WorldWideScience

Sample records for appendage scaffolds alternate

  1. Design and synthesis of a cyclitol-derived scaffold with axial pyridyl appendages and its encapsulation of the silver(I cation

    Directory of Open Access Journals (Sweden)

    Pierre-Marc Léo

    2010-10-01

    Full Text Available Conversion of a myo-inositol derivative into a scyllo-inositol-derived scaffold with C3v symmetry bearing three axial pyridyl appendages is presented. This pre-organized hexadentate ligand allows complexation of silver(I. The crystal structure of the complex was established.

  2. LEFT ATRIAL APPENDAGE CLOSURE AS AN ALTERNATIVE TO WARFARIN FOR STROKE PREVENTION IN ATRIAL FIBRILLATION: A PATIENT¬LEVEL META¬ANALYSIS

    Directory of Open Access Journals (Sweden)

    2015-01-01

    Full Text Available Holmes D.R. Jr, Doshi S.K., Kar S., et al. Left Atrial Appendage Closure as an Alternative to Warfarin for Stroke Prevention in Atrial Fibrillation: A Patient­Level Meta­Analysis // J. Am. Coll. Cardiol. – 2015. – Vol. 65. – P. 2614–2623.

  3. Effect of scaffolding on helping introductory physics students solve quantitative problems involving strong alternative conceptions

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2015-12-01

    It is well known that introductory physics students often have alternative conceptions that are inconsistent with established physical principles and concepts. Invoking alternative conceptions in the quantitative problem-solving process can derail the entire process. In order to help students solve quantitative problems involving strong alternative conceptions correctly, appropriate scaffolding support can be helpful. The goal of this study is to examine how different scaffolding supports involving analogical problem-solving influence introductory physics students' performance on a target quantitative problem in a situation where many students' solution process is derailed due to alternative conceptions. Three different scaffolding supports were designed and implemented in calculus-based and algebra-based introductory physics courses involving 410 students to evaluate the level of scaffolding needed to help students learn from an analogical problem that is similar in the underlying principles involved but for which the problem-solving process is not derailed by alternative conceptions. We found that for the quantitative problem involving strong alternative conceptions, simply guiding students to work through the solution of the analogical problem first was not enough to help most students discern the similarity between the two problems. However, if additional scaffolding supports that directly helped students examine and repair their knowledge elements involving alternative conceptions were provided, e.g., by guiding students to contemplate related issues and asking them to solve the targeted problem on their own first before learning from the analogical problem provided, students were more likely to discern the underlying similarities between the problems and avoid getting derailed by alternative conceptions when solving the targeted problem. We also found that some scaffolding supports were more effective in the calculus-based course than in the algebra

  4. Annealing free, clean graphene transfer using alternative polymer scaffolds.

    Science.gov (United States)

    Wood, Joshua D; Doidge, Gregory P; Carrion, Enrique A; Koepke, Justin C; Kaitz, Joshua A; Datye, Isha; Behnam, Ashkan; Hewaparakrama, Jayan; Aruin, Basil; Chen, Yaofeng; Dong, Hefei; Haasch, Richard T; Lyding, Joseph W; Pop, Eric

    2015-02-06

    We examine the transfer of graphene grown by chemical vapor deposition (CVD) with polymer scaffolds of poly(methyl methacrylate) (PMMA), poly(lactic acid) (PLA), poly(phthalaldehyde) (PPA), and poly(bisphenol A carbonate) (PC). We find that optimally reactive PC scaffolds provide the cleanest graphene transfers without any annealing, after extensive comparison with optical microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, and scanning tunneling microscopy. Comparatively, films transferred with PLA, PPA, PMMA/PC, and PMMA have a two-fold higher roughness and a five-fold higher chemical doping. Using PC scaffolds, we demonstrate the clean transfer of CVD multilayer graphene, fluorinated graphene, and hexagonal boron nitride. Our annealing free, PC transfers enable the use of atomically-clean nanomaterials in biomolecule encapsulation and flexible electronic applications.

  5. Annealing free, clean graphene transfer using alternative polymer scaffolds

    International Nuclear Information System (INIS)

    Wood, Joshua D; Doidge, Gregory P; Carrion, Enrique A; Koepke, Justin C; Datye, Isha; Behnam, Ashkan; Hewaparakrama, Jayan; Aruin, Basil; Chen, Yaofeng; Lyding, Joseph W; Kaitz, Joshua A; Dong, Hefei; Haasch, Richard T; Pop, Eric

    2015-01-01

    We examine the transfer of graphene grown by chemical vapor deposition (CVD) with polymer scaffolds of poly(methyl methacrylate) (PMMA), poly(lactic acid) (PLA), poly(phthalaldehyde) (PPA), and poly(bisphenol A carbonate) (PC). We find that optimally reactive PC scaffolds provide the cleanest graphene transfers without any annealing, after extensive comparison with optical microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, and scanning tunneling microscopy. Comparatively, films transferred with PLA, PPA, PMMA/PC, and PMMA have a two-fold higher roughness and a five-fold higher chemical doping. Using PC scaffolds, we demonstrate the clean transfer of CVD multilayer graphene, fluorinated graphene, and hexagonal boron nitride. Our annealing free, PC transfers enable the use of atomically-clean nanomaterials in biomolecule encapsulation and flexible electronic applications. (paper)

  6. Chitosan scaffold as an alternative adsorbent for the removal of hazardous food dyes from aqueous solutions.

    Science.gov (United States)

    Esquerdo, V M; Cadaval, T R S; Dotto, G L; Pinto, L A A

    2014-06-15

    The dye adsorption with chitosan is considered an eco-friendly alternative technology in relation to the existing water treatment technologies. However, the application of chitosan for dyes removal is limited, due to its low surface area and porosity. Then we prepared a chitosan scaffold with a megaporous structure as an alternative adsorbent to remove food dyes from solutions. The chitosan scaffold was characterized by infrared spectroscopy, scanning electron microscopy and structural characteristics. The potential of chitosan scaffold to remove five food dyes from solutions was investigated by equilibrium isotherms and thermodynamic study. The scaffold-dyes interactions were elucidated, and desorption studies were carried out. The chitosan scaffold presented pore sizes from 50 to 200 μm, porosity of 92.2±1.2% and specific surface area of 1135±2 m(2) g(-1). The two-step Langmuir model was suitable to represent the equilibrium data. The adsorption was spontaneous, favorable, exothermic and enthalpy-controlled process. Electrostatic interactions occurred between chitosan scaffold and dyes. Desorption was possible with NaOH solution (0.10 mol L(-1)). The chitosan megaporous scaffold showed good structural characteristics and high adsorption capacities (788-3316 mg g(-1)). Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Micro/Nano Multilayered Scaffolds of PLGA and Collagen by Alternately Electrospinning for Bone Tissue Engineering

    Science.gov (United States)

    Kwak, Sanghwa; Haider, Adnan; Gupta, Kailash Chandra; Kim, Sukyoung; Kang, Inn-Kyu

    2016-07-01

    The dual extrusion electrospinning technique was used to fabricate multilayered 3D scaffolds by stacking microfibrous meshes of poly(lactic acid-co-glycolic acid) (PLGA) in alternate fashion to micro/nano mixed fibrous meshes of PLGA and collagen. To fabricate the multilayered scaffold, 35 wt% solution of PLGA in THF-DMF binary solvent (3:1) and 5 wt% solution of collagen in hexafluoroisopropanol (HFIP) with and without hydroxyapatite nanorods (nHA) were used. The dual and individual electrospinning of PLGA and collagen were carried out at flow rates of 1.0 and 0.5 mL/h, respectively, at an applied voltage of 20 kV. The density of collagen fibers in multilayered scaffolds has controlled the adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 cells. The homogeneous dispersion of glutamic acid-modified hydroxyapatite nanorods (nHA-GA) in collagen solution has improved the osteogenic properties of fabricated multilayered scaffolds. The fabricated multilayered scaffolds were characterized using FT-IR, X-ray photoelectron spectroscopy, and transmission electron microscopy (TEM). The scanning electron microscopy (FE-SEM) was used to evaluate the adhesion and spreads of MC3T3-E1 cells on multilayered scaffolds. The activity of MC3T3-E1 cells on the multilayered scaffolds was evaluated by applying MTT, alkaline phosphatase, Alizarin Red, von Kossa, and cytoskeleton F-actin assaying protocols. The micro/nano fibrous PLGA-Col-HA scaffolds were found to be highly bioactive in comparison to pristine microfibrous PLGA and micro/nano mixed fibrous PLGA and Col scaffolds.

  8. Left atrial appendage occlusion

    Directory of Open Access Journals (Sweden)

    Ahmad Mirdamadi

    2013-01-01

    Full Text Available Left atrial appendage (LAA occlusion is a treatment strategy to prevent blood clot formation in atrial appendage. Although, LAA occlusion usually was done by catheter-based techniques, especially percutaneous trans-luminal mitral commissurotomy (PTMC, it can be done during closed and open mitral valve commissurotomy (CMVC, OMVC and mitral valve replacement (MVR too. Nowadays, PTMC is performed as an optimal management of severe mitral stenosis (MS and many patients currently are treated by PTMC instead of previous surgical methods. One of the most important contraindications of PTMC is presence of clot in LAA. So, each patient who suffers of severe MS is evaluated by Trans-Esophageal Echocardiogram to rule out thrombus in LAA before PTMC. At open heart surgery, replacement of the mitral valve was performed for 49-year-old woman. Also, left atrial appendage occlusion was done during surgery. Immediately after surgery, echocardiography demonstrates an echo imitated the presence of a thrombus in left atrial appendage area, although there was not any evidence of thrombus in pre-pump TEE. We can conclude from this case report that when we suspect of thrombus of left atrial, we should obtain exact history of previous surgery of mitral valve to avoid misdiagnosis clotted LAA, instead of obliterated LAA. Consequently, it can prevent additional evaluations and treatments such as oral anticoagulation and exclusion or postponing surgeries including PTMC.

  9. Pressure Shift Freezing as Potential Alternative for Generation of Decellularized Scaffolds

    Directory of Open Access Journals (Sweden)

    S. Eichhorn

    2013-01-01

    Full Text Available Background. Protocols using chemical reagents for scaffold decellularization can cause changes in the properties of the matrix, depending on the type of tissue and the chemical reagent. Technologies using physical techniques may be possible alternatives for the production grafts with potential superior matrix characteristics. Material and Methods. We tested four different technologies for scaffold decellularization. Group 1: high hydrostatic pressure (HHP, 1 GPa; Group 2: pressure shift freezing (PSF; Group 3: pulsed electric fields (PEF; Group 4: control group: detergent (SDS. The degree of decellularization was assessed by histological analysis and the measurement of residual DNA. Results. Tissue treated with PSF showed a decellularization with a penetration depth (PD of 1.5 mm and residual DNA content of . HHD treatment caused a PD of 0.2 mm with a residual DNA content of . PD in PEF was 0.5 mm, and the residual DNA content was . In the SDS group, PD was found to be 5 mm, and the DNA content was determined at . Conclusion. PSF showed promising results as a possible technique for scaffold decellularization. The penetration depth of PSF has to be optimized, and the mechanical as well as the biological characteristics of decellularized grafts have to be evaluated.

  10. A comparison of scaffold-free and scaffold-based reconstructed human skin models as alternatives to animal use.

    Science.gov (United States)

    Kinikoglu, Beste

    2017-12-01

    Tissue engineered full-thickness human skin substitutes have various applications in the clinic and in the laboratory, such as in the treatment of burns or deep skin defects, and as reconstructed human skin models in the safety testing of drugs and cosmetics and in the fundamental study of skin biology and pathology. So far, different approaches have been proposed for the generation of reconstructed skin, each with its own advantages and disadvantages. Here, the classic tissue engineering approach, based on cell-seeded polymeric scaffolds, is compared with the less-studied cell self-assembly approach, where the cells are coaxed to synthesise their own extracellular matrix (ECM). The resulting full-thickness human skin substitutes were analysed by means of histological and immunohistochemical analyses. It was found that both the scaffold-free and the scaffold-based skin equivalents successfully mimicked the functionality and morphology of native skin, with complete epidermal differentiation (as determined by the expression of filaggrin), the presence of a continuous basement membrane expressing collagen VII, and new ECM deposition by dermal fibroblasts. On the other hand, the scaffold-free model had a thicker epidermis and a significantly higher number of Ki67-positive proliferative cells, indicating a higher capacity for self-renewal, as compared to the scaffold-based model. 2017 FRAME.

  11. POSSIBLE ROLES OF EPIPLOIC APPENDAGES

    Directory of Open Access Journals (Sweden)

    Flavia Di Noto

    2016-04-01

    Full Text Available Historically, only the energy storage function had been attributed to adipose tissue. However, recent studies have shown that it is also able to secrete several substances which act in a paracrine or endocrine manner, contributing to the maintenance of organism’s homeostasis. It has been reported that the visceral fat has distinctive secreting characteristics. Based on previous scientific observations, here we shall describe the possible functional role of epiploic appendages. The epiploic appendages may play an important role in the metabolic regulation and/or in immune defense through the secretion of specific factors, such as leptin and some inflammatory cytokines. Leptin has been seen to be involved both in the regulation of hunger signals, in coordination with the hypothalamus, and in complex immune defense processes. The exact understanding of the behavior of this hormone could play a key role in understanding the functions ascribed to the epiploic appendages.

  12. Primary epiploic appendagitis

    Directory of Open Access Journals (Sweden)

    Carlos Augusto Real Martinez

    2013-07-01

    Full Text Available Primary epiploic appendagitis (PEA is a seldom reported disease caused by spontaneous torsion of one or more epiploic appendices. The aim of this study is to describe two cases of PEA reviewing the main aspects of the diagnosis and treatment of disease. Case report: Case 1 Male patient, 55 years old, obese, with abdominal right iliac fossa (RIF pain for two days. Abdominal examination showed pain on palpation in the RIF with rebound tenderness. Abdominal computed tomography identified lobulated lesion in the cecum, measuring 4.5 cm in diameter, which was suggestive of PEA or early neoplasm of the colon wall. The lapa- roscopic assessment confirmed the diagnosis of PEA and the appendix was removed. The pa- tient had a satisfactory outcome, being discharged on the second postoperative day. Case 2 Female patient, obese, 47 years old, with abdominal pain for six days, with sudden RIF onset. She had pain at palpation with rebound tenderness. Acute diverticulitis was suspected and patient underwent abdominal CT that identified PEA in the sigmoid colon. After expectant management, the patient showed progressive improvement resuming her activities in seven days. PEA is a rarely recalled condition during the investigation of inflammatory acute abdo- men which can be easily recognized by modern imaging methods of assessment. Resumo: Apendagite epiplóica primária (AEP é uma enfermidade raramente descrita, ocasionada pela torção espontânea de um ou mais apêndices epiplóicos. O objetivo deste estudo é descrever dois casos de AEP revisando os principais aspectos do diagnóstico e tratamento da doença. Relato dos Casos: 1° Homem, 55 anos, obeso com dor abdominal em FID há dois dias. No exame do abdômen apresentava dor à palpação na FID e descompressão brusca presente. A tomografia computadorizada do abdômen identificou lesão expansiva no ceco, lobulada, medindo 4,5 cm de diâmetro, suspeitando-se de AEP ou neoplasia primitiva da parede c

  13. Advances in appendage joining techniques for PHWR fuel cladding

    International Nuclear Information System (INIS)

    Desai, P.B.; Ray, T.K.; Date, V.G.; Purushotham, D.S.C.

    1995-01-01

    This paper describes work carried out at the BARC on the development of a technique to join tiny appendages (spacers and bearing pads) to thin cladding (before loading of UO 2 pellets) by resistance welding for PHWR fuel assemblies. The work includes qualifying the process for production environment, designing prototype equipment for regular production and quality monitoring. In the first phase of development, welding of appendages on UO 2 loaded elements was successfully developed, and is being used in production. Welding of appendages on to empty clad tubes is a superior technique for several reasons. Many problems associated with development of welding on empty tubes were resolved. work was initiated, in the second phase of the development task, to select a suitable technique to join appendages on empty clad tubes without any collapse of thin clad. Several alternatives were reviewed and assessed such as laser, full face welding, shim welding and shrink fitting ring spacers. Selection of a method using a mandrel and a modified electrode geometry was fully developed. Results were optimized and process development successfully completed. Appropriate weld monitoring techniques were also reviewed for their adaptation. This technique is useful for 19, 22 as well as 37 element assemblies. (author)

  14. Enhancement of skin wound healing with decellularized scaffolds loaded with hyaluronic acid and epidermal growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Su, Zhongchun; Ma, Huan; Wu, Zhengzheng [Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Lab for Genetic Medicine of Guangdong Province, Jinan University, Guangzhou 510632 (China); Zeng, Huilan [Department of Hematology, The First Affiliated Hospital, Jinan University, Guangzhou 510632 (China); Li, Zhizhong [Department of Bone, The First Affiliated Hospital, Jinan University, Guangzhou 510632 (China); Wang, Yuechun; Liu, Gexiu [Department of Physiology, School of Medicine, Jinan University, Guangzhou 510632 (China); Xu, Bin; Lin, Yongliang; Zhang, Peng [Grandhope Biotech Co., Ltd., Building D, #408, Guangzhou International Business Incubator, Guangzhou Science Park, Guangzhou 510663, Guangdong (China); Wei, Xing, E-mail: wei70@hotmail.com [Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Lab for Genetic Medicine of Guangdong Province, Jinan University, Guangzhou 510632 (China)

    2014-11-01

    Current therapy for skin wound healing still relies on skin transplantation. Many studies were done to try to find out ways to replace skin transplantation, but there is still no effective alternative therapy. In this study, decellularized scaffolds were prepared from pig peritoneum by a series of physical and chemical treatments, and scaffolds loaded with hyaluronic acid (HA) and epidermal growth factor (EGF) were tested for their effect on wound healing. MTT assay showed that EGF increased NIH3T3 cell viability and confirmed that EGF used in this study was biologically active in vitro. Scanning electron microscope (SEM) showed that HA stably attached to scaffolds even after soaking in PBS for 48 h. ELISA assay showed that HA increased the adsorption of EGF to scaffolds and sustained the release of EGF from scaffolds. Animal study showed that the wounds covered with scaffolds containing HA and EGF recovered best among all 4 groups and had wound healing rates of 49.86%, 70.94% and 87.41% respectively for days 10, 15 and 20 post-surgery compared to scaffolds alone with wound healing rates of 29.26%, 42.80% and 70.14%. In addition, the wounds covered with scaffolds containing EGF alone were smaller than no EGF scaffolds on days 10, 15 and 20 post-surgery. Hematoxylin–Eosin (HE) staining confirmed these results by showing that on days 10, 15 and 20 post-surgery, the thicker epidermis and dermis layers were observed in the wounds covered with scaffolds containing HA and EGF than scaffolds alone. In addition, the thicker epidermis and dermis layers were also observed in the wounds covered with scaffolds containing EGF than scaffolds alone. Skin appendages were observed on day 20 only in the wound covered with scaffolds containing HA and EGF. These results demonstrate that the scaffolds containing HA and EGF can enhance wound healing. - Highlights: • HA can increase the adsorption of EGF to decellularized scaffolds. • HA can sustain the release of EGF from

  15. Metallizing porous scaffolds as an alternative fabrication method for solid oxide fuel cell anodes

    Science.gov (United States)

    Ruiz-Trejo, Enrique; Atkinson, Alan; Brandon, Nigel P.

    2015-04-01

    A combination of electroless and electrolytic techniques is used to incorporate nickel into a porous Ce0.9Gd0.1O1.90 scaffold. First a porous backbone was screen printed into a YSZ electrolyte using an ink that contains sacrificial pore formers. Once sintered, the scaffold was coated with silver using Tollens' reaction followed by electrodeposition of nickel in a Watts bath. At high temperatures the silver forms droplets enabling direct contact between the gadolinia-doped ceria and nickel. Using impedance spectroscopy analysis in a symmetrical cell a total area specific resistance of 1 Ωcm2 at 700 °C in 97% H2 with 3% H2O was found, indicating the potential of this fabrication method for scaling up.

  16. Caecal epiploic appendagitis: an unlikely occurrence

    International Nuclear Information System (INIS)

    Macari, M.; Laks, S.; Hajdu, C.; Babb, J.

    2008-01-01

    Aim: To determine whether epiploic appendagitis occurs in the caecum. Methods: From 2000-2006, 58 cases with classic computed tomography (CT) features of acute epiploic appendagitis (focal round or oval fat density immediately adjacent to the colon with surrounding oedema and stranding, with or without a central area of high attenuation) were identified from a radiology information system and available for review on the picture archiving and communication system (PACS). Cases were assigned to one of six colonic segments: rectum, sigmoid, descending colon, transverse colon, ascending colon, and caecum. The Blyth-Still-Casella procedure was used to derive an exact upper bound on the likelihood of epiploic appendagitis occurring within the caecum. Results: Twenty-eight cases occurred in the sigmoid colon, 16 in the descending colon, four in the transverse colon, and 10 in the ascending colon. No cases of acute epiploic appendagitis were identified in the caecum. Four cases of prospectively dictated caecal epiploic appendagitis were identified from the database. Retrospective review of these cases showed two cases to be epiploic appendagitis of the ascending colon. The third case demonstrated peritoneal thickening without evidence of an inflamed epiploic appendage. The fourth case was caecal diverticulitis. Based on these findings there is 95% confidence that no more than 4.6% of patients with epiploic appendagitis will show this condition within the caecum. Conclusion: In the authors' experience, epiploic appendagitis does not occur in the caecum. Therefore, it is an unlikely cause for an inflammatory process in this region and other conditions should be considered

  17. Passive appendages aid locomotion through symmetry breaking

    Science.gov (United States)

    Bagheri, Shervin; Lacis, Ugis; Mazzino, Andrea; Kellay, Hamid; Brosse, Nicolas; Lundell, Fredrik; Ingremeau, Francois

    2014-11-01

    Plants and animals use plumes, barbs, tails, feathers, hairs, fins, and other types of appendages to aid locomotion. Despite their enormous variation, passive appendages may contribute to locomotion by exploiting the same physical mechanism. We present a new mechanism that applies to body appendages surrounded by a separated flow, which often develops behind moving bodies larger than a few millimeters. We use theory, experiments, and numerical simulations to show that bodies with protrusions turn and drift by exploiting a symmetry-breaking instability similar to the instability of an inverted pendulum. Our model explains why the straight position of an appendage in flowing fluid is unstable and how it stabilizes either to the left or right of the incoming fluid flow direction. The discovery suggests a new mechanism of locomotion that may be relevant for certain organisms; for example, how plumed seeds may drift without wind and how motile animals may passively reorient themselves.

  18. Ultrasonographic diagnosis of torsion of testicular appendages

    International Nuclear Information System (INIS)

    Esparza, J.; Gonzalez, A.; Cordero, J. L.

    2000-01-01

    To determine the efficacy of ultrasound in boys presenting torsion of a testicular appendage. A series of 30 boys with acute scrotal pain due to torsion of a testicular appendage was studied. Nine patients underwent surgery. The clinical findings and course in the remaining 21 suggested the presence of this abnormality. All of them underwent conventional and color Doppler ultrasound using a 7.5 MHz transducer. In 15 boys, ultrasound images depicted the affected appendage as a mass between the epididymal head and the testicle. In 13 cases, only signs of a inflammatory reaction, with enlargement of the epididymal head and tunicas presenting hyperflow and hydrocele, mimicking acute epididymities. In two cases, the images were normal. There is no definitive, distinguishing ultrasound image corresponding to testicular appendage torsion. Therefore, this diagnostic technique should be accompanied by clinical assessment. (Author) 14 refs

  19. Hemostasis of Left Atrial Appendage Bleed With Lariat Device

    Directory of Open Access Journals (Sweden)

    Amena Hussain, MD

    2014-09-01

    Full Text Available New devices designed for minimally invasive closure of the left atrial appendage (LAA may be a viable alternative for patients in whom anticoagulation is considered high risk. The Lariat (Sentreheart, Redwood City, CA, which is currently FDA-approved for percutaneous closure of tissue, requires both trans-septal puncture and epicardial access. However it requires no anticoagulation after the procedure. Here we describe a case of effusion and tamponade during a Lariat procedure with successful completion of the case and resolution of the effusion.

  20. Passive appendages generate drift through symmetry breaking

    Science.gov (United States)

    Lācis, U.; Brosse, N.; Ingremeau, F.; Mazzino, A.; Lundell, F.; Kellay, H.; Bagheri, S.

    2014-10-01

    Plants and animals use plumes, barbs, tails, feathers, hairs and fins to aid locomotion. Many of these appendages are not actively controlled, instead they have to interact passively with the surrounding fluid to generate motion. Here, we use theory, experiments and numerical simulations to show that an object with a protrusion in a separated flow drifts sideways by exploiting a symmetry-breaking instability similar to the instability of an inverted pendulum. Our model explains why the straight position of an appendage in a fluid flow is unstable and how it stabilizes either to the left or right of the incoming flow direction. It is plausible that organisms with appendages in a separated flow use this newly discovered mechanism for locomotion; examples include the drift of plumed seeds without wind and the passive reorientation of motile animals.

  1. Scaffolded biology.

    Science.gov (United States)

    Minelli, Alessandro

    2016-09-01

    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology.

  2. Epiploic appendagitis. Report of two cases

    International Nuclear Information System (INIS)

    Talukdar, R.; Saikia, N.; Mazumder, S.; Gupta, C.; Khanna, S.; Chaudhuri, D.; Bhullar, S.S.; Kumar, A.

    2007-01-01

    Epiploic appendagitis (EA) refers to primary or secondary inflammatory disease of the epiploic appendages: peritoneal pouches of subserosal fat, which run in parallel rows beside the taenia coli of the colon. It is an uncommon but self-limiting condition, which often mimics acute appendicitis or diverticulitis. An accurate diagnosis of EA can be made by performing an abdominal computed tomography scan. Establishing a correct preoperative diagnosis is important to avoid unnecessary exploratory laparoscopy or laparotomy. We report two cases of EA, which to our knowledge represent the first documented cases from India. (author)

  3. Development of a Novel Scaffold of Chitosan, Type IV Collagen and Integrin α3β1 As Alternative Scaffold for Primary Culture of Podocytes

    Directory of Open Access Journals (Sweden)

    Diana Ginette Zárate-Triviño

    2018-06-01

    Full Text Available Loss of podocytes has been a main pathology present in renal diseases; the leak of these specialized cells increases the permeability of the glomerular basal membrane (GMB and protein release affecting the glomeruli, the main structure of the kidney. The study of different physiopathology mechanism has been a challenge because of the short lifetime of podocytes in vitro. We obtained and characterized composites based on Chitosan (CTS, polyvinyl alcohol (PVA, type IV collagen and integrin α3β1 as a possible application in primary culture of podocytes. Podocytes were extracted from the urine of patients with Idiopathic Nephrotic Syndrome (INS. To evaluate biocompatibility, we assessed cell viability through the lactate dehydrogenase assay. Immunohistochemical staining was used to detect the expression of specific proteins from podocytes such as podocin, and podocalyxin and CD80, a marker of cellular stress. The results showed that our synthesis method promotes the copolymerization of the components in the scaffold. Due to its reactivity, the amine group of chitosan made links with type IV collagen and integrin α3β1. The swelling and degradation tests allowed us to select the material with the best mechanical properties for cellular culture. The expression of podocin and podocalyxin remains the same in the culture of podocytes on the scaffold; in contrast, CD80 expression increased. The viability of podocytes cultured on the CTS/PVA/type IV collagen/integrin α3β1 scaffold increased in comparison to the culture control.

  4. Malignant Appendage Tumours in Zaria | Samaila | Sudanese ...

    African Journals Online (AJOL)

    ... Eccrine sweat gland origin. Conclusion: Malignant appendage tumours showed a higher frequency in middle aged men in this review. A good knowledge and understanding of the pathology, high index of suspicion and immunohistochemical studies should help in making diagnosis. Surgical intervention with wide margin ...

  5. Efficacy Study of Carrageenan as an Alternative Infused Material (Filler in Poly(3-hydroxybutyrate-co-3-hydroxyvalerate Porous 3D Scaffold

    Directory of Open Access Journals (Sweden)

    Nor Syamimi Che Johari

    2017-01-01

    Full Text Available Polymeric porous 3D scaffold plays an important role in culturing mammalian cells as ex vivo model. However, the scaffold used is ineffective due to its structural and cell acceptability weaknesses. Therefore, this research attempts to overcome the weaknesses by using carrageenan from red seaweed Kappaphycus alvarezii as an alternative infused material (filler of poly(3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV porous 3D scaffold. The 3D scaffold was conventionally fabricated using the solvent-casting particulate-leaching (SCPL method. Carrageenan was later infused into 3D porous scaffolds under vacuum pressure and freeze-drying process. Five carrageenan concentrations were prepared and its physicochemical properties such as pH and viscosity were carried out on each concentration to determine the best solutions to produce a new composite 3D structure. The preliminary result shows that carrageenan concentrations of 2, 4, and 6% (w/v were considered the best solutions for the infusion process due to its stable rheology properties. The pH and viscosity profiles of three selected carrageenan solutions were exhibited in the range of 9.00–9.20 and 0.047–1.144 Pa·s, respectively. Moreover, the incorporated carrageenan gel fraction was in the range of 4.30% to 14.95% (w/w which was determined by gravimetric analysis and dye staining method (visual assessment. The well-infused carrageenan 3D scaffold was further characterized based on its internal morphology and degradability study. The vertical cross-sections of the scaffolds revealed homogeneous accumulation of dried gelatinous carrageenan which was covered throughout its pores wall. The degradation rate (K of the carrageenan infused 3D scaffold was between 0.01±1.66 (mg/day and 0.03±3.23 (mg/day. The higher the carrageenan concentration used, the faster the degradation rate occurring (p2 weeks. In conclusion, the usage of carrageenan as a composite material exhibits its great potential to be

  6. CT features of primary epiploic appendagitis

    International Nuclear Information System (INIS)

    Ng, Keng Sin; Tan, Andrew Gee Seng; Chen, Kevin K'o Wen; Wong, Siew Kune; Tan, How Ming

    2006-01-01

    Objective: The aim of this study is to describe the computed tomography (CT) findings of primary epiploic appendagitis (PEA). Methods: We reviewed the clinical records and CT images of 14 consecutive patients in Singapore who presented with acute abdominal pain from July 2000 to April 2004 and had radiological signs of PEA. Results: Hyperattenuated ring with adjacent fat stranding was present in all the patients. The central high attenuation dot was seen in 42.9% (6/14) of the patients. We observed a lobulated fatty mass in 21.4% (3/14) of our patients. All patients recovered during clinical follow-up. Conclusions: We believe the lobulated appearance of PEA is due to two or more, contiguous infarcted epiploic appendages lying in close proximity. This appearance further aids in the diagnosis of PEA and helps differentiates the condition from omental infarction. Recognizing the CT signs of PEA should allow a confident diagnosis and avoid unnecessary surgery

  7. Primary epiploic appendagitis: US and CT findings

    International Nuclear Information System (INIS)

    Molla, E.; Ripolles, T.; Martinez, M.J.; Morote, V.; Rosello-Sastre, E.

    1998-01-01

    A retrospective review is presented of seven cases of epiploic appendagitis, with surgical confirmation in one case. The main clinico-analytical data and the US and CT findings are described, as well as the histopathologic features in the sole case that underwent surgical resection. We also calculated the frequency of this entity in patients undergoing emergency abdominal US on clinical suspicion of diverticulitis. In all seven cases the clinico-analytical evidence was nonspecific (localized acute abdominal pain and slight leukocytosis), mimicking in six cases the clinical presentation of sigmoid diverticulitis and in one case that of acute appendicitis. US imaging findings were characteristic: a hyperechoic mass localized under the point of maximum pain, adjacent to the anterior peritoneal wall and fixed during deep breathing. In none of the cases did color Doppler US show flow. CT findings were also typical and showed a mass with a peripheral hyperattenuated rim surrounding an area of fatty attenuation. Overall 7.1 % of patients investigated to exclude sigmoid diverticulitis finally showed findings of primary epiploic appendagitis. Primary epiploic appendagitis thus shows characteristic US and CT findings that allow its diagnosis and follow-up. This entity is much more frequent than previously reported, especially in patients referred for US to exclude sigmoid diverticulitis. (orig.)

  8. Development of laser welded appendages to Zircaloy-4 fuel tubing (sheath/cladding)

    Energy Technology Data Exchange (ETDEWEB)

    Livingstone, S., E-mail: steve.livingstone@cnl.ca [Canadian Nuclear Laboratories Limited, Chalk River, ON, Canada K0J 1J0 (Canada); Xiao, L. [Canadian Nuclear Laboratories Limited, Chalk River, ON, Canada K0J 1J0 (Canada); Corcoran, E.C.; Ferrier, G.A.; Potter, K.N. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada K7K 7B4 (Canada)

    2015-04-01

    Highlights: • Examines feasibility of laser welding appendages to Zr-4 tubing. • Laser welding minimizes the HAZ and removes toxic Be. • Mechanical properties of laser welds appear competitive with induction brazed joints. • Work appears promising and lays the foundation for further investigations. - Abstract: Laser welding is a potential alternative to the induction brazing process commonly used for appendage attachment in CANDU{sup ®} fuel fabrication that uses toxic Be as a filler metal, and creates multiple large heat affected zones in the sheath. For this work, several appendages were laser welded to tubing using different laser heat input settings and then examined with a variety of techniques: visual examination, metallography, shear strength testing, impact testing, and fracture surface analysis. Where possible, the examination results are contrasted against production induction brazed joints. The work to date looks promising for laser welded appendages. Further work on joint optimization, corrosion testing, irradiation testing, and post-irradiation examination will be performed in the future.

  9. Passive control of a sphere by complex-shaped appendages

    Science.gov (United States)

    Bagheri, Shervin; Lacis, Ugis; Olivieri, Stefano; Mazzino, Andrea

    2015-11-01

    Appendages of various shapes and sizes (e.g. plumes, barbs, tails, feathers, hairs, fins) play an important role in dispersion and locomotion. In our previous work (Lacis, U. et al. Passive appendages generate drift through symmetry breaking. Nat. Commun. 5:5310, doi: 10.1038/ncomms6310, 2014), we showed that a free-falling cylinder with a splitter plate turns and drifts due to a symmetry-breaking instability (called inverted-pendulum instability or IPL). In other words, in a separated flow, the straight position of a short splitter plate is unstable and as a consequence a side force and a torque are induced on the cylinder. In this work, we seek the three-dimensional (3D) appendage shape (on a sphere at Re =200) that induces the largest drift of the sphere. We find that highly non-trivial shapes of appendages on a sphere increase the side force significantly compared to trivial shapes (such as an elliptic sheet). We also find that appendages may be designed to generate drift in either direction, that is, a free-falling sphere can drift either in the direction in which appendage is tilted or in the opposite direction depending on the particular geometry of the appendage. We discuss the physical mechanisms behind these optimal appendage shapes in the context of the IPL instability.

  10. Primary epiploic appendagitis and successful outpatient management

    Science.gov (United States)

    Schnedl, Wolfgang J.; Krause, Robert; Wallner-Liebmann, Sandra J.; Tafeit, Erwin; Mangge, Harald; Tillich, Manfred

    2012-01-01

    Summary Background Primary epiploic appendagitis (PEA) is a rare cause of abdominal acute or subacute complaints. Diagnosis of PEA is made with ultrasonography (US) or when computed tomography (CT) reveals a characteristic lesion. Case Report We report on two patients with PEA. In one patient PEA was first seen with US and confirmed with contrast enhanced CT, and in the second patient CT without contrast enhancement demonstrated PEA. In both patients an outpatient recovery with conservative non-surgical treatment is described. Conclusions Medical personnel should be aware of this rare disease, which mimics many other intra-abdominal acute and subacute conditions. A correct diagnosis of PEA with imaging procedures enables conservative and successful outpatient management avoiding unnecessary surgical intervention and additional costs. PMID:22648258

  11. Improved techniques for appendage attachment to PHWR fuel elements

    International Nuclear Information System (INIS)

    Raj, R.N.J.; Laxminarayana, B.; Narayanan, P.S.A.; Gupta, U.C.; Varma, B.P.; Sinha, K.K.

    1995-01-01

    Nuclear Fuel Complex, India switched-over to split-wart type PHWR fuel bundles in mid-80s. Since then over 60,000 bundles of this type have been fabricated for Indian PHWRs. After considering various technical aspects, resistance welding was chosen for appendage attachment to the fuel elements. The paper describes experiences in scaling up of the technique to industrial production of PHWR fuel bundles, design and development of special-purpose equipment for this purpose, and the QA procedures employed for regular production. It also deals with appendage welding of 37 Element fuel bundles and improvements planned in the appendage welding process. (author)

  12. Role of cardiac imaging and three-dimensional printing in percutaneous appendage closure.

    Science.gov (United States)

    Iriart, Xavier; Ciobotaru, Vlad; Martin, Claire; Cochet, Hubert; Jalal, Zakaria; Thambo, Jean-Benoit; Quessard, Astrid

    2018-06-06

    Atrial fibrillation is the most frequent cardiac arrhythmia, affecting up to 13% of people aged>80 years, and is responsible for 15-20% of all ischaemic strokes. Left atrial appendage occlusion devices have been developed as an alternative approach to reduce the risk of stroke in patients for whom oral anticoagulation is contraindicated. The procedure can be technically demanding, and obtaining a complete left atrial appendage occlusion can be challenging. These observations have emphasized the importance of preprocedural planning, to optimize the accuracy and safety of the procedure. In this setting, a multimodality imaging approach, including three-dimensional imaging, is often used for preoperative assessment and procedural guidance. These imaging modalities, including transoesophageal echocardiography and multislice computed tomography, allow acquisition of a three-dimensional dataset that improves understanding of the cardiac anatomy; dedicated postprocessing software integrated into the clinical workflow can be used to generate a stereolithography file, which can be printed in a rubber-like material, seeking to replicate the myocardial tissue characteristics and mechanical properties of the left atrial appendage wall. The role of multimodality imaging and 3D printing technology offers a new field for implantation simulation, which may have a major impact on physician training and technique optimization. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. Fluid-Structure Interaction Effects Resulting from Hull Appendage Coupling

    National Research Council Canada - National Science Library

    Avcu, Mehmet

    2005-01-01

    In previous work conducted in the modeling and simulation of ships subjected to underwater explosions, there has been some debate over the influence that hull appendages have upon the dynamic response...

  14. Comparative morphology of the feeding appendages of four ...

    African Journals Online (AJOL)

    The morphology of feeding appendages of the coexisting estuarine copepods, Pseudodiaptomus hessei and ..... are indicative of a predominantly herbivorous feeding habit; an EI value of ..... of a mysid crustacean, Hemimysis lamornae. Trans.

  15. Hydrodynamic Interactions Between Olfactory Appendages and Odor Plumes

    National Research Council Canada - National Science Library

    Koseff, Jeffrey

    2000-01-01

    .... A model lobster was then placed in the laboratory flume and we measured the odor concentration distribution around the olfactory appendage using high-speed video and laser-induced fluorescence techniques...

  16. Odf2-deficient mother centrioles lack distal/subdistal appendages and the ability to generate primary cilia.

    Science.gov (United States)

    Ishikawa, Hiroaki; Kubo, Akiharu; Tsukita, Shoichiro; Tsukita, Sachiko

    2005-05-01

    Outer dense fibre 2 (Odf2; also known as cenexin) was initially identified as a main component of the sperm tail cytoskeleton, but was later shown to be a general scaffold protein that is specifically localized at the distal/subdistal appendages of mother centrioles. Here we show that Odf2 expression is suppressed in mouse F9 cells when both alleles of Odf2 genes are deleted. Unexpectedly, the cell cycle of Odf2(-/-) cells does not seem to be affected. Immunofluorescence and ultrathin-section electron microscopy reveals that in Odf2(-/-) cells, distal/subdistal appendages disappear from mother centrioles, making it difficult to distinguish mother from daughter centrioles. In Odf2(-/-) cells, however, the formation of primary cilia is completely suppressed, although approximately 25% of wild-type F9 cells are ciliated under the steady-state cell cycle. The loss of primary cilia in Odf2(-/-) F9 cells can be rescued by exogenous Odf2 expression. These findings indicate that Odf2 is indispensable for the formation of distal/subdistal appendages and the generation of primary cilia, but not for other cell-cycle-related centriolar functions.

  17. Correlation of right atrial appendage velocity with left atrial appendage velocity and brain natriuretic Peptide.

    Science.gov (United States)

    Kim, Bu-Kyung; Heo, Jung-Ho; Lee, Jae-Woo; Kim, Hyun-Soo; Choi, Byung-Joo; Cha, Tae-Joon

    2012-03-01

    Left atrial appendage (LAA) anatomy and function have been well characterized both in healthy and diseased people, whereas relatively little attention has been focused on the right atrial appendage (RAA). We sought to evaluate RAA flow velocity and to compare these parameters with LAA indices and with a study of biomarkers, such as brain natriuretic peptide, among patients with sinus rhythm (SR) and atrial fibrillation (AF). In a series of 79 consecutive patients referred for transesophageal echocardiography, 43 patients (23 with AF and 20 controls) were evaluated. AF was associated with a decrease in flow velocity for both LAA and RAA [LAA velocity-SR vs. AF: 61 ± 22 vs. 29 ± 18 m/sec (p vs. AF: 46 ± 20 vs. 19 ± 8 m/sec (p brain natriuretic peptide (BNP). AF was associated with decreased RAA and LAA flow velocities. RAA velocity was found to be positively correlated with LAA velocity and negatively correlated with BNP. The plasma BNP concentration may serve as a determinant of LAA and RAA functions.

  18. Left atrial appendage closure: a new technique for clinical practice.

    Science.gov (United States)

    John Camm, A; Colombo, Antonio; Corbucci, Giorgio; Padeletti, Luigi

    2014-03-01

    Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. It is associated with increased risk for stroke mainly due to cardiac embolism from the left atrial appendage (LAA). Occlusion of the LAA by means of a device represents a valid alternative to oral anticoagulation, mainly in patients who cannot tolerate this therapy because of a high bleeding risk. Recent data on the endocardial device WATCHMAN show encouraging results for this patient population in terms of stroke risk reduction compared to the expected rate as well as in terms of implant success. This article reviews all relevant publications related to the main surgical and transcatheter devices used for LAA closure (LAAC). PROTECT-AF, the first prospective randomized trial conducted on this technique, showed that LAA occlusion using the WATCHMAN was noninferior to warfarin for a combined end-point in patients with nonvalvular AF. There is a lack of large-scale randomized trials on long-term stroke risk in patients submitted to LAAC. Most studies are relatively small and focus on the comparison of different surgical techniques with regard to complete/incomplete closure success. More recently, PROTECT-AF long-term results (4-year follow-up) demonstrated that LAAC was statistically superior to warfarin in terms of efficacy. This review concludes that it is now appropriate to consider these techniques for patients with AF who are at high risk for stroke for whom effective conventional or novel anticoagulant therapy is not available or who present problems in managing drug treatment. Copyright © 2014 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  19. Left atrial appendage closure: Six reasons why I wouldn't choose a percutaneous closure for my appendage.

    Science.gov (United States)

    Ferlini, Marco; Rossini, Roberta

    2018-01-15

    Left atrial appendage has been shown as a primary source of thrombi in patients with non-valvular atrial fibrillation (AF). Non vitamin k oral anticoagulants (NOAC) have been shown to be safe and effective in the prevention of embolic complications. Current guidelines on AF state that percutaneous left atrial appendage closure (LAAC) might be considered in patients with contraindication to long term oral anticoagulant therapy (OAC). An overview of the main trials on NOAC and LAAC is provided. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Occlusion of left atrial appendage in patients with atrial fibrillation

    Directory of Open Access Journals (Sweden)

    О. Н. Ганеева

    2015-10-01

    Full Text Available The article reviews a new method of prophylaxis of thromboembolitic complications, specifically occlusion of left atrial appendage, in patients with atrial fibrillation. Indications and contraindications for the procedure, as well as a step-by-step process of the intervention itself are described. Special emphasis is placed on the up-to-date evidence and the review of clinical trials.

  1. Passive appendages improve the maneuverability of fish-like robots

    Science.gov (United States)

    Pollard, Beau; Tallapragada, Phanindra

    2017-11-01

    It is known that the passive mechanics of fish appendages play a role in the high efficiency of their swimming. A well known example of this is the experimental demonstration that a dead fish could swim upstream. However little is known about the role if any of passive deformations of a fish-like body that could aid in its maneuverability. Part of the difficulty investigating this lies in clearly separating the role of actuated body deformations and passive deformations in response to the fluid structure interaction. In this paper we compare the maneuverability of several fish shaped robotic models that possess varying numbers of passive appendages with a fish shaped robot that has no appendages. All the robots are propelled by the oscillations of an internal momentum wheel thereby eliminating any active deformations of the body. Our experiments clearly reveal the significant improvement in maneuverability of robots with passive appendages. In the broader context of swimming robots our experiments show that passive mechanisms could be useful to provide mechanical feedback that can help maneuverability and obstacle avoidance along with propulsive efficiency. This work was partly supported by a Grant from the NSF CMMI 1563315.

  2. Conventional estimating method of earthquake response of mechanical appendage system

    International Nuclear Information System (INIS)

    Aoki, Shigeru; Suzuki, Kohei

    1981-01-01

    Generally, for the estimation of the earthquake response of appendage structure system installed in main structure system, the method of floor response analysis using the response spectra at the point of installing the appendage system has been used. On the other hand, the research on the estimation of the earthquake response of appendage system by the statistical procedure based on probability process theory has been reported. The development of a practical method for simply estimating the response is an important subject in aseismatic engineering. In this study, the method of estimating the earthquake response of appendage system in the general case that the natural frequencies of both structure systems were different was investigated. First, it was shown that floor response amplification factor was able to be estimated simply by giving the ratio of the natural frequencies of both structure systems, and its statistical property was clarified. Next, it was elucidated that the procedure of expressing acceleration, velocity and displacement responses with tri-axial response spectra simultaneously was able to be applied to the expression of FRAF. The applicability of this procedure to nonlinear system was examined. (Kako, I.)

  3. Ultrasonographic findings of torsed testicular appendages in prepubertal children

    International Nuclear Information System (INIS)

    Shin, Su Mi

    2013-01-01

    To characterize the sonographic findings of torsed testicular appendages and to evaluate the sonographic findings in making erroneous diagnosis of epididymitis or torsion of testis in prepubertal children. From June 2010 to November 2012, we retrospectively analyzed the duplex sonography of fifteen children with torsion of testicular appendages. The presence or absence of the extratesticular nodule and secondary inflammatory changes were evaluated. Six patients had follow-up sonography and two patients underwent surgery. Sonography demonstrated the extratesticular nodule in 13 (87%) children. Four of these 13 children were misdiagnosed as epididymitis due to imperceptions of the nodule. Out of remaining two (13%) children without the nodule, one mimicked epididymitis and the other was misdiagnosed as torsion of testis. Secondary inflammatory changes included enlarged epididymis in 14 children (93%), scrotal wall edema in 11 (73%), hydrocele in 10 (67%), and enlarged testis in 3 (20%). Ultrasonographic findings of secondary inflammatory changes in the absence or imperception of the nodules for epididymo-testicular groove or epididymal head may suggest an erroneous diagnosis of epididymitis or torsion of testis in children with torsed testicular appendages. Meticulous evaluation for the nodule is important when differentiating the torsed testicular appendages from the two entities of prepubertal children.

  4. Percutaneous left atrial appendage closure for stroke prevention

    DEFF Research Database (Denmark)

    De Backer, Ole; Loupis, Anastasia M; Ihlemann, Nikolaj

    2014-01-01

    INTRODUCTION: In atrial fibrillation (AF) patients with an increased stroke risk, oral anticoagulation (OAC) is the standard treatment for stroke prevention. However, this therapy carries a high risk of major bleeding. Percutaneous closure of the left atrial appendage (LAA) is suggested as an alt...

  5. Perigastric appendagitis: CT and clinical features in eight patients

    International Nuclear Information System (INIS)

    Justaniah, A.I.; Scholz, F.J.; Katz, D.S.; Scheirey, C.D.

    2014-01-01

    Aim: To describe perigastric appendagitis (PA) on CT as a new and distinct clinical entity to enable recognition and prevent additional unnecessary investigation or intervention. Materials and methods: Institutional review board approval was obtained and informed consent was waived. Retrospective review of the clinical data and CT findings in eight patients with PA encountered over 10 years at one institution was performed. The English literature was reviewed and summarized. Two experienced abdominal radiologists reviewed the CT images by consensus. Results: Seven of eight patients had moderate to severe epigastric pain for 1–7 days. All eight patients (four men, four women; mean age 44 years, range 33–81 years) had no fever or leukocytosis. All underwent abdominal CT which showed ovoid fat inflammation along the course of the perigastric ligaments (gastrohepatic, gastrosplenic, and falciform). Two had gastric wall thickening. Although the inflammation was correctly described, the specific diagnosis was not made on initial interpretation in five patients. Subsequently, they underwent further diagnostic testing [an upper gastrointestinal examination and hepatobiliary iminodiacetic acid (HIDA) cholescintigraphy, an upper endoscopy and MRI examination, HIDA cholescintigraphy, another CT, and an MRI examination, respectively]. The HIDA cholescintigraphy, upper GI examination, and upper endoscopy examinations were normal. No repeated examination was performed on the other three patients. Pain resolved spontaneously in all within two days. Conclusion: Perigastric appendagitis can present with an acute abdomen, which is safely managed conservatively if diagnosed correctly. Radiologists should be aware of the entity to avoid unnecessary intervention, and recognize the CT findings of ovoid fat inflammation in the distribution of the perigastric ligaments. - Highlights: • Normal perigastric ligaments can have fatty appendages. • Torsion of these appendages causes

  6. Computational Exploration of Molecular Scaffolds in Medicinal Chemistry.

    Science.gov (United States)

    Hu, Ye; Stumpfe, Dagmar; Bajorath, Jürgen

    2016-05-12

    The scaffold concept is widely applied in medicinal chemistry. Scaffolds are mostly used to represent core structures of bioactive compounds. Although the scaffold concept has limitations and is often viewed differently from a chemical and computational perspective, it has provided a basis for systematic investigations of molecular cores and building blocks, going far beyond the consideration of individual compound series. Over the past 2 decades, alternative scaffold definitions and organization schemes have been introduced and scaffolds have been studied in a variety of ways and increasingly on a large scale. Major applications of the scaffold concept include the generation of molecular hierarchies, structural classification, association of scaffolds with biological activities, and activity prediction. This contribution discusses computational approaches for scaffold generation and analysis, with emphasis on recent developments impacting medicinal chemistry. A variety of scaffold-based studies are discussed, and a perspective on scaffold methods is provided.

  7. Semiotic scaffolding

    DEFF Research Database (Denmark)

    Hoffmeyer, Jesper

    2015-01-01

    Life processes at all levels (from the genetic to the behavioral) are coordinated by semiotic interactions between cells, tissues, membranes, organs, or individuals and tuned through evolution to stabilize important functions. A stabilizing dynamics based on a system of semiotic scaffoldings impl...... semiotic scaffolding is not, of course, exclusive for phylogenetic and ontogenetic development, it is also an important dynamical element in cultural evolution.......Life processes at all levels (from the genetic to the behavioral) are coordinated by semiotic interactions between cells, tissues, membranes, organs, or individuals and tuned through evolution to stabilize important functions. A stabilizing dynamics based on a system of semiotic scaffoldings...... (the representamen) and the effect. Semiotic interaction patterns therefore provide fast and versatile mechanisms for adaptations, mechanisms that depend on communication and “learning” rather than on genetic preformation. Seen as a stabilizing agency supporting the emergence of higher-order structure...

  8. A Rare Cause of Acute Abdominal Pain: Primary Appendagitis Epiploica

    Directory of Open Access Journals (Sweden)

    Tarkan Ergun

    2014-03-01

    Primary appendagitis epiploica – one of the causes of acute abdominal pain – is a self-limited rare benign inflammatory condition involving the colonic epiploic appendages. Their therapy is conservative and clinically mimics other conditions requiring surgery such as acute diverticulitis or appendicitis. However, being a quite rare condition is the reason they are usually neglected by both the surgeon and the radiologist. However the computed tomography (CT findings are rather characteristic and pathognomonic. Thus, to consider CT as the diagnostic modality of choice is extremely important in order to diagnose the condition and to avoid unnecessary surgical interventions.             This is a paper reporting an acute abdominal pain case of primary appendicitis epiploica diagnosed using computed tomography. 

  9. Developmental Scaffolding

    DEFF Research Database (Denmark)

    Giorgi, Franco; Bruni, Luis Emilio

    2015-01-01

    . Within the developmental hierarchy, each module yields an inter-level relationship that makes it possible for the scaffolding to mediate the production of selectable variations. Awide range of genetic, cellular and morphological mechanisms allows the scaffolding to integrate these modular variations...... to the complexity of sign recognition proper of a cellular community. In this semiotic perspective, the apparent goal directness of any developmental strategy should no longer be accounted for by a predetermined genetic program, but by the gradual definition of the relationships selected amongst the ones...

  10. Radiological features of epiploic appendagitis and segmental omental infarction

    International Nuclear Information System (INIS)

    McClure, Mark J.; Khalili, Korosh; Sarrazin, Josee; Hanbidge, Anthony

    2001-01-01

    Epiploic appendagitis and segmental omental infarction are more frequently encountered with the increased use of abdominal ultrasound and Computed tomography (CT) in the radiological assessment of the patient who presents clinically with acute abdominal pain. Recognition of specific imaging abnormalities enables the radiologist to make the correct diagnosis. This is important, as the appropriate management of both conditions is often conservative. Follow-up imaging features correlate with clinical improvement. McClure, M.J. et al. (2001)

  11. Kodymirus and the case for convergence of raptorial appendages in Cambrian arthropods.

    Science.gov (United States)

    Lamsdell, James C; Stein, Martin; Selden, Paul A

    2013-09-01

    Kodymirus vagans Chlupáč and Havlíček in Sb Geol Ved Paleontol 6:7-20, 1965 is redescribed as an aglaspidid-like arthropod bearing a single pair of enlarged raptorial appendages, which are shown to be the second cephalic appendage. A number of early Palaeozoic arthropods, recognized from predominantly Cambrian Konservat-Lagerstätten, are known to have borne single pairs of large raptorial appendages. They are well established for the iconic yet problematic anomalocarids, the common megacheirans, and the ubiquitous bivalved Isoxys. Further taxa, such as fuxianhuiids and Branchiocaris, have been reported to have single pairs of specialized cephalic appendages, i.e., appendages differentiated from a largely homonomous limbs series, members of which act in metachronal motion. The homology of these raptorial appendages across these Cambrian arthropods has often been assumed, despite differences in morphology. Thus, anomalocaridids, for instance, have long multiarticulate "frontal appendages" consisting of many articles bearing an armature of paired serial spines, while megacheirans and Isoxys have short "great appendages" consisting of few articles with well-developed endites or elongate fingers. Homology of these appendages would require them to belong to the same cephalic segment. We argue based on morphological evidence that, to the contrary, the raptorial appendages of some of these taxa can be shown to belong to different cephalic segments and are the result of convergence in life habits. K. vagans is yet another important example for this, representing an instance for this morphology from a marginal marine environment.

  12. Morphogenesis of bacteriophage phi29 of Bacillus subtilis: cleavage and assembly of the neck appendage protein

    International Nuclear Information System (INIS)

    Tosi, M.E.; Reilly, B.E.; Anderson, D.L.

