WorldWideScience

Sample records for apple mosaic virus

  1. Apple mosaic virus

    Science.gov (United States)

    Apple mosaic virus (ApMV), a member of the ilarvirus group, naturally infects Betula, Aesculus, Humulus, and several crop genera in the family Rosaceae (Malus, Prunus, Rosa and Rubus). ApMV was first reported in Rubus in several blackberry and raspberry cultivars in the United States and subsequentl...

  2. First report of Apple necrotic mosaic virus infecting apple trees in Korea

    Science.gov (United States)

    In September 2016, two apple trees (Malus domestica Borkh) cv. Shinano Sweet showing bright cream spot and mosaic patterns on leaves were observed in Pocheon, South Korea. Mosaic symptoms are common on leaves of apple trees infected with Apple mosaic virus (ApMV). Symptomatic leaves were tested by e...

  3. The complete nucleotide sequence and genomic characterization of tropical soda apple mosaic virus

    Science.gov (United States)

    Tropical soda apple mosaic virus (TSAMV) was first identified in tropical soda apple (Solanum viarum), a noxious weed, in Florida in 2002. This report provides the first full genome sequence of TSAMV. The full genome sequence of this virus will enable research scientists to develop additional spec...

  4. Simultaneous detection of Apple mosaic virus in cultivated hazelnuts ...

    African Journals Online (AJOL)

    USER

    2010-03-22

    Mar 22, 2010 ... The most suitable extraction method that could detect the virus occurring naturally in .... systems have been developed, allowing 3 or more .... Lane M: Molecular marker 100 bp (MBI fermantas); Lane H: husk tissues; Lane F:.

  5. Apple latent spherical virus vector as vaccine for the prevention and treatment of mosaic diseases in pea, broad bean, and eustoma plants by bean yellow mosaic virus.

    Science.gov (United States)

    Satoh, Nozomi; Kon, Tatsuya; Yamagishi, Noriko; Takahashi, Tsubasa; Natsuaki, Tomohide; Yoshikawa, Nobuyuki

    2014-11-07

    We investigated the protective effects of a viral vector based on an Apple latent spherical virus (ALSV) harboring a segment of the Bean yellow mosaic virus (BYMV) genome against mosaic diseases in pea, broad bean, and eustoma plants caused by BYMV infection. In pea plants pre-inoculated with the ALSV vaccine and challenge inoculated with BYMV expressing green fluorescence protein, BYMV multiplication occurred in inoculated leaves, but was markedly inhibited in the upper leaves. No mosaic symptoms due to BYMV infection were observed in the challenged plants pre-inoculated with the ALSV vaccine. Simultaneous inoculation with the ALSV vaccine and BYMV also prevented mosaic symptoms in broad bean and eustoma plants, and BYMV accumulation was strongly inhibited in the upper leaves of plants treated with the ALSV vaccine. Pea and eustoma plants were pre-inoculated with BYMV followed by inoculation with the ALSV vaccine to investigate the curative effects of the ALSV vaccine. In both plant species, recovery from mosaic symptoms was observed in upper leaves and BYMV accumulation was inhibited in leaves developing post-ALSV vaccination. These results show that ALSV vaccination not only prevents mosaic diseases in pea, broad bean, and eustoma, but that it is also effective in curing these diseases.

  6. Apple Latent Spherical Virus Vector as Vaccine for the Prevention and Treatment of Mosaic Diseases in Pea, Broad Bean, and Eustoma Plants by Bean Yellow Mosaic Virus

    Directory of Open Access Journals (Sweden)

    Nozomi Satoh

    2014-11-01

    Full Text Available We investigated the protective effects of a viral vector based on an Apple latent spherical virus (ALSV harboring a segment of the Bean yellow mosaic virus (BYMV genome against mosaic diseases in pea, broad bean, and eustoma plants caused by BYMV infection. In pea plants pre-inoculated with the ALSV vaccine and challenge inoculated with BYMV expressing green fluorescence protein, BYMV multiplication occurred in inoculated leaves, but was markedly inhibited in the upper leaves. No mosaic symptoms due to BYMV infection were observed in the challenged plants pre-inoculated with the ALSV vaccine. Simultaneous inoculation with the ALSV vaccine and BYMV also prevented mosaic symptoms in broad bean and eustoma plants, and BYMV accumulation was strongly inhibited in the upper leaves of plants treated with the ALSV vaccine. Pea and eustoma plants were pre-inoculated with BYMV followed by inoculation with the ALSV vaccine to investigate the curative effects of the ALSV vaccine. In both plant species, recovery from mosaic symptoms was observed in upper leaves and BYMV accumulation was inhibited in leaves developing post-ALSV vaccination. These results show that ALSV vaccination not only prevents mosaic diseases in pea, broad bean, and eustoma, but that it is also effective in curing these diseases.

  7. Tropical soda apple mosaic virus Identified in Solanum capsicoides in Florida

    Science.gov (United States)

    Red soda apple (Solanum capsicoides All.), a member of the Solanaceae, is a weed originally from Brazil. It is a perennial in southern Florida and is characterized by abundant prickles on stems, petioles and leaves. Prickles on stems are more dense than on its larger noxious weed relative, tropica...

  8. Production System of Virus-free Apple Plants Using Heat Treatment and Shoot Tip CultureShoot Tip Culture

    OpenAIRE

    Gunsup Lee; Il Sheob Shin; Kang Hee Cho; Se Hee Kim; Juhee Shin; Dae Hyun Kim; Jeong Hee Kim; Hyun Ran Kim

    2013-01-01

    In worldwide, viral diseases of apple plants has caused the serious problems like reduced production and malformation of fruits. Also, the damages of apple plants by virus and/or viroid infection (Apple chlorotic leaf spot virus, Apple stem grooving virus, Apple mosaic virus, and Apple scar skin viroid) were reported in Korea. However there is few report about the protection approach against the infection by apple viruses. Therefore, this paper introduced the experimental protocol...

  9. Evolutionary relationship of alfalfa mosaic virus with cucumber mosaic virus and brome mosaic virus

    OpenAIRE

    Savithri, HS; Murthy, MRN

    1983-01-01

    The amino acid sequences of the non-structural protein (molecular weight 35,000; 3a protein) from three plant viruses - cucumber mosaic, brome mosaic and alfalfa mosaic have been systematically compared using the partial genomic sequences for these three viruses already available. The 3a protein of cucumber mosaic virus has an amino acid sequence homology of 33.7% with the corresponding protein of brome mosaic virus. A similar protein from alfalfa mosaic virus has a homology of 18.2% and 14.2...

  10. Cucumber mosaic virus in Rubus

    Science.gov (United States)

    Cucumber mosaic virus (CMV) has been reported on red raspberry in Chile, Scotland and the Soviet Union and in Chile on blackberry. Its occurrence in Rubus is rare and seems to cause little damage. Except for one early, unconfirmed report, CMV has not been reported on Rubus in North America. This vir...

  11. MOSAIC VIRUS DISEASE

    African Journals Online (AJOL)

    causing yield loss through direct feeding, production of honeydew ... whiteflies and associated virus diseases on cassava in the Neotropics is .... whitefly exit holes, parasite exit holes and dead pupae found on ... A leurd frog hettys. T o--- Triate ...

  12. 40 CFR 174.514 - Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the...

    Science.gov (United States)

    2010-07-01

    ... Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. 174.514... Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. Residues of Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic...

  13. Deep Sequencing Analysis of Apple Infecting Viruses in Korea

    OpenAIRE

    In-Sook Cho; Davaajargal Igori; Seungmo Lim; Gug-Seoun Choi; John Hammond; Hyoun-Sub Lim; Jae Sun Moon

    2016-01-01

    Deep sequencing has generated 52 contigs derived from five viruses; Apple chlorotic leaf spot virus (ACLSV), Apple stem grooving virus (ASGV), Apple stem pitting virus (ASPV), Apple green crinkle associated virus (AGCaV), and Apricot latent virus (ApLV) were identified from eight apple samples showing small leaves and/or growth retardation. Nucleotide (nt) sequence identity of the assembled contigs was from 68% to 99% compared to the reference sequences of the five respective viral genomes. S...

  14. Production System of Virus-free Apple Plants Using Heat Treatment and Shoot Tip CultureShoot Tip Culture

    Directory of Open Access Journals (Sweden)

    Gunsup Lee

    2013-12-01

    Full Text Available In worldwide, viral diseases of apple plants has caused the serious problems like reduced production and malformation of fruits. Also, the damages of apple plants by virus and/or viroid infection (Apple chlorotic leaf spot virus, Apple stem grooving virus, Apple mosaic virus, and Apple scar skin viroid were reported in Korea. However there is few report about the protection approach against the infection by apple viruses. Therefore, this paper introduced the experimental protocol for the development of virus-free apple cultivars (Danhong, Hongan, Saenara, Summerdream. Apple plants were treated at 37oC for 4 weeks and shoot tips were cultured in vitro. After heat treatment, the detection of apple viruses was performed by RT-PCR using virusspecific detection primers in new apple cultivars. With the heat treatments followed by in vitro shoot tip culture, the proportion of virus-free stocks of ‘Danhong’, ‘Hongan’, ‘Saenara’, and ‘Summerdream’ was 28%, 16%, 12%, and 12%, respectively. Taken together, this approach can be a good tool for production of virus-free apple stocks.

  15. Diffraction studies of papaya mosaic virus.

    Science.gov (United States)

    Tollin, P; Bancroft, J B; Richardson, J F; Payne, N C; Beveridge, T J

    1979-10-15

    X-ray and optical diffraction studies of the flexuous papaya mosaic virus are described. The virus is constructed so that there are 35 coat protein subunits in 4 turns of the helix. The virus contains about 1410 protein subunits and 6800 nucleotides and has a molecular weight of about 33 x 10(6). The structure of tubes assembled in vitro from coat protein both in the presence and absence of nucleic acid resembles that of the native virus.

  16. KARAKTERISASICYMBIDIUM MOSAIC VIRUS (CYMMV PADA TANAMAN ANGGREK

    Directory of Open Access Journals (Sweden)

    KHAMDAN KHALIMI

    2012-11-01

    Full Text Available Characterization ofCymbidium mosaic virus (CymMV on Orchid Plant Orchids are affected by more virus disease problems than most crops, reducing their commercial values considerably. Orchid viruses are widespread in cultivated orchids, withCymbidium mosaic potexvirus (CymMV being the most prevalent. CymMV high incidence in cultivated orchids has been attributed to the stability and ease of transmission of this virus through cultural practices. CymMV induces floral and foliar necrosis. The virus also reduce plant vigor and lower flower quality, which affect their economic value. The objective of the research is to characterize the virus causing mosaic or chlorotic and necrotic on orchids in West Java. A reverse transcription-polymerase chain reaction (RT- PCR assays using oligonucleotide primers specific to CymMV were also successfully amplified the regions of the coat protein (CP gene of the virus. Analysis by using sodium dodecyl sulphate- polyacrylamide gel electrophoresis (SDS-PAGE revealed that the virus have a major structural protein with an estimated molecular weight of 28 kDa. Aligments of partial nucleotide sequences of the CP gene displayed 86 to 92% homology to CymMV isolates from other countries.

  17. Infection of Plants by Tobacco Mosaic Virus.

    Science.gov (United States)

    McDaniel, Larry; Maratos, Marina; Farabaugh, Joan

    1998-01-01

    Provides three exercises that introduce high school and college students to a common strain of the tobacco mosaic virus and the study of some basic biological processes. Activities involve inoculation of plants and observing and recording symptom development in infected plants. (DDR)

  18. Tobacco mosaic virus: Proof by synthesis

    Science.gov (United States)

    A linear, non-self-replicating DNA molecule encoding Tobacco mosaic virus (TMV) was enzymatically synthesized in vitro from DNA templates made from overlapping oligonucleotides. The molecule was a replica of the alphabetic text rendering of the first TMV genome sequence elucidated by Goelet et al. ...

  19. Ozone response of tomato plants infected with cucumber mosaic virus and/or tobacco mosaic virus

    Energy Technology Data Exchange (ETDEWEB)

    Ormrod, D.P.; Kemp, W.G.

    1979-10-01

    The sensitivity of three tomato cultivars to several concentrations of ozone was evaluated after prior sequential inoculations with tobacco mosaic virus (TMV) and/or cucumber mosaic virus (CMV). Ozone injury in inoculated and uninoculated tomatoes varied from slight to severe depending on the virus, cultivar, ozone concentration and virus incubation period. The frequency of increased ozone injury was about twice as great as that of suppressed injury on infected plants. Ozone injury occurred more frequently in TMV-inoculated plants than in those inoculated with CMV. There were more increases than decreases in ozone injury after 7 or 14 days of virus infection, but mainly decreases in injury after 21 days infection. Growth was significantly reduced in plants exposed to ozone after a 21-day virus incubation period, particularly when they were inoculated with both viruses.

  20. A 2014 nationwide survey of the distribution of Soybean mosaic virus (SMV), Soybean yellow mottle mosaic virus (SYMMV) and Soybean yellow common mosaic virus (SYCMV) major viruses in South Korean soybean fields, and changes

    Science.gov (United States)

    In 2014 symptomatic soybean samples were collected throughout Korea, and were tested for the most important soybean viruses found in Korea, namely Soybean mosaic virus (SMV), Soybean yellow common mosaic virus (SYCMV), and Soybean yellow mottle mosaic virus (SYMMV). SYMMV was most commonly detected,...

  1. Subassembly aggregates of papaya mosaic virus protein.

    Science.gov (United States)

    Erickson, J W; Hallett, F R; Bancroft, J B

    1983-08-01

    An examination of the number of subunits in small aggregates of papaya mosaic virus (PMV) coat protein is presented based on a model system which gives results consistent with the experimental observation that the 14 S subassembly species is a double disc, composed of two rows of nine subunits each. The estimated hydration of the disc, about 0.85 g 1H20/9 protein, is unusually large and indicates a cavitated structure for the disc. Comparison with other rod-shaped viruses suggests that the flexuous nature of PMV is a consequence of sparse axial inter-subunit contacts at high radius.

  2. Identification of a strain of maize dwarf mosaic virus, related to sugarcane mosaic virus isolated from maize in Burundi

    Directory of Open Access Journals (Sweden)

    Verhoyen, M.

    1983-01-01

    Full Text Available A strain of maize dwarf mosaic virus related to sugarcane mosaic virus has been isolated from maize in Burundi. The properties (including electron microscopy and serology of the virus are described, and elements for a control strategy are reviewed.

  3. Preventive and curative effects of Apple latent spherical virus vectors harboring part of the target virus genome against potyvirus and cucumovirus infections.

    Science.gov (United States)

    Tamura, Akihiro; Kato, Takahiro; Taki, Ayano; Sone, Mikako; Satoh, Nozomi; Yamagishi, Noriko; Takahashi, Tsubasa; Ryo, Bo-Song; Natsuaki, Tomohide; Yoshikawa, Nobuyuki

    2013-11-01

    Apple latent spherical virus (ALSV)-based vectors experimentally infect a broad range of plant species without causing symptoms and can effectively induce stable virus-induced gene silencing in plants. Here, we show that pre-infection of ALSV vectors harboring part of a target viral genome (we called ALSV vector vaccines here) inhibits the multiplication and spread of the corresponding challenge viruses [Bean yellow mosaic virus, Zucchini yellow mosaic virus (ZYMV), and Cucumber mosaic virus (CMV)] by a homology-dependent resistance. Further, the plants pre-infected with an ALSV vector having genome sequences of both ZYMV and CMV were protected against double inoculation of ZYMV and CMV. More interestingly, a curative effect of an ALSV vector vaccine could also be expected in ZYMV-infected cucumber plants, because the symptoms subsided on subsequent inoculation with an ALSV vector vaccine. This may be due to the invasion of ALSV, but not ZYMV, in the shoot apical meristem of cucumber.

  4. Flow visualization using tobacco mosaic virus

    Science.gov (United States)

    Hu, David L.; Goreau, Thomas J.; Bush, John W. M.

    2009-03-01

    A flow visualization technique using dilute solutions of tobacco mosaic virus (TMV) is described. Rod-shaped TMV-particles align with shear, an effect that produces a luminous interference pattern when the TMV solution is viewed between crossed polarizers. Attractive features of this technique are that it is both transparent to the naked eye and benign to fish. We use it here to visualize the evolution and decay of the flows that they produce. We also report that dilute solutions of Kalliroscope are moderately birefringent and so may similarly be used for qualitative in situ flow visualizations.

  5. Host susceptibility of the papaya mosaic virus in Sri Lanka.

    Science.gov (United States)

    Rajapakse, R H; Herath, H M

    1981-01-01

    75 plant species from 11 families were tested in Sri Lanka for their susceptibility to transferring the papaya mosaic virus. After inoculation with this virus, six species, Cucurbita pepo, Cucumis sativus, Nicotiana tabacum, Chenopodium amaranticolor, Gomphrena globosa and Lycopersicum esculentum, developed such symptoms, and after re-isolation from the host plant the virus again infected papaya plants. Thus these species are possible alternate hosts of papaya mosaic virus in Sri Lanka.

  6. Evaluation of Seed Transmission of Turnip yellow mosaic virus and Tobacco mosaic virus in Arabidopsis thaliana.

    Science.gov (United States)

    de Assis Filho, F M; Sherwood, J L

    2000-11-01

    ABSTRACT The mechanism of virus transmission through seed was studied in Arabidopsis thaliana infected with Turnip yellow mosaic virus (TYMV) and Tobacco mosaic virus (TMV). Serological and biological tests were conducted to identify the route by which the viruses reach the seed and subsequently are located in the seed. Both TYMV and TMV were detected in seed from infected plants, however only TYMV was seed-transmitted. This is the first report of transmission of TYMV in seed of A. thaliana. Estimating virus seed transmission by grow-out tests was more accurate than enzyme-linked immunosorbent assay due to the higher frequency of antigen in the seed coat than in the embryo. Virus in the seed coat did not lead to seedling infection. Thus, embryo invasion is necessary for seed transmission of TYMV in A. thaliana. Crosses between healthy and virus-infected plants indicated that TYMV from either the female or the male parent could invade the seed. Conversely, invasion from maternal tissue was the only route for TMV to invade the seed. Pollination of flowers on healthy A. thaliana with pollen from TYMV-infected plants did not result in systemic infection of healthy plants, despite TYMV being carried by pollen to the seed.

  7. Symptoms on apple and pear indicators after back-transmission from Nicotiana occidentalis confirm the identity of apple stem pitting virus with pear vein yellows virus

    NARCIS (Netherlands)

    Leone, G.; Lindner, J.L.; Meer, van der F.A.; Schoen, C.D.; Jongedijk, G.

    1998-01-01

    Isolates of apple stem pitting virus (ASPV) from diseased apple trees were maintained in Nicotiana occidentalis then back-transmitted mechanically from the herbaceous host to apple seedlings and indexed by double budding on apple and pear indicators for the following syndromes: apple stem pitting,

  8. Symptoms on apple and pear indicators after back-transmission from Nicotiana occidentalis confirm the identity of apple stem pitting virus with pear vein yellows virus

    NARCIS (Netherlands)

    Leone, G.; Lindner, J.L.; Meer, van der F.A.; Schoen, C.D.; Jongedijk, G.

    1998-01-01

    Isolates of apple stem pitting virus (ASPV) from diseased apple trees were maintained in Nicotiana occidentalis then back-transmitted mechanically from the herbaceous host to apple seedlings and indexed by double budding on apple and pear indicators for the following syndromes: apple stem pitting, p

  9. Nucleotide sequence of papaya mosaic virus RNA.

    Science.gov (United States)

    Sit, T L; Abouhaidar, M G; Holy, S

    1989-09-01

    The RNA genome of papaya mosaic virus is 6656 nucleotides long [excluding the poly(A) tail] with six open reading frames (ORFs) more than 200 nucleotides long. The four nearest the 5' end each overlap with adjacent ORFs and could code for proteins with Mr 176307, 26248, 11949 and 7224 (ORFs 1 to 4). The fifth ORF produces the capsid protein of Mr 23043 and the sixth ORF, located completely within ORF1, could code for a protein with Mr 14113. The translation products of ORFs 1 to 3 show strong similarity with those of other potexviruses but the ORF 4 protein has only limited similarity with the other potexvirus ORF 4 proteins of 7K to 11K.

  10. Highly efficient virus-induced gene silencing in apple and soybean by apple latent spherical virus vector and biolistic inoculation.

    Science.gov (United States)

    Yamagishi, Noriko; Yoshikawa, Nobuyuki

    2013-01-01

    Virus-induced gene silencing (VIGS) is an effective tool for the analysis of the gene function in plants within a short time. However, in woody fruit tree like apple, some of Solanum crops, and soybean, it is generally difficult to inoculate virus vector by conventional inoculation methods. Here, we show efficient VIGS in apple and soybean by Apple latent spherical virus (ALSV) vector and biolistic inoculation. The plants inoculated with ALSV vectors by particle bombardment showed uniform silenced phenotypes of target genes within 2-3 weeks post inoculation.

  11. Paspalum striate mosaic virus: an Australian mastrevirus from Paspalum dilatatum.

    Science.gov (United States)

    Geering, Andrew D W; Thomas, John E; Holton, Timothy; Hadfield, James; Varsani, Arvind

    2012-01-01

    Three monocot-infecting mastreviruses from Australia, all found primarily in pasture and naturalised grasses, have been characterised at the molecular level. Here, we present the full genome sequence of a fourth, Paspalum striate mosaic virus (PSMV), isolated from Paspalum dilatatum from south-east Queensland. The genome was 2816 nt long and had an organisation typical of other monocot-infecting mastreviruses. Its nearest relative is Bromus cartharticus striate mosaic virus (BCSMV), with which it shares an overall genome identity of 75%. Phylogenetic analysis of the complete genome and each of the putative viral proteins places PSMV in a group with the other three Australian striate mosaic viruses. PSMV, BCSMV and Digitaria didactyla striate mosaic virus all contain a similar, small recombinant sequence in the small intergenic region.

  12. Interfering Satellite RNAs of Bamboo mosaic virus

    Directory of Open Access Journals (Sweden)

    Kuan-Yu Lin

    2017-05-01

    Full Text Available Satellite RNAs (satRNAs are sub-viral agents that may interact with their cognate helper virus (HV and host plant synergistically and/or antagonistically. SatRNAs totally depend on the HV for replication, so satRNAs and HV usually evolve similar secondary or tertiary RNA structures that are recognized by a replication complex, although satRNAs and HV do not share an appreciable sequence homology. The satRNAs of Bamboo mosaic virus (satBaMV, the only satRNAs of the genus Potexvirus, have become one of the models of how satRNAs can modulate HV replication and virus-induced symptoms. In this review, we summarize the molecular mechanisms underlying the interaction of interfering satBaMV and BaMV. Like other satRNAs, satBaMV mimics the secondary structures of 5′- and 3′-untranslated regions (UTRs of BaMV as a molecular pretender. However, a conserved apical hairpin stem loop (AHSL in the 5′-UTR of satBaMV was found as the key determinant for downregulating BaMV replication. In particular, two unique nucleotides (C60 and C83 in the AHSL of satBaMVs determine the satBaMV interference ability by competing for the replication machinery. Thus, transgenic plants expressing interfering satBaMV could confer resistance to BaMV, and interfering satBaMV could be used as biological-control agent. Unlike two major anti-viral mechanisms, RNA silencing and salicylic acid-mediated immunity, our findings in plants by in vivo competition assay and RNA deep sequencing suggested replication competition is involved in this transgenic satBaMV-mediated BaMV interference. We propose how a single nucleotide of satBaMV can make a great change in BaMV pathogenicity and the underlying mechanism.

  13. Deep Sequencing Analysis of Apple Infecting Viruses in Korea.

    Science.gov (United States)

    Cho, In-Sook; Igori, Davaajargal; Lim, Seungmo; Choi, Gug-Seoun; Hammond, John; Lim, Hyoun-Sub; Moon, Jae Sun

    2016-10-01

    Deep sequencing has generated 52 contigs derived from five viruses; Apple chlorotic leaf spot virus (ACLSV), Apple stem grooving virus (ASGV), Apple stem pitting virus (ASPV), Apple green crinkle associated virus (AGCaV), and Apricot latent virus (ApLV) were identified from eight apple samples showing small leaves and/or growth retardation. Nucleotide (nt) sequence identity of the assembled contigs was from 68% to 99% compared to the reference sequences of the five respective viral genomes. Sequences of ASPV and ASGV were the most abundantly represented by the 52 contigs assembled. The presence of the five viruses in the samples was confirmed by RT-PCR using specific primers based on the sequences of each assembled contig. All five viruses were detected in three of the samples, whereas all samples had mixed infections with at least two viruses. The most frequently detected virus was ASPV, followed by ASGV, ApLV, ACLSV, and AGCaV which were withal found in mixed infections in the tested samples. AGCaV was identified in assembled contigs ID 1012480 and 93549, which showed 82% and 78% nt sequence identity with ORF1 of AGCaV isolate Aurora-1. ApLV was identified in three assembled contigs, ID 65587, 1802365, and 116777, which showed 77%, 78%, and 76% nt sequence identity respectively with ORF1 of ApLV isolate LA2. Deep sequencing assay was shown to be a valuable and powerful tool for detection and identification of known and unknown virome in infected apple trees, here identifying ApLV and AGCaV in commercial orchards in Korea for the first time.

  14. Deep Sequencing Analysis of Apple Infecting Viruses in Korea

    Directory of Open Access Journals (Sweden)

    In-Sook Cho

    2016-10-01

    Full Text Available Deep sequencing has generated 52 contigs derived from five viruses; Apple chlorotic leaf spot virus (ACLSV, Apple stem grooving virus (ASGV, Apple stem pitting virus (ASPV, Apple green crinkle associated virus (AGCaV, and Apricot latent virus (ApLV were identified from eight apple samples showing small leaves and/or growth retardation. Nucleotide (nt sequence identity of the assembled contigs was from 68% to 99% compared to the reference sequences of the five respective viral genomes. Sequences of ASPV and ASGV were the most abundantly represented by the 52 contigs assembled. The presence of the five viruses in the samples was confirmed by RT-PCR using specific primers based on the sequences of each assembled contig. All five viruses were detected in three of the samples, whereas all samples had mixed infections with at least two viruses. The most frequently detected virus was ASPV, followed by ASGV, ApLV, ACLSV, and AGCaV which were withal found in mixed infections in the tested samples. AGCaV was identified in assembled contigs ID 1012480 and 93549, which showed 82% and 78% nt sequence identity with ORF1 of AGCaV isolate Aurora-1. ApLV was identified in three assembled contigs, ID 65587, 1802365, and 116777, which showed 77%, 78%, and 76% nt sequence identity respectively with ORF1 of ApLV isolate LA2. Deep sequencing assay was shown to be a valuable and powerful tool for detection and identification of known and unknown virome in infected apple trees, here identifying ApLV and AGCaV in commercial orchards in Korea for the first time.

  15. The complete sequence of a sugarcane mosaic virus isolate causing maize dwarf mosaic disease in China

    Institute of Scientific and Technical Information of China (English)

    程晔; 陈炯; 陈剑平

    2002-01-01

    The complete sequence of a potyvirus from maize in Zhejiang Province was determined. The RNA was 9596 nucleotides long, excluding the 3′-poly (A) tail, and there was a single long open reading frame (ORF) of 9192 nts encoding a 346.1 ku polyprotein. The polyprotein had substantial amino acid sequence homology with those encoded by the RNAs of a Chinese isolate of sorghum mosaic virus (SrMV-C) and a Bulgarian isolate of maize dwarf mosaic virus, but it was most closely related to sugarcane mosaic virus (SCMV) isolates, for which only partial sequences have been published. According to the published criteria for distinguishing potyviruses, the sequence reported here is clearly a strain of SCMV, but it also showed a surprisingly high amino acid homology with SrMV-C in the HC-Pro, P3 and CI proteins.

  16. High sequence conservation among cucumber mosaic virus isolates from Lily

    NARCIS (Netherlands)

    Chen, Y.K.; Derks, A.F.L.M.; Langeveld, S.; Goldbach, R.; Prins, M.

    2001-01-01

    For classification of Cucumber mosaic virus (CMV) isolates from ornamental crops of different geographical areas, these were characterized by comparing the nucleotide sequences of RNAs 4 and the encoded coat proteins. Within the ornamental-infecting CMV viruses both subgroups were represented. CMV i

  17. Proteins synthesized in tobacco mosaic virus infected protoplasts

    NARCIS (Netherlands)

    Huber, R.

    1979-01-01

    The study described here concerns the proteins, synthesized as a result of tobacco mosaic virus (TMV) multiplication in tobacco protoplasts and in cowpea protoplasts. The identification of proteins involved in the TMV infection, for instance in the virus RNA replication, helps to elucidate

  18. Ecological and Genetic Determinants of Pepino Mosaic Virus Emergence

    OpenAIRE

    Moreno Pérez, Manuel Guillermo; Pagán Muñoz, Jesús Israel; Aragón Caballero, Liliana; Cáceres, Fátima; Fraile Pérez, Aurora; García Arenal, Fernando

    2014-01-01

    Virus emergence is a complex phenomenon, which generally involves spread to a new host from a wild host, followed by adaptation to the new host. Although viruses account for the largest fraction of emerging crop pathogens, knowledge about their emergence is incomplete. We address here the question of whether Pepino mosaic virus (PepMV) emergence as a major tomato pathogen worldwide could have involved spread from wild to cultivated plant species and host adaptation. For this, we surveyed natu...

  19. Detection of Corchorus golden mosaic virus Associated with Yellow Mosaic Disease of Jute (Corchorus capsularis).

    Science.gov (United States)

    Ghosh, Raju; Palit, Paramita; Paul, Sujay; Ghosh, Subrata Kumar; Roy, Anirban

    2012-06-01

    Yellow mosaic disease, caused by a whitefly transmitted New World Begomovirus, named Corchorus golden mosaic virus (CoGMV), is emerging as a serious biotic constraint for jute fibre production in Asia. For rapid and sensitive diagnosis of the Begomovirus associated with this disease, a non-radiolabelled diagnostic probe, developed against the DNA A component of the east Indian isolate of CoGMV, detected the presence of the virus in infected plants and viruliferous whiteflies following Southern hybridization and nucleic acid spot hybridization tests. Presence of the virus was also confirmed when polymerase chain reaction amplification was performed using virus-specific primers on DNA templates isolated from infected plants and viruliferous whiteflies.

  20. The use of tobacco mosaic virus and cowpea mosaic virus for the production of novel metal nanomaterials.

    Science.gov (United States)

    Love, Andrew J; Makarov, Valentine; Yaminsky, Igor; Kalinina, Natalia O; Taliansky, Michael E

    2014-01-20

    Due to the nanoscale size and the strictly controlled and consistent morphologies of viruses, there has been a recent interest in utilizing them in nanotechnology. The structure, surface chemistries and physical properties of many viruses have been well elucidated, which have allowed identification of regions of their capsids which can be modified either chemically or genetically for nanotechnological uses. In this review we focus on the use of such modifications for the functionalization and production of viruses and empty viral capsids that can be readily decorated with metals in a highly tuned manner. In particular, we discuss the use of two plant viruses (Cowpea mosaic virus and Tobacco mosaic virus) which have been extensively used for production of novel metal nanoparticles (<100nm), composites and building blocks for 2D and 3D materials, and illustrate their applications.

  1. Virus-derived transgenes expressing hairpin RNA give immunity to Tobacco mosaic virus and Cucumber mosaic virus

    Directory of Open Access Journals (Sweden)

    Liu Yong

    2011-01-01

    Full Text Available Abstract Background An effective method for obtaining resistant transgenic plants is to induce RNA silencing by expressing virus-derived dsRNA in plants and this method has been successfully implemented for the generation of different plant lines resistant to many plant viruses. Results Inverted repeats of the partial Tobacco mosaic virus (TMV movement protein (MP gene and the partial Cucumber mosaic virus (CMV replication protein (Rep gene were introduced into the plant expression vector and the recombinant plasmids were transformed into Agrobacterium tumefaciens. Agrobacterium-mediated transformation was carried out and three transgenic tobacco lines (MP16-17-3, MP16-17-29 and MP16-17-58 immune to TMV infection and three transgenic tobacco lines (Rep15-1-1, Rep15-1-7 and Rep15-1-32 immune to CMV infection were obtained. Virus inoculation assays showed that the resistance of these transgenic plants could inherit and keep stable in T4 progeny. The low temperature (15℃ did not influence the resistance of transgenic plants. There was no significant correlation between the resistance and the copy number of the transgene. CMV infection could not break the resistance to TMV in the transgenic tobacco plants expressing TMV hairpin MP RNA. Conclusions We have demonstrated that transgenic tobacco plants expressed partial TMV movement gene and partial CMV replicase gene in the form of an intermolecular intron-hairpin RNA exhibited complete resistance to TMV or CMV infection.

  2. Genetic Diversity of a Natural Population of Apple stem pitting virus Isolated from Apple in Korea

    Directory of Open Access Journals (Sweden)

    Ju Yeon Yoon

    2014-06-01

    Full Text Available Apple stem pitting virus (ASPV, of the Foveavirus genus in the family Betaflexiviridae, is one of the most common viruses of apple and pear trees. To examine variability of the coat protein (CP gene from ASPV, eight isolates originating from 251 apple trees, which were collected from 22 apple orchards located in intensive apple growing areas of the North Gyeongsang and North Jeolla Provinces in Korea, were sequenced and compared. The nucleotide sequence identity of the CP gene of eight ASPV isolates ranged from 77.0 to 97.0%, while the amino acid sequence identity ranged from 87.7 to 98.5%. The N-terminal region of the viral CP gene was highly variable, whereas the C-terminal region was conserved. Genetic algorithm recombination detection (GARD and single breakpoint recombination (SBP analyses identified base substitutions between eight ASPV isolates at positions 54 and 57 and position 771, respectively. GABranch analysis was used to determine whether the eight isolates evolved due to positive selection. All values in the GABranch analysis showed a ratio of substitution rates at non-synonymous and synonymous sites (dNS/dS below 1, suggestive of strong negative selection forces during ASPV CP history. Although negative selection dominated CP evolution in the eight ASPV isolates, SLAC and FEL tests identified four possible positive selection sites at codons 10, 22, 102, and 158. This is the first study of the ASPV genome in Korea.

  3. Genetic Diversity of a Natural Population of Apple stem pitting virus Isolated from Apple in Korea.

    Science.gov (United States)

    Yoon, Ju Yeon; Joa, Jae Ho; Choi, Kyung San; Do, Ki Seck; Lim, Han Cheol; Chung, Bong Nam

    2014-06-01

    Apple stem pitting virus (ASPV), of the Foveavirus genus in the family Betaflexiviridae, is one of the most common viruses of apple and pear trees. To examine variability of the coat protein (CP) gene from ASPV, eight isolates originating from 251 apple trees, which were collected from 22 apple orchards located in intensive apple growing areas of the North Gyeongsang and North Jeolla Provinces in Korea, were sequenced and compared. The nucleotide sequence identity of the CP gene of eight ASPV isolates ranged from 77.0 to 97.0%, while the amino acid sequence identity ranged from 87.7 to 98.5%. The N-terminal region of the viral CP gene was highly variable, whereas the C-terminal region was conserved. Genetic algorithm recombination detection (GARD) and single breakpoint recombination (SBP) analyses identified base substitutions between eight ASPV isolates at positions 54 and 57 and position 771, respectively. GABranch analysis was used to determine whether the eight isolates evolved due to positive selection. All values in the GABranch analysis showed a ratio of substitution rates at non-synonymous and synonymous sites (dNS/dS) below 1, suggestive of strong negative selection forces during ASPV CP history. Although negative selection dominated CP evolution in the eight ASPV isolates, SLAC and FEL tests identified four possible positive selection sites at codons 10, 22, 102, and 158. This is the first study of the ASPV genome in Korea.

  4. Molecular variability analyses of Apple chlorotic leaf spot virus capsid protein

    Indian Academy of Sciences (India)

    T Rana; V Chandel; Y Kumar; R Ram; V Hallan; A A Zaidi

    2010-12-01

    The complete sequences of the coat protein (CP) gene of 26 isolates of Apple chlorotic leaf spot virus (ACLSV) from India were determined. The isolates were obtained from various pome (apple, pear and quince) and stone (plum, peach, apricot, almond and wild Himalayan cherry) fruit trees. Other previously characterized ACLSV isolates and Trichoviruses were used for comparative analysis. Indian ACLSV isolates among themselves and with isolates from elsewhere in the world shared 91–100% and 70–98% sequence identities at the amino acid and nucleotide levels, respectively. The highest degree of variability was observed in the middle portion with 9 amino acid substitutions in contrast to the N-terminal and C-terminal ends, which were maximally conserved with only 4 amino acid substitutions. In phylogenetic analysis no reasonable correlation between host species and/or geographic origin of the isolates was observed. Alignment with capsid protein genes of other Trichoviruses revealed the TaTao ACLSV peach isolate to be phylogenetically closest to Peach mosaic virus, Apricot pseudo chlorotic leaf spot virus and Cherry mottle leaf virus. Recombination analysis (RDP3 ver.2.6) done for all the available ACLSV complete CP sequences of the world and Indian isolates indicate no significant evidence of recombination. However, one recombination event among Indian ACLSV-CP isolates was detected. To the best of our knowledge, this is the first report of complete CP sequence variability study from India and also the first evidence of homologous recombination in ACLSV.

  5. Sequence analysis of a soil-borne wheat mosaic virus isolate from Italy shows that it is the same virus as European wheat mosaic virus and Soil-borne rye mosaic virus

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The complete sequence of the two RNAs of a furovirus isolate fromdurum wheat in Italy was determined. Sequence comparisons and phylogenetic analysis were done to compare the Italian virus with Soil-borne wheat mosaic virus (SBWMV) from the USA and with furovirus sequences recently published as European wheat mosaic virus (EWMV), from wheat in France, and Soil-borne rye mosaic virus (SBRMV), from rye and wheat in Germany. Over the entire genome, the Italian isolate RNA1 and RNA2 had respectively 97.5% and 98.6% nucleotide identity with EWMV, 95.5% and 85.8% with SBRMV-G and 70.6% and 64.5% with SBWMV. The Italian isolate was therefore clearly distinct from SBWMV. The European isolates all appear to belong to the same virus and the name Soil-borne cereal mosaic virus may resolve earlier ambiguities.

  6. Development of a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of Sugarcane mosaic virus and Sorghum mosaic virus in sugarcane

    Science.gov (United States)

    A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for detecting Sugarcane mosaic virus (SCMV) and Sorghum mosaic virus (SrMV) in sugarcane. Six sets of four primers corresponding to the conserved coat protein gene were designed for each virus and their succ...

  7. NMR of TMV. Nuclear magnetic resonance of tobacco mosaic virus

    NARCIS (Netherlands)

    Wit, de J.L.

    1978-01-01

    This Thesis describes the application of conventional 13 C and 1 H high resolution Fourier Transform Nuclear Magnetic resonance (HR FT NMR) to Tobacco Mosaic Virus (TMV) and its protein oligo- and polymers and some other largebiological systems. The rod-like (TMV) consists of 2

  8. Elucidation of the genome organization of tobacco mosaic virus.

    OpenAIRE

    Zaitlin, M

    1999-01-01

    Proteins unique to tobacco mosaic virus (TMV)-infected plants were detected in the 1970s by electrophoretic analyses of extracts of virus-infected tissues, comparing their proteins to those generated in extracts of uninfected tissues. The genome organization of TMV was deduced principally from studies involving in vitro translation of proteins from the genomic and subgenomic messenger RNAs. The ultimate analysis of the TMV genome came in 1982 when P. Goelet and colleagues sequenced the entire...

  9. Molecular Studies on Soybean Mosaic Virus-Soybean Interations

    OpenAIRE

    Qusus, Saba J.

    1997-01-01

    In the U.S., soybean mosaic virus (SMV) is classified into seven strain groups, designated G1 to G7, based on their different responses on resistant soybean [Glycine max (L.) Merr.] cultivars. These responses are: symptomless or resistant (R), necrotic (N), and mosaic or susceptible (S). The gene-for-gene model has been proposed for SMV-soybean interactions. In the majority of cultivars, a single dominant gene, Rsv1, confers both the R and N responses. In the first part of this study, the coa...

  10. Soil-borne wheat mosaic virus infectious clone and manipulation for gene-carrying capacity

    Science.gov (United States)

    Soilborne wheat mosaic virus (SBWMV) is a bipartite single stranded positive sense RNA virus with rigid-rod shaped virions. Taxonomically the virus is in the family Viragviridae, as are commonly used gene silencing or expression viral vectors, Tobacco rattle virus (TRV) and Barley stripe mosaic viru...

  11. Solanum americanum: reservoir for Potato virus Y and Cucumber mosaic virus in sweet pepper crops

    Directory of Open Access Journals (Sweden)

    Monika Fecury Moura

    2014-03-01

    Full Text Available Weeds can act as important reservoirs for viruses. Solanum americanum (Black nightshade is a common weed in Brazil and samples showing mosaic were collected from sweet pepper crops to verify the presence of viruses. One sample showed mixed infection between Cucumber mosaic virus (CMV and Potato virus Y (PVY and one sample showed simple infection by PVY. Both virus species were transmitted by plant extract and caused mosaic in tomato (Solanum lycopersicum cv. Santa Clara, sweet pepper (Capsicum annuum cv. Magda, Nicotiana benthamiana and N. tabaccum TNN, and local lesions on Chenopodium quinoa, C. murale and C. amaranticolor. The coat protein sequences for CMV and PVY found in S. americanum are phylogenetically more related to isolates from tomato. We conclude that S. americanum can act as a reservoir for different viruses during and between sweet pepper crop seasons.

  12. Development of transgenic watermelon resistant to Cucumber mosaic virus and Watermelon mosaic virus by using a single chimeric transgene construct.

    Science.gov (United States)

    Lin, Ching-Yi; Ku, Hsin-Mei; Chiang, Yi-Hua; Ho, Hsiu-Yin; Yu, Tsong-Ann; Jan, Fuh-Jyh

    2012-10-01

    Watermelon, an important fruit crop worldwide, is prone to attack by several viruses that often results in destructive yield loss. To develop a transgenic watermelon resistant to multiple virus infection, a single chimeric transgene comprising a silencer DNA from the partial N gene of Watermelon silver mottle virus (WSMoV) fused to the partial coat protein (CP) gene sequences of Cucumber mosaic virus (CMV), Cucumber green mottle mosaic virus (CGMMV) and Watermelon mosaic virus (WMV) was constructed and transformed into watermelon (cv. Feeling) via Agrobacterium-mediated transformation. Single or multiple transgene copies randomly inserted into various locations in the genome were confirmed by Southern blot analysis. Transgenic watermelon R(0) plants were individually challenged with CMV, CGMMV or WMV, or with a mixture of these three viruses for resistance evaluation. Two lines were identified to exhibit resistance to CMV, CGMMV, WMV individually, and a mixed inoculation of the three viruses. The R(1) progeny of the two resistant R(0) lines showed resistance to CMV and WMV, but not to CGMMV. Low level accumulation of transgene transcripts in resistant plants and small interfering (si) RNAs specific to CMV and WMV were readily detected in the resistant R(1) plants by northern blot analysis, indicating that the resistance was established via RNA-mediated post-transcriptional gene silencing (PTGS). Loss of the CGMMV CP-transgene fragment in R1 progeny might be the reason for the failure to resistant CGMMV infection, as shown by the absence of a hybridization signal and no detectable siRNA specific to CGMMV in Southern and northern blot analyses. In summary, this study demonstrated that fusion of different viral CP gene fragments in transgenic watermelon contributed to multiple virus resistance via PTGS. The construct and resistant watermelon lines developed in this study could be used in a watermelon breeding program for resistance to multiple viruses.

  13. Genome sequence of vanilla distortion mosaic virus infecting Coriandrum sativum.

    Science.gov (United States)

    Adams, I P; Rai, S; Deka, M; Harju, V; Hodges, T; Hayward, G; Skelton, A; Fox, A; Boonham, N

    2014-12-01

    The 9573-nucleotide genome of a potyvirus was sequenced from a Coriandrum sativum plant from India with viral symptoms. On analysis, this virus was shown to have greater than 85 % nucleotide sequence identity to vanilla distortion mosaic virus (VDMV). Analysis of the putative coat protein sequence confirmed that this virus was in fact VDMV, with greater than 91 % amino acid sequence identity. The genome appears to encode a 3083-amino-acid polyprotein potentially cleaved into the 10 mature proteins expected in potyviruses. Phylogenetic analysis confirmed that VDMV is a distinct but ungrouped member of the genus Potyvirus.

  14. Engineering Resistance Against Mungbean yellow mosaic India virus Using Antisense RNA

    OpenAIRE

    Haq, Q. M. I.; Ali, Arif; Malathi, V.G.

    2010-01-01

    Yellow mosaic disease of cultivated legumes in South-East Asia, is caused by Mungbean yellow mosaic India virus (MYMIV) and Mungbean yellow mosaic virus (MYMV) belonging to the genus Begomovirus of the family Geminiviridae. Efforts to engineer resistance against the genus Begomovirus are focused mainly on silencing of complementary-sense virus genes involved in virus replication. Here we have targeted a complementary-sense gene (ACI) encoding Replication initiation Protein (Rep) to develop re...

  15. A High Throughput Soybean Gene Identification System Developed using Soybean Yellow Common Mosaic Virus (SYCMV)

    OpenAIRE

    Seo, Eun–Young; Cho, Seunghee; Moon, Jae Sun; Gotoh, Takafumi; Goto, Takafumi; Kim, Hong Gi; Domier, Leslie L; Lim, Seungmo; Kim, Kil Hyun; Moon, Jung–Kyung; Hammond, John; Lim, Hyoun–Sub; Song, Ki Hak

    2015-01-01

    Soybean yellow common mosaic virus (SYCMV) was recently reported from Korea, and a subsequent survey of soybean fields found that SYCMV, Soybean yellow mottle mosaic virus (SYMMV), and Soybean mosaic virus (SMV) infections were widespread. SYCMV has recently been developed into a Virus Inducing Gene Silencing (VIGS) vector for use as a reverse genetics tool for soybean, and here we report a modified SYCMV VIGS vector containing a new restriction enzyme site in the 3’ non–coding region into wh...

  16. Recombination analysis of Maize dwarf mosaic virus (MDMV) in the Sugarcane mosaic virus (SCMV) subgroup of potyviruses.

    Science.gov (United States)

    Gell, Gyöngyvér; Sebestyén, Endre; Balázs, Ervin

    2015-02-01

    Recombination among RNA viruses is a natural phenomenon that appears to have played a significant role in the species development and the evolution of many strains. It also has particular significance for the risk assessment of plants which have been genetically modified for disease resistance by incorporating viral sequences into their genomes. However, the exact recombination events taking place in viral genomes are not investigated in detail for many virus groups. In this analysis, different single-stranded positive-sense RNA potyviruses were compared using various in silico recombination detection methods and new recombination events in the Sugarcane mosaic virus (SCMV) subgroup were detected. For an extended in silico recombination analysis, two of the analyzed Maize dwarf mosaic virus full-length genomes were sequenced additionally during this work. These results strengthen the evidence that recombination is a major driving force in virus evolution, and the emergence of new virus variants in the SCMV subgroup, paired with mutations, could generate viruses with altered biological properties. The intra- and interspecific homolog recombinations seem to be a general trait in this virus group, causing little or no changes to the amino acid of the progenies. However, we found a few breakpoints between the members of SCMV subgroup and the weed-infecting distant relatives, but only a few methods of the RDP3 package predicted these events with low significance level.

  17. Impact of Wheat streak mosaic virus and Triticum mosaic virus co-infection of wheat on transmission rates by wheat curl mites

    Science.gov (United States)

    Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are transmitted by the wheat curl mite (WCM, Aceria tosichella Keifer). Previous work has shown that different mite genotypes transmit TriMV at different rates. The objective of this research was to determine if mite genotypes differ...

  18. The cell biology of Tobacco mosaic virus replication and movement.

    Science.gov (United States)

    Liu, Chengke; Nelson, Richard S

    2013-01-01

    Successful systemic infection of a plant by Tobacco mosaic virus (TMV) requires three processes that repeat over time: initial establishment and accumulation in invaded cells, intercellular movement, and systemic transport. Accumulation and intercellular movement of TMV necessarily involves intracellular transport by complexes containing virus and host proteins and virus RNA during a dynamic process that can be visualized. Multiple membranes appear to assist TMV accumulation, while membranes, microfilaments and microtubules appear to assist TMV movement. Here we review cell biological studies that describe TMV-membrane, -cytoskeleton, and -other host protein interactions which influence virus accumulation and movement in leaves and callus tissue. The importance of understanding the developmental phase of the infection in relationship to the observed virus-membrane or -host protein interaction is emphasized. Utilizing the latest observations of TMV-membrane and -host protein interactions within our evolving understanding of the infection ontogeny, a model for TMV accumulation and intracellular spread in a cell biological context is provided.

  19. Tobacco mosaic virus (TMV) inhibitors from Picrasma quassioides Benn.

    Science.gov (United States)

    Chen, Jia; Yan, Xiao-Hui; Dong, Jia-Hong; Sang, Peng; Fang, Xin; Di, Ying-Tong; Zhang, Zhong-Kai; Hao, Xiao-Jiang

    2009-08-12

    To investigate natural inhibitors against tobacco mosaic virus (TMV) from plants, 10 known beta-carboline alkaloids and one quassinoid have been isolated from MeOH extract of the wood of Picrasma quassioides Benn. These compounds were screened for their inhibitory activities against tobacco mosaic virus (TMV). The activity of each compound against TMV infection and replication was tested using a half-leaf assay method, a leaf-disk method, and Western blotting analyses. All of the beta-carboline alkaloids showed moderate anti-TMV activities and exhibited synergistic effects when combined with the quassinoid nigakilactone B (11). To our knowledge, this is the first report on anti-TMV activity of beta-carbolines and their synergistic effects against TMV when combined with a quassinoid.

  20. Sequence analysis reveals mosaic genome of Aichi virus

    Directory of Open Access Journals (Sweden)

    Han Xiaohong

    2011-08-01

    Full Text Available Abstract Aichi virus is a positive-sense and single-stranded RNA virus, which demonstrated to be related to diarrhea of Children. In the present study, phylogenetic and recombination analysis based on the Aichi virus complete genomes available in GenBank reveal a mosaic genome sequence [GenBank: FJ890523], of which the nt 261-852 region (the nt position was based on the aligned sequence file shows close relationship with AB010145/Japan with 97.9% sequence identity, while the other genomic regions show close relationship with AY747174/German with 90.1% sequence identity. Our results will provide valuable hints for future research on Aichi virus diversity. Aichi virus is a member of the Kobuvirus genus of the Picornaviridae family 12 and belongs to a positive-sense and single-stranded RNA virus. Its presence in fecal specimens of children suffering from diarrhea has been demonstrated in several Asian countries 3456, in Brazil and German 7, in France 8 and in Tunisia 9. Some reports showed the high level of seroprevalence in adults 710, suggesting the widespread exposure to Aichi virus during childhood. The genome of Aichi virus contains 8,280 nucleotides and a poly(A tail. The single large open reading frame (nt 713-8014 according to the strain AB010145 encodes a polyprotein of 2,432 amino acids that is cleaved into the typical picornavirus structural proteins VP0, VP3, VP1, and nonstructural proteins 2A, 2B, 2C, 3A, 3B, 3C and 3D 211. Based on the phylogenetic analysis of 519-bp sequences at the 3C-3D (3CD junction, Aichi viruses can be divided into two genotypes A and B with approximately 90% sequence homology 12. Although only six complete genomes of Aichi virus were deposited in GenBank at present, mosaic genomes can be found in strains from different countries.

  1. Single- and double-stranded viral RNAs in plants infected with the potexviruses papaya mosaic virus and foxtail mosaic virus.

    Science.gov (United States)

    Mackie, G A; Johnston, R; Bancroft, J B

    1988-01-01

    Three classes of viral RNA were recovered from polyribosomes purified from papaya leaves infected with papaya mosaic virus (PapMV) and from barley leaves infected with foxtail mosaic virus (FoMV): full-length viral RNAs [6.8 and 6.2 kilobases (kb), respectively]; less abundant intermediate subgenomic RNAs (2.2 and 1.9 kb), and abundant, small subgenomic RNAs (1 and 0.9 kb). Small amounts of the PapMV-specified 1.0-kb subgenomic RNA were encapsidated, whereas no encapsidated subgenomic RNAs could be found in preparations of FoMV. Immunoprecipitation of the products of in vitro translation of the small subgenomic RNA of both viruses showed that it codes for the corresponding viral coat protein. FoMV genomic RNA isolated from polyribosomes also directed the efficient synthesis of a 37- to 38-kilodalton protein which was immunoprecipitated by an antiserum raised against the coat protein. We presume this product to be a readthrough protein initiated to the 5' side of and in the same reading frame as the coat protein-coding sequences in FoMV RNA. The predominant double-stranded viral-specified RNAs in tissues infected with PapMV, FoMV, and clover yellow mosaic virus were genome sized (6.8, 6.2, and 7.0 kb pairs, respectively). If double-stranded RNAs corresponding to coat protein subgenomic RNAs exist, they must be present in much lower relative abundances.

  2. Precise Determination of the Helical Repeat of Tobacco Mosaic Virus

    Energy Technology Data Exchange (ETDEWEB)

    Kendall, A.; McDonald, M.; Stubbs, G.

    2009-06-01

    Tobacco mosaic virus (TMV) is widely used as a distance standard in electron microscopy, fiber diffraction, and other imaging techniques. The dimension used as a reference is the pitch of the viral helix, 23 {angstrom}. This distance, however, has never been measured with any great degree of precision. The helical pitch of TMV has been determined to be 22.92 {+-}0.03 {angstrom} by X-ray fiber diffraction methods using highly collimated synchrotron radiation.

  3. Molecular, serological and biological characterization of the emerging tomato mottle mosaic virus on tomato

    Science.gov (United States)

    For many years, Tobacco mosaic virus (TMV) and Tomato mosaic virus (ToMV) are the two major tobamoviruses that have a serious impact on tomato productions worldwide. These seed-borne and mechanically transmitted viruses are difficult to control. The most effective disease management has been the u...

  4. High sequence conservation among cucumber mosaic virus isolates from lily.

    Science.gov (United States)

    Chen, Y K; Derks, A F; Langeveld, S; Goldbach, R; Prins, M

    2001-08-01

    For classification of Cucumber mosaic virus (CMV) isolates from ornamental crops of different geographical areas, these were characterized by comparing the nucleotide sequences of RNAs 4 and the encoded coat proteins. Within the ornamental-infecting CMV viruses both subgroups were represented. CMV isolates of Alstroemeria and crocus were classified as subgroup II isolates, whereas 8 other isolates, from lily, gladiolus, amaranthus, larkspur, and lisianthus, were identified as subgroup I members. In general, nucleotide sequence comparisons correlated well with geographic distribution, with one notable exception: the analyzed nucleotide sequences of 5 lily isolates showed remarkably high homology despite different origins.

  5. Beet mosaic virus: epidemiology and damage

    NARCIS (Netherlands)

    Dusi, A.N.

    1999-01-01

    Overview:The aim of the studies described in this thesis was to obtain a thorough understanding of the main factors determining the spread of a potyvirus in a high plant density crop. The factors studied included the relationships between virus, host and vector, the spread of the vi

  6. Cowpea Mosaic Virus-Encoded Protease Does Not Recognize Primary Translation Products of M RNAs from Other Comoviruses

    OpenAIRE

    Goldbach, Rob; Krijt, Jette

    1982-01-01

    The protease encoded by the large (B) RNA segment of cowpea mosaic virus was tested for its ability to recognize the in vitro translation products of the small (M) RNA segment from the comoviruses squash mosaic virus, red clover mottle virus, and cowpea severe mosaic virus (CPsMV, strains Dg and Ark), and from the nepovirus tomato black ring virus. Like M RNA from cowpea mosaic virus, the M RNAs from squash mosaic virus, red clover mottle virus, CPsMV-Dg, and CPsMV-Ark were all translated int...

  7. Engineering Resistance Against Mungbean yellow mosaic India virus Using Antisense RNA.

    Science.gov (United States)

    Haq, Q M I; Ali, Arif; Malathi, V G

    2010-06-01

    Yellow mosaic disease of cultivated legumes in South-East Asia, is caused by Mungbean yellow mosaic India virus (MYMIV) and Mungbean yellow mosaic virus (MYMV) belonging to the genus Begomovirus of the family Geminiviridae. Efforts to engineer resistance against the genus Begomovirus are focused mainly on silencing of complementary-sense virus genes involved in virus replication. Here we have targeted a complementary-sense gene (ACI) encoding Replication initiation Protein (Rep) to develop resistance against soybean isolate of Mungbean yellow mosaic India virus-[India:New Delhi:Soybean 2:1999], a bipartite begomovirus prevalent throughout the Indian subcontinent. We show that the legume host plants co-agroinoculated with infectious constructs of soybean isolate of Mungbean yellow mosaic India virus [India:New Delhi:Soybean 2:1999] along with this antisense Rep gene construct show resistance to the virus.

  8. Biological and Molecular Characterization of Cucumber mosaic virus Subgroup II Isolate Causing Severe Mosaic in Cucumber.

    Science.gov (United States)

    Kumari, Reenu; Bhardwaj, Pooja; Singh, Lakhmir; Zaidi, Aijaz A; Hallan, Vipin

    2013-06-01

    Cucumber mosaic virus (CMV) has a wide host range causing severe damage in many important agricultural and ornamental crops. Earlier reports showed the prevalence of CMV subgroup I isolates in India. However, some recent reports point towards increasing incidence of subgroup II isolates in the country. The complete genome of a CMV isolate causing severe mosaic in cucumber was characterized and its phylogenetic analysis with other 21 CMV isolates reported worldwide clustered it with subgroup II strains. The genome comprised of RNA 1 (3,379 nucleotides), RNA 2 (3,038 nucleotides) and RNA 3 (2,206 nucleotides). The isolate showed highest homology with subgroup II isolates: 95.1-98.7, 87.7-98.0, and 85.4-97.1 % within RNA1, RNA2, and RNA3, respectively. RNA1 and RNA2 were closely related to the Japanese isolate while RNA3 clustered with an American isolate. Host range studies revealed that isolate showed severe mosaic symptoms on Nicotiana spp. and Cucumis spp. The isolate induced leaf deformation and mild filiform type symptoms in tomato. To best of our knowledge this is the first report of complete genome of CMV subgroup II isolate from India.

  9. Structural lability of Barley stripe mosaic virus virions.

    Directory of Open Access Journals (Sweden)

    Valentin V Makarov

    Full Text Available Virions of Barley stripe mosaic virus (BSMV were neglected for more than thirty years after their basic properties were determined. In this paper, the physicochemical characteristics of BSMV virions and virion-derived viral capsid protein (CP were analyzed, namely, the absorption and intrinsic fluorescence spectra, circular dichroism spectra, differential scanning calorimetry curves, and size distributions by dynamic laser light scattering. The structural properties of BSMV virions proved to be intermediate between those of Tobacco mosaic virus (TMV, a well-characterized virus with rigid rod-shaped virions, and flexuous filamentous plant viruses. The BSMV virions were found to be considerably more labile than expected from their rod-like morphology and a distant sequence relation of the BSMV and TMV CPs. The circular dichroism spectra of BSMV CP subunits incorporated into the virions, but not subunits of free CP, demonstrated a significant proportion of beta-structure elements, which were proposed to be localized mostly in the protein regions exposed on the virion outer surface. These beta-structure elements likely formed during virion assembly can comprise the N- and C-terminal protein regions unstructured in the non-virion CP and can mediate inter-subunit interactions. Based on computer-assisted structure modeling, a model for BSMV CP subunit structural fold compliant with the available experimental data was proposed.

  10. A multiple reverse transcription-polymerase chain reaction assay for simultaneous detection and differentiation of latent viruses and apscarviroids in apple trees

    Science.gov (United States)

    Apple chlorotic leaf spot virus (ACLSV), Apple stem grooving virus (ASGV), and Apple stem pitting virus (ASPV) are three latent viruses frequently occurring in apple trees worldwide. In field orchards, these viruses are frequently found in a mixed infection with viroids in the genus Apscarviroid, in...

  11. Frequency and Molecular Characterization of Watermelon Mosaic Virus from Serbia

    Directory of Open Access Journals (Sweden)

    Ana Vučurović

    2010-01-01

    Full Text Available Watermelon mosaic virus (WMV is widespread in cucurbit crops, most commonly occuring in temperate and Mediterranean regions. In Serbia WMV has been detected in single and mixed infections with Zucchini yellow mosaic virus and Cucumber mosaic virus in field-grown pumpkin and squash crops. Among pumpkin-affecting viruses WMV is the most frequent one, both by the number of localities and its incidence at each location. During the growing season of 2009, samples from 583 plants of Cucurbita pepo cvs. Olinka, Belgrade zucchini and Tosca (Zucchini group, as well as from C. maxima and C. moschata showing symptoms of virus infection were collected from 12 commercial fields at eight localities and analyzed by DAS-ELISA using polyclonal antisera specific to six most important cucurbit viruses. Interestingly, WMV was detected at fewer sites and had lower ncidence rate than in two previous years. In single infections, WMV was found in 11% of tested plants in three fields; in mixed infections with ZYMV, it was recorded in 9.9% of plants in five fields and with CMV in only 0.2% in one field. The partial coat protein gene and 3’ non-translated region from two representativeisolates of WMV originating from different localities and host plant species were amplified by RT-PCR, sequenced, and compared with the sequences available in GenBank database. The PCR-amplified fragment of predicted size of approximately 1017 bp was obtained. The sequences of isolates 137-08 (Acc. No. GQ259958 and 159-08 (GU144020 proved to be 94-99% identical at the nucleotide level with those from other parts of the world. The sequences of these two isolates differed from each other only at two nucleotide positions, without any amino acid substitution. Phylogenetic analysis of 57 isolates based on 750 bp sequences of the coat protein gene showed no correlation between isolates and their geographic origin, and italso indicated that these isolates fell into three molecular groups of

  12. Chayote mosaic virus, a New Tymovirus Infecting Cucurbitaceae.

    Science.gov (United States)

    Bernal, J J; Jiménez, I; Moreno, M; Hord, M; Rivera, C; Koenig, R; Rodríguez-Cerezo, E

    2000-10-01

    ABSTRACT Chayote mosaic virus (ChMV) is a putative tymovirus isolated from chayote crops in Costa Rica. ChMV was characterized at the host range, serological, and molecular levels. ChMV was transmitted mechanically and induced disease symptoms mainly in Cucurbitaceae hosts. Asymptomatic infections were detected in other host families. Serologically, ChMV is related to the Andean potato latent virus (APLV) and the Eggplant mosaic virus (EMV), both members of the genus Tymovirus infecting solanaceous hosts in the Caribbean Basin and South America. The sequence of the genomic RNA of ChMV was determined and its genetic organization was typical of tymoviruses. Comparisons with other tymoviral sequences showed that ChMV was a new member of the genus Tymovirus. The phylogenetic analyses of the coat protein gene were consistent with serological comparisons and positioned ChMV within a cluster of tymoviruses infecting mainly cucurbit or solanaceous hosts, including APLV and EMV. Phylogenetic analyses of the replicase protein gene confirmed the close relationship of ChMV and EMV. Our results suggest that ChMV is related to two tymoviruses (APLV and EMV) of proximal geographical provenance but with different natural host ranges. ChMV is the first cucurbit-infecting tymovirus to be fully characterized at the genomic level.

  13. Location of Grapevine Fardeaf and Yellow Mosaic Virus Particles in Xiphinema index.

    Science.gov (United States)

    Raski, D J; Maggenti, A R; Jones, N O

    1973-07-01

    Particles of fanleaf and yellow mosaic viruses are reported in the lumen of the esophagus of Xiphinerna index. Differences in cuticular morphology suggest differences in charged receptor sites which may offer an explanation for virus location and orderly arrangement.

  14. A BRIEF REVIEW ON "MOLECULAR DETECTION AND CHARACTERIZATION OF YELLOW MOSAIC VIRUS (YMV) INFECTING BLACKGRAM"

    OpenAIRE

    S.Obaiah; B.V. Bhaskara Reddy; N P Eswara Reddy; K. Vijay Krishna Kumar

    2013-01-01

    Blackgram (Vigna mungo (L.) Hepper) is one of the major pulse crops of the tropics and sub tropics. It is the third major pulse crop cultivated in the Indian subcontinent. Pulses and grain legumes are major sources of dietary protein. These crops are subjected to yellow mosaic and golden mosaic diseases caused by white fly transmitted geminiviruses (WTG’s or begomovirus). Of these viruses, mungbean yellow mosaic virus (MYMV) is an important one, and it infects five major leguminous species...

  15. Engineering of Brome mosaic virus for biomedical applications

    Science.gov (United States)

    Yildiz, Ibrahim; Tsvetkova, Irina; Wen, Amy M.; Shukla, Sourabh; Masarapu, M. Hema; Dragnea, Bogdan; Steinmetz, Nicole F.

    2016-01-01

    Viral nanoparticles (VNPs) are becoming versatile tools in platform technology development. Their well-defined structures as well as their programmability through chemical and genetic modification allow VNPs to be engineered for potential imaging and therapeutic applications. In this article, we report the application of a variety of bioconjugation chemistries to the plant VNP Brome mosaic virus (BMV). Functional BMV nanoparticles displaying multiple copies of fluorescent dyes, PEG molecules, chemotherapeutic drug moieties, targeting proteins and cell penetrating peptides were formulated. This opens the door for the application of BMV in nanomedicine. PMID:28018580

  16. On the involvement of host proteins in Cowpea mosaic virus intercellular spread

    NARCIS (Netherlands)

    Hollander, den P.W.

    2014-01-01

    Abstract of thesis Paulus den Hollander entitled “On the involvement of host proteins in Cowpea mosaic virus intercellular spread”. Defence: 18th of November 13.30 h Abstract Intercellular spread of Cowpea mosaic virus (CPMV) occurs via movement tubules inserted into the

  17. Characterization of Cucumber Mosaic Virus Originating from Cucurbits in Serbia

    Directory of Open Access Journals (Sweden)

    Ana Vučurović

    2011-01-01

    Full Text Available Cucumber mosaic virus (CMV is considered one of the most economically importantplant viruses and has a worldwide distribution and a very wide host range including plantsfrom family Cucurbitaceae. In Serbia, on cucurbits CMV was detected in single and mixedinfections with Zucchini yellow mosaic virus (ZYMV and Watermelon mosaic virus (WMV. Viruses,including CMV, are constantly present in cucurbit crops, but their frequency changesby year and locality. Surveys and sample collections were conducted in cucurbit crops inthe period from 2008 to 2009 at 15 localities in Vojvodina province, and sample testing wascarried out using the DAS-ELISA method and commercially available antisera for six economicallymost important cucurbit viruses. In 2008, a total of 51 samples were collected from13 cucurbit crops of oilseed pumpkin Olinka variety, squash, and bottle gourd and CMV wasdetected in a total of 55% of tested samples with symptoms of viral infection. The most commoninfectious type was mixed infection with ZYMV and WMV (35.3%, and then mixedinfection with ZYMV (17.7% and WMV (2%. A total of 599 symptomatic samples of oilseedpumpkin Olinka variety, zucchini squash varieties Beogradska and Tosca, squash, and wintersquash were collected in 15 cucurbits crops in 2009. CMV was present in 4.4% of totalcollected samples, in single infections in 1.3%, and in mixed with WMV or ZYMV in 1.3%, and1.8%. Five CMV isolates were obtained by mechanical inoculations of N. glutinosa and oneof them was selected for further biological characterization. Test plants which were describedto be hosts of CMV expressed symptoms characteristic for those caused by CMV afterinoculations by isolate 115-08. CMV specific primers Au1u/Au2d were used to amplify an850 bp fragment using RT-PCR method. Amplified fragment encodes the entire viral coatprotein (CP gene and partial 5’ and 3’ UTRs of two selected CMV isolates. Amplified fragmentswere sequenced and deposited in the NCBI, where

  18. 40 CFR 174.516 - Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Coat protein of cucumber mosaic virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.516 Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Cucumber Mosaic Virus are...

  19. The polarity of assembly of papaya mosaic virus and tobacco mosaic virus RNAs with PMV-protein under conditions of nonspecificity.

    Science.gov (United States)

    Abouhaidar, M G; Bancroft, J B

    1980-11-01

    The problem of the rapid multiinitiation of papaya mosaic virus or tobacco mosaic virus RNA by PMV-protein near pH 7.0 at low ionic strength has been overcome. If NaCl is added to 0.1 M, both RNAs are first encapsidated at their respective 5' ends. This shows that the initial site of helix formation depends on the protein rather than the RNA.

  20. The entry of cucumber mosaic virus into cucumber xylem is facilitated by co-infection with zucchini yellow mosaic virus.

    Science.gov (United States)

    Mochizuki, Tomofumi; Nobuhara, Shinya; Nishimura, Miho; Ryang, Bo-Song; Naoe, Masaki; Matsumoto, Tadashi; Kosaka, Yoshitaka; Ohki, Satoshi T

    2016-10-01

    We investigated the synergistic effects of co-infection by zucchini yellow mosaic virus (ZYMV) and cucumber mosaic virus (CMV) on viral distribution in the vascular tissues of cucumber. Immunohistochemical observations indicated that ZYMV was present in both the phloem and xylem tissues. ZYMV-RNA was detected in both the xylem wash and guttation fluid of ZYMV-inoculated cucumber. Steam treatment at a stem internode indicated that ZYMV enters the xylem vessels and moves through them but does not cause systemic infection in the plant. CMV distribution in singly infected cucumbers was restricted to phloem tissue. By contrast, CMV was detected in the xylem tissue of cotyledons in plants co-infected with CMV and ZYMV. Although both ZYMV-RNA and CMV-RNA were detected in the xylem wash and upper internodes of steam-treated, co-infected cucumbers grown at 24 °C, neither virus was detected in the upper leaves using an ELISA assay. Genetically modified CMV harboring the ZYMV HC-Pro gene was distributed in the xylem and phloem tissues of singly inoculated cucumber cotyledons. These results indicate that the ZYMV HC-Pro gene facilitates CMV entry into the xylem vessels of co-infected cucumbers.

  1. Back-transmission of a virus associated with apple stem pitting and pear vein yellows from Nicotiana occidentalis to apple and pear indicators

    NARCIS (Netherlands)

    Leone, G.; Lindner, J.L.; Jongedijk, G.; Meer, van der F.

    1995-01-01

    The successful back-transmission of the mechanically transmissible virus associated with apple stem pitting and pear vein yellows, from Nicotiana occidentalis to apple seedlings "Golden Delicious" under greenhouse conditions is reported. This result enabled a field experiment where isolates of apple

  2. Back-transmission of a virus associated with apple stem pitting and pear vein yellows from Nicotiana occidentalis to apple and pear indicators

    NARCIS (Netherlands)

    Leone, G.; Lindner, J.L.; Jongedijk, G.; Meer, van der F.

