a higher-level controller and two two-dimensional laser scanners on the moving platform, the vehicle could perceive the surrounding environment and locate its pose according to extended Kalman filter...

  6. Smart limbed vehicles for naval applications. Part II. Relevant technologies and performance evaluation. Interim report on research work on smart vehicle concepts for military use on the ocean surface

    Energy Technology Data Exchange (ETDEWEB)

    Weisberg, A.; Wood, L.

    1976-09-30

    Research work in smart, unmanned water-traversing limbed vehicles for naval warfare applications is reported. The areas covered include prime movers, power transformers and actuators, structural considerations, physical control, joint servo-control, motion control, visual data and the ocean surface, smartness, and vehicle characterization. (TFD)

  7. Experimental investigation of a pulsating heat pipe for hybrid vehicle applications

    International Nuclear Information System (INIS)

    This paper deals with the experimental results of an unlooped pulsating heat pipe (PHP) developed and tested in an electronic thermal management field with hybrid vehicle applications in mind. The 2.5 mm inner tube diameter device was cooled by an air heat exchanger to replicate the environment of a vehicle. In order to characterize this pulsating heat pipe, four working fluids have been tested. They are acetone, methanol, water, and n-pentane, with applied thermal power ranging from 25 W to 550 W, air temperature ranging from 10 °C to 60 °C and air velocity ranging from 0.25 m s−1 to 2 m s−1. Three inclinations have also been tested according to their horizontal positions: +45° (condenser above the evaporator), 0° and −45° (condenser below the evaporator). Among the different results, some of the most revelatory were obtained with regard to unfavourable inclination (−45°), for which the performances were very interesting considering a terrestrial application. On the other hand, one also observed low temperature limitations for water as a working fluid and degradation of performances for n-pentane tested at 60 °C air temperature. On an overall basis, however, it should be noted that the PHP functioned with high reliability and reproducibility and without any failure during the start-up or working stage. - Highlights: ► An unlooped pulsating heat pipe (PHP) has been tested varying heat power, air velocity and temperature, inclination and fluid. ► Four working fluids have been tested and classified into two groups according to the performances of the PHP. ► Interesting water phenomena have been highlighted in this study. ► The PHP worked with a good reliability and reproducibility.

  8. Application of the Environmental Sensation Learning Vehicle Simulation Platform in Virtual Reality

    Science.gov (United States)

    Hsu, Kuei-Shu; Jiang, Jinn-Feng; Wei, Hung-Yuan; Lee, Tsung-Han

    2016-01-01

    The use of simulation technologies in learning has received considerable attention in recent years, but few studies to date have focused on vehicle driving simulation systems. In this study, a vehicle driving simulation system was developed to support novice drivers in practicing their skills. Specifically, the vehicle driving simulation system…

  9. Conceptual design of a hybrid KrF laser system for ICF commercial applications

    International Nuclear Information System (INIS)

    KrF lasers appear to be the most efficient lasers operating near the optimal wavelength for laser fusion. Most high-efficiency, low-cost KrF laser designs use large electron-beam driven amplifiers and use pure angular multiplexing for the required pulse compression. A recent study carried out by Los Alamos and Spectra Technology has defined a high-efficiency hybrid KrF laser system architecture that uses both angular multiplexing and Raman beam combination. The high overall system efficiency of this hybrid design, approximately 12%, is achieved primarily through the use of e-beam sustained discharge lasers (EBSDL), and by using the efficient forward rotational Raman process in hydrogen. The new system appears attractive as a commercial-applications driver because the calculated efficiency is higher than the usual large e-beam pumped (EBP) KrF laser/pure angular multiplexing approach. In this paper, the hybrid system architecture is described, and the tradeoffs with respect to the large EBP amplifier/angular multiplexed system are discussed

  10. Conceptual design of a hybrid KrF laser system for ICF commercial applications

    International Nuclear Information System (INIS)

    KrF lasers appear to be the most efficient lasers operating near the optimal wavelength for laser fusion. Most high-efficiency, low-cost KrF laser designs use large electron-beam-driven amplifiers and use pure angular multiplexing for the required pulse compression. A recent study carried out by Los Alamos National Lab. and Spectra Technology has defied a high-efficiency hybrid KrF laser system architecture that uses both angular multiplexing and Raman beam combination. The high overall system efficiency of this hybrid design, ∼ 12%, is achieved primarily through the use of electron-beam sustained discharge lasers (EBSDL), and by using the efficient forward rotational Raman process in hydrogen. The new system appears attractive as a commercial-applications driver because the calculated efficiency is higher than the usual large electron-beam-pumped (EBP) KrF laser/pure angular multiplexing approach. In this paper, the hybrid system architecture will be described, and the trade-offs with respect to the large EBP amplifier/angular multiplexed system will be discussed

  11. Conceptual design of a passive, inherently safe emergency shutdown rod for high-temperature reactor applications

    International Nuclear Information System (INIS)

    The concept of a passive, inherently safe, and fail-safe design for an emergency control rod is presented. The functioning of the rod is based solely on inexorable physical laws. The operation of the rod in its emergency function does not require the intervention of a human operator, nor does it rely on any signal from a monitoring or safety system. Although the concept could be applicable to a variety of reactors (provided a normal temperature range is specified), in this paper, the concept is applied to the emergency shutdown of a pebble-bed reactor. The preliminary study presented here demonstrates that the proposed Electro-Magnetic Optimally Scramming Control Rod (EM-OSCR) naturally operates when needed. The rod is held out of the core region by the force of an electromagnet. The force is generated by a current carried by a conductor, a portion of which passes near or through the reactor core region. When the temperature in the conductor increases because of an increase in temperature in the reactor, the conductor resistivity increases. This, in turn, leads to a current decrease. When the current decreases below the level necessary to hold the rod up, the rod is released and it falls into the core under the effect of gravity. (author)

  12. PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R.H.

    2004-08-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance

  13. PM Motor Parametric Design Analyses for a Hybrid Electric Vehicle Traction Drive Application

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R.H.

    2004-10-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies office has a strong interest in making rapid progress in permanent magnet (PM) machine development. The DOE FreedomCAR program is directing various technology development projects that will advance the technology and hopefully lead to a near-term request for proposals (RFP) for a to-be-determined level of initial production. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This report summarizes the results of these activities as of September 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched-reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory (ORNL), Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle (HEV) traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting

  14. Intelligent Autonomous Primary 3D Feature Extraction in Vehicle System Dynamics' Analysis: Theory and Application

    Directory of Open Access Journals (Sweden)

    Annamária R. Várkonyi-Kóczy

    2008-01-01

    Full Text Available 3D model reconstruction plays a very important role in computer vision as wellas in different engineering applications. The determination of the 3D model from multipleimages is of key importance. One of the most important difficulties in autonomous 3Dreconstruction is the (automatic selection of the ‘significant’ points which carryinformation about the shape of the 3D bodies i.e. are characteristic from the model point ofview. Another problem to be solved is the point correspondence matching in differentimages.In this paper a 3D reconstruction technique is introduced, which is capable to determinethe 3D model of a scene without any external (human intervention. The method is based onrecent results of image processing, epipolar geometry, and intelligent and soft techniques.Possible applications of the presented algorithm in vehicle system dynamics are alsopresented. The results can be applied advantageously at other engineering fields, like carcrashanalysis, robot guiding, object recognition, supervision of 3D scenes, etc,. as well.

  15. A Control Approach for Thrust-Propelled Underactuated Vehicles and its Application to VTOL Drones

    OpenAIRE

    Hua, Minh-Duc; Hamel, Tarek; Morin, Pascal; Samson, Claude

    2009-01-01

    A control approach is proposed for a class of underactuated vehicles in order to stabilize reference trajectories either in thrust direction, velocity, or position. The basic modeling assumption is that the vehicle is propulsed via a thrust force along a single body-fixed direction and that it has full torque actuation for attitude control (i.e., a typical actuation structure for aircrafts, Vertical Take-Off and Landing (VTOL) vehicles, submarines, etc.). Additional assumptions on the externa...

  16. Optimal trajectory and heat load analysis of different shape lifting reentry vehicles for medium range application

    OpenAIRE

    S. Tauqeer ul Islam Rizvi; Lin-shu He; Da-jun Xu

    2015-01-01

    The objective of the paper is to compute the optimal burn-out conditions and control requirements that would result in maximum down-range/cross-range performance of a waverider type hypersonic boost-glide (HBG) vehicle within the medium and intermediate ranges, and compare its performance with the performances of wing-body and lifting-body vehicles vis-à-vis the g-load and the integrated heat load experienced by vehicles for the medium-sized launch vehicle under study. Trajectory optimization...

  17. Dual rotor single- stator axial air gap PMSM motor/generator drive for high torque vehicles applications

    International Nuclear Information System (INIS)

    The actual e – continuously variable transmission (e-CVT) solution for the parallel Hybrid Electric Vehicle (HEV) requires two electric machines, two inverters, and a planetary gear. A distinct electric generator and a propulsion electric motor, both with full power converters, are typical for a series HEV. In an effort to simplify the planetary-geared e-CVT for the parallel HEV or the series HEV we hereby propose to replace the basically two electric machines and their two power converters by a single, axial-air-gap, electric machine central stator, fed from a single PWM converter with dual frequency voltage output and two independent PM rotors, destined for hybrid electric vehicles (HEV) and military vehicles applications. The proposed topologies and the magneto-motive force analysis are the core of the paper

  18. New Conceptual Design Tools

    DEFF Research Database (Denmark)

    Pugnale, Alberto; Holst, Malene; Kirkegaard, Poul Henning

    2010-01-01

    hand, the main software houses are trying to introduce powerful and effective user-friendly applications in the world of building designers, that are more and more able to fit their specific requirements; on the other hand, some groups of expert users with a basic programming knowledge seem to deal......This paper aims to discuss recent approaches in using more and more frequently computer tools as supports for the conceptual design phase of the architectural project. The present state-of-the-art about software as conceptual design tool could be summarized in two parallel tendencies. On the one...... with the problem of software as conceptual design tool by means of 'scripting', in other words by self-developing codes able to solve specific and well defined design problems. Starting with a brief historical recall and the discussion of relevant researches and practical experiences, this paper...

  19. High Voltage EEE Parts for EMA/EHA Applications on Manned Launch Vehicles

    Science.gov (United States)

    Griffin, Trent; Young, David

    2011-01-01

    The objective of this paper is an assessment of high voltage electronic components required for high horsepower electric thrust vector control (TVC) systems for human spaceflight launch critical application. The scope consists of creating of a database of available Grade 1 electrical, electronic and electromechanical (EEE) parts suited to this application, a qualification path for potential non-Grade 1 EEE parts that could be used in these designs, and pathfinder testing to validate aspects of the proposed qualification plan. Advances in the state of the art in high power electric power systems enable high horsepower electric actuators, such as the electromechnical actuator (EMA) and the electro-hydrostatic actuator (EHA), to be used in launch vehicle TVC systems, dramaticly reducing weight, complexity and operating costs. Designs typically use high voltage insulated gate bipolar transistors (HV-IGBT). However, no Grade 1 HV-IGBT exists and it is unlikely that market factors alone will produce such high quality parts. Furthermore, the perception of risk, the lack of qualification methodoloy, the absence of manned space flight heritage and other barriers impede the adoption of commercial grade parts onto the critical path. The method of approach is to identify high voltage electronic component types and key parameters for parts currently used in high horsepower EMA/EHA applications, to search for higher quality substitutes and custom manufacturers, to create a database for these parts, and then to explore ways to qualify these parts for use in human spaceflight launch critical application, including grossly derating and possibly treating hybrid parts as modules. This effort is ongoing, but results thus far include identification of over 60 HV-IGBT from four manufacturers, including some with a high reliability process flow. Voltage ranges for HV-IGBT have been identified, as has screening tests used to characterize HV-IGBT. BSI BS ISO 21350 Space systems Off

  20. Advanced propulsion system for hybrid vehicles

    Science.gov (United States)

    Norrup, L. V.; Lintz, A. T.

    1980-01-01

    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery.

  1. Driving rural energy access: a second-life application for electric-vehicle batteries

    International Nuclear Information System (INIS)

    Building rural energy infrastructure in developing countries remains a significant financial, policy and technological challenge. The growth of the electric vehicle (EV) industry will rapidly expand the resource of partially degraded, ‘retired’, but still usable batteries in 2016 and beyond. These batteries can become the storage hubs for community-scale grids in the developing world. We model the resource and performance potential and the technological and economic aspects of the utilization of retired EV batteries in rural and decentralized mini- and micro-grids. We develop and explore four economic scenarios across three battery chemistries to examine the impacts on transport and recycling logistics. We find that EVs sold through 2020 will produce 120–549 GWh in retired storage potential by 2028. Outlining two use scenarios for decentralized systems, we discuss the possible impacts on global electrification rates. We find that used EV batteries can provide a cost-effective and lower environmental impact alternative to existing lead-acid storage systems in these applications. (letter)

  2. An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements: Present Applications and Future Prospectives.

    Science.gov (United States)

    Villa, Tommaso Francesco; Gonzalez, Felipe; Miljievic, Branka; Ristovski, Zoran D; Morawska, Lidia

    2016-01-01

    Assessment of air quality has been traditionally conducted by ground based monitoring, and more recently by manned aircrafts and satellites. However, performing fast, comprehensive data collection near pollution sources is not always feasible due to the complexity of sites, moving sources or physical barriers. Small Unmanned Aerial Vehicles (UAVs) equipped with different sensors have been introduced for in-situ air quality monitoring, as they can offer new approaches and research opportunities in air pollution and emission monitoring, as well as for studying atmospheric trends, such as climate change, while ensuring urban and industrial air safety. The aims of this review were to: (1) compile information on the use of UAVs for air quality studies; and (2) assess their benefits and range of applications. An extensive literature review was conducted using three bibliographic databases (Scopus, Web of Knowledge, Google Scholar) and a total of 60 papers was found. This relatively small number of papers implies that the field is still in its early stages of development. We concluded that, while the potential of UAVs for air quality research has been established, several challenges still need to be addressed, including: the flight endurance, payload capacity, sensor dimensions/accuracy, and sensitivity. However, the challenges are not simply technological, in fact, policy and regulations, which differ between countries, represent the greatest challenge to facilitating the wider use of UAVs in atmospheric research. PMID:27420065

  3. Adaptive Second Order Sliding Mode Control of a Fuel Cell Hybrid System for Electric Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Jianxing Liu

    2015-01-01

    Full Text Available We present an adaptive-gain second order sliding mode (SOSM control applied to a hybrid power system for electric vehicle applications. The main advantage of the adaptive SOSM is that it does not require the upper bound of the uncertainty. The proposed hybrid system consists of a polymer electrolyte membrane fuel cell (PEMFC with a unidirectional DC/DC converter and a Li-ion battery stack with a bidirectional DC/DC converter, where the PEMFC is employed as the primary energy source and the battery is employed as the second energy source. One of the main limitations of the FC is its slow dynamics mainly due to the air-feed system and fuel-delivery system. Fuel starvation phenomenon will occur during fast load demand. Therefore, the second energy source is required to assist the main source to improve system perofrmance. The proposed energy management system contains two cascade control structures, which are used to regulate the fuel cell and battery currents to track the given reference currents and stabilize the DC bus voltage while satisfying the physical limitations. The proposed control strategy is evaluated for two real driving cycles, that is, Urban Dynamometer Driving Schedule (UDDS and Highway Fuel Economy Driving Schedule (HWFET.

  4. A Novel Series Connected Batteries State of High Voltage Safety Monitor System for Electric Vehicle Application

    Directory of Open Access Journals (Sweden)

    Qiang Jiaxi

    2013-01-01

    Full Text Available Batteries, as the main or assistant power source of EV (Electric Vehicle, are usually connected in series with high voltage to improve the drivability and energy efficiency. Today, more and more batteries are connected in series with high voltage, if there is any fault in high voltage system (HVS, the consequence is serious and dangerous. Therefore, it is necessary to monitor the electric parameters of HVS to ensure the high voltage safety and protect personal safety. In this study, a high voltage safety monitor system is developed to solve this critical issue. Four key electric parameters including precharge, contact resistance, insulation resistance, and remaining capacity are monitored and analyzed based on the equivalent models presented in this study. The high voltage safety controller which integrates the equivalent models and control strategy is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated, and the online electric parameters monitor strategy is analyzed and discussed. The test results indicate that the high voltage safety monitor system designed in this paper is suitable for EV application.

  5. Driving rural energy access: a second-life application for electric-vehicle batteries

    Science.gov (United States)

    Ambrose, Hanjiro; Gershenson, Dimitry; Gershenson, Alexander; Kammen, Daniel

    2014-09-01

    Building rural energy infrastructure in developing countries remains a significant financial, policy and technological challenge. The growth of the electric vehicle (EV) industry will rapidly expand the resource of partially degraded, ‘retired’, but still usable batteries in 2016 and beyond. These batteries can become the storage hubs for community-scale grids in the developing world. We model the resource and performance potential and the technological and economic aspects of the utilization of retired EV batteries in rural and decentralized mini- and micro-grids. We develop and explore four economic scenarios across three battery chemistries to examine the impacts on transport and recycling logistics. We find that EVs sold through 2020 will produce 120-549 GWh in retired storage potential by 2028. Outlining two use scenarios for decentralized systems, we discuss the possible impacts on global electrification rates. We find that used EV batteries can provide a cost-effective and lower environmental impact alternative to existing lead-acid storage systems in these applications.

  6. An Examination of Drag Reduction Mechanisms in Marine Animals, with Potential Applications to Uninhabited Aerial Vehicles

    Science.gov (United States)

    Musick, John A.; Patterson, Mark R.; Dowd, Wesley W.

    2002-01-01

    Previous engineering research and development has documented the plausibility of applying biomimetic approaches to aerospace engineering. Past cooperation between the Virginia Institute of Marine Science (VIMS) and NASA focused on the drag reduction qualities of the microscale dermal denticles of shark skin. This technology has subsequently been applied to submarines and aircraft. The present study aims to identify and document the three-dimensional geometry of additional macroscale morphologies that potentially confer drag reducing hydrodynamic qualities upon marine animals and which could be applied to enhance the range and endurance of Uninhabited Aerial Vehicles (UAVs). Such morphologies have evolved over eons to maximize organismal energetic efficiency by reducing the energetic input required to maintain cruising speeds in the viscous marine environment. These drag reduction qualities are manifested in several groups of active marine animals commonly encountered by ongoing VIMS research programs: namely sharks, bony fishes such as tunas, and sea turtles. Through spatial data acquired by molding and digital imagery analysis of marine specimens provided by VIMS, NASA aims to construct scale models of these features and to test these potential drag reduction morphologies for application to aircraft design. This report addresses the efforts of VIMS and NASA personnel on this project between January and November 2001.

  7. Simulation and Optimization of Air-Cooled PEMFC Stack for Lightweight Hybrid Vehicle Application

    Directory of Open Access Journals (Sweden)

    Jingming Liang

    2015-01-01

    Full Text Available A model of 2 kW air-cooled proton exchange membrane fuel cell (PEMFC stack has been built based upon the application of lightweight hybrid vehicle after analyzing the characteristics of heat transfer of the air-cooled stack. Different dissipating models of the air-cooled stack have been simulated and an optimal simulation model for air-cooled stack called convection heat transfer (CHT model has been figured out by applying the computational fluid dynamics (CFD software, based on which, the structure of the air-cooled stack has been optimized by adding irregular cooling fins at the end of the stack. According to the simulation result, the temperature of the stack has been equally distributed, reducing the cooling density and saving energy. Finally, the 2 kW hydrogen-air air-cooled PEMFC stack is manufactured and tested by comparing the simulation data which is to find out its operating regulations in order to further optimize its structure.

  8. Optimal Network QoS over the Internet of Vehicles for E-Health Applications

    Directory of Open Access Journals (Sweden)

    Di Lin

    2016-01-01

    Full Text Available Wireless technologies are pervasive to support ubiquitous healthcare applications. However, a critical issue of using wireless communications under a healthcare scenario is the electromagnetic interference (EMI caused by RF transmission, and a high level of EMI may lead to a critical malfunction of medical sensors. In consideration of EMI on medical sensors, we study the optimization of quality of service (QoS within the whole Internet of vehicles for E-health and propose a novel model to optimize the QoS by allocating the transmit power of each user. Our results show that the optimal power control policy depends on the objective of optimization problems: a greedy policy is optimal to maximize the summation of QoS of each user, whereas a fair policy is optimal to maximize the product of QoS of each user. Algorithms are taken to derive the optimal policies, and numerical results of optimizing QoS are presented for both objectives and QoS constraints.

  9. Application of the Hyper-Poisson Generalized Linear Model for Analyzing Motor Vehicle Crashes.

    Science.gov (United States)

    Khazraee, S Hadi; Sáez-Castillo, Antonio Jose; Geedipally, Srinivas Reddy; Lord, Dominique

    2015-05-01

    The hyper-Poisson distribution can handle both over- and underdispersion, and its generalized linear model formulation allows the dispersion of the distribution to be observation-specific and dependent on model covariates. This study's objective is to examine the potential applicability of a newly proposed generalized linear model framework for the hyper-Poisson distribution in analyzing motor vehicle crash count data. The hyper-Poisson generalized linear model was first fitted to intersection crash data from Toronto, characterized by overdispersion, and then to crash data from railway-highway crossings in Korea, characterized by underdispersion. The results of this study are promising. When fitted to the Toronto data set, the goodness-of-fit measures indicated that the hyper-Poisson model with a variable dispersion parameter provided a statistical fit as good as the traditional negative binomial model. The hyper-Poisson model was also successful in handling the underdispersed data from Korea; the model performed as well as the gamma probability model and the Conway-Maxwell-Poisson model previously developed for the same data set. The advantages of the hyper-Poisson model studied in this article are noteworthy. Unlike the negative binomial model, which has difficulties in handling underdispersed data, the hyper-Poisson model can handle both over- and underdispersed crash data. Although not a major issue for the Conway-Maxwell-Poisson model, the effect of each variable on the expected mean of crashes is easily interpretable in the case of this new model. PMID:25385093

  10. The application of the unmanned aerial vehicle remote sensing technology in the FAST project construction

    Science.gov (United States)

    Zhu, Boqin

    2015-08-01

    The purpose of using unmanned aerial vehicle (UAV) remote sensing application in Five-hundred-meter aperture spherical telescope (FAST) project is to dynamically record the construction process with high resolution image, monitor the environmental impact, and provide services for local environmental protection and the reserve immigrants. This paper introduces the use of UAV remote sensing system and the course design and implementation for the FAST site. Through the analysis of the time series data, we found that: (1) since the year 2012, the project has been widely carried out; (2) till 2013, the internal project begun to take shape;(3) engineering excavation scope was kept stable in 2014, and the initial scale of the FAST engineering construction has emerged as in the meantime, the vegetation recovery went well on the bare soil area; (4) in 2015, none environmental problems caused by engineering construction and other engineering geological disaster were found in the work area through the image interpretation of UAV images. This paper also suggested that the UAV technology need some improvements to fulfill the requirements of surveying and mapping specification., including a new data acquisition and processing measures assigned with the background of highly diverse elevation, usage of telephoto camera, hierarchical photography with different flying height, and adjustment with terrain using the joint empty three settlement method.

  11. Development and application of underwater robot vehicle for close inspection of spent fuels

    International Nuclear Information System (INIS)

    The research and development efforts of the underwater robotic vehicle for inspection of spent fuels are focused on the development of an robotic vehicle which inspects spent fuels in the storage pool through remotely controlled actuation. For this purpose, a self balanced vehicle actuated by propellers is designed and fabricated, which consists of a radiation resistance camera, two illuminators, a pressure transducer and a manipulator. the algorithm for autonomous navigation is developed and its performance is tested at the swimming pool. The results of the underwater vehicle shows that the vehicle can easily navigate into the arbitrary directions while maintaining its balanced position. The camera provides a clear view of working environment by using the macro and zoom functions. The camera tilt device provides a wide field of view which is enough for monitoring the operation of manipulator. Also, the manipulator can pick up the dropped objects up to 4 kgf of weight. (author)

  12. Development and application of underwater robot vehicle for close inspection of spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Yun, J. S.; Park, B. S.; Song, T. G.; Kim, S. H.; Cho, M. W.; Ahn, S. H.; Lee, J. Y.; Oh, S. C.; Oh, W. J.; Shin, K. W.; Woo, D. H.; Kim, H. G.; Park, J. S

    1999-12-01

    The research and development efforts of the underwater robotic vehicle for inspection of spent fuels are focused on the development of an robotic vehicle which inspects spent fuels in the storage pool through remotely controlled actuation. For this purpose, a self balanced vehicle actuated by propellers is designed and fabricated, which consists of a radiation resistance camera, two illuminators, a pressure transducer and a manipulator. the algorithm for autonomous navigation is developed and its performance is tested at the swimming pool. The results of the underwater vehicle shows that the vehicle can easily navigate into the arbitrary directions while maintaining its balanced position. The camera provides a clear view of working environment by using the macro and zoom functions. The camera tilt device provides a wide field of view which is enough for monitoring the operation of manipulator. Also, the manipulator can pick up the dropped objects up to 4 kgf of weight. (author)

  13. CONCEPTUAL MODELS DEVELOPMENT FOR ENVIRONMENTAL RISKS ASSESSMENT

    Directory of Open Access Journals (Sweden)

    Grigory М. Franchuk

    2008-02-01

    Full Text Available  The basics of conceptual models are presented in the article. Practical application of environmental conceptual models to the process of environmental risks assessment process is given. Structural issues of models formation are presented and most common types of conceptual models are analyzed. Recommendations for site-specific models construction are developed for various organizational levels and types of receptors. The scheme for integration of ecological conceptual model with conceptual model for the industrial site is presented and approaches to making them consistent with the conceptual model of human health risks are stated.

  14. Fast reconstruction of an unmanned engineering vehicle and its application to carrying rocket

    Directory of Open Access Journals (Sweden)

    Jun Qian

    2014-04-01

    Full Text Available Engineering vehicle is widely used as a huge moving platform for transporting heavy goods. However, traditional human operations have a great influence on the steady movement of the vehicle. In this Letter, a fast reconstruction process of an unmanned engineering vehicle is carried out. By adding a higher-level controller and two two-dimensional laser scanners on the moving platform, the vehicle could perceive the surrounding environment and locate its pose according to extended Kalman filter. Then, a closed-loop control system is formed by communicating with the on-board lower-level controller. To verify the performance of automatic control system, the unmanned vehicle is automatically navigated when carrying a rocket towards a launcher in a launch site. The experimental results show that the vehicle could align with the launcher smoothly and safely within a small lateral deviation of 1 cm. This fast reconstruction presents an efficient way of rebuilding low-cost unmanned special vehicles and other automatic moving platforms.

  15. A Conceptual Model (The Six Mirrors of the Classroom) and It's Application to Teaching and Learning about Microorganisms

    Science.gov (United States)

    Khalil, Mahmood; Lazarowitz, Reuven; Hertz-Lazarowitz, Rachel

    2009-01-01

    In this paper a conceptual model of instruction "the six mirrors of the classroom" used as a frame for teaching a learning topic, the microorganisms are depicted. The paper consists of four sections: (a) the six mirrors of the classroom model (SMC); (b) the SMC as implemented in the expository and cooperative modes of instruction in classrooms and…

  16. Decomposing the dynamics of heterogeneous delayed networks with applications to connected vehicle systems.

    Science.gov (United States)

    Szalai, Róbert; Orosz, Gábor

    2013-10-01

    Delay-coupled networks are investigated with nonidentical delay times and the effects of such heterogeneity on the emergent dynamics of complex systems are characterized. A simple decomposition method is presented that decouples the dynamics of the network into node-size modal equations in the vicinity of equilibria. The resulting independent components contain distributed delays that map the spatiotemporal complexity of the system to the time domain. We demonstrate that this approach can be used to reveal physical phenomena in heterogenous vehicular traffic when vehicles are linked via vehicle-to-vehicle communication. PMID:24229105

  17. Analysis and Experiment of a Novel Brushless Double Rotor Machine for Power-Split Hybrid Electrical Vehicle Applications

    OpenAIRE

    Zhiyi Song; Chengde Tong; Jingang Bai; Qian Wu; Ping Zheng

    2013-01-01

    A novel brushless double rotor machine (BDRM) is proposed in this paper. The BDRM is an important component in the brushless compound-structure permanent-magnet synchronous machine (CS-PMSM) system, which is a promising technology for power-split hybrid electric vehicle (HEV) applications. Compared with common double rotor machines, the brushes and slip rings required by rotating winding have been omitted in the BDRM, thus there are no such problems as maintenance, friction losses and so fort...

  18. Secondary Re-Use of Batteries From Electric Vehicles for Building Integrated Photo-Voltaic (BIPV) applications

    OpenAIRE

    McLoughlin, Fintan; Conlon, Michael

    2015-01-01

    PV Crops is evaluating the use of battery technologies such as Vanadium Redox within Building Integrated Photovoltaic (BIPV) applications. However, their inclusion into BIPV systems will inevitably raise the overall costs of such systems. As a result, PV Crops is looking at other measures in parallel to help lower the costs associated with such systems. One particular area of interest is the potential secondary re-use of battery technology from Electric Vehicle (EV) market as a way of mitigat...

  19. Indirect Matrix Converter for Hybrid Electric Vehicle Application with Three-Phase and Single-Phase Outputs

    OpenAIRE

    Yeongsu Bak; Eunsil Lee; Kyo-Beum Lee

    2015-01-01

    This paper presents an indirect matrix converter (IMC) topology for hybrid electric vehicle (HEV) application with three-phase and single-phase outputs. The HEV includes mechanical, electrical, control, and electrochemical systems among others. In the mechanical system, a traction motor and a compressor motor are used to drive the HEV. The traction motor and the compressor motor are usually operated as three-phase and single-phase motors, respectively. In this respect, a dual AC-drive system ...

  20. Application of Roll-Isolated Inertial Measurement Units to the Instrumentation of Spinning Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    BEADER,MARK E.

    2000-12-01

    Roll-isolated inertial measurement units are developed at Sandia for use in the instrumentation, guidance, and control of rapidly spinning vehicles. Roll-isolation is accomplished by supporting the inertial instrument cluster (gyros and accelerometers) on a single gimbal, the axis of which is parallel to the vehicle's spin axis. A rotary motor on the gimbal is driven by a servo loop to null the roll gyro output, thus inertially stabilizing the gimbal and instrument cluster while the vehicle spins around it. Roll-isolation prevents saturation of the roll gyro by the high vehicle spin rate, and vastly reduces measurement errors arising from gyro scale factor and alignment uncertainties. Nine versions of Sandia-developed roll-isolated inertial measurement units have been flown on a total of 27 flight tests since 1972.