    1975-01-01

    Each of the 12 neck appendages of the Bacillus subtilis bacteriophage phi 29 consists of a single protein molecular weight of about 75,000, and on the mature virion the appendages are assembled to the lower of two collars. The appendage protein is cleaved from a percursor protein, P(J), with a molecular weight of about 88,000. This cleavage is independent of neck assembly, occurring during infection by mutants that cannot synthesize the proteins of the upper and lower collars of the neck. The cleaved form of the appendage protein is efficiently complemented in vitro to particles lacking appendages. Thus, cleavage of the appendage precursor protein apparently does not occur in situ on the maturing virus

  13. Skin appendage-derived stem cells: cell biology and potential for wound repair

    OpenAIRE

    Xie, Jiangfan; Yao, Bin; Han, Yutong; Huang, Sha; Fu, Xiaobing

    2016-01-01

    Stem cells residing in the epidermis and skin appendages are imperative for skin homeostasis and regeneration. These stem cells also participate in the repair of the epidermis after injuries, inducing restoration of tissue integrity and function of damaged tissue. Unlike epidermis-derived stem cells, comprehensive knowledge about skin appendage-derived stem cells remains limited. In this review, we summarize the current knowledge of skin appendage-derived stem cells, including their fundament...

  14. Developmental and Evolutionary Perspectives on the Origin and Diversification of Arthropod Appendages.

    Science.gov (United States)

    Jockusch, Elizabeth L

    2017-09-01

    Jointed, segmented appendages are a key innovation of arthropods. The subsequent diversification of these appendages, both along the body axis and across taxa, has contributed to the evolutionary success of arthropods. Both developmental and fossil data are informative for understanding how these transitions occurred. Comparative analyses help to pinpoint the developmental novelties that distinguish arthropod appendages from the lobopodous appendages of other panarthropods, and that distinguish different appendage types. The fossil record of stem group arthropods is diverse and preserves intermediate steps in these evolutionary transitions, including some that cannot be directly inferred based on extant taxa. These lead to hypotheses that can be tested with comparative developmental data, as well as to reinterpretations of developmental results. One developmental novelty of arthropods is the reiterated deployment of the joint formation network, which divides the appendages into segments. The fossil record raises questions about how this joint formation network was first deployed, given the contrasting morphologies of appendages in stem group versus extant arthropods. The fossil record supports a character tree for appendage diversification showing progressive individuation of appendages in an anterior-to-posterior sequence. However, to date, developmental evidence provides at best limited support for this character tree. Recent interpretations of the fossil record suggest that the labrum of extant arthropods is a greatly reduced protocerebral appendage pair; this hypothesis is consistent with the extensive shared developmental patterning of the labrum and jointed appendages. Reciprocal illumination from fossils and developmental patterning in a phylogenetic context both makes sense of some results and helps motivates questions for future research. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative

  15. Torsion of abdominal appendages presenting with acute abdominal pain

    International Nuclear Information System (INIS)

    Al-Jaberi, Tareq M.; Gharabeih, Kamal I.; Yaghan, Rami J.

    2000-01-01

    Diseases of abnormal appendages are rare causes of abdominal pain in all age groups. Nine patients with torsion and infraction of abdominal appendages were retrospectively reviewed. Four patients had torsion and infarction of the appendices epiploicae, four patients had torsion and infarction of the falciform ligament. The patient with falciform ligament disease represents the first reported case of primary torsion and infarction of the falciform ligament, and the patient with the transverse colon epiplocia represents the first reported case of vibration-induced appendix epiplocia torsion and infarction. The patient with the falciform ligament disease presented with a tender upper abdominal mass and the remaining patients were operated upon with the preoperative diagnosis of acute appendicitis. The presence of normal appendix with free serosanguinous fluid in the peritoneal cavity should raise the possibility of a disease and calls for further evaluation of the intra-abdominal organs. If the diagnosis is suspected preoperatively, CT scan and ultrasound may lead to a correct diagnosis and possibly conservative management. Laparoscopy is playing an increasing diagnostic and therapeutic role in such situations. (author)

  16. Isolated right atrial appendage rupture following blunt chest trauma.

    Science.gov (United States)

    Hegde, Rakesh; Lafayette, Nathan; Sywak, Michael; Ricketts, Gregory; Otero, Jorge; Kurtzman, Scott; Zhang, Zhongqiu

    2018-02-01

    Right sided tears or rupture are the most common injury to the heart after blunt chest trauma. The majority of these injuries are to the thin walled atrium. Reports of localized right atrial appendage rupture are rare. The classical features of Beck's triad are unreliable in the trauma bay. With the advent of EFAST (Focused assessment with sonography for trauma extended to thorax), Beck's triad should be considered but not used as the primary clinical tool for diagnosis of cardiac tamponade [1]. EFAST aids in rapid diagnosis and definitive care [3]. Our patient was a 17 year old male who presented with hypotension after a rollover motor vehicle accident. He presented with a grossly negative physical exam and positive EFAST for pericardial effusion with tamponade physiology. We performed an emergency pericardiocentesis and expedited transportation for operative exploration. A Right atrial appendage injury was identified and repaired and patient recovered uneventfully. EFAST examination aids in rapid diagnosis of cardiac tamponade in the trauma setting. Pericardiocentesis facilitates temporizing the hemodynamics in preparation for operative exploration.

  17. Co-occurrence of carbohydrate malabsorption and primary epiploic appendagitis

    Science.gov (United States)

    Schnedl, Wolfgang J; Kalmar, Peter; Mangge, Harald; Krause, Robert; Wallner-Liebmann, Sandra J

    2015-01-01

    Unspecific abdominal complaints including bloating and irregular bowel movements may be caused by carbohydrate malabsorption syndromes, e.g., lactose and fructose malabsorption. These symptoms were investigated with hydrogen (H2) breath tests and correlated to carbohydrate malabsorption. During performing these H2-breath tests the patient presented with an acute, localized, non-migratory pain in the left lower abdominal quadrant. Primary epiploic appendagitis is a rare cause of abdominal acute or subacute complaints and diagnosis of primary epiploic appendagitis (PEA) is made when computed tomography reveals a characteristic lesion. We report on a patient with co-occurrence of lactose and fructose malabsorption, which was treated successfully with a diet free of culprit carbohydrates, with PEA recovering without medication or surgical treatment within few days. Since the abdominal unspecific symptoms had been present for months, they appeared not to be correlated to the acute localized abdominal pain, therefore we speculate on a random co-occurrence of combined carbohydrate malabsorption and PEA. PMID:26401090

  18. Two appendages homologous between basal bodies and centrioles are formed using distinct Odf2 domains.

    Science.gov (United States)

    Tateishi, Kazuhiro; Yamazaki, Yuji; Nishida, Tomoki; Watanabe, Shin; Kunimoto, Koshi; Ishikawa, Hiroaki; Tsukita, Sachiko

    2013-11-11

    Ciliogenesis is regulated by context-dependent cellular cues, including some transduced through appendage-like structures on ciliary basal bodies called transition fibers and basal feet. However, the molecular basis for this regulation is not fully understood. The Odf2 gene product, ODF2/cenexin, is essential for both ciliogenesis and the formation of the distal and subdistal appendages on centrioles, which become basal bodies. We examined the effects of Odf2 deletion constructs on ciliogenesis in Odf2-knockout F9 cells. Electron microscopy revealed that ciliogenesis and transition fiber formation required the ODF2/cenexin fragment containing amino acids (aa) 188-806, whereas basal foot formation required aa 1-59 and 188-806. These sequences also formed distal and subdistal appendages, respectively, indicating that the centriole appendages are molecularly analogous to those on basal bodies. We used the differential formation of appendages by Odf2 deletion constructs to study the incorporation and function of molecules associated with each appendage type. We found that transition fibers and distal appendages were required for ciliogenesis and subdistal appendages stabilized the centrosomal microtubules.

  19. High Accuracy Attitude Control System Design for Satellite with Flexible Appendages

    Directory of Open Access Journals (Sweden)

    Wenya Zhou

    2014-01-01

    Full Text Available In order to realize the high accuracy attitude control of satellite with flexible appendages, attitude control system consisting of the controller and structural filter was designed. When the low order vibration frequency of flexible appendages is approximating the bandwidth of attitude control system, the vibration signal will enter the control system through measurement device to bring impact on the accuracy or even the stability. In order to reduce the impact of vibration of appendages on the attitude control system, the structural filter is designed in terms of rejecting the vibration of flexible appendages. Considering the potential problem of in-orbit frequency variation of the flexible appendages, the design method for the adaptive notch filter is proposed based on the in-orbit identification technology. Finally, the simulation results are given to demonstrate the feasibility and effectiveness of the proposed design techniques.

  20. Percutaneous Occlusion of the Left Atrial Appendage with the Watchman Device in an Active Duty Sailor with Atrial Fibrillation and Recurrent Thromboembolism Despite Appropriate Use of Oral Anticoagulation.

    Science.gov (United States)

    Cox, Justin M; Choi, Anthony J; Oakley, Luke S; Francisco, Gregory M; Nayak, Keshav R

    2018-05-23

    Atrial fibrillation is the most common significant cardiac arrhythmia and is associated with a five-fold increased risk of stroke from thromboembolism. Over 94% of these emboli arise from the left atrial appendage. Systemic embolic phenomena are rare, accounting for less than 1 out of 10 of all embolic events, but have a similar prevention strategy. Anticoagulation significantly reduces the risk of these events, and thus forms the cornerstone of therapy for most patients with atrial fibrillation. Left atrial appendage occlusion with the Watchman device is a recently approved alternative for stroke prevention in selected patients. We present a case of an active duty U.S. Navy sailor at low risk for thromboembolism who nonetheless suffered recurrent thromboembolic events despite appropriate anticoagulation, and thus underwent Watchman implantation. The therapy in this case will ideally provide a lifetime of protection from recurrent systemic embolization while allowing the patient to continue his active duty military career without restriction due to oral anticoagulation.

  1. Acute Appendagitis Presenting with Features of Appendicitis: Value of Abdominal CT Evaluation

    Directory of Open Access Journals (Sweden)

    Sukhpreet Dubb

    2008-05-01

    Full Text Available We report a case of acute appendagitis in a patient who presented initially with typical features of acute appendicitis. The diagnosis of acute appendagitis was made on pathognomonic signs on computed tomography (CT scan. Abdominal pain is a common surgical emergency. CT is not always done if there are clear features of acute appendicitis. The rare but important differential diagnosis of acute appendagitis must be borne in mind when dealing with patients with suspected acute appendicitis. A CT scan of the abdomen may avoid unnecessary surgery in these patients.

  2. [Quantitative Measurements on the Blood Flow Fields of Left Atrial Appendage using Vector Flow Mapping in Patients with Nonvalvular Atrial Fibrillation].

    Science.gov (United States)

    Cai, Yu-Yan; Wei, Xin; Zhang, Xiao-Ling; Liu, Gu-Yue; Li, Xi; Tang, Hong

    2018-01-01

    To quantify the hemodynamic characteristics of patients with nonvalvular atrial fibrillation. Twenty patients with paroxysmal atrial fibrillation and 15 patients with persistent atrial fibrillation enrolled in this study,while 12 patients with sinus rhythms served as controls. The hemodynamic characteristics of the patients in left atrial appendage were measured by transesophageal echocardiography (TEE) and vector flow mapping (VFM) using indicators such as vectors,vortex and energy loss (EL). ① Significant differences appeared between the patients with atrial fibrillation and the controls in heart rate,size of left atrium,size of left atrial appendage (LAA),and velocities of LAA filling and emptying. ② Regular vectors in LAA in early systole and late diastole were found in the patients with paroxysmal atrial fibrillation and the controls; whereas,irregular vectors with direction alternating were visualized in the whole cardiac cycle in the patients with persistent atrial fibrillation. ③ Small vortexes were observed at the opening of the left atrial appendage in late diastole in the patients with paroxysmal atrial fibrillation and the controls. ④ Peak EL values occurred in early systole and late diastole in the patients with paroxysmal atrial fibrillation and the controls. But the patients with persistent atrial fibrillation had increased EL values over the whole cardiac cycle. VFM can visualize and quantify the hemodynamics of LAA in patients with different heart rhythms. It may provide a new method for assessing atrial fibrillation. CopyrightCopyright© by Editorial Board of Journal of Sichuan University (Medical Science Edition).

  3. Scaffold diversification enhances effectiveness of a superlibrary of hyperthermophilic proteins.

    Science.gov (United States)

    Hussain, Mahmud; Gera, Nimish; Hill, Andrew B; Rao, Balaji M

    2013-01-18

    The use of binding proteins from non-immunoglobulin scaffolds has become increasingly common in biotechnology and medicine. Typically, binders are isolated from a combinatorial library generated by mutating a single scaffold protein. In contrast, here we generated a "superlibrary" or "library-of-libraries" of 4 × 10(8) protein variants by mutagenesis of seven different hyperthermophilic proteins; six of the seven proteins have not been used as scaffolds prior to this study. Binding proteins for five different model targets were successfully isolated from this library. Binders obtained were derived from five out of the seven scaffolds. Strikingly, binders from this modestly sized superlibrary have affinities comparable or higher than those obtained from a library with 1000-fold higher sequence diversity but derived from a single stable scaffold. Thus scaffold diversification, i.e., randomization of multiple different scaffolds, is a powerful alternate strategy for combinatorial library construction.

  4. The integumental appendages of the turtle shell: An evo-devo perspective

    OpenAIRE

    Moustakas-Verho, Jacqueline; Cherepanov, Gennadii

    2015-01-01

    The turtle shell is composed of dorsal armor (carapace) and ventral armor (plastron) covered by a keratinized epithelium. There are two epithelial appendages of the turtle shell: scutes (large epidermal shields separated by furrows and forming a unique mosaic) and tubercles (numerous small epidermal bumps located on the carapaces of some species). In our perspective, we take a synthetic, comparative approach to consider the homology and evolution of these integumental appendages. Scutes have ...

  5. Left atrial appendage thrombosis during therapy with rivaroxaban in elective cardioversion for permanent atrial fibrillation

    Directory of Open Access Journals (Sweden)

    Walter Serra

    2015-09-01

    Full Text Available Electric external cardioversion (EEC for permanent atrial fibrillation (AF carries a risk of thromboembolic events (TE. The use of transesophageal echocardiography (TEE to guide the management of atrial fibrillation may be considered a clinically effective alternative strategy to conventional therapy for patients in whom elective cardioversion is planned. Therapeutic anticoagulation with novel oral anticoagulants (NOAC is recommended for 3 to 4 weeks before and an anticoagulation life-long therapy is recommended after EEC to reduce TE, in patients with high CHA2DS2-VASc score; however, only few data are currently available about safety of shortterm anticoagulation with NOAC in the setting of EEC. Patients with increased risk of thromboembolism have not been adequately studied and the monitoring of anticoagulant effects can also have important benefits in case of drug interactions. We report a case of a 68-year old man with AF from September 2014. Moderate depression of global left ventricular systolic function was detected by echocardiographic exam. On the basis of a high thromboembolic risk, an anticoagulant therapy with rivaroxaban, at the dose of 20 mg/day, was started. TEE showed a thrombus in the left atrial appendage. This case demonstrates the utility of performing TEE prior than EEC in patients with hypokinetic cardiomyopathy other than AF in therapy with NOAC. We underline the presence of significant pharmacodynamic interference of rivaroxaban with other drugs such as oxcarbazepine.

  6. Homeobox genes Msx-1 and Msx-2 are associated with induction and growth of skin appendages.

    Science.gov (United States)

    Noveen, A; Jiang, T X; Ting-Berreth, S A; Chuong, C M

    1995-05-01

    The mechanism involved in the morphogenesis of skin appendages is a fundamental issue underlying the development and healing of skin. To identify molecules involved in the induction and growth of skin appendages, we studied the expression of two homeobox genes, Msx-1 and Msx-2, during embryonic chicken skin development. We found that i) both Msx-1 and Msx-2 are early markers of epithelial placodes for skin appendages; ii) both Msx-1 and Msx-2 are expressed in the growing feather bud epithelia but not in the interbud epithelia; iii) although mostly overlapping, there are differences between the expression of the two Msx genes, Msx-1 being expressed more toward the anterior whereas Msx-2 is expressed more toward the distal feather bud; iv) there is no body-position-specific expression pattern as was observed for members of the Hox A-D clusters; v) in the feather follicle, Msx-1 and 2 are expressed in the collar and barb ridge epithelia, both regions of continuous cell proliferation; vi) when feather-bud growth was inhibited by forskolin, an activator of adenylyl cyclase, the expression of both genes was reduced. These results showed that Msx genes are specifically expressed in epithelial domains destined to become skin appendages. Its function in skin-appendage morphogenesis may be twofold, first in making epithelial cells competent to become skin appendages and, second, in making epithelial cells maintain their potential for continuous growth.

  7. Development of keratin–chitosan–gelatin composite scaffold for soft tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kakkar, Prachi [Central Leather Research Institute (Council of Scientific and Industrial Research), Adyar, Chennai 600020 (India); Verma, Sudhanshu; Manjubala, I. [Biomedical Engineering Division, School of Bio Sciences and Technology, VIT University, Vellore 632014 (India); Madhan, B., E-mail: bmadhan76@yahoo.co.in [Central Leather Research Institute (Council of Scientific and Industrial Research), Adyar, Chennai 600020 (India)

    2014-12-01

    Keratin has gained much attention in the recent past as a biomaterial for wound healing owing to its biocompatibility, biodegradability, intrinsic biological activity and presence of cellular binding motifs. In this paper, a novel biomimetic scaffold containing keratin, chitosan and gelatin was prepared by freeze drying method. The prepared keratin composite scaffold had good structural integrity. Fourier Transform Infrared (FTIR) spectroscopy showed the retention of the native structure of individual biopolymers (keratin, chitosan, and gelatin) used in the scaffold. Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) results revealed a high thermal denaturation temperature of the scaffold (200–250 °C). The keratin composite scaffold exhibited tensile strength (96 kPa), compression strength (8.5 kPa) and water uptake capacity (> 1700%) comparable to that of a collagen scaffold, which was used as control. The morphology of the keratin composite scaffold observed using a Scanning Electron Microscope (SEM) exhibited good porosity and interconnectivity of pores. MTT assay using NIH 3T3 fibroblast cells demonstrated that the cell viability of the keratin composite scaffold was good. These observations suggest that the keratin–chitosan–gelatin composite scaffold is a promising alternative biomaterial for tissue engineering applications. - Highlights: • Fabrication of novel Keratin-Chitosan-Gelatin composite scaffold • Keratin composite scaffold shows excellent water uptake capacity and porosity • Keratin composite scaffold shows good thermal and physical stability • Biocompatibility of the developed scaffold is comparable to collagen scaffolds • Developed scaffold is a promising material for soft tissue engineering applications.

  8. Relative uptake of minoxidil into appendages and stratum corneum and permeation through human skin in vitro.

    Science.gov (United States)

    Grice, Jeffrey E; Ciotti, Susan; Weiner, Norman; Lockwood, Peter; Cross, Sheree E; Roberts, Michael S

    2010-02-01

    We examined uptake of the model therapeutic agent, minoxidil, into appendages, stratum corneum (SC), and through human skin, under the influence of different vehicles. Quantitative estimation of therapeutic drug deposition into all three areas has not previously been reported. Finite doses of minoxidil (2%, w/v) in formulations containing varying amounts of ethanol, propylene glycol (PG), and water (60:20:20, 80:20:0, and 0:80:20 by volume, respectively) were used. Minoxidil in SC (by tape stripping), appendages (by cyanoacrylate casting), and receptor fluid was determined by liquid scintillation counting. At early times (30 min, 2 h), ethanol-containing formulations (60:20:20 and 80:20:0) caused significantly greater minoxidil retention in SC and appendages, compared to the formulation lacking ethanol (0:80:20). A significant increase in minoxidil receptor penetration occurred with the PG-rich 0:80:20 formulation after 12 h. We showed that deposition of minoxidil into appendages, SC, and skin penetration into receptor fluid were similar in magnitude. Transport by the appendageal route is likely to be a key determinant of hair growth promotion by minoxidil. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association.

  9. 3D Printing of Scaffolds for Tissue Regeneration Applications

    Science.gov (United States)

    Do, Anh-Vu; Khorsand, Behnoush; Geary, Sean M.; Salem, Aliasger K.

    2015-01-01

    The current need for organ and tissue replacement, repair and regeneration for patients is continually growing such that supply is not meeting the high demand primarily due to a paucity of donors as well as biocompatibility issues that lead to immune rejection of the transplant. In an effort to overcome these drawbacks, scientists working in the field of tissue engineering and regenerative medicine have investigated the use of scaffolds as an alternative to transplantation. These scaffolds are designed to mimic the extracellular matrix (ECM) by providing structural support as well as promoting attachment, proliferation, and differentiation with the ultimate goal of yielding functional tissues or organs. Initial attempts at developing scaffolds were problematic and subsequently inspired a growing interest in 3D printing as a mode for generating scaffolds. Utilizing three-dimensional printing (3DP) technologies, ECM-like scaffolds can be produced with a high degree of complexity and precision, where fine details can be included at a micron level. In this review, we discuss the criteria for printing viable and functional scaffolds, scaffolding materials, and 3DP technologies used to print scaffolds for tissue engineering. A hybrid approach, employing both natural and synthetic materials, as well as multiple printing processes may be the key to yielding an ECM-like scaffold with high mechanical strength, porosity, interconnectivity, biocompatibility, biodegradability, and high processability. Creating such biofunctional scaffolds could potentially help to meet the demand by patients for tissues and organs without having to wait or rely on donors for transplantation. PMID:26097108

  10. Skin appendage-derived stem cells: cell biology and potential for wound repair.

    Science.gov (United States)

    Xie, Jiangfan; Yao, Bin; Han, Yutong; Huang, Sha; Fu, Xiaobing

    2016-01-01

    Stem cells residing in the epidermis and skin appendages are imperative for skin homeostasis and regeneration. These stem cells also participate in the repair of the epidermis after injuries, inducing restoration of tissue integrity and function of damaged tissue. Unlike epidermis-derived stem cells, comprehensive knowledge about skin appendage-derived stem cells remains limited. In this review, we summarize the current knowledge of skin appendage-derived stem cells, including their fundamental characteristics, their preferentially expressed biomarkers, and their potential contribution involved in wound repair. Finally, we will also discuss current strategies, future applications, and limitations of these stem cells, attempting to provide some perspectives on optimizing the available therapy in cutaneous repair and regeneration.

  11. Scaffolds for peripheral nerve repair and reconstruction.

    Science.gov (United States)

    Yi, Sheng; Xu, Lai; Gu, Xiaosong

    2018-06-02

    Trauma-associated peripheral nerve defect is a widespread clinical problem. Autologous nerve grafting, the current gold standard technique for the treatment of peripheral nerve injury, has many internal disadvantages. Emerging studies showed that tissue engineered nerve graft is an effective substitute to autologous nerves. Tissue engineered nerve graft is generally composed of neural scaffolds and incorporating cells and molecules. A variety of biomaterials have been used to construct neural scaffolds, the main component of tissue engineered nerve graft. Synthetic polymers (e.g. silicone, polyglycolic acid, and poly(lactic-co-glycolic acid)) and natural materials (e.g. chitosan, silk fibroin, and extracellular matrix components) are commonly used along or together to build neural scaffolds. Many other materials, including the extracellular matrix, glass fabrics, ceramics, and metallic materials, have also been used to construct neural scaffolds. These biomaterials are fabricated to create specific structures and surface features. Seeding supporting cells and/or incorporating neurotrophic factors to neural scaffolds further improve restoration effects. Preliminary studies demonstrate that clinical applications of these neural scaffolds achieve satisfactory functional recovery. Therefore, tissue engineered nerve graft provides a good alternative to autologous nerve graft and represents a promising frontier in neural tissue engineering. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Percutaneous closure of the left atrial appendage in patients with diabetes mellitus.

    Science.gov (United States)

    Azizy, Obayda; Rammos, Christos; Lehmann, Nils; Rassaf, Tienush; Kälsch, Hagen

    2017-09-01

    Left atrial appendage closure is a preventive treatment of atrial fibrillation-related thrombo-embolism. Patients with diabetes mellitus have increased risk for a negative outcome in percutaneous cardiac interventions. We assessed whether percutaneous left atrial appendage closure is safe and effective in patients with diabetes mellitus. We included 78 patients (mean age of 74.4 ± 8.3 years) with indication for left atrial appendage closure in an open-label observational single-centre study. Patients with diabetes mellitus ( n = 31) were at higher thrombo-embolic and bleeding risk (CHA 2 DS 2 -VASc: 4.5 ± 0.9, HAS-BLED: 4.7 ± 0.7) compared to patients without diabetes mellitus ( n = 47, CHA 2 DS 2 -VASc: 3.5 ± 1.0, HAS-BLED: 4.1 ± 0.8; p diabetes mellitus (Euro II-Score: 6.6 ± 3.7 vs 3.9 ± 1.9, p diabetes mellitus had no events ( p = 0.672). Follow-up of 6 months revealed no bleeding complication in both groups. No stroke occurred in follow-up, and left atrial appendage flow velocity reduction (55.6 ± 38.6 vs 51.4 ± 19.1 cm/s, p = 0.474) and rate of postinterventional leakage in the left atrial appendage were comparable (0% vs 2.1%, p = 0.672). Despite patients with diabetes mellitus are high-risk patients, the outcome of percutaneous left atrial appendage closure is similar to patients without diabetes mellitus.

  13. Epibulbar lipodermoids, preauricular appendages and polythelia in four generations: a new hereditary syndrome?

    DEFF Research Database (Denmark)

    Goldschmidt, Ernst; Jacobsen, Nina

    2010-01-01

    A new syndrome with abnormalities along the first branchial arch and the milk list is described in a family of four affected generations. The characteristics of the syndrome are epibulbar lipodermoids, preauricular appendages and polythelia. The expressivity varies but all affected have supernume......A new syndrome with abnormalities along the first branchial arch and the milk list is described in a family of four affected generations. The characteristics of the syndrome are epibulbar lipodermoids, preauricular appendages and polythelia. The expressivity varies but all affected have...

  14. Cephalic and appendage morphology of the Cambrian arthropod Sidneyia inexpectans Walcott, 1911

    DEFF Research Database (Denmark)

    Stein, Martin

    2013-01-01

    on taphonomically deformed specimens, where the head was either partly folded, or entirely flipped under the thorax, resulting in the dorsal shield being mistaken for an extensive doublure. Rather than an extensive doublure, there is a broad hypostome, and the head comprises ocular, antennular, and at least two...... postantennular appendage bearing segments. The appendage morphology is shown to be consistent with artiopodan affinities. The exopod is of the bilobate flap-like type with lamellae inserting on the proximal portion, earlier proposed as a potential autapomorphy of Artiopoda. Reinforcement of artiopodan affinities...

  15. Investigation on laser welding characteristics for appendage of bearing pads of nuclear fuel element

    International Nuclear Information System (INIS)

    Kim, S. S.; Kim, W. K.; Park, C. H.; Ko, J. H.; Lee, J. W.; Yang, M. S.

    2001-01-01

    In CANDU nuclear fuel manufacturing the brazing technology has been adopted conventionally to attach the bearing pads of nuclear fuel elements. However, in order to meet good performance of nuclear fuel and improved working efficiency, we started developing the laser welding technology for attachments of the bearing pads. Since the YAG laser can be suitable for small parts and transmit the beam through the optical fiber, the process is corresponding to mass-production with working shops. Making the most of this feature, we have developed the laser welding for appendage of the bearing pads of nuclear fuel elements, and has studied on the laser welding characterisitcs of appendages for nuclear fuel element

  16. Biomimetic nanoclay scaffolds for bone tissue engineering

    Science.gov (United States)

    Ambre, Avinash Harishchandra

    Tissue engineering offers a significant potential alternative to conventional methods for rectifying tissue defects by evoking natural regeneration process via interactions between cells and 3D porous scaffolds. Imparting adequate mechanical properties to biodegradable scaffolds for bone tissue engineering is an important challenge and extends from molecular to macroscale. This work focuses on the use of sodium montmorillonite (Na-MMT) to design polymer composite scaffolds having enhanced mechanical properties along with multiple interdependent properties. Materials design beginning at the molecular level was used in which Na-MMT clay was modified with three different unnatural amino acids and further characterized using Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD). Based on improved bicompatibility with human osteoblasts (bone cells) and intermediate increase in d-spacing of MMT clay (shown by XRD), 5-aminovaleric acid modified clay was further used to prepare biopolymer (chitosan-polygalacturonic acid complex) scaffolds. Osteoblast proliferation in biopolymer scaffolds containing 5-aminovaleric acid modified clay was similar to biopolymer scaffolds containing hydroxyapatite (HAP). A novel process based on biomineralization in bone was designed to prepare 5-aminovaleric acid modified clay capable of imparting multiple properties to the scaffolds. Bone-like apatite was mineralized in modified clay and a novel nanoclay-HAP hybrid (in situ HAPclay) was obtained. FTIR spectroscopy indicated a molecular level organic-inorganic association between the intercalated 5-aminovaleric acid and mineralized HAP. Osteoblasts formed clusters on biopolymer composite films prepared with different weight percent compositions of in situ HAPclay. Human MSCs formed mineralized nodules on composite films and mineralized extracellular matrix (ECM) in composite scaffolds without the use of osteogenic supplements. Polycaprolactone (PCL), a synthetic polymer, was

  17. bullwinkle and shark regulate dorsal-appendage morphogenesis in Drosophila oogenesis.

    Science.gov (United States)

    Tran, David H; Berg, Celeste A

    2003-12-01

    bullwinkle (bwk) regulates embryonic anteroposterior patterning and, through a novel germline-to-soma signal, morphogenesis of the eggshell dorsal appendages. We screened for dominant modifiers of the bullwinkle mooseantler eggshell phenotype and identified shark, which encodes an SH2-domain, ankyrin-repeat tyrosine kinase. At the onset of dorsal-appendage formation, shark is expressed in a punctate pattern in the squamous stretch cells overlying the nurse cells. Confocal microscopy with cell-type-specific markers demonstrates that the stretch cells act as a substrate for the migrating dorsal-appendage-forming cells and extend cellular projections towards them. Mosaic analyses reveal that shark is required in follicle cells for cell migration and chorion deposition. Proper shark RNA expression in the stretch cells requires bwk activity, while restoration of shark expression in the stretch cells suppresses the bwk dorsal-appendage phenotype. These results suggest that shark plays an important downstream role in the bwk-signaling pathway. Candidate testing implicates Src42A in a similar role, suggesting conservation with a vertebrate signaling pathway involving non-receptor tyrosine kinases.

  18. Space robots with flexible appendages: Dynamic modeling, coupling measurement, and vibration suppression

    Science.gov (United States)

    Meng, Deshan; Wang, Xueqian; Xu, Wenfu; Liang, Bin

    2017-05-01

    For a space robot with flexible appendages, vibrations of flexible structure can be easily excited during both orbit and/or attitude maneuvers of the base and the operation of the manipulators. Hence, the pose (position and attitude) of the manipulator's end-effector will greatly deviate from the desired values, and furthermore, the motion of the manipulator will trigger and exacerbate vibrations of flexible appendages. Given lack of the atmospheric damping in orbit, the vibrations will last for quite a while and cause the on-orbital tasks to fail. We derived the rigid-flexible coupling dynamics of a space robot system with flexible appendages and established a coupling model between the flexible base and the space manipulator. A specific index was defined to measure the coupling degree between the flexible motion of the appendages and the rigid motion of the end-effector. Then, we analyzed the dynamic coupling for different conditions, such as modal displacements, joint angles (manipulator configuration), and mass properties. Moreover, the coupling map was adopted and drawn to represent the coupling motion. Based on this map, a trajectory planning method was addressed to suppress structure vibration. Finally, simulation studies of typical cases were performed, which verified the proposed models and method. This work provides a theoretic basis for the system design, performance evaluation, trajectory planning, and control of such space robots.

  19. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.

    Science.gov (United States)

    Wang, Junping; Valmikinathan, Chandra M; Liu, Wei; Laurencin, Cato T; Yu, Xiaojun

    2010-05-01

    Polymeric nanofiber matrices have already been widely used in tissue engineering. However, the fabrication of nanofibers into complex three-dimensional (3D) structures is restricted due to current manufacturing techniques. To overcome this limitation, we have incorporated nanofibers onto spiral-structured 3D scaffolds made of poly (epsilon-caprolactone) (PCL). The spiral structure with open geometries, large surface areas, and porosity will be helpful for improving nutrient transport and cell penetration into the scaffolds, which are otherwise limited in conventional tissue-engineered scaffolds for large bone defects repair. To investigate the effect of structure and fiber coating on the performance of the scaffolds, three groups of scaffolds including cylindrical PCL scaffolds, spiral PCL scaffolds (without fiber coating), and spiral-structured fibrous PCL scaffolds (with fiber coating) have been prepared. The morphology, porosity, and mechanical properties of the scaffolds have been characterized. Furthermore, human osteoblast cells are seeded on these scaffolds, and the cell attachment, proliferation, differentiation, and mineralized matrix deposition on the scaffolds are evaluated. The results indicated that the spiral scaffolds possess porosities within the range of human trabecular bone and an appropriate pore structure for cell growth, and significantly lower compressive modulus and strength than cylindrical scaffolds. When compared with the cylindrical scaffolds, the spiral-structured scaffolds demonstrated enhanced cell proliferation, differentiation, and mineralization and allowed better cellular growth and penetration. The incorporation of nanofibers onto spiral scaffolds further enhanced cell attachment, proliferation, and differentiation. These studies suggest that spiral-structured nanofibrous scaffolds may serve as promising alternatives for bone tissue engineering applications. Copyright 2009 Wiley Periodicals, Inc.

  20. Silk fibroin porous scaffolds for nucleus pulposus tissue engineering

    International Nuclear Information System (INIS)

    Zeng, Chao; Yang, Qiang; Zhu, Meifeng; Du, Lilong; Zhang, Jiamin; Ma, Xinlong; Xu, Baoshan; Wang, Lianyong

    2014-01-01

    Intervertebral discs (IVDs) are structurally complex tissue that hold the vertebrae together and provide mobility to spine. The nucleus pulposus (NP) degeneration often results in degenerative IVD disease that is one of the most common causes of back and neck pain. Tissue engineered nucleus pulposus offers an alternative approach to regain the function of the degenerative IVD. The aim of this study is to determine the feasibility of porous silk fibroin (SF) scaffolds fabricated by paraffin-sphere-leaching methods with freeze-drying in the application of nucleus pulposus regeneration. The prepared scaffold possessed high porosity of 92.38 ± 5.12% and pore size of 165.00 ± 8.25 μm as well as high pore interconnectivity and appropriate mechanical properties. Rabbit NP cells were seeded and cultured on the SF scaffolds. Scanning electron microscopy, histology, biochemical assays and mechanical tests revealed that the porous scaffolds could provide an appropriate microstructure and environment to support adhesion, proliferation and infiltration of NP cells in vitro as well as the generation of extracellular matrix. The NP cell–scaffold construction could be preliminarily formed after subcutaneously implanted in a nude mice model. In conclusion, The SF porous scaffold offers a potential candidate for tissue engineered NP tissue. - Highlights: • Paraffin microsphere-leaching method is used to fabricate silk fibroin scaffold. • The scaffold has appropriate mechanical property, porosity and pore size • The scaffold supports growth and infiltration of nucleus pulposus cells. • Nucleus pulposus cells can secrete extracellular matrix in the scaffolds. • The scaffold is a potential candidate for tissue engineered nucleus pulposus

  1. Silk fibroin porous scaffolds for nucleus pulposus tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Chao; Yang, Qiang [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Tianjin Medical University, Tianjin 300070 (China); Zhu, Meifeng [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China); Du, Lilong [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Tianjin Medical University, Tianjin 300070 (China); Zhang, Jiamin [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China); Ma, Xinlong [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Xu, Baoshan, E-mail: xubaoshan99@126.com [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Wang, Lianyong, E-mail: wly@nankai.edu.cn [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2014-04-01

    Intervertebral discs (IVDs) are structurally complex tissue that hold the vertebrae together and provide mobility to spine. The nucleus pulposus (NP) degeneration often results in degenerative IVD disease that is one of the most common causes of back and neck pain. Tissue engineered nucleus pulposus offers an alternative approach to regain the function of the degenerative IVD. The aim of this study is to determine the feasibility of porous silk fibroin (SF) scaffolds fabricated by paraffin-sphere-leaching methods with freeze-drying in the application of nucleus pulposus regeneration. The prepared scaffold possessed high porosity of 92.38 ± 5.12% and pore size of 165.00 ± 8.25 μm as well as high pore interconnectivity and appropriate mechanical properties. Rabbit NP cells were seeded and cultured on the SF scaffolds. Scanning electron microscopy, histology, biochemical assays and mechanical tests revealed that the porous scaffolds could provide an appropriate microstructure and environment to support adhesion, proliferation and infiltration of NP cells in vitro as well as the generation of extracellular matrix. The NP cell–scaffold construction could be preliminarily formed after subcutaneously implanted in a nude mice model. In conclusion, The SF porous scaffold offers a potential candidate for tissue engineered NP tissue. - Highlights: • Paraffin microsphere-leaching method is used to fabricate silk fibroin scaffold. • The scaffold has appropriate mechanical property, porosity and pore size • The scaffold supports growth and infiltration of nucleus pulposus cells. • Nucleus pulposus cells can secrete extracellular matrix in the scaffolds. • The scaffold is a potential candidate for tissue engineered nucleus pulposus.

  2. Scaffold hopping in drug discovery using inductive logic programming.

    Science.gov (United States)

    Tsunoyama, Kazuhisa; Amini, Ata; Sternberg, Michael J E; Muggleton, Stephen H

    2008-05-01

    In chemoinformatics, searching for compounds which are structurally diverse and share a biological activity is called scaffold hopping. Scaffold hopping is important since it can be used to obtain alternative structures when the compound under development has unexpected side-effects. Pharmaceutical companies use scaffold hopping when they wish to circumvent prior patents for targets of interest. We propose a new method for scaffold hopping using inductive logic programming (ILP). ILP uses the observed spatial relationships between pharmacophore types in pretested active and inactive compounds and learns human-readable rules describing the diverse structures of active compounds. The ILP-based scaffold hopping method is compared to two previous algorithms (chemically advanced template search, CATS, and CATS3D) on 10 data sets with diverse scaffolds. The comparison shows that the ILP-based method is significantly better than random selection while the other two algorithms are not. In addition, the ILP-based method retrieves new active scaffolds which were not found by CATS and CATS3D. The results show that the ILP-based method is at least as good as the other methods in this study. ILP produces human-readable rules, which makes it possible to identify the three-dimensional features that lead to scaffold hopping. A minor variant of a rule learnt by ILP for scaffold hopping was subsequently found to cover an inhibitor identified by an independent study. This provides a successful result in a blind trial of the effectiveness of ILP to generate rules for scaffold hopping. We conclude that ILP provides a valuable new approach for scaffold hopping.

  3. Exact approaches for scaffolding

    OpenAIRE

    Weller, Mathias; Chateau, Annie; Giroudeau, Rodolphe

    2015-01-01

    This paper presents new structural and algorithmic results around the scaffolding problem, which occurs prominently in next generation sequencing. The problem can be formalized as an optimization problem on a special graph, the "scaffold graph". We prove that the problem is polynomial if this graph is a tree by providing a dynamic programming algorithm for this case. This algorithm serves as a basis to deduce an exact algorithm for general graphs using a tree decomposition of the input. We ex...

  4. Multiscale fabrication of biomimetic scaffolds for tympanic membrane tissue engineering

    International Nuclear Information System (INIS)

    Mota, Carlos; Danti, Serena; D’Alessandro, Delfo; Trombi, Luisa; Ricci, Claudio; Berrettini, Stefano; Puppi, Dario; Dinucci, Dinuccio; Chiellini, Federica; Milazzo, Mario; Stefanini, Cesare; Moroni, Lorenzo

    2015-01-01

    The tympanic membrane (TM) is a thin tissue able to efficiently collect and transmit sound vibrations across the middle ear thanks to the particular orientation of its collagen fibers, radiate on one side and circular on the opposite side. Through the combination of advanced scaffolds and autologous cells, tissue engineering (TE) could offer valuable alternatives to autografting in major TM lesions. In this study, a multiscale approach based on electrospinning (ES) and additive manufacturing (AM) was investigated to fabricate scaffolds, based on FDA approved copolymers, resembling the anatomic features and collagen fiber arrangement of the human TM. A single scale TM scaffold was manufactured using a custom-made collector designed to confer a radial macro-arrangement to poly(lactic-co-glycolic acid) electrospun fibers during their deposition. Dual and triple scale scaffolds were fabricated combining conventional ES with AM to produce poly(ethylene oxide terephthalate)/poly(butylene terephthalate) block copolymer scaffolds with anatomic-like architecture. The processing parameters were optimized for each manufacturing method and copolymer. TM scaffolds were cultured in vitro with human mesenchymal stromal cells, which were viable, metabolically active and organized following the anisotropic character of the scaffolds. The highest viability, cell density and protein content were detected in dual and triple scale scaffolds. Our findings showed that these biomimetic micro-patterned substrates enabled cell disposal along architectural directions, thus appearing as promising substrates for developing functional TM replacements via TE. (paper)

  5. Impact of scaffolding and question structure on the gender gap

    Directory of Open Access Journals (Sweden)

    Hillary Dawkins

    2017-09-01

    Full Text Available We address previous hypotheses about possible factors influencing the gender gap in attainment in physics. Specifically, previous studies claim that scaffolding may preferentially benefit female students, and we present some alternative conclusions surrounding this hypothesis. By taking both student attainment level and the degree of question scaffolding into account, we identify questions that exhibit real bias in favor of male students. We find that both multidimensional context and use of diagrams are common elements of such questions.

  6. Impact of scaffolding and question structure on the gender gap

    Science.gov (United States)

    Dawkins, Hillary; Hedgeland, Holly; Jordan, Sally

    2017-12-01

    We address previous hypotheses about possible factors influencing the gender gap in attainment in physics. Specifically, previous studies claim that scaffolding may preferentially benefit female students, and we present some alternative conclusions surrounding this hypothesis. By taking both student attainment level and the degree of question scaffolding into account, we identify questions that exhibit real bias in favor of male students. We find that both multidimensional context and use of diagrams are common elements of such questions.

  7. The clot thickens: an incompletely ligated left  atrial appendage

    Directory of Open Access Journals (Sweden)

    Merrill Thomas

    2018-05-01

    Full Text Available Our patient presented with known mechanical mitral valve endocarditis documented by 2D transesophageal echocardiogram (TOE from a recent hospitalization at an outside facility. On admission to our center, there was no prior knowledge of an incompletely ligated left atrial appendage (LAA according to patient- or family-reported history, review of outside records or the outside facility’s 2D TOE report. A 3D TOE performed at our center to assess her pathology, since a month had passed from her prior hospitalization, revealed a LAA ligation with evidence of communication to the left atrium and with clot present in the appendage. This case report highlights the common finding of incomplete closure of the LAA following surgical ligation, thus making it inadequate for stroke prevention in patients with atrial fibrillation, and that 3D TOE plays a valuable role in assessing the durability of LAA ligation.

  8. The integumental appendages of the turtle shell: an evo-devo perspective.

    Science.gov (United States)

    Moustakas-Verho, Jacqueline E; Cherepanov, Gennadii O

    2015-05-01

    The turtle shell is composed of dorsal armor (carapace) and ventral armor (plastron) covered by a keratinized epithelium. There are two epithelial appendages of the turtle shell: scutes (large epidermal shields separated by furrows and forming a unique mosaic) and tubercles (numerous small epidermal bumps located on the carapaces of some species). In our perspective, we take a synthetic, comparative approach to consider the homology and evolution of these integumental appendages. Scutes have been more intensively studied, as they are autapomorphic for turtles and can be diagnostic taxonomically. Their pattern of tessellation is stable phylogenetically, but labile in the individual. We discuss the history of developmental investigations of these structures and hypotheses of evolutionary and anomalous variation. In our estimation, the scutes of the turtle shell are an evolutionary novelty, whereas the tubercles found on the shells of some turtles are homologous to reptilian scales. © 2015 Wiley Periodicals, Inc.

  9. Percutaneous left atrial appendage occlusion in atrial fibrillation patients with a contraindication to oral anticoagulation: a focused review.

    Science.gov (United States)

    Nishimura, Marin; Sab, Shiv; Reeves, Ryan R; Hsu, Jonathan C

    2017-12-08

    Stroke is the most feared complication of atrial fibrillation (AF). Although oral anticoagulation with non-vitamin K antagonist and non-vitamin K antagonist oral anticoagulants (NOACs) have been established to significantly reduce risk of stroke, real-world use of these agents are often suboptimal due to concerns for adverse events including bleeding from both patients and clinicians. Particularly in patients with previous serious bleeding, oral anticoagulation may be contraindicated. Left atrial appendage occlusion (LAAO), mechanically targeting the source of most of the thrombi in AF, holds an immense potential as an alternative to OAC in management of stroke prophylaxis. In this focused review, we describe the available evidence of various LAAO devices, detailing data regarding their use in patients with a contraindication for oral anticoagulation. Although some questions of safety and appropriate use of these new devices in patients who cannot tolerate anticoagulation remain, LAAO devices offer a significant step forward in the management of patients with AF, including those patients who may not be able to be prescribed OAC at all. Future studies involving patients fully contraindicated to OAC are warranted in the era of LAAO devices for stroke risk reduction. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  10. Left atrial appendage occlusion for stroke prevention in atrial fibrillation in Europe

    DEFF Research Database (Denmark)

    Lip, Gregory Y.H.; Dagres, Nikolaos; Proclemer, Alessandro

    2013-01-01

    The purpose of this EP wire survey was to assess clinical practice in relation to the use of left atrial appendage occlusion (LAAO) devices for stroke prevention in atrial fibrillation (AF) among members of the European Heart Rhythm Association research network. The average number of performed LA...... are most often performed by interventional cardiologists. Experience varied widely, and this was reflected in the wide range of thromboembolic and procedural (tamponade, bleeding) complications reported by the respondents to this EP wire survey....

  11. Epiploic appendagitis of caecum: a diagnostic dilemma [Appendicitis epiploica des Blinddarms: ein diagnostisches Dilemma

    Directory of Open Access Journals (Sweden)

    Rashid, Arshad

    2012-10-01

    Full Text Available [english] Epiploic appendagitis is a rare cause of acute abdomen. Depending on the site of occurrence, it can mimic any cause of acute abdomen or disease of the colon and caecal appendix; making its preoperative diagnosis very difficult. We present here a case of a 7-year-old boy misdiagnosed preoperatively as acute appendicitis and later on, upon surgical exploration, found to have caecal appendagitis. The affected epiploic appendage was removed and the patient had an uneventful recovery. We also review the relevant literature and discuss the measures to overcome this diagnostic dilemma. General surgeons should be aware of this self-limiting disease and consider it as a differential diagnosis of acute abdomen.[german] Appendicitis epiploica oder epiploische Appendagitis ist eine seltene Ursache des akuten Abdomens. Je nach Ort des Auftretens kann sie jede Ursache für akuten Unterleibsschmerz oder Erkrankungen des Dickdarms und Appendix vermiformis imitieren, was ihre präoperative Diagnose sehr schwierig macht. Wir präsentieren hier den Fall eines alten Jungen, bei dem präoperativ akute Blinddarmentzündung diagnostiziert wurde. Beim chirurgischen Eingriff stellte sich dann eine Appendicitis epiploica des Blinddarms als Befund heraus. Der betroffene Appendix epiploica wurde entfernt und der Patient erholte sich ohne besondere Vorkommnisse. Wir geben auch eine Übersicht über die relevante Literatur und diskutieren die Maßnahmen, um dieses diagnostische Dilemma zu überwinden. Allgemeine Chirurgen sollten sich dieser selbstlimitierenden Krankheit bewusst sein und sie als eine Differentialdiagnose bei akutem Abdomen in Betracht ziehen.

  12. Characterization of appendage weld quality by on line monitoring of electrical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Setty, D.S.; Somani, A.K.; Ram, A.M.; Rao, A.R.; Jayaraj, R.N.; Kalidas, R. [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderabad (India)

    2005-07-01

    Resistance projection welding of zirconium alloy appendages is one of the most critical processes in the PHWR fuel fabrication. Appendages like Spacers and Bearing pads having multi projections are joined to the fuel sheath using capacitor discharge power source. Variations in the projection sizes, weld parameters and cleanliness of the work pieces have significant effect on the weld quality, in addition to material properties like hardness, tensile strength and surface finish. Defects like metal expulsion and weak welds are occasionally observed in appendage welding process, which need to be identified and segregated. Though numerous off-line inspection methods are available for the weld quality evaluation, on-line monitoring of weld quality is essential for identifying defective welds. For this purpose, various monitoring techniques like acoustic emission, analyzing derived electrical parameters and weld upset/deformation measurements are employed. The derived electrical parameters like A{sup 2}-Sec and Ohm-Sec can also be monitored. The present paper highlights development of suitable acceptance criteria for the monitoring technique by employing derived electrical parameters covering a wide range of weld variables like watt-sec and squeeze force. Excellent correlation could be achieved in identifying the weak welds and weld expulsion defects in mass production. (author)

  13. Calculation of Flows Over Underwater Bodies with Hull, Sail and Appendages

    International Nuclear Information System (INIS)

    Shoab, M.; Ayub, M.; Bilal, S.; Zahir, S.; Khan, M.A.

    2004-01-01

    A comprehensive study has been made for the hydrodynamic analysis of the submarine DARPA 2. The analysis was first performed for hull, then hull with sail on top and then for the complete submarine including hull, sail and appendages. A comparison of tangential velocity and pressure distribution for hull is accomplished using CFD flow solvers and published data. Further, the pressure distribution over the hull with sail is also analyzed. Finally, pressure distribution, forces and moments were calculated over the complete submarine including hull, sail and appendages. Comparison 01 pressure distribution and tangential velocity for the hull show a good agreement with published data. Pressure coefficient comparison for the hull with sail shows the good CFD-CFD agreement. Comparison of Normal force and pitching moment of complete submarine having hull, sail and appendages shows a reasonable agreement with the experimental results of DARPA 2. Both quantitative and qualitative analysis of the complete submarine estimates the required design force and moment at different angles of attack and also demonstrate the flow visualization. (author)

  14. Electron-beam computed tomography findings of left atrial appendage in patients with cardiogenic cerebral embolism

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Makiko; Takahashi, Satoshi; Yonezawa, Hisashi [Iwate Medical Univ., Morioka (Japan). School of Medicine

    2002-04-01

    We studied electron-beam computed tomography (EBCT) findings in the left atrial appendage of 72 patients with cerebral embolism [27 in the acute phase (<48 hours) and 45 in the chronic phase], 9 cases with nonvalvular atrial fibrillation (NVAF) but without stroke, and 13 controls. EBCT was performed in the early (during injection of contrast medium), late-1 (5 min after injection), and-2 (10 min after injection) phases. In the acute phase patients, 41% showed filling defect (FD) in the early phase alone (FDE), 15% showed FD until late phase-1 (FDL-1), and 15% showed FD until late phase-2 (FDL-2). The chronic phase patients showed FDE in 33% of cases, FDL-1 in 8% and FDL-2 11%. Only FDE was observed in 44% in NVAF cases without stroke. No FDs were observed in controls. Flow velocity in the appendage measured by transesophageal echocardiography was 23{+-}10 cm/sec in 21 FDE cases, 14{+-}3 cm/sec in 3 FDL-1 cases, 29{+-}23 cm/sec in 4 FDL-2 cases, significantly lower in comparison with 58{+-}25 cm/s in the 23 cases with no FD. FDL-1 and -2 suggested severe stasis or presence of thrombus in the appendage, which indicated high risk of embolism slower the movement of MES through the sample volume. (author)

  15. Coupling dynamic analysis of spacecraft with multiple cylindrical tanks and flexible appendages

    Science.gov (United States)

    Wu, Wen-Jun; Yue, Bao-Zeng; Huang, Hua

    2016-02-01

    This paper is mainly concerned with the coupling dynamic analysis of a complex spacecraft consisting of one main rigid platform, multiple liquid-filled cylindrical tanks, and a number of flexible appendages. Firstly, the carrier potential function equations of liquid in the tanks are deduced according to the wall boundary conditions. Through employing the Fourier-Bessel series expansion method, the dynamic boundaries conditions on a curved free-surface under a low-gravity environment are transformed to general simple differential equations and the rigid-liquid coupled sloshing dynamic state equations of liquid in tanks are obtained. The state vectors of rigid-liquid coupled equations are composed with the modal coordinates of the relative potential function and the modal coordinates of wave height. Based on the Bernoulli-Euler beam theory and the D'Alembert's principle, the rigid-flexible coupled dynamic state equations of flexible appendages are directly derived, and the coordinate transform matrixes of maneuvering flexible appendages are precisely computed as time-varying. Then, the coupling dynamics state equations of the overall system of the spacecraft are modularly built by means of the Lagrange's equations in terms of quasi-coordinates. Lastly, the coupling dynamic performances of a typical complex spacecraft are studied. The availability and reliability of the presented method are also confirmed.

  16. Electron-beam computed tomography findings of left atrial appendage in patients with cardiogenic cerebral embolism

    International Nuclear Information System (INIS)

    Okamoto, Makiko; Takahashi, Satoshi; Yonezawa, Hisashi

    2002-01-01

    We studied electron-beam computed tomography (EBCT) findings in the left atrial appendage of 72 patients with cerebral embolism [27 in the acute phase (<48 hours) and 45 in the chronic phase], 9 cases with nonvalvular atrial fibrillation (NVAF) but without stroke, and 13 controls. EBCT was performed in the early (during injection of contrast medium), late-1 (5 min after injection), and-2 (10 min after injection) phases. In the acute phase patients, 41% showed filling defect (FD) in the early phase alone (FDE), 15% showed FD until late phase-1 (FDL-1), and 15% showed FD until late phase-2 (FDL-2). The chronic phase patients showed FDE in 33% of cases, FDL-1 in 8% and FDL-2 11%. Only FDE was observed in 44% in NVAF cases without stroke. No FDs were observed in controls. Flow velocity in the appendage measured by transesophageal echocardiography was 23±10 cm/sec in 21 FDE cases, 14±3 cm/sec in 3 FDL-1 cases, 29±23 cm/sec in 4 FDL-2 cases, significantly lower in comparison with 58±25 cm/s in the 23 cases with no FD. FDL-1 and -2 suggested severe stasis or presence of thrombus in the appendage, which indicated high risk of embolism slower the movement of MES through the sample volume. (author)

  17. Setal morphology of grooming appendages in the spider crab, Libinia dubia.

    Science.gov (United States)

    Wortham, Jen L; LaVelle, Amanda D

    2016-08-01

    In crustaceans, grooming behaviors decrease fouling by removing debris from the exoskeleton and body structures; these grooming behaviors improve respiration, sensory reception, movement, and reproduction. Setal morphologies of the following grooming appendages in the decapod crustacean spider crab Libinia dubia are examined including the first pereiopod (cheliped), first, second, and third maxillipeds (mouthparts), and first, second, and third epipods (internal extensions of the maxillipeds). The objective of this study was to describe setal morphologies of these grooming appendages and to elucidate possible functions and efficiencies of setal structures. Spider crabs are hypothesized to have elaborate setal morphologies, mainly for cleaning specialized decorating setae as well as for cleaning inside the gill chamber, which has a higher likelihood of becoming fouled compared to other decapods such as shrimps. Fourteen setal types are documented and included several varieties of serrate and pappose setae as well as simple setae, cuspidate setae, papposerrate setae, and canoe setae. Maxillipodal epipods in the gill chamber are free of fouling, suggesting the setation on the third maxilliped protopod has an efficient functional morphology in removing debris before water enters the gill chamber. Serrate setae may function for detangling and separating structures whereas pappose setae may function for fine detailed grooming. The cheliped is the only grooming appendage that can reach decorating setae and it contains only pappose setae; thus decorating setae is not likely groomed in a manner that would greatly decrease fouling. J. Morphol. 277:1045-1061, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Semiotic Scaffolding in Mathematics

    DEFF Research Database (Denmark)

    Johansen, Mikkel Willum; Misfeldt, Morten

    2015-01-01

    This paper investigates the notion of semiotic scaffolding in relation to mathematics by considering its influence on mathematical activities, and on the evolution of mathematics as a research field. We will do this by analyzing the role different representational forms play in mathematical...... cognition, and more broadly on mathematical activities. In the main part of the paper, we will present and analyze three different cases. For the first case, we investigate the semiotic scaffolding involved in pencil and paper multiplication. For the second case, we investigate how the development of new...... in both mathematical cognition and in the development of mathematics itself, but mathematical cognition cannot itself be reduced to the use of semiotic scaffolding....