    1995-01-01

    The successful back-transmission of the mechanically transmissible virus associated with apple stem pitting and pear vein yellows, from Nicotiana occidentalis to apple seedlings "Golden Delicious" under greenhouse conditions is reported. This result enabled a field experiment where isolates of apple

  3. The cell biology of Tobacco mosaic virus replication and movement

    Directory of Open Access Journals (Sweden)

    Chengke eLiu

    2013-02-01

    Full Text Available Successful systemic infection of a plant by Tobacco mosaic virus (TMV requires three processes that repeat over time: initial establishment and accumulation in invaded cells, intercellular movement and systemic transport. Accumulation and intercellular movement of TMV necessarily involves intracellular transport by complexes containing virus and host proteins and virus RNA during a dynamic process that can be visualized. Multiple membranes appear to assist TMV accumulation, while membranes, microfilaments and microtubules appear to assist TMV movement. Here we review cell biological studies that describe TMV-membrane, -cytoskeleton and -other host protein interactions which influence virus accumulation and movement in leaves and callus tissue. The importance of understanding the developmental phase of the infection in relationship to the observed virus-membrane or -host protein interaction is emphasized. Utilizing the latest observations of TMV-membrane and -host protein interactions within our evolving understanding of the infection ontogeny, a model for TMV accumulation and intracellular spread in a cell biological context is provided.

  4. Evolutionary liberties of the Abutilon mosaic virus cluster.

    Science.gov (United States)

    Fischer, Alexander; Strohmeier, Stephan; Krenz, Björn; Jeske, Holger

    2015-02-01

    Two new strains of Abutilon mosaic virus (AbMV; Geminiviridae) from Germany (Stuttgart) and France (Paris) have been characterized by circomics, direct pyrosequencing of rolling circle amplification (RCA) products, as well as conventional cloning and Sanger sequencing. RCA combined with an analysis of restriction fragment length polymorphisms confirmed the completeness of the sequence determination and a close relationship of both isolates for DNA A with 99 % nucleotide sequence identity. Phylogenetic tree reconstruction supported their clustering with other AbMV strains in a clade with Middle American begomoviruses, whereas South American begomoviruses that infect Abutilon or Sida micrantha are less closely related. Comparing the coat protein (CP) genes of the AbMV cluster, with those of related Middle and South American begomoviruses revealed a remarkable overrepresentation for non-synonymous nucleotide exchanges for certain amino acid positions in the AbMV cluster. Projection of these positions to a structural model of the African cassava mosaic virus CP yielded a non-random distribution at the periphery and, most importantly, highlighted those amino acids that had been identified in whitefly-transmission experiments before. These results establish the basis for an analysis of the evolutionary liberty of certain amino acid positions of the CP, and their impact on the deciphering of insect transmission determinants is discussed.

  5. Sida micrantha mosaic is associated with a complex infection of begomoviruses different from Abutilon mosaic virus.

    Science.gov (United States)

    Jovel, J; Reski, G; Rothenstein, D; Ringel, M; Frischmuth, T; Jeske, H

    2004-04-01

    We report on the nucleotide sequences of geminiviruses of the genus Bemogovirus infecting Sida micrantha Schr., a common weed in Brazil. For decades, the mosaic frequently associated with Sida plants was considered to be caused by a Brazilian strain of Abutilon mosaic virus (AbMV). By infection studies and sequence comparisons, we demonstrate that it is associated with a complex of at least two begomoviruses as different from AbMV as most South American geminiviruses. Two molecules of DNA A (A1, A2) and three of DNA B (B1, B2, B3) were cloned and sequenced. According to the high homology in their common regions, DNA A1 and DNA B3, as well as DNA A2 and DNA B2, are cognate components of two begomoviruses, which were infectious in Nicotiana benthamiana plants. No trans-replication was found for any other A/B combination. The intergenic region of DNA B2 appears to be the product of the recombination between DNA B1 and DNA A2. These results show that a coinfection of begomoviruses can persist over decades, producing a reservoir of partially recombined but distinct geminiviruses.

  6. Presence and Distribution of Oilseed Pumpkin Viruses and Molecular Detection of Zucchini Yellow Mosaic Virus

    Directory of Open Access Journals (Sweden)

    Ana Vučurović

    2009-01-01

    Full Text Available Over the past decade, intensive spread of virus infections of oilseed pumpkin has resulted in significant economic losses in pumpkin crop production, which is currently expanding in our country. In 2007 and 2008, a survey for the presence and distribution of oilseed pumpkin viruses was carried out in order to identify viruses responsible for epidemics and incidences of very destructive symptoms on cucurbit leaves and fruits. Monitoring andcollecting samples of oil pumpkin, as well as other species such as winter and butternut squash and buffalo and bottle gourd with viral infection symptoms, was conducted in several localities of Vojvodina Province. The collected plant samples were tested by DAS-ELISA using polyclonal antisera specific for the detection of six most economically harmful pumpkin viruses: Cucumber mosaic virus (CMV, Zucchini yellow mosaic virus (ZYMV, Watermelon mosaic virus (WMW, Squash mosaic virus (SqMV, Papaya ringspot virus (PRSV and Tobaccoringspot virus (TRSV that are included in A1 quarantine list of harmful organisms in Serbia.Identification of viruses in the collected samples indicated the presence of three viruses, ZYMV, WMV and CMV, in individual and mixed infections. Frequency of the identified viruses varied depending on locality and year of investigations. In 2007, WMV was the most frequent virus (94.2%, while ZYMV was prevalent (98.04% in 2008. High frequency of ZYMV determined in both years of investigation indicated the need for its rapid and reliable molecular detection. During this investigation, a protocol for ZYMVdetection was developed and optimized using specific primers CPfwd/Cprev and commercial kits for total RNA extraction, as well as for RT-PCR. In RT-PCR reaction using these primers, a DNA fragment of approximately 1100 bp, which included coat protein gene, was amplified in the samples of infected pumkin leaves. Although serological methods are still useful for large-scale testing of a great number of

  7. Pepino mosaic virus and Tomato chlorosis virus causing mixed infection in protected tomato crops in Sicily

    Directory of Open Access Journals (Sweden)

    SALVATORE DAVINO

    2008-07-01

    Full Text Available An unusual virus-like yellow leaf disorder associated with fruit marbling was observed during the winter of 2005 in some greenhouse tomato crops in the province of Ragusa Sicily (Southern Italy. Leaf samples from 250 symptomatic tomato plants were serologically tested by DAS-ELISA technique for 5 viruses: Tomato spotted wilt virus (TSWV, Impatiens necrotic spot virus (INSV, Tobacco mosaic virus (TMV, Cucumber mosaic virus (CMV and Pepino mosaic virus (PepMV. PepMV was detected in 215 of the samples. The virus was mechanically transmitted to cucumber, wild metel, wild tobacco and ‘Rio Grande’ tomato. The experimental host range of PepMV-Ragusa differed from that of the PepMV found in Sardinia in 2001, which infected ‘Camone’ tomato. By applying RT-PCR to 25 PepMV-infected tomato plants, the expected 844 bp DNA fragment for PepMV and the expected 439 bp DNA fragment for Tomato chlororis virus (ToCV were obtained from all the samples tested. Sequences of the obtained amplicons were used to study the phylogenetic relationships of the viruses with isolates from other countries. Nucleotide sequence alignments showed that the sequence CP-PepMV-Ragusa (Genbank acc. No. DQ 517884 were 99% homologous with both US2 and Spain-Murcia isolates, while those of ToCV-Ragusa (Genbank acc. No. DQ517885 isolate HSP70, were 99% homologous with the Florida isolate, and 98% with the Lebanon isolate. The results proved that the unusual disorder found in greenhouse tomatoes in Sicily can be associated with infections by PepMV and ToCV, reported for the first time in a mixed infection.

  8. Antiviral effect of ribavirin and acyclic nucleosid phosphonates against Radish mosaic virus

    OpenAIRE

    VOZÁBOVÁ, Tereza

    2010-01-01

    Evaluation of the antiviral effectiveness of ribavirin and acyclic nucleotide phosphonates to radish mosaic virus. Virus inoculation of plants with RaMV and immunological assay of the virus by ELISA. Subsequent application of antiviral agents and monitoring relative content of the virus in plants. Subsequent processing of data in tables and graphs, and then statistical evaluation.

  9. Recombinant constructions and infectivity analysis of tobacco mosaic virus and attenuated tomato mosaic virus N14 genomes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The recombinant clones of pTN and pNT have been constructed by exchanging the coding regions of the movement proteins (MP), coat proteins (CP) and 3′noncoding regions between the cDNAs of the tobacco mosaic virus (Chinese Isolate, TMV-Cv) and the attenuated tomato mosaic virus N14 genomes, and used as templates for in vitro runoff transcription. Their transcripts have been used for tobacco infection assays. The infection results show that the transcripts of pTN and pNT are infectious. Local lesions were observed in the leaves of Nicotiana tabacum cv. Samsun NN inoculated with pTN transcript, but were fewer than those in the same kind of plant induced by pTMV-Cv transcript. Systemic symptoms were also observed in N. tabacum cv. Huangmiaoyu induced by pTN transcript, but were slighter than those on the same kind of tobacco induced by pTMV-Cv transcript. Local lesions were shown in N. tabacum cv. Samsun NN inoculated with pNT transcript, but were more than those in the same kind of plant induced by pN14 transcript while no systemic symptom was displayed in N. tabacum cv. Huangmiaoyu. These results suggest that the recombinant viruses of TN and NT are able to propagate in the assayed tobaccos, and they keep the most same phenotypic character with pTMV-Cv and pN14 transcripts, and TMV-Cv and N14 as well. The conjunctions between the replicase and the MP, CP and 3′noncoding regions are not stringent. Apparently there is a compatible function complementation between the homologous subgenomes of TMV-Cv and N14. From those above it could be probably presumed that the mutagenized replicase gene of N14 plays a major role in contributing to the virus attenuation while its mutagenized MP gene could avianize the symptoms of the infected tobaccos.

  10. Gold nanostructures using tobacco mosaic viruses for optical metamaterials

    Science.gov (United States)

    Kobayashi, Mime; Yamashita, Ichiro; Uraoka, Yukiharu; Shiba, Kiyotaka; Tomita, Satoshi

    2011-05-01

    We have succeeded in aligning gold nanoparticles (Au NPs) in three-dimensions using tobacco mosaic virus (TMV) in order to realize new optical properties. TMV is a tube-shaped plant virus about 300 nm in length with an outer- and inner-diameter of 18 nm and 4 nm. We genetically fused material-binding peptides that can promote metal crystallization, namely a gold-binding peptide (GBP) and a titanium-binding peptide (TBP), to the outer-surface of TMV. By reducing potassium chloroaurate with sodium borohydride in the presence of the engineered viruses in 5% acetic acid solution, Au NPs were deposited on the outer-surface of the viruses. Using TBP-fused TMV, NPs of 5 nm were obtained, with a standard deviation smaller than those deposited on wild-type TMV. The diameter of the NPs on GBP-fused TMV was 10 nm. These results indicate that genetically-modified TMVs are promising templates for the construction of optical metamaterials.

  11. Lettuce mosaic virus: from pathogen diversity to host interactors.

    Science.gov (United States)

    German-Retana, Sylvie; Walter, Jocelyne; Le Gall, Olivier

    2008-03-01

    Lettuce mosaic virus (LMV) belongs to the genus Potyvirus (type species Potato virus Y) in the family Potyviridae. The virion is filamentous, flexuous with a length of 750 nm and a width of 15 nm. The particles are made of a genomic RNA of 10 080 nucleotides, covalently linked to a viral-encoded protein (the VPg) at the 5' end and with a 3' poly A tail, and encapsidated in a single type of capsid protein. The molecular weight of the capsid protein subunit has been estimated electrophoretically to be 34 kDa and estimated from the amino acid sequence to be 31 kDa. The genome is expressed as a polyprotein of 3255 amino-acid residues, processed by three virus-specific proteinases into ten mature proteins. LMV has a worldwide distribution and a relatively broad host range among several families. Weeds and ornamentals can act as local reservoirs for lettuce crops. In particular, many species within the family Asteraceae are susceptible to LMV, including cultivated and ornamental species such as common (Lactuca sativa), prickly (L. serriola) or wild (L. virosa) lettuce, endive/escarole (Cichorium endiva), safflower (Carthamus tinctorius), starthistle (Centaurea solstitialis), Cape daisy (Osteospermum spp.) and gazania (Gazania rigens). In addition, several species within the families Brassicaceae, Cucurbitaceae, Fabaceae, Solanaceae and Chenopodiaceae are natural or experimental hosts of LMV. Genetic control of resistance to LMV: The only resistance genes currently used to protect lettuce crops worldwide are the recessive genes mo1(1) and mo1(2) corresponding to mutant alleles of the gene encoding the translation initiation factor eIF4E in lettuce. It is believed that at least one intact copy of eIF4E must be present to ensure virus accumulation. LMV is transmitted in a non-persistent manner by a high number of aphid species. Myzus persicae and Macrosiphum euphorbiae are particularly active in disseminating this virus in the fields. LMV is also seedborne in lettuce. The

  12. Malus pumila 'Spy 227' and Apple stem pitting virus: graft incompatibility and epinasty.

    Science.gov (United States)

    Brakta, Ajay; Handa, Anil; Thakur, P D; Tomar, Manica; Kumar, Pardeep

    2015-06-01

    Apple stem pitting foveavirus (ASPV) is one of the most important and widespread virus infecting apples in the world. Of late, the virus has been found to be invariably associated with most of the apple plantations of Shimla district of Himachal Pradesh based on DAS-ELISA results. Bioassay of viruses in vegetatively propagated crops including apple is considered to be an essential component in indexing programmes for the production of virus free propagating material. Woody indicator Malus pumila 'Spy 227' was used for the detection of ASPV through double grafting method. Graft incompatibility and epinasty symptoms were observed on Malus pumila Spy 227 indicator plants. Further, molecular identification of the virus isolate was done by cloning and sequencing of the test isolate. Partial sequence analysis of the coat protein gene showed 89 % nucleotide identity in BLASTN analysis with ASPV isolate from China (Accession No. JF895517). This is the first record of ASPV producing Graft incompatibility on Spy 227 indicator plants.

  13. Characteristics of Watermelon Mosaic Virus Transmission Occurring in Korean Ginseng

    Directory of Open Access Journals (Sweden)

    Seung-Kook Choi

    2014-09-01

    Full Text Available Korean ginseng (Panax ginseng is the most popular herb for medical purpose in Korea. Recently, viral diseases from Korean ginseng showing various degrees of severe mottling, variegation and mosaic symptoms have caused quantity losses of Korean ginseng in a large number of farms. Watermelon mosaic virus (named WMVgin was identified as a causal agent for the disease of Korean ginseng. Interestingly, WMV-gin failed to infect both Korean ginseng plant and susceptible host species including cucurbitaceous plants by mechanical inoculation. However, WMV-gin could successfully infect Korean ginseng by transmission of two aphid species (Myzus persicae and Aphis gossypii. It is likely that transmission of WMV-gin was done by both the aphid species during feeding behavior of the two aphid species on Korean ginseng, though the aphids dislike feeding in Korea ginseng. Similarly, a strain of WMV (WMV-wm isolated from watermelon was transmitted successfully to Korean ginseng plant by the two aphid species, but not by mechanical inoculations. Transmission assays using M. persicae and A. gossypii clearly showed both WMV-gin and WMV-wm were not transmitted from infected Korean ginseng plant to cucurbit species that are good host species for WMV. These results suggest WMV disease occurring in Korean ginseng plant can be controlled by ecological approaches.

  14. Coat protein gene and 3′ non-coding region of tobacco mosaic virus and tomato mosaic virus are associated with viral pathogenesis in Nicotiana tabacum

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The camellia isolate of tomato mosaic virus (ToMV-TL) can induce local necrotic lesions on the inoculated leaves in Nicotiana tabacum, whereas the broad bean isolate of tobacco mosaic virus (TMV-B) produces the mosaic symptom on systemic leaves. To examine viral determinant for differential infection phenotype in N. tabacum, the coat protein gene and the 3′ non-coding region of TMV was replaced with that of ToMV, the chimeric virus induced similar local necrotic lesions to that induced by ToMV. The results indicate that the coat protein gene and the 3′ non-coding region of TMV and ToMV influence the virus-induced pathogenesis in N. tabacum.

  15. Effect of abscissic acid on tobacco mosaic virus.

    Science.gov (United States)

    Mishra, M D; Ghosh, A; Verma, V S; Dattagupta, M

    1983-01-01

    Abscisic acid (ABA) did not affect the infectivity of tobacco mosaic virus (TMV) in vitro. The same dilutions of ABA when applied on the leaves of Chenopodium amaranticolor Coste and Reyn. at different intervals before inoculation affected development of local lesions variably at different dilutions. The inhibition of local lesion formation was reduced at other intervals leading to stimulation at thirty minutes and six hours intervals. Post-inoculation treatments with 2 mg/l of ABA gave stimulation of local lesion formation, though other dilutions gave inhibition. Viral concentration was stimulated in the tomato seedlings root dipped in 0.2 mg/l of ABA for 6 hours and inoculated 24 hours after transplantation. Incorporation of different concentrations of ABA into tissue culture medium reduced the growth of the TMV infected tobacco callus tissue and stimulated the infectivity of the tissue grown over it assayed after three weeks.

  16. Genomic evidence of intraspecific recombination in sugarcane mosaic virus.

    Science.gov (United States)

    Padhi, Abinash; Ramu, Karri

    2011-04-01

    The sugarcane mosaic virus (SCMV) of the genus potyvirus, which primarily affects maize, sugarcane, sorghum, abaca, and grasses, occurs worldwide and causes significant economic loss. Using the full genome sequences of SCMV and several recombination detection methods, in this study we report that recombination is the major driving force in the evolution and emergence of several new variants of SCMV. We reported eight highly significant (P < 0.001) recombination break points, majority of which are located within 6K1-VPg-NIaPro-NIb region, thus indicating a region for recombination hotspot. The observation of commonalities of same recombination events among the SCMV isolates between the countries (Spain and Mexico), and within the country (within China, and within Mexico), suggests common origin of the isolates in respective regions.

  17. The assembly of papaya mosaic virus coat protein with DNA.

    Science.gov (United States)

    Erickson, J W; Bancroft, J B

    1980-01-01

    Products of specific (pH 8.0-8.5) and nonspecific (pH 6.0) assembly reactions of papaya mosaic virus (PMV) coat protein with DNA are described. The strandedness, topology, and sugar moiety of the nucleic acid are important parameters for assembly in nonspecific conditions. The linear, single-stranded form of lambda DNA, but not the double-stranded form, reacted with PMV protein to form multiply initiated particles whose helical segments apparently annealed to produce continuous tubular particles. With the circular, single-stranded DNA of phi X174, partially tubular, partially extended particles were made. Poly(dA), unlike poly(A) [Erickson JW, AbouHaidar M, Bancroft JB: Virology 90:60, 1978], was not encapsidated by PMV protein under specific assembly conditions. With all DNAs tested, extended particles were the only products formed in specific conditions at pH 8.5.

  18. Genetic diversity of Hungarian Maize dwarf mosaic virus isolates.

    Science.gov (United States)

    Gell, Gyöngyvér; Balázs, Ervin; Petrik, Kathrin

    2010-04-01

    The genetic diversity of the coat-protein (CP) region and the untranslated C-terminal region (3'UTR) of Maize dwarf mosaic virus (MDMV) was analyzed to evaluate the variability between isolates (inter-isolate sequence diversity). The results of inter-isolate sequence diversity analysis showed that the diversity of the MDMV CP gene is fairly high (p-distance: up to 0.136). During sequence analysis, a 13 amino-acid residue insertion and an 8 amino-acid residue deletion were found within the N-terminal region of the CP gene. The phylogenetic analysis showed that-unlike other potyvirus species in this subgroup-the MDMV isolates could not be distinguished on the basis of their host plants or geographic origins.

  19. Daphne mosaic virus (DapMV), a new potyvirus from Daphne mezereum in the Czech Republic.

    Science.gov (United States)

    Fránová, J; Petrzik, K; Lesemann, D-E; Navrátil, M

    2006-04-01

    Daphne shrubs with light green rings and mosaic on leaves contained flexuous filamentous virions (696 x 13 nm) and cylindrical inclusions typical of the subdivision III of Edwardson's classification for inclusions induced by members of the family Potyviridae. Decoration tests using antisera to 67 potyviruses revealed distant serological relations among chilli veinal mottle virus, Colombian datura virus, papaya ringspot virus, tobacco vein mottling virus and yam mosaic virus. The 3' terminal region of the virus genome was amplified by RT-PCR using primers specific for cloned and sequenced members of the family Potyviridae. The most similar sequences in the GenBank were those of isolates of wild potato mosaic virus (WPMV) and yam mild mosaic virus (YMMV), originating from Peru and Guadeloupe, respectively. The new sequence had 63.2% and 61.9% nucleotide identity to WPMV and YMMV in the coat protein gene. The results suggest that the Czech isolate from daphne should be regarded as a new member of the genus Potyvirus. The name daphne mosaic virus (DapMV) is suggested for this virus.

  20. First Report of Zucchini yellow mosaic virus Infecting Gherkin (Cucumis anguira) in India.

    Science.gov (United States)

    Anthony Johnson, A M; Vidya, T; Papaiah, S; Srinivasulu, M; Mandal, Bikash; Sai Gopal, D V R

    2013-09-01

    A field visit in September 2011 to the Cucumis anguira (Gherkin) growing regions of Kuppam, Chittoor district of Andhra Pradesh, India revealed occurrence of mosaic, blistering and fruit malformation leading to the crop losses. Analysis of field samples revealed association of Zucchini yellow mosaic virus (ZYMV) with the disease. This is the first confirmed report of natural occurrence of ZYMV on Gherkin in India.

  1. Cucumber Mosaic Virus and Chili Veinal Mottle Virus Infection on Growth and Yield Component of Chilli

    Directory of Open Access Journals (Sweden)

    ENDANG NURHAYATI

    2006-06-01

    Full Text Available A research was undergone to study the effect of single and double infection of Cucumber Mosaic Virus (CMV and Chili Veinal Mottle Virus (ChiVMV on the growth and yield of five chilli cultivars, i.e. Prabu, Taro, Jatilaba, Laris, and Keriting Bogor. Mechanical inoculation was conducted to transmit the virus. Infection of the virus was then confirmed with DAS-ELISA. Severe symptom was observed on plant given double infection compared to those given single infection. The rate of plant growth and the amount and weight of fruits were reduced. The type of interaction between CMV and ChiVMV on most chilli cultivar can be considered as interference and additive. Synergism interaction was only observed on cultivar Laris. Based on symptom expression and reduction on yield, it can be concluded that all chilli cultivars used in this study could not hold up the virus infection.

  2. Effects of Cowpea mottle virus and Cucumber mosaic virus on six Soybean (Glycine max L. cultivars

    Directory of Open Access Journals (Sweden)

    Aliyu Taiye H

    2009-12-01

    Full Text Available Abstract The study was carried out to determine the comparative pathogenic response of six cultivars of soybean; TGx 1844-18E, TGx 1448-2E, TGx 1910-8F, TGx 1019-2EN, TGx 1910-8F and TGx 1876-4E to single and mixed infections with cowpea mottle virus and cucumber mosaic virus. The experiment was conducted in the screenhouse at the crop production pavilion, Faculty of Agriculture, University of Ilorin, Ilorin, Kwara state Nigeria. The results of the experiment revealed that all soybean cultivars were susceptible to single and mixed infection of the two viruses but to seemingly different extent. The single infection with cowpea mottle virus (CMeV, however, caused the most severe symptoms on the soybean cultivars. Cucumber mosaic virus (CMV alone was not as severe as the CMeV. The mixed infection of CMeV and CMV did not cause higher severity than CMeV alone indicating that there was little or no synergistic effect between the two viruses on soybean.

  3. Odontonema cuspidatum and Psychotria punctata, two new cucumber mosaic virus hosts identified in Florida

    Science.gov (United States)

    The wide host range of Cucumber mosaic virus (CMV) has been expanded by the identification of Odontonema cuspidatum (firespike) and Psychotria punctata (dotted wild coffee) as CMV hosts in Florida....

  4. Pea enation mosaic virus genoma RNA contains no polyadenylate sequences and cannot be aminoacylated.

    Science.gov (United States)

    German, T L; De Zoeten, G A; Hall, T C

    1978-01-01

    An active synthetase enzyme preparation from peas (Pisum sativum L.) did not catalyze the aminoacylation of pea enation mosaic virus RNA. The viral RNA was shown not to contain polyadenylic acid sequences.

  5. Wheat streak mosaic virus-encoded NIa-Pro and coat protein are involved in virus superinfection exclusion

    Science.gov (United States)

    Cross protection or superinfection exclusion (SE) is defined as the phenomenon whereby initial infection by one virus prevents subsequent infection by closely related viruses. The mechanisms of SE are just beginning to be understood. Wheat streak mosaic virus (WSMV; genus: Tritimovirus; family: Poty...

  6. Endothelial targeting of cowpea mosaic virus (CPMV via surface vimentin.

    Directory of Open Access Journals (Sweden)

    Kristopher J Koudelka

    2009-05-01

    Full Text Available Cowpea mosaic virus (CPMV is a plant comovirus in the picornavirus superfamily, and is used for a wide variety of biomedical and material science applications. Although its replication is restricted to plants, CPMV binds to and enters mammalian cells, including endothelial cells and particularly tumor neovascular endothelium in vivo. This natural capacity has lead to the use of CPMV as a sensor for intravital imaging of vascular development. Binding of CPMV to endothelial cells occurs via interaction with a 54 kD cell-surface protein, but this protein has not previously been identified. Here we identify the CPMV binding protein as a cell-surface form of the intermediate filament vimentin. The CPMV-vimentin interaction was established using proteomic screens and confirmed by direct interaction of CPMV with purified vimentin, as well as inhibition in a vimentin-knockout cell line. Vimentin and CPMV were also co-localized in vascular endothelium of mouse and rat in vivo. Together these studies indicate that surface vimentin mediates binding and may lead to internalization of CPMV in vivo, establishing surface vimentin as an important vascular endothelial ligand for nanoparticle targeting to tumors. These results also establish vimentin as a ligand for picornaviruses in both the plant and animal kingdoms of life. Since bacterial pathogens and several other classes of viruses also bind to surface vimentin, these studies suggest a common role for surface vimentin in pathogen transmission.

  7. WATERMELON MOSAIC VIRUS OF PUMPKIN (Cucurbita maxima FROM SULAWESI: IDENTIFICATION, TRANSMISSION, AND HOST RANGE

    Directory of Open Access Journals (Sweden)

    Wasmo Wakmana

    2016-10-01

    Full Text Available A mosaic disease of pumpkin (Cucurbita maxima was spread widely in Sulawesi. Since the virus had not yet been identified, a study was conducted to identify the disease through mechanical inoculation, aphid vector transmission, host range, and electron microscopic test. Crude sap of infected pumpkin leaf samples was rubbed on the cotyledons of healthy pumpkin seedlings for mechanical inoculation. For insect transmission, five infective aphids were infected per seedling. Seedlings of eleven different species were inoculated mechanically for host range test. Clarified sap was examined under the electron microscope. Seeds of two pumpkin fruits from two different infected plants were planted and observed for disease transmission up to one-month old seedlings. The mosaic disease was transmitted mechanically from crude sap of different leaf samples to healthy pumpkin seedlings showing mosaic symptoms. The virus also infected eight cucurbits, i.e., cucumber (Cucumis sativus, green melon (Cucumis melo, orange/rock melon (C. melo, zucchini (Cucurbita pepo, pumpkin (Cucurbita maxima, water melon (Citrulus vulgaris, Bennicosa hispida, and blewah (Cucurbita sp.. Aphids  transmitted the disease from one to other pumpkin seedlings. The virus was not transmitted by seed. The mosaic disease of pumpkin at Maros, South Sulawesi, was associated with flexious particles of approximately 750 nm length, possibly a potyvirus, such as water melon mosaic virus rather than papaya ringspot virus or zucchini yellow mosaic virus.

  8. Quantification of African cassava mosaic virus (ACMV) and East African cassava mosaic virus (EACMV-UG) in single and mixed infected Cassava (Manihot esculenta Crantz) using quantitative PCR.

    Science.gov (United States)

    Naseem, Saadia; Winter, Stephan

    2016-01-01

    The quantity of genomic DNA-A and DNA-B of African cassava mosaic virus (ACMV) and East African cassava mosaic virus Uganda (Uganda variant, EACMV-UG) was analysed using quantitative PCR to assess virus concentrations in plants from susceptible and tolerant cultivars. The concentrations of genome components in absolute and relative quantification experiments in single and mixed viral infections were determined. Virus concentration was much higher in symptomatic leaf tissues compared to non-symptomatic leaves and corresponded with the severity of disease symptoms. In general, higher titres were recorded for EACMV-UG Ca055 compared to ACMV DRC6. The quantitative assessment also showed that the distribution of both viruses in the moderately resistant cassava cv. TMS 30572 was not different from the highly susceptible cv. TME 117. Natural mixed infections with both viruses gave severe disease symptoms. Relative quantification of virus genomes in mixed infections showed higher concentrations of EACMV-UG DNA-A compared to ACMV DNA-A, but a marked reduction of EACMV-UG DNA-B. The higher concentrations of EACMV-UG DNA-B compared to EACMV DNA-A accumulation in single infections were consistent. Since DNA-B is implicated in virus cell-to-cell spread and systemic movement, the abundance of the EACMV-UG DNA-B may be an important factor driving cassava mosaic disease epidemic.

  9. Effects of mutated replicase and movement protein genes on attenuation of tobacco mosaic virus

    Institute of Scientific and Technical Information of China (English)

    YANG; Gong; (

    2001-01-01

    [1]Banerjee, N., Wang, J. Y., Zaitlin, M., A single nucleotide change in the coat protein gene of tobacco mosaic virus is involved in the induction of severe chlorosis, Virology, 1995, 207: 234-239.[2]Dawson, W. O., Bubrick, P., Grantham, G. L., Modifications of the tobacco mosaic virus coat protein gene affecting replication, movement, and symptomatology, Mol. Plant Pathol., 1988, 78: 783-789.[3]Lu, B., Stubbs, G., Culver, J. N., Coat protein interactions involved in tobacco mosaic tobamovirus cross-protection, Virology, 1998, 248: 188-198.[4]Bao, Y. M., Carter, S. A., Nelson,R. S., The 126- and 183-kilodalton proteins of tobacco mosaic virus, and not their common nucleotide sequence, control mosaic symptom formation in tobacco, J. Virol., 1996, 70: 6378-6383.[5]Holt, C. A., Hodgson, A. J., Coker, F. A. et al., Characterization of the masked strain of tobacco mosaic virus: identification of the region responsible for symptom attenuation by analysis of an infectious cDNA clone, Mol. Plant-Microbe Interact., 1990, 3: 417-423.[6]Nishiguchi, M., Kikuchi, S., Kiho, Y. et al., Molecular basis of plant viral virulence, the complete nucleotide sequence of an attenuated strain of tobacco mosaic virus, Nucleic Acids Res., 1985, 13: 5585-5590.[7]Watanabe, Y., Morita, N., Nishiguchi, M.et al., Attenuated strains of tobacco mosaic virus reduced synthesis of a viral protein with a cell to cell movement function, J. Mol. Biol., 1987, 194: 699-704.[8]Lewandowski, D. J., Dawson, W. O., A single amino acid change in tobacco mosaic virus replicase prevents symptom production, Mol. Plant-Microbe Interact., 1993, 6: 157-160.[9]Yang, G., Qiu, B. S., Cloning and infectivity analysis of the cDNAs of tobacco mosaic virus (tomato strain) and its attenuated virus (N14) genomes, Chinese Journal of Biotechnology (in Chinese), 2000, 16: 207-210.[10]Yang, G., Liu, X. G., Qiu, B. S., Complete nucleotid sequences and genome structures of two Chinese tobacco

  10. Algerian watermelon mosaic virus (AWMV): a new potyvirus species in the PRSV cluster.

    Science.gov (United States)

    Yakoubi, Soumaya; Lecoq, Hervé; Desbiez, Cécile

    2008-08-01

    A potyvirus was isolated from a naturally infected squash plant in Algeria in 1986. Biological and serological data have revealed that the virus, initially described as H4, is related to other cucurbit-infecting potyviruses, particularly Moroccan watermelon mosaic virus (MWMV) and Papaya ringspot virus (PRSV). To establish unequivocally the taxonomic status of H4, its full-length genome sequence was established. H4 shared identities of 70% and 65% at the amino acid level with MWMV and PRSV, respectively, indicating that H4 is a distinct species of the PRSV cluster. The name Algerian watermelon mosaic virus (AWMV) is proposed for this new potyvirus species.

  11. Molecular characterization and experimental host range of an isolate of Wissadula golden mosaic St. Thomas virus.

    Science.gov (United States)

    Collins, A M; Mujaddad-ur-Rehman, Malik; Brown, J K; Reddy, C; Wang, A; Fondong, V; Roye, M E

    2009-12-01

    Partial genome segments of a begomovirus were previously amplified from Wissadula amplissima exhibiting yellow-mosaic and leaf-curl symptoms in the parish of St. Thomas, Jamaica and this isolate assigned to a tentative begomovirus species, Wissadula golden mosaic St. Thomas virus. To clone the complete genome of this isolate of Wissadula golden mosaic St. Thomas virus, abutting primers were designed to PCR amplify its full-length DNA-A and DNA-B components. Sequence analysis of the complete begomovirus genome obtained, confirmed that it belongs to a distinct begomovirus species and this isolate was named Wissadula golden mosaic St. Thomas virus-[Jamaica:Albion:2005] (WGMSTV-[JM:Alb:05]). The genome of WGMSTV-[JM:Alb:05] is organized similar to that of other bipartite Western Hemisphere begomoviruses. Phylogenetic analyses placed the genome components of WGMSTV-[JM:Alb:05] in the Abutilon mosaic virus clade and showed that the DNA-A component is most closely related to four begomovirus species from Cuba, Tobacco leaf curl Cuba virus, Tobacco leaf rugose virus, Tobacco mottle leaf curl virus, and Tomato yellow distortion leaf virus. The putative Rep-binding-site motif in the common region of WGMSTV-[JM:Alb:05] was observed to be identical to that of Chino del tomate virus-Tomato [Mexico:Sinaloa:1983], Sida yellow mosaic Yucatan virus-[Mexico:Yucatan:2005], and Tomato leaf curl Sinaloa virus-[Nicaragua:Santa Lucia], suggesting that WGMSTV-[JM:Alb:05] is capable of forming viable pseudo-recombinants with these begomoviruses, but not with other members of the Abutilon mosaic virus clade. Biolistic inoculation of test plant species with partial dimers of the WGMSTV-[JM:Alb:05] DNA-A and DNA-B components showed that the virus was infectious to Nicotiana benthamiana and W. amplissima and the cultivated species Phaseolus vulgaris (kidney bean) and Lycopersicon esculentum (tomato). Infected W. amplissima plants developed symptoms similar to symptoms observed under field

  12. Solution structures of potato virus X and narcissus mosaic virus from Raman optical activity

    DEFF Research Database (Denmark)

    Blanch, Ewan W.; Robinson, David J.; Hecht, Lutz;

    2002-01-01

    Potato virus X (PVX) and narcissus mosaic virus (NMV) were studied using vibrational Raman optical activity (ROA) in order to obtain new information on the structures of their coat protein subunits. The ROA spectra of the two intact virions are very similar to each other and similar to that of to......Potato virus X (PVX) and narcissus mosaic virus (NMV) were studied using vibrational Raman optical activity (ROA) in order to obtain new information on the structures of their coat protein subunits. The ROA spectra of the two intact virions are very similar to each other and similar...... that the coat protein subunit folds of PVX and NMV may be very similar to each other and similar to that of TMV. These results suggest that PVX and NMV may have coat protein subunit structures based on folds similar to the TMV helix bundle and hence that the helical architecture of the PVX and NMV particles may...... be similar to that of TMV but with different structural parameters....

  13. Genetic mapping of turnip mosaic virus resistance in Lactuca sativa.

    Science.gov (United States)

    Robbins, M A; Witsenboer, H; Michelmore, R W; Laliberte, J F; Fortin, M G

    1994-11-01

    Presence of the dominant Tu gene in Lactuca sativa is sufficient to confer resistance to infection by turnip mosaic virus (TuMV). In order to obtain an immunological assay for the presence of TuMV in inoculated plants, the TuMV coat protein (CP) gene was cloned by amplification of a cDNA corresponding to the viral genome using degenerate primers designed from conserved potyvirus CP sequences. The TuMV CP was overexpressed in Escherichia coli, and polyclonal antibodies were produced. To locate Tu on the L. sativa genetic map, F3 families from a cross between cvs "Cobbham Green" (resistant to TuMV) and "Calmar" (susceptible) were genotyped for Tu. Families known to be recombinant in the region containing Tu were infected with TuMV and tested by the indirect enzyme-linked immunosorbent assay (ELISA) using the anti-CP serum. This assay placed Tu between two random amplified polymorphic DNA (RAPD) markers and 3.2 cM from Dm5/8 (which confers resistance to Bremia lactucae). Also, bulked segregant analysis was used to screen for additional RAPD markers tightly linked to the Tu locus. Five new markers linked to Tu were identified in this region, and their location on the genetic map was determined using informative recombinants in the region. Six markers were identified as being linked within 2.5 cM of Tu.

  14. Molecular analysis of Korean isolate of barley yellow mosaic virus.

    Science.gov (United States)

    Lee, Kui Jae; Choi, Min Kyung; Lee, Wang Hyu; Rajkumar, Mani

    2006-04-01

    The complete sequences of both RNAs of an isolate of barley yellow mosaic virus (BaYMV) from Haenam, Korea, were determined. RNA1 is 7639 nucleotides long [excluding the 3'-poly(A)], and codes for a 270 kDa polyprotein of 2411 amino acids which contains the capsid protein (CP) at the C terminus and seven putative non-structural proteins. RNA2 is 3582 nucleotides long and codes for a polyprotein of 890 amino acids, which contains a 28 kDa putative proteinase (P1) and a 73 kDa polypeptide (P2). The whole sequences of Korean isolate (BaYMV-K) closely resembled those of an isolate from Japan (BaYMV-J) (99.6 identical nucleotides for RNA1; 99.4 for RNA2) and china (BaYMV-C) (96.7 and 96.2%, respectively) than from Germany (BaYMV-G) (93.6 and 90.4%, respectively). The greatest differences between the BaYMV-K and BaYMV-J isolates were in the 3'-NCRs of RNA1 and 5' NCRs of RNA2 and there were also some other regions of difference in Nib Pro (RNA1) and P1 (RNA2). Further, the phylogenetic analysis of CP region showed that Asian and European isolates formed distinct clusters. However, molecular variations between isolates could not be linked to earlier results showing differences in cultivar response.

  15. Tobacco mosaic virus as an AFM tip calibrator.

    Science.gov (United States)

    Trinh, Minh-Hieu; Odorico, Michael; Bellanger, Laurent; Jacquemond, Mireille; Parot, Pierre; Pellequer, Jean-Luc

    2011-01-01

    The study of high-resolution topographic surfaces of isolated single molecules is one of the applications of atomic force microscopy (AFM). Since tip-induced distortions are significant in topographic images the exact AFM tip shape must be known in order to correct dilated AFM height images using mathematical morphology operators. In this work, we present a protocol to estimate the AFM tip apex radius using tobacco mosaic virus (TMV) particles. Among the many advantages of TMV, are its non-abrasivity, thermal stability, bio-compatibility with other isolated single molecules and stability when deposited on divalent ion pretreated mica. Compared to previous calibration systems, the advantage of using TMV resides in our detailed knowledge of the atomic structure of the entire rod-shaped particle. This property makes it possible to interpret AFM height images in term of the three-dimensional structure of TMV. Results obtained in this study show that when a low imaging force is used, the tip is sensing viral protein loops whereas at higher imaging force the tip is sensing the TMV particle core. The known size of the TMV particle allowed us to develop a tip-size estimation protocol which permits the successful erosion of tip-convoluted AFM height images. Our data shows that the TMV particle is a well-adapted calibrator for AFM tips for imaging single isolated biomolecules. The procedure developed in this study is easily applicable to any other spherical viral particles.

  16. Resistance to Cucumber mosaic virus in Gladiolus plants transformed with either a defective replicase of coat protein subgroup II gene from Cucumber mosaic virus

    Science.gov (United States)

    Transgenic Gladiolus plants that contain either Cucumber mosaic virus (CMV) subgroup I coat protein, CMV subgroup II coat protein, CMV replicase, a combination of the CMV subgroups I and II coat proteins, or a combination of the CMV subgroup II coat protein and replicase genes were developed. These...

  17. Antiviral activity of plant extract from Tanacetum vulgare against Cucumber Mosaic Virus and Potato Virus Y

    Directory of Open Access Journals (Sweden)

    Nikolay Petrov

    2016-09-01

    Full Text Available Cucumber mosaic virus (CMV and Potato virus Y (PVY have been described among the top five important viruses infecting vegetable species worldwide. They cause severe damages in fruits and cultivated plants. There is currently no available effective pesticide to control these viral diseases. Higher plants contain a wide spectrum of secondary metabolites such as phenolics, flavonoids, quinones, tannins, essential oils, alkaloids, saponins, sterols and others. Extracts prepared from different plants have been reported to have a variety of properties including antifungal, antiviral and antibacterial properties against pathogens. Tanacetum vulgare (Tansy is native to Europe, Asia, and North Africa. It has many horticultural and pharmacological qualities. T. vulgare is principally used in traditional Asian and North African medicine as an antihelminthic, antispasmodic, stimulant to abdominal viscera, tonic, antidiabetic and diuretic, and it is antihypertensive. In our research we established antiviral effect of methanol extract from T. vulgare against CMV and PVY in tomato plants.

  18. Multiple functions of the 32K and 60K proteins in cowpea mosaic virus RNA replication.

    NARCIS (Netherlands)

    Peters, S.A.

    1994-01-01

    Cowpea mosaic virus (CPMV) is the type member of the comoviridae , a group of 14 different plant viruses that have a divided genome consisting of two plus-strand RNAs. These RNAs, designated B-RNA and M-RNA, have a small protein, VPg, attached to the 5'-end and a poly(A) tail at the 3'-end and are s

  19. Intracellular distribution of cowpea mosaic virus movement protein as visualised by green fluorescent protein fusions

    NARCIS (Netherlands)

    Gopinath, K.; Bertens, P.; Pouwels, J.; Marks, H.; Lent, van J.W.M.; Wellink, J.E.; Kammen, van A.

    2003-01-01

    Cowpea mosaic virus (CPMV) derivatives expressing movement protein (MP) green fluorescent protein (GFP) fusions (MP:GFP) were used to study the intracellular targeting and localization of the MP in cowpea protoplasts and plants. In protoplasts, a virus coding for a wild type MP:GFP (MPfGFP) induced

  20. The helper component-proteinase of cowpea aphid-borne mosaic virus

    NARCIS (Netherlands)

    Mlotshwa, S.

    2000-01-01

    Cowpea aphid-borne mosaic potyvirus causes severe yield losses in cowpea, an important legume crop in semi-arid regions of Africa. We have elucidated the genomic sequence of the virus and subsequently focused our attention on the so-called helper component-proteinase (HC-Pro), a virus-encoded multif

  1. Solid-state 31P NMR spectroscopy of bacteriophage M13 and tobacco mosaic virus.

    NARCIS (Netherlands)

    Magusin, P.C.M.M.

    1995-01-01

    In this thesis, the results of various 31P NMR experiments observed for intact virus particles of bacteriophage M13 and Tobacco Mosaic Virus (TMV), are presented. To explain the results in a consistent way, models are developed and tested. 31

  2. Complete Genome Sequence of a Tomato-Infecting Tomato Mottle Mosaic Virus in New York

    OpenAIRE

    Padmanabhan, Chellappan; Zheng, Yi; Li, Rugang; Martin, Gregory B.; Fei, Zhangjun; Ling, Kai-Shu

    2015-01-01

    The complete genome sequence of an isolate of tomato mottle mosaic virus (ToMMV) infecting tomatoes in New York was obtained using small RNA (sRNA) deep sequencing. ToMMV_NY-13 shared 99% sequence identity with isolates from Mexico and Florida. Broader distribution of this emerging virus is a cause for concern to the tomato industry.

  3. Occurrence and distribution of pepper veinal mottle virus and cucumber mosaic virus in pepper in Ibadan, Nigeria

    Directory of Open Access Journals (Sweden)

    Arogundade Olawale

    2012-04-01

    Full Text Available Abstract Viral diseases constitute obstacles to pepper production in the world. In Nigeria, pepper plants are primarily affected by pepper veinal mottle virus (PVMV, Cucumber mosaic virus (CMV, Pepper leaf curl Virus (TLCV, Tobacco mosaic virus (TMV, Pepper mottle virus (PMV and a host of other viruses. The experiment was carried out with a diagnostic survey on the experimental field of the National Horticultural Research Institute, Ibadan, Nigeria and on pepper farms in six local government areas within Ibadan Oyo State, Nigeria, forty samples were collected from each of the farms. Diseased samples were obtained from the field and taken to the laboratory for indexing. In ELISA test some of the samples from the pepper farms showed positive reaction to single infection with PVMV (36.79%, CMV (22.14% while some others showed positive reaction to mixed infection of the two viruses (10% but some also negative reaction to PVMV and CMV antisera (31.07.

  4. Transgenic virus resistance in crop-wild Cucurbita pepo does not prevent vertical transmission of zucchini yellow mosaic virus

    Science.gov (United States)

    H. E. Simmons; Holly Prendeville; J. P. Dunham; M. J. Ferrari; J. D. Earnest; D. Pilson; G. P. Munkvold; E. C. Holmes; A. G. Stephenson

    2015-01-01

    Zucchini yellow mosaic virus (ZYMV) is an economically important pathogen of cucurbits that is transmitted both horizontally and vertically. Although ZYMV is seed-transmitted in Cucurbita pepo, the potential for seed transmission in virus-resistant transgenic cultivars is not known. We crossed and backcrossed a transgenic...

  5. Reação de genótipos de feijão-caupi revela resistência às coinfecções pelo Cucumber mosaic virus, Cowpea aphid-borne mosaic virus e Cowpea severe mosaic virus Reaction of cowpea genotypes reveals resistance to co-infection by Cucumber mosaic virus, Cowpea aphid-borne mosaic virus and Cowpea severe mosaic virus

    Directory of Open Access Journals (Sweden)

    Cláudia Roberta Ribeiro de Oliveira

    2012-01-01

    Full Text Available O rendimento do feijão-caupi pode ser afetado por diversos fatores, em especial as viroses. As principais espécies de vírus que infectam o feijão-caupi, no Brasil, são: Cucumber mosaic virus (CMV, Cowpea aphid-borne mosaic virus (CABMV, Cowpea severe mosaic virus (CPSMV e o Bean golden mosaic virus (BGMV. Este trabalho foi realizado em duas etapas e teve como objetivo avaliar a reação de genótipos de feijão-caupi quanto à resistência à infecção simples pelo CMV e mista nas combinações CMV+CABMV, CMV+CPSMV-I e CMV+CABMV+CPSMV-I. Inicialmente, foram incluídos 57 genótipos, sendo três avaliações em gaiolas com tela antiafídeos sob infecção controlada, e uma em condição de campo sob infecção natural. Em seguida, foram selecionados 18 genótipos para serem desenvolvidos em nove ensaios, oito em gaiolas com tela antiafídeos sob infecção controlada, e um em campo sob infecção natural. Nesses ensaios, avaliaram-se os efeitos qualitativos e quantitativos resultantes das infecções. No ensaio de campo, foram avaliados o número de plantas assintomáticas, comprimento de vagem, número de grãos por vagem, massa de cem grãos e produtividade. As coinfecções reduziram a altura da planta e a massa seca. Além disso, nas infecções envolvendo os três vírus ocorreu a morte prematura de alguns genótipos. Os genótipos BR17-Gurguéia, Epace V-96, TE97-309G-9, TE97-309G-22, TE97-309G-24 e Patativa, além de bom comportamento diante das coinfecções virais, têm sementes com padrão comercial, podendo ser empregadas diretamente em programas de melhoramento.Many factors can affect the yield of cowpea, especially viruses. The main species of viruses infecting cowpea in Brazil are Cucumber mosaic virus (CMV, Cowpea aphid-borne mosaic virus (CABMV, Cowpea severe mosaic virus (CPSMV and Cowpea golden mosaic virus (CPGMV. This study aimed to evaluate the reaction of cowpea genotypes for resistance to CMV in single or in co

  6. Simultaneous detection of papaya ringspot virus, papaya leaf distortion mosaic virus, and papaya mosaic virus by multiplex real-time reverse transcription PCR.

    Science.gov (United States)

    Huo, P; Shen, W T; Yan, P; Tuo, D C; Li, X Y; Zhou, P

    2015-12-01

    Both the single infection of papaya ringspot virus (PRSV), papaya leaf distortion mosaic virus (PLDMV) or papaya mosaic virus (PapMV) and double infection of PRSV and PLDMV or PapMV which cause indistinguishable symptoms, threaten the papaya industry in Hainan Island, China. In this study, a multiplex real-time reverse transcription PCR (RT-PCR) was developed to detect simultaneously the three viruses based on their distinctive melting temperatures (Tms): 81.0±0.8°C for PRSV, 84.7±0.6°C for PLDMV, and 88.7±0.4°C for PapMV. The multiplex real-time RT-PCR method was specific and sensitive in detecting the three viruses, with a detection limit of 1.0×10(1), 1.0×10(2), and 1.0×10(2) copies for PRSV, PLDMV, and PapMV, respectively. Indeed, the reaction was 100 times more sensitive than the multiplex RT-PCR for PRSV, and 10 times more sensitive than multiplex RT-PCR for PLDMV. Field application of the multiplex real-time RT-PCR demonstrated that some non-symptomatic samples were positive for PLDMV by multiplex real-time RT-PCR but negative by multiplex RT-PCR, whereas some samples were positive for both PRSV and PLDMV by multiplex real-time RT-PCR assay but only positive for PLDMV by multiplex RT-PCR. Therefore, this multiplex real-time RT-PCR assay provides a more rapid, sensitive and reliable method for simultaneous detection of PRSV, PLDMV, PapMV and their mixed infections in papaya.

  7. Nucleotide sequence of the coat protein genes of alstroemeria mosaic virus and amazon lily mosaic virus, a tentative species of genus potyvirus.

    Science.gov (United States)

    Fuji, S; Terami, F; Furuya, H; Naito, H; Fukumoto, F

    2004-09-01

    The nucleotide sequences of the 3' terminal region of the genomes of Alstroemeria mosaic virus (AlsMV) and the Amazon lily mosaic virus (ALiMV) have been determined. These sequences contain the complete coding region of the viral coat protein (CP) gene followed by a 3'-untranslated region (3'-UTR). AlsMV and ALiMV share 74.9% identity in the amino acid sequence of the CP, and 55.6% identity in the nucleotide sequence of the 3'-UTR. Phylogenetic analysis of these CP genes and 3'-UTRs in relation to those of 79 potyvirus species revealed that AlsMV and ALiMV should be assigned to the Potato virus Y (PVY) subgroup. AlsMV and ALiMV were concluded to have arisen independently within the PVY subgroup.

  8. Surface mineralization and characterization of tobacco mosaic virus biotemplated nanoparticles

    Science.gov (United States)

    Freer, Alexander S.

    The genetically engineered tobacco mosaic virus (TMV) has been utilized as a biotemplate in the formation of nanoparticles with the intent of furthering the understanding of the biotemplated nanoparticles formed in the absence of an external reducing agent. Specifically, the work aims to provide better knowledge of the final particle characteristics and how these properties could be altered to better fit the need of functional devices. Three achievements have been accomplished including a method for controlling final particle size, characterizing the resistivity of palladium coated TMV, and the application of TMV as an additive in nanometric calcium carbonate synthesis. Until the last 5 years, formation of metal nanoparticles on the surface of TMV has always occurred with the addition of an external reducing agent. The surface functionalities of genetically engineered TMV allow for the reduction of palladium in the absence of an external reducing agent. This process has been furthered to understand how palladium concentration affects the final coating uniformity and thickness. By confirming an ideal ratio of palladium and TMV concentrations, a uniform coat of palladium is formed around the viral nanorod. Altering the number of palladium coating cycles at these concentrations allows for a controllable average diameter of the final nanorods. The average particle diameter was determined by small angle x-ray scattering (SAXS) analysis by comparing the experimental results to the model of scattering by an infinitely long cylinder. The SAXS results were confirmed through transmission electron microscopy images of individual Pd-TMV nanorods. Secondly, methodologies to determine the electrical resistivity of the genetically engineered TMV biotemplated palladium nanoparticles were created to provide valuable previously missing information. Two fairly common nanoelectronic characterization techniques were combined to create the novel approach to obtain the desired

  9. Homoeologous recombination-based transfer and molecular cytogenetic mapping of a wheat streak mosaic virus and Triticum mosaic virus resistance gene Wsm3 from Thinopyrum intermedium to wheat.

    Science.gov (United States)

    Danilova, Tatiana V; Zhang, Guorong; Liu, Wenxuan; Friebe, Bernd; Gill, Bikram S

    2017-03-01

    Here, we report the production of a wheat- Thinopyrum intermedium recombinant stock conferring resistance to wheat streak mosaic virus and Triticum mosaic virus. Wheat streak mosaic caused by the wheat streak mosaic virus (WSMV) is an important disease of bread wheat (Triticum aestivum) worldwide. To date, only three genes conferring resistance to WSMV have been named and two, Wsm1 and Wsm3, were derived from the distantly related wild relative Thinopyrum intermedium. Wsm3 is only available in the form of a compensating wheat-Th. intermedium whole-arm Robertsonian translocation T7BS·7S#3L. Whole-arm alien transfers usually suffer from linkage drag, which prevents their use in cultivar improvement. Here, we report ph1b-induced homoeologous recombination to shorten the Th. intermedium segment and recover a recombinant chromosome consisting of the short arm of wheat chromosome 7B, part of the long arm of 7B, and the distal 43% of the long arm derived from the Th. intermedium chromosome arm 7S#3L. The recombinant chromosome T7BS·7BL-7S#3L confers resistance to WSMV at 18 and 24 °C and also confers resistance to Triticum mosaic virus, but only at 18 °C. Wsm3 is the only gene conferring resistance to WSMV at a high temperature level of 24 °C. We also developed a user-friendly molecular marker that will allow to monitor the transfer of Wsm3 in breeding programs. Wsm3 is presently being transferred to adapted hard red winter wheat cultivars and can be used directly in wheat improvement.

  10. Complete genome sequencing of two causative viruses of cassava mosaic disease in Ghana.

    Science.gov (United States)

    Oteng-Frimpong, R; Levy, Y; Torkpo, S K; Danquah, E Y; Offei, S K; Gafni, Y

    2012-01-01

    Cassava mosaic disease (CMV), caused by one or a combination of cassava mosaic geminiviruses, is ranked among the most important constraints to profitable and efficient production of cassava. Effective control measures require in-depth knowledge of the viral causative agent. Using rolling-circle amplification and unique enzymes, the full genome of two species of cassava mosaic geminivirus isolated from infected cassava plants in Ghana were cloned into pCambia 1300 and pET-28b. The sequences of the genome were determined on an ABI sequencer and a pairwise comparison was performed with other cassava-infecting geminiviruses from different countries. It was revealed that cassava grown in Ghana is attacked by two species of geminivirus in either single or mixed infections. These are the African cassava mosaic virus (ACMV) and the East African cassava mosaic virus (EACMV)-like, with high sequence similarity of 94% and 80%, respectively, between the DNA-A and DNA-B components of each virus, and 66% and 41% similarity of the common region (CR) (for A and B accordingly). The DNA-A of ACMV and EACMV-like contained 2781 and 2800 nucleotides, respectively, while their DNA-B components had 2725 and 2734 nucleotides, respectively. ACMV DNA-A was over 97% similar to those of other ACMVs from the continent. In contrast, EACMV-like DNA-A was over 98% similar to the isolates from Cameroon and other West African countries, and less than 88% similar to other EACMV species. Thus ACMV and EACMV-like were named African cassava mosaic virus-Ghana and East African cassava mosaic Cameroon virus-Ghana. Computer analysis revealed that their genome arrangement follows the typical old world bipartite begomovirus genome. The association of these two species and their interaction might account for the severe symptoms observed on infected plants in the field and in the greenhouse.

  11. Pepino mosaic virus and Tomato torrado virus: two emerging viruses affecting tomato crops in the Mediterranean basin.

    Science.gov (United States)

    Gómez, Pedro; Sempere, Raqueln; Aranda, Miguel A

    2012-01-01

    The molecular biology, epidemiology, and evolutionary dynamics of Pepino mosaic virus (PepMV) are much better understood than those of Tomato torrado virus (ToTV). The earliest descriptions of PepMV suggest a recent jump from nontomato species (e.g., pepino; Solanum muricatum) to tomato (Solanum lycopersicum). Its stability in contaminated plant tissues, its transmission through seeds, and the global trade of tomato seeds and fruits may have facilitated the global spread of PepMV. Stability and seed transmission also probably account for the devastating epidemics caused by already-established PepMV strains, although additional contributing factors may include the efficient transmission of PepMV by contact and the often-inconspicuous symptoms in vegetative tomato tissues. The genetic variability of PepMV is likely to have promoted the first phase of emergence (i.e., the species jump) and it continues to play an important role as the virus becomes more pervasive, progressing from regional outbreaks to pandemics. In contrast, the long-term progression of ToTV outbreaks is not yet clear and this may reflect factors such as the limited accumulation of the virus in infected plants, which has been shown to be approximately two orders of magnitude less than PepMV. The efficient dispersion of ToTV may therefore depend on dense populations of its principal vectors, Bemisia tabaci and Trialeurodes vaporariorum, as has been proposed for the necrogenic satellite RNA of Cucumber mosaic virus.

  12. Transformation of Cowpea Vigna unguiculata with a Full-Length DNA Copy of Cowpea Mosaic Virus M-RNA

    NARCIS (Netherlands)

    Hille, Jacques; Goldbach, Rob

    1987-01-01

    A full-length DNA copy of the M-RNA of cowpea mosaic virus (CPMV), supplied with either the 35S promoter from cauliflower mosaic virus (CaMV) or the nopaline synthase promoter from Agrobacterium tumefaciens, was introduced into the T-DNA region of a Ti-plasmid-derived gene vector and transferred to

  13. Infectivity analysis of a blackgram isolate of Mungbean yellow mosaic virus and genetic assortment with MYMIV in selective hosts.

    Science.gov (United States)

    Haq, Q M I; Rouhibakhsh, A; Ali, Arif; Malathi, V G

    2011-06-01

    Yellow mosaic disease in grain legumes in Indian subcontinent is caused by two important virus species viz. Mungbean yellow mosaic virus (MYMV) and Mungbean yellow mosaic India virus (MYMIV), belonging to the genus Begomovirus of the family Geminiviridae. The genomic components of a begomovirus causing yellow mosaic disease in blackgram in southern India were cloned and sequenced. Nucleotide sequence comparison of DNA A component shows the virus isolate to be a variant of Mungbean yellow mosaic virus:-(MYMV-[IN:Vam:05]). However, DNA B component of the present virus isolate has greater similarity (92%) to Mungbean yellow mosaic India virus. Agroinoculations of the viral clones produced typical yellow mosaic symptoms in blackgram and mungbean, severe leaf curl and stunting in French bean, similar to blackgram isolate of MYMIV. Blackgram isolates of both the virus species were only mildly infectious on cowpea, produced atypical leaf curl symptoms and not yellow or golden mosaic. In agroinoculations done by exchanging genomic components, symptom expression was seen only in French bean. In cowpea, blackgram and mungbean there was no visible symptoms though viral DNA could be detected by PCR.

  14. Transformation of Cowpea Vigna unguiculata with a Full-Length DNA Copy of Cowpea Mosaic Virus M-RNA

    NARCIS (Netherlands)

    Hille, Jacques; Goldbach, Rob

    1987-01-01

    A full-length DNA copy of the M-RNA of cowpea mosaic virus (CPMV), supplied with either the 35S promoter from cauliflower mosaic virus (CaMV) or the nopaline synthase promoter from Agrobacterium tumefaciens, was introduced into the T-DNA region of a Ti-plasmid-derived gene vector and transferred to

  15. Sympton development, X-body formation and 126-kDa-protein in plants infected with tobacco mosaic virus

    NARCIS (Netherlands)

    Wijdeveld, M.M.G.

    1990-01-01

    Upon infection with tobacco mosaic virus (TMV) sensitive tobacco varieties develop systemic mosaic symptoms in the developing leaves. These symptoms are the visible result of the interaction of the virus with its host and the nature and the severity of the symptoms are determined

  16. Immunogenic compositions comprising human immunodeficiency virus (HIV) mosaic Nef proteins

    Science.gov (United States)

    Korber, Bette T [Los Alamos, NM; Perkins, Simon [Los Alamos, NM; Bhattacharya, Tanmoy [Los Alamos, NM; Fischer, William M [Los Alamos, NM; Theiler, James [Los Alamos, NM; Letvin, Norman [Boston, MA; Haynes, Barton F [Durham, NC; Hahn, Beatrice H [Birmingham, AL; Yusim, Karina [Los Alamos, NM; Kuiken, Carla [Los Alamos, NM

    2012-02-21

    The present invention relates to mosaic clade M HIV-1 Nef polypeptides and to compositions comprising same. The polypeptides of the invention are suitable for use in inducing an immune response to HIV-1 in a human.

  17. Detection of Cardamom mosaic virus and Banana bract mosaic virus in cardamom using SYBR Green based reverse transcription-quantitative PCR.

    Science.gov (United States)

    Siljo, A; Bhat, A I; Biju, C N

    2014-01-01

    Cardamom being perennial, propagated vegetatively, detecting viruses in planting material is important to check the spread of viruses through infected material. Thus development of effective and sensitive assay for detection of viruses is need of the time. In this view, assay for the detection of Cardamom mosaic virus (CdMV) and Banana bract mosaic virus (BBrMV), infecting cardamom was developed using SYBR Green one step reverse transcription-quantitative PCR (RT-qPCR). The RT-qPCR assay amplified all isolates of CdMV and BBrMV tested but no amplification was obtained with RNA of healthy plants. Recombinant plasmids carrying target virus regions corresponding to both viruses were quantified, serially diluted and used as standards in qPCR to develop standard curve to enable quantification. When tenfold serial dilutions of the total RNAs from infected plants were tested through RT-qPCR, the detection limit of the assay was estimated to be 16 copies for CdMV and 10 copies for BBrMV, which was approximately 1,000-fold higher than the conventional RT-PCR. The RT-qPCR assay was validated by testing field samples collected from different cardamom growing regions of India. This is the first report of RT-qPCR assay for the detection of CdMV and BBrMV in cardamom.

  18. Emergence of a Latent Indian Cassava Mosaic Virus from Cassava Which Recovered from Infection by a Non-Persistent Sri Lankan Cassava Mosaic Virus.

    Science.gov (United States)

    Karthikeyan, Chockalingam; Patil, Basavaprabhu L; Borah, Basanta K; Resmi, Thulasi R; Turco, Silvia; Pooggin, Mikhail M; Hohn, Thomas; Veluthambi, Karuppannan

    2016-09-28

    The major threat for cassava cultivation on the Indian subcontinent is cassava mosaic disease (CMD) caused by cassava mosaic geminiviruses which are bipartite begomoviruses with DNA A and DNA B components. Indian cassava mosaic virus (ICMV) and Sri Lankan cassava mosaic virus (SLCMV) cause CMD in India. Two isolates of SLCMV infected the cassava cultivar Sengutchi in the fields near Malappuram and Thiruvananthapuram cities of Kerala State, India. The Malappuram isolate was persistent when maintained in the Madurai Kamaraj University (MKU, Madurai, Tamil Nadu, India) greenhouse, whereas the Thiruvananthapuram isolate did not persist. The recovered cassava plants with the non-persistent SLCMV, which were maintained vegetative in quarantine in the University of Basel (Basel, Switzerland) greenhouse, displayed re-emergence of CMD after a six-month period. Interestingly, these plants did not carry SLCMV but carried ICMV. It is interpreted that the field-collected, SLCMV-infected cassava plants were co-infected with low levels of ICMV. The loss of SLCMV in recovered cassava plants, under greenhouse conditions, then facilitated the re-emergence of ICMV. The partial dimer clones of the persistent and non-persistent isolates of SLCMV and the re-emerged isolate of ICMV were infective in Nicotiana benthamiana upon agroinoculation. Studies on pseudo-recombination between SLCMV and ICMV in N. benthamiana provided evidence for trans-replication of ICMV DNA B by SLCMV DNA A.

  19. Emergence of a Latent Indian Cassava Mosaic Virus from Cassava Which Recovered from Infection by a Non-Persistent Sri Lankan Cassava Mosaic Virus

    Directory of Open Access Journals (Sweden)

    Chockalingam Karthikeyan

    2016-09-01

    Full Text Available The major threat for cassava cultivation on the Indian subcontinent is cassava mosaic disease (CMD caused by cassava mosaic geminiviruses which are bipartite begomoviruses with DNA A and DNA B components. Indian cassava mosaic virus (ICMV and Sri Lankan cassava mosaic virus (SLCMV cause CMD in India. Two isolates of SLCMV infected the cassava cultivar Sengutchi in the fields near Malappuram and Thiruvananthapuram cities of Kerala State, India. The Malappuram isolate was persistent when maintained in the Madurai Kamaraj University (MKU, Madurai, Tamil Nadu, India greenhouse, whereas the Thiruvananthapuram isolate did not persist. The recovered cassava plants with the non-persistent SLCMV, which were maintained vegetative in quarantine in the University of Basel (Basel, Switzerland greenhouse, displayed re-emergence of CMD after a six-month period. Interestingly, these plants did not carry SLCMV but carried ICMV. It is interpreted that the field-collected, SLCMV-infected cassava plants were co-infected with low levels of ICMV. The loss of SLCMV in recovered cassava plants, under greenhouse conditions, then facilitated the re-emergence of ICMV. The partial dimer clones of the persistent and non-persistent isolates of SLCMV and the re-emerged isolate of ICMV were infective in Nicotiana benthamiana upon agroinoculation. Studies on pseudo-recombination between SLCMV and ICMV in N. benthamiana provided evidence for trans-replication of ICMV DNA B by SLCMV DNA A.

  20. Emergence of a Latent Indian Cassava Mosaic Virus from Cassava Which Recovered from Infection by a Non-Persistent Sri Lankan Cassava Mosaic Virus

    Science.gov (United States)

    Karthikeyan, Chockalingam; Patil, Basavaprabhu L.; Borah, Basanta K.; Resmi, Thulasi R.; Turco, Silvia; Pooggin, Mikhail M.; Hohn, Thomas; Veluthambi, Karuppannan

    2016-01-01

    The major threat for cassava cultivation on the Indian subcontinent is cassava mosaic disease (CMD) caused by cassava mosaic geminiviruses which are bipartite begomoviruses with DNA A and DNA B components. Indian cassava mosaic virus (ICMV) and Sri Lankan cassava mosaic virus (SLCMV) cause CMD in India. Two isolates of SLCMV infected the cassava cultivar Sengutchi in the fields near Malappuram and Thiruvananthapuram cities of Kerala State, India. The Malappuram isolate was persistent when maintained in the Madurai Kamaraj University (MKU, Madurai, Tamil Nadu, India) greenhouse, whereas the Thiruvananthapuram isolate did not persist. The recovered cassava plants with the non-persistent SLCMV, which were maintained vegetative in quarantine in the University of Basel (Basel, Switzerland) greenhouse, displayed re-emergence of CMD after a six-month period. Interestingly, these plants did not carry SLCMV but carried ICMV. It is interpreted that the field-collected, SLCMV-infected cassava plants were co-infected with low levels of ICMV. The loss of SLCMV in recovered cassava plants, under greenhouse conditions, then facilitated the re-emergence of ICMV. The partial dimer clones of the persistent and non-persistent isolates of SLCMV and the re-emerged isolate of ICMV were infective in Nicotiana benthamiana upon agroinoculation. Studies on pseudo-recombination between SLCMV and ICMV in N. benthamiana provided evidence for trans-replication of ICMV DNA B by SLCMV DNA A. PMID:27690084

  1. Coat protein gene sequence of tobacco mosaic virus encodes a host response determinant.

    OpenAIRE

    Saito, T.; Meshi, T; Takamatsu, N; Okada, Y.

    1987-01-01

    The common strain and tomato strain of tobacco mosaic virus (TMV) are known to be closely related to each other. However, plants with the N' gene, such as Nicotiana sylvestris and Nicotiana tabacum L. cv. Bright Yellow, respond differently to infections by these viruses. In the N' plants, TMV-OM (common strain) spreads systemically with mosaic symptoms, whereas TMV-L (tomato strain) induces the necrotic response of plants, causing local lesions. To reveal the viral factor of TMV-L inducing th...

  2. Red clover necrotic mosaic virus: Biophysics and Biotechnology

    Science.gov (United States)

    Lockney, Dustin M.

    Red clover necrotic mosaic virus (RCNMV) is a highly robust (Tm=60 °C), 36 nm icosahedral plant virus. The capsid of RCNMV is assembled from 180 chemically equivalent coat proteins (CPs). The CPs arrange in a T=3 symmetry, in 1 of 3 conformations forming the asymmetric subunit (ASU). There are two Ca(II) binding sites per CP; the removal of divalent cations causes the CP subunits of the ASU to rotate away from each other forming a ˜13 A channel. These channels lead to the highly organized bipartite genome of RCNMV and can be closed by adding back Ca(II). Titrimetric analysis and tryptophan fluorescence was used to determine the affinity of RCNMV for Ca(II) to be ˜Kd buffer was changed from 50 mM Tris-HCl/50 mM NaOAc/50 mM EDTA or 200 mM EDTA at pH 8.0 to 5 mM HEPES/5 mM Na4EDTA/10 mM NaCl pH 7.8. The Dox:RCNMV infusion mole ratio was also lowered from 5000:1 to 500:1 and the incubation temperature was changed from 4 °C to 22 °C for <12 hours, opposed to 24 hours. To impart targeting functionality to RCNMV, biomimetic peptides were conjugated to either the surface capsid lysines or cysteines using standard bioconjugation methods. For all of the biomimetic peptides screened, sulfosuccinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate (sulfo-SMCC) was used to orthogonally attach the cysteineterminated peptides to the surface lysines of RCNMV. The efficacy of a plant virus nanoparticle (PVN), loaded with a cargo (Dox or propidium iodide) and armed with a targeting peptide, was tested in vitro against several cell line using cell viability assays. ADH304, an N-cadherin targeting peptide, was synthesized to contain a lys[maleimide]. Dox infused RCNMV was armed with ADH304maleimide by conjugating the peptide to the endogenous C267 located in the P-domain. The use of a cysteine reactive peptide increased the PVN yield from ˜30% to ˜70% by eliminating several synthetic steps. The efficacy of this PVN formulation was tested on a human melanoma tumor in a

  3. Promotion of flowering by Apple latent spherical virus vector and virus elimination at high temperature allow accelerated breeding of apple and pear

    Directory of Open Access Journals (Sweden)

    Noriko eYamagishi

    2016-02-01

    Full Text Available Plant viral vectors are superior tools for genetic manipulation, allowing rapid induction or suppression of expression of a target gene in plants. This is a particularly effective technology for use in breeding fruit trees, which are difficult to manipulate using recombinant DNA technologies. We reported previously that if apple seed embryos (cotyledons are infected with an Apple latent spherical virus (ALSV vector (ALSV-AtFT/MdTFL1 concurrently expressing the Arabidopsis thaliana florigen (AtFT gene and suppressing the expression of the apple MdTFL1-1 gene, the period prior to initial flowering (generally lasts 5–12 years will be reduced to about two months. In this study, we examined whether or not ALSV vector technology can be used to promote flowering in pear, which undergoes a very long juvenile period (germination to flowering similar to that of apple. The MdTFL1 sequence in ALSV-AtFT/MdTFL1 was replaced with a portion of the pear PcTFL1-1 gene. The resulting virus (ALSV-AtFT/PcTFL1 and ALSV-AtFT/MdTFL1 were used individually for inoculation to pear cotyledons immediately after germination in two inoculation groups. Those inoculated with ALSV-AtFT/MdTFL1 and ALSV-AtFT/PcTFL1 then initiated flower bud formation starting one to three months after inoculation, and subsequently exhibited continuous flowering and fruition by pollination. Conversely, Japanese pear exhibited extremely low systemic infection rates when inoculated with ALSV-AtFT/MdTFL1, and failed to exhibit any induction of flowering. We also developed a simple method for eliminating ALSV vectors from infected plants. An evaluation of the method for eliminating the ALSV vectors from infected apple and pear seedlings revealed that a four-week high-temperature (37˚C incubation of ALSV-infected apples and pears disabled the movement of ALSV to new growing tissues. This demonstrates that only high-temperature treatment can easily eliminate ALSV from infected fruit trees. A method

  4. Generation of transgenic watermelon resistant to Zucchini yellow mosaic virus and Papaya ringspot virus type W.

    Science.gov (United States)

    Yu, Tsong-Ann; Chiang, Chu-Hui; Wu, Hui-Wen; Li, Chin-Mei; Yang, Ching-Fu; Chen, Jun-Han; Chen, Yu-Wen; Yeh, Shyi-Dong

    2011-03-01

    Zucchini yellow mosaic virus (ZYMV) and Papaya ringspot virus type W (PRSV W) are major limiting factors for production of watermelon worldwide. For the effective control of these two viruses by transgenic resistance, an untranslatable chimeric construct containing truncated ZYMV coat protein (CP) and PRSV W CP genes was transferred to commercial watermelon cultivars by Agrobacterium-mediated transformation. Using our protocol, a total of 27 putative transgenic lines were obtained from three cultivars of 'Feeling' (23 lines), 'China baby' (3 lines), and 'Quality' (1 line). PCR and Southern blot analyses confirmed that the chimeric construct was incorporated into the genomic DNA of the transformants. Greenhouse evaluation of the selected ten transgenic lines of 'Feeling' cultivar revealed that two immune lines conferred complete resistance to ZYMV and PRSV W, from which virus accumulation were not detected by Western blotting 4 weeks after inoculation. The transgenic transcript was not detected, but small interfering RNA (siRNA) was readily detected from the two immune lines and T(1) progeny of line ZW 10 before inoculation, indicating that RNA-mediated post-transcriptional gene silencing (PTGS) is the underlying mechanism for the double-virus resistance. The segregation ratio of T(1) progeny of the immune line ZW10 indicated that the single inserted transgene is nuclearly inherited and associated with the phenotype of double-virus resistance as a dominant trait. The transgenic lines derived from the commercial watermelon cultivars have great potential for control of the two important viruses and can be implemented directly without further breeding.