  1. Data Fusion Modeling for an RT3102 and Dewetron System Application in Hybrid Vehicle Stability Testing

    Directory of Open Access Journals (Sweden)

    Zhibin Miao

    2015-08-01

    Full Text Available More and more hybrid electric vehicles are driven since they offer such advantages as energy savings and better active safety performance. Hybrid vehicles have two or more power driving systems and frequently switch working condition, so controlling stability is very important. In this work, a two-stage Kalman algorithm method is used to fuse data in hybrid vehicle stability testing. First, the RT3102 navigation system and Dewetron system are introduced. Second, a modeling of data fusion is proposed based on the Kalman filter. Then, this modeling is simulated and tested on a sample vehicle, using Carsim and Simulink software to test the results. The results showed the merits of this modeling.

  2. Novel Field Test Equipment for Lithium-Ion Batteries in Hybrid Electrical Vehicle Applications

    OpenAIRE

    Goran Lindbergh; Olle Gelin; Pontus Svens; Marten Behm; Johan Lindstrom

    2011-01-01

    Lifetime testing of batteries for hybrid-electrical vehicles (HEV) is usually performed in the lab, either at the cell, module or battery pack level. Complementary field tests of battery packs in vehicles are also often performed. There are, however, difficulties related to field testing of battery-packs. Some examples are cost issues and the complexity of continuously collecting battery performance data, such as capacity fade and impedance increase. In this paper, a novel field test equipmen...

  3. Visible light communications: application to cooperation between vehicles and road infrastructures

    OpenAIRE

    Cailean, Alin; Cagneau, Barthélemy; Chassagne, Luc; Topsu, Suat; Alayli, Yasser; Blosseville, Jean-Marc

    2012-01-01

    International audience Since a few years, the vehicle industry tends to increase the performances of the lights based on led technologies. Nowadays, led systems are used as a standard by motor vehicles manufacturers. Led lights present higher reliability and are more flexible regarding the design or power adjustments. Furthermore, led systems are also very convenient for intensity modulation like in telecommunication fields. We developed a very simple data transmission system based on led ...

  4. A DCT-Based Driving Cycle Generation Method and Its Application for Electric Vehicles

    OpenAIRE

    Cheng Lin; Li Zhao; Xingqun Cheng; Wenwei Wang

    2015-01-01

    Nowadays, many widely used driving cycle (DC) representing and generating methods are designed for traditional vehicles with internal combustion engines (ICE). The real-world driving is viewed as a sequence of acceleration, cruise, deceleration, and idle modes. The emission and fuel consumption in each period should be taken into account carefully. However, for electric vehicles (EVs), most of them are powered by low or zero-emission renewable energy sources. The working status and energy man...

  5. LPV control for power source coordination - application to electric vehicles energy management systems

    OpenAIRE

    Nwesaty, Waleed; Bratcu, Antoneta Iuliana; Sename, Olivier

    2014-01-01

    International audience This paper presents an LPV/Hinf control strategy applied to power source coordination on board of average power electric vehicles. The proposed approach concerns separation in frequency responses between three power sources in order to satisfy power demand of the vehicle's electrical motor, taking into account that sources are devoted to work within distinct frequency ranges. The three sources - fuel cell, battery and ultracapacitor - are connected in parallel to a c...

  6. A Practical Application of IMC-PID Controller in Unmanned Vehicle

    OpenAIRE

    Qin Gang; Song Le; Hu Ling

    2013-01-01

    In allusion to unmanned vehicle steering control of the brushless DC motor control system, traditional PID controller parameter adjustment complex, weak ability to adapt to the environment and other issues, on the basis of the analysis of internal model control and classical PID control internal corresponding relationship, comprehensive its advantages, The design uses a brushless DC motor in the steering control system for unmanned vehicles based on the internal model PID controller ( IMC-PID...

  7. Fuel Reforming for Hydrogen Production in Heavy-Duty Vehicle Applications

    OpenAIRE

    Granlund, Moa. Z.

    2015-01-01

    The depletion of fossil fuels together with growing environmental concerns have created incitement for developing a more energy-efficient and environmentally-friendly vehicle fleet. The development towards cleaner heavy-duty vehicles started already in the 80’s with the introduction of emission legislations. Initially, engine optimization was enough for reaching the legislated levels of emissions. However, at present engine optimization is not enough but exhaust aftertreatment has become an e...

  8. Application of robust control in unmanned vehicle flight control system design

    OpenAIRE

    Al Swailem, Salah I.

    2004-01-01

    The robust loop-shaping control methodology is applied in the flight control system design of the Cranfield A3 Observer unmanned, unstable, catapult launched air vehicle. Detailed linear models for the full operational flight envelope of the air vehicle are developed. The nominal and worst-case models are determined using the v-gap metric. The effect of neglecting subsystems such as actuators and/or computation delays on modelling uncertainty is determined using the v-gap metri...

  9. Design and implementation of a visible light communications system for vehicle applications

    OpenAIRE

    Cailean, Alin; Cagneau, Barthélemy; Chassagne, Luc; Topsu, Suat; Alayli, Yasser; Dimian, Mihai

    2013-01-01

    — This paper presents a visible light communication system, focusing mostly on the aspects related with the hardware design and implementation. The designed system is aimed to ensure a highly-reliable communication between a commercial LED-based traffic light and a receiver mounted on a vehicle. Enabling wireless data transfer between the road infrastructure and vehicles has the potential to significantly increase the safety and efficiency of the transportation system. The paper presents the ...

  10. Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, S.; Kramer, W.; Kroposki, B.; Martin, G.; McNutt, P.; Kuss, M.; Markel, T.; Hoke, A.

    2011-06-01

    The objective of this report is to provide a test plan for V2G testing. The test plan is designed to test and evaluate the vehicle's power electronics capability to provide power to the grid, and to evaluate the vehicle's ability to connect and disconnect from the utility according to a subset of the IEEE Std. 1547 tests.

  11. Small Unmanned Aerial Vehicles in coastal areas: lessons learned from applications in Liguria, NW Mediterranean.

    Science.gov (United States)

    Rovere, A.; Casella, E.; Pedroncini, A.; Mucerino, L.; Casella, M.; Cusati, L. A.; Vacchi, M.; Ferrari, M.; Firpo, M.

    2014-12-01

    In 2013 we started to apply small UAVs to the study of coastal areas in Liguria, NW Mediterranean Sea. In this region monitoring coastal evolution and the impact of sea storms is a primary administrative need, as a large part of the economic income derives from summer tourism. In two years, we accumulated almost 200 hours of flight with two different UAVs, a professional-grade Mikrokopter Okto and a consumer-grade Phantom DJI. We used photogrammetric and orthorectification techniques to obtain Digital Elevation Models (DEMs) and orthophotos of different beaches in the region. Data from UAVs allowed us to answer several questions. What is the accuracy of DEMs obtained from UAVs in low-relief areas such as beaches? What are the problems encountered in the photogrammetric procedure near the shoreline? Are the results obtained with consumer-grade UAVs comparable to those obtained with professional-grade ones? Aside from these technical questions, we used the data obtained from UAVs for different local studies aimed at giving management tools to the local administrations. We used the cloudpoint obtained from DEMs and the orthophotos to set up a runup modelling chain, to detect short-term changes in the coastal zone, and to give a first estimate of the debris deposited on the beach after a major storm. As stated by Watts et al., 2012 (Remote Sensing 4, 1671-1692) the application of Unmanned Aerial Vehicles and photogrammetry techniques in earth sciences is flourishing, and has the potential to revolutionize the study of geomorphology. Surely, UAVs opened new research perspectives for our group, which has been actively working on coastal changes in Liguria for almost 25 years.

  12. Applicability of New Approaches of Sensor Orientation to Micro Aerial Vehicles

    Science.gov (United States)

    Rehak, M.; Skaloud, J.

    2016-06-01

    This study highlights the benefits of precise aerial position and attitude control in the context of mapping with Micro Aerial Vehicles (MAVs). Accurate mapping with MAVs is gaining importance in applications such as corridor mapping, road and pipeline inspections or mapping of large areas with homogeneous surface structure, e.g. forests or agricultural fields. There, accurate aerial control plays a major role in successful terrain reconstruction and artifact-free ortophoto generation. The presented experiments focus on new approaches of aerial control. We confirm practically that the relative aerial position and attitude control can improve accuracy in difficult mapping scenarios. Indeed, the relative orientation method represents an attractive alternative in the context of MAVs for two reasons. First, the procedure is somewhat simplified, e.g. the angular misalignment, so called boresight, between the camera and the inertial measurement unit (IMU) does not have to be determined and, second, the effect of possible systematic errors in satellite positioning (e.g. due to multipath and/or incorrect recovery of differential carrier-phase ambiguities) is mitigated. First, we present a typical mapping project over an agricultural field and second, we perform a corridor road mapping. We evaluate the proposed methods in scenarios with and without automated image observations. We investigate a recently proposed concept where adjustment is performed using image observations limited to ground control and check points, so called fast aerial triangulation (Fast AT). In this context we show that accurate aerial control (absolute or relative) together with a few image observations can deliver accurate results comparable to classical aerial triangulation with thousands of image measurements. This procedure in turns reduces the demands on processing time and the requirements on the existence of surface texture. Finally, we compare the above mentioned procedures with direct sensor

  13. Carrier-phase GNSS Attitude Determination and Control System for Unmanned Aerial Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Roberto Sabatini, Leopoldo Rodríguez, Anish Kaharkar, Celia Bartel, Tesheen Shaid

    2012-12-01

    Full Text Available This paper presents the results of a research activity performed by Cranfield University to assess the potential of carrierphase Global Navigation Satellite Systems (GNSS for attitude determination and control of small to medium size Unmanned Aerial Vehicles (UAV. Both deterministic and recursive (optimal estimation algorithms are developed for combining multiple attitude measurements obtained from different observation points (i.e., antenna locations, and their efficiencies are tested in various dynamic conditions. The proposed algorithms converge rapidly and produce the required output even during high dynamics manoeuvres. Results of theoretical performance analysis and simulation activities are presented in this paper, with emphasis on the advantages of the GNSS interferometric approach in UAV applications (i.e., low cost, high data-rate, low volume/weight, low signal processing requirements, etc.. Modelling and simulation activities focussed on the AEROSONDE UAV platform and considered the possible augmentation provided by interferometric GNSS techniques to a low-cost and low-weight/volume integrated navigation system recently developed at Cranfield University, which employs a Vision-based Navigation (VBN system, a Micro-Electro-mechanical Sensor (MEMS based Inertial Measurement Unit (IMU and code-range GNSS (i.e., GPS and GALILEO for position and velocity computations. The integrated VBN-IMU-GNSS (VIG system is augmented by using the inteferometric GNSS Attitude Determination(GAD and a comparison of the performance achievable with the VIG and VIG/GAD integrated Navigation and Guidance Systems (NGS is presented. Finally, the data provided by these NGS are used to optimise the design of an hybrid controller employing Fuzzy Logic and Proportional-Integral-Derivative (PID techniques for the AEROSONDE UAV.

  14. The Vehicle Ecosystem

    Science.gov (United States)

    Kuschel, Jonas

    Ubiquitous computing in the vehicle industry has primarily focused on sensor data serving different ubiquitous on-board services (e.g., crash detection, antilock brake systems, or air conditioning). These services mainly address vehicle drivers while driving. However, in view of the role of vehicles in today's society, it goes without saying that vehicles relate to more than just the driver or occupants; they are part of a larger ecosystem, including traffic participants, authorities, customers and the like. To serve the ecosystem with ubiquitous services based on vehicle sensor data, there is a need for an open information infrastructure that enables service development close to the customer. This paper presents results from a research project on designing such an infrastructure at a major European vehicle manufacturer. Our empirical data shows how the vehicle manufacturer's conceptualization of services disagrees with the needs of vehicle stakeholders in a more comprehensive vehicle ecosystem. In light of this, we discuss the effect on information infrastructure design and introduce the distinction between information infrastructure as product feature and service facilitator. In a more general way, we highlight the importance of information infrastructure to contextualize the vehicle as part of a larger ecosystem and thus support open innovation.

  15. Illustrations of Equivalent Methods to Reproduce Vehicle and Occupant Dynamics as a Pedagogical Tool

    CERN Document Server

    Scurlock, Bob J

    2014-01-01

    When explaining to a lay audience the magnitude of forces or accelerations imparted to vehicles or experienced by vehicle occupants during a motor vehicle collision, it is often helpful to recast the critical results in terms of other physical systems or impact configurations which will reproduce the equivalent dynamics of the subject accident to serve as a conceptual aid for the audience. In this article, we present the basis for such equivalents and explicitly demonstrate, using two physics simulation software packages, that such equivalents are based on nothing more than the application of the laws of physics.

  16. Integrated Variable Fidelity Conceptual Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — CADNexus proposes to develop an Integrated Variable Fidelity Conceptual Design tool. The application will enable design and analysis of unconventional and advanced...

  17. Conceptual IT model

    Science.gov (United States)

    Arnaoudova, Kristina; Stanchev, Peter

    2015-11-01

    The business processes are the key asset for every organization. The design of the business process models is the foremost concern and target among an organization's functions. Business processes and their proper management are intensely dependent on the performance of software applications and technology solutions. The paper is attempt for definition of new Conceptual model of IT service provider, it could be examined as IT focused Enterprise model, part of Enterprise Architecture (EA) school.

  18. MRV - Modular Robotic Vehicle

    Science.gov (United States)

    Ridley, Justin; Bluethmann, Bill

    2015-01-01

    The Modular Robotic Vehicle, or MRV, completed in 2013, was developed at the Johnson Space Center in order to advance technologies which have applications for future vehicles both in space and on Earth. With seating for two people, MRV is a fully electric vehicle modeled as a "city car", suited for busy urban environments.

  19. Optimal trajectory and heat load analysis of different shape lifting reentry vehicles for medium range application

    Directory of Open Access Journals (Sweden)

    S. Tauqeer ul Islam Rizvi

    2015-12-01

    Full Text Available The objective of the paper is to compute the optimal burn-out conditions and control requirements that would result in maximum down-range/cross-range performance of a waverider type hypersonic boost-glide (HBG vehicle within the medium and intermediate ranges, and compare its performance with the performances of wing-body and lifting-body vehicles vis-à-vis the g-load and the integrated heat load experienced by vehicles for the medium-sized launch vehicle under study. Trajectory optimization studies were carried out by considering the heat rate and dynamic pressure constraints. The trajectory optimization problem is modeled as a nonlinear, multiphase, constraint optimal control problem and is solved using a hp-adaptive pseudospectral method. Detail modeling aspects of mass, aerodynamics and aerothermodynamics for the launch and glide vehicles have been discussed. It was found that the optimal burn-out angles for waverider and wing-body configurations are approximately 5° and 14.8°, respectively, for maximum down-range performance under the constraint heat rate environment. The down-range and cross-range performance of HBG waverider configuration is nearly 1.3 and 2 times that of wing-body configuration respectively. The integrated heat load experienced by the HBG waverider was found to be approximately an order of magnitude higher than that of a lifting-body configuration and 5 times that of a wing-body configuration. The footprints and corresponding heat loads and control requirements for the three types of glide vehicles are discussed for the medium range launch vehicle under consideration.

  20. The Conceptual Metaphor Theory and the Application of Barcelona Sanchez’s Typical Model of Romantic Love to Dream in Peony Pavilion

    OpenAIRE

    Wang, Chenlu

    2010-01-01

    This thesis is a report on the application of Barcelona Sanchez’s typical model of romantic love to the Chinese literary work Dream in Peony Pavilion. In this play, the main theme is about love between two young people who are not supposed to have love desire freely. Language of emotion has been widely believed to be conceptualized metaphorically and metonymically. Barcelona Sanchez has identified some love metaphors and metonymies in Romeo and Juliet and how they apply to the typical model o...

  1. Development of battery management system for nickel-metal hydride batteries in electric vehicle applications

    Science.gov (United States)

    Jung, Do Yang; Lee, Baek Haeng; Kim, Sun Wook

    Electric vehicle (EV) performance is very dependent on traction batteries. For developing electric vehicles with high performance and good reliability, the traction batteries have to be managed to obtain maximum performance under various operating conditions. Enhancement of battery performance can be accomplished by implementing a battery management system (BMS) that plays an important role in optimizing the control mechanism of charge and discharge of the batteries as well as monitoring the battery status. In this study, a BMS has been developed for maximizing the use of Ni-MH batteries in electric vehicles. This system performs several tasks: the control of charging and discharging, overcharge and over-discharge protection, the calculation and display of state-of-charge (SOC), safety, and thermal management. The BMS is installed in and tested in a DEV5-5 electric vehicle developed by Daewoo Motor Co. and the Institute for Advanced Engineering in Korea. Eighteen modules of a Panasonic nickel-metal hydride (Ni-MH) battery, 12 V, 95 A h, are used in the DEV5-5. High accuracy within a range of 3% and good reliability are obtained. The BMS can also improve the performance and cycle-life of the Ni-MH battery peak, as well as the reliability and the safety of the electric vehicles.

  2. Improved design of dynamic vibration absorber by using the inerter and its application in vehicle suspension

    Science.gov (United States)

    Shen, Yujie; Chen, Long; Yang, Xiaofeng; Shi, Dehua; Yang, Jun

    2016-01-01

    Inerter is a recently proposed mechanical element with two terminals. The novelty of this paper is to present the improved design which aims to add traditional dynamic vibration absorber to the vehicle body by using the inerter. Based on this background, a new vehicle suspension structure called ISD suspension, including the inerter, spring and damper has been created. A dual-mass vibration model including the ISD suspension is considered in this study. Parameters are obtained by using the genetic optimizing algorithm. The frequency-domain simulation confirms that the ISD suspension can effectively improve the damping performance of the suspension system, especially at the offset frequency of the vehicle body, which is consistent with the feature of the dynamic vibration absorber added to the vehicle body mass. At last, a prototype ball screw inerter has been designed and the bench test of a quarter-car model has been undertaken. Under the conditions of the random road input, the vehicle ride comfort evaluation of body acceleration RMS value decreases by 4% at most, the suspension deflection RMS value decreases by 16% at most, the tire dynamic load RMS value decreases by 6% at most. Power spectral density results also indicate that the ISD suspension has superior damping performance than passive suspension which proves that the proposed ISD suspension is deemed effective.

  3. Robust control and linear parameter varying approaches application to vehicle dynamics

    CERN Document Server

    Gaspar, Peter; Bokor, József

    2013-01-01

    Vehicles are complex systems (non-linear, multi-variable) where the abundance of embedded controllers should ensure better security. This book aims at emphasizing the interest and potential of Linear Parameter Varying methods within the framework of vehicle dynamics, e.g.   ·          proposed control-oriented model, complex enough to handle some system non linearities but still simple for control or observer design,   ·          take into account the adaptability of the vehicle's response to driving situations, to the driver request and/or to the road sollicitations,   ·          manage interactions between various actuators to optimize the dynamic behavior of vehicles.   This book results from the 32th International Summer School in Automatic that held in Grenoble, France, in September 2011, where recent methods (based on robust control and LPV technics), then applied to the control of vehicle dynamics, have been presented. After some theoretical background and a view on so...

  4. Conceptual study

    Energy Technology Data Exchange (ETDEWEB)

    Harty, H.

    1978-09-01

    This appendix is a compendium of topical reports prepared for the Hanford Nuclear Energy Center: Status Report: Conceptual Fuel Cycle Studies for the Hanford Nuclear Energy Center; Selection of Heat Disposal Methods for a Hanford Nuclear Energy Center; Station Service Power Supply for a Hanford Nuclear Energy Center (HNEC); Impact of a Hanford Nuclear Energy Center on Ground Level Fog and Humidity; A Review of Potential Technology for the Seismic Characterization of Nuclear Energy Centers; Reliability of Generation at a Hanford Nuclear Energy Center (HNEC); Meteorological Evaluation of Multiple Reactor Contamination Probabilities for a Hanford Nuclear Energy Center; Electric Power Transmission for a Hanford Nuclear Energy Center (HNEC); The Impact of a Hanford Nuclear Energy Center on Cloudiness and Insolation; and A Licensing Review for an HNEC.

  5. Conceptual study

    International Nuclear Information System (INIS)

    This appendix is a compendium of topical reports prepared for the Hanford Nuclear Energy Center: Status Report: Conceptual Fuel Cycle Studies for the Hanford Nuclear Energy Center; Selection of Heat Disposal Methods for a Hanford Nuclear Energy Center; Station Service Power Supply for a Hanford Nuclear Energy Center (HNEC); Impact of a Hanford Nuclear Energy Center on Ground Level Fog and Humidity; A Review of Potential Technology for the Seismic Characterization of Nuclear Energy Centers; Reliability of Generation at a Hanford Nuclear Energy Center (HNEC); Meteorological Evaluation of Multiple Reactor Contamination Probabilities for a Hanford Nuclear Energy Center; Electric Power Transmission for a Hanford Nuclear Energy Center (HNEC); The Impact of a Hanford Nuclear Energy Center on Cloudiness and Insolation; and A Licensing Review for an HNEC

  6. A DCT-Based Driving Cycle Generation Method and Its Application for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Cheng Lin

    2015-01-01

    Full Text Available Nowadays, many widely used driving cycle (DC representing and generating methods are designed for traditional vehicles with internal combustion engines (ICE. The real-world driving is viewed as a sequence of acceleration, cruise, deceleration, and idle modes. The emission and fuel consumption in each period should be taken into account carefully. However, for electric vehicles (EVs, most of them are powered by low or zero-emission renewable energy sources. The working status and energy management algorithms of them are very different from traditional vehicles. To facilitate the EV design, we proposed a novel DC representing and construction method to generate DCs for EVs. The whole driving route is divided into several length-fixed segments and each of these segments is converted into a frequency sequence. After doing that, we can adjust the frequency and amplitude of the generated driving cycle directly. The experiment results showed that the proposed method was effective and convenient.

  7. Locating replenishment stations for electric vehicles: Application to Danish traffic data

    DEFF Research Database (Denmark)

    Wen, Min; Laporte, Gilbert; Madsen, Oli B.G.;

    2012-01-01

    Environment-friendly electric vehicles have gained substantial attention in governments, industry and universities. The deployment of a network of recharging stations is essential given their limited travel range. This paper considers the problem of locating electronic replenishment stations for...... electric vehicles on a traffic network with flow-based demand. The objective is to optimize the network performance, for example to maximize the flow covered by a prefixed number of stations, or to minimize the number of stations needed to cover traffic flows. Two mixed integer linear programming...

  8. The Application of Compulational Fluid Dynamics to Design of Vehicle Cooling Wind Tunnel

    Institute of Scientific and Technical Information of China (English)

    BI Xiao-ping; HUANG Xiao-hui

    2009-01-01

    A computational fluid dynamics (CFD) calculation model for the airflow and heat transfer in an armored vehicle cooling wind tunnel is established. A practical method to determine computation region outside power train compartment, produce grid and ensure grid quality is put forward. A commercial software FLUENT can be used to obtain solutions numerically in 3-D space. Precision of CFD calculation results is verified. The CFD model is used in designing a vehicle cooling wind tunnel, and air flow resistance of fan blast baffle is calculated. The calculated results show feasibility of the CFD model and the method.

  9. Unmanned vehicle technology for networked non-line-of-sight sensing applications

    Science.gov (United States)

    Gates, Miguel; Pepper, Gary; Mitra, Atindra K.; Hu, Colin; Zein-Sabatto, Saleh; Rogers, Tamara; Selmic, Rastko; Hamdan, Elrasheed; Malkani, Mohan

    2010-04-01

    We discuss the development, design, implementation, and demonstration of a robotic UGV (Unmanned Ground Vehicle) system for networked and non-line-of-sight sensing applications. Our development team is comprised of AFRL Summer Interns, University Faculty, and Personnel from AFRL. The system concept is based on a previously published technique known as "Dual-UAV Tandems for Indirect Operator-Assisted Control" [1]. This architecture is based on simulating a Mini-UAV Helicopter with a building-mounted camera and simulating a low-flying QuadRotor Helicopter with a Robotics UGV. The Robotics UGV is fitted with a custom-designed sensor boom and a surrogate chem/bio (Carbon Monoxide) PCB sensor extracted from a COTS (Commercial-Off-The-Shelf) product. The CO Sensor apparatus is co-designed with the sensor boom and is fitted with a transparent covering for protection and to promote CO (surrogate chem/bio) flow onto the sensor. The philosophy behind this non-line-of-sight system is to relay video of the UGV to an Operator station for purposes of investigating "Indirect Operator-Assisted Control" of the UGV via observation of the relayed EO video at the operator station. This would serve as a sensor fusion, giving the operator visual cues of the chemical under detection, enabling him to position the UGV in areas of higher concentration. We recorded this data, and analyzed the best approach given a test matrix of multiple scenarios, with the goal of determining the feasibility of using this layered sensing approach and the system accuracy in open field tests. For purposes of collecting scientific data with this system, we developed a Test (data collection) Matrix with following three parameters: 1. Chem/Bio detection level with side-looking sensor boom and slowly traversing UGV; 2. Chem/Bio detection level with panning sensor boom and slowly traversing UGV; 3. Chem/Bio detection level with forward-looking sensor boom and operator-assisted steering based on onboard wind vane

  10. Application of high resolution images from unmanned aerial vehicles for hydrology and rangeland science

    Science.gov (United States)

    Rango, A.; Vivoni, E. R.; Anderson, C. A.; Perini, N. A.; Saripalli, S.; Laliberte, A.

    2012-12-01

    A common problem in many natural resource disciplines is the lack of high-enough spatial resolution images that can be used for monitoring and modeling purposes. Advances have been made in the utilization of Unmanned Aerial Vehicles (UAVs) in hydrology and rangeland science. By utilizing low flight altitudes and velocities, UAVs are able to produce high resolution (5 cm) images as well as stereo coverage (with 75% forward overlap and 40% sidelap) to extract digital elevation models (DEM). Another advantage of flying at low altitude is that the potential problems of atmospheric haze obscuration are eliminated. Both small fixed-wing and rotary-wing aircraft have been used in our experiments over two rangeland areas in the Jornada Experimental Range in southern New Mexico and the Santa Rita Experimental Range in southern Arizona. The fixed-wing UAV has a digital camera in the wing and six-band multispectral camera in the nose, while the rotary-wing UAV carries a digital camera as payload. Because we have been acquiring imagery for several years, there are now > 31,000 photos at one of the study sites, and 177 mosaics over rangeland areas have been constructed. Using the DEM obtained from the imagery we have determined the actual catchment areas of three watersheds and compared these to previous estimates. At one site, the UAV-derived watershed area is 4.67 ha which is 22% smaller compared to a manual survey using a GPS unit obtained several years ago. This difference can be significant in constructing a watershed model of the site. From a vegetation species classification, we also determined that two of the shrub types in this small watershed(mesquite and creosote with 6.47 % and 5.82% cover, respectively) grow in similar locations(flat upland areas with deep soils), whereas the most predominant shrub(mariola with 11.9% cover) inhabits hillslopes near stream channels(with steep shallow soils). The positioning of these individual shrubs throughout the catchment using

  11. Quantification of uncertainties related to the regional application of a conceptual hydrological model in Benin (West Africa)

    Science.gov (United States)

    Bormann, H.; Diekkrüger, B.

    2003-04-01

    A conceptual model is presented to simulate the water fluxes of regional catchments in Benin (West Africa). The model is applied in the framework of the IMPETUS project (an integrated approach to the efficient management of scarce water resources in West Africa) which aims to assess the effects of environmental and anthropogenic changes on the regional hydrological processes and on the water availability in Benin. In order to assess the effects of decreasing precipitation and increasing human activities on the hydrological processes in the upper Ouémé valley, a scenario analysis is performed to predict possible changes. Therefore a regional hydrological model is proposed which reproduces the recent hydrological processes, and which is able to consider the changes of landscape properties.The study presented aims to check the validity of the conceptual and lumped model under the conditions of the subhumid tree savannah and therefore analyses the importance of possible sources of uncertainty. Main focus is set on the uncertainties caused by input data, model parameters and model structure. As the model simulates the water fluxes at the catchment outlet of the Térou river (3133 km2) in a sufficient quality, first results of a scenario analysis are presented. Changes of interest are the expected future decrease in amount and temporal structure of the precipitation (e.g. minus X percent precipitation during the whole season versus minus X percent precipitation in the end of the rainy season, alternatively), the decrease in soil water storage capacity which is caused by erosion, and the increasing consumption of ground water for drinking water and agricultural purposes. Resuming from the results obtained, the perspectives of lumped and conceptual models are discussed with special regard to available management options of this kind of models. Advantages and disadvantages compared to alternative model approaches (process based, physics based) are discussed.

  12. Reactor physics methods, models, and applications used to support the conceptual design of the Advanced Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Gehin, J.C.; Worley, B.A.; Renier, J.P. [Oak Ridge National Lab., TN (United States); Wemple, C.A.; Jahshan, S.N.; Ryskammp, J.M. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-08-01

    This report summarizes the neutronics analysis performed during 1991 and 1992 in support of characterization of the conceptual design of the Advanced Neutron Source (ANS). The methods used in the analysis, parametric studies, and key results supporting the design and safety evaluations of the conceptual design are presented. The analysis approach used during the conceptual design phase followed the same approach used in early ANS evaluations: (1) a strong reliance on Monte Carlo theory for beginning-of-cycle reactor performance calculations and (2) a reliance on few-group diffusion theory for reactor fuel cycle analysis and for evaluation of reactor performance at specific time steps over the fuel cycle. The Monte Carlo analysis was carried out using the MCNP continuous-energy code, and the few- group diffusion theory calculations were performed using the VENTURE and PDQ code systems. The MCNP code was used primarily for its capability to model the reflector components in realistic geometries as well as the inherent circumvention of cross-section processing requirements and use of energy-collapsed cross sections. The MCNP code was used for evaluations of reflector component reactivity effects and of heat loads in these components. The code was also used as a benchmark comparison against the diffusion-theory estimates of key reactor parameters such as region fluxes, control rod worths, reactivity coefficients, and material worths. The VENTURE and PDQ codes were used to provide independent evaluations of burnup effects, power distributions, and small perturbation worths. The performance and safety calculations performed over the subject time period are summarized, and key results are provided. The key results include flux and power distributions over the fuel cycle, silicon production rates, fuel burnup rates, component reactivities, control rod worths, component heat loads, shutdown reactivity margins, reactivity coefficients, and isotope production rates.

  13. HEUS-RS applications study, volume 1. [for Titan 3 and Thor launch vehicles

    Science.gov (United States)

    1972-01-01

    Studies are given for sizing and integrating a high energy upper stage restartable solid motor into a flight stage with various payloads for use with Titan 3 and Thor launch vehicles. Motor and stage configurations are given along with performance evaluation of the HEUS-RS with the space shuttle.

  14. Vehicle perceptibilty : reflectorized registration plates and alternative means : function, design and application.

    NARCIS (Netherlands)

    Griep, D.J. Thoenes, E. Schreuder, D.A. & Kranenburg, A.