  19. Acellular organ scaffolds for tumor tissue engineering

    Science.gov (United States)

    Guller, Anna; Trusova, Inna; Petersen, Elena; Shekhter, Anatoly; Kurkov, Alexander; Qian, Yi; Zvyagin, Andrei

    2015-12-01

    Rationale: Tissue engineering (TE) is an emerging alternative approach to create models of human malignant tumors for experimental oncology, personalized medicine and drug discovery studies. Being the bottom-up strategy, TE provides an opportunity to control and explore the role of every component of the model system, including cellular populations, supportive scaffolds and signalling molecules. Objectives: As an initial step to create a new ex vivo TE model of cancer, we optimized protocols to obtain organ-specific acellular matrices and evaluated their potential as TE scaffolds for culture of normal and tumor cells. Methods and results: Effective decellularization of animals' kidneys, ureter, lungs, heart, and liver has been achieved by detergent-based processing. The obtained scaffolds demonstrated biocompatibility and growthsupporting potential in combination with normal (Vero, MDCK) and tumor cell lines (C26, B16). Acellular scaffolds and TE constructs have been characterized and compared with morphological methods. Conclusions: The proposed methodology allows creation of sustainable 3D tumor TE constructs to explore the role of organ-specific cell-matrix interaction in tumorigenesis.

  20. Bone tissue engineering scaffolding: computer-aided scaffolding techniques.

    Science.gov (United States)

    Thavornyutikarn, Boonlom; Chantarapanich, Nattapon; Sitthiseripratip, Kriskrai; Thouas, George A; Chen, Qizhi

    Tissue engineering is essentially a technique for imitating nature. Natural tissues consist of three components: cells, signalling systems (e.g. growth factors) and extracellular matrix (ECM). The ECM forms a scaffold for its cells. Hence, the engineered tissue construct is an artificial scaffold populated with living cells and signalling molecules. A huge effort has been invested in bone tissue engineering, in which a highly porous scaffold plays a critical role in guiding bone and vascular tissue growth and regeneration in three dimensions. In the last two decades, numerous scaffolding techniques have been developed to fabricate highly interconnective, porous scaffolds for bone tissue engineering applications. This review provides an update on the progress of foaming technology of biomaterials, with a special attention being focused on computer-aided manufacturing (Andrade et al. 2002) techniques. This article starts with a brief introduction of tissue engineering (Bone tissue engineering and scaffolds) and scaffolding materials (Biomaterials used in bone tissue engineering). After a brief reviews on conventional scaffolding techniques (Conventional scaffolding techniques), a number of CAM techniques are reviewed in great detail. For each technique, the structure and mechanical integrity of fabricated scaffolds are discussed in detail. Finally, the advantaged and disadvantage of these techniques are compared (Comparison of scaffolding techniques) and summarised (Summary).

  1. Effect of left ventricular diastolic dysfunction on left atrial appendage function and thrombotic potential in nonvalvular atrial fibrillation.

    Science.gov (United States)

    Demirçelik, Muhammed Bora; Çetin, Mustafa; Çiçekcioğlu, Hülya; Uçar, Özgül; Duran, Mustafa

    2014-05-01

    We aimed to investigate effects of left ventricular diastolic dysfunction on left atrial appendage functions, spontaneous echo contrast and thrombus formation in patients with nonvalvular atrial fibrillation. In 58 patients with chronic nonvalvular atrial fibrilation and preserved left ventricular systolic function, left atrial appendage functions, left atrial spontaneous echo contrast grading and left ventricular diastolic functions were evaluated using transthoracic and transoesophageal echocardiogram. Patients divided in two groups: Group D (n=30): Patients with diastolic dysfunction, Group N (n=28): Patients without diastolic dysfunction. Categorical variables in two groups were evaluated with Pearson's chi-square or Fisher's exact test. The significance of the lineer correlation between the degree of spontaneous echo contrast (SEC) and clinical measurements was evaluated with Spearman's correlation analysis. Peak pulmonary vein D velocity of the Group D was significantly higher than the Group N (p=0.006). However, left atrial appendage emptying velocity, left atrial appendage lateral wall velocity, peak pulmonary vein S, pulmonary vein S/D ratio were found to be significantly lower in Group D (p=0.028, patrial appendage emptying, filling, pulmonary vein S/D levels and lateral wall velocities respectively (r=-0.438, r=-0.328, r=-0.233, r=-0.447). Left atrial appendage emptying, filling, pulmonary vein S/D levels and lateral wall velocities were significantly lower in SEC 2-3-4 than SEC 1 (p=0.003, p=0.029, patrial fibrillation and preserved left ventricular ejection fraction, left atrial appendage functions are decreased in patients with left ventricular diastolic dysfunction. Left ventricular diastolic dysfunction may constitute a potential risk for formation of thrombus and stroke.

  2. Bacterial surface appendages strongly impact nanomechanical and electrokinetic properties of Escherichia coli cells subjected to osmotic stress.

    Directory of Open Access Journals (Sweden)

    Grégory Francius

    Full Text Available The physicochemical properties and dynamics of bacterial envelope, play a major role in bacterial activity. In this study, the morphological, nanomechanical and electrohydrodynamic properties of Escherichia coli K-12 mutant cells were thoroughly investigated as a function of bulk medium ionic strength using atomic force microscopy (AFM and electrokinetics (electrophoresis. Bacteria were differing according to genetic alterations controlling the production of different surface appendages (short and rigid Ag43 adhesins, longer and more flexible type 1 fimbriae and F pilus. From the analysis of the spatially resolved force curves, it is shown that cells elasticity and turgor pressure are not only depending on bulk salt concentration but also on the presence/absence and nature of surface appendage. In 1 mM KNO(3, cells without appendages or cells surrounded by Ag43 exhibit large Young moduli and turgor pressures (∼700-900 kPa and ∼100-300 kPa respectively. Under similar ionic strength condition, a dramatic ∼50% to ∼70% decrease of these nanomechanical parameters was evidenced for cells with appendages. Qualitatively, such dependence of nanomechanical behavior on surface organization remains when increasing medium salt content to 100 mM, even though, quantitatively, differences are marked to a much smaller extent. Additionally, for a given surface appendage, the magnitude of the nanomechanical parameters decreases significantly when increasing bulk salt concentration. This effect is ascribed to a bacterial exoosmotic water loss resulting in a combined contraction of bacterial cytoplasm together with an electrostatically-driven shrinkage of the surface appendages. The former process is demonstrated upon AFM analysis, while the latter, inaccessible upon AFM imaging, is inferred from electrophoretic data interpreted according to advanced soft particle electrokinetic theory. Altogether, AFM and electrokinetic results clearly demonstrate the

  3. Alveolar bone tissue engineering using composite scaffolds for drug delivery

    Directory of Open Access Journals (Sweden)

    Tomonori Matsuno

    2010-08-01

    Full Text Available For many years, bone graft substitutes have been used to reconstruct bone defects in orthopedic and dental fields. However, synthetic bone substitutes such as hydroxyapatite or β-tricalcium phosphate have no osteoinductive or osteogenic abilities. Bone tissue engineering has also been promoted as an alternative approach to regenerating bone tissue. To succeed in bone tissue engineering, osteoconductive scaffolding biomaterials should provide a suitable environment for osteogenic cells and provide local controlled release of osteogenic growth factors. In addition, the scaffold for the bone graft substitute should biodegrade to replace the newly formed bone. Recent advances in bone tissue engineering have allowed the creation of composite scaffolds with tailored functional properties. This review focuses on composite scaffolds that consist of synthetic ceramics and natural polymers as drug delivery carriers for alveolar bone tissue engineering.

  4. Fabrication of metallic biomedical scaffolds with the space holder method : A review

    NARCIS (Netherlands)

    Arifvianto, B.; Zhou, J.

    2014-01-01

    Bone tissue engineering has been increasingly studied as an alternative approach to bone defect reconstruction. In this approach, new bone cells are stimulated to grow and heal the defect with the aid of a scaffold that serves as a medium for bone cell formation and growth. Scaffolds made of

  5. Applying non-linear dynamics to atrial appendage flow data to understand and characterize atrial arrhythmia

    International Nuclear Information System (INIS)

    Chandra, S.; Grimm, R.A.; Katz, R.; Thomas, J.D.

    1996-01-01

    The aim of this study was to better understand and characterize left atrial appendage flow in atrial fibrillation. Atrial fibrillation and flutter are the most common cardiac arrhythmias affecting 15% of the older population. The pulsed Doppler velocity profile data was recorded from the left atrial appendage of patients using transesophageal echocardiography. The data was analyzed using Fourier analysis and nonlinear dynamical tools. Fourier analysis showed that appendage mechanical frequency (f f ) for patients in sinus rhythm was always lower (around1 Hz) than that in atrial fibrillation (5-8 Hz). Among patients with atrial fibrillation spectral power below f f was significantly different suggesting variability within this group of patients. Results that suggested the presence of nonlinear dynamics were: a) the existence of two arbitrary peak frequencies f 1 , f 2 , and other peak frequencies as linear combinations thereof (mf 1 ±nf 2 ), and b) the similarity between the spectrum of patient data and that obtained using the Lorenz equation. Nonlinear analysis tools, including Phase plots and differential radial plots, were also generated from the velocity data using a delay of 10. In the phase plots, some patients displayed a torus-like structure, while others had a more random-like pattern. In the differential radial plots, the first set of patients (with torus-like phase plots) showed fewer values crossing an arbitrary threshold of 10 than did the second set (8 vs. 27 in one typical example). The outcome of cardioversion was different for these two set of patients. Fourier analysis helped to: differentiate between sinus rhythm and atrial fibrillation, understand the characteristics of the wide range of atrial fibrillation patients, and provide hints that atrial fibrillation could be a nonlinear process. Nonlinear dynamical tools helped to further characterize and sub-classify atrial fibrillation

  6. Computed tomography in the diagnosis of sizable formations of the uterine appendages

    International Nuclear Information System (INIS)

    Tarasov, V.V.; Kitaev, V.V.

    1988-01-01

    A total of 40 women were examined using computed tomography (CT). CT results were compared with operative findings. The accuracy of the method was 90%. probable signs of malignancy are an increase in the volume of the uterine appendages, their deformity, structural change, ill-defined borders of a formation with the adjacent organs and tissues, and enlargement of the intrapelvic lymph nodes. Dermoid ovarian cysts could be recognized with utmost accuracy. During CT detection of low density fluid formations with even contours and homogeneous content one should bear in mind a possibility of incapsuled extraorganic fluid accumulations alongside with ovarian cysts

  7. Parallel fabrication of macroporous scaffolds.

    Science.gov (United States)

    Dobos, Andrew; Grandhi, Taraka Sai Pavan; Godeshala, Sudhakar; Meldrum, Deirdre R; Rege, Kaushal

    2018-07-01

    Scaffolds generated from naturally occurring and synthetic polymers have been investigated in several applications because of their biocompatibility and tunable chemo-mechanical properties. Existing methods for generation of 3D polymeric scaffolds typically cannot be parallelized, suffer from low throughputs, and do not allow for quick and easy removal of the fragile structures that are formed. Current molds used in hydrogel and scaffold fabrication using solvent casting and porogen leaching are often single-use and do not facilitate 3D scaffold formation in parallel. Here, we describe a simple device and related approaches for the parallel fabrication of macroporous scaffolds. This approach was employed for the generation of macroporous and non-macroporous materials in parallel, in higher throughput and allowed for easy retrieval of these 3D scaffolds once formed. In addition, macroporous scaffolds with interconnected as well as non-interconnected pores were generated, and the versatility of this approach was employed for the generation of 3D scaffolds from diverse materials including an aminoglycoside-derived cationic hydrogel ("Amikagel"), poly(lactic-co-glycolic acid) or PLGA, and collagen. Macroporous scaffolds generated using the device were investigated for plasmid DNA binding and cell loading, indicating the use of this approach for developing materials for different applications in biotechnology. Our results demonstrate that the device-based approach is a simple technology for generating scaffolds in parallel, which can enhance the toolbox of current fabrication techniques. © 2018 Wiley Periodicals, Inc.

  8. Rheological, biocompatibility and osteogenesis assessment of fish collagen scaffold for bone tissue engineering.

    Science.gov (United States)

    Elango, Jeevithan; Zhang, Jingyi; Bao, Bin; Palaniyandi, Krishnamoorthy; Wang, Shujun; Wenhui, Wu; Robinson, Jeya Shakila

    2016-10-01

    In the present investigation, an attempt was made to find an alternative to mammalian collagen with better osteogenesis ability. Three types of collagen scaffolds - collagen, collagen-chitosan (CCH), and collagen-hydroxyapatite (CHA) - were prepared from the cartilage of Blue shark and investigated for their physico-functional and mechanical properties in relation to biocompatibility and osteogenesis. CCH scaffold was superior with pH 4.5-4.9 and viscosity 9.7-10.9cP. Notably, addition of chitosan and HA (hydroxyapatite) improved the stiffness (11-23MPa) and degradation rate but lowered the water binding capacity and porosity of the scaffold. Interestingly, CCH scaffolds remained for 3days before complete in-vitro biodegradation. The decreased amount of viable T-cells and higher level of FAS/APO-1 were substantiated the biocompatibility properties of prepared collagen scaffolds. Osteogenesis study revealed that the addition of CH and HA in both fish and mammalian collagen scaffolds could efficiently promote osteoblast cell formation. The ALP activity was significantly high in CHA scaffold-treated osteoblast cells, which suggests an enhanced bone-healing process. Therefore, the present study concludes that the composite scaffolds prepared from fish collagen with higher stiffness, lower biodegradation rate, better biocompatible, and osteogenesis properties were suitable biomaterial for a bone tissue engineering application as an alternative to mammalian collagen scaffolds. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Scaffolding students’ assignments

    DEFF Research Database (Denmark)

    Slot, Marie Falkesgaard

    2013-01-01

    This article discusses scaffolding in typical student assignments in mother tongue learning materials in upper secondary education in Denmark and the United Kingdom. It has been determined that assignments do not have sufficient scaffolding end features to help pupils understand concepts and build...... objects. The article presents the results of empirical research on tasks given in Danish and British learning materials. This work is based on a further development of my PhD thesis: “Learning materials in the subject of Danish” (Slot 2010). The main focus is how cognitive models (and subsidiary explicit...... learning goals) can help students structure their argumentative and communica-tive learning processes, and how various multimodal representations can give more open-ended learning possibilities for collaboration. The article presents a short introduction of the skills for 21st century learning and defines...

  10. Nano-hydroxyapatite/poly ε-caprolactone composite 3D scaffolds for mastoid obliteration

    International Nuclear Information System (INIS)

    Kim, S E; Yun, H S; Hyun, Y T; Shin, J W; Song, J J

    2009-01-01

    The aim of this study is to evaluate the use of our nano-HA/PCL composite 3D scaffolds as graft materials for mastoid cavity obliteration in an animal model. Nano-HA particles were synthesized by chemical precipitation technique and mixed them with PCL solution to make composite paste. 3D scaffolds were fabricated by a paste extruding deposition process. The nano-HA/PCL 3D scaffolds showed good in vivo bone regeneration behaviour in a rabbit model after 4 and 8 week implantation. To characterize the 3D scaffolds as a grafting material for mastoid obliteration, mastoid cavities were introduced in rats and implanted the scaffolds. After two week implantation, histological examination showed good tissue ingrowth and new bone formation behaviour. It can be argued that our nano-HA/PCL composite 3D scaffold is a promising alternative material for mastoid obliteration.

  11. Rapid-prototyped PLGA/β-TCP/hydroxyapatite nanocomposite scaffolds in a rabbit femoral defect model

    International Nuclear Information System (INIS)

    Kim, Jinku; McBride, Sean; Alvarez-Urena, Pedro; Song, Young-Hye; Hollinger, Jeffrey O; Tellis, Brandi; Dean, David D; Sylvia, Victor L; Elgendy, Hoda; Ong, Joo

    2012-01-01

    Bone tissue engineering scaffolds composed of poly(d,l-lactide:glycolide) (DL-PLGA) and β-tricalcium phosphate (β-TCP) nanocomposites were prepared and characterized. Scaffolds with two specific architectures were produced via fused deposition modeling (FDM), a type of extrusion freeform fabrication. Microfilaments deposited at angles of 0° and 90° were designated as the ‘simple’ scaffold architecture, while those deposited at angles alternating between 0°, 90°, 45° and −45° were designated as the ‘complex’ scaffold architecture. In addition, the simple and complex scaffolds were coated with hydroxyapatite (HA). The surface morphology of the scaffolds was assessed before and after HA coating and uniform distribution of HA coating on the surface was observed by scanning electron microscopy. The scaffolds were implanted into rabbit femoral unicortical bone defects according to four treatment groups based on pore structure and HA coating. After 6 and 12 weeks, scaffolds and host bone were recovered and processed for histology. Data suggest that all configurations of the scaffolds integrated with the host bone and were biocompatible and thus may offer an exciting new scaffold platform for delivery of biologicals for bone regeneration. (paper)

  12. Change in cognitive process during dance video game play with different appendages for motor output

    Science.gov (United States)

    Suzuki, Kota; Ono, Yumie; Shimada, Sotaro; Tachibana, Atsumichi; Noah, Jack Adam

    2018-02-01

    Playing a dance video game (DVG) requires fine temporal control of foot positions based on simultaneous visuoauditory integration. Despite the highly-demanding nature of its cognitive processes, DVG could offer promising exercise opportunities for elderly people to maintain their cognitive abilities due to its strong adherence. Using functional near-infrared spectroscopy, we have previously shown that DVG play with the foot activates prefrontal and temporoparietal cortices. However, it is still in debate whether this brain-stimulatory effect of DVG could also be maintained in case that DVG is played with the hand by people who have difficulty to play DVG in a standing position. We therefore investigated the regional brain activity of 12 healthy, right-handed young-adults when they played DVG with their dominant hand and foot. We found that the DVG-related hemodynamic activity was comparable in the prefrontal area regardless of the appendages while that was significantly smaller in case of playing with the hand related to the foot in the left superior/middle temporal gyrus (S/MTG). A similar trend was also observed in the right S/MTG. These results suggest that the motor preparatory function mediated by the prefrontal cortices is equally employed regardless of appendages while more cognitive load is required in the temporal cortices with foot-played DVG, possibly to integrate visual, auditory, and proprioceptive information. Hand-played DVG may partially substitute foot-played DVG in the sense of cognitive training in the elderly.

  13. Left atrial appendages from adult hearts contain a reservoir of diverse cardiac progenitor cells.

    Directory of Open Access Journals (Sweden)

    Jussi V Leinonen

    Full Text Available There is strong evidence supporting the claim that endogenous cardiac progenitor cells (CPCs are key players in cardiac regeneration, but the anatomic source and phenotype of the master cardiac progenitors remains uncertain. Our aim was to investigate the different cardiac stem cell populations in the left atrial appendage (LAA and their fates.We investigated the CPC content and profile of adult murine LAAs using immunohistochemistry and flow cytometry. We demonstrate that the LAA contains a large number of CPCs relative to other areas of the heart, representing over 20% of the total cell number. We grew two distinct CPC populations from the LAA by varying the degree of proteolysis. These differed by their histological location, surface marker profiles and growth dynamics. Specifically, CD45(pos cells grew with milder proteolysis, while CD45(neg cells grew mainly with more intense proteolysis. Both cell types could be induced to differentiate into cells with cardiomyocyte markers and organelles, albeit by different protocols. Many CD45(pos cells expressed CD45 initially and rapidly lost its expression while differentiating.Our results demonstrate that the left atrial appendage plays a role as a reservoir of multiple types of progenitor cells in murine adult hearts. Two different types of CPCs were isolated, differing in their epicardial-myocardial localization. Considering studies demonstrating layer-specific origins of different cardiac progenitor cells, our findings may shed light on possible pathways to study and utilize the diversity of endogenous progenitor cells in the adult heart.

  14. Holocephalan embryos provide evidence for gill arch appendage reduction and opercular evolution in cartilaginous fishes

    Science.gov (United States)

    Gillis, J. Andrew; Rawlinson, Kate A.; Bell, Justin; Lyon, Warrick S.; Baker, Clare V. H.; Shubin, Neil H.

    2011-01-01

    Chondrichthyans possess endoskeletal appendages called branchial rays that extend laterally from their hyoid and gill-bearing (branchial) arches. Branchial ray outgrowth, like tetrapod limb outgrowth, is maintained by Sonic hedgehog (Shh) signaling. In limbs, distal endoskeletal elements fail to form in the absence of normal Shh signaling, whereas shortened duration of Shh expression correlates with distal endoskeletal reduction in naturally variable populations. Chondrichthyans also exhibit natural variation with respect to branchial ray distribution—elasmobranchs (sharks and batoids) possess a series of ray-supported septa on their hyoid and gill arches, whereas holocephalans (chimaeras) possess a single hyoid arch ray-supported operculum. Here we show that the elongate hyoid rays of the holocephalan Callorhinchus milii grow in association with sustained Shh expression within an opercular epithelial fold, whereas Shh is only transiently expressed in the gill arches. Coincident with this transient Shh expression, branchial ray outgrowth is initiated in C. milii but is not maintained, yielding previously unrecognized vestigial gill arch branchial rays. This is in contrast to the condition seen in sharks, where sustained Shh expression corresponds to the presence of fully formed branchial rays on the hyoid and gill arches. Considered in light of current hypotheses of chondrichthyan phylogeny, our data suggest that the holocephalan operculum evolved in concert with gill arch appendage reduction by attenuation of Shh-mediated branchial ray outgrowth, and that chondrichthyan branchial rays and tetrapod limbs exhibit parallel developmental mechanisms of evolutionary reduction. PMID:21220324

  15. Connexins and pannexins in the integumentary system: the skin and appendages.

    Science.gov (United States)

    Faniku, Chrysovalantou; Wright, Catherine S; Martin, Patricia E

    2015-08-01

    The integumentary system comprises the skin and its appendages, which includes hair, nails, feathers, sebaceous and eccrine glands. In this review, we focus on the expression profile of connexins and pannexins throughout the integumentary system in mammals, birds and fish. We provide a picture of the complexity of the connexin/pannexin network illustrating functional importance of these proteins in maintaining the integrity of the epidermal barrier. The differential regulation and expression of connexins and pannexins during skin renewal, together with a number of epidermal, hair and nail abnormalities associated with mutations in connexins, emphasize that the correct balance of connexin and pannexin expression is critical for maintenance of the skin and its appendages with both channel and non-channel functions playing profound roles. Changes in connexin expression during both hair and feather regeneration provide suggestions of specialized communication compartments. Finally, we discuss the potential use of zebrafish as a model for connexin skin biology, where evidence mounts that differential connexin expression is involved in skin patterning and pigmentation.

  16. Left atrial appendage myxofibrosarcoma: A rare masquerader of myxoma and thrombus-"all that glitters is not gold".

    Science.gov (United States)

    Khan, Muhammad Shoaib; Reddy, Sahadev; Lombardi, Richard; Isabel, Pitti; Mcgregor, Walter E; Tang, Bang; Gabriel, George; Biederman, Robert W

    2018-02-01

    Left atrial appendage mass can occasionally pose a serious challenge to physicians to identify the nature of the mass with the aid of imaging techniques. We present a case of 67-year-old man, who was evaluated for suspected left atria myxoma. Transesophageal echocardiography revealed a heterogeneous density originating from left atrial appendage, thought to be most consistent with a myxoma. Cardiac magnetic resonance imaging, uncharacteristically, gave an equivocal picture, suggesting the mass to be a myxoma on initial imaging and a thrombus with evidence of liquefaction necrosis following postcontrast enhancement. Surprisingly, histopathology of the mass following its surgical excision yielded a rare diagnosis of myxofibrosarcoma. © 2017, Wiley Periodicals, Inc.

  17. Impact of Scaffolding and Question Structure on the Gender Gap

    Science.gov (United States)

    Dawkins, Hillary; Hedgeland, Holly; Jordan, Sally

    2017-01-01

    We address previous hypotheses about possible factors influencing the gender gap in attainment in physics. Specifically, previous studies claim that scaffolding may preferentially benefit female students, and we present some alternative conclusions surrounding this hypothesis. By taking both student attainment level and the degree of question…

  18. Role of scaffold mean pore size in meniscus regeneration.

    Science.gov (United States)

    Zhang, Zheng-Zheng; Jiang, Dong; Ding, Jian-Xun; Wang, Shao-Jie; Zhang, Lei; Zhang, Ji-Ying; Qi, Yan-Song; Chen, Xue-Si; Yu, Jia-Kuo

    2016-10-01

    Recently, meniscus tissue engineering offers a promising management for meniscus regeneration. Although rarely reported, the microarchitectures of scaffolds can deeply influence the behaviors of endogenous or exogenous stem/progenitor cells and subsequent tissue formation in meniscus tissue engineering. Herein, a series of three-dimensional (3D) poly(ε-caprolactone) (PCL) scaffolds with three distinct mean pore sizes (i.e., 215, 320, and 515μm) were fabricated via fused deposition modeling. The scaffold with the mean pore size of 215μm significantly improved both the proliferation and extracellular matrix (ECM) production/deposition of mesenchymal stem cells compared to all other groups in vitro. Moreover, scaffolds with mean pore size of 215μm exhibited the greatest tensile and compressive moduli in all the acellular and cellular studies. In addition, the relatively better results of fibrocartilaginous tissue formation and chondroprotection were observed in the 215μm scaffold group after substituting the rabbit medial meniscectomy for 12weeks. Overall, the mean pore size of 3D-printed PCL scaffold could affect cell behavior, ECM production, biomechanics, and repair effect significantly. The PCL scaffold with mean pore size of 215μm presented superior results both in vitro and in vivo, which could be an alternative for meniscus tissue engineering. Meniscus tissue engineering provides a promising strategy for meniscus regeneration. In this regard, the microarchitectures (e.g., mean pore size) of scaffolds remarkably impact the behaviors of cells and subsequent tissue formation, which has been rarely reported. Herein, three three-dimensional poly(ε-caprolactone) scaffolds with different mean pore sizes (i.e., 215, 320, and 515μm) were fabricated via fused deposition modeling. The results suggested that the mean pore size significantly affected the behaviors of endogenous or exogenous stem/progenitor cells and subsequent tissue formation. This study furthers

  19. A Conserved MicroRNA Regulatory Circuit Is Differentially Controlled during Limb/Appendage Regeneration.

    Directory of Open Access Journals (Sweden)

    Benjamin L King

    Full Text Available Although regenerative capacity is evident throughout the animal kingdom, it is not equally distributed throughout evolution. For instance, complex limb/appendage regeneration is muted in mammals but enhanced in amphibians and teleosts. The defining characteristic of limb/appendage regenerative systems is the formation of a dedifferentiated tissue, termed blastema, which serves as the progenitor reservoir for regenerating tissues. In order to identify a genetic signature that accompanies blastema formation, we employ next-generation sequencing to identify shared, differentially regulated mRNAs and noncoding RNAs in three different, highly regenerative animal systems: zebrafish caudal fins, bichir pectoral fins and axolotl forelimbs.These studies identified a core group of 5 microRNAs (miRNAs that were commonly upregulated and 5 miRNAs that were commonly downregulated, as well as 4 novel tRNAs fragments with sequences conserved with humans. To understand the potential function of these miRNAs, we built a network of 1,550 commonly differentially expressed mRNAs that had functional relationships to 11 orthologous blastema-associated genes. As miR-21 was the most highly upregulated and most highly expressed miRNA in all three models, we validated the expression of known target genes, including the tumor suppressor, pdcd4, and TGFβ receptor subunit, tgfbr2 and novel putative target genes such as the anti-apoptotic factor, bcl2l13, Choline kinase alpha, chka and the regulator of G-protein signaling, rgs5.Our extensive analysis of RNA-seq transcriptome profiling studies in three regenerative animal models, that diverged in evolution ~420 million years ago, reveals a common miRNA-regulated genetic network of blastema genes. These comparative studies extend our current understanding of limb/appendage regeneration by identifying previously unassociated blastema genes and the extensive regulation by miRNAs, which could serve as a foundation for future

  20. Fibrosis and electrophysiological characteristics of the atrial appendage in patients with atrial fibrillation and structural heart disease

    NARCIS (Netherlands)

    Brakel, T.J. van; Krieken, T. van der; Westra, S.W.; Laak, J.A.W.M. van der; Smeets, J.L.R.M.; Swieten, H.A. van

    2013-01-01

    PURPOSE: This study was conducted to investigate the degree of fibrosis in atrial appendages of patients with and without atrial fibrillation (AF) undergoing cardiac surgery. In addition, we hypothesized that areas of atrial fibrosis can be identified by electrogram fractionation and low voltage for

  1. Three-dimensionally preserved minute larva of a great-appendage arthropod from the early Cambrian Chengjiang biota

    Science.gov (United States)

    Liu, Yu; Melzer, Roland R.; Haug, Joachim T.; Haug, Carolin; Briggs, Derek E. G.; Hörnig, Marie K.; He, Yu-yang; Hou, Xian-guang

    2016-05-01

    A three-dimensionally preserved 2-mm-long larva of the arthropod Leanchoilia illecebrosa from the 520-million-year-old early Cambrian Chengjiang biota of China represents the first evidence, to our knowledge, of such an early developmental stage in a short-great-appendage (SGA) arthropod. The larva possesses a pair of three-fingered great appendages, a hypostome, and four pairs of well-developed biramous appendages. More posteriorly, a series of rudimentary limb Anlagen revealed by X-ray microcomputed tomography shows a gradient of decreasing differentiation toward the rear. This, and postembryonic segment addition at the putative growth zone, are features of late-stage metanauplii of eucrustaceans. L. illecebrosa and other SGA arthropods, however, are considered representative of early chelicerates or part of the stem lineage of all euarthropods. The larva of an early Cambrian SGA arthropod with a small number of anterior segments and their respective appendages suggests that posthatching segment addition occurred in the ancestor of Euarthropoda.

  2. Etiologic significance of enlargement of the left atrial appendage in adults

    International Nuclear Information System (INIS)

    Green, C.E.; Kelley, M.J.; Higgins, C.B.

    1982-01-01

    Fifty-one patients were divided into two groups: 20 patients with proven rheumatic mitral valve disease (RMVD) and 31 patients with left atrial enlargement (LAE) of a nonrheumatic etiology. The latter group included patients with ischemic papillary muscle dysfunction, mitral valve prolapse, and congestive cardiomyopathy. Radiographic studies showed that enlargement of the left atrial appendage (LAAE) was present in 18 of 20 rheumatics but in only one of 31 nonrheumatics. There was no direct relationship between enlargement of the LAA and radiographic or echocardiographic left atrial size, degree of pulmonary venous hypertension (PVH), or presence of atrial fibrillation. It is postulated that rheumatic influammation of the LAA allows it to dilate out of proportion to the body of the left atrium. In the adult patient with radiographic findings of PVH, LAAE is a valuable and specific radiographic sign of rheumatic mitral valve disease

  3. Catheter Ablation of Ectopic Atrial Tachycardia Originating from the Left Atrial Appendage using CARTOMERGE® System

    Directory of Open Access Journals (Sweden)

    Masahiko Goya, MD

    2008-01-01

    Full Text Available A 70-year-old woman was referred because of drug resistant and daily incessant palpitation attack. She had undergone two previous unsuccessful radiofrequency catheter ablations at another hospital. The physical examination, chest X-ray, and echocardiogram were all normal. The 12-lead ECG during tachycardia showed narrow QRS, short PR tachycardia and negative polarity of the P wave in leads I and aVL (Fig. 1A. The ECG monitor showed incessant tachycardia with warming-up phenomenon. Three dimensional electroanatomical map integrated with CT imaging (CARTOMERGE®, Biosense Webster Inc. clearly revealed the radial activation pattern originating from the basalo-postero-inferior aspect of the left atrial appendage. Radiofrequency energy application at this site eliminated tachycardia permanently.

  4. Left Atrial Appendage Closure in Atrial Fibrillation: A World without Anticoagulation?

    Directory of Open Access Journals (Sweden)

    Tahmeed Contractor

    2011-01-01

    Full Text Available Atrial Fibrillation (AF is a common arrhythmia with an incidence that is as high as 10% in the elderly population. Given the large proportion of strokes caused by AF as well as the associated morbidity and mortality, reducing stroke burden is the most important part of AF management. While warfarin significantly reduces the risk of AF-related stroke, perceived bleeding risks and compliance limit its widespread use in the high-risk AF population. The left atrial appendage is believed to be the “culprit” for thrombogenesis in nonvalvular AF and is a new therapeutic target for stroke prevention. The purpose of this review is to explore the evolving field of percutaneous LAA occlusion. After briefly highlighting the risk of stroke with AF, problems with warfarin, and the role of the LAA in clot formation, this article discusses the feasibility and efficacy of various devices which have been developed for percutaneous LAA occlusion.

  5. The design and development of a spacecraft appendage tie down mechanism

    Science.gov (United States)

    Nygren, W. D.; Head, R.

    1985-01-01

    The design and evolution is described of a spacecraft Appendage Tie Down Mechanism (ATDM). Particular emphasis is paid to the mechanical aspects of using dry lubricants to increase the efficiency of acme threads and worm gearing. The ATDM consists of five major components. These are a dc torque motor, a worm gear speed reducer, the tension bolt (or T-bolt), nut capture and centering jaws and the capture nut. In addition, there are several minor components such as limit switch assemblies and an antibackdrive mechanism which couples the drive motor to the worm shaft. A development model of the ATDM in various configurations was under test for some time. In its latest version, it has successfully completed thermal vacuum testing, vibration testing, and extended life testing.

  6. Amorphous hydroxyapatite-sintered polymeric scaffolds for bone tissue regeneration: physical characterization studies.

    Science.gov (United States)

    Cushnie, Emily K; Khan, Yusuf M; Laurencin, Cato T

    2008-01-01

    Given the inherent shortcomings of autografts and allografts, donor-site morbidity and risk of disease transmission, respectively, alternatives to traditional bone grafting options are warranted. To this end, poly(lactide-co-glycolide) (PLAGA) and in situ-synthesized amorphous hydroxyapatite (HA) were used to construct three-dimensional microsphere-based composite scaffolds of varying HA content for bone regeneration. In the current study, the effect of adding amorphous HA to the PLAGA scaffolds on their physical characteristics and in vitro degradation mechanism was investigated. Porosimetry and uniaxial compression testing were used to analyze the internal structure and elastic modulus of the scaffolds, respectively. Additionally, gel permeation chromatography (GPC) was performed to assess the polymer molecular weight over the course of an 8-week degradation study. HA content (17% or 27%) of the composite scaffolds was found to increase scaffold pore volume from 33.86% for pure polymer scaffolds, to 40.49% or 46.29%, depending on the amount of incorporated HA. This increased pore volume provided the composite scaffolds with a greater surface area and a corresponding decrease in elastic modulus. Scaffold degradation studies conducted over 8 weeks showed PLAGA to degrade in a first-order mechanism, with the rate of polymer degradation for the 27% HA composite scaffold being significantly slower than that of the pure PLAGA scaffold (degradation constants of 0.0324 and 0.0232 week(-1), respectively). These results suggest that the addition of amorphous HA to PLAGA microspheres resulted in porous, bioactive scaffolds that offer potential as alternative bone grafting materials for the field of regenerative medicine. (c) 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2008.

  7. VEGF-incorporated biomimetic poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering.

    Science.gov (United States)

    Jabbarzadeh, Ehsan; Deng, Meng; Lv, Qing; Jiang, Tao; Khan, Yusuf M; Nair, Lakshmi S; Laurencin, Cato T

    2012-11-01

    Regenerative engineering approaches utilizing biomimetic synthetic scaffolds provide alternative strategies to repair and restore damaged bone. The efficacy of the scaffolds for functional bone regeneration critically depends on their ability to induce and support vascular infiltration. In the present study, three-dimensional (3D) biomimetic poly(lactide-co-glycolide) (PLAGA) sintered microsphere scaffolds were developed by sintering together PLAGA microspheres followed by nucleation of minerals in a simulated body fluid. Further, the angiogenic potential of vascular endothelial growth factor (VEGF)-incorporated mineralized PLAGA scaffolds were examined by monitoring the growth and phenotypic expression of endothelial cells on scaffolds. Scanning electron microscopy micrographs confirmed the growth of bone-like mineral layers on the surface of microspheres. The mineralized PLAGA scaffolds possessed interconnectivity and a compressive modulus of 402 ± 61 MPa and compressive strength of 14.6 ± 2.9 MPa. Mineralized scaffolds supported the attachment and growth and normal phenotypic expression of endothelial cells. Further, precipitation of apatite layer on PLAGA scaffolds resulted in an enhanced VEGF adsorption and prolonged release compared to nonmineralized PLAGA and, thus, a significant increase in endothelial cell proliferation. Together, these results demonstrated the potential of VEGF-incorporated biomimetic PLAGA sintered microsphere scaffolds for bone tissue engineering as they possess the combined effects of osteointegrativity and angiogenesis. Copyright © 2012 Wiley Periodicals, Inc.

  8. Bimodal Porous Scaffolds by Sequential Electro spinning of Poly(glycolic acid) with Sucrose Particles

    International Nuclear Information System (INIS)

    Wulkersdorfer, B.; Kao, K.K.; Agopian, V.G.; Ahn, A.; Dunn, J.C.; Wu, B.M.; Stelzner, M.; Kao, K.K.; Agopian, K.J.; Dunn, J.C.; Wu, B.M.; Stelzner, M.; Dunn, J.C.; Wu, B.M.

    2009-01-01

    Electro spinning is a method to produce fine, bio polymer mesh with a three-dimensional architecture that mimics native extra-cellular matrix. Due to the small fiber diameter created in this process, conventional electro spun scaffolds have pore sizes smaller than the diameter of most cells. These scaffolds have limited application in tissue engineering due to poor cell penetration. We developed a hybrid electro spinning/particulate leaching technique to create scaffolds with increased porosity and improved cellular ingrowth. Poly(glycolic acid) (PGA) and a sucrose-ethanol suspension were electro spun in equal, alternating sequences at intervals of one, two, and ten minutes each. The scaffolds revealed fiber mesh with micropores of 10 μm and uniformly distributed sucrose particles. Particulate leaching of sucrose from the one- or two-minute scaffolds revealed honeycomb structures with interconnected macro pores between 50 and 250 μm. Sucrose leaching from the ten-minute scaffolds resulted in laminated structures with isolated macro pores between 200 and 350 μm. Macro pore size was directly proportional to the duration of the sucrose spinning interval. After 24 hours of cell culture, conventionally spun scaffolds demonstrated no cellular penetration. Conversely, the PGA/sucrose scaffolds demonstrated deep cellular penetration. This hybrid technique represents a novel method of generating electro spun scaffolds with interconnected pores suitable for cellular ingrowth.

  9. Fabrication of highly porous biodegradable biomimetic nanocomposite as advanced bone tissue scaffold

    Directory of Open Access Journals (Sweden)

    Abdalla Abdal-hay

    2017-02-01

    Full Text Available Development of bioinspired or biomimetic materials is currently a challenge in the field of tissue regeneration. In-situ 3D biomimetic microporous nanocomposite scaffold has been developed using a simple lyophilization post hydrothermal reaction for bone healing applications. The fabricated 3D porous scaffold possesses advantages of good bonelike apatite particles distribution, thermal properties and high porous interconnected network structure. High dispersion bonelike apatite nanoparticles (NPs rapidly nucleated and deposited from surrounding biological minerals within chitosan (CTS matrices using hydrothermal technique. After that, freeze-drying method was applied on the composite solution to form the desired porous 3D architecture. Interestingly, the porosity and pore size of composite scaffold were not significantly affected by the particles size and particles content within the CTS matrix. Our results demonstrated that the compression modulus of porous composite scaffold is twice higher than that of plain CTS scaffold, indicating a maximization of the chemical interaction between polymer matrix and apatite NPs. Cytocompatibility test for MC3T3-E1 pre-osteoblasts cell line using MTT-indirect assay test showed that the fabricated 3D microporous nanocomposite scaffold possesses higher cell proliferation and growth than that of pure CTS scaffold. Collectively, our results suggest that the newly developed highly porous apatite/CTS nanocomposite scaffold as an alternative of hydroxyapatite/CTS scaffold may serve as an excellent porous 3D platform for bone tissue regeneration.

  10. A sexually dimorphic corolla appendage affects pollen removal and floral longevity in gynodioecious Cyananthus delavayi (Campanulaceae.

    Directory of Open Access Journals (Sweden)

    Yang Niu

    Full Text Available The floral traits of bisexual flowers may evolve in response to selection on both male and female functions, but the relative importance of selection associated with each of these two aspects is poorly resolved. Sexually dimorphic traits in plants with unisexual flowers may reflect gender-specific selection, providing opportunities for gaining an increased understanding of the evolution of specific floral traits. We examined sexually dimorphic patterns of floral traits in perfect and female flowers of the gynodioecious species Cyananthus delavayi. A special corolla appendage, the throat hair, was investigated experimentally to examine its influences on male and female function. We found that perfect flowers have larger corollas and much longer throat hairs than female flowers, while female ones have much exerted stigmas. The presence of throat hairs prolonged the duration of pollen presentation by restricting the amount of pollen removed by pollen-collecting bees during each visit. Floral longevity was negatively related to the rate of pollen removal. When pollen removal rate was limited in perfect flowers, the duration of the female phases diminished with the increased male phase duration. There was a weak negative correlation between throat hair length and seed number per fruit in female flowers, but this correlation was not significant in perfect flowers. These results suggest that throat hairs may enhance male function in terms of prolonged pollen presentation. However, throat hairs have no obvious effect on female function in terms of seed number per fruit. The marked sexual dimorphism of this corolla appendage in C. delavayi is likely to have evolved and been maintained by gender-specific selection.

  11. Nano-ceramic composite scaffolds for bioreactor-based bone engineering.

    Science.gov (United States)

    Lv, Qing; Deng, Meng; Ulery, Bret D; Nair, Lakshmi S; Laurencin, Cato T

    2013-08-01

    bone tissue. In cases of large bone voids (such as bone cancer), tissue-engineered constructs may provide alternatives to traditional bone grafts by culturing patients' own MSCs with PLAGA/n-HA scaffolds in a HARV culture system.

  12. Fabrication of channeled scaffolds with ordered array of micro-pores through microsphere leaching and indirect Rapid Prototyping technique.

    Science.gov (United States)

    Tan, J Y; Chua, C K; Leong, K F

    2013-02-01

    Advanced scaffold fabrication techniques such as Rapid Prototyping (RP) are generally recognized to be advantageous over conventional fabrication methods in terms architectural control and reproducibility. Yet, most RP techniques tend to suffer from resolution limitations which result in scaffolds with uncontrollable, random-size pores and low porosity, albeit having interconnected channels which is characteristically present in most RP scaffolds. With the increasing number of studies demonstrating the profound influences of scaffold pore architecture on cell behavior and overall tissue growth, a scaffold fabrication method with sufficient architectural control becomes imperative. The present study demonstrates the use of RP fabrication techniques to create scaffolds having interconnected channels as well as controllable micro-size pores. Adopted from the concepts of porogen leaching and indirect RP techniques, the proposed fabrication method uses monodisperse microspheres to create an ordered, hexagonal closed packed (HCP) array of micro-pores that surrounds the existing channels of the RP scaffold. The pore structure of the scaffold is shaped using a single sacrificial construct which comprises the microspheres and a dissolvable RP mold that were sintered together. As such, the size of pores as well as the channel configuration of the scaffold can be tailored based on the design of the RP mold and the size of microspheres used. The fabrication method developed in this work can be a promising alternative way of preparing scaffolds with customized pore structures that may be required for specific studies concerning cell-scaffold interactions.

  13. Cephalic and limb anatomy of a new Isoxyid from the Burgess Shale and the role of "stem bivalved arthropods" in the disparity of the frontalmost appendage.

    Directory of Open Access Journals (Sweden)

    Cédric Aria

    Full Text Available We herein describe Surusicaris elegans gen. et sp. nov. (in Isoxyidae, amended, a middle (Series 3, Stage 5 Cambrian bivalved arthropod from the new Burgess Shale deposit of Marble Canyon (Kootenay National Park, British Columbia. Surusicaris exhibits 12 simple, partly undivided biramous trunk limbs with long tripartite caeca, which may illustrate a plesiomorphic "fused" condition of exopod and endopod. We construe also that the head is made of five somites (= four segments, including two eyes, one pair of anomalocaridid-like frontalmost appendages, and three pairs of poorly sclerotized uniramous limbs. This fossil may therefore be a candidate for illustrating the origin of the plesiomorphic head condition in euarthropods, and questions the significance of the "two-segmented head" in, e.g., fuxianhuiids. The frontalmost appendage in isoxyids is intriguingly disparate, bearing similarities with both dinocaridids and euarthropods. In order to evaluate the relative importance of bivalved arthropods, such as Surusicaris, in the hypothetical structuro-functional transition between the dinocaridid frontal appendage and the pre-oral-arguably deutocerebral-appendage of euarthropods, we chose a phenetic approach and computed morphospace occupancy for the frontalmost appendages of 36 stem and crown taxa. Results show different levels of evolutionary decoupling between frontalmost appendage disparity and body plans. Variance is greatest in dinocaridids and "stem bivalved" arthropods, but these groups do not occupy the morphospace homogeneously. Rather, the diversity of frontalmost appendages in "stem bivalved" arthropods, distinct in its absence of clear clustering, is found to link the morphologies of "short great appendages," chelicerae and antennules. This find fits the hypothesis of an increase in disparity of the deutocerebral appendage prior to its diversification in euarthropods, and possibly corresponds to its original time of development. The

  14. Cephalic and Limb Anatomy of a New Isoxyid from the Burgess Shale and the Role of “Stem Bivalved Arthropods” in the Disparity of the Frontalmost Appendage

    Science.gov (United States)

    Aria, Cédric; Caron, Jean-Bernard

    2015-01-01

    We herein describe Surusicaris elegans gen. et sp. nov. (in Isoxyidae, amended), a middle (Series 3, Stage 5) Cambrian bivalved arthropod from the new Burgess Shale deposit of Marble Canyon (Kootenay National Park, British Columbia). Surusicaris exhibits 12 simple, partly undivided biramous trunk limbs with long tripartite caeca, which may illustrate a plesiomorphic “fused” condition of exopod and endopod. We construe also that the head is made of five somites (= four segments), including two eyes, one pair of anomalocaridid-like frontalmost appendages, and three pairs of poorly sclerotized uniramous limbs. This fossil may therefore be a candidate for illustrating the origin of the plesiomorphic head condition in euarthropods, and questions the significance of the “two-segmented head” in, e.g., fuxianhuiids. The frontalmost appendage in isoxyids is intriguingly disparate, bearing similarities with both dinocaridids and euarthropods. In order to evaluate the relative importance of bivalved arthropods, such as Surusicaris, in the hypothetical structuro-functional transition between the dinocaridid frontal appendage and the pre-oral—arguably deutocerebral—appendage of euarthropods, we chose a phenetic approach and computed morphospace occupancy for the frontalmost appendages of 36 stem and crown taxa. Results show different levels of evolutionary decoupling between frontalmost appendage disparity and body plans. Variance is greatest in dinocaridids and “stem bivalved” arthropods, but these groups do not occupy the morphospace homogeneously. Rather, the diversity of frontalmost appendages in “stem bivalved” arthropods, distinct in its absence of clear clustering, is found to link the morphologies of “short great appendages,” chelicerae and antennules. This find fits the hypothesis of an increase in disparity of the deutocerebral appendage prior to its diversification in euarthropods, and possibly corresponds to its original time of development

  15. Cephalic and limb anatomy of a new Isoxyid from the Burgess Shale and the role of "stem bivalved arthropods" in the disparity of the frontalmost appendage.

    Science.gov (United States)

    Aria, Cédric; Caron, Jean-Bernard

    2015-01-01

    We herein describe Surusicaris elegans gen. et sp. nov. (in Isoxyidae, amended), a middle (Series 3, Stage 5) Cambrian bivalved arthropod from the new Burgess Shale deposit of Marble Canyon (Kootenay National Park, British Columbia). Surusicaris exhibits 12 simple, partly undivided biramous trunk limbs with long tripartite caeca, which may illustrate a plesiomorphic "fused" condition of exopod and endopod. We construe also that the head is made of five somites (= four segments), including two eyes, one pair of anomalocaridid-like frontalmost appendages, and three pairs of poorly sclerotized uniramous limbs. This fossil may therefore be a candidate for illustrating the origin of the plesiomorphic head condition in euarthropods, and questions the significance of the "two-segmented head" in, e.g., fuxianhuiids. The frontalmost appendage in isoxyids is intriguingly disparate, bearing similarities with both dinocaridids and euarthropods. In order to evaluate the relative importance of bivalved arthropods, such as Surusicaris, in the hypothetical structuro-functional transition between the dinocaridid frontal appendage and the pre-oral-arguably deutocerebral-appendage of euarthropods, we chose a phenetic approach and computed morphospace occupancy for the frontalmost appendages of 36 stem and crown taxa. Results show different levels of evolutionary decoupling between frontalmost appendage disparity and body plans. Variance is greatest in dinocaridids and "stem bivalved" arthropods, but these groups do not occupy the morphospace homogeneously. Rather, the diversity of frontalmost appendages in "stem bivalved" arthropods, distinct in its absence of clear clustering, is found to link the morphologies of "short great appendages," chelicerae and antennules. This find fits the hypothesis of an increase in disparity of the deutocerebral appendage prior to its diversification in euarthropods, and possibly corresponds to its original time of development. The analysis of this

  16. Using Scaffolds in Problem-Based Hypermedia

    Science.gov (United States)

    Su, Yuyan; Klein, James D.

    2010-01-01

    This study investigated the use of scaffolds in problem-based hypermedia. Three hundred and twelve undergraduate students enrolled in a computer literacy course worked in project teams to use a hypermedia PBL program focused on designing a personal computer. The PBL program included content scaffolds, metacognitive scaffolds, or no scaffolds.…

  17. Novel scaffold design with multi-grooved PLA fibers

    International Nuclear Information System (INIS)

    Chung, Sangwon; King, Martin W; Gamcsik, Mike P

    2011-01-01

    A novel prototype nonwoven textile structure containing polylactide (PLA) multigrooved fibers has been proposed as a possible scaffold material for superior cell attachment and proliferation. Grooved cross-sectional fibers with larger surface area were obtained by a bi-component spinning system and the complete removal of the sacrificial component was confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and x-ray photon spectroscopy (XPS) analysis. These PLA nonwoven scaffolds containing the grooved fibers exhibited enhanced wettability, greater flexibility and tensile properties, and a larger surface area compared to a traditional PLA nonwoven fabric containing round fibers. To evaluate cellular attachment on the two types of PLA nonwoven scaffolds, NIH 3T3 fibroblasts were cultured for up to 12 days. It was evident that the initial cellular attachment was superior on the scaffold with grooved fibers, which was confirmed by MTT viability assay (p < 0.01) and SEM analysis. In the future, by modulating the size of the grooves on the fibers, such a scaffold material with a large surface area could serve as an alternative matrix for culturing different types of cells.

  18. Decellularized Human Skeletal Muscle as Biologic Scaffold for Reconstructive Surgery

    Directory of Open Access Journals (Sweden)

    Andrea Porzionato

    2015-07-01

    Full Text Available Engineered skeletal muscle tissues have been proposed as potential solutions for volumetric muscle losses, and biologic scaffolds have been obtained by decellularization of animal skeletal muscles. The aim of the present work was to analyse the characteristics of a biologic scaffold obtained by decellularization of human skeletal muscles (also through comparison with rats and rabbits and to evaluate its integration capability in a rabbit model with an abdominal wall defect. Rat, rabbit and human muscle samples were alternatively decellularized with two protocols: n.1, involving sodium deoxycholate and DNase I; n.2, trypsin-EDTA and Triton X-NH4OH. Protocol 2 proved more effective, removing all cellular material and maintaining the three-dimensional networks of collagen and elastic fibers. Ultrastructural analyses with transmission and scanning electron microscopy confirmed the preservation of collagen, elastic fibres, glycosaminoglycans and proteoglycans. Implantation of human scaffolds in rabbits gave good results in terms of integration, although recellularization by muscle cells was not completely achieved. In conclusion, human skeletal muscles may be effectively decellularized to obtain scaffolds preserving the architecture of the extracellular matrix and showing mechanical properties suitable for implantation/integration. Further analyses will be necessary to verify the suitability of these scaffolds for in vitro recolonization by autologous cells before in vivo implantation.

  19. 5-Year Outcomes After Left Atrial Appendage Closure: From the PREVAIL and PROTECT AF Trials.

    Science.gov (United States)

    Reddy, Vivek Y; Doshi, Shephal K; Kar, Saibal; Gibson, Douglas N; Price, Matthew J; Huber, Kenneth; Horton, Rodney P; Buchbinder, Maurice; Neuzil, Petr; Gordon, Nicole T; Holmes, David R

    2017-12-19

    The PROTECT AF (WATCHMAN Left Atrial Appendage System for Embolic Protection in Patients With Atrial Fibrillation) trial demonstrated that left atrial appendage closure (LAAC) with the Watchman device (Boston Scientific, St. Paul, Minnesota) was equivalent to warfarin for preventing stroke in atrial fibrillation, but had a high rate of complications. In a second randomized trial, PREVAIL (Evaluation of the WATCHMAN LAA Closure Device in Patients With Atrial Fibrillation Versus Long Term Warfarin Therapy), the complication rate was low. The warfarin cohort experienced an unexpectedly low ischemic stroke rate, rendering the efficacy endpoints inconclusive. However, these outcomes were based on relatively few patients followed for a relatively short time. The final results of the PREVAIL trial, both alone and as part of a patient-level meta-analysis with the PROTECT AF trial, are reported with patients in both trials followed for 5 years. PREVAIL and PROTECT AF are prospective randomized clinical trials with patients randomized 2:1 to LAAC or warfarin; together, they enrolled 1,114 patients for 4,343 patient-years. Analyses are by intention-to-treat, and rates are events per 100 patient-years. For the PREVAIL trial, the first composite coprimary endpoint of stroke, systemic embolism (SE), or cardiovascular/unexplained death did not achieve noninferiority (posterior probability for noninferiority = 88.4%), whereas the second coprimary endpoint of post-procedure ischemic stroke/SE did achieve noninferiority (posterior probability for noninferiority = 97.5%); the warfarin arm maintained an unusually low ischemic stroke rate (0.73%). In the meta-analysis, the composite endpoint was similar between groups (hazard ratio [HR]: 0.820; p = 0.27), as were all-stroke/SE (HR: 0.961; p = 0.87). The ischemic stroke/SE rate was numerically higher with LAAC, but this difference did not reach statistical significance (HR: 1.71; p = 0.080). However, differences in

  20. Hybrid Carbon-Based Scaffolds for Applications in Soft Tissue Reconstruction

    Science.gov (United States)

    Lafdi, Khalid; Joseph, Robert M.; Tsonis, Panagiotis A.