  5. The symptom difference induced by Tobacco mosaic virus and Tomato mosaic virus in tobacco plants containing the N gene is determined by movement protein gene

    Institute of Scientific and Technical Information of China (English)

    YU; Cui; HU; Dongwei; DONG; Jiahong; CUI; Xiaofeng; WU; Jun

    2004-01-01

    Tobacco mosaic virus (TMV) and Tomato mosaic virus (ToMV) are two closely related viruses in the genus Tobamovirus, but they induce obviously different sizes of necrotic lesions in tobacco plants containing the N gene. Comparison of the symptoms produced by TMV, ToMV and a chimaeric virus (T/OMP), in which the TMV movement protein (MP) gene was replaced by the ToMV MP gene, showed T/OMP caused necrotic lesions that were similar in size to those of ToMV in tobacco plants containing the N gene. The coat protein and MP of the three viruses accumulated in planta with similar levels, and the replication level of TMV and T/OMP in protoplasts also had no difference. Comparison of the activities of defense-related enzymes (PAL, POD and PPO) induced by the three viruses also showed that the variability of enzyme activity induced by T/OMP was similar to that induced by TMV, but different from that induced by ToMV. The results indicate that the size difference of necrotic lesions induced by TMV and ToMV in tobacco plants containing the N gene results from the functional difference of their MP genes.

  6. Effect of tobacco mosaic virus infection on host and virus-specific protein synthesis in protoplasts

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, A.; Hari, V.; Kolacz, K.

    1978-04-01

    The nature and rate of virus-specific protein synthesis were determined in tobacco mosaic virus-infected protoplasts as a function of time after inoculation. Samples of infected and mock-infected protoplasts were exposed to radioactive amino acid for relatively short sequential time periods and the consequent labeled proteins were assessed following SDS-polyacrylamide gel electrophoresis and fluorography. The synthesis of three virus-specific proteins of molecular weights 160,000, 135,000, and 17,500 was confirmed. Synthesis of all three proteins was first detected during the 5- to 7-hr postinoculation period at which time the synthetic rate of the 135,000-dalton protein was greatest.This was soon overtaken by the 17,500-dalton capsid protein, the synthetic rate of which kept increasing until it accounted for a major portion of total protoplast protein synthesis. At 1 day postinoculation, it accounted for 50% and, at not quite 2 days, 70% of the total protein synthesis. Evidence is presented to suggest that virus-specific protein synthesis occurs in addition to, rather than at the expense of, normal cellular protein synthesis.

  7. First Report of Cucumber mosaic virus Isolated from Wild Vigna angularis var. nipponensis in Korea

    Directory of Open Access Journals (Sweden)

    Mi-Kyeong Kim

    2014-06-01

    Full Text Available A viral disease causing severe mosaic, necrotic, and yellow symptoms on Vigna angularis var. nipponensis was prevalent around Suwon area in Korea. The causal virus was characterized as Cucumber mosaic virus (CMV on the basis of biological and nucleotide sequence properties of RNAs 1, 2 and 3 and named as CMV-wVa. CMV-wVa isolate caused mosaic symptoms on indicator plants, Nicotiana tabacum cv. Xanthi-nc, Petunia hybrida, and Cucumis sativus. Strikingly, CMV-wVa induced severe mosaic and malformation on Cucurbita pepo, and Solanum lycopersicum. Moreover, it caused necrotic or mosaic symptoms on V. angularis and V. radiate of Fabaceae. Symptoms of necrotic local or pin point were observed on inoculated leaves of V. unguiculata, Vicia fava, Pisum sativum and Phaseolus vulgaris. However, CMV-wVa isolate failed to infect in Glycine max cvs. ‘Sorok’, ‘Sodam’ and ‘Somyeong’. To assess genetic variation between CMV-wVa and the other known CMV isolates, phylogenetic analysis using 16 complete nucleotide sequences of CMV RNA1, RNA2, and RNA3 including CMV-wVa was performed. CMV-wVa was more closely related to CMV isolates belonging to CMV subgroup I showing about 85.1–100% nucleotide sequences identity to those of subgroup I isolates. This is the first report of CMV as the causal virus infecting wild Vigna angularis var. nipponensis in Korea.

  8. First Report of Cucumber mosaic virus Isolated from Wild Vigna angularis var. nipponensis in Korea.

    Science.gov (United States)

    Kim, Mi-Kyeong; Jeong, Rae-Dong; Kwak, Hae-Ryun; Lee, Su-Heon; Kim, Jeong-Soo; Kim, Kook-Hyung; Cha, Byeongjin; Choi, Hong-Soo

    2014-06-01

    A viral disease causing severe mosaic, necrotic, and yellow symptoms on Vigna angularis var. nipponensis was prevalent around Suwon area in Korea. The causal virus was characterized as Cucumber mosaic virus (CMV) on the basis of biological and nucleotide sequence properties of RNAs 1, 2 and 3 and named as CMV-wVa. CMV-wVa isolate caused mosaic symptoms on indicator plants, Nicotiana tabacum cv. Xanthi-nc, Petunia hybrida, and Cucumis sativus. Strikingly, CMV-wVa induced severe mosaic and malformation on Cucurbita pepo, and Solanum lycopersicum. Moreover, it caused necrotic or mosaic symptoms on V. angularis and V. radiate of Fabaceae. Symptoms of necrotic local or pin point were observed on inoculated leaves of V. unguiculata, Vicia fava, Pisum sativum and Phaseolus vulgaris. However, CMV-wVa isolate failed to infect in Glycine max cvs. 'Sorok', 'Sodam' and 'Somyeong'. To assess genetic variation between CMV-wVa and the other known CMV isolates, phylogenetic analysis using 16 complete nucleotide sequences of CMV RNA1, RNA2, and RNA3 including CMV-wVa was performed. CMV-wVa was more closely related to CMV isolates belonging to CMV subgroup I showing about 85.1-100% nucleotide sequences identity to those of subgroup I isolates. This is the first report of CMV as the causal virus infecting wild Vigna angularis var. nipponensis in Korea.

  9. Nucleotide sequence and phylogenetic analysis of a new potexvirus: Malva mosaic virus.

    Science.gov (United States)

    Côté, Fabien; Paré, Christine; Majeau, Nathalie; Bolduc, Marilène; Leblanc, Eric; Bergeron, Michel G; Bernardy, Michael G; Leclerc, Denis

    2008-01-01

    A filamentous virus isolated from Malva neglecta Wallr. (common mallow) and propagated in Chenopodium quinoa was grown, cloned and the complete nucleotide sequence was determined (GenBank accession # DQ660333). The genomic RNA is 6858 nt in length and contains five major open reading frames (ORFs). The genomic organization is similar to members and the viral encoded proteins shared homology with the group of the Potexvirus genus in the Flexiviridae family. Phylogenetic analysis revealed a close relationship with narcissus mosaic virus (NMV), scallion virus X (ScaVX) and, to a lesser extent, to Alstroemeria virus X (AlsVX) and pepino mosaic virus (PepMV). A novel putative pseudoknot structure is predicted in the 3'-UTR of a subgroup of potexviruses, including this newly described virus. The consensus GAAAA sequence is detected at the 5'-end of the genomic RNA and experimental data strongly suggest that this motif could be a distinctive hallmark of this genus. The name Malva mosaic virus is proposed.

  10. Identification of viruses infecting cucurbits and determination of genetic diversity of Cucumber mosaic virus in Lorestan province, Iran

    Directory of Open Access Journals (Sweden)

    Hasanvand Vahid

    2017-06-01

    Full Text Available Various viral pathogens infect Cucurbitaceae and cause economic losses. The aim of the present study was to detect plant viral pathogens including Cucumber mosaic virus (CMV, Cucumber green mottle mosaic virus (CGMMV, Zucchini yellow mosaic virus (ZYMV, Cucurbit yellow stunting disorder virus (CYSDV and Cucurbit chlorotic yellows virus (CCYV in Lorestan province, in western Iran, and also to determine CMV genetic diversity in Iranian populations. A total of 569 symptomatic leaf samples were collected in 2013 and 2014 from cucurbits growing regions in Lorestan province. The collected samples were assessed for viral diseases by ELISA. The results showed virus incidences in most regions. Then, the infection of 40 samples to CMV was confirmed by RT-PCR. Moreover, to distinguish between the two groups (I and II of CMV, PCR products were digested by two restriction enzymes XhoI and EcoRI. Results of the digestion showed that the isolates of Lorestan belonged to group I. The CMV-coat protein gene of eight isolates from different regions and hosts was sequenced and phylogenetic analysis was performed. Subsequent analyses showed even more genetic variation among Lorestan isolates. The phylogenetic tree revealed that Lorestan province isolates belonged to two IA and IB subgroups and could be classified together with East Azerbaijan province isolates. The results of the present study indicate a wide distribution of CMV, ZYMV, CGMMV, CYSDV and CCYV viruses in cucurbits fields of Lorestan province and for the first time subgroup IB of CMV was reported on melon from Iran.

  11. A BRIEF REVIEW ON "MOLECULAR DETECTION AND CHARACTERIZATION OF YELLOW MOSAIC VIRUS (YMV INFECTING BLACKGRAM"

    Directory of Open Access Journals (Sweden)

    S.Obaiah

    2013-12-01

    Full Text Available Blackgram (Vigna mungo (L. Hepper is one of the major pulse crops of the tropics and sub tropics. It is the third major pulse crop cultivated in the Indian subcontinent. Pulses and grain legumes are major sources of dietary protein. These crops are subjected to yellow mosaic and golden mosaic diseases caused by white fly transmitted geminiviruses (WTG’s or begomovirus. Of these viruses, mungbean yellow mosaic virus (MYMV is an important one, and it infects five major leguminous species, such as blackgram, greengram, Frenchbean, pigeonpea and soybean causing an annual yield loss of about US $ 300 million (Varma et al., 1992. The MYMV causes 85-100 per cent yield loss in the plants that are infected at the seedling stage (Nene, 1973.MYMV was first observed in Delhi in the late fifties (Nariani, 1960. Virus particles were first observed by Thongmeearkom et al. (1981 and purified by Honda et al. (1983. Hence the characterisation of Yellow Mosaic Virus is essential to study the variability and to identify any new strains/ variants of YMV prevalent in India and Abroad at molecular level for developing the new resistant genotypes.

  12. Complete Genome Sequence of Ornithogalum Mosaic Virus Infecting Gladiolus spp. in South Korea.

    Science.gov (United States)

    Cho, Sang-Yun; Lim, Seungmo; Kim, Hongsup; Yi, Seung-In; Moon, Jae Sun

    2016-08-11

    We report here the first complete genome sequence of Ornithogalum mosaic virus (OrMV) isolated from Taean, South Korea, in 2011, which was obtained by next-generation sequencing and Sanger sequencing. The sequence information provided here may serve as a potential reference for other OrMV isolates.

  13. Complete Genome Sequence of a South Korean Isolate of Habenaria mosaic virus.

    Science.gov (United States)

    Igori, Davaajargal; Lim, Seungmo; Zhao, Fumei; Baek, Dasom; Moon, Jae Sun

    2016-09-08

    Habenaria mosaic virus (HaMV), a member of the genus Potyvirus in the family Potyviridae, was first discovered from Habenaria radiata in Japan. The complete genomic sequence of a South Korean isolate (PA1) of HaMV infecting Plantago asiatica L. was determined with high-throughput RNA sequencing.

  14. Gladiolus plants transformed with single-chain variable fragment antibodies to Cucumber mosaic virus

    Science.gov (United States)

    Transgenic plants of Gladiolus ‘Peter Pears’ or ‘Jenny Lee’ were developed that contain single-chain variable fragments (scFv) to Cucumber mosaic virus (CMV) subgroup I or II. The CMV subgroup I heavy and light chain scFv fragments were placed under control of either the duplicated CaMV 35S or suga...

  15. Inter- and Intramolecular recombinations in the Cucumber Mosaic Virus genome related to adaptation to Alstroemeria

    NARCIS (Netherlands)

    Chen, Y.K.; Goldbach, R.W.; Prins, M.W.

    2002-01-01

    In four distinct alstroemeria-infecting cucumber mosaic virus (CMV) isolates, additional sequences of various lengths were present in the 3' nontranslated regions of their RNAs 2 and 3, apparently the result of intra- and intermolecular recombination events. Competition experiments revealed that the

  16. Occurence of Cucumber Mosaic Virus in Ornamental Plants and Perspectives of Transgenic Control

    NARCIS (Netherlands)

    Chen, Y.K.

    2003-01-01

    This thesis described the characterization of a range of ornamental-infecting Cucumber mosaic virus strains and the development of novel transgene constructs to improve the efficiency of obtaining resistant transformants which is essential for most ornamental plants that are diffi

  17. Alstroemeria-infecting cucumber mosaic virus isolates contain additional sequences in the RNA 3 segment.

    NARCIS (Netherlands)

    Chen, Y.K.; Prins, M.W.; Derks, A.F.L.M.; Langeveld, S.A.; Goldbach, R.W.

    2002-01-01

    The coat protein (CP) genes and flanking regions of three alstroemeria-infecting cucumber mosaic virus isolates (CMV-ALS), denoted ALS-LBO, ALS-IPO, and ALS-NAK, were cloned and their nucleotide sequence determined and compared at both nucleic acid and deduced protein level with the published sequen

  18. USVL-370, A zucchini yellow mosaic virus resistant watermelon breeding line

    Science.gov (United States)

    We report the development of a novel watermelon line ‘USVL-370’ [Citrullus lanatus (Thunb.) Matsum. & Nakai] containing resistance to the zucchini yellow mosaic virus-Florida strain (ZYMV-FL). This breeding line is homozygous for the recessive eukaryotic elongation factor eIF4E allele associated wit...

  19. Complete genome sequences of two highly divergent Japanese isolates of Plantago asiatica mosaic virus

    NARCIS (Netherlands)

    Komatsu, Ken; Yamashita, Kazuo; Sugawara, Kota; Verbeek, Martin; Fujita, Naoko; Hanada, Kaoru; Uehara-Ichiki, Tamaki; Fuji, Shin Ichi

    2017-01-01

    Plantago asiatica mosaic virus (PlAMV) is a member of the genus Potexvirus and has an exceptionally wide host range. It causes severe damage to lilies. Here we report on the complete nucleotide sequences of two new Japanese PlAMV isolates, one from the eudicot weed Viola grypoceras (PlAMV-Vi), and t

  20. Genetic diversity, host range and disease resistance to the emerging Tomato mottle mosaic virus on tomato

    Science.gov (United States)

    Since its first discovery in 2013 in Mexico, Tomato mottle mosaic virus (ToMMV), a new tomato-infecting tobamovirus is now present in a number of countries (i.e., Brazil, China, and Israel) and several states in the U.S. There is little information available on the molecular and biological properti...

  1. Subcellular location of the helper component-proteinase of Cowpea Aphid-Borne Mosaic Virus

    NARCIS (Netherlands)

    Mlotshwa, S.; Verver, J.; Sithole-Niang, I.; Gopinath, K.; Carette, J.; Kammen, van A.; Wellink, J.

    2002-01-01

    The helper component-proteinase (HC-Pro) of Cowpea aphid-borne mosaic virus (CABMV) was expressed in Escherichia coli and used to obtain HC-Pro antiserum that was used as an analytical tool for HC-Pro studies. The antiserum was used in immunofluorescence assays to study the subcellular location of H

  2. Genes and sequences involved in the replication of cowpea mosaic virus RNAs

    NARCIS (Netherlands)

    Eggen, R.

    1989-01-01

    The aim of the studies described in this thesis was to gain more insight in the complex molecular mechanisms underlying the RNA replication of the cowpea mosaic virus genome. Previously the replication of CPMV RNA has been examined extensively with crude membrane fractions prepared from CP

  3. Inter- and intramolecular recombinations in the cucumber mosaic virus genome related to adaptation to alstroemeria.

    Science.gov (United States)

    Chen, Yuh-Kun; Goldbach, Rob; Prins, Marcel

    2002-04-01

    In four distinct alstroemeria-infecting cucumber mosaic virus (CMV) isolates, additional sequences of various lengths were present in the 3' nontranslated regions of their RNAs 2 and 3, apparently the result of intra- and intermolecular recombination events. Competition experiments revealed that these recombined RNA 2 and 3 segments increased the biological fitness of CMV in alstroemeria.

  4. Complete Genome Sequence of Rehmannia Mosaic Virus Infecting Rehmannia glutinosa in South Korea.

    Science.gov (United States)

    Lim, Seungmo; Zhao, Fumei; Yoo, Ran Hee; Igori, Davaajargal; Jeong, Jae Cheol; Lee, Haeng-Soon; Kwak, Sang-Soo; Moon, Jae Sun

    2016-01-28

    The complete genome sequence of a South Korean isolate of Rehmannia mosaic virus (ReMV) infecting Rehmannia glutinosa was determined through next-generation sequencing and Sanger sequencing. To our knowledge, this is the first report of a natural infection of R. glutinosa by ReMV in South Korea.

  5. Alstroemeria-infecting cucumber mosaic virus isolates contain additional sequences in the RNA 3 segment.

    NARCIS (Netherlands)

    Chen, Y.K.; Prins, M.W.; Derks, A.F.L.M.; Langeveld, S.A.; Goldbach, R.W.

    2002-01-01

    The coat protein (CP) genes and flanking regions of three alstroemeria-infecting cucumber mosaic virus isolates (CMV-ALS), denoted ALS-LBO, ALS-IPO, and ALS-NAK, were cloned and their nucleotide sequence determined and compared at both nucleic acid and deduced protein level with the published

  6. Genes and sequences involved in the replication of cowpea mosaic virus RNAs.

    NARCIS (Netherlands)

    Eggen, R.

    1989-01-01

    The aim of the studies described in this thesis was to gain more insight in the complex molecular mechanisms underlying the RNA replication of the cowpea mosaic virus genome. Previously the replication of CPMV RNA has been examined extensively with crude membrane fractions prepared from CPMV inf

  7. Triticum Mosaic Virus: A Distinct Member of the Family Potyviridae with an Unusually Long Leader Sequence

    Science.gov (United States)

    The complete genome sequence of Triticum mosaic virus (TriMV), a member in the family Potyviridae, has been determined to be 10,266 nucleotides excluding the 3’-polyadenylated tail. The genome encodes a large polyprotein of 3,112 amino acids with the ‘hall-mark proteins’ of potyviruses including a s...

  8. Engineering Cowpea Mosaic Virus RNA-2 into a vector to express heterologous proteins in plants

    NARCIS (Netherlands)

    Kodetham Gopinath,; Wellink, J.; Porta, C.; Taylor, K.M.; Lomonossoff, G.P.; Kammen, van A.

    2000-01-01

    series of new cowpea mosaic virus (CPMV) RNA-2-based expression vectors were designed. The jellyfish green fluorescent protein (GFP) was introduced between the movement protein (MP) and the large (L) coat protein or downstream of the small (S) coat protein. Release of the GFP inserted between the MP

  9. Surprising results from a search for effective disinfectants for Tobacco mosaic virus-contaminated tools

    Science.gov (United States)

    Tobacco mosaic virus (TMV) and four other tobamoviruses infected multiple petunia cultivars without producing obvious viral symptoms. A single cutting event on a TMV-infected plant was sufficient for transmission to many plants subsequently cut with the same clippers. A number of 'old standbys' an...

  10. First complete genome sequence of an emerging cucumber green mottle mosaic virus isolate in North America

    Science.gov (United States)

    The complete genome sequence (6,423 nt) of an emerging Cucumber green mottle mosaic virus (CGMMV) isolate on cucumber in North America was determined through deep sequencing of sRNA and rapid amplification of cDNA ends. It shares 99% nucleotide sequence identity to the Asian genotype, but only 90% t...

  11. Occurence of Cucumber Mosaic Virus in Ornamental Plants and Perspectives of Transgenic Control

    NARCIS (Netherlands)

    Chen, Y.K.

    2003-01-01

    This thesis described the characterization of a range of ornamental-infecting Cucumber mosaic virus strains and the development of novel transgene constructs to improve the efficiency of obtaining resistant transformants which is essential for most ornamental plants that are

  12. RNA-dependent RNA polymerases from cowpea mosaic virus-infected cowpea leaves

    NARCIS (Netherlands)

    Dorssers, L.C.J.

    1983-01-01

    The aim of the research described in this thesis was the purification and identification of the RNA-dependent RNA polymerase engaged in replicating viral RNA in cowpea mosaic virus (CPMV)- infected cowpea leaves.Previously, an RNA-dependent RNA polymerase produced upon infection of Vigna unguiculata

  13. Genome Sequence of Euphorbia mosaic virus from Passionfruit and Euphorbia heterophylla in Florida

    Science.gov (United States)

    Londoño, M. A.; Cohen, A. L.; Padilla-Rodriguez, M.; Rosario, K.; Breitbart, M.

    2017-01-01

    ABSTRACT Euphorbia mosaic virus (EuMV) was found in a symptomatic passionfruit (Passiflora edulis) plant from Homestead, Florida, USA, as well as in the symptomatic weed Euphorbia heterophylla. This is the first identification of EuMV in Florida and the United States and the first report of a natural infection of passionfruit by EuMV. PMID:28254981

  14. Two biologically distinct isolates of Zucchini yellow mosaic virus lack seed transmissibility in cucumber.

    Science.gov (United States)

    Glasa, M; Kollerova, E

    2007-01-01

    The seed transmission of the Zucchini yellow mosaic virus (ZYMV) was studied in cucumber using two isolates unrelated in their biological characteristics. Although the virus could be readily detected in mature seeds harvested from infected cucumbers, the seedlings obtained from infected germinated seeds tested negative for ZYMV using both ELISA and RT-PCR assays. No evidence was obtained for transmission of two ZYMV isolates through seeds.

  15. An atomic model of brome mosaic virus using direct electron detection and real-space optimization

    OpenAIRE

    Wang, Zhao; Hryc, Corey F.; Bammes, Benjamin; Afonine, Pavel V.; Jakana, Joanita; Chen, Dong-Hua; Liu, Xiangan; Baker, Matthew L.; Kao, Cheng; Ludtke, Steven J; Schmid, Michael F.; Adams, Paul D.; Chiu, Wah

    2014-01-01

    Advances in electron cryo-microscopy have enabled structure determination of macromolecules at near-atomic resolution. However, structure determination, even using de novo methods, remains susceptible to model bias and overfitting. Here we describe a complete workflow for data acquisition, image processing, all-atom modelling and validation of brome mosaic virus, an RNA virus. Data were collected with a direct electron detector in integrating mode and an exposure beyond the traditional radiat...

  16. Phase behavior of mixtures of rods (tobacco mosaic virus) and spheres (polyethylene oxide, bovine serum albumin).

    OpenAIRE

    1998-01-01

    Aqueous suspensions of mixtures of the rodlike virus tobacco mosaic virus (TMV) with globular macromolecules such as polyethylene oxide (PEO) or bovine serum albumin (BSA) phase separate and exhibit rich and strikingly similar phase behavior. Isotropic, nematic, lamellar, and crystalline phases are observed as a function of the concentration of the constituents and ionic strength. The observed phase behavior is considered to arise from attractions between the two particles induced by the pres...

  17. Mosaic protein and nucleic acid vaccines against hepatitis C virus

    Science.gov (United States)

    Yusim, Karina; Korber, Bette T. M.; Kuiken, Carla L.; Fischer, William M.

    2013-06-11

    The invention relates to immunogenic compositions useful as HCV vaccines. Provided are HCV mosaic polypeptide and nucleic acid compositions which provide higher levels of T-cell epitope coverage while minimizing the occurrence of unnatural and rare epitopes compared to natural HCV polypeptides and consensus HCV sequences.

  18. Interaction of replicase components between Cucumber mosaic virus and Peanut stunt virus.

    Science.gov (United States)

    Suzuki, Masashi; Yoshida, Megumi; Yoshinuma, Toshio; Hibi, Tadaaki

    2003-07-01

    Cucumber mosaic virus (CMV) and Peanut stunt virus (PSV) each have genomes consisting of three single-stranded RNA molecules: RNA 1, 2 and 3. RNAs 1 and 2 encode the 1a and 2a proteins, respectively, which are necessary for replication of the viral genome. Although RNA 3 is exchangeable between CMV and PSV, exchange of RNA 1 and 2 between the two viruses has been unsuccessful. In this study, reassortants containing PSV RNA 1 and CMV RNA 2 together with RNA 3 of CMV or PSV were shown to be able to replicate their genomic RNA, but not to transcribe subgenomic RNA 4 in tobacco protoplasts. Conversely, the reassortant consisting of CMV RNA 1 and PSV RNA 2 together with RNA 3 of CMV or PSV could not replicate. Subsequently, a yeast two-hybrid system was used to analyse the in vivo interaction between the 1a and 2a proteins. The C-terminal half of PSV-1a protein interacted with the N-terminal region of 2a protein of both PSV and CMV, but the C-terminal half of CMV-1a and the N-terminal region of PSV-2a did not interact. These results suggest that RNA replication in the interspecific reassortant between CMV and PSV requires compatibility between the C-terminal half of the 1a protein and the N-terminal region of the 2a protein, and this compatibility is insufficient for transcription of subgenomic RNA 4.

  19. The capsid protein p38 of turnip crinkle virus is associated with the suppression of cucumber mosaic virus in Arabidopsis thaliana co-infected with cucumber mosaic virus and turnip crinkle virus.

    Science.gov (United States)

    Chen, Ying-Juan; Zhang, Jing; Liu, Jian; Deng, Xing-Guang; Zhang, Ping; Zhu, Tong; Chen, Li-Juan; Bao, Wei-Kai; Xi, De-Hui; Lin, Hong-Hui

    2014-08-01

    Infection of plants by multiple viruses is common in nature. Cucumber mosaic virus (CMV) and Turnip crinkle virus (TCV) belong to different families, but Arabidopsis thaliana and Nicotiana benthamiana are commonly shared hosts for both viruses. In this study, we found that TCV provides effective resistance to infection by CMV in Arabidopsis plants co-infected by both viruses, and this antagonistic effect is much weaker when the two viruses are inoculated into different leaves of the same plant. However, similar antagonism is not observed in N. benthamiana plants. We further demonstrate that disrupting the RNA silencing-mediated defense of the Arabidopsis host does not affect this antagonism, but capsid protein (CP or p38)-defective mutant TCV loses the ability to repress CMV, suggesting that TCV CP plays an important role in the antagonistic effect of TCV toward CMV in Arabidopsis plants co-infected with both viruses.

  20. Proteomic analysis of the plant-virus interaction in cucumber mosaic virus (CMV) resistant transgenic tomato.

    Science.gov (United States)

    Di Carli, Mariasole; Villani, Maria Elena; Bianco, Linda; Lombardi, Raffaele; Perrotta, Gaetano; Benvenuto, Eugenio; Donini, Marcello

    2010-11-05

    Cucumber mosaic virus (CMV), a member of the Cucumovirus genus, is the causal agent of several plant diseases in a wide range of host species, causing important economic losses in agriculture. Because of the lack of natural resistance genes in most crops, different genetic engineering strategies have been adopted to obtain virus-resistant plants. In a previous study, we described the engineering of transgenic tomato plants expressing a single-chain variable fragment antibody (scFv G4) that are specifically protected from CMV infection. In this work, we characterized the leaf proteome expressed during compatible plant-virus interaction in wild type and transgenic tomato. Protein changes in both inoculated and apical leaves were revealed using two-dimensional gel electrophoresis (2-DE) coupled to differential in gel electrophoresis (DIGE) technology. A total of 2084 spots were detected, and 50 differentially expressed proteins were identified by nanoscale liquid chromatographic-electrospray ionization-ion trap-tandem mass spectrometry (nLC-ESI-IT-MS/MS). The majority of these proteins were related to photosynthesis (38%), primary metabolism (18%), and defense activity (14%) and demonstrated to be actively down regulated by CMV in infected leaves. Moreover, our analysis revealed that asymptomatic apical leaves of transgenic inoculated plants had no protein profile alteration as compared to control wild type uninfected plants demonstrating that virus infection is confined to the inoculated leaves and systemic spread is hindered by the CMV coat protein (CP)-specific scFv G4 molecules. Our work is the first comparative study on compatible plant-virus interactions between engineered immunoprotected and susceptible wild type tomato plants, contributing to the understanding of antibody-mediated disease resistance mechanisms.

  1. First report of Potato virus V and Peru tomato mosaic virus on tamarillo (Solanum betaceum) orchards of Ecuador

    Science.gov (United States)

    In Ecuador, tamarillo (Solanum betaceum) represents an important cash crop for hundreds of small farmers. In 2013, leaves from tamarillo plants showing severe virus-like symptoms (mosaic, mottling and leaf deformation) were collected from old orchards in Pichincha and Tungurahua. Double-stranded RN...

  2. Crystal structure of the coat protein of the flexible filamentous papaya mosaic virus.

    Science.gov (United States)

    Yang, Shaoqing; Wang, Tao; Bohon, Jen; Gagné, Marie-Ève Laliberté; Bolduc, Marilène; Leclerc, Denis; Li, Huilin

    2012-09-14

    Papaya mosaic virus (PapMV) is a filamentous plant virus that belongs to the Alphaflexiviridae family. Flexible filamentous viruses have defied more than two decades of effort in fiber diffraction, and no high-resolution structure is available for any member of the Alphaflexiviridae family. Here, we report our structural characterization of PapMV by X-ray crystallography and cryo-electron microscopy three-dimensional reconstruction. We found that PapMV is 135Å in diameter with a helical symmetry of ~10 subunits per turn. Crystal structure of the C-terminal truncated PapMV coat protein (CP) reveals a novel all-helix fold with seven α-helices. Thus, the PapMVCP structure is different from the four-helix-bundle fold of tobacco mosaic virus in which helix bundling dominates the subunit interface in tobacco mosaic virus and conveys rigidity to the rod virus. PapMV CP was crystallized as an asymmetrical dimer in which one protein lassoes the other by the N-terminal peptide. Mutation of residues critical to the inter-subunit lasso interaction abolishes CP polymerization. The crystal structure suggests that PapMV may polymerize via the consecutive N-terminal loop lassoing mechanism. The structure of PapMV will be useful for rational design and engineering of the PapMV nanoparticles into innovative vaccines.

  3. Role of Pea Enation Mosaic Virus Coat Protein in the Host Plant and Aphid Vector

    Directory of Open Access Journals (Sweden)

    Juliette Doumayrou

    2016-11-01

    Full Text Available Understanding the molecular mechanisms involved in plant virus–vector interactions is essential for the development of effective control measures for aphid-vectored epidemic plant diseases. The coat proteins (CP are the main component of the viral capsids, and they are implicated in practically every stage of the viral infection cycle. Pea enation mosaic virus 1 (PEMV1, Enamovirus, Luteoviridae and Pea enation mosaic virus 2 (PEMV2, Umbravirus, Tombusviridae are two RNA viruses in an obligate symbiosis causing the pea enation mosaic disease. Sixteen mutant viruses were generated with mutations in different domains of the CP to evaluate the role of specific amino acids in viral replication, virion assembly, long-distance movement in Pisum sativum, and aphid transmission. Twelve mutant viruses were unable to assemble but were able to replicate in inoculated leaves, move long-distance, and express the CP in newly infected leaves. Four mutant viruses produced virions, but three were not transmissible by the pea aphid, Acyrthosiphon pisum. Three-dimensional modeling of the PEMV CP, combined with biological assays for virion assembly and aphid transmission, allowed for a model of the assembly of PEMV coat protein subunits.

  4. A bench-scale, cost effective and simple method to elicit Lycopersicon esculentum cv. PKM1 (tomato) plants against Cucumber mosaic virus attack using ozone-mediated inactivated Cucumber mosaic virus inoculum.

    Science.gov (United States)

    Sudhakar, N; Nagendra-Prasad, D; Mohan, N; Murugesan, K

    2007-12-01

    Studies were undertaken to evaluate ozone for inactivation of Cucumber mosaic virus present in the inoculum and to stimulate Lycopersicon esculentum cv. PKM1 (tomato) plants against Cucumber mosaic virus infection by using the inactivated Cucumber mosaic virus inoculum. Application of a T(4) (0.4mg/l) concentration of ozone to the inoculum containing Cucumber mosaic virus resulted in complete inactivation of the virus. The inactivated viral inoculum was mixed with a penetrator (delivery agent), referred to as T(4) preparation, and it was evaluated for the development of systemic acquired resistance in the tomato plants. Application of a T(4) preparation 5 days before inoculation with the Cucumber mosaic virus protected tomato plants from the effects of Cucumber mosaic virus. Among the components of the inactivated virus tested, coat protein subunits and aggregates were responsible for the acquired resistance in tomato plants. In field trials, the results of enzyme-linked immunosorbent assay revealed that, Cucumber mosaic virus accumulation was significantly less for all the test plants (16%) sprayed with the T(4) preparation than untreated control plants (89.5%) at 28 days postinoculation (dpi). A remarkable increase in the activities of the total soluble phenolics (10-fold) and salicylic acid (16-fold) was detected 5 days after the treatment in foliar extracts of test plants relative to untreated control plants. The results showed that treatment of tomato plants with inactivated viral inoculum led to a significant enhancement of protection against Cucumber mosaic virus attack in a manner that mimics a real pathogen and induces systemic acquired resistance.

  5. Synergy between cucumber mosaic virus and zucchini yellow mosaic virus on Cucurbitaceae hosts tested by real-time reverse transcription-polymerase chain reaction.

    Science.gov (United States)

    Zeng, Rong; Liao, Qiansheng; Feng, Junli; Li, Dingjun; Chen, Jishuang

    2007-06-01

    Cucumber mosaic virus (CMV) and zucchini yellow mosaic virus (ZYMV) are two principal viruses infecting cucurbitaceous crops, and their synergy has been repeatedly observed. In our present work, a real-time reverse transcription-polymerase chain reaction procedure was established to study the accumulation kinetics of these two viruses in single and combined infections at the molecular level. The accumulations of open reading frames (ORFs) for 1a, 2a, 3a and coat protein (CP) of CMV and CP of ZYMV were tested. In the single infection, CMV-Fny ORFs accumulated to their maxima in cucumber or bottle gourd at 14 d post-inoculation (dpi), and gradually declined thereafter. ZYMV-SD CP ORF reached maximal accumulation at 14 and 28 dpi on cucumber and bottle gourd, respectively. However, when co-infected with CMV-Fny and ZYMV-SD, the maximal accumulation levels of all viral ORFs were delayed. CMV-Fny ORFs reached their maxima at 21 dpi on both hosts, and ZYMV-SDCP ORF reached maximal accumulation at 21 and 28 dpi on cucumber and bottle gourd, respectively. Generally, the accumulation levels of CMV-Fny ORFs in the co-infection were higher than those in the single infection, whereas the accumulation of ZYMV-SD CP ORF showed a reverse result.

  6. Transmission of Tomato Ringspot Virus by Xiphinema americanum and X. rivesi from New York Apple Orchards.

    Science.gov (United States)

    Georgi, L L

    1988-04-01

    Populations of Xiphinema americanum and X. rivesi were collected from apple orchards in eastern and western New York and tested in the laboratory for ability to transmit tomato ringspot virus (TmRSV) to cucumber and dandelion. Populations varied in the frequency with which they transmitted TmRSV, but this variation did not correspond to variation in disease prevalence in the orchard. The lower prevalence of TmRSV-incited disease in apple trees in western New York cannot be attributed to inability of the local Xiphinema spp. to transmit TmRSV.

  7. Crystallization and preliminary X-ray analysis of papaya mosaic virus coat protein.

    Science.gov (United States)

    Zhang, H; Todderud, E; Stubbs, G

    1993-12-05

    Papaya mosaic virus coat protein has been treated with trypsin and a large fragment of the intact protein has been crystallized in space group P3(1)21 or P3(2)21 (unit cell dimensions: a = b = 110 A, c = 237 A). The crystals diffract to 3.5 A resolution. Crystals of the untreated protein have also been grown. The untreated protein crystals diffract to 4 A resolution, but have a large mosaic spread. They have the same space group as the trypsin-treated protein crystals, but a much smaller unit cell (a = b = 72 A, c = 240 A).

  8. Classification of cucumber green mottle mosaic virus (CGMMV) infected watermelon seeds using Raman spectroscopy

    Science.gov (United States)

    Lee, Hoonsoo; Lim, Hyoun-Sub; Cho, Byoung-Kwan

    2016-05-01

    The Cucumber Green Mottle Mosaic Virus (CGMMV) is a globally distributed plant virus. CGMMV-infected plants exhibit severe mosaic symptoms, discoloration, and deformation. Therefore, rapid and early detection of CGMMV infected seeds is very important for preventing disease damage and yield losses. Raman spectroscopy was investigated in this study as a potential tool for rapid, accurate, and nondestructive detection of infected seeds. Raman spectra of healthy and infected seeds were acquired in the 400 cm-1 to 1800 cm-1 wavenumber range and an algorithm based on partial least-squares discriminant analysis was developed to classify infected and healthy seeds. The classification model's accuracies for calibration and prediction data sets were 100% and 86%, respectively. Results showed that the Raman spectroscopic technique has good potential for nondestructive detection of virus-infected seeds.

  9. Controlled immobilisation of active enzymes on the cowpea mosaic virus capsid

    Science.gov (United States)

    Aljabali, Alaa A. A.; Barclay, J. Elaine; Steinmetz, Nicole F.; Lomonossoff, George P.; Evans, David J.

    2012-08-01

    Immobilisation of horseradish peroxidase (HRP) and glucose oxidase (GOX) via covalent attachment of modified enzyme carbohydrate to the exterior of the cowpea mosaic virus (CPMV) capsid gave high retention of enzymatic activity. The number of enzymes bound per virus was determined to be about eleven for HRP and 2-3 for GOX. This illustrates that relatively large biomacromolecules can be readily coupled to the virus surface using simple conjugation strategies. Virus-biomacromolecule hybrids have great potential for uses in catalysis, diagnostic assays or biosensors.Immobilisation of horseradish peroxidase (HRP) and glucose oxidase (GOX) via covalent attachment of modified enzyme carbohydrate to the exterior of the cowpea mosaic virus (CPMV) capsid gave high retention of enzymatic activity. The number of enzymes bound per virus was determined to be about eleven for HRP and 2-3 for GOX. This illustrates that relatively large biomacromolecules can be readily coupled to the virus surface using simple conjugation strategies. Virus-biomacromolecule hybrids have great potential for uses in catalysis, diagnostic assays or biosensors. Electronic supplementary information (ESI) available: Alternative conjugation strategies, agarose gel electrophoresis of CPMV and CPMV-HRP conjugates, UV-vis spectrum of HRP-ADHCPMV, agarose gel electrophoresis of GOX-ADHCPMV particles and corresponding TEM image, calibration curves for HRP-ADHCPMV and GOX-ADHCPMV, DLS data for GOX-ADHCPMV are made available. See DOI: 10.1039/c2nr31485a

  10. Pepino mosaic virus genotype shift in North America and rapid genotype identification using loop-mediated isothermal amplification

    Science.gov (United States)

    Pepino mosaic, once an emerging disease a decade ago, has become endemic on greenhouse tomatoes worldwide in recent years. Three distinct genotypes of Pepino mosaic virus (PepMV), including EU, US1 and CH2 have been recognized. Our earlier study in 2006-2007 demonstrated a predominant EU genotype ...

  11. 40 CFR 180.1279 - Zucchini yellow mosaic virus-weak strain; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Zucchini yellow mosaic virus-weak strain; exemption from the requirement of a tolerance. 180.1279 Section 180.1279 Protection of... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1279 Zucchini yellow mosaic virus—weak...

  12. Crystal Structure and Proteomics Analysis of Empty Virus-like Particles of Cowpea Mosaic Virus.

    Science.gov (United States)

    Huynh, Nhung T; Hesketh, Emma L; Saxena, Pooja; Meshcheriakova, Yulia; Ku, You-Chan; Hoang, Linh T; Johnson, John E; Ranson, Neil A; Lomonossoff, George P; Reddy, Vijay S

    2016-04-05

    Empty virus-like particles (eVLPs) of Cowpea mosaic virus (CPMV) are currently being utilized as reagents in various biomedical and nanotechnology applications. Here, we report the crystal structure of CPMV eVLPs determined using X-ray crystallography at 2.3 Å resolution and compare it with previously reported cryo-electron microscopy (cryo-EM) of eVLPs and virion crystal structures. Although the X-ray and cryo-EM structures of eVLPs are mostly similar, there exist significant differences at the C terminus of the small (S) subunit. The intact C terminus of the S subunit plays a critical role in enabling the efficient assembly of CPMV virions and eVLPs, but undergoes proteolysis after particle formation. In addition, we report the results of mass spectrometry-based proteomics analysis of coat protein subunits from CPMV eVLPs and virions that identify the C termini of S subunits undergo proteolytic cleavages at multiple sites instead of a single cleavage site as previously observed.

  13. In planta cloning of geminiviral DNA: the true Sida micrantha mosaic virus.

    Science.gov (United States)

    Jeske, Holger; Gotthardt, Diether; Kober, Sigrid

    2010-02-01

    The circular single-stranded DNAs of geminiviruses are multiplied efficiently and preferentially by rolling circle amplification (RCA), and can be diagnosed readily by restriction fragment length polymorphism (RFLP) and direct sequencing of the RCA product. Two strategies are described for cloning geminiviruses from plants harboring mixed infections by using RCA and RFLP with plant-derived nucleic acids without the need for bacterial amplification. By combining both these approaches, the true Sida micrantha mosaic virus was identified. The advantages of maintaining the quasispecies nature of a virus during in planta cloning is discussed with respect to reliable virus identification and resistance breeding. 2009 Elsevier B.V. All rights reserved.

  14. Mutual Interference between Genomic RNA Replication and Subgenomic mRNA Transcription in Brome Mosaic Virus

    OpenAIRE

    Grdzelishvili, Valery Z.; Garcia-Ruiz, Hernan; Watanabe, Tokiko; Ahlquist, Paul

    2005-01-01

    Replication by many positive-strand RNA viruses includes genomic RNA amplification and subgenomic mRNA (sgRNA) transcription. For brome mosaic virus (BMV), both processes occur in virus-induced, membrane-associated compartments, require BMV replication factors 1a and 2a, and use negative-strand RNA3 as a template for genomic RNA3 and sgRNA syntheses. To begin elucidating their relations, we examined the interaction of RNA3 replication and sgRNA transcription in Saccharomyces cerevisiae expres...

  15. Novel Pathogenic Strain of Watermelon mosaic virus Occurred on Insam (Panax ginseng

    Directory of Open Access Journals (Sweden)

    Won-Kwon Jung

    2013-12-01

    Full Text Available A disease, supposedly caused by a virus, was observed from Insam (Panax ginseng fields of Punggi in year 2006. It has long believed to be a physiological disorder. However, the incidence of the disease has increased every year. When several samples were observed under electron microscope, filamentous virus-like particles were observed. The nucleotide sequences of the virus were analyzed by RT-PCR with specific primer sets derived from the results of DNA chip. The results indicated that the disease was caused by Watermelon mosaic virus (WMV. It revealed that the result of the biological assay by the virus was different from that of WMV previously found in other crops. Therefore, this is the first report that WMV causes the disease in P. ginseng and the virus is named to be WMV-Insam.

  16. Caracterização de um isolado de Bidens mosaic virus proveniente de alface Characterization of an isolate of Bidens mosaic virus (BiMV from lettuce

    Directory of Open Access Journals (Sweden)

    Gerson Shinia Suzuki

    2009-09-01

    Full Text Available Em 2004, plantas de alface com sintomas de mosaico coletadas em São Manuel - SP foram analisadas por microscopia eletrônica, constatando-se presença de partículas típicas de potyvirus com 730 nm de comprimento. Após purificação biológica por monolesionais em Chenopodium quinoa, o extrato vegetal foi inoculado em uma série de plantas diferenciadoras, verificando-se que o isolado testado foi capaz de infectar C. quinoa e C. amaranticolor induzindo lesões locais seguidas de mosaico sistêmico. Ervilha (Pisum sativum mostrou-se assintomática, e em diferentes cultivares de alface como Trocadero, White Boston, Regina, Verônica, Lucy Brown, Rafaela, Tainá, Vera e Laurel foi observado o mosaico. A cultivar Gizele foi tolerante ao vírus. O sequenciamento da região codificadora da proteína capsidial revelou maior identidade de aminoácidos (97% deste isolado com o Bidens mosaic virus - BiMV (nº de acesso AY960151. Diferentemente dos isolados de BiMV já descritos, este proveniente de alface não foi capaz de infectar Bidens pilosa, Helianthus annuus, Nicotiana tabacum TNN e N. glutinosa. A ocorrência natural do BiMV em alface, causando sintomas semelhantes aos do LMV e a suscetibilidade de várias das cultivares hoje plantadas, servem como um alerta para a correta diagnose do vírus a campo.In 2004 lettuce plants showing mosaic symptoms collected in São Manuel, SP were analyzed by electron microscopy, and particles with 730 nm typically from potyvirus were observed. After biological purification by monolesionals on Chenopodium quinoa, this isolate was sap inoculated on a host range assay. The virus infected C. quinoa and C. amaranticolor, causing local lesions and systemic mosaic. The virus did not induce symptoms on pea (Pisum sativum, but induced mosaic on the leaves of some lettuce cultivars such as Trocadero, White Boston, Regina, Verônica, Lucy Brown, Rafaela, Tainá, Vera and Laurel. The lettuce cultivar Gizele was tolerant to

  17. Bioengineering of Tobacco Mosaic Virus to Create a Non-Infectious Positive Control for Ebola Diagnostic Assays

    National Research Council Canada - National Science Library

    Lam, Patricia; Gulati, Neetu M; Stewart, Phoebe L; Keri, Ruth A; Steinmetz, Nicole F

    2016-01-01

    ...: we encapsulated scrambled Ebola RNA sequences inside of tobacco mosaic virus to create a biomimicry that is non-infectious, but stable, and could therefore serve as a positive control in Ebola diagnostic assays...

  18. Humans Have Antibodies against a Plant Virus: Evidence from Tobacco Mosaic Virus

    Science.gov (United States)

    Liu, Ruolan; Vaishnav, Radhika A.; Roberts, Andrew M.; Friedland, Robert P.

    2013-01-01

    Tobacco mosaic virus (TMV), a widespread plant pathogen, is found in tobacco (including cigarettes and smokeless tobacco) as well as in many other plants. Plant viruses do not replicate or cause infection in humans or other mammals. This study was done to determine whether exposure to tobacco products induces an immune response to TMV in humans. Using a sandwich ELISA assay, we detected serum anti-TMV antibodies (IgG, IgG1, IgG3, IgG4, IgA, and IgM) in all subjects enrolled in the study (20 healthy smokers, 20 smokeless-tobacco users, and 20 non-smokers). Smokers had a higher level of serum anti-TMV IgG antibodies than non-smokers, while the serum level of anti-TMV IgA from smokeless tobacco users was lower than smokers and non-smokers. Using bioinformatics, we also found that the human protein TOMM40L (an outer mitochondrial membrane 40 homolog – like translocase) contains a strong homology of six contiguous amino acids to the TMV coat protein, and TOMM40L peptide exhibited cross-reactivity with anti-TMV antibodies. People who smoke cigarettes or other tobacco products experience a lower risk of developing Parkinson’s disease, but the mechanism by which this occurs is unclear. Our results showing molecular mimicry between TMV and human TOMM40L raise the question as to whether TMV has a potential role in smokers against Parkinson’s disease development. The potential mechanisms of molecular mimicry between plant viruses and human disease should be further explored. PMID:23573274

  19. The genomes of four novel begomoviruses and a new Sida micrantha mosaic virus strain from Bolivian weeds.

    Science.gov (United States)

    Wyant, Patrícia Soares; Gotthardt, Diether; Schäfer, Benjamin; Krenz, Björn; Jeske, Holger

    2011-02-01

    Begomovirus is the largest genus within the family Geminiviridae and includes economically important plant DNA viruses infecting a broad range of plant species and causing devastating crop diseases, mainly in subtropical and tropical countries. Besides cultivated plants, many weeds act as virus reservoirs. Eight begomovirus isolates from Bolivian weeds were examined using rolling-circle amplification (RCA) and restriction fragment length polymorphism (RFLP). An efficient, novel cloning strategy using limited Sau3A digestion to obtain tandem-repeat inserts allowed the sequencing of the complete genomes. The viruses were classified by phylogenetic analysis as typical bipartite New World begomoviruses. Four of them represented distinct new virus species, for which the names Solanum mosaic Bolivia virus, Sida mosaic Bolivia virus 1, Sida mosaic Bolivia virus 2, and Abutilon mosaic Bolivia virus are proposed. Three were variants of a new strain of Sida micrantha mosaic virus (SimMV), SimMV-rho[BoVi07], SimMV-rho[Bo:CF1:07] and SimMV-rho[Bo:CF2:07], and one was a new variant of a previously described SimMV, SimMV-MGS2:07-Bo.

  20. Evidence for a Complex Mosaic Genome Pattern in a Full-length Hepatitis C Virus Sequence

    Directory of Open Access Journals (Sweden)

    R.S. Ross

    2008-01-01

    Full Text Available The genome of the hepatitis C virus (HCV exhibits a high genetic variability. This remarkable heterogeneity is mainly attributed to the gradual accumulation of mutational changes, whereas the contribution of recombination events to the evolution of HCV remains controversial so far. While performing phylogenetic analyses including a large number of sequences deposited in the GenBank, we encountered a full-length HCV sequence (AY651061 that showed evidence for inter-subtype recombination and was, therefore, subjected to a detailed analysis of its molecular structure. The obtained results indicated that AY651061 does not represent a “simple” HCV 1c isolate, but a complex 1a/1c mosaic genome, showing five putative breakpoints in the core to NS3 regions. To our knowledge, this is the first report on a mosaic HCV full- length sequence with multiple breakpoints. The molecular structure of AY651061 is reminiscent of complex homologous recombinant variants occurring among other members of the flaviviridae family, e.g. GB virus C, dengue virus, and Japanese encephalitis virus. Our finding of a mosaic HCV sequence may have important implications for many fields of current HCV research which merit careful consideration.

  1. Viruses causing mosaic disease in sugarcane and their genetic diversity in southern China.

    Science.gov (United States)

    Xu, D-L; Park, J-W; Mirkov, T E; Zhou, G-H

    2008-01-01

    A survey of cultivated hybrid sugarcane (Saccharum inter-specific hybrid) and noble sugarcane (Saccharum officinarum) in southern China for the presence of Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV) and Sugarcane streak mosaic virus (SCSMV) was conducted by RT-PCR from the years 2003 to 2006. SCMV and SrMV, but not SCSMV, were found. A high incidence of SCMV and SrMV coinfection was revealed in both hybrid and noble sugarcanes. All coinfected plants showed mosaic symptom, whereas plants infected with a single virus were symptomatic or asymptomatic. It appears that virus mixtures are more virulent than single infections. The nucleotide sequences of the coat protein (CP) gene of 33 SCMV and 10 SrMV isolates from this study were compared to those of CP genes of SCMV and SrMV reported in GenBank. One hundred and seventy-three SCMV isolates, with the exception of MDB and Abaca strains, can be grouped into five groups, which include three previously known groups, the sugarcane (SCE), maize (MZ), and Thailand groups, and two newly identified groups, the noble sugarcane (NSCE) and Brazil groups. Twenty-two SrMV isolates were divided into two groups, HS (hybrid sugarcane) and NS (noble sugarcane) groups. Five out of eight SrMV hybrid isolates belonged to the HS group, and two SrMV noble isolates and three hybrid isolates were within the NS group. Interestingly, the three hybrid isolates within the NS group were isolated from hybrid sugarcane co-infected with SCMV. This indicates that SCMV helps the NS group SrMV to infect hybrid sugarcane.

  2. Viral protein synthesis in cowpea mosaic virus infected protoplasts

    NARCIS (Netherlands)

    Rottier, P.

    1980-01-01

    In contrast to the situation concerning bacterial and, to a lesser extent, animal RNA viruses, little is known about the biochemical processes occurring in plant cells due to plant RNA virus infection. Such processes are difficult to study using intact plants or leaves. Great effort has

  3. Comparative analysis of chrysanthemum transcriptome in response to three RNA viruses: Cucumber mosaic virus, Tomato spotted wilt virus and Potato virus X.

    Science.gov (United States)

    Choi, Hoseong; Jo, Yeonhwa; Lian, Sen; Jo, Kyoung-Min; Chu, Hyosub; Yoon, Ju-Yeon; Choi, Seung-Kook; Kim, Kook-Hyung; Cho, Won Kyong

    2015-06-01

    The chrysanthemum is one of popular flowers in the world and a host for several viruses. So far, molecular interaction studies between the chrysanthemum and viruses are limited. In this study, we carried out a transcriptome analysis of chrysanthemum in response to three different viruses including Cucumber mosaic virus (CMV), Tomato spotted wilt virus (TSWV) and Potato virus X (PVX). A chrysanthemum 135K microarray derived from expressed sequence tags was successfully applied for the expression profiles of the chrysanthemum at early stage of virus infection. Finally, we identified a total of 125, 70 and 124 differentially expressed genes (DEGs) for CMV, TSWV and PVX, respectively. Many DEGs were virus specific; however, 33 DEGs were commonly regulated by three viruses. Gene ontology (GO) enrichment analysis identified a total of 132 GO terms, and of them, six GO terms related stress response and MCM complex were commonly identified for three viruses. Several genes functioning in stress response such as chitin response and ethylene mediated signaling pathway were up-regulated indicating their involvement in establishment of host immune system. In particular, TSWV infection significantly down-regulated genes related to DNA metabolic process including DNA replication, chromatin organization, histone modification and cytokinesis, and they are mostly targeted to nucleosome and MCM complex. Taken together, our comparative transcriptome analysis revealed several genes related to hormone mediated viral stress response and DNA modification. The identified chrysanthemums genes could be good candidates for further functional study associated with resistant to various plant viruses.

  4. Evolution of Wheat streak mosaic virus: dynamics of population growth within plants may explain limited variation.

    Science.gov (United States)

    French, Roy; Stenger, Drake C

    2003-01-01

    Like many other plant RNA viruses, Wheat streak mosaic virus (WSMV) sequence diversity within and among infected plants is low given the large number of virions produced. This may be explained by considering aspects of plant virus life history. Intracellular replication of RNA viruses is predominately linear, not exponential, which means that the rate at which mutations accumulate also is linear. Bottlenecks during systemic movement further limit diversity. Analysis of mixed infections with two WSMV isolates suggests that about four viral genomes participate in systemic invasion of each tiller. Low effective population size increases the role of stochastic processes on dynamics of plant virus population genetics and evolution. Despite low pair-wise diversity among isolates, the number of polymorphic sites within the U.S. population is about the same as between divergent strains or a sister species. Characteristics of polymorphism in the WSMV coat protein gene suggest that most variation appears neutral.

  5. Analysis of nucleotide sequence of wheat yellow mosaic virus genomic RNAs

    Institute of Scientific and Technical Information of China (English)

    于嘉林; 晏立英; 苏宁; 侯占军; 李大伟; 韩成贵; 杨莉莉; 蔡祝南; 刘仪

    1999-01-01

    Wheat yellow mosaic virus (WYMV) isolate HC was used for viral cDNA synthesis and sequencing. The results show that the viral RNA1 is 7629 nueleotides encoding a polyprotein with 2407 amino acids, from which seven putative proteins may be produced by an autolytie cleavage processing besides the viral coat protein. The RNA2 is 3639 nueleotides and codes for a polypretein of 903 amino acids, which may contain two putative non-structural proteins. Although WYMV shares a similarity in genetic organization to wheat spindle streak mosaic virus (WSSMV), the identities in their nucleotide sequences or deduced amino acid sequences are as low as 70% and 75 % respectively. Based on this result, it is confirmed that WYMV and WSSMV are different species within Bymovirus.

  6. Expression, purification and molecular modeling of the NIa protease of Cardamom mosaic virus.

    Science.gov (United States)

    Jebasingh, T; Pandaranayaka, Eswari P J; Mahalakshmi, A; Kasin Yadunandam, A; Krishnaswamy, S; Usha, R

    2013-01-01

    The NIa protease of Potyviridae is the major viral protease that processes potyviral polyproteins. The NIa protease coding region of Cardamom mosaic virus (CdMV) is amplified from the viral cDNA, cloned and expressed in Escherichia coli. NIa protease forms inclusion bodies in E.coli. The inclusion bodies are solubilized with 8 M urea, refolded and purified by Nickel-Nitrilotriacetic acid affinity chromatography. Three-dimensional modeling of the CdMV NIa protease is achieved by threading approach using the homologous X-ray crystallographic structure of Tobacco etch mosaic virus NIa protease. The model gave an insight in to the substrate specificities of the NIa proteases and predicted the complementation of nearby residues in the catalytic triad (H42, D74 and C141) mutants in the cis protease activity of CdMV NIa protease.

  7. Induction of protective immunity in swine by recombinant bamboo mosaic virus expressing foot-and-mouth disease virus epitopes

    Directory of Open Access Journals (Sweden)

    Lin Na-Sheng

    2007-09-01

    Full Text Available Abstract Background Plant viruses can be employed as versatile vectors for the production of vaccines by expressing immunogenic epitopes on the surface of chimeric viral particles. Although several viruses, including tobacco mosaic virus, potato virus X and cowpea mosaic virus, have been developed as vectors, we aimed to develop a new viral vaccine delivery system, a bamboo mosaic virus (BaMV, that would carry larger transgene loads, and generate better immunity in the target animals with fewer adverse environmental effects. Methods We engineered the BaMV as a vaccine vector expressing the antigenic epitope(s of the capsid protein VP1 of foot-and-mouth disease virus (FMDV. The recombinant BaMV plasmid (pBVP1 was constructed by replacing DNA encoding the 35 N-terminal amino acid residues of the BaMV coat protein with that encoding 37 amino acid residues (T128-N164 of FMDV VP1. Results The pBVP1 was able to infect host plants and to generate a chimeric virion BVP1 expressing VP1 epitopes in its coat protein. Inoculation of swine with BVP1 virions resulted in the production of anti-FMDV neutralizing antibodies. Real-time PCR analysis of peripheral blood mononuclear cells from the BVP1-immunized swine revealed that they produced VP1-specific IFN-γ. Furthermore, all BVP1-immunized swine were protected against FMDV challenge. Conclusion Chimeric BaMV virions that express partial sequence of FMDV VP1 can effectively induce not only humoral and cell-mediated immune responses but also full protection against FMDV in target animals. This BaMV-based vector technology may be applied to other vaccines that require correct expression of antigens on chimeric viral particles.

  8. The interactions of Tropical soda apple mosaic tobamovirus and Gratiana boliviana (Coleoptera: Chrysomelidae), an introduced biological control agent of tropical soda apple (Solanum viarum)

    Science.gov (United States)

    Tropical soda apple (Solanum viarum Dunal (Solanaceae) (TSA) is a South American invasive plant of rangelands, pastures and natural areas in Florida. A chrysomelid beetle from South America, Gratiana boliviana Spaeth, has been released at >300 locations in Florida for biological control of TSA since...

  9. Seed-borne nature of a begomovirus, Mung bean yellow mosaic virus in black gram.

    Science.gov (United States)

    Kothandaraman, Satya Vijayalakshmi; Devadason, Alice; Ganesan, Malathi Varagur

    2016-02-01

    The yellow mosaic viruses (YMV) infecting legumes are considered to be the most devastating begomoviruses as they incite considerable yield loss. The yellow discoloration of pods and seeds of infected plants and symptom emergence in the very first trifoliate leaf of the plants in the field were suggestive that the virus may be seed borne, which was investigated in the present study. The distribution of the virus in various parts of the seeds of black gram (Vigna mungo L. Hepper) plants naturally infected in the field was determined by polymerase chain reaction (PCR), Southern blot analysis, and sequencing. Nucleotide sequencing of the PCR amplicons from the seed parts from groups of ten seeds revealed the presence of mung bean yellow mosaic virus (MYMV) in the seed coat, cotyledon, and embryonic axes. The presence of virion particles was confirmed through double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) and immunosorbent electron microscopy (ISEM) even in a single whole seed. In confocal microscopy, positive fluorescent signals were obtained using coat protein gene-specific primers in the embryonic axes. However, in the growth tests performed with the same batch of seeds, there was no symptom development in the seedlings though the virus (both DNA A and B components) was detected in 32 % of tested seedlings. In this study, the MYMV was detected in seed coat, cotyledon, and embryo. This study revealed that the MYMV is a seed-borne virus.

  10. Destruction of Cucumber green mottle mosaic virus by heat treatment and rapid detection of virus inactivation by RT-PCR.

    Science.gov (United States)

    Kim, Sang-Min; Nam, Sang-Hyun; Lee, Jung-Myung; Yim, Kyu-Ock; Kim, Kook-Hyung

    2003-12-31

    Heat treatment is commonly used to control viral contamination of seeds. To study virus inactivation, virus was purified from seeds contaminated with Cucumber green mottle mosaic virus (CGMMV) after various heat treatments. CGMMV particles were observed to be physically disrupted by high temperature. Analysis of viral RNA revealed that the 5' and 3' termini of the genome were protected whereas regions between 2-2.5, 3.2-3.7 and 4-4.8 kb from the 5' terminus were not. Heat inactivation of virus on seeds was confirmed by RT-PCR using primers for a heat-sensitive region. The RT-PCR approach developed here may prove preferable to time- and labor-intensive bioassays for assessing virus heat inactivation.

  11. Deletion analysis of the 5' untranslated leader sequence of tobacco mosaic virus RNA.

    OpenAIRE

    Takamatsu, N; Watanabe, Y.; Iwasaki, T.; Shiba, T.; Meshi, T; Okada, Y.

    1991-01-01

    To determine the sequences essential for viral multiplication in the 5' untranslated leader sequence of tobacco mosaic virus RNA, mutant TMV-L (a tomato strain) RNAs which carry several deletions in this 71-nucleotide sequence were constructed by an in vitro transcription system and their multiplication was analyzed by introducing mutant RNA into tobacco protoplasts by electroporation. Large deletions of the sequence from nucleotides 9 to 47 or 25 to 71 abolished viral multiplication; when ab...

  12. Evaluation of Mungbean Genotypes Based on Yield Stability and Reaction to Mungbean Yellow Mosaic Virus Disease

    OpenAIRE

    AKM Mahbubul Alam; Prakit Somta; Choosak Jompuk; Prasert Chatwachirawong; Peerasak Srinives

    2014-01-01

    This work was conducted to identify mungbean genotypes showing yield stability and resistance to mungbean yellow mosaic virus (MYMV) disease. Sixteen genotypes were evaluated in a randomized complete block design with two replications for two years (2011 and 2012) at three locations (Gazipur, Ishurdi and Madaripur) of the Bangladesh Agricultural Research Institute. An analysis of variance exhibited significant effects of genotype (G), environment (E), and genotype × environment (G×E) on grain...

  13. Inheritance of resistance to yellow mosaic virus in blackgram (Vigna mungo (L.) Hepper).

    Science.gov (United States)

    Singh, D P

    1980-09-01

    The inheritance of resistance to mungbean yellow mosaic virus (MYMV) was studied in blackgram (Vigna mungo (L.) Hepper). The highly resistant donors Pant U-84 and UPU-2 and a highly susceptible line, UL-2, their F1's, F2's and backcrosses were grown with spreader located every 5 to 6 rows. The resistance was found to be digenic and recessive in all the crosses and free from cytoplasmic effect.

  14. Chemical modification of the inner and outer surfaces of Tobacco Mosaic Virus (TMV).

    Science.gov (United States)

    Bruckman, Michael A; Steinmetz, Nicole F

    2014-01-01

    Viral nanoparticles derived from tobacco mosaic virus (TMV) find applications in various fields. We report the purification and chemical modification of TMV which is a hollow rod-shaped plant viral nanoparticle with modifiable interior and exterior surfaces. We describe methods to isolate TMV from its tobacco plant host for spatially controlled interior and exterior chemical modification and to characterize the resulting TMV hybrid materials.

  15. Chemical Modification of the Inner and Outer Surfaces of Tobacco Mosaic Virus (TMV)

    OpenAIRE

    Bruckman, Michael A.; Steinmetz, Nicole F.

    2014-01-01

    Viral nanoparticles derive from tobacco mosaic virus (TMV) has broad applications in various fields. We report the purification and chemical engineering of TMV which is a hollow rod-shaped plant viral nanoparticle with modifiable interior and exterior surfaces. Here, we describe methods to isolate TMV from its tobacco plant host for spatially controlled interior and exterior chemical modification and to characterize the resulting TMV hybrid materials.

  16. The current status of the Soybean-Soybean mosaic virus (SMV) Pathosystem

    OpenAIRE

    Jianzhong Liu; Yuan Fang; Hongxi Pang

    2016-01-01

    Soybean mosaic virus (SMV) is one of the most devastating pathogens that cost huge economic losses in soybean production worldwide. Due to the duplicated genome, clustered and highly homologous nature of R genes, as well as recalcitrant to transformation, soybean disease resistance studies is largely lagging compared with other diploid crops. In this review, we focus on the major advances that have been made in identifying both the virulence/avirulence factors of SMV and mapping of SMV resist...

  17. Heterogeneity in pepper isolates of cucumber mosaic virus

    Science.gov (United States)

    Rodriguez-Alvarado, G.; Kurath, G.; Dodds, J.A.

    1995-01-01

    Twenty-four cucumber mosaic cucumovirus (CMV) field isolates from pepper crops in Cali-fornia were characterized and compared by nucleic acid hybridization subgrouping, virion electrophoresis, and biological effects in several hosts. Isolates, belonging to subgroup I or subgroup II, were found that induced severe symptoms in mechanically inoculated bell pep-pers. Only two isolates, both from subgroup II, were mild. A group of 19 isolates collected from a single field were all in subgroup II and appeared identical by virion electrophoresis, but they exhibited varying degrees of symptom severity in peppers. As a more detailed indicator of heterogeneity, these 19 isolates were examined by RNase protection assays to delect sequence variation in the coat protein gene region of their genomes. The patterns of bands observed were complex and a high degree of genomic heterogeneity was detected between isolates, with no apparent correlation to symptomatology in bell pepper.

  18. Breakage of resistance to Cucumber mosaic virus by co-infection with Zucchini yellow mosaic virus: enhancement of CMV accumulation independent of symptom expression.

    Science.gov (United States)

    Wang, Y; Lee, K C; Gaba, V; Wong, S M; Palukaitis, P; Gal-On, A

    2004-02-01

    Resistance to the cucumovirus Cucumber mosaic virus (CMV) in cucumber cv. Delila was manifested as a very low level of accumulation of viral RNA and capsid protein, and an absence of CMV-induced symptoms. In addition, resistance was observed at the single cell level, with a reduction in accumulation of CMV RNAs, compared to accumulation in cells of the susceptible cucumber cv. Bet Alpha. Resistance to CMV in cv. Delila was broken by co-infection with the potyvirus Zucchini yellow mosaic virus (ZYMV). Resistance breakage in cv. Delila plants was manifested by an increase in the accumulation of (+) and (-) CMV RNA as well as CMV capsid protein, with no increase in the level of accumulation of ZYMV. Resistance breakage in the resistant cultivar by ZYMV also occurred at the single cell level. Thus, synergistic interactions known to occur between a potyvirus and a cucumovirus led to resistance breakage during a double infection. However, resistance breakage was not accompanied by an increase in disease symptoms beyond those induced by ZYMV itself. On co-inoculation with an asymptomatic variant of ZYMV-AG an enhancement of CMV infection occurred without disease manifestation. Consequently, intensification of viral RNA and capsid protein accumulation can occur without a corresponding increase in disease development, suggesting that different host genes regulate viral accumulation and disease development in the CMV-resistant cucumber plants.

  19. Transcriptome analysis of Nicotiana tabacum infected by Cucumber mosaic virus during systemic symptom development.

    Directory of Open Access Journals (Sweden)

    Jie Lu

    Full Text Available Virus infection of plants may induce a variety of disease symptoms. However, little is known about the molecular mechanism of systemic symptom development in infected plants. Here we performed the first next-generation sequencing study to identify gene expression changes associated with disease development in tobacco plants (Nicotiana tabacum cv. Xanthi nc induced by infection with the M strain of Cucumber mosaic virus (M-CMV. Analysis of the tobacco transcriptome by RNA-Seq identified 95,916 unigenes, 34,408 of which were new transcripts by database searches. Deep sequencing was subsequently used to compare the digital gene expression (DGE profiles of the healthy plants with the infected plants at six sequential disease development stages, including vein clearing, mosaic, severe chlorosis, partial and complete recovery, and secondary mosaic. Thousands of differentially expressed genes were identified, and KEGG pathway analysis of these genes suggested that many biological processes, such as photosynthesis, pigment metabolism and plant-pathogen interaction, were involved in systemic symptom development. Our systematic analysis provides comprehensive transcriptomic information regarding systemic symptom development in virus-infected plants. This information will help further our understanding of the detailed mechanisms of plant responses to viral infection.