    1970-01-01

    In November 1967 the Minister of Transport and Waterways in the Netherlands asked the Institute for Road Safety Research SWOV to examine the advisable design of reflectorized registration plates from the aspect of perceptibility. Allowance had to be made for the identification of motor vehicles. esp

  15. Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology. Volume 1

    Science.gov (United States)

    Williams, R. W. (Compiler)

    1996-01-01

    The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  16. A relaxed criterion for contraction theory: application to an underwater vehicle observer

    DEFF Research Database (Denmark)

    Jouffroy, Jerome

    conclude when the Jacobian is not uniformly negative definite but fulfils some weaker conditions. Intended as an illustrative example, a nonlinear underwater vehicle observer, which Jacobian is not uniformly negative definite, is presented and proven to be exponentially convergent using the new criterion....

  17. Application of high resolution images from unmanned aerial vehicles for hydrology and range science

    Science.gov (United States)

    A common problem in many natural resource disciplines is the lack of high-enough spatial resolution images that can be used for monitoring and modeling purposes. Advances have been made in the utilization of Unmanned Aerial Vehicles (UAVs) in hydrology and rangeland science. By utilizing low fligh...

  18. Broadening industry perspectives of vehicle telematics application through virtual learning environments

    NARCIS (Netherlands)

    Bull, K.; Hull, N.; Peck, D.P.

    2009-01-01

    EADIS is a two year international initiative funded by Leonardo Da Vinci UK. It involves five European design-related educational institutions who have developed a Vehicle Telematics Road Map. The map acts as the basis for an internationally available online training programme that shares knowledge

  19. Alloy Design and Thermomechanical Processing of a Beta Titanium Alloy for a Heavy Vehicle Application

    Energy Technology Data Exchange (ETDEWEB)

    Blue, C.A.; Peter, W.H.

    2010-07-02

    With the strength of steel, but at half the weight, titanium has the potential to offer significant benefits in the weight reduction of heavy vehicle components while possibly improving performance. However, the cost of conventional titanium fabrication is a major barrier in implementation. New reduction technologies are now available that have the potential to create a paradigm shift in the way the United States uses titanium, and the economics associated with fabrication of titanium components. This CRADA project evaluated the potential to develop a heavy vehicle component from titanium powders. The project included alloy design, development of manufacturing practices, and modeling the economics associated with the new component. New Beta alloys were designed for this project to provide the required mechanical specifications while utilizing the benefits of the new fabrication approach. Manufacturing procedures were developed specific to the heavy vehicle component. Ageing and thermal treatment optimization was performed to provide the desired microstructures. The CRADA partner established fabrication practices and targeted capital investment required for fabricating the component out of titanium. Though initial results were promising, the full project was not executed due to termination of the effort by the CRADA partner and economic trends observed in the heavy vehicle market.

  20. Fuel cells for vehicle applications in cars - bringing the future closer

    Science.gov (United States)

    Panik, Ferdinand

    Among all alternative drive systems, the fuel cell electric propulsion system has the highest potential to compete with the internal combustion engine. For this reason, Daimler-Benz AG has entered into a co-operative alliance with Ballard Power Systems, with the objectives of bringing fuel cell vehicles to the market. Apart from the fuel cell itself, fuel cell vehicles require comprehensive system technology to provide fuel and air supply, cooling, energy management, electric and electronic functions. The system technology determines to a large extent the cost, weight, efficiency, performance and overall customer benefit of fuel cell vehicles. Hence, Daimler-Benz and Ballard are pooling their expertise in fuel cell system technology in a joint company, with the aim of bringing their fuel cell vehicular systems to the stage of maturity required for market entry as early as possible. Hydrogen-fuelled zero-emission fuel cell transit `buses' will be the first market segment addressed, with an emphasis on the North American and European markets. The first buses are already scheduled for delivery to customers in late 1997. Since a liquid fuel like methanol is easier to handle in passenger cars, fuel reforming technologies are developed and will shortly be demonstrated in a prototype, as well. The presentation will cover concepts of fuel cell vehicles with an emphasis on system technology, the related testing procedures and results as well as an outline of market entry strategies.

  1. Impact of lithium abundance and cost on electric vehicle battery applications

    Science.gov (United States)

    Will, Fritz G.

    This paper addresses the issues of realistic specific energy levels attainable with Li batteries, the maximum number of electric vehicles as limited by the identified Li world reserves and the anticipated battery price. The Li-ion battery, {LiC6}/{LixNiO2}, is taken as the basis for the analysis presented here. It is shown that economically recoverable Li world reserves are sufficient to meet the demands of current new passenger car world production and its anticipated growth in the next 50 years. Currently identified world reserves can power 2 billion cars with Li-ion batteries, that is four times the number of cars presently registered in the world. World annual Li production of 10 000 metric tons would have to be increased l3-fold to power current new car world production with Li batteries. Such increase of the production capacity is seen as principally feasible. The 'theoretical reactant cost' — the absolute minimum reactant cost — for the Li-ion battery with Ni oxide cathode is US 19.20/kWh, compared to US 15.40 for the {Ni}/{Cd} and US 29.40 for the Ni/metal-hydride (AB 2) battery. By comparison with the large-volume price for {Ni}/{Cd} vehicle batteries, a miniμm price of US 330/kWh or US 8000 per 24 kWh battery is predicted for mass-produced Li-ion vehicle batteries, once the technology has matured. A battery life of 1000 cycles, already demonstrated in laboratory cells, results in a total vehicle mileage of approximately 126 000 miles when based on a 24 kWh battery. The cost of battery ownership and 'electric fuel' combined is 11 ¢/mile, that of car ownership and fuel combined 27 ¢/toile, if based on a vehicle price of US 23 000.

  2. Application of a distributed systems architecture for increased speed in image processing on an autonomous ground vehicle

    Science.gov (United States)

    Wright, Adam A.; Momin, Orko; Shin, Young Ho; Shakya, Rahul; Nepal, Kumud; Ahlgren, David J.

    2010-01-01

    This paper presents the application of a distributed systems architecture to an autonomous ground vehicle, Q, that participates in both the autonomous and navigation challenges of the Intelligent Ground Vehicle Competition. In the autonomous challenge the vehicle is required to follow a course, while avoiding obstacles and staying within the course boundaries, which are marked by white lines. For the navigation challenge, the vehicle is required to reach a set of target destinations, known as way points, with given GPS coordinates and avoid obstacles that it encounters in the process. Previously the vehicle utilized a single laptop to execute all processing activities including image processing, sensor interfacing and data processing, path planning and navigation algorithms and motor control. National Instruments' (NI) LabVIEW served as the programming language for software implementation. As an upgrade to last year's design, a NI compact Reconfigurable Input/Output system (cRIO) was incorporated to the system architecture. The cRIO is NI's solution for rapid prototyping that is equipped with a real time processor, an FPGA and modular input/output. Under the current system, the real time processor handles the path planning and navigation algorithms, the FPGA gathers and processes sensor data. This setup leaves the laptop to focus on running the image processing algorithm. Image processing as previously presented by Nepal et. al. is a multi-step line extraction algorithm and constitutes the largest processor load. This distributed approach results in a faster image processing algorithm which was previously Q's bottleneck. Additionally, the path planning and navigation algorithms are executed more reliably on the real time processor due to the deterministic nature of operation. The implementation of this architecture required exploration of various inter-system communication techniques. Data transfer between the laptop and the real time processor using UDP packets

  3. Recent Progress on the Key Materials and Components for Proton Exchange Membrane Fuel Cells in Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    2016-07-01

    Full Text Available Fuel cells are the most clean and efficient power source for vehicles. In particular, proton exchange membrane fuel cells (PEMFCs are the most promising candidate for automobile applications due to their rapid start-up and low-temperature operation. Through extensive global research efforts in the latest decade, the performance of PEMFCs, including energy efficiency, volumetric and mass power density, and low temperature startup ability, have achieved significant breakthroughs. In 2014, fuel cell powered vehicles were introduced into the market by several prominent vehicle companies. However, the low durability and high cost of PEMFC systems are still the main obstacles for large-scale industrialization of this technology. The key materials and components used in PEMFCs greatly affect their durability and cost. In this review, the technical progress of key materials and components for PEMFCs has been summarized and critically discussed, including topics such as the membrane, catalyst layer, gas diffusion layer, and bipolar plate. The development of high-durability processing technologies is also introduced. Finally, this review is concluded with personal perspectives on the future research directions of this area.

  4. High fidelity equivalent circuit representation of induction motor determined by finite elements for electric vehicle drive applications

    Energy Technology Data Exchange (ETDEWEB)

    Vamvakari, A.; Kandianis, A.; Kladas, A.; Manias, S. (National Technical Univ. of Athens (Greece))

    1999-05-01

    The paper presents the methodology for determination of an induction motor model suitable for harmonic representation on inverter supply. Harmonic iron losses are considered by convenient modifications of the standard equivalent circuit while the parameter variations for different operating conditions are determined by finite element modelling. The proposed motor representation is particularly important in cases that the drive efficiency is of major concern over a wide range of operating conditions such as in electrical vehicle applications. The method is illustrated with respect to an experimental set-up involving a 1,5 kW squirrel cage induction motor supplied by a PWM inverter.

  5. Modeling and Deployment of Model-Based Decentralized Embedded Diagnosis inside Vehicles: Application to Smart Distance Keeping Function

    Directory of Open Access Journals (Sweden)

    Othman Nasri

    2012-01-01

    Full Text Available The deployment of a fault diagnosis strategy in the Smart Distance Keeping (SDK system with a decentralized architecture is presented. The SDK system is an advanced Adaptive Cruise Control (ACC system implemented in a Renault-Volvo Trucks vehicle to increase safety by overcoming some ACC limitations. One of the main differences between this new system and the classical ACC is the choice of the safe distance. This latter is the distance between the vehicle equipped with the ACC or the SDK system and the obstacle-in-front (which may be another vehicle. It is supposed fixed in the case of the ACC, while variable in the case of the SDK. The variation of this distance depends essentially on the relative velocity between the vehicle and the obstacle-in-front. The main goal of this work is to analyze measurements, issued from the SDK elements, in order to detect, to localize, and to identify some faults that may occur. Our main contribution is the proposition of a decentralized approach permitting to carry out an on-line diagnosis without computing the global model and to achieve most of the work locally avoiding huge extra diagnostic information traffic between components. After a detailed description of the SDK system, this paper explains the model-based decentralized solution and its application to the embedded diagnosis of the SDK system inside Renault-Volvo Truck with five control units connected via a CAN-bus using “Hardware in the Loop” (HIL technique. We also discuss the constraints that must be fulfilled.

  6. A novel vehicle navigation map matching algorithm based on fuzzy logic and its application

    Institute of Scientific and Technical Information of China (English)

    TONG Xiao-hua; WU Song-chun; WU Shu-qing; LIU Da-jie

    2005-01-01

    A new real-time map matching algorithm based on fuzzy logic is proposed. 3 main factors affecting the reliability of map matching, including the distance between the vehicle location and the matching road segment, the angle between the vehicle direction and the road segment direction and the road connectivity are discussed. Fuzzy rules for the distance, angle and connectivity are presented to calculate the matching reliability. 2 indicators for estimating the matching reliability are then derived, one is the lower limit of the reliability, and the other is the limit error of the difference between the maximal value and the second-maximal value of the reliability. A real-time map-matching system based on fuzzy logic is therefore developed. Using the real data of global positioning system(GIS) based navigation and geographic information system(GPS) based road map, the method is verified and the results prove the effectiveness of the proposed method.

  7. "Fly-by-Wireless" Vehicles and Evaluations of ISA 100 Applications to Space-Flight

    Science.gov (United States)

    Studor, George F.

    2009-01-01

    "Fly-by-Wireless" (What is it?) Vision: To minimize cables and connectors and increase functionality across the aerospace industry by providing reliable, lower cost, modular, and higher performance alternatives to wired data connectivity to benefit the entire vehicle/program life-cycle. Focus Areas: 1. System Engineering and Integration to reduce cables and connectors. 2. Provisions for modularity and accessibility in the vehicle architecture. 3. Develop Alternatives to wired connectivity (the "tool box").NASA and Aerospace depend more and more on cost-effective solutions that can meet our requirements. ISA-100.11 a is a promising new standard and NASA wants to evaluate it. NASA should be involved in understanding and contributing to other ISA-100 efforts that contribute to "Fly-by-Wireless" and it's objectives. ISA can engage other aerospace groups that are working on similar goals and obtain more aerospace industry perspective.

  8. Optimal Distributed Controller Synthesis for Chain Structures: Applications to Vehicle Formations

    CERN Document Server

    Khorsand, Omid; Gattami, Ather

    2012-01-01

    We consider optimal distributed controller synthesis for an interconnected system subject to communication constraints, in linear quadratic settings. Motivated by the problem of finite heavy duty vehicle platooning, we study systems composed of interconnected subsystems over a chain graph. By decomposing the system into orthogonal modes, the cost function can be separated into individual components. Thereby, derivation of the optimal controllers in state-space follows immediately. The optimal controllers are evaluated under the practical setting of heavy duty vehicle platooning with communication constraints. It is shown that the performance can be significantly improved by adding a few communication links. The results show that the proposed optimal distributed controller performs almost as well as the centralized linear quadratic Gaussian controller and outperforms a suboptimal controller in terms of control input. Furthermore, the control input energy can be reduced significantly with the proposed controlle...

  9. A Practical Application of IMC-PID Controller in Unmanned Vehicle

    Directory of Open Access Journals (Sweden)

    Qin Gang

    2013-06-01

    Full Text Available In allusion to unmanned vehicle steering control of the brushless DC motor control system, traditional PID controller parameter adjustment complex, weak ability to adapt to the environment and other issues, on the basis of the analysis of internal model control and classical PID control internal corresponding relationship, comprehensive its advantages, The design uses a brushless DC motor in the steering control system for unmanned vehicles based on the internal model PID controller ( IMC-PID for speed. Based on the build object theoretical model, online simulation controller show that, for the design objects, based on the internal model PID controller whether the system step response or disturbance tracking control effect can reach the classic PID control requirements, also reduces the complexity and randomness of the design parameters.

  10. Condition-based dynamic maintenance operations planning and grouping. Application to commercial heavy vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Bouvard, K., E-mail: keomany.bouvard@volvo.co [Volvo Technology, 99 route de Lyon, 69806 Saint Priest cedex (France); Laboratoire d' Automatique de Genie Informatique et Signal - FRE3303 - Polytech' Lille, 59655 Villeneuve d' Ascq (France); Artus, S., E-mail: samuel.artus@volvo.co [Volvo Technology, 99 route de Lyon, 69806 Saint Priest cedex (France); Berenguer, C., E-mail: christophe.berenguer@utt.f [Universite de technologie de Troyes - Institut Charles Delaunay and UMR CNRS 6279 - 12, rue Marie Curie, BP2060, 10010 Troyes cedex (France); Cocquempot, V., E-mail: vincent.cocquempot@univ-lille1.f [Laboratoire d' Automatique de Genie Informatique et Signal - FRE3303 - Polytech' Lille, 59655 Villeneuve d' Ascq (France)

    2011-06-15

    This paper aims at presenting a method to optimize the maintenance planning for a commercial heavy vehicle. Such a vehicle may be considered as a multi-components system. Grouping maintenance operations related to each component reduces the global maintenance cost of the system. Classically, the optimization problem is solved using a priori reliability characteristics of components. Two types of methods may be used, i.e. static or dynamic methods. Static methods provide a fixed maintenance planning, whereas dynamic methods redefine the groups of maintenance operations at each decision time. Dynamic procedures can incorporate component information such as component states or detected failures. For deteriorating systems, reliability characteristics of each component may be estimated thanks to deterioration models and may be updated when a degradation measure is available. This additional information on degradation features allows to better follow the real state of each component and to improve the maintenance planning.

  11. Condition-based dynamic maintenance operations planning and grouping. Application to commercial heavy vehicles

    International Nuclear Information System (INIS)

    This paper aims at presenting a method to optimize the maintenance planning for a commercial heavy vehicle. Such a vehicle may be considered as a multi-components system. Grouping maintenance operations related to each component reduces the global maintenance cost of the system. Classically, the optimization problem is solved using a priori reliability characteristics of components. Two types of methods may be used, i.e. static or dynamic methods. Static methods provide a fixed maintenance planning, whereas dynamic methods redefine the groups of maintenance operations at each decision time. Dynamic procedures can incorporate component information such as component states or detected failures. For deteriorating systems, reliability characteristics of each component may be estimated thanks to deterioration models and may be updated when a degradation measure is available. This additional information on degradation features allows to better follow the real state of each component and to improve the maintenance planning.

  12. A Conceptual Design Study on the Application of Liquid Metal Heat Transfer Technology to the Solar Thermal Power Plant

    Science.gov (United States)

    Zimmerman, W. F.; Robertson, C. S.; Ehde, C. L.; Divakaruni, S. M.; Stacy, L. E.

    1979-01-01

    Alkali metal heat transfer technology was used in the development of conceptual designs for the transport and storage of sensible and latent heat thermal energy in distributed concentrator, solar Stirling power conversion systems at a power level of 15 kWe per unit. Both liquid metal pumped loop and heat pipe thermal transport were considered; system configurations included: (1) an integrated, focal mounted sodium heat pipe solar receiver (HPSR) with latent heat thermal energy storage; (2) a liquid sodium pumped loop with the latent heat storage, Stirling engine-generator, pump and valves located on the back side of the concentrator; and (3) similar pumped loops serving several concentrators with more centralized power conversion and storage. The focus mounted HPSR was most efficient, lightest and lowest in estimated cost. Design confirmation testing indicated satisfactory performance at all angles of inclination of the primary heat pipes to be used in the solar receiver.

  13. The use of Unmanned Aerial Vehicles in monitoring applications and management of natural hazards

    Science.gov (United States)

    Piras, Marco; Aicardi, Irene; Lingua, Andrea; Noardo, Francesca; Chiabrando, Filiberto

    2015-04-01

    In the last years following the damages derived by the climate change (such as flooding and so on) it is growing the necessity to monitor the watercourses with effective and quickly method, where low cost solutions are particularly interested. In some cases, it is essential to have information about the riverbed, the river banks and to analyze the springs and the way in which the water moves. For the terrestrial point of view this knowledge can be acquired through GNSS and topographic methods, but they are still too manually so that they are time-consuming with respect the acquisition of information about the entire area. Another possibility is to perform a laser scanner survey, but the most common instruments (economically sustainable) have some problems to acquire information of sub-water-layer. Moreover, terrestrial surveys from cameras (such as visible, thermic or hyperspectral sensors) can't always offer a useful view of the case study due to the fact that they have a limited range of possible points of acquisition. For these reasons, it can be more effective to have an aerial point of view of the river, for example using UAVs (Unmanned Aerial Vehicles), which have been experimented in these last years for environmental investigations. The proposed studies include photogrammetric and thermographic applications in order to investigate a new post-flooding riverbed arrangement and to identify some sub-riverbed springs inside a stream in order to monitor the behavior of two studied watercourses. The tests have been carried out with a customized low-cost mini-UAV based on the Mikrokopter Hexakopter solution embedded with a navigation system for the autonomous flight (GNSS/IMU) and with the possibility to house different kind of sensors, such as a camera, a GNSS receiver, a LiDAR sensor, a thermographic camera and more other sensors, but with the limitation of a 1.2 Kg payload. The most significant innovation is the possibility to perform quickly and economical

  14. Modeling, Simulation, Six Sigma, and Their Application in Optimization of Electrical Vehicle Design

    OpenAIRE

    Zhan, Wei

    2010-01-01

    This paper discusses a design optimization problem for electrical vehicles using Six Sigma tools such as DOE and RSM. The analysis was carried out in the MATLAB simulation environment. The DOE technique was used to narrow down the number of design parameters to be analyzed. Some parameters were assumed to be constant during the DOE analysis. The selection of these constant parameters and their values may influence the conclusions one can draw from the DOE analysis, but the approach used in th...

  15. Design and Optimization of Permanent Magnet Brushless Machines for Electric Vehicle Applications

    OpenAIRE

    Weiwei Gu; Xiaoyong Zhu; Li Quan; Yi Du

    2015-01-01

    In this paper, by considering and establishing the relationship between the maximum operating speed and d-axis inductance, a new design and optimization method is proposed. Thus, a more extended constant power speed range, as well as reduced losses and increased efficiency, especially in the high-speed region, can be obtained, which is essential for electric vehicles (EVs). In the first step, the initial permanent magnet (PM) brushless machine is designed based on the consideration of the max...

  16. Model-based Decentralized Embedded Diagnosis inside Vehicles: Application to Smart Distance Keeping Function

    OpenAIRE

    Nasri, Othman; Shraïm, Hassan; Dague, Philippe; Héron, Olivier; Cartron, Mickael

    2010-01-01

    Abstract—In this paper, the deployment of a fault diagnosis strategy in the Smart Distance Keeping (SDK) system with a decentralized architecture is presented. The SDK system is an advanced version of the Adaptive Cruise Control (ACC) system, implemented in a Renault-Volvo Trucks vehicle. The main goal of this work is to analyze measurements, issued from the SDK elements, in order to detect, to localize and to identify some faults that may be produced. Our main contribution is the proposition...

  17. Plug-in Electric Vehicle Collaborative Charging for Current Unbalance Minimization: Ant System Optimization Application

    OpenAIRE

    FERNANDEZ, Julian Alberto; Bacha, Seddik; Riu, Delphine; Hably, Ahmad

    2015-01-01

    Plug-in electric vehicles (PEVs) are one of the solutions to reduce transportation dependency on oil. Nevertheless, uncoordinated charging in distribution low voltage (LV) networks can lead to local grid problems such as current unbalance and consequently voltage unbalance. In this paper, a combinatorial method based on Ant System (AS) optimization is proposed in order to minimize the current unbalance factor (CUF) by controlling the connection and disconnection of PEVs. The CUF is generated ...

  18. Application of visual servoing to the dynamic positioning of an underwater vehicle

    OpenAIRE

    Lots, Jean-François

    2002-01-01

    Conventional underwater sensors are not well suited to the task of aiding unmanned underwater vehicles to hover. These sensors suffer from several drawbacks such as low sampling rates, low resolution, complexity of operations, drift and cost. Underwatervideo cameras, however, can provide local measurements of position with respect to a local object. Underwater vision presents several challenges: it suffers from a limited range and poor visibility conditions. Besides, recovering motion fromima...

  19. Architecture, Control and NVH Development of Digital Hydraulics for Off-Highway Vehicle Applications

    OpenAIRE

    Yuan, QingHui; Jogada, Aaron

    2016-01-01

    Digital hydraulics is one of promising technologies having a huge potential to significantly improve energy efficiency in the fluid power industry. In this paper, we present a digital hydraulics solution for mobile market with a large ammount of energy usage by hydraulic components and systems. Specifically, a novel hydraulic architecture, Multiplex Digital Valve (MDV) system that employs digital valves to meet multiple service pressure/flow requirement in off highway vehicles, is introduced....

  20. Vehicle routing problems with alternative paths: an application to on-demand transportation

    OpenAIRE

    Garaix, Thierry; Artigues, Christian; Feillet, Dominique; Josselin, Didier

    2010-01-01

    The class of vehicle routing problems involves the optimization of freight or passenger transportation activities. These problems are generally treated via the representation of the road network as a weighted complete graph. Each arc of the graph represents the shortest route for a possible origin-destination connection. Several attributes can be defined for one arc (travel time, travel cost . . . ), but the shortest route modelled by this arc is computed according to one single criterion, gen...

  1. Neural Network Control-Based Drive Design of Servomotor and Its Application to Automatic Guided Vehicle

    OpenAIRE

    Ming-Shyan Wang; Seng-Chi Chen; Po-Hsiang Chuang; Shih-Yu Wu; Fu-Shung Hsu

    2015-01-01

    An automatic guided vehicle (AGV) is extensively used for productions in a flexible manufacture system with high efficiency and high flexibility. A servomotor-based AGV is designed and implemented in this paper. In order to steer the AGV to go along a predefined path with corner or arc, the conventional proportional-integral-derivative (PID) control is used in the system. However, it is difficult to tune PID gains at various conditions. As a result, the neural network (NN) control is consider...

  2. The Zebra Battery: a South African contender for electric vehicle application

    Directory of Open Access Journals (Sweden)

    J. Coertzer

    1996-07-01

    Full Text Available The Zebra battery is one of the most promising power sources for electric vehicles which might be on sale before the year 2000. It is a South African development which started at the CSIR and is at present jointly managed by the Anglo American Corpora­tion of S.A. and the German company A.E.G. The chemical reaction converts common salt and nickel to nickel chloride and sodium during the charging phase.

  3. A review of composite material applications in the automotive industry for the electric and hybrid vehicle

    Science.gov (United States)

    Bauer, J. L.

    1979-01-01

    A review is made of the state-of-the-art in regard to the use of composite materials for reducing the structural mass of automobiles. Reduction of mass provides, in addition to other engineering improvements, increased performance/range advantages that are particularly needed in the electric and hybrid vehicle field. Problems encountered include the attainment of mass production techniques and the prevention of environmental hazards.

  4. Function-based design process for an intelligent ground vehicle vision system

    Science.gov (United States)

    Nagel, Robert L.; Perry, Kenneth L.; Stone, Robert B.; McAdams, Daniel A.

    2010-10-01

    An engineering design framework for an autonomous ground vehicle vision system is discussed. We present both the conceptual and physical design by following the design process, development and testing of an intelligent ground vehicle vision system constructed for the 2008 Intelligent Ground Vehicle Competition. During conceptual design, the requirements for the vision system are explored via functional and process analysis considering the flows into the vehicle and the transformations of those flows. The conceptual design phase concludes with a vision system design that is modular in both hardware and software and is based on a laser range finder and camera for visual perception. During physical design, prototypes are developed and tested independently, following the modular interfaces identified during conceptual design. Prototype models, once functional, are implemented into the final design. The final vision system design uses a ray-casting algorithm to process camera and laser range finder data and identify potential paths. The ray-casting algorithm is a single thread of the robot's multithreaded application. Other threads control motion, provide feedback, and process sensory data. Once integrated, both hardware and software testing are performed on the robot. We discuss the robot's performance and the lessons learned.

  5. Theoretical research of carbon dioxide power cycle application in automobile industry to reduce vehicle's fuel consumption

    International Nuclear Information System (INIS)

    The current work discusses means to utilize low-grade small-scale energy in vehicle exhaust gases, to reduce the vehicle's fuel consumption and to make it run more environmental friendly. To utilize the energy in the exhaust gas, a CO2 bottoming system in the vehicle's engine system is proposed. Several basic cycles-according to the different design concepts-are presented, and the efficiencies are calculated using Engineering Equation Solver (EES). Several thermodynamic models in EES show that after system optimization, in CO2 Transcritical power cycle with a gas heater pressure of 130bars and 200 deg.. C expansion inlet temperature, about 20% of energy in the exhaust gas can be converted into useful work. Increasing the pressure in the gas heater to 300 bars and with same expansion inlet temperature, about 12% of exhaust gas energy can be converted. When raising the pressure both in the gas cooler and in the gas heater, the cycle runs completely above the critical point, and the efficiency is about 19%. Besides, in the CO2 combined cycle, the system COP is 2.322 and about 5% of exhaust gas energy can be converted

  6. Planning Minimum Interurban Fast Charging Infrastructure for Electric Vehicles: Methodology and Application to Spain

    Directory of Open Access Journals (Sweden)

    Antonio Colmenar-Santos

    2014-02-01

    Full Text Available The goal of the research is to assess the minimum requirement of fast charging infrastructure to allow country-wide interurban electric vehicle (EV mobility. Charging times comparable to fueling times in conventional internal combustion vehicles are nowadays feasible, given the current availability of fast charging technologies. The main contribution of this paper is the analysis of the planning method and the investment requirements for the necessary infrastructure, including the definition of the Maximum Distance between Fast Charge (MDFC and the Basic Highway Charging Infrastructure (BHCI concepts. According to the calculations, distance between stations will be region-dependent, influenced primarily by weather conditions. The study considers that the initial investment should be sufficient to promote the EV adoption, proposing an initial state-financed public infrastructure and, once the adoption rate for EVs increases, additional infrastructure will be likely developed through private investment. The Spanish network of state highways is used as a case study to demonstrate the methodology and calculate the investment required. Further, the results are discussed and quantitatively compared to other incentives and policies supporting EV technology adoption in the light-vehicle sector.

  7. Nickel cadmium battery evaluation, modeling, and application in an electric vehicle

    Science.gov (United States)

    Lynch, William Alfred

    A battery testing facility was set up in the battery evaluation laboratory. This system includes a set of current regulators which were fabricated in the UMASS. Lowell labs and a PC based data acquisition system. Batteries were charged or discharged at any rate within system ratings, and data including battery voltage, current, temperature and impedance were stored by a PC. STM5.140 type nickel-cadmium electric vehicle batteries were subjected to various test procedures using the battery testing facility. The results from these tests were used to determine battery characteristics. An electrical component battery model was also developed using the test data. The validity of the battery model was verified through experimental testing, and it was found to be accurate. Additionally, improved battery charging algorithms were developed which resulted in significant improvements in battery efficiency. Electric car operation with STM5.140 type of batteries was evaluated. Realistic road test data were analyzed experimentally and using the battery model. No battery abuse was found under EV driving conditions. The performance of the STM5.140 battery under abuse conditions was evaluated and it was found that it performs reasonably well under all abuse conditions tested. The model and test methodologies may be incorporated into complete electric vehicle models in order to assist in the design and operation of current and future electric vehicles.

  8. The Application of Fuzzy Control Algorithm of Vehicle with Active Suspensions

    Directory of Open Access Journals (Sweden)

    Chuan-yin Tang

    2012-08-01

    Full Text Available In this study, a fuzzy logic control design is represented for the control of an active suspension system. A seven degrees of freedom non linear full vehicle model is established, instead of two degrees of freedom one quarter model and four degrees of freedom half body model and the road roughness intensity is modeled as a white noise stochastic process. Then a fuzzy logic controller is designed for the control of the seven degrees of freedom full vehicle model, the input variables are the suspension displacement and the output variables are the control force. The time responses of the full vehicle model are obtained, not only the vertical body acceleration, but also the roll angular acceleration and pitch angular acceleration. Finally, uncontrolled and controlled cases are compared. With the aid of software Matlab/simulink, simulation process is done. Simulation results indicate that the proposed active suspension system proves to be effective in the vibration isolation of the suspension system both in ride comfort and in stability.

  9. Air Pollution Prevention Applications for the Transport Sector by Integrating Urban Area Transport and Vehicle Emission Models with the Case Study of Bangkok, Thailand

    OpenAIRE

    Padet Praditphet

    2009-01-01

    This study proposes air pollution prevention applications for urban area transportation aimed at minimizing pollution and meeting ambient air quality standards through the use of transport and vehicle emissions models that account for air pollution changes resulting from prevention strategies. This study combines pollution prevention techniques and transport and vehicle emissions models to enhance air pollution prevention in an urban area. The amount of air emissions from transportation conti...