    2012-01-01

    Current biomedical scaffolds utilized in surgery to repair soft tissues commonly fail to meet the optimal combination of biomechanical and tissue regenerative properties. Carbon is a scaffold alternative that potentially optimizes the balance between mechanical strength, durability, and function as a cell and biologics delivery vehicle that is necessary to restore tissue function while promoting tissue repair. The goals of this study were to investigate the feasibility of fabricating hybrid fibrous carbon scaffolds modified with biopolymer, polycaprolactone and to analyze their mechanical properties and ability to support cell growth and proliferation. Environmental scanning electron microscopy, micro-computed tomography, and cell adhesion and cell proliferation studies were utilized to test scaffold suitability as a cell delivery vehicle. Mechanical properties were tested to examine load failure and elastic modulus. Results were compared to an acellular dermal matrix scaffold control (GraftJacket® [GJ] Matrix), selected for its common use in surgery for the repair of soft tissues. Results indicated that carbon scaffolds exhibited similar mechanical maximums and capacity to support fibroblast adhesion and proliferation in comparison with GJ. Fibroblast adhesion and proliferation was collinear with carbon fiber orientation in regions of sparsely distributed fibers and occurred in clusters in regions of higher fiber density and low porosity. Overall, fibroblast adhesion and proliferation was greatest in lower porosity carbon scaffolds with highly aligned fibers. Stepwise multivariate regression showed that the variability in maximum load of carbon scaffolds and controls were dependent on unique and separate sets of parameters. These finding suggested that there were significant differences in the functional implications of scaffold design and material properties between carbon and dermis derived scaffolds that affect scaffold utility as a tissue replacement

  1. Statistical uncertainty of response characteristic of building-appendage system for spectrum-compatible artificial earthquake motion

    International Nuclear Information System (INIS)

    Kurosaki, A.; Kozeki, M.

    1981-01-01

    Spectrum-compatible artificial time histories of ground motions are frequently used for the seismic design of nuclear power plant structures and components. However, statistical uncertainty of the responses of building structures and mechanical components mounted on the building (building-appendage systems) are anticipated, since an artificial time history is no more than one sample from a population of such time histories that match a specified design response spectrum. This uncertainty may spoil the reliability of the seismic design and therefore the extent of the uncertainty of the response characteristic is a matter of great concern. In this paper, above-mentioned uncertainty of the dynamic response characteristics of the building-appendage system to the spectrum-compatible artificial earthquake is investigated. (orig./RW)

  2. Nonbacterial thrombotic endocarditis associated with cancer of unknown origin complicated with thrombus in the left auricular appendage: case report

    Directory of Open Access Journals (Sweden)

    Morinaga Yukiko

    2011-02-01

    Full Text Available Abstract A 63-year-old man was admitted to our hospital with a complaint of right lateroabdominal pain. He was diagnosed with metastatic colon cancer, and then developed multiple brain embolic infarctions 7 days after admission. Transesophageal echocardiography showed that mobile, echo-dense masses were attached to the anterior and posterior mitral valve leaflet. Furthermore, there was a thrombus in the left auricular appendage despite sinus rhythm. These findings led to a diagnosis of suspected infectious endocarditis with subsequent multiple brain infarctions. The patient's general condition worsened and he died 13 days after admission. An autopsy was performed, and, while poorly differentiated cancer was observed in multiple organs, no primary tumor could be identified. Histological analysis showed that the masses of the mitral valve consisted mainly of fibrin without bacteria or oncocytes. This patient was therefore diagnosed with nonbacterial thrombotic endocarditis associated with cancer of unknown origin complicated with thrombus in the left auricular appendage.

  3. Combined percutaneous balloon mitral valvuloplasty and left atrial appendage occlusion device implantation for rheumatic mitral stenosis and atrial fibrillation

    International Nuclear Information System (INIS)

    Murdoch, Dale; McAulay, Laura; Walters, Darren L.

    2014-01-01

    Rheumatic heart disease is a common cause of cardiovascular morbidity and mortality worldwide, mostly in developing countries. Mitral stenosis and atrial fibrillation often coexist, related to both structural and inflammatory changes of the mitral valve and left atrium. Both predispose to left atrial thrombus formation, commonly involving the left atrial appendage. Thromboembolism can occur, with devastating consequences. We report the case of a 62 year old woman with rheumatic heart disease resulting in mitral stenosis and atrial fibrillation. Previous treatment with warfarin resulted in life-threatening gastrointestinal bleeding and she refused further anticoagulant therapy. A combined procedure was performed, including percutaneous balloon mitral valvuloplasty and left atrial appendage occlusion device implantation with the Atritech® Watchman® device. No thromboembolic or bleeding complications were encountered at one year follow-up. Long-term follow-up in a cohort of patients will be required to evaluate the safety and efficacy of this strategy

  4. Combined percutaneous balloon mitral valvuloplasty and left atrial appendage occlusion device implantation for rheumatic mitral stenosis and atrial fibrillation

    Energy Technology Data Exchange (ETDEWEB)

    Murdoch, Dale, E-mail: dale_murdoch@health.qld.gov.au [The Prince Charles Hospital, Brisbane (Australia); The University of Queensland, Brisbane (Australia); McAulay, Laura [The Prince Charles Hospital, Brisbane (Australia); Walters, Darren L. [The Prince Charles Hospital, Brisbane (Australia); The University of Queensland, Brisbane (Australia)

    2014-11-15

    Rheumatic heart disease is a common cause of cardiovascular morbidity and mortality worldwide, mostly in developing countries. Mitral stenosis and atrial fibrillation often coexist, related to both structural and inflammatory changes of the mitral valve and left atrium. Both predispose to left atrial thrombus formation, commonly involving the left atrial appendage. Thromboembolism can occur, with devastating consequences. We report the case of a 62 year old woman with rheumatic heart disease resulting in mitral stenosis and atrial fibrillation. Previous treatment with warfarin resulted in life-threatening gastrointestinal bleeding and she refused further anticoagulant therapy. A combined procedure was performed, including percutaneous balloon mitral valvuloplasty and left atrial appendage occlusion device implantation with the Atritech® Watchman® device. No thromboembolic or bleeding complications were encountered at one year follow-up. Long-term follow-up in a cohort of patients will be required to evaluate the safety and efficacy of this strategy.

  5. A healing method of tympanic membrane perforations using three-dimensional porous chitosan scaffolds.

    Science.gov (United States)

    Kim, Jangho; Kim, Seung Won; Choi, Seong Jun; Lim, Ki Taek; Lee, Jong Bin; Seonwoo, Hoon; Choung, Pill-Hoon; Park, Keehyun; Cho, Chong-Su; Choung, Yun-Hoon; Chung, Jong Hoon

    2011-11-01

    Both surgical tympanoplasty and paper patch grafts are frequently procedured to heal tympanic membrane (TM) perforation or chronic otitis media, despite their many disadvantages. In this study, we report a new healing method of TM perforation by using three-dimensional (3D) porous chitosan scaffolds (3D chitosan scaffolds) as an alternative method to surgical treatment or paper patch graft. Various 3D chitosan scaffolds were prepared; and the structural characteristics, mechanical property, in vitro biocompatibility, and healing effects of the 3D chitosan scaffolds as an artificial TM in in vivo animal studies were investigated. A 3D chitosan scaffold of 5 wt.% chitosan concentration showed good proliferation of TM cells in an in vitro study, as well as suitable structural characteristics and mechanical property, as compared with either 1% or 3% chitosan. In in vivo animal studies, 3D chitosan scaffold were able to migrate through the pores and surfaces of TM cells, thus leading to more effective TM regeneration than paper patch technique. Histological observations demonstrated that the regenerated TM with the 3D chitosan scaffold consisted of three (epidermal, connective tissue, and mucosal) layers and were thicker than normal TMs. The 3D chitosan scaffold technique may be an optimal healing method used in lieu of surgical tympanoplasty in certain cases to heal perforated TMs.

  6. Setal morphology of the grooming appendages of Macrobrachium rosenbergii (Crustacea: Decapoda: Caridea: Palaemonidae) and review of decapod setal classification.

    Science.gov (United States)

    Wortham, Jennifer L; Vanmaurik, Lauren N; Wayne Price, W

    2014-06-01

    Setae are vital in grooming activities and aiding in the removal of epibionts and sedimentary fouling from the body surfaces of decapod crustaceans. Thus, the setal structures and their arrangement on the grooming appendages and sensory structures of the commercially important shrimp, Macrobrachium rosenbergii, were examined using scanning electron microscopy. Macrobrachium rosenbergii is extensively grown in aquaculture and exhibits unique male morphological forms, termed morphotypes. The three male morphotypes are termed blue-clawed males, orange-clawed males, and small-clawed or undifferentiated males and all three differ in their dominance, behavior, body morphology, and reproductive success. Seven setal types, two of which have never been described in the literature, are identified on the grooming appendages (third maxillipeds, first, second, and fifth pereopods) and antennae: simple, serrate, serrulate, spiniform, pappose, crinoid, and spinulate. The latter two setae are newly identified. Certain setal types, such as serrate and serrulate setae were located and associated with specific grooming appendages such as the first pereopods. The types of setae on the grooming appendages varied among females and male morphotypes and the novel setal types (crinoid and spinulate) were found only on two of the male morphotypes. A literature review of terminology related to the structure of setae and setal types in decapod crustaceans is offered as the usage of various terms is ambiguous and conflicting in the literature. The intention of this review is to provide future authors with a comprehensive collection of terms and images that can be used to describe various aspects of setal morphology in decapods. Copyright © 2014 Wiley Periodicals, Inc.

  7. Cytocompatibility of a silk fibroin tubular scaffold

    International Nuclear Information System (INIS)

    Wang, Jiannan; Wei, Yali; Yi, Honggen; Liu, Zhiwu; Sun, Dan; Zhao, Huanrong

    2014-01-01

    Regenerated silk fibroin (SF) materials are increasingly used for tissue engineering applications. In order to explore the feasibility of a novel biomimetic silk fibroin tubular scaffold (SFTS) crosslinked by poly(ethylene glycol) diglycidyl ether (PEG-DE), biocompatibility with cells was evaluated. The novel biomimetic design of the SFTS consisted of three distinct layers: a regenerated SF intima, a silk braided media and a regenerated SF adventitia. The SFTS exhibited even silk fibroin penetration throughout the braid, forming a porous layered tube with superior mechanical, permeable and cell adhesion properties that are beneficial to vascular regeneration. Cytotoxicity and cell compatibility were tested on L929 cells and human umbilical vein endothelial cells (EA.hy926). DNA content analysis, scanning electron and confocal microscopies and MTT assay showed no inhibitory effects on DNA replication. Cell morphology, viability and proliferation were good for L929 cells, and satisfactory for EA.hy926 cells. Furthermore, the suture retention strength of the SFTS was about 23 N and the Young's modulus was 0.2–0.3 MPa. Collectively, these data demonstrate that PEG-DE crosslinked SFTS possesses the appropriate cytocompatibility and mechanical properties for use as vascular scaffolds as an alternative to vascular autografts. - Highlights: • A PEG-DE cross-linked small caliber porous silk fibroin tubular scaffold (SFTS) • PEG-DE cross-linked SF film had no inhibitory effect on DNA replication of cells. • Cells cultured on the SFTS showed good morphology, cell viability and proliferative activity. • SFTS would be beneficial to endothelialization. • SFTS had good suture retention strength and flexibility

  8. Functional analyses in the milkweed bug Oncopeltus fasciatus (Hemiptera) support a role for Wnt signaling in body segmentation but not appendage development.

    Science.gov (United States)

    Angelini, David R; Kaufman, Thomas C

    2005-07-15

    Specification of the proximal-distal (PD) axis of insect appendages is best understood in Drosophila melanogaster, where conserved signaling molecules encoded by the genes decapentaplegic (dpp) and wingless (wg) play key roles. However, the development of appendages from imaginal discs as in Drosophila is a derived state, while more basal insects produce appendages from embryonic limb buds. Therefore, the universality of the Drosophila limb PD axis specification mechanism has been debated since dpp expression in more basal insect species differs dramatically from Drosophila. Here, we test the function of Wnt signaling in the development of the milkweed bug Oncopeltus fasciatus, a species with the basal state of appendage development from limb buds. RNA interference of wg and pangolin (pan) produce defects in the germband and eyes, but not in the appendages. Distal-less and dachshund, two genes regulated by Wg signaling in Drosophila and expressed in specific PD domains along the limbs of both species, are expressed normally in the limbs of pan-depleted Oncopeltus embryos. Despite these apparently paradoxical results, Armadillo protein, the transducer of Wnt signaling, does not accumulate properly in the nuclei of cells in the legs of pan-depleted embryos. In contrast, engrailed RNAi in Oncopeltus produces cuticular and appendage defects similar to Drosophila. Therefore, our data suggest that Wg signaling is functionally conserved in the development of the germband, while it is not essential in the specification of the limb PD axis in Oncopeltus and perhaps basal insects.

  9. Scaffolding in Assisted Instruction

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available On-The-Job Training, developed as direct instruction, is one of the earliest forms of training. This method is still widely in use today because it requires only a person who knows how to do the task, and the tools the person uses to do the task. This paper is intended to be a study of the methods used in education in Knowledge Society, with more specific aspects in training the trainers; as a result of this approach, it promotes scaffolding in assisted instruction as a reflection of the digital age for the learning process. Training the trainers in old environment with default techniques and designing the learning process in assisted instruction, as an application of the Vygotskian concept of the zone of proximal development (ZPD to the area of computer literacy for the younger users, generate diversity in educational communities and requires standards for technology infrastructure, standards for the content, developed as a concepts map, and applications for personalized in-struction, based on ZPD theory.

  10. An early Late Triassic long-necked reptile with a bony pectoral shield and gracile appendages

    Directory of Open Access Journals (Sweden)

    Jerzy Dzik

    2016-12-01

    Full Text Available Several partially articulated specimens and numerous isolated bones of Ozimek volans gen. et sp. nov., from the late Carnian lacustrine deposits exposed at Krasiejów in southern Poland, enable a reconstruction of most of the skeleton. The unique character of the animal is its enlarged plate-like coracoids presumably fused with sterna. Other aspects of the skeleton seem to be comparable to those of the only known specimen of Sharovipteryx mirabilis from the latest Middle Triassic of Kyrgyzstan, which supports interpretation of both forms as protorosaurians. One may expect that the pectoral girdle of S. mirabilis, probably covered by the rock matrix in its only specimen, was similar to that of O. volans gen. et sp. nov. The Krasiejów material shows sharp teeth, low crescent scapula, three sacrals in a generalized pelvis (two of the sacrals being in contact with the ilium and curved robust metatarsal of the fifth digit in the pes, which are unknown in Sharovipteryx. Other traits are plesiomorphic and, except for the pelvic girdle and extreme elongation of appendages, do not allow to identify any close connection of the sharovipterygids within the Triassic protorosaurians.

  11. “High-Throughput” Evaluation of Polymer-Supported Triazolic Appendages for Metallic Cations Extraction

    Directory of Open Access Journals (Sweden)

    Riadh Slimi

    2015-03-01

    Full Text Available The aim of this work was to find and use a low-cost high-throughput method for a quick primary evaluation of several metal extraction by substituted piperazines appendages as chelatants grafted onto Merrifield polymer using click-chemistry by the copper (I-catalyzed Huisgen’s reaction (CuAAC The polymers were tested for their efficiency to remove various metal ions from neutral aqueous solutions (13 cations studied: Li+, Na+, K+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Cd2+, Ba2+, Ce3+, Hg+ and Pb2+ using the simple conductimetric measurement method. The polymers were found to extract all metals with low efficiencies ≤40%, except for Fe3+ and Hg+, and sometimes Pb2+. Some polymers exhibited a selectively for K+, Cd2+ and Ba2+, with good efficiencies. The values obtained here using less polymer, and a faster method, are in fair correspondence (average difference ±16% with another published evaluation by atomic absorption spectroscopy (AAS.

  12. A novel device for the occlusion of left atrial appendage: an experimental study in canine models

    International Nuclear Information System (INIS)

    Yang Zhihong; Qin Yongwen; Wu Hong; Hu Jianqiang; Wang Shengqiang; Ding Zhongru; Liu Zongjun

    2011-01-01

    Objective: To evaluate the feasibility, safety and biocompatibility of a novel device designed by the authors for the occlusion of left atrial appendage (LAA) in canine models. Methods: The occlusion of LAA was performed in 20 experimental dogs by using a novel LAA occluder, which was delivered to the LAA through a transseptal catheter. During the period of 2 weeks to 6 months after the procedure, the dogs were kept under observation for the device healing, migration, perforation and the formation of thrombus. Both scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to examine the endothelial growth on the surface of the occluder and the structure of the endothelial cells. Results: Of the total 20 dogs, the novel device was successfully implanted in 14. The LAA was occluded completely in 13 dogs. No mobile thrombi caused by the implantation procedure were observed. Endothelialization of the atrium-facing surface was observed at one month after the procedure, and the surface was completely covered with endothelial cells at 3 months after the treatment, which was confirmed by gross, histological and SEM examinations. TEM examination showed that the structure of endothelial cells, the mitochondrion and sarcomere of atrial cardiocyte were all normal. Gross and light microscopic examination of the kidney, lung spleen and liver showed that there was no evidence of embolism or infarction. Conclusion: The novel device is safe and feasible for the occlusion of the LAA in experimental dogs. Further study is needed to observe its long-term safety. (authors)

  13. Velocity encoded cardiovascular magnetic resonance to assess left atrial appendage emptying

    Directory of Open Access Journals (Sweden)

    Muellerleile Kai

    2012-06-01

    Full Text Available Abstract Background The presence of impaired left atrial appendage (LAA function identifies patients who are prone to thrombus formation in the LAA and therefore being at high risk for subsequent cardioembolic stroke. LAA function is typically assessed by measurements of LAA emptying velocities using transesophageal echocardiography (TEE in clinical routine. This study aimed at evaluating the feasibility of assessing LAA emptying by velocity encoded (VENC cardiovascular magnetic resonance (CMR. Methods This study included 30 patients with sinus rhythm (n = 18 or atrial fibrillation (n = 12. VENC-CMR velocity measurements were performed perpendicular to the orifice of the LAA. Peak velocities were measured of passive diastolic LAA emptying (e-wave in all patients. Peak velocities of active, late-diastolic LAA emptying (a-wave were assessed in patients with sinus rhythm. Correlation and agreement was analyzed between VENC-CMR and TEE measurements of e- and a-wave peak velocities. Results A significant correlation and good agreement was found between VENC-CMR and TEE measurements of maximal e-wave velocities (r = 0.61, P  Conclusions The assessment of active and passive LAA emptying by VENC-CMR is feasible. Further evaluation is required of potential future clinical applications such as risk stratification for cardioembolic stroke.

  14. Neuronal Networks on Nanocellulose Scaffolds.

    Science.gov (United States)

    Jonsson, Malin; Brackmann, Christian; Puchades, Maja; Brattås, Karoline; Ewing, Andrew; Gatenholm, Paul; Enejder, Annika

    2015-11-01

    Proliferation, integration, and neurite extension of PC12 cells, a widely used culture model for cholinergic neurons, were studied in nanocellulose scaffolds biosynthesized by Gluconacetobacter xylinus to allow a three-dimensional (3D) extension of neurites better mimicking neuronal networks in tissue. The interaction with control scaffolds was compared with cationized nanocellulose (trimethyl ammonium betahydroxy propyl [TMAHP] cellulose) to investigate the impact of surface charges on the cell interaction mechanisms. Furthermore, coatings with extracellular matrix proteins (collagen, fibronectin, and laminin) were investigated to determine the importance of integrin-mediated cell attachment. Cell proliferation was evaluated by a cellular proliferation assay, while cell integration and neurite propagation were studied by simultaneous label-free Coherent anti-Stokes Raman Scattering and second harmonic generation microscopy, providing 3D images of PC12 cells and arrangement of nanocellulose fibrils, respectively. Cell attachment and proliferation were enhanced by TMAHP modification, but not by protein coating. Protein coating instead promoted active interaction between the cells and the scaffold, hence lateral cell migration and integration. Irrespective of surface modification, deepest cell integration measured was one to two cell layers, whereas neurites have a capacity to integrate deeper than the cell bodies in the scaffold due to their fine dimensions and amoeba-like migration pattern. Neurites with lengths of >50 μm were observed, successfully connecting individual cells and cell clusters. In conclusion, TMAHP-modified nanocellulose scaffolds promote initial cellular scaffold adhesion, which combined with additional cell-scaffold treatments enables further formation of 3D neuronal networks.

  15. Decellularized Human Dental Pulp as a Scaffold for Regenerative Endodontics.

    Science.gov (United States)

    Song, J S; Takimoto, K; Jeon, M; Vadakekalam, J; Ruparel, N B; Diogenes, A

    2017-06-01

    Teeth undergo postnatal organogenesis relatively late in life and only complete full maturation a few years after the crown first erupts in the oral cavity. At this stage, development can be arrested if the tooth organ is damaged by either trauma or caries. Regenerative endodontic procedures (REPs) are a treatment alternative to conventional root canal treatment for immature teeth. These procedures rely on the transfer of apically positioned stem cells, including stem cells of the apical papilla (SCAP), into the root canal system. Although clinical success has been reported for these procedures, the predictability of expected outcomes and the organization of the newly formed tissues are affected by the lack of an available suitable scaffold that mimics the complexity of the dental pulp extracellular matrix (ECM). In this study, we evaluated 3 methods of decellularization of human dental pulp to be used as a potential autograft scaffold. Tooth slices of human healthy extracted third molars were decellularized by 3 different methods. One of the methods generated the maximum observed decellularization with minimal impact on the ECM composition and organization. Furthermore, recellularization of the scaffold supported the proliferation of SCAP throughout the scaffold with differentiation into odontoblast-like cells near the dentinal walls. Thus, this study reports that human dental pulp from healthy extracted teeth can be successfully decellularized, and the resulting scaffold supports the proliferation and differentiation of SCAP. The future application of this form of an autograft in REPs can fulfill a yet unmet need for a suitable scaffold, potentially improving clinical outcomes and ultimately promoting the survival and function of teeth with otherwise poor prognosis.

  16. Intervertebral Disc Tissue Engineering with Natural Extracellular Matrix-Derived Biphasic Composite Scaffolds.

    Directory of Open Access Journals (Sweden)

    Baoshan Xu

    Full Text Available Tissue engineering has provided an alternative therapeutic possibility for degenerative disc diseases. However, we lack an ideal scaffold for IVD tissue engineering. The goal of this study is to fabricate a novel biomimetic biphasic scaffold for IVD tissue engineering and evaluate the feasibility of developing tissue-engineered IVD in vitro and in vivo. In present study we developed a novel integrated biphasic IVD scaffold using a simple freeze-drying and cross-linking technique of pig bone matrix gelatin (BMG for the outer annulus fibrosus (AF phase and pig acellular cartilage ECM (ACECM for the inner nucleus pulposus (NP phase. Histology and SEM results indicated no residual cells remaining in the scaffold that featured an interconnected porous microstructure (pore size of AF and NP phase 401.4 ± 13.1 μm and 231.6 ± 57.2 μm, respectively. PKH26-labeled AF and NP cells were seeded into the scaffold and cultured in vitro. SEM confirmed that seeded cells could anchor onto the scaffold. Live/dead staining showed that live cells (green fluorescence were distributed in the scaffold, with no dead cells (red fluorescence being found. The cell-scaffold constructs were implanted subcutaneously into nude mice and cultured for 6 weeks in vivo. IVD-like tissue formed in nude mice as confirmed by histology. Cells in hybrid constructs originated from PKH26-labeled cells, as confirmed by in vivo fluorescence imaging system. In conclusion, the study demonstrates the feasibility of developing a tissue-engineered IVD in vivo with a BMG- and ACECM-derived integrated AF-NP biphasic scaffold. As well, PKH26 fluorescent labeling with in vivo fluorescent imaging can be used to track cells and analyse cell--scaffold constructs in vivo.

  17. Prospective randomized evaluation of the watchman left atrial appendage closure device in patients with atrial fibrillation versus long-term warfarin therapy: The PREVAIL trial.

    Science.gov (United States)

    Belgaid, Djouhar Roufeida; Khan, Zara; Zaidi, Mariam; Hobbs, Adrian

    2016-09-15

    Assessing the safety and effectiveness of left atrial appendage (LAA) (pouch found in the upper chambers of the heart) occlusion, using the Watchman device compared to long term warfarin therapy (drug that reduces clot formation), in preventing the risk of stroke in patients with atrial fibrillation (most common type of irregular heart beat). 90% of strokes in atrial fibrillation arise from clots forming in this pouch. By mechanically blocking it using the device less clots are suggested to be formed. This is an alternative to taking warfarin especially in patients who cannot take it. 50 sites in the United States enrolled 407 participants. After being randomly allocated, the device group had 269 participants and warfarin group (comparator)had 138 participants. Patients with atrial fibrillation and at high risk of stroke were randomly allocated a group after they were deemed eligible. Patients in the device group had to take warfarin and aspirin for 45days till the complete closure of the LAA. The oral anticoagulant was followed by dual antiplatelet therapy until 6months and then ASA. Patients in the warfarin group have to take it for life and were continually monitored. The study ran for 26months. The trial assessed the rate of adverse events using three endpoints: The PREVAIL trial was not designed to show superiority, but non-inferiority. It met the safety endpoint and one efficacy endpoint for the watchman device compared to long term warfarin for overall efficacy of the device. The results established that LAA occlusion is not worse than warfarin intake for the prevention of stroke more than 1week after randomization. Compared to previous trials, the safety of the device has also improved. LAA occlusion is a reasonable alternative to chronic warfarin therapy in stroke prevention for patients with atrial fibrillation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Mechanical anisotropy of titanium scaffolds

    Directory of Open Access Journals (Sweden)

    Rüegg Jasmine

    2017-09-01

    Full Text Available The clinical performance of an implant, e.g. for the treatment of large bone defects, depends on the implant material, anchorage, surface topography and chemistry, but also on the mechanical properties, like the stiffness. The latter can be adapted by the porosity. Whereas foams show isotropic mechanical properties, digitally modelled scaffolds can be designed with anisotropic behaviour. In this study, we designed and produced 3D scaffolds based on an orthogonal architecture and studied its angle-dependent stiffness. The aim was to produce scaffolds with different orientations of the microarchitecture by selective laser melting and compare the angle-specific mechanical behaviour with an in-silico simulation. The anisotropic characteristics of open-porous implants and technical limitations of the production process were studied.

  19. A scaffold easy to decontaminate

    International Nuclear Information System (INIS)

    Mourek, D.

    1992-01-01

    The conventional scaffold used in the assembling work and in revisions of technological facilities at nuclear power plants has many drawbacks. The most serious of them are a high amount of radioactive waste arising from the decontamination (planing) of the floor timber and from the discarding of damaged irreparable parts, and a considerable corrosion of the carbon steel supporting structure after the decontamination. A detailed description is given of a novel scaffold assembly which can be decontaminated and which exhibits many assets, in particular a good mechanical resistance (also to bad weather), a lower weight, and the use of prepreg floor girders for the construction of service platforms or scaffold bridges which can readily be assembled from the pressed pieces in a modular way. (Z.S.). 4 figs., 4 refs

  20. Systematic Prediction of Scaffold Proteins Reveals New Design Principles in Scaffold-Mediated Signal Transduction

    Science.gov (United States)

    Hu, Jianfei; Neiswinger, Johnathan; Zhang, Jin; Zhu, Heng; Qian, Jiang

    2015-01-01

    Scaffold proteins play a crucial role in facilitating signal transduction in eukaryotes by bringing together multiple signaling components. In this study, we performed a systematic analysis of scaffold proteins in signal transduction by integrating protein-protein interaction and kinase-substrate relationship networks. We predicted 212 scaffold proteins that are involved in 605 distinct signaling pathways. The computational prediction was validated using a protein microarray-based approach. The predicted scaffold proteins showed several interesting characteristics, as we expected from the functionality of scaffold proteins. We found that the scaffold proteins are likely to interact with each other, which is consistent with previous finding that scaffold proteins tend to form homodimers and heterodimers. Interestingly, a single scaffold protein can be involved in multiple signaling pathways by interacting with other scaffold protein partners. Furthermore, we propose two possible regulatory mechanisms by which the activity of scaffold proteins is coordinated with their associated pathways through phosphorylation process. PMID:26393507

  1. Comparative evaluation of two methods care of the perioperative period after laparoscopic operations on uterine appendages

    Directory of Open Access Journals (Sweden)

    О. S. Lashkul

    2017-10-01

    Full Text Available Aim – тo assess the impact of the early multimodal rehabilitation concept on postoperative period after laparoscopic operations on uterine appendages. Маterials and methods. The study involved 79 patients who were randomized by envelope method in two groups. In the main group (26 patients, a protocol of early multimodal rehabilitation (ERAS was used. In the control group (53 patients, the traditional perioperative regimen was used. In both groups, laparoscopic operations were performed under general anesthesia with mechanical ventilation (propofol + fentanyl. In perioperative anesthesia NSAIDs (dexketoprofen, ketorolac, paracetamol were included. Non-invasive monitoring was performed by the «Leon» monitor (StO2, blood pressure, heart rate, capnogram, hourly diuresis was taken into account, thermometry was performed. In the postoperative period analgesia with combination with systemic administration of dexketoprofen (100–150 mg/day + ketorolac (60 mg/day + paracetamol (3000 mg/day was used. Results. The groups were homogeneous according to anamnestic (the beginning of menstruation, the number of pregnancies, childbirth, abortions, miscarriages, anthropometric and demographic characteristics, the duration of operations, blood loss and baseline values of systolic, diastolic, mean arterial pressures and heart rate. In groups the volumes of diuresis did not differ significantly (p < 0.05. Positive intraoperative hemohydrate balance in the FTS group was almost half that in the control group. When assessing pain at rest by VAS, a statistically significant difference was found at the 6 and 24 hours study stages. Nevertheless, at the study stages the pain level in the control group did not exceed 30 mm, which indicates adequate analgesia at rest. The level of cough pain in the control group exceeded the level of pain in the main group, the statistical difference was determined after 6 hours and 24 hours, but was above 30 mm, which required

  2. Interatrial septum pacing decreases atrial dyssynchrony on strain rate imaging compared with right atrial appendage pacing.

    Science.gov (United States)

    Yasuoka, Yoshinori; Abe, Haruhiko; Umekawa, Seiko; Katsuki, Keiko; Tanaka, Norio; Araki, Ryo; Imanaka, Takahiro; Matsutera, Ryo; Morisawa, Daisuke; Kitada, Hirokazu; Hattori, Susumu; Noda, Yoshiki; Adachi, Hidenori; Sasaki, Tatsuya; Miyatake, Kunio

    2011-03-01

    Interatrial septum pacing (IAS-P) decreases atrial conduction delay compared with right atrial appendage pacing (RAA-P). We evaluate the atrial contraction with strain rate of tissue Doppler imaging (TDI) during sinus activation or with IAS-P or RAA-P. Fifty-two patients with permanent pacemaker for sinus node disease were enrolled in the study. Twenty-three subjects were with IAS-P and 29 with RAA-P. The time from end-diastole to peak end-diastolic strain rate was measured and corrected with RR interval on electrocardiogram. It was defined as the time from end-diastole to peak end-diastolic strain rate (TSRc), and the balance between maximum and minimum TSRc at three sites (ΔTSRc) was compared during sinus activation and with pacing rhythm in each group. There were no significant differences observed in general characteristics and standard echocardiographic parameters except the duration of pacing P wave between the two groups. The duration was significantly shorter in the IAS-P group compared with the RAA-P group (95 ± 34 vs 138 ± 41; P = 0.001). TSRc was significantly different between sinus activation and pacing rhythm (36.3 ± 35.7 vs 61.6 ± 36.3; P = 0.003) in the RAA-P group, whereas no significant differences were observed in the IAS-P group (25.4 ± 12.1 vs 27.7 ± 14.7; NS). During the follow-up (mean 2.4 ± 0.7 years), the incidence of paroxysmal atrial fibrillation (AF) conversion to permanent AF was not significantly different between the two groups. IAS-P decreased the contraction delay on atrial TDI compared to RAA-P; however, it did not contribute to the reduction of AF incidence in the present study. ©2010, The Authors. Journal compilation ©2010 Wiley Periodicals, Inc.

  3. Left atrial appendage: morphology and function in patients with paroxysmal and persistent atrial fibrillation.

    Science.gov (United States)

    Park, Hwan-Cheol; Shin, Jinho; Ban, Ji-Eun; Choi, Jong-Il; Park, Sang-Weon; Kim, Young-Hoon

    2013-04-01

    The anatomical and functional characteristics of the left atrial appendage (LAA) and its relationships with anatomical remodeling and ischemic stroke in patients with atrial fibrillation (AF) have not been clearly established. The purpose of this study was to determine whether functional and morphological features of the LAA independently predict clinical outcome and stroke in patients with AF who underwent catheter ablation (CA). Two hundred sixty-four patients with AF, including 176 with paroxysmal AF (PAF, 54.0 ± 11.4 years old, M:F = 138:38) and 88 with persistent AF (PeAF, 56.4 ± 9.6 years old, M:F = 74:14) were studied. Of these patients, 31 (11.7 %) had a history of stroke/TIA (transient ischemic attack). The LA and LAA volumes were 124.0 ± 42.4 and 24.9 ± 4.3 ml in PeAF, these values were greater than those in PAF (81.2 ± 24.8 ml and 21.2 ± 5.1 ml, P stroke, stroke patients had larger LA volume (106.9 ± 23.0 vs. 94.0 ± 38.9 ml, P = 0.004) and had lower LAA EF (50.0 ± 11.0 vs. 65.7 ± 13.4 %, P stroke were age (P = 0.002) and LAA EF (P stroke/TIA and recurrence of AF after CA in paroxysmal AF patients. Further large scaled prospective study is required for validation.

  4. Left atrial appendage morphology in patients with suspected cardiogenic stroke without known atrial fibrillation.

    Directory of Open Access Journals (Sweden)

    Miika Korhonen

    Full Text Available The left atrial appendage (LAA is the typical origin for intracardiac thrombus formation. Whether LAA morphology is associated with increased stroke/TIA risk is controversial and, if it does, which morphological type most predisposes to thrombus formation. We assessed LAA morphology in stroke patients with cryptogenic or suspected cardiogenic etiology and in age- and gender-matched healthy controls. LAA morphology and volume were analyzed by cardiac computed tomography in 111 patients (74 males; mean age 60 ± 11 years with acute ischemic stroke of cryptogenic or suspected cardiogenic etiology other than known atrial fibrillation (AF. A subgroup of 40 patients was compared to an age- and gender-matched control group of 40 healthy individuals (21 males in each; mean age 54 ± 9 years. LAA was classified into four morphology types (Cactus, ChickenWing, WindSock, CauliFlower modified with a quantitative qualifier. The proportions of LAA morphology types in the main stroke group, matched stroke subgroup, and control group were as follows: Cactus (9.0%, 5.0%, 20.0%, ChickenWing (23.4%, 37.5%, 10.0%, WindSock (47.7%, 35.0%, 67.5%, and CauliFlower (19.8%, 22.5%, 2.5%. The distribution of morphology types differed significantly (P<0.001 between the matched stroke subgroup and control group. The proportion of single-lobed LAA was significantly higher (P<0.001 in the matched stroke subgroup (55% than the control group (6%. LAA volumes were significantly larger (P<0.001 in both stroke study groups compared to controls patients. To conclude, LAA morphology differed significantly between stroke patients and controls, and single-lobed LAAs were overrepresented and LAA volume was larger in patients with acute ischemic stroke of cryptogenic or suspected cardiogenic etiology.

  5. Left atrial appendage obliteration in atrial fibrillation patients undergoing bioprosthetic mitral valve replacement.

    Science.gov (United States)

    Min, X P; Zhu, T Y; Han, J; Li, Y; Meng, X

    2016-02-01

    Left atrial appendage (LAA) obliteration is a proven stroke-preventive measure for patients with nonvalvular atrial fibrillation (AF). However, the efficacy of LAA obliteration for patients with AF after bioprosthetic mitral valve replacement (MVR) remains unclear. This study aimed to estimate the efficacy of LAA obliteration in preventing embolism and to investigate the predictors of thromboembolism after bioprosthetic MVR. We retrospectively studied 173 AF subjects with bioprosthetic MVR; among them, 81 subjects underwent LAA obliteration using an endocardial running suture method. The main outcome measure was the occurrence of thrombosis events (TEs). The mean follow-up time was 40 ± 17 months. AF rhythm was observed in 136 patients postoperatively. The incidence rate of TEs was 13.97 % for postoperative AF subjects; a dilated left atrium (LA; > 49.5 mm) was identified as an independent risk factor of TEs (OR = 10.619, 95 % CI = 2.754-40.94, p = 0.001). For postoperative AF patients with or without LAA, the incidence rate of TEs was 15.8 % (9/57) and 12.7 % (10/79; p = 0.603), respectively. The incidence rate of TEs was 2.7 % (1/36) and 4.2 % (2/48) for the subgroup patients with a left atrial diameter of  49.5 mm (p = 0.346). Surgical LAA obliteration in patients with valvular AF undergoing bioprosthetic MVR did not reduce TEs, even when the CHA2DS2-VASc score (a score for estimating the risk of stroke in AF) was ≥ 2 points.

  6. Impact of scaffold micro and macro architecture on Schwann cell proliferation under dynamic conditions in a rotating wall vessel bioreactor

    International Nuclear Information System (INIS)

    Valmikinathan, Chandra M.; Hoffman, John; Yu, Xiaojun

    2011-01-01

    Over the last decade tissue engineering has emerged as a powerful alternative to regenerate lost tissues owing to trauma or tumor. Evidence shows that Schwann cell containing scaffolds have improved performance in vivo as compared to scaffolds that depend on cellularization post implantation. However, owing to limited supply of cells from the patients themselves, several approaches have been taken to enhance cell proliferation rates to produce complete and uniform cellularization of scaffolds. The most common approach is the application of a bioreactor to enhance cell proliferation rate and therefore reduce the time needed to obtain sufficiently significant number of glial cells, prior to implantation. In this study, we show the application of a rotating wall bioreactor system for studying Schwann cell proliferation on nanofibrous spiral shaped scaffolds, prepared by solvent casting and salt leaching techniques. The scaffolds were fabricated from polycaprolactone (PCL), which has ideal mechanical properties and upon degradation does not produce acidic byproducts. The spiral scaffolds were coated with aligned or random nanofibers, produced by electrospinning, to provide a substrate that mimics the native extracellular matrix and the essential contact guidance cues. At the 4 day time point, an enhanced rate of cell proliferation was observed on the open structured nanofibrous spiral scaffolds in a rotating wall bioreactor, as compared to static culture conditions. However, the cell proliferation rate on the other contemporary scaffolds architectures such as the tubular and cylindrical scaffolds show reduced cell proliferation in the bioreactor as compared to static conditions, at the same time point. Moreover, the rotating wall bioreactor does not alter the orientation or the phenotype of the Schwann cells on the aligned nanofiber containing scaffolds, wherein, the cells remain aligned along the length of the scaffolds. Therefore, these open structured spiral

  7. A practice scaffolding interactive platform

    DEFF Research Database (Denmark)

    Bundsgaard, Jeppe

    2009-01-01

    A Practice Scaffolding Interactive Platform (PracSIP) is a social learning platform which supports students in collaborative project based learning by simulating a professional practice. A PracSIP puts the core tools of the simulated practice at the students' disposal, it organizes collaboration...

  8. Problem Solving, Scaffolding and Learning

    Science.gov (United States)

    Lin, Shih-Yin

    2012-01-01

    Helping students to construct robust understanding of physics concepts and develop good solving skills is a central goal in many physics classrooms. This thesis examine students' problem solving abilities from different perspectives and explores strategies to scaffold students' learning. In studies involving analogical problem solving…

  9. A computational and cellular solids approach to the stiffness-based design of bone scaffolds.

    Science.gov (United States)

    Norato, J A; Wagoner Johnson, A J

    2011-09-01

    We derive a cellular solids approach to the design of bone scaffolds for stiffness and pore size. Specifically, we focus on scaffolds made of stacked, alternating, orthogonal layers of hydroxyapatite rods, such as those obtained via micro-robotic deposition, and aim to determine the rod diameter, spacing and overlap required to obtain specified elastic moduli and pore size. To validate and calibrate the cellular solids model, we employ a finite element model and determine the effective scaffold moduli via numerical homogenization. In order to perform an efficient, automated execution of the numerical studies, we employ a geometry projection method so that analyses corresponding to different scaffold dimensions can be performed on a fixed, non-conforming mesh. Based on the developed model, we provide design charts to aid in the selection of rod diameter, spacing and overlap to be used in the robotic deposition to attain desired elastic moduli and pore size.

  10. Cartilage constructs from human cord blood stem cells seeded in structurally-graded polycaprolactone scaffolds

    DEFF Research Database (Denmark)

    Munir, Samir; Koch, Thomas Gadegaard; Foldager, Casper Bindzus

    Cartilage is an avascular tissue incapable of regeneration. Current treatment modalities for joint cartilage injuries are inefficient in regenerating hyaline cartilage and often leads to the formation of fibrocartilage with undesirable mechanical properties. There is an increasing interest...... in investigating alternative treatments such as tissue engineering, which combines stem cells with scaffolds to produce cartilage in vitro for subsequent transplant. Previous studies have shown that chondrogenesis of induced stem cells is influenced by various growth factors, oxygen tensions and mechanical...... this novel SGS-PCL scaffold supports the chondrogenic differentiation of MLPCs will be interesting to evaluate since this scaffold possesses mechanical properties absent from other “soft” scaffolds currently being investigated for cartilage regeneration and implantation....

  11. Benzimidazoles: an ideal privileged drug scaffold for the design of multitargeted anti-inflammatory ligands.

    Science.gov (United States)

    Kaur, Gaganpreet; Kaur, Maninder; Silakari, Om

    2014-01-01

    The recent research area endeavors to discover ultimate multi-target ligands, an increasingly feasible and attractive alternative to existing mono-targeted drugs for treatment of complex, multi-factorial inflammation process which underlays plethora of debilitated health conditions. In order to improvise this option, exploration of relevant chemical core scaffold will be an utmost need. Privileged benzimidazole scaffold being historically versatile structural motif could offer a viable starting point in the search for novel multi-target ligands against multi-factorial inflammation process since, when appropriately substituted, it can selectively modulate diverse receptors, pathways and enzymes associated with the pathogenesis of inflammation. Despite this remarkable capability, the multi-target capacity of the benzimidazole scaffold remains largely unexploited. With this in focus, the present review article attempts to provide synopsis of published research to exemplify the valuable use of benzimidazole nucleus and focus on their suitability as starting scaffold to develop multi-targeted anti-inflammatory ligands.

  12. Growth on poly(L-lactic acid) porous scaffold preserves CD73 and CD90 immunophenotype markers of rat bone marrow mesenchymal stromal cells.

    Science.gov (United States)

    Zamparelli, Alessandra; Zini, Nicoletta; Cattini, Luca; Spaletta, Giulia; Dallatana, Davide; Bassi, Elena; Barbaro, Fulvio; Iafisco, Michele; Mosca, Salvatore; Parrilli, Annapaola; Fini, Milena; Giardino, Roberto; Sandri, Monica; Sprio, Simone; Tampieri, Anna; Maraldi, Nadir M; Toni, Roberto

    2014-10-01

    Few data are available on the effect of biomaterials on surface antigens of mammalian bone marrow-derived, adult mesenchymal stromal cells (MSCs). Since poly(L-lactic acid) or PLLA is largely used in tissue engineering of human bones, and we are developing a reverse engineering program to prototype with biomaterials the vascular architecture of bones for their bioartificial reconstruction, both in humans and animal models, we have studied the effect of porous, flat and smooth PLLA scaffolds on the immunophenotype of in vitro grown, rat MSCs in the absence of any coating, co-polymeric enrichment, and differentiation stimuli. Similar to controls on plastic, we show that our PLLA scaffold does not modify the distribution of some surface markers in rat MSCs. In particular, the maintained expression of CD73 and CD90 on two different subpopulations (small and large cells) is consistent with their adhesion to the PLLA scaffold through specialized appendages, and to their prominent content in actin. In addition, our PLLA scaffold favours retention of the intermediate filament desmin, believed a putative marker of undifferentiated state. Finally, it preserves all rat MSCs morphotypes, and allows for their survival, adhesion to the substrate, and replication. Remarkably, a subpopulation of rat MSCs grown on our PLLA scaffold exhibited formation of membrane protrusions of uncertain significance, although in a size range and morphology compatible with either motility blebs or shedding vesicles. In summary, our PLLA scaffold has no detrimental effect on a number of features of rat MSCs, primarily the expression of CD73 and CD90.

  13. Chitin Scaffolds in Tissue Engineering

    Science.gov (United States)

    Jayakumar, Rangasamy; Chennazhi, Krishna Prasad; Srinivasan, Sowmya; Nair, Shantikumar V.; Furuike, Tetsuya; Tamura, Hiroshi

    2011-01-01

    Tissue engineering/regeneration is based on the hypothesis that healthy stem/progenitor cells either recruited or delivered to an injured site, can eventually regenerate lost or damaged tissue. Most of the researchers working in tissue engineering and regenerative technology attempt to create tissue replacements by culturing cells onto synthetic porous three-dimensional polymeric scaffolds, which is currently regarded as an ideal approach to enhance functional tissue regeneration by creating and maintaining channels that facilitate progenitor cell migration, proliferation and differentiation. The requirements that must be satisfied by such scaffolds include providing a space with the proper size, shape and porosity for tissue development and permitting cells from the surrounding tissue to migrate into the matrix. Recently, chitin scaffolds have been widely used in tissue engineering due to their non-toxic, biodegradable and biocompatible nature. The advantage of chitin as a tissue engineering biomaterial lies in that it can be easily processed into gel and scaffold forms for a variety of biomedical applications. Moreover, chitin has been shown to enhance some biological activities such as immunological, antibacterial, drug delivery and have been shown to promote better healing at a faster rate and exhibit greater compatibility with humans. This review provides an overview of the current status of tissue engineering/regenerative medicine research using chitin scaffolds for bone, cartilage and wound healing applications. We also outline the key challenges in this field and the most likely directions for future development and we hope that this review will be helpful to the researchers working in the field of tissue engineering and regenerative medicine. PMID:21673928

  14. Improved resolution of 3D printed scaffolds by shrinking.

    Science.gov (United States)

    Chia, Helena N; Wu, Benjamin M

    2015-10-01

    Three-dimensional printing (3DP) uses inkjet printheads to selectively deposit liquid binder to adjoin powder particles in a layer-by-layer fashion to create a computer-modeled 3D object. Two general approaches for 3DP have been described for biomedical applications (direct and indirect 3DP). The two approaches offer competing advantages, and both are limited by print resolution. This study describes a materials processing strategy to enhance 3DP resolution by controlled shrinking net-shape scaffolds. Briefly, porogen preforms are printed and infused with the desired monomer or polymer solution. After solidification or polymerization, the porogen is leached and the polymer is allowed to shrink by controlled drying. Heat treatment is performed to retain the dimensions against swelling forces. The main objective of this study is to determine the effects of polymer content and post-processing on dimension, microstructure, and thermomechanical properties of the scaffold. For polyethylene glycol diacrylate (PEG-DA), reducing polymer content corresponded with greater shrinkage with maximum shrinkage of ∼80 vol% at 20% vol% PEG-DA. The secondary heat treatment retains the microarchitecture and new dimensions of the scaffolds, even when the heat-treated scaffolds are immersed into water. To demonstrate shrinkage predictability, 3D components with interlocking positive and negative features were printed, processed, and fitted. This material processing strategy provides an alternative method to enhance the resolution of 3D scaffolds, for a wide range of polymers, without optimizing the binder-powder interaction physics to print each material combination. © 2014 Wiley Periodicals, Inc.

  15. Ceramic Identity Contributes to Mechanical Properties and Osteoblast Behavior on Macroporous Composite Scaffolds

    Directory of Open Access Journals (Sweden)

    J. Kent Leach

    2012-05-01

    Full Text Available Implants formed of metals, bioceramics, or polymers may provide an alternative to autografts for treating large bone defects. However, limitations to each material motivate the examination of composites to capitalize on the beneficial aspects of individual components and to address the need for conferring bioactive behavior to the polymer matrix. We hypothesized that the inclusion of different bioceramics in a ceramic-polymer composite would alter the physical properties of the implant and the cellular osteogenic response. To test this, composite scaffolds formed from poly(lactide-co-glycolide (PLG and either hydroxyapatite (HA, β-tricalcium phosphate (TCP, or bioactive glass (Bioglass 45S®, BG were fabricated, and the physical properties of each scaffold were examined. We quantified cell proliferation by DNA content, osteogenic response of human osteoblasts (NHOsts to composite scaffolds by alkaline phosphatase (ALP activity, and changes in gene expression by qPCR. Compared to BG-PLG scaffolds, HA-PLG and TCP-PLG composite scaffolds possessed greater compressive moduli. NHOsts on BG-PLG substrates exhibited higher ALP activity than those on control, HA-, or TCP-PLG scaffolds after 21 days, and cells on composites exhibited a 3-fold increase in ALP activity between 7 and 21 days versus a minimal increase on control scaffolds. Compared to cells on PLG controls, RUNX2 expression in NHOsts on composite scaffolds was lower at both 7 and 21 days, while expression of genes encoding for bone matrix proteins (COL1A1 and SPARC was higher on BG-PLG scaffolds at both time points. These data demonstrate the importance of selecting a ceramic when fabricating composites applied for bone healing.

  16. Multi-scale osteointegration and neovascularization of biphasic calcium phosphate bone scaffolds

    Science.gov (United States)

    Lan, Sheeny K.

    Bone grafts are utilized clinically to guide tissue regeneration. Autologous bone and allogeneic bone are the current clinical standards. However, there are significant limitations to their use. To address the need for alternatives to autograft and allograft, researchers have worked to develop synthetic grafts, also referred to as scaffolds. Despite extensive efforts in this area, a gap persists between basic research and clinical application. In particular, solutions for repairing critical size and/or load-bearing defects are lacking. The aim of this thesis work was to address two critical barriers preventing design of successful tissue engineering constructs for bone regeneration within critical size and/or load-bearing defects. Those barriers are insufficient osteointegration and slow neovascularization. In this work, the effects of scaffold microporosity, recombinant human bone morphogenetic protein-2 delivery and endothelial colony forming cell vasculogenesis were evaluated in the context of bone formation in vivo. This was accomplished to better understand the role of these factors in bone regeneration, which may translate to improvements in tissue engineering construct design. Biphasic calcium phosphate (BCP) scaffolds with controlled macro- and microporosity were implanted in porcine mandibular defects. Evaluation of the BCP scaffolds after in vivo implantation showed, for the first time, osteocytes embedded in bone within scaffold micropores (macro and micro length scales, leaving no "dead space" or discontinuities of bone in the defect site. The scaffold forms a living composite upon integration with regenerating bone and this has significant implications with regard to improved scaffold mechanical properties. The presence of osteocytes within scaffold micropores is an indication of scaffold osteoinductivity because a chemotactic factor must be present to induce cell migration into pores on the order of the cell diameter. It is likely that the scaffold

  17. Computational Fluid Dynamic Analysis of the Left Atrial Appendage to Predict Thrombosis Risk

    Directory of Open Access Journals (Sweden)

    Giorgia Maria Bosi

    2018-04-01

    Full Text Available During Atrial Fibrillation (AF more than 90% of the left atrial thrombi responsible for thromboembolic events originate in the left atrial appendage (LAA, a complex small sac protruding from the left atrium (LA. Current available treatments to prevent thromboembolic events are oral anticoagulation, surgical LAA exclusion, or percutaneous LAA occlusion. However, the mechanism behind thrombus formation in the LAA is poorly understood. The aim of this work is to analyse the hemodynamic behaviour in four typical LAA morphologies - “Chicken wing”, “Cactus”, “Windsock” and “Cauliflower” - to identify potential relationships between the different shapes and the risk of thrombotic events. Computerised tomography (CT images from four patients with no LA pathology were segmented to derive the 3D anatomical shape of LAA and LA. Computational Fluid Dynamic (CFD analyses based on the patient-specific anatomies were carried out imposing both healthy and AF flow conditions. Velocity and shear strain rate (SSR were analysed for all cases. Residence time in the different LAA regions was estimated with a virtual contrast agent washing out. CFD results indicate that both velocity and SSR decrease along the LAA, from the ostium to the tip, at each instant in the cardiac cycle, thus making the LAA tip more prone to fluid stagnation, and therefore to thrombus formation. Velocity and SSR also decrease from normal to AF conditions. After four cardiac cycles, the lowest washout of contrast agent was observed for the Cauliflower morphology (3.27% of residual contrast in AF, and the highest for the Windsock (0.56% of residual contrast in AF. This suggests that the former is expected to be associated with a higher risk of thrombosis, in agreement with clinical reports in the literature. The presented computational models highlight the major role played by the LAA morphology on the hemodynamics, both in normal and AF conditions, revealing the potential

  18. Computed tomography measurement of the left atrial appendage for optimal sizing of the Watchman device.

    Science.gov (United States)

    Xu, Bo; Betancor, Jorge; Sato, Kimi; Harb, Serge; Abdur Rehman, Karim; Patel, Kunal; Kumar, Arnav; Cremer, Paul C; Jaber, Wael; Rodriguez, L Leonardo; Schoenhagen, Paul; Wazni, Oussama

    Percutaneous left atrial appendage (LAA) occlusion is an emerging treatment option for patients with non-valvular atrial fibrillation who cannot tolerate oral anticoagulation. The Watchman device (Boston Scientific Corporation, Natick, MA, USA) is deployed at the ostium of the LAA, and an appropriately sized device is critical for successful occlusion. However, standardized imaging protocols for device sizing have not been established. We investigated the clinical utility of a standardized imaging protocol, with pre-procedural multi-detector cardiac computed tomography (MDCT), and intra-procedural transesophageal echocardiography (TEE), for Watchman device sizing. Patients who underwent Watchman device implantation between 2010 and 2016 at our center, and who had pre-procedural MDCT and intra-procedural TEE were included. MDCT measurements (CTmax, CTmin, CTmean), and TEE measurement (TEEmax) of the LAA ostium were determined for each case, and correlated with the final size of the Watchman device implanted. Demographic data and clinical outcomes were collected. The study included 80 patients (mean age: 75 ± 9.6 years; male: 68%; mean CHA2DS2-VASc score: 4.5 ± 1.4). CTmax of the LAA ostium correlated strongly with the final deployed Watchman device size (Spearman's rho: 0.81, p < 0.001), while TEEmax of the LAA ostium showed only moderate correlation with the final deployed Watchman device size (Spearman's rho: 0.61, p < 0.001). Implantation success rate was 100%. At a mean duration of follow-up of 197 days, there were no device-related complications (device embolization, cardiac perforation and pericardial tamponade). At follow-up, the vast majority of patients (76 patients; 95%) had either no or trivial (≤3 mm) residual peri-device leak on TEE. A standardized imaging protocol for assessment of Watchman device implantation incorporating pre-procedural MDCT and intra-procedural TEE, was associated with excellent procedural outcomes at a mean duration

  19. Left atrial appendage function in prediction of paroxysmal atrial fibrilation in patients with untreated hypertension.