  20. The oligomeric Rep protein of Mungbean yellow mosaic India virus (MYMIV) is a likely replicative helicase.

    Science.gov (United States)

    Choudhury, Nirupam Roy; Malik, Punjab Singh; Singh, Dharmendra Kumar; Islam, Mohammad Nurul; Kaliappan, Kosalai; Mukherjee, Sunil Kumar

    2006-01-01

    Geminiviruses replicate by rolling circle mode of replication (RCR) and the viral Rep protein initiates RCR by the site-specific nicking at a conserved nonamer (TAATATT downward arrow AC) sequence. The mechanism of subsequent steps of the replication process, e.g. helicase activity to drive fork-elongation, etc. has largely remained obscure. Here we show that Rep of a geminivirus, namely, Mungbean yellow mosaic India virus (MYMIV), acts as a replicative helicase. The Rep-helicase, requiring > or =6 nt space for its efficient activity, translocates in the 3'-->5' direction, and the presence of forked junction in the substrate does not influence the activity to any great extent. Rep forms a large oligomeric complex and the helicase activity is dependent on the oligomeric conformation ( approximately 24mer). The role of Rep as a replicative helicase has been demonstrated through ex vivo studies in Saccharomyces cerevisiae and in planta analyses in Nicotiana tabacum. We also establish that such helicase activity is not confined to the MYMIV system alone, but is also true with at least two other begomoviruses, viz., Mungbean yellow mosaic virus (MYMV) and Indian cassava mosaic virus (ICMV).

  1. Presence and characterization of Zucchini yellow mosaic virus in watermelon in Serbia

    Directory of Open Access Journals (Sweden)

    Vučurović Ana

    2012-01-01

    Full Text Available The presence of Zucchini yellow mosaic virus (ZYMV in two out of seven watermelon production localities in Serbia during 2011 was investigated by analyzing leaves sampled from symptomatic and asymptomatic watermelon plants and utilizing DAS-ELISA test. In the locality of Gornji Tavankut, ZYMV was detected in 23.08% of tested plants in single infections, and in the locality of Silbas it was detected in 35.29% of tested plants in mixed infections with Cucumber mosaic virus and Alfalfa mosaic virus. ZYMV was successfully mechanically transmitted from naturally infected watermelon plants to Cucurbita pepo 'Ezra F1'. Molecular detection was performed by RT-PCR and amplification of part of the gene for nuclear inclusions, gene of coat protein and part of 3' non-coding region, which confirmed the identification of the ZYMV isolates. Phylogenetic analysis revealed grouping of the isolate originating from watermelon with other isolates from Serbia and Central Europe within A-I subgroup. Analysis of amino acid sequences of the N terminal end of the CP gene revealed that isolate 550-11 belongs to the Central European branch.

  2. Asystasia mosaic Madagascar virus: a novel bipartite begomovirus infecting the weed Asystasia gangetica in Madagascar.

    Science.gov (United States)

    De Bruyn, Alexandre; Harimalala, Mireille; Hoareau, Murielle; Ranomenjanahary, Sahondramalala; Reynaud, Bernard; Lefeuvre, Pierre; Lett, Jean-Michel

    2015-06-01

    Here, we describe for the first time the complete genome sequence of a new bipartite begomovirus in Madagascar isolated from the weed Asystasia gangetica (Acanthaceae), for which we propose the tentative name asystasia mosaic Madagascar virus (AMMGV). DNA-A and -B nucleotide sequences of AMMGV were only distantly related to known begomovirus sequence and shared highest nucleotide sequence identity of 72.9 % (DNA-A) and 66.9 % (DNA-B) with a recently described bipartite begomovirus infecting Asystasia sp. in West Africa. Phylogenetic analysis demonstrated that this novel virus from Madagascar belongs to a new lineage of Old World bipartite begomoviruses.

  3. Visualization of resistance responses in Phaseolus vulgaris using reporter tagged clones of Bean common mosaic virus

    DEFF Research Database (Denmark)

    Naderpour, Masoud; Johansen, Ida Elisabeth

    2011-01-01

    Reporter tagged virus clones can provide detailed information on virus–host interactions. In Phaseolus vulgaris (bean), four recessive and one dominant gene are known to control infection by strains of the potyvirus species Bean common mosaic virus (BCMV). To study the interactions between BCMV...... breaking strains for further studies, BCMV RU1 was tagged with the sequence encoding green fluorescent protein (GFP), which was visualized directly without destruction of the tissue. In this paper we present details of the construction of the infectious clone and discuss its application in studies of BCMV...

  4. Crystallization and preliminary X-ray diffraction analysis of red clover necrotic mosaic virus

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Stanton L.; Guenther, Richard H.; Sit, Tim L.; Swartz, Paul D.; Meilleur, Flora; Lommel, Steven A.; Rose, Robert B. (NCSU)

    2010-11-12

    Red clover necrotic mosaic virus (RCNMV) is a species that belongs to the Tombusviridae family of plant viruses with a T = 3 icosahedral capsid. RCNMV virions were purified and were crystallized for X-ray analysis using the hanging-drop vapor-diffusion method. Self-rotation functions and systematic absences identified the space group as I23, with two virions in the unit cell. The crystals diffracted to better than 4 {angstrom} resolution but were very radiation-sensitive, causing rapid decay of the high-resolution reflections. The data were processed to 6 {angstrom} in the analysis presented here.

  5. Essential features of the assembly origin of tobacco mosaic virus RNA as studied by directed mutagenesis.

    OpenAIRE

    D. R. Turner; Butler, P J

    1986-01-01

    The assembly origin of tobacco mosaic virus RNA contains three stable hairpin loops. Coat protein disks bind first to loop 1 (the 3' most) during virus assembly, but the whole region is coated in a concerted fashion even in conditions of limiting protein. It is shown by in vitro packaging assays using mutant assembly origin transcripts that rapid and specific assembly initiation occurs in the absence of loops 2 and 3, but is abolished on removal of loop 1. Deletion or alteration of the unpair...

  6. Detection and Identification of Dasheen mosaic virus Infecting Colocasia esculenta in India.

    Science.gov (United States)

    Babu, Binoy; Hegde, Vinayaka; Makeshkumar, T; Jeeva, M L

    2011-06-01

    Reverse transcription polymerase chain reaction of the infected leaf samples of Colocasia esculenta plants showing severe whitish feathery symptoms were carried out using Potyvirus group specific primers, resulting in an amplicon of 327 bp, encoding the core region of the coat protein gene. Sequencing and BLAST analysis showed that the virus is distinct, closely related to Dasheen mosaic virus (DsMV). Sequence analysis revealed 86 and 96% identity at the nucleotide and amino acid level respectively with the DsMV isolate SY1(accession Number AJ628756). This is the first molecular level characterisation of the DsMV infecting C. esculenta in India.

  7. Characterization of Brugmansia mosaic virus Isolated from Brugmansia spp. in Korea

    Directory of Open Access Journals (Sweden)

    Chung Youl Park

    2014-12-01

    Full Text Available In May 2013, an angel’s trumpet leaves showing mosaic and malformation symptoms were collected from Suwon city, Gyeonggi-do. An analysis of the collected sample by transmission electron microscopy observation showed filamentous rod particles of 720-800 nm in length. On the basis of the these observations, we performed PCR against three reported Potyviruses (Brugmansia mosaic virus, Colombian datura virus and Brugmansia suaveolens mottle virus, and the sample was positive for BruMV. Pathogenicity and host range test of BruMV was determined by mechanical inoculation. Solanaceae (tobacco, tomato and eggplant and Amaranthaceae (ground cherry appeared typical virus symptoms. To determine coat protein of this virus, we designed specific primer pairs, and performed PCR amplification, cloning, and sequencing. Phylogenetic analysis showed that BruMV-SW was most closely related to BruMV isolate SK. Comparison of the BruMV-SW coat protein nucleotide sequences showed 92% to 99% identities to the other BruMV isolates.

  8. IDENTIFICATION AND EFFECTS OF MIXED INFECTION OF Potyvirus ISOLATES WITH Cucumber mosaic virus IN CUCURBITS

    Directory of Open Access Journals (Sweden)

    GRAZIELA DA SILVA BARBOSA

    2016-01-01

    Full Text Available Mixed infections in cucurbits are frequently observed in natural conditions between viruses from the Potyvirus genus and Cucumber mosaic virus (CMV, which significantly decreases productivity. The objectives of the present study was to compare the host range of PRSV - W, WMV, and ZYMV isolates and evaluate the effects of mixed infections with CMV in zucchini plants ( Cucurbita pepo L.. Host range studies comprising 23 plant species confirmed some similarities and biological differences among the isolates of PRSV - W, ZYMV, and WMV. RT - PCR confirmed the amplification of DNA fragments of the PRSV - W, WMV, and ZYMV coat protein gene ( cp and cytoplasm inclusion gene ( ci . The virus interaction studies in zucchini Caserta plants indicated synergistic interactions, particularly among species from the Potyvirus genus, and some CMV interference with some virus combinations.

  9. Potential threat of a new pathotype of Papaya leaf distortion mosaic virus infecting transgenic papaya resistant to Papaya ringspot virus.

    Science.gov (United States)

    Bau, H-J; Kung, Y-J; Raja, J A J; Chan, S-J; Chen, K-C; Chen, Y-K; Wu, H-W; Yeh, S-D

    2008-07-01

    A virus identified as a new pathotype of Papaya leaf distortion mosaic virus (PLDMV, P-TW-WF) was isolated from diseased papaya in an isolated test-field in central Taiwan, where transgenic papaya lines resistant to Papaya ringspot virus (PRSV) were evaluated. The infected plants displayed severe mosaic, distortion and shoe-stringing on leaves; stunting in apex; and water-soaking on petioles and stems. This virus, which did not react in enzyme-linked immunosorbent assay with the antiserum to the PRSV coat protein, infected only papaya, but not the other 18 plant species tested. Virions studied under electron microscope exhibited morphology and dimensions of potyvirus particles. Reverse transcription-polymerase chain reaction conducted using potyvirus-specific primers generated a 1,927-nucleotide product corresponding to the 3' region of a potyvirus, showing high sequence identity to the CP gene and 3' noncoding region of PLDMV. Search for similar isolates with the antiserum against CP of P-TW-WF revealed scattered occurrence of PLDMV in Taiwan. Phylogenetic analysis of PLDMV isolates of Taiwan and Japan indicated that the Taiwan isolates belong to a separate genetic cluster. Since all the Taiwan isolates infected only papaya, unlike the cucurbit-infecting Japanese P type isolates, the Taiwan isolates are considered a new pathotype of PLDMV. Susceptibility of all our PRSV-resistant transgenic papaya lines to PLDMV indicates that the virus is an emerging threat for the application of PRSV-resistant transgenic papaya in Taiwan and elsewhere.

  10. Maize Elongin C interacts with the viral genome-linked protein, VPg, of Sugarcane mosaic virus and facilitates virus infection.

    Science.gov (United States)

    Zhu, Min; Chen, Yuting; Ding, Xin Shun; Webb, Stephen L; Zhou, Tao; Nelson, Richard S; Fan, Zaifeng

    2014-09-01

    The viral genome-linked protein, VPg, of potyviruses is involved in viral genome replication and translation. To determine host proteins that interact with Sugarcane mosaic virus (SCMV) VPg, a yeast two-hybrid screen was used and a maize (Zea mays) Elongin C (ZmElc) protein was identified. ZmELC transcript was observed in all maize organs, but most highly in leaves and pistil extracts, and ZmElc was present in the cytoplasm and nucleus of maize cells in the presence or absence of SCMV. ZmELC expression was increased in maize tissue at 4 and 6 d post SCMV inoculation. When ZmELC was transiently overexpressed in maize protoplasts the accumulation of SCMV RNA was approximately doubled compared with the amount of virus in control protoplasts. Silencing ZmELC expression using a Brome mosaic virus-based gene silencing vector (virus-induced gene silencing) did not influence maize plant growth and development, but did decrease RNA accumulation of two isolates of SCMV and host transcript encoding ZmeIF4E during SCMV infection. Interestingly, Maize chlorotic mottle virus, from outside the Potyviridae, was increased in accumulation after silencing ZmELC expression. Our results describe both the location of ZmElc expression in maize and a new activity associated with an Elc: support of potyvirus accumulation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  11. Origin of the membrane compartment for cowpea mosaic virus replication

    NARCIS (Netherlands)

    Carette, J.E.

    2002-01-01

    Replication of many positive-stranded RNA viruses takes place in association with intracellular membranes. Often these membranes are induced upon infection by vesiculation or rearrangement of membranes from different organelles including the early and late endomembrane system. Upon infection of cowp

  12. Interaction between the Alfalfa mosaic virus movement protein and plasmodesmata

    NARCIS (Netherlands)

    Wel, van der N.N.

    2000-01-01

    For a full infection of a host, plant viruses should be able to multiply in the initially infected cell and to spread to neighbouring cells as to eventually invade the entire plant. The viral transport pathway can in principle be divided into two steps, i.e. cell-to-cell movement within tissues, and

  13. The Complete Nucleotide Sequence and Biotype Variability of Papaya leaf distortion mosaic virus.

    Science.gov (United States)

    Maoka, Tetsuo; Hataya, Tatsuji

    2005-02-01

    ABSTRACT The complete nucleotide sequence of the genome of Papaya leaf distortion mosaic virus (PLDMV) was determined. The viral RNA genome of strain LDM (leaf distortion mosaic) comprised 10,153 nucleotides, excluding the poly(A) tail, and contained one long open reading frame encoding a polyprotein of 3,269 amino acids (molecular weight 373,347). The polyprotein contained nine putative proteolytic cleavage sites and some motifs conserved in other potyviral polyproteins with 44 to 50% identities, indicating that PLDMV is a distinct species in the genus Potyvirus. Like the W biotype of Papaya ringspot virus (PRSV), the non-papaya-infecting biotype of PLDMV (PLDMV-C) was found in plants of the family Cucurbitaceae. The coat protein (CP) sequence of PLDMV-C in naturally infected-Trichosanthes bracteata was compared with those of three strains of the P biotype (PLDMV-P), LDM and two additional strains M (mosaic) and YM (yellow mosaic), which are biologically different from each other. The CP sequences of three strains of PLDMV-P share high identities of 95 to 97%, while they share lower identities of 88 to 89% with that of PLDMV-C. Significant changes in hydrophobicity and a deletion of two amino acids at the N-terminal region of the CP of PLDMV-C were observed. The finding of two biotypes of PLDMV implies the possibility that the papaya-infecting biotype evolved from the cucurbitaceae-infecting potyvirus, as has been previously suggested for PRSV. In addition, a similar evolutionary event acquiring infectivity to papaya may arise frequently in viruses in the family Cucurbitaceae.

  14. Effects of mutated replicase and movement protein genes on attenuation of tobacco mosaic virus

    Institute of Scientific and Technical Information of China (English)

    杨恭; 邱并生; 魏军亚; 刘广超

    2001-01-01

    Our previous reports showed that one opal mutation (UGA) and one ochre mutation (UAA) respectively located in the replicase and movement protein (MP) genes of the attenuated tomato mosaic virus K(ToMV-K) contribute to the viral attenuation. To explore a wider application of this attenuation pattern to other plant viruses, we have constructed three mutants which respectively contain one opal mutation of the replicase gene and/or one ochre mutation of the MP using PCR-mediated site-directed mutagenesis from a virulent tobacco mosaic virus isolated from China (TMV-Cv). Plant infection performed by in vitro transcripts revealed that the MP truncated mutant TMV-Cvmp and the replicase-MP truncated mutant TMV-Cvrase-mp were infectious on both local lesion (Nicotiana tabacum cv. Xanthi NC) and systemic (N. tabacum cv. K326) host plants, while the replicase truncated mutant TMV-Cvrase was non-infectious. The K326 plant infected by TMV- Cvrease-mp displayed only a little mild mosaic. By electronic microscopy (EM), plant re-inoculation, RNA Dot-blot, RT-PCR and sequencing we demonstrated that the progeny viruses of TMV-Cvmp and TMV-Cvrease-mp shared similar morphological character with TMV-Cv, owned the abilities to infect, replicate and propagate in the assayed plants, and maintained the mutated sites during infection. These data showed that both the opal and the ochre mutations are able to cooperatively induce the attenuated phenotypes of TMV-Cvrase-mp on plants, indicating that the mutation pattern of ToMV-K could be used to attenuate other virulent plant viruses.

  15. Influence of host chloroplast proteins on Tobacco mosaic virus accumulation and intercellular movement.

    Science.gov (United States)

    Bhat, Sumana; Folimonova, Svetlana Y; Cole, Anthony B; Ballard, Kimberly D; Lei, Zhentian; Watson, Bonnie S; Sumner, Lloyd W; Nelson, Richard S

    2013-01-01

    Tobacco mosaic virus (TMV) forms dense cytoplasmic bodies containing replication-associated proteins (virus replication complexes [VRCs]) upon infection. To identify host proteins that interact with individual viral components of VRCs or VRCs in toto, we isolated viral replicase- and VRC-enriched fractions from TMV-infected Nicotiana tabacum plants. Two host proteins in enriched fractions, ATP-synthase γ-subunit (AtpC) and Rubisco activase (RCA) were identified by matrix-assisted laser-desorption ionization time-of-flight mass spectrometry or liquid chromatography-tandem mass spectrometry. Through pull-down analysis, RCA bound predominantly to the region between the methyltransferase and helicase domains of the TMV replicase. Tobamovirus, but not Cucumber mosaic virus or Potato virus X, infection of N. tabacum plants resulted in 50% reductions in Rca and AtpC messenger RNA levels. To investigate the role of these host proteins in TMV accumulation and plant defense, we used a Tobacco rattle virus vector to silence these genes in Nicotiana benthamiana plants prior to challenge with TMV expressing green fluorescent protein. TMV-induced fluorescent lesions on Rca- or AtpC-silenced leaves were, respectively, similar or twice the size of those on leaves expressing these genes. Silencing Rca and AtpC did not influence the spread of Tomato bushy stunt virus and Potato virus X. In AtpC- and Rca-silenced leaves TMV accumulation and pathogenicity were greatly enhanced, suggesting a role of both host-encoded proteins in a defense response against TMV. In addition, silencing these host genes altered the phenotype of the TMV infection foci and VRCs, yielding foci with concentric fluorescent rings and dramatically more but smaller VRCs. The concentric rings occurred through renewed virus accumulation internal to the infection front.

  16. The Tobacco mosaic virus Movement Protein Associates with but Does Not Integrate into Biological Membranes

    Science.gov (United States)

    Peiró, Ana; Martínez-Gil, Luis; Tamborero, Silvia; Pallás, Vicente

    2014-01-01

    ABSTRACT Plant positive-strand RNA viruses require association with plant cell endomembranes for viral translation and replication, as well as for intra- and intercellular movement of the viral progeny. The membrane association and RNA binding of the Tobacco mosaic virus (TMV) movement protein (MP) are vital for orchestrating the macromolecular network required for virus movement. A previously proposed topological model suggests that TMV MP is an integral membrane protein with two putative α-helical transmembrane (TM) segments. Here we tested this model using an experimental system that measured the efficiency with which natural polypeptide segments were inserted into the ER membrane under conditions approximating the in vivo situation, as well as in planta. Our results demonstrated that the two hydrophobic regions (HRs) of TMV MP do not span biological membranes. We further found that mutations to alter the hydrophobicity of the first HR modified membrane association and precluded virus movement. We propose a topological model in which the TMV MP HRs intimately associate with the cellular membranes, allowing maximum exposure of the hydrophilic domains of the MP to the cytoplasmic cellular components. IMPORTANCE To facilitate plant viral infection and spread, viruses encode one or more movement proteins (MPs) that interact with ER membranes. The present work investigated the membrane association of the 30K MP of Tobacco mosaic virus (TMV), and the results challenge the previous topological model, which predicted that the TMV MP behaves as an integral membrane protein. The current data provide greatly needed clarification of the topological model and provide substantial evidence that TMV MP is membrane associated only at the cytoplasmic face of the membrane and that neither of its domains is integrated into the membrane or translocated into the lumen. Understanding the topology of MPs in the ER is vital for understanding the role of the ER in plant virus transport

  17. Behavior of RNAi suppressor protein 2b of Cucumber mosaic virus in planta in presence and absence of virus.

    Science.gov (United States)

    Praveen, Shelly; Mangrauthia, Satendra K; Singh, Priyanka; Mishra, Anil K

    2008-08-01

    The 2b protein encoded by Cucumber mosaic virus (CMV) has been shown as a virus counter defense factor that interferes with the RNAi pathway. The 2b gene from CMV-banana, New Delhi isolate (CMV-NDLS) was amplified from CMV infected cucumber plants to generate the sense and antisense binary vector constructs for 2b expression and repression in planta. Constitutive expression of 2b gene in healthy Nicotiana tabacum caused phenotypic aberrations during somatic embryogenesis, which were not observed when expressed in CMV infected N. tabacum. Further, the established virus population in CMV infected N. tabacum was not affected by constitutive expression and repression of 2b gene. Thus, indicating its role in initiation of gene silencing, at the early stage of viral infection. This is the first demonstration of differential behavior of 2b suppressor protein in host development in the absence and presence of virus.

  18. Transgenic Sugarcane Resistant to Sorghum mosaic virus Based on Coat Protein Gene Silencing by RNA Interference

    Directory of Open Access Journals (Sweden)

    Jinlong Guo

    2015-01-01

    Full Text Available As one of the critical diseases of sugarcane, sugarcane mosaic disease can lead to serious decline in stalk yield and sucrose content. It is mainly caused by Potyvirus sugarcane mosaic virus (SCMV and/or Sorghum mosaic virus (SrMV, with additional differences in viral strains. RNA interference (RNAi is a novel strategy for producing viral resistant plants. In this study, based on multiple sequence alignment conducted on genomic sequences of different strains and isolates of SrMV, the conserved region of coat protein (CP genes was selected as the target gene and the interference sequence with size of 423 bp in length was obtained through PCR amplification. The RNAi vector pGII00-HACP with an expression cassette containing both hairpin interference sequence and cp4-epsps herbicide-tolerant gene was transferred to sugarcane cultivar ROC22 via Agrobacterium-mediated transformation. After herbicide screening, PCR molecular identification, and artificial inoculation challenge, anti-SrMV positive transgenic lines were successfully obtained. SrMV resistance rate of the transgenic lines with the interference sequence was 87.5% based on SrMV challenge by artificial inoculation. The genetically modified SrMV-resistant lines of cultivar ROC22 provide resistant germplasm for breeding lines and can also serve as resistant lines having the same genetic background for study of resistance mechanisms.

  19. 图像拼接重建苹果树冠层器官三维形态%Image mosaics reconstruction of canopy organ morphology of apple trees

    Institute of Scientific and Technical Information of China (English)

    马晓丹; 孟庆宽; 张丽娇; 刘刚; 周薇

    2014-01-01

    technology, through which the distance information of objects could be obtained at a speed of 40fps. Although the resolution of the PMD is relatively low, it can be made up by color images. Therefore, the combination of the PMD camera and color camera might be a reliable tool to reconstruct the 3D shape of an apple tree canopy. Two or more inter-public areas of the images can be built into a larger view by image mosaics technology, which has been widely used in many fields, such as computer vision, medicine, and remote sensing, but has not been applied in the canopy organ image mosaics of apple trees in different growth stages. The image mosaics of the canopy are a key to the three-dimensional reconstruction of an apple tree. In order to reconstruct the three-dimensional shape of apple tree canopies in annual growth cycle, the apple tree canopies in the dormant period, the flower thinning period, and the mature period were set for the study, and the color and intensity images were captured by a color camera and a PMD camera based on photonic mixer detector technology, respectively. The images were investigated by mosaics technology following the two steps. First, a scale invariant feature transform (SIFT) algorithm combined with random sample consensus (RANSAC) algorithm was used to establish an image space mapping model which avoided the influences caused by non-structured light and image scale transformation. Secondly, on the basis of what was studied above, the canopy image mosaics were realized through a Laplace pyramid decomposition and reconstruction algorithm, as well as different fusion rules for different frequency bands of pyramid decomposition, which overcome the disadvantages of obvious mosaic trace and bad capacity of reflecting details for fusion images. In order to analyze the quality of the images fused by the algorithm above in the paper, entropy, mutual information, root mean square error, as well as running time were used to evaluate the fusion quality

  20. Evaluating the ability of the barley stripe mosaic virus-induced gene silencing system to simultaneously silence two wheat genes

    Science.gov (United States)

    Virus-induced gene silencing (VIGS) is an important tool for rapid assessment of gene function in plants. The ability of the Barley Stripe Mosaic Virus (BSMV) VIGS system to simultaneously silence two genes was assessed by comparing the extent of down-regulation of the wheat PDS and SGT1 genes afte...

  1. Alfalfa mosaic virus replicase proteins P1 and P2 interact and colocalize at the vacuolar membrane

    NARCIS (Netherlands)

    Heijden, van der M.W.; Carette, J.E.; Reinhoud, P.J.; Haegi, A.; Bol, J.F.

    2001-01-01

    Replication of Alfalfa mosaic virus (AMV) RNAs depends on the virus-encoded proteins P1 and P2. P1 contains methyltransferase- and helicase-like domains, and P2 contains a polymerase-like domain. Coimmunoprecipitation experiments revealed an interaction between in vitro translated-P1 and P2 and show

  2. Developing an Alternanthera mosaic virus vector for efficient clonging of Whitefly cDNA RNAi to screen gene function

    Science.gov (United States)

    Alternanthera mosaic virus (AltMV; genus Potexvirus) is distinguished from the type member of the genus, Potato virus X by features of viral movement and variation within triple gene block protein 1 (TGB1). AltMV TGB1 variants TGB1L88 and TGB1P88 confer strong and weak silencing suppression, respect...

  3. Dynamic transcriptome profiling of Bean Common Mosaic Virus (BCMV) infection in Common Bean (Phaseolus vulgaris L.).

    Science.gov (United States)

    Martin, Kathleen; Singh, Jugpreet; Hill, John H; Whitham, Steven A; Cannon, Steven B

    2016-08-11

    Bean common mosaic virus (BCMV) is widespread, with Phaseolus species as the primary host plants. Numerous BCMV strains have been identified on the basis of a panel of bean varieties that distinguish the pathogenicity types with respect to the viral strains. The molecular responses in Phaseolus to BCMV infection have not yet been well characterized. We report the transcriptional responses of a widely susceptible variety of common bean (Phaseolus vulgaris L., cultivar 'Stringless green refugee') to two BCMV strains, in a time-course experiment. We also report the genome sequence of a previously unreported BCMV strain. The interaction with the known strain NL1-Iowa causes moderate symptoms and large transcriptional responses, and the newly identified strain (Strain 2 or S2) causes severe symptoms and moderate transcriptional responses. The transcriptional profiles of host plants infected with the two isolates are distinct, and involve numerous differences in splice forms in particular genes, and pathway specific expression patterns. We identified differential host transcriptome response after infection of two different strains of Bean common mosaic virus (BCMV) in common bean (Phaseolus vulgaris L.). Virus infection initiated a suite of changes in gene expression level and patterns in the host plants. Pathways related to defense, gene regulation, metabolic processes, photosynthesis were specifically altered after virus infection. Results presented in this study can increase the understanding of host-pathogen interactions and provide resources for further investigations of the biological mechanisms in BCMV infection and defense.

  4. Occurrence of Cucumber mosaic virus on vanilla (Vanilla planifolia Andrews) in India

    Indian Academy of Sciences (India)

    R Madhubala; V Bhadramurthy; A I Bhat; P S Hareesh; S T Retheesh; R S Bhai

    2005-06-01

    Cucumber mosaic virus (CMV) causing mosaic, leaf distortion and stunting of vanilla (Vanilla planifolia Andrews) in India was characterized on the basis of biological and coat protein (CP) nucleotide sequence properties. In mechanical inoculation tests, the virus was found to infect members of Chenopodiaceae, Cucurbitaceae, Fabaceae and Solanaceae. Nicotiana benthamiana was found to be a suitable host for the propagation of CMV. The virus was purified from inoculated N. benthamiana plants and negatively stained purified preparations contained isometric particles of about 28 nm in diameter. The molecular weight of the viral coat protein subunits was found to be 25.0 kDa. Polyclonal antiserum was produced in New Zealand white rabbit, immunoglobulin G (IgG) was purified and conjugated with alkaline phosphatase enzyme. Double antibody sandwich-enzyme linked immunosorbent assay (DAS-ELISA) method was standardized for the detection of CMV infection in vanilla plants. CP gene of the virus was amplified using reverse transcriptase-polymerase chain reaction (RT-PCR), cloned and sequenced. Sequenced region contained a single open reading frame of 657 nucleotides potentially coding for 218 amino acids. Sequence analyses with other CMV isolates revealed the greatest identity with black pepper isolate of CMV (99%) and the phylogram clearly showed that CMV infecting vanilla belongs to subgroup IB. This is the first report of occurrence of CMV on V. planifolia from India.

  5. Sequencing and computational analysis of complete genome sequences of Citrus yellow mosaic badna virus from acid lime and pummelo.

    Science.gov (United States)

    Borah, Basanta K; Johnson, A M Anthony; Sai Gopal, D V R; Dasgupta, Indranil

    2009-08-01

    Citrus yellow mosaic badna virus (CMBV), a member of the Family Caulimoviridae, Genus Badnavirus, is the causative agent of Citrus mosaic disease in India. Although the virus has been detected in several citrus species, only two full-length genomes, one each from Sweet orange and Rangpur lime, are available in publicly accessible databases. In order to obtain a better understanding of the genetic variability of the virus in other citrus mosaic-affected citrus species, we performed the cloning and sequence analysis of complete genomes of CMBV from two additional citrus species, Acid lime and Pummelo. We show that CMBV genomes from the two hosts share high homology with previously reported CMBV sequences and hence conclude that the new isolates represent variants of the virus present in these species. Based on in silico sequence analysis, we predict the possible function of the protein encoded by one of the five ORFs.

  6. Transiently Expressed Short Hairpin RNA Targeting 126 kDa Protein of Tobacco Mosaic Virus Interferes with Virus Infection

    Institute of Scientific and Technical Information of China (English)

    Ming-Min ZHAO; De-Rong AN; Jian ZHAO; Guang-Hua HUANG; Zu-Hua HE; Jiang-Ye CHEN

    2006-01-01

    RNA interference (RNAi) silences gene expression by guiding mRNA degradation in asequence-specific fashion. Small interfering RNA (siRNA), an intermediate of the RNAi pathway, has been shown to be very effective in inhibiting virus infection in mammalian cells and cultured plant cells. Here, we report that Agrobacterium tumefaciens-mediated transient expression of short hairpin RNA (shRNA) could inhibit tobacco mosaic virus (TMV) RNA accumulation by targeting the gene encoding the replication-associated 126 kDa protein in intact plant tissue. Our results indicate that transiently expressed shRNA efficiently interfered with TMV infection. The interference observed is sequence-specific, and time- and site-dependent.Transiently expressed shRNA corresponding to the TMV 126 kDa protein gene did not inhibit cucumber mosaic virus (CMV), an unrelated tobamovirus. In order to interfere with TMV accumulation in tobacco leaves, it is essential for the shRNA constructs to be infiltrated into the same leaves as TMV inoculation. Our results support the view that RNAi opens the door for novel therapeutic procedures against virus diseases.We propose that a combination of the RNAi technique and Agrobacterium-mediated transient expression could be employed as a potent antiviral treatment in plants.

  7. EFEKTIVITAS SATELIT RNA YANG BERASOSIASI DENGAN CUCUMBER MOSAIC VIRUS (CARNA-5 UNTUK MENGENDALIKAN PENYAKIT VIRUS PADA TANAMAN TOMAT

    Directory of Open Access Journals (Sweden)

    Hasriadi Mat Akin

    2013-09-01

    Full Text Available Two strains of CMV associated satellite RNA (CARNA 5.1 and CARNA 5.2 were evaluated to control severe strain of Cucumber mosaic virus (CMV-G, Tobacco mosaic virus (TMV, and Potato virus Y (PVY on tomato plants.  Tomato plants were mechanically inoculated with CARNA 5.1 and CARNA 5.2 to protect the plants from super infection of CMV-G, TMV, and PVY.  The result revealed that inoculation of CARNA 5.1 and CARNA 5.2 to tomato plants effectively controlled the plants from CMV-G super infection. The effectiveness of  CARNA 5.1 and CARNA 5.2 to unrelated virus, TMV and PVY, was evaluated in this experiment.  The result showed that CARNA 5.1 and CARNA 5.2 inhibited TMV and PVY infection.  CMV-G super infection on protected tomato plants showed mild disease symptoms, significant redution of  plant growth, height, and yield; however, nonprotected plants showed severe disease  symptoms and significant inhibition of plant growth and tomato yield.

  8. Enhanced nicking activity of Rep in presence of pre-coat protein of Mungbean yellow mosaic India virus.

    Science.gov (United States)

    Rouhibakhsh, A; Choudhury, N R; Mukherjee, S K; Malathi, V G

    2012-04-01

    Yellow mosaic disease causes severe yield loss in grain legumes in Indian subcontinent and south east Asia. The disease is caused by two virus species, Mungbean yellow mosaic India virus (MYMIV) and Mungbean yellow mosaic virus (MYMV). They have genome organization typical of Old World begomoviruses, the unique feature being the presence of an open reading frame (ORF) AV2 upstream of coat protein gene. In order to elucidate its function, ORF AV2 of blackgram isolate, Mungbean yellow mosaic India virus-[India:New Delhi:Blackgram 3:1991] MYMIV-[IN:ND:Bg3:91] and cowpea isolate, Mungbean yellow mosaic India virus-[India:New Delhi:Cowpea7:1998] MYMIV-[IN:ND:Cp7:98], respectively, were over expressed in Escherichia coli in fusion with maltose binding protein (MBP). The recombinant protein did not show efficient binding to DNA. However, both MBP-BgAV2 and MBP-CpAV2 proteins modulated nicking and ATPase activity of replication initiation protein (Rep). Even low concentration, 20 ng of MBP-BgAV2 and MBP-CpAV2 could bring 20 folds increase in nicking activity of Rep. Similarly in the presence of AV2 protein, two to three fold increase in ATPase activity was observed. It is hypothesized that AV2 protein may play a role of accessory protein modulating Rep activities.

  9. Determination of set potential voltages for cucumber mosaic virus detection using screen printed carbon electrode

    Science.gov (United States)

    Uda, M. N. A.; Hasfalina, C. M.; Samsuzana, A. A.; Faridah, S.; Rafidah A., R.; Hashim, U.; Ariffin, Shahrul A. B.; Gopinath, Subash C. B.

    2017-03-01

    Cucumber Mosaic Virus (CMV) is a most dangerous pathogen among the cucurbit plant which it striking cucumbers, zucchinis, squashes, watermelons but it also striking to non-cucurbit such as peppers, tobaccos, celeries, beans and tomatoes. Symptoms shown by this virus when they starting to strike are very significant and at the end can kill the hosts they infected. In order to detect these viruses, biosensor such as screen-printed carbon electrode (SPCE) is developed and fixes a set potential voltage is defined using Chronoamperometry (CM) immunosensor technique. For short introduction, CM is a process which is a constant applied potential voltage between the working and reference electrode is maintained in order to create an electrons transfer for the oxidation or reduction species taking place at the surface of working electrode is measured and in this manuscript, complete details about measurement were used to finding the stable set potential voltages will be pointed out.

  10. Cymbidium chlorotic mosaic virus, a new sobemovirus isolated from a spring orchid (Cymbidium goeringii) in Japan.

    Science.gov (United States)

    Kondo, Hideki; Takemoto, Shogo; Maruyama, Kazuyuki; Chiba, Sotaro; Andika, Ida Bagus; Suzuki, Nobuhiro

    2015-08-01

    Cymbidium chlorotic mosaic virus (CyCMV), isolated from a spring orchid (Cymbidium goeringii), was characterized molecularly. CyCMV isometric virions comprise a single, positive-strand RNA genome of 4,083 nucleotides and 30-kDa coat protein. The virus genome contains five overlapping open reading frames with a genomic organization similar to that of sobemoviruses. BLAST searches and phylogenetic analysis revealed that CyCMV is most closely related to papaya lethal yellowing virus, a proposed dicot-infecting sobemovirus (58.8 % nucleotide sequence identity), but has a relatively distant relationship to monocot-infecting sobemoviruses, with only modest sequence identities. This suggests that CyCMV is a new monocot-infecting member of the floating genus Sobemovirus.

  11. Stability of Barley stripe mosaic virus induced gene silencing in barley

    DEFF Research Database (Denmark)

    Bruun-Rasmussen, Marianne; Madsen, Christian Toft; Jessing, Stine

    2007-01-01

    Virus-induced gene silencing (VIGS) can be used as a powerful tool for functional genomics studies in plants. With this approach, it is possible to target most genes and downregulate the messenger (m)RNA in a sequence-specific manner. Barley stripe mosaic virus (BSMV) is an established VIGS vector...... for barley and wheat; however, silencing using this vector is generally transient, with efficient silencing often being confined to the first two or three systemically infected leaves. To investigate this further, part of the barley Phytoene desaturase (PDS) gene was inserted into BSMV and the resulting...... inoculation, although large parts of the insert had been lost from the virus vector. The instability of the insert, observed consistently throughout our experiments, offers an explanation for the transient nature of silencing when using BSMV as a VIGS vector....

  12. Bunias orientalis L. as a natural overwintering host OF Turnip mosaic virus

    Directory of Open Access Journals (Sweden)

    Tadeusz Kobyłko

    2012-12-01

    Full Text Available A virus was isolated, using mechanical inoculation, from hill mustard (Bunias orientalis L. plants exhibiting yellow mottling and blistering on leaves, which were frequently accompanied by asymmetric leaf narrowing. It systemically infected certain plants from the family Brassicaceae (Brassica rapa, Bunias orientalis, Hesperis matronalis, Sinapis alba as well as Cleome spinosa and Nicotiana clevelandii, and locally Atriplex hortensis, Chenopodium quinoa, Ch. amaranticolor, N. tabacum. In the sap, it maintained infectivity for 3-4 days and lost it after heating for 10 min. at a temperature of 55 - 60oC or when diluted with water at 10-3. Virus particles were thread- like with a length of 675 - 710 nm. Based on an analysis of biological properties of the pathogen, serological response, particle morphology and data from field observations, it was identified as an isolate of Turnip mosaic virus (TuMV, and hill mustard was recognised as a natural overwintering host for this pathogen.

  13. Incorporation of radiolabeled polyamines and methionine into turnip yellow mosaic virus in protoplasts from infected plants

    Energy Technology Data Exchange (ETDEWEB)

    Balint, R.; Cohen, S.S.

    1985-07-15

    Turnip yellow mosaic virus contains large amounts of nonexchangeable spermidine and induces an accumulation of spermidine in infected Chinese cabbage. By 7 days after inoculation, a majority of protoplasts isolated from newly emerging leaves stain with fluorescent antibody to the virus. (/sup 14/C)Spermidine (10 microM) was taken up by these cells in amounts comparable to the original endogenous pool within 24 hr. However, after an initial rise, the spermidine content of the cell returned to its original level, implying considerable regulation of the endogenous pool(s). Putrescine and spermine were major products of the metabolism of exogenous spermidine. Radioactivity from exogenous (/sup 14/C)spermidine was also readily incorporated into the ribonucleoprotein component(s) of the virus, where it appeared as both spermidine and spermine. The specific radioactivities of the viral polyamines were approximately twice those of spermidine and spermine extracted from the whole cell. Radioactivity from (2-/sup 14/C)methionine was readily incorporated into the protein, spermidine, and spermine of the virus. Again, the specific activities of these amines were substantially higher in the virus than in the whole cell. Thus, newly formed virus contained predominantly newly synthesized spermidine and spermine. However, inhibition of spermidine synthesis by dicyclohexylamine led to incorporation of preexisting spermidine and increased amounts of spermine into newly formed virus.

  14. Discovery and small RNA profile of Pecan mosaic-associated virus, a novel potyvirus of pecan trees.

    Science.gov (United States)

    Su, Xiu; Fu, Shuai; Qian, Yajuan; Zhang, Liqin; Xu, Yi; Zhou, Xueping

    2016-05-26

    A novel potyvirus was discovered in pecan (Carya illinoensis) showing leaf mosaic symptom through the use of deep sequencing of small RNAs. The complete genome of this virus was determined to comprise of 9,310 nucleotides (nt), and shared 24.0% to 58.9% nucleotide similarities with that of other Potyviridae viruses. The genome was deduced to encode a single open reading frame (polyprotein) on the plus strand. Phylogenetic analysis based on the whole genome sequence and coat protein amino acid sequence showed that this virus is most closely related to Lettuce mosaic virus. Using electron microscopy, the typical Potyvirus filamentous particles were identified in infected pecan leaves with mosaic symptoms. Our results clearly show that this virus is a new member of the genus Potyvirus in the family Potyviridae. The virus is tentatively named Pecan mosaic-associated virus (PMaV). Additionally, profiling of the PMaV-derived small RNA (PMaV-sRNA) showed that the most abundant PMaV-sRNAs were 21-nt in length. There are several hotspots for small RNA production along the PMaV genome; two 21-nt PMaV-sRNAs starting at 811 nt and 610 nt of the minus-strand genome were highly repeated.

  15. Tobacco Mosaic Virus in the Lungs of Mice following Intra-Tracheal Inoculation

    Science.gov (United States)

    Balique, Fanny; Colson, Philippe; Barry, Abdoulaye Oury; Nappez, Claude; Ferretti, Audrey; Moussawi, Khatoun Al; Ngounga, Tatsiana; Lepidi, Hubert; Ghigo, Eric; Mege, Jean-Louis; Lecoq, Hervé; Raoult, Didier

    2013-01-01

    Plant viruses are generally considered incapable of infecting vertebrates. Accordingly, they are not considered harmful for humans. However, a few studies questioned the certainty of this paradigm. Tobacco mosaic virus (TMV) RNA has been detected in human samples and TMV RNA translation has been described in animal cells. We sought to determine if TMV is detectable, persists, and remains viable in the lung tissues of mice following intratracheal inoculation, and we attempted to inoculate mouse macrophages with TMV. In the animal model, mice were intratracheally inoculated with 1011 viral particles and were sacrificed at different time points. The virus was detected in the mouse lungs using immunohistochemistry, electron microscopy, real-time RT-PCR and sequencing, and its viability was studied with an infectivity assay on plants. In the cellular model, the culture medium of murine bone marrow derived macrophages (BMDM) was inoculated with different concentrations of TMV, and the virus was detected with real-time RT-PCR and immunofluorescence. In addition, anti-TMV antibodies were detected in mouse sera with ELISA. We showed that infectious TMV could enter and persist in mouse lungs via the intratracheal route. Over 14 days, the TMV RNA level decreased by 5 log10 copies/ml in the mouse lungs and by 3.5 log10 in macrophages recovered from bronchoalveolar lavage. TMV was localized to lung tissue, and its infectivity was observed on plants until 3 days after inoculation. In addition, anti-TMV antibody seroconversions were observed in the sera from mice 7 days after inoculation. In the cellular model, we observed that TMV persisted over 15 days after inoculation and it was visualized in the cytoplasm of the BMDM. This work shows that a plant virus, Tobacco mosaic virus, could persist and enter in cells in mammals, which raises questions about the potential interactions between TMV and human hosts. PMID:23383021

  16. The interaction between Turnip crinkle virus p38 and Cucumber mosaic virus 2b and its critical domains.

    Science.gov (United States)

    Li, Yanan; Zhang, Jing; Zhao, Feifei; Ren, Han; Zhu, Lin; Xi, Dehui; Lin, Honghui

    2016-08-15

    Cross protection is a common phenomenon among closely related strain viruses in co-infected plants. However, unrelated viruses, Turnip crinkle virus (TCV) and Cucumber mosaic virus (CMV), also show an antagonistic effect in co-infected Arabidopsis plants. In many cases, viral suppressors of RNA silencing (VSRs) have important roles in the interactions between viruses in mixed infections. CMV 2b and TCV p38 are multifunctional proteins and both of them are well characterized VSRs and have important roles in operation synergistic interactions with other viruses. Here, we demonstrated antagonistic effects of TCV toward CMV and showed that RNA silencing-mediated resistance protein, RCY1 and TCV-interacting protein (TIP) of Arabidopsis plants did not affect this antagonism effect. We further showed that TCV p38 and CMV 2b could interact with each other in vivo but not in vitro. Further mutational analysis showed that C-terminal of 2b and middle domains of p38 had more important roles in the interaction between the two viruses.

  17. Pseudorecombination between Two Distinct Strains of Cucumber mosaic virus Results in Enhancement of Symptom Severity

    Directory of Open Access Journals (Sweden)

    Mi Sa Vo Phan

    2014-09-01

    Full Text Available Recently, a Cucumber mosaic virus (CMV strain, named as CMV-209, was isolated from Glycine soja. In this study, symptom expression of CMV-209 was analyzed in detail in Nicotiana benthamiana by comparing with that of CMV-Fny, which is a representative strain of CMV. Using infectious cDNA clones of CMV strains 209 and Fny, symptom expression of various pseudorecombinants between these two strains were examined in the early and late infection stages. In the early infection stage, the pseudorecombinants containing Fny-RNA2 induced stunting and leaf distortion on the newly emerged leaves whereas the pseudorecombinants containing 209-RNA2 caused no obvious symptoms. In the late infection stage, the pseudorecombinants containing 209-RNA1 and Fny-RNA2 induced severe leaf distortion and stunting, while CMV-209 induced mild symptom and CMV-Fny caused typical mosaic, general stunting, and leaf distortion symptoms, indicating that RNA 2 encodes a symptom determinant(s of CMV, which is capable of enhancing symptoms. Furthermore, our results support the possibility that natural recombination between compatible viruses can result in emergence of novel viruses causing severe damages in crop fields.

  18. Pseudorecombination between Two Distinct Strains of Cucumber mosaic virus Results in Enhancement of Symptom Severity.

    Science.gov (United States)

    Phan, Mi Sa Vo; Seo, Jang-Kyun; Choi, Hong-Soo; Lee, Su-Heon; Kim, Kook-Hyung

    2014-09-01

    Recently, a Cucumber mosaic virus (CMV) strain, named as CMV-209, was isolated from Glycine soja. In this study, symptom expression of CMV-209 was analyzed in detail in Nicotiana benthamiana by comparing with that of CMV-Fny, which is a representative strain of CMV. Using infectious cDNA clones of CMV strains 209 and Fny, symptom expression of various pseudorecombinants between these two strains were examined in the early and late infection stages. In the early infection stage, the pseudorecombinants containing Fny-RNA2 induced stunting and leaf distortion on the newly emerged leaves whereas the pseudorecombinants containing 209-RNA2 caused no obvious symptoms. In the late infection stage, the pseudorecombinants containing 209-RNA1 and Fny-RNA2 induced severe leaf distortion and stunting, while CMV-209 induced mild symptom and CMV-Fny caused typical mosaic, general stunting, and leaf distortion symptoms, indicating that RNA 2 encodes a symptom determinant(s) of CMV, which is capable of enhancing symptoms. Furthermore, our results support the possibility that natural recombination between compatible viruses can result in emergence of novel viruses causing severe damages in crop fields.

  19. Molecular evidence that zucchini yellow fleck virus is a distinct and variable potyvirus related to papaya ringspot virus and Moroccan watermelon mosaic virus.

    Science.gov (United States)

    Desbiez, C; Justafre, I; Lecoq, H

    2007-02-01

    Zucchini yellow fleck virus (ZYFV, genus Potyvirus) infects cultivated or wild cucurbits in the Mediterranean basin and occasionally causes severe damage in crops. Biological and serological data tend to indicate that ZYFV is related to other cucurbit-infecting potyviruses, mainly papaya ringspot virus (PRSV) and Moroccan watermelon mosaic virus (MWMV). In order to establish unambiguously the taxonomic status of ZYFV, the sequence of the 3' part of the genome - encompassing the CP coding region - of two ZYFV strains originating from Italy and France was obtained and compared with other potyviruses. The results obtained indicate that ZYFV belongs to a distinct potyvirus species, related to but different from PRSV and MWMV.

  20. Sequences enhancing cassava mosaic disease symptoms occur in the cassava genome and are associated with South African cassava mosaic virus infection.

    Science.gov (United States)

    Maredza, A T; Allie, F; Plata, G; Rey, M E C

    2016-06-01

    Cassava is an important food security crop in Sub-Saharan Africa. Two episomal begomovirus-associated sequences, named Sequences Enhancing Geminivirus Symptoms (SEGS1 and SEGS2), were identified in field cassava affected by the devastating cassava mosaic disease (CMD). The sequences reportedly exacerbated CMD symptoms in the tolerant cassava landrace TME3, and the model plants Arabidopsis thaliana and Nicotiana benthamiana, when biolistically co-inoculated with African cassava mosaic virus-Cameroon (ACMV-CM) or East African cassava mosaic virus-UG2 (EACMV-UG2). Following the identification of small SEGS fragments in the cassava EST database, the intention of this study was to confirm their presence in the genome, and investigate a possible role for these sequences in CMD. We report that multiple copies of varying lengths of both SEGS1 and SEGS2 are widely distributed in the sequenced cassava genome and are present in several other cassava accessions screened by PCR. The endogenous SEGS1 and SEGS2 are in close proximity or overlapping with cassava genes, suggesting a possible role in regulation of specific biological processes. We confirm the expression of SEGS in planta using EST data and RT-PCR. The sequence features of endogenous SEGS (iSEGS) are unique but resemble non-autonomous transposable elements (TEs) such as MITEs and helitrons. Furthermore, many SEGS-associated genes, some involved in virus-host interactions, are differentially expressed in susceptible (T200) and tolerant TME3) cassava landraces infected by South African cassava mosaic virus (SACMV) of susceptible (T200) and tolerant (TME3) cassava landraces. Abundant SEGS-derived small RNAs were also present in mock-inoculated and SACMV-infected T200 and TME3 leaves. Given the known role of TEs and associated genes in gene regulation and plant immune responses, our observations are consistent with a role of these DNA elements in the host's regulatory response to geminiviruses.

  1. Dynamics of small RNA profiles of virus and host origin in wheat cultivars synergistically infected by Wheat streak mosaic virus and Triticum mosaic virus: virus infection caused a drastic shift in the endogenous small RNA profile.

    Science.gov (United States)

    Tatineni, Satyanarayana; Riethoven, Jean-Jack M; Graybosch, Robert A; French, Roy; Mitra, Amitava

    2014-01-01

    Co-infection of wheat (Triticum aestivum L.) by Wheat streak mosaic virus (WSMV, a Tritimovirus) and Triticum mosaic virus (TriMV, a Poacevirus) of the family Potyviridae causes synergistic interaction. In this study, the effects of the synergistic interaction between WSMV and TriMV on endogenous and virus-derived small interfering RNAs (vsiRNAs) were examined in susceptible ('Arapahoe') and temperature-sensitive resistant ('Mace') wheat cultivars at 18°C and 27°C. Single and double infections in wheat caused a shift in the profile of endogenous small RNAs from 24 nt being the most predominant in healthy plants to 21 nt in infected wheat. Massive amounts of 21 and 22 nt vsiRNAs accumulated in singly and doubly infected Arapahoe at both temperatures and in Mace at 27°C but not 18°C. The plus- and minus-sense vsiRNAs were distributed throughout the genomic RNAs in Arapahoe at both temperature regimens and in Mace at 27°C, although some regions served as hot-spots, spawning an excessive number of vsiRNAs. The vsiRNA peaks were conserved among cultivars, suggesting that the Dicer-like enzymes in susceptible and resistant cultivars similarly accessed the genomic RNAs of WSMV or TriMV. Accumulation of large amounts of vsiRNAs in doubly infected plants suggests that the silencing suppressor proteins encoded by TriMV and WSMV do not prevent the formation of vsiRNAs; thus, the synergistic effect observed is independent from RNA-silencing mediated vsiRNA biogenesis. The high-resolution map of endogenous and vsiRNAs from WSMV- and/or TriMV-infected wheat cultivars may form a foundation for understanding the virus-host interactions, the effect of synergistic interactions on host defense, and virus resistance mechanisms in wheat.

  2. Colorimetric detection of Cucumber green mottle mosaic virus using unmodified gold nanoparticles as colorimetric probes.

    Science.gov (United States)

    Wang, Lin; Liu, Zhanmin; Xia, Xueying; Yang, Cuiyun; Huang, Junyi; Wan, Sibao

    2017-05-01

    Cucumber green mottle mosaic virus (CGMMV)causes a severe mosaic symptom of watermelon and cucumber, and can be transmitted via infected cucumber seeds, leaves and soil. It remains a challenge to detect this virus to prevent its introduction and infection and spread in fields. For this purpose, a simple and sensitive label-free colorimetric detection method for CGMMV has been developed with unmodified gold nanoparticles (AuNPs) as colorimetric probes. The method is based on the finding that the presence of RT-PCR target products of CGMMV and species-specific probes results in color change of AuNPs from red to blue after NaCl induction. Normally, species-specific probes attach to the surface of AuNPs and thereby increasing their resistance to NaCl-induced aggregation. The concentration of sodium, probes in the reaction system and evaluation of specificity and sensitivity of a novel assay, visual detection of Cucumber green mottle mosaic virus using unmodified AuNPs has been carried out with simple preparation of samples in our study. Through this assay, as low as 30pg/μL of CGMMV RNA was thus detected visually, by the naked eye, without the need for any sophisticated, expensive instrumentation and biochemical reagents. The specificity was 100% and exhibited good reproducibility in our assays. The results note that this assay is highly species-specific, simple, low-cost, and visual for easy detection of CGMMV in plant tissues. Therefore, visual assay is a potentially useful tool for middle or small-scales corporations and entry-exit inspection and quarantine bureau to detect CGMMV in cucumber seeds or plant tissues.

  3. Variabilidade genética de Sugarcane mosaic virus, causando mosaico em milho no Brasil

    Directory of Open Access Journals (Sweden)

    Marcos Cesar Gonçalves

    2011-04-01

    Full Text Available O objetivo deste trabalho foi caracterizar biológica e molecularmente três isolados de Sugarcane mosaic virus (SCMV de lavouras de milho, analisá-los filogeneticamente e discriminar polimorfismos do genoma. Plantas com sintomas de mosaico e nanismo foram coletadas em lavouras de milho, no Estado de São Paulo e no Município de Rio Verde, GO, e seus extratos foliares foram inoculados em plantas indicadoras e submetidos à análise sorológica com antissoros contra o SCMV, contra o Maize dwarf mosaic virus (MDMV e contra o Johnsongrass mosaic virus (JGMV. Mudas de sorgo 'Rio' e 'TX 2786' apresentaram sintomas de mosaico após a inoculação dos três isolados, e o DAS-ELISA confirmou a infecção pelo SCMV. O RNA total foi extraído e usado para amplificação por transcriptase reversa seguida de reação em cadeia de polimerase (RT-PCR. Fragmentos específicos foram amplificados, submetidos à análise por polimorfismo de comprimento de fragmento de restrição (RFLP e sequenciados. Foi possível discriminar os genótipos de SCMV isolados de milho de outros isolados brasileiros do vírus. Alinhamentos múltiplos e análises dos perfis filogenéticos corroboram esses dados e mostram diversidade nas sequências de nucleotídeos que codificam para a proteína capsidial, o que explica o agrupamento separado desses isolados e sugere sua classificação como estirpes distintas, em lugar de simples isolados geográficos.

  4. Yellow mosaic symptom caused by the nuclear shuttle protein gene of mungbean yellow mosaic virus is associated with single-stranded DNA accumulation and mesophyll spread of the virus.

    Science.gov (United States)

    Kuruba, B L; Buvani, A P; Veluthambi, K

    Mungbean yellow mosaic virus-[India:Vigna] (MYMV-[IN:Vig]), a blackgram isolate of MYMV, causes yellow mosaic disease in blackgram and mungbean. Two variable DNA-B components, KA22 and KA27, cause distinct symptoms in blackgram [V. mungo (L.) Hepper] with the same DNA-A component. KA22 + DNA-A-agroinoculated blackgram plants displayed yellow mosaic symptom and accumulated high levels of viral single-stranded (ss) DNA. KA27 + DNA-A-agroinoculated blackgram plants displayed severe stunting symptom and accumulated very low levels of viral ssDNA. However, in mungbean [V. radiata (L.) Wilczek], KA27 + DNA-A caused yellow mosaic symptom and a high level of viral ssDNA accumulated. Swapping of KA27 DNA-B with the nuclear shuttle protein gene (NSP) of KA22 DNA-B (KA27xKA22 NSP) caused yellow mosaic symptom in blackgram, suggesting that KA22 NSP is the determinant of yellow mosaic symptom. Interestingly, KA27xKA22 NSP-infected blackgram plants accumulated high levels of viral ssDNA, comparable to that of KA22 DNA-B infection, suggesting that the KA22 NSP is responsible for accumulation of high levels of viral ssDNA. MYMV distribution was studied in blackgram and mungbean plants by leaf tissue hybridization, which showed mesophyll spread of the virus in KA22-infected blackgram leaflets and in KA27-infected mungbean leaflets, both of which displayed yellow mosaic symptom. However, the virus did not accumulate in the mesophyll in the case of KA27-infected blackgram leaflets. Interestingly, the swapped KA27xKA22 NSP-infected blackgram leaflets showed mesophyll accumulation of the virus, suggesting that KA22 NSP determines its mesophyll spread.

  5. Why mosaic? Gene expression profiling of African cassava mosaic virus-infected cassava reveals the effect of chlorophyll degradation on symptom development.

    Science.gov (United States)

    Liu, Jiao; Yang, Jun; Bi, Huiping; Zhang, Peng

    2014-02-01

    Cassava mosaic disease, caused by cassava begomoviruses, is the most serious disease for cassava in Africa. However, the pathogenesis of this disease is poorly understood. We employed high throughput digital gene expression profiling based on the Illumina Solexa sequencing technology to investigate the global transcriptional response of cassava to African cassava mosaic virus infection. We found that 3,210 genes were differentially expressed in virus-infected cassava leaves. Gene ontology term and Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that genes implicated in photosynthesis were most affected, consistent with the chlorotic symptoms observed in infected leaves. The upregulation of chlorophyll degradation genes, including the genes encoding chlorophyllase, pheophytinase, and pheophorbide a oxygenase, and downregulation of genes encoding the major apoproteins in light-harvesting complex II were confirmed by qRT-PCR. These findings, together with the reduction of chlorophyll b content and fewer grana stacks in the infected leaf cells, reveal that the degradation of chlorophyll plays an important role in African cassava mosaic virus symptom development. This study will provide a road map for future investigations into viral pathogenesis. © 2013 Institute of Botany, Chinese Academy of Sciences.

  6. A genetically modified tobacco mosaic virus that can produce gold nanoparticles from a metal salt precursor.

    Directory of Open Access Journals (Sweden)

    Andrew John Love

    2015-11-01

    Full Text Available We genetically modified tobacco mosaic virus (TMV to surface display a characterized peptide with potent metal ion binding and reducing capacity (MBP TMV, and demonstrate that unlike wild type (WT TMV, this construct can lead to the formation of discrete 10-40 nm gold nanoparticles when mixed with 3 mM potassium tetrachloroaurate. Using a variety of analytical physicochemical approaches it was found that these nanoparticles were crystalline in nature and stable. Given that the MBP TMV can produce metal nanomaterials in the absence of chemical reductants, it may have utility in the green production of metal nanomaterials.

  7. Loop-mediated Isothermal Amplification Assay to Rapidly Detect Wheat Streak Mosaic Virus in Quarantined Plants

    Directory of Open Access Journals (Sweden)

    Siwon Lee

    2015-12-01

    Full Text Available We developed a loop-mediated isothermal amplification (LAMP method to rapidly diagnose Wheat streak mosaic virus (WSMV during quarantine inspections of imported wheat, corn, oats, and millet. The LAMP method was developed as a plant quarantine inspection method for the first time, and its simplicity, quickness, specificity and sensitivity were verified compared to current reverse transcription-polymerase chain reaction (RT-PCR and nested PCR quarantine methods. We were able to quickly screen for WSMV at quarantine sites with many test samples; thus, this method is expected to contribute to plant quarantine inspections.

  8. Flavones from Cassia siamea and their anti-tobacco mosaic virus activity.

    Science.gov (United States)

    Zhou, Min; Zhou, Kun; Xiang, Neng-Jun; Yang, Liu; Zhang, Cheng-Ming; Wang, Yue-De; Dong, Wei; Lou, Jie; Ji, Bing-Kun; Gao, Xue-Mei; Miao, Ming-Ming; Hu, Qiu-Fen

    2015-01-01

    Two new flavones, siameflavones A and B (1 and 2), together with five known flavones (3-7) were isolated from the stem of Cassia siamea. Their structures were elucidated by spectroscopic methods including extensive 1D and 2D NMR techniques. Compounds 1-5 were evaluated for their anti-tobacco mosaic virus (Anti-TMV) activity. The results showed that compounds 1-5 showed weak anti-TMV activity with inhibition rates in the range of 11.6-18.5%.

  9. Physical mapping and molecular cloning of mung bean yellow mosaic virus DNA.

    Science.gov (United States)

    Morinaga, T; Ikegami, M; Miura, K

    1990-01-01

    Viral single-stranded DNA of mung bean yellow mosaic virus (MYMV) was converted to the double-stranded state in vitro, and physical mapping was carried out. The genome of MYMV was found to consist of two major components (designated as DNA 1 and DNA 2). In addition, some minor components were detected. Molecular cloning of the major components was carried out, using in vitro double-stranded DNA and replicative intermediate DNAs. DNA 1 is about 2.72 and DNA 2 about 2.67 kilobase pairs. No similarities were observed when the two restriction maps of DNA 1 and 2 were compared.

  10. The primary structure of papaya mosaic virus coat protein: a revision.

    Science.gov (United States)

    Verde, C; Malorni, A; Parente, A

    1989-12-01

    The presence of an acetyl blocking group at the N-terminus of the coat protein of papaya mosaic virus has been identified by FAB mass spectrometry. Furthermore, we have found that the N-terminal sequence of the protein is four amino-acid residues (AC-Ser-Lys-Ser-Ser-) longer than that previously reported, while Glu instead of Gln is the C-terminal residue. The present paper shows that PMV-protein is made up of 215 amino acid residues, with a molecular mass of 22,960 Da.

  11. New Strategies and Methods to Study Interactions between Tobacco Mosaic Virus Coat Protein and Its Inhibitors

    OpenAIRE

    Li, Xiangyang; Chen, Zhuo; Jin, Linhong; Hu, Deyu; Yang, Song

    2016-01-01

    Studies of the targets of anti-viral compounds are hot topics in the field of pesticide research. Various efficient anti-TMV (Tobacco Mosaic Virus) compounds, such as Ningnanmycin (NNM), Antofine (ATF), Dufulin (DFL) and Bingqingxiao (BQX) are available. However, the mechanisms of the action of these compounds on targets remain unclear. To further study the mechanism of the action of the anti-TMV inhibitors, the TMV coat protein (TMV CP) was expressed and self-assembled into four-layer aggreg...

  12. Evidence of different phylogenetic origins of two mexican sugarcane mosaic virus (scmv) isolates

    OpenAIRE

    Chaves Bedoya, Giovanni; Ortiz Rojas, Luz Yineth

    2012-01-01

    The molecular analysis of the Sugarcane mosaic virus (SCMV) for coat protein cistron reported in the public GenBank database, revealed the presence of 45 additional nucleotides coding for 15 amino acids in the N-terminal region of the coat protein sequence of the mexican isolate GU474635. BLAST analysis indicates this particular feature is also present in the coat protein sequence identified with the accession number D00949 reported in the USA in 1991. Phylogenetic analysis of 185 SCMV coat p...

  13. Characterisation of a virus from Australia that is closely related to papaya mosaic potexvirus.

    Science.gov (United States)

    Geering, A D; Thomas, J E

    1999-01-01

    We have isolated a previously undescribed potexvirus from Alternanthera pungens (Amaranthaceae) in southern Queensland, Australia. This virus was shown to have a moderately wide experimental host range, infecting plants in nine of the twelve families tested. Using specific antibodies, a plate trapped antigen ELISA was developed, allowing detection of virions down to 0.8 microgram/ml of leaf extract. Virions averaged 554 nm long and had a capsid protein with a M(r) of 23.1 x 10(3). A portion of the genome containing the capsid protein ORF and 3' untranslated region was cloned and sequenced. From both serological and amino acid sequence comparisons, the virus was shown to be closely related to papaya mosaic potexvirus (PMV). To determine the taxonomic status of the virus, we assessed variation in the amino acid sequence of capsid proteins of distinct species within the potexvirus genus, as well as variation between strains of the same virus. When the core region of the capsid proteins were compared, distinct species had a maximum of 62.2% sequence identity, whereas strains had a minimum of 88.8% identity. By comparison, the core region of the capsid proteins of the Alternanthera virus and PMV had 79.8% identity. We have concluded that the Alternanthera virus is a different species from PMV, and its relationship with PMV resembles that of potyvirus subgroup members.

  14. Function and Structural Organization of the Replication Protein of Bamboo mosaic virus

    Science.gov (United States)

    Meng, Menghsiao; Lee, Cheng-Cheng

    2017-01-01

    The genus Potexvirus is one of the eight genera belonging to the family Alphaflexiviridae according to the Virus Taxonomy 2015 released by International Committee on Taxonomy of Viruses (www.ictvonline.org/index.asp). Currently, the genus contains 35 known species including many agricultural important viruses, e.g., Potato virus X (PVX). Members of this genus are characterized by flexuous, filamentous virions of 13 nm in diameter and 470–580 nm in length. A potexvirus has a monopartite positive-strand RNA genome, encoding five open-reading frames (ORFs), with a cap structure at the 5′ end and a poly(A) tail at the 3′ end. Besides PVX, Bamboo mosaic virus (BaMV) is another potexvirus that has received intensive attention due to the wealth of knowledge on the molecular biology of the virus. In this review, we discuss the enzymatic activities associated with each of the functional domains of the BaMV replication protein, a 155-kDa polypeptide encoded by ORF1. The unique cap formation mechanism, which may be conserved across the alphavirus superfamily, is particularly addressed. The recently identified interactions between the replication protein and the plant host factors are also described.

  15. Biological and Molecular Variability of Alfalfa mosaic virus Affecting Alfalfa Crop in Riyadh Region

    Directory of Open Access Journals (Sweden)

    Mohammed A. AL-Saleh

    2013-12-01

    Full Text Available In 2011–2012, sixty nine samples were collected from alfalfa plants showing viral infection symptoms in Riyadh region. Mechanical inoculation with sap prepared from two collected samples out of twenty five possitive for Alfalfa mosaic virus (AMV by ELISA were produced systemic mosaic on Vigna unguiculata and Nicotiana tabacum, local lesion on Chenopodium amaranticolor and C. quinoa. Vicia faba indicator plants that induce mosaic and mottle with AMV-Sagir isolate and no infection with AMV-Wadi aldawasser isolate. Approximately 700-bp was formed by RT-PCR using AMV coat protein specific primer. Samples from infected alfalfa gave positive results, while healthy plant gave negative result using dot blot hybridization assay. The nucleotide sequences of the Saudi isolates were compared with corresponding viral nucleotide sequences reported in GenBank. The obtained results showed that the AMV from Australia, Brazil, Puglia and China had the highest similarity with AMV-Sajer isolate. While, the AMV from Spain and New Zealaland had the lowest similarity with AMV-Sajer and Wadi aldawasser isolates. The data obtained in this study has been deposited in the GenBank under the accession numbers KC434083 and KC434084 for AMV-Sajer and AMV- Wadialdawasser respectively. This is the first report regarding the gnetic make up of AMV in Saudi Arabia.

  16. Prevalence and genetic diversity of fig mosaic virus isolates infecting fig tree in Iran.

    Science.gov (United States)

    Danesh-Amuz, S; Rakhshandehroo, F; Rezaee, S

    2014-01-01

    Commercial and outdoor fig orchards in four Iranian provinces were surveyed for the incidence of fig mosaic virus (FMV), fig leaf mottle associated virus 2 (FLMaV-2) and fig mild mottle associated virus (FMMaV) from March 2011 to October 2012. A total of 350 asymptomatic and symptomatic fig samples were collected and tested by dot-immunobinding assay (DIBA) for the fig mosaic disease (FMD) using a polyclonal antiserum. According to DIBA results, FMD was present in 73% of the collected symptomatic samples from all visited regions. Samples with positive reactions in DIBA were then analyzed by RT-PCR using with specific primers. PCR results showed that about 14.8% of the FMD-positive samples from three inspected provinces are infected with at least one virus. FMV was the most widely spread virus (14%) followed by FLMaV-2 (1.5%), whereas FMMaV was not found. Phylogenetic analysis of the glycoprotein nucleotide and amino acid sequences of known FMV isolates showed two independent groups with high bootstrap values, with all Iranian isolates distinctly clustered in group I, subgroup IA beside those reported in Turkey. Nucleotide diversity was high within but low between different selected geographic regions and except for Europe, nucleotide distance within geographic regions was low. Statistical analyses indicated a correlation between the genetic structure of the FMV isolates and the geographical origin of isolation. Our analyses suggested that the FMV population is in a state of increase following a bottleneck or founder event in Iran.

  17. Barley yellow mosaic virus is overcoming RYM4 resistance in Belgium.

    Science.gov (United States)

    Vaïanopoulos, C; Legreve, A; Moreau, V; Steyer, S; Maraite, H; Bragard, C

    2007-01-01

    Barley yellow mosaic virus (BaYMV) is the causal agent of a soil-borne systemic mosaic disease on barley. It has been reported in Belgium since the 1980s. The control of this disease is managed almost exclusively through the use of resistant varieties. The resistance of most commercial barley cultivars grown in Europe is conferred mainly by a single recessive gene, rym4. This monogenic resistance provides immunity against BaYMV pathotype 1 and has been mapped on barley chromosome 3HL and shown to be caused by mutations in the translation initiation factor eIF4E. Another pathotype, BaYMV pathotype 2, which appeared in the late 1980s (in Belgium, in the early 1990s), is able to overcome the rym4-controlled resistance. Until recently, this pathotype remained confined to specific locations. During a systematic survey in 2003, mosaic symptoms were observed only on susceptible barley cultivars collected in Belgian fields. BaYMV was detected by ELISA and RT-PCR on the susceptible cultivars and only by RT-PCR on the resistant cultivars. In 2004, mosaic symptoms were observed on susceptible and resistant cultivars. BaYMV was detected by ELISA and RT-PCR on both cultivars. In addition to developing RT-PCR methods for detecting and identifying BaYMV and Barley mild mosaic virus (BaMMV), an RT-PCR targeting the VPg/NIa viral protein part of the genome, known to discriminate the two BaYMV pathotypes, was set up to accurately identify the pathotype(s) now present in Belgium. The sequences from the generated amplicons revealed the single nucleotide substitution resulting in an amino acid change from lysine to asparagine specific to BaYMV pathotype 2. The possible reasons for the change in the BaYMV pathotype situation in Belgium, such as climatic change or a progressive build-up of soil inoculum potential, will be discussed, as well as the use of eIF4E-based resistance.

  18. Complete genome sequence of an isolate of Clerodendron yellow mosaic virus--a new begomovirus from India.

    Science.gov (United States)

    Sivalingam, P N; Satheesh, V; John, P; Chandramohan, S; Malathi, V G

    2011-01-01

    Clerodendron inerme, a common hedge plant grown in India, is affected by a yellow mosaic disease caused by a begomovirus. In the present study, the complete genome (DNA A) of this virus was cloned and sequenced. The total size of DNA A is 2760 nucleotides. The genome of this virus contains six open reading frames and a non-coding intergenic region of 293 nucleotides. Nucleotide sequence comparison analysis revealed maximum sequence identity with Papaya leaf curl virus-Pakistan [Pakistan:Cotton:2002] (73.9%). As this virus had less than 89% identity with other begomoviruses, it was identified as a new begomovirus species and tentatively, named as Clerodendron yellow mosaic virus-[India:New Delhi:2007] (ClYMV-[IN:ND:07]).