  10. VersiCharge-SG - Smart Grid Capable Electric Vehicle Supply Equipment (EVSE) for Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Dong [National Renewable Energy Lab. (NREL), Golden, CO (United States); Haas, Harry [National Renewable Energy Lab. (NREL), Golden, CO (United States); Terricciano, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-30

    In his 2011 State of the Union address, President Obama called for one million electric vehicles on the road by 2015 [1]. With large-scale Electric Vehicle (EV) or Plug-in Electric Vehicle (PEV or EV for short) or Plug-in Hybrid Electric Vehicle (PHEV) penetration into the US market, there will be drastic reduction in fossil fuel consumption, thus significantly reducing our dependency on foreign oil [2-6]. There will also be significant reduction on Green House Gas (GHG) emissions and smog in the major US cities [3, 7, 8]. Similar studies have also been done other industrial counties [9]. For the fuel cost, with the home electricity rate around $0.13 per kWh, it would cost about $0.05 per mile for DC operation and $0.03 cents per mile for AC operation. But, assuming 25 miles per gallon for a typical vehicle and $4 per gallon, fossil fuel will cost $0.16 per mile [10]. The overall lifecycle cost of PEVs will be several folds lower than the existing fossil fueled vehicles. Despite the above advantages of the EVs, the current cost of EVSE is not affordable for the average consumer. Presently, the cost of installing state-of-the-art residential EVSE ranges from $1500 to $2500 [11]. Low priced EVSE technology, which is easy to install, and affordable to operate and maintain by an average consumer, is essential for the large-scale market penetration of EVs. In addition, the long-term success of this technology is contingent on the PEVs having minimal excessive load and shift impact on the grid, especially at peak times. In a report [2] published by the Pacific Northwest National Laboratory (PNNL), the exiting electric power generation infrastructure, if used at its full capacity 24 hours a day, would support up to 84% of the nation’s cars, pickup trucks and SUVs for an average daily drive of 33 miles. This mileage estimate is certainly much below what an average driver would drive his/her vehicle per day. Another report [3] by the National Renewable Energy Laboratory

  11. Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

  12. Conceptualization and Appropriation

    DEFF Research Database (Denmark)

    Bossen, Claus; Dalsgård, Peter

    2005-01-01

    parasitic system. First, we argue that the failure of the management's system is caused by the concept of knowledge upon which the system was built. Hence, design of computer systems is as much a question of critical conceptual understanding of its application domain as a question of doing ethnography...... and system development. Second, we argue that the process of design extends far into the process of use and that much can be learned by looking at the process of appropriation of a new system. The problems of conceptualisation and appropriation point towards the need to critically examine the mangle...... of practice in which artefacts, actors and organizations intertwine...

  13. Finite-Element Software for Conceptual Design

    DEFF Research Database (Denmark)

    Lindemann, J.; Sandberg, G.; Damkilde, Lars

    2010-01-01

    and research. Forcepad is an effort to provide a conceptual design and teaching tool in a finite-element software package. Forcepad is a two-dimensional finite-element application based on the same conceptual model as image editing applications such as Adobe Photoshop or Microsoft Paint. Instead of using......Using finite-element analysis in conceptual design and teaching has quite different software requirements to that in engineering and research. In teaching and conceptual design the focus is on speed, interactivity and ease of use, whereas accuracy and precision are needed in engineering...... success in teaching as well as in conceptual design environments such as architecture, industrial design and engineering. The addition of an optimisation algorithm and tablet PC support makes the software even more interesting as a tool for conceptual design....

  14. Application of Technological Control Measures on Vehicle Pollution: A Cost-Benefit Analysis in China

    OpenAIRE

    Nunes, Paulo Augusto; Wu, Qiang

    2005-01-01

    For the past two decades, China has experienced strong, continuous economic growth. At the same time, the number of motor vehicles in China has rapidly increased. As a direct result of such a phenomenon, China has been registering significant increases in air pollution. In spite of recent advances in air pollution control, it remains a serious problem for China’s major cities, and constitutes an important issue in the agenda of its policy makers. The object of this paper is to explore the use...

  15. Integrated Vehicle Health Management Project-Modeling and Simulation for Wireless Sensor Applications

    Science.gov (United States)

    Wallett, Thomas M.; Mueller, Carl H.; Griner, James H., Jr.

    2009-01-01

    This paper describes the efforts in modeling and simulating electromagnetic transmission and reception as in a wireless sensor network through a realistic wing model for the Integrated Vehicle Health Management project at the Glenn Research Center. A computer model in a standard format for an S-3 Viking aircraft was obtained, converted to a Microwave Studio software format, and scaled to proper dimensions in Microwave Studio. The left wing portion of the model was used with two antenna models, one transmitting and one receiving, to simulate radio frequency transmission through the wing. Transmission and reception results were inconclusive.

  16. Applications of aluminum hybrid foam sandwiches in battery housings for electric vehicles

    OpenAIRE

    Baumeister, J; Weise, J; Hirtz, E.; Höhne, K; Hohe, J.

    2014-01-01

    Battery packs for purely electrical driven vehicles should allow for a long driving range, therefore they must be as light as possible. The aim of the project “SmartBatt” – funded by the EC under the 7th Framework Programme – was to create a 20 kWh battery pack which exhibits a 10-15% weight reduction as compared to the State of the Art. This was accomplished by using innovative sandwich materials made of aluminum face sheets and a core of aluminum hybrid foam for the battery housing. Aluminu...

  17. MULTITASK SCHEDULING IN NETWORKED CONTROL SYSTEMS WITH APPLICATION TO LARGE SCALE VEHICLE CONTROL

    Institute of Scientific and Technical Information of China (English)

    YANG Liman; LI Yunhua

    2007-01-01

    Aiming at scheduling problems of networked control system (NCS) used to fulfill motion synthesis and cooperation control of the distributed multi-mechatronic systems, the differences of network scheduling and task scheduling are compared, and the mathematic description of task scheduling is presented. A performance index function of task scheduling of NCS according to task balance and traffic load matching principles is defined. According to this index, a static scheduling method is designed and implemented to controlling task set simulation of the DCY100 transportation vehicle. The simulation results are applied successfully to practical engineering in this case so as to validate the effectiveness of the proposed performance index and scheduling algorithm.

  18. Application of a modified conceptual rainfall-runoff model to simulation of groundwater level in an undefined watershed.

    Science.gov (United States)

    Hong, Nian; Hama, Takehide; Suenaga, Yuichi; Aqili, Sayed Waliullah; Huang, Xiaowu; Wei, Qiaoyan; Kawagoshi, Yasunori

    2016-01-15

    Groundwater level simulation models can help ensure the proper management and use of urban and rural water supply. In this paper, we propose a groundwater level tank model (GLTM) based on a conceptual rainfall-runoff model (tank model) to simulate fluctuations in groundwater level. The variables used in the simulations consist of daily rainfall and daily groundwater level, which were recorded between April 2011 and March 2015 at two representative observation wells in Kumamoto City, Japan. We determined the best-fit model parameters by root-mean-square error through use of the Shuffled Complex Evolution-University of Arizona algorithm on a simulated data set. Calibration and validation results were evaluated by their coefficients of determination, Nash-Sutcliffe efficiency coefficients, and root-mean-square error values. The GLTM provided accurate results in both the calibration and validation of fluctuations in groundwater level. The split sample test results indicate a good reliability. These results indicate that this model can provide a simple approach to the accurate simulation of groundwater levels. PMID:26410713

  19. A Conceptual Model (The Six Mirrors of the Classroom) and It's Application to Teaching and Learning About Microorganisms

    Science.gov (United States)

    Khalil, Mahmood; Lazarowitz, Reuven; Hertz-Lazarowitz, Rachel

    2009-02-01

    In this paper a conceptual model of instruction "the six mirrors of the classroom" used as a frame for teaching a learning topic, the microorganisms are depicted. The paper consists of four sections: (a) the six mirrors of the classroom model (SMC); (b) the SMC as implemented in the expository and cooperative modes of instruction in classrooms and results; (c) a "Journey of Inquiry into the Wonderful World of Microorganisms" (JIWWM), developed according to the Science-Technology-Environment-Peace-Society (STEPS) approach; and (d) teaching and learning the JIWWM, in ninth-grade classes, within the SMC model. The results show that science topic can be taught in the frame of the mirrors of the classroom. When the instructional goals of the teachers used the mirror "1, classroom organization" and mirror "6, pupils' social behavior" and the third ring around the all six mirrors cooperative skills were practiced, academic outcomes were achieved, and attitudes toward environmental preservation and peace improved. The SMC model can serve as a valuable tool for teachers, since it can design their teaching and learning settings in a more controlled environment, in terms of objectives, teachers' and students' social behaviors, and academic outcomes.

  20. Application of GA, PSO, and ACO Algorithms to Path Planning of Autonomous Underwater Vehicles

    Institute of Scientific and Technical Information of China (English)

    Mohammad Pourmahmood Aghababa; Mohammad Hossein Amrollahi; Mehdi Borjkhani

    2012-01-01

    In this paper,an underwater vehicle was modeled with six dimensional nonlinear equations of motion,controlled by DC motors in all degrees of freedom.Near-optimal trajectories in an energetic environment for underwater vehicles were computed using a numerical solution of a nonlinear optimal control problem (NOCP).An energy performance index as a cost function,which should be minimized,was defined.The resulting problem was a two-point boundary value problem (TPBVP).A genetic algorithm (GA),particle swarm optimization (PSO),and ant colony optimization (ACO) algorithms were applied to solve the resulting TPBVP.Applying an Euler-Lagrange equation to the NOCE a conjugate gradient penalty method was also adopted to solve the TPBVP.The problem of energetic environments,involving some energy sources,was discussed.Some near-optimal paths were found using a GA,PSO,and ACO algorithms.Finally,the problem of collision avoidance in an energetic environment was also taken into account.

  1. A Conceptual Space Logic

    DEFF Research Database (Denmark)

    Nilsson, Jørgen Fischer

    Conceptual spaces have been proposed as topological or geometric means for establishing conceptual structures and models. This paper, after briey reviewing conceptual spaces, focusses on the relationship between conceptual spaces and logical concept languages with operations for combining concepts...... to form concepts. Speci cally is introduced an algebraic concept logic, for which conceptual spaces are installed as semantic domain as replacement for, or enrichment of, the traditional....

  2. Analysis of dynamic requirements for fuel cell systems for vehicle applications

    Science.gov (United States)

    Pischinger, Stefan; Schönfelder, Carsten; Ogrzewalla, Jürgen

    Conventional vehicles with internal combustion engines, as well as battery powered electric vehicles, achieve one of the most important customer requirements; achieving extremely short response times to load changes. Also, fast acceleration times from a cold start to full power in the range of seconds are practicable. New fuel cell-based propulsion systems, as well as auxiliary power units, have to fulfill the same demands to become competitive. This includes heating-up the system to operating temperature as well as the control strategy for start-up. An additional device to supply starting air is necessary, if the compressor motor can only be operated with fuel cell voltage. Since the system components (for example, the air supply or the fuel supply) are not mechanically coupled, as is the case with conventional internal combustion engines, these components have to be controlled by different sensors and actuators. This can be an advantage in optimizing the system, but it also can represent an additional challenge. This paper describes the fuel cell system requirements regarding transient operation and their dependence on system structure. In particular, the requirements for peripheral components such as air supply, fuel supply and the balance of heat in a fuel cell system are examined. Furthermore, the paper outlines the necessity of an electric storage device and its resultant capacity, which will enable faster load changes. Acceleration and deceleration of the vehicle are accomplished through the use of the electric storage device, while the fuel cell system only has to deliver the mean power consumption without higher load peaks. On the basis of system simulation, different concepts are evaluated for use as a propulsion system or APU and, then, critical components are identified. The effects of advanced control strategies regarding the dynamic behavior of the system are demonstrated. Technically, a fuel cell system could be a viable propulsion system alternative

  3. Cooperative control of a squad of mobile vehicles

    International Nuclear Information System (INIS)

    Tasks such as the localization of chemical sources, demining, perimeter control, surveillance and search and rescue missions are usually performed by teams of people. At least conceptually, large groups of relatively cheap mobile vehicles outfitted with sensors should be able to automatically accomplish some of these tasks. Sandia National Labs is currently developing a swarm of semi-autonomous all terrain vehicles for remote cooperative sensing applications. This paper will describe the capabilities of this system and outline some of its possible applications. Cooperative control and sensing strategies will also be described. Eight Roving All Terrain Lunar Explorer Rovers (RATLERs) have been built at Sandia as a test platform for cooperative control and sensing applications. This paper will first describe the hardware capabilities of the RATLER system. Then it will describe the basic control algorithm for GPS based navigation and obstacle avoidance. A higher level cooperative control task will then be described

  4. Cooperative control of a squad of mobile vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, C.; Feddema, J.; Klarer, P.

    1998-09-01

    Tasks such as the localization of chemical sources, demining, perimeter control, surveillance and search and rescue missions are usually performed by teams of people. At least conceptually, large groups of relatively cheap mobile vehicles outfitted with sensors should be able to automatically accomplish some of these tasks. Sandia National Labs is currently developing a swarm of semi-autonomous all terrain vehicles for remote cooperative sensing applications. This paper will describe the capabilities of this system and outline some of its possible applications. Cooperative control and sensing strategies will also be described. Eight Roving All Terrain Lunar Explorer Rovers (RATLERs) have been built at Sandia as a test platform for cooperative control and sensing applications. This paper will first describe the hardware capabilities of the RATLER system. Then it will describe the basic control algorithm for GPS based navigation and obstacle avoidance. A higher level cooperative control task will then be described.

  5. Global products or customization to different countries: Conceptual framework and application at Wahler, A german company Of the automotive sector

    Directory of Open Access Journals (Sweden)

    Ailton Conde Jussani

    2013-12-01

    Full Text Available Competition in global markets demands product strategies that can help firms deal with the dilemma of global products versus customization, in serving the markets of different countries. Global products lead to large scales, automation, lower costs, plus the easy transfer of people and technology among many subsidiaries, as well as between corporate headquarters and the subsidiaries. However, the lack of customization makes it difficult to gain share in countless market segments, in many countries, and it may even stop a firm from entering in certain countries. This study outlines a model designed to facilitate this type of decision-making. First, based on the literature, a conceptual model was drawn up and the decision-related elements were grouped into seven factors that aid product customization decisions: 1. Market Positioning; 2. Customers’ strategic importance; 3. Product life-cycle development; 4. Legal requirements; 5. Physical environment; 6. Infrastructure and compatibility; and 7. Suppliers’ strategic importance. The case method was used, given the complex nature of the problem, which calls for an in-depth analysis. The model was tested on one of the products made a German company with a Brazilian subsidiary. The components of the valve and the technological trends were analyzed. The case study showed that the influencing factors are interrelated. It became clear that the technological component is directly related with the seven decision factors, and this aspect is analyzed in depth. Nevertheless, further studies are necessary to validate the model, since the case method does not allow one to generalize the findings.

  6. User's guide to DIANE version 2.1: A microcomputer software package for modeling battery performance in electric vehicle applications

    Science.gov (United States)

    Marr, W. W.; Walsh, W. J.; Symons, P. C.

    1990-06-01

    DIANE is an interactive microcomputer software package for the analysis of battery performance in electric vehicle (EV) applications. The principal objective of this software package is to enable the prediction of EV performance on the basis of laboratory test data for batteries. The model provides a second-by-second simulation of battery voltage and current for any specified velocity time or power time profile. The capability of the battery is modeled by an algorithm that relates the battery voltage to the withdrawn current, taking into account the effect of battery depth-of-discharge (DOD). Because of the lack of test data and other constraints, the current version of DIANE deals only with vehicles using fresh batteries with or without regenerative braking. Deterioration of battery capability due to aging can presently be simulated with user input parameters accounting for an increase of effective internal resistance and/or a decrease of cell no-load voltage. DIANE 2.1 is written in FORTRAN language for use on IBM-compatible microcomputers.

  7. Packet radio data link applications in the NASA Langley Research Center Transport Systems Research Vehicle

    Science.gov (United States)

    Easley, Wesley C.; Carter, Donald; Mcluer, David G.

    1994-01-01

    An amateur packet radio system operating in the very high frequency (VHF) range has been implemented in the Transport Systems Research Vehicle at the NASA Langley Research Center to provide an economical, bidirectional, real-time, ground-to-air data link. The packet system has been used to support flight research involving air traffic control (ATC), differential global positioning systems (DGPS), and windshear terminal doppler weather radar (TDWR). A data maximum rate of 2400 baud was used. Operational reliability of the packet system has been very good. Also, its versatility permits numerous specific configurations. These features, plus its low cost, have rendered it very satisfactory for support of data link flight experiments that do not require high data transfer rates.

  8. Development of a low-cost, unmanned surface vehicle for military applications

    Science.gov (United States)

    Cadena, A.

    2012-06-01

    This paper describes the development of an USV (Unmanned Surface Vehicle) prototype that serves as an educational platform and can be use for coastal patrol and operations in the jungle. The USV length is less than 2 m and range of 5000 m. It's composed by the following modules: propulsion, power, motor driver, CPU, sensor suite, camera system, communication and weapon system. The weapon system is formed by an experimental assault rifle and a rocket launcher with a fire control system. The assault rifle haven't got mechanical moving parts, the bullets (7.62x51mm round) are electronically ignited. The CPU is an FPGA development kit. The USV can be operate in remote mode or fully autonomous. Results of some systems from laboratory and sea trials are show.

  9. Locating, classifying and countering agile land vehicles with applications to command architectures

    CERN Document Server

    Sworder, David D

    2016-01-01

    This book examines real-time target tracking and identification algorithms with a focus on tracking an agile target. The authors look at several problems in which the tradeoff of accuracy and confidence must be made. These issues are explored within the context of specific tracking scenarios chosen to illustrate the tradeoffs in a simple and direct manner. The text covers the Gaussian wavelet estimator (GWE) which has a flexible architecture that is able to fuse uncommon sensor combinations with non-temporal structural constraints.  ·         Discusses applied estimation and prediction of terrestrial targets ·         Covers fusion of heterogeneous sensor types and tracking with non-temporal engagement constraints ·         Examines confidence that the target will be captured and motion analysis of land vehicles.

  10. AGV技术发展综述%Automatic Guided Vehicles System & Its Application

    Institute of Scientific and Technical Information of China (English)

    张正义

    2005-01-01

    @@ 定义 自动导引车系统AGVS(Automatic GuidedVehicles System)是指由自动导引车AGV和地面导引系统组成的、进行物料搬运作业的光机电信息技术一体化的系统.原美国物流协会对AGV的定义是:装备有电磁或光学等自动导引装置,能够沿规定的导引路径行驶,具有安全保护以及各种移载功能的运输车辆.

  11. Neural Network Control-Based Drive Design of Servomotor and Its Application to Automatic Guided Vehicle

    Directory of Open Access Journals (Sweden)

    Ming-Shyan Wang

    2015-01-01

    Full Text Available An automatic guided vehicle (AGV is extensively used for productions in a flexible manufacture system with high efficiency and high flexibility. A servomotor-based AGV is designed and implemented in this paper. In order to steer the AGV to go along a predefined path with corner or arc, the conventional proportional-integral-derivative (PID control is used in the system. However, it is difficult to tune PID gains at various conditions. As a result, the neural network (NN control is considered to assist the PID control for gain tuning. The experimental results are first provided to verify the correctness of the neural network plus PID control for 400 W-motor control system. Secondly, the AGV includes two sets of the designed motor systems and CAN BUS transmission so that it can move along the straight line and curve paths shown in the taped videos.

  12. Vehicle rollover avoidance by application of gain-scheduled LQR controllers using state observers

    Science.gov (United States)

    Dal Poggetto, Vinicius F.; Serpa, Alberto L.

    2016-02-01

    Many researches have been conducted in the area of control applied to vehicle dynamics, aiming at reducing the possibility of the occurrence of the type of accident known as rollover. In this research, based on a common nonlinear model and its linearisation, a method for properly selecting matrices for solving the Riccati equation considering different speeds was proposed. The method showed in which ways speed really influences the choice of controller gains. By developing the dynamic equations for the yaw- and roll-coupled motions and modelling of controllers and state observers, it is possible to compare the efficacy of this control strategy using both linear and nonlinear simulations using Matlab. Significant results were obtained regarding the reduction of the rollover coefficient for a double-lane change manoeuvre at different speeds, thus indicating advantages of using this controller in practical cases.

  13. Development of Sensors and Sensing Technology for Hydrogen Fuel Cell Vehicle Applications

    Energy Technology Data Exchange (ETDEWEB)

    Brosha, E L; Sekhar, P K; Mukundan, R; Williamson, T; Garzon, F H; Woo, L Y; Glass, R R

    2010-01-06

    One related area of hydrogen fuel cell vehicle (FCV) development that cannot be overlooked is the anticipated requirement for new sensors for both the monitoring and control of the fuel cell's systems and for those devices that will be required for safety. Present day automobiles have dozens of sensors on-board including those for IC engine management/control, sensors for state-of-health monitoring/control of emissions systems, sensors for control of active safety systems, sensors for triggering passive safety systems, and sensors for more mundane tasks such as fluids level monitoring to name the more obvious. The number of sensors continues to grow every few years as a result of safety mandates but also in response to consumer demands for new conveniences and safety features. Some of these devices (e.g. yaw sensors for dynamic stability control systems or tire presure warning RF-based devices) may be used on fuel cell vehicles without any modification. However the use of hydrogen as a fuel will dictate the development of completely new technologies for such requirements as the detection of hydrogen leaks, sensors and systems to continuously monitor hydrogen fuel purity and protect the fuel cell stack from poisoning, and for the important, yet often taken for granted, tasks such as determining the state of charge of the hydrogen fuel storage and delivery system. Two such sensors that rely on different transduction mechanisms will be highlighted in this presentation. The first is an electrochemical device for monitoring hydrogen levels in air. The other technology covered in this work, is an acoustic-based approach to determine the state of charge of a hydride storage system.

  14. Combined Estimation of Hydrogeologic Conceptual Model, Parameter, and Scenario Uncertainty with Application to Uranium Transport at the Hanford Site 300 Area

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Philip D.; Ye, Ming; Rockhold, Mark L.; Neuman, Shlomo P.; Cantrell, Kirk J.

    2007-07-30

    This report to the Nuclear Regulatory Commission (NRC) describes the development and application of a methodology to systematically and quantitatively assess predictive uncertainty in groundwater flow and transport modeling that considers the combined impact of hydrogeologic uncertainties associated with the conceptual-mathematical basis of a model, model parameters, and the scenario to which the model is applied. The methodology is based on a n extension of a Maximum Likelihood implementation of Bayesian Model Averaging. Model uncertainty is represented by postulating a discrete set of alternative conceptual models for a site with associated prior model probabilities that reflect a belief about the relative plausibility of each model based on its apparent consistency with available knowledge and data. Posterior model probabilities are computed and parameter uncertainty is estimated by calibrating each model to observed system behavior; prior parameter estimates are optionally included. Scenario uncertainty is represented as a discrete set of alternative future conditions affecting boundary conditions, source/sink terms, or other aspects of the models, with associated prior scenario probabilities. A joint assessment of uncertainty results from combining model predictions computed under each scenario using as weight the posterior model and prior scenario probabilities. The uncertainty methodology was applied to modeling of groundwater flow and uranium transport at the Hanford Site 300 Area. Eight alternative models representing uncertainty in the hydrogeologic and geochemical properties as well as the temporal variability were considered. Two scenarios represent alternative future behavior of the Columbia River adjacent to the site were considered. The scenario alternatives were implemented in the models through the boundary conditions. Results demonstrate the feasibility of applying a comprehensive uncertainty assessment to large-scale, detailed groundwater flow

  15. Polymer packaging for arrayed ionic polymer–metal composites and its application to micro air vehicle control surface

    International Nuclear Information System (INIS)

    In this study, ionic polymer–metal composite (IPMC) actuators arrayed in horizontal as well as vertical directions were investigated for more effective actuation performance. A very thin polymer packaging structure named 'glove' was designed and fabricated, and the IPMC package, composed of the glove and the arrayed IPMCs, was applied to the multifunctional control surface of a micro air vehicle (MAV). The IPMC package is light and space-saving, and therefore appropriate for the application of a MAV which has a limitation in weight and size. A wind tunnel test was performed to demonstrate the capability of the IPMC package for the control surface of a MAV and it was confirmed that the package generates enough force to maneuver a MAV

  16. 柴油汽车SCR技术的应用研究%Application Study of SCR Technology to Diesel Vehicle

    Institute of Scientific and Technical Information of China (English)

    崔勇; 陈靖芯; 王燕; 刘蕴青

    2013-01-01

    The analysis is made about the reason why the domestic manufacturers apply SCR technology to meet the Europe IV emission standard. The SCR system's composition and working principle, SCR technology application of diesel vehicle are introduced. The major factors affecting the NOX transformation efficiency of SCR system are re-searched.%  分析国内厂家采用SCR技术满足欧Ⅳ排放的原因,介绍SCR 系统的组成和工作原理、柴油汽车SCR系统的应用方案,研究影响SCR 系统NOX转化效率的主要因素。

  17. Design and Implementation of Anti-windup PI Control on DC-DC Bidirectional Converter for Hybrid Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Muh. Zakiyullah Romdlony

    2012-07-01

    Full Text Available Well-regulated DC bus voltage is the important point to guarantee the power demand in hybrid vehicle applications. Voltage regulation can be achieved with control method that build switching signal on DC-DC converter. This paper describes design and small scale experimental results of bus voltage regulation control of the DC-DC bidirectional converter with battery and supercapacitor as energy source. The control system consists of two control loops, the outer loop that get DC bus voltage feedback using PI anti-windup back calculation control method. This outer loop will generate a reference current for the inner loop that implement hysteresis control. The inner control loop will compare that reference curent with the source current obtained from the current sensor. Simulation and experimental results show that bus voltage is well-regulated under the load changes with 1% voltage ripple.

  18. Application of Icelandic Tort Law to Autonomous Vehicles: Analysis of Legal Challenges and Practical Problems under the current regulatory framework

    OpenAIRE

    Rúnarsson, Bjarni Freyr

    2015-01-01

    In recent years, autonomous vehicles have attracted much attention. While such vehicles will have an immense potential in increasing traffic safety, they will be involved in traffic accidents. In Chapter 2, the term autonomous vehicle is defined, positively and negatively. Further, it is sought to shed light on the social impact of autonomous vehicles. Also, some challenges that they will pose are discussed, particularly some profound legal problems in various areas of the law. In Chapter 3...

  19. Conceptual Models Core to Good Design

    CERN Document Server

    Johnson, Jeff

    2011-01-01

    People make use of software applications in their activities, applying them as tools in carrying out tasks. That this use should be good for people--easy, effective, efficient, and enjoyable--is a principal goal of design. In this book, we present the notion of Conceptual Models, and argue that Conceptual Models are core to achieving good design. From years of helping companies create software applications, we have come to believe that building applications without Conceptual Models is just asking for designs that will be confusing and difficult to learn, remember, and use. We show how Concept

  20. Friction Stir Weld Application and Tooling Design for the Multi-purpose Crew Vehicle Stage Adapter

    Science.gov (United States)

    Alcorn, John

    2013-01-01

    The Multi-Purpose Crew Vehicle (MPCV), commonly known as the Orion capsule, is planned to be the United States' next manned spacecraft for missions beyond low earth orbit. Following the cancellation of the Constellation program and creation of SLS (Space Launch System), the need arose for the MPCV to utilize the Delta IV Heavy rocket for a test launch scheduled for 2014 instead of the previously planned Ares I rocket. As a result, an adapter (MSA) must be used in conjunction with the MPCV to account for the variation in diameter of the launch vehicles; 5.5 meters down to 5.0 meters. Prior to ight article fabrication, a path nder (test article) will be fabricated to ne tune the associated manufacturing processes. The adapter will be comprised of an aluminum frustum (partial cone) that employs isogrid technology and circumferential rings on each end. The frustum will be fabricated by friction stir welding (FSW) three individual panels together on a Vertical Weld Tool (VWT) at NASA Marshall Space Flight Center. Subsequently, each circumferential ring will be friction stir welded to the frustum using a Robotic Weld Tool (RWT). The irregular geometry and large mass of the MSA require that extensive tooling preparation be put into support structures for the friction stir weld. The tooling on the VWT will be comprised of a set of conveyors mounted on pre-existing stanchions so that the MSA will have the ability to be rotated after each of the three friction stir welds. The tooling requirements to friction stir weld the rings with the RWT are somewhat more demanding. To support the mass of the MSA and resist the load of the weld tool, a system of mandrels will be mounted to stanchions and assembled in a circle. The goal of the paper will be to explain the design, fabrication, and assembly of the tooling, to explain the use of friction stir welding on the MSA path nder, and also to discuss the lessons learned and modi cations made in preparation for ight article fabrication

  1. Conceptual design of a high-speed electromagnetic switch for a modified flux-coupling-type SFCL and its application in renewable energy system.

    Science.gov (United States)

    Chen, Lei; Chen, Hongkun; Yang, Jun; Shu, Zhengyu; He, Huiwen; Shu, Xin

    2016-01-01

    The modified flux-coupling-type superconducting fault current (SFCL) is a high-efficient electrical auxiliary device, whose basic function is to suppress the short-circuit current by controlling the magnetic path through a high-speed switch. In this paper, the high-speed switch is based on electromagnetic repulsion mechanism, and its conceptual design is carried out to promote the application of the modified SFCL. Regarding that the switch which is consisting of a mobile copper disc, two fixed opening and closing coils, the computational method for the electromagnetic force is discussed, and also the dynamic mathematical model including circuit equation, magnetic field equation as well as mechanical motion equation is theoretically deduced. According to the mathematical modeling and calculation of characteristic parameters, a feasible design scheme is presented, and the high-speed switch's response time can be less than 0.5 ms. For that the modified SFCL is equipped with this high-speed switch, the SFCL's application in a 10 kV micro-grid system with multiple renewable energy sources are assessed in the MATLAB software. The simulations are well able to affirm the SFCL's performance behaviors. PMID:27386257

  2. Indirect Matrix Converter for Hybrid Electric Vehicle Application with Three-Phase and Single-Phase Outputs

    Directory of Open Access Journals (Sweden)

    Yeongsu Bak

    2015-04-01

    Full Text Available This paper presents an indirect matrix converter (IMC topology for hybrid electric vehicle (HEV application with three-phase and single-phase outputs. The HEV includes mechanical, electrical, control, and electrochemical systems among others. In the mechanical system, a traction motor and a compressor motor are used to drive the HEV. The traction motor and the compressor motor are usually operated as three-phase and single-phase motors, respectively. In this respect, a dual AC-drive system can operate the traction and the compressor motor simultaneously. Furthermore, compared to a conventional dual matrix converter system, the proposed topology can reduce the number of switches that the dual outputs share with a DC-link. The application of this system for HEV has advantages, like long lifetime and reduced volume due to the lack of a DC-link. The proposed control strategy and modulation schemes ensure the sinusoidal input and output waveforms and bidirectional power transmission. The proposed system for the HEV application is verified by simulation and experiments.