    Science.gov (United States)

    Tenekecioglu, Erhan; Agca, Fahriye Vatansever; Karaagac, Kemal; Ozluk, Ozlem Arican; Peker, Tezcan; Kuzeytemiz, Mustafa; Senturk, Muhammed; Yılmaz, Mustafa

    2014-01-01

    Abstract The onset of AF results in a significant increase in mortality rates and morbidity in hypertensive patients and this rhythm disorder exposes patients to a significantly increased risk of cerebral or peripheral embolisms. Tissue Doppler imaging was found to be useful in early detection of myocardial dysfunction in several diseases. It was shown that tissue Doppler analysis of the walls of the left atrial appendage (LAA) can give accurate information about the function of the LAA in hypertensive patients. In this study, we aimed to investigate and identify the specific predictive parameters for the onset of AF in patients with hypertension with tissue Doppler imaging of LAA. We studied age and sex matched 57 untreated hypertensive patients with paroxysmal atrial fibrillation (PAF) and 27 untreated hypertensive subjects without PAF. With transthoracic echocardiography, diastolic mitral A-velocity and LA maximal volume index which reflects reservoir function of left atrium was measured, with transesophageal echocardiography, LAA emptying velocity (LAA-PW D2) and tissue Doppler contracting velocity of LAA (LAA-TDI-D2) were measured. LA maximal volume index of the groups (22.28 ± 3.59 mL/m(2) in Group 1 versus 20.37 ± 3.97 mL/m(2) in Group 2, p = 0.07) and diastolic mitral A-velocity [0.93 (0.59-1.84) m/s in patients with PAF versus 0.90 (0.62-1.76) m/s in patients without PAF, p = 0.26] was not significantly different between study groups, during TEE, LAA-PW D2 (0.31 ± 0.04 m/s in Group 1 versus 0.33 ± 0.03 m/s in Group 2, p = 0.034) and LAA-TDI-D2 (0.18 ± 0.04 m/s in Group 1 versus 0.21 ± 0.05 m/s in Group 2, p = 0.014) were significantly decreased in Group 1. In this study, we found that in hypertensive PAF patients despite normal global LA functions, LAA contracting function was deteriorated. Tissue Doppler analysis of LAA is clinically usefull approach to detect the risk of developing PAF in

  20. Percutaneous left atrial appendage occlusion: Effect of device positioning on outcome.

    Science.gov (United States)

    Wolfrum, Mathias; Attinger-Toller, Adrian; Shakir, Samera; Gloekler, Steffen; Seifert, Burkhardt; Moschovitis, Aris; Khattab, Ahmed; Maisano, Francesco; Meier, Bernhard; Nietlispach, Fabian

    2016-10-01

    The study in patients with percutaneous left atrial appendage (LAA) occlusion investigates clinical outcomes according to the position of the Amplatzer Cardiac Plug (ACP) disc. The ACP consists of a disc and an anchoring lobe. The disc is meant to cover the ostium of the LAA, but frequently retracts partially or completely into the neck of the LAA. It is not known whether a retracted disc affects outcome. Outcomes of 169 consecutive patients (age 73.1 ± 10.4 years; 76% male) with successful LAA closure were analyzed according to the position of the ACP disc: group A had complete coverage of the LAA ostium; in group B the disc prolapsed partially or completely into the LAA-neck. Transesophageal echocardiography was performed 1-6 months after ACP implantation. The safety endpoint was the composite of clinically significant pericardial effusion, device embolization, procedure-related stroke/transient ischemic attack (TIA), major bleeding, or device thrombus. The efficacy endpoint was the composite of death, neurological events (ischemic and hemorrhagic stroke, TIA), or systemic embolism during follow-up. Group A comprised 76 patients (age 73.0 ± 9.9 years; 74% male) and group B 93 patients (age 73.3 ± 10.9 years; 79% male). Mean CHA 2 DS 2 -Vasc score and HASBLED score were 4.2 ± 1.7 (group A 4.3 ± 1.6; group B 4.2 ± 1.8) and 2.9 ± 1.1 (group A 2.9 ± 1.0; group B 3.0 ± 1.2), respectively. Mean follow-up of the study population was 13.0 ± 10.4 months. Overall, the composite safety and efficacy endpoints occurred in 20 (12%) and 6 patients (4%), respectively. There was no significant difference between groups A and B in the occurrence of the safety endpoint (13% vs. 11%, P = 0.64), or the efficacy endpoint (4% vs. 3%, P = 1.0). No evidence for a difference in the occurrence of the safety and efficacy endpoint was found between patients with complete vs. incomplete ACP disc coverage of the LAA ostium. The risk of

  1. CEP128 Localizes to the Subdistal Appendages of the Mother Centriole and Regulates TGF-β/BMP Signaling at the Primary Cilium

    DEFF Research Database (Denmark)

    Mönnich, Maren; Borgeskov, Louise; Breslin, Loretta

    2018-01-01

    The centrosome is the main microtubule-organizing center in animal cells and comprises a mother and daughter centriole surrounded by pericentriolar material. During formation of primary cilia, the mother centriole transforms into a basal body that templates the ciliary axoneme. Ciliogenesis depends...... on mother centriole-specific distal appendages, whereas the role of subdistal appendages in ciliary function is unclear. Here, we identify CEP128 as a centriole subdistal appendage protein required for regulating ciliary signaling. Loss of CEP128 did not grossly affect centrosomal or ciliary structure...... but caused impaired transforming growth factor-β/bone morphogenetic protein (TGF-β/BMP) signaling in zebrafish and at the primary cilium in cultured mammalian cells. This phenotype is likely the result of defective vesicle trafficking at the cilium as ciliary localization of RAB11 was impaired upon loss...

  2. Left atrial appendage occlusion for stroke prevention in patients with atrial fibrillation: a systematic review and network meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Hanif, Hasib; Belley-Cote, Emilie P; Alotaibi, Abdullah; Dvirnik, Nazari; Neupane, Binod; Beyene, Joseph; Eikelboom, John W; Holmes, David; Whitlock, Richard P

    2018-02-01

    Atrial fibrillation (AF) is one of the leading causes of stroke. Risks associated with oral anticoagulation (OAC) limit adherence to recommended therapy. Left atrial appendage (LAA) occlusion is a treatment alternative in patients with AF. We performed a network meta-analysis (NMA) of randomized trials evaluating the efficacy of LAA occlusion compared with oral anticoagulant, antiplatelet, and placebo for stroke prevention. We also assessed the impact of LAA occlusion on mortality, major bleeding, and operative time. We searched MEDLINE, EMBASE, PubMed, and Cochrane Library for randomized trials comparing percutaneous or surgical LAA occlusion with standard of care in AF patients. Conventional meta-analysis found no difference between groups for stroke (5 trials, 1285 patients;RR 0.78, 95% CI 0.47-1.29), and a significant reduction in mortality (5 trials, 1285 patients; RR 0.71, 95% CI 0.51-0.99) favouring LAA occlusion. NMA demonstrated a trend towards reduction in stroke (OR 0.84, 95% CrI 0.47-1.55) and mortality (OR 0.69, 95% CrI 0.44-1.10) for LAA occlusion versus warfarin, but no statistically significant effect. Statistical ranking curves placed LAA occlusion as the most efficacious treatment on the outcomes of stroke and mortality when compared to warfarin, aspirin, or placebo. No significant differences between groups were seen in major bleeding or operative time for surgical trials. The overall quality of the evidence was low as assessed by GRADE. LAA occlusion appears to preserve the benefits of OAC therapy for stroke prevention in patients with AF, but the current evidence is of low quality.

  3. Righting and turning in mid-air using appendage inertia: reptile tails, analytical models and bio-inspired robots

    International Nuclear Information System (INIS)

    Jusufi, A; Full, R J; Kawano, D T; Libby, T

    2010-01-01

    Unlike the falling cat, lizards can right themselves in mid-air by a swing of their large tails in one direction causing the body to rotate in the other. Here, we developed a new three-dimensional analytical model to investigate the effectiveness of tails as inertial appendages that change body orientation. We anchored our model using the morphological parameters of the flat-tailed house gecko Hemidactylus platyurus. The degree of roll in air righting and the amount of yaw in mid-air turning directly measured in house geckos matched the model's results. Our model predicted an increase in body roll and turning as tails increase in length relative to the body. Tails that swung from a near orthogonal plane relative to the body (i.e. 0-30 0 from vertical) were the most effective at generating body roll, whereas tails operating at steeper angles (i.e. 45-60 0 ) produced only half the rotation. To further test our analytical model's predictions, we built a bio-inspired robot prototype. The robot reinforced how effective attitude control can be attained with simple movements of an inertial appendage.

  4. Righting and turning in mid-air using appendage inertia: reptile tails, analytical models and bio-inspired robots

    Energy Technology Data Exchange (ETDEWEB)

    Jusufi, A; Full, R J [Department of Integrative Biology, University of California, Berkeley, CA 94720-3140 (United States); Kawano, D T [Department of Mechanical Engineering, University of California, Berkeley, CA 94720-1740 (United States); Libby, T, E-mail: ardianj@berkeley.ed [Center for Interdisciplinary Bio-inspiration in Education and Research, University of California, Berkeley, CA 94720-3140 (United States)

    2010-12-15

    Unlike the falling cat, lizards can right themselves in mid-air by a swing of their large tails in one direction causing the body to rotate in the other. Here, we developed a new three-dimensional analytical model to investigate the effectiveness of tails as inertial appendages that change body orientation. We anchored our model using the morphological parameters of the flat-tailed house gecko Hemidactylus platyurus. The degree of roll in air righting and the amount of yaw in mid-air turning directly measured in house geckos matched the model's results. Our model predicted an increase in body roll and turning as tails increase in length relative to the body. Tails that swung from a near orthogonal plane relative to the body (i.e. 0-30{sup 0} from vertical) were the most effective at generating body roll, whereas tails operating at steeper angles (i.e. 45-60{sup 0}) produced only half the rotation. To further test our analytical model's predictions, we built a bio-inspired robot prototype. The robot reinforced how effective attitude control can be attained with simple movements of an inertial appendage.

  5. The effect of percutaneous transcatheter occlusion of left atrial appendage on left atrium and adjacent anatomic structure in canine

    International Nuclear Information System (INIS)

    Yang Zhihong; Wu Hong; Qin Yongwen; Hu Jianqiang; Ding Zhongru; Liu Zongjun; Liu Biao; Zheng Xing

    2009-01-01

    Objective: To observe the effect of percutaneous transcatheter occlusion of left atrial appendage (LAA) with a new self-manufactured LAA occluder on left atrium and adjacent anatomic structure in canine. Methods: A new self-manufactured LAA occluder was implanted into the LAA through a transseptal catheter in 20 dogs. Before and after the procedure, the experimental dogs were anaesthetized and examined by transthoracic echocardiography (TTE) to measure the diameter and the volume of the left atrium, the left superior pulmonary vein flow velocity and the left atrioventricular valve flow velocity separately. The contrast radiography of the LAA and the left coronary arteriography were performed. Results: The new LAA occluder was implanted successfully in 14 dogs. No obvious changes in the diameter and the volume of the left atrium, in left superior pulmonary vein flow velocity and in left atrioventricular valve flow velocity were found. On arteriography, left circumflex artery was normally displayed after the procedure. No migration of the occluder was seen on TTE and angiography after procedure. Conclusion: Percutaneous transcatheter occlusion of left atrial appendage with a new self-manufactured LAA occluder has no obvious effect on left atrium and adjacent anatomic structure in experimental canine, which indicates that the new-type device is a safe and feasible occluder for LAA. (authors)

  6. Bioactive polymeric scaffolds for tissue engineering

    Directory of Open Access Journals (Sweden)

    Scott Stratton

    2016-12-01

    Full Text Available A variety of engineered scaffolds have been created for tissue engineering using polymers, ceramics and their composites. Biomimicry has been adopted for majority of the three-dimensional (3D scaffold design both in terms of physicochemical properties, as well as bioactivity for superior tissue regeneration. Scaffolds fabricated via salt leaching, particle sintering, hydrogels and lithography have been successful in promoting cell growth in vitro and tissue regeneration in vivo. Scaffold systems derived from decellularization of whole organs or tissues has been popular due to their assured biocompatibility and bioactivity. Traditional scaffold fabrication techniques often failed to create intricate structures with greater resolution, not reproducible and involved multiple steps. The 3D printing technology overcome several limitations of the traditional techniques and made it easier to adopt several thermoplastics and hydrogels to create micro-nanostructured scaffolds and devices for tissue engineering and drug delivery. This review highlights scaffold fabrication methodologies with a focus on optimizing scaffold performance through the matrix pores, bioactivity and degradation rate to enable tissue regeneration. Review highlights few examples of bioactive scaffold mediated nerve, muscle, tendon/ligament and bone regeneration. Regardless of the efforts required for optimization, a shift in 3D scaffold uses from the laboratory into everyday life is expected in the near future as some of the methods discussed in this review become more streamlined.

  7. Alginate based scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Valente, J.F.A.; Valente, T.A.M. [CICS-UBI - Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal); Alves, P.; Ferreira, P. [CIEPQPF, Departamento de Engenharia Quimica, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-290 Coimbra (Portugal); Silva, A. [Centro de Ciencia e Tecnologia Aeroespaciais, Universidade da Beira Interior, Covilha (Portugal); Correia, I.J., E-mail: icorreia@ubi.pt [CICS-UBI - Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal)

    2012-12-01

    The design and production of scaffolds for bone tissue regeneration is yet unable to completely reproduce the native bone properties. In the present study new alginate microparticle and microfiber aggregated scaffolds were produced to be applied in this area of regenerative medicine. The scaffolds' mechanical properties were characterized by thermo mechanical assays. Their morphological characteristics were evaluated by isothermal nitrogen adsorption and scanning electron microscopy. The density of both types of scaffolds was determined by helium pycnometry and mercury intrusion porosimetry. Furthermore, scaffolds' cytotoxic profiles were evaluated in vitro by seeding human osteoblast cells in their presence. The results obtained showed that scaffolds have good mechanical and morphological properties compatible with their application as bone substitutes. Moreover, scaffold's biocompatibility was confirmed by the observation of cell adhesion and proliferation after 5 days of being seeded in their presence and by non-radioactive assays. - Highlights: Black-Right-Pointing-Pointer Design and production of scaffolds for bone tissue regeneration. Black-Right-Pointing-Pointer Microparticle and microfiber alginate scaffolds were produced through a particle aggregation technique; Black-Right-Pointing-Pointer Scaffolds' mechanically and biologically properties were characterized through in vitro studies;.

  8. Binary phase solid-state photopolymerization of acrylates: design, characterization and biomineralization of 3D scaffolds for tissue engineering

    Science.gov (United States)

    Maitlo, Inamullah; Ali, Safdar; Akram, Muhammad Yasir; Shehzad, Farooq Khurum; Nie, Jun

    2017-12-01

    Porous polymer scaffolds designed by the cryogel method are attractive materials for a range of tissue engineering applications. However, the use of toxic crosslinker for retaining the pore structure limits their clinical applications. In this research, acrylates (HEA/PEGDA, HEMA/PEGDA and PEGDA) were used in the low-temperature solid-state photopolymerization to produce porous scaffolds with good structural retention. The morphology, pore diameter, mineral deposition and water absorption of the scaffold were characterized by SEM and water absorption test respectively. Elemental analysis and cytotoxicity of the biomineralized scaffold were revealed by using XRD and MTT assay test. The PEGDA-derived scaffold showed good water absorption ability and a higher degree of porosity with larger pore size compared to others. XRD patterns and IR results confirmed the formation of hydroxyapatite crystals from an alternative socking process. The overall cell proliferation was excellent, where PEGDA-derived scaffold had the highest and the most uniform cell growth, while HEMA/PEGDA scaffold showed the least. These results suggest that the cell proliferation and adhesion are directly proportional to the pore size, the shape and the porosity of scaffolds.

  9. Mag-seeding of rat bone marrow stromal cells into porous hydroxyapatite scaffolds for bone tissue engineering.

    Science.gov (United States)

    Shimizu, Kazunori; Ito, Akira; Honda, Hiroyuki

    2007-09-01

    Bone tissue engineering has been investigated as an alternative strategy for autograft transplantation. In the process of tissue engineering, cell seeding into three-dimensional (3-D) scaffolds is the first step for constructing 3-D tissues. We have proposed a methodology of cell seeding into 3-D porous scaffolds using magnetic force and magnetite nanoparticles, which we term Mag-seeding. In this study, we applied this Mag-seeding technique to bone tissue engineering using bone marrow stromal cells (BMSCs) and 3-D hydroxyapatite (HA) scaffolds. BMSCs were magnetically labeled with our original magnetite cationic liposomes (MCLs) having a positive surface charge to improve adsorption to cell surface. Magnetically labeled BMSCs were seeded onto a scaffold, and a 1-T magnet was placed under the scaffold. By using Mag-seeding, the cells were successfully seeded into the internal space of scaffolds with a high cell density. The cell seeding efficiency into HA scaffolds by Mag-seeding was approximately threefold larger than that by static-seeding (conventional method, without a magnet). After a 14-d cultivation period using the osteogenic induction medium by Mag-seeding, the level of two representative osteogenic markers (alkaline phosphatase and osteocalcin) were significantly higher than those by static-seeding. These results indicated that Mag-seeding of BMSCs into HA scaffolds is an effective approach to bone tissue engineering.

  10. Antimicrobial Cu-bearing stainless steel scaffolds

    International Nuclear Information System (INIS)

    Wang, Qiang; Ren, Ling; Li, Xiaopeng; Zhang, Shuyuan; Sercombe, Timothy B.; Yang, Ke

    2016-01-01

    Copper-bearing stainless steel scaffolds with two different structures (Body Centered Cubic and Gyroid labyrinth) at two solid fractions (25% and 40%) were fabricated from both 316L powder and a mixture of 316L and elemental Cu powder using selective laser melting, and relative 316L scaffolds were served as control group. After processing, the antimicrobial testing demonstrated that the 316L-Cu scaffolds presented excellent antimicrobial activity against Escherichia coli and Staphylococcus aureus, and the cell viability assay indicated that there was no cytotoxic effect of 316L-Cu scaffolds on rat marrow mesenchymal stem cells. As such, these have the potential to reduce implant-associated infections. The Cu was also found to homogeneously distribute within the microstructure by scanning electronic microcopy. The addition of Cu would not significantly affect its strength and stiffness compared to 316L scaffold, and the stiffness of all the scaffolds (3-20GPa) is similar to that of bone and much less than that of bulk stainless steel. Consequently, fabrication of such low stiffness porous structures, especially coupled with the addition of antimicrobial Cu, may provide a new direction for medical stainless steels. - Highlights: • 316L-Cu scaffolds were fabricated by using selective laser melting (SLM). • 316L-Cu scaffolds showed satisfied antimicrobial activities. • 316L-Cu scaffolds have no cytotoxic effect on normal cells. • Other properties of 316L-Cu scaffolds were similar to 316L scaffolds. • 316L-Cu scaffolds have the potential to be used in orthopedic applications.

  11. Antimicrobial Cu-bearing stainless steel scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiang, E-mail: mfqwang@163.com [School of Stomatology, China Medical University, Shenyang 110002 (China); Ren, Ling [Institute of Metal Research, Chinese Academy of Sciences (China); Li, Xiaopeng [School of Mechanical and Chemical Engineering, The University of Western Australia (Australia); Zhang, Shuyuan [Institute of Metal Research, Chinese Academy of Sciences (China); Sercombe, Timothy B., E-mail: tim.sercombe@uwa.edu.au [School of Mechanical and Chemical Engineering, The University of Western Australia (Australia); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences (China)

    2016-11-01

    Copper-bearing stainless steel scaffolds with two different structures (Body Centered Cubic and Gyroid labyrinth) at two solid fractions (25% and 40%) were fabricated from both 316L powder and a mixture of 316L and elemental Cu powder using selective laser melting, and relative 316L scaffolds were served as control group. After processing, the antimicrobial testing demonstrated that the 316L-Cu scaffolds presented excellent antimicrobial activity against Escherichia coli and Staphylococcus aureus, and the cell viability assay indicated that there was no cytotoxic effect of 316L-Cu scaffolds on rat marrow mesenchymal stem cells. As such, these have the potential to reduce implant-associated infections. The Cu was also found to homogeneously distribute within the microstructure by scanning electronic microcopy. The addition of Cu would not significantly affect its strength and stiffness compared to 316L scaffold, and the stiffness of all the scaffolds (3-20GPa) is similar to that of bone and much less than that of bulk stainless steel. Consequently, fabrication of such low stiffness porous structures, especially coupled with the addition of antimicrobial Cu, may provide a new direction for medical stainless steels. - Highlights: • 316L-Cu scaffolds were fabricated by using selective laser melting (SLM). • 316L-Cu scaffolds showed satisfied antimicrobial activities. • 316L-Cu scaffolds have no cytotoxic effect on normal cells. • Other properties of 316L-Cu scaffolds were similar to 316L scaffolds. • 316L-Cu scaffolds have the potential to be used in orthopedic applications.

  12. Left Atrial Appendage Closure Device With Delivery System: A Health Technology Assessment

    Science.gov (United States)

    Nevis, Immaculate; Falk, Lindsey; Wells, David; Higgins, Caroline

    2017-01-01

    Background Atrial fibrillation is a common cardiac arrhythmia, and 15% to 20% of those who have experienced stroke have atrial fibrillation. Treatment options to prevent stroke in people with atrial fibrillation include pharmacological agents such as novel oral anticoagulants or nonpharmacological devices such as the left atrial appendage closure device with delivery system (LAAC device). The objectives of this health technology assessment were to assess the clinical effectiveness and cost-effectiveness of the LAAC device versus novel oral anticoagulants in patients without contraindications to oral anticoagulants and versus antiplatelet agents in patients with contraindications to oral anticoagulants. Methods We performed a systematic review and network meta-analysis. We also conducted an economic literature review, economic evaluation, and budget impact analysis to assess the cost-effectiveness and budget impact of the LAAC device compared with novel oral anticoagulants and oral antiplatelet agents (e.g., aspirin). We also spoke with patients to better understand their preferences, perspectives, and values. Results Seven randomized controlled studies met the inclusion criteria for indirect comparison. Five studies assessed the effectiveness of novel oral anticoagulants versus warfarin, and two studies compared the LAAC device with warfarin. No studies were identified that compared the LAAC device with aspirin in patients in whom oral anticoagulants were contraindicated. Using the random effects model, we found that the LAAC device was comparable to novel oral anticoagulants in reducing stroke (odds ratio [OR] 0.85; credible interval [Cr.I] 0.63–1.05). Similarly, the reduction in the risk of all-cause mortality was comparable between the LAAC device and novel oral anticoagulants (OR 0.71; Cr.I 0.49–1.22). The LAAC device was found to be superior to novel oral anticoagulants in preventing hemorrhagic stroke (OR 0.45; Cr.I 0.29–0.79), whereas novel oral

  13. Antibacterial TAP-mimic electrospun polymer scaffold: effects on P. gingivalis-infected dentin biofilm.

    Science.gov (United States)

    Albuquerque, Maria Tereza P; Evans, Joshua D; Gregory, Richard L; Valera, Marcia C; Bottino, Marco C

    2016-03-01

    This study sought to investigate, in vitro, the effects of a recently developed triple antibiotic paste (TAP)-mimic polymer nanofibrous scaffold against Porphyromonas gingivalis-infected dentin biofilm. Dentin specimens (4 × 4 × 1 mm(3)) were prepared from human canines. The specimens were sterilized, inoculated with P. gingivalis (ATCC 33277), and incubated for 1 week to allow for biofilm formation. Infected dentin specimens were exposed for 3 days to the following treatments: antibiotic-free polydioxanone scaffold (PDS, control), PDS + 25 wt% TAP [25 mg of each antibiotic (metronidazole, ciprofloxacin, and minocycline) per mL of the PDS polymer solution], or a saturated TAP-based solution (50 mg of each antibiotic per mL of saline solution). In order to serve as the negative control, infected dentin specimens were left untreated (bacteria only). To determine the antimicrobial efficacy of the TAP-mimic scaffold, a colony-forming unit (CFU) per milliliter (n = 10/group) measurement was performed. Furthermore, additional specimens (n = 2/group) were prepared to qualitatively study biofilm inhibition via scanning electron microscopy (SEM). Statistics were performed, and significance was set at the 5% level. Both the TAP-mimic scaffold and the positive control (TAP solution) led to complete bacterial elimination, differing statistically (p mimic scaffold against an established P. gingivalis-infected dentin biofilm. Collectively, the data suggest that the proposed nanofibrous scaffold might be used as an alternative to the advocated clinical gold standard (i.e., TAP) for intracanal disinfection prior to regenerative endodontics.

  14. Cell–scaffold interaction within engineered tissue

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haiping; Liu, Yuanyuan, E-mail: Yuanyuan_liu@shu.edu.cn; Jiang, Zhenglong; Chen, Weihua; Yu, Yongzhe; Hu, Qingxi

    2014-05-01

    The structure of a tissue engineering scaffold plays an important role in modulating tissue growth. A novel gelatin–chitosan (Gel–Cs) scaffold with a unique structure produced by three-dimensional printing (3DP) technology combining with vacuum freeze-drying has been developed for tissue-engineering applications. The scaffold composed of overall construction, micro-pore, surface morphology, and effective mechanical property. Such a structure meets the essential design criteria of an ideal engineered scaffold. The favorable cell–matrix interaction supports the active biocompatibility of the structure. The structure is capable of supporting cell attachment and proliferation. Cells seeded into this structure tend to maintain phenotypic shape and secreted large amounts of extracellular matrix (ECM) and the cell growth decreased the mechanical properties of scaffold. This novel biodegradable scaffold has potential applications for tissue engineering based upon its unique structure, which acts to support cell growth. - Highlights: • The scaffold is not only for providing a surface for cell residence but also for determining cell phenotype and retaining structural integrity. • The mechanical property of scaffold can be affected by activities of cell. • The scaffold provides a microenvironment for cell attachment, growth, and migration.

  15. Platelet lysate embedded scaffolds for skin regeneration.

    Science.gov (United States)

    Sandri, Giuseppina; Bonferoni, Maria Cristina; Rossi, Silvia; Ferrari, Franca; Mori, Michela; Cervio, Marila; Riva, Federica; Liakos, Ioannis; Athanassiou, Athanassia; Saporito, Francesca; Marini, Lara; Caramella, Carla

    2015-04-01

    The work presents the development of acellular scaffolds extemporaneously embedded with platelet lysate (PL), as an innovative approach in the field of tissue regeneration/reparation. PL embedded scaffolds should have a tridimensional architecture to support cell migration and growth, in order to restore skin integrity. For this reason, chondroitin sulfate (CS) was associated with sodium alginate (SA) to prepare highly porous systems. The developed scaffolds were characterized for chemical stability to γ-radiation, morphology, hydration and mechanical properties. Moreover, the capability of fibroblasts and endothelial cells to populate the scaffold was evaluated by means of proliferation test 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and confocal laser scanning microscopy study. The scaffolds, not altered by sterilization, were characterized by limited swelling and high flexibility, by foam-like structure with bubbles that formed a high surface area and irregular texture suitable for cell adhesion. Cell growth and scaffold population were evident on the bubble surface, where the cells appeared anchored to the scaffold structure. Scaffold network based on CS and SA demonstrated to be an effective support to enhance and to allow fibroblasts and endothelial cells (human umbilical vein endothelial cells, HUVEC) adhesion and proliferation. In particular, it could be hypothesized that cell adhesion was facilitated by the synergic effect of PL and CS. Although further in vivo evaluation is needed, on the basis of in vitro results, PL embedded scaffolds seem promising systems for skin wound healing.

  16. Affibody scaffolds improve sesquiterpene production in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Tippmann, Stefan; Anfelt, Josefine; David, Florian

    2017-01-01

    Enzyme fusions have been widely used as a tool in metabolic engineering to increase pathway efficiency by reducing substrate loss and accumulation of toxic intermediates. Alternatively, enzymes can be co-localized through attachment to a synthetic scaffold via non-covalent interactions. Here we d...

  17. Seamless vascularized large-diameter tubular collagen scaffolds reinforced with polymer knittings for esophageal regenerative medicine

    NARCIS (Netherlands)

    Hoogenkamp, H.R.; Koens, M.J.W.; Geutjes, P.J.; Ainoedhofer, H.; Wanten, G.J.A.; Tiemessen, D.M.; Hilborn, J.; Gupta, B.; Feitz, W.F.J.; Daamen, W.F.; Saxena, A.K.; Oosterwijk, E.; Kuppevelt, T.H. van

    2014-01-01

    A clinical demand exists for alternatives to repair the esophagus in case of congenital defects, cancer, or trauma. A seamless biocompatible off-the-shelf large-diameter tubular scaffold, which is accessible for vascularization, could set the stage for regenerative medicine of the esophagus. The use

  18. Chondrogenesis of adipose-derived adult stem cells in a poly-lactide-co-glycolide scaffold

    DEFF Research Database (Denmark)

    Mehlhorn, Alexander T; Zwingmann, Jorn; Finkenzeller, Guenter

    2009-01-01

    Adult adipose-derived stem cells (ASCs) are considered to be an alternative cell source for cell-based cartilage repair because of their multiple differentiation potentials. This article addresses the chondrogenic differentiation of ASCs seeded into poly-lactide-co-glycolide (PLGA) scaffolds after...

  19. Evaluation of egg white ovomucin-based porous scaffold as an implantable biomaterial for tissue engineering.

    Science.gov (United States)

    Carpena, Nathaniel T; Abueva, Celine D G; Padalhin, Andrew R; Lee, Byong-Taek

    2017-10-01

    Studies have shown the technological and functional properties of ovomucin (OVN) in the food-agricultural industry. But research has yet to explore its potential as an implantable biomaterial for tissue engineering and regenerative medicine. In this study we isolated OVN from egg white by isoelectric precipitation and fabricated scaffolds with tunable porosity by utilizing its foaming property. Gelatin a known biocompatible material was introduced to stabilize the foams, wherein different ratios of OVN and gelatin had a significant effect on the degree of porosity, pore size and stability of the formed hydrogels. The porous scaffolds were crosslinked with EDC resulting in stable scaffolds with prolonged degradation. Improved cell proliferation and adhesion of rat bone marrow-derived mesenchymal stem cells were observed for OVN containing scaffolds. Although, scaffolds with 75% OVN showed decrease in cell proliferation for L929 fibroblast type of cells. Further biocompatibility assessment as implant material was determined by subcutaneous implantation in rats of selected scaffold. H&E staining showed reasonable vascularization over time and little evidence of severe fibrosis at the implant site. Persistent polarization of classically activated macrophage was not observed, potentially reducing inflammatory response, and showed increased expression of alternatively activated macrophage cells that is favorable for tissue repair. Analysis of IgE levels in rat serum after implantation indicated minimal and resolvable allergic response to the OVN implants. The results demonstrate OVN as an acceptable implant scaffold that could provide new opportunities as an alternative natural biocompatible and functional biomaterial in various biomedical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2107-2117, 2017. © 2016 Wiley Periodicals, Inc.

  20. [Left atrial function and left atrial appendage flow velocity in hypertrophic cardiomyopathy: comparison of patients with and without paroxysmal atrial fibrillation].

    Science.gov (United States)

    Akasaka, K; Kawashima, E; Shiokoshi, T; Ishii, Y; Hasebe, N; Kikuchi, K

    1998-07-01

    The involvement of left atrial (LA) appendage flow velocity in reduced left atrial function was investigated in 24 patients with hypertrophic cardiomyopathy, who retained sinus rhythm at the examination. Patients were divided into 11 with a history of paroxysmal atrial fibrillation [PAf(+)] and 13 without such history [PAf(-)]. Transthoracic echocardiography was performed to evaluate LA fractional shortening (LA%FS) and mean velocity of circumferential LA fiber shortening (LAmVcf), as contractile functions of the left atrium at the phase of active atrial contraction. Transesophageal echocardiographic Doppler examination was performed in all patients to measure the LA appendage velocity. In all patients, significant positive correlations were observed between the LA appendage velocity and LA%FS (r = 0.50, p fibrillation were significantly lower than in those without (0.84 +/- 0.15 vs 1.28 +/- 0.37 circ/sec, 44 +/- 12 vs 65 +/- 20 cm/sec, both p fibrillation. These results indicate that there is a close relationship between LA appendage velocity and LA contractile function in patients with hypertrophic cardiomyopathy with paroxysmal atrial fibrilation, and these patients have potential risk of cerebral infarction.

  1. 3D Tissue Scaffold Printing On Custom Artificial Bone Applications

    Directory of Open Access Journals (Sweden)

    Betül ALDEMİR

    2015-01-01

    Full Text Available Production of defect-matching scaffolds is the most critical step in custom artificial bone applications. Three dimensional printing (3DP is one of the best techniques particularly for custom designs on artificial bone applications because of the high controllability and design independency. Our long-term aim is to implant an artificial custom bone that is cultured with patient's own mesenchymal stem cells after determining defect architecture on patient's bone by using CT-scan and printing that defect-matching 3D scaffold with appropriate nontoxic materials. In this study, preliminary results of strength and cytotoxicity measurements of 3D printed scaffolds with modified calcium sulfate compositepowder (MCSCP were presented. CAD designs were created and MCSCP were printed by a 3D printer (3DS, Visijet, PXL Core. Some samples were covered with salt solution in order to harden the samples. MCSCP and salt coated MCSCP were the two experimental groups in this study. Cytotoxicity and mechanical experiments were performed after surface examination withscanning electron microscope (SEM and light microscope. Tension tests were performed for MCSCP and salt coated MCSCP samples. The 3D scaffolds were sterilized with ethylene oxide gas sterilizer, ventilated and conditioned with DMEM (10% FBS. L929 mouse fibroblast cells were cultured on scaffolds (3 repetitive and cell viability was determined using MTT analysis. According to the mechanical results, the MCSCP group stands until average 71,305 N, while salt coated MCSCP group stands until 21,328N. Although the strength difference between two groups is statistically significant (p=0.001, Mann-Whitney U, elastic modulus is not (MCSCP=1,186Pa, salt coated MCSCP=1,169Pa, p=0.445. Cell viability (MTT analysis results on day 1, 3, and 5 demonstrated thatscaffolds hadno toxic effect to the L929 mouse fibroblast cells. Consequently, 3D printed samples with MCSCP could potentially be a strong alternative

  2. WiseScaffolder: an algorithm for the semi-automatic scaffolding of Next Generation Sequencing data.

    Science.gov (United States)

    Farrant, Gregory K; Hoebeke, Mark; Partensky, Frédéric; Andres, Gwendoline; Corre, Erwan; Garczarek, Laurence

    2015-09-03

    The sequencing depth provided by high-throughput sequencing technologies has allowed a rise in the number of de novo sequenced genomes that could potentially be closed without further sequencing. However, genome scaffolding and closure require costly human supervision that often results in genomes being published as drafts. A number of automatic scaffolders were recently released, which improved the global quality of genomes published in the last few years. Yet, none of them reach the efficiency of manual scaffolding. Here, we present an innovative semi-automatic scaffolder that additionally helps with chimerae resolution and generates valuable contig maps and outputs for manual improvement of the automatic scaffolding. This software was tested on the newly sequenced marine cyanobacterium Synechococcus sp. WH8103 as well as two reference datasets used in previous studies, Rhodobacter sphaeroides and Homo sapiens chromosome 14 (http://gage.cbcb.umd.edu/). The quality of resulting scaffolds was compared to that of three other stand-alone scaffolders: SSPACE, SOPRA and SCARPA. For all three model organisms, WiseScaffolder produced better results than other scaffolders in terms of contiguity statistics (number of genome fragments, N50, LG50, etc.) and, in the case of WH8103, the reliability of the scaffolds was confirmed by whole genome alignment against a closely related reference genome. We also propose an efficient computer-assisted strategy for manual improvement of the scaffolding, using outputs generated by WiseScaffolder, as well as for genome finishing that in our hands led to the circularization of the WH8103 genome. Altogether, WiseScaffolder proved more efficient than three other scaffolders for both prokaryotic and eukaryotic genomes and is thus likely applicable to most genome projects. The scaffolding pipeline described here should be of particular interest to biologists wishing to take advantage of the high added value of complete genomes.

  3. Alternative security

    International Nuclear Information System (INIS)

    Weston, B.H.

    1990-01-01

    This book contains the following chapters: The Military and Alternative Security: New Missions for Stable Conventional Security; Technology and Alternative Security: A Cherished Myth Expires; Law and Alternative Security: Toward a Just World Peace; Politics and Alternative Security: Toward a More Democratic, Therefore More Peaceful, World; Economics and Alternative Security: Toward a Peacekeeping International Economy; Psychology and Alternative Security: Needs, Perceptions, and Misperceptions; Religion and Alternative Security: A Prophetic Vision; and Toward Post-Nuclear Global Security: An Overview

  4. SHOP: scaffold hopping by GRID-based similarity searches

    DEFF Research Database (Denmark)

    Bergmann, Rikke; Linusson, Anna; Zamora, Ismael

    2007-01-01

    A new GRID-based method for scaffold hopping (SHOP) is presented. In a fully automatic manner, scaffolds were identified in a database based on three types of 3D-descriptors. SHOP's ability to recover scaffolds was assessed and validated by searching a database spiked with fragments of known...... scaffolds were in the 31 top-ranked scaffolds. SHOP also identified new scaffolds with substantially different chemotypes from the queries. Docking analysis indicated that the new scaffolds would have similar binding modes to those of the respective query scaffolds observed in X-ray structures...

  5. Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)–chitosan scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Zhou, Aimei; Deng, Aipeng [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yang, Yang [Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Gao, Lihu; Zhong, Zhaocai [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yang, Shulin, E-mail: yshulin@njust.edu.cn [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2015-04-01

    Pore architecture of 3D scaffolds used in tissue engineering plays a critical role in the maintenance of cell survival, proliferation and further promotion of tissue regeneration. We investigated the pore size and structure, porosity, swelling as well as cell viability of a series of recombinant human collagen-peptide–chitosan (RHCC) scaffolds fabricated by lyophilization. In this paper, freezing regime containing a final temperature of freezing (T{sub f}) and cooling rates was applied to obtain scaffolds with pore size ranging from 100 μm to 120 μm. Other protocols of RHC/chitosan suspension concentration and ratio modification were studied to produce more homogenous and appropriate structural scaffolds. The mean pore size decreased along with the decline of T{sub f} at a slow cooling rate of 0.7 °C/min; a more rapid cooling rate under 5 °C/min resulted to a smaller pore size and more homogenous microstructure. High concentration could reduce pore size and lead to thick well of scaffold, while improved the ratio of RHC, lamellar and fiber structure coexisted with cellular pores. Human umbilical vein endothelial cells (HUVECs) were seeded on these manufactured scaffolds, the cell viability represented a negative correlation to the pore size. This study provides an alternative method to fabricate 3D RHC–chitosan scaffolds with appropriate pores for potential tissue engineering. - Highlights: • Fabrication of recombinant human collagen-chitosan scaffolds by freezing drying • Influence of freeze drying protocols on lyophilized scaffolds • Pore size, microstructure, porosity, swelling and cell viability were compared. • The optimized porous scaffold is suitable for cell (HUVEC) seeding.

  6. Comparison of Acute Thrombogenicity for Metallic and Polymeric Bioabsorbable Scaffolds: Magmaris Versus Absorb in a Porcine Arteriovenous Shunt Model.

    Science.gov (United States)

    Waksman, Ron; Lipinski, Michael J; Acampado, Eduardo; Cheng, Qi; Adams, Lila; Torii, Sho; Gai, Jiaxiang; Torguson, Rebecca; Hellinga, David M; Westman, Peter C; Joner, Michael; Zumstein, Philine; Kolodgie, Frank D; Virmani, Renu

    2017-08-01

    A comparison in acute thrombogenicity between the Magmaris sirolimus-eluting bioabsorbable magnesium scaffold and the Absorb bioresorbable vascular scaffold has not been performed. This study assessed acute thrombogenicity of Magmaris compared with Absorb and the Orsiro hybrid drug-eluting stent in a porcine arteriovenous shunt model. An ex vivo porcine carotid jugular arteriovenous shunt was established and connected to SYLGARD tubing containing the Magmaris, Absorb, and Orsiro scaffolds/stents and allowed to run in the shunt for a maximum of 1 hour. Twelve shunts (2 shunt runs per pig) were run comparing the 3 scaffolds in alternating order. Nested generalized linear mixed models were used to compare variables between scaffold groups while adjusting for variability between shunt runs. Confocal fluorescent microscopy costaining CD61/CD42b demonstrated that both Magmaris (3.0%) and Orsiro (4.6%) had less platelet coverage of the total scaffold compared with Absorb (21.8%). Scanning electron microscopy demonstrated significantly less thrombus deposition to Magmaris as a percentage of the total scaffold compared with Absorb (5.0% versus 16.1%, P =0.02). Magmaris had significantly less PM-1-positive neutrophil and CD14-positive monocyte adherence compared with both Orsiro and Absorb. Orsiro had significantly less monocyte deposition compared with Absorb. Despite a similar scaffold strut thickness, the Magmaris sirolimus-eluting bioabsorbable magnesium scaffold was significantly less thrombogenic compared with the Absorb bioresorbable vascular scaffold in an ex vivo porcine arteriovenous shunt model. Further studies are needed to determine whether the reduced thrombogenicity of Magmaris will result in reductions in major cardiovascular events. © 2017 American Heart Association, Inc.

  7. Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)–chitosan scaffolds

    International Nuclear Information System (INIS)

    Zhang, Jing; Zhou, Aimei; Deng, Aipeng; Yang, Yang; Gao, Lihu; Zhong, Zhaocai; Yang, Shulin

    2015-01-01

    Pore architecture of 3D scaffolds used in tissue engineering plays a critical role in the maintenance of cell survival, proliferation and further promotion of tissue regeneration. We investigated the pore size and structure, porosity, swelling as well as cell viability of a series of recombinant human collagen-peptide–chitosan (RHCC) scaffolds fabricated by lyophilization. In this paper, freezing regime containing a final temperature of freezing (T f ) and cooling rates was applied to obtain scaffolds with pore size ranging from 100 μm to 120 μm. Other protocols of RHC/chitosan suspension concentration and ratio modification were studied to produce more homogenous and appropriate structural scaffolds. The mean pore size decreased along with the decline of T f at a slow cooling rate of 0.7 °C/min; a more rapid cooling rate under 5 °C/min resulted to a smaller pore size and more homogenous microstructure. High concentration could reduce pore size and lead to thick well of scaffold, while improved the ratio of RHC, lamellar and fiber structure coexisted with cellular pores. Human umbilical vein endothelial cells (HUVECs) were seeded on these manufactured scaffolds, the cell viability represented a negative correlation to the pore size. This study provides an alternative method to fabricate 3D RHC–chitosan scaffolds with appropriate pores for potential tissue engineering. - Highlights: • Fabrication of recombinant human collagen-chitosan scaffolds by freezing drying • Influence of freeze drying protocols on lyophilized scaffolds • Pore size, microstructure, porosity, swelling and cell viability were compared. • The optimized porous scaffold is suitable for cell (HUVEC) seeding

  8. Assessment of blood stasis in left-atrial appendage with electron-beam CT: filling delay in atrial fibrillation

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Tadashi [Dept. of Radiology, National Cardiovascular Center, Suita, Osaka (Japan); Hamada, Seiki [Dept. of Radiology, National Cardiovascular Center, Suita, Osaka (Japan); Takamiya, Makoto [Dept. of Radiology, National Cardiovascular Center, Suita, Osaka (Japan); Kuribayashi, Sachio [Dept. of Radiology, National Cardiovascular Center, Suita, Osaka (Japan); Naito, Hiroaki [Biomedical Research Center, Osaka Univ. School of Medicine, Suita (Japan)

    1994-10-01

    The left-atrial appendage (LAA) is the most frequent site of thrombus formation. The most probable reason is its anatomical structure and blood stasis. We hypothesized that peak time delay should occur in the LAA with stagnant blood flow. We measured peak time delay in LAA against left atrium with the flow-mode study of electron-beam CT for 49 patients (including 23 patients with atrial fibrillation [AF]). Volume-mode scannings were also performed to detect intracardiac thrombi. Patients with atrial fibrillation showed a larger value than those with sinus rhythm. Some AF patients with no filling of contrast media into the LAA and/or thrombus showed a larger value than the others. The value obtained by the flow-mode study might have the potential by the flow-mode study might have the potential to assess blood stasis and to predict the jeopardized state in the LAA. (orig.)

  9. Assessment of blood stasis in left-atrial appendage with electron-beam CT: filling delay in atrial fibrillation

    International Nuclear Information System (INIS)

    Nakanishi, Tadashi; Hamada, Seiki; Takamiya, Makoto; Kuribayashi, Sachio; Naito, Hiroaki

    1994-01-01

    The left-atrial appendage (LAA) is the most frequent site of thrombus formation. The most probable reason is its anatomical structure and blood stasis. We hypothesized that peak time delay should occur in the LAA with stagnant blood flow. We measured peak time delay in LAA against left atrium with the flow-mode study of electron-beam CT for 49 patients (including 23 patients with atrial fibrillation [AF]). Volume-mode scannings were also performed to detect intracardiac thrombi. Patients with atrial fibrillation showed a larger value than those with sinus rhythm. Some AF patients with no filling of contrast media into the LAA and/or thrombus showed a larger value than the others. The value obtained by the flow-mode study might have the potential by the flow-mode study might have the potential to assess blood stasis and to predict the jeopardized state in the LAA. (orig.)

  10. Locomotion Dynamics for Bio-inspired Robots with Soft Appendages: Application to Flapping Flight and Passive Swimming

    Science.gov (United States)

    Boyer, Frédéric; Porez, Mathieu; Morsli, Ferhat; Morel, Yannick

    2017-08-01

    In animal locomotion, either in fish or flying insects, the use of flexible terminal organs or appendages greatly improves the performance of locomotion (thrust and lift). In this article, we propose a general unified framework for modeling and simulating the (bio-inspired) locomotion of robots using soft organs. The proposed approach is based on the model of Mobile Multibody Systems (MMS). The distributed flexibilities are modeled according to two major approaches: the Floating Frame Approach (FFA) and the Geometrically Exact Approach (GEA). Encompassing these two approaches in the Newton-Euler modeling formalism of robotics, this article proposes a unique modeling framework suited to the fast numerical integration of the dynamics of a MMS in both the FFA and the GEA. This general framework is applied on two illustrative examples drawn from bio-inspired locomotion: the passive swimming in von Karman Vortex Street, and the hovering flight with flexible flapping wings.

  11. Left atrial appendage thrombus with resulting stroke post-RF ablation for atrial fibrillation in a patient on dabigatran.

    LENUS (Irish Health Repository)

    Lobo, R

    2015-11-01

    Dabigatran etexilate is licensed for use in prevention of deep venous thromboembolism and in prevention of stroke and systemic embolism in nonvalvular atrial fibrillation (AF). It has also been used in patients for other indications as a substitute for warfarin therapy because it requires no monitoring; one group being patients undergoing radiofrequency (RF), ablation for AF, although there have been no consensus guidelines with regards to dosage and timing of dose. We report the case of a patient with documentary evidence of left atrial appendage (LAA) thrombus formation and neurological sequelae post-RF ablation despite being on dabigatran. This case highlights the concern that periprocedural dabigatran may not provide adequate protection from development of LAA thrombus and that a standardised protocol will need to be developed and undergo large multicentre trials before dabigatran can be safely used for patients undergoing RF-ablation.

  12. Braided nanofibrous scaffold for tendon and ligament tissue engineering.

    Science.gov (United States)

    Barber, John G; Handorf, Andrew M; Allee, Tyler J; Li, Wan-Ju

    2013-06-01

    Tendon and ligament (T/L) injuries present an important clinical challenge due to their intrinsically poor healing capacity. Natural healing typically leads to the formation of scar-like tissue possessing inferior mechanical properties. Therefore, tissue engineering has gained considerable attention as a promising alternative for T/L repair. In this study, we fabricated braided nanofibrous scaffolds (BNFSs) as a potential construct for T/L tissue engineering. Scaffolds were fabricated by braiding 3, 4, or 5 aligned bundles of electrospun poly(L-lactic acid) nanofibers, thus introducing an additional degree of flexibility to alter the mechanical properties of individual scaffolds. We observed that the Young's modulus, yield stress, and ultimate stress were all increased in the 3-bundle compared to the 4- and 5-bundle BNFSs. Interestingly, acellular BNFSs mimicked the normal tri-phasic mechanical behavior of native tendon and ligament (T/L) during loading. When cultured on the BNFSs, human mesenchymal stem cells (hMSCs) adhered, aligned parallel to the length of the nanofibers, and displayed a concomitant realignment of the actin cytoskeleton. In addition, the BNFSs supported hMSC proliferation and induced an upregulation in the expression of key pluripotency genes. When cultured on BNFSs in the presence of tenogenic growth factors and stimulated with cyclic tensile strain, hMSCs differentiated into the tenogenic lineage, evidenced most notably by the significant upregulation of Scleraxis gene expression. These results demonstrate that BNFSs provide a versatile scaffold capable of supporting both stem cell expansion and differentiation for T/L tissue engineering applications.

  13. Hox genes require homothorax and extradenticle for body wall identity specification but not for appendage identity specification during metamorphosis of Tribolium castaneum.

    Science.gov (United States)

    Smith, Frank W; Jockusch, Elizabeth L

    2014-11-01

    The establishment of segment identity is a key developmental process that allows for divergence along the anteroposterior body axis in arthropods. In Drosophila, the identity of a segment is determined by the complement of Hox genes it expresses. In many contexts, Hox transcription factors require the protein products of extradenticle (exd) and homothorax (hth) as cofactors to perform their identity specification functions. In holometabolous insects, segment identity may be specified twice, during embryogenesis and metamorphosis. To glean insight into the relationship between embryonic and metamorphic segmental identity specification, we have compared these processes in the flour beetle Tribolium castaneum, which develops ventral appendages during embryogenesis that later metamorphose into adult appendages with distinct morphologies. At metamorphosis, comparisons of RNAi phenotypes indicate that Hox genes function jointly with Tc-hth and Tc-exd to specify several region-specific aspects of the adult body wall. On the other hand, Hox genes specify appendage identities along the anteroposterior axis independently of Tc-hth/Tc-exd and Tc-hth/Tc-exd specify proximal vs. distal identity within appendages independently of Hox genes during this stage. During embryogenesis, Tc-hth and Tc-exd play a broad role in the segmentation process and are required for specification of body wall identities in the thorax; however, contrasting with results from other species, we did not obtain homeotic transformations of embryonic appendages in response to Tc-hth or Tc-exd RNAi. In general, the homeotic effects of interference with the function of Hox genes and Tc-hth/Tc-exd during metamorphosis did not match predictions based on embryonic roles of these genes. Comparing metamorphic patterning in T. castaneum to embryonic and post-embryonic development in hemimetabolous insects suggests that holometabolous metamorphosis combines patterning processes of both late embryogenesis and

  14. [Stroke. are there any difference between patients with or without patent foramen ovale in left atrial appendage systolic function?].

    Science.gov (United States)

    Contreras, Alejandro E; Perrote, Federico; Concari, Ignacio; Brenna, Eduardo J; Lucero, Cecilia

    2012-01-01

    The aim of this study was to evaluate the systolic function of the left atrial appendage (LAA) in a group with and without patent foramen ovale (PFO) who suffered ischemic cerebrovascular events. Between September 2010 and October 2011, 17 patients were referred for transesophageal echocardiography (TEE) after suffering a stroke. PFO was defined as the passage of at least one bubble through atrial septum with bubble test. We compared systolic velocity in the appendage between patients with and without PFO and a control group. Were 8 women and 9 men, mean age 54.1 ± 19.5 years and 8 patients were under 55 years of age. All patients had suffered a ischemic cerebrovascular events, 41.2% had stroke, 52.9% transient ischemic attack and amaurosis fugax 5.9%. In the assessment of TEE, 11.8% had atrial septal aneurysm and 35.3% PFO. Mean LAA systolic velocity was 66.3 ± 20.3 cm / sec. There was no difference in systolic velocity of the LAA between patients with and without PFO (67.5 ± 11.8 cm / sec vs 65.7 ± 24.3 cm / sec respectively, p = 0.87). The control group of 8 patients, 5 women and 3 men, mean age 39.5 ± 18 years, had a LAA systolic velocity of 77.6 ± 28.9 cm / sec, no significant differences with ischemic patients. There were no differences in systolic function of the LAA between patients with and without PFO with ischemic cerebrovascular event.

  15. Cost-effectiveness analysis of left atrial appendage occlusion compared with pharmacological strategies for stroke prevention in atrial fibrillation.

    Science.gov (United States)

    Lee, Vivian Wing-Yan; Tsai, Ronald Bing-Ching; Chow, Ines Hang-Iao; Yan, Bryan Ping-Yen; Kaya, Mehmet Gungor; Park, Jai-Wun; Lam, Yat-Yin

    2016-08-31

    Transcatheter left atrial appendage occlusion (LAAO) is a promising therapy for stroke prophylaxis in non-valvular atrial fibrillation (NVAF) but its cost-effectiveness remains understudied. This study evaluated the cost-effectiveness of LAAO for stroke prophylaxis in NVAF. A Markov decision analytic model was used to compare the cost-effectiveness of LAAO with 7 pharmacological strategies: aspirin alone, clopidogrel plus aspirin, warfarin, dabigatran 110 mg, dabigatran 150 mg, apixaban, and rivaroxaban. Outcome measures included quality-adjusted life years (QALYs), lifetime costs and incremental cost-effectiveness ratios (ICERs). Base-case data were derived from ACTIVE, RE-LY, ARISTOTLE, ROCKET-AF, PROTECT-AF and PREVAIL trials. One-way sensitivity analysis varied by CHADS2 score, HAS-BLED score, time horizons, and LAAO costs; and probabilistic sensitivity analysis using 10,000 Monte Carlo simulations was conducted to assess parameter uncertainty. LAAO was considered cost-effective compared with aspirin, clopidogrel plus aspirin, and warfarin, with ICER of US$5,115, $2,447, and $6,298 per QALY gained, respectively. LAAO was dominant (i.e. less costly but more effective) compared to other strategies. Sensitivity analysis demonstrated favorable ICERs of LAAO against other strategies in varied CHADS2 score, HAS-BLED score, time horizons (5 to 15 years) and LAAO costs. LAAO was cost-effective in 86.24 % of 10,000 simulations using a threshold of US$50,000/QALY. Transcatheter LAAO is cost-effective for prevention of stroke in NVAF compared with 7 pharmacological strategies. The transcatheter left atrial appendage occlusion (LAAO) is considered cost-effective against the standard 7 oral pharmacological strategies including acetylsalicylic acid (ASA) alone, clopidogrel plus ASA, warfarin, dabigatran 110 mg, dabigatran 150 mg, apixaban, and rivaroxaban for stroke prophylaxis in non-valvular atrial fibrillation management.

  16. Mother Centriole Distal Appendages Mediate Centrosome Docking at the Immunological Synapse and Reveal Mechanistic Parallels with Ciliogenesis.