  19. Partial biological and molecular characterization of a Cucumber mosaic virus isolate naturally infecting Cucumis melo in Iran.

    Science.gov (United States)

    Rasoulpour, Rasoul; Afsharifar, Alireza; Izadpanah, Keramat

    2016-06-01

    Melon seedlings showing systemic chlorotic spots and mosaic symptoms were collected in central part of Iran, and a virus was isolated from diseased plants by mechanical inoculation. The virus systemically infected the most inoculated test plants by inducing mosaic symptoms, while, in the members of Fabaceae family and Chenopodium quinoa induced local lesions. Agar gel diffusion test using a polyclonal antiserum against a squash Cucumber mosaic virus (CMV) isolate showed the presence of CMV in the mechanically inoculated plants (designated CMV-Me). The virus was purified by polyethylene glycol precipitation and differential centrifugation. A polyclonal antiserum was produced against the virus that reacted specifically with virus antigen in ELISA and agar gel diffusion tests. The virus was molecularly characterized by PCR amplification of the full length of the coat protein gene using cucumovirus genus specific primer pair CPTALL-3/CPTALL-5 and sequence analysis of the resulting product. No RNA satellite was detected using the primer pair CMVsat3H/sat5T7P. Phylogenetic analysis based on the coat protein amino acid sequences showed that CMV-Me belongs to Subgroup IB. These results may be helpful in melon breeding programs, focusing on plant resistance to plant viruses including CMV.

  20. Research progress in virus elimination techniques for apple trees%苹果脱毒技术研究进展

    Institute of Scientific and Technical Information of China (English)

    胡国君; 董雅凤; 张尊平; 范旭东; 任芳; 朱红娟

    2014-01-01

    Apple(Malus pumila Mill.)is affected by many viral diseases. The major measure for controlling apple virus diseases is eliminating virus from mother trees,constructing parent plants for reproducing scion and stock materials and planting virus-free seedlings. Four kinds of viruses and one kind of viroid commonly occurred in ap-ple trees. This review summarized the measures applied for apple virus elimination,e.g. shoot tip culture,ther-motherapy,chemotherapy,shoot-tip micrografting and cold therapy,and analyzed the application efficiency and different approaches for different virus types. It will help the future research in the field of virus elimination from apple trees.%苹果(Malus pumila Mill.)普遍感染病毒。目前,培育无病毒原种母本树,建立用于繁殖接穗和营养系砧木的母本园,栽植无病毒苗木,是防治病毒病的根本措施。本文针对常见的4种苹果病毒及1种类病毒,综述了茎尖培养、热处理、化学处理、微茎尖嫁接以及低温处理脱除苹果病毒方法的研究进展,分析了不同方法的应用效果,及所适合脱除的病毒种类,以期为我国苹果病毒脱除技术研究提供参考信息。

  1. Heterologous replicase driven 3' end repair of Cucumber mosaic virus satellite RNA.

    Science.gov (United States)

    Sivanandam, Venkatesh; Varady, Erika; Rao, A L N

    2015-04-01

    To investigate the extent of the 3' end repair in a satellite RNA of Cucumber mosaic virus (CMV) strain Q (Q(sat)) by a heterologous Tomato aspermy virus (TAV), a set of biologically active agrotransformants corresponding to the three genomic RNAs of TAV was developed. Analysis of Nicotiana benthamiana plants agroinfiltrated with TAV and either wild type or each of the six 3' deletion mutants of Q(sat) revealed that (i) heterologous replicase failed to generate Q(sat) multimers, a hallmark feature of homologous replicase dependent replication of Qsat; (ii) manifestation of severe symptom phenotypes and progeny analysis suggested that heterologous replicase was competent to repair Q(sat) deletion mutants lacking up to 3'13 nucleotides (nt) but not beyond and (iii) comparative in silico analysis indicated that the 3' secondary structural features of the repaired Q(sat) progeny from heterologous vs homologous driven replicases are remarkably very similar. The significance of these observations is discussed.

  2. Nucleotide sequences of two Korean isolates of Cucumber green mottle mosaic virus.

    Science.gov (United States)

    Kim, Sang-Min; Lee, Jung-Myung; Yim, Kyu-Ock; Oh, Man-Ho; Park, Jin-Woo; Kim, Kook-Hyung

    2003-12-31

    The nucleotide sequences of the genomic RNAs of Cucumber green mottle mosaic virus Korean watermelon isolate (CGMMV-KW) and Korean oriental melon isolate (CGMMV-KOM) were determined and compared to the sequences of other tobamoviruses including CGMMV strains W and SH. Each CGMMV isolate had a genome of 6,424 nucleotides. Each also had 60 and 176 nucleotides of 5' and 3' untranslated regions (UTRs), respectively, and four open reading frames (ORF1-4). ORFs 1 to 4 encode proteins of 129, 186, 29, and 17.4 kDa, respectively. The nucleotide and deduced amino acid sequences of CGMMV-KOM and CGMMV-KW were more than 98.3% identical. When compared to other CGMMV strains in a phylogenetic analysis they were found to form a distinct virus clade, and were more distantly related to other tobamoviruses (23.5-56.7% identity).

  3. Characterization of siRNAs derived from cucumber green mottle mosaic virus in infected cucumber plants.

    Science.gov (United States)

    Li, Yongqiang; Deng, Congliang; Shang, Qiaoxia; Zhao, Xiaoli; Liu, Xingliang; Zhou, Qi

    2016-02-01

    Virus-derived small interfering RNAs (vsiRNAs) of cucumber green mottle mosaic virus (CGMMV), a member of the genus Tobamovirus, were characterised in cucumber plants by deep sequencing. CGMMV vsiRNAs of 21-22 nt in length predominated, suggesting that there might be a conserved mechanism of DCL2 and DCL4 involvement in the biogenesis of vsiRNAs, as well as a common RNA silencing pathway in CGMMV-infected cucumber plants. The 5'-terminal base of vsiRNAs was biased towards C/A/U, suggesting that CGMMV vsiRNAs might be loaded into diverse AGO-containing RISCs to disturb the gene expression of host plants. Possible targets for some of the vsiRNAs were also predicted.

  4. First characterization of infectious cDNA clones of Olive mild mosaic virus

    Directory of Open Access Journals (Sweden)

    Joana M.S. CARDOSO

    2012-09-01

    Full Text Available Full-length cDNA clones of an Olive mild mosaic virus (OMMV isolate were constructed in order to find infectious cDNA clones. The sequencing of three individual full-length clones revealed some differences between them. In vitro transcription of these clones was performed and the effect of spontaneous mutations in the biological behaviour of the in vitro transcripts was evaluated by symptomatology, RNA accumulation and virus replication in inoculated plants. In vitro synthesized RNA from one of these clones was found to mimic the wild-type OMMV, making it useful in future studies on protein structure and function by site directed mutagenesis of individual genes. This is the first report on constructing full-length cDNA clones of OMMV from which infectious RNAs can be transcribed in vitro.

  5. Analysis of the autoproteolytic activity of the recombinant helper component proteinase from zucchini yellow mosaic virus.

    Science.gov (United States)

    Boonrod, Kajohn; Füllgrabe, Marc W; Krczal, Gabi; Wassenegger, Michael

    2011-10-01

    The multifunctional helper component proteinase (HC-Pro) of potyviruses contains an autoproteolytic function that, together with the protein 1 (P1) and NIa proteinase, processes the polyprotein into mature proteins. In this study, we analysed the autoproteolytic active domain of zucchini yellow mosaic virus (ZYMV) HC-Pro. Several Escherichia coli-expressed MBP:HC-Pro:GFP mutants containing deletions or point mutations at either the N- or C-terminus of the HC-Pro protein were examined. Our results showed that amino acids essential for the proteolytic activity of ZYMV HC-Pro are distinct from those of the tobacco etch virus HC-Pro, although the amino acid sequences in the proteolytic active domain are conserved among potyviruses.

  6. Design, synthesis, anti-tobacco mosaic virus (TMV) activity, and SARs of 7-methoxycryptopleurine derivatives.

    Science.gov (United States)

    Wang, Ziwen; Feng, Anzheng; Cui, Mingbo; Liu, Yuxiu; Wang, Lizhong; Wang, Qingmin

    2014-11-01

    A series of 7-methoxycryptopleurine derivatives 2-23 were prepared and evaluated for their antiviral activity against tobacco mosaic virus (TMV) for the first time. The bioassay results showed that most of these compounds exhibited excellent in vivo anti-TMV activity, of which 7-methoxycryptopleurine salt derivatives 16, 19, and 23 displayed significantly higher activity than 7-methoxycryptopleurine (1) and commercial ribavirin and ningnanmycin. Salification, the most commonly employed method for modifying physical-chemical properties, did significantly increase antiviral activity, and different salt forms displayed different antiviral effect. This study provides fundamental support for development and optimization of phenanthroquinolizidine alkaloids as potential inhibitors of plant virus. © 2014 John Wiley & Sons A/S.

  7. Schisanhenol derivatives and their biological evaluation against tobacco mosaic virus (TMV).

    Science.gov (United States)

    Wang, Qing-Yao; Deng, Lu-Lu; Liu, Jia-Ju; Zhang, Jian-Xin; Hao, Xiao-Jiang; Mu, Shu-Zhen

    2015-03-01

    Schisanhenol (Sol) was isolated from Schisandra rubriflora, and a series of derivatives (1-16, 15a-16a, and 15b-16b) were designed and prepared by chemical modification. The curative and protective effects of these dibenzocyclooctadiene lignan analogues against tobacco mosaic virus (TMV) were evaluated. Most analogues exhibited stronger protective effects than the positive control ningnanmycin. Dibromoschisanhenol (6) at 0.25mM exhibited the strongest protective activity (83.5±1.8% at 0.25mM), and 14-(3, 5-dibenzyloxy)-benzoyloxyschisanhenol (16) showed a significant curative effect (78.0±3.8% at 0.15mM) that was much stronger than that of the commercial virucide ningnanmycin. This study is the first to demonstrate that natural dibenzocyclooctadiene lignans and analogues are active against plant viruses. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Adoption of the 2A Ribosomal Skip Principle to Tobacco Mosaic Virus for Peptide Display

    Directory of Open Access Journals (Sweden)

    Juliane Röder

    2017-06-01

    Full Text Available Plant viruses are suitable as building blocks for nanomaterials and nanoparticles because they are easy to modify and can be expressed and purified using plants or heterologous expression systems. Plant virus nanoparticles have been utilized for epitope presentation in vaccines, for drug delivery, as nanospheres and nanowires, and for biomedical imaging applications. Fluorescent protein fusions have been instrumental for the tagging of plant virus particles. The monomeric non-oxygen-dependent fluorescent protein iLOV can be used as an alternative to green fluorescent protein. In this study, the iLOV sequence was genetically fused either directly or via a glycine-serine linker to the C-terminus of the Tobacco mosaic virus (TMV coat protein (CP and also carried an N-terminal Foot-and-mouth disease virus (FMDV 2A sequence. Nicotiana benthamiana plants were inoculated with recombinant viral vectors and a systemic infection was achieved. The presence of iLOV fusion proteins and hybrid particles was confirmed by western blot analysis and transmission electron microscopy. Our data suggest that TMV-based vectors are suitable for the production of proteins at least as large as iLOV when combined with the FMDV 2A sequence. This approach allowed the simultaneous production of foreign proteins fused to the CP as well as free CP subunits.

  9. Changes in Cell Ultrastructure in Maize Leaves Infected by Maize Dwarf Mosaic Virus

    Institute of Scientific and Technical Information of China (English)

    GUO Xing-qi; ZHU Xiao-ping; ZHANG Jie-dao; GUO Yan-kui

    2003-01-01

    Ultrastructural alterations in foliar cells were studied in leaves of resistant maize varietyLuyu16 and susceptible maize inbred line Luyuan92 infected by maize dwarf mosaic virus Shandong isolate(MDMV-SD), respectively. The results showed that marked cytopathological alterations were observed both inresistant plants and in susceptible plants, compared with that in healthy plants. However, some ultrastructur-al alterations, which observed in resistant plants, were different from those in susceptible plants. In resistantplants, which infected with the virus, the main organelles, including chloroplasts and mitochondria, wereslightly destroyed, the amount of mitochondria and peroxisome were increased. A few or no plasmodesmatawere observed. There were three kinds of inclusions including pinwheel, bundle and laminated aggregate, andthe virus particles in the cytoplasm. In susceptible plants, which infected with the virus, the chloroplasts wereheavily disrupted, including thylakoid swelling and envelope broking. The virus particles were more than thosein the resistant variety. Four kinds of inclusions including pinwheel, bundle, laminated aggregate and highelecton-dense body appeared in cytoplasm. Plasmodesmata and plasma membrane were abundant, and therewere frequent invaginations of the plasma membrane that led to the formation of vesicles and myelin-likestructures.

  10. Complete nucleotide sequence analysis of Cymbidium mosaic virus Indian isolate: further evidence for natural recombination among potexviruses

    Indian Academy of Sciences (India)

    Ang Rinzing Sherpa; Vipin Hallan; Promila Pathak; Aijaz Asghar Zaidi

    2007-06-01

    The complete nucleotide sequence of an Indian strain of Cymbidium mosaic virus (CymMV) was determined and compared with other potexviruses. Phylogenetic analyses on the basis of RNA-dependent RNA polymerase (RdRp), triple gene block protein and coat protein (CP) amino acid sequences revealed that CymMV is closely related to the Narcissus mosaic virus (NMV), Scallion virus X (SVX), Pepino mosaic virus (PepMV) and Potato aucuba mosaic virus (PAMV). Different sets of primers were used for the amplification of different regions of the genome through RT-PCR and the amplified genes were cloned in a suitable vector. The full genome of the Indian isolate of CymMV from Phaius tankervilliae shares 96–97% similarity with isolates reported from other countries. It was found that the CP gene of CymMV shares a high similarity with each other and other potexviruses. One of the Indian isolates seems to be a recombinant formed by the intermolecular recombination of two other CymMV isolates. The phylogenetic analyses, Recombination Detection Program (RDP2) analyses and sequence alignment survey provided evidence for the occurrence of a recombination between an Indian isolate (AM055720) as the major parent, and a Korean type-2 isolate (AF016914) as the minor parent. Recombination was also observed between a Singapore isolate (U62963) as the major parent, and a Taiwan CymMV (AY571289) as the minor parent.

  11. Satellite RNA-mediated Reduction of Cucumber Mosaic Virus Genomic RNAs Accumulation in Nicotiana tabacum

    Institute of Scientific and Technical Information of China (English)

    Qiansheng LIAO; Liping ZHU; Zhiyou DU; Rong ZENG; Junli FENG; Jishuang CHEN

    2007-01-01

    Satellite RNAs (satRNAs) are molecular parasites that interfere with the pathogenesis of the helper viruses.In this study,the relative accumulation of cucumber mosaic virus (CMV)-Fny genomic RNAs with or without satRNAs were quantitatively analyzed by real-time RT-PCR.The results showed that satRs apparently attenuated the symptoms of CMV-Fny on Nicotiana tabacum by depressing the accumulation of CMV-Fny genomic RNAs,tested as open reading frames.The accumulation of CMV-Fny la,2a,2b,3a,and CP genes was much higher than that of CMV-Fny with satRs added(CMV-Fsat),at different inoculation times.CMV-Fny△2b,in which the complete 2b gene and 41 amino acids at the C-terminal of the 2a gene were deleted,caused only a slight mosaic effect on N.tabacum seedlings,similar to that of CMVFsat,but the addition of satRs to CMV-Fny△2b showed further decrease in the accumulation of CMVFny△2b genomic RNAs.Our results indicated that the attenuation of CMV,by adding satRs or deleting the 2b gene,was due to the low accumulation of CMV genomic RNAs,and that satRNA-mediated reduction of CMV genomic RNAs accumulation in N.tabacum was possibly related to the 2b gene.

  12. Sequence analysis and genetic diversity of five new Indian isolates of cucumber mosaic virus.

    Science.gov (United States)

    Kumar, S; Gautam, K K; Raj, S K

    2015-12-01

    Cucumber mosaic virus (CMV) is an important virus since it causes severe losses to many economically important crops worldwide. Five new isolates of CMV were isolated from naturally infected Hippeastrum hybridum, Dahlia pinnata, Hemerocallis fulva, Acorus calamus and Typhonium trilobatum plants, all exhibiting severe leaf mosaic symptoms. For molecular identification and sequence analyses, the complete coat protein (CP) gene of these isolates was amplified by RT-PCR. The resulting amplicons were cloned and sequenced and isolates were designated as HH (KP698590), DP (JF682239), HF (KP698589), AC (KP698588) and TT (JX570732). For study of genetic diversity among these isolates, the sequence data were analysed by BLASTn, multiple alignment and generating phylogenetic trees along with the respective sequences of other CMV isolates available in GenBank Database were done. The isolates under study showed 82-99% sequence diversity among them at nucleotide and amino acid levels; however they showed close relationships with CMV isolates of subgroup IB. In alignment analysis of amino acid sequences of HH and AC isolates, we have found fifteen and twelve unique substitutions, compared to HF, DP and TT isolates, suggesting the cause of high genetic diversity.

  13. Antiviral activity of Thuja orientalis extracts against watermelon mosaic virus (WMV) on Citrullus lanatus.

    Science.gov (United States)

    Elbeshehy, Esam K F; Metwali, Ehab M R; Almaghrabi, Omar A

    2015-03-01

    Watermelon mosaic potyvirus (WMV) is considered as an important virus infecting watermelon and causing adverse effects on crop productivity. To overcome this problem one of the main objectives of plant breeders is to make these strains less effective in the ability to infect plants by treatment with plant extracts. Due to the advantages of plant tissue culture, in vitro, in the process of the selection of different cultivars under biotic stress, this study was conducted to achieve this aim by evaluating the effect of three concentrations of Thuja extract on the multiplication of WMV in watermelon by measuring callus fresh weight and soluble proteins (mg g(-1) fresh weight) of healthy and infected hypocotyl explants. Also, WMV was isolated from naturally infected watermelon and characterized as potyvirus by serological and molecular analyses. The isolated virus gave a positive reaction with WMV antiserum compared with other antibodies of CMV, ZYMV and SqMV using DAS-ELISA. RT-PCR, with the specific primer for WMV-cp. gene, yielded 825 base pair DNA fragments. The results that belong to soluble protein analysis indicated that infected hypocotyl explants treated with 6 g L(-1) recorded the highest rate in the number of soluble protein bands compared with the rest of treatments. As a conclusion of these results, we can recommend to apply the Thuja extract at 6 g L(-1) as a optimum dosage to decrease the infection caused by watermelon mosaic potyvirus.

  14. Inhibitory effect of esterified lactoferin and lactoferrin against tobacco mosaic virus (TMV) in tobacco seedlings.

    Science.gov (United States)

    Wang, Jie; Wang, Hong-Yan; Xia, Xiao-Ming; Li, Peng-peng; Wang, Kai-Yun

    2013-01-01

    The inhibitory effects of esterified lactoferrin (ELF) and lactoferrin (LF) against tobacco mosaic virus (TMV) in tobacco seedlings and the underlying mechanism were investigated. ELF and LF significantly inhibited viral infection and TMV multiplication in tobacco plants. ELF showed a higher inhibition effect against TMV than LF treatment in a dose and time-dependent way. Moreover, ELF induced a higher increase in the levels of transcription of pathogenesis-related (PR) protein genes [acidic PRs (PR-1a, PR-2, PR-3, PR-5) and basic PR-1] and defense-related enzymes [phenylalanine ammonia lyase (PAL, EC 4.3.1.5), and 5-epi-aristolochene synthase (EAS, EC 2.5.1.35)] both locally and systemically, in correlation with the induction of resistance against tobacco mosaic virus. Furthermore, ELF also induced accumulation of salicylic acid, SA 2-O-β-D-glucoside and H2O2. These results suggested that ELF and LF could control TMV incidence and the mechanism might attribute to activate the expression of a number of defense genes. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Genetic variation of wheat streak mosaic virus in the United States Pacific Northwest.

    Science.gov (United States)

    Robinson, Megan D; Murray, Timothy D

    2013-01-01

    Wheat streak mosaic virus (WSMV), the cause of wheat streak mosaic, is a widespread and damaging pathogen of wheat. WSMV is not a chronic problem of annual wheat in the United States Pacific Northwest but could negatively affect the establishment of perennial wheat, which is being developed as an alternative to annual wheat to prevent soil erosion. Fifty local isolates of WSMV were collected from 2008 to 2010 near Lewiston, ID, Pullman, WA, and the United States Department of Agriculture Central Ferry Research Station, near Pomeroy, WA to determine the amount of genetic variation present in the region. The coat protein gene from each isolate was sequenced and the data subjected to four different methods of phylogenetic analyses. Two well-supported clades of WSMV were identified. Isolates in clade I share sequence similarity with isolates from Central Europe; this is the first report of isolates from Central Europe being reported in the United States. Isolates in clade II are similar to isolates originating from Australia, Argentina, and the American Pacific Northwest. Nine isolates showed evidence of recombination and the same two well-supported clades were observed when recombinant isolates were omitted from the analysis. More polymorphic sites, parsimony informative sites, and increased diversity were observed in clade II than clade I, suggesting more recent establishment of the virus in the latter. The observed diversity within both clades could make breeding for durable disease resistance in perennial wheat difficult if there is a differential response of WSMV resistance genes to isolates from different clades.

  16. Field Performance of Transgenic Sugarcane Lines Resistant to Sugarcane Mosaic Virus

    Science.gov (United States)

    Yao, Wei; Ruan, Miaohong; Qin, Lifang; Yang, Chuanyu; Chen, Rukai; Chen, Baoshan; Zhang, Muqing

    2017-01-01

    Sugarcane mosaic disease is mainly caused by the sugarcane mosaic virus (SCMV), which can significantly reduce stalk yield and sucrose content of sugarcane in the field. Coat protein mediated protection (CPMP) is an effective strategy to improve virus resistance. A 2-year field study was conducted to compare five independent transgenic sugarcane lines carrying the SCMV-CP gene (i.e., B2, B36, B38, B48, and B51) with the wild-type parental clone Badila (WT). Agronomic performance, resistance to SCMV infection, and transgene stability were evaluated and compared with the wild-type parental clone Badila (WT) at four experimental locations in China across two successive seasons, i.e., plant cane (PC) and 1st ratoon cane (1R). All transgenic lines derived from Badila had significantly greater tons of cane per hectare (TCH) and tons of sucrose per hectare (TSH) as well as lower SCMV disease incidence than those from Badila in the PC and 1R crops. The transgenic line B48 was highly resistant to SCMV with less than 3% incidence of infection. The recovery phenotype of transgenic line B36 was infected soon after virus inoculation, but the subsequent leaves showed no symptoms of infection. Most control plants developed symptoms that persisted and spread throughout the plant with more than 50% incidence. B48 recorded an average of 102.72 t/ha, which was 67.2% more than that for Badila. The expression of the transgene was stable over many generations with vegetative propagation. These results show that SCMV-resistant transgenic lines derived from Badila can provide resistant germplasm for sugarcane breeding and can also be used to study virus resistance mechanisms. This is the first report on the development and field performance of transgenic sugarcane plants that are resistant to SCMV infection in China. PMID:28228765

  17. Optimization of a Virus-Induced Gene Silencing System with Soybean yellow common mosaic virus for Gene Function Studies in Soybeans

    OpenAIRE

    Kil Hyun Kim; Seungmo Lim; Yang Jae Kang; Min Young Yoon; Moon Nam; Tae Hwan Jun; Min-Jung Seo; Seong-Bum Baek; Jeom-Ho Lee; Jung-Kyung Moon; Suk-Ha Lee; Su-Heon Lee; Hyoun-Sub Lim; Jae Sun Moon; Chang-Hwan Park

    2016-01-01

    Virus-induced gene silencing (VIGS) is an effective tool for the study of soybean gene function. Successful VIGS depends on the interaction between virus spread and plant growth, which can be influenced by environmental conditions. Recently, we developed a new VIGS system derived from the Soybean yellow common mosaic virus (SYCMV). Here, we investigated several environmental and developmental factors to improve the efficiency of a SYCMV-based VIGS system to optimize the functional analysis of...

  18. Zucchini tigré mosaic virus is a distinct potyvirus in the papaya ringspot virus cluster: molecular and biological insights.

    Science.gov (United States)

    Romay, G; Lecoq, H; Desbiez, C

    2014-02-01

    In recent years, three new potyviruses have been described in the papaya ringspot virus (PRSV) cluster. In addition, two types of PRSV are recognized, type W, infecting cucurbit plants, and type P, infecting papaya and also cucurbits. A third type, PRSV-T, was also partially described in Guadeloupe. Complete genome sequencing of four PRSV-T isolates showed that this virus is a related virus that is distinct from PRSV, and the name zucchini tigré mosaic virus (ZTMV) is proposed, in reference to the typical symptoms observed in zucchini squash. Eleven other viral isolates from different geographic origins were confirmed as ZTMV isolates using the complete sequence of the cylindrical inclusion (CI) coding region, whereas pairwise sequence similarities in the coat protein (CP) coding region did not unambiguously distinguish ZTMV isolates from PRSV isolates. The use of the CI coding region for species demarcation appears more suitable than the CP coding region for closely related viruses. Principal coordinates analysis based on the biological behavior of the viral isolates studied clustered PRSV-P, PRSV-W and ZTMV isolates into three different groups. Therefore, ZTMV is different from PRSV in its molecular and biological properties.

  19. Alfalfa mosaic virus replicase proteins, P1 and P2, localize to the tonoplast in the presence of virus RNA

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Amr [Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907 (United States); Present address: Genomics Facility, Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza 12619 (Egypt); Hutchens, Heather M. [Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907 (United States); Howard Berg, R. [Integrated Microscopy Facility, Donald Danforth Plant Science Center, Saint Louis, MO 63132 (United States); Sue Loesch-Fries, L., E-mail: loeschfr@purdue.edu [Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907 (United States)

    2012-11-25

    To identify the virus components important for assembly of the Alfalfa mosaic virus replicase complex, we used live cell imaging of Arabidopsis thaliana protoplasts that expressed various virus cDNAs encoding native and GFP-fusion proteins of P1 and P2 replicase proteins and full-length virus RNAs. Expression of P1-GFP alone resulted in fluorescent vesicle-like bodies in the cytoplasm that colocalized with FM4-64, an endocytic marker, and RFP-AtVSR2, RabF2a/Rha1-mCherry, and RabF2b/Ara7-mCherry, all of which localize to multivesicular bodies (MVBs), which are also called prevacuolar compartments, that mediate traffic to the lytic vacuole. GFP-P2 was driven from the cytosol to MVBs when expressed with P1 indicating that P1 recruited GFP-P2. P1-GFP localized on the tonoplast, which surrounds the vacuole, in the presence of infectious virus RNA, replication competent RNA2, or P2 and replication competent RNA1 or RNA3. This suggests that a functional replication complex containing P1, P2, and a full-length AMV RNA assembles on MVBs to traffic to the tonoplast.

  20. Obtenção de plantas de feijão-caupi resistentes ao Cowpea severe mosaic virus e ao Cowpea aphid-borne mosaic virus

    Directory of Open Access Journals (Sweden)

    Gislanne Brito Barros

    2013-06-01

    Full Text Available Dentre os vírus que infectam o feijão-caupi (Vigna unguiculata L. Walp. destacam-se, respectivamente, pela severidade e ampla ocorrência o Cowpea severe mosaic virus (CPSMV e o Cowpea aphid-borne mosaic virus (CABMV. Portanto, objetivaram-se, no presente trabalho, obter e avaliar plantas de feijão-caupi com resistência ao CPSMV e ao CABMV, visando ao desenvolvimento de cultivares essencialmente derivadas e novas cultivares. Realizaram-se oito cruzamentos seguidos de retrocruzamentos, utilizando a linhagem TE 97-309G-9 e a cultivar Patativa como genitores resistentes, e as cultivares BR3-Tracuateua, BRS-Urubuquara, BRS-Novaera, BRS-Guariba e Pretinho como genitores suscetíveis. As gerações F2 e F2RC1 foram desafiadas quanto à resistência por meio de inoculação mecânica com isolados do CPSMV e do CABMV. Nas gerações F2RC1, além da resistência foram avaliados os caracteres: número de dias para o início da floração, comprimento das vagens, número de grãos. vagem-1, peso de cem grãos e produção de grãos.planta-1. Todos os indivíduos F2 e F2RC1 foram analisados pelo teste χ² e se ajustaram à frequência esperada de 15 plantas suscetíveis 1 planta resistente a ambos os vírus. As médias das plantas F2RC1 resistentes, de cada retrocruzamento, foram comparadas com a média do seu respectivo genitor recorrente pelo teste 't' e as médias dos retrocruzamentos foram comparadas pelo teste de Scott-Knott. Foi detectada variabilidade genética entre os retrocruzamentos para todos os caracteres. Todos os retrocruzamentos foram considerados promissores para produção de cultivares essencialmente derivadas resistentes ao CPSMV e ao CABMV e as plantas selecionadas possuem características que possibilitam a seleção de linhagens com grãos de bom padrão comercial e altamente produtivas.

  1. Colour break in reverse bicolour daffodils is associated with the presence of Narcissus mosaic virus

    Directory of Open Access Journals (Sweden)

    Davies Kevin M

    2011-08-01

    Full Text Available Abstract Background Daffodils (Narcissus pseudonarcissus are one of the world's most popular ornamentals. They also provide a scientific model for studying the carotenoid pigments responsible for their yellow and orange flower colours. In reverse bicolour daffodils, the yellow flower trumpet fades to white with age. The flowers of this type of daffodil are particularly prone to colour break whereby, upon opening, the yellow colour of the perianth is observed to be 'broken' into patches of white. This colour break symptom is characteristic of potyviral infections in other ornamentals such as tulips whose colour break is due to alterations in the presence of anthocyanins. However, reverse bicolour flowers displaying colour break show no other virus-like symptoms such as leaf mottling or plant stunting, leading some to argue that the carotenoid-based colour breaking in reverse bicolour flowers may not be caused by virus infection. Results Although potyviruses have been reported to cause colour break in other flower species, enzyme-linked-immunoassays with an antibody specific to the potyviral family showed that potyviruses were not responsible for the occurrence of colour break in reverse bicolour daffodils. Colour break in this type of daffodil was clearly associated with the presence of large quantities of rod-shaped viral particles of lengths 502-580 nm in tepals. Sap from flowers displaying colour break caused red necrotic lesions on Gomphrena globosa, suggesting the presence of potexvirus. Red necrotic lesions were not observed in this indicator plant when sap from reverse bicolour flowers not showing colour break was used. The reverse transcriptase polymerase reactions using degenerate primers to carla-, potex- and poty-viruses linked viral RNA with colour break and sequencing of the amplified products indicated that the potexvirus Narcissisus mosaic virus was the predominant virus associated with the occurrence of the colour break

  2. Recombination with coat protein transgene in a complemen-tation system based on Cucumber mosaic virus (CMV)

    Institute of Scientific and Technical Information of China (English)

    LEI; Wanli

    2001-01-01

    [1]Palukaitis, P., Roossinck, M. J., Dietzgen, R. G. et al., Cucumber mosaic virus, Adv. Virus Res., 1992, 41: 281-348.[2]Hayes, R. J., Buck, K. W., Complete replication of an eukaryotic virus RNA in vitro by a purified RNA-dependent RNA polymerase, Cell, 1990, 63: 363-369.[3]Nitta, N., Takanami, Y., Kuwata, S. et al., Inoculation with RNAs 1 and 2 of cucumber mosaic virus induces viral RNA replicase activity in tobacco mesophyll protoplasts, J. Gen. Virol., 1988, 69: 2695-2700.[4]Suzuki, M., Kuwata, S., Kataoda, J. et al., Functional analysis of deletion mutants of cucumber mosaic virus RNA3 using an in vitro transcription system, Virology, 1991, 183: 106-113.[5]Canto, T., Prior, D. A. M., Hellwald, K. H. et al., Characterization of cucumber mosaic virus (IV)--Movement protein and coat protein are both essential for cell-to-cell movement of cucumber mosaic virus, Virology, 1997, 237:237-248.[6]Takanami, Y., A striking change in symptoms on cucumber mosaic virus-infected tobacco plants induced by a satellite RNA, Virology, 1981, 109: 120-126.[7]DeBorde, D. C., Naeve, C. W., Herlocher, M. L. et al., Resolution of a common RNA sequencing ambiguity by terminal deoxynucleotidyl transferase, Anal. Biochem., 1986, 157: 275-282.[8]Haseloff, J., Siemering, K. R., Prasher, D. C. et al., Removal of a cryptic intron and subcellular localization of green fluo-rescent protein are required to mark transgenic Arabidopsis plants brightly, Proc. Natl. Acad. Sci. USA, 1997, 94: 2122-2127.[9]Shi, B. J., Ding, S. W., Symons, R. H., Plasmid vector for cloning infectious cDNAs from plant RNA viruses: high infec-tivity of cDNA clones of tomato aspermy cucumovirus, J. Gen. Virol., 1997, 78: 1181-1185.[10]Rizzo, T. M., Palukaitis, P., Construction of full-length cDNA clones of cucumber mosaic virus RNAs 1, 2 and 3: Genera-tion of infectious RNA transcripts, Mol. Gen. Genet., 1990, 222: 249-256.[11]Hall, R. D., The initiation and maintenance of

  3. The c-terminus of wheat streak mosaic virus coat protein is involved in differential infection of wheat and maize through host-specific long-distance transport

    Science.gov (United States)

    Multifunctional viral coat proteins (CPs) play important roles in the virus life-cycle. The CP determinants and mechanisms involved in extension of host range of monocot-infecting viruses are poorly understood. The role of the C-terminal region of Wheat streak mosaic virus (WSMV) CP in virus transpo...

  4. Coat protein-mediated resistance against an Indian isolate of the Cucumber mosaic virus subgroup IB in Nicotiana benthamiana

    Indian Academy of Sciences (India)

    A Srivastava; S K Raj

    2008-06-01

    Coat protein (CP)-mediated resistance against an Indian isolate of the Cucumber mosaic virus (CMV) subgroup IB was demonstrated in transgenic lines of Nicotiana benthamiana through Agrobacterium tumefaciens-mediated transformation. Out of the fourteen independently transformed lines developed, two lines were tested for resistance against CMV by challenge inoculations. The transgenic lines exhibiting complete resistance remained symptomless throughout life and showed reduced or no virus accumulation in their systemic leaves after virus challenge. These lines also showed virus resistance against two closely related strains of CMV. This is the first report of CP-mediated transgenic resistance against a CMV subgroup IB member isolated from India.

  5. After the double helix: Rosalind Franklin's research on Tobacco mosaic virus.

    Science.gov (United States)

    Creager, Angela N H; Morgan, Gregory J

    2008-06-01

    Rosalind Franklin is best known for her informative X-ray diffraction patterns of DNA that provided vital clues for James Watson and Francis Crick's double-stranded helical model. Her scientific career did not end when she left the DNA work at King's College, however. In 1953 Franklin moved to J. D. Bernal's crystallography laboratory at Birkbeck College, where she shifted her focus to the three-dimensional structure of viruses, obtaining diffraction patterns of Tobacco mosaic virus (TMV) of unprecedented detail and clarity. During the next five years, while making significant headway on the structural determination of TMV, Franklin maintained an active correspondence with both Watson and Crick, who were also studying aspects of virus structure. Developments in TMV research during the 1950s illustrate the connections in the emerging field of molecular biology between structural studies of nucleic acids and of proteins and viruses. They also reveal how the protagonists of the "race for the double helix" continued to interact personally and professionally during the years when Watson and Crick's model for the double-helical structure of DNA was debated and confirmed.

  6. Prevalence and phylogenetic analysis of Fig mosaic virus and Fig badnavirus-1 in Iran

    Directory of Open Access Journals (Sweden)

    Alimoradian Mohammadreza

    2016-04-01

    Full Text Available Fig mosaic virus (FMV and Fig badnavirus-1 (FBV-1 are two of the most important fig infecting viruses. The incidence and distribution of FBV-1 and FMV were determined by testing in PCR 138 asymptomatic and symptomatic samples. These samples were collected from 60 fig gardens and agricultural fields in three provinces of Iran. The fig infecting viruses FBV-1 and FMV, respectively, were detected in 92 (66.6% and 34 (24.6% samples collected from all the surveyed fields. Overall, 24 out of 138 (17.3% samples showed mixed infections. The sequence analysis of a genomic fragment of 922 nt, comprising the entire ORF-2 and part of the 5’ termini of the ORF-3 of 10 selected FBV-1 Iranian isolates from different provinces, and of the type member from GenBank (Acc. No: JF411989, showed a variation ranging from 1 to 3% at nucleotide level and 1% at the amino acid level. The phylogenetic analysis grouped the FBV-1 isolates into two groups, with the Iranian isolates clustered in two distinct subgroups of group I, according to their geographical origin. In our research, the prevalence and sequence analysis of FBV-1 as the only identified DNA virus infecting fig trees, was studied for the first time in Iran.

  7. Biological characterization and complete nucleotide sequence of a Tunisian isolate of Moroccan watermelon mosaic virus.

    Science.gov (United States)

    Yakoubi, S; Desbiez, C; Fakhfakh, H; Wipf-Scheibel, C; Marrakchi, M; Lecoq, H

    2008-01-01

    During a survey conducted in October 2005, cucurbit leaf samples showing virus-like symptoms were collected from the major cucurbit-growing areas in Tunisia. DAS-ELISA showed the presence of Moroccan watermelon mosaic virus (MWMV, Potyvirus), detected for the first time in Tunisia, in samples from the region of Cap Bon (Northern Tunisia). MWMV isolate TN05-76 (MWMV-Tn) was characterized biologically and its full-length genome sequence was established. MWMV-Tn was found to have biological properties similar to those reported for the MWMV type strain from Morocco. Phylogenetic analysis including the comparison of complete amino-acid sequences of 42 potyviruses confirmed that MWMV-Tn is related (65% amino-acid sequence identity) to Papaya ringspot virus (PRSV) isolates but is a member of a distinct virus species. Sequence analysis on parts of the CP gene of MWMV isolates from different geographical origins revealed some geographic structure of MWMV variability, with three different clusters: one cluster including isolates from the Mediterranean region, a second including isolates from western and central Africa, and a third one including isolates from the southern part of Africa. A significant correlation was observed between geographic and genetic distances between isolates. Isolates from countries in the Mediterranean region where MWMV has recently emerged (France, Spain, Portugal) have highly conserved sequences, suggesting that they may have a common and recent origin. MWMV from Sudan, a highly divergent variant, may be considered an evolutionary intermediate between MWMV and PRSV.

  8. A Vicilin-Like Seed Storage Protein, PAP85, Is Involved in Tobacco Mosaic Virus Replication

    Science.gov (United States)

    Chen, Cheng-En; Yeh, Kuo-Chen; Wu, Shu-Hsing; Wang, Hsiang-Iu

    2013-01-01

    One striking feature of viruses with RNA genomes is the modification of the host membrane structure during early infection. This process requires both virus- and host-encoded proteins; however, the host factors involved and their role in this process remain largely unknown. On infection with Tobacco mosaic virus (TMV), a positive-strand RNA virus, the filamentous and tubular endoplasmic reticulum (ER) converts to aggregations at the early stage and returns to filamentous at the late infectious stage, termed the ER transition. Also, membrane- or vesicle-packaged viral replication complexes (VRCs) are induced early during infection. We used microarray assays to screen the Arabidopsis thaliana gene(s) responding to infection with TMV in the initial infection stage and identified an Arabidopsis gene, PAP85 (annotated as a vicilin-like seed storage protein), with upregulated expression during 0.5 to 6 h of TMV infection. TMV accumulation was reduced in pap85-RNA interference (RNAi) Arabidopsis and restored to wild-type levels when PAP85 was overexpressed in pap85-RNAi Arabidopsis. We did not observe the ER transition in TMV-infected PAP85-knockdown Arabidopsis protoplasts. In addition, TMV accumulation was reduced in PAP85-knockdown protoplasts. VRC accumulation was reduced, but not significantly (P = 0.06), in PAP85-knockdown protoplasts. Coexpression of PAP85 and the TMV main replicase (P126), but not their expression alone in Arabidopsis protoplasts, could induce ER aggregations. PMID:23576511

  9. A Viral Protein Suppresses siRNA-directed Interference in Tobacco Mosaic Virus Infection

    Institute of Scientific and Technical Information of China (English)

    Ming-Min ZHAO; De-Rong AN; Guang-Hua HUANG; Zu-Hua HE; Jiang-Ye CHEN

    2005-01-01

    Plant viruses encode suppressors of post-transcriptional gene silencing (PTGS), an adaptive defense response that limits virus replication and its spread in plants. The helper component proteinase (HCPro) of the potato virus A (PVA, genus Potyvirus) suppresses PTGS of silenced transgenes. Here, the effect of HC-Pro on siRNA-directed interference in the tobacco mosaic virus (TMV) was examined by using a transient Agrobacterium tumefaciens-based delivery system in intact tissues. It was shown that the interference effect was completely blocked by co-infiltration with HC-Pro plus siRNA constructs in both systemic and hypersensitive hosts. In the system host, all plants agro-infiltrated with HC-Pro plus siRNA constructs displayed the same symptoms as the negative control. Meanwhile, TMV RNA accumulation was found to be abundant in the upper leaves using reverse transcriptase-PCR (RT-PCR) and Northern blot assays. On the contrary, plants agro-infiltrated with the siRNA construct alone were free of symptoms. Therefore, our study suggests that the transient expression of HC-Pro inhibited the siRNA-directed host defenses against TMV infection.

  10. Complete Genome Sequence of Chinese Yam Necrotic Mosaic Virus from Dioscorea opposita in the Republic of Korea.

    Science.gov (United States)

    Lee, Joong-Hwan; Son, Chang-Gi; Kwon, Joong-Bae; Nam, Hyo-Hun; Kim, Yeongtae; Lee, Su-Heon; Zhao, Fumei; Moon, Jae Sun

    2016-08-04

    The complete genome sequence of Chinese yam necrotic mosaic virus (ChYNMV) consisting of 8,213 nucleotides containing one open reading frame was determined by the transcriptome data generated from Discorea opposita This is the first report of the complete nucleotide sequence of ChYNMV from Dioscorea opposita in the Republic of Korea.

  11. Cross-protection or enhanced symptom display in greenhouse tomato co-infected with different Pepino mosaic virus isolates

    NARCIS (Netherlands)

    Hanssen, I.M.; Gutiérrez-Aguirre, I.; Paeleman, A.; Goen, K.; Wittemans, L.; Lievens, B.; Vanachter, A.C.R.C.; Ravnikar, M.; Thomma, B.P.H.J.

    2010-01-01

    The potential of three mild Pepino mosaic virus (PepMV) isolates, belonging to the CH2, EU and LP genotypes, to protect a tomato (Solanum lycopersicum) crop against an aggressive challenge isolate of the CH2 genotype was assessed in greenhouse trials and PepMV symptoms were rated at regular time poi

  12. Development and validation of high-throughput single nucleotide polymorphisms for wheat streak mosaic virus resistance gene Wsm2

    Science.gov (United States)

    Wheat streak mosaic virus (WSMV) can cause significant yield loss in wheat (Triticum aestivum L.) in the Great Plains of North America. A recently identified WSMV resistance gene, Wsm2, was mapped to chromosome 3BS in germplasm line ‘CO960293–2’. Effective genetic markers tightly linked to the gene ...

  13. Next generation sequencing technology: a powerful tool for the genome characterization of sugarcane mosaic virus from Sorghum almum

    Science.gov (United States)

    Next generation sequencing (NGS) technology was used to analyze the occurrence of viruses in Sorghum almum plants in Florida exhibiting mosaic symptoms. Total RNA was extracted from symptomatic leaves and used as a template for cDNA library preparation. The resulting library was sequenced on an Illu...

  14. Introgression of chromosome segments from multiple alien species in wheat breeding lines with wheat streak mosaic virus resistance

    Science.gov (United States)

    Pyramiding of alien-derived Wheat streak mosaic virus (WSMV) resistance and resistance enhancing genes in wheat is a costeffective and environmentally safe strategy for disease control. PCR-based markers and cytogenetic analysis with genomic in situ hybridisation were applied to identify alien chrom...

  15. Molecular cloning and expression of full-length DNA copies of the genomic RNAs of cowpea mosaic virus.

    NARCIS (Netherlands)

    Vos, P.A.J.

    1987-01-01

    The experiments described in this thesis were designed to unravel various aspects of the mechanism of gene expression of cowpea mosaic virus (CPMV). For this purpose full-length DNA copies of both genomic RNAs of CPMV were constructed. Using powerful invitro transcription systems RNA t

  16. Cross-protection or enhanced symptom display in greenhouse tomato co-infected with different Pepino mosaic virus isolates

    NARCIS (Netherlands)

    Hanssen, I.M.; Gutiérrez-Aguirre, I.; Paeleman, A.; Goen, K.; Wittemans, L.; Lievens, B.; Vanachter, A.C.R.C.; Ravnikar, M.; Thomma, B.P.H.J.

    2010-01-01

    The potential of three mild Pepino mosaic virus (PepMV) isolates, belonging to the CH2, EU and LP genotypes, to protect a tomato (Solanum lycopersicum) crop against an aggressive challenge isolate of the CH2 genotype was assessed in greenhouse trials and PepMV symptoms were rated at regular time

  17. Ability of Aphis gossypii and Myzus persicae to Transmit Cucumber mosaic virus in Single and Mixed Infection with Two Potyviruses to Zucchini Squash

    OpenAIRE

    Pinto, Zayame Vegette [UNESP; Rezende,Jorge Alberto Marques; Yuki, Valdir Atsushi; Piedade,Sônia Maria de Stefano

    2008-01-01

    The main objective of this work was to investigate the ability of Aphis gossypii and Myzus persicae to transmit Cucumber mosaic virus (CMV) singly and mixed with two potyviruses (Papaya ringspot virus - type W, PRSV-W and Zucchini yellow mosaic virus, ZYMV), to zucchini squash plants (Cucurbita pepo). The results showed that the potyviruses in general were more efficiently transmitted by both species of aphids as compared to CMV. The transmission of PRSV-W, ZYMV and CMV separately was more ef...

  18. Production of cucumber mosaic virus RNA5 and its role in recombination.

    Science.gov (United States)

    de Wispelaere, Melissanne; Rao, A L N

    2009-02-05

    Cucumber Mosaic Virus (CMV) is a plant infecting tripartite positive-strand RNA virus. In addition to three genomic and two known subgenomic RNAs, CMV strains of subgroup II (e.g. Q-CMV), but not subgroup I (e.g. Fny-CMV), produce and package a redundant RNA5 encompassing the 3' 304-307 nucleotides of RNAs 2 and 3. The mechanism regulating RNA5 production and its role in CMV life cycle is unknown. In this study, transient expression of Q2 or Q3 by agroinfiltration into Nicotiana benthamiana plants resulted in efficient accumulation of RNA5 suggesting that its production is independent of CMV replication. Deletion and point mutations engineered into a highly conserved region (Box1) adjacent to the 5' end of RNA5 identified sequences required for its efficient production. An experimental system, involving a chimera of Q3 (Q3B3) characterized by having a 3' tRNA-like structure (3'TLS) from Brome mosaic virus (BMV) and RNA5 defective variants of Q1 (Q1Delta), Q2 (Q2Delta) and Q3B3 (Q3DeltaB3), was used to evaluate in vivo the contribution of RNA5 in promoting RNA recombination. Generation of precise homologous recombinants was strictly dependent on sequence identity. When both parental RNAs carried the Box1, recombination occurred preferentially within the Box1. In contrast, generation of non-homologous recombinants occurred only when Q1 and Q2 were competent to produce RNA5. A mechanistic model explaining the functional role played by the RNA5 in generating CMV recombinants was presented.

  19. Comparative molecular epidemiology provides new insights into Zucchini yellow mosaic virus occurrence in France.

    Science.gov (United States)

    Lecoq, H; Wipf-Scheibel, C; Nozeran, K; Millot, P; Desbiez, C

    2014-06-24

    Zucchini yellow mosaic virus (ZYMV, genus Potyvirus) causes important crop losses in cucurbits worldwide. In France, ZYMV epidemics are sporadic but occasionally very severe. This contrasts with Watermelon mosaic virus (WMV, genus Potyvirus) which causes regular and early epidemics. Factors influencing ZYMV epidemiology are still poorly understood. In order to gain new insights on the ecology and epidemiology of this virus, a 5-year multilocation trial was conducted in which ZYMV spread and populations were studied in each of the 20 plot/year combinations and compared with WMV. Search for ZYMV alternative hosts was conducted by testing weeds growing naturally around one plot and also by checking ZYMV natural infections in selected ornamental species. Although similar ZYMV populations were observed occasionally in the same plot in two successive years suggesting the occurrence of overwintering hosts nearby, only two Lamium amplexicaule plants were found to be infected by ZYMV of 3459 weed samples that were tested. The scarcity of ZYMV reservoirs contrasts with the frequent detection of WMV in the same samples. Since ZYMV and WMV have many aphid vectors in common and are transmitted with similar efficiencies, the differences observed in ZYMV and WMV reservoir abundances could be a major explanatory factor for the differences observed in the typology of ZYMV and WMV epidemics in France. Other potential ZYMV alternative hosts have been identified in ornamental species including begonia. Although possible in a few cases, exchanges of populations between different plots located from 500 m to 4 km apart seem uncommon. Therefore, the potential dissemination range of ZYMV by its aphid vectors seems to be rather limited in a fragmented landscape. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Wirus mozaiki ogórka na zawilcu (Anemone coronaria L. [Cucumber mosaic virus on Anemone coronaria L.

    Directory of Open Access Journals (Sweden)

    J. Kochman

    2015-06-01

    Full Text Available From Anemone coronaria cucumber mosaic virus (Cucumis virus 1 Smith was isolated. It caused a general chlorosis, reduction of leaves blades and of the whole plants. 66 species of test plants were inoculated with the sap from infected cucumber plants. 33 of these were infected systemically and 11 only locally. Among 22 noninfected plants was Anemone coronaria which indicated as it was experimentally proved, that this species is infected only by the aphids – Myzus persicae Sulz.

  1. Populational survey of arthropods on transgenic common bean expressing the rep gene from Bean golden mosaic virus

    OpenAIRE

    Pinheiro, Patrícia V; Quintela, Eliane D; Ana Maria R. Junqueira; Aragão, Francisco JL; Faria, Josias C

    2014-01-01

    Genetically modified (GM) crops is considered the fastest adopted crop technology in the history of modern agriculture. However, possible undesirable and unintended effects must be considered during the research steps toward development of a commercial product. In this report we evaluated effects of a common bean virus resistant line on arthropod populations, considered as non-target organisms. This GM bean line (named M1/4) was modified for resistance against Bean golden mosaic virus (BGMV) ...

  2. Fabrication and characterization of gold nano-wires templated on virus-like arrays of tobacco mosaic virus coat proteins

    Science.gov (United States)

    Wnęk, M.; Górzny, M. Ł.; Ward, M. B.; Wälti, C.; Davies, A. G.; Brydson, R.; Evans, S. D.; Stockley, P. G.

    2013-01-01

    The rod-shaped plant virus tobacco mosaic virus (TMV) is widely used as a nano-fabrication template, and chimeric peptide expression on its major coat protein has extended its potential applications. Here we describe a simple bacterial expression system for production and rapid purification of recombinant chimeric TMV coat protein carrying C-terminal peptide tags. These proteins do not bind TMV RNA or form disks at pH 7. However, they retain the ability to self-assemble into virus-like arrays at acidic pH. C-terminal peptide tags in such arrays are exposed on the protein surface, allowing interaction with target species. We have utilized a C-terminal His-tag to create virus coat protein-templated nano-rods able to bind gold nanoparticles uniformly. These can be transformed into gold nano-wires by deposition of additional gold atoms from solution, followed by thermal annealing. The resistivity of a typical annealed wire created by this approach is significantly less than values reported for other nano-wires made using different bio-templates. This expression construct is therefore a useful additional tool for the creation of chimeric TMV-like nano-rods for bio-templating.

  3. A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots.

    Directory of Open Access Journals (Sweden)

    Cheng Yuan

    Full Text Available Barley stripe mosaic virus (BSMV is a single-stranded RNA virus with three genome components designated alpha, beta, and gamma. BSMV vectors have previously been shown to be efficient virus induced gene silencing (VIGS vehicles in barley and wheat and have provided important information about host genes functioning during pathogenesis as well as various aspects of genes functioning in development. To permit more effective use of BSMV VIGS for functional genomics experiments, we have developed an Agrobacterium delivery system for BSMV and have coupled this with a ligation independent cloning (LIC strategy to mediate efficient cloning of host genes. Infiltrated Nicotiana benthamiana leaves provided excellent sources of virus for secondary BSMV infections and VIGS in cereals. The Agro/LIC BSMV VIGS vectors were able to function in high efficiency down regulation of phytoene desaturase (PDS, magnesium chelatase subunit H (ChlH, and plastid transketolase (TK gene silencing in N. benthamiana and in the monocots, wheat, barley, and the model grass, Brachypodium distachyon. Suppression of an Arabidopsis orthologue cloned from wheat (TaPMR5 also interfered with wheat powdery mildew (Blumeria graminis f. sp. tritici infections in a manner similar to that of the A. thaliana PMR5 loss-of-function allele. These results imply that the PMR5 gene has maintained similar functions across monocot and dicot families. Our BSMV VIGS system provides substantial advantages in expense, cloning efficiency, ease of manipulation and ability to apply VIGS for high throughput genomics studies.

  4. Movement Protein of Cucumber Mosaic Virus Associates with Apoplastic Ascorbate Oxidase.

    Science.gov (United States)

    Kumari, Reenu; Kumar, Surender; Singh, Lakhmir; Hallan, Vipin

    Plant viral movement proteins facilitate virion movement mainly through interaction with a number of factors from the host. We report the association of a cell wall localized ascorbate oxidase (CsAO4) from Cucumis sativus with the movement protein (MP) of Cucumber mosaic virus (CMV). This was identified first in a yeast two-hybrid screen and validated by in vivo pull down and bimolecular fluorescence complementation (BiFC) assays. The BiFC assay showed localization of the bimolecular complexes of these proteins around the cell wall periphery as punctate spots. The expression of CsAO4 was induced during the initial infection period (up to 72 h) in CMV infected Nicotiana benthamiana plants. To functionally validate its role in viral spread, we analyzed the virus accumulation in CsAO4 overexpressing Arabidopsis thaliana and transiently silenced N. benthamiana plants (through a Tobacco rattle virus vector). Overexpression had no evident effect on virus accumulation in upper non-inoculated leaves of transgenic lines in comparison to WT plants at 7 days post inoculation (dpi). However, knockdown resulted in reduced CMV accumulation in systemic (non-inoculated) leaves of NbΔAO-pTRV2 silenced plants as compared to TRV inoculated control plants at 5 dpi (up to 1.3 fold difference). In addition, functional validation supported the importance of AO in plant development. These findings suggest that AO and viral MP interaction helps in early viral movement; however, it had no major effect on viral accumulation after 7 dpi. This study suggests that initial induction of expression of AO on virus infection and its association with viral MP helps both towards targeting of the MP to the apoplast and disrupting formation of functional AO dimers for spread of virus to nearby cells, reducing the redox defense of the plant during initial stages of infection.

  5. The complete nucleotide sequence and genomic characterization of grapevine asteroid mosaic associated virus.

    Science.gov (United States)

    Vargas-Asencio, José; Wojciechowska, Klaudia; Baskerville, Maia; Gomez, Annika L; Perry, Keith L; Thompson, Jeremy R

    2017-01-02

    In analyzing grapevine clones infected with grapevine red blotch associated virus, we identified a small number of isometric particles of approximately 30nm in diameter from an enriched fraction of leaf extract. A dominant protein of 25kDa was isolated from this fraction using SDS-PAGE and was identified by mass spectrometry as belonging to grapevine asteroid mosaic associated virus (GAMaV). Using a combination of three methods RNA-Seq, sRNA-Seq, and Sanger sequencing of RT- and RACE-PCR products, we obtained a full-length genome sequence consisting of 6719 nucleotides without the poly(A) tail. The virus possesses all of the typical conserved functional domains concordant with the genus Marafivirus and lies evolutionarily between citrus sudden death associated virus and oat blue dwarf virus. A large shift in RNA-Seq coverage coincided with the predicted location of the subgenomic RNA involved in coat protein (CP) expression. Genus wide sequence alignments confirmed the cleavage motif LxG(G/A) to be dominant between the helicase and RNA dependent RNA polymerase (RdRp), and the RdRp and CP domains. A putative overlapping protein (OP) ORF lacking a canonical translational start codon was identified with a reading frame context more consistent with the putative OPs of tymoviruses and fig fleck associated virus than with those of marafiviruses. BLAST analysis of the predicted GAMaV OP showed a unique relatedness to the OPs of members of the genus Tymovirus. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Recombination and population mosaic of a multifunctional viral gene, adeno-associated virus cap.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Takeuchi

    Full Text Available Homologous recombination is a dominant force in evolution and results in genetic mosaics. To detect evidence of recombination events and assess the biological significance of genetic mosaics, genome sequences for various viral populations of reasonably large size are now available in the GenBank. We studied a multi-functional viral gene, the adeno-associated virus (AAV cap gene, which codes for three capsid proteins, VP1, VP2 and VP3. VP1-3 share a common C-terminal domain corresponding to VP3, which forms the viral core structure, while the VP1 unique N-terminal part contains an enzymatic domain with phospholipase A2 activity. Our recombinant detection program (RecI revealed five novel recombination events, four of which have their cross-over points in the N-terminal, VP1 and VP2 unique region. Comparison of phylogenetic trees for different cap gene regions confirmed discordant phylogenies for the recombinant sequences. Furthermore, differences in the phylogenetic tree structures for the VP1 unique (VP1u region and the rest of cap highlighted the mosaic nature of cap gene in the AAV population: two dominant forms of VP1u sequences were identified and these forms are linked to diverse sequences in the rest of cap gene. This observation together with the finding of frequent recombination in the VP1 and 2 unique regions suggests that this region is a recombination hot spot. Recombination events in this region preserve protein blocks of distinctive functions and contribute to convergence in VP1u and divergence of the rest of cap. Additionally the possible biological significance of two dominant VP1u forms is inferred.

  7. Imunogenicidade de proteínas do capsídeo do Cowpea severe mosaic virus (CPSMV Capsid protein immunogenicity of Cowpea severe mosaic virus (CPSMV

    Directory of Open Access Journals (Sweden)

    José Evando Aguiar Beserra Júnior

    2009-02-01

    Full Text Available A análise SDS-PAGE do Cowpea severe mosaic virus (CPSMV purificado revelou a migração de três frações protéicas estimadas em 43, 23 e 21 kDa, correspondentes às proteínas do capsídeo: denominadas proteína maior (43 kDa e menor (23 kDa; intacta e 21 kDa; clivada. As proteínas do capsídeo, na sua forma nativa, foram utilizadas na imunização de camundongos pelas vias oral e nasal, durante 10 dias consecutivos. As frações protéicas de 43 e 23 kDa, em sua forma desnaturada, foram utilizadas para imunização subcutânea. A resposta imunológica da mucosa foi avaliada pela proliferação celular das placas de Peyer de camundongos imunizados pela via oral com o CPSMV purificado. Ficou demonstrado que o CPSMV induz resposta imunológica, evidenciada pela síntese de anticorpos séricos, quando administrado na sua forma nativa pelas vias oral e nasal ou através de suas proteínas do capsídeo desnaturadas, pela via subcutânea. Não foi necessário o uso de adjuvantes, quer por via oral quer por via nasal. As frações protéicas de 43 e 23 kDa mostraram-se responsáveis pela imunogenicidade do vírus, como foi evidenciado pela síntese de anticorpos específicos detectados por ELISA. A análise da proliferação celular da placas de Peyer revelou um aumento (r=0,88 do número de leucócitos ao longo de 42 dias após a imunização. Esses resultados reforçam a possibilidade do uso do CPSMV como vetor seguro de antígenos de doenças humanas/animais pouco imunogênicos para produção de vacinas.SDS-PAGE analysis of purified Cowpea severe mosaic virus (CPSMV revealed the migration of three protein fractions of 43, 23 and 21 kDa, corresponding to the capsid protein called large protein (43 kDa and small protein (23 kDa; intact and 21 kDa; cleaved. The capsid proteins, in their native form, were used to immunize mice through oral and nasal routes for ten consecutive days. The denatured form of the 43 and 23 kDa protein fractions were

  8. HERITABILITAS, NISBAH POTENSI, DAN HETEROSIS KETAHANAN KEDELAI (Glycine max [L.] Merrill TERHADAP SOYBEAN MOSAIC VIRUS

    Directory of Open Access Journals (Sweden)

    Nyimas Sa’diyah

    2016-10-01

    Full Text Available Heritability, potential ratio, and heterosis of soybean (Glycine max [L.] Merrill resistance to soybean mosaic virus. The use of soybean cultivars with resistance to SMV is a way for controlling soybean mosaic disease. The objective of this research was to estimate the disease severity, the narrow sense heritability, potential ratio and heterosis of resistance character and number of pithy pods, number of healthy seeds, and healthy seeds weight per plant of ten F1 populations of soybean crossing result to SMV infection. The experiment was arranged in a randomized complete block design in two replications. Observed characters were disease severity, number of pithy pods, number of healthy seeds, and healthy seeds weight per plant. The result of this research showed that 1 the crossing combinations those which were resistant to SMV (lower disease severity were Yellow Bean x Tanggamus, Tanggamus x Orba, and Tanggamus x Taichung, 2 the narrow sense heritability of disease severity was included in medium criteria, 3 number of pithy pods belonged to high criteria, and 4 number of healthy seeds and healthy seeds weight per plant were included in low criteria. The crossing combinations that had low estimation value of heterosis and heterobeltiosis of resistance to SMV infection were Yellow Bean x Taichung, Bean x Tanggamus and Tanggamus x B3570. Disease severity or resistance to SMV is influenced by genetic and environmental factors.

  9. Development of apple latent spherical virus-based vaccines against three tospoviruses.

    Science.gov (United States)

    Taki, Ayano; Yamagishi, Noriko; Yoshikawa, Nobuyuki

    2013-09-01

    Apple latent spherical virus (ALSV) is characterized by its relatively broad host range, latency in most host plants, and ability to induce gene silencing in host plants. Herein, we focus on the above characteristic of ALSV and describe our development of ALSV vector vaccines against three tospoviruses, namely, Impatiens necrotic spot virus (INSV), Iris yellow spot virus (IYSV), and Tomato spotted wilt virus (TSWV). DNA fragments of 201 nt of three tospovirus S-RNAs (silencing suppressor (NSS) and nucleocapsid protein (N) coding regions for each tospovirus) were inserted into an ALSV-RNA2 vector to obtain six types of ALSV vector vaccines. Nicotiana benthamiana plants at the five-leaf stage were inoculated with each ALSV vector vaccine and challenged with the corresponding tospovirus species. Tospovirus-induced symptoms and tospovirus replication after challenge were significantly suppressed in plants preinoculated with all ALSV vector vaccines having the N region fragment, indicating that strong resistance was acquired after infection with ALSV vector vaccines. On the other hand, cross protection was not significant in plants preinoculated with ALSV vectors having the NSs region fragment. Similarly, inoculation with an ALSV-RNA1 vector having the N region fragment in the 3'-noncoding region, but not the NSs region fragment, induced cross protection, indicating that cross protection is via RNA silencing, not via the function of the protein derived from the N region fragment. Our approach, wherein ALSV vectors and selected target inserts are used, enables rapid establishment of ALSV vector vaccines against many pathogenic RNA viruses with known sequences.

  10. Biofabrication of Tobacco mosaic virus-nanoscaffolded supercapacitors via temporal capillary microfluidics

    Science.gov (United States)

    Zang, Faheng; Chu, Sangwook; Gerasopoulos, Konstantinos; Culver, James N.; Ghodssi, Reza

    2017-06-01

    This paper reports the implementation of temporal capillary microfluidic patterns and biological nanoscaffolds in autonomous microfabrication of nanostructured symmetric electrochemical supercapacitors. A photoresist layer was first patterned on the substrate, forming a capillary microfluidics layer with two separated interdigitated microchannels. Tobacco mosaic virus (TMV) macromolecules suspended in solution are autonomously delivered into the microfluidics, and form a dense bio-nanoscaffolds layer within an hour. This TMV layer is utilized in the electroless plating and thermal oxidation for creating nanostructured NiO supercapacitor. The galvanostatic charge/discharge cycle showed a 3.6-fold increase in areal capacitance for the nanostructured electrode compared to planar structures. The rapid creation of nanostructure-textured microdevices with only simple photolithography and bionanostructure self-assembly can completely eliminate the needs for sophisticated synthesis or deposition processes. This method will contribute to rapid prototyping of wide range of nano-/micro-devices with enhanced performance.

  11. [Specifics of the coat protein gene in Russian strains of the cucumber green mottle mosaic virus].

    Science.gov (United States)

    Slavokhotova, A A; Andreeva, E N; Shiian, A N; Odintsova, T I; Pukhal'skiĭ, V A

    2007-11-01

    The primary structure of the coat protein (CP) gene was examined for pathogenic strain MS-1 and vaccine strain VIROG-43M of the cucumber green mottle mosaic virus (CGMMV). In CP amino acid composition, strains MS-1 and VIROG-43M are typical representatives of CGMMV: their CPs have 98-100% homology to CPs of other tobamoviruses of the group. The CP gene has the same nucleotide composition in pathogenic MS-1 and vaccine VIROG-43M, indicating that strain attenuation is not determined by this gene. The CP amino acid sequences of the two Russian strains are fully identical to the CP sequences of two Greek strains, GR-3 and GR-5. However, the nucleotide sequences of their genes differ in 13 bp, testifying to the difference between the Russian and Greek strains.

  12. Compost Extracts of Vegetable Wastes as Biopesticide to Control Cucumber Mosaic Virus

    Directory of Open Access Journals (Sweden)

    WIWIEK SRI WAHYUNI

    2010-06-01

    Full Text Available In semiaerobic conditions, different composting processes of vegetable wastes have different characteristics. When compost extracts amended with the effective microorganism-4 (EM4, +E and Pseudomonas aeruginosa Ch1 (+B stored for 40 days, the bacteria population and P-content increased. Tobacco plants treated with compost extracts amended with +E+B and [+E+B] directly to organic materials and inoculated with Cucumber mosaic virus (CMV both sprayed or watered applications reduced the disease severity. This is due to the higher bacteria population in the root and rhizosphere, particularly the activities of P. aeruginosa Ch1 as plant growth promoting rhizobacteria (PGPR rather than the activities of bacteria from EM4. The role of P. aeruginosa Ch1 to induce resistance of the plants to CMV was suggested by producing siderophores under the limited Fe conditions,17-20 ppm.

  13. Nucleotide sequence of maize dwarf mosaic virus capsid protein gene and its expression in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    赛吉庆; 康良仪; 黄忠; 史春霖; 田波; 谢友菊

    1995-01-01

    The 3’-terminal 1 279 nucleotide sequence of maize dwarf mosaic virus (MDMV) genome has been determined. This sequence contains an open reading frame of 1023 nudeotides and a 3’ -non-coding region of 256 nucleotides. The open reading frame includes all of the coding regions for the viral capsid protein (CP) and part of the viral nuclear inclusion protein (Nib). The predicted viral CP consists of 313 amino acid residues with a calculated molecular weight of 35400. The amino acid sequence of the viral CP derived from MDMV cDNA shows about 47%-54% homology to that of 4 other potyviruses. The viral CP gene was constructed in frame with the lacZ gene in pUC19 plasmid and expressed in E. coli cells. The fusion polypeptide positively reacted in Western blot with an antiserum prepared against the native viral CP.

  14. Stimulated low-frequency Raman scattering in a suspension of tobacco mosaic virus

    Science.gov (United States)

    Karpova, O. V.; Kudryavtseva, A. D.; Lednev, V. N.; Mironova, T. V.; Oshurko, V. B.; Pershin, S. M.; Petrova, E. K.; Tcherniega, N. V.; Zemskov, K. I.

    2016-08-01

    The interaction of laser pulses with tobacco mosaic virus (TMV) in Tris-HCl pH7.5 buffer and in water has been investigated. Ruby laser pulses of 20 ns duration have been used for excitation. The spectrum of the light passing through the sample was registered with the help of a Fabry-Perot interferometer. In the case of TMV in water we observed in the spectrum only one line of the exciting laser light, but for TMV in Tris-HCl pH7.5 buffer a second line appeared, corresponding to stimulated low-frequency Raman scattering (SLFRS) on the breathing radial mode of TMV. The frequency shift of the SLFRS by 2 cm-1 (60 GHz), the conversion efficiency and the threshold are measured for the first time to the best of our knowledge.

  15. Production of Recombinant Cholera Toxin B Subunit in Nicotiana benthamiana Using GENEWARE® Tobacco Mosaic Virus Vector.

    Science.gov (United States)

    Moore, Lauren; Hamorsky, Krystal; Matoba, Nobuyuki

    2016-01-01

    Here, we describe a method to produce a recombinant cholera toxin B subunit in Nicotiana benthamiana plants (CTBp) using the GENEWARE(®) tobacco mosaic virus vector system. Infectious transcripts of the vector RNA are generated in vitro and inoculated on N. benthamiana seedlings. After 11 days, CTBp is extracted in a simple tris buffer at room temperature. No protease inhibitor is required. The leaf homogenate is treated with mild heat and a pH shift to selectively precipitate host-derived proteins. CTBp is purified to >95 % homogeneity by two-step chromatography using immobilized metal affinity and ceramic hydroxyapatite resins. This procedure yields on average 400 mg of low-endotoxin CTBp from 1 kg of fresh leaf material.

  16. Biological and molecular characterization of Brazilian isolates of Zucchini yellow mosaic virus

    Directory of Open Access Journals (Sweden)

    David Marques de Almeida Spadotti

    2015-02-01

    Full Text Available Zucchini yellow mosaic virus (ZYMV causes substantial economic losses in cucurbit crops. Although ZYMV has been present in Brazil for more than 20 years, there is little information about the biological and molecular characteristics of the isolates found in the country. This study aimed to characterize the experimental hosts, pathotypes and genetic diversity of a collection of eleven Brazilian ZYMV isolates within the coat protein gene. For biological analysis, plant species from Amaranthaceae, Chenopodiaceae, Cucurbitaceae, Fabaceae, Solanaceae, and Pedaliaceae were mechanically inoculated and pathotypes were identified based on the reaction of a resistant Cucumis melo, accession PI414723. All of the cucurbit species/varieties and Sesamum indicum were systemically infected with all isolates. The nucleotide sequence variability of the coat protein gene ranged from 82 % to 99 % compared to the corresponding sequences of ZYMV isolates from different geographical locations. No recombination event was detected in the coat protein gene of the isolates.