  3. Linking orogen and peripheral foreland basin: conceptual model and application to the Southalpine-Dinaric (Friuli) orocline

    Science.gov (United States)

    Heberer, Bianca; Neubauer, Franz

    2010-05-01

    Surface uplift and rock exhumation within an orogen are generally a consequence of convergence, and can often be linked with subsidence in a peripheral foreland. Since vertical loads act on the entire lithosphere, these processes can, therefore, be considered as plate-scale processes. Here, we propose a conceptual model for this linkage for the Friuli orocline and its surrounding units. The Friuli orocline stretches from the ENE-trending Southern Alps to the SE-trending Dinarides. There, two Neogene stages of convergence and associated deformation can be differentiated: (1) a Mid-Late Miocene phase of increased surface uplift and intra-orogenic subsidence of sedimentary basins reflecting intra-orogenic crustal-scale folding. Depocentres are e.g. the flexural Belluno, Ljubljana and Klagenfurt basins. (2) A second stage of convergence during Late Pliocene-Pleistocene times led to overall surface uplift in the orogen and contemporaneous pronounced subsidence in the peripheral foreland basin (Venetian platform and the northern Adriatic Sea). We propose, that the spatially variable extent of subsidence originates in variably strong orogen-basin coupling, i.e. weak coupling during stage 1 vs. strong coupling during stage 2. This interpretation is based on the apatite fission track age pattern, the distribution of intra-orogenic Neogene sediment basins and subsidence analyses in the foreland basin (Barbieri et al., 2007). Available low-temperature thermochronological data for the Southern Alps and the NW Dinarides are sparse, in contrast to a dense network of primarily apatite fission track ages north of the Periadriatic lineament (e.g. summarized by Luth & Willingshofer, 2008). AFT ages adjacent to the eastern Periadriatic Lineament mainly range from 15 to 25 Ma (Hejl, 1997; Fodor et al., 2008). Detrital studies on Oligocene to Miocene sediments from the Venetian foreland basin yielded dominant age groups clustering roughly around 20 and 30 Ma (Stefani et al., 2008

  4. Aircraft Design Automation and Subscale Testing : With Special Reference to Micro Air Vehicles

    OpenAIRE

    Lundström, David

    2012-01-01

    This dissertation concerns how design automation as well as rapid prototyping and testing of subscale prototypes can support aircraft design. A framework for design automation has been developed and is applied specifically to Micro Air Vehicles (MAV). MAVs are an interesting area for design automation as they are an application where the entire design, from requirements to manufacturing, can indeed be automated. From a complexity point of view it can be considered to be similar to conceptual ...

  5. Autonomous Vehicles with High Capacity Computational Power Used in Remote Sensing Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In military operations, large remotely piloted UAVs have been successfully deployed for several years. The success in this application has spawned a new area of...

  6. Environmental performance of advanced hybrid energy storage systems for electric vehicle applications

    International Nuclear Information System (INIS)

    Highlights: • The environmental impact of advanced energy storage systems is assessed. • The methodology used is Life Cycle Assessment following the ISO 14040 and 14044. • Twelve impact categories are assessed to avoid burden shifting. • Increasing the efficiency and extending the lifetime benefits the environmental performance. • The results show that there are hot spots where to act and reduce the overall impact. - Abstract: In this paper the environmental performance of an advanced hybrid energy storage system, comprising high power and high energy lithium iron phosphate cells, is compared with a stand alone battery concept composed of lithium manganese oxide cells. The methodology used to analyse the environmental impacts is Life Cycle Assessment (LCA). The manufacturing, use phase and end-of-life of the battery packs are assessed for twelve impact categories. The functional unit is 1 km driven under European average conditions. The present study assesses the environmental performance of the two battery packs for two scenarios: scenario 1 with a vehicle total drive range of 150,000 km and scenario 2 with total driving range of the car of 300,000 km. The results of scenario 1 show that the increased efficiency of the hybrid system reduces, in general, the environmental impact during the use stage, although the manufacturing stage has higher impact than the benchmark. Scenario 2 shows how the extended lifetime of the hybrid system benefits the emissions per km driven

  7. Application of Fault Management Theory to the Quantitive Selection of a Launch Vehicle Abort Trigger Suite

    Science.gov (United States)

    Lo, Yunnhon; Johnson, Stephen B.; Breckenridge, Jonathan T.

    2014-01-01

    SHM/FM theory has been successfully applied to the selection of the baseline set Abort Triggers for the NASA SLS center dot Quantitative assessment played a useful role in the decision process ? M&FM, which is new within NASA MSFC, required the most "new" work, as this quantitative analysis had never been done before center dot Required development of the methodology and tool to mechanize the process center dot Established new relationships to the other groups ? The process is now an accepted part of the SLS design process, and will likely be applied to similar programs in the future at NASA MSFC ? Future improvements center dot Improve technical accuracy ?Differentiate crew survivability due to an abort, vs. survivability even no immediate abort occurs (small explosion with little debris) ?Account for contingent dependence of secondary triggers on primary triggers ?Allocate "? LOC Benefit" of each trigger when added to the previously selected triggers. center dot Reduce future costs through the development of a specialized tool ? Methodology can be applied to any manned/unmanned vehicle, in space or terrestrial

  8. A Lossy Counting-Based State of Charge Estimation Method and Its Application to Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2015-12-01

    Full Text Available Estimating the residual capacity or state-of-charge (SoC of commercial batteries on-line without destroying them or interrupting the power supply, is quite a challenging task for electric vehicle (EV designers. Many Coulomb counting-based methods have been used to calculate the remaining capacity in EV batteries or other portable devices. The main disadvantages of these methods are the cumulative error and the time-varying Coulombic efficiency, which are greatly influenced by the operating state (SoC, temperature and current. To deal with this problem, we propose a lossy counting-based Coulomb counting method for estimating the available capacity or SoC. The initial capacity of the tested battery is obtained from the open circuit voltage (OCV. The charging/discharging efficiencies, used for compensating the Coulombic losses, are calculated by the lossy counting-based method. The measurement drift, resulting from the current sensor, is amended with the distorted Coulombic efficiency matrix. Simulations and experimental results show that the proposed method is both effective and convenient.

  9. Application of radio control cars as intelligent unmanned ground vehicles with collaborative and independent behavior

    Science.gov (United States)

    Wasson, Steven R.; Kouns, John; Bruder, Stephen; Wedeward, Kevin; El-Osery, Aly

    2004-09-01

    Simple radio control cars commonly sold as toys can provide a viable starting platform for the development of low-cost intelligent Unmanned Ground Vehicles (UGVs) for the study of robot collectives. In a collaborative effort, Sandia National Labs and New Mexico Tech have successfully demonstrated proof-of-concept by utilizing low-cost radio control cars manufactured by Nikko. Initial tests have involved using a small number (two to ten) of these UGVs to successfully demonstrate both collaborative and independent behavior simultaneously. In the tests individuals share their locations with the collective to cover an area, thus demonstrating collaborative behavior. Independent behavior is demonstrated as each member of the collective maintains a desired compass heading while simultaneously avoiding obstacles in its path. These UGVs are powered by high-capacity rechargeable batteries and equipped with a custom-designed microcontroller board with a stackable modular interface and wireless communication. The initial modular sensor configuration includes a digital compass and GPS unit for navigation as well as ultrasonic sensors for obstacle avoidance. This paper describes the design and operations of these UGVs, their possible uses, and the advantages of using a radio control car platform as a low-cost starting point for the development of intelligent UGV collectives.

  10. Experimental impedance investigation of an ultracapacitor at different conditions for electric vehicle applications

    Science.gov (United States)

    Zhang, Lei; Hu, Xiaosong; Wang, Zhenpo; Sun, Fengchun; Dorrell, David G.

    2015-08-01

    Ultracapacitors (UCs) are being increasingly deployed as a short-term energy storage device in various energy systems including uninterruptable power supplies, electrified vehicles, renewable energy systems, and wireless communication. They exhibit excellent power density and energy efficiency. The dynamic behavior of a UC, however, strongly depends on its impedance characteristics. In this paper, the impedance characteristics of a commercial UC are experimentally investigated through the well-adopted Electrochemical Impedance Spectroscopy (EIS) technique. The implications of the UC operating conditions (i.e., temperature and state of charge (SOC)) to the impedance are systematically examined. The results show that the impedance is highly sensitive to the temperature and SOC; and the temperature effect is more significant. In particular, the coupling effect between the temperature and SOC is illustrated, as well as the high-efficiency SOC window, which is highlighted. To further verify the reliability of the EIS-based investigation and to probe the sensitivity of UC parameters to the operating conditions, a dynamic model is characterized by fitting the collected impedance data. The interdependence of UC parameters (i.e., capacitance and resistance elements) on the temperature and SOC is quantitatively revealed. The impedance-based model is demonstrated to be accurate in two driving-cycle tests.

  11. Clutch fill control of an automatic transmission for heavy-duty vehicle applications

    Science.gov (United States)

    Meng, Fei; Chen, Huiyan; Zhang, Tao; Zhu, Xiaoyuan

    2015-12-01

    In this paper an integrated clutch filling phase control for gearshifts on wet clutch transmissions is developed. In a clutch-to-clutch shift of an automatic transmission, in order to obtain smooth gearshift, it should synchronize the oncoming clutch and the off-going clutch timely as well as precise pressure control for the engagement of the oncoming clutch. However, before the oncoming clutch pressure starts to increase, the initial cavity of the clutch chamber has to be filled first. The filling time and stability of the fill phase are very important for the clutch control. In order to improve the shift quality of the automatic transmission which is equipped on heavy-duty vehicles, the electro-hydraulic clutch actuation system is analysed and modelled. A new fill phase control strategy is proposed based on the system analysis as well as the control parameters are optimized according to the variation of the oil temperature and engine speed. The designed strategy is validated by a simulation work. The results demonstrate that the proposed control strategy and parameters modified method can transit the shift process from the fill phase to the torque phase effectively.

  12. Design and Optimization of Permanent Magnet Brushless Machines for Electric Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Weiwei Gu

    2015-12-01

    Full Text Available In this paper, by considering and establishing the relationship between the maximum operating speed and d-axis inductance, a new design and optimization method is proposed. Thus, a more extended constant power speed range, as well as reduced losses and increased efficiency, especially in the high-speed region, can be obtained, which is essential for electric vehicles (EVs. In the first step, the initial permanent magnet (PM brushless machine is designed based on the consideration of the maximum speed and performance specifications in the entire operation region. Then, on the basis of increasing d-axis inductance, and meanwhile maintaining constant permanent magnet flux linkage, the PM brushless machine is optimized. The corresponding performance of the initial and optimal PM brushless machines are analyzed and compared by the finite-element method (FEM. Several tests are carried out in an EV simulation model based on the urban dynamometer driving schedule (UDDS for evaluation. Both theoretical analysis and simulation results verify the validity of the proposed design and optimization method.

  13. The development and application of tailored test problems for metasimulation of multidisciplinary optimization of vehicle structures

    OpenAIRE

    Sala R; Pierini M; Baldanzini N

    2014-01-01

    In the last decades a tremendous amount of biologically inspired metaheuristic optimization algorithms have been developed [1]. The application of such optimization methods is widely spread in various fields of engineering, including those dealing with single or multidisciplinary design optimization (MDO) based on numerical simulation responses, from disciplines such as crashworthiness and structural dynamics for automotive applications [2]. For optimization-practitioners from the field of en...

  14. 车用空调系统在农用车辆上的应用%Application of Vehicle Air-conditioning System in Farm Vehicle

    Institute of Scientific and Technical Information of China (English)

    彭高宏

    2011-01-01

    Aimming at the structure,principle and general requirement of air-conditioning system,the practical methods for adding air conditioner on farm vehicles are introduced.%依据车用空调系统的结构和原理,以及加装空调的一般要求,介绍了农用车辆加装空调的具体方法。

  15. 远程医疗会诊车在处置突发事件中的应用%Application of Telemedicine Consultation Vehicle in Dealing with Contingency

    Institute of Scientific and Technical Information of China (English)

    田玉兔; 李晓康

    2011-01-01

    介绍了远程医疗会诊车在处置突发事件中远程医疗会诊、视音频通讯、远程网络通信等应用模式及实现方法,比较应用了远程医疗会诊车在野战状况下外置视音频信号的连接方式及适用性,总结了远程医疗会诊车在实际应用中的可行性经验,可作为远程医疗会诊车在处置各类突发事件过程中的应用参考,具有较强的实用价值和指导意义.%The various kind application modes and implementation methods of real-time chiri-cal consmlfation, video -audio frequency communications, remote network communications of telemedicine consultation vehicle in dealing with contingency are introduced. Connection mode and applicability of outlay video-audibility signal of telemedicine consultation vehicle in field battle are applied and compared, and the feasibility experience about the practical application of telemedicine consultation vehicle are summarized, which has stronger practical value and guide significance for application of telemedicine consultation vehicle in dealing with contingency.

  16. Standards and Specifications for Ground Processing of Space Vehicles: From an Aviation-Based Shuttle Project to Global Application

    Science.gov (United States)

    Ingalls, John; Cipolletti, John

    2011-01-01

    Dabase (CSDB), and COTS (commercial off-the-shelf) software is available for production of IETP's (Interactive Electronic Technical Publications). A few space industry products in Europe have begun to apply Sl000D already. Also, there are other related standards/specifications which have global implications. We have an opportunity to adapt Sl000D and possibly other standards for use with space vehicles and ground systems. Sl000D has plenty of flexibility to apply to any product needed. To successfully grow the viability of the space industry, all members, commercial and government, will need to engage cooperatively in developing and applying standards to move toward interoperability. If we leverage and combine the best existing space standards and specifications, develop new ones to address known gaps, and adapt the best applicable features from other industries, we can establish an infrastructure to not only accelerate current development, but also build longevity for a more cohesive international space community.

  17. Solid Oxide Fuel Cell Development for Auxiliary Power in Heavy Duty Vehicle Applications

    Energy Technology Data Exchange (ETDEWEB)

    Daniel T. Hennessy

    2010-06-15

    Changing economic and environmental needs of the trucking industry is driving the use of auxiliary power unit (APU) technology for over the road haul trucks. The trucking industry in the United States remains the key to the economy of the nation and one of the major changes affecting the trucking industry is the reduction of engine idling. Delphi Automotive Systems, LLC (Delphi) teamed with heavy-duty truck Original Equipment Manufacturers (OEMs) PACCAR Incorporated (PACCAR), and Volvo Trucks North America (VTNA) to define system level requirements and develop an SOFC based APU. The project defines system level requirements, and subsequently designs and implements an optimized system architecture using an SOFC APU to demonstrate and validate that the APU will meet system level goals. The primary focus is on APUs in the range of 3-5 kW for truck idling reduction. Fuels utilized were derived from low-sulfur diesel fuel. Key areas of study and development included sulfur remediation with reformer operation; stack sensitivity testing; testing of catalyst carbon plugging and combustion start plugging; system pre-combustion; and overall system and electrical integration. This development, once fully implemented and commercialized, has the potential to significantly reduce the fuel idling Class 7/8 trucks consume. In addition, the significant amounts of NOx, CO2 and PM that are produced under these engine idling conditions will be virtually eliminated, inclusive of the noise pollution. The environmental impact will be significant with the added benefit of fuel savings and payback for the vehicle operators / owners.

  18. Study of Mesoporous Silica Nanoparticles' (MSNs) intracellular trafficking and their application as drug delivery vehicles

    Science.gov (United States)

    Yanes, Rolando Eduardo

    Mesoporous silica nanoparticles (MSNs) are attractive drug delivery vehicle candidates due to their biocompatibility, stability, high surface area and efficient cellular uptake. In this dissertation, I discuss three aspects of MSNs' cellular behavior. First, MSNs are targeted to primary and metastatic cancer cell lines, then their exocytosis from cancer cells is studied, and finally they are used to recover intracellular proteins. Targeting of MSNs to primary cancer cells is achieved by conjugating transferrin on the surface of the mesoporous framework, which resulted in enhancement of nanoparticle uptake and drug delivery efficacy in cells that overexpress the transferrin receptor. Similarly, RGD peptides are used to target metastatic cancer cell lines that over-express integrin alphanubeta3. A circular RGD peptide is bound to the surface of MSNs and the endocytosis and cell killing efficacy of camptothecin loaded nanoparticles is significantly improved in cells that express the target receptor. Besides targeting, I studied the ultimate fate of phosphonate coated mesoporous silica nanoparticles inside cells. I discovered that the nanoparticles are exocytosed from cells through lysosomal exocytosis. The nanoparticles are exocytosed in intact form and the time that they remain inside the cells is affected by the surface properties of the nanoparticles and the type of cells. Cells that have a high rate of lysosomal exocytosis excrete the nanoparticles rapidly, which makes them more resistant to drug loaded nanoparticles because the amount of drug that is released inside the cell is limited. When the exocytosis of MSNs is inhibited, the cell killing efficacy of nanoparticles loaded with camptothecin is enhanced. The discovery that MSNs are exocytosed by cells led to a study to determine if proteins could be recovered from the exocytosed nanoparticles. The procedure to isolate exocytosed zinc-doped iron core MSNs and identify the proteins bound to them was developed

  19. Conceptual design of thermal energy storage systems for near term electric utility applications. Volume 1: Screening of concepts

    Science.gov (United States)

    Hausz, W.; Berkowitz, B. J.; Hare, R. C.

    1978-01-01

    Over forty thermal energy storage (TES) concepts gathered from the literature and personal contacts were studied for their suitability for the electric utility application of storing energy off-peak discharge during peak hours. Twelve selections were derived from the concepts for screening; they used as storage media high temperature water (HTW), hot oil, molten salts, and packed beds of solids such as rock. HTW required pressure containment by prestressed cast-iron or concrete vessels, or lined underground cavities. Both steam generation from storage and feedwater heating from storage were studied. Four choices were made for further study during the project. Economic comparison by electric utility standard cost practices, and near-term availability (low technical risk) were principal criteria but suitability for utility use, conservation potential, and environmental hazards were considered.

  20. A new multi-sensor registration technique for three-dimensional scene modeling with application to unmanned vehicle mobility enhancement

    Science.gov (United States)

    Boughorbel, Faysal; Koschan, Andreas; Abidi, Mongi

    2005-05-01

    The focus of this paper is on the reconstruction of 3D representations of real world scenes and objects using multiple sensors with, as one of its main applications, the enhancement of the autonomy and mobility of unmanned vehicles. The sensors considered are primarily range acquisition devices (such as laser scanners and stereo systems) that allow the recovery of 3D geometry. One of the most important technical challenges that we are addressing is the registration task in both its multi-modal and single modality aspects. Our work is based on a unified approach that formulates the correspondence problem as an optimization task. In this context we developed a criterion that can be used for 3D free-form shape registration. The new criterion is derived from simple Boolean matching principles by approximation and relaxation. Technically, one of the main advantages of the proposed approach is convexity in the neighborhood of the alignment parameters and continuous differentiability, allowing for the use of standard gradient-based optimization techniques. The proposed algorithm allows also for a significant automation of the scene modeling task by reducing the intervention of human operators in the tedious image registration task. Furthermore, we show that the criterion can be computed in linear time complexity which permits the fast implementation critical in many applications of autonomous mobile platforms.

  1. Shuttle mission simulator software conceptual design

    Science.gov (United States)

    Burke, J. F.

    1973-01-01

    Software conceptual designs (SCD) are presented for meeting the simulator requirements for the shuttle missions. The major areas of the SCD discussed include: malfunction insertion, flight software, applications software, systems software, and computer complex.

  2. Towards WSN-aided Navigation for Vehicles in Smart Cities: An Application Case Study.

    OpenAIRE

    Dagher, Roudy; Mitton, Nathalie; Amadou, Ibrahim

    2014-01-01

    With the emergence of Smart City concept, Wireless Sensor Networks (WSNs) become one of the key technologies for instrumenting the city, and thus providing its inhabitants with various services meant to improve their daily life. One of the identified applications is Smart Street Lightning, where the lamps are in a mesh network for remote control and maintenance purposes. This paper proposes Ubiquitous Navigation System (UNS), a WSN-based navigation system, which takes benefit from the Smart S...

  3. Propulsion integration of hypersonic air-breathing vehicles utilizing a top-down design methodology

    Science.gov (United States)

    Kirkpatrick, Brad Kenneth

    In recent years, a focus of aerospace engineering design has been the development of advanced design methodologies and frameworks to account for increasingly complex and integrated vehicles. Techniques such as parametric modeling, global vehicle analyses, and interdisciplinary data sharing have been employed in an attempt to improve the design process. The purpose of this study is to introduce a new approach to integrated vehicle design known as the top-down design methodology. In the top-down design methodology, the main idea is to relate design changes on the vehicle system and sub-system level to a set of over-arching performance and customer requirements. Rather than focusing on the performance of an individual system, the system is analyzed in terms of the net effect it has on the overall vehicle and other vehicle systems. This detailed level of analysis can only be accomplished through the use of high fidelity computational tools such as Computational Fluid Dynamics (CFD) or Finite Element Analysis (FEA). The utility of the top-down design methodology is investigated through its application to the conceptual and preliminary design of a long-range hypersonic air-breathing vehicle for a hypothetical next generation hypersonic vehicle (NHRV) program. System-level design is demonstrated through the development of the nozzle section of the propulsion system. From this demonstration of the methodology, conclusions are made about the benefits, drawbacks, and cost of using the methodology.

  4. Comparison of PVT and NaI(Tl) scintillators for vehicle portal monitor applications

    International Nuclear Information System (INIS)

    The demand for radiation portal monitor (RPM) systems has increased, and their capabilities are being further scrutinized as they are being applied to the task of detecting nuclear weapons, special nuclear material, and radiation dispersal device materials that could appear at borders. The requirements and constraints on RPM systems deployed at high-volume border crossings are significantly different from those at weapons facilities or steel recycling plants, where RPMs have been historically employed. In this new homeland security application, RPM systems must rapidly detect localized sources of radiation with a very high detection probability and low false-alarm rate, while screening all of the traffic without impeding the flow of commerce. In light of this new Department of Homeland Security application, the capabilities of two popular gamma-ray-detector materials as applied to these needs are re-examined. Both experimental data and computer simulations, together with practical deployment experience, are used to assess currently available polyvinyltoluene and NaI(Tl) gamma-ray detectors for border applications

  5. Sensor-based control with digital maps association for global navigation: a real application for autonomous vehicles

    OpenAIRE

    Alves De Lima, Danilo; Corrêa Victorino, Alessandro

    2015-01-01

    This paper presents a sensor-based control strategy applied in the global navigation of autonomous vehicles in urban environments. Typically, sensor-based control performs local navigation tasks regarding some features perceived from the environment. However, when there is more than one possibility to go, like in road intersection, the vehicle control fails to accomplish its global navigation. In order to solve this problem, we propose the vehicle global navigation based on a topological repr...

  6. Development of Three-dimensional Grid-free Solver and its Applications to Multi-body Aerospace Vehicles

    OpenAIRE

    K. Anandhanarayanan

    2010-01-01

    Grid-free solver has the ability to solve complex multi-body industrial problems with minimal effort. Grid-free Euler solver has been applied to number of multi-body aerospace vehicles using Chimera clouds of points including flight vehicle with fin deflection, nose fairing separation of hypersonic launch vehicle. A preprocessor has been developed to generate connectivity for multi-bodies using overlapped grids. Surface transpiration boundary condition has been implemented to model aerodynami...

  7. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Hydrogen vehicle safety report

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-05-01

    This report reviews the safety characteristics of hydrogen as an energy carrier for a fuel cell vehicle (FCV), with emphasis on high pressure gaseous hydrogen onboard storage. The authors consider normal operation of the vehicle in addition to refueling, collisions, operation in tunnels, and storage in garages. They identify the most likely risks and failure modes leading to hazardous conditions, and provide potential countermeasures in the vehicle design to prevent or substantially reduce the consequences of each plausible failure mode. They then compare the risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas.

  8. Conceptual Drivers for an Exploration Medical System

    Science.gov (United States)

    Antonsen, E.; Canga, M.

    2016-01-01

    Interplanetary spaceflight provides unique challenges that have not been encountered in prior spaceflight experience. Extended distance and timeframes introduce new challenges such as an inability to resupply medications and consumables, inability to evacuate injured or ill crew, and communication delays that introduce a requirement for some level of autonomous medical capability. Because of these challenges the approaches used in prior programs have limited application to a proposed three year Mars mission. This paper proposes a paradigm shift in the approach to medical risk mitigation for crew health and mission objectives threatened by inadequate medical capabilities in the setting of severely limited resources. A conceptual approach is outlined to derive medical system and vehicle needs from an integrated vision of how medical care will be provided within this new paradigm. Using NASA Design Reference Missions this process assesses each mission phase to deconstruct medical needs at any point during a mission. Two operational categories are proposed, nominal operations (pre-planned activities) and contingency operations (medical conditions requiring evaluation) that meld clinical needs and research needs into a single system. These definitions are used to derive a task level analysis to support quantifiable studies into a medical capabilities trade. This trade allows system design to proceed from both a mission centric and ethics-based approach to medical limitations in an exploration class mission.

  9. Electric Vehicle Simulation and Animation

    OpenAIRE

    Yang, Li

    2010-01-01

    Range anxiety is a chief concern for all electric vehicles (EVs). Range anxiety summarizes the fear of being stranded in an electric vehicle due to insufficient battery. Therefore, we need a way to simulate and animate use and charging of battery for electric vehicles to assure users of the range of EVs. The application we designed can provide simulation and animation of EVs energy use and charging based on the physical characteristics of specific vehicles, terrain information, and driving ro...

  10. Preliminary design of twin-cylinder engines for hybrid electric vehicle applications

    OpenAIRE

    Louvigny, Yannick; Christiaens, Sébastien; Duysinx, Pierre

    2009-01-01

    Most of HEV are built using existing engines. These engines have been developed for conventional car and are not especially tailored for HEV. The objectives of this work are to establish general requirements placed on an ICE for a HEV application, to draw the main characteristics of the engine and to find the best configuration of twin-cylinder ICE to motorize an HEV. The twin-cylinder engine offer interesting perspectives in the field of HEV thanks to its small size, low weight and low cost.

  11. An approach to test-driven development of conceptual schemas

    OpenAIRE

    Tort Pugibet, Albert; Olivé Ramon, Antoni; Sancho Samsó, María Ribera

    2011-01-01

    Test-Driven Development (TDD) is an extreme programming development method in which a software system is developed in short iterations. In this paper we present the Test-Driven Conceptual Modeling (TDCM) method, which is an application of TDD for conceptual modeling, and we show how to develop a conceptual schema using it. In TDCM, a system's conceptual schema is incrementally obtained by performing three kinds of tasks: (1) Write a test the system should pass; (2) Change the schema to ...

  12. Conceptual designs of radioactive canister transporters

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    This report covers conceptual designs of transporters for the vertical, horizontal, and inclined installation of canisters containing spent-fuel elements, high-level waste, cladding waste, and intermediate-level waste (low-level waste is not discussed). Included in the discussion are cask concepts; transporter vehicle designs; concepts for mechanisms for handling and manipulating casks, canisters, and concrete plugs; transporter and repository operating cycles; shielding calculations; operator radiation dosages; radiation-resistant materials; and criteria for future design efforts.

  13. Conceptual designs of radioactive canister transporters

    International Nuclear Information System (INIS)

    This report covers conceptual designs of transporters for the vertical, horizontal, and inclined installation of canisters containing spent-fuel elements, high-level waste, cladding waste, and intermediate-level waste (low-level waste is not discussed). Included in the discussion are cask concepts; transporter vehicle designs; concepts for mechanisms for handling and manipulating casks, canisters, and concrete plugs; transporter and repository operating cycles; shielding calculations; operator radiation dosages; radiation-resistant materials; and criteria for future design efforts

  14. Internet of Vehicles for E-Health Applications in View of EMI on Medical Sensors

    Directory of Open Access Journals (Sweden)

    Di Lin

    2015-01-01

    Full Text Available Wireless technologies are pervasive to support ubiquitous healthcare applications. However, RF transmission in wireless technologies can lead to electromagnetic interference (EMI on medical sensors under a healthcare scenario, and a high level of EMI may lead to a critical malfunction of medical sensors. In view of EMI to medical sensors, we propose a joint power and rate control algorithm under game theoretic framework to schedule data transmission at each of wireless sensors. The objective of such a game is to maximize the utility of each wireless user subject to the EMI constraints for medical sensors. We show that the proposed game has a unique Nash equilibrium and our joint power and rate control algorithm would converge to the Nash equilibrium. Numerical results illustrate that the proposed algorithm can achieve robust performance against the variations of mobile hospital environments.

  15. Nonlinear dynamics of biomimetic micro air vehicles

    International Nuclear Information System (INIS)

    Flapping-wing micro air vehicles (FMAV) are new conceptual air vehicles that mimic the flying modes of birds and insects. They surpass the research fields of traditional airplane design and aerodynamics on application technologies, and initiate the applications of MEMS technologies on aviation fields. This paper studies a micro flapping mechanism that based upon insect thorax and actuated by electrostatic force. Because there are strong nonlinear coupling between the two physical domains, electrical and mechanical, the static and dynamic characteristics of this system are very complicated. Firstly, the nonlinear dynamic model of the electromechanical coupling system is set up according to the physical model of the flapping mechanism. The dynamic response of the system in constant voltage is studied by numerical method. Then the effect of damping and initial condition on dynamic characteristics of the system is analyzed in phase space. In addition, the dynamic responses of the system in sine voltage excitation are discussed. The results of research are helpful to the design, fabrication and application of the micro flapping mechanism of FMAV, and also to other micro electromechanical system that actuated by electrostatic force

  16. Advanced Manufacturing at the Marshall Space Flight Center and Application to Ares I and Ares V Launch Vehicles

    Science.gov (United States)

    Carruth, Ralph

    2008-01-01

    There are various aspects of advanced manufacturing technology development at the field centers of the National Aeronautics and Space Administration (NASA). The Marshall Space Flight Center (MSFC) has been given the assignment to lead the National Center for Advanced Manufacturing (NCAM) at MSFC and pursue advanced development and coordination with other federal agencies for NASA. There are significant activities at the Marshall Center as well as at the Michoud Assembly Facility (MAF) in New Orleans which we operate in conjunction with the University of New Orleans. New manufacturing processes in metals processing, component development, welding operations, composite manufacturing and thermal protection system material and process development will be utilized in the manufacturing of the United States two new launch vehicles, the Ares I and the Ares V. An overview of NCAM will be presented as well as some of the development activities and manufacturing that are ongoing in Ares Upper Stage development. Some of the tools and equipment produced by Italian owned companies and their application in this work will be mentioned.