    Science.gov (United States)

    Stinchcombe, Jane C; Randzavola, Lyra O; Angus, Karen L; Mantell, Judith M; Verkade, Paul; Griffiths, Gillian M

    2015-12-21

    Cytotoxic T lymphocytes (CTLs) are highly effective serial killers capable of destroying virally infected and cancerous targets by polarized release from secretory lysosomes. Upon target contact, the CTL centrosome rapidly moves to the immunological synapse, focusing microtubule-directed release at this point [1-3]. Striking similarities have been noted between centrosome polarization at the synapse and basal body docking during ciliogenesis [1, 4-8], suggesting that CTL centrosomes might dock with the plasma membrane during killing, in a manner analogous to primary cilia formation [1, 4]. However, questions remain regarding the extent and function of centrosome polarization at the synapse, and recent reports have challenged its role [9, 10]. Here, we use high-resolution transmission electron microscopy (TEM) tomography analysis to show that, as in ciliogenesis, the distal appendages of the CTL mother centriole contact the plasma membrane directly during synapse formation. This is functionally important as small interfering RNA (siRNA) targeting of the distal appendage protein, Cep83, required for membrane contact during ciliogenesis [11], impairs CTL secretion. Furthermore, the regulatory proteins CP110 and Cep97, which must dissociate from the mother centriole to allow cilia formation [12], remain associated with the mother centriole in CTLs, and neither axoneme nor transition zone ciliary structures form. Moreover, complete centrosome docking can occur in proliferating CTLs with multiple centriole pairs. Thus, in CTLs, centrosomes dock transiently with the membrane, within the cell cycle and without progression into ciliogenesis. We propose that this transient centrosome docking without cilia formation is important for CTLs to deliver rapid, repeated polarized secretion directed by the centrosome. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Cell penetration to nanofibrous scaffolds

    Czech Academy of Sciences Publication Activity Database

    Rampichová, Michala; Buzgo, Matej; Chvojka, J.; Prosecká, Eva; Kofroňová, Olga; Amler, Evžen

    2014-01-01

    Roč. 8, č. 1 (2014), s. 36-41 ISSN 1933-6918 Grant - others:GA UK(CZ) 384311; GA UK(CZ) 626012; GA UK(CZ) 270513; GA UK(CZ) 330611; GA UK(CZ) 648112; GA MZd(CZ) NT12156; GA MŠk(CZ) project IPv6 Institutional support: RVO:68378041 ; RVO:61388971 Keywords : fibrous scaffold * mesenchymal stem cells * Forcespinning (R) Subject RIV: FP - Other Medical Disciplines Impact factor: 4.505, year: 2014

  18. Recombinant protein scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Werkmeister, Jerome A; Ramshaw, John A M

    2012-01-01

    New biological materials for tissue engineering are now being developed using common genetic engineering capabilities to clone and express a variety of genetic elements that allow cost-effective purification and scaffold fabrication from these recombinant proteins, peptides or from chimeric combinations of these. The field is limitless as long as the gene sequences are known. The utility is dependent on the ease, product yield and adaptability of these protein products to the biomedical field. The development of recombinant proteins as scaffolds, while still an emerging technology with respect to commercial products, is scientifically superior to current use of natural materials or synthetic polymer scaffolds, in terms of designing specific structures with desired degrees of biological complexities and motifs. In the field of tissue engineering, next generation scaffolds will be the key to directing appropriate tissue regeneration. The initial period of biodegradable synthetic scaffolds that provided shape and mechanical integrity, but no biological information, is phasing out. The era of protein scaffolds offers distinct advantages, particularly with the combination of powerful tools of molecular biology. These include, for example, the production of human proteins of uniform quality that are free of infectious agents and the ability to make suitable quantities of proteins that are found in low quantity or are hard to isolate from tissue. For the particular needs of tissue engineering scaffolds, fibrous proteins like collagens, elastin, silks and combinations of these offer further advantages of natural well-defined structural scaffolds as well as endless possibilities of controlling functionality by genetic manipulation. (topical review)

  19. Scaffolding Mathematical Modelling with a Solution Plan

    Science.gov (United States)

    Schukajlow, Stanislaw; Kolter, Jana; Blum, Werner

    2015-01-01

    In the study presented in this paper, we examined the possibility to scaffold mathematical modelling with strategies. The strategies were prompted using an instrument called "solution plan" as a scaffold. The effects of this step by step instrument on mathematical modelling competency and on self-reported strategies were tested using…

  20. Scaffolding proteins: not such innocent bystanders.

    Science.gov (United States)

    Smith, F Donelson; Scott, John D

    2013-06-17

    Sequential transfer of information from one enzyme to the next within the confines of a protein kinase scaffold enhances signal transduction. Though frequently considered to be inert organizational elements, two recent reports implicate kinase-scaffolding proteins as active participants in signal relay. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Scaffolding Proteins: Not Such Innocent Bystanders

    OpenAIRE

    Smith, F. Donelson; Scott, John D.

    2013-01-01

    Sequential transfer of information from one enzyme to the next within the confines of a protein kinase scaffold enhances signal transduction. Though frequently considered to be inert organizational elements, two recent reports implicate kinase-scaffolding proteins as active participants in signal relay.

  2. Metacognitive Scaffolding in an Innovative Learning Arrangement

    Science.gov (United States)

    Molenaar, Inge; van Boxtel, Carla A. M.; Sleegers, Peter J. C.

    2011-01-01

    This study examined the effects of metacognitive scaffolds on learning outcomes of collaborating students in an innovative learning arrangement. The triads were supported by computerized scaffolds, which were dynamically integrated into the learning process and took a structuring or problematizing form. In an experimental design the two…

  3. Teaching language teachers scaffolding professional learning

    CERN Document Server

    Maggioli, Gabriel Diaz

    2012-01-01

    Teaching Language Teachers: Scaffolding Professional Learning provides an updated view of as well as a reader-friendly introduction to the field of Teaching Teachers, with special reference to language teaching. By taking a decidedly Sociocultural perspective, the book addresses the main role of the Teacher of Teachers (ToT) as that of scaffolding the professional learning of aspiring teachers.

  4. Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)-chitosan scaffolds.

    Science.gov (United States)

    Zhang, Jing; Zhou, Aimei; Deng, Aipeng; Yang, Yang; Gao, Lihu; Zhong, Zhaocai; Yang, Shulin

    2015-04-01

    Pore architecture of 3D scaffolds used in tissue engineering plays a critical role in the maintenance of cell survival, proliferation and further promotion of tissue regeneration. We investigated the pore size and structure, porosity, swelling as well as cell viability of a series of recombinant human collagen-peptide-chitosan (RHCC) scaffolds fabricated by lyophilization. In this paper, freezing regime containing a final temperature of freezing (Tf) and cooling rates was applied to obtain scaffolds with pore size ranging from 100μm to 120μm. Other protocols of RHC/chitosan suspension concentration and ratio modification were studied to produce more homogenous and appropriate structural scaffolds. The mean pore size decreased along with the decline of Tf at a slow cooling rate of 0.7°C/min; a more rapid cooling rate under 5°C/min resulted to a smaller pore size and more homogenous microstructure. High concentration could reduce pore size and lead to thick well of scaffold, while improved the ratio of RHC, lamellar and fiber structure coexisted with cellular pores. Human umbilical vein endothelial cells (HUVECs) were seeded on these manufactured scaffolds, the cell viability represented a negative correlation to the pore size. This study provides an alternative method to fabricate 3D RHC-chitosan scaffolds with appropriate pores for potential tissue engineering. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Alternative additives; Alternative additiver

    Energy Technology Data Exchange (ETDEWEB)

    2007-08-15

    In this project a number of industrial and agricultural waste products have been characterised and evaluated in terms of alkali-getter performance. The intended use is for biomass-fired power stations aiming at reducing corrosion or slagging related problems. The following products have been obtained, characterised and evaluated: 1) Brewery draff 2) Danish de-gassed manure 3) Paper sludge 4) Moulding sand 5) Spent bleaching earth 6) Anorthosite 7) Sand 8) Clay-sludge. Most of the above alternative additive candidates are deemed unsuitable due to insufficient chemical effect and/or expensive requirements for pre-treatment (such as drying and transportation). 3 products were selected for full-scale testing: de-gassed manure, spent bleaching earth and clay slugde. The full scale tests were undertaken at the biomass-fired power stations in Koege, Slagelse and Ensted. Spent bleaching earth (SBE) and clay sludge were the only tested additive candidates that had a proven ability to react with KCl, to thereby reduce Cl-concentrations in deposits, and reduce the deposit flux to superheater tubes. Their performance was shown to nearly as good as commercial additives. De-gassed manure, however, did not evaluate positively due to inhibiting effects of Ca in the manure. Furthermore, de-gassed manure has a high concentration of heavy metals, which imposes a financial burden with regard to proper disposal of the ash by-products. Clay-sludge is a wet clay slurring, and drying and transportation of this product entails substantial costs. Spent bleaching does not require much pre-treatment and is therefore the most promising alternative additive. On the other hand, bleaching earth contains residual plant oil which means that a range of legislation relating to waste combustion comes into play. Not least a waste combustion fee of 330 DKK/tonne. For all alternative (and commercial) additives disposal costs of the increase ash by-products represents a significant cost. This is

  6. Impedance Biosensors and Deep Crater Salivary Gland Scaffolds for Tissue Engineering

    Science.gov (United States)

    Schramm, Robert A.

    thicker cobblestone-style cellular monolayer. In addition, providing shallow depressions in the nanofiber scaffold allows the salivary gland cells to experience a biomimetic substrate curvature, which further increases cell height, but not to the level of matching the height along the apico-basal vector of in vivo or 3D gels . This work endeavors to increase the depth of the depressions, in order to allow for an increase in substrate curvature and a maximization of cell height. It was also undertaken to develop an alternative method to grading the effectiveness of our scaffolds compared with one another. Analyzing protein structural localization with immunofluorescence and protein bulk concentration with western blot have some limitations. An electrochemical detection technique was developed to nondestructively assess the performance of scaffolds, specifically in inducing stronger resistance to fluid diffusion across the cell monolayer on a 2D pseudo-planar scaffold. This impedance spectroscopy technique, called trans-epithelial electrical resistance spectroscopy, requires the cells be suspended in media, with opposing electrodes above and below, generating an alternating current which drives free ions in the cell media across the scaffold membrane and cell layer, measuring the resistance that the membrane generates. Ions traverse the cell junctions preferentially, thus reporting on the junction barrier effectiveness. This method can be used to run large parallel experiments with multiple scaffold conditions, permitted that the scaffolds can be mounted within the apparatus. This research was able to eliminate once necessitated glass and polymer scaffold under layers, increasing scaffold perfusivity and allowing for a TEER analysis. Results show that salivary gland cells behave similarly on these thinned PLGA nanofiber scaffolds as on the control membrane.

  7. Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Serra, I.R.; Fradique, R.; Vallejo, M.C.S.; Correia, T.R.; Miguel, S.P.; Correia, I.J., E-mail: icorreia@ubi.pt

    2015-10-01

    Recently, bone tissue engineering emerged as a viable therapeutic alternative, comprising bone implants and new personalized scaffolds to be used in bone replacement and regeneration. In this study, biocompatible scaffolds were produced by freeze-drying, using different formulations (chitosan, chitosan/gelatin, chitosan/β-TCP and chitosan/gelatin/β-TCP) to be used as temporary templates during bone tissue regeneration. Sample characterization was performed through attenuated total reflectance-Fourier transform infrared spectroscopy, X-ray diffraction and energy dispersive spectroscopy analysis. Mechanical characterization and porosity analysis were performed through uniaxial compression test and liquid displacement method, respectively. In vitro studies were also done to evaluate the biomineralization activity and the cytotoxic profile of the scaffolds. Scanning electron and confocal microscopy analysis were used to study cell adhesion and proliferation at the scaffold surface and within their structure. Moreover, the antibacterial activity of the scaffolds was also evaluated through the agar diffusion method. Overall, the results obtained revealed that the produced scaffolds are bioactive and biocompatible, allow cell internalization and show antimicrobial activity against Staphylococcus aureus. Such, make these 3D structures as potential candidates for being used on the bone tissue regeneration, since they promote cell adhesion and proliferation and also prevent biofilm development at their surfaces, which is usually the main cause of implant failure. - Highlights: • Production of 3D scaffolds composed by chitosan/gelatin/β-TCP by freeze-drying for bone regeneration • Physicochemical characterization of the bone substitutes by SEM, FTIR, XRD and EDS • Evaluation of the cytotoxic profile and antibacterial activity of the 3D structures through in vitro assays.

  8. Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration

    International Nuclear Information System (INIS)

    Serra, I.R.; Fradique, R.; Vallejo, M.C.S.; Correia, T.R.; Miguel, S.P.; Correia, I.J.

    2015-01-01

    Recently, bone tissue engineering emerged as a viable therapeutic alternative, comprising bone implants and new personalized scaffolds to be used in bone replacement and regeneration. In this study, biocompatible scaffolds were produced by freeze-drying, using different formulations (chitosan, chitosan/gelatin, chitosan/β-TCP and chitosan/gelatin/β-TCP) to be used as temporary templates during bone tissue regeneration. Sample characterization was performed through attenuated total reflectance-Fourier transform infrared spectroscopy, X-ray diffraction and energy dispersive spectroscopy analysis. Mechanical characterization and porosity analysis were performed through uniaxial compression test and liquid displacement method, respectively. In vitro studies were also done to evaluate the biomineralization activity and the cytotoxic profile of the scaffolds. Scanning electron and confocal microscopy analysis were used to study cell adhesion and proliferation at the scaffold surface and within their structure. Moreover, the antibacterial activity of the scaffolds was also evaluated through the agar diffusion method. Overall, the results obtained revealed that the produced scaffolds are bioactive and biocompatible, allow cell internalization and show antimicrobial activity against Staphylococcus aureus. Such, make these 3D structures as potential candidates for being used on the bone tissue regeneration, since they promote cell adhesion and proliferation and also prevent biofilm development at their surfaces, which is usually the main cause of implant failure. - Highlights: • Production of 3D scaffolds composed by chitosan/gelatin/β-TCP by freeze-drying for bone regeneration • Physicochemical characterization of the bone substitutes by SEM, FTIR, XRD and EDS • Evaluation of the cytotoxic profile and antibacterial activity of the 3D structures through in vitro assays

  9. Culture & differentiation of mesenchymal stem cell into osteoblast on degradable biomedical composite scaffold: In vitro study

    Directory of Open Access Journals (Sweden)

    Krishan G Jain

    2015-01-01

    Full Text Available Background & objectives: There is a significant bone tissue loss in patients from diseases and traumatic injury. The current autograft transplantation gold standard treatment has drawbacks, namely donor site morbidity and limited supply. The field of tissue engineering has emerged with a goal to provide alternative sources for transplantations to bridge this gap between the need and lack of bone graft. The aim of this study was to prepare biocomposite scaffolds based on chitosan (CHT, polycaprolactone (PCL and hydroxyapatite (HAP by freeze drying method and to assess the role of scaffolds in spatial organization, proliferation, and osteogenic differentiation of human mesenchymal stem cells (hMSCs in vitro, in order to achieve bone graft substitutes with improved physical-chemical and biological properties. Methods: Pure chitosan (100CHT and composites (40CHT/HAP, 30CHT/HAP/PCL and 25CHT/HAP/PCL scaffolds containing 40, 30, 25 parts per hundred resin (phr filler, respectively in acetic acid were freeze dried and the porous foams were studied for physicochemical and in vitro biological properties. Results: Scanning electron microscope (SEM images of the scaffolds showed porous microstructure (20-300 μm with uniform pore distribution in all compositions. Materials were tested under compressive load in wet condition (using phosphate buffered saline at pH 7.4. The in vitro studies showed that all the scaffold compositions supported mesenchymal stem cell attachment, proliferation and differentiation as visible from SEM images, [3-(4,5-dimethylthiazole-2-yl-2,5-diphenyltetrazolium bromide] (MTT assay, alkaline phosphatase (ALP assay and quantitative reverse transcription (qRT-PCR. Interpretation & conclusions: Scaffold composition 25CHT/HAP/PCL showed better biomechanical and osteoinductive properties as evident by mechanical test and alkaline phosphatase activity and osteoblast specific gene expression studies. This study suggests that this novel

  10. Teenaged Internet Tutors' Use of Scaffolding with Older Learners

    Science.gov (United States)

    Tambaum, Tiina

    2017-01-01

    This study analyses how teenaged instructors paired with older learners make use of scaffolding. Video data were categorised according to 15 types of direct scaffolding tactics, indirect scaffolding, and unused scaffolding opportunities. The results show that a teenager who is unprepared for the role of an instructor of Internet skills for older…

  11. Titanate nanotube coatings on biodegradable photopolymer scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Beke, S., E-mail: szabolcs.beke@iit.it [Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Kőrösi, L. [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632, Pécs (Hungary); Scarpellini, A. [Department of Nanochemistry, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Anjum, F.; Brandi, F. [Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy)

    2013-05-01

    Rigid, biodegradable photopolymer scaffolds were coated with titanate nanotubes (TNTs) by using a spin-coating method. TNTs were synthesized by a hydrothermal process at 150 °C under 4.7 bar ambient pressure. The biodegradable photopolymer scaffolds were produced by mask-assisted excimer laser photocuring at 308 nm. For scaffold coating, a stable ethanolic TNT sol was prepared by a simple colloid chemical route without the use of any binding compounds or additives. Scanning electron microscopy along with elemental analysis revealed that the scaffolds were homogenously coated by TNTs. The developed TNT coating can further improve the surface geometry of fabricated scaffolds, and therefore it can further increase the cell adhesion. Highlights: ► Biodegradable scaffolds were produced by mask-assisted UV laser photocuring. ► Titanate nanotube deposition was carried out without binding compounds or additives. ► The titanate nanotube coating can further improve the surface geometry of scaffolds. ► These reproducible platforms will be of high importance for biological applications.

  12. Scaffold translation: barriers between concept and clinic.

    Science.gov (United States)

    Hollister, Scott J; Murphy, William L

    2011-12-01

    Translation of scaffold-based bone tissue engineering (BTE) therapies to clinical use remains, bluntly, a failure. This dearth of translated tissue engineering therapies (including scaffolds) remains despite 25 years of research, research funding totaling hundreds of millions of dollars, over 12,000 papers on BTE and over 2000 papers on BTE scaffolds alone in the past 10 years (PubMed search). Enabling scaffold translation requires first an understanding of the challenges, and second, addressing the complete range of these challenges. There are the obvious technical challenges of designing, manufacturing, and functionalizing scaffolds to fill the Form, Fixation, Function, and Formation needs of bone defect repair. However, these technical solutions should be targeted to specific clinical indications (e.g., mandibular defects, spine fusion, long bone defects, etc.). Further, technical solutions should also address business challenges, including the need to obtain regulatory approval, meet specific market needs, and obtain private investment to develop products, again for specific clinical indications. Finally, these business and technical challenges present a much different model than the typical research paradigm, presenting the field with philosophical challenges in terms of publishing and funding priorities that should be addressed as well. In this article, we review in detail the technical, business, and philosophical barriers of translating scaffolds from Concept to Clinic. We argue that envisioning and engineering scaffolds as modular systems with a sliding scale of complexity offers the best path to addressing these translational challenges. © Mary Ann Liebert, Inc.

  13. Inverse Opal Scaffolds and Their Biomedical Applications.

    Science.gov (United States)

    Zhang, Yu Shrike; Zhu, Chunlei; Xia, Younan

    2017-09-01

    Three-dimensional porous scaffolds play a pivotal role in tissue engineering and regenerative medicine by functioning as biomimetic substrates to manipulate cellular behaviors. While many techniques have been developed to fabricate porous scaffolds, most of them rely on stochastic processes that typically result in scaffolds with pores uncontrolled in terms of size, structure, and interconnectivity, greatly limiting their use in tissue regeneration. Inverse opal scaffolds, in contrast, possess uniform pores inheriting from the template comprised of a closely packed lattice of monodispersed microspheres. The key parameters of such scaffolds, including architecture, pore structure, porosity, and interconnectivity, can all be made uniform across the same sample and among different samples. In conjunction with a tight control over pore sizes, inverse opal scaffolds have found widespread use in biomedical applications. In this review, we provide a detailed discussion on this new class of advanced materials. After a brief introduction to their history and fabrication, we highlight the unique advantages of inverse opal scaffolds over their non-uniform counterparts. We then showcase their broad applications in tissue engineering and regenerative medicine, followed by a summary and perspective on future directions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Multilayer scaffolds in orthopaedic tissue engineering.

    Science.gov (United States)

    Atesok, Kivanc; Doral, M Nedim; Karlsson, Jon; Egol, Kenneth A; Jazrawi, Laith M; Coelho, Paulo G; Martinez, Amaury; Matsumoto, Tomoyuki; Owens, Brett D; Ochi, Mitsuo; Hurwitz, Shepard R; Atala, Anthony; Fu, Freddie H; Lu, Helen H; Rodeo, Scott A

    2016-07-01

    The purpose of this study was to summarize the recent developments in the field of tissue engineering as they relate to multilayer scaffold designs in musculoskeletal regeneration. Clinical and basic research studies that highlight the current knowledge and potential future applications of the multilayer scaffolds in orthopaedic tissue engineering were evaluated and the best evidence collected. Studies were divided into three main categories based on tissue types and interfaces for which multilayer scaffolds were used to regenerate: bone, osteochondral junction and tendon-to-bone interfaces. In vitro and in vivo studies indicate that the use of stratified scaffolds composed of multiple layers with distinct compositions for regeneration of distinct tissue types within the same scaffold and anatomic location is feasible. This emerging tissue engineering approach has potential applications in regeneration of bone defects, osteochondral lesions and tendon-to-bone interfaces with successful basic research findings that encourage clinical applications. Present data supporting the advantages of the use of multilayer scaffolds as an emerging strategy in musculoskeletal tissue engineering are promising, however, still limited. Positive impacts of the use of next generation scaffolds in orthopaedic tissue engineering can be expected in terms of decreasing the invasiveness of current grafting techniques used for reconstruction of bone and osteochondral defects, and tendon-to-bone interfaces in near future.

  15. Scaffolding With and Through Videos

    DEFF Research Database (Denmark)

    Otrel-Cass, Kathrin; Khoo, Elaine; Cowie, Bronwen

    2012-01-01

    In New Zealand and internationally claims are being made about the potential for information and communication technologies (ICTs) to transform teaching and learning. However, the theoretical underpinnings explaining the complex interplay between the content, pedagogy and technology a teacher needs...... to scaffold learning. It showcases the intricate interplay between teachers’ knowledge about content, digital video technology, and students’ learning needs based on a qualitative study of two science teachers and their students in a New Zealand primary school....... to consider must be expanded. This article explicates theoretical and practical ideas related to teachers’ application of their ICT technology, pedagogy, and content knowledge (TPACK) in science. The article unpacks the social and technological dimensions of teachers’ use of TPACK when they use digital videos...

  16. Semiotic Scaffolding in Living Systems

    DEFF Research Database (Denmark)

    Hoffmeyer, Jesper

    2008-01-01

    The apparently purposeful nature of living systems is obtained through a sophisticated network of semiotic controls whereby biochemical, physiological and behavioral processes become tuned to the needs of the system. The operation of these semiotic controls takes place and is enabled across...... a diversity of levels. Such semiotic controls may be distinguished from ordinary deterministic control mechanisms through an inbuilt anticipatory capacity based on a distinct kind of causation that I call here "semiotic causation" to denote the bringing about of changes under the guidance of interpretation...... in a local .context. Anticipation through the skilled interpretation of indicators of temporal relations in the context of a particular survival project (or life strategy) guides organismic behavior towards local ends. This network of semiotic controls establishes an enormously complex semiotic scaffolding...

  17. Incorporation of a prolyl hydroxylase inhibitor into scaffolds: a strategy for stimulating vascularization.

    Science.gov (United States)

    Sham, Adeline; Martinez, Eliana C; Beyer, Sebastian; Trau, Dieter W; Raghunath, Michael

    2015-03-01

    Clinical applications of tissue engineering are constrained by the ability of the implanted construct to invoke vascularization in adequate extent and velocity. To overcome the current limitations presented by local delivery of single angiogenic factors, we explored the incorporation of prolyl hydroxylase inhibitors (PHIs) into scaffolds as an alternative vascularization strategy. PHIs are small molecule drugs that can stabilize the alpha subunit of hypoxia-inducible factor-1 (HIF-1), a key transcription factor that regulates a variety of angiogenic mechanisms. In this study, we conjugated the PHI pyridine-2,4-dicarboxylic acid (PDCA) through amide bonds to a gelatin sponge (Gelfoam(®)). Fibroblasts cultured on PDCA-Gelfoam were able to infiltrate and proliferate in these scaffolds while secreting significantly more vascular endothelial growth factor than cells grown on Gelfoam without PDCA. Reporter cells expressing green fluorescent protein-tagged HIF-1α exhibited dose-dependent stabilization of this angiogenic transcription factor when growing within PDCA-Gelfoam constructs. Subsequently, we implanted PDCA-Gelfoam scaffolds into the perirenal fat tissue of Sprague Dawley rats for 8 days. Immunostaining of explants revealed that the PDCA-Gelfoam scaffolds were amply infiltrated by cells and promoted vascular ingrowth in a dose-dependent manner. Thus, the incorporation of PHIs into scaffolds appears to be a feasible strategy for improving vascularization in regenerative medicine applications.

  18. Improvement of cell infiltration in electrospun polycaprolactone scaffolds for the construction of vascular grafts.

    Science.gov (United States)

    Wang, Kai; Zhu, Meifeng; Li, Ting; Zheng, Wenting; Li, Li; Xu, Mian; Zhao, Qiang; Kong, Deling; Wang, Lianyong

    2014-08-01

    The less-than-ideal cell infiltration resulting from inherently small pore size limits the application of electrospinning scaffold in tissue engineering and regeneration medicine. The present study aims to develop a porogenic method which can significantly increase pore size in electrospinning scaffold and enhance cell migration. With this method, composite scaffolds consisting of poly(epsilon-caprolactone) (PCL) fibers and poly(ethylene oxide) (PEO) microparticles were prepared by simultaneously electrospinning and electrospraying. Removal of the PEO microparticles from the composites generated large pores. In vitro culture of NIH3T3 cells and in vivo subcutaneous implantation both demonstrated that the porogenic scaffolds markedly facilitated cell infiltration. With the same technique, vascular grafts with alternative dense and loose layers were prepared by turning on or off electrospraying PEO. SEM showed that there was no a clear delamination between the loose and dense layers. The mechanical strength and burst pressure of these vascular grafts could meet the requirements of vascular implantation. In conclusion, electrospinning PCL fibers with electrospraying PEO microparticles may be an effective and controllable method to increase pore size in electrospinning scaffold and provides a useful tool for the fabrication of vascular grafts that meets the need of blood vessel replacement.

  19. Fish collagen/alginate/chitooligosaccharides integrated scaffold for skin tissue regeneration application.

    Science.gov (United States)

    Chandika, Pathum; Ko, Seok-Chun; Oh, Gun-Woo; Heo, Seong-Yeong; Nguyen, Van-Tinh; Jeon, You-Jin; Lee, Bonggi; Jang, Chul Ho; Kim, GeunHyung; Park, Won Sun; Chang, Wonseok; Choi, Il-Whan; Jung, Won-Kyo

    2015-11-01

    An emerging paradigm in wound healing techniques is that a tissue-engineered skin substitute offers an alternative approach to create functional skin tissue. Here we developed a fish collagen/alginate (FCA) sponge scaffold that was functionalized by different molecular weights of chitooligosaccharides (COSs) with the use of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride as a cross-linking agent. The effects of cross-linking were analyzed by Fourier transform infrared spectroscopy. The results indicate that the homogeneous materials blending and cross-linking intensity were dependent on the molecular weights of COSs. The highly interconnected porous architecture with 160-260μm pore size and over 90% porosity and COS's MW driven swelling and retention capacity, tensile property and in vitro biodegradation behavior guaranteed the FCA/COS scaffolds for skin tissue engineering application. Further improvement of these properties enhanced the cytocompatibility of all the scaffolds, especially the scaffolds containing COSs with MW in the range of 1-3kDa (FCA/COS1) showed the best cytocompatibility. These physicochemical, mechanical, and biological properties suggest that the FCA/COS1 scaffold is a superior candidate that can be used for skin tissue regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. [Fabrication of a new composite scaffold material for delivering rifampicin and its sustained drug release in rats].

    Science.gov (United States)

    Ma, Xue-Ming; Lin, Zhen; Zhang, Jia-Wei; Sang, Chao-Hui; Qu, Dong-Bin; Jiang, Jian-Ming

    2016-03-01

    To fabricate a new composite scaffold material as an implant for sustained delivery of rifampicin and evaluate its performance of sustained drug release and biocompatibility. The composite scaffold material was prepared by loading poly(lactic-co-glycolic) acid (PLGA) microspheres that encapsulated rifampicin in a biphasic calcium composite material with a negative surface charge. The in vitro drug release characteristics of the microspheres and the composite scaffold material were evaluated; the in vivo drug release profile of the composite scaffold material implanted in a rat muscle pouch was evaluated using high-performance liquid chromatography. The biochemical parameters of the serum and liver histopathologies of the rats receiving the transplantation were observed to assess the biocompatibility of the composite scaffold material. The encapsulation efficiency and drug loading efficiency of microspheres were (56.05±5.33)% and (29.80±2.88)%, respectively. The cumulative drug release rate of the microspheres in vitro was (94.19±5.4)% at 28 days, as compared with the rate of (82.23±6.28)% of composite scaffold material. The drug-loaded composite scaffold material showed a good performance of in vivo drug release in rats, and the local drug concentration still reached 16.18±0.35 µg/g at 28 days after implantation. Implantation of the composite scaffold material resulted in transient and reversible liver injury, which was fully reparred at 28 days after the implantation. The composite scaffold material possesses a good sustained drug release capacity and a good biocompatibility, and can serve as an alternative approach to conventional antituberculous chemotherapy.

  1. Analog series-based scaffolds: computational design and exploration of a new type of molecular scaffolds for medicinal chemistry

    Science.gov (United States)

    Dimova, Dilyana; Stumpfe, Dagmar; Hu, Ye; Bajorath, Jürgen

    2016-01-01

    Aim: Computational design of and systematic search for a new type of molecular scaffolds termed analog series-based scaffolds. Materials & methods: From currently available bioactive compounds, analog series were systematically extracted, key compounds identified and new scaffolds isolated from them. Results: Using our computational approach, more than 12,000 scaffolds were extracted from bioactive compounds. Conclusion: A new scaffold definition is introduced and a computational methodology developed to systematically identify such scaffolds, yielding a large freely available scaffold knowledge base. PMID:28116132

  2. Atrial Fibrillation associated chromosome 4q25 variants are not associated with PITX2c expression in human adult left atrial appendages.

    Directory of Open Access Journals (Sweden)

    Shamone R Gore-Panter

    Full Text Available Atrial Fibrillation (AF, the most common sustained arrhythmia, has a strong genetic component, but the mechanism by which common genetic variants lead to increased AF susceptibility is unknown. Genome-wide association studies (GWAS have identified that the single nucleotide polymorphisms (SNPs most strongly associated with AF are located on chromosome 4q25 in an intergenic region distal to the PITX2 gene. Our objective was to determine whether the AF-associated SNPs on chromosome 4q25 were associated with PITX2c expression in adult human left atrial appendages. Analysis of a lone AF GWAS identified four independent AF risk SNPs at chromosome 4q25. Human adult left atrial appendage tissue was obtained from 239 subjects of European Ancestry and used for SNP analysis of genomic DNA and determination of PITX2c RNA expression levels by quantitative PCR. Subjects were divided into three groups based on their history of AF and pre-operative rhythm. AF rhythm subjects had higher PITX2c expression than those with history of AF but in sinus rhythm. PITX2c expression was not associated with the AF risk SNPs in human adult left atrial appendages in all subjects combined or in each of the three subgroups. However, we identified seven SNPs modestly associated with PITX2c expression located in the introns of the ENPEP gene, ∼54 kb proximal to PITX2. PITX2c expression in human adult left atrial appendages is not associated with the chromosome 4q25 AF risk SNPs; thus, the mechanism by which these SNPs are associated with AF remains enigmatic.

  3. Left atrial accessory appendages, diverticula, and left-sided septal pouch in multi-slice computed tomography. Association with atrial fibrillation and cerebrovascular accidents.

    Science.gov (United States)

    Hołda, Mateusz K; Koziej, Mateusz; Wszołek, Karolina; Pawlik, Wiesław; Krawczyk-Ożóg, Agata; Sorysz, Danuta; Łoboda, Piotr; Kuźma, Katarzyna; Kuniewicz, Marcin; Lelakowski, Jacek; Dudek, Dariusz; Klimek-Piotrowska, Wiesława

    2017-10-01

    The aim of this study is to provide a morphometric description of the left-sided septal pouch (LSSP), left atrial accessory appendages, and diverticula using cardiac multi-slice computed tomography (MSCT) and to compare results between patient subgroups. Two hundred and ninety four patients (42.9% females) with a mean of 69.4±13.1years of age were investigated using MSCT. The presence of the LSSP, left atrial accessory appendages, and diverticula was evaluated. Multiple logistic regression analysis was performed to check whether the presence of additional left atrial structures is associated with increased risk of atrial fibrillation and cerebrovascular accidents. At least one additional left atrial structure was present in 51.7% of patients. A single LSSP, left atrial diverticulum, and accessory appendage were present in 35.7%, 16.0%, and 4.1% of patients, respectively. After adjusting for other risk factors via multiple logistic regression, patients with LSSP are more likely to have atrial fibrillation (OR=2.00, 95% CI=1.14-3.48, p=0.01). The presence of a LSSP was found to be associated with an increased risk of transient ischemic attack using multiple logistic regression analysis after adjustment for other risk factors (OR=3.88, 95% CI=1.10-13.69, p=0.03). In conclusion LSSPs, accessory appendages, and diverticula are highly prevalent anatomic structures within the left atrium, which could be easily identified by MSCT. The presence of LSSP is associated with increased risk for atrial fibrillation and transient ischemic attack. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Comprehensive assessment of electrospun scaffolds hemocompatibility

    Czech Academy of Sciences Publication Activity Database

    Horáková, J.; Mikeš, P.; Šaman, A.; Švarcová, T.; Jenčová, V.; Suchý, Tomáš; Heczková, B.; Jakubková, Š.; Jiroušová, J.; Procházková, R.

    2018-01-01

    Roč. 82, JAN 1 (2018), s. 330-335 ISSN 0928-4931 Institutional support: RVO:67985891 Keywords : fibrous scaffolds * blood compatibility * polycaprolactone * copolymer of polylactide and polycaprolactone * collagen Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery

  5. Super dielectric capacitor using scaffold dielectric

    OpenAIRE

    Phillips, Jonathan

    2018-01-01

    Patent A capacitor having first and second electrodes and a scaffold dielectric. The scaffold dielectric comprises an insulating material with a plurality of longitudinal channels extending across the dielectric and filled with a liquid comprising cations and anions. The plurality of longitudinal channels are substantially parallel and the liquid within the longitudinal channels generally has an ionic strength of at least 0.1. Capacitance results from the migrations of...

  6. Osteogenic differentiation and mineralization of human exfoliated deciduous teeth stem cells on modified chitosan scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Su, Wen-Ta, E-mail: f10549@ntut.edu.tw [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan (China); Wu, Pai-Shuen [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan (China); Ko, Chih-Sheng [PhytoHealth Corporation, Maywufa Biopharma Group, Taipei, Taiwan (China); Huang, Te-Yang [Mackay Memorial Hospital, Taipei, Taiwan (China)

    2014-08-01

    Stem cells from human exfoliated deciduous teeth (SHEDs) have been considered as alternative sources of adult stem cells in tissue engineering because of their potential to differentiate into multiple cell lineages. Strontium has an important function in bone remodeling because it can simulate bone formation and decrease bone resorption. In this study, the effects of strontium phosphate on the osteogenic differentiation of SHEDs were investigated. Strontium phosphate was found to enhance the osteogenic differentiation of SHEDs with up-regulated osteoblast-related gene expression. The proliferation of SHEDs was slightly inhibited by chitosan scaffolds; however, type-I collagen expression, alkaline phosphatase activity, and calcium deposition on chitosan scaffolds containing strontium were significantly enhanced. Furthermore, cells seeded in a 3D scaffold under dynamic culture at an optimal fluid rate might enhance cellular differentiation than static culture in osteoblastic gene expression. This experiment might provide a useful cell resource and dynamic 3D culture for tissue engineering and bone repair. - Highlights: • SHEDs have been considered as alternative sources of adult stem cells in tissue engineering • Strontium phosphate can enhance the osteogenic differentiation of SHEDs • 3D scaffold under dynamic culture with optimal fluid rate enhance cellular differentiation.

  7. Osteogenic differentiation and mineralization of human exfoliated deciduous teeth stem cells on modified chitosan scaffold

    International Nuclear Information System (INIS)

    Su, Wen-Ta; Wu, Pai-Shuen; Ko, Chih-Sheng; Huang, Te-Yang

    2014-01-01

    Stem cells from human exfoliated deciduous teeth (SHEDs) have been considered as alternative sources of adult stem cells in tissue engineering because of their potential to differentiate into multiple cell lineages. Strontium has an important function in bone remodeling because it can simulate bone formation and decrease bone resorption. In this study, the effects of strontium phosphate on the osteogenic differentiation of SHEDs were investigated. Strontium phosphate was found to enhance the osteogenic differentiation of SHEDs with up-regulated osteoblast-related gene expression. The proliferation of SHEDs was slightly inhibited by chitosan scaffolds; however, type-I collagen expression, alkaline phosphatase activity, and calcium deposition on chitosan scaffolds containing strontium were significantly enhanced. Furthermore, cells seeded in a 3D scaffold under dynamic culture at an optimal fluid rate might enhance cellular differentiation than static culture in osteoblastic gene expression. This experiment might provide a useful cell resource and dynamic 3D culture for tissue engineering and bone repair. - Highlights: • SHEDs have been considered as alternative sources of adult stem cells in tissue engineering • Strontium phosphate can enhance the osteogenic differentiation of SHEDs • 3D scaffold under dynamic culture with optimal fluid rate enhance cellular differentiation

  8. A review: fabrication of porous polyurethane scaffolds.

    Science.gov (United States)

    Janik, H; Marzec, M

    2015-03-01

    The aim of tissue engineering is the fabrication of three-dimensional scaffolds that can be used for the reconstruction and regeneration of damaged or deformed tissues and organs. A wide variety of techniques have been developed to create either fibrous or porous scaffolds from polymers, metals, composite materials and ceramics. However, the most promising materials are biodegradable polymers due to their comprehensive mechanical properties, ability to control the rate of degradation and similarities to natural tissue structures. Polyurethanes (PUs) are attractive candidates for scaffold fabrication, since they are biocompatible, and have excellent mechanical properties and mechanical flexibility. PU can be applied to various methods of porous scaffold fabrication, among which are solvent casting/particulate leaching, thermally induced phase separation, gas foaming, emulsion freeze-drying and melt moulding. Scaffold properties obtained by these techniques, including pore size, interconnectivity and total porosity, all depend on the thermal processing parameters, and the porogen agent and solvents used. In this review, various polyurethane systems for scaffolds are discussed, as well as methods of fabrication, including the latest developments, and their advantages and disadvantages. Copyright © 2014. Published by Elsevier B.V.

  9. Strategies for osteochondral repair: Focus on scaffolds

    Directory of Open Access Journals (Sweden)

    Seog-Jin Seo

    2014-07-01

    Full Text Available Interest in osteochondral repair has been increasing with the growing number of sports-related injuries, accident traumas, and congenital diseases and disorders. Although therapeutic interventions are entering an advanced stage, current surgical procedures are still in their infancy. Unlike other tissues, the osteochondral zone shows a high level of gradient and interfacial tissue organization between bone and cartilage, and thus has unique characteristics related to the ability to resist mechanical compression and restoration. Among the possible therapies, tissue engineering of osteochondral tissues has shown considerable promise where multiple approaches of utilizing cells, scaffolds, and signaling molecules have been pursued. This review focuses particularly on the importance of scaffold design and its role in the success of osteochondral tissue engineering. Biphasic and gradient composition with proper pore configurations are the basic design consideration for scaffolds. Surface modification is an essential technique to improve the scaffold function associated with cell regulation or delivery of signaling molecules. The use of functional scaffolds with a controllable delivery strategy of multiple signaling molecules is also considered a promising therapeutic approach. In this review, we updated the recent advances in scaffolding approaches for osteochondral tissue engineering.

  10. Alternative Remedies

    Science.gov (United States)

    ... Home › Aging & Health A to Z › Alternative Remedies Font ... medical treatment prescribed by their healthcare provider. Using this type of alternative therapy along with traditional treatments is ...

  11. Alternative Fuels

    Science.gov (United States)

    Alternative fuels include gaseous fuels such as hydrogen, natural gas, and propane; alcohols such as ethanol, methanol, and butanol; vegetable and waste-derived oils; and electricity. Overview of alternative fuels is here.

  12. Alternating Hemiplegia

    Science.gov (United States)

    ... to the symptoms of the disorder. View Full Definition Treatment Drug therapy including verapamil may help to reduce the ... the more serious form of alternating hemiplegia × ... Definition Alternating hemiplegia is a rare neurological disorder that ...

  13. Assessment of normal left atrial appendage anatomy and function over gender and ages by dynamic cardiac CT

    International Nuclear Information System (INIS)

    Boucebci, Samy; Velasco, Stephane; Duboe, Pier-Olivier; Tasu, Jean-Pierre; Pambrun, Thomas; Ingrand, Pierre

    2016-01-01

    The aim of this study was to evaluate variations in anatomy and function according to age and gender using cardiac computed tomography (CT) in a large prospective cohort of healthy patients. The left atrial appendage (LAA) is considered the most frequent site of intracardiac thrombus formation. However, variations in normal in vivo anatomy and function according to age and gender remain largely unknown. Three-dimensional (3D) cardiac reconstructions of the LAA were performed from CT scans of 193 consecutive patients. Parameters measured included LAA number of lobes, anatomical position of the LAA tip, angulation measured between the proximal and distal portions, minimum (iVol min ) and maximum (iVol max ) volumes indexed to body surface area (BSA), and ejection fraction (LAAEF). Relationship with age was assessed for each parameter. We found that men had longer and wider LAAs. The iVol min and iVol max increased by 0.23 and 0.19 ml per decade, respectively, while LAAEF decreased by 2 % per decade in both sexes. Although LAA volumes increase, LAAEF decreases with age in both sexes. (orig.)

  14. Interatrial septum versus right atrial appendage pacing for prevention of atrial fibrillation : A meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Zhang, L; Jiang, H; Wang, W; Bai, J; Liang, Y; Su, Y; Ge, J

    2017-07-28

    Interatrial septum (IAS) pacing seems to be a promising strategy for the prevention of atrial fibrillation (AF); however, studies have yielded conflicting results. This meta-analysis was to compare IAS with right atrial appendage (RAA) pacing on the prevention of postpacing AF occurrence. Pubmed, MEDLINE, EMBASE and Web of Science databases were searched through October 2016 for randomized controlled trials comparing IAS with RAA pacing on the prevention of AF. Data concerning study design, patient characteristics and outcomes were extracted. Risk ratio (RR), weighted mean differences (WMD) or standardized mean differences (SMD) were calculated using fixed or random effects models. A total of 12 trials involving 1146 patients with dual-chamber pacing were included. Although IAS was superior to RAA pacing in terms of reducing the number of AF episodes (SMD = -0.29, P = 0.05), AF burden (SMD = -0.41, P = 0.008) and P -wave duration (WMD = -34.45 ms, P IAS pacing. Nevertheless, no differences were observed concerning all-cause death (RR = 1.04, P = 0.88), procedure-related events (RR = 1.17, P = 0.69) and pacing parameters between IAS and RAA pacing in the follow-up period. IAS pacing is safe and as well tolerated as RAA pacing. Although IAS pacing may fail to prevent permanent AF occurrence and recurrences of AF, it is able to not only improve interatrial conduction, but also reduce AF burden.

  15. Assessment of normal left atrial appendage anatomy and function over gender and ages by dynamic cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Boucebci, Samy; Velasco, Stephane; Duboe, Pier-Olivier; Tasu, Jean-Pierre [University of Poitiers, University Hospital, Department of Radiology, Poitiers (France); Pambrun, Thomas [University of Poitiers, University Hospital, Department of Cardiology, Poitiers (France); Ingrand, Pierre [University of Poitiers, University Institute of Public Health, Poitiers (France)

    2016-05-15

    The aim of this study was to evaluate variations in anatomy and function according to age and gender using cardiac computed tomography (CT) in a large prospective cohort of healthy patients. The left atrial appendage (LAA) is considered the most frequent site of intracardiac thrombus formation. However, variations in normal in vivo anatomy and function according to age and gender remain largely unknown. Three-dimensional (3D) cardiac reconstructions of the LAA were performed from CT scans of 193 consecutive patients. Parameters measured included LAA number of lobes, anatomical position of the LAA tip, angulation measured between the proximal and distal portions, minimum (iVol{sub min}) and maximum (iVol{sub max}) volumes indexed to body surface area (BSA), and ejection fraction (LAAEF). Relationship with age was assessed for each parameter. We found that men had longer and wider LAAs. The iVol{sub min} and iVol{sub max} increased by 0.23 and 0.19 ml per decade, respectively, while LAAEF decreased by 2 % per decade in both sexes. Although LAA volumes increase, LAAEF decreases with age in both sexes. (orig.)

  16. [New technology for prevention of embolic events in atrial fibrillation: a systematic review on percutaneous endovascular left atrial appendage closure].

    Science.gov (United States)

    Danna, Paolo; Sagone, Antonio; Proietti, Riccardo; Arensi, Andrea; Viecca, Maurizio; Santangeli, Pasquale; Di Biase, Luigi; Natale, Andrea

    2012-09-01

    Atrial fibrillation (AF) is the most common cardiac arrhythmia. The mortality rate of patients with AF is doubled as compared to non-fibrillating controls. The most relevant complication of AF is a major increase in the risk of stroke. The gold standard in reducing cerebrovascular events in AF is warfarin therapy, which is not free from contraindications and limitations. The left atrial appendage (LAA) is the main source of emboli causing stroke in AF. LAA closure is a seducing approach to stroke risk reduction in AF without anticoagulation. Since 1949, heart surgeons have performed LAA closure or amputation in patients with AF. Percutaneous endovascular LAA closure is a new, less invasive, technique to reach the goal. Several devices have been used to perform this intervention, and the results of published trials are encouraging in terms of effectiveness and relative safety of this attractive technique. In this review we examine the published trials and data on percutaneous LAA closure, with particular attention to the risks and benefits of this procedure.

  17. Contrast-enhanced CMR in patients after percutaneous closure of the left atrial appendage: A pilot study

    Directory of Open Access Journals (Sweden)

    Petersen Steffen E

    2011-07-01

    Full Text Available Abstract Background To evaluate the feasibility and value of first-pass contrast-enhanced dynamic and post-contrast 3D CMR in patients after transcatheter occlusion of left atrial appendage (LAA to identify incorrect placement and persistent leaks. Methods 7 patients with different occluder systems (n = 4 PLAATO; n = 2 Watchman; n = 1 ACP underwent 2 contrast-enhanced (Gd-DOTA CMR sequences (2D TrueFISP first-pass perfusion and 3D-TurboFLASH to assess localization, artifact size and potential leaks of the devices. Perfusion CMR was analyzed visually and semi-quantitatively to identify potential leaks. Results All occluders were positioned within the LAA. The ACP occluder presented the most extensive artifact size. Visual assessment revealed a residual perfusion of the LAA apex in 4 cases using first-pass perfusion and 3D-TurboFLASH indicating a suboptimal LAA occlusion. By assessing signal-to-time-curves the cases with a visually detected leak showed a 9-fold higher signal-peak in the LAA apex (567 ± 120% increase from baseline signal than those without a leak (61 ± 22%; p Conclusion This CMR pilot study provides valuable non-invasive information in patients after transcatheter occlusion of the LAA to identify correct placement and potential leaks. We recommend incorporating CMR in future clinical studies to evaluate new device types.

  18. Balancing mechanical strength with bioactivity in chitosan-calcium phosphate 3D microsphere scaffolds for bone tissue engineering: air- vs. freeze-drying processes.

    Science.gov (United States)

    Nguyen, D T; McCanless, J D; Mecwan, M M; Noblett, A P; Haggard, W O; Smith, R A; Bumgardner, J D

    2013-01-01

    The objective of this study was to evaluate the potential benefit of 3D composite scaffolds composed of chitosan and calcium phosphate for bone tissue engineering. Additionally, incorporation of mechanically weak lyophilized microspheres within those air-dried (AD) was considered for enhanced bioactivity. AD microsphere, alone, and air- and freeze-dried microsphere (FDAD) 3D scaffolds were evaluated in vitro using a 28-day osteogenic culture model with the Saos-2 cell line. Mechanical testing, quantitative microscopy, and lysozyme-driven enzymatic degradation of the scaffolds were also studied. FDAD scaffold showed a higher concentration (p < 0.01) in cells per scaffold mass vs. AD constructs. Collagen was ∼31% greater (p < 0.01) on FDAD compared to AD scaffolds not evident in microscopy of microsphere surfaces. Alternatively, AD scaffolds demonstrated a superior threefold increase in compressive strength over FDAD (12 vs. 4 MPa) with minimal degradation. Inclusion of FD spheres within the FDAD scaffolds allowed increased cellular activity through improved seeding, proliferation, and extracellular matrix production (as collagen), although mechanical strength was sacrificed through introduction of the less stiff, porous FD spheres.

  19. Signs, dispositions, and semiotic scaffolding.

    Science.gov (United States)

    Fernández, Eliseo

    2015-12-01

    scaffolding. These interactions transpire between energetic causal chains and a wide range of converging semiotic transactions unfolding within each individual organism and between organisms and their environment. The perspective advanced here helps elucidate the manner in which physical and semiotic causation cooperate in an orchestrated fashion, giving rise to an ever-expanding profusion of scaffolding structures and processes. Using simple examples I outline some mechanisms that bring about this orchestration as well as the resultant channeling activities that eventually merge and find their culmination in the enactment of goal-oriented behavior. Copyright © 2015. Published by Elsevier Ltd.

  20. Reproducing American Sign Language Sentences: Cognitive Scaffolding in Working Memory

    Directory of Open Access Journals (Sweden)

    Ted eSupalla

    2014-08-01

    Full Text Available The American Sign Language Sentence Reproduction Test (ASL-SRT requires the precise reproduction of a series of ASL sentences increasing in complexity and length. Error analyses of such tasks provides insight into working memory and scaffolding processes. Data was collected from three groups expected to differ in fluency: deaf children, deaf adults and hearing adults, all users of ASL. Quantitative (correct/incorrect recall and qualitative error analyses were performed. Percent correct on the reproduction task supports its sensitivity to fluency as test performance clearly differed across the three groups studied. A linguistic analysis of errors further documented differing strategies and bias across groups. Subjects’ recall projected the affordance and constraints of deep linguistic representations to differing degrees, with subjects resorting to alternate processing strategies in the absence of linguistic knowledge. A qualitative error analysis allows us to capture generalizations about the relationship between error pattern and the cognitive scaffolding, which governs the sentence reproduction process. Highly fluent signers and less-fluent signers share common chokepoints on particular words in sentences. However, they diverge in heuristic strategy. Fluent signers, when they make an error, tend to preserve semantic details while altering morpho-syntactic domains. They produce syntactically correct sentences with equivalent meaning to the to-be-reproduced one, but these are not verbatim reproductions of the original sentence. In contrast, less-fluent signers tend to use a more linear strategy, preserving lexical status and word ordering while omitting local inflections, and occasionally resorting to visuo-motoric imitation. Thus, whereas fluent signers readily use top-down scaffolding in their working memory, less fluent signers fail to do so. Implications for current models of working memory across spoken and signed modalities are

  1. Tubular inverse opal scaffolds for biomimetic vessels

    Science.gov (United States)

    Zhao, Ze; Wang, Jie; Lu, Jie; Yu, Yunru; Fu, Fanfan; Wang, Huan; Liu, Yuxiao; Zhao, Yuanjin; Gu, Zhongze

    2016-07-01

    There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially oriented elliptical pattern microstructures on their surfaces. It is demonstrated that these tailored tubular scaffolds can effectively make endothelial cells to form an integrated hollow tubular structure on their inner surface and induce smooth muscle cells to form a circumferential orientation on their outer surface. These features of our tubular scaffolds make them highly promising for the construction of biomimetic blood vessels.There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially

  2. DNA-scaffolded nanoparticle structures

    Energy Technology Data Exchange (ETDEWEB)

    Hoegberg, Bjoern; Olin, Haakan [Department of Engineering Physics and Mathematics, Mid Sweden University, SE-851 70 Sundsvall, Sweden (Sweden)

    2007-03-15

    DNA self-assembly is a powerful route to the production of very small, complex structures. When used in combination with nanoparticles it is likely to become a key technology in the production of nanoelectronics in the future. Previously, demonstrated nanoparticle assemblies have mainly been periodic and highly symmetric arrays, unsuited as building blocks for any complex circuits. With the invention of DNA-scaffolded origami reported earlier this year (Rothemund P W K 2006 Nature 440 (7082) 297-302), a new route to complex nanostructures using DNA has been opened. Here, we give a short review of the field and present the current status of our experiments were DNA origami is used in conjunction with nanoparticles. Gold nanoparticles are functionalized with thiolated single stranded DNA. Strands that are complementary to the gold particle strands can be positioned on the self-assembled DNA-structure in arbitrary patterns. This property should allow an accurate positioning of the particles by letting them hybridize on the lattice. We report on our recent experiments on this system and discuss open problems and future applications.

  3. DNA-scaffolded nanoparticle structures

    International Nuclear Information System (INIS)

    Hoegberg, Bjoern; Olin, Haakan

    2007-01-01

    DNA self-assembly is a powerful route to the production of very small, complex structures. When used in combination with nanoparticles it is likely to become a key technology in the production of nanoelectronics in the future. Previously, demonstrated nanoparticle assemblies have mainly been periodic and highly symmetric arrays, unsuited as building blocks for any complex circuits. With the invention of DNA-scaffolded origami reported earlier this year (Rothemund P W K 2006 Nature 440 (7082) 297-302), a new route to complex nanostructures using DNA has been opened. Here, we give a short review of the field and present the current status of our experiments were DNA origami is used in conjunction with nanoparticles. Gold nanoparticles are functionalized with thiolated single stranded DNA. Strands that are complementary to the gold particle strands can be positioned on the self-assembled DNA-structure in arbitrary patterns. This property should allow an accurate positioning of the particles by letting them hybridize on the lattice. We report on our recent experiments on this system and discuss open problems and future applications

  4. Mechanical behaviour of a fibrous scaffold for ligament tissue engineering: finite elements analysis vs. X-ray tomography imaging.

    Science.gov (United States)

    Laurent, Cédric P; Latil, Pierre; Durville, Damien; Rahouadj, Rachid; Geindreau, Christian; Orgéas, Laurent; Ganghoffer, Jean-François

    2014-12-01

    The use of biodegradable scaffolds seeded with cells in order to regenerate functional tissue-engineered substitutes offers interesting alternative to common medical approaches for ligament repair. Particularly, finite element (FE) method enables the ability to predict and optimise both the macroscopic behaviour of these scaffolds and the local mechanic signals that control the cell activity. In this study, we investigate the ability of a dedicated FE code to predict the geometrical evolution of a new braided and biodegradable polymer scaffold for ligament tissue engineering by comparing scaffold geometries issued from FE simulations and from X-ray tomographic imaging during a tensile test. Moreover, we compare two types of FE simulations the initial geometries of which are issued either from X-ray imaging or from a computed idealised configuration. We report that the dedicated FE simulations from an idealised reference configuration can be reasonably used in the future to predict the global and local mechanical behaviour of the braided scaffold. A valuable and original dialog between the fields of experimental and numerical characterisation of such fibrous media is thus achieved. In the future, this approach should enable to improve accurate characterisation of local and global behaviour of tissue-engineering scaffolds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A nano-sandwich construct built with graphene nanosheets and carbon nanotubes enhances mechanical properties of hydroxyapatite-polyetheretherketone scaffolds.

    Science.gov (United States)

    Feng, Pei; Peng, Shuping; Wu, Ping; Gao, Chengde; Huang, Wei; Deng, Youwen; Xiao, Tao; Shuai, Cijun

    2016-01-01

    A nano-sandwich construct was built by combining two-dimensional graphene nanosheets (GNSs) and one-dimensional carbon nanotubes (CNTs) to improve the mechanical properties of hydroxyapatite-polyetheretherketone (HAP-PEEK) scaffolds for bone tissue engineering. In this nano-sandwich construct, the long tubular CNTs penetrated the interlayers of graphene and prevented their aggregation, increasing the effective contact area between the construct and matrix. The combination of GNSs and CNTs in a weight ratio of 2:8 facilitated the dispersion of each other and provided a synergetic effect in enhancing the mechanical properties. The compressive strength and modulus of the scaffolds were increased by 63.58% and 56.54% at this time compared with those of HAP-PEEK scaffolds, respectively. The carbon-based fillers, pulling out and bridging, were also clearly observed in the matrix. Moreover, the dangling of CNTs and their entangling with GNSs further reinforced the mechanical properties. Furthermore, apatite layer formed on the scaffold surface after immersing in simulated body fluid, and the cells attached and spread well on the surface of the scaffolds and displayed good viability, proliferation, and differentiation. These evidence indicate that the HAP-PEEK scaffolds enhanced by GNSs and CNTs are a promising alternative for bone tissue engineering.