  17. RNA-controlled assembly of tobacco mosaic virus-derived complex structures: from nanoboomerangs to tetrapods

    Science.gov (United States)

    Eber, Fabian J.; Eiben, Sabine; Jeske, Holger; Wege, Christina

    2014-11-01

    The in vitro assembly of artificial nanotubular nucleoprotein shapes based on tobacco mosaic virus-(TMV-)-derived building blocks yielded different spatial organizations of viral coat protein subunits on genetically engineered RNA molecules, containing two or multiple TMV origins of assembly (OAs). The growth of kinked nanoboomerangs as well as of branched multipods was determined by the encapsidated RNAs. A largely simultaneous initiation at two origins and subsequent bidirectional tube elongation could be visualized by transmission electron microscopy of intermediates and final products. Collision of the nascent tubes' ends produced angular particles with well-defined arm lengths. RNAs with three to five OAs generated branched multipods with a maximum of four arms. The potential of such an RNA-directed self-assembly of uncommon nanotubular architectures for the fabrication of complex multivalent nanotemplates used in functional hybrid materials is discussed.

  18. Stimulated low-frequency Raman scattering in tobacco mosaic virus suspension

    CERN Document Server

    Karpova, O V; Lednev, V N; Mironova, T V; Oshurko, V B; Pershin, S M; Petrova, E K; Tcherniega, N V; Zemskov, K I

    2016-01-01

    Laser pulses interaction with tobacco mosaic virus (TMV) in Tris-HCl pH7.5 buffer and in water has been investigated. 20 ns ruby laser pulses have been used for excitation. Spectrum of the light passing through the sample was registered with the help of Fabri-Perot interferometer. In the case of TMV in water we observed in the spectrum only one line of the exciting laser light, for TMV in Tris-HCl pH7.5 buffer second line appeared, corresponding to the stimulated low-frequency Raman scattering (SLFRS) on the breathing radial mode of TMV. SLFRS frequency shift by 2 cm-1, (60 GHz), conversion efficiency and threshold are measured for the first time to the best of our knowledge.

  19. DNA methylation polymorphism in flue-cured tobacco and candidate markers for tobacco mosaic virus resistance

    Institute of Scientific and Technical Information of China (English)

    Jie-hong ZHAO; Ji-shun ZHANG; Yi WANG; Ren-gang WANG; Chun WU; Long-jiang FAN; Xue-liang REN

    2011-01-01

    DNA methylation plays an important role in the epigenetic regulation of gene expression during plant growth,development,and polyploidization.However,there is still no distinct evidence in tobacco regarding the distribution of the methylation pattern and whether it contributes to qualitative characteristics.We studied the levels and patterns of methylation polymorphism at CCGG sites in 48 accessions of allotetraploid flue-cured tobacco,Nicotiana tabacum,using a methylation-sensitive amplified polymorphism (MSAP) technique.The results showed that methylation existed at a high level among tobacco accessions,among which 49.3% sites were methylated and 69.9% allelic sites were polymorphic.A cluster analysis revealed distinct patterns of geography-specific groups.In addition,three polymorphic sites significantly related to tobacco mosaic virus (TMV) resistance were explored.This suggests that tobacco breeders should pay more attention to epigenetic traits.

  20. Characterisation of several heterogeneous species of defective RNAs derived from RNA 3 of cucumber mosaic virus.

    Science.gov (United States)

    López, C; Aramburu, J; Galipienso, L; Nuez, F

    2007-01-01

    Preparations of double-stranded RNAs (dsRNAs) extracted from Nicotiana tabacum cv Xanthi plants infected with a subgroup IB isolate of Cucumber mosaic virus (CMV) were found to contain a heterogeneous population of defective RNAs (D-RNAs) derived from RNA 3. Characterised D-RNAs ranged in size from 1.5 to 1.9 kb and were derived either by a single in-frame deletion within the 3a or 3b genes or by means of double in-frame deletions within both genes. Also, northern blot hybridisation showed two other types of RNA derived from RNA 3: (a) RNA species of ca. 0.7 kb containing the 3'-terminus but lacking the 5'-terminus, which could be 3'-coterminal subgenomic of D-RNAs derived from the 3b gene and (b) RNA species of unknown origin of ca. 0.8 kb containing the 5'-terminus but lacking the 3'-terminus.

  1. The limonoids and their antitobacco mosaic virus (TMV) activities from Munronia unifoliolata Oliv.

    Science.gov (United States)

    Ge, Yong-hui; Liu, Kai-xing; Zhang, Jian-xin; Mu, Shu-zhen; Hao, Xiao-jiang

    2012-05-02

    Five new limonoids, named munronoids K-O (1-5), together with three known limonoids were isolated from Munronia unifoliola Oliv. These limonoids were involved in the skeletons of evodulone, gedunin, and peieurianin types of limonoids, and their structures were established on the basis of spectroscopic data. Compound 5 featuring a γ-lactone ring instead of the β-substituted furan ring was found in the peieurianin type for the first time. The antitobacco mosaic virus (anti-TMV) activities of compounds 1-8 were also evaluated with half-leaf, enzyme-linked immunosorbent assay, and Western blot methods, and limonoids 1, 5, and 8 showed stronger anti-TMV treatment activities than the positive control ningnanmycin. Six compounds (1-5 and 8) exhibited infection inhibition activities against TMV.

  2. Biphenyls from the Twigs of Garcinia multiflora and their AntiTobacco Mosaic Virus Activities

    Directory of Open Access Journals (Sweden)

    Xingmeng Xu

    2016-03-01

    Full Text Available For more bioactive compounds, p hytochemical investigations of the acetone extract of the twigs G arcinia multiflora resulted in the isolation of two new bipheny ls, multiflorabiphenyls A and B (1 and 2 , along with four known biphenyl derivatives (3-6 . Structural elucidations of 1 and 2 were performed by spectral methods such as 1D and 2D NMR spectroscopy, in addition to high resolution mass spectrometry. Compounds 1 and 2 were also evaluated for their anti-tobacco mosaic virus (Anti-TMV activity. The results showed that compound s 1 and 2 showed high anti-TMV activit ies with inhibition rate s of 25.4 % and 28.3%, respectively, which is close d to that of Ningnanmycin ( 3 3.5 %.

  3. Anti-tobacco mosaic virus (TMV) Quassinoids from Brucea javanica (L.) Merr.

    Science.gov (United States)

    Yan, Xiao-Hui; Chen, Jia; Di, Ying-Tong; Fang, Xin; Dong, Jia-Hong; Sang, Peng; Wang, Yue-Hu; He, Hong-Ping; Zhang, Zhong-Kai; Hao, Xiao-Jiang

    2010-02-10

    Two new quassinoids, javanicolide E (1) and javanicolide F (2), along with fifteen known C-20 quassinoids were isolated from the seeds of Brucea javanica (L.) Merr. The antitobacco mosaic virus (TMV) activity of these quassinoids was screened by the conventional half-leaf and leaf-disk method along with Western blot analysis. All of the seventeen quassinoids showed potent anti-TMV activity. Among them, eight compounds, brusatol (3), bruceine B (4), bruceoside B (5), yadanzioside I (6), yadanzioside L (7), bruceine D (8), yadanziolide A (9), and aglycone of yadanziolide D (17), showed strong antiviral activities, with IC(50) values in the range of 3.42-5.66 microM, and were much more effective than the positive control, ningnanmycin (IC(50) = 117.3 microM). The antiviral structure-activity relationships of quassinoids against TMV were also discussed.

  4. Inhibitory effect of sulfated lentinan and lentinan against tobacco mosaic virus (TMV) in tobacco seedlings.

    Science.gov (United States)

    Wang, Jie; Wang, Hong-Yan; Xia, Xiao-Ming; Li, Peng-peng; Wang, Kai-Yun

    2013-10-01

    The antiviral activities of sulfated lentinan (sLNT) and lentinan (LNT) against tobacco mosaic virus (TMV) in tobacco seedlings and the underlying mechanism were investigated. Compared with LNT, sLNT showed significantly higher inhibitory effects on viral infection and TMV multiplication in a dose-dependent way, which might be due to its binding with TMV coat protein. In addition, both sLNT and LNT induced the transient production of H2O2 and expression of some defense-related genes (stilbene synthase, glucanase, acidic chitinase class IV, phenylalanine ammonia-lyase and 5-epi-aristolochene synthase) both locally and systemically. These results suggested that sLNT and LNT could control TMV incidence and the action mechanism might be associated with the affinity towards TMV coat protein and activation of some defense genes. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. The Effects of Chondroitin Sulfate on the Tobacco Mosaic Virus Configuration

    Science.gov (United States)

    Urakami, N.; Imai, M.; Sano, Y.; Takasu, M.

    Tobacco mosaic virus (TMV) particles show the isotropic-nematic (I-N) transition as a function of Chondroitin sulfate (Chs) concentration, which brings a high inhibitory activity against TMV infection. In our previous paper, we demonstrated that the depletion force induced by TMV particles and Chs chains played an important role in the I-N transition, using Monte Carlo simulations for hard spherocylinders and semirigid polymer chains system. In this study, we modify the rigidity of polymer chain in order to examine the role of the depletion force in the I-N transition. The Chs chain concentration giving the I-N transition is increased with decreasing the rigidity of the chain, and this indicates that the entropic force governs the phase behavior of TMV+polymer system.

  6. Enhanced amplified spontaneous emission using layer-by-layer assembled cowpea mosaic virus

    Science.gov (United States)

    Li, Na; Deng, Zhaoqi; Lin, Yuan; Zhang, Xiaojie; Geng, Yanhou; Ma, Dongge; Su, Zhaohui

    2009-01-01

    Layer-by-layer assembly technique was used to construct ultrathin film of cowpea mosaic virus (CPMV) by electrostatic interactions, and the film was employed as a precursor on which an OF8T2 film was deposited by spin coating. Amplified spontaneous emission (ASE) was observed and improved for the OF8T2 film. Compared with OF8T2 film on quartz, the introduction of CPMV nanoparticles reduced the threshold and loss, and remarkably increased the net gain. The threshold, loss, and gain reached 0.05 mJ/pulse, 6.9 cm-1, and 82 cm-1, respectively. CPMV nanoparticles may enormously scatter light, resulting in a positive feedback, thus the ASE is easily obtained and improved.

  7. Diterpene alkaloids and diterpenes from Spiraea japonica and their anti-tobacco mosaic virus activity.

    Science.gov (United States)

    Ma, Yuan; Mao, Xin-Ying; Huang, Lie-Jun; Fan, Yi-Min; Gu, Wei; Yan, Chen; Huang, Tao; Zhang, Jian-Xin; Yuan, Chun-Mao; Hao, Xiao-Jiang

    2016-03-01

    Five new naturally occurring natural products, including two atisine-type diterpene alkaloids (1 and 2), two atisane-type diterpenes (3 and 4), and a new natural product spiramine C2 (5), along with nine known ones (6-14), were isolated from the ethanolic extracts of the whole plant of Spiraea japonica var. acuminata Franch. Their structures were elucidated by extensive spectroscopic analysis. The anti-tobacco mosaic virus (TMV) activities of all the compounds were evaluated by the conventional half-leaf method. Six compounds (2, 3, 6, 7, 11, and 12) exhibited moderate activities at 100 μg/mL with inhibition rates in the range of 69.4-92.9%, which were higher than that of the positive control, ningnanmycin. Their preliminary structure-activity relationships were also discussed.

  8. Impact of Triticum mosaic virus infection on hard winter wheat milling and bread baking quality.

    Science.gov (United States)

    Miller, Rebecca A; Martin, T Joe; Seifers, Dallas L

    2012-03-15

    Triticum mosaic virus (TriMV) is a newly discovered wheat virus. Information regarding the effect of wheat viruses on milling and baking quality is limited. The objective of this study was to determine the impact of TriMV infection on the kernel characteristics, milling yield and bread baking quality of wheat. Commercial hard winter varieties evaluated included RonL, Danby and Jagalene. The TriMV resistance of RonL is low, while that of Danby and Jagalene is unknown. KS96HW10-3, a germplasm with high TriMV resistance, was included as a control. Plots of each variety were inoculated with TriMV at the two- to three-leaf stage. Trials were conducted at two locations in two crop years. TriMV infection had no effect on the kernel characteristics, flour yield or baking properties of KS96HW10-3. The effect of TriMV on the kernel characteristics of RonL, Danby and Jagalene was not consistent between crop years and presumably an environmental effect. The flour milling and bread baking properties of these three varieties were not significantly affected by TriMV infection. TriMV infection of wheat plants did not affect harvested wheat kernel characteristics, flour milling properties or white pan bread baking quality. Copyright © 2011 Society of Chemical Industry.

  9. Isolation and characterization of ZH14 with antiviral activity against Tobacco mosaic virus.

    Science.gov (United States)

    Zhou, Wen-Wen; Zhang, Li-Xiang; Zhang, Bin; Wang, Fei; Liang, Zhi-Hong; Niu, Tian-Gui

    2008-06-01

    A large number of bacteria were isolated from plant samples and screened for antiviral activity against the Tobacco mosaic virus (TMV). The bacterium ZH14, which was isolated from Chinese Anxi oolong tea, secreted the antiviral substances, having 94.2% virus inhibition when the bacterial culture filtrate and TMV extract were mixed at a ratio of 1:1. The ZH14 strain is a gram-positive, spore-forming rod and has the ability to degrade ribonucleic acid. Based on its effectiveness on virus inhibition, ZH14 was selected for characterization and was identified as a strain of the Bacillus cereus group based on phenotypic tests and comparative analysis of its 16S rDNA sequence. At the same time, we determined the antiviral product of ZH14 as an extracellular protein with high molecular mass, having an optimum temperature of 15-60 degrees C and an optimum pH of 6-10. Hence, the ZH14 strain and its culture filtrate have potential application in controlling plant diseases caused by TMV.

  10. A cucumber mosaic virus based expression system for the production of porcine circovirus specific vaccines.

    Directory of Open Access Journals (Sweden)

    Akos Gellért

    Full Text Available Potential porcine circovirus type 2 (PCV2 capsid protein epitopes, suitable for expression on the surface of cucumber mosaic virus (CMV particles were determined by a thorough analysis of the predicted PCV capsid protein structure. The ab initio protein structure prediction was carried out with fold recognition and threading methods. The putative PCV epitopes were selected on the basis of PCV virion models and integrated into the plant virus coat protein, after amino acid position 131. The recombinants were tested for infectivity and stability on different Nicotiana species and stable recombinant virus particles were purified. The particles were tested for their ability to bind to PCV induced porcine antibodies and used for specific antibody induction in mice and pigs. The results showed that PCV epitopes expressed on the CMV surface were recognized by the porcine antibodies and they were also able to induce PCV specific antibody response. Challenge experiment with PCV2 carried out in immunized pigs showed partial protection against the infection. Based on these results it was concluded that specific antiviral vaccine production for the given pathogen was feasible, offering an inexpensive way for the mass production of such vaccines.

  11. THE IMPACT OF SILICON ON TRANSCRIPTS RELATED TO CUCUMBER MOSAIC VIRUS INFECTION IN CUCUMBER.

    Science.gov (United States)

    Holz, S; Kube, M; Bartoszewski, G; Büttner, C

    2015-01-01

    The role of soluble silicon (Si) in alleviating viral plant infections is largely unknown. In order to analyse this gap in knowledge, this study provides insights into the relative gene expression data obtained from 1) control, 2) Cucumber mosaic virus (CMV)-infected and 3) sodium silica-treated, CMV-infected Cucumis sativus line B10 tissue cultures regenerated plants. The absence or presence of CMV was determined through RT-PCR, six days' post-inoculation. qRT-PCR was performed on five selected host genes related to CMV-defence (argonaute protein, WRKY transcription factor) and replication (chaperone, heat shock cognate protein, aquaporin). Relative gene expressions from Si-treated, CMV-infected clones were not significantly different from CMV-infected clones, but they were significantly different from the control plants. The upregulation of the chaperone, and heat shock cognate genes in Si-treated clones, is associated with enhanced virus replication, while the gene expression of the transcription factor increases and is related to defence, in contrast to decreased expression in CMV-infected clones. Aquaporin gene expression was downregulated and the argonaute expression was unaffected in both Si-treated, CMV-infected as well as CMV-infected clones. Since both alleviating and supportive gene shifts are observed in Si-treated plantlets for key genes related to the virus infection examined herein, sodium silica is suggested to have a neutral and limited impact on CMV infection in cucumber cultures.

  12. Subcellular localization and rearrangement of endoplasmic reticulum by Brome mosaic virus capsid protein.

    Science.gov (United States)

    Bamunusinghe, Devinka; Seo, Jang-Kyun; Rao, A L N

    2011-03-01

    Genome packaging in the plant-infecting Brome mosaic virus (BMV), a member of the alphavirus-like superfamily, as well as in other positive-strand RNA viruses pathogenic to humans (e.g., poliovirus) and animals (e.g., Flock House virus), is functionally coupled to replication. Although the subcellular localization site of BMV replication has been identified, that of the capsid protein (CP) has remained elusive. In this study, the application of immunofluorescence confocal microscopy to Nicotiana benthamiana leaves expressing replication-derived BMV CP as a green fluorescent protein (GFP) fusion, in conjunction with antibodies to the CP and double-stranded RNA, a presumed marker of RNA replication, revealed that the subcellular localization sites of replication and CP overlap. Our temporal analysis by transmission electron microscopy of ultrastructural modifications induced in BMV-infected N. benthamiana leaves revealed a reticulovesicular network of modified endoplasmic reticulum (ER) incorporating large assemblies of vesicles derived from ER accumulated in the cytoplasm during BMV infection. Additionally, for the first time, we have found by ectopic expression experiments that BMV CP itself has the intrinsic property of modifying ER to induce vesicles similar to those present in BMV infections. The significance of CP-induced vesicles in relation to CP-organized viral functions that are linked to replication-coupled packaging is discussed.

  13. Mapping the surface-exposed regions of papaya mosaic virus nanoparticles.

    Science.gov (United States)

    Rioux, Gervais; Majeau, Nathalie; Leclerc, Denis

    2012-06-01

    In general, the structure of the papaya mosaic virus (PapMV) and other members of the potexviruses is poorly understood. Production of PapMV coat proteins in a bacterial expression system and their self-assembly in vitro into nanoparticles is a very useful tool to study the structure of this virus. Using recombinant PapMV nanoparticles that are similar in shape and appearance to the plant virus, we evaluated surface-exposed regions by two different methods, immunoblot assay and chemical modification with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide or diethyl-pyrocarbonate followed by mass spectrometry. Three regions were targeted by the two techniques. The N- and C-termini were shown to be surfaced exposed as expected. However, the region 125-136 was revealed for the first time as the major surface-exposed region of the nanoparticles. The presence of linear peptides at the surface was finally confirmed using antibodies directed to those peptides. It is likely that region 125-136 plays a key role in the lifecycle of PapMV and other members of the potexvirus group.

  14. Detection of Papaya leaf distortion mosaic virus by reverse-transcription loop-mediated isothermal amplification.

    Science.gov (United States)

    Shen, Wentao; Tuo, Decai; Yan, Pu; Li, Xiaoying; Zhou, Peng

    2014-01-01

    Papaya leaf distortion mosaic virus (PLDMV) can infect transgenic papaya resistant to a related pathogen, Papaya ringspot virus (PRSV), posing a substantial threat to papaya production in China. Current detection methods, however, are unable to be used for rapid detection in the field. Here, a reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for the detection of PLDMV, using a set of four RT-LAMP primers designed based on the conserved sequence of PLDMV CP. The RT-LAMP method detected specifically PLDMV and was highly sensitive, with a detection limit of 1.32×10(-6) μg of total RNA per reaction. Indeed, the reaction was 10 times more sensitive than one-step RT-PCR, while also requiring significantly less time and equipment. The effectiveness of RT-LAMP and one-step RT-PCR in detecting the virus were compared using 90 field samples of non-transgenic papaya and 90 field samples of commercialized PRSV-resistant transgenic papaya from Hainan Island. None of the non-transgenic papaya tested positive for PLDMV using either method. In contrast, 19 of the commercialized PRSV-resistant transgenic papaya samples tested positive by RT-LAMP assay, and 6 of those tested negative by RT-PCR. Therefore, the PLDMV-specific RT-LAMP is a simple, rapid, sensitive, and cost-effective tool in the field diagnosis and control of PLDMV.

  15. Turnip mosaic virus moves systemically through both phloem and xylem as membrane-associated complexes.

    Science.gov (United States)

    Wan, Juan; Cabanillas, Daniel Garcia; Zheng, Huanquan; Laliberté, Jean-François

    2015-04-01

    Plant viruses move systemically in plants through the phloem. They move as virions or as ribonucleic protein complexes, although it is not clear what these complexes are made of. The approximately 10-kb RNA genome of Turnip mosaic virus (TuMV) encodes a membrane protein, known as 6K2, that induces endomembrane rearrangements for the formation of viral replication factories. These factories take the form of vesicles that contain viral RNA (vRNA) and viral replication proteins. In this study, we report the presence of 6K2-tagged vesicles containing vRNA and the vRNA-dependent RNA polymerase in phloem sieve elements and in xylem vessels. Transmission electron microscopy observations showed the presence in the xylem vessels of vRNA-containing vesicles that were associated with viral particles. Stem-girdling experiments, which leave xylem vessels intact but destroy the surrounding tissues, confirmed that TuMV could establish a systemic infection of the plant by going through xylem vessels. Phloem sieve elements and xylem vessels from Potato virus X-infected plants also contained lipid-associated nonencapsidated vRNA, indicating that the presence of membrane-associated ribonucleic protein complexes in the phloem and xylem may not be limited to TuMV. Collectively, these studies indicate that viral replication factories could end up in the phloem and the xylem. © 2015 American Society of Plant Biologists. All Rights Reserved.

  16. Turnip mosaic virus Moves Systemically through Both Phloem and Xylem as Membrane-Associated Complexes1

    Science.gov (United States)

    Zheng, Huanquan

    2015-01-01

    Plant viruses move systemically in plants through the phloem. They move as virions or as ribonucleic protein complexes, although it is not clear what these complexes are made of. The approximately 10-kb RNA genome of Turnip mosaic virus (TuMV) encodes a membrane protein, known as 6K2, that induces endomembrane rearrangements for the formation of viral replication factories. These factories take the form of vesicles that contain viral RNA (vRNA) and viral replication proteins. In this study, we report the presence of 6K2-tagged vesicles containing vRNA and the vRNA-dependent RNA polymerase in phloem sieve elements and in xylem vessels. Transmission electron microscopy observations showed the presence in the xylem vessels of vRNA-containing vesicles that were associated with viral particles. Stem-girdling experiments, which leave xylem vessels intact but destroy the surrounding tissues, confirmed that TuMV could establish a systemic infection of the plant by going through xylem vessels. Phloem sieve elements and xylem vessels from Potato virus X-infected plants also contained lipid-associated nonencapsidated vRNA, indicating that the presence of membrane-associated ribonucleic protein complexes in the phloem and xylem may not be limited to TuMV. Collectively, these studies indicate that viral replication factories could end up in the phloem and the xylem. PMID:25717035

  17. Nanostructured nickel electrodes using the Tobacco mosaic virus for microbattery applications

    Science.gov (United States)

    Gerasopoulos, Konstantinos; McCarthy, Matthew; Royston, Elizabeth; Culver, James N.; Ghodssi, Reza

    2008-10-01

    The development of nanostructured nickel-zinc microbatteries utilizing the Tobacco mosaic virus (TMV) is presented in this paper. The TMV is a high aspect ratio cylindrical plant virus which has been used to increase the active electrode area in MEMS-fabricated batteries. Genetically modifying the virus to display multiple metal binding sites allows for electroless nickel deposition and self-assembly of these nanostructures onto gold surfaces. This work focuses on integrating the TMV deposition and coating process into standard MEMS fabrication techniques as well as characterizing nickel-zinc microbatteries based on this technology. Using a microfluidic packaging scheme, devices with and without TMV structures have been characterized. The TMV modified devices demonstrated charge-discharge operation up to 30 cycles reaching a capacity of 4.45 µAh cm-2 and exhibited a six-fold increase in capacity during the initial cycle compared to planar electrode geometries. The effect of the electrode gap has been investigated, and a two-fold increase in capacity is observed for an approximately equivalent decrease in electrode spacing.

  18. Development of a concentration method for detection of tobacco mosaic virus in irrigation water

    Institute of Scientific and Technical Information of China (English)

    Wei Chen; Wenting Liu; Honghong Jiao; Huawei Zhang; Julong Cheng; Yunfeng Wu

    2014-01-01

    Tobacco mosaic virus (TMV) causes significant yield loss in susceptible crops irrigated with contaminated water. However, detection of TMV in water is difficult owing to extremely low concentrations of the virus. Here, we developed a simple method for the detection and quantiifcation of TMV in irrigation water. TMV was reliably detected at concentrations as low as 10 viral copies/µL with real-time PCR. The sensitivity of detection was further improved using polyethylene glycol 6000 (PEG6000, MW 6000) to concentrate TMV from water samples. Among the 28 samples from Shaanxi Province examined with our method, 17 were tested positive after virus concentration. Infectivity of TMV in the original water sample as well as after concentration was conifrmed using PCR. The limiting concentration of TMV in water to re-infect plants was determined as 102 viral copies/mL. The method developed in this study offers a novel approach to detect TMV in irrigation water, and may provide an effective tool to control crop infection.

  19. Genetic diversity, distant phylogenetic relationships and the occurrence of recombination events among cucumber mosaic virus isolates from zucchini in Poland.

    Science.gov (United States)

    Hasiów-Jaroszewska, Beata; Chrzanowski, Mateusz; Budzyńska, Daria; Rymelska, Natalia; Borodynko-Filas, Natasza

    2017-06-01

    In recent years, the occurrence of cucumber mosaic virus (CMV) has been noted in zucchini crops in Poland. Beside characteristic isolates, which displayed mosaics and chlorosis on infected plants, new necrotic isolates have also been identified. Here, we analysed the molecular variability of 27 isolates of CMV collected from zucchini in various regions of the country. Sequence and phylogenetic analysis based on the genes encoding the coat (CP) and movement (MP) proteins revealed that the Polish isolates belong to two subgroups: IA and II, with the prevalence of subgroup II. New recombinant variants with an IA-MP/II-CP pattern for RNA3 were also detected.

  20. Paenibacillus lentimorbus Inoculation Enhances Tobacco Growth and Extenuates the Virulence of Cucumber mosaic virus.

    Directory of Open Access Journals (Sweden)

    Susheel Kumar

    Full Text Available Previous studies with Paenibacillus lentimorbus B-30488" (hereafter referred as B-30488, a plant growth promoting rhizobacteria (PGPR isolated from cow's milk, revealed its capabilities to improve plant quality under normal and stress conditions. Present study investigates its potential as a biocontrol agent against an economically important virus, Cucumber mosaic virus (CMV, in Nicotiana tabacum cv. White Burley plants and delineates the physical, biophysical, biochemical and molecular perturbations due to the trilateral interactions of PGPR-host-CMV. Soil inoculation of B-30488 enhanced the plant vigor while significantly decreased the virulence and virus RNA accumulation by ~12 fold (91% in systemic leaves of CMV infected tobacco plants as compared to the control ones. Histology of these leaves revealed the improved tissue's health and least aging signs in B-30488 inoculated tobacco plants, with or without CMV infection, and showed lesser intercellular spaces between collenchyma cells, reduced amount of xyloglucans and pectins in connecting primary cells, and higher polyphenol accumulation in hypodermis layer extending to collenchyma cells. B-30488 inoculation has favorably maneuvered the essential biophysical (ion leakage and photosynthetic efficiency and biochemical (sugar, proline, chlorophyll, malondialdehyde, acid phosphatase and alkaline phosphatase attributes of tobacco plants to positively regulate and release the virus stress. Moreover, activities of defense related enzymes (ascorbate peroxidase, guaiacol peroxidase, superoxide dismutase and catalase induced due to CMV-infection were ameliorated with inoculation of B-30488, suggesting systemic induced resistance mediated protection against CMV in tobacco. The quantitative RT-PCR analyses of the genes related to normal plant development, stress and pathogenesis also corroborate well with the biochemical data and revealed the regulation (either up or down of these genes in favor of

  1. GOLDEN2-LIKE transcription factors coordinate the tolerance to Cucumber mosaic virus in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xue-Ying; Li, Peng-Xu; Zou, Li-Juan; Tan, Wen-rong; Zheng, Ting; Zhang, Da-Wei, E-mail: yuanmiao1892@163.com; Lin, Hong-Hui, E-mail: hhlin@scu.edu.cn

    2016-09-02

    Arabidopsis thaliana GOLDEN2-LIKE (GLKs) transcription factors play important roles in regulation of photosynthesis-associated nuclear genes, as well as participate in chloroplast development. However, the involvement of GLKs in plants resistance to virus remains largely unknown. Here, the relationship between GLKs and Cucumber mosaic virus (CMV) stress response was investigated. Our results showed that the Arabidopsis glk1glk2 double-mutant was more susceptible to CMV infection and suffered more serious damages (such as higher oxidative damages, more compromised in PSII photochemistry and more reactive oxygen species accumulation) when compared with the wild-type plants. Interestingly, there was little difference between single mutant (glk1 or glk2) and wild-type plants in response to CMV infection, suggesting GLK1 and GLK2 might function redundant in virus resistance in Arabidopsis. Furthermore, the induction of antioxidant system and defense-associated genes expression in the double mutant were inhibited when compared with single mutant or wild-type plants after CMV infection. Further evidences showed that salicylic acid (SA) and jasmonic acid (JA) might be involved in GLKs-mediated virus resistance, as SA or JA level and synthesis-related genes transcription were impaired in glk1glk2 mutant. Taken together, our results indicated that GLKs played a positively role in virus resistance in Arabidopsis. - Highlights: • GLKs play a positive role in CMV resistance in Arabidopsis. • Defective of GLKs suffered more ROS accumulation. • Arabidopsis lacking GLKs have damaged photosynthesis. • Arabidopsis lacking GLKs show low SA and JA accumulation.

  2. The study of amorphous aggregation of tobacco mosaic virus coat protein by dynamic light scattering.

    Science.gov (United States)

    Panyukov, Yuliy; Yudin, Igor; Drachev, Vladimir; Dobrov, Evgeny; Kurganov, Boris

    2007-04-01

    The kinetics of heat-induced and cetyltrimethylammonium bromide induced amorphous aggregation of tobacco mosaic virus coat protein in Na(+)/Na(+) phosphate buffer, pH 8.0, have been studied using dynamic light scattering. In the case of thermal aggregation (52 degrees C) the character of the dependence of the hydrodynamic radius (R(h)) on time indicates that at certain instant the population of aggregates is split into two components. The size of the aggregates of one kind remains practically constant in time, whereas the size of aggregates of other kind increases monotonously in time reaching the values characteristic of aggregates prone to precipitation (R(h)=900-1500 nm). The construction of the light scattering intensity versus R(h) plots shows that the large aggregates (the start aggregates) exist in the system at the instant the initial increase in the light scattering intensity is observed. For thermal aggregation the R(h) value for the start aggregates is independent of the protein concentration and equal to 21.6 nm. In the case of the surfactant-induced aggregation (at 25 degrees C) no splitting of the aggregates into two components is observed and the size of the start aggregates turns out to be much larger (107 nm) than on the thermal aggregation. The dependence of R(h) on time for both heat-induced aggregation and surfactant-induced aggregation after a lapse of time follows the power law indicating that the aggregation process proceeds in the kinetic regime of diffusion-limited cluster-cluster aggregation. Fractal dimension is close to 1.8. The molecular chaperone alpha-crystallin does not affect the kinetics of tobacco mosaic virus coat protein thermal aggregation.

  3. Inclusion bodies induced by bean rugose mosaic virus seen under light microscopy

    Directory of Open Access Journals (Sweden)

    Carmen Rivera

    2000-12-01

    Full Text Available Two types of inclusion bodies were consistently observed under light microscopy in bean (Phaseolus vulgaris leaf tissue infected with bean rugose mosaic virus (BRMV, a species of the genus Comovirus, family Comoviridae. One type consisted of vacuolated inclusions found mainly in the cytoplasm of epidermal cells. The other type consisted of abundant crystalloid inclusions of different sizes and shapes found consistently in glandular hairs, guard cells, phloem tissue, xylem elements and occasionally in epidermal and mesophyll tissues. The two types of inclusion bodies stained with Azure A and Luxol Brilliant Green Bl-Calcomine Orange 2RS (O-G, and were similar to those seen to be caused by other species of comoviruses.Se observaron dos tipos de inclusiones virales, mediante microscopia de luz, en hojas de plantas de frijol (Phaseolus vulgaris previamente infectadas con el virus del mosaico rugoso del frijol ("bean rugose mosaic comovirus", BRMV, especie del género Comovirus, familia Comoviridae. Se hallaron inclusiones vesiculadas, principalmente en el citoplasma de células de la epidermis, y abundantes inclusiones cristalinas de diferentes formas y tamaños siempre en células guarda, tricomas glandulares, floema, elementos del xilema y ocasionalmente en células epidérmicas y del mesófilo. Ambos tipos de inclusiones tiñeron con Azure A y con la tinción, verde naranja (Luxol Brilliant Green BL-Calcomine Orange 2 RS conocida como OG, y son similares a las inclusiones inducidas por otras especies del género Comovirus.

  4. Produção de variedades de Cucurbita pepo premunizadas com estirpes fracas do Papaya ringspot virus - type W e do Zucchini yellow mosaic virus

    OpenAIRE

    Estela Bonilha; Ricardo Gioria; Rômulo Fujito Kobori; Paulo Tarcísio Della Vecchia; Sônia Maria de Stefano Piedade; Jorge Alberto Marques Rezende

    2009-01-01

    Papaya ringspot virus - type W (PRSV-W) and Zucchini yellow mosaic virus (ZYMV) are the most prevalent viruses in cucurbit crops in Brazil and responsible for frequent yield losses. Diseases caused by these viruses are difficult to control. The objective of this work was to evaluate the effects of mild strains PRSV-W-1 and ZYMV-M on the yield of Cucurbita pepo L. cvs. Samira, Novita Plus, AF 2847, and Yasmin, under plastic greenhouse and field conditions. Plants infected with ZYMV-M and grown...

  5. Synergistic interaction between the Potyvirus, Turnip mosaic virus and the Crinivirus, Lettuce infectious yellows virus in plants and protoplasts.

    Science.gov (United States)

    Wang, Jinbo; Turina, Massimo; Medina, Vicente; Falk, Bryce W

    2009-09-01

    Lettuce infectious yellows virus (LIYV), the type member of the genus Crinivirus in the family Closteroviridae, is specifically transmitted by the sweet potato whitefly (Bemisia tabaci) in a semipersistent manner. LIYV infections result in a low virus titer in plants and protoplasts, impeding reverse genetic efforts to analyze LIYV gene/protein functions. We found that synergistic interactions occurred in mixed infections of LIYV and Turnip mosaic virus (TuMV) in Nicotiana benthamiana plants, and these resulted in enhanced accumulation of LIYV. Furthermore, we examined the ability of transgenic plants and protoplasts expressing only the TuMV P1/HC-Pro sequence to enhance the accumulation of LIYV. LIYV RNA and protein titers increased by as much as 8-fold in these plants and protoplasts relative to control plants. LIYV infections remained phloem-limited in P1/HC-Pro transgenic plants, suggesting that enhanced accumulation of LIYV in these plants was due primarily to increased replication efficiency, not to greater spread.

  6. Generation of transgenic papaya with double resistance to Papaya ringspot virus and Papaya leaf-distortion mosaic virus.

    Science.gov (United States)

    Kung, Yi-Jung; Bau, Huey-Jiunn; Wu, Yi-Ling; Huang, Chiung-Huei; Chen, Tsui-Miao; Yeh, Shyi-Dong

    2009-11-01

    During the field tests of coat protein (CP)-transgenic papaya lines resistant to Papaya ringspot virus (PRSV), another Potyvirus sp., Papaya leaf-distortion mosaic virus (PLDMV), appeared as an emerging threat to the transgenic papaya. In this investigation, an untranslatable chimeric construct containing the truncated CP coding region of the PLDMV P-TW-WF isolate and the truncated CP coding region with the complete 3' untranslated region of PRSV YK isolate was transferred into papaya (Carica papaya cv. Thailand) via Agrobacterium-mediated transformation to generate transgenic plants with resistance to PLDMV and PRSV. Seventy-five transgenic lines were obtained and challenged with PRSV YK or PLDMV P-TW-WF by mechanical inoculation under greenhouse conditions. Thirty-eight transgenic lines showing no symptoms 1 month after inoculation were regarded as highly resistant lines. Southern and Northern analyses revealed that four weakly resistant lines have one or two inserts of the construct and accumulate detectable amounts of transgene transcript, whereas nine resistant lines contain two or three inserts without significant accumulation of transgene transcript. The results indicated that double virus resistance in transgenic lines resulted from double or more copies of the insert through the mechanism of RNA-mediated posttranscriptional gene silencing. Furthermore, three of nine resistant lines showed high levels of resistance to heterologous PRSV strains originating from Hawaii, Thailand, and Mexico. Our transgenic lines have great potential for controlling a number of PRSV strains and PLDMV in Taiwan and elsewhere.

  7. Spatio-temporal expression of miRNAs in tomato tissues upon Cucumber mosaic virus and Tomato aspermy virus infections

    Institute of Scientific and Technical Information of China (English)

    Junli Feng; Xin Liu; Leiyu Lai; Jishuang Chen

    2011-01-01

    MicroRNAs (miRNAs) play vital roles in regulating plant growth and development. Recent work has shown that miRNA-mediated regulation of cellular mRNA expression is involved in pathogen-host interactions. However, knowledge about the timing and spatial regulation of plant miRNA expression is still limited. Here, we use stem-loop real-time reverse transcription-polymerase chain reaction to quantify the expression changes of seven miRNAs and their target mRNAs in different tomato tissues during the pathogenic processes. Compared with mock-inoculated plants, the expression levels of investigated miRNAs and mRNAs were enhanced by different degrees upon Cucumber mosaic virus (CMV)-Fny and Tomato aspermy virus-Bj infections, but were almost unchanged in CMV-FnyA2b (a CMV-Fny 2b-deletion mutant)-infected tomato seedlings. In addition, the obvious up-regulation of several miRNAs and target mRNAs in some tomato tissues suggested their special roles in these tissues' organogenesis and development. Temporal analyses also revealed that the expressions of these miRNAs and mRNAs were highly regulated by different viral infections. Taken together, the observed spatially and temporally changes in miRNAs and target mRNAs expression levels indicate the abilities of different viruses to interfere with miRNA pathway, and are correlated with their respective functions in phenotype determination in different tomato tissues.

  8. Pepino mosaic virus genotype shift in North America and development of a loop-mediated isothermal amplification for rapid genotype identification

    Science.gov (United States)

    Pepino mosaic, once an emerging disease a decade ago, has become endemic on greenhouse tomatoes worldwide in recent years. Three distinct genotypes of Pepino mosaic virus (PepMV), including EU, US1 and CH2 have been recognized. Our earlier study conducted in 2006-2007 demonstrated a predominant EU...

  9. Identification of Mungbean yellow mosaic India virus infecting Vigna mungo var. silvestris L.

    Directory of Open Access Journals (Sweden)

    Kamaal NAIMUDDIN

    2011-05-01

    Full Text Available Normal 0 14 false false false IT ZH-TW X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabella normale"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Yellow mosaic of Vigna mungo var.  silvestris, a wild relative of blackgram (Vigna mungo [L.] Hepper, was noticed at the Indian Institute of Pulses Research, Kanpur, India during 2008–2010, with an incidence of 100 per cent. The observed symptoms, consisting of veinal yellowing and scattered bright yellow spots, were suggestive of infection with a begomovirus. To characterize the virus, several sets of primer pairs were designed to amplify the targeted DNA fragments of the causal virus. The sequence data revealed that the coat protein (AV1 gene of the begomovirus under study contained a single open reading frame with 774 nucleotides, coding for 257 amino acids. Comparative analysis of the coat protein (AV1 gene of the virus under study (FJ821189 showed a 97 and 99% similarity with Mungbean yellow mosaic India virus (MYMIV-Mungbean strain at the nucleotide and the amino acid levels respectively. Sequence homology of different genes (AC1, AC2, AC3 and AC4 of the isolate under study (FJ663015 with MYMIV-Mungbean (EU523045 was 94–97% for the nucleotides and 91–99% for the amino acids sequence. Therefore, the begomovirus infecting V. mungo var. silvestris at Kanpur is to be considered a strain of MYMIV and is

  10. Effects of dicyclohexylamine on polyamine biosynthesis and incorporation into turnip yellow mosaic virus in Chinese cabbage protoplasts infected in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Balint, R.; Cohen, S.S.

    1985-07-15

    The authors have reported that protoplasts from plants infected with turnip yellow mosaic virus (TYMV) continue to produce virus in culture and that newly formed virus particles contained predominantly newly synthesized spermidine and spermine. They now report similar results with healthy protoplasts infected in vitro, in which essentially all of the virus is newly formed. Again, newly synthesized spermidine and spermine were preferentially incorporated into virus. DCHA inhibited spermidine synthesis by 85%, leading in 20 hr to a 60% depletion of the cellular spermidine and a 30% reduction in the amount of spermidine per virion. Spermine synthesis increased, however, producing a 40% increase in cellular spermine and 50-100% increase in the amount of spermine per virion. Thus, in spite of spermidine depletion, the total positive charge contributed by polyamines to the virus was essentially conserved.

  11. Fabrication of 2D ordered films of tobacco mosaic virus (TMV): processing morphology correlations for convective assembly.

    Science.gov (United States)

    Wargacki, Stephen P; Pate, Brian; Vaia, Richard A

    2008-05-20

    Biological colloids, and in particular viruses, have demonstrated substantial potential as scaffolds for nanoparticle arrays. However, the large-area, low-cost, and rapid assembly of viruses, such as by traditional colloidal processing techniques, is not well-established. Systematic exploration of processing space (virus concentration, assembly speed, and substrate surface energy) for the convective assembly method enables the fabrication of films of rod-shaped viruses (tobacco mosaic virus, TMV) with a high degree of long-range order. Monolayer assemblies several centimeters in length are comprised of TMV aligned parallel to the direction of assembly. Increasing TMV concentration and reducing assembly speed resulted in well-ordered viral layering ( N = 2 to N = 12); however, the top virus layer exhibits varying degrees of in-plane disorder.

  12. Molecular characterization of Cucumber mosaic virus infecting Gladiolus, revealing its phylogeny distinct from the Indian isolate and alike the Fny strain of CMV.

    Science.gov (United States)

    Dubey, Vimal Kumar; Aminuddin; Singh, Vijai Pal

    2010-08-01

    The majority of Gladiolus plants growing in the botanical garden at NBRI, Lucknow, India and adjoining areas exhibited symptoms of mosaic, color breaking, stunting of spikes and reduction in flower size. The occurrence of Cucumber mosaic virus (CMV) was suspected in symptomatic Gladiolus plants. Cucumber mosaic virus, the type species of the genus Cucumovirus of the family Bromoviridae, is an important plant virus worldwide, which infects many plants and causes quantity and quality losses. For virus characterization, total RNA was isolated from leaves of infected plants and used in reverse transcriptase polymerase chain reaction with a primer set designed in the Cucumber mosaic virus coat protein region. Viral amplicons of the expected 657 bp size were obtained from infected plants. No viral amplicon was obtained from healthy control plants. Viral amplicons were cloned and sequenced (DQ295914). Molecular characterization was performed and phylogenetic relationship determined by the comparison of coat protein gene nucleotide and amino acid sequences with other Cucumber mosaic virus isolates reported from India and worldwide. The nucleotide and amino acid percentage comparison and phylogenetic tree results revealed that Cucumber mosaic virus infecting Gladiolus show resemblance with the Fny strain, which is not common in the Asian continent.

  13. Genetic structure and molecular variability of Cucumber mosaic virus isolates in the United States.

    Directory of Open Access Journals (Sweden)

    Shahideh Nouri

    Full Text Available Cucumber mosaic virus (CMV has a worldwide distribution and the widest host range of any known plant virus. From 2000 to 2012, epidemics of CMV severely affected the production of snap bean (Phaseulos vulgaris L. in the Midwest and Northeastern United States. Virus diversity leading to emergence of new strains is often considered a significant factor in virus epidemics. In addition to epidemics, new disease phenotypes arising from genetic exchanges or mutation can compromise effectiveness of plant disease management strategies. Here, we captured a snapshot of genetic variation of 32 CMV isolates collected from different regions of the U.S including new field as well as historic isolates. Nucleotide diversity (π was low for U.S. CMV isolates. Sequence and phylogenetic analyses revealed that CMV subgroup I is predominant in the US and further showed that the CMV population is a mixture of subgroups IA and IB. Furthermore, phylogenetic analysis suggests likely reassortment between subgroups IA and IB within five CMV isolates. Based on phylogenetic and computational analysis, recombination between subgroups I and II as well as IA and IB in RNA 3 was detected. This is the first report of recombination between CMV subgroups I and II. Neutrality tests illustrated that negative selection was the major force operating upon the CMV genome, although some positively selected sites were detected for all encoded proteins. Together, these data suggest that different regions of the CMV genome are under different evolutionary constraints. These results also delineate composition of the CMV population in the US, and further suggest that recombination and reassortment among strain subgroups does occur but at a low frequency, and point towards CMV genomic regions that differ in types of selection pressure.

  14. Study on Control Efficiency of Junkeduke on Tobacco Mosaic Virus(TMV) and Cucumber Mosaic Virus(CMV)%菌克毒克防治烟草花叶病效果研究

    Institute of Scientific and Technical Information of China (English)

    何杰忠

    2014-01-01

    研究菌克毒克对烟草花叶病的防治效果,结果表明:菌克毒克(8%宁南霉素水剂内销品)对烟草花叶病有较好的防治效果,平均防治效果达66.7%,可促进烟株的生长,经济效益显著。%Effect of Junkeduke on tobacco mosaic virus(TMV)and cucumber mosaic virus(CMV)were studied . The results showed that Junkeduke(8%Ningnanmycin domestic product)had better control efficincy,the average control efficiency reached 66.7%.It could promote the growth of tobacco plants,economic benefits was significant.

  15. Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies

    Directory of Open Access Journals (Sweden)

    Claudia Koch

    2016-04-01

    Full Text Available The rod-shaped nanoparticles of the widespread plant pathogen tobacco mosaic virus (TMV have been a matter of intense debates and cutting-edge research for more than a hundred years. During the late 19th century, their behavior in filtration tests applied to the agent causing the 'plant mosaic disease' eventually led to the discrimination of viruses from bacteria. Thereafter, they promoted the development of biophysical cornerstone techniques such as electron microscopy and ultracentrifugation. Since the 1950s, the robust, helically arranged nucleoprotein complexes consisting of a single RNA and more than 2100 identical coat protein subunits have enabled molecular studies which have pioneered the understanding of viral replication and self-assembly, and elucidated major aspects of virus–host interplay, which can lead to agronomically relevant diseases. However, during the last decades, TMV has acquired a new reputation as a well-defined high-yield nanotemplate with multivalent protein surfaces, allowing for an ordered high-density presentation of multiple active molecules or synthetic compounds. Amino acid side chains exposed on the viral coat may be tailored genetically or biochemically to meet the demands for selective conjugation reactions, or to directly engineer novel functionality on TMV-derived nanosticks. The natural TMV size (length: 300 nm in combination with functional ligands such as peptides, enzymes, dyes, drugs or inorganic materials is advantageous for applications ranging from biomedical imaging and therapy approaches over surface enlargement of battery electrodes to the immobilization of enzymes. TMV building blocks are also amenable to external control of in vitro assembly and re-organization into technically expedient new shapes or arrays, which bears a unique potential for the development of 'smart' functional 3D structures. Among those, materials designed for enzyme-based biodetection layouts, which are routinely applied

  16. Trichoderma harzianum T-22 induces systemic resistance in tomato infected by Cucumber mosaic virus

    Directory of Open Access Journals (Sweden)

    Antonella Vitti

    2016-10-01

    Full Text Available Understanding the induction of plant defenses against viruses using biocontrol agents is essential for developing new strategies against these pathogens, given the ineffectiveness of chemical treatments. The ability of Trichoderma harzianum, strain T-22 (T22 to control Cucumber mosaic virus (CMV in Solanum lycopersicum var. cerasiforme plants and the changes in the physiology of tomato treated/infected with T22/CMV were examined. Plant growth-promoting effects, photosynthetic performance, reactive oxygen species (ROS scavenging enzymes, and phytohormones were investigated. T22 improved tomato growth in terms of plant height and improved photosynthesis, total chlorophyll content and plant gas exchange. In contrast, CMV induced a negative effect on dry matter accumulation and inhibited the photosynthetic capacity. The analysis of plant hormones demonstrated that treating with T22 before or simultaneously to CMV infection, led to a systemic resistance by jasmonic acid/ethylene and salicylic acid signaling pathways. Conversely, systemic resistance was abscissic acid-dependent when T22 treatment was administered after the CMV infection. In conclusion, the data reported here indicate that the T22-based strategy may be the most effective measure against CMV.

  17. Trichoderma harzianum T-22 Induces Systemic Resistance in Tomato Infected by Cucumber mosaic virus.

    Science.gov (United States)

    Vitti, Antonella; Pellegrini, Elisa; Nali, Cristina; Lovelli, Stella; Sofo, Adriano; Valerio, Maria; Scopa, Antonio; Nuzzaci, Maria

    2016-01-01

    Understanding the induction of plant defenses against viruses using biocontrol agents is essential for developing new strategies against these pathogens, given the ineffectiveness of chemical treatments. The ability of Trichoderma harzianum, strain T-22 (T22) to control Cucumber mosaic virus (CMV) in Solanum lycopersicum var. cerasiforme plants and the changes in the physiology of tomato treated/infected with T22/CMV were examined. Plant growth-promoting effects, photosynthetic performance, reactive oxygen species scavenging enzymes, and phytohormones were investigated. T22 improved tomato growth in terms of plant height and improved photosynthesis, total chlorophyll content and plant gas exchange. In contrast, CMV induced a negative effect on dry matter accumulation and inhibited the photosynthetic capacity. The analysis of plant hormones demonstrated that treating with T22 before or simultaneously to CMV infection, led to a systemic resistance by jasmonic acid/ethylene and salicylic acid signaling pathways. Conversely, systemic resistance was abscissic acid-dependent when T22 treatment was administered after the CMV infection. In conclusion, the data reported here indicate that the T22-based strategy may be the most effective measure against CMV.

  18. Infectivity and complete nucleotide sequence of cucumber fruit mottle mosaic virus isolate Cm cDNA.

    Science.gov (United States)

    Rhee, Sun-Ju; Hong, Jin-Sung; Lee, Gung Pyo

    2014-07-01

    Three isolates of cucumber fruit mottle mosaic virus (CFMMV) were collected from melon, cucumber, and pumpkin plants in Korea. A full-length cDNA clone of CFMMV-Cm (melon isolate) was produced and evaluated for infectivity after T7 transcription in vitro (pT7CF-Cmflc). The complete CFMMV genome sequence of the infectious clone pT7CF-Cmflc was determined. The genome of CFMMV-Cm consisted of 6,571 nucleotides and shared high nucleotide sequence identity (98.8 %) with the Israel isolate of CFMMV. Based on the infectious clone pT7CF-Cmflc, a CaMV 35S-promoter driven cDNA clone (p35SCF-Cmflc) was subsequently constructed and sequenced. Mechanical inoculation with RNA transcripts of pT7CF-Cmflc and agro-inoculation with p35SCF-Cmflc resulted in systemic infection of cucumber and melon, producing symptoms similar to those produced by CFMMV-Cm. Progeny virus in infected plants was detected by RT-PCR, western blot assay, and transmission electron microscopy.

  19. Analysis of the systemic colonization of cucumber plants by Cucumber green mottle mosaic virus.

    Science.gov (United States)

    Moreno, I M; Thompson, J R; García-Arenal, F

    2004-03-01

    Systemic movement of Cucumber green mottle mosaic virus (CGMMV) in cucumber plants was shown to be from photoassimilate source to sink, thus indicating phloem transport. Nevertheless, CGMMV was not detected by immunocytochemical procedures in the intermediary cell-sieve element complex in inoculated cotyledons, where photoassimilate loading occurs. In stem internodes, CGMMV was first localized in the companion cells of the external phloem and subsequently in all tissues except the medulla, therefore suggesting leakage of the virus from, and reloading into, the transport phloem during systemic movement. In systemically infected sink leaves, CGMMV was simultaneously detected in the xylem and phloem. Interestingly, CGMMV accumulated to high levels in the differentiating tracheids of young leaves implying that the xylem could be involved in the systemic movement of CGMMV. This possibility was tested using plants in which cell death was induced in a portion of the stem by steam treatment. At 24 degrees C, steam treatment effectively prevented the systemic movement of CGMMV, even though viral RNA was detected in washes of the xylem above the steamed internode suggesting that xylem circulation occurred. At 29 degrees C, CGMMV systemically infected steam-treated cucumber plants, indicating that CGMMV can move systemically via the xylem. Xylem transport of CGMMV was, however, less efficient than phloem transport in terms of the time required for systemic infection and the percentage of plants infected.

  20. Allergenicity assessment of genetically modified cucumber mosaic virus (CMV) resistant tomato (Solanum lycopersicon).

    Science.gov (United States)

    Lin, Chih-Hui; Sheu, Fuu; Lin, Hsin-Tang; Pan, Tzu-Ming

    2010-02-24

    Cucumber mosaic virus (CMV) has been identified as the causal agent of several disease epidemics in most countries of the world. Insect-mediated virus diseases, such as those caused by CMV, caused remarkable loss of tomato (Solanum lycopersicon) production in Taiwan. With expression of the CMV coat protein gene (Cmvcp) in a local popular tomato cultivar L4783, transgenic tomato line R8 has showed consistent CMV resistance through T(0) to T(8). In this report, the allergenicity of the CMV coat protein (CMV cp) expressed in transgenic tomato R8 was assessed by investigation of the expression of the transgene source of protein, sequence similarity with known allergens, and resistance to pepsin hydrolysis. There is no known account for either the CMV or its coat protein being an allergen. The result of a bioinformatic search also showed no significant homology between CMV cp and any known allergen. The pepsin-susceptible property of recombinant CMV cp was revealed by a simulated gastric fluid (SGF) assay. Following the most recent FAO/WHO decision tree, all results have indicated that CMV cp was a protein with low possibility to be an allergen and the transgenic tomato R8 should be considered as safe as its host.

  1. Partial sequencing and phylogenetic analysis of Soybean mosaic virus isolated in Ukraine

    Directory of Open Access Journals (Sweden)

    Polischuk V. P.

    2011-12-01

    Full Text Available The aim of the present study is to compare the biological and molecular properties of Ukrainian soybean mosaic virus (SMV isolates with those of known strains or isolates from other countries, and to trace their possible origin. The methods of mechanical inoculation, reverse transcription polymerase chain reaction, DNA sequencing and phylogenetic analysis have been used. Results. Five SMV isolates have been collected and biologically purified from breeding plots in Vinnitsa region of Ukraine. It has been found that all these isolates show the same reaction patterns when infecting 11 differential soybean cultivars. Phylogenetic analysis of sequences of the coat protein coding region and P1 coding region revealed strong genetic relationships between representative Ukrainian (UA1Gr and SMV-VA2 isolates which together were sorted in one clade with G2 strain. The investigation of sequence identity showed that different genomic regions of SMV were under different evolutionary constraints. Conclusions. SMV, isolated in Ukraine for the first time, belongs to the G2 strain group that is widespread in North America. The SMV isolates obtained in this work may be employed in the Ukrainian national breeding programs to create soybean with durable virus resistance.

  2. Recombination analysis of Soybean mosaic virus sequences reveals evidence of RNA recombination between distinct pathotypes

    Directory of Open Access Journals (Sweden)

    Babu Mohan

    2008-11-01

    Full Text Available Abstract RNA recombination is one of the two major factors that create RNA genome variability. Assessing its incidence in plant RNA viruses helps understand the formation of new isolates and evaluate the effectiveness of crop protection strategies. To search for recombination in Soybean mosaic virus (SMV, the causal agent of a worldwide seed-borne, aphid-transmitted viral soybean disease, we obtained all full-length genome sequences of SMV as well as partial sequences encoding the N-terminal most (P1 protease and the C-terminal most (capsid protein; CP viral protein. The sequences were analyzed for possible recombination events using a variety of automatic and manual recombination detection and verification approaches. Automatic scanning identified 3, 10, and 17 recombination sites in the P1, CP, and full-length sequences, respectively. Manual analyses confirmed 10 recombination sites in three full-length SMV sequences. To our knowledge, this is the first report of recombination between distinct SMV pathotypes. These data imply that different SMV pathotypes can simultaneously infect a host cell and exchange genetic materials through recombination. The high incidence of SMV recombination suggests that recombination plays an important role in SMV evolution. Obtaining additional full-length sequences will help elucidate this role.

  3. Rapid and specific detection of Yam mosaic virus by reverse-transcription recombinase polymerase amplification.

    Science.gov (United States)

    Silva, Gonçalo; Bömer, Moritz; Nkere, Chukwuemeka; Kumar, P Lava; Seal, Susan E

    2015-09-15

    Yam mosaic virus (YMV; genus Potyvirus) is considered to cause the most economically important viral disease of yams (Dioscorea spp.) in West Africa which is the dominant region for yam production globally. Yams are a vegetatively propagated crop and the use of virus-free planting material forms an essential component of disease control. Current serological and PCR-based diagnostic methods for YMV are time consuming involving a succession of target detection steps. In this study, a novel assay for specific YMV detection is described that is based on isothermal reverse transcription-recombinase polymerase amplification (RT-exoRPA). This test has been shown to be reproducible and able to detect as little as 14 pg/μl of purified RNA obtained from an YMV-infected plant, a sensitivity equivalent to that obtained with the reverse transcription-polymerase chain reaction (RT-PCR) in current general use. The RT-exoRPA assay has, however, several advantages over the RT-PCR; positive samples can be detected in less than 30 min, and amplification only requires a single incubation temperature (optimum 37°C). These features make the RT-exoRPA assay a promising candidate for adapting into a field test format to be used by yam breeding programmes or certification laboratories. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Prevalence of Tobacco mosaic virus in Iran and Evolutionary Analyses of the Coat Protein Gene.

    Science.gov (United States)

    Alishiri, Athar; Rakhshandehroo, Farshad; Zamanizadeh, Hamid-Reza; Palukaitis, Peter

    2013-09-01

    The incidence and distribution of Tobacco mosaic virus (TMV) and related tobamoviruses was determined using an enzyme-linked immunosorbent assay on 1,926 symptomatic horticultural crops and 107 asymptomatic weed samples collected from 78 highly infected fields in the major horticultural crop-producing areas in 17 provinces throughout Iran. The results were confirmed by host range studies and reverse transcription-polymerase chain reaction. The overall incidence of infection by these viruses in symptomatic plants was 11.3%. The coat protein (CP) gene sequences of a number of isolates were determined and disclosed to be a high identity (up to 100%) among the Iranian isolates. Phylogenetic analysis of all known TMV CP genes showed three clades on the basis of nucleotide sequences with all Iranian isolates distinctly clustered in clade II. Analysis using the complete CP amino acid sequence showed one clade with two subgroups, IA and IB, with Iranian isolates in both subgroups. The nucleotide diversity within each sub-group was very low, but higher between the two clades. No correlation was found between genetic distance and geographical origin or host species of isolation. Statistical analyses suggested a negative selection and demonstrated the occurrence of gene flow from the isolates in other clades to the Iranian population.

  5. Impact on the endoplasmic reticulum and Golgi apparatus of turnip mosaic virus infection.

    Science.gov (United States)

    Grangeon, Romain; Agbeci, Maxime; Chen, Jun; Grondin, Gilles; Zheng, Huanquan; Laliberté, Jean-François

    2012-09-01

    The impact of turnip mosaic virus (TuMV) infection on the endomembranes of the host early secretory pathway was investigated using an infectious clone that has been engineered for tagging viral membrane structures with a fluorescent protein fused to the viral protein 6K(2). TuMV infection led to the amalgamation of the endoplasmic reticulum (ER), Golgi apparatus, COPII coatamers, and chloroplasts into a perinuclear globular structure that also contained viral proteins. One consequence of TuMV infection was that protein secretion was blocked at the ER-Golgi interface. Fluorescence recovery after photobleaching (FRAP) experiments indicated that the perinuclear structure cannot be restocked in viral components but was dynamically connected to the bulk of the Golgi apparatus and the ER. Experiments with 6K(2) fused to photoactivable green fluorescent protein (GFP) showed that production of motile peripheral 6K(2) vesicles was functionally linked to the perinuclear structure. Disruption of the early secretory pathway did not prevent the formation of the perinuclear globular structure, enhanced the clustering of peripheral 6K(2) vesicles with COPII coatamers, and led to inhibition of cell-to-cell virus movement. This suggests that a functional secretory pathway is not required for the formation of the TuMV perinuclear globular structure and peripheral vesicles but is needed for successful viral intercellular propagation.

  6. Molecular characterization of Dasheen mosaic virus isolates infecting edible aroids in India.

    Science.gov (United States)

    Babu, B; Hegde, V

    2014-01-01

    Dasheen mosaic virus (DsMV) infecting three major edible aroids namely Amorphophallus paeoniifolius, Colocasia esculenta, and Xanthosoma sagittifolium cultivated in India was characterized. Infected plants showing typical DsMV symptoms were subjected to reverse transcription-polymerase chain reaction, and an amplification of a 963 bp fragment which encoded the coat protein (CP) gene was obtained. BLAST analysis of the cloned DNA amplicon revealed the identity of the virus to be that of DsMV. Sequence identity matrix of the nucleotide sequences among the three isolates showed that the DsMV isolate infecting A. paeoniifolius and C. esculenta shared an identity as high as 93%, while the DsMV isolate from X. sagittifolium shared an identity of only 73% and 76% with the DsMV isolates from A. paeoniifolius and C. esculenta, respectively. Comparative analysis of the coat protein of the three DsMV isolates showed the presence of DVG motif (A. paeoniifolius and C. esculenta) and DTG motif in X. sagittifolium and several varying potential threonine and asparagine rich N-glycosylation motifs. Single amino acid substitution of the several conserved motifs occurs in all the three DsMV isolates. This is the first characterization of DsMV isolates infecting A. paeoniifolius, C. esculenta, and X. sagittifolium plants in India.

  7. An atomic model of brome mosaic virus using direct electron detection and real-space optimization.

    Science.gov (United States)

    Wang, Zhao; Hryc, Corey F; Bammes, Benjamin; Afonine, Pavel V; Jakana, Joanita; Chen, Dong-Hua; Liu, Xiangan; Baker, Matthew L; Kao, Cheng; Ludtke, Steven J; Schmid, Michael F; Adams, Paul D; Chiu, Wah

    2014-09-04

    Advances in electron cryo-microscopy have enabled structure determination of macromolecules at near-atomic resolution. However, structure determination, even using de novo methods, remains susceptible to model bias and overfitting. Here we describe a complete workflow for data acquisition, image processing, all-atom modelling and validation of brome mosaic virus, an RNA virus. Data were collected with a direct electron detector in integrating mode and an exposure beyond the traditional radiation damage limit. The final density map has a resolution of 3.8 Å as assessed by two independent data sets and maps. We used the map to derive an all-atom model with a newly implemented real-space optimization protocol. The validity of the model was verified by its match with the density map and a previous model from X-ray crystallography, as well as the internal consistency of models from independent maps. This study demonstrates a practical approach to obtain a rigorously validated atomic resolution electron cryo-microscopy structure.

  8. An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus.

    Science.gov (United States)

    Peart, Jack R; Cook, Graeme; Feys, Bart J; Parker, Jane E; Baulcombe, David C

    2002-03-01

    In Arabidopsis, EDS1 is essential for disease resistance conferred by a structural subset of resistance (R) proteins containing a nucleotide-binding site, leucine-rich-repeats and amino-terminal similarity to animal Toll and Interleukin-1 (so-called TIR-NBS-LRR proteins). EDS1 is not required by NBS-LRR proteins that possess an amino-terminal coiled-coil motif (CC-NBS-LRR proteins). Using virus-induced gene silencing (VIGS) of a Nicotiana benthaminana EDS1 orthologue, we investigated the role of EDS1 in resistance specified by structurally distinct R genes in transgenic N. benthamiana. Resistance against tobacco mosaic virus mediated by tobacco N, a TIR-NBS-LRR protein, was EDS1-dependent. Two other R proteins, Pto (a protein kinase), and Rx (a CC-NBS-LRR protein) recognizing, respectively, a bacterial and viral pathogen did not require EDS1. These data, together with the finding that expression of N. benthamiana and Arabidopsis EDS1 mRNAs are similarly regulated, lead us to conclude that recruitment of EDS1 by TIR-NBS-LRR proteins is evolutionarily conserved between dicotyledenous plant species in resistance against bacterial, oomycete and viral pathogens. We further demonstrate that VIGS is a useful approach to dissect resistance signaling pathways in a genetically intractable plant species.

  9. [Detection of tobacco mosaic virus (TMV) in Rehmannia glutinosa f. hueichingensis by IC-RT-PCR].

    Science.gov (United States)

    Du, Lin; Xiang, Jin-Le; Fan, Jin-Ling; Li, Xin; Luo, Lei

    2013-07-01

    To establish a rapid, sensitive and efficient detection method for tobacco mosaic virus (TMV), and provide technical support of TMV detection of Rehmannia glutinosa f. hueichingensis. The virus-free plantlets could be produced on a large scale to ameliorate breed degeneration caused by viral disease. Specific primers were designed based on the conserved region of coat protein(CP) gene of TMV. Immunocapture RT-PCR (IC-RT-PCR) was employed to detect TMV and the sequence of the products was detected. The expected nucleotide acid fragments were amplified by IC-RT-PCR. The homology of nucleotide acid sequence and amino acid sequence were 95.29% and 96.7% between the PCR products and the CP gene of TMV (accession number AY555269). The method was established for the detection of TMV in R. glutinosa f. hueichingensis by IC-RT-PCR. This detection combined molecular biology technology with immunology, was convenient for a quick, sensitive and simple detection of TMV.

  10. Design, synthesis, and anti-tobacco mosaic virus (TMV) activity of phenanthroindolizidines and their analogues.

    Science.gov (United States)

    Wang, Ziwen; Wei, Peng; Wang, Lizhong; Wang, Qingmin

    2012-10-17

    On the basis of our previous structure-activity relationship (SAR) and antiviral mechanism studies, a series of phenanthroindolizidines and their analogues 3-20 were designed, targeting tobacco mosaic virus (TMV) RNA, synthesized, and systematically evaluated for their antiviral activity against TMV. The bioassay results showed that most of these compounds displayed good anti-TMV activity, and some of them exhibited higher antiviral activity than that of commercial Ningnanmycin (perhaps the most successful registered antiplant viral agent). Especially, (S)-deoxytylophorinine (5) with excellent anti-TMV activity (inactivation activity, 59.8%/500 μg mL(-1) and 40.3%/100 μg mL(-1); curative activity, 65.1%/500 μg mL(-1) and 43.7%/100 μg mL(-1); and protection activity, 70.2%/500 μg mL(-1) and 51.3%/100 μg mL(-1)) emerged as a potential inhibitor of the plant virus. Compound 20 exhibited a strong in vivo protection effect against TMV at 100 μg mL(-1), which indicated that phenanthroindolizidine analogues with a seven-membered D ring have a new and interesting structural scaffold and have great potential for further development as tobacco protection agents.

  11. Design, synthesis, and anti-tobacco mosaic virus (TMV) activity of glycoconjugates of phenanthroindolizidines alkaloids.

    Science.gov (United States)

    Wu, Meng; Han, Guifang; Meng, Chuisong; Wang, Ziwen; Liu, Yuxiu; Wang, Qingmin

    2014-02-01

    Glycoconjugates of phenanthroindolizidine alkaloids targeting tobacco mosaic virus (TMV) RNA were designed, synthesized, and evaluated for their antiviral activity against TMV for the first time. The glycoconjugation of (S)-6-O-desmethylantofine (2) and 14-hydroxyltylophorines (3-6) was accomplished in three ways (O-glycosylation manner, using carbamoyloxy as linker arm, and using 1,2,3-triazole as linker arm) with three different sugar units (glucose, galactose, and mannose). The glycoconjugates showed improved water solubility and molecule polarity compared with phenanthroindolizidine alkaloids. The bioassay results showed that C6 was a suitable position for glycoconjugation and O-glycosylation can increase the antiviral activity of phenanthroindolizidine alkaloids indicating that the introduction of sugar units can improve the antiviral activity profile of glycoconjugates. Two O-glycosides of (S)-6-O-desmethylantofine, (13aS)-6-O-β-D-galactopyranosyl-2,3-dimethoxyphenanthro [9,10-b]-11-indolizidinone (10) and (13aS)-6-O-β-D-mannopyranosyl-2,3-dimethoxyphenanthro [9,10-b]-11-indolizidinone (11) displayed significant higher activity than commercial ningnanmycin, and thus could be considered for novel therapy against plant virus infection.

  12. The current status of the Soybean-Soybean mosaic virus (SMV Pathosystem

    Directory of Open Access Journals (Sweden)

    Jianzhong Liu

    2016-11-01

    Full Text Available Soybean mosaic virus (SMV is one of the most devastating pathogens that cost huge economic losses in soybean production worldwide. Due to the duplicated genome, clustered and highly homologous nature of R genes, as well as recalcitrant to transformation, soybean disease resistance studies is largely lagging compared with other diploid crops. In this review, we focus on the major advances that have been made in identifying both the virulence/avirulence factors of SMV and mapping of SMV resistant genes in soybean. In addition, we review the progress in dissecting the SMV resistant signaling pathways in soybean, with a special focus on the studies using virus-induced gene silencing (VIGS. The soybean genome has been fully sequenced, and the increasingly saturated SNP markers have been identified. With these resources available together with newly developed genome editing tools, and more efficient soybean transformation system, cloning SMV resistant genes, and ultimately generating cultivars with a broader spectrum resistance to SMV are becoming more realistic than ever.

  13. Entropy and volume change of dissociation in tobacco mosaic virus probed by high pressure.

    Science.gov (United States)

    Bispo, Jose A C; Bonafe, Carlos F S; Joekes, Ines; Martinez, Ernesto A; Carvalho, Giovani B M; Norberto, Douglas R

    2012-12-27

    Virus dissociation and inactivation by high pressure have been extensively studied in recent decades. Pressure-induced dissociation of viral particles involves a reduction in the Gibbs free energy of dissociation and a negative change in volume. In this work, we investigated the combined effect of high pressure and temperature on the dissociation of tobacco mosaic virus (TMV). We assumed the presence of two states of TMV with different tendencies to dissociate. Thus one form presents a low tendency (L) and the other a high tendency (H) to dissociate. Based on the model described here, the L-H transition was favored by an increase in pressure and a decrease in temperature. The volume change of dissociation was pressure- and temperature-dependent, with a highly negative value of -80 mL/mol being recorded at 0 °C and atmospheric pressure. The entropy and enthalpy of dissociation were very temperature- and pressure-dependent, with values of entropy of 450 to -1300 kJ/mol and values of enthalpy of 5.5 × 10(4) to 2.4 × 10(4) kJ/mol. The dissociation of TMV was enthalpy-driven at all temperatures and pressures investigated. Based on these findings, we conclude that the model presented allows accurate predictions of viral dissociation behavior in different experimental conditions.