  17. Design and analysis of an underwater inductive coupling power transfer system for autonomous underwater vehicle docking applications

    Institute of Scientific and Technical Information of China (English)

    Jian-guang SHI; De-jun LI; Can-jun YANG

    2014-01-01

    We develop a new kind of underwater inductive coupling power transfer (ICPT) system to evaluate wireless power transfer in autonomous underwater vehicle (AUV) docking applications. Parameters that determine the performance of the system are systematically analyzed through mathematical methods. A circuit simulation model and a finite element analysis (FEA) sim-ulation model are developed to study the power losses of the system, including copper loss in coils, semiconductor loss in circuits, and eddy current loss in transmission media. The characteristics of the power losses can provide guidelines to improve the effi-ciency of ICPT systems. Calculation results and simulation results are validated by relevant experiments of the prototype system. The output power of the prototype system is up to 45 W and the efficiency is up to 0.84. The preliminary results indicate that the efficiency will increase as the transmission power is raised by increasing the input voltage. When the output power reaches 500 W, the efficiency is expected to exceed 0.94. The efficiency can be further improved by choosing proper semiconductors and coils. The analysis methods prove effective in predicting the performance of similar ICPT systems and should be useful in designing new systems.

  18. Proton exchange membrane fuel cells for space and electric vehicle applications: From basic research to technology development

    Science.gov (United States)

    Srinivasan, Supramaniam; Mukerjee, Sanjeev; Parthasarathy, A.; CesarFerreira, A.; Wakizoe, Masanobu; Rho, Yong Woo; Kim, Junbom; Mosdale, Renaut A.; Paetzold, Ronald F.; Lee, James

    1994-01-01

    The proton exchange membrane fuel cell (PEMFC) is one of the most promising electrochemical power sources for space and electric vehicle applications. The wide spectrum of R&D activities on PEMFC's, carried out in our Center from 1988 to date, is as follows (1) Electrode Kinetic and Electrocatalysis of Oxygen Reduction; (2) Optimization of Structures of Electrodes and of Membrane and Electrode Assemblies; (3) Selection and Evaluation of Advanced Proton Conducting Membranes and of Operating Conditions to Attain High Energy Efficiency; (4) Modeling Analysis of Fuel Cell Performance and of Thermal and Water Management; and (5) Engineering Design and Development of Multicell Stacks. The accomplishments on these tasks may be summarized as follows: (1) A microelectrode technique was developed to determine the electrode kinetic parameters for the fuel cell reactions and mass transport parameters for the H2 and O2 reactants in the proton conducting membrane. (2) High energy efficiencies and high power densities were demonstrated in PEMFCs with low platinum loading electrodes (0.4 mg/cm(exp 2) or less), advanced membranes and optimized structures of membrane and electrode assemblies, as well as operating conditions. (3) The modeling analyses revealed methods to minimize mass transport limitations, particularly with air as the cathodic reactant; and for efficient thermal and water management. (4) Work is in progress to develop multi-kilowatt stacks with the electrodes containing low platinum loadings.

  19. The application of quaternions and other spatial representations to the reconstruction of re-entry vehicle motion.

    Energy Technology Data Exchange (ETDEWEB)

    De Sapio, Vincent

    2010-09-01

    The analysis of spacecraft kinematics and dynamics requires an efficient scheme for spatial representation. While the representation of displacement in three dimensional Euclidean space is straightforward, orientation in three dimensions poses particular challenges. The unit quaternion provides an approach that mitigates many of the problems intrinsic in other representation approaches, including the ill-conditioning that arises from computing many successive rotations. This report focuses on the computational utility of unit quaternions and their application to the reconstruction of re-entry vehicle (RV) motion history from sensor data. To this end they will be used in conjunction with other kinematic and data processing techniques. We will present a numerical implementation for the reconstruction of RV motion solely from gyroscope and accelerometer data. This will make use of unit quaternions due to their numerical efficacy in dealing with the composition of many incremental rotations over a time series. In addition to signal processing and data conditioning procedures, algorithms for numerical quaternion-based integration of gyroscope data will be addressed, as well as accelerometer triangulation and integration to yield RV trajectory. Actual processed flight data will be presented to demonstrate the implementation of these methods.

  20. An interactive physics-based unmanned ground vehicle simulator leveraging open source gaming technology: progress in the development and application of the virtual autonomous navigation environment (VANE) desktop

    Science.gov (United States)

    Rohde, Mitchell M.; Crawford, Justin; Toschlog, Matthew; Iagnemma, Karl D.; Kewlani, Guarav; Cummins, Christopher L.; Jones, Randolph A.; Horner, David A.

    2009-05-01

    It is widely recognized that simulation is pivotal to vehicle development, whether manned or unmanned. There are few dedicated choices, however, for those wishing to perform realistic, end-to-end simulations of unmanned ground vehicles (UGVs). The Virtual Autonomous Navigation Environment (VANE), under development by US Army Engineer Research and Development Center (ERDC), provides such capabilities but utilizes a High Performance Computing (HPC) Computational Testbed (CTB) and is not intended for on-line, real-time performance. A product of the VANE HPC research is a real-time desktop simulation application under development by the authors that provides a portal into the HPC environment as well as interaction with wider-scope semi-automated force simulations (e.g. OneSAF). This VANE desktop application, dubbed the Autonomous Navigation Virtual Environment Laboratory (ANVEL), enables analysis and testing of autonomous vehicle dynamics and terrain/obstacle interaction in real-time with the capability to interact within the HPC constructive geo-environmental CTB for high fidelity sensor evaluations. ANVEL leverages rigorous physics-based vehicle and vehicle-terrain interaction models in conjunction with high-quality, multimedia visualization techniques to form an intuitive, accurate engineering tool. The system provides an adaptable and customizable simulation platform that allows developers a controlled, repeatable testbed for advanced simulations. ANVEL leverages several key technologies not common to traditional engineering simulators, including techniques from the commercial video-game industry. These enable ANVEL to run on inexpensive commercial, off-the-shelf (COTS) hardware. In this paper, the authors describe key aspects of ANVEL and its development, as well as several initial applications of the system.

  1. High Energy Density and High Temperature Multilayer Capacitor Films for Electric Vehicle Applications

    Science.gov (United States)

    Treufeld, Imre; Song, Michelle; Zhu, Lei; Baer, Eric; Snyder, Joe; Langhe, Deepak

    2015-03-01

    Multilayer films (MLFs) with high energy density and high temperature capability (>120 °C) have been developed at Case Western Reserve University. Such films offer a potential solution for electric car DC-link capacitors, where high ripple currents and high temperature tolerance are required. The current state-of-the-art capacitors used in electric cars for converting DC to AC use biaxially oriented polypropylene (BOPP), which can only operate at temperatures up to 85 °C requiring an external cooling system. The polycarbonate (PC)/poly(vinylidene fluoride) (PVDF) MLFs have a higher permittivity compared to that of BOPP (2.3), leading to higher energy density. They have good mechanical stability and reasonably low dielectric losses at 120 °C. Nonetheless, our preliminary dielectric measurements show that the MLFs exhibit appreciable dielectric losses (20%) at 120 °C, which would, despite all the other advantages, make them not suitable for practical applications. Our preliminary data showed that dielectric losses of the MLFs at 120 °C up to 400 MV/m and 1000 Hz originate mostly from impurity ionic conduction. This work is supported by the NSF PFI/BIC Program (IIP-1237708).

  2. A highly accurate predictive-adaptive method for lithium-ion battery remaining discharge energy prediction in electric vehicle applications

    International Nuclear Information System (INIS)

    Highlights: • An energy prediction (EP) method is introduced for battery ERDE determination. • EP determines ERDE through coupled prediction of future states, parameters, and output. • The PAEP combines parameter adaptation and prediction to update model parameters. • The PAEP provides improved ERDE accuracy compared with DC and other EP methods. - Abstract: In order to estimate the remaining driving range (RDR) in electric vehicles, the remaining discharge energy (ERDE) of the applied battery system needs to be precisely predicted. Strongly affected by the load profiles, the available ERDE varies largely in real-world applications and requires specific determination. However, the commonly-used direct calculation (DC) method might result in certain energy prediction errors by relating the ERDE directly to the current state of charge (SOC). To enhance the ERDE accuracy, this paper presents a battery energy prediction (EP) method based on the predictive control theory, in which a coupled prediction of future battery state variation, battery model parameter change, and voltage response, is implemented on the ERDE prediction horizon, and the ERDE is subsequently accumulated and real-timely optimized. Three EP approaches with different model parameter updating routes are introduced, and the predictive-adaptive energy prediction (PAEP) method combining the real-time parameter identification and the future parameter prediction offers the best potential. Based on a large-format lithium-ion battery, the performance of different ERDE calculation methods is compared under various dynamic profiles. Results imply that the EP methods provide much better accuracy than the traditional DC method, and the PAEP could reduce the ERDE error by more than 90% and guarantee the relative energy prediction error under 2%, proving as a proper choice in online ERDE prediction. The correlation of SOC estimation and ERDE calculation is then discussed to illustrate the importance of an

  3. Conceptual modeling of multimedia databases

    OpenAIRE

    Drutskyy, Oleksandr

    2009-01-01

    The gap between the semantic content of multimedia data and its underlying physical representation is one of the main problems in the modern multimedia research in general, and, in particular, in the field of multimedia database modeling. We believe that one of the principal reasons of this problem is the attempt to conceptually represent multimedia data in a way, which is similar to its low-level representation by applications dealing with encoding standards, feature-based multimedia analysi...

  4. Spatial wildlife-vehicle collision models: a review of current work and its application to transportation mitigation projects.

    Science.gov (United States)

    Gunson, Kari E; Mountrakis, Giorgos; Quackenbush, Lindi J

    2011-04-01

    In addition to posing a serious risk to motorist safety, vehicle collisions with wildlife are a significant threat for many species. Previous spatial modeling has concluded that wildlife-vehicle collisions (WVCs) exhibit clustering on roads, which is attributed to specific landscape and road-related factors. We reviewed twenty-four published manuscripts that used generalized linear models to statistically determine the influence that numerous explanatory predictors have on the location of WVCs. Our motivation was to summarize empirical WVC findings to facilitate application of this knowledge to planning, and design of mitigation strategies on roads. In addition, commonalities between studies were discussed and recommendations for future model design were made. We summarized the type and measurement of each significant predictor and whether they potentially increased or decreased the occurrence of collisions with ungulates, carnivores, small-medium vertebrates, birds, and amphibians and reptiles. WVCs commonly occurred when roads bisect favorable cover, foraging, or breeding habitat for specific species or groups of species. WVCs were generally highest on road sections with high traffic volumes, or low motorist visibility, and when roads cut through drainage movement corridors, or level terrain. Ungulates, birds, small-medium vertebrates, and carnivore collision locations were associated with road-side vegetation and other features such as salt pools. In several cases, results were spurious due to confounding and interacting predictors within the same model. For example, WVCs were less likely to occur when a road bisected steep slopes; however, steep slopes may be located along specific road-types and habitat that also influence the occurrence of WVCs. In conclusion, this review showed that much of the current literature has gleaned the obvious, broad-scale relationships between WVCs and predictors from available data sets, and localized studies can provide unique

  5. Conceptual research in tourism

    OpenAIRE

    Xin, S.; Tribe, J; D. Chambers

    2013-01-01

    Whilst quantitative and qualitative research methods have been comprehensively discussed in the literature there remains a notable absence of discussion about conceptual research. This study addresses this gap and provides an original contribution through a rigorous analysis of conceptual research in tourism. It distinguishes between conceptual and other research and provides a definition and evaluation of the concept. Quantitative and qualitative content analysis of published journal article...

  6. Machine learning from computer simulations with applications in rail vehicle dynamics

    Science.gov (United States)

    Taheri, Mehdi; Ahmadian, Mehdi

    2016-05-01

    The application of stochastic modelling for learning the behaviour of a multibody dynamics (MBD) models is investigated. Post-processing data from a simulation run are used to train the stochastic model that estimates the relationship between model inputs (suspension relative displacement and velocity) and the output (sum of suspension forces). The stochastic model can be used to reduce the computational burden of the MBD model by replacing a computationally expensive subsystem in the model (suspension subsystem). With minor changes, the stochastic modelling technique is able to learn the behaviour of a physical system and integrate its behaviour within MBD models. The technique is highly advantageous for MBD models where real-time simulations are necessary, or with models that have a large number of repeated substructures, e.g. modelling a train with a large number of railcars. The fact that the training data are acquired prior to the development of the stochastic model discards the conventional sampling plan strategies like Latin Hypercube sampling plans where simulations are performed using the inputs dictated by the sampling plan. Since the sampling plan greatly influences the overall accuracy and efficiency of the stochastic predictions, a sampling plan suitable for the process is developed where the most space-filling subset of the acquired data with ? number of sample points that best describes the dynamic behaviour of the system under study is selected as the training data. Results indicated that the stochastic modelling technique is effective in improving the computational efficiency of the MBD model without compromising the accuracy of the predictions, although the improvements in the computational efficiency of the technique could not be quantified due to the inefficiencies associated with transferring the data between multiple software packages (SIMPACK, SIMULINK).

  7. Unmanned Aerial Vehicle (UAV) operated spectral camera system for forest and agriculture applications

    Science.gov (United States)

    Saari, Heikki; Pellikka, Ismo; Pesonen, Liisa; Tuominen, Sakari; Heikkilä, Jan; Holmlund, Christer; Mäkynen, Jussi; Ojala, Kai; Antila, Tapani

    2011-11-01

    VTT Technical Research Centre of Finland has developed a Fabry-Perot Interferometer (FPI) based hyperspectral imager compatible with the light weight UAV platforms. The concept of the hyperspectral imager has been published in the SPIE Proc. 7474 and 7668. In forest and agriculture applications the recording of multispectral images at a few wavelength bands is in most cases adequate. The possibility to calculate a digital elevation model of the forest area and crop fields provides means to estimate the biomass and perform forest inventory. The full UAS multispectral imaging system will consist of a high resolution false color imager and a FPI based hyperspectral imager which can be used at resolutions from VGA (480 x 640 pixels) up to 5 Mpix at wavelength range 500 - 900 nm at user selectable spectral resolutions in the range 10...40 nm @ FWHM. The resolution is determined by the order at which the Fabry- Perot interferometer is used. The overlap between successive images of the false color camera is 70...80% which makes it possible to calculate the digital elevation model of the target area. The field of view of the false color camera is typically 80 degrees and the ground pixel size at 150 m flying altitude is around 5 cm. The field of view of the hyperspectral imager is presently is 26 x 36 degrees and ground pixel size at 150 m flying altitude is around 3.5 cm. The UAS system has been tried in summer 2011 in Southern Finland for the forest and agricultural areas. During the first test campaigns the false color camera and hyperspectral imager were flown over the target areas at separate flights. The design and calibration of the hyperspectral imager will be shortly explained. The test flight campaigns on forest and crop fields and their preliminary results are also presented in this paper.

  8. Conceptual structures in practice

    CERN Document Server

    Hitzler, Pascal

    2009-01-01

    Exploring fundamental research questions, Conceptual Structures in Practice takes you through the basic yet nontrivial task of establishing conceptual relations as the foundation for research in knowledge representation and knowledge mining. It includes contributions from leading researchers in both the conceptual graph and formal concept analysis (FCA) communities.This accessible, self-contained book begins by providing the formal background in FCA and conceptual graphs. It then describes various software tools for analysis and computation, including the ToscanaJ suite. Written by the origina

  9. CONCEPTUAL DESIGN OF THE SPACELINER THERMAL PROTECTION SYSTEM

    OpenAIRE

    Schwanekamp, Tobias; Garbers, Nicole; Sippel, Martin

    2015-01-01

    With the SpaceLiner the DLR has proposed a visionary concept for hypersonic suborbital passenger transport over extremely long distances [1]. Depending on the configuration or mission type, the maximum flight Mach numbers of the vehicle can exceed Mach 20, hence the consideration of aerodynamic heating be-comes mandatory during the design process. The paper addresses the aerothermal challenges of the SpaceLiner flight and the latest updates in the conceptu-al design of the thermal protecti...

  10. Vehicle Dynamics and Control

    CERN Document Server

    Rajamani, Rajesh

    2012-01-01

    Vehicle Dynamics and Control provides a comprehensive coverage of vehicle control systems and the dynamic models used in the development of these control systems. The control system applications covered in the book include cruise control, adaptive cruise control, ABS, automated lane keeping, automated highway systems, yaw stability control, engine control, passive, active and semi-active suspensions, tire-road friction coefficient estimation, rollover prevention, and hybrid electric vehicle. In developing the dynamic model for each application, an effort is made to both keep the model simple enough for control system design but at the same time rich enough to capture the essential features of the dynamics. A special effort has been made to explain the several different tire models commonly used in literature and to interpret them physically. In the second edition of the book, chapters on roll dynamics, rollover prevention and hybrid electric vehicles have been added, and the chapter on electronic stability co...

  11. Observer-based open transistor fault diagnosis and fault-tolerant control of five-phase permanent magnet motor drive for application in electric vehicles

    OpenAIRE

    Salehifar, Mehdi; Salehi Arashloo Arashloo, Ramin; Moreno Eguilaz, Juan Manuel; Sala Caselles, Vicenç; Romeral Martínez, José Luis

    2015-01-01

    To meet increasing demand for higher reliability in power electronics converters applicable in electric vehicles, fault detection (FD) is an important part of the control algorithm. In this study, a model-based open transistor fault diagnsosis method is presented for a voltage-source inverter (VSI) supplying a five-phase permanent magnet motor drive. To realise this goal, a model-based observer is designed to estimate model parameters. After that, the estimated parameters are used to design a...

  12. A Capacity Fading Model of Lithium-Ion Battery Cycle Life Based on the Kinetics of Side Reactions for Electric Vehicle Applications

    International Nuclear Information System (INIS)

    Highlights: • Describe the aging mechanism of lithium-ion battery with electrochemical kinetics. • Establish the fading rate equation based on Eyring Equation. • The established equation is applicable to any reaction order. • Integrate the internal kinetics with external degradation characteristics. - Abstract: Battery life prediction is one of the critical issues that restrict the development of electric vehicles. Among the typical battery life models, the mechanism model focusing on the internal physical or electrochemical processes has a stronger theoretical foundation and greater accuracy. The empirical formula, which relies on the simplified mechanism, has a concise model structure and more flexibility in vehicle applications. However, the internal aging mechanism rarely correlates with the external operating characteristics. Based on the summary of the capacity fading mechanism and the reasoning of the internal kinetics of side reactions during the aging process, a lifetime model of the lithium-ion battery is established in this paper. The solutions to the vital parameters based on the external accelerated life testing results are also presented. The testing sample is a manganese oxide lithium-ion battery of 8 Ah. The validation results indicated that the life model established in this paper can describe the capacity fading law of the lithium-ion battery and the operability and accuracy for vehicle applications

  13. Application of light-initiated explosive for simulating x-ray blowoff impulse effects on a full scale reentry vehicle

    International Nuclear Information System (INIS)

    Laboratory nuclear effects testing allows the study of reentry vehicle response to simulated exoatmospheric x-ray encounters. Light-initiated explosive produces the nearly simultaneous impulse loading of a structure by using a spray painted coating of explosive which is detonated by an intense flash of light. A lateral impulse test on a full scale reentry vehicle is described which demonstrates that the light-initiated explosive technique can be extended to the lateral loading of very large systems involving load discontinuities. This experiment required the development of a diagnostic method for verifying the applied impulse, and development of a large light source for simultaneously initiating the explosive over the surface of the vehicle. Acceptable comparison between measured strain response and code predictions is obtained. The structural capability and internal response of a vehicle subjected to an x-ray environment was determined from a light-initiated explosive test

  14. Overlooking the Conceptual Framework

    Science.gov (United States)

    Leshem, Shosh; Trafford, Vernon

    2007-01-01

    The conceptual framework is alluded to in most serious texts on research, described in some and fully explained in few. However, examiners of doctoral theses devote considerable attention to exploring its function within social science doctoral vivas. A literature survey explores how the conceptual framework is itself conceptualised and explained.…

  15. Fusion of cooperative localization data with dynamic object information using data communication for preventative vehicle safety applications

    OpenAIRE

    H. Kloeden; Schwarz, D.; R. H. Rasshofer; E. M. Biebl

    2013-01-01

    Cooperative sensors allow for reliable detection, classification and localization of objects in the vehicle's surroundings – even without a line-of-sight contact to the object. The sensor principle is based on a communication signal between the vehicle and a transponder attached to the object of interest – a pedestrian, for example. Thereby, localization information is gathered by measuring the round-trip time-of-flight (RTOF) and evaluating the angle-of-arrival (AOA) of the...

  16. Combination of an Improved FRF-Based Substructure Synthesis and Power Flow Method with Application to Vehicle Axle Noise Analysis

    OpenAIRE

    Liu, C Q

    2008-01-01

    In this paper, an improved FRF-based substructure synthesis method combined with power flow analysis is presented and is used for performing a vehicle axle noise analysis. The major transfer paths of axle noise transmitted from chassis to vehicle body are identified and ranked based on power flows transmitted through bushings between the chassis and body. To calculate the power flows, it is necessary to know the reaction forces and the vibrations at the bushing locations on the body side. To ...

  17. How accurate is accident data in road safety research? An application of vehicle black box data regarding pedestrian-to-taxi accidents in Korea.

    Science.gov (United States)

    Chung, Younshik; Chang, IlJoon

    2015-11-01

    Recently, the introduction of vehicle black box systems or in-vehicle video event data recorders enables the driver to use the system to collect more accurate crash information such as location, time, and situation at the pre-crash and crash moment, which can be analyzed to find the crash causal factors more accurately. This study presents the vehicle black box system in brief and its application status in Korea. Based on the crash data obtained from the vehicle black box system, this study analyzes the accuracy of the crash data collected from existing road crash data recording method, which has been recorded by police officers based on accident parties' statements or eyewitness's account. The analysis results show that the crash data observed by the existing method have an average of 84.48m of spatial difference and standard deviation of 157.75m as well as average 29.05min of temporal error and standard deviation of 19.24min. Additionally, the average and standard deviation of crash speed errors were found to be 9.03km/h and 7.21km/h, respectively. PMID:26298271

  18. Electric vehicles

    Science.gov (United States)

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. These concepts are discussed.

  19. Discussion about Conceptual Framework

    Directory of Open Access Journals (Sweden)

    Huijuan Lin

    2015-05-01

    Full Text Available Standard setters and most academics maintain that accounting standards ought to rest on a set of guiding principles stated explicitly in a “conceptual framework.” The FASB and IASB are currently involved in a project to refine conceptual framework documents developed earlier. At this point, it is not clear what their final product will look like; its defining characteristics as well as the substantive content can only be surmised. This paper addresses the issues that FASB and IASB face, including the question of what a conceptual framework should be all about. First, the paper describes and illustrates the current conceptual framework and the attitude of FASB and IASB. Second, the paper suggests characteristics that a conceptual framework ought to exhibit. Most of these suggestions are based on our critique of the existing framework and the FASB-IASB work in progress.

  20. Hydrogen vehicle fueling station

    Energy Technology Data Exchange (ETDEWEB)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A. [Los Alamos National Lab., NM (United States)] [and others

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  1. Direct Search in Conceptual Design

    Directory of Open Access Journals (Sweden)

    E. B. Skvortsov

    2000-01-01

    Full Text Available The notion Concept implies a set of rules and ideas combining in a common intention actual principles for application, structure and form of a future artificial object. A rational concept is considered as a product of "conceptual design", which is nothing more than a step-by-step research on the possibility of achieving a desired goal. It precedes a full-scale development oriented to the project implementation. The author studies conceptual design as the process of idea evolution involving several s tages (Fig. 1. One of them is considered, for which an effort is made to generate an effective methodology of direct search for a rational concept with due regard for system and other methods.

  2. Fluorescence Lyman-Alpha Stratospheric Hygrometer (FLASH): application on meteorological balloons, long duration balloons and unmanned aerial vehicles.

    Science.gov (United States)

    Lykov, Alexey; Khaykin, Sergey; Yushkov, Vladimir; Efremov, Denis; Formanyuk, Ivan; Astakhov, Valeriy

    The FLASH instrument is based on the fluorescent method, which uses H2O molecules photodissociation at a wavelength lambda=121.6 nm (Lalpha - hydrogen emission) followed by the measurement of the fluorescence of excited OH radicals. The source of Lyman-alpha radiation is a hydrogen discharge lamp while the detector of OH fluorescence at 308 -316 nm is a photomultiplier run in photon counting mode. The intensity of the fluorescent light as well as the instrument readings is directly proportional to the water vapor mixing ratio under stratospheric conditions with negligible oxygen absorption. Initially designed for rocket-borne application, FLASH has evolved into a light-weight balloon sonde (FLASH-B) for measurements in the upper troposphere and stratosphere on board meteorological and small plastic balloons. This configuration has been used in over 100 soundings at numerous tropical mid-latitude and polar locations within various international field campaigns. An airborne version of FLASH instrument is successfully utilized onboard stratospheric M55-Geophysica aircraft and tropospheric airborne laboratory YAK42-Roshydromet. The hygrometer was modified for application onboard stratospheric long-duration balloons (FLASH-LDB version). This version was successfully used onboard CNES super-pressure balloon launched from SSC Esrange in March 2007 and flown during 10 days. Special design for polar long duration balloon PoGOLite was created for testing work during polar day in June 2013. Installation and measurement peculiarities as well as observational results are presented. Observations of water vapour using FLASH-B instrument, being of high quality are rather costly as the payload recovery is often complicated and most of the time impossible. Following the goal to find a cost-efficient solution, FLASH was adapted for use onboard Unmanned Aerial Vehicles (UAV). This solution was only possible thanks to compactness and light-weight (0.5 kg) of FLASH instrument. The

  3. A study of aeroelastic and structural dynamic effects in multi-rotor systems with application to hybrid heavy lift vehicles

    Science.gov (United States)

    Friedmann, P. P.

    1984-01-01

    An aeroelastic model suitable for the study of aeroelastic and structural dynamic effects in multirotor vehicles simulating a hybrid heavy lift vehicle was developed and applied to the study of a number of diverse problems. The analytical model developed proved capable of modeling a number of aeroelastic problems, namely: (1) isolated blade aeroelastic stability in hover and forward flight, (2) coupled rotor/fuselage aeromechanical problem in air or ground resonance, (3) tandem rotor coupled rotor/fuselage problems, and (4) the aeromechanical stability of a multirotor vehicle model representing a hybrid heavy lift airship (HHLA). The model was used to simulate the ground resonance boundaries of a three bladed hingeless rotor model, including the effect of aerodynamic loads, and the theoretical predictions compared well with experimental results. Subsequently the model was used to study the aeromechanical stability of a vehicle representing a hybrid heavy lift airship, and potential instabilities which could occur for this type of vehicle were identified. The coupling between various blade, supporting structure and rigid body modes was identified.

  4. An Ultrasonic Sensor System Based on a Two-Dimensional State Method for Highway Vehicle Violation Detection Applications

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2015-04-01

    Full Text Available With the continuing growth of highway construction and vehicle use expansion all over the world, highway vehicle traffic rule violation (TRV detection has become more and more important so as to avoid traffic accidents and injuries in intelligent transportation systems (ITS and vehicular ad hoc networks (VANETs. Since very few works have contributed to solve the TRV detection problem by moving vehicle measurements and surveillance devices, this paper develops a novel parallel ultrasonic sensor system that can be used to identify the TRV behavior of a host vehicle in real-time. Then a two-dimensional state method is proposed, utilizing the spacial state and time sequential states from the data of two parallel ultrasonic sensors to detect and count the highway vehicle violations. Finally, the theoretical TRV identification probability is analyzed, and actual experiments are conducted on different highway segments with various driving speeds, which indicates that the identification accuracy of the proposed method can reach about 90.97%.

  5. An Ultrasonic Sensor System Based on a Two-Dimensional State Method for Highway Vehicle Violation Detection Applications

    Science.gov (United States)

    Liu, Jun; Han, Jiuqiang; Lv, Hongqiang; Li, Bing

    2015-01-01

    With the continuing growth of highway construction and vehicle use expansion all over the world, highway vehicle traffic rule violation (TRV) detection has become more and more important so as to avoid traffic accidents and injuries in intelligent transportation systems (ITS) and vehicular ad hoc networks (VANETs). Since very few works have contributed to solve the TRV detection problem by moving vehicle measurements and surveillance devices, this paper develops a novel parallel ultrasonic sensor system that can be used to identify the TRV behavior of a host vehicle in real-time. Then a two-dimensional state method is proposed, utilizing the spacial state and time sequential states from the data of two parallel ultrasonic sensors to detect and count the highway vehicle violations. Finally, the theoretical TRV identification probability is analyzed, and actual experiments are conducted on different highway segments with various driving speeds, which indicates that the identification accuracy of the proposed method can reach about 90.97%. PMID:25894940

  6. High-Order Aeromechanics Model Support for Rotorcraft Conceptual Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Conceptual design tools for rotorcraft are used to size vehicles for intended flight operations, as well as reveal trends on the relative benefits certain...

  7. Research on the theory and application of adsorbed natural gas used in new energy vehicles: A review

    Science.gov (United States)

    Nie, Zhengwei; Lin, Yuyi; Jin, Xiaoyi

    2016-05-01

    Natural gas, whose primary constituent is methane, has been considered a convincing alternative for the growth of the energy supply worldwide. Adsorbed natural gas (ANG), the most promising methane storage method, has been an active field of study in the past two decades. ANG constitutes a safe and low-cost way to store methane for natural gas vehicles at an acceptable energy density while working at substantially low pressures (3.5-4.0 MPa), allowing for conformable store tank. This work serves to review the state-of-the-art development reported in the scientific literature on adsorbents, adsorption theories, ANG conformable tanks, and related technologies on ANG vehicles. Patent literature has also been searched and discussed. The review aims at illustrating both achievements and problems of the ANG technologies- based vehicles, as well as forecasting the development trends and critical issues to be resolved of these technologies.

  8. Experimental Semiautonomous Vehicle

    Science.gov (United States)

    Wilcox, Brian H.; Mishkin, Andrew H.; Litwin, Todd E.; Matthies, Larry H.; Cooper, Brian K.; Nguyen, Tam T.; Gat, Erann; Gennery, Donald B.; Firby, Robert J.; Miller, David P.; Loch, John L.; Slack, Marc G.

    1993-01-01

    Semiautonomous rover vehicle serves as testbed for evaluation of navigation and obstacle-avoidance techniques. Designed to traverse variety of terrains. Concepts developed applicable to robots for service in dangerous environments as well as to robots for exploration of remote planets. Called Robby, vehicle 4 m long and 2 m wide, with six 1-m-diameter wheels. Mass of 1,200 kg and surmounts obstacles as large as 1 1/2 m. Optimized for development of machine-vision-based strategies and equipped with complement of vision and direction sensors and image-processing computers. Front and rear cabs steer and roll with respect to centerline of vehicle. Vehicle also pivots about central axle, so wheels comply with almost any terrain.