  6. Modifying bone scaffold architecture in vivo with permanent magnets to facilitate fixation of magnetic scaffolds.

    Science.gov (United States)

    Panseri, S; Russo, A; Sartori, M; Giavaresi, G; Sandri, M; Fini, M; Maltarello, M C; Shelyakova, T; Ortolani, A; Visani, A; Dediu, V; Tampieri, A; Marcacci, M

    2013-10-01

    The fundamental elements of tissue regeneration are cells, biochemical signals and the three-dimensional microenvironment. In the described approach, biomineralized-collagen biomaterial functions as a scaffold and provides biochemical stimuli for tissue regeneration. In addition superparamagnetic nanoparticles were used to magnetize the biomaterials with direct nucleation on collagen fibres or impregnation techniques. Minimally invasive surgery was performed on 12 rabbits to implant cylindrical NdFeB magnets in close proximity to magnetic scaffolds within the lateral condyles of the distal femoral epiphyses. Under this static magnetic field we demonstrated, for the first time in vivo, that the ability to modify the scaffold architecture could influence tissue regeneration obtaining a well-ordered tissue. Moreover, the association between NdFeB magnet and magnetic scaffolds represents a potential technique to ensure scaffold fixation avoiding micromotion at the tissue/biomaterial interface. © 2013.

  7. Biodegradable Polymer-Based Scaffolds for Bone Tissue Engineering

    CERN Document Server

    Sultana, Naznin

    2013-01-01

    This book addresses the principles, methods and applications of biodegradable polymer based scaffolds for bone tissue engineering. The general principle of bone tissue engineering is reviewed and the traditional and novel scaffolding materials, their properties and scaffold fabrication techniques are explored. By acting as temporary synthetic extracellular matrices for cell accommodation, proliferation, and differentiation, scaffolds play a pivotal role in tissue engineering. This book does not only provide the comprehensive summary of the current trends in scaffolding design but also presents the new trends and directions for scaffold development for the ever expanding tissue engineering applications.

  8. Electrospinning PCL Scaffolds Manufacture for Three-Dimensional Breast Cancer Cell Culture

    Directory of Open Access Journals (Sweden)

    Marc Rabionet

    2017-08-01

    Full Text Available In vitro cell culture is traditionally performed within two-dimensional (2D environments, providing a quick and cheap way to study cell properties in a laboratory. However, 2D systems differ from the in vivo environment and may not mimic the physiological cell behavior realistically. For instance, 2D culture models are thought to induce cancer stem cells (CSCs differentiation, a rare cancer cell subpopulation responsible for tumor initiation and relapse. This fact hinders the development of therapeutic strategies for tumors with a high relapse percentage, such as triple negative breast cancer (TNBC. Thus, three-dimensional (3D scaffolds have emerged as an attractive alternative to monolayer culture, simulating the extracellular matrix structure and maintaining the differentiation state of cells. In this work, scaffolds were fabricated through electrospinning different poly(ε-caprolactone-acetone solutions. Poly(ε-caprolactone (PCL meshes were seeded with triple negative breast cancer (TNBC cells and 15% PCL scaffolds displayed significantly (p < 0.05 higher cell proliferation and elongation than the other culture systems. Moreover, cells cultured on PCL scaffolds exhibited higher mammosphere forming capacity and aldehyde dehydrogenase activity than 2D-cultured cells, indicating a breast CSCs enrichment. These results prove the powerful capability of electrospinning technology in terms of poly(ε-caprolactone nanofibers fabrication. In addition, this study has demonstrated that electrospun 15% PCL scaffolds are suitable tools to culture breast cancer cells in a more physiological way and to expand the niche of breast CSCs. In conclusion, three-dimensional cell culture using PCL scaffolds could be useful to study cancer stem cell behavior and may also trigger the development of new specific targets against such malignant subpopulation.

  9. Computational design of new molecular scaffolds for medicinal chemistry, part II: generalization of analog series-based scaffolds

    Science.gov (United States)

    Dimova, Dilyana; Stumpfe, Dagmar; Bajorath, Jürgen

    2018-01-01

    Aim: Extending and generalizing the computational concept of analog series-based (ASB) scaffolds. Materials & methods: Methodological modifications were introduced to further increase the coverage of analog series (ASs) and compounds by ASB scaffolds. From bioactive compounds, ASs were systematically extracted and second-generation ASB scaffolds isolated. Results: More than 20,000 second-generation ASB scaffolds with single or multiple substitution sites were extracted from active compounds, achieving more than 90% coverage of ASs. Conclusion: Generalization of the ASB scaffold approach has yielded a large knowledge base of scaffold-capturing compound series and target information. PMID:29379641

  10. Improving Students' Speaking Ability through Scaffolding Technique

    Directory of Open Access Journals (Sweden)

    Gede Ginaya

    2018-03-01

    Full Text Available Students often got confused and felt hesitant when they speak English. This situation had caused poor speaking ability, which then lead to serious problem in the teaching-learning process.  The application of scaffolding technique in the EFL learning might be the ideal solution; it had some principles that could improve the students’ speaking ability. This research is aimed at finding out the effect of the implementing Scaffolding Technique towards the students’ speaking ability. Participants were 50 (27 males and 23 females third-semester students, enrolled in a three-year diploma program in Travel and Tourism Business, State Polytechnic of Bali in 2017/2018 academic year. The students in the experimental group were given communicative activities such as brainstorming, business games, simulation, WebQuest, problem-solving, which were carefully designed to necessitate the implementation of the scaffolding technique. The students in the control group were taught by the deductive method of the lesson book. The students’ performance in the post-test was compared for both groups in order to determine whether there were significant differences between the groups in relation to the treatment. Significant differences occurring in the experimental group’s post-test speaking performance when compared to the pre-test indicate that the implementation of scaffolding technique can improve students’ speaking ability. The result of this study indicates scaffolding technique has the potential for use in promoting students’ speaking ability

  11. Heterogeneity of Scaffold Biomaterials in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Lauren Edgar

    2016-05-01

    Full Text Available Tissue engineering (TE offers a potential solution for the shortage of transplantable organs and the need for novel methods of tissue repair. Methods of TE have advanced significantly in recent years, but there are challenges to using engineered tissues and organs including but not limited to: biocompatibility, immunogenicity, biodegradation, and toxicity. Analysis of biomaterials used as scaffolds may, however, elucidate how TE can be enhanced. Ideally, biomaterials should closely mimic the characteristics of desired organ, their function and their in vivo environments. A review of biomaterials used in TE highlighted natural polymers, synthetic polymers, and decellularized organs as sources of scaffolding. Studies of discarded organs supported that decellularization offers a remedy to reducing waste of donor organs, but does not yet provide an effective solution to organ demand because it has shown varied success in vivo depending on organ complexity and physiological requirements. Review of polymer-based scaffolds revealed that a composite scaffold formed by copolymerization is more effective than single polymer scaffolds because it allows copolymers to offset disadvantages a single polymer may possess. Selection of biomaterials for use in TE is essential for transplant success. There is not, however, a singular biomaterial that is universally optimal.

  12. Scaffolds in regenerative endodontics: A review

    Science.gov (United States)

    Gathani, Kinjal M.; Raghavendra, Srinidhi Surya

    2016-01-01

    Root canal therapy has enabled us to save numerous teeth over the years. The most desired outcome of endodontic treatment would be when diseased or nonvital pulp is replaced with healthy pulp tissue that would revitalize the teeth through regenerative endodontics. ‘A search was conducted using the Pubmed and MEDLINE databases for articles with the criteria ‘Platelet rich plasma’, ‘Platelet rich fibrin’, ‘Stem cells’, ‘Natural and artificial scaffolds’ from 1982–2015’. Tissues are organized as three-dimensional structures, and appropriate scaffolding is necessary to provide a spatially correct position of cell location and regulate differentiation, proliferation, or metabolism of the stem cells. Extracellular matrix molecules control the differentiation of stem cells, and an appropriate scaffold might selectively bind and localize cells, contain growth factors, and undergo biodegradation over time. Different scaffolds facilitate the regeneration of different tissues. To ensure a successful regenerative procedure, it is essential to have a thorough and precise knowledge about the suitable scaffold for the required tissue. This article gives a review on the different scaffolds providing an insight into the new developmental approaches on the horizon. PMID:27857762

  13. Scaffolds in regenerative endodontics: A review

    Directory of Open Access Journals (Sweden)

    Kinjal M Gathani

    2016-01-01

    Full Text Available Root canal therapy has enabled us to save numerous teeth over the years. The most desired outcome of endodontic treatment would be when diseased or nonvital pulp is replaced with healthy pulp tissue that would revitalize the teeth through regenerative endodontics. ′A search was conducted using the Pubmed and MEDLINE databases for articles with the criteria ′Platelet rich plasma′, ′Platelet rich fibrin′, ′Stem cells′, ′Natural and artificial scaffolds′ from 1982-2015′. Tissues are organized as three-dimensional structures, and appropriate scaffolding is necessary to provide a spatially correct position of cell location and regulate differentiation, proliferation, or metabolism of the stem cells. Extracellular matrix molecules control the differentiation of stem cells, and an appropriate scaffold might selectively bind and localize cells, contain growth factors, and undergo biodegradation over time. Different scaffolds facilitate the regeneration of different tissues. To ensure a successful regenerative procedure, it is essential to have a thorough and precise knowledge about the suitable scaffold for the required tissue. This article gives a review on the different scaffolds providing an insight into the new developmental approaches on the horizon.

  14. In vitro osteoclastogenesis on textile chitosan scaffold

    Directory of Open Access Journals (Sweden)

    C Heinemann

    2010-02-01

    Full Text Available Textile chitosan fibre scaffolds were evaluated in terms of interaction with osteoclast-like cells, derived from human primary monocytes. Part of the scaffolds was further modified by coating with fibrillar collagen type I in order to make the surface biocompatible. Monocytes were cultured directly on the scaffolds in the presence of macrophage colony stimulating factor (M-CSF and receptor activator of nuclear factor kappaB ligand (RANKL for up to 18 days. Confocal laser scanning microscopy (CLSM as well as scanning electron microscopy (SEM revealed the formation of multinuclear osteoclast-like cells on both the raw chitosan fibres and the collagen-coated scaffolds. The modified surface supported the osteoclastogenesis. Differentiation towards the osteoclastic lineage was confirmed by the microscopic detection of cathepsin K, tartrate resistant acid phosphatase (TRAP, acidic compartments using 3-(2,4-dinitroanillino-3’-amino-N-methyldipropylamine (DAMP, immunological detection of TRAP isoform 5b, and analysis of gene expression of the osteoclastic markers TRAP, cathepsin K, vitronectin receptor, and calcitonin receptor using reverse transcription-polymerase chain reaction (RT-PCR. The feature of the collagen-coated but also of the raw chitosan fibre scaffolds to support attachment and differentiation of human monocytes facilitates cell-induced material resorption – one main requirement for successful bone tissue engineering.

  15. Left atrial appendage segmentation and quantitative assisted diagnosis of atrial fibrillation based on fusion of temporal-spatial information.

    Science.gov (United States)

    Jin, Cheng; Feng, Jianjiang; Wang, Lei; Yu, Heng; Liu, Jiang; Lu, Jiwen; Zhou, Jie

    2018-05-01

    In this paper, we present an approach for left atrial appendage (LAA) multi-phase fast segmentation and quantitative assisted diagnosis of atrial fibrillation (AF) based on 4D-CT data. We take full advantage of the temporal dimension information to segment the living, flailed LAA based on a parametric max-flow method and graph-cut approach to build 3-D model of each phase. To assist the diagnosis of AF, we calculate the volumes of 3-D models, and then generate a "volume-phase" curve to calculate the important dynamic metrics: ejection fraction, filling flux, and emptying flux of the LAA's blood by volume. This approach demonstrates more precise results than the conventional approaches that calculate metrics by area, and allows for the quick analysis of LAA-volume pattern changes of in a cardiac cycle. It may also provide insight into the individual differences in the lesions of the LAA. Furthermore, we apply support vector machines (SVMs) to achieve a quantitative auto-diagnosis of the AF by exploiting seven features from volume change ratios of the LAA, and perform multivariate logistic regression analysis for the risk of LAA thrombosis. The 100 cases utilized in this research were taken from the Philips 256-iCT. The experimental results demonstrate that our approach can construct the 3-D LAA geometries robustly compared to manual annotations, and reasonably infer that the LAA undergoes filling, emptying and re-filling, re-emptying in a cardiac cycle. This research provides a potential for exploring various physiological functions of the LAA and quantitatively estimating the risk of stroke in patients with AF. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Epicardial clip occlusion of the left atrial appendage during cardiac surgery provides optimal surgical results and long-term stability.

    Science.gov (United States)

    Kurfirst, Vojtech; Mokrácek, Aleš; Canádyová, Júlia; Frána, Radim; Zeman, Petr

    2017-07-01

    Occlusion of the left atrial appendage (LAA) has become an integral and important part of the surgical treatment of atrial fibrillation. Different methods of surgical occlusion of the LAA have been associated with varying levels of short- and long-term success for closure. The purpose of this study was to evaluate long-term results of epicardial placement and endocardial occlusion in patients undergoing cardiac operative procedures. A total of 101 patients (average age 65.7 years) undergoing cardiac operative procedures with the epicardial AtriClip Exclusion System of the LAA were enrolled in the study. The AtriClip was placed via a sternotomy or a thoracotomy or from a thoracoscopic approach. Postoperative variables, such as thromboembolic events, clip stability and endocardial leakage around the device, were examined by transoesophageal echocardiography (TEE) and/or computed tomography. Perioperative clip implantation was achieved in 98% of patients. TEE and/or computed tomography conducted during the follow-up period, comprising 1873 patient-months with a mean duration of 18 ± 11 months, revealed no clip migration, no leakage around the device and no clot formation near the remnant cul-de-sac. During the follow-up period, 4 of the cardiac patients experienced transitory ischaemic attacks, whereas no patient experienced a cerebrovascular attack. The Epicardial AtriClip Exclusion System of the LAA appears to be a feasable and safe operative method with a high success rate. Long-term follow-up confirmed clip stability, complete occlussion of the LAA and absence of any atrial fibrilation-related thromboembolic events. These results need to be confirmed by a larger, multicentre study. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  17. Predicting Peri-Device Leakage of Left Atrial Appendage Device Closure Using Novel Three-Dimensional Geometric CT Analysis.

    Science.gov (United States)

    Chung, Hyemoon; Jeon, Byunghwan; Chang, Hyuk-Jae; Han, Dongjin; Shim, Hackjoon; Cho, In Jeong; Shim, Chi Young; Hong, Geu-Ru; Kim, Jung-Sun; Jang, Yangsoo; Chung, Namsik

    2015-12-01

    After left atrial appendage (LAA) device closure, peri-device leakage into the LAA persists due to incomplete occlusion. We hypothesized that pre-procedural three-dimensional (3D) geometric analysis of the interatrial septum (IAS) and LAA orifice can predict this leakage. We investigated the predictive parameters of LAA device closure obtained from baseline cardiac computerized tomography (CT) using a novel 3D analysis system. We conducted a retrospective study of 22 patients who underwent LAA device closure. We defined peri-device leakage as the presence of a Doppler signal inside the LAA after device deployment (group 2, n = 5) compared with patients without peri-device leakage (group 1, n = 17). Conventional parameters were measured by cardiac CT. Angles θ and φ were defined between the IAS plane and the line, linking the LAA orifice center and foramen ovale. Group 2 exhibited significantly better left atrial (LA) function than group 1 (p = 0.031). Pre-procedural θ was also larger in this group (41.9° vs. 52.3°, p = 0.019). The LAA cauliflower-type morphology was more common in group 2. Overall, the patients' LA reserve significantly decreased after the procedure (21.7 mm(3) vs. 17.8 mm(3), p = 0.035). However, we observed no significant interval changes in pre- and post-procedural values of θ and φ in either group (all p > 0.05). Angles between the IAS and LAA orifice might be a novel anatomical parameter for predicting peri-device leakage after LAA device closure. In addition, 3D CT analysis of the LA and LAA orifice could be used to identify clinically favorable candidates for LAA device closure.

  18. Cryogenic 3D printing for producing hierarchical porous and rhBMP-2-loaded Ca-P/PLLA nanocomposite scaffolds for bone tissue engineering.

    Science.gov (United States)

    Wang, Chong; Zhao, Qilong; Wang, Min

    2017-06-07

    The performance of bone tissue engineering scaffolds can be assessed through cell responses to scaffolds, including cell attachment, infiltration, morphogenesis, proliferation, differentiation, etc, which are determined or heavily influenced by the composition, structure, mechanical properties, and biological properties (e.g. osteoconductivity and osteoinductivity) of scaffolds. Although some promising 3D printing techniques such as fused deposition modeling and selective laser sintering could be employed to produce biodegradable bone tissue engineering scaffolds with customized shapes and tailored interconnected pores, effective methods for fabricating scaffolds with well-designed hierarchical porous structure (both interconnected macropores and surface micropores) and tunable osteoconductivity/osteoinductivity still need to be developed. In this investigation, a novel cryogenic 3D printing technique was investigated and developed for producing hierarchical porous and recombinant human bone morphogenetic protein-2 (rhBMP-2)-loaded calcium phosphate (Ca-P) nanoparticle/poly(L-lactic acid) nanocomposite scaffolds, in which the Ca-P nanoparticle-incorporated scaffold layer and rhBMP-2-encapsulated scaffold layer were deposited alternatingly using different types of emulsions as printing inks. The mechanical properties of the as-printed scaffolds were comparable to those of human cancellous bone. Sustained releases of Ca 2+ ions and rhBMP-2 were achieved and the biological activity of rhBMP-2 was well-preserved. Scaffolds with a desirable hierarchical porous structure and dual delivery of Ca 2+ ions and rhBMP-2 exhibited superior performance in directing the behaviors of human bone marrow-derived mesenchymal stem cells and caused improved cell viability, attachment, proliferation, and osteogenic differentiation, which has suggested their great potential for bone tissue engineering.

  19. Surface biofunctionalization of three-dimensional porous poly(lactic acid) scaffold using chitosan/OGP coating for bone tissue engineering.

    Science.gov (United States)

    Zeng, Sen; Ye, Jianhua; Cui, Zhixiang; Si, Junhui; Wang, Qianting; Wang, Xiaofeng; Peng, Kaiping; Chen, Wenzhe

    2017-08-01

    As one of the stimulators on bone formation, osteogenic growth peptide (OGP) improves both proliferation and differentiation of the bone cells in vitro and in vivo. The aim of this work was the preparation of three dimensional porous poly(lactic acid) (PLA) scaffold with high porosity from PLA-dioxane-water ternary system with the use of vacuum-assisted solvent casting, phase separation, solvent extraction and particle leaching methods. Then, by surface coating of PLA scaffold with chitosan (CS)/OGP solution, biofunctionalization of PLA scaffold had been completed for application in bone regeneration. The effects of frozen temperature (-20, -50, -80°C) and PLA solution concentration (10, 12, 14wt%) on the microstructure, water absorption, porosity, hydrophilicity, mechanical properties, and biocompatibility of PLA and CS/OGP/PLA scaffold were investigated. Results showed that both PLA and CS/OGP/PLA scaffolds have an interconnected network structure and a porosity of up to 96.1% and 91.5%, respectively. The CS/OGP/PLA scaffold exhibited better hydrophilicity and mechanical properties than that of uncoated PLA scaffold. Moreover, the results of cell culture test showed that CS/OGP coating could stimulate the proliferation and growth of osteoblast cells on CS/OGP/PLA scaffold. These finding suggested that the surface biofunctionalization by CS/OGP coating layer could be an effective method on enhancing cell adhesion to synthetic polymer-based scaffolds in tissue engineering application and the developed porous CS/OGP/PLA scaffold should be considered as alternative biomaterials for bone regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A Guide to Scaffold Use in the Construction Industry

    National Research Council Canada - National Science Library

    2001-01-01

    On August 30, 1996, OSHA issued revised standards for scaffolds. The revised standard, known as "Safety Standards for Scaffolds Used in the Construction Industry" is found in Title 29 Code of Federal Regulations (CFR) Part, Subpart L...

  1. Biodegradation and bioresorption of poly(-caprolactone) nanocomposite scaffolds

    CSIR Research Space (South Africa)

    Mkhabela, V

    2015-08-01

    Full Text Available confirmed the elemental composition of the scaffolds. The phase composition of the scaffolds was shown by XRD, which also indicated a decrease in crystallinity with the introduction of nanoclay. Biodegradability studies which were conducted in simulated...

  2. Knowledge scaffolding visualizations: A guiding framework

    Directory of Open Access Journals (Sweden)

    Elitsa Alexander

    2015-06-01

    Full Text Available In this paper we provide a guiding framework for understanding and selecting visual representations in the knowledge management (KM practice. We build on an interdisciplinary analogy between two connotations of the notion of “scaffolding”: physical scaffolding from an architectural-engineering perspective and scaffolding of the “everyday knowing in practice” from a KM perspective. We classify visual structures for knowledge communication in teams into four types of scaffolds: grounded (corresponding e.g., to perspectives diagrams or dynamic facilitation diagrams, suspended (e.g., negotiation sketches, argument maps, panel (e.g., roadmaps or timelines and reinforcing (e.g., concept diagrams. The article concludes with a set of recommendations in the form of questions to ask whenever practitioners are choosing visualizations for specific KM needs. Our recommendations aim at providing a framework at a broad-brush level to aid choosing a suitable visualization template depending on the type of KM endeavour.

  3. Nano/macro porous bioactive glass scaffold

    Science.gov (United States)

    Wang, Shaojie

    Bioactive glass (BG) and ceramics have been widely studied and developed as implants to replace hard tissues of the musculo-skeletal system, such as bones and teeth. Recently, instead of using bulk materials, which usually do not degrade rapidly enough and may remain in the human body for a long time, the idea of bioscaffold for tissue regeneration has generated much interest. An ideal bioscaffold is a porous material that would not only provide a three-dimensional structure for the regeneration of natural tissue, but also degrade gradually and, eventually be replaced by the natural tissue completely. Among various material choices the nano-macro dual porous BG appears as the most promising candidate for bioscaffold applications. Here macropores facilitate tissue growth while nanopores control degradation and enhance cell response. The surface area, which controls the degradation of scaffold can also be tuned by changing the nanopore size. However, fabrication of such 3D structure with desirable nano and macro pores has remained challenging. In this dissertation, sol-gel process combined with spinodal decomposition or polymer sponge replication method has been developed to fabricate the nano-macro porous BG scaffolds. Macropores up to 100microm are created by freezing polymer induced spinodal structure through sol-gel transition, while larger macropores (>200um) of predetermined size are obtained by the polymer sponge replication technique. The size of nanopores, which are inherent to the sol-gel method of glass fabrication, has been tailored using several approaches: Before gel point, small nanopores are generated using acid catalyst that leads to weakly-branched polymer-like network. On the other hand, larger nanopores are created with the base-catalyzed gel with highly-branched cluster-like structure. After the gel point, the nanostructure can be further modified by manipulating the sintering temperature and/or the ammonia concentration used in the solvent

  4. Alternative wastewatersystems

    DEFF Research Database (Denmark)

    Dyck-Madsen, Søren; Hoffmann, Birgitte; Gabriel, Søren

    1999-01-01

    The report:-  Communicates experiences from Swedish buildings from the establishment and running of alternative wastewater systems. Communicates pictures of alternative buildings and wastewater systems in Sweden. Gives a short evaluation of the performance and the sustainability of the systems....

  5. SCAFFOLDING IN CONNECTIVIST MOBILE LEARNING ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Ozlem OZAN

    2013-04-01

    Full Text Available Social networks and mobile technologies are transforming learning ecology. In this changing learning environment, we find a variety of new learner needs. The aim of this study is to investigate how to provide scaffolding to the learners in connectivist mobile learning environment: Ø to learn in a networked environment, Ø to manage their networked learning process, Ø to interact in a networked society, and Ø to use the tools belonging to the network society. The researcher described how Vygotsky's “scaffolding” concept, Berge’s “learner support” strategies, and Siemens’ “connectivism” approach can be used together to satisfy mobile learners’ needs. A connectivist mobile learning environment was designed for the research, and the research was executed as a mixed-method study. Data collection tools were Facebook wall entries, personal messages, chat records; Twitter, Diigo, blog entries; emails, mobile learning management system statistics, perceived learning survey and demographic information survey. Results showed that there were four major aspects of scaffolding in connectivist mobile learning environment as type of it, provider of it, and timing of it and strategies of it. Participants preferred mostly social scaffolding, and then preferred respectively, managerial, instructional and technical scaffolding. Social scaffolding was mostly provided by peers, and managerial scaffolding was mostly provided by instructor. Use of mobile devices increased the learner motivation and interest. Some participants stated that learning was more permanent by using mobile technologies. Social networks and mobile technologies made it easier to manage the learning process and expressed a positive impact on perceived learning.

  6. In vitro chondrogenesis with lysozyme susceptible bacterial cellulose as a scaffold.

    Science.gov (United States)

    Yadav, Vikas; Sun, Lin; Panilaitis, Bruce; Kaplan, David L

    2015-12-01

    A current focus of tissue engineering is the use of adult human mesenchymal stem cells (hMSCs) as an alternative to autologous chondrocytes for cartilage repair. Several natural and synthetic polymers (including cellulose) have been explored as a biomaterial scaffold for cartilage tissue engineering. While bacterial cellulose (BC) has been used in tissue engineering, its lack of degradability in vivo and high crystallinity restricts widespread applications in the field. Recently we reported the formation of a novel bacterial cellulose that is lysozyme-susceptible and -degradable in vivo from metabolically engineered Gluconacetobacter xylinus. Here we report the use of this modified bacterial cellulose (MBC) for cartilage tissue engineering using hMSCs. MBC's glucosaminoglycan-like chemistry, combined with in vivo degradability, suggested opportunities to exploit this novel polymer in cartilage tissue engineering. We have observed that, like BC, MBC scaffolds support cell attachment and proliferation. Chondrogenesis of hMSCs in the MBC scaffolds was demonstrated by real-time RT-PCR analysis for cartilage-specific extracellular matrix (ECM) markers (collagen type II, aggrecan and SOX9) as well as histological and immunohistochemical evaluations of cartilage-specific ECM markers. Further, the attachment, proliferation, and differentiation of hMSCs in MBC showed unique characteristics. For example, after 4 weeks of cultivation, the spatial cell arrangement and collagen type-II and ACAN distribution resembled those in native articular cartilage tissue, suggesting promise for these novel in vivo degradable scaffolds for chondrogenesis. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Design and characterization of a biodegradable composite scaffold for ligament tissue engineering.

    Science.gov (United States)

    Hayami, James W S; Surrao, Denver C; Waldman, Stephen D; Amsden, Brian G

    2010-03-15

    Herein we report on the development and characterization of a biodegradable composite scaffold for ligament tissue engineering based on the fundamental morphological features of the native ligament. An aligned fibrous component was used to mimic the fibrous collagen network and a hydrogel component to mimic the proteoglycan-water matrix of the ligament. The composite scaffold was constructed from cell-adherent, base-etched, electrospun poly(epsilon-caprolactone-co-D,L-lactide) (PCLDLLA) fibers embedded in a noncell-adherent photocrosslinked N-methacrylated glycol chitosan (MGC) hydrogel seeded with primary ligament fibroblasts. Base etching improved cellular adhesion to the PCLDLLA material. Cells within the MGC hydrogel remained viable (72 +/- 4%) during the 4-week culture period. Immunohistochemistry staining revealed ligament ECM markers collagen type I, collagen type III, and decorin organizing and accumulating along the PCLDLLA fibers within the composite scaffolds. On the basis of these results, it was determined that the composite scaffold design was a viable alternative to the current approaches used for ligament tissue engineering and merits further study. (c) 2009 Wiley Periodicals, Inc.

  8. The Effect of Peer Scaffolding on Developing L2 Pragmatic Knowledge: A Sociocultural Perspectiv

    Directory of Open Access Journals (Sweden)

    Zahra Fakher Ajabshir

    2017-12-01

    Full Text Available Building upon the sociocultural theory of Vygotsky, the aim of this study was to explore the immediate and delayed effects of peer scaffolding on EFL learners' comprehension and production of requests and apologies. The participants were 86 Iranian EFL learners who, drawing on their scores in the Pragmatic Listening Test (PLT and Oral Discourse Completion Test (ODCT, were homogenized in terms of their L2 pragmatic proficiency. Subsequently, they were randomly assigned to the control and scaffolding groups. Both groups received metapragmatic instruction on requests and apologies; however, the scaffolding group engaged in collaborative problem-solving tasks during which they needed to read the situations with pragmatically problematic items and jointly work out their appropriate alternatives to them. The results of pretest-posttest-delayed posttest comparison revealed the outperformance of the scaffolding group compared with the control group in both measures of comprehension and production of requests and apologies. The pragmatic gains were also found to be maintained over a period of a month. The findings have implications in language teaching and pedagogy and suggest that pragmatic knowledge is likely to emerge from assisted performance.

  9. Chitosan and Its Potential Use as a Scaffold for Tissue Engineering in Regenerative Medicine

    Science.gov (United States)

    Rodríguez-Vázquez, Martin; Vega-Ruiz, Brenda; Ramos-Zúñiga, Rodrigo; Saldaña-Koppel, Daniel Alexander; Quiñones-Olvera, Luis Fernando

    2015-01-01

    Tissue engineering is an important therapeutic strategy to be used in regenerative medicine in the present and in the future. Functional biomaterials research is focused on the development and improvement of scaffolding, which can be used to repair or regenerate an organ or tissue. Scaffolds are one of the crucial factors for tissue engineering. Scaffolds consisting of natural polymers have recently been developed more quickly and have gained more popularity. These include chitosan, a copolymer derived from the alkaline deacetylation of chitin. Expectations for use of these scaffolds are increasing as the knowledge regarding their chemical and biological properties expands, and new biomedical applications are investigated. Due to their different biological properties such as being biocompatible, biodegradable, and bioactive, they have given the pattern for use in tissue engineering for repair and/or regeneration of different tissues including skin, bone, cartilage, nerves, liver, and muscle. In this review, we focus on the intrinsic properties offered by chitosan and its use in tissue engineering, considering it as a promising alternative for regenerative medicine as a bioactive polymer. PMID:26504833

  10. Simulations as Scaffolds in Science Education

    DEFF Research Database (Denmark)

    Renken, Maggie; Peffer, Melanie; Otrel-Cass, Kathrin

    This book outlines key issues for addressing the grand challenges posed to educators, developers, and researchers interested in the intersection of simulations and science education. To achieve this, the authors explore the use of computer simulations as instructional scaffolds that provide...... strategies and support when students are faced with the need to acquire new skills or knowledge. The monograph aims to provide insight into what research has reported on navigating the complex process of inquiry- and problem-based science education and whether computer simulations as instructional scaffolds...

  11. Scaffold Diversity from N-Acyliminium Ions

    DEFF Research Database (Denmark)

    Wu, Peng; Nielsen, Thomas E

    2017-01-01

    N-Acyliminium ions are powerful reactive species for the formation of carbon-carbon and carbon-heteroatom bonds. Strategies relying on intramolecular reactions of N-acyliminium intermediates, also referred to as N-acyliminium ion cyclization reactions, have been employed for the construction...... of structurally diverse scaffolds, ranging from simple bicyclic skeletons to complex polycyclic systems and natural-product-like compounds. This review aims to provide an overview of cyclization reactions of N-acyliminium ions derived from various precursors for the assembly of structurally diverse scaffolds...

  12. Scaffolds of polycaprolactone with hydroxyapatite fibers

    International Nuclear Information System (INIS)

    Cardoso, Guinea B.C.; Zavaglia, Cecilia A.C.; Arruda, Antonio Celso F.

    2009-01-01

    Scaffolds of poly (ε-caprolactone) has been studied in many researches in tissue engineering. The used of hydroxyapatite fibers, allowed increase its resistance mechanical, beside the character bioactive and osteoconductive. Improving, its role in tissue engineering. The aim in this study was developed polycaprolactone matrix with dispersed hydroxyapatite fibers. The characterizations were by scanning electron microscopy (SEM), X- Ray Diffractometer (XRD), X-Ray Fluorescence (XRF) and Energy dispersive X-Ray Detector (EDX). Was able reviewed its composition, morphology and possible contaminations. The results were scaffolds with porosity and distribution of the fibers in all its area. (author)

  13. Bio-functionalized PCL nanofibrous scaffolds for nerve tissue engineering

    International Nuclear Information System (INIS)

    Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P.; Morshed, Mohammad; Nasr-Esfahani, Mohammad Hossein; Ramakrishna, S.

    2010-01-01

    Surface properties of scaffolds such as hydrophilicity and the presence of functional groups on the surface of scaffolds play a key role in cell adhesion, proliferation and migration. Different modification methods for hydrophilicity improvement and introduction of functional groups on the surface of scaffolds have been carried out on synthetic biodegradable polymers, for tissue engineering applications. In this study, alkaline hydrolysis of poly (ε-caprolactone) (PCL) nanofibrous scaffolds was carried out for different time periods (1 h, 4 h and 12 h) to increase the hydrophilicity of the scaffolds. The formation of reactive groups resulting from alkaline hydrolysis provides opportunities for further surface functionalization of PCL nanofibrous scaffolds. Matrigel was attached covalently on the surface of an optimized 4 h hydrolyzed PCL nanofibrous scaffolds and additionally the fabrication of blended PCL/matrigel nanofibrous scaffolds was carried out. Chemical and mechanical characterization of nanofibrous scaffolds were evaluated using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, contact angle, scanning electron microscopy (SEM) and tensile measurement. In vitro cell adhesion and proliferation study was carried out after seeding nerve precursor cells (NPCs) on different scaffolds. Results of cell proliferation assay and SEM studies showed that the covalently functionalized PCL/matrigel nanofibrous scaffolds promote the proliferation and neurite outgrowth of NPCs compared to PCL and hydrolyzed PCL nanofibrous scaffolds, providing suitable substrates for nerve tissue engineering.

  14. Patterns of Scaffolding in Computer-Mediated Collaborative Inquiry

    Science.gov (United States)

    Lakkala, Minna; Muukkonen, Hanni; Hakkarainen, Kai

    2005-01-01

    There is wide agreement on the importance of scaffolding for student learning. Yet, models of individual and face-to-face scaffolding are not necessarily applicable to educational settings in which a group of learners is pursuing a process of inquiry mediated by technology. The scaffolding needed for such a process may be examined from three…

  15. 111In-labeled platelet scintigraphy and two-dimensional echocardiography for detection of left atrial appendage thrombi. Studies in a new canine model

    International Nuclear Information System (INIS)

    Vandenberg, B.F.; Seabold, J.E.; Conrad, G.R.; Kieso, R.; Johnson, J.; Fox-Eastham, K.; Ponto, J.; Bruch, P.; Kerber, R.E.

    1988-01-01

    111In-labeled platelet scintigraphy and two-dimensional echocardiography were performed in 40 dogs to determine the ability of the two techniques to detect left atrial appendage thrombi. Thrombi were induced in 33 dogs that were classified into two groups, acute or chronic, according to the time of labeled-platelet injection after thrombus induction. In the acute group (17 dogs), platelets were injected 24 hours after thrombus induction. In the chronic group (16 dogs), platelets were injected 4-8 days after thrombus induction. Sham thoracotomies were performed on seven additional control dogs who did not receive thrombin injections. Analog and blood pool-corrected 111In-labeled platelet scintigraphy images were obtained 4-72 hours later. Closed-chest two-dimensional echocardiography was performed before thoracotomy and repeated at the time of scintigraphy. The location and size of each thrombus were verified at autopsy. Two-dimensional echocardiography detected three of 17 acute (mean volume, 1.2 +/- 1.0 cc) and three of 10 chronic (mean volume, 0.4 +/- 0.3 cc; p less than 0.025) left atrial appendage thrombi. 111In-labeled platelet scintigraphy detected all 17 acute thrombi but only two of 10 chronic thrombi. The measured radioactivity levels of the excised thrombi were 1,949 +/- 1,665 cpm/clot/dose in group 1 and 228 +/- 213 cpm/clot/dose in group 2 (p less than 0.005). In this model, 111In-labeled platelet scintigraphy was able to detect acute left atrial appendage thrombi that could not be identified by two-dimensional echocardiography. Both techniques showed poor sensitivity for detection of chronic thrombi. The decline in sensitivity of 111In-labeled platelet scintigraphy for detection of older thrombi is probably due to diminished labeled-platelet incorporation

  16. The Value of 3D Printing Models of Left Atrial Appendage Using Real-Time 3D Transesophageal Echocardiographic Data in Left Atrial Appendage Occlusion: Applications toward an Era of Truly Personalized Medicine.

    Science.gov (United States)

    Liu, Peng; Liu, Rijing; Zhang, Yan; Liu, Yingfeng; Tang, Xiaoming; Cheng, Yanzhen

    The objective of this study was to assess the clinical feasibility of generating 3D printing models of left atrial appendage (LAA) using real-time 3D transesophageal echocardiogram (TEE) data for preoperative reference of LAA occlusion. Percutaneous LAA occlusion can effectively prevent patients with atrial fibrillation from stroke. However, the anatomical structure of LAA is so complicated that adequate information of its structure is essential for successful LAA occlusion. Emerging 3D printing technology has the demonstrated potential to structure more accurately than conventional imaging modalities by creating tangible patient-specific models. Typically, 3D printing data sets are acquired from CT and MRI, which may involve intravenous contrast, sedation, and ionizing radiation. It has been reported that 3D models of LAA were successfully created by the data acquired from CT. However, 3D printing of the LAA using real-time 3D TEE data has not yet been explored. Acquisition of 3D transesophageal echocardiographic data from 8 patients with atrial fibrillation was performed using the Philips EPIQ7 ultrasound system. Raw echocardiographic image data were opened in Philips QLAB and converted to 'Cartesian DICOM' format and imported into Mimics® software to create 3D models of LAA, which were printed using a rubber-like material. The printed 3D models were then used for preoperative reference and procedural simulation in LAA occlusion. We successfully printed LAAs of 8 patients. Each LAA costs approximately CNY 800-1,000 and the total process takes 16-17 h. Seven of the 8 Watchman devices predicted by preprocedural 2D TEE images were of the same sizes as those placed in the real operation. Interestingly, 3D printing models were highly reflective of the shape and size of LAAs, and all device sizes predicted by the 3D printing model were fully consistent with those placed in the real operation. Also, the 3D printed model could predict operating difficulty and the

  17. Acute In Vivo Response to an Alternative Implant for Urogynecology

    Directory of Open Access Journals (Sweden)

    Sabiniano Roman Regueros

    2014-01-01

    Full Text Available Purpose. To investigate in vivo the acute host response to an alternative implant designed for the treatment of stress urinary incontinence (SUI and pelvic organ prolapse (POP. Methods. A biodegradable scaffold was produced from poly-L-lactic acid (PLA using the electrospinning technique. Human and rat adipose-derived stem cells (ADSCs were isolated and characterized by fluorescence-activated cell sorting and differentiation assays. PLA scaffolds were seeded and cultured for 2 weeks with human or rat ADSCs. Scaffolds with and without human or rat ADSCs were implanted subcutaneously on the abdominal wall of rats. After 3 and 7 days, 6 animals from each group were sacrificed. Sections from each sample were analyzed by Haematoxylin and Eosin staining, Sirius red staining, and immunohistochemistry for CD68, PECAM-1, and collagen I and III. Results. Animals responded to the scaffolds with an acute macrophage response. After 7 days of implantation, there was extensive host cell penetration, new blood vessel formation, and new collagen deposition throughout the full thickness of the samples without obvious differences between cell-containing and cell-free scaffolds. Conclusions. The acute in vivo response to an alternative implant (both with and without cells for the treatment of SUI and POP showed good acute integration into the host tissues.

  18. Human endothelial cell growth and phenotypic expression on three dimensional poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering.

    Science.gov (United States)

    Jabbarzadeh, Ehsan; Jiang, Tao; Deng, Meng; Nair, Lakshmi S; Khan, Yusuf M; Laurencin, Cato T

    2007-12-01

    Bone tissue engineering offers promising alternatives to repair and restore tissues. Our laboratory has employed poly(lactide-co-glycolide) PLAGA microspheres to develop a three dimensional (3-D) porous bioresorbable scaffold with a biomimetic pore structure. Osseous healing and integration with the surrounding tissue depends in part on new blood vessel formation within the porous structure. Since endothelial cells play a key role in angiogenesis (formation of new blood vessels from pre-existing vasculature), the purpose of this study was to better understand human endothelial cell attachment, viability, growth, and phenotypic expression on sintered PLAGA microsphere scaffold. Scanning electron microscopy (SEM) examination showed cells attaching to the surface of microspheres and bridging the pores between the microspheres. Cell proliferation studies indicated that cell number increased during early stages and reached a plateau between days 10 and 14. Immunofluorescent staining for actin showed that cells were proliferating three dimensionally through the scaffolds while staining for PECAM-1 (platelet endothelial cell adhesion molecule) displayed typical localization at cell-cell contacts. Gene expression analysis showed that endothelial cells grown on PLAGA scaffolds maintained their normal characteristic phenotype. The cell proliferation and phenotypic expression were independent of scaffold pore architecture. These results demonstrate that PLAGA sintered microsphere scaffolds can support the growth and biological functions of human endothelial cells. The insights from this study should aid future studies aimed at enhancing angiogenesis in three dimensional tissue engineered scaffolds.

  19. Percutaneous closure of the left atrial appendage with Watchman device: An option for patients with atrial fibrilation and high risk of bleeding with anticoagulation

    Directory of Open Access Journals (Sweden)

    Sénior, Juan

    2015-07-01

    Full Text Available Atrial fibrillation is the most common arrhythmia found in clinical practice, with a population prevalence of 1% to 2%. Anticoagulation remains a fundamental part of treatment for the prevention of cerebrovascular events (stroke, but it is contraindicated in approximately 20% of patients. We report a case of non-valvular atrial fibrillation with high-risk score for stroke, a history of intracerebral bleeding, and very high risk of bleeding with long-term anticoagulation. Percutaneous closure of the left atrial appendage with the Watchman device was performed successfully without complications.

  20. How alternative are alternative fuels?

    OpenAIRE

    Soffritti, Tiziana; Danielis, Romeo

    1998-01-01

    Could alternative fuel vehicles contribute to a substantial reduction of air pollution? Is there a market for alternative fuel vehicles? Could a market be created via a pollution tax? The article answers these questions on the basis of the available estimates.

  1. Alternative detox.

    Science.gov (United States)

    Ernst, E

    2012-01-01

    The concept that alternative therapies can eliminate toxins and toxicants from the body, i.e. 'alternative detox' (AD) is popular. Selected textbooks and articles on the subject of AD. The principles of AD make no sense from a scientific perspective and there is no clinical evidence to support them. The promotion of AD treatments provides income for some entrepreneurs but has the potential to cause harm to patients and consumers. In alternative medicine, simplistic but incorrect concepts such as AD abound. AREAS TIMELY FOR RESEARCH: All therapeutic claims should be scientifically tested before being advertised-and AD cannot be an exception.

  2. Oclusão percutânea do apêndice atrial esquerdo com o Amplatzer Cardiac PlugTM na fibrilação atrial Percutaneous occlusion of left atrial appendage with the Amplatzer Cardiac PlugTM in atrial fibrillation

    Directory of Open Access Journals (Sweden)

    Márcio José Montenegro

    2012-02-01

    , anticoagulation has several limitations and has been widely underutilized. Over 90% of thrombi identified in patients with atrial fibrillation without valvular disease originate in the left atrial appendage, whose occlusion is investigated as an alternative to anticoagulation. Objective: To determine the feasibility of percutaneous occlusion of the left atrial appendage in patients at high risk of embolic events and limitations to the use of anticoagulation. Methods: We report our initial experience with Amplatzer Cardiac PlugTM (St. Jude Medical Inc., Saint Paul, Estados Unidos in patients with nonvalvular atrial fibrillation. We selected patients at high risk of thromboembolism, major bleeding, contraindications to the use or major instability in response to the anticoagulant. The procedures were performed percutaneously under general anesthesia and transesophageal echocardiography. The primary outcome was the presence of periprocedural complications and follow-up program included clinical and echocardiographic review within 30 days and by telephone contact after nine months. Results: In five selected patients it was possible to occlude the left atrial appendage without periprocedural complications. There were no clinical events in follow-up. Conclusion: Controlled clinical trials are needed before percutaneous closure of the left atrial appendage should be considered an alternative to anticoagulation in nonvalvular atrial fibrillation. But the device has shown to be promissory in patients at high risk of embolism and restrictions on the use of anticoagulants.

  3. Fluorescent composite scaffolds made of nanodiamonds/polycaprolactone

    Science.gov (United States)

    Cao, Li; Hou, Yanwen; Lafdi, Khalid; Urmey, Kirk

    2015-11-01

    Polycaprolactone (PCL) has been widely studied for biological applications. Biodegradable PCL fibrous scaffold can work as an appropriate substrate for tissue regeneration. In this letter, fluorescent nanodiamonds (FNDs) were prepared after surface passivation with octadecylamine. The FNDs were then mixed with PCL polymer and subsequently electrospun into FNDs/PCL fibrous scaffolds. The obtained scaffolds not only exhibited photoluminescence, but also showed reinforced mechanical strength. Toxicity study indicated FNDs/PCL scaffolds were nontoxic. This biocompatible fluorescent composite fibrous scaffold can support in vitro cell growth and also has the potential to act as an optical probe for tissue engineering application in vitro and in vivo.

  4. "Scaffolding" through Talk in Groupwork Learning

    Science.gov (United States)

    Panselinas, Giorgos; Komis, Vassilis

    2009-01-01

    In the present study, we develop and deploy a conceptual framework of "scaffolding" in groupwork learning, through the analysis of the pursuit of a learning goal over time. The analysis follows individuals' different experiences of an interaction as well as collective experiences, considering individual attainment as a result of a bi-directional…

  5. Teacher Scaffolding of Oral Language Production

    Science.gov (United States)

    George, May G.

    2011-01-01

    This research involved two observational studies. It explored the scaffolding processes as part of classroom pedagogy. The research shed light on the way a teacher's instructional methodology took shape in the classroom. The target event for this study was the time in which a novice learner was engaged publicly in uttering a sentence in Arabic in…

  6. Membrane supported scaffold architectures for tissue engineering

    NARCIS (Netherlands)

    Bettahalli Narasimha, M.S.

    2011-01-01

    Tissue engineering aims at restoring or regenerating a damaged tissue. Often the tissue recreation occurs by combining cells, derived from a patient biopsy, onto a 3D porous matrix, functioning as a scaffold. One of the current limitations of tissue engineering is the inability to provide sufficient

  7. Communication Scaffolds for Project Management in PBL

    Science.gov (United States)

    Sasaki, Shigeru; Arai, Masayuki; Takai, Kumiko; Ogawa, Mitsuhiro; Watanabe, Hiroyoshi

    2017-01-01

    In this study, the role-playing situation and the system requirement list are adopted into project-based learning classes to develop web applications. In the classes, the third-year undergraduate project managers communicate with the client of the project rolled by teachers on the Web bulletin board. These are expected to act as scaffolds to…

  8. Polylactic acid organogel as versatile scaffolding technique

    NARCIS (Netherlands)

    Punet, Xavier; Levato, Riccardo; Bataille, Isabelle; Letourneur, Didier; Engel, Elisabeth; Mateos-Timoneda, Miguel A

    2017-01-01

    Tissue engineering requires scaffolding techniques based on non-toxic processes that permits the fabrication of constructs with tailored properties. Here, a two-step methodology based on the gelation and precipitation of the poly(lactic) acid/ethyl lactate organogel system is presented. With this

  9. Comparison of TALEN scaffolds in Xenopus tropicalis

    Directory of Open Access Journals (Sweden)

    Keisuke Nakajima

    2013-11-01

    Transcription activator-like effector nucleases (TALENs are facile and potent tools used to modify a gene of interest for targeted gene knockout. TALENs consist of an N-terminal domain, a DNA-binding domain, and a C-terminal domain, which are derived from a transcription activator-like effector, and the non-specific nuclease domain of FokI. Using Xenopus tropicalis (X. tropicalis, we compared the toxicities and somatic mutation activities of four TALEN architectures in a side-by-side manner: a basic TALEN, a scaffold with the same truncated N- and C-terminal domains as GoldyTALEN, a scaffold with the truncated N- and C-terminal domains and an obligate heterodimeric nuclease domain, and a scaffold with the truncated N- and C-terminal domains and an obligate heterodimeric Sharkey nuclease domain. The strongest phenotype and targeted somatic gene mutation were induced by the injection of TALEN mRNAs containing the truncated N- and C-terminal domains and an obligate heterodimeric nuclease domain. The obligate heterodimeric TALENs exhibited reduced toxicity compared to the homodimeric TALENs, and the homodimeric GoldyTALEN-type scaffold showed both a high activity of somatic gene modification and high toxicity. The Sharkey mutation in the heterodimeric nuclease domain reduced the TALEN-mediated somatic mutagenesis.

  10. Enhancing Student Learning through Scaffolded Client Projects

    Science.gov (United States)

    Tomlinson, Elizabeth

    2017-01-01

    This article reports on the current status of client projects (CPs) in business communication courses, provides a scaffolded model for implementing CP, and assesses student learning in CPs. Using a longitudinal mixed method research design, survey data and qualitative materials from six semesters are presented. The instructor survey indicated need…

  11. Muscle fragments on a scaffold in rats

    DEFF Research Database (Denmark)

    Jangö, Hanna; Gräs, Søren; Christensen, Lise

    2015-01-01

    -PLGA scaffolds seeded with autologous MFF affected some histological and biomechanical properties of native tissue repair in an abdominal wall defect model in rats. The method thus appears to be a simple tissue engineering concept with potential relevance for native tissue repair of POP....

  12. Biodegradable elastomeric scaffolds for soft tissue engineering

    NARCIS (Netherlands)

    Pêgo, A.P.; Poot, Andreas A.; Grijpma, Dirk W.; Feijen, Jan

    2003-01-01

    Elastomeric copolymers of 1,3-trimethylene carbonate (TMC) and ε-caprolactone (CL) and copolymers of TMC and D,L-lactide (DLLA) have been evaluated as candidate materials for the preparation of biodegradable scaffolds for soft tissue engineering. TMC-DLLA copolymers are amorphous and degrade more

  13. Examinations of a new long-term degradable electrospun polycaprolactone scaffold in three rat abdominal wall models

    DEFF Research Database (Denmark)

    Jangö, Hanna; Gräs, Søren; Christensen, Lise

    2017-01-01

    Alternative approaches to reinforce native tissue in reconstructive surgery for pelvic organ prolapse are warranted. Tissue engineering combines the use of a scaffold with the regenerative potential of stem cells and is a promising new concept in urogynecology. Our objective was to evaluate whether....... Properties of the new neo-tissue construct must be evaluated at the time of full degradation of the scaffold before its possible clinical value in pelvic organ prolapse surgery can be evaluated....... together, the long-term degradable polycaprolactone scaffold provided biomechanical reinforcement by inducing a marked foreign-body response and attracting numerous inflammatory cells to form a strong neo-tissue construct. However, cells from the muscle fiber fragments did not survive in this milieu...

  14. Peer scaffolding in an EFL writing classroom: An investigation of writing accuracy and scaffolding behaviors

    Directory of Open Access Journals (Sweden)

    Parastou Gholami Pasand

    2017-09-01

    Full Text Available Considering the tenets of Sociocultural Theory with its emphasis on co-construction of knowledge, L2 writing can be regarded as a co-writing practice whereby assistance is provided to struggling writers. To date, most studies have dealt with peer scaffolding in the revision phase of writing, as such planning and drafting are remained untouched. The present study examines the impact of peer scaffolding on writing accuracy of a group of intermediate EFL learners, and explores scaffolding behaviors employed by them in planning and drafting phases of writing. To these ends, 40 freshmen majoring in English Language and Literature in the University of Guilan were randomly divided into a control group and an experimental group consisting of dyads in which a competent writer provided scaffolding to a less competent one using the process approach to writing. Results of independent samples t-tests revealed that learners in the experimental group produced more accurate essays. Microgenetic analysis of one dyad’s talks showed that scaffolding behaviors used in planning and drafting phases of writing were more or less the same as those identified in the revision phase. These findings can be used to inform peer intervention in L2 writing classes, and assist L2 learners in conducting successful peer scaffolding in the planning and drafting phases of writing.

  15. Percutaneous closure of the left atrial appendage for prevention of thromboembolism in atrial fibrillation for patients with contraindication to or failure of oral anticoagulation: a single-center experience.

    Science.gov (United States)

    Faustino, Ana; Paiva, Luís; Providência, Rui; Trigo, Joana; Botelho, Ana; Costa, Marco; Leitão-Marques, António

    2013-06-01

    In non-valvular atrial fibrillation 90% of thrombi originate in the left atrial appendage (LAA). Percutaneous LAA closure has been shown to be non-inferior to warfarin for prevention of thromboembolism. To evaluate the initial experience of a single center in percutaneous LAA closure in patients with high thromboembolic risk and in whom oral anticoagulation was impractical or contraindicated or had failed. Patients with non-valvular atrial fibrillation and CHADS2 score ≥2 in whom oral anticoagulation was impractical or contraindicated or had failed underwent percutaneous LAA closure according to the standard technique. After the procedure, dual antiplatelet therapy was maintained for one month, followed by single antiplatelet therapy indefinitely. Patients were followed by clinical assessment and transthoracic and transesophageal echocardiography. The procedure was performed in 22 of the 23 selected patients (95.7%), mean age 70±9 years, CHADS2 score 3.2±0.9 and CHA2DS2-VASC score 4.7±1.4. Intraprocedural device replacement was necessary only in the first patient, due to oversizing. The following periprocedural complications were observed: one femoral pseudoaneurysm, three femoral hematomas and two minor oropharyngeal bleeds, resolved by local hemostatic measures. During a 12±8 month follow-up a mild peri-device flow and a thrombus adhering to the device, resolved under with enoxaparin therapy, were identified. The rate of transient ischemic attack (TIA)/stroke was lower than expected according to the CHADS2 score (0 vs. 6.7±2.2%). In our initial experience, this procedure proved to be a feasible, safe and effective alternative for atrial fibrillation patients in whom oral anticoagulation is not an option. Only relatively minor complications were observed, with a lower than expected TIA/stroke rate. Copyright © 2012 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  16. Efficacy and safety of left atrial appendage closure with WATCHMAN in patients with or without contraindication to oral anticoagulation: 1-Year follow-up outcome data of the EWOLUTION trial.