  14. Fast detection of tobacco mosaic virus infected tobacco using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Peng, Jiyu; Song, Kunlin; Zhu, Hongyan; Kong, Wenwen; Liu, Fei; Shen, Tingting; He, Yong

    2017-03-01

    Tobacco mosaic virus (TMV) is one of the most devastating viruses to crops, which can cause severe production loss and affect the quality of products. In this study, we have proposed a novel approach to discriminate TMV-infected tobacco based on laser-induced breakdown spectroscopy (LIBS). Two different kinds of tobacco samples (fresh leaves and dried leaf pellets) were collected for spectral acquisition, and partial least squared discrimination analysis (PLS-DA) was used to establish classification models based on full spectrum and observed emission lines. The influences of moisture content on spectral profile, signal stability and plasma parameters (temperature and electron density) were also analysed. The results revealed that moisture content in fresh tobacco leaves would worsen the stability of analysis, and have a detrimental effect on the classification results. Good classification results were achieved based on the data from both full spectrum and observed emission lines of dried leaves, approaching 97.2% and 88.9% in the prediction set, respectively. In addition, support vector machine (SVM) could improve the classification results and eliminate influences of moisture content. The preliminary results indicate that LIBS coupled with chemometrics could provide a fast, efficient and low-cost approach for TMV-infected disease detection in tobacco leaves.

  15. Prevalence of Tobacco mosaic virus in Iran and Evolutionary Analyses of the Coat Protein Gene

    Directory of Open Access Journals (Sweden)

    Athar Alishiri

    2013-09-01

    Full Text Available The incidence and distribution of Tobacco mosaic virus (TMV and related tobamoviruses was determined using an enzyme-linked immunosorbent assay on 1,926 symptomatic horticultural crops and 107 asymptomatic weed samples collected from 78 highly infected fields in the major horticultural crop-producing areas in 17 provinces throughout Iran. The results were confirmed by host range studies and reverse transcription-polymerase chain reaction. The overall incidence of infection by these viruses in symptomatic plants was 11.3%. The coat protein (CP gene sequences of a number of isolates were determined and disclosed to be a high identity (up to 100% among the Iranian isolates. Phylogenetic analysis of all known TMV CP genes showed three clades on the basis of nucleotide sequences with all Iranian isolates distinctly clustered in clade II. Analysis using the complete CP amino acid sequence showed one clade with two subgroups, IA and IB, with Iranian isolates in both subgroups. The nucleotide diversity within each sub-group was very low, but higher between the two clades. No correlation was found between genetic distance and geographical origin or host species of isolation. Statistical analyses suggested a negative selection and demonstrated the occurrence of gene flow from the isolates in other clades to the Iranian population.

  16. Detection and characterization of a Cucumber mosaic virus isolate infecting peperina, a species native to Argentina

    Directory of Open Access Journals (Sweden)

    P Rodríguez Pardina

    2013-12-01

    Full Text Available Minthostachys mollis (Kunth. Griseb., "peperina", un miembro de la familia Lamiaceae, es una especie aromática que se emplea en la farmacología moderna y en medicina. Está ampliamente distribuida en los Andes, desde Venezuela y Colombia hasta Argentina. En el último país, la principal área de explotación de peperina incluye el área serrana de la provincia de Córdoba, donde la especie es arrancada indiscriminadamente, lo que conlleva una pérdida irreversible de germoplasma. A los fines de preservar este recurso nativo y fuente regional de ingresos, la especie está siendo domesticada. Durante este proceso, se observó la aparición de síntomas de un conspicuo mosaico amarillo, típico de infección viral. Análisis biológicos, serológicos y moleculares (RT-PCR, RFLP, clonado y secuenciación pusieron de manifiesto la presencia del subgrupo IA de Cucumber mosaic virus en las plantas domesticadas de peperina. El aislamiento viral estudiado está íntimamente relacionado con la raza Y previamente informada en Japón. Éste es el primer informe de un virus que infecta a la peperina.

  17. Trichoderma harzianum T-22 Induces Systemic Resistance in Tomato Infected by Cucumber mosaic virus

    Science.gov (United States)

    Vitti, Antonella; Pellegrini, Elisa; Nali, Cristina; Lovelli, Stella; Sofo, Adriano; Valerio, Maria; Scopa, Antonio; Nuzzaci, Maria

    2016-01-01

    Understanding the induction of plant defenses against viruses using biocontrol agents is essential for developing new strategies against these pathogens, given the ineffectiveness of chemical treatments. The ability of Trichoderma harzianum, strain T-22 (T22) to control Cucumber mosaic virus (CMV) in Solanum lycopersicum var. cerasiforme plants and the changes in the physiology of tomato treated/infected with T22/CMV were examined. Plant growth-promoting effects, photosynthetic performance, reactive oxygen species scavenging enzymes, and phytohormones were investigated. T22 improved tomato growth in terms of plant height and improved photosynthesis, total chlorophyll content and plant gas exchange. In contrast, CMV induced a negative effect on dry matter accumulation and inhibited the photosynthetic capacity. The analysis of plant hormones demonstrated that treating with T22 before or simultaneously to CMV infection, led to a systemic resistance by jasmonic acid/ethylene and salicylic acid signaling pathways. Conversely, systemic resistance was abscissic acid-dependent when T22 treatment was administered after the CMV infection. In conclusion, the data reported here indicate that the T22-based strategy may be the most effective measure against CMV. PMID:27777581

  18. In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer

    Science.gov (United States)

    Lizotte, P. H.; Wen, A. M.; Sheen, M. R.; Fields, J.; Rojanasopondist, P.; Steinmetz, N. F.; Fiering, S.

    2016-03-01

    Nanotechnology has tremendous potential to contribute to cancer immunotherapy. The ‘in situ vaccination’ immunotherapy strategy directly manipulates identified tumours to overcome local tumour-mediated immunosuppression and subsequently stimulates systemic antitumour immunity to treat metastases. We show that inhalation of self-assembling virus-like nanoparticles from cowpea mosaic virus (CPMV) reduces established B16F10 lung melanoma and simultaneously generates potent systemic antitumour immunity against poorly immunogenic B16F10 in the skin. Full efficacy required Il-12, Ifn-γ, adaptive immunity and neutrophils. Inhaled CPMV nanoparticles were rapidly taken up by and activated neutrophils in the tumour microenvironment as an important part of the antitumour immune response. CPMV also exhibited clear treatment efficacy and systemic antitumour immunity in ovarian, colon, and breast tumour models in multiple anatomic locations. CPMV nanoparticles are stable, nontoxic, modifiable with drugs and antigens, and their nanomanufacture is highly scalable. These properties, combined with their inherent immunogenicity and demonstrated efficacy against a poorly immunogenic tumour, make CPMV an attractive and novel immunotherapy against metastatic cancer.

  19. SELEKSI GALUR DARI POPULASI F4 KEDELAI YANG TAHAN TERHADAP PENYAKIT MOSAIK (Soybean mosaic virus DAN BERDAYA HASIL TINGGI

    Directory of Open Access Journals (Sweden)

    Wuye Ria Andayanie

    2015-06-01

    Full Text Available Soybean lines selection of F4 population resistant  to soybean mosaic disease (Soybean mosaic virus with high yield.  The soybean breeding program is usually not purposedly done for resistance to Soybean mosaic virus (SMV but rather for crop yields. The experiment was aimed to obtain soybean lines of F4 population resistant to soybean mosaic disease with high yield.  F2-F4 plants that have been inoculated with the T isolate of SMV one week after planting were selected by the pedigree  in the screen house. The result indicated eight  F4 populations (Wilis x L. Temanggung; Wilis x L. Jombang; Wilis x Pangrango; Wilis x PI 200485;  Gepak Kuning x L. Jombang; Gepak Kuning x L. Temanggung; Gepak Kuning x Malabar; Gepak Kuning x PI 200485 produced medium seed size (from 9.84-10.26 g 100/seeds.  Gepak Kuning x Mlg 3288  showed more resistant than Gepak Kuning x PI 200485. The seed produced by Gepak Kuning x PI 200485 was 1.97 ton/ha. There were no F4 populations that had higher yield and bigger seed size than Gepak Kuning x PI 200485 even though they were  moderately resistant to SMV. Therefore, these lines of Gepak Kuning x Mlg 3288 and Gepak  Kuning x  PI 200485 might provide exellent sources to develop a new variety that resistant to SMV and of high yield.

  20. Occurrence of Squash yellow mild mottle virus and Pepper golden mosaic virus in Potential New Hosts in Costa Rica

    Directory of Open Access Journals (Sweden)

    Ruth M. Castro

    2013-09-01

    Full Text Available Leaf samples of Solanum lycopersicum, Capsicum annuum, Cucurbita moschata, Cucurbita pepo, Sechium edule and Erythrina spp. were collected. All samples were positive for begomoviruses using polymerase chain reaction and degenerate primers. A sequence of ∼1,100 bp was obtained from the genomic component DNA-A of 14 samples. In addition, one sequence of ∼580 bp corresponding to the coat protein (AV1 was obtained from a chayote (S. edule leaf sample. The presence of Squash yellow mild mottle virus (SYMMoV and Pepper golden mosaic virus (PepGMV were confirmed. The host range reported for SYMMoV includes species of the Cucurbitaceae, Caricaceae and Fabaceae families. This report extends the host range of SYMMoV to include the Solanaceae family, and extends the host range of PepGMV to include C. moschata, C. pepo and the Fabaceae Erythrina spp. This is the first report of a begomovirus (PepGMV infecting chayote in the Western Hemisphere.

  1. Occurrence of Squash yellow mild mottle virus and Pepper golden mosaic virus in Potential New Hosts in Costa Rica.

    Science.gov (United States)

    Castro, Ruth M; Moreira, Lisela; Rojas, María R; Gilbertson, Robert L; Hernández, Eduardo; Mora, Floribeth; Ramírez, Pilar

    2013-09-01

    Leaf samples of Solanum lycopersicum, Capsicum annuum, Cucurbita moschata, Cucurbita pepo, Sechium edule and Erythrina spp. were collected. All samples were positive for begomoviruses using polymerase chain reaction and degenerate primers. A sequence of ∼1,100 bp was obtained from the genomic component DNA-A of 14 samples. In addition, one sequence of ∼580 bp corresponding to the coat protein (AV1) was obtained from a chayote (S. edule) leaf sample. The presence of Squash yellow mild mottle virus (SYMMoV) and Pepper golden mosaic virus (PepGMV) were confirmed. The host range reported for SYMMoV includes species of the Cucurbitaceae, Caricaceae and Fabaceae families. This report extends the host range of SYMMoV to include the Solanaceae family, and extends the host range of PepGMV to include C. moschata, C. pepo and the Fabaceae Erythrina spp. This is the first report of a begomovirus (PepGMV) infecting chayote in the Western Hemisphere.

  2. Tobacco mosaic virus (TMV) and potato virus X (PVX) coat proteins confer heterologous interference to PVX and TMV infection, respectively.

    Science.gov (United States)

    Bazzini, A A; Asurmendi, S; Hopp, H E; Beachy, R N

    2006-04-01

    Replication of Potato virus X (PVX) was reduced in transgenic protoplasts that accumulated wild-type coat protein (CPWT) of Tobacco mosaic virus (TMV) or a mutant CP, CP(T42W), that produced highly ordered states of aggregation, including pseudovirions. This reaction is referred to as heterologous CP-mediated resistance. However, protoplasts expressing a CP mutant that abolished aggregation and did not produce pseudovirions, CPT28W, did not reduce PVX replication. Similarly, in transgenic tobacco plants producing TMV CPWT or CP(T42W), there was a delay in local cell-to-cell spread of PVX infection that was not observed in CP(T28W) plants or in non-transgenic plants. The results suggest that the quaternary structure of the TMV CP regulates the mechanism(s) of heterologous CP-mediated resistance. Similarly, transgenic protoplasts that produced PVX CP conferred transient protection against infection by TMV RNA. Transgenic plants that accumulated PVX CP reduced the cell-to-cell spread of infection and resulted in a delay in systemic infection following inoculation with TMV or TMV RNA. Heterologous CP-mediated resistance was characterized by a brief delay in systemic infection, whilst homologous CP-mediated resistance conferred reduced or no systemic infection.

  3. Nucleocapsid protein from fig mosaic virus forms cytoplasmic agglomerates that are hauled by endoplasmic reticulum streaming.

    Science.gov (United States)

    Ishikawa, Kazuya; Miura, Chihiro; Maejima, Kensaku; Komatsu, Ken; Hashimoto, Masayoshi; Tomomitsu, Tatsuya; Fukuoka, Misato; Yusa, Akira; Yamaji, Yasuyuki; Namba, Shigetou

    2015-01-01

    Although many studies have demonstrated intracellular movement of viral proteins or viral replication complexes, little is known about the mechanisms of their motility. In this study, we analyzed the localization and motility of the nucleocapsid protein (NP) of Fig mosaic virus (FMV), a negative-strand RNA virus belonging to the recently established genus Emaravirus. Electron microscopy of FMV-infected cells using immunogold labeling showed that NPs formed cytoplasmic agglomerates that were predominantly enveloped by the endoplasmic reticulum (ER) membrane, while nonenveloped NP agglomerates also localized along the ER. Likewise, transiently expressed NPs formed agglomerates, designated NP bodies (NBs), in close proximity to the ER, as was the case in FMV-infected cells. Subcellular fractionation and electron microscopic analyses of NP-expressing cells revealed that NBs localized in the cytoplasm. Furthermore, we found that NBs moved rapidly with the streaming of the ER in an actomyosin-dependent manner. Brefeldin A treatment at a high concentration to disturb the ER network configuration induced aberrant accumulation of NBs in the perinuclear region, indicating that the ER network configuration is related to NB localization. Dominant negative inhibition of the class XI myosins, XI-1, XI-2, and XI-K, affected both ER streaming and NB movement in a similar pattern. Taken together, these results showed that NBs localize in the cytoplasm but in close proximity to the ER membrane to form enveloped particles and that this causes passive movements of cytoplasmic NBs by ER streaming. Intracellular trafficking is a primary and essential step for the cell-to-cell movement of viruses. To date, many studies have demonstrated the rapid intracellular movement of viral factors but have failed to provide evidence for the mechanism or biological significance of this motility. Here, we observed that agglomerates of nucleocapsid protein (NP) moved rapidly throughout the cell, and we

  4. Apple pomace, a by-product from the asturian cider industry, inhibits herpes simplex virus types 1 and 2 in vitro replication: study of its mechanisms of action.

    Science.gov (United States)

    Alvarez, Angel L; Melón, Santiago; Dalton, Kevin P; Nicieza, Inés; Roque, Annele; Suárez, Belén; Parra, Francisco

    2012-06-01

    The anti-herpes simplex virus type 1 and anti-herpes simplex virus type 2 effects of apple pomace, a by-product from the cider-processing industry, were investigated. The mechanisms of antiviral action were assessed using a battery of experiments targeting sequential steps in the viral replication cycle. The anti-herpetic mechanisms of apple pomaces included the inhibition of virus attachment to the cell surface and the arrest of virus entry and uncoating. Quercitrin and procyanidin B2 were found to play a crucial role in the antiviral activity.

  5. Apple Pomace, a By-Product from the Asturian Cider Industry, Inhibits Herpes Simplex Virus Types 1 and 2 In Vitro Replication: Study of Its Mechanisms of Action

    Science.gov (United States)

    Melón, Santiago; Dalton, Kevin P.; Nicieza, Inés; Roque, Annele; Suárez, Belén; Parra, Francisco

    2012-01-01

    Abstract The anti–herpes simplex virus type 1 and anti–herpes simplex virus type 2 effects of apple pomace, a by-product from the cider-processing industry, were investigated. The mechanisms of antiviral action were assessed using a battery of experiments targeting sequential steps in the viral replication cycle. The anti-herpetic mechanisms of apple pomaces included the inhibition of virus attachment to the cell surface and the arrest of virus entry and uncoating. Quercitrin and procyanidin B2 were found to play a crucial role in the antiviral activity. PMID:22424460

  6. Ability of Aphis gossypii and Myzus persicae to Transmit Cucumber mosaic virus in Single and Mixed Infection with Two Potyviruses to Zucchini Squash Eficiência dos afídeos Aphis gossypii e Myzus persicae na transmissão do Cucumber mosaic virus em infecção simples e mista com dois Potyvirus para abobrinha de moita

    OpenAIRE

    Zayame Vegette Pinto; Jorge Alberto Marques Rezende; Valdir Atsushi Yuki; Sônia Maria de Stefano Piedade

    2008-01-01

    The main objective of this work was to investigate the ability of Aphis gossypii and Myzus persicae to transmit Cucumber mosaic virus (CMV) singly and mixed with two potyviruses (Papaya ringspot virus - type W, PRSV-W and Zucchini yellow mosaic virus, ZYMV), to zucchini squash plants (Cucurbita pepo). The results showed that the potyviruses in general were more efficiently transmitted by both species of aphids as compared to CMV. The transmission of PRSV-W, ZYMV and CMV separately was more ef...

  7. AFLP Marker Linked to Turnip Mosaic Virus Susceptible Gene in Chinese Cabbage (Brassica rapa L.ssp.pekinensis)

    Institute of Scientific and Technical Information of China (English)

    HAN He-ping; SUN Ri-fei; ZHANG Shu-jiang; LI Fei; ZHANG Shi-fan; NIU Xin-ke

    2004-01-01

    Turnip mosaic virus (TuMV) which has several strains causes the most important virusdisease in Chinese cabbage in terms of crop damage. In China, Chinese cabbage is infectedby a mixture of strains, breeding of cultivar for the TuMV resistance has become themajor aim. Screening the molecular marker linked to the TuMV-resistance gene formolecular assisted selection is the major method to improve the breeding efficiency. Inthis study, we used AFLP technique and the method of bulked segregant analysis(BSA) tostudy the progeny of Brp0058 x Brp0108, and identified two DNA molecular marker linked toTurnip mosaic virus-resistance gene with a recombination frequency 7.5 cM and 8.4 cM.

  8. High avidity binding of engineered papaya mosaic virus virus-like particles to resting spores of Plasmodiophora brassicae.

    Science.gov (United States)

    Morin, Hélène; Tremblay, Marie-Hélène; Plante, Edith; Paré, Christine; Majeau, Nathalie; Hogue, Richard; Leclerc, Denis

    2007-02-01

    Papaya mosaic virus (PapMV) like particles (VLPs) were used as a platform for fusion of affinity peptides binding to resting spores of Plasmodiophora brassicae-a major pathogen of crucifers. Three peptides with specific affinity to the target were isolated and cloned at the C-terminus of the PapMV coat protein (CP), generating three different high avidity VLPs. The peptides were exposed at the surface of the VLPs and their avidity to resting spores of P. brassicae was measured by flow cytometry. NLP-A, with the peptide DPAPRPR, showed the highest avidity. The binding avidity of NLP-A to P. brassicae spores was comparable to that of a polyclonal antibody. NLP-A was also shown to be more specific than the antibody. Fusion of the affinity peptide to a monomeric form (mCP) of the CP [Lecours, K., Tremblay, M.-H., Laliberté Gagné, M.-E., Gagné, S.M., Leclerc, D., 2006. Purification and biochemical characterization of a monomeric form of papaya mosaic potexvirus coat protein. Protein Express. Purific. 47, 273-280] generated a fusion protein that was unable to assemble into VLPs, and mCP-A fusions failed to bind resting spores. The avidity of VLP-A was increased by adding a glycine spacer between the C-terminus of the PapMV CP and the peptide, and improved even further by using a duplicated A peptide in the fusion protein. The use of high avidity VLPs has advantages over polyclonal antibodies because of target specificity. VLPs offers the specificity of monoclonal antibodies but can be more easily generated using the powerful selection of phage display.

  9. Genetic variation and population structure of Cucumber green mottle mosaic virus.

    Science.gov (United States)

    Rao, Li-Xia; Guo, Yushuang; Zhang, Li-Li; Zhou, Xue-Ping; Hong, Jian; Wu, Jian-Xiang

    2017-01-04

    Cucumber green mottle mosaic virus (CGMMV) is a single-stranded, positive sense RNA virus infecting cucurbitaceous plants. In recent years, CGMMV has become an important pathogen of cucurbitaceous crops including watermelon, pumpkin, cucumber and bottle gourd in China, causing serious losses to their production. In this study, we surveyed CGMMV infection in various cucurbitaceous crops grown in Zhejiang Province and in several seed lots purchased from local stores with the dot enzyme-linked immunosorbent assay (dot-ELISA), using a CGMMV specific monoclonal antibody. Seven CGMMV isolates obtained from watermelon, grafted watermelon or oriental melon samples were cloned and sequenced. Identity analysis showed that the nucleotide identities of the seven complete genome sequences ranged from 99.2 to 100%. Phylogenetic analysis of seven CGMMV isolates as well as 24 other CGMMV isolates from the GenBank database showed that all CGMMV isolates could be grouped into two distinct monophyletic clades according to geographic distribution, i.e. Asian isolates for subtype I and European isolates for subtype II, indicating that population diversification of CGMMV isolates may be affected by geographical distribution. Site variation rate analysis of CGMMV found that the overall variation rate was below 8% and mainly ranged from 2 to 5%, indicating that the CGMMV genomic sequence was conservative. Base substitution type analysis of CGMMV showed a mutational bias, with more transitions (A↔G and C↔T) than transversions (A↔C, A↔T, G↔C and G↔T). Most of the variation occurring in the CGMMV genome resulted in non-synonymous substitutions, and the variation rate of some sites was higher than 30% because of this mutational bias. Selection constraint analysis of CGMMV ORFs showed strong negative selection acting on the replication-associated protein, similar to what occurs for other plant RNA viruses. Finally, potential recombination analysis identified isolate Ec as a

  10. Immune response induced in mice oral immunization with cowpea severe mosaic virus

    Directory of Open Access Journals (Sweden)

    M.I. Florindo

    2002-07-01

    Full Text Available There is increasing interest in the immune response induced by plant viruses since these could be used as antigen-expressing systems in vaccination procedures. Cowpea severe mosaic virus (CPSMV, as a purified preparation (300 g of leaves, 2 weeks post-inoculation, or crude extract from cowpea (Vigna unguiculata leaves infected with CPSMV both administered by gavage to Swiss mice induced a humoral immune response. Groups of 10 Swiss mice (2-month-old females were immunized orally with 10 daily doses of either 50 µg viral capsid protein (boosters of 50 µg at days 21 and 35 after immunization or 0.6 mg protein of the crude extract (boosters of 0.6 mg at days 21 and 35 after immunization. Anti-CPSMV antibodies were quantified by ELISA in pooled sera diluted at least 1:400 at days 7, 14, 21, 28, 35 and 42 after the 10th dose. IgG and IgA against CPSMV were produced systemically, but IgE was not detected. No synthesis of specific antibodies against the proteins of leaf extracts from V. unguiculata, infected or not with CPSMV, was detected. The use of CPSMV, a plant-infecting virus that apparently does not induce a pathogenic response in animals, induced a humoral and persistent (at least 6 months immune response through the administration of low antigen doses by gavage. These results raise the possibility of using CPSMV either as a vector for the production of vaccines against animal pathogens or in quick and easy methods to produce specific antisera for viral diagnosis.

  11. Host Reaction of Watermelon mosaic virus Isolates Infecting Melon from Different Geographical Origins in Xinjiang of China

    Directory of Open Access Journals (Sweden)

    Dong WANG

    2017-01-01

    Full Text Available Watermelon mosaic virus (WMV is one of the major viruses infecting cucurbit crops worldwide. Although WMV is very common worldwide, little is known about the biological traits of WMV isolates from China. Hence, this study aimed to characterize 11 WMV isolates infecting melon from different geographical origins in Xinjiang based on experimental hosts. Sap inoculation of the 11 WMV isolates onto a range of 13 plant species revealed some differences compared to the WMV isolates collected from other countries. Our results showed that, overall, there were no obvious correlations of host responses to inoculation with WMV isolates from different geographical origins. However, isolate JS-1 caused mild mosaic on Cucurbita moschata, whereas the remaining 10 isolates were asymptomatic on this plant species. Moreover, in Datura stramonium, isolate TYG-1 induced mosaic, whereas the remaining 10 isolates did not infect this species. All isolates infected systemically Cucurbita pepo and Cucumis melo plants, causing severe symptoms. All isolates did not induce any symptoms on Cucumis sativus, but the virus could be detected using RT-PCR. Additionally, all isolates infected systemically Nicotiana tabacum plants, causing mild mosaics. Chenopodium amaranticolor and Chenopodium quinoa reacted to all isolates by chlorotic local lesions in the inoculated leaves, and the virus was detected in the inoculated leaves using RT-PCR. In addition, the attempts to transmit the isolates to Luffa cylindrica, Vicia faba, Phaseolus vulgaris, Vigna unguiculata or Pisum sativum failed as confirmed by negative RT-PCR. Our results would be useful for understanding the biological variability of WMV.

  12. The amino acid sequences of eleven tryptic peptides of papaya mosaic virus protein by electron ionization mass spectrometry.

    Science.gov (United States)

    Parente, A; Short, M N; Self, R; Parsley, K R

    1982-04-01

    Eleven of the fourteen tryptic peptides of papaya mosaic virus protein have been sequenced by electron ionization mass spectrometry using chemical and enzymic hydrolyses and mixture analysis as required. Mid-chain cleavages of N-C bonds produced secondary ion series which allowed up to 16 residues to be sequenced without further hydrolysis. Mixture analysis on hydrolysis products enabled a 24 residue tryptic peptide to be sequenced from the data recorded in a single mass spectrum.

  13. Tobacco mosaic virus adsorption on self-assembled and Langmuir–Blodgett monolayers studied by TIRF and SFM

    OpenAIRE

    Britt, David W.; Buijs, Jos; Hlady, V.

    1998-01-01

    The adsorption of tobacco mosaic virus (TMV) on self-assembled and Langmuir–Blodgett monolayers was investigated using total internal reflection fluorescence (TIRF) spectroscopy and scanning force microscopy (SFM). Substrates were chosen to probe electrostatic, hydrophobic and surface fluidity effects on TMV adsorption. Positively charged and hydrophobic surfaces demonstrated similar initial rates of TMV adsorption; however, their respective surface TMV coverages differed greatly. Likewise, p...

  14. Inhibition of brome mosaic virus (BMV) amplification in protoplasts from transgenic tobacco plants expressing replicable BMV RNAs.

    Science.gov (United States)

    Kaido, M; Mori, M; Mise, K; Okuno, T; Furusawa, I

    1995-11-01

    Transgenic tobacco plants (V123 plants) expressing a set of full-length brome mosaic virus (BMV) genomic RNAs from the cauliflower mosaic virus 35S promoter were produced. The accumulation level of BMV RNAs in V123 plant cells was approximately 1% of that in nontransgenic tobacco protoplasts inoculated with BMV RNAs. The level of BMV RNA in V123 protoplasts did not increase after inoculating the protoplasts with BMV RNAs, whereas V123 protoplasts supported the accumulation of cucumber mosaic virus (CMV) RNAs to a level similar to that in non-transgenic tobacco protoplasts after inoculation with CMV RNA. Such BMV-specific resistance was also observed in protoplasts from V12 plants expressing full-length BMV RNA1 and RNA2, both of which are required and sufficient for BMV RNA replication. On the other hand, protoplasts from M12 plants, expressing truncated BMV RNA1 and RNA2 in which the 3' 200 nucleotides required for BMV RNA replication were deleted, exhibited weaker resistance to infection with BMV RNA than V12 protoplasts, although the accumulation level of truncated BMV RNA1 and RNA2 in M12 protoplasts was higher than that of BMV RNA1 and RNA2 in V12 protoplasts. These results suggest that expression of BMV RNA replicons is involved in the induction of resistance, rather than high-level accumulation of BMV RNAs and/or their encoded proteins.

  15. Occurrence, Distribution and Biological variability of Zucchini Yellow Mosaic Virus in cucurbits of Khuzestan province, South west of Iran

    Directory of Open Access Journals (Sweden)

    Somayeh Safara

    2011-11-01

    Full Text Available ZYMV is one of the most important plant viruses that cause economical damage in cucurbits. The symptoms of ZYMV in different cucurbits include stunting, yellowing, mottling, severe mosaic, leaf and fruit deformation, blistering and shoe string. Investigation on occurrence of this virus, in Khuzestan province was carried out in November 2009, April and May 2010 by collecting cucurbits samples from different cucurbits fields. After DAS-ELISA test, ZYMV was maintained in squash. Then total RNA were extracted and were tested by RT-PCR. Using RT-PCR, fragments belonging to N-terminal of coat protein and C-terminal of nuclear inclusion bodies were replicated. PCR product for investigation of replication was loaded in 1% agarose gel. From seven regions in Khuzestan, 175 leaf samples showing different symptoms (yellowing, mosaic, deformation and blistering were collected. Seventy one samples out of total samples (175 samples showed ZYMV infection. Occurrence of Zucchini Yellow Mosaic Virus in Khuzestan province was confirmed, using serological and RT-PCR tests. Infection of ZYMV in Khuzestan province (40.5% is higher than the average of Iran’s infection (38%. This article is first report of occurrence ZYMV in different regions of Khuzestan province except Dezful.

  16. Fine mapping of the Bsr1 barley stripe mosaic virus resistance gene in the model grass Brachypodium distachyon.

    Directory of Open Access Journals (Sweden)

    Yu Cui

    Full Text Available The ND18 strain of Barley stripe mosaic virus (BSMV infects several lines of Brachypodium distachyon, a recently developed model system for genomics research in cereals. Among the inbred lines tested, Bd3-1 is highly resistant at 20 to 25 °C, whereas Bd21 is susceptible and infection results in an intense mosaic phenotype accompanied by high levels of replicating virus. We generated an F(6:7 recombinant inbred line (RIL population from a cross between Bd3-1 and Bd21 and used the RILs, and an F(2 population of a second Bd21 × Bd3-1 cross to evaluate the inheritance of resistance. The results indicate that resistance segregates as expected for a single dominant gene, which we have designated Barley stripe mosaic virus resistance 1 (Bsr1. We constructed a genetic linkage map of the RIL population using SNP markers to map this gene to within 705 Kb of the distal end of the top of chromosome 3. Additional CAPS and Indel markers were used to fine map Bsr1 to a 23 Kb interval containing five putative genes. Our study demonstrates the power of using RILs to rapidly map the genetic determinants of BSMV resistance in Brachypodium. Moreover, the RILs and their associated genetic map, when combined with the complete genomic sequence of Brachypodium, provide new resources for genetic analyses of many other traits.

  17. Coevolution and hierarchical interactions of Tomato mosaic virus and the resistance gene Tm-1.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Ishibashi

    Full Text Available During antagonistic coevolution between viruses and their hosts, viruses have a major advantage by evolving more rapidly. Nevertheless, viruses and their hosts coexist and have coevolved, although the processes remain largely unknown. We previously identified Tm-1 that confers resistance to Tomato mosaic virus (ToMV, and revealed that it encodes a protein that binds ToMV replication proteins and inhibits RNA replication. Tm-1 was introgressed from a wild tomato species Solanum habrochaites into the cultivated tomato species Solanum lycopersicum. In this study, we analyzed Tm-1 alleles in S. habrochaites. Although most part of this gene was under purifying selection, a cluster of nonsynonymous substitutions in a small region important for inhibitory activity was identified, suggesting that the region is under positive selection. We then examined the resistance of S. habrochaites plants to ToMV. Approximately 60% of 149 individuals from 24 accessions were resistant to ToMV, while the others accumulated detectable levels of coat protein after inoculation. Unexpectedly, many S. habrochaites plants were observed in which even multiplication of the Tm-1-resistance-breaking ToMV mutant LT1 was inhibited. An amino acid change in the positively selected region of the Tm-1 protein was responsible for the inhibition of LT1 multiplication. This amino acid change allowed Tm-1 to bind LT1 replication proteins without losing the ability to bind replication proteins of wild-type ToMV. The antiviral spectra and biochemical properties suggest that Tm-1 has evolved by changing the strengths of its inhibitory activity rather than diversifying the recognition spectra. In the LT1-resistant S. habrochaites plants inoculated with LT1, mutant viruses emerged whose multiplication was not inhibited by the Tm-1 allele that confers resistance to LT1. However, the resistance-breaking mutants were less competitive than the parental strains in the absence of Tm-1. Based on

  18. The Agrobacterium tumefaciens Ti Plasmid Virulence Gene virE2 Reduces Sri Lankan Cassava Mosaic Virus Infection in Transgenic Nicotiana benthamiana Plants

    Directory of Open Access Journals (Sweden)

    Thulasi Raveendrannair Resmi

    2015-05-01

    Full Text Available Cassava mosaic disease is a major constraint to cassava cultivation worldwide. In India, the disease is caused by Indian cassava mosaic virus (ICMV and Sri Lankan cassava mosaic virus (SLCMV. The Agrobacterium Ti plasmid virulence gene virE2, encoding a nuclear-localized, single-stranded DNA binding protein, was introduced into Nicotiana benthamiana to develop tolerance against SLCMV. Leaf discs of transgenic N. benthamiana plants, harboring the virE2 gene, complemented a virE2 mutation in A. tumefaciens and produced tumours. Three tested virE2 transgenic plants displayed reduction in disease symptoms upon agroinoculation with SLCMV DNA A and DNA B partial dimers. A pronounced reduction in viral DNA accumulation was observed in all three virE2 transgenic plants. Thus, virE2 is an effective candidate gene to develop tolerance against the cassava mosaic disease and possibly other DNA virus diseases.

  19. Roles and programming of Arabidopsis ARGONAUTE proteins during Turnip mosaic virus infection.

    Science.gov (United States)

    Garcia-Ruiz, Hernan; Carbonell, Alberto; Hoyer, J Steen; Fahlgren, Noah; Gilbert, Kerrigan B; Takeda, Atsushi; Giampetruzzi, Annalisa; Garcia Ruiz, Mayra T; McGinn, Michaela G; Lowery, Nicholas; Martinez Baladejo, Maria T; Carrington, James C

    2015-03-01

    In eukaryotes, ARGONAUTE proteins (AGOs) associate with microRNAs (miRNAs), short interfering RNAs (siRNAs), and other classes of small RNAs to regulate target RNA or target loci. Viral infection in plants induces a potent and highly specific antiviral RNA silencing response characterized by the formation of virus-derived siRNAs. Arabidopsis thaliana has ten AGO genes of which AGO1, AGO2, and AGO7 have been shown to play roles in antiviral defense. A genetic analysis was used to identify and characterize the roles of AGO proteins in antiviral defense against Turnip mosaic virus (TuMV) in Arabidopsis. AGO1, AGO2 and AGO10 promoted anti-TuMV defense in a modular way in various organs, with AGO2 providing a prominent antiviral role in leaves. AGO5, AGO7 and AGO10 had minor effects in leaves. AGO1 and AGO10 had overlapping antiviral functions in inflorescence tissues after systemic movement of the virus, although the roles of AGO1 and AGO10 accounted for only a minor amount of the overall antiviral activity. By combining AGO protein immunoprecipitation with high-throughput sequencing of associated small RNAs, AGO2, AGO10, and to a lesser extent AGO1 were shown to associate with siRNAs derived from silencing suppressor (HC-Pro)-deficient TuMV-AS9, but not with siRNAs derived from wild-type TuMV. Co-immunoprecipitation and small RNA sequencing revealed that viral siRNAs broadly associated with wild-type HC-Pro during TuMV infection. These results support the hypothesis that suppression of antiviral silencing during TuMV infection, at least in part, occurs through sequestration of virus-derived siRNAs away from antiviral AGO proteins by HC-Pro. These findings indicate that distinct AGO proteins function as antiviral modules, and provide a molecular explanation for the silencing suppressor activity of HC-Pro.

  20. Comparative QTL mapping of resistance to sugarcane mosaic virus in maize based on bioinformatics

    Institute of Scientific and Technical Information of China (English)

    Xiangling L(U); Xinhai LI; Chuanxiao XIE; Zhuanfang HAO; Hailian JI; Liyu SHI; Shihuang ZHANG

    2008-01-01

    The development of genomics and bioinfor-matics offers new tools for comparative gene mapping. In this paper, an integrated QTL map for sugarcane mosaic virus (SCMV) resistance in maize was constructed by compiling a total of 81 QTL loci available, using the Genetic Map IBM2 2005 Neighbors as reference. These 81 QTL loci were scattered on 7 chromosomes of maize, and most of them were clustered on chromosomes 3 and 6. By using the method of meta-analysis, we identified one "consensus QTL" on chromosome 3 covering a genetic distance of 6.44 cM, and two on chromosome 6 covering genetic distances of 16 cM and 27.48 cM, respectively. Four positional candidate resistant genes were identified within the "consensus QTL" on chromosome 3 via the strategy of comparative genomics. These results suggest that application of a combination of meta-analysis within a species with sequence homology comparison in a related model plant is an efficient approach to identify the major QTL and its candidate gene(s) for the target traits. The results of this study provide useful information for iden-tifying and cloning the major gene(s) conferring resistance to SCMV in maize.

  1. Molecular characterization of cucumber mosaic virus isolates infecting tomato in Hamedan and Tehran provinces of Iran.

    Science.gov (United States)

    Safaeizadeh, M; Saidi, A; Palukaitis, P

    2015-06-01

    Here we identified four isolates, MS, 3H, 50A, and 2K of cucumber mosaic virus (CMV) infecting tomato, on the basis of their non-coding intergenic region and a part of the coat protein (CP) sequence in the CMV genomic RNA3. The sequences from the four isolates were compared with other previously characterized isolates of CMV isolated from different plant species across the globe. Sequence comparisons revealed that the two CMV isolates from Hamedan province (MS and 3H) had the highest sequence identity with CMV-G10 (98%), which was previously reported as a severe Hellenic tomato isolate of CMV, while the CMV isolates from Tehran province, including CMV-2K (isolated from Karaj region) and CMV-50A (isolated from Varamin region), had the highest sequence identity with that of CMV-ALF (99%). Phylogenetic analysis of the nucleotide sequences showed that CMV-MS and CMV-3H belong to group IB, while CMV-2K and CMV-50A belong to group IA. This is the first report on the molecular characterization of novel isolates of CMV infecting tomato plants in Iran.

  2. The first evidence of subgroup IB isolates of Cucumber mosaic virus in Ukraine

    Directory of Open Access Journals (Sweden)

    Shevchenko T. P.

    2015-02-01

    Full Text Available Aim. In current work, we proceeded with the strain attribution of Ukrainian isolates CMV based on the phylogenetic analysis of the partial sequences of the coat protein gene. Methods. ELISA, RT-PCR, DNA sequencing and phylogenetic analysis. Results. Cucumber mosaic virus (CMV is widespread among the variety of crops from the Cucurbitaceae and Solanaceae families in Ukraine. The symptomatic samples from different regions of Ukraine were collected and tested for the presence of CMV. The coat protein (CP gene of two isolates was amplified and sequenced. The partial nucleotide sequences of CP gene were determined and compared to those of other CMV strains belonging to the IA, IB and II subgroups. Comparison of the nucleotide sequences of Ukrainian isolates showed their similar identity percentages and close relationships with the subgroup IB strains from other countries. The highest nucleotide homology was shared with the strains ABI (Korea and SD (China. Conclusions. Based on the highest identities of the coat protein gene sequences and close phylogenetic relationships with the subgroup IB members of CMV, the Ukrainian isolates under study were identified as belonging to the subgroup IB. Our findings show for the first time an occurrence of the IB subgroup isolates of CMV in Ukraine.

  3. Cucumber mosaic virus subgroup IA frequently occurs in the northwest Iran.

    Science.gov (United States)

    Sokhandan Bashir, N; Nematollahi, S; Torabi, E

    2008-01-01

    To monitor genetic variation between Cucumber mosaic virus (CMV) isolates of northwest Iran, samples of cucurbitaceous plants expressing symptoms similar to those caused by CMV were collected. The samples were first screened by ELISA to detect CMV and to determine its subgroup. All detected CMV isolates appeared to be subgroup I (S-I). When total RNA from the samples was subjected to RT-PCR with a pair of primers corresponding to the CMV coat protein (CP) flanking regions, the expected ~870 bp DNA fragment was amplified at 18 samples of 34 tested. MspI restriction analysis of 18 amplified products produced two DNA fragments with sizes about 530 and 330 bp corresponding to MspI profile of CMV S-I. The amplification products of four representative samples were cloned and nucleotide sequences of 1-5 clones from each isolate were determined. The clones from each isolate were over 99% identical and also the isolates themselves were only up to 2% divergent. These isolates clustered in subgroup IA clade on a consensus phylogenetic tree and formed a distinct subclade suggesting that the isolates have originated from a common source.

  4. Occurrence and molecular characterization of Cucumber green mottle mosaic virus in cucurbit crops of KPK, Pakistan

    Directory of Open Access Journals (Sweden)

    Asad Ali

    2014-12-01

    Full Text Available Field survey of the cucurbit crops revealed a high incidence of Cucumber green mottle mosaic virus (CGMMV in Khyber Pakhtunkhwa Province (KPK, Pakistan. Among the seven districts surveyed, average percent incidence of CGMMV was recorded up to 58.1% in district Nowshera, followed by 51.1% in district Charsada, 40.5% in district Swabi and 37.3% in district Mardan. In Swat and Dir districts average incidence CGMMV was recorded upto 31.2% and 29.4%, respectively. Among the different crops highest incidence in plain areas of KPK was recorded in bottle gourd (59.3% followed by 56.3% in Squash, 54.5% in Pumpkin, 45.5% in Melon, 41.7% in Cucumber and 29.9% in Sponge gourd. In Northern hilly areas highest incidence of CGMMV (52.9% was observed in pumpkin, followed by 49.6% in bottle gourd, 47.3% in squash, 45.1% in Melon 42.3% in cucumber and 41.6% in sponge gourd. Little variability was observed in the coat protein amino acid sequence identities of CGMMV Pakistan isolate, when compared with other reported isolates.

  5. Induction of Systemic Resistance against Cucumber mosaic virus in Arabidopsis thaliana by Trichoderma asperellum SKT-1

    Directory of Open Access Journals (Sweden)

    Mohsen Mohamed Elsharkawy

    2013-06-01

    Full Text Available Trichoderma asperellum SKT-1 is a microbial pesticide that is very effective against various diseases. Our study was undertaken to evaluate T. asperellum SKT-1 for induction of resistance against yellow strain of Cucumber mosaic virus (CMV-Y in Arabidopsis plants. Disease severity was rated at 2 weeks post inoculation (WPI. CMV titre in Arabidopsis leaves was determined by indirect enzyme-linked immunosorbent assay (ELISA at 2 WPI. Our results demonstrated that among all Arabidopsis plants treated with barley grain inoculum (BGI of SKT-1 NahG and npr1 plants showed no significant reduction in disease severity and CMV titre as compared with control plants. In contrast, disease severity and CMV titre were significantly reduced in all Arabidopsis plants treated with culture filtrate (CF of SKT-1 as compared with control plants. RT-PCR results showed increased expression levels of SA-inducible genes, but not JA/ET-inducible genes, in leaves of BGI treated plants. Moreover, expression levels of SA- and JA/ET-inducible genes were increased in leaves of CF treated plants. In conclusion, BGI treatment induced systemic resistance against CMV through SA signaling cascade in Arabidopsis plants. While, treatment with CF of SKT-1 mediated the expression of a majority of the various pathogen related genes, which led to the increased defense mechanism against CMV infection.

  6. Cymbidium mosaic virus coat protein gene in antisense confers resistance to transgenic Nicotiana occidentalis.

    Science.gov (United States)

    Lim, S H; Ko, M K; Lee, S J; La, Y J; Kim, B D

    1999-12-31

    The nucleotide sequence of the 3'-terminal region of the Korean isolate of cymbidium mosaic virus (CyMV-Ca) from a naturally infected cattleya was determined. The sequence contains an open reading frame (ORF) coding for the viral coat protein (CP) at the 3'-end and three other ORFs (triple gene block or movement protein) of CyMV. The CP gene encodes a polypeptide chain of 220 amino acids with a molecular mass of 23,760 Da. The deduced CP sequence showed a strong homology with those of two CyMVs reported. A construct of the CyMV-Ca CP gene in the antisense orientation in the plant expression vector pMBP1 was transferred via Agrobacterium tumefaciens-mediated transformation into Nicotiana occidentalis which is a propagation host of CyMV. The T1 progeny of the transgenic plants were inoculated with CyMV and found to be highly resistant to CyMV infection.

  7. Performances and Germplasm Evaluation of Quantitative Resistance to Soybean Mosaic Virus in Soybeans

    Institute of Scientific and Technical Information of China (English)

    ZHI Hai-jian; GAI Jun-yi

    2004-01-01

    A sample composed of 96 soybean accessions was evaluated for their diseased rate (I),diseased rank (S), latent period (LP) and rate of disease development (R) in order tostudy the quantitative resistance to soybean mosaic virus (SMV) in soybeans. The resultsshowed that the performances of the above four resistance components were significantlydifferent among accessions and that some of the accessions, such as Zhongzihuangdou,Peixian Tianedan, Youbian30 could be infected by four SMV strains, Sa, SC8, N1 and N3,but their I, S, and R were lower and LP longer than most other accessions. These resultsdemonstrated the existence of quantitative resistance to SMV in soybeans. It was foundthat some soybean accessions, such as AGS19 and Lishui Zhongzihuangdou, previouslyidentified as resistant to SMV infection, performed some infection but resistant toexpansion in the present study. In addition, the resistance in Pixian Chadou and HuaiyinQiuheidou might be either qualitative or quantitative. Furthermore, the present studyalso indicated that the resistance spectrum and durability of accessions with quantitativeresistance might be wider and longer than those with qualitative resistance.

  8. Mutagenesis in ORF AV2 affects viral replication in Mungbean yellow mosaic India virus

    Indian Academy of Sciences (India)

    A Rouhibakhsh; Q M I Haq; V G Malathi

    2011-06-01

    Mungbean yellow mosaic India virus (MYMIV) is a whitefly-transmitted begomovirus with a bipartite genome. We investigate the functions of the MYMIV-AV2 protein, the open reading frame present upstream of the coat protein gene in DNA A component. The ability of MYMIV-AV2 mutants to replicate, spread and cause symptoms in legume hosts, blackgram, cowpea and French bean was analysed. Plants agroinoculated with mutants K73R, C86S and the double mutant C84S, C86S showed increase in severity of symptoms compared with the wild type. However, mutants W2S and H14Q,G15E caused marked attenuation of symptoms. While the double mutants C84S,C86S caused a 50-fold increase in double-stranded supercoiled and single-stranded DNA accumulation, the mutations W2S and H14Q,G15E showed a decrease in double-stranded supercoiled and single-stranded viral DNA accumulation. Because AV2 mutants affect the ratio between open circular and supercoiled DNA forms, we hypothesize that these mutations may modulate the functions of the replication initiation protein.

  9. Complete nucleotide sequence of a new satellite RNA associated with cucumber mosaic virus inducing tomato necrosis

    Institute of Scientific and Technical Information of China (English)

    程宁辉; 方荣祥; 濮祖芹; 方中达

    1997-01-01

    A new strain (TN strain) of cucumber mosaic virus (CMV) was isolated from tomato plants with necrotic symptoms and proved to carry a necrogenic satellite RNA (TN-Sat RNA). Double-strand cDNA of the TN-Sat RNA was synthesized by reverse transcription and polymerase chain reaction using primers designed according to the conserved terminal sequences of known CMV satellite RNAs. Sequence analysis indicated that the TN-Sat RNA consisted of 390 nucleotides (nt). Comparison of the sequence of the TN-Sat RNA with those of other CMV satellite RNAs revealed four homologous regions ( I . 1-81 nt; II . 216-261 nt; III. 278-338 nt; IV . 349-390 nt) and one hypervarible domain in the region of 82-215 nt. Moreover, the TN-Sat RNA contained a characteristic necro-genic consensus sequence at the 3’ end (339-367 nt) as reported in the known necrosis-inducing CMV satellite RNAs.

  10. The expression of foreign gene under the control of cauliflower mosaic virus 35s RNA promoter

    Institute of Scientific and Technical Information of China (English)

    WangHao; BaiYongyan

    1990-01-01

    The promoter region of cauliflower mosaic virus (CaMV) 35s RNA was employed to construct an intermediate expression vector which can be used in Ti plasmid system of Agrobacterium iumefaciens.The original plasmid,which contains a polylinker between CaMV 35s RNA and its 3' termination signal in pUC18 was modified to have another antibiotic resistance marker (kanamycin resistance gene Kmr) to facilitate the selection of recombinant with Ti plasmid.Octopine synthase (ocs) structural gene was inserted into this vector downstream of CaMV 35s RNA promoter.This chimaeric gene was introduced into integrative Ti plasmid vector pGV 3850,and then transformed into Nicotiana tobaccum the chimaeric gene into tobacco cells.In both cases,the expression of ocs gene was demonstrated.The amount of octopine was much more than the nopaline synthesized by nopaline synthase (nos) gene transferred at the same time with Ti plasmid vector.This demonstrated that CaMV 35s RNA promoter is stronger in transcriptional function than the promoter of nos in tobacco cells.

  11. cDNA cloning and sequence analysis of NIb gene of soybean mosaic virus

    Institute of Scientific and Technical Information of China (English)

    刘俊君; 彭学贤; 莽克强

    1995-01-01

    cDNA of soybean mosaic virus (Beijing isolate, SMV-BJ) has been synthesized, using viralgenomic RNA as template and random hexanucleotides as primers. Based on the sequences of SMV-BJ coat protein (CP) gene as well as SMV- and WMV-II-related regions, oligonucleotides were made as primers for polymerase chain reaction (PCR). NIb gene of SMV-BJ was amplified by PCR, and cloned into pBluescript SK. The complete sequence was determined. The comparison of NIb genes between SMV-BJ and WMV-II . (USA) shows that similarities for nucleotide sequence reach 80.3%, and the deduced amino acid sequence. 91 3%. In consideration of the high identities in between the CP gene and the 3’-non-coding region between them, WMV-II might be considered as a watermelon strain of SMV Besides, some unexpected sequences were found in the 3’-region of 2 NIb gene clones. Following modification and splicing, a binary vector of NIb gene has been constructed for its expression in higher plant for the purpose of studying the possible repl

  12. Brome mosaic virus Infection of Rice Results in Decreased Accumulation of RNA1.

    Science.gov (United States)

    Kitayama, Masahiko; Hoover, Haley; Middleton, Stefani; Kao, C Cheng

    2015-05-01

    Brome mosaic virus (BMV) (the Russian strain) infects monocot plants and has been studied extensively in barley and wheat. Here, we report BMV can systemically infect rice (Oryza sativa var. japonica), including cultivars in which the genomes have been determined. The BMV capsid protein can be found throughout the inoculated plants. However, infection in rice exhibits delayed symptom expression or no symptoms when compared with wheat (Triticum aestivum). The sequences of BMV RNAs isolated from rice did not reveal any nucleotide changes in RNA1 or RNA2, while RNA3 had only one synonymous nucleotide change from the inoculum sequence. Preparations of purified BMV virions contained RNA1 at a significantly reduced level relative to the other two RNAs. Analysis of BMV RNA replication in rice revealed that minus-strand RNA1 was replicated at a reduced rate when compared with RNA2. Thus, rice appears to either inhibit RNA1 replication or lacks a sufficient amount of a factor needed to support efficient RNA1 replication.

  13. Proteomic analysis of salicylic acid induced resistance to Mungbean Yellow Mosaic India Virus in Vigna mungo.

    Science.gov (United States)

    Kundu, Subrata; Chakraborty, Dipjyoti; Pal, Amita

    2011-03-01

    The role of salicylic acid (SA) in inducing resistance to MYMIV infection in Vigna mungo has been elucidated by proteomics. Twenty-nine proteins identified by MALDI-TOF/TOF, predicted to be involved in stress responses, metabolism, photosynthesis, transport and signal transduction, showed increased abundance upon SA treatment. Susceptible plants showed characteristic yellow mosaic symptoms upon MYMIV infection. A concentration dependent decrease in physiological symptoms associated with MYMIV was observed upon exogenous SA treatment prior to viral inoculation; and no visible symptom was observed at 100 μM SA. SA treatment stimulated SOD and GPX activity and inhibited CAT activity thus preventing ROS mediated damage. Significant increase in chlorophyll, protein, carbohydrate, phenolic content and H(2)O(2) were observed. Involvement of calmodulin for transmission of defense signal by SA is suggested. A metabolic reprogramming leading to enhanced synthesis of proteins involved in primary and secondary metabolisms is necessary for SA mediated resistance to MYMIV. Identification of proteins showing increased abundance, involved in photosynthetic process is a significant finding which restores virus-induced degradation of the photosynthetic apparatus and provides enhanced metabolites required for repartition of resources towards defense.

  14. Modification of Turnip yellow mosaic virus coat protein and its effect on virion assembly

    Directory of Open Access Journals (Sweden)

    Hyun-Il Shin

    2013-10-01

    Full Text Available Turnip yellow mosaic virus (TYMV is a positive strand RNAvirus. We have modified TYMV coat protein (CP by inserting ac-Myc epitope peptide at the N- or C-terminus of the CP, andhave examined its effect on assembly. We introduced therecombinant CP constructs into Nicotiana benthamiana leavesby agroinfiltration. Examination of the leaf extracts by agarosegel electrophoresis and Western blot analysis showed that theCP modified at the N-terminus produced a band co-migratingwith wild-type virions. With C-terminal modification, however,the detected bands moved faster than the wild-type virions. Tofurther examine the effect, TYMV constructs producing themodified CPs were prepared. With N-terminal modification,viral RNAs were protected from RNase A. In contrast, the viralRNAs were not protected with C-terminal modification.Overall, the results suggest that virion assembly and RNApackaging occur properly when the N-terminus of CP ismodified, but not when the C-terminus is modified. [BMBReports 2013; 46(10: 495-500

  15. Evaluation of Mungbean Genotypes Based on Yield Stability and Reaction to Mungbean Yellow Mosaic Virus Disease

    Directory of Open Access Journals (Sweden)

    AKM Mahbubul Alam

    2014-09-01

    Full Text Available This work was conducted to identify mungbean genotypes showing yield stability and resistance to mungbean yellow mosaic virus (MYMV disease. Sixteen genotypes were evaluated in a randomized complete block design with two replications for two years (2011 and 2012 at three locations (Gazipur, Ishurdi and Madaripur of the Bangladesh Agricultural Research Institute. An analysis of variance exhibited significant effects of genotype (G, environment (E, and genotype × environment (G×E on grain yield. Among eight agronomic characters, the principal component 1 (PC1 was always higher than the PC2. Considering G×E interaction, BM6 was the best genotype at all three locations in both years. Based on grain yield and stability performance, BM6 ranked first while the worst performing genotypes were BM1 and G10. Based on discrimination and representation, Gazipur was identified as an ideal environment for these mungbeans. Relationship between soil-plant analysis developments (SPAD value was positive with yield but negative with MYMV severity. BM6, G1 and G2 were considered as promising sources of resistance for low disease score and stable response across the environments. The environment proved to have an influence on MYMV infection under natural infestation. A positive correlation was observed between disease score and the temperature under natural growing condition.

  16. Evaluation of mungbean genotypes based on yield stability and reaction to mungbean yellow mosaic virus disease.

    Science.gov (United States)

    Alam, Akm Mahbubul; Somta, Prakit; Jompuk, Choosak; Chatwachirawong, Prasert; Srinives, Peerasak

    2014-09-01

    This work was conducted to identify mungbean genotypes showing yield stability and resistance to mungbean yellow mosaic virus (MYMV) disease. Sixteen genotypes were evaluated in a randomized complete block design with two replications for two years (2011 and 2012) at three locations (Gazipur, Ishurdi and Madaripur) of the Bangladesh Agricultural Research Institute. An analysis of variance exhibited significant effects of genotype (G), environment (E), and genotype × environment (G×E) on grain yield. Among eight agronomic characters, the principal component 1 (PC1) was always higher than the PC2. Considering G×E interaction, BM6 was the best genotype at all three locations in both years. Based on grain yield and stability performance, BM6 ranked first while the worst performing genotypes were BM1 and G10. Based on discrimination and representation, Gazipur was identified as an ideal environment for these mungbeans. Relationship between soil-plant analysis developments (SPAD) value was positive with yield but negative with MYMV severity. BM6, G1 and G2 were considered as promising sources of resistance for low disease score and stable response across the environments. The environment proved to have an influence on MYMV infection under natural infestation. A positive correlation was observed between disease score and the temperature under natural growing condition.

  17. Emergence of a new satellite RNA from cucumber mosaic virus isolate P1

    Institute of Scientific and Technical Information of China (English)

    SandraPérezAlvarez; 薛朝阳; 周雪平

    2003-01-01

    The cucumber mosaic virus (CMV) isolate P1 caused very mild symptoms on many plant species.After serial passages by mechanical inoculation over five years, CMV P1 caused severe symptoms on several tobacco cultivars and tomato. A specific band of approximately 0.3 kb in length was amplified by RT-PCR with primers synthesized based on reported CMV satellite RNA (satRNA) sequences. Sequence analysis showed there were two satRNAs (Sat-Pl-1 and Sat-P1-2). Sat-Pl-1 contained 335 nucleotides, and Sat-P1-2 contained 394 nucleotides. These two satRNAs shared 64% overall nucleotide sequence homology, and differences between the two satRNAs included mutations as well as deletions. Sat-Pl-1 was identical to a satRNA (Z96099) reported in 1995 in CMV P1. Based on differences in the sequence and secondary structure between these two satRNAs, we conclude that Sat-P1-2 represents the emergence of a new satellite ( necrotic satellite) from attenuated satRNA populations. The possible effect of the emergence of this new satRNA is discussed.

  18. Emergence of a new satellite RNA from cucumber mosaic virus isolate P1

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The cucumber mosaic virus (CMV) isolate P1 caused very mild symptoms on many plant species. After serial passages by mechanical inoculation over five years, CMV P1 caused severe symptoms on several tobacco cultivars and tomato. A specific band of approximately 0.3 kb in length was amplified by RT-PCR with primers synthesized based on reported CMV satellite RNA (satRNA) sequences. Sequence analysis showed there were two satRNAs (Sat-P1-1 and Sat-P1-2). Sat-P1-1 contained 335 nucleotides, and Sat-P1-2 contained 394 nucleotides. These two satRNAs shared 64% overall nucleotide sequence homology, and differences between the two satRNAs included mutations as well as deletions. Sat-P1-1 was identical to a satRNA (Z96099) reported in 1995 in CMV P1. Based on differences in the sequence and secondary structure between these two satRNAs, we conclude that Sat-P1-2 represents the emergence of a new satellite (necrotic satellite) from attenuated satRNA populations. The possible effect of the emergence of this new satRNA is discussed.

  19. The 5'-proximal hairpin of turnip yellow mosaic virus RNA: its role in translation and encapsidation.

    Science.gov (United States)

    Bink, Hugo H J; Schirawski, Jan; Haenni, Anne-Lise; Pleij, Cornelis W A

    2003-07-01

    The RNA genome of turnip yellow mosaic virus (TYMV) consists of more than 6,000 nucleotides. During a study of the roles of the two hairpins located in its 90-nucleotide 5' untranslated region, it was observed that stabilization of the 5'-proximal hairpin leads to a delay in the development of symptoms on plants. This delay in symptom development for both locally and systemically infected leaves was found to be dependent on a change in the free energy of the hairpin caused by introduced mutations. A protoplast transfection assay revealed that the accumulation of plus-strand full-length RNA and subgenomic RNA, as well as protein expression levels, was affected by hairpin stability. Stabilization of this hairpin inhibited translation. A model is proposed in which a destabilized 5'-proximal hairpin allows maximal translation of the viral proteins. It is suggested that this hairpin may exist in close proximity to the 5' cap as long as its stability is low enough to enable translation. However, at an acidic pH, the hairpin structure becomes more stable and is functionally transformed into the initiation signal for viral packaging. Slightly acidic conditions can be found in chloroplasts, where TYMV assembly is driven by a low pH generated by active photosynthesis.

  20. Measuring Surface Diffusion of Organic Glasses Using Tobacco Mosaic Virus as Probe Nanoparticles

    Science.gov (United States)

    Zhang, Yue; Potter, Richard; Fakhraai, Zahra

    Recent studies have shown that diffusion on the surface of organic glasses can be many orders of magnitude faster than bulk diffusion, with lower activation barrier. Developing new probes that can readily measure the diffusion at the surface of an organic glass can help study the effect of chemical structure and molecule's size on the enhanced surface diffusion. In this study, surface diffusion coefficient of molecular glass (TPD) is measured using tobacco mosaic virus (TMV) as probe particles. TMV is placed on the surface of bulk TPD films. The evolution of the meniscus formed around TMV, driven by curvature gradient, is probed at various temperatures. TMV has a well-defined cylindrical shape, with a large aspect ratio (18 nm wide, 300 nm long). As such, the shape of the meniscus around the center of TMV is semi-one dimensional. Based on the self-similarity nature of surface diffusion flow in one dimension, the surface diffusion coefficient and its temperature dependence are measured. It is found that the surface diffusion is greatly enhanced and has weak temperature dependence compared to bulk counterpart, consistent with previous studies, showing that TMV probes serve as an efficient method of measuring surface diffusion. NSF-CAREER DMR-1350044.

  1. Nanomechanical characterization of rod-like superlattice assembled from tobacco mosaic viruses

    Science.gov (United States)

    Wang, Haoran; Wang, Xinnan; Li, Tao; Lee, Byeongdu

    2013-01-01

    Tobacco mosaic virus (TMV) and TMV-derived materials have demonstrated their great potential in biomedical applications, where the mechanical properties are determining factors for their proper functionalities and structural integrity. Recently, it has been found that a superlattice structure can be formed by two-dimensional hexagonal packing TMV self-assembly in Barium ions solution. In parallel to the exploration of possible applications of TMV superlattice, the mechanical properties were characterized by the atomic force microscopy based nanoindentation. The elastic modulus of 2.14 GPa was obtained by application of the extended Johnson-Kendall-Roberts (JKR) model with the force vs sample deformation data. The adhesion force was taken into consideration, and an easy-to-implement approach of using the extended JKR model was proposed by processing both the theoretical model and the experimental data. Finite element analysis was conducted to evaluate the reinforcing effect of the like-charge forces between the TMVs and the mechanical properties of the TMV superlattice. Using the Halpin-Tsai model, the transverse elastic modulus of the superlattice sample varied within 2.00-4.38 GPa, depending on the indentation locations. Attraction-repulsion equilibrium was found to maintain the packing of TMVs. This provides useful information to address the sources of the attraction and repulsion forces to control the TMV assembly.

  2. Assembly of tobacco mosaic virus into fibrous and macroscopic bundled arrays mediated by surface aniline polymerization.

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Z.; Bruckman, M.; Li, S.; Lee, A.; Lee, B.; Pingali, S.-V.; Thiyagarajan, P.; Wang, Q.; Univ. of South Carolina

    2007-06-05

    One-dimensional (1D) polyaniline/tobacco mosaic virus (TMV) composite nanofibers and macroscopic bundles of such fibers were generated via a self-assembly process of TMV assisted by in-situ polymerization of polyaniline on the surface of TMV. At near-neutral reaction pH, branched polyaniline formed on the surface of TMV preventing lateral association. Therefore, long 1D nanofibers were observed with high aspect ratios and excellent processibility. At a lower pH, transmission electron microscopy (TEM) analysis revealed that initially long nanofibers were formed which resulted in bundled structures upon long-time reaction, presumably mediated by the hydrophobic interaction because of the polyaniline on the surface of TMV. In-situ time-resolved small-angle X-ray scattering study of TMV at different reaction conditions supported this mechanism. This novel strategy to assemble TMV into 1D and 3D supramolecular composites could be utilized in the fabrication of advanced materials for potential applications including electronics, optics, sensing, and biomedical engineering.

  3. Monoclonal antibody-based serological methods for detection of Cucumber green mottle mosaic virus

    Directory of Open Access Journals (Sweden)

    Qian Yajuan

    2011-05-01

    Full Text Available Abstract Background Cucumber green mottle mosaic virus (CGMMV, a member of the genus Tobamovirus, can be transmitted by seeds and infects many cucurbit species, causing serious yield losses in cucumber and watermelon plants. In this paper, five serological methods including antigen-coated plate enzyme-linked immunosorbent assay (ACP-ELISA, triple antibody sandwich enzyme-linked immunosorbent assay (TAS-ELISA, Dot-immunobinding assay (DBIA, direct tissue blot immunoassay (DTBIA and immunocapture reverse transcriptase polymerase chain reaction (IC-RT-PCR were described for detection and diagnosis of CGMMV. Results Using the purified CGMMV particles as immunogens, six murine monoclonal antibodies (MAbs were produced. Five serological methods were established using the MAb 4H1 and detection sensitivity was compared using purified preparations and infected-plant tissue extracts. The detection sensitivity of ACP-ELISA was 0.16 ng of purified CGMMV, whereas TAS-ELISA was more sensitive than ACP-ELISA with a minimum detection of 0.04 ng of purified CGMMV. The sensitivities of TAS-ELISA and DBIA were similar for detecting CGMMV in infected-plant tissue extracts, and were four times higher than ACP-ELISA. The IC-RT-PCR was the most sensitive method, which could detect as little as 0.1 pg of purified virus. The detection sensitivity of IC-RT-PCR for CGMMV-infected plant tissues was about 400 times higher than that of TAS-ELISA and DBIA. Conclusions The established ACP-ELISA, TAS-ELISA, DBIA and DTBIA are suitable for routine CGMMV detection of large-scale samples in the field survey, while IC-RT-PCR is more sensitive and suitable for acquiring information about the viral genome.

  4. Nicotiana small RNA sequences support a host genome origin of cucumber mosaic virus satellite RNA.

    Science.gov (United States)

    Zahid, Kiran; Zhao, Jian-Hua; Smith, Neil A; Schumann, Ulrike; Fang, Yuan-Yuan; Dennis, Elizabeth S; Zhang, Ren; Guo, Hui-Shan; Wang, Ming-Bo

    2015-01-01

    Satellite RNAs (satRNAs) are small noncoding subviral RNA pathogens in plants that depend on helper viruses for replication and spread. Despite many decades of research, the origin of satRNAs remains unknown. In this study we show that a β-glucuronidase (GUS) transgene fused with a Cucumber mosaic virus (CMV) Y satellite RNA (Y-Sat) sequence (35S-GUS:Sat) was transcriptionally repressed in N. tabacum in comparison to a 35S-GUS transgene that did not contain the Y-Sat sequence. This repression was not due to DNA methylation at the 35S promoter, but was associated with specific DNA methylation at the Y-Sat sequence. Both northern blot hybridization and small RNA deep sequencing detected 24-nt siRNAs in wild-type Nicotiana plants with sequence homology to Y-Sat, suggesting that the N. tabacum genome contains Y-Sat-like sequences that give rise to 24-nt sRNAs capable of guiding RNA-directed DNA methylation (RdDM) to the Y-Sat sequence in the 35S-GUS:Sat transgene. Consistent with this, Southern blot hybridization detected multiple DNA bands in Nicotiana plants that had sequence homology to Y-Sat, suggesting that Y-Sat-like sequences exist in the Nicotiana genome as repetitive DNA, a DNA feature associated with 24-nt sRNAs. Our results point to a host genome origin for CMV satRNAs, and suggest novel approach of using small RNA sequences for finding the origin of other satRNAs.

  5. Interaction of Cowpea mosaic virus (CPMV nanoparticles with antigen presenting cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Maria J Gonzalez

    Full Text Available BACKGROUND: Plant viruses such as Cowpea mosaic virus (CPMV are increasingly being developed for applications in nanobiotechnology including vaccine development because of their potential for producing large quantities of antigenic material in plant hosts. In order to improve efficacy of viral nanoparticles in these types of roles, an investigation of the individual cell types that interact with the particles is critical. In particular, it is important to understand the interactions of a potential vaccine with antigen presenting cells (APCs of the immune system. CPMV was previously shown to interact with vimentin displayed on cell surfaces to mediate cell entry, but the expression of surface vimentin on APCs has not been characterized. METHODOLOGY: The binding and internalization of CPMV by several populations of APCs was investigated both in vitro and in vivo by flow cytometry and fluorescence confocal microscopy. The association of the particles with mouse gastrointestinal epithelium and Peyer's patches was also examined by confocal microscopy. The expression of surface vimentin on APCs was also measured. CONCLUSIONS: We found that CPMV is bound and internalized by subsets of several populations of APCs both in vitro and in vivo following intravenous, intraperitoneal, and oral administration, and also by cells isolated from the Peyer's patch following gastrointestinal delivery. Surface vimentin was also expressed on APC populations that could internalize CPMV. These experiments demonstrate that APCs capture CPMV particles in vivo, and that further tuning the interaction with surface vimentin may facilitate increased uptake by APCs and priming of antibody responses. These studies also indicate that CPMV particles likely access the systemic circulation following oral delivery via the Peyer's patch.

  6. Complete nucleotide sequence of Alfalfa mosaic virus isolated from alfalfa (Medicago sativa L.) in Argentina.

    Science.gov (United States)

    Trucco, Verónica; de Breuil, Soledad; Bejerman, Nicolás; Lenardon, Sergio; Giolitti, Fabián

    2014-06-01

    The complete nucleotide sequence of an Alfalfa mosaic virus (AMV) isolate infecting alfalfa (Medicago sativa L.) in Argentina, AMV-Arg, was determined. The virus genome has the typical organization described for AMV, and comprises 3,643, 2,593, and 2,038 nucleotides for RNA1, 2 and 3, respectively. The whole genome sequence and each encoding region were compared with those of other four isolates that have been completely sequenced from China, Italy, Spain and USA. The nucleotide identity percentages ranged from 95.9 to 99.1 % for the three RNAs and from 93.7 to 99 % for the protein 1 (P1), protein 2 (P2), movement protein and coat protein (CP) encoding regions, whereas the amino acid identity percentages of these proteins ranged from 93.4 to 99.5 %, the lowest value corresponding to P2. CP sequences of AMV-Arg were compared with those of other 25 available isolates, and the phylogenetic analysis based on the CP gene was carried out. The highest percentage of nucleotide sequence identity of the CP gene was 98.3 % with a Chinese isolate and 98.6 % at the amino acid level with four isolates, two from Italy, one from Brazil and the remaining one from China. The phylogenetic analysis showed that AMV-Arg is closely related to subgroup I of AMV isolates. To our knowledge, this is the first report of a complete nucleotide sequence of AMV from South America and the first worldwide report of complete nucleotide sequence of AMV isolated from alfalfa as natural host.

  7. Nicotiana small RNA sequences support a host genome origin of cucumber mosaic virus satellite RNA.

    Directory of Open Access Journals (Sweden)

    Kiran Zahid

    2015-01-01

    Full Text Available Satellite RNAs (satRNAs are small noncoding subviral RNA pathogens in plants that depend on helper viruses for replication and spread. Despite many decades of research, the origin of satRNAs remains unknown. In this study we show that a β-glucuronidase (GUS transgene fused with a Cucumber mosaic virus (CMV Y satellite RNA (Y-Sat sequence (35S-GUS:Sat was transcriptionally repressed in N. tabacum in comparison to a 35S-GUS transgene that did not contain the Y-Sat sequence. This repression was not due to DNA methylation at the 35S promoter, but was associated with specific DNA methylation at the Y-Sat sequence. Both northern blot hybridization and small RNA deep sequencing detected 24-nt siRNAs in wild-type Nicotiana plants with sequence homology to Y-Sat, suggesting that the N. tabacum genome contains Y-Sat-like sequences that give rise to 24-nt sRNAs capable of guiding RNA-directed DNA methylation (RdDM to the Y-Sat sequence in the 35S-GUS:Sat transgene. Consistent with this, Southern blot hybridization detected multiple DNA bands in Nicotiana plants that had sequence homology to Y-Sat, suggesting that Y-Sat-like sequences exist in the Nicotiana genome as repetitive DNA, a DNA feature associated with 24-nt sRNAs. Our results point to a host genome origin for CMV satRNAs, and suggest novel approach of using small RNA sequences for finding the origin of other satRNAs.