  9. Searching of correspondences between data conceptual schemata

    Directory of Open Access Journals (Sweden)

    Javier Agustín González

    2014-01-01

    Full Text Available In the context of conceptual data modeling, view integration refers to the activity of integrating and unifying different conceptual schemata modeled over a universe of discourse in a global schema. The integration process includes complex tasks such as identifying common concepts between views, determining appropriate structures and discovering inter-schemes properties. Searching correspondences between conceptual schemata is a critical and non trivial task that usually is done manually, which obviously ha s major limitations. In the last 15 years many researchers have dedicated efforts to discover and combine techniques in the endeavor for automating the process of discovering correspondences between schemata. Only partial solutions to specific domain applications have been proposed. This paper proposes a match operator for data conceptual schemata based on the combination of syntactic and semantic match operators.

  10. Conceptual atomism rethought.

    Science.gov (United States)

    Schneider, Susan

    2010-06-01

    Focusing on Machery's claim that concepts play entirely different roles in philosophy and psychology, I explain how one well-known philosophical theory of concepts, Conceptual Atomism (CA), when properly understood, takes into account both kinds of roles. PMID:20584416

  11. Conceptualizing Transitions to Adulthood

    Science.gov (United States)

    Wyn, Johanna

    2014-01-01

    This chapter provides an overview of theories of the transition to young adulthood. It sets out the argument for conceptual renewal and discusses some implications of new patterns of transition for adult education.

  12. National Identity: Conceptual models, discourses and political change

    DEFF Research Database (Denmark)

    Harder, Peter

    2014-01-01

    Cognitive Linguistics has demonstrated the applicability of a conceptual approach to the understanding of political issues, cf. Lakoff (2008) and many others. From a different perspective, critical discourse analysis has approached political concepts with a focus on issues involving potentially...... divisive features such as race, class, gender and ethnic identity. Although discourses are not identical to conceptual models, conceptual models are typically manifested in discourse, and discourses are typically reflections of conceptualizations, a theme explored e.g. in Hart and Lukes (2007). As argued...... features of such a framework are a basis in collaborative intersubjectivity and the inclusion of causal factors in the social domain that impinge on conceptualization. This enables politically salient conceptualizations to be understood in the light of different types of input to conceptualization, rather...

  13. GIS Conceptual Data Model

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In order to set up a conceptual data model that reflects the real world as accurately as possible,this paper firstly reviews and analyzes the disadvantages of previous conceptual data models used by traditional GIS in simulating geographic space,gives a new explanation to geographic space and analyzes its various essential characteristics.Finally,this paper proposes several detailed key points for designing a new type of GIS data model and gives a simple holistic GIS data model.

  14. Conceptual frameworks in astronomy

    Science.gov (United States)

    Pundak, David

    2016-06-01

    How to evaluate students' astronomy understanding is still an open question. Even though some methods and tools to help students have already been developed, the sources of students' difficulties and misunderstanding in astronomy is still unclear. This paper presents an investigation of the development of conceptual systems in astronomy by 50 engineering students, as a result of learning a general course on astronomy. A special tool called Conceptual Frameworks in Astronomy (CFA) that was initially used in 1989, was adapted to gather data for the present research. In its new version, the tool included 23 questions, and five to six optional answers were given for each question. Each of the answers was characterized by one of the four conceptual astronomical frameworks: pre-scientific, geocentric, heliocentric and sidereal or scientific. The paper describes the development of the tool and discusses its validity and reliability. Using the CFA we were able to identify the conceptual frameworks of the students at the beginning of the course and at its end. CFA enabled us to evaluate the paradigmatic change of students following the course and also the extent of the general improvement in astronomical knowledge. It was found that the measure of the students’ improvement (gain index) was g = 0.37. Approximately 45% of the students in the course improved their understanding of conceptual frameworks in astronomy and 26% deepened their understanding of the heliocentric or sidereal conceptual frameworks.

  15. Design and Application of a Power Unit to Use Plug-In Electric Vehicles as an Uninterruptible Power Supply

    Directory of Open Access Journals (Sweden)

    Gorkem Sen

    2016-03-01

    Full Text Available Grid-enabled vehicles (GEVs such as plug-in electric vehicles present environmental and energy sustainability advantages compared to conventional vehicles. GEV runs solely on power generated by its own battery group, which supplies power to its electric motor. This battery group can be charged from external electric sources. Nowadays, the interaction of GEV with the power grid is unidirectional by the charging process. However, GEV can be operated bi-directionally by modifying its power unit. In such operating conditions, GEV can operate as an uninterruptible power supply (UPS and satisfy a portion or the total energy demand of the consumption center independent from utility grid, which is known as vehicle-to-home (V2H. In this paper, a power unit is developed for GEVs in the laboratory to conduct simulation and experimental studies to test the performance of GEVs as a UPS unit in V2H mode at the time of need. The activation and deactivation of the power unit and islanding protection unit are examined when energy is interrupted.

  16. NEW TWO-YEAR RESTRICTION APPLICABLE TO VEHICLES REGISTERED IN THE FRENCH'431 K' AND '431 CD' SERIES

    CERN Multimedia

    Relations with the Host States Service

    2002-01-01

    The French Ministry of Foreign Affairs has recently informed CERN that, with effect from 1st January 2002, owners of vehicles registered in the '431 K' and '431 CD' special series will not be able to change them for other vehicles in these series until two years have elapsed. The Ministry has also reminded us that members of the personnel with diplomatic status who are neither French nor permanent residents are entitled to register one vehicle in the '431 CD' series if they are single and two if they are married. However, irrespective of their marital status, members of the personnel holding an FI or AT carte spéciale, may register only one vehicle in the '431 K' series. CERN has requested the Ministry to clarify certain issues relating to the above and to arrange a transition period for the two-year restriction. Further information on this subject will be published shortly. Relations with the Host States Service http://www.cern.ch/relations/ Tel. 72848

  17. Light-weight sandwich panel honeycomb core with hybrid carbon-glass fiber composite skin for electric vehicle application

    Science.gov (United States)

    Cahyono, Sukmaji Indro; Widodo, Angit; Anwar, Miftahul; Diharjo, Kuncoro; Triyono, Teguh; Hapid, A.; Kaleg, S.

    2016-03-01

    The carbon fiber reinforced plastic (CFRP) composite is relative high cost material in current manufacturing process of electric vehicle body structure. Sandwich panels consisting polypropylene (PP) honeycomb core with hybrid carbon-glass fiber composite skin were investigated. The aim of present paper was evaluate the flexural properties and bending rigidity of various volume fraction carbon-glass fiber composite skins with the honeycomb core. The flexural properties and cost of panels were compared to the reported values of solid hybrid Carbon/Glass FRP used for the frame body structure of electric vehicle. The finite element model of represented sandwich panel was established to characterize the flexural properties of material using homogenization technique. Finally, simplified model was employed to crashworthiness analysis for engine hood of the body electric vehicle structure. The good cost-electiveness of honeycomb core with hybrid carbon-glass fiber skin has the potential to be used as a light-weight alternative material in body electric vehicle fabricated.

  18. Natural gas application in light- and heavy-duty vehicles in Brazil: panorama, technological routes and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Guilherme Bastos, Cordeiro de Melo, Tadeu Cavalcante; Leao, Raphael Riemke de Campos Cesar; Iaccarino, Fernando Aniello; Figueiredo Moreira, Marcia

    2007-07-01

    The Brazilian CNG light-duty vehicle fleet has currently reached more than 1,300,000 units. This growth increased in the late 1990's, when CNG was approved for use in passenger cars. In 2001, the IBAMA (Brazilian Institute for Environment and Natural Renewable Resources), concerned with this uncontrolled growth, published CONAMA (National Environmental Council, controlled by IBAMA) resolution 291, which establishes rules for CNG conversion kit environmental certification.This paper discusses the technological challenges for CNG-converted vehicles to comply with PROCONVE (Brazilian Program for Automotive Air Pollution Control) emission limits. In the 1980's, because of the oil crisis, Natural Gas (NG) emerged as a fuel with great potential to replace Diesel in heavy-duty vehicles. Some experiences were conducted for partial conversions from Diesel to NG (Diesel-gas). Other experiences using NG Otto Cycle buses were conducted in some cities, but have not expanded. Another technological route called 'Ottolization' (Diesel to Otto cycle convertion) appeared recently. Population increase and the great growth in vehicle fleet promote a constant concern with automotive emissions. More restrictive emission limits, high international oil prices, and the strategic interest in replacing Diesel imports, altogether form an interesting scenario for CNG propagation to public transportation in the main Brazilian metropolises.

  19. Stability and optimal control theory of hereditary systems with applications from oscillating flying vehicles, mechanical systems, and robotics

    Science.gov (United States)

    Chukwu, Ethelbert Nwakuche

    1992-01-01

    The author derives an equation determining the dynamics of the deterministic model of a flying vehicle. He next examines a simplified mechanical problem whose optimal feedback control strategy is investigated. From there robotics are incorporated into the mathematical model to develop an equation describing optimal control of the dynamics.

  20. Selection and use of a multi-criteria decision aiding method in the context of conceptual design with imprecise information: Application to a solar collector development

    OpenAIRE

    EL AMINE, Mehdi; PAILHES, Jérôme; Perry, Nicolas

    2016-01-01

    Making decisions on a sound basis in early phases is one of the most difficult challenges in the product development process, especially when dealing with immature concepts. Moreover, life-cycle cost can be influenced up to 70% by decisions taken during the conceptual design phases. The need for reliable multi-criteria decision aiding methods is thus greater in these phases. Various multi-criteria decision aiding methods are proposed and used in the literature. The main criticism of these met...

  1. DOE Project on Heavy Vehicle Aerodynamic Drag

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, R; Salari, K; Ortega, J; Castellucci, P; Pointer, D; Browand, F; Ross, J; Storms, B

    2007-01-04

    Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At highway speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; (2) Develop innovative drag reducing concepts that are operationally and economically sound; and (3) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices. The studies described herein provide a demonstration of the applicability of the experience developed in the analysis of the standard configuration of the Generic Conventional Model. The modeling practices and procedures developed in prior efforts have been applied directly to the assessment of new configurations including a variety of geometric modifications and add-on devices. Application to the low-drag 'GTS' configuration of the GCM has confirmed that the error in predicted drag coefficients increases as the relative contribution of the base drag resulting from the vehicle wake to the total drag increases and it is recommended that more advanced turbulence modeling strategies be applied under those circumstances. Application to a commercially-developed boat tail device has confirmed that this restriction does not apply to geometries where the relative contribution of the base drag to the total drag is reduced by modifying the geometry in that region. Application to a modified GCM geometry with an open grille and radiator has confirmed that the underbody flow, while important for underhood cooling, has little impact on the drag

  2. Air Pollution Prevention Applications for the Transport Sector by Integrating Urban Area Transport and Vehicle Emission Models with the Case Study of Bangkok, Thailand

    Directory of Open Access Journals (Sweden)

    Padet Praditphet

    2009-01-01

    Full Text Available This study proposes air pollution prevention applications for urban area transportation aimed at minimizing pollution and meeting ambient air quality standards through the use of transport and vehicle emissions models that account for air pollution changes resulting from prevention strategies. This study combines pollution prevention techniques and transport and vehicle emissions models to enhance air pollution prevention in an urban area. The amount of air emissions from transportation continues to rise as travel patterns expand, necessitating reduced pollution emissions from the transportation sector. This study aims to probe the major causes for the increase in air pollutants in the transportation sector of Bangkok and proposes a feasible method capable of reducing and controlling its associated air pollution. Furthermore, the results suggest that the most effective countermeasures to transportation-based air emissions include four potential solutions that promote the use of Natural Gas Vehicle (NGV buses and the institution of rerouting existing services. The current study can be used to formulate policies related to air pollution on a macro scale.

  3. The ability of battery second use strategies to impact plug-in electric vehicle prices and serve utility energy storage applications

    Science.gov (United States)

    Neubauer, Jeremy; Pesaran, Ahmad

    The high cost of lithium ion batteries is a major impediment to the increased market share of plug-in hybrid electric vehicles (PHEVs) and full electric vehicles (EVs). The reuse of PHEV/EV propulsion batteries in second use applications following the end of their automotive service life may have the potential to offset the high initial cost of these batteries today. Accurately assessing the value of such a strategy is exceedingly complex and entails many uncertainties. This paper takes a first step toward such an assessment by estimating the impact of battery second use on the initial cost of PHEV/EV batteries to automotive consumers and exploring the potential for grid-based energy storage applications to serve as a market for used PHEV/EV batteries. It is found that although battery second use is not expected to significantly affect today's PHEV/EV prices, it has the potential to become a common component of future automotive battery life cycles and potentially to transform markets in need of cost-effective energy storage. Based on these findings, the authors advise further investigation focused on forecasting long-term battery degradation and analyzing second-use applications in more detail.

  4. Iron oxide nanoparticles show no toxicity in the comet assay in lymphocytes: A promising vehicle as a nitric oxide releasing nanocarrier in biomedical applications

    Science.gov (United States)

    de Lima, R.; Oliveira, J. L.; Murakami, P. S. K.; Molina, M. A. M.; Itri, R.; Haddad, P.; Seabra, A. B.

    2013-04-01

    This work reports the synthesis and toxicological evaluation of surface modified magnetic iron oxide nanoparticles as vehicles to carry and deliver nitric oxide (NO). The surface of the magnetic nanoparticles (MNPs) was coated with two thiol-containing hydrophilic ligands: mercaptosuccinic acid (MSA) or dimercaptosuccinic acid (DMSA), leading to thiolated MNPs. Free thiols groups on the surface of MSA- or DMSA-MNPs were nitrosated leading to NO-releasing MNPs. The genotoxicity of thiolated-coated MNPs was evaluated towards human lymphocyte cells by the comet assay. No genotoxicity was observed due to exposure of human lymphocytes to MSA- or DMSA-MNPs, indicating that these nanovectors can be used as inert vehicles in drug delivery, in biomedical applications. On the other hand, NO-releasing MPNs showed genotoxicity and apoptotic activities towards human lymphocyte cell cultures. These results indicate that NO-releasing MNPs may result in important biomedical applications, such as the treatment of tumors, in which MNPs can be guided to the target site through the application of an external magnetic field, and release NO directly to the desired site of action.

  5. Iron oxide nanoparticles show no toxicity in the comet assay in lymphocytes: A promising vehicle as a nitric oxide releasing nanocarrier in biomedical applications

    International Nuclear Information System (INIS)

    This work reports the synthesis and toxicological evaluation of surface modified magnetic iron oxide nanoparticles as vehicles to carry and deliver nitric oxide (NO). The surface of the magnetic nanoparticles (MNPs) was coated with two thiol-containing hydrophilic ligands: mercaptosuccinic acid (MSA) or dimercaptosuccinic acid (DMSA), leading to thiolated MNPs. Free thiols groups on the surface of MSA- or DMSA-MNPs were nitrosated leading to NO-releasing MNPs. The genotoxicity of thiolated-coated MNPs was evaluated towards human lymphocyte cells by the comet assay. No genotoxicity was observed due to exposure of human lymphocytes to MSA- or DMSA-MNPs, indicating that these nanovectors can be used as inert vehicles in drug delivery, in biomedical applications. On the other hand, NO-releasing MPNs showed genotoxicity and apoptotic activities towards human lymphocyte cell cultures. These results indicate that NO-releasing MNPs may result in important biomedical applications, such as the treatment of tumors, in which MNPs can be guided to the target site through the application of an external magnetic field, and release NO directly to the desired site of action.

  6. Modeling Spatial Data in the MADS Conceptual Model

    OpenAIRE

    Parent, Christine; SPACCAPIETRA, Stefano; Zimanyi, Esteban; Donini, P.; Plazanet, Corinne; Vangenot, Christelle

    1998-01-01

    Despite the well-established benefits of conceptual modeling for application design, current spatio-temporal conceptual models do not cope satisfactorily with designers' requirements. In this paper we first identify the goals of a spatio-temporal conceptual model and then we describe the MADS model along its structural and spatial dimensions. As the modeling concepts are orthogonal, the proposed model achieves both simplicity (as concepts are independent from each other) and expressive power ...

  7. Conceptual Knowledge Acquisition in Biomedicine: A Methodological Review

    OpenAIRE

    Payne, Philip R.O.; Mendonça, Eneida A.; Johnson, Stephen B.; Starren, Justin B.

    2007-01-01

    The use of conceptual knowledge collections or structures within the biomedical domain is pervasive, spanning a variety of applications including controlled terminologies, semantic networks, ontologies, and database schemas. A number of theoretical constructs and practical methods or techniques support the development and evaluation of conceptual knowledge collections. This review will provide an overview of the current state of knowledge concerning conceptual knowledge acquisition, drawing f...

  8. Abandoned vehicles

    CERN Multimedia

    Relations with the Host States Service

    2004-01-01

    The services in charge of managing the CERN site have recently noted an increase in the number of abandoned vehicles. This poses a risk from the point of view of safety and security and, on the eve of several important events in honour of CERN's fiftieth anniversary, is detrimental to the Organization's image. Owners of vehicles that have been left immobile for some time on the CERN site, including on the external car park by the flags, are therefore invited to contact the Reception and Access Control Service (service-parking-longterm@cern.ch) before 1st October 2004 and, where appropriate, move their vehicle to a designated long-term parking area. After this date, any vehicle whose owner has failed to respond to this request and which is without a number plate, has been stationary for several weeks or is out of service, may be impounded at the owner's risk and expense. Relations with the Host States Service Tel. 72848

  9. Robotic vehicle

    Science.gov (United States)

    Box, W. Donald

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  10. Fusion of cooperative localization data with dynamic object information using data communication for preventative vehicle safety applications

    Science.gov (United States)

    Kloeden, H.; Schwarz, D.; Rasshofer, R. H.; Biebl, E. M.

    2013-07-01

    Cooperative sensors allow for reliable detection, classification and localization of objects in the vehicle's surroundings - even without a line-of-sight contact to the object. The sensor principle is based on a communication signal between the vehicle and a transponder attached to the object of interest - a pedestrian, for example. Thereby, localization information is gathered by measuring the round-trip time-of-flight (RTOF) and evaluating the angle-of-arrival (AOA) of the incident signal. After that, tracking algorithms are used to recover the kinematic state of the object providing a basis for situation assessment. This paper investigates possibilities and benefits of extending this principle by the communication of information from inertial sensors which are locally attached to the transponder. Furthermore, this paper presents a robust approach for fusing the localization data with dynamic object information using the Dempster-Shafer theory. The approach is evaluated by performing real-world experiments for the analysis of pedestrian accidents.

  11. Assessment of the State of the Art of Integrated Vehicle Health Management Technologies as Applicable to Damage Conditions

    Science.gov (United States)

    Reveley, Mary S.; Kurtoglu, Tolga; Leone, Karen M.; Briggs, Jeffrey L.; Withrow, Colleen A.

    2010-01-01

    A survey of literature from academia, industry, and other Government agencies assessed the state of the art in current integrated vehicle health management (IVHM) aircraft technologies. These are the technologies that are used for assessing vehicle health at the system and subsystem level. This study reports on how these technologies are employed by major military and commercial platforms for detection, diagnosis, prognosis, and mitigation. Over 200 papers from five conferences from the time period of 2004 to 2009 were reviewed. Over 30 of these IVHM technologies are then mapped into the 17 different adverse event damage conditions identified in a previous study. This study illustrates existing gaps and opportunities for additional research by the NASA IVHM Project.

  12. DESIGN OF A REMOTELY CONTROLLED HOVERCRAFT VEHICLE FOR SPILL RECONNAISSANCE

    Science.gov (United States)

    This program was undertaken to prepare a conceptual design for a practical prototype of a remotely-controlled reconnaissance vehicle for use in hazardous material spill environment. Data from past hazardous material spills were analyzed to determine the type of vehicle best suite...

  13. Low-cost multi-vehicle air temperature measurements for heat load assessment in local-scale climate applications

    Science.gov (United States)

    Zuvela-Aloise, Maja; Weyss, Gernot; Aloise, Giulliano; Mifka, Boris; Löffelmann, Philemon; Hollosi, Brigitta; Nemec, Johana; Vucetic, Visnja

    2014-05-01

    In the recent years there has been a strong interest in exploring the potential of low-cost measurement devices as alternative source of meteorological monitoring data, especially in the urban areas where high-density observations become crucial for appropriate heat load assessment. One of the simple, but efficient approaches for gathering large amount of spatial data is through mobile measurement campaigns in which the sensors are attached to driving vehicles. However, non-standardized data collecting procedure, instrument quality, their response-time and design, variable device ventilation and radiation protection influence the reliability of the gathered data. We investigate what accuracy can be expected from the data collected through low-cost mobile measurements and whether the achieved quality of the data is sufficient for validation of the state-of-the-art local-scale climate models. We tested 5 types of temperature sensors and data loggers: Maxim iButton, Lascar EL-USB-2-LCD+ and Onset HOBO UX100-003 as market available devices and self-designed solar powered Arduino-based data loggers combined with the AOSONG AM2315 and Sensirion SHT21 temperature and humidity sensors. The devices were calibrated and tested in stationary mode at the Austrian Weather Service showing accuracy between 0.1°C and 0.8°C, which was mostly within the device specification range. In mobile mode, the best response-time was found for self-designed device with Arduino-based data logger and Sensirion SHT21 sensor. However, the device lacks the mechanical robustness and should be further improved for broad-range applications. We organized 4 measurement tours: two taking place in urban environment (Vienna, Austria in July 2011 and July 2013) and two in countryside with complex terrain of Mid-Adriatic islands (Hvar and Korcula, Croatia in August 2013). Measurements were taken on clear-sky, dry and hot days. We combined multiple devices attached to bicycle and cars with different

  14. Application Study on the Dynamic Programming Algorithm for Energy Management of Plug-in Hybrid Electric Vehicles

    OpenAIRE

    Ximing Wang; Hongwen He; Fengchun Sun; Jieli Zhang

    2015-01-01

    To explore the problems associated with applying dynamic programming (DP) in the energy management strategies of plug-in hybrid electric vehicles (PHEVs), a plug-in hybrid bus powertrain is introduced and its dynamic control model is constructed. The numerical issues, including the discretization resolution of the relevant variables and the boundary issue of their feasible regions, were considered when implementing DP to solve the optimal control problem of PHEVs. The tradeoff between the op...

  15. Reducing Motor Vehicle-Related Injuries at an Arizona Indian Reservation: Ten Years of Application of Evidence-Based Strategies.

    Science.gov (United States)

    Piontkowski, Stephen R; Peabody, Jon S; Reede, Christine; Velascosoltero, José; Tsatoke, Gordon; Shelhamer, Timothy; Hicks, Kenny R

    2015-12-01

    Unintentional injury is a significant public health burden for American Indians and Alaska Natives and was the leading cause of death among those aged 1 to 44 years between 1999 and 2004. Of those deaths, motor vehicle-related deaths cause the most mortality, justifying the need for intervention at an American Indian Reservation in Arizona (United States). We describe motor vehicle injury prevention program operations from 2004 through 2013. This community-based approach led by a multidisciplinary team primarily comprised of environmental public health and law enforcement personnel implemented evidence-based strategies to reduce the impact of motor vehicle-related injuries and deaths, focusing on reducing impaired driving and increasing occupant restraint use. Strategies included: mass media campaigns to enhance awareness and outreach; high-visibility sobriety checkpoints; passing and enforcing 0.08% blood alcohol concentration limits for drivers and primary occupant restraint laws; and child car seat distribution and education. Routine monitoring and evaluation data showed a significant 5% to 7% annual reduction of motor vehicle crashes (MVCs), nighttime MVCs, MVCs with injuries/fatalities, and nighttime MVCs with injuries/fatalities between 2004 and 2013, but the annual percent change in arrests for driving under the influence (DUI) was not significant. There was also a 144% increase in driver/front seat passenger seat belt use, from 19% in 2011 before the primary occupant restraint law was enacted to 47% during the first full year of enforcement (2013). Car seat checkpoint data also suggested a 160% increase in car seat use, from less than 20% to 52% in 2013. Implementation of evidence-based strategies in injury prevention, along with employment of key program approaches such as strong partnership building, community engagement, and consistent staffing and funding, can narrow the public health disparity gap experienced among American Indian and Alaska Native

  16. Nonlinear bayesian state filtering with missing measurements and bounded noise and its application to vehicle position estimation

    Czech Academy of Sciences Publication Activity Database

    Pavelková, Lenka

    2011-01-01

    Roč. 47, č. 3 (2011), s. 370-384. ISSN 0023-5954 R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : non-linear state space model * bounded uncertainty * missing measurements * state filtering * vehicle position estimation Subject RIV: BC - Control System s Theory Impact factor: 0.454, year: 2011 http://library.utia.cas.cz/separaty/2011/AS/pavelkova-0360239.pdf

  17. Range of applicability of the linear fluid slosh theory for predicting transient lateral slosh and roll stability of tank vehicles

    Science.gov (United States)

    Kolaei, Amir; Rakheja, Subhash; Richard, Marc J.

    2014-01-01

    An analytical model is developed to study the transient lateral sloshing in horizontal cylindrical containers assuming inviscid, incompressible and irrotational flows. The model is derived by implementing the linearized free-surface boundary condition and bipolar coordinate transformation, resulting in a truncated system of linear ordinary differential equations, which is numerically solved to determine the fluid velocity potentials followed by the hydrodynamic forces and moment. The model results are compared with those obtained from the multimodal solution. The free-surface elevation and hydrodynamic coefficients are also compared with the reported experimental and analytical data as well as numerical simulations to establish validity of the model. The capability of the model for predicting non-resonant slosh is also evaluated using the critical free-surface amplitude. The model validity is further illustrated by comparing the transient liquid slosh responses of a partially filled tank subject to steady lateral acceleration characterizing a vehicle turning maneuver with those obtained from fully nonlinear CFD simulations and pendulum models. It is shown that the linear slosh model yields more accurate prediction of dynamic slosh than the pendulum models and it is significantly more computationally efficient than the nonlinear CFD model. The slosh model is subsequently applied to roll plane model of a suspended tank vehicle to study the effect of dynamic liquid slosh on steady-turning roll stability limit of the vehicle under constant and variable axle load conditions. The results suggest that the roll moment arising from the dynamic fluid slosh yields considerably lower roll stability limit of the partly-filled tank vehicle compared to that predicted from the widely reported quasi-static fluid slosh model.

  18. Direct synchronous-asynchronous conversion system for hybrid electrical vehicle applications. An energy-based modeling approach

    OpenAIRE

    Muñoz-Aguilar, Raúl S.; Dòria-Cerezo, Arnau; Puleston, Pablo Federico

    2013-01-01

    This paper presents a proposal for a series hybrid electric vehicle propulsion system. This new configuration is based on a wound-rotor synchronous generator (WRSM) and a doubly-fed induction machine (DFIM). The energy-based model of the whole system is obtained taking advantage of the capabilities of the port-based modeling techniques. From the dq port-controlled Hamiltonian description of the WRSM and DFIM, the Hamiltonian model of the proposed Direct Synchronous-Asynchronous Conversion Sys...

  19. Review of composite material applications in the automotive industry for the electric and hybrid vehicle. Annual report, November 1978

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, J.L.

    1979-07-01

    A comprehensive review is made of the state-of-the-art in regard to the use of composite materials for reducing the structural mass of automobiles. Reduction of mass will provide, in addition to other engineering improvements, increased performance/range advantages that are particularly needed in the electric and hybrid vehicle field. Problems to be overcome include the attainment of mass production techniques and the prevention of environmental hazards.

  20. Application of mesenchymal stem cells as a vehicle to deliver replication-competent adenovirus for treating malignant glioma

    Directory of Open Access Journals (Sweden)

    Song-Nan Zhang

    2012-05-01

    Full Text Available Although gene therapy was regarded as a promising approach for glioma treatment, its therapeutic efficacy was often disappointing because of the lack of efficient drug delivery systems. Mesenchymal stem cells(MSCs have been reported to have a tropism for brain tumors and thus could be used as delivery vehicles for glioma therapy. Therefore, in this study, we attempted to treat glioma by using MSCs as a vehicle for delivering replication-competent adenovirus. We firstly compared the infectivity of type 3, type 5, and type 35 fiber-modified adenoviruses in MSCs. We also determined suitable adenovirus titer in vitro and then used this titer to analyze the ability of MSCs to deliver replication-competent adenovirus into glioma in vivo. Our results indicated that type 35 fiber-modified adenovirus showed higher infectivity than did naked type 3 or type 5 fiber-modified adenovirus. MSCs carrying replication-competent adenovirus significantly inhibited tumor growth in vivo compared with other control groups. In conclusion, MSCs are an effective vehicle that can successfully transport replication-competent adenovirus into glioma, making it a potential therapeutic strategy for treating malignant glioma.

  1. Development of Three-dimensional Grid-free Solver and its Applications to Multi-body Aerospace Vehicles

    Directory of Open Access Journals (Sweden)

    K. Anandhanarayanan

    2010-10-01

    Full Text Available Grid-free solver has the ability to solve complex multi-body industrial problems with minimal effort. Grid-free Euler solver has been applied to number of multi-body aerospace vehicles using Chimera clouds of points including flight vehicle with fin deflection, nose fairing separation of hypersonic launch vehicle. A preprocessor has been developed to generate connectivity for multi-bodies using overlapped grids. Surface transpiration boundary condition has been implemented to model aerodynamic damping and to impose the relative velocity of moving components. Dynamic derivatives are estimated with reasonable accuracy and less effort using the grid-free Euler solver with the transpiration boundary condition. Further, the grid-free Euler solver has been integrated with six-degrees of freedom (6-DOF equations of motion to form store separation dynamics suite which has been applied to obtain the trajectory of a rail launch air-to-air-missile from a complex fighter aircraft.Defence Science Journal, 2010, 60(6, pp.653-662, DOI:http://dx.doi.org/10.14429/dsj.60.583

  2. Vehicle Classification by Lane Allowance

    Directory of Open Access Journals (Sweden)

    Vishakha Gaikwad

    2014-12-01

    Full Text Available Classification of vehicles from video is used for analysis of traffic, self-driving systems or security systems. This analysis is based on shape, size, velocity and track of vehicles. These features characterize vehicle in background subtraction and feature extraction methods. Extraction is done by active contours and morphological operations. Extracted vehicles are classified by applying various classification techniques. The combination of features and classification techniques varies with the application. Proposed system, Uses combination of K Nearest Neighbor (KNN and Decision Tree techniques to overcome constraints. These constraints are instances of an object, overlapping of objects, and scaling factor. KNN is utilized to classify vehicle by size and lane. Decision tree manipulates the combination of these two features to classify accurately which results increased performance. This system classifies objects into three classes. These classes are four wheeler, bikers and heavy duty vehicle extracted from video.

  3. Conceptualizing Pharmaceutical Plants

    DEFF Research Database (Denmark)

    Larsen, Bent Dalgaard; Jensen, Klaes Ladeby; Gjøl, Mikkel

    2006-01-01

    In the conceptual design phase of pharmaceutical plants as much as 80%-90% of the total cost of a project is committed. It is therefore essential that the chosen concept is viable. In this design process configuration and 3D models can help validate the decisions made. Designing 3D models is a...... complex task and requires skilled users. We demonstrate that a simple 2D/3D configuration tool can support conceptualizing of pharmaceutical plants. Present paper reports on preliminary results from a full scale implementation project at a Danish engineering company....