  8. Genetic and histological studies on the delayed systemic movement of Tobacco Mosaic Virus in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Matus José

    2008-09-01

    Full Text Available Abstract Background Viral infections and their spread throughout a plant require numerous interactions between the host and the virus. While new functions of viral proteins involved in these processes have been revealed, current knowledge of host factors involved in the spread of a viral infection is still insufficient. In Arabidopsis thaliana, different ecotypes present varying susceptibilities to Tobacco mosaic virus strain U1 (TMV-U1. The rate of TMV-U1 systemic movement is delayed in ecotype Col-0 when compared with other 13 ecotypes. We followed viral movement through vascular tissue in Col-0 plants by electronic microscopy studies. In addition, the delay in systemic movement of TMV-U1 was genetically studied. Results TMV-U1 reaches apical leaves only after 18 days post rosette inoculation (dpi in Col-0, whereas it is detected at 9 dpi in the Uk-4 ecotype. Genetic crosses between Col-0 and Uk-4 ecotypes, followed by analysis of viral movement in F1 and F2 populations, revealed that this delayed movement correlates with a recessive, monogenic and nuclear locus. The use of selected polymorphic markers showed that this locus, denoted DSTM1 (Delayed Systemic Tobamovirus Movement 1, is positioned on the large arm of chromosome II. Electron microscopy studies following the virion's route in stems of Col-0 infected plants showed the presence of curved structures, instead of the typical rigid rods of TMV-U1. This was not observed in the case of TMV-U1 infection in Uk-4, where the observed virions have the typical rigid rod morphology. Conclusion The presence of defectively assembled virions observed by electron microscopy in vascular tissue of Col-0 infected plants correlates with a recessive delayed systemic movement trait of TMV-U1 in this ecotype.

  9. Characterization of a Brome mosaic virus strain and its use as a vector for gene silencing in monocotyledonous hosts.

    Science.gov (United States)

    Ding, Xin Shun; Schneider, William L; Chaluvadi, Srinivasa Rao; Mian, M A Rouf; Nelson, Richard S

    2006-11-01

    Virus-induced gene silencing (VIGS) is used to analyze gene function in dicotyledonous plants but less so in monocotyledonous plants (particularly rice and corn), partially due to the limited number of virus expression vectors available. Here, we report the cloning and modification for VIGS of a virus from Festuca arundinacea Schreb. (tall fescue) that caused systemic mosaic symptoms on barley, rice, and a specific cultivar of maize (Va35) under greenhouse conditions. Through sequencing, the virus was determined to be a strain of Brome mosaic virus (BMV). The virus was named F-BMV (F for Festuca), and genetic determinants that controlled the systemic infection of rice were mapped to RNAs 1 and 2 of the tripartite genome. cDNA from RNA 3 of the Russian strain of BMV (R-BMV) was modified to accept inserts from foreign genes. Coinoculation of RNAs 1 and 2 from F-BMV and RNA 3 from R-BMV expressing a portion of a plant gene to leaves of barley, rice, and maize plants resulted in visual silencing-like phenotypes. The visual phenotypes were correlated with decreased target host transcript levels in the corresponding leaves. The VIGS visual phenotype varied from maintained during silencing of actin 1 transcript expression to transient with incomplete penetration through affected tissue during silencing of phytoene desaturase expression. F-BMV RNA 3 was modified to allow greater accumulation of virus while minimizing virus pathogenicity. The modified vector C-BMV(A/G) (C for chimeric) was shown to be useful for VIGS. These BMV vectors will be useful for analysis of gene function in rice and maize for which no VIGS system is reported.

  10. Comparative analysis of the mosaic genomes of tailed archaeal viruses and proviruses suggests common themes for virion architecture and assembly with tailed viruses of bacteria.

    Science.gov (United States)

    Krupovic, Mart; Forterre, Patrick; Bamford, Dennis H

    2010-03-19

    Tailed double-stranded DNA viruses (order Caudovirales) represent the dominant morphotype among viruses infecting bacteria. Analysis and comparison of complete genome sequences of tailed bacterial viruses provided insights into their origin and evolution. Structural and genomic studies have unexpectedly revealed that tailed bacterial viruses are evolutionarily related to eukaryotic herpesviruses. Organisms from the third domain of life, Archaea, are also infected by viruses that, in their overall morphology, resemble tailed viruses of bacteria. However, high-resolution structural information is currently unavailable for any of these viruses, and only a few complete genomes have been sequenced so far. Here we identified nine proviruses that are clearly related to tailed bacterial viruses and integrated into chromosomes of species belonging to four different taxonomic orders of the Archaea. This more than doubled the number of genome sequences available for comparative studies. Our analyses indicate that highly mosaic tailed archaeal virus genomes evolve by homologous and illegitimate recombination with genomes of other viruses, by diversification, and by acquisition of cellular genes. Comparative genomics of these viruses and related proviruses revealed a set of conserved genes encoding putative proteins similar to virion assembly and maturation, as well as genome packaging proteins of tailed bacterial viruses and herpesviruses. Furthermore, fold prediction and structural modeling experiments suggest that the major capsid proteins of tailed archaeal viruses adopt the same topology as the corresponding proteins of tailed bacterial viruses and eukaryotic herpesviruses. Data presented in this study strongly support the hypothesis that tailed viruses infecting archaea share a common ancestry with tailed bacterial viruses and herpesviruses.

  11. Virus-Specific Read-Through Codon Preference Affects Infectivity of Chimeric Cucumber Green Mottle Mosaic Viruses Displaying a Dengue Virus Epitope

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available A Cucumber green mottle mosaic virus (CGMMV was used to present a truncated dengue virus type 2 envelope (E protein binding region from amino acids 379 to 423 (EB4. The EB4 gene was inserted at the terminal end of the CGMMV coat protein (CP open reading frame (ORF. Read-through sequences of TMV or CGMMV, CAA-UAG-CAA-UUA, or AAA-UAG-CAA-UUA were, respectively, inserted in between the CP and the EB4 genes. The chimeric clones, pRT, pRG, and pCG+FSRTRE, were transcribed into full-length capped recombinant CGMMV transcripts. Only constructs with the wild-type CGMMV read-through sequence yielded infectious viruses following infection of host plant, muskmelon (Cucumis melo leaves. The ratio of modified to unmodified CP for the read-through expression clone developed was also found to be approximately 1:1, higher than what has been previously reported. It was also observed that infectivity was not affected by differences in pI between the chimera and its wild counterpart. Analysis of recombinant viruses after 21-days-postinculation (dpi revealed that deletions occurred resulting in partial reversions of the viral population to near wild type and suggesting that this would be the limiting harvest period for obtaining true to type recombinants with this construct.

  12. Virus-specific read-through codon preference affects infectivity of chimeric cucumber green mottle mosaic viruses displaying a dengue virus epitope.

    Science.gov (United States)

    Teoh, Pak-Guan; Ooi, Aik-Seng; AbuBakar, Sazaly; Othman, Rofina Yasmin

    2009-01-01

    A Cucumber green mottle mosaic virus (CGMMV) was used to present a truncated dengue virus type 2 envelope (E) protein binding region from amino acids 379 to 423 (EB4). The EB4 gene was inserted at the terminal end of the CGMMV coat protein (CP) open reading frame (ORF). Read-through sequences of TMV or CGMMV, CAA-UAG-CAA-UUA, or AAA-UAG-CAA-UUA were, respectively, inserted in between the CP and the EB4 genes. The chimeric clones, pRT, pRG, and pCG+FSRTRE, were transcribed into full-length capped recombinant CGMMV transcripts. Only constructs with the wild-type CGMMV read-through sequence yielded infectious viruses following infection of host plant, muskmelon (Cucumis melo) leaves. The ratio of modified to unmodified CP for the read-through expression clone developed was also found to be approximately 1:1, higher than what has been previously reported. It was also observed that infectivity was not affected by differences in pI between the chimera and its wild counterpart. Analysis of recombinant viruses after 21-days-postinculation (dpi) revealed that deletions occurred resulting in partial reversions of the viral population to near wild type and suggesting that this would be the limiting harvest period for obtaining true to type recombinants with this construct.

  13. Seleção de linhagens de melancia resistentes ao Watermelon mosaic virus e ao Papaya ringspot virus Selection of resistant watermelon lines to Watermelon mosaic virus and Papaya ringspot virus

    Directory of Open Access Journals (Sweden)

    José Evando Aguiar Beserra Júnior

    2007-10-01

    Full Text Available Foram avaliadas 20 linhagens de melancia, provenientes do cruzamento da cultivar comercial suscetível Crimson Sweet e da introdução PI 595201 resistente ao Watermelon mosaic virus (WMV e Papaya ringspot virus (PRSV-W. As linhagens, e os parentais foram inoculados com o WMV ou com o PRSV-W em casa-de-vegetação distintas. Aos 35 e 49 dias após a primeira inoculação (DAI, as plantas foram avaliadas por meio de uma escala de notas, em que 1 (ausência de sintomas a 5 (intenso mosaico e deformações foliares. Pelos resultados infere-se que, aos 35 DAI, as linhagens 1, 2 e 20 apresentaram resistência tanto para o WMV como para o PRSV-W, com médias de 1,95, 1,80 e 2,25 para o WMV, e de 2,50, 2,30 e 2,50 para o PRSV-W, respectivamente. As linhagens 5, 7 e 13 foram resistentes somente ao WMV e as plantas das linhagens 3, 10 e 18 para o PRSV-W. A reação das linhagens permaneceu em geral pouco alterada aos 49 DAI. A existência de linhagens resistentes somente ao WMV e somente ao PRSV-W, ao lado de linhagens resistentes a ambos os vírus, é indicativo de que as resistências ao WMV e ao PRSV-W não são controladas pelos mesmos genes.Twenty advanced watermelon breeding lines, derived from the cross between cv. Crimson Sweet (susceptible and PI 595201 (resistant to WMV and PRSV-W, were screened for resistance to both potyviruses. The twenty lines, among with Crimson Sweet and PI 595201, were inoculated with either WMV or PRSV-W, in two different greenhouse trials. Plants were evaluated for symptoms 35 and 49 days after the first inoculation (DAI, using a scale from 1 (no symptoms to 5 (severe mosaic and foliar distortion. Evaluations at 35 DAI indicated that lines 1, 2 and 20 had good levels of resistance to both WMV and PRSV-W, with ratings of 1,95, 1,80 and 2,25 for WMV, and of 2,50, 2,30 and 2,50 for PRSV-W, respectively. Lines 5, 7 and 13 were resistant to WMV only, whereas lines 3, 10 and 18 were resistant to PRSV-W only. The reaction of

  14. First detection in the United States of Ligustrum necrotic ringspot virus in Mazus reptans with mild mosaic symptoms, in mixed infection with Cucumber mosaic virus

    Science.gov (United States)

    Mazus reptans N.E. Br (creeping mazus) is a perennial flowering groundcover plant in the family Scrophulariaceae. A plant of M. reptans ‘Alba’ with mild mosaic symptoms was obtained from a Maryland nursery in 2010. Electron microscopy revealed the presence of slightly flexuous particles of 595-674...

  15. Simultaneous detection of major pome fruit viruses and a viroid.

    Science.gov (United States)

    Kumar, Surender; Singh, Lakhmir; Ram, Raja; Zaidi, Aijaz A; Hallan, Vipin

    2014-06-01

    A rapid and sensitive two-step RT-PCR protocol for simultaneous detection of major apple viruses, namely Apple mosaic virus (ApMV), Apple stem pitting virus (ASPV), Apple stem grooving virus (ASGV), Apple chlorotic leaf spot virus (ACLSV) and Apple scar skin viroid (ASSVd), was developed. Five specific primer pairs were tested and confirmed for these viruses and viroid together in a single tube, giving amplicons of ~198, ~330, ~370, ~547 and ~645 bp corresponding to ASGV, ASSVd, ASPV, ApMV and ACLSV, respectively. Using a guanidinium-based extraction buffer along with a commercial kit resulted in better quality RNA as compared to kit, suited for multiplex RT-PCR. A rapid CTAB method for RNA isolation from apple tissue was developed, which produce good yield and saves time. To the best of our knowledge, this is the first report on the simultaneous detection of five pathogens (four viruses and a viroid) from apple with NADH dehydrogenase subunit 5 (nad5) as an internal control.

  16. Development of a molecular assay for the detection of Cucumber mosaic virus and the discrimination of its subgroups I and II

    NARCIS (Netherlands)

    Bald-Blume, N.; Bergervoet, J.H.W.; Maiss, E.

    2017-01-01

    A nucleic acid based test for the detection of the economically important plant virus Cucumber mosaic virus (CMV) based on the Luminex xTAG technology was developed. This technology has the advantage of allowing the simultaneous detection of various targets. Applying this method, we prove the presen

  17. Method: a single nucleotide polymorphism genotyping method for Wheat streak mosaic virus

    Directory of Open Access Journals (Sweden)

    Rogers Stephanie M

    2012-05-01

    Full Text Available Abstract Background The September 11, 2001 attacks on the World Trade Center and the Pentagon increased the concern about the potential for terrorist attacks on many vulnerable sectors of the US, including agriculture. The concentrated nature of crops, easily obtainable biological agents, and highly detrimental impacts make agroterrorism a potential threat. Although procedures for an effective criminal investigation and attribution following such an attack are available, important enhancements are still needed, one of which is the capability for fine discrimination among pathogen strains. The purpose of this study was to develop a molecular typing assay for use in a forensic investigation, using Wheat streak mosaic virus (WSMV as a model plant virus. Method This genotyping technique utilizes single base primer extension to generate a genetic fingerprint. Fifteen single nucleotide polymorphisms (SNPs within the coat protein and helper component-protease genes were selected as the genetic markers for this assay. Assay optimization and sensitivity testing was conducted using synthetic targets. WSMV strains and field isolates were collected from regions around the world and used to evaluate the assay for discrimination. The assay specificity was tested against a panel of near-neighbors consisting of genetic and environmental near-neighbors. Result Each WSMV strain or field isolate tested produced a unique SNP fingerprint, with the exception of three isolates collected within the same geographic location that produced indistinguishable fingerprints. The results were consistent among replicates, demonstrating the reproducibility of the assay. No SNP fingerprints were generated from organisms included in the near-neighbor panel, suggesting the assay is specific for WSMV. Using synthetic targets, a complete profile could be generated from as low as 7.15 fmoles of cDNA. Conclusion The molecular typing method presented is one tool that could be

  18. Nanoscale device architectures derived from biological assemblies: The case of tobacco mosaic virus and (apo)ferritin

    Science.gov (United States)

    Calò, Annalisa; Eiben, Sabine; Okuda, Mitsuhiro; Bittner, Alexander M.

    2016-03-01

    Virus particles and proteins are excellent examples of naturally occurring structures with well-defined nanoscale architectures, for example, cages and tubes. These structures can be employed in a bottom-up assembly strategy to fabricate repetitive patterns of hybrid organic-inorganic materials. In this paper, we review methods of assembly that make use of protein and virus scaffolds to fabricate patterned nanostructures with very high spatial control. We chose (apo)ferritin and tobacco mosaic virus (TMV) as model examples that have already been applied successfully in nanobiotechnology. Their interior space and their exterior surfaces can be mineralized with inorganic layers or nanoparticles. Furthermore, their native assembly abilities can be exploited to generate periodic architectures for integration in electrical and magnetic devices. We introduce the state of the art and describe recent advances in biomineralization techniques, patterning and device production with (apo)ferritin and TMV.

  19. Temporal analysis of reassortment and molecular evolution of Cucumber mosaic virus: Extra clues from its segmented genome.

    Science.gov (United States)

    Ohshima, Kazusato; Matsumoto, Kosuke; Yasaka, Ryosuke; Nishiyama, Mai; Soejima, Kenta; Korkmaz, Savas; Ho, Simon Y W; Gibbs, Adrian J; Takeshita, Minoru

    2016-01-01

    Cucumber mosaic virus (CMV) is a damaging pathogen of over 200 mono- and dicotyledonous crop species worldwide. It has the broadest known host range of any virus, but the timescale of its evolution is unknown. To investigate the evolutionary history of this virus, we obtained the genomic sequences of 40 CMV isolates from brassicas sampled in Iran, Turkey and Japan, and combined them with published sequences. Our synonymous ('silent') site analyses revealed that the present CMV population is the progeny of a single ancestor existing 1550-2600 years ago, but that the population mostly radiated 295-545 years ago. We found that the major CMV lineages are not phylogeographically confined, but that recombination and reassortment is restricted to local populations and that no reassortant lineage is more than 251 years old. Our results highlight the different evolutionary patterns seen among viral pathogens of brassica crops across the world.

  20. Feasibility Study for Detection of Turnip yellow mosaic virus (TYMV Infection of Chinese Cabbage Plants Using Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Saetbyeol Kim

    2013-03-01

    Full Text Available Raman spectroscopy provides many advantages compared to other common analytical techniques due to its ability of rapid and accurate identification of unknown specimens as well as simple sample preparation. Here, we described potential of Raman spectroscopic technique as an efficient and high throughput method to detect plants infected by economically important viruses. To enhance the detection sensitivity of Raman measurement, surface enhanced Raman scattering (SERS was employed. Spectra of extracts from healthy and Turnip yellow mosaic virus (TYMV infected Chinese cabbage leaves were collected by mixing with gold (Au nanoparticles. Our result showed that TYMV infected plants could be discriminated from non-infected healthy plants, suggesting the current method described here would be an alternative potential tool to screen virus-infection of plants in fields although it needs more studies to generalize the technique.

  1. Types of variation in DNA-A among isolates of East African cassava mosaic virus from Kenya, Malawi and Tanzania.

    Science.gov (United States)

    Zhou, X; Robinson, D J; Harrison, B D

    1998-11-01

    Complete nucleotide sequences of the DNA-A-like molecules of three East African cassava mosaic virus (EACMV) isolates from Kenya (-K, 2801 nt) and Malawi (-MH and -MK, both 2804 nt) were determined. These sequences were compared with that published for a Tanzanian isolate (-T, 2801 nt) and the partial sequence of a third Malawian isolate. Intergenic region sequences of all isolates, and deduced amino acid sequences of their AC1 (Rep) proteins, each formed a tightly related cluster that was distinct from the comparable components of other begomoviruses. Other complementary-sense genes (AC2, AC3, AC4) differed between EACMV isolates in a way consistent with the accumulation of point mutations. In contrast, virus-sense genes (CP, AV2) of isolates -MH and -MK differed (substantially for AV2) from those of other EACMV isolates but somewhat resembled those of tomato yellow leaf curl virus-Israel, suggesting they had been acquired by recombination with an unidentified begomovirus.

  2. Early embryo invasion as a determinant in pea of the seed transmission of pea seed-borne mosaic virus.

    Science.gov (United States)

    Wang, D; Maule, A J

    1992-07-01

    Seed transmission of an isolate of pea seed-borne mosaic virus (PSbMV) in several pea genotypes has been studied. Cross-pollination experiments showed that pollen transmission of PSbMV did not occur and accordingly, virus was not detected in pollen grains by ELISA or electron microscopy. Comparative studies between two pea cultivars, one with a high incidence of seed transmission and one with none, showed that PSbMV infected the floral tissues (sepals, petals, anther and carpel) of both cultivars, but was not detected in ovules prior to fertilization. Virus was detected equally well in seed coats of the progeny in both cultivars. Analysis of virus incidence and concentration in pea seeds of different developmental stages demonstrated that in the cultivar with a high incidence of seed transmission, PSbMV directly invaded immature embryos, multiplied in the embryonic tissues and persisted during seed maturation. In contrast, the cultivar without seed transmission did not show invasion of immature embryos by the virus; there was no evidence for virus multiplication or persistence during embryo development and seed maturation. Hence seed transmission of PSbMV resulted from direct invasion of immature pea embryos by the virus and the block to seed transmission in the non-permissive cultivar probably occurred at this step.

  3. Phylogenetic analysis of Tomato mosaic virus from Hemerocallis sp. and Impatiens hawkeri Análise filogenética de Tomato mosaic virus isolado de Hemerocallis sp. e Impatiens hawkeri

    Directory of Open Access Journals (Sweden)

    Lígia Maria Lembo Duarte

    2007-12-01

    Full Text Available The culture and commercialization of ornamental plants have considerably increased in the last years. To supply the commercial demand, several Hemerocallis and Impatiens varieties have been bred for appreciated qualities such as flowers with a diversity of shapes and colors. With the aim of characterizing the tobamovirus isolated from Hemerocallis sp. (tobamo-H and Impatiens hawkeri (tobamo-I from the USA and São Paulo, respectively, as well as to establish phylogenetic relationships between them and other Tobamovirus species, the viruses were submitted to RNA extraction, RT-PCR amplification, coat-protein gene sequencing and phylogenetic analyses. Comparison of tobamovirus homologous sequences yielded values superior to 98.5% of identity with Tomato mosaic virus (ToMV isolates at the nucleotide level. In relation to tobamo-H, 100% of identity with ToMV from tomatoes from Australia and Peru was found. Based on maximum likelihood (ML analysis it was suggested that tobamo-H and tobamo-I share a common ancestor with ToMV, Tobacco mosaic virus, Odontoglossum ringspot virus and Pepper mild mottle virus. The tree topology reconstructed under ML methodology shows a monophyletic group, supported by 100% of bootstrap, consisting of various ToMV isolates from different hosts, including some ornamentals, from different geographical locations. The results indicate that Hemerocallis sp. and I. hawkeri are infected by ToMV. This is the first report of the occurrence of this virus in ornamental species in Brazil.O cultivo e comercialização de plantas ornamentais têm aumentado consideravelmente nos últimos anos. Para suprir a demanda comercial, diversas variedades de Hemerocallis sp. e Impatiens hawkeri têm sido desenvolvidas pelas qualidades apreciáveis como flores com diversidade de formas e cores. Com o objetivo de caracterizar o tobamovirus isolado de Hemerocallis sp. (tobamo-H e Impatiens hawkeri (tobamo-I provenientes dos EUA e São Paulo

  4. Development of a Multivalent Subunit Vaccine against Tularemia Using Tobacco Mosaic Virus (TMV) Based Delivery System.

    Science.gov (United States)

    Banik, Sukalyani; Mansour, Ahd Ahmed; Suresh, Ragavan Varadharajan; Wykoff-Clary, Sherri; Malik, Meenakshi; McCormick, Alison A; Bakshi, Chandra Shekhar

    2015-01-01

    Francisella tularensis is a facultative intracellular pathogen, and is the causative agent of a fatal human disease known as tularemia. F. tularensis is classified as a Category A Biothreat agent by the CDC based on its use in bioweapon programs by several countries in the past and its potential to be used as an agent of bioterrorism. No licensed vaccine is currently available for prevention of tularemia. In this study, we used a novel approach for development of a multivalent subunit vaccine against tularemia by using an efficient tobacco mosaic virus (TMV) based delivery platform. The multivalent subunit vaccine was formulated to contain a combination of F. tularensis protective antigens: OmpA-like protein (OmpA), chaperone protein DnaK and lipoprotein Tul4 from the highly virulent F. tularensis SchuS4 strain. Two different vaccine formulations and immunization schedules were used. The immunized mice were challenged with lethal (10xLD100) doses of F. tularensis LVS on day 28 of the primary immunization and observed daily for morbidity and mortality. Results from this study demonstrate that TMV can be used as a carrier for effective delivery of multiple F. tularensis antigens. TMV-conjugate vaccine formulations are safe and multiple doses can be administered without causing any adverse reactions in immunized mice. Immunization with TMV-conjugated F. tularensis proteins induced a strong humoral immune response and protected mice against respiratory challenges with very high doses of F. tularensis LVS. This study provides a proof-of-concept that TMV can serve as a suitable platform for simultaneous delivery of multiple protective antigens of F. tularensis. Refinement of vaccine formulations coupled with TMV-targeting strategies developed in this study will provide a platform for development of an effective tularemia subunit vaccine as well as a vaccination approach that may broadly be applicable to many other bacterial pathogens.

  5. Development of a Multivalent Subunit Vaccine against Tularemia Using Tobacco Mosaic Virus (TMV Based Delivery System.

    Directory of Open Access Journals (Sweden)

    Sukalyani Banik

    Full Text Available Francisella tularensis is a facultative intracellular pathogen, and is the causative agent of a fatal human disease known as tularemia. F. tularensis is classified as a Category A Biothreat agent by the CDC based on its use in bioweapon programs by several countries in the past and its potential to be used as an agent of bioterrorism. No licensed vaccine is currently available for prevention of tularemia. In this study, we used a novel approach for development of a multivalent subunit vaccine against tularemia by using an efficient tobacco mosaic virus (TMV based delivery platform. The multivalent subunit vaccine was formulated to contain a combination of F. tularensis protective antigens: OmpA-like protein (OmpA, chaperone protein DnaK and lipoprotein Tul4 from the highly virulent F. tularensis SchuS4 strain. Two different vaccine formulations and immunization schedules were used. The immunized mice were challenged with lethal (10xLD100 doses of F. tularensis LVS on day 28 of the primary immunization and observed daily for morbidity and mortality. Results from this study demonstrate that TMV can be used as a carrier for effective delivery of multiple F. tularensis antigens. TMV-conjugate vaccine formulations are safe and multiple doses can be administered without causing any adverse reactions in immunized mice. Immunization with TMV-conjugated F. tularensis proteins induced a strong humoral immune response and protected mice against respiratory challenges with very high doses of F. tularensis LVS. This study provides a proof-of-concept that TMV can serve as a suitable platform for simultaneous delivery of multiple protective antigens of F. tularensis. Refinement of vaccine formulations coupled with TMV-targeting strategies developed in this study will provide a platform for development of an effective tularemia subunit vaccine as well as a vaccination approach that may broadly be applicable to many other bacterial pathogens.

  6. Zucchini yellow mosaic virus (ZYMV, Potyvirus): vertical transmission, seed infection and cryptic infections.

    Science.gov (United States)

    Simmons, H E; Dunham, J P; Zinn, K E; Munkvold, G P; Holmes, E C; Stephenson, A G

    2013-09-01

    The role played by seed transmission in the evolution and epidemiology of viral crop pathogens remains unclear. We determined the seed infection and vertical transmission rates of zucchini yellow mosaic virus (ZYMV), in addition to undertaking Illumina sequencing of nine vertically transmitted ZYMV populations. We previously determined the seed-to-seedling transmission rate of ZYMV in Cucurbita pepo ssp. texana (a wild gourd) to be 1.6%, and herein observed a similar rate (1.8%) in the subsequent generation. We also observed that the seed infection rate is substantially higher (21.9%) than the seed-to-seedling transmission rate, suggesting that a major population bottleneck occurs during seed germination and seedling growth. In contrast, that two thirds of the variants present in the horizontally transmitted inoculant population were also present in the vertically transmitted populations implies that the bottleneck at vertical transmission may not be particularly severe. Strikingly, all of the vertically infected plants were symptomless in contrast to those infected horizontally, suggesting that vertical infection may be cryptic. Although no known virulence determining mutations were observed in the vertically infected samples, the 5' untranslated region was highly variable, with at least 26 different major haplotypes in this region compared to the two major haplotypes observed in the horizontally transmitted population. That the regions necessary for vector transmission are retained in the vertically infected populations, combined with the cryptic nature of vertical infection, suggests that seed transmission may be a significant contributor to the spread of ZYMV. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Characteristics of a Lettuce mosaic virus Isolate Infecting Lettuce in Korea

    Directory of Open Access Journals (Sweden)

    Seungmo Lim

    2014-06-01

    Full Text Available Lettuce mosaic virus (LMV causes disease of plants in the family Asteraceae, especially lettuce crops. LMV isolates have previously been clustered in three main groups, LMV-Yar, LMV-Greek and LMVRoW. The first two groups, LMV-Yar and LMV-Greek, have similar characteristics such as no seed-borne transmission and non-resistance-breaking. The latter one, LMV-RoW, comprising a large percentage of the LMV isolates contains two large subgroups, LMV-Common and LMV-Most. To date, however, no Korean LMV isolate has been classified and characterized. In this study, LMV-Muju, the Korean LMV isolate, was isolated from lettuce showing pale green and mottle symptoms, and its complete genome sequence was determined. Classification method of LMV isolates based on nucleotide sequence divergence of the NIb-CP junction showed that LMV-Muju was categorized as LMV-Common. LMV-Muju was more similar to LMV-O (LMV-Common subgroup than to LMV-E (LMV-RoW group but not LMV-Common subgroup even in the amino acid domains of HC-Pro associated with pathogenicity, and in the CI and VPg regions related to ability to overcome resistance. Taken together, LMV-Muju belongs to the LMV-Common subgroup, and is expected to be a seed-borne, non-resistance-breaking isolate. According to our analysis, all other LMV isolates not previously assigned to a subgroup were also included in the LMV-RoW group.

  8. Peptide-equipped tobacco mosaic virus templates for selective and controllable biomineral deposition

    Directory of Open Access Journals (Sweden)

    Klara Altintoprak

    2015-06-01

    Full Text Available The coating of regular-shaped, readily available nanorod biotemplates with inorganic compounds has attracted increasing interest during recent years. The goal is an effective, bioinspired fabrication of fiber-reinforced composites and robust, miniaturized technical devices. Major challenges in the synthesis of applicable mineralized nanorods lie in selectivity and adjustability of the inorganic material deposited on the biological, rod-shaped backbones, with respect to thickness and surface profile of the resulting coating, as well as the avoidance of aggregation into extended superstructures. Nanotubular tobacco mosaic virus (TMV templates have proved particularly suitable towards this goal: Their multivalent protein coating can be modified by high-surface-density conjugation of peptides, inducing and governing silica deposition from precursor solutions in vitro. In this study, TMV has been equipped with mineralization-directing peptides designed to yield silica coatings in a reliable and predictable manner via precipitation from tetraethoxysilane (TEOS precursors. Three peptide groups were compared regarding their influence on silica polymerization: (i two peptide variants with alternating basic and acidic residues, i.e. lysine–aspartic acid (KDx motifs expected to act as charge-relay systems promoting TEOS hydrolysis and silica polymerization; (ii a tetrahistidine-exposing polypeptide (CA4H4 known to induce silicification due to the positive charge of its clustered imidazole side chains; and (iii two peptides with high ZnO binding affinity. Differential effects on the mineralization of the TMV surface were demonstrated, where a (KDx charge-relay peptide (designed in this study led to the most reproducible and selective silica deposition. A homogenous coating of the biotemplate and tight control of shell thickness were achieved.

  9. Structure and Interaction in 2D Assemblies of Tobacco Mosaic Viruses

    Energy Technology Data Exchange (ETDEWEB)

    Fukuto, M.; Yang, L.; Wang, S.; Fukuto, M.; Checco, A.; Niu, Z.; Wang, Q.

    2009-12-07

    We created two-dimensional (2D) assemblies of tobacco mosaic viruses (TMVs) and characterized their structures using Atomic Force Microscopy (AFM) and X-ray scattering. The TMVs were adsorbed on an oppositely charged, fluid lipid monolayer supported by a solid substrate and submerged in a buffer solution. The lipid monolayer confined the viral particles within a plane, while providing them with lateral mobility so that overall the TMV assembly behaved like a 2D liquid. We controlled the inter-particle interaction by adjusting the chemical condition in the buffer to induce ordered TMV assemblies. We found that the presence of the lipid layer was essential for forming ordered TMV assemblies. Packed TMV assemblies formed on the lipid layer, with an average inter-particle spacing of 42 nm. By introducing Ca{sup 2+} ions into the buffer solution, we were able to improve the in-plane order within the TMV assemblies and reduce the average inter-particle spacing to 20 nm, compared to the TMV diameter of 18 nm. Quantitative analysis of the X-ray scattering data shows that the structural order within the TMV assemblies prepared under a Ca{sup 2+}-free buffer solution is consistent with purely repulsive, electrostatic inter-particle interaction. In contrast, the structural order within Ca{sup 2+}-induced TMV assemblies is consistent with the behavior of a fluid of sticky rods, implying the presence of a strong attraction between TMVs. In addition to the screening of Coulomb repulsion, this behavior is likely the result of counterion-induced as well as membrane-mediated attractions.

  10. Structure and interaction in 2D assemblies of tobacco mosaic viruses

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L.; Wang. S.; Masafumi, F.; Checco, A.; Zhongwei, N.; Wang, Q.

    2009-08-27

    We created two-dimensional (2D) assemblies of tobacco mosaic viruses (TMVs) and characterized their structures using Atomic Force Microscopy (AFM) and X-ray scattering. The TMVs were adsorbed on an oppositely charged, fluid lipid monolayer supported by a solid substrate and submerged in a buffer solution. The lipid monolayer confined the viral particles within a plane, while providing them with lateral mobility so that overall the TMV assembly behaved like a 2D liquid. We controlled the inter-particle interaction by adjusting the chemical condition in the buffer to induce ordered TMV assemblies. We found that the presence of the lipid layer was essential for forming ordered TMV assemblies. Packed TMV assemblies formed on the lipid layer, with an average inter-particle spacing of 42 nm. By introducing Ca2+ ions into the buffer solution, we were able to improve the in-plane order within the TMV assemblies and reduce the average inter-particle spacing to 20 nm, compared to the TMV diameter of 18 nm. Quantitative analysis of the X-ray scattering data shows that the structural order within the TMV assemblies prepared under a Ca{sup 2+}-free buffer solution is consistent with purely repulsive, electrostatic inter-particle interaction. In contrast, the structural order within Ca{sup 2+}-induced TMV assemblies is consistent with the behavior of a fluid of sticky rods, implying the presence of a strong attraction between TMVs. In addition to the screening of Coulomb repulsion, this behavior is likely the result of counterion-induced as well as membrane-mediated attractions.

  11. Tobacco mosaic virus rods and spheres as supramolecular high-relaxivity MRI contrast agents

    Science.gov (United States)

    Bruckman, Michael A.; Hern, Stephen; Jiang, Kai; Flask, Chris A.; Yu, Xin; Steinmetz, Nicole F.

    2013-01-01

    To compensate for the low sensitivity of magnetic resonance imaging (MRI), nanoparticles have been developed to deliver high payloads of contrast agents to sites of disease. Here, we report the development of supramolecular MRI contrast agents using the plant viral nanoparticle tobacco mosaic virus (TMV). Rod-shaped TMV nanoparticles measuring 300×18 nm were loaded with up to 3,500 or 2,000 chelated paramagnetic gadolinium (III) ions selectively at the interior (iGd-TMV) or exterior (eGd-TMV) surface, respectively. Spatial control is achieved through targeting either tyrosine or carboxylic acid side chains on the solvent exposed exterior or interior TMV surface. The ionic T1 relaxivity per Gd ion (at 60 MHz) increases from 4.9 mM−1s−1 for free Gd(DOTA) to 18.4 mM−1s−1 for eGd-TMV and 10.7 mM−1s−1 for iGd-TMV. This equates to T1 values of ~ 30,000 mM−1s−1 and ~ 35,000 mM−1s−1 per eGd-TMV and iGd-TMV nanoparticle. Further, we show that interior-labeled TMV rods can undergo thermal transition to form 170 nm-sized spherical nanoparticles containing ~ 25,000 Gd chelates and a per particle relaxivity of almost 400,000 mM−1s−1 (15.2 mM−1s−1 per Gd). This work lays the foundation for the use of TMV as a contrast agent for MRI. PMID:23589767

  12. Inverted-repeat transgenic maize plants resistant to sugarcane mosaic virus

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    RNA silencing is a post-transcriptional genesilencing phenomenon induced by double-stranded RNA (dsRNA).In an attempt to generate dsRNA-mediated transgenic maize plants resistant to sugarcane mosaic virus (SCMV),we cloned SCMV Nib gene-specificsequences and inserted it into the binary vector p3301 in the sense and antisense orientations (named SCMVir-Nib),which could produce RNAs capable of duplex formation in plant cells.Maize immature embryos were co-cultured with Agrobacterium carrying two vectors,one marker-free vector harboring the SCMVirNIb and one vector harboring bar gene as the selective marker.Resistant calli were recovered by selection on medium containing Biolaphos.Among the regenerated plantlets from resistant calli,14 plants have been certified to contain SCMVirNIb by PCR amplification and DNA dot blot.T1 plants derived from the 14 plants were challenged in a greenhouse with SCMV inoculums and the percentages of resistant plants in 11 T1 lines were higher than 60%.One plant in the T1 line was found to carry SCMVirNIb without bar gene by PCR assay.T2 plants derived from T1 SCMV resistant transgenic plants were challenged with SCMV inoculums in field.The percentages of resistant plants from 3 lines,including the line derived from the marker-free transgenic plant,were higher than 85%.The non-transgenic control plants were all susceptible.Further molecular analysis confirmed that the resistant plants from the marker-free transgenic line contained SCMVirNIb but not the bar gene.

  13. Complete nucleotide sequence and host range of South African cassava mosaic virus: further evidence for recombination amongst begomoviruses.

    Science.gov (United States)

    Berrie, L C; Rybicki, E P; Rey, M E

    2001-01-01

    Complete nucleotide sequences of the DNA-A (2800 nt) and DNA-B (2760 nt) components of a novel cassava-infecting begomovirus, South African cassava mosaic virus (SACMV), were determined and compared with various New World and Old World begomoviruses. SACMV is most closely related to East African cassava mosaic virus (EACMV) in both its DNA-A (85% with EACMV-MH and -MK) and -B (90% with EACMV-UG2-Mld and EACMV-UG3-Svr) components; however, percentage sequence similarities of less than 90% in the DNA-A component allowed SACMV to be considered a distinct virus. One significant recombination event spanning the entire AC4 open reading frame was identified; however, there was no evidence of recombination in the DNA-B component. Infectivity of the cloned SACMV genome was demonstrated by successful agroinoculation of cassava and three other plant species (Phaseolus vulgaris, Malva parviflora and Nicotiana benthamiana). This is the first description of successful infection of cassava with a geminivirus using Agrobacterium tumefaciens.

  14. The development and application of new crystallization method for tobacco mosaic virus coat protein

    Directory of Open Access Journals (Sweden)

    Li Xiangyang

    2012-11-01

    Full Text Available Abstract Background Although tobacco mosaic virus (TMV coat protein (CP has been isolated from virus particles and its crystals have grown in ammonium sulfate buffers for many years, to date, no one has reported on the crystallization of recombinant TMV-CP connecting peptides expressed in E. coli. Methods In the present papers genetically engineered TMV-CP was expressed, into which hexahistidine (His tags or glutathione-S-transferase (GST tags were incorporated. Considering that GST-tags are long peptides and His-tags are short peptides, an attempt was made to grow crystals of TMV-CP cleaved GST-tags (WT-TMV-CP32 and TMV-CP incorporated His-tags (WT-His-TMV-CP12 simultaneously in ammonium sulfate buffers and commercial crystallization reagents. It was found that the 20S disk form of WT-TMV-CP32 and WT-His-TMV-CP12 did not form high resolution crystals by using various crystallization buffers and commercial crystallization reagents. Subsequently, a new experimental method was adopted in which a range of truncated TMV-CP was constructed by removing several amino acids from the N- or the C-terminal, and high resolution crystals were grown in ammonium sulfate buffers and commercial crystallization reagents. Results The new crystallization method was developed and 3.0 Å resolution macromolecular crystal was thereby obtained by removing four amino acids at the C-terminal of His-TMV-CP and connecting six His-tags at the N-terminal of His-TMV-CP (TR-His-TMV-CP19. The Four-layer aggregate disk structure of TR-His-TMV-CP19 was solved. This phenomenon showed that peptides at the C-terminus hindered the growth of high resolution crystals and the peptides interactions at the N-terminus were attributed to the quality of TMV-CP crystals. Conclusion A 3.0 Å resolution macromolecular crystal of TR-His-TMV-CP19 was obtained and the corresponding structure was solved by removing four amino acids at the C-terminus of TMV-CP and connecting His-tags at the N

  15. The development and application of new crystallization method for tobacco mosaic virus coat protein

    Science.gov (United States)

    2012-01-01

    Background Although tobacco mosaic virus (TMV) coat protein (CP) has been isolated from virus particles and its crystals have grown in ammonium sulfate buffers for many years, to date, no one has reported on the crystallization of recombinant TMV-CP connecting peptides expressed in E. coli. Methods In the present papers genetically engineered TMV-CP was expressed, into which hexahistidine (His) tags or glutathione-S-transferase (GST) tags were incorporated. Considering that GST-tags are long peptides and His-tags are short peptides, an attempt was made to grow crystals of TMV-CP cleaved GST-tags (WT-TMV-CP32) and TMV-CP incorporated His-tags (WT-His-TMV-CP12) simultaneously in ammonium sulfate buffers and commercial crystallization reagents. It was found that the 20S disk form of WT-TMV-CP32 and WT-His-TMV-CP12 did not form high resolution crystals by using various crystallization buffers and commercial crystallization reagents. Subsequently, a new experimental method was adopted in which a range of truncated TMV-CP was constructed by removing several amino acids from the N- or the C-terminal, and high resolution crystals were grown in ammonium sulfate buffers and commercial crystallization reagents. Results The new crystallization method was developed and 3.0 Å resolution macromolecular crystal was thereby obtained by removing four amino acids at the C-terminal of His-TMV-CP and connecting six His-tags at the N-terminal of His-TMV-CP (TR-His-TMV-CP19). The Four-layer aggregate disk structure of TR-His-TMV-CP19 was solved. This phenomenon showed that peptides at the C-terminus hindered the growth of high resolution crystals and the peptides interactions at the N-terminus were attributed to the quality of TMV-CP crystals. Conclusion A 3.0 Å resolution macromolecular crystal of TR-His-TMV-CP19 was obtained and the corresponding structure was solved by removing four amino acids at the C-terminus of TMV-CP and connecting His-tags at the N-terminus of TMV-CP. It

  16. Bioengineering of Tobacco Mosaic Virus to Create a Non-Infectious Positive Control for Ebola Diagnostic Assays

    OpenAIRE

    Patricia Lam; Gulati, Neetu M.; Stewart, Phoebe L.; Keri, Ruth A.; Steinmetz, Nicole F.

    2016-01-01

    The 2014 Ebola epidemic is the largest to date. There is no cure or treatment for this deadly disease; therefore there is an urgent need to develop new diagnostics to accurately detect Ebola. Current RT-PCR assays lack sensitive and reliable positive controls. To address this critical need, we devised a bio-inspired positive control for use in RT-PCR diagnostics: we encapsulated scrambled Ebola RNA sequences inside of tobacco mosaic virus to create a biomimicry that is non-infectious, but sta...

  17. Bioengineering of Tobacco Mosaic Virus to Create a Non-Infectious Positive Control for Ebola Diagnostic Assays

    Science.gov (United States)

    Lam, Patricia; Gulati, Neetu M.; Stewart, Phoebe L.; Keri, Ruth A.; Steinmetz, Nicole F.

    2016-03-01

    The 2014 Ebola epidemic is the largest to date. There is no cure or treatment for this deadly disease; therefore there is an urgent need to develop new diagnostics to accurately detect Ebola. Current RT-PCR assays lack sensitive and reliable positive controls. To address this critical need, we devised a bio-inspired positive control for use in RT-PCR diagnostics: we encapsulated scrambled Ebola RNA sequences inside of tobacco mosaic virus to create a biomimicry that is non-infectious, but stable, and could therefore serve as a positive control in Ebola diagnostic assays. Here, we report the bioengineering and validation of this probe.

  18. The behaviour of tomato golden mosaic virus DNA in cultured cells isolated from systemically infected tobacco leaves.

    Science.gov (United States)

    Slomka, M J; Buck, K W; Coutts, R H

    1989-03-01

    When callus tissue was cultured from leaf pieces taken from a Nicotiana tabacum cv. Xanthi nc. plant systemically infected with tomato golden mosaic virus (TGMV), TGMV-specific DNA persisted for up to 6 months in culture. Analysis of TGMV-specific intracellular DNA forms indicated a decrease in double-stranded relative to single-stranded forms and an increase in sub-genomic relative to genomic single-stranded DNA species in the callus tissue compared to those in the original leaf explant. The implications of the results with regard to TGMV replication are discussed.

  19. Effect of hydrocarbons and crude oil contamination on the sensitivity of French bean to alfalfa mosaic virus.

    Science.gov (United States)

    Jurík, M; Gallo, J; Subr, Z

    1995-12-01

    Determination of local necrotic lesions on primary leaves infected by alfalfa mosaic virus (AMV) revealed that hydrocarbons (HC) contamination of the substrate used for cultivation of French bean (Phaseolus vulgaris L., cv. Black Turtle Soup) caused a reduction of bean leaf area and an increase of plant sensitivity to AMV infection. On the other hand, superficial contamination of the leaves by crude oil caused an inhibition of lesion formation. Changes of SDS-polyacrylamide gel electrophoresis (SDS-PAGE) patterns of extractable bean leaf proteins related to the cultivation substrate contamination by HC were also detected.

  20. Self-assembly of tobacco mosaic virus: the role of an intermediate aggregate in generating both specificity and speed.

    OpenAIRE

    Butler, P J

    1999-01-01

    The tobacco mosaic virus (TMV) particle was the first macromolecular structure to be shown to self-assemble in vitro, allowing detailed studies of the mechanism. Nucleation of TMV self-assembly is by the binding of a specific stem-loop of the single-stranded viral RNA into the central hole of a two-ring sub-assembly of the coat protein, known as the 'disk'. Binding of the loop onto its specific binding site, between the two rings of the disk, leads to melting of the stem so more RNA is availa...

  1. The 5′-Proximal Hairpin of Turnip Yellow Mosaic Virus RNA: Its Role in Translation and Encapsidation

    OpenAIRE

    Bink, Hugo H. J.; Schirawski, Jan; Haenni, Anne-Lise; Pleij, Cornelis W. A.

    2003-01-01

    The RNA genome of turnip yellow mosaic virus (TYMV) consists of more than 6,000 nucleotides. During a study of the roles of the two hairpins located in its 90-nucleotide 5′ untranslated region, it was observed that stabilization of the 5′-proximal hairpin leads to a delay in the development of symptoms on plants. This delay in symptom development for both locally and systemically infected leaves was found to be dependent on a change in the free energy of the hairpin caused by introduced mutat...

  2. Over-expression of putative transcriptional coactivator KELP interferes with Tomato mosaic virus cell-to-cell movement.

    Science.gov (United States)

    Sasaki, Nobumitsu; Ogata, Takuya; Deguchi, Masakazu; Nagai, Shoko; Tamai, Atsushi; Meshi, Tetsuo; Kawakami, Shigeki; Watanabe, Yuichiro; Matsushita, Yasuhiko; Nyunoya, Hiroshi

    2009-03-01

    Tomato mosaic virus (ToMV) encodes a movement protein (MP) that is necessary for virus cell-to-cell movement. We have demonstrated previously that KELP, a putative transcriptional coactivator of Arabidopsis thaliana, and its orthologue from Brassica campestris can bind to ToMV MP in vitro. In this study, we examined the effects of the transient over-expression of KELP on ToMV infection and the intracellular localization of MP in Nicotiana benthamiana, an experimental host of the virus. In co-bombardment experiments, the over-expression of KELP inhibited virus cell-to-cell movement. The N-terminal half of KELP (KELPdC), which had been shown to bind to MP, was sufficient for inhibition. Furthermore, the over-expression of KELP and KELPdC, both of which were co-localized with ToMV MP, led to a reduction in the plasmodesmal association of MP. In the absence of MP expression, KELP was localized in the nucleus and the cytoplasm by the localization signal in its N-terminal half. It was also shown that ToMV amplified normally in protoplasts prepared from leaf tissue that expressed KELP transiently. These results indicate that over-expressed KELP interacts with MP in vivo and exerts an inhibitory effect on MP function for virus cell-to-cell movement, but not on virus amplification in individual cells.

  3. Evaluation of the RNAi Constructs ability to Confer Resistance against Yellow Mosaic Viruses by Transient Silencing Assay

    Directory of Open Access Journals (Sweden)

    Archana Kumari

    2016-12-01

    Full Text Available Mungbean yellow mosaic India virus (MYMIV, a bipartite legume infecting geminivirus that causes considerable yield losses in South-East Asia. Pathogen derived resistance (PDR in plants is a very effective approach to acquire resistance against viral infections. Extrinsic expression of RNAi constructs targeting viral infective proteins is one of the effective scenarios to silence viral infectivity. In the present study, we tested the efficacy of three intron-spliced hairpin RNAi constructs which prepared by targeting the Coat Protein (CP/AV1, Replication initiation protein (Rep/AC1 and Intergenic region (IR of Soybean isolate of MYMIV (MYMIV-Sb in respect of reducing the virus DNA accumulation. In planta transient assay method were used to introduce the RNAi constructs in cowpea seedlings. This approach gave up to 80 % of protection to cowpea plants against virus infection. Only 15-20 % disease symptoms were observed in RNAi constructs inoculated cowpea plants. Among three constructs, RNAi-Rep construct showed maximum efficacy when compared with RNAi-CP and RNAi-IR. Results obtained in this study confirmed that at transient level, introduction of virus gene in form of hairpin RNAi construct (against the virus emerged as an effective strategy to control spreading the virus.

  4. Mosaic clade M human immunodeficiency virus type 1 (HIV-1) envelope immunogens

    Science.gov (United States)

    Korber, Bette T.; Fischer, William; Liao, Hua-Xin; Haynes, Barton F.; Letvin, Norman; Hahn; Beatrice H.

    2011-05-31

    The present invention relates to mosaic clade M HIV-1 Env polypeptides and to compositions comprising same. The polypeptides of the invention are suitable for use in inducing an immune response to HIV-1 in a human.

  5. Sequence analysis of a soil-borne wheat mosaic virus isolate from Italy shows that it is the same virus as European wheat mosaic virus and Soil-borne rye mosaic virus

    Institute of Scientific and Technical Information of China (English)

    YANG; Jianping

    2001-01-01

    [1]Hill, A. V., Elvin, J., Willis, A. C. et al., Molecular analysis of the association of HLA-B53 and resistance to severe malaria, Nature, 1992, 360: 434.[2]Perlmann, P., Miller, L., Fogarty/WHO international conference on cellular mechanisms in malaria immunity, Immun. Letter, 1990, 25: 1.[3]Perkus, M. E., Tartaglia, J., Paoletti, E. et al., Poxvirus-based vaccine candidates for cancer, AIDS and other infectious diseases, J. Leukocyte Biol., 1995, 58(1): 1.[4]Shen, H., Slifka, M. K., Matloubian, M. et al., Recombinant Listeria monocytogenes as a live vaccine vehicle for the induction of protective anti-viral cell-mediated immunity, Proc. Natl. Acad. Sci. USA, 1995, 92: 3987.[5]Waine, G. J., McManus, D. P., Nucleic acids: vaccines of the future, Parasitol Today, 1995, 11: 113.[6]Whitton, J. L., Sheng, N., Oldstone, M. B. A. et al., A "string-of beads" vaccine, comprising linked minigenes, confers protection from lethal-dose virus challenge, J. Virol., 1993, 67: 348.[7]Lalvani, A., Aidoo, M., Allsopp, C. E. et al., An-HLA-based approach to design of a CTL-inducing vaccine against Plasmodium falciparum, Res. Immunol., 1994, 145: 461.[8]Sidney, J., Grey, H. M., Kubo, R. T. et al., Practical, biochemical and evolutionary implications of the discovery of HLA class I supermotifs, Immunology Today, 1996, 17: 261.[9]Thomson, S. A., Elliott, S. L., Sherritt, M. A. et al., Recombinant polyepitope vaccines for the delivery of multiple CD8 cytotoxic T cell epitopes, J. Immun., 1996, 157: 822.[10] Hanke, T., Schneider, J., Gilbert, S. C. et al., DNA multi-CTL epitope vaccines for HIV and Plasmodium falciparum: immunogenicity in mice, Vaccine, 1998, 16: 426.[11] Townsend, A. R. M., Rothbard, J., Gotch, F. M. et al., The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides, Cell, 1986, 44: 959.[12] Ojcius, D. M., Abastado, J. P., Casrouge, A. et al., Dissociation of

  6. Replication of honey bee-associated RNA viruses across multiple bee species in apple orchards of Georgia, Germany and Kyrgyzstan.

    Science.gov (United States)

    Radzevičiūtė, Rita; Theodorou, Panagiotis; Husemann, Martin; Japoshvili, George; Kirkitadze, Giorgi; Zhusupbaeva, Aigul; Paxton, Robert J

    2017-06-01

    The essential ecosystem service of pollination is provided largely by insects, which are considered threatened by diverse biotic and abiotic global change pressures. RNA viruses are one such pressure, and have risen in prominence as a major threat for honey bees (Apis mellifera) and global apiculture, as well as a risk factor for other bee species through pathogen spill-over between managed honey bees and sympatric wild pollinator communities. Yet despite their potential role in global bee decline, the prevalence of honey bee-associated RNA viruses in wild bees is poorly known from both geographic and taxonomic perspectives. We screened members of pollinator communities (honey bees, bumble bees and other wild bees belonging to four families) collected from apple orchards in Georgia, Germany and Kyrgyzstan for six common honey bee-associated RNA virus complexes encompassing nine virus targets. The Deformed wing virus complex (DWV genotypes A and B) had the highest prevalence across all localities and host species and was the only virus complex found in wild bee species belonging to all four studied families. Based on amplification of negative-strand viral RNA, we found evidence for viral replication in wild bee species of DWV-A/DWV-B (hosts: Andrena haemorrhoa and several Bombus spp.) and Black queen cell virus (hosts: Anthophora plumipes, several Bombus spp., Osmia bicornis and Xylocopa spp.). Viral amplicon sequences revealed that DWV-A and DWV-B are regionally distinct but identical in two or more bee species at any one site, suggesting virus is shared amongst sympatric bee taxa. This study demonstrates that honey bee associated RNA viruses are geographically and taxonomically widespread, likely infective in wild bee species, and shared across bee taxa. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Maize Dwarf Mosaic Disease Occurred in Hangzhou Isolate Caused by Sugarcane Mosaic Virus%杭州地区发生的玉米花叶病由甘蔗花叶病毒引起

    Institute of Scientific and Technical Information of China (English)

    程晔; 陈炯; 郑滔; 杨建平; 陈剑平

    2001-01-01

    从杭州地区呈现玉米矮花叶典型症状的玉米病组织中提纯得到大量线状病毒粒子,大多数长度为750?nm。病组织中含有大量风轮状内含体和板状集结体。病毒外壳蛋白为33.6?kD。病毒RNA1 3’端序列(1.8?kb)与甘蔗花叶病毒(SCMV)同源性最高,达71.5%~99.1%,与高梁花叶病毒(SrMV)同源性次之,为67.8%~68.5%,与玉米矮花叶病毒(MDMV)同源性最低,仅为38.4%~48.4%,从而初步认为此病害由SCMV引起。根据已发表的SCMV外壳蛋白氨基酸序列作亲缘性分析,表明SCMV可分为美国、南非、澳大利亚;德国和中国三大类。%Recently maize dwarf mosaic disease was occurred on maize crop seriously in large scale in Hangzhou district. Purified preparations from the infected maize leaves contained numerous filamentous virus particles of c.750 nm in length. Cells of infected plants contained typical pinwheels and laminated aggregates. The coat protein of the virus was 33.6 kD. A 1.8 kb fragment of 3'-terminus of the viral RNA was amplified by RT-PCR, cloned and its sequence was determined. Sequence comparisons showed that it shared 71.5%~99.1% homology with isolates of sugarcane mosaic virus, 67.8%~68.5% with sorghum mosaic virus and 38.4%~48.4% with maize dwarf mosaic virus, indicating that the pathogen of this disease on maize in Hangzhou was sugarcane mosaic virus. In addition, the relationships of sugarcane mosaic virus isolates from different origins all over world were discussed based on coat protein sequences.

  8. Synthesis, anti-tobacco mosaic virus and cucumber mosaic virus activity, and 3D-QSAR study of novel 1,4-pentadien-3-one derivatives containing 4-thioquinazoline moiety.

    Science.gov (United States)

    Long, Chengwen; Li, Pei; Chen, Meihang; Dong, Liangrun; Hu, Deyu; Song, Baoan

    2015-09-18

    A series of novel 1,4-pentadien-3-one derivatives containing 4-thioquinazoline moiety were designed and synthesized. Antiviral bioassay results indicated that most of the title compounds exhibited excellent antiviral activities against tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV) in vivo. Among the title compounds, 7j exhibited the best curative activity against TMV, with a half-maximal effective concentration (EC50) value of 213.5 μg/mL, which was better than that of ningnanmycin (270.9 μg/mL). Meanwhile, 7a showed remarkable protection activity against TMV and curative activity against CMV, with EC50 values of 124.3 and 365.5 μg/mL, respectively, which were superior to those of ningnanmycin (195.1 and 404.9 μg/mL, respectively). Comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) models were generated on the basis of the curative activities against TMV and exhibited good predictive abilities with cross-validated q(2) and non-cross-validated r(2) values for CoMFA and CoMSIA of 0.548, 0.647 and 0.994, 0.993, respectively. These results provided a practical tool for guiding the design and synthesis of novel and more potent 1,4-pentadien-3-one derivatives containing 4-thioquinazoline moiety.

  9. 湖南省10种天南星科作物DsMV和CMV的检测%Detection of Dasheen Mosaic Virus and Cucumber Mosaic Virus in Ten Species of Areaceae Collected from Hunan Province

    Institute of Scientific and Technical Information of China (English)

    何煜波; 桂明; 李永伟; 唐爱菊; 陈集双

    2005-01-01

    利用32p标记的cDNA探针对采集于湖南省永州等地的10种天南星科观赏植物和大田作物绿帝王(Philodendron sodiroi)、半夏(Pinellia ternata)、海芋(Alocasia macrorhiza)、马蹄莲(Zantedeschia aethiopica)、龟背竹(Monstera deliciosa)、尖尾芋(Alocasia cucullata)、白蝶合果芋(Sygonium podophyllum)、羽裂蔓绿绒(Philodendron selloum)、广东万年青(Aglaonema modestum)、芋(Colocasia esculenta)进行了芋花叶病毒(Dasheen mosaic virus,DsMV)和黄瓜花叶病毒(Cucumber mosaic virus,CMV)的检测,同时对部分样品进行病毒提纯、病毒粒子观察和内含体结构检查.结果显示:DsMV在10种植物上普遍存在,是最主要的病毒病原;同时首次在芋、绿帝王和广东万年青等3种植物上检测到CMV和DsMV的复合侵染.

  10. Comparative spatial spread overtime of Zucchini Yellow Mosaic Virus (ZYMV) and Watermelon Mosaic Virus (WMV) in fields of transgenic squash expressing the coat protein genes of ZYMV and WMV, and in fields of nontransgenic squash.

    Science.gov (United States)

    Klas, Ferdinand E; Fuchs, Marc; Gonsalves, Dennis

    2006-10-01

    The spatial and temporal patterns of aphid-vectored spread of Zucchini Yellow Mosaic Virus (ZYMV) and Watermelon Mosaic Virus (WMV) were monitored over two consecutive years in plantings of nontransgenic and transgenic squash ZW-20H (commercial cv. Freedom II) and ZW-20B, both expressing the coat protein genes of ZYMV and WMV. All test plants were surrounded by nontransgenic plants that were mechanically inoculated with ZYMV or WMV, and served as primary virus source. Across all trials, none of the transgenic plants exhibited systemic symptoms upon infection by ZYMV and WMV but a few of them developed localized chlorotic dots and/or blotches, and had low mixed infection rates [4% (6 of 139) of ZW-20H and 9% (13 of 139) of ZW-20B], as shown by ELISA. Geostatistical analysis of ELISA positive transgenic plants indicated, (i) a lack of spatial relationship on spread of ZYMV and WMV for ZW-20H with flat omnidirectional experimental semivariograms that fitted poorly theoretical models, and (ii) some extent of spatial dependence on ZYMV spread for ZW-20B with a well structured experimental semivariogram that fitted poorly theoretical models during the first but not the second growing season. In contrast, a strong spatial dependence on spread of ZYMV and WMV was found for nontransgenic plants, which developed severe systemic symptoms, had prevalent mixed infection rates (62%, 86 of 139), and well-defined omnidirectional experimental semivariograms that fitted a spherical model. Geostatistical data were sustained by virus transmission experiments with Myzus persicae in screenhouses, showing that commercial transgenic squash ZW-20H alter the dynamics of ZYMV and WMV epidemics by preventing secondary plant-to-plant spread.

  11. Reação de genótipos de feijão-caupi revela resistência às coinfecções pelo Cucumber mosaic virus, Cowpea aphid-borne mosaic virus e Cowpea severe mosaic virus

    Directory of Open Access Journals (Sweden)

    Cláudia Roberta Ribeiro de Oliveira

    2012-01-01

    Full Text Available O rendimento do feijão-caupi pode ser afetado por diversos fatores, em especial as viroses. As principais espécies de vírus que infectam o feijão-caupi, no Brasil, são: Cucumber mosaic virus (CMV, Cowpea aphid-borne mosaic virus (CABMV, Cowpea severe mosaic virus (CPSMV e o Bean golden mosaic virus (BGMV. Este trabalho foi realizado em duas etapas e teve como objetivo avaliar a reação de genótipos de feijão-caupi quanto à resistência à infecção simples pelo CMV e mista nas combinações CMV+CABMV, CMV+CPSMV-I e CMV+CABMV+CPSMV-I. Inicialmente, foram incluídos 57 genótipos, sendo três avaliações em gaiolas com tela antiafídeos sob infecção controlada, e uma em condição de campo sob infecção natural. Em seguida, foram selecionados 18 genótipos para serem desenvolvidos em nove ensaios, oito em gaiolas com tela antiafídeos sob infecção controlada, e um em campo sob infecção natural. Nesses ensaios, avaliaram-se os efeitos qualitativos e quantitativos resultantes das infecções. No ensaio de campo, foram avaliados o número de plantas assintomáticas, comprimento de vagem, número de grãos por vagem, massa de cem grãos e produtividade. As coinfecções reduziram a altura da planta e a massa seca. Além disso, nas infecções envolvendo os três vírus ocorreu a morte prematura de alguns genótipos. Os genótipos BR17-Gurguéia, Epace V-96, TE97-309G-9, TE97-309G-22, TE97-309G-24 e Patativa, além de bom comportamento diante das coinfecções virais, têm sementes com padrão comercial, podendo ser empregadas diretamente em programas de melhoramento.

  12. A map of the diversity of RNA3 recombinants appearing in plants infected with Cucumber mosaic virus and Tomato aspermy virus.

    Science.gov (United States)

    de Wispelaere, Mélissanne; Gaubert, Stéphane; Trouilloud, Séverine; Belin, Christophe; Tepfer, Mark

    2005-01-05

    In order to better understand the role of recombination in creating the diversity of viral genomes that is acted on by selection, we have studied in detail the population of recombinant RNA3 molecules occurring in tobacco plants coinfected with wild-type strains of cucumber mosaic virus (CMV) and tomato aspermy virus (TAV) under conditions of minimal selection pressure. Recombinant RNA3s were observed in 9.6% of the samples. Precise homologous recombination predominated since it was observed at 28 different sites, primarily in six hot spots. Imprecise homologous recombination was observed at two sites, particularly within a GU repeat in the 5' noncoding region. Seven of the eight aberrant homologous recombination sites observed were clustered in the 3' noncoding region. These results have implications on the role of recombination in host adaptation and virus evolution. They also provide essential baseline information for understanding the potential epidemiological impact of recombination in transgenic plants expressing viral sequences.

  13. Generation of transgenic wheat resistant to wheat yel-low mosaic virus and identifi-cation of gene silence induced by virus infection

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The plasmid containing the promoter Act1, the coat protein (cp) gene of wheat yellow mosaic virus (WYMV) and the selectable bar gene, was delivered via particle bombardment, directly into immature embryos of a wheat cultivars. PCR and PCR-RFLP were employed to screen the existence of the cp gene in T0 and T1 generations. Seeds from the positive T1 plants were sowed in fields heavily contaminated with WYMV to detect their resistance. In field trial of virus infection, one of the transgenic wheat lines, P8-T2, exhibited highly disease-resistance. Western blot and RT-PCR analysis showed that the expression level of cp gene in the resistant transgenic line was reduced greatly compared to those susceptible to WYMV infection. This provided evidence to presume that the resistance obtained by the transgenic wheat line was stimulated by the mechanism of the virus induced gene silencing.

  14. Real time TaqMan RT-PCR assay for the detection of Cucumber green mottle mosaic virus.

    Science.gov (United States)

    Hongyun, Chen; Wenjun, Zhao; Qinsheng, Gu; Qing, Chen; Shiming, Lin; Shuifang, Zhu

    2008-05-01

    A real time reverse-transcription polymerase chain reaction (RT-PCR) was developed for efficient detection of Cucumber green mottle mosaic virus (CGMMV). The method was designed to use a duo-primer system with a TaqMan probe targeting the conserved sequence in 3' noncoding region (NCR) of CGMMV to detect isolates of this virus collected in China. The sensitivity of the real time RT-PCR assay was 0.13 pg of total RNA or 50 molecules of RNA transcripts. This level of sensitivity indicated that the one step real time RT-PCR developed in the present study could be used for routine testing assays. The real time RT-PCR method could assist in the implementation of quarantine measures for prevention and control of the disease caused by CGMMV.

  15. Coat protein sequence shows that Cucumber mosaic virus isolate from geraniums (Pelargonium spp.) belongs to subgroup II

    Indian Academy of Sciences (India)

    Neeraj Verma; B K Mahinghara; Raja Ram; A A Zaidi

    2006-03-01

    A viral disease was identified on geraniums (Pelargonium spp.) grown in a greenhouse at the Institute of Himalayan Bioresource Technology (IHBT), Palampur, exhibiting mild mottling and stunting. The causal virus (Cucumber mosaic virus, CMV) was identified and characterized on the basis of host range, aphid transmission, enzyme linked immunosorbent assay (ELISA), DNA-RNA hybridization and reverse transcription polymerase chain reaction (RTPCR). A complete coat protein (CP) gene was amplified using degenerate primers and sequenced. The CP gene showed nucleotide and amino acid homology up to 97%–98% and 96%–99%, respectively with the sequences of CMV subgroup II. The CP gene also showed homologies of 75%–97% in nucleotide and 77%–96% in amino acid with the CMV Indian isolates infecting various crops. On the basis of sequence homology, it was concluded that CMV-infecting geraniums in India belong to subgroup II.

  16. Complete nucleotide sequences of seven soybean mosaic viruses (SMV), isolated from wild soybeans (Glycine soja) in China.

    Science.gov (United States)

    Chen, Yun-Xia; Wu, Mian; Ma, Fang-Fang; Chen, Jian-Qun; Wang, Bin

    2017-03-01

    Soybean mosaic virus (SMV) is a devastating plant virus classified in the family Potyviridae, and known to infect cultivated soybeans (Glycine max). In this study, seven new SMVs were isolated from wild soybean samples and analyzed by whole-genome sequencing. An updated SMV phylogeny was built with the seven new and 83 known SMV genomic sequences. Results showed that three northeastern SMV isolates were distributed in clade III and IV, while four southern SMVs were grouped together in clade II and all contained a recombinant BCMV fragment (~900 bp) in the upstream part of the genome. This work revealed that wild soybeans in China also act as important SMV hosts and play a role in the transmission and diversity of SMVs.

  17. Quantitative Determination of Cucumber Mosaic Virus Genome RNAs in Virions by Real-Time Reverse Transcription-Polymerase Chain Reaction

    Institute of Scientific and Technical Information of China (English)

    Jun-Li FENG; Shao-Ning CHEN; Xiang-Shan TANG; Xian-Feng DING; Zhi-You DU; Ji-Shuang CHEN

    2006-01-01

    A real-time RT-PCR procedure using the green fluorescent dye SYBR Green I was developed for determining the absolute and relative copies of cucumber mosaic virus (CMV) genomic RNAs contained in purified virions. Primers specific to each CMV ORF were designed and selected. Sequences were then amplified with length varying from 61 to 153 bp. Using dilution series of CMV genome RNAs prepared by in vitro transcription as the standard samples, a good linear correlation was observed between their threshold cycle (Ct)values and the logarithms of the initial template amounts. The copies of genomic RNA 1, RNA 2,RNA 3 and the subgenomic RNA 4 in CMV virions were quantified by this method, and the ratios were about Our work is the first report concerning the relative amounts of different RNA fragments in CMV virions as a virus with tripartite genome.

  18. Soilborne wheat mosaic virus (SBWMV 19K protein belongs to a class of cysteine rich proteins that suppress RNA silencing

    Directory of Open Access Journals (Sweden)

    Howard Amanda

    2005-03-01

    Full Text Available Abstract Amino acid sequence analyses indicate that the Soilborne wheat mosaic virus (SBWMV 19K protein is a cysteine-rich protein (CRP and shares sequence homology with CRPs derived from furo-, hordei-, peclu- and tobraviruses. Since the hordei- and pecluvirus CRPs were shown to be pathogenesis factors and/or suppressors of RNA silencing, experiments were conducted to determine if the SBWMV 19K CRP has similar activities. The SBWMV 19K CRP was introduced into the Potato virus X (PVX viral vector and inoculated to tobacco plants. The SBWMV 19K CRP aggravated PVX-induced symptoms and restored green fluorescent protein (GFP expression to GFP silenced tissues. These observations indicate that the SBWMV 19K CRP is a pathogenicity determinant and a suppressor of RNA silencing.

  19. First discovery and stucture-activity relationship study of phenanthroquinolizidines as novel antiviral agents against tobacco mosaic virus (TMV.

    Directory of Open Access Journals (Sweden)

    Ziwen Wang

    Full Text Available A series of phenanthroquinolizidine alkaloids 1-24 were prepared and first evaluated for their antiviral activity against tobacco mosaic virus (TMV. The bioassay results showed that most of these compounds exhibited good to excellent in vivo anti-TMV activity, of which compounds 1, 2, 15 and 16 displayed significantly higher activity than (R-antofine and commercial Ningnanmycin at the same test condition. The substituents on the phenanthrene moiety play an important role for maintaining high in vivo antiviral activity. The introduction of 6-hydroxyl, which is proposed to interact with TMV RNA, did increased anti-TMV activity. The 14aR-configuration was confirmed to be the preferred antiviral configuration for phenanthroquinolizidine alkaloids. Introduction of hydroxy group at 15-position of phenanthroquinolizidine alkaloids increased activity for S-configuration but decreased activity for R-configuration. Present study provides fundamental support for development and optimization of phenanthroquinolizidine alkaloids as potential inhibitors of plant virus.

  20. First discovery and stucture-activity relationship study of phenanthroquinolizidines as novel antiviral agents against tobacco mosaic virus (TMV).

    Science.gov (United States)

    Wang, Ziwen; Feng, Anzheng; Cui, Mingbo; Liu, Yuxiu; Wang, Lizhong; Wang, Qingmin

    2012-01-01

    A series of phenanthroquinolizidine alkaloids 1-24 were prepared and first evaluated for their antiviral activity against tobacco mosaic virus (TMV). The bioassay results showed that most of these compounds exhibited good to excellent in vivo anti-TMV activity, of which compounds 1, 2, 15 and 16 displayed significantly higher activity than (R)-antofine and commercial Ningnanmycin at the same test condition. The substituents on the phenanthrene moiety play an important role for maintaining high in vivo antiviral activity. The introduction of 6-hydroxyl, which is proposed to interact with TMV RNA, did increased anti-TMV activity. The 14aR-configuration was confirmed to be the preferred antiviral configuration for phenanthroquinolizidine alkaloids. Introduction of hydroxy group at 15-position of phenanthroquinolizidine alkaloids increased activity for S-configuration but decreased activity for R-configuration. Present study provides fundamental support for development and optimization of phenanthroquinolizidine alkaloids as potential inhibitors of plant virus.