  4. Conceptual Design of a Prototype LSST Database

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaev, S; Huber, M E; Cook, K H; Abdulla, G; Brase, J

    2004-10-07

    This document describes a preliminary design for Prototype LSST Database (LSST DB). They identify key components and data structures and provide an expandable conceptual schema for the database. The authors discuss the potential user applications and post-processing algorithm to interact with the database, and give a set of example queries.

  5. StructuralComponents: a software system for conceptual structural design

    NARCIS (Netherlands)

    Van de Weerd, B.; Rolvink, A.; Coenders, J.L.

    2012-01-01

    Conceptual design is the starting point of the design process. The conceptual design stage comprises the formation of several ideas or design concepts to meet the imposed constraints. StructuralComponents is a software application that attempts to provide the designing engineer with a suitable set o

  6. World modeling for cooperative intelligent vehicles

    NARCIS (Netherlands)

    Papp, Z.; Brown, C.; Bartels, C.

    2008-01-01

    Cooperative intelligent vehicle systems constitute a promising way to improving traffic throughput, safety and comfort. The state-of-the-art intelligent-vehicle applications usually can be described as a collection of interacting, highly autonomous, complex dynamical systems (the individual vehicles

  7. Doxing: a conceptual analysis

    NARCIS (Netherlands)

    Douglas, David M.

    2016-01-01

    Doxing is the intentional public release onto the Internet of personal information about an individual by a third party, often with the intent to humiliate, threaten, intimidate, or punish the identified individual. In this paper I present a conceptual analysis of the practice of doxing and how it d

  8. Conceptual frameworks of sustainability

    OpenAIRE

    Lobina, Emanuele

    2011-01-01

    This presentation aims to offer insights on the conceptualisation of sustainability. It does so by: a) drawing on Lobina, E. (forthcoming, 2012) Water Service Governance, Technological Change and Paradigm Shifts: A conceptual framework, in International Journal of Water. Accepted for publication: 26 August 2011; expected publication date: early 2012; and, b) illustrating work in progress on "The Sustainability of Urban Water Service Reform".

  9. Evaluating Conceptual Metaphor Theory

    Science.gov (United States)

    Gibbs, Raymond W., Jr.

    2011-01-01

    A major revolution in the study of metaphor occurred 30 years ago with the introduction of "conceptual metaphor theory" (CMT). Unlike previous theories of metaphor and metaphorical meaning, CMT proposed that metaphor is not just an aspect of language, but a fundamental part of human thought. Indeed, most metaphorical language arises from…

  10. ITER conceptual design report

    International Nuclear Information System (INIS)

    Results of the International Thermonuclear Experimental Reactor (ITER) Conceptual Design Activity (CDA) are reported. This report covers the Terms of Reference for the project: defining the technical specifications, defining future research needs, define site requirements, and carrying out a coordinated research effort coincident with the CDA. Refs, figs and tabs

  11. Conceptualizing Embedded Configuration

    DEFF Research Database (Denmark)

    Oddsson, Gudmundur Valur; Hvam, Lars; Lysgaard, Ole

    and services. The general idea can be named embedded configuration. In this article we intend to conceptualize embedded configuration, what it is and is not. The difference between embedded configuration, sales configuration and embedded software is explained. We will look at what is needed to make...

  12. Usability Analysis of Collision Avoidance System in Vehicle-to-Vehicle Communication Environment

    Directory of Open Access Journals (Sweden)

    Hong Cho

    2014-01-01

    Full Text Available Conventional intelligent vehicles have performance limitations owing to the short road and obstacle detection range of the installed sensors. In this study, to overcome this limitation, we tested the usability of a new conceptual autonomous emergency braking (AEB system that employs vehicle-to-vehicle (V2V communication technology in the existing AEB system. To this end, a radar sensor and a driving and communication environment constituting the AEB system were simulated; the simulation was then linked by applying vehicle dynamics and control logic. The simulation results show that the collision avoidance relaxation rate of V2V communication-based AEB system was reduced compared with that of existing vehicle-mounted-sensor-based system. Thus, a method that can lower the collision risk of the existing AEB system, which uses only a sensor cluster installed on the vehicle, is realized.

  13. The Application of the Human Engineering Modeling and Performance Laboratory for Space Vehicle Ground Processing Tasks at Kennedy Space Center

    Science.gov (United States)

    Woodbury, Sarah K.

    2008-01-01

    The introduction of United Space Alliance's Human Engineering Modeling and Performance Laboratory began in early 2007 in an attempt to address the problematic workspace design issues that the Space Shuttle has imposed on technicians performing maintenance and inspection operations. The Space Shuttle was not expected to require the extensive maintenance it undergoes between flights. As a result, extensive, costly resources have been expended on workarounds and modifications to accommodate ground processing personnel. Consideration of basic human factors principles for design of maintenance is essential during the design phase of future space vehicles, facilities, and equipment. Simulation will be needed to test and validate designs before implementation.

  14. Mobile robot vehicles for physical security

    International Nuclear Information System (INIS)

    A fleet of vehicles is being developed and maintained by Sandia National Labs for studies in remote control and autonomous operation. These vehicles range from modified commercial vehicles to specially constructed mobile platforms and are utilized as test beds for developing concepts in the application of robotics to interior and exterior physical security. Actuators control the vehicle speed, brakes, and steering through manual input from a remote driving station or through some level of digital computer control. On-board processing may include simple vehicle control functions or may allow for unmanned, autonomous operation. communication links are provided for digital communication between control computers, television transmission for vehicle vision, and voice for local control. With these vehicles, SNL can develop, test, and evaluate sensors, processing requirements, various methods of actuator implementation, operator controlled feedback requirements, and vehicle operations. A description of the major features and uses for each of the vehicles in the fleet is provided

  15. Mobile robot vehicles for physical security

    International Nuclear Information System (INIS)

    A fleet of vehicles is being developed and maintained by Sandia National Labs for studies in remote control and autonomous operation. These vehicles range from modified commercial vehicles to specially constructed mobile platforms and are utilized as test beds for developing concepts in the application of robotics to interior and exterior physical security. Actuators control the vehicle speed, brakes, and steering through manual input from a remote driving station or through some level of digital computer control. On-board processing may include simple vehicle control functions or may allow for unmanned, autonomous operation. Communication links are provided for digital communication between control computers, television transmission for vehicle vision, and voice for local control. With these vehicles, SNL can develop, test, and evaluate sensors, processing requirements, various methods of actuator implementation, operator controlled feedback requirements, and vehicle operations. A description of the major features and uses for each of the vehicles in the fleet is provided. 4 refs., 1 fig., 1 tab

  16. Mobile robot vehicles for physical security

    International Nuclear Information System (INIS)

    A fleet of vehicles is being developed and maintained by Sandia National Labs for studies in remote control and autonomous operation. These vehicles range from modified commercial vehicles to specially constructed mobile platforms and are utilized as test beds for developing concepts in the application of robotics to interior and exterior physical security. Actuators control the vehicle speed, brakes, and steering through manual input from a remote driving station or through some level of digital computer control. On-board processing may include simple vehicle control functions or may allow for unmanned, autonomous operation. Communication links are provided for digital communication between control computers, television transmission for vehicle vision, and voice for local control. With these vehicles, SNL can develop, test, and evaluate sensors, processing requirements, various methods of actuator implementation, operator controlled feedback requirements, and vehicle operations. A description of the major features and uses for each of the vehicles in the fleet is provided

  17. Application of A* Algorithm for Real-time Path Re-planning of an Unmanned Surface Vehicle Avoiding Underwater Obstacles

    Institute of Scientific and Technical Information of China (English)

    Thanapong Phanthong; Toshihiro Maki; Tamaki Ura; Takashi Sakamaki; Pattara Aiyarak

    2014-01-01

    This paper describes path re-planning techniques and underwater obstacle avoidance for unmanned surface vehicle (USV) based on multi-beam forward looking sonar (FLS). Near-optimal paths in static and dynamic environments with underwater obstacles are computed using a numerical solution procedure based on an A*algorithm. The USV is modeled with a circular shape in 2 degrees of freedom (surge and yaw). In this paper, two-dimensional (2-D) underwater obstacle avoidance and the robust real-time path re-planning technique for actual USV using multi-beam FLS are developed. Our real-time path re-planning algorithm has been tested to regenerate the optimal path for several updated frames in the field of view of the sonar with a proper update frequency of the FLS. The performance of the proposed method was verified through simulations, and sea experiments. For simulations, the USV model can avoid both a single stationary obstacle, multiple stationary obstacles and moving obstacles with the near-optimal trajectory that are performed both in the vehicle and the world reference frame. For sea experiments, the proposed method for an underwater obstacle avoidance system is implemented with a USV test platform. The actual USV is automatically controlled and succeeded in its real-time avoidance against the stationary undersea obstacle in the field of view of the FLS together with the Global Positioning System (GPS) of the USV.

  18. Social Internet of Vehicles for Smart Cities

    OpenAIRE

    Maglaras, Leandros A.; Ali H. Al-Bayatti; Ying He; Isabel Wagner; Helge Janicke

    2016-01-01

    Digital devices are becoming increasingly ubiquitous and interconnected. Their evolution to intelligent parts of a digital ecosystem creates novel applications with so far unresolved security issues. A particular example is a vehicle. As vehicles evolve from simple means of transportation to smart entities with new sensing and communication capabilities, they become active members of a smart city. The Internet of Vehicles (IoV) consists of vehicles that communicate with each other and with pu...

  19. A conceptual framework for Lake Michigan coastal/nearshore ecosystems, with application to Lake Michigan Lakewide Management Plan (LaMP) objectives

    Science.gov (United States)

    Seelbach, Paul W.; Fogarty, Lisa R.; Bunnell, David Bo; Haack, Sheridan K.; Rogers, Mark W.

    2013-01-01

    The Lakewide Management Plans (LaMPs) within the Great Lakes region are examples of broad-scale, collaborative resource-management efforts that require a sound ecosystems approach. Yet, the LaMP process is lacking a holistic framework that allows these individual actions to be planned and understood within the broader context of the Great Lakes ecosystem. In this paper we (1) introduce a conceptual framework that unifies ideas and language among Great Lakes managers and scientists, whose focus areas range from tributary watersheds to open-lake waters, and (2) illustrate how the framework can be used to outline the geomorphic, hydrologic biological, and societal processes that underlie several goals of the Lake Michigan LaMP, thus providing a holistic and fairly comprehensive roadmap for tackling these challenges. For each selected goal, we developed a matrix that identifies the key ecosystem processes within the cell for each lake zone and each discipline; we then provide one example where a process is poorly understood and a second where a process is understood, but its impact or importance is unclear. Implicit in these objectives was our intention to highlight the importance of the Great Lakes coastal/nearshore zone. Although the coastal/nearshore zone is the important linkage zone between the watershed and open-lake zones—and is the zone where most LaMP issues are focused--scientists and managers have a relatively poor understanding of how the coastal/nearshore zone functions. We envision follow-up steps including (1) collaborative development of a more detailed and more complete conceptual model of how (and where) identified processes are thought to function, and (2) a subsequent gap analysis of science and monitoring priorities.

  20. Exponential Stabilization of Underactuated Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, K.Y.

    1996-12-31

    Underactuated vehicles are vehicles with fewer independent control actuators than degrees of freedom to be controlled. Such vehicles may be used in inspection of sub-sea cables, inspection and maintenance of offshore oil drilling platforms, and similar. This doctoral thesis discusses feedback stabilization of underactuated vehicles. The main objective has been to further develop methods from stabilization of nonholonomic systems to arrive at methods that are applicable to underactuated vehicles. A nonlinear model including both dynamics and kinematics is used to describe the vehicles, which may be surface vessels, spacecraft or autonomous underwater vehicles (AUVs). It is shown that for a certain class of underactuated vehicles the stabilization problem is not solvable by linear control theory. A new stability result for a class of homogeneous time-varying systems is derived and shown to be an important tool for developing continuous periodic time-varying feedback laws that stabilize underactuated vehicles without involving cancellation of dynamics. For position and orientation control of a surface vessel without side thruster a new continuous periodic feedback law is proposed that does not cancel any dynamics, and that exponentially stabilizes the origin of the underactuated surface vessel. A further issue considered is the stabilization of the attitude of an AUV. Finally, the thesis discusses stabilization of both position and attitude of an underactuated AUV. 55 refs., 28 figs.

  1. Conceptual modeling and the Lexicon

    NARCIS (Netherlands)

    Hoppenbrouwers, J.J.A.C.

    1997-01-01

    'Conceptual Modeling and the Lexicon' investigates the linguistic aspects of conceptual modeling, concentrating on the terminology part. The author combines theoretical ideas and empirical facts from various scientific fields, such as cognitive psychology, computer science, lexicography, psycholingu

  2. Aircraft conceptual design - an adaptable parametric sizing methodology

    Science.gov (United States)

    Coleman, Gary John, Jr.

    Aerospace is a maturing industry with successful and refined baselines which work well for traditional baseline missions, markets and technologies. However, when new markets (space tourism) or new constrains (environmental) or new technologies (composite, natural laminar flow) emerge, the conventional solution is not necessarily best for the new situation. Which begs the question "how does a design team quickly screen and compare novel solutions to conventional solutions for new aerospace challenges?" The answer is rapid and flexible conceptual design Parametric Sizing. In the product design life-cycle, parametric sizing is the first step in screening the total vehicle in terms of mission, configuration and technology to quickly assess first order design and mission sensitivities. During this phase, various missions and technologies are assessed. During this phase, the designer is identifying design solutions of concepts and configurations to meet combinations of mission and technology. This research undertaking contributes the state-of-the-art in aircraft parametric sizing through (1) development of a dedicated conceptual design process and disciplinary methods library, (2) development of a novel and robust parametric sizing process based on 'best-practice' approaches found in the process and disciplinary methods library, and (3) application of the parametric sizing process to a variety of design missions (transonic, supersonic and hypersonic transports), different configurations (tail-aft, blended wing body, strut-braced wing, hypersonic blended bodies, etc.), and different technologies (composite, natural laminar flow, thrust vectored control, etc.), in order to demonstrate the robustness of the methodology and unearth first-order design sensitivities to current and future aerospace design problems. This research undertaking demonstrates the importance of this early design step in selecting the correct combination of mission, technologies and configuration to

  3. CASE-BASED CONCEPTUAL DESIGN

    Institute of Scientific and Technical Information of China (English)

    Ling Weiqing; Yan Junwei; Wang Jian; Xie Youbai

    2004-01-01

    The current method of case-based design (CBD) can be well practiced for configuration design in which design experience knowledge is involved.However, since the design case is confined to a certain application domain, it is difficult for CBD to be applied to conceptual design process that develops concepts to meet design specifications.Firstly, a function factor description space is erected to provide an exhibition room for all functions of design cases.Next, the approach for identifying the space state of function factor in description space is proposed, including the determination of the similarities between function factors of design case.And then a general object-oriented representation for design case is presented by bringing the class of function and in-out flow into the current case representation.Finally, a living example for electro-pet design that illustrates the implementation of the method for case-based conceptual design based on distributed design case repositories is described.

  4. Considerations for the application of finite element beam modeling to vibration analysis of flight vehicle structures. Ph.D. Thesis - Case Western Reserve Univ.

    Science.gov (United States)

    Kvaternik, R. G.

    1976-01-01

    The manner of representing a flight vehicle structure as an assembly of beam, spring, and rigid-body components for vibration analysis is described. The development is couched in terms of a substructures methodology which is based on the finite-element stiffness method. The particular manner of employing beam, spring, and rigid-body components to model such items as wing structures, external stores, pylons supporting engines or external stores, and sprung masses associated with launch vehicle fuel slosh is described by means of several simple qualitative examples. A detailed numerical example consisting of a tilt-rotor VTOL aircraft is included to provide a unified illustration of the procedure for representing a structure as an equivalent system of beams, springs, and rigid bodies, the manner of forming the substructure mass and stiffness matrices, and the mechanics of writing the equations of constraint which enforce deflection compatibility at the junctions of the substructures. Since many structures, or selected components of structures, can be represented in this manner for vibration analysis, the modeling concepts described and their application in the numerical example shown should prove generally useful to the dynamicist.

  5. Application Study on the Dynamic Programming Algorithm for Energy Management of Plug-in Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Ximing Wang

    2015-04-01

    Full Text Available To explore the problems associated with applying dynamic programming (DP in the energy management strategies of plug-in hybrid electric vehicles (PHEVs, a plug-in hybrid bus powertrain is introduced and its dynamic control model is constructed. The numerical issues, including the discretization resolution of the relevant variables and the boundary issue of their feasible regions, were considered when implementing DP to solve the optimal control problem of PHEVs. The tradeoff between the optimization accuracy when using the DP algorithm and the computational burden was systematically investigated. As a result of overcoming the numerical issues, the DP-based approach has the potential to improve the fuel-savings potential of PHEVs. The results from comparing the DP-based strategy and the traditional control strategy indicate that there is an approximately 20% improvement in fuel economy.

  6. 3D Flapping Trajectory of a Micro-Air-Vehicle and its Application to Unsteady Flow Simulation

    Directory of Open Access Journals (Sweden)

    Lung-Jieh Yang

    2013-06-01

    Full Text Available A three‐dimensional (3D trajectory detection framework using two high‐speed cameras for the flapping flexible wing of a micro‐air‐vehicle (MAV is presented. This MAV, which is called the “Golden Snitch”, has a successful flight record of 8 minutes. We embed the flexible wingskin with a nine light emitting diode (LED array as the light enhancing marker and capsulate it with parylene (poly‐para‐xylylene as the protection layer. We confirm an oblique figure of eight trajectory of this MAV’s wing with time‐varying coordinate data. The corresponding aerofoil of the main wings’ profiles was subjected to the time‐varying coordinate data, yielding a resolution of a 1/70 wing beating cycle of 15Hz flapping. The trajectory information is first demonstrated as the moving boundaries of an unsteady flow simulation around a flapping flexible wing.

  7. Robust Huber-based iterated divided difference filtering with application to cooperative localization of autonomous underwater vehicles.

    Science.gov (United States)

    Gao, Wei; Liu, Yalong; Xu, Bo

    2014-01-01

    A new algorithm called Huber-based iterated divided difference filtering (HIDDF) is derived and applied to cooperative localization of autonomous underwater vehicles (AUVs) supported by a single surface leader. The position states are estimated using acoustic range measurements relative to the leader, in which some disadvantages such as weak observability, large initial error and contaminated measurements with outliers are inherent. By integrating both merits of iterated divided difference filtering (IDDF) and Huber's M-estimation methodology, the new filtering method could not only achieve more accurate estimation and faster convergence contrast to standard divided difference filtering (DDF) in conditions of weak observability and large initial error, but also exhibit robustness with respect to outlier measurements, for which the standard IDDF would exhibit severe degradation in estimation accuracy. The correctness as well as validity of the algorithm is demonstrated through experiment results. PMID:25536004

  8. Three-dimensional imaging applications in Earth Sciences using video data acquired from an unmanned aerial vehicle

    Science.gov (United States)

    McLeod, Tara

    For three dimensional (3D) aerial images, unmanned aerial vehicles (UAVs) are cheaper to operate and easier to fly than the typical manned craft mounted with a laser scanner. This project explores the feasibility of using 2D video images acquired with a UAV and transforming them into 3D point clouds. The Aeryon Scout -- a quad-copter micro UAV -- flew two missions: the first at York University Keele campus and the second at the Canadian Wollastonite Mine Property. Neptec's ViDAR software was used to extract 3D information from the 2D video using structure from motion. The resulting point clouds were sparsely populated, yet captured vegetation well. They were used successfully to measure fracture orientation in rock walls. Any improvement in the video resolution would cascade through the processing and improve the overall results.

  9. STUDIES ON APPLICATION OF PROSOLVE AS A DIRECT COMPRESSIBLE VEHICLE FOR IMPROVING THE DISSOLUTION RATE OF POORLY SOLUBLE DRUGS

    Directory of Open Access Journals (Sweden)

    RAMANJI REDDY,RAVI, KRISHNA,PADMAVATHI,AJAY BABU

    2013-09-01

    Full Text Available Prosolve, a new directly compressible vehicle consists of microcrystalline cellulose (98% and colloidal silicon dioxide (2%. Piroxicam (20 mg tablets, celecoxib (100 mg tablets and aceclofenac (100 mg tablets were formulated employing prosolve and three super disintegrants namely pregelatinised starch, sodium starch glycolate and croscarmellose sodium by direct compression method with a view to enhance their dissolution rate. In the micromeritic evaluation microcrystalline cellulose and its blends with other tablet ingredients exhibited excellent to good flow needed for direct compression. All the tablets formulated employing prosolve fulfilled the Pharmacopoeial standards with regard to various tablet characters. These tablets also gave 2 to 5 fold increase in the dissolution rate when compared to commercial tablets. Among the three disintegrants sodium starch glycolate gave higher dissolution rates when compared with both pregelatinised starch and croscarmellose sodium.

  10. On the Application of Rapid Prototyping Technology for the Fabrication of Flapping Wings for Micro Air Vehicles

    Science.gov (United States)

    Kraemer, Kurtis Leigh

    Micro air vehicles (MAV) are a class of small uninhabited aircraft with dimensions less than 15 cm (6 in) and mass less than 500g (1.1 lbs). The aim of this research was to develop a fast, accurate, low-cost, and repeatable fabrication process for flapping MAV wings. Through the use of the RepRap Mendel open-source fused-deposition modeling (FDM) rapid prototyping machine ("3-D printer"), various wing prototypes were designed and fabricated using a bio-inspired approach. Testing of the aerodynamic performance of both real locust wings and the 3-D printed wing prototypes was performed through axial spin testing. Bending stiffness measurements were also performed on the 3-D printed wings. Through the use of open-source rapid prototyping technology, a fast and low-cost fabrication process for flapping MAV wings has been developed, out of which further understanding of flapping wing design and fabrication has been gained.

  11. Towards Conceptual Compression

    OpenAIRE

    Gregor, Karol; Besse, Frederic; Rezende, Danilo Jimenez; Danihelka, Ivo; Wierstra, Daan

    2016-01-01

    We introduce a simple recurrent variational auto-encoder architecture that significantly improves image modeling. The system represents the state-of-the-art in latent variable models for both the ImageNet and Omniglot datasets. We show that it naturally separates global conceptual information from lower level details, thus addressing one of the fundamentally desired properties of unsupervised learning. Furthermore, the possibility of restricting ourselves to storing only global information ab...

  12. Interior design conceptual basis

    CERN Document Server

    Sully, Anthony

    2015-01-01

    Maximizing reader insights into interior design as a conceptual way of thinking, which is about ideas and how they are formulated. The major themes of this book are the seven concepts of planning, circulation, 3D, construction, materials, colour and lighting, which covers the entire spectrum of a designer’s activity. Analysing design concepts from the view of the range of possibilities that the designer can examine and eventually decide by choice and conclusive belief the appropriate course of action to take in forming that particular concept, the formation and implementation of these concepts is taken in this book to aid the designer in his/her professional task of completing a design proposal to the client. The purpose of this book is to prepare designers to focus on each concept independently as much as possible, whilst acknowledging relative connections without unwarranted influences unfairly dictating a conceptual bias, and is about that part of the design process called conceptual analysis. It is assu...

  13. Relativism: A conceptual analysis.

    Directory of Open Access Journals (Sweden)

    Vittorio Villa

    2010-01-01

    Full Text Available In this paper, first, I will try to give a conceptual definition of relativism, with the aim of singling out the basic elements common to the most relevant relativist conceptions. I will qualify as “relativistic” all conceptions in which all or a relevant part of its criteria and beliefs necessarily depend on a given context. Secondly, I will deal with some critical observations against relativism. From this point of view, a problem arises from the fact that many relativists would like to have the chance ofexpressing some objective judgments. Lastly, I will propose a relativistic conception: one that doesn’t incorporate absolutist elements at all and nevertheless could be able to explain the presence of a common core of criteria and beliefs in all our conceptual schemes and beliefs. Two distinctions are important here: first, local conceptual schemes and long term frameworks, and second, environment and world. This last distinction makes possible to speak, even inside a coherent relativist epistemological conception, of the existence of an objective reality.

  14. PRA and Conceptual Design

    Science.gov (United States)

    DeMott, Diana; Fuqua, Bryan; Wilson, Paul

    2013-01-01

    Once a project obtains approval, decision makers have to consider a variety of alternative paths for completing the project and meeting the project objectives. How decisions are made involves a variety of elements including: cost, experience, current technology, ideologies, politics, future needs and desires, capabilities, manpower, timing, available information, and for many ventures management needs to assess the elements of risk versus reward. The use of high level Probabilistic Risk Assessment (PRA) Models during conceptual design phases provides management with additional information during the decision making process regarding the risk potential for proposed operations and design prototypes. The methodology can be used as a tool to: 1) allow trade studies to compare alternatives based on risk, 2) determine which elements (equipment, process or operational parameters) drives the risk, and 3) provide information to mitigate or eliminate risks early in the conceptual design to lower costs. Creating system models using conceptual design proposals and generic key systems based on what is known today can provide an understanding of the magnitudes of proposed systems and operational risks and facilitates trade study comparisons early in the decision making process. Identifying the "best" way to achieve the desired results is difficult, and generally occurs based on limited information. PRA provides a tool for decision makers to explore how some decisions will affect risk before the project is committed to that path, which can ultimately save time and money.

  15. Waste Handling Building Conceptual Study

    International Nuclear Information System (INIS)

    The objective of the ''Waste Handling Building Conceptual Study'' is to develop proposed design requirements for the repository Waste Handling System in sufficient detail to allow the surface facility design to proceed to the License Application effort if the proposed requirements are approved by DOE. Proposed requirements were developed to further refine waste handling facility performance characteristics and design constraints with an emphasis on supporting modular construction, minimizing fuel inventory, and optimizing facility maintainability and dry handling operations. To meet this objective, this study attempts to provide an alternative design to the Site Recommendation design that is flexible, simple, reliable, and can be constructed in phases. The design concept will be input to the ''Modular Design/Construction and Operation Options Report'', which will address the overall program objectives and direction, including options and issues associated with transportation, the subsurface facility, and Total System Life Cycle Cost. This study (herein) is limited to the Waste Handling System and associated fuel staging system

  16. Development of an unmanned aerial vehicle-based spray system for highly accurate site-specific application

    Science.gov (United States)

    Application of crop production and protection materials is a crucial component in the high productivity of American agriculture. Agricultural chemical application is frequently needed at a specific time and location for accurate site-specific management of crop pests. Piloted aircrafts that carry ...

  17. 一种基于负载转移的车载应用计算优化方法%An Optimal Method Based on Oflfoading Vehicle Applications

    Institute of Scientific and Technical Information of China (English)

    郭鹿鸣

    2016-01-01

    随着车联网研究和应用的深入发展,车载应用程序V-App(Vehicular App)也变得多样化和复杂化。受限于车载终端OBU(On Board Unit)有限的计算资源,V-App的执行效果可能满足不了用户的需求。如何利用云计算技术(Cloud computing)远程协作执行V-App是个值得考虑的方法。文章给出了一种基于负载转移的车载应用计算优化方法。核心是借助路侧单元RSU(Road Side Unit)的资源来协作运行V-App,缓解了车载单元OBU处理复杂应用的压力,提高了用户的体验度。%With the further research and development of VANETs.Vehicular App have become diverse and complicated. Limited to vehicle terminal Board Unit’s limited computational ability, the effect of the implementation of V-App may not meet the needs of users. How to use Cloud computing remote collaboration execution V-App is worth considering. This paper presents a method of calculation based on optimization of oflfoad vehicle applications. Its core is the use of roadside unit’s resources to run Collaboration V-App, easing the pressure on the onboard unit handle complex applications and improve the experience of users.

  18. Application and Progress on Low-altitude Unmanned Aerial Vehicle Remote Sensing%低空无人机遥感的应用及发展

    Institute of Scientific and Technical Information of China (English)

    高奋生

    2014-01-01

    Using the advanced unmanned aerial vehicle technology, remote sensing sensor technology, communications technology, GPS differential positioning technology and remote sensing application technology, UAV remote sensing automation realized intelligent, dedicated and rapid access to get space remote sensing information and complete the processing, modeling and application analysis of remote sensing data. In recent years, the Unmanned Aerial Vehicle (UAV) has been widely used in geological environment and disaster investigation, dynamic monitoring of land use, map updating and other fields. This paper analyzed the composition of UAV remote sensing systems and summarized the current problems of UAV remote sensing study, presenting the prospects of UAV remote sensing research focus and priorities in the future.%无人机遥感即是利用先进的无人驾驶飞行器技术、遥感传感器技术、通讯技术、GPS差分定位技术和遥感应用技术,实现自动化、智能化、专用化快速获取空间遥感信息,完成遥感数据处理、建模和应用分析的应用技术。近年来,无人机遥感系统已被广泛应用在地质环境与灾害调查、土地利用动态监测、地形图更新等领域。本文分析了无人机遥感系统的组成,归纳了目前无人机遥感研究存在的问题,展望了今后无人机遥感研究的热点和重点。

  19. 一种基于负载转移的车载应用计算优化方法%An Optimal Method Based on Oflfoading Vehicle Applications

    Institute of Scientific and Technical Information of China (English)

    郭鹿鸣

    2016-01-01

    With the further research and development of VANETs.Vehicular App have become diverse and complicated. Limited to vehicle terminal Board Unit’s limited computational ability, the effect of the implementation of V-App may not meet the needs of users. How to use Cloud computing remote collaboration execution V-App is worth considering. This paper presents a method of calculation based on optimization of oflfoad vehicle applications. Its core is the use of roadside unit’s resources to run Collaboration V-App, easing the pressure on the onboard unit handle complex applications and improve the experience of users.%随着车联网研究和应用的深入发展,车载应用程序V-App(Vehicular App)也变得多样化和复杂化。受限于车载终端OBU(On Board Unit)有限的计算资源,V-App的执行效果可能满足不了用户的需求。如何利用云计算技术(Cloud computing)远程协作执行V-App是个值得考虑的方法。文章给出了一种基于负载转移的车载应用计算优化方法。核心是借助路侧单元RSU(Road Side Unit)的资源来协作运行V-App,缓解了车载单元OBU处理复杂应用的压力,提高了用户的体验度。

  20. Identification of potential locations of electric vehicle supply equipment

    Science.gov (United States)

    Brooker, R. Paul; Qin, Nan

    2015-12-01

    Proper placement of electric vehicle supply equipment (charging stations) requires an understanding of vehicle usage patterns. Using data from the National Household Travel Survey on vehicle mileage and destination patterns, analyses were performed to determine electric vehicles' charging needs, as a function of battery size and state of charge. This paper compares electric vehicle charging needs with Department of Energy electric vehicle charging data from real-world charging infrastructure. By combining the electric vehicles charging needs with charging data from real-world applications, locations with high electric vehicle charging likelihood are identified.