    Science.gov (United States)

    Boersma, Lucas V; Ince, Hueseyin; Kische, Stephan; Pokushalov, Evgeny; Schmitz, Thomas; Schmidt, Boris; Gori, Tommaso; Meincke, Felix; Protopopov, Alexey Vladimir; Betts, Timothy; Foley, David; Sievert, Horst; Mazzone, Patrizio; De Potter, Tom; Vireca, Elisa; Stein, Kenneth; Bergmann, Martin W

    2017-09-01

    Left atrial appendage (LAA) occlusion with WATCHMAN has emerged as viable alternative to vitamin K antagonists in randomized controlled trials. EWOLUTION was designed to provide data in routine practice from a prospective multicenter registry. A total of 1025 patients scheduled for a WATCHMAN implant were prospectively and sequentially enrolled at 47 centers. Indication for LAA closure was based on European Society of Cardiology guidelines. Follow-up and transesophageal echocardiography (TEE) were performed per local practice. The baseline CHA 2 DS 2 -VASc score was 4.5 ± 1.6; the mean age was 73.4 ± 9 years; previous transient ischemic attack/ischemic stroke was present in 312 (30.5%), 155 (15.1%) had previous hemorrhagic stroke, and 320 (31.3%) had a history of major bleeding; and 750 (73%) were deemed unsuitable for oral anticoagulation therapy. WATCHMAN implant succeeded in 1005 (98.5%) of patients, without leaks >5 mm in 1002 (99.7%) with at least 1 TEE follow-up in 875 patients (87%). Antiplatelet therapy was used in 784 (83%), while vitamin K antagonists were used in only 75 (8%). At 1 year, mortality was 98 (9.8%), reflecting the advanced age and comorbidities in this population. Device thrombus was observed in 28 patients at routine TEE (3.7%) and was not correlated with the drug regimen (P = .14). Ischemic stroke rate was 1.1% (relative risk 84% vs estimated historical data); the major bleeding rate was 2.6% and was predominantly (2.3%) nonprocedure/device related. LAA closure with the WATCHMAN device has a high implant and sealing success. This method of stroke risk reduction appears to be safe and effective with an ischemic stroke rate as low as 1.1%, even though 73% of patients had a contraindication to and were not using oral anticoagulation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Platelet lysate 3D scaffold supports mesenchymal stem cell chondrogenesis: an improved approach in cartilage tissue engineering.

    Science.gov (United States)

    Moroz, Andrei; Bittencourt, Renata Aparecida Camargo; Almeida, Renan Padron; Felisbino, Sérgio Luis; Deffune, Elenice

    2013-01-01

    Articular lesions are still a major challenge in orthopedics because of cartilage's poor healing properties. A major improvement in therapeutics was the development of autologous chondrocytes implantation (ACI), a biotechnology-derived technique that delivers healthy autologous chondrocytes after in vitro expansion. To obtain cartilage-like tissue, 3D scaffolds are essential to maintain chondrocyte differentiated status. Currently, bioactive 3D scaffolds are promising as they can deliver growth factors, cytokines, and hormones to the cells, giving them a boost to attach, proliferate, induce protein synthesis, and differentiate. Using mesenchymal stem cells (MSCs) differentiated into chondrocytes, one can avoid cartilage harvesting. Thus, we investigated the potential use of a platelet-lysate-based 3D bioactive scaffold to support chondrogenic differentiation and maintenance of MSCs. The MSCs from adult rabbit bone marrow (n = 5) were cultivated and characterized using three antibodies by flow cytometry. MSCs (1 × 10(5)) were than encapsulated inside 60 µl of a rabbit platelet-lysate clot scaffold and maintained in Dulbecco's Modified Eagle Medium Nutrient Mixture F-12 supplemented with chondrogenic inductors. After 21 days, the MSCs-seeded scaffolds were processed for histological analysis and stained with toluidine blue. This scaffold was able to maintain round-shaped cells, typical chondrocyte metachromatic extracellular matrix deposition, and isogenous group formation. Cells accumulated inside lacunae and cytoplasm lipid droplets were other observed typical chondrocyte features. In conclusion, the usage of a platelet-lysate bioactive scaffold, associated with a suitable chondrogenic culture medium, supports MSCs chondrogenesis. As such, it offers an alternative tool for cartilage engineering research and ACI.

  18. Fabrication and Mechanical Characterization of Hydrogel Infused Network Silk Scaffolds

    Directory of Open Access Journals (Sweden)

    Lakshminath Kundanati

    2016-09-01

    Full Text Available Development and characterization of porous scaffolds for tissue engineering and regenerative medicine is of great importance. In recent times, silk scaffolds were developed and successfully tested in tissue engineering and drug release applications. We developed a novel composite scaffold by mechanical infusion of silk hydrogel matrix into a highly porous network silk scaffold. The mechanical behaviour of these scaffolds was thoroughly examined for their possible use in load bearing applications. Firstly, unconfined compression experiments show that the denser composite scaffolds displayed significant enhancement in the elastic modulus as compared to either of the components. This effect was examined and further explained with the help of foam mechanics principles. Secondly, results from confined compression experiments that resemble loading of cartilage in confinement, showed nonlinear material responses for all scaffolds. Finally, the confined creep experiments were performed to calculate the hydraulic permeability of the scaffolds using soil mechanics principles. Our results show that composite scaffolds with some modifications can be a potential candidate for use of cartilage like applications. We hope such approaches help in developing novel scaffolds for tissue engineering by providing an understanding of the mechanics and can further be used to develop graded scaffolds by targeted infusion in specific regions.

  19. Preparation of bioactive porous HA/PCL composite scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Guo, L.Y.; Yang, X.B. [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Weng, J. [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: jweng@swjtu.cn

    2008-12-30

    Porous hydroxyapatite (HA) bioceramic scaffold has been widely attracted the attention to act as a three-dimensional (3D) template for cell adhesion, proliferation, differentiation and thus promoting bone and cartilage regeneration because of its osteoinduction. However, the porous bioceramic scaffold is fragile so that it is not suitable to be applied in clinic for bone repair or replacement. Therefore, it is significant to improve the mechanical property of porous HA bioceramics while the interconnected structure is maintained for tissue ingrowth in vivo. In the present research, a porous composite scaffold composed of HA scaffold and polycaprolactone (PCL) lining was fabricated by the method of polymer impregnating to produce HA scaffold coated with PCL lining. Subsequently, the composite scaffolds were deposited with biomimetic coating for improving the bioactivity. The HA/PCL composite scaffolds with improved mechanical property and bioactivity is expected to be a promising bone substitute in tissue engineering applications.

  20. Polyelectrolyte-complex nanostructured fibrous scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Verma, Devendra; Katti, Kalpana S.; Katti, Dinesh R.

    2009-01-01

    In the current work, polyelectrolyte complex (PEC) fibrous scaffolds for tissue engineering have been synthesized and a mechanism of their formation has been investigated. The scaffolds are synthesized using polygalacturonic acid and chitosan using the freeze drying methodology. Highly interconnected pores of sizes in the range of 5-20 μm are observed in the scaffolds. The thickness of the fibers was found to be in the range of 1-2 μm. Individual fibers have a nanogranular structure as observed using AFM imaging. In these scaffolds, PEC nanoparticles assemble together at the interface of ice crystals during freeze drying process. Further investigation shows that the freezing temperature and concentration have a remarkable effect on structure of scaffolds. Biocompatibility studies show that scaffold containing chitosan, polygalacturonic acid and hydroxyapatite promotes cell adhesion and proliferation. On the other hand, cells on scaffolds fabricated without hydroxyapatite nanoparticles showed poor adhesion.

  1. Synergistic Effect of Carbon Nanotubes and Graphene on Diopside Scaffolds.

    Science.gov (United States)

    Liu, Tingting; Wu, Ping; Gao, Chengde; Feng, Pei; Xiao, Tao; Deng, Youwen; Shuai, Cijun; Peng, Shuping

    2016-01-01

    A synergetic effect between carbon nanotubes (CNTs) and graphene on diopside (Di) scaffolds was demonstrated. 3D network architecture in the matrix was formed through the 1D CNTs inlaid among the 2D graphene platelets (GNPs). The mechanical properties of the CNTs/GNPs/Di scaffolds were significantly improved compared with the CNTs/Di scaffolds and GNPs/Di scaffolds. In addition, the scaffolds exhibited excellent apatite-forming ability, a modest degradation rate, and stable mechanical properties in simulated body fluid (SBF). Moreover, cell culturing tests indicated that the scaffolds supported the cells attachment and proliferation. Taken together, the CNTs/GNPs/Di scaffolds offered great potential for bone tissue engineering.

  2. Preparation of bioactive porous HA/PCL composite scaffolds

    International Nuclear Information System (INIS)

    Zhao, J.; Guo, L.Y.; Yang, X.B.; Weng, J.

    2008-01-01

    Porous hydroxyapatite (HA) bioceramic scaffold has been widely attracted the attention to act as a three-dimensional (3D) template for cell adhesion, proliferation, differentiation and thus promoting bone and cartilage regeneration because of its osteoinduction. However, the porous bioceramic scaffold is fragile so that it is not suitable to be applied in clinic for bone repair or replacement. Therefore, it is significant to improve the mechanical property of porous HA bioceramics while the interconnected structure is maintained for tissue ingrowth in vivo. In the present research, a porous composite scaffold composed of HA scaffold and polycaprolactone (PCL) lining was fabricated by the method of polymer impregnating to produce HA scaffold coated with PCL lining. Subsequently, the composite scaffolds were deposited with biomimetic coating for improving the bioactivity. The HA/PCL composite scaffolds with improved mechanical property and bioactivity is expected to be a promising bone substitute in tissue engineering applications

  3. Evaluation of cellular adhesion and organization in different microporous polymeric scaffolds.

    Science.gov (United States)

    Asthana, Amish; White, Charles McRae; Douglass, Megan; Kisaalita, William S

    2018-03-01

    The lack of prediction accuracy during drug development and screening risks complications during human trials, such as drug-induced liver injury (DILI), and has led to a demand for robust, human cell-based, in vitro assays for drug discovery. Microporous polymer-based scaffolds offer an alternative to the gold standard flat tissue culture plastic (2D TCPS) and other 3D cell culture platforms as the porous material entraps cells, making it advantageous for automated liquid handlers and high-throughput screening (HTS). In this study, we optimized the surface treatment, pore size, and choice of scaffold material with respect to cellular adhesion, tissue organization, and expression of complex physiologically relevant (CPR) outcomes such as the presence of bile canaliculi-like structures. Poly-l-lysine and fibronectin (FN) coatings have been shown to encourage cell attachment to the underlying substrate. Treatment of the scaffold surface with NaOH followed with a coating of FN improved cell attachment and penetration into pores. Of the two pore sizes we investigated (A: 104 ± 4 μm; B: 175 ± 6 μm), the larger pore size better promoted cell penetration while limiting tissue growth from reaching the hypoxia threshold. Finally, polystyrene (PS) proved to be conducive to cell growth, penetration into the scaffold, and yielded CPR outcomes while being a cost-effective choice for HTS applications. These observations provide a foundation for optimizing microporous polymer-based scaffolds suitable for drug discovery. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:505-514, 2018. © 2018 American Institute of Chemical Engineers.

  4. Chitosan-alginate 3D scaffolds as a mimic of the glioma tumor microenvironment.

    Science.gov (United States)

    Kievit, Forrest M; Florczyk, Stephen J; Leung, Matthew C; Veiseh, Omid; Park, James O; Disis, Mary L; Zhang, Miqin

    2010-08-01

    Despite recent advances in the understanding of its cell biology, glioma remains highly lethal. Development of effective therapies requires a cost-effective in vitro tumor model that more accurately resembles the in vivo tumor microenvironment as standard two-dimensional (2D) tissue culture conditions do so poorly. Here we report on the use of a three-dimensional (3D) chitosan-alginate (CA) scaffold to serve as an extracellular matrix that promotes the conversion of cultured cancer cells to a more malignant in vivo-like phenotype. Human U-87 MG and U-118 MG glioma cells and rat C6 glioma cells were chosen for the study. In vitro tumor cell proliferation and secretion of factors that promote tumor malignancy, including VEGF, MMP-2, fibronectin, and laminin, were assessed. The scaffolds pre-cultured with U-87 MG and C6 cells were then implanted into nude mice to evaluate tumor growth and blood vessel recruitment compared to the standard 2D cell culture and 3D Matrigel matrix xenograft controls. Our results indicate that while the behavior of C6 cells showed minimal differences due to their highly malignant and invasive nature, U-87 MG and U-118 MG cells exhibited notably higher malignancy when cultured in CA scaffolds. CA scaffolds provide a 3D microenvironment for glioma cells that is more representative of the in vivo tumor, thus can serve as a more effective platform for development and study of anticancer therapeutics. This unique CA scaffold platform may offer a valuable alternative strategy to the time-consuming and costly animal studies for a wide variety of experimental designs. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. METACOGNITIVE SCAFFOLDS IMPROVE SELF-JUDGMENTS OF ACCURACY IN A MEDICAL INTELLIGENT TUTORING SYSTEM.

    Science.gov (United States)

    Feyzi-Behnagh, Reza; Azevedo, Roger; Legowski, Elizabeth; Reitmeyer, Kayse; Tseytlin, Eugene; Crowley, Rebecca S

    2014-03-01

    In this study, we examined the effect of two metacognitive scaffolds on the accuracy of confidence judgments made while diagnosing dermatopathology slides in SlideTutor. Thirty-one ( N = 31) first- to fourth-year pathology and dermatology residents were randomly assigned to one of the two scaffolding conditions. The cases used in this study were selected from the domain of Nodular and Diffuse Dermatitides. Both groups worked with a version of SlideTutor that provided immediate feedback on their actions for two hours before proceeding to solve cases in either the Considering Alternatives or Playback condition. No immediate feedback was provided on actions performed by participants in the scaffolding mode. Measurements included learning gains (pre-test and post-test), as well as metacognitive performance, including Goodman-Kruskal Gamma correlation, bias, and discrimination. Results showed that participants in both conditions improved significantly in terms of their diagnostic scores from pre-test to post-test. More importantly, participants in the Considering Alternatives condition outperformed those in the Playback condition in the accuracy of their confidence judgments and the discrimination of the correctness of their assertions while solving cases. The results suggested that presenting participants with their diagnostic decision paths and highlighting correct and incorrect paths helps them to become more metacognitively accurate in their confidence judgments.

  6. Bioactive Sr(II/Chitosan/Poly(ε-caprolactone Scaffolds for Craniofacial Tissue Regeneration. In Vitro and In Vivo Behavior

    Directory of Open Access Journals (Sweden)

    Itzia Rodríguez-Méndez

    2018-03-01

    Full Text Available In craniofacial tissue regeneration, the current gold standard treatment is autologous bone grafting, however, it presents some disadvantages. Although new alternatives have emerged there is still an urgent demand of biodegradable scaffolds to act as extracellular matrix in the regeneration process. A potentially useful element in bone regeneration is strontium. It is known to promote stimulation of osteoblasts while inhibiting osteoclasts resorption, leading to neoformed bone. The present paper reports the preparation and characterization of strontium (Sr containing hybrid scaffolds formed by a matrix of ionically cross-linked chitosan and microparticles of poly(ε-caprolactone (PCL. These scaffolds of relatively facile fabrication were seeded with osteoblast-like cells (MG-63 and human bone marrow mesenchymal stem cells (hBMSCs for application in craniofacial tissue regeneration. Membrane scaffolds were prepared using chitosan:PCL ratios of 1:2 and 1:1 and 5 wt % Sr salts. Characterization was performed addressing physico-chemical properties, swelling behavior, in vitro biological performance and in vivo biocompatibility. Overall, the composition, microstructure and swelling degree (≈245% of scaffolds combine with the adequate dimensional stability, lack of toxicity, osteogenic activity in MG-63 cells and hBMSCs, along with the in vivo biocompatibility in rats allow considering this system as a promising biomaterial for the treatment of craniofacial tissue regeneration.

  7. Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds.

    Science.gov (United States)

    Temple, Joshua P; Hutton, Daphne L; Hung, Ben P; Huri, Pinar Yilgor; Cook, Colin A; Kondragunta, Renu; Jia, Xiaofeng; Grayson, Warren L

    2014-12-01

    The treatment of large craniomaxillofacial bone defects is clinically challenging due to the limited availability of transplantable autologous bone grafts and the complex geometry of the bones. The ability to regenerate new bone tissues that faithfully replicate the anatomy would revolutionize treatment options. Advances in the field of bone tissue engineering over the past few decades offer promising new treatment alternatives using biocompatible scaffold materials and autologous cells. This approach combined with recent advances in three-dimensional (3D) printing technologies may soon allow the generation of large, bioartificial bone grafts with custom, patient-specific architecture. In this study, we use a custom-built 3D printer to develop anatomically shaped polycaprolactone (PCL) scaffolds with varying internal porosities. These scaffolds are assessed for their ability to support induction of human adipose-derived stem cells (hASCs) to form vasculature and bone, two essential components of functional bone tissue. The development of functional tissues is assessed in vitro and in vivo. Finally, we demonstrate the ability to print large mandibular and maxillary bone scaffolds that replicate fine details extracted from patient's computed tomography scans. The findings of this study illustrate the capabilities and potential of 3D printed scaffolds to be used for engineering autologous, anatomically shaped, vascularized bone grafts. © 2014 Wiley Periodicals, Inc.

  8. Incorporation of chitosan microspheres into collagen-chitosan scaffolds for the controlled release of nerve growth factor.

    Directory of Open Access Journals (Sweden)

    Wen Zeng

    Full Text Available Artifical nerve scaffold can be used as a promising alternative to autologous nerve grafts to enhance the repair of peripheral nerve defects. However, current nerve scaffolds lack efficient microstructure and neurotrophic support.Microsphere-Scaffold composite was developed by incorporating chitosan microspheres loaded with nerve growth factor (NGF-CMSs into collagen-chitosan scaffolds (CCH with longitudinally oriented microchannels (NGF-CMSs/CCH. The morphological characterizations, in vitro release kinetics study, neurite outgrowth assay, and bioactivity assay were evaluated. After that, a 15-mm-long sciatic nerve gap in rats was bridged by the NGF-CMSs/CCH, CCH physically absorbed NGF (NGF/CCH, CCH or nerve autograft. 16 weeks after implantation, electrophysiology, fluoro-gold retrograde tracing, and nerve morphometry were performed.The NGF-CMSs were evenly distributed throughout the longitudinally oriented microchannels of the scaffold. The NGF-CMSs/CCH was capable of sustained release of bioactive NGF within 28 days as compared with others in vitro. In vivo animal study demonstrated that the outcomes of NGF-CMSs/CCH were better than those of NGF/CCH or CCH.Our findings suggest that incorporation of NGF-CMSs into the CCH may be a promising tool in the repair of peripheral nerve defects.

  9. Improving osteointegration and osteogenesis of three-dimensional porous Ti6Al4V scaffolds by polydopamine-assisted biomimetic hydroxyapatite coating.

    Science.gov (United States)

    Li, Yong; Yang, Wei; Li, Xiaokang; Zhang, Xing; Wang, Cairu; Meng, Xiangfei; Pei, Yifeng; Fan, Xiangli; Lan, Pingheng; Wang, Chunhui; Li, Xiaojie; Guo, Zheng

    2015-03-18

    Titanium alloys with various porous structures can be fabricated by advanced additive manufacturing techniques, which are attractive for use as scaffolds for bone defect repair. However, modification of the scaffold surfaces, particularly inner surfaces, is critical to improve the osteointegration of these scaffolds. In this study, a biomimetic approach was employed to construct polydopamine-assisted hydroxyapatite coating (HA/pDA) onto porous Ti6Al4V scaffolds fabricated by the electron beam melting method. The surface modification was characterized with the field emission scanning electron microscopy, energy dispersive spectroscopy, water contact angle measurement, and confocal laser scanning microscopy. Attachment and proliferation of MC3T3-E1 cells on the scaffold surface were significantly enhanced by the HA/pDA coating compared to the unmodified surfaces. Additionally, MC3T3-E1 cells grown on the HA/pDA-coated Ti6Al4V scaffolds displayed significantly higher expression of runt-related transcription factor-2, alkaline phosphatase, osteocalcin, osteopontin, and collagen type-1 compared with bare Ti6Al4V scaffolds after culture for 14 days. Moreover, microcomputed tomography analysis and Van-Gieson staining of histological sections showed that HA/pDA coating on surfaces of porous Ti6Al4V scaffolds enhanced osteointegration and significantly promoted bone regeneration after implantation in rabbit femoral condylar defects for 4 and 12 weeks. Therefore, this study provides an alternative to biofunctionalized porous Ti6Al4V scaffolds with improved osteointegration and osteogenesis functions for orthopedic applications.

  10. A conserved function of the zinc finger transcription factor Sp8/9 in allometric appendage growth in the milkweed bug Oncopeltus fasciatus.

    Science.gov (United States)

    Schaeper, Nina D; Prpic, Nikola-Michael; Wimmer, Ernst A

    2009-08-01

    The genes encoding the closely related zinc finger transcription factors Buttonhead (Btd) and D-Sp1 are expressed in the developing limb primordia of Drosophila melanogaster and are required for normal growth of the legs. The D-Sp1 homolog of the red flour beetle Tribolium castaneum, Sp8 (appropriately termed Sp8/9), is also required for the proper growth of the leg segments. Here we report on the isolation and functional study of the Sp8/9 gene from the milkweed bug Oncopeltus fasciatus. We show that Sp8/9 is expressed in the developing appendages throughout development and that the downregulation of Sp8/9 via RNAi leads to antennae, rostrum, and legs with shortened and fused segments. This supports a conserved role of Sp8/9 in allometric leg segment growth. However, all leg segments including the claws are present and the expression of the leg genes Distal-less, dachshund, and homothorax are proportionally normal, thus providing no evidence for a role of Sp8/9 in appendage specification.

  11. Synthetic scaffold coating with adeno-associated virus encoding BMP2 to promote endogenous bone repair.

    Science.gov (United States)

    Dupont, Kenneth M; Boerckel, Joel D; Stevens, Hazel Y; Diab, Tamim; Kolambkar, Yash M; Takahata, Masahiko; Schwarz, Edward M; Guldberg, Robert E

    2012-03-01

    Biomaterial scaffolds functionalized to stimulate endogenous repair mechanisms via the incorporation of osteogenic cues offer a potential alternative to bone grafting for the treatment of large bone defects. We first quantified the ability of a self-complementary adeno-associated viral vector encoding bone morphogenetic protein 2 (scAAV2.5-BMP2) to enhance human stem cell osteogenic differentiation in vitro. In two-dimensional culture, scAAV2.5-BMP2-transduced human mesenchymal stem cells (hMSCs) displayed significant increases in BMP2 production and alkaline phosphatase activity compared with controls. hMSCs and human amniotic-fluid-derived stem cells (hAFS cells) seeded on scAAV2.5-BMP2-coated three-dimensional porous polymer Poly(ε-caprolactone) (PCL) scaffolds also displayed significant increases in BMP2 production compared with controls during 12 weeks of culture, although only hMSC-seeded scaffolds displayed significantly increased mineral formation. PCL scaffolds coated with scAAV2.5-BMP2 were implanted into critically sized immunocompromised rat femoral defects, both with or without pre-seeding of hMSCs, representing ex vivo and in vivo gene therapy treatments, respectively. After 12 weeks, defects treated with acellular scAAV2.5-BMP2-coated scaffolds displayed increased bony bridging and had significantly higher bone ingrowth and mechanical properties compared with controls, whereas defects treated with scAAV2.5-BMP2 scaffolds pre-seeded with hMSCs failed to display significant differences relative to controls. When pooled, defect treatment with scAAV2.5-BMP2-coated scaffolds, both with or without inclusion of pre-seeded hMSCs, led to significant increases in defect mineral formation at all time points and increased mechanical properties compared with controls. This study thus presents a novel acellular bone-graft-free endogenous repair therapy for orthotopic tissue-engineered bone regeneration.

  12. Use of Interim Scaffolding and Neotissue Development to Produce a Scaffold-Free Living Hyaline Cartilage Graft.

    Science.gov (United States)

    Lau, Ting Ting; Leong, Wenyan; Peck, Yvonne; Su, Kai; Wang, Dong-An

    2015-01-01

    The fabrication of three-dimensional (3D) constructs relies heavily on the use of biomaterial-based scaffolds. These are required as mechanical supports as well as to translate two-dimensional cultures to 3D cultures for clinical applications. Regardless of the choice of scaffold, timely degradation of scaffolds is difficult to achieve and undegraded scaffold material can lead to interference in further tissue development or morphogenesis. In cartilage tissue engineering, hydrogel is the highly preferred scaffold material as it shares many similar characteristics with native cartilaginous matrix. Hence, we employed gelatin microspheres as porogens to create a microcavitary alginate hydrogel as an interim scaffold to facilitate initial chondrocyte 3D culture and to establish a final scaffold-free living hyaline cartilaginous graft (LhCG) for cartilage tissue engineering.

  13. Flow perfusion culture of human mesenchymal stem cells on silicate-substituted tricalcium phosphate scaffolds

    DEFF Research Database (Denmark)

    Bjerre, Lea; Bünger, Cody E; Kassem, Moustapha

    2008-01-01

    Autologous bone grafts are currently the gold standard for treatment of large bone defects, but their availability is limited due to donor site morbidity. Different substitutes have been suggested to replace these grafts, and this study presents a bone tissue engineered alternative using silicate......-substituted tricalcium phosphate (Si-TCP) scaffolds seeded with human bone marrow-derived mesenchymal stem cells (hMSC). The cells were seeded onto the scaffolds and cultured either statically or in a perfusion bioreactor for up to 21 days and assessed for osteogenic differentiation by alkaline phosphatase activity...... assays and by quantitative real-time RT-PCR on bone markers. During culture, cells from the flow cultured constructs demonstrated improved proliferation and osteogenic differentiation verified by a more pronounced expression of several bone markers, e.g. alkaline phosphatase, osteopontin, Runx2, bone...

  14. Single molecule sequencing-guided scaffolding and correction of draft assemblies.

    Science.gov (United States)

    Zhu, Shenglong; Chen, Danny Z; Emrich, Scott J

    2017-12-06

    Although single molecule sequencing is still improving, the lengths of the generated sequences are inevitably an advantage in genome assembly. Prior work that utilizes long reads to conduct genome assembly has mostly focused on correcting sequencing errors and improving contiguity of de novo assemblies. We propose a disassembling-reassembling approach for both correcting structural errors in the draft assembly and scaffolding a target assembly based on error-corrected single molecule sequences. To achieve this goal, we formulate a maximum alternating path cover problem. We prove that this problem is NP-hard, and solve it by a 2-approximation algorithm. Our experimental results show that our approach can improve the structural correctness of target assemblies in the cost of some contiguity, even with smaller amounts of long reads. In addition, our reassembling process can also serve as a competitive scaffolder relative to well-established assembly benchmarks.

  15. 3-D loaded scaffolds obtained by supercritical CO2 assisted process

    Science.gov (United States)

    Cardea, S.; Reverchon, E.

    2014-08-01

    In this work, a supercritical CO2 (SC-CO2) drying process for the formation of 3-D PVDF-HFP loaded scaffolds was tested. Experiments at pressures ranging between 150 and 250 bar and at temperatures ranging between 35 and 55°C were performed. The PVDF-HFP- acetone-ethanol solution at 15% w/w polymer was selected as the base case. The drug (amoxicillin) concentration was varied from 20 to 30% w/w with respect to PVDF-HFP. SC- CO2 drying process was confirmed to be a valid alternative to generate loaded structures; indeed, scaffolds characterized by nanometric networks (with mean pore diameter of about 300 nm) with a homogeneous drug distribution were obtained. Drug controlled release experiments were also performed and a quasi-zero order release kinetic was observed.

  16. Cosmic alternatives?

    Science.gov (United States)

    Gregory, Ruth

    2009-04-01

    "Cosmologists are often in error but never in doubt." This pithy characterization by the Soviet physicist Lev Landau sums up the raison d'être of Facts and Speculations in Cosmology. Authors Jayant Narlikar and Geoffrey Burbidge are proponents of a "steady state" theory of cosmology, and they argue that the cosmological community has become fixated on a "Big Bang" dogma, suppressing alternative viewpoints. This book very much does what it says on the tin: it sets out what is known in cosmology, and puts forward the authors' point of view on an alternative to the Big Bang.

  17. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold

    International Nuclear Information System (INIS)

    Baylan, Nuray; Ditto, Maggie; Lawrence, Joseph G; Yildirim-Ayan, Eda; Bhat, Samerna; Lecka-Czernik, Beata

    2013-01-01

    There is an increasing demand for an injectable cell coupled three-dimensional (3D) scaffold to be used as bone fracture augmentation material. To address this demand, a novel injectable osteogenic scaffold called PN-COL was developed using cells, a natural polymer (collagen type-I), and a synthetic polymer (polycaprolactone (PCL)). The injectable nanofibrous PN-COL is created by interspersing PCL nanofibers within pre-osteoblast cell embedded collagen type-I. This simple yet novel and powerful approach provides a great benefit as an injectable bone scaffold over other non-living bone fracture stabilization polymers, such as polymethylmethacrylate and calcium content resin-based materials. The advantages of injectability and the biomimicry of collagen was coupled with the structural support of PCL nanofibers, to create cell encapsulated injectable 3D bone scaffolds with intricate porous internal architecture and high osteoconductivity. The effects of PCL nanofiber inclusion within the cell encapsulated collagen matrix has been evaluated for scaffold size retention and osteocompatibility, as well as for MC3T3-E1 cells osteogenic activity. The structural analysis of novel bioactive material proved that the material is chemically stable enough in an aqueous solution for an extended period of time without using crosslinking reagents, but it is also viscous enough to be injected through a syringe needle. Data from long-term in vitro proliferation and differentiation data suggests that novel PN-COL scaffolds promote the osteoblast proliferation, phenotype expression, and formation of mineralized matrix. This study demonstrates for the first time the feasibility of creating a structurally competent, injectable, cell embedded bone tissue scaffold. Furthermore, the results demonstrate the advantages of mimicking the hierarchical architecture of native bone with nano- and micro-size formation through introducing PCL nanofibers within macron-size collagen fibers and in

  18. Rapid prototyped porous nickel–titanium scaffolds as bone substitutes

    Directory of Open Access Journals (Sweden)

    Waldemar Hoffmann

    2014-06-01

    Full Text Available While calcium phosphate–based ceramics are currently the most widely used materials in bone repair, they generally lack tensile strength for initial load bearing. Bulk titanium is the gold standard of metallic implant materials, but does not match the mechanical properties of the surrounding bone, potentially leading to problems of fixation and bone resorption. As an alternative, nickel–titanium alloys possess a unique combination of mechanical properties including a relatively low elastic modulus, pseudoelasticity, and high damping capacity, matching the properties of bone better than any other metallic material. With the ultimate goal of fabricating porous implants for spinal, orthopedic and dental applications, nickel–titanium substrates were fabricated by means of selective laser melting. The response of human mesenchymal stromal cells to the nickel–titanium substrates was compared to mesenchymal stromal cells cultured on clinically used titanium. Selective laser melted titanium as well as surface-treated nickel–titanium and titanium served as controls. Mesenchymal stromal cells had similar proliferation rates when cultured on selective laser melted nickel–titanium, clinically used titanium, or controls. Osteogenic differentiation was similar for mesenchymal stromal cells cultured on the selected materials, as indicated by similar gene expression levels of bone sialoprotein and osteocalcin. Mesenchymal stromal cells seeded and cultured on porous three-dimensional selective laser melted nickel–titanium scaffolds homogeneously colonized the scaffold, and following osteogenic induction, filled the scaffold’s pore volume with extracellular matrix. The combination of bone-related mechanical properties of selective laser melted nickel–titanium with its cytocompatibility and support of osteogenic differentiation of mesenchymal stromal cells highlights its potential as a superior bone substitute as compared to clinically used

  19. Magnetic responsive hydroxyapatite composite scaffolds construction for bone defect reparation.

    Science.gov (United States)

    Zeng, Xiao Bo; Hu, Hao; Xie, Li Qin; Lan, Fang; Jiang, Wen; Wu, Yao; Gu, Zhong Wei

    2012-01-01

    In recent years, interest in magnetic biomimetic scaffolds for tissue engineering has increased considerably. A type of magnetic scaffold composed of magnetic nanoparticles (MNPs) and hydroxyapatite (HA) for bone repair has been developed by our research group. In this study, to investigate the influence of the MNP content (in the scaffolds) on the cell behaviors and the interactions between the magnetic scaffold and the exterior magnetic field, a series of MNP-HA magnetic scaffolds with different MNP contents (from 0.2% to 2%) were fabricated by immersing HA scaffold into MNP colloid. ROS 17/2.8 and MC3T3-E1 cells were cultured on the scaffolds in vitro, with and without an exterior magnetic field, respectively. The cell adhesion, proliferation and differentiation were evaluated via scanning electron microscopy; confocal laser scanning microscopy; and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), alkaline phosphatase, and bone gla protein activity tests. The results demonstrated the positive influence of the magnetic scaffolds on cell adhesion, proliferation, and differentiation. Further, a higher amount of MNPs on the magnetic scaffolds led to more significant stimulation. The magnetic scaffold can respond to the exterior magnetic field and engender some synergistic effect to intensify the stimulating effect of a magnetic field to the proliferation and differentiation of cells.

  20. Surface modified electrospun nanofibrous scaffolds for nerve tissue engineering

    International Nuclear Information System (INIS)

    Prabhakaran, Molamma P; Venugopal, J; Chan, Casey K; Ramakrishna, S

    2008-01-01

    The development of biodegradable polymeric scaffolds with surface properties that dominate interactions between the material and biological environment is of great interest in biomedical applications. In this regard, poly-ε-caprolactone (PCL) nanofibrous scaffolds were fabricated by an electrospinning process and surface modified by a simple plasma treatment process for enhancing the Schwann cell adhesion, proliferation and interactions with nanofibers necessary for nerve tissue formation. The hydrophilicity of surface modified PCL nanofibrous scaffolds (p-PCL) was evaluated by contact angle and x-ray photoelectron spectroscopy studies. Naturally derived polymers such as collagen are frequently used for the fabrication of biocomposite PCL/collagen scaffolds, though the feasibility of procuring large amounts of natural materials for clinical applications remains a concern, along with their cost and mechanical stability. The proliferation of Schwann cells on p-PCL nanofibrous scaffolds showed a 17% increase in cell proliferation compared to those on PCL/collagen nanofibrous scaffolds after 8 days of cell culture. Schwann cells were found to attach and proliferate on surface modified PCL nanofibrous scaffolds expressing bipolar elongations, retaining their normal morphology. The results of our study showed that plasma treated PCL nanofibrous scaffolds are a cost-effective material compared to PCL/collagen scaffolds, and can potentially serve as an ideal tissue engineered scaffold, especially for peripheral nerve regeneration.

  1. A Review on Fabricating Tissue Scaffolds using Vat Photopolymerization.

    Science.gov (United States)

    Chartrain, Nicholas A; Williams, Christopher B; Whittington, Abby R

    2018-05-09

    Vat Photopolymerization (stereolithography, SLA), an Additive Manufacturing (AM) or 3D printing technology, holds particular promise for the fabrication of tissue scaffolds for use in regenerative medicine. Unlike traditional tissue scaffold fabrication techniques, SLA is capable of fabricating designed scaffolds through the selective photopolymerization of a photopolymer resin on the micron scale. SLA offers unprecedented control over scaffold porosity and permeability, as well as pore size, shape, and interconnectivity. Perhaps even more significantly, SLA can be used to fabricate vascular networks that may encourage angio and vasculogenesis. Fulfilling this potential requires the development of new photopolymers, the incorporation of biochemical factors into printed scaffolds, and an understanding of the effects scaffold geometry have on cell viability, proliferation, and differentiation. This review compares SLA to other scaffold fabrication techniques, highlights significant advances in the field, and offers a perspective on the field's challenges and future directions. Engineering de novo tissues continues to be challenging due, in part, to our inability to fabricate complex tissue scaffolds that can support cell proliferation and encourage the formation of developed tissue. The goal of this review is to first introduce the reader to traditional and Additive Manufacturing scaffold fabrication techniques. The bulk of this review will then focus on apprising the reader of current research and provide a perspective on the promising use of vat photopolymerization (stereolithography, SLA) for the fabrication of complex tissue scaffolds. Copyright © 2018. Published by Elsevier Ltd.

  2. Image-based characterization of foamed polymeric tissue scaffolds

    International Nuclear Information System (INIS)

    Mather, Melissa L; Morgan, Stephen P; Crowe, John A; White, Lisa J; Shakesheff, Kevin M; Tai, Hongyun; Howdle, Steven M; Kockenberger, Walter

    2008-01-01

    Tissue scaffolds are integral to many regenerative medicine therapies, providing suitable environments for tissue regeneration. In order to assess their suitability, methods to routinely and reproducibly characterize scaffolds are needed. Scaffold structures are typically complex, and thus their characterization is far from trivial. The work presented in this paper is centred on the application of the principles of scaffold characterization outlined in guidelines developed by ASTM International. Specifically, this work demonstrates the capabilities of different imaging modalities and analysis techniques used to characterize scaffolds fabricated from poly(lactic-co-glycolic acid) using supercritical carbon dioxide. Three structurally different scaffolds were used. The scaffolds were imaged using: scanning electron microscopy, micro x-ray computed tomography, magnetic resonance imaging and terahertz pulsed imaging. In each case two-dimensional images were obtained from which scaffold properties were determined using image processing. The findings of this work highlight how the chosen imaging modality and image-processing technique can influence the results of scaffold characterization. It is concluded that in order to obtain useful results from image-based scaffold characterization, an imaging methodology providing sufficient contrast and resolution must be used along with robust image segmentation methods to allow intercomparison of results

  3. Growing Alternatives

    DEFF Research Database (Denmark)

    Bagger-Petersen, Mai Corlin

    2014-01-01

    From 2014, Anhui Province will pilot a reform of the residential land market in China, thus integrating rural Anhui in the national housing market. In contrast, artist and activist Ou Ning has proposed the Bishan time money currency, intending to establish an alternative economic circuit in Bishan...

  4. Alternative Veier

    DEFF Research Database (Denmark)

    Kruse, Tove Elisabeth; Salamonsen, Anita

    reflektioner omkring patienters brug af og erfaringer med alternativ behandling. Patientorganisationer, organisatoner for alternative behandlere og organisationer for læger og medicinstuderende har læst bogens patienthistorier og deres perspektiver lægges frem. Til slut i bogen diskuteres betydningen af de...

  5. ASTM International Workshop on Standards & Measurements for Tissue Engineering Scaffolds

    Science.gov (United States)

    Simon, Carl G.; Yaszemski, Michael J.; Ratcliffe, Anthony; Tomlins, Paul; Luginbuehl, Reto; Tesk, John A.

    2016-01-01

    The “Workshop on Standards & Measurements for Tissue Engineering Scaffolds” was held on May 21, 2013 in Indianapolis, IN and was sponsored by the ASTM International (ASTM). The purpose of the workshop was to identify the highest priority items for future standards work for scaffolds used in the development and manufacture of tissue engineered medical products (TEMPs). Eighteen speakers and 78 attendees met to assess current scaffold standards and to prioritize needs for future standards. A key finding was that the ASTM TEMPs subcommittees (F04.41-46) have many active “guide” documents for educational purposes, but that few standard “test methods” or “practices” have been published. Overwhelmingly, the most clearly identified need was standards for measuring the structure of scaffolds, followed by standards for biological characterization, including in vitro testing, animal models and cell-material interactions. The third most pressing need was to develop standards for assessing the mechanical properties of scaffolds. Additional needs included standards for assessing scaffold degradation, clinical outcomes with scaffolds, effects of sterilization on scaffolds, scaffold composition and drug release from scaffolds. Discussions also highlighted the need for additional scaffold reference materials and the need to use them for measurement traceability. Finally, dialogue emphasized the needs to promote the use of standards in scaffold fabrication, characterization, and commercialization and to assess the use and impact of standards in the TEMPs community. Many scaffold standard needs have been identified and focus should now turn to generating these standards to support the use of scaffolds in TEMPs. PMID:25220952

  6. A radiopaque electrospun scaffold for engineering fibrous musculoskeletal tissues: Scaffold characterization and in vivo applications.

    Science.gov (United States)

    Martin, John T; Milby, Andrew H; Ikuta, Kensuke; Poudel, Subash; Pfeifer, Christian G; Elliott, Dawn M; Smith, Harvey E; Mauck, Robert L

    2015-10-01

    Tissue engineering strategies have emerged in response to the growing prevalence of chronic musculoskeletal conditions, with many of these regenerative methods currently being evaluated in translational animal models. Engineered replacements for fibrous tissues such as the meniscus, annulus fibrosus, tendons, and ligaments are subjected to challenging physiologic loads, and are difficult to track in vivo using standard techniques. The diagnosis and treatment of musculoskeletal conditions depends heavily on radiographic assessment, and a number of currently available implants utilize radiopaque markers to facilitate in vivo imaging. In this study, we developed a nanofibrous scaffold in which individual fibers included radiopaque nanoparticles. Inclusion of radiopaque particles increased the tensile modulus of the scaffold and imparted radiation attenuation within the range of cortical bone. When scaffolds were seeded with bovine mesenchymal stem cells in vitro, there was no change in cell proliferation and no evidence of promiscuous conversion to an osteogenic phenotype. Scaffolds were implanted ex vivo in a model of a meniscal tear in a bovine joint and in vivo in a model of total disc replacement in the rat coccygeal spine (tail), and were visualized via fluoroscopy and microcomputed tomography. In the disc replacement model, histological analysis at 4 weeks showed that the scaffold was biocompatible and supported the deposition of fibrous tissue in vivo. Nanofibrous scaffolds that include radiopaque nanoparticles provide a biocompatible template with sufficient radiopacity for in vivo visualization in both small and large animal models. This radiopacity may facilitate image-guided implantation and non-invasive long-term evaluation of scaffold location and performance. The healing capacity of fibrous musculoskeletal tissues is limited, and injury or degeneration of these tissues compromises the standard of living of millions in the US. Tissue engineering repair

  7. The design of 3D scaffold for tissue engineering using automated scaffold design algorithm.

    Science.gov (United States)

    Mahmoud, Shahenda; Eldeib, Ayman; Samy, Sherif

    2015-06-01

    Several progresses have been introduced in the field of bone regenerative medicine. A new term tissue engineering (TE) was created. In TE, a highly porous artificial extracellular matrix or scaffold is required to accommodate cells and guide their growth in three dimensions. The design of scaffolds with desirable internal and external structure represents a challenge for TE. In this paper, we introduce a new method known as automated scaffold design (ASD) for designing a 3D scaffold with a minimum mismatches for its geometrical parameters. The method makes use of k-means clustering algorithm to separate the different tissues and hence decodes the defected bone portions. The segmented portions of different slices are registered to construct the 3D volume for the data. It also uses an isosurface rendering technique for 3D visualization of the scaffold and bones. It provides the ability to visualize the transplanted as well as the normal bone portions. The proposed system proves good performance in both the segmentation results and visualizations aspects.

  8. Dynamic Scaffolding of Socially Regulated Learning in a Computer-Based Learning Environment

    Science.gov (United States)

    Molenaar, Inge; Roda, Claudia; van Boxtel, Carla; Sleegers, Peter

    2012-01-01

    The aim of this study is to test the effects of dynamically scaffolding social regulation of middle school students working in a computer-based learning environment. Dyads in the scaffolding condition (N=56) are supported with computer-generated scaffolds and students in the control condition (N=54) do not receive scaffolds. The scaffolds are…

  9. Protein Scaffolding for Small Molecule Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Baker, David [Univ. of Washington, Seattle, WA (United States)

    2014-09-14

    We aim to design hybrid catalysts for energy production and storage that combine the high specificity, affinity, and tunability of proteins with the potent chemical reactivities of small organometallic molecules. The widely used Rosetta and RosettaDesign methodologies will be extended to model novel protein / small molecule catalysts in which one or many small molecule active centers are supported and coordinated by protein scaffolding. The promise of such hybrid molecular systems will be demonstrated with the nickel-phosphine hydrogenase of DuBois et. al.We will enhance the hydrogenase activity of the catalyst by designing protein scaffolds that incorporate proton relays and systematically modulate the local environment of the catalyticcenter. In collaboration with DuBois and Shaw, the designs will be experimentally synthesized and characterized.

  10. Diamond as a scaffold for bone growth.

    Science.gov (United States)

    Fox, Kate; Palamara, Joseph; Judge, Roy; Greentree, Andrew D

    2013-04-01

    Diamond is an attractive material for biomedical implants. In this work, we investigate its capacity as a bone scaffold. It is well established that the bioactivity of a material can be evaluated by examining its capacity to form apatite-like calcium phosphate phases on its surface when exposed to simulated body fluid. Accordingly, polycrystalline diamond (PCD) and ultrananocrystalline diamond (UNCD) deposited by microwave plasma chemical vapour deposition were exposed to simulated body fluid and assessed for apatite growth when compared to the bulk silicon. Scanning electron microscopy and X-ray photoelectron spectroscopy showed that both UNCD and PCD are capable of acting as a bone scaffold. The composition of deposited apatite suggests that UNCD and PCD are suitable for in vivo implantation with UNCD possible favoured in applications where rapid osseointegration is essential.

  11. Construction of collagen II/hyaluronate/chondroitin-6-sulfate tri-copolymer scaffold for nucleus pulposus tissue engineering and preliminary analysis of its physico-chemical properties and biocompatibility.

    Science.gov (United States)

    Li, Chang-Qing; Huang, Bo; Luo, Gang; Zhang, Chuan-Zhi; Zhuang, Ying; Zhou, Yue

    2010-02-01

    To construct a novel scaffold for nucleus pulposus (NP) tissue engineering, The porous type II collagen (CII)/hyaluronate (HyA)-chondroitin-6-sulfate (6-CS) scaffold was prepared using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS) cross-linking system. The physico-chemical properties and biocompatibility of CII/HyA-CS scaffolds were evaluated. The results suggested CII/HyA-CS scaffolds have a highly porous structure (porosity: 94.8 +/- 1.5%), high water-binding capacity (79.2 +/- 2.8%) and significantly improved mechanical stability by EDC/NHS crosslinking (denaturation temperature: 74.6 +/- 1.8 and 58.1 +/- 2.6 degrees C, respectively, for the crosslinked scaffolds and the non-crosslinked; collagenase degradation rate: 39.5 +/- 3.4 and 63.5 +/- 2.0%, respectively, for the crosslinked scaffolds and the non-crosslinked). The CII/HyA-CS scaffolds also showed satisfactory cytocompatibility and histocompatibility as well as low immunogenicity. These results indicate CII/HyA-CS scaffolds may be an alternative material for NP tissue engineering due to the similarity of its composition and physico-chemical properties to those of the extracellular matrices (ECM) of native NP.

  12. Optimized Diazo Scaffold for Protein Esterification

    Science.gov (United States)

    Mix, Kalie A.

    2015-01-01

    The O-alkylation of carboxylic acids with diazo compounds provides a means to esterify carboxylic acids in aqueous solution. A Hammett analysis of the reactivity of diazo compounds derived from phenylglycinamide revealed that the p-methylphenylglycinamide scaffold has an especially high reaction rate and ester:alcohol product ratio, and esterifies protein carboxyl groups more efficiently than does any known reagent. PMID:25938936

  13. Increasing the strength and bioactivity of collagen scaffolds using customizable arrays of 3D-printed polymer fibers.

    Science.gov (United States)

    Mozdzen, Laura C; Rodgers, Ryan; Banks, Jessica M; Bailey, Ryan C; Harley, Brendan A C

    2016-03-01

    Tendon is a highly aligned connective tissue which transmits force from muscle to bone. Each year, people in the US sustain more than 32 million tendon injuries. To mitigate poor functional outcomes due to scar formation, current surgical techniques rely heavily on autografts. Biomaterial platforms and tissue engineering methods offer an alternative approach to address these injuries. Scaffolds incorporating aligned structural features can promote expansion of adult tenocytes and mesenchymal stem cells capable of tenogenic differentiation. However, appropriate balance between scaffold bioactivity and mechanical strength of these constructs remains challenging. The high porosity required to facilitate cell infiltration, nutrient and oxygen biotransport within three-dimensional constructs typically results in insufficient biomechanical strength. Here we describe the use of three-dimensional printing techniques to create customizable arrays of acrylonitrile butadiene styrene (ABS) fibers that can be incorporated into a collagen scaffold under development for tendon repair. Notably, mechanical performance of scaffold-fiber composites (elastic modulus, peak stress, strain at peak stress, and toughness) can be selectively manipulated by varying fiber-reinforcement geometry without affecting the native bioactivity of the collagen scaffold. Further, we report an approach to functionalize ABS fibers with activity-inducing growth factors via sequential oxygen plasma and carbodiimide crosslinking treatments. Together, we report an adaptable approach to control both mechanical strength and presence of biomolecular cues in a manner orthogonal to the architecture of the collagen scaffold itself. Tendon injuries account for more than 32 million injuries each year in the US alone. Current techniques use allografts to mitigate poor functional outcomes, but are not ideal platforms to induce functional regeneration following injury. Tissue engineering approaches using biomaterial

  14. In Vitro Degradation of PHBV Scaffolds and nHA/PHBV Composite Scaffolds Containing Hydroxyapatite Nanoparticles for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Naznin Sultana

    2012-01-01

    Full Text Available This paper investigated the long-term in vitro degradation properties of scaffolds based on biodegradable polymers and osteoconductive bioceramic/polymer composite materials for the application of bone tissue engineering. The three-dimensional porous scaffolds were fabricated using emulsion-freezing/freeze-drying technique using poly(hydroxybutyrate-co-hydroxyvalerate (PHBV which is a natural biodegradable and biocompatible polymer. Nanosized hydroxyapatite (nHA particles were successfully incorporated into the PHBV scaffolds to render the scaffolds osteoconductive. The PHBV and nHA/PHBV scaffolds were systematically evaluated using various techniques in terms of mechanical strength, porosity, porous morphology, and in vitro degradation. PHBV and nHA/PHBV scaffolds degraded over time in phosphate-buffered saline at 37°C. PHBV polymer scaffolds exhibited slow molecular weight loss and weight loss in the in vitro physiological environment. Accelerated weight loss was observed in nHA incorporated PHBV composite scaffolds. An increasing trend of crystallinity was observed during the initial period of degradation time. The compressive properties decreased more than 40% after 5-month in vitro degradation. Together with interconnected pores, high porosity, suitable mechanical properties, and slow degradation profile obtained from long-term degradation studies, the PHBV scaffolds and osteoconductive nHA/PHBV composite scaffolds showed promises for bone tissue engineering application.

  15. Soy Protein Scaffold Biomaterials for Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    Chien, Karen B.

    Developing functional biomaterials using highly processable materials with tailorable physical and bioactive properties is an ongoing challenge in tissue engineering. Soy protein is an abundant, natural resource with potential use for regenerative medicine applications. Preliminary studies show that soy protein can be physically modified and fabricated into various biocompatible constructs. However, optimized soy protein structures for tissue regeneration (i.e. 3D porous scaffolds) have not yet been designed. Furthermore, little work has established the in vivo biocompatibility of implanted soy protein and the benefit of using soy over other proteins including FDA-approved bovine collagen. In this work, freeze-drying and 3D printing fabrication processes were developed using commercially available soy protein to create porous scaffolds that improve cell growth and infiltration compared to other soy biomaterials previously reported. Characterization of scaffold structure, porosity, and mechanical/degradation properties was performed. In addition, the behavior of human mesenchymal stem cells seeded on various designed soy scaffolds was analyzed. Biological characterization of the cell-seeded scaffolds was performed to assess feasibility for use in liver tissue regeneration. The acute and humoral response of soy scaffolds implanted in an in vivo mouse subcutaneous model was also investigated. All fabricated soy scaffolds were modified using thermal, chemical, and enzymatic crosslinking to change properties and cell growth behavior. 3D printing allowed for control of scaffold pore size and geometry. Scaffold structure, porosity, and degradation rate significantly altered the in vivo response. Freeze-dried soy scaffolds had similar biocompatibility as freeze-dried collagen scaffolds of the same protein content. However, the soy scaffolds degraded at a much faster rate, minimizing immunogenicity. Interestingly, subcutaneously implanted soy scaffolds affected blood

  16. Melt electrospinning of biodegradable polyurethane scaffolds

    Science.gov (United States)

    Karchin, Ari; Simonovsky, Felix I.; Ratner, Buddy D.; Sanders, Joan E.

    2014-01-01

    Electrospinning from the melt, in contrast to from solution, is an attractive tissue engineering scaffold manufacturing process as it allows for the formation of small diameter fibers while eliminating potentially cytotoxic solvents. Despite this, there is a dearth of literature on scaffold formation via melt electrospinning. This is likely due to the technical challenges related to the need for a well-controlled high temperature setup and the difficulty in developing an appropriate polymer. In this paper, a biodegradable and thermally stable polyurethane (PU) is described specifically for use in melt electrospinning. Polymer formulations of aliphatic PUs based on (CH2)4-content diisocyanates, polycaprolactone (PCL), 1,4-butanediamine and 1,4-butanediol (BD) were evaluated for utility in the melt electrospinning process. The final polymer formulation, a catalyst-purified PU based on 1,4-butane diisocyanate, PCL and BD in a 4/1/3 molar ratio with a weight-average molecular weight of about 40 kDa, yielded a nontoxic polymer that could be readily electrospun from the melt. Scaffolds electrospun from this polymer contained point bonds between fibers and mechanical properties analogous to many in vivo soft tissues. PMID:21640853

  17. Energy alternatives

    International Nuclear Information System (INIS)

    Sweet, C.

    1987-01-01

    The designated successor to fossil fuels is nuclear fission/fusion and that turns out to be problematic. Alternative Energy Systems have great potential but political forces seem to be hampering their development and introduction. The technologies are flexible in their use and scale of operation. The learning curve will not be short but neither will it be as long and as costly as nuclear power. It is time that this is recognised and some serious rethinking takes place in what presently passes for energy policies both in the industrialised countries and in the Third World. Alternative energy systems are defined and some of them which are relevant to the United Kingdom are discussed. (author)

  18. The New 3D Printed Left Atrial Appendage Closure with a Novel Holdfast Device: A Pre-Clinical Feasibility Animal Study.

    Directory of Open Access Journals (Sweden)

    M Brzeziński

    Full Text Available Many patients undergoing cardiac surgery have risk factors for both atrial fibrillation (AF and stroke. The left atrial appendage (LAA is the primary site for thrombi formation. The most severe complication of emboli derived from LAA is stroke, which is associated with a 12-month mortality rate of 38% and a 12-month recurrence rate of 17%. The most common form of treatment for atrial fibrillation and stroke prevention is the pharmacological therapy with anticoagulants. Nonetheless this form of therapy is associated with high risk of major bleeding. Therefore LAA occlusion devices should be tested for their ability to reduce future cerebral ischemic events in patients with high-risk of haemorrhage.The aim of this study was to evaluate the safety and feasibility of a novel left atrial appendage exclusion device with a minimally invasive introducer in a swine model.A completely novel LAA device, which is composed of two tubes connected together using a specially created bail, was designed using finite element modelling (FEM to obtain an optimal support force of 36 N at the closure line. The monolithic form of the occluder was obtained by using additive manufacturing of granular PA2200 powder with the technology of selective laser sintering (SLS. Fifteen swine were included in the feasibility tests, with 10 animals undergoing fourteen days of follow-up and 5 animals undergoing long-term observation of 3 months. For one animal, the follow-up was further prolonged to 6 months. The device was placed via minithoracotomy. After the observation period, all of the animals were euthanized, and their hearts were tested for LAA closure and local inflammatory and tissue response.After the defined observation period, all fifteen hearts were explanted. In all cases the full closure of the LAA was achieved. The macroscopic and microscopic evaluation of the explanted hearts showed that all devices were securely integrated in the surrounding tissues. No

  19. Microfibrous silver-coated polymeric scaffolds with tunable mechanical properties

    KAUST Repository

    Kalakonda, Parvathalu.; Aldhahri, Musab A.; Abdel-wahab, Mohamed Shaaban; Tamayol, Ali; Moghaddam, K. Mollazadeh; Ben Rached, Fathia; Pain, Arnab; Khademhosseini, Ali; Memic, Adnan; Chaieb, Saharoui

    2017-01-01

    Electrospun scaffolds of poly(glycerol sebacate)/poly(ε-caprolactone) (PGS/PCL) have been used for engineered tissues due to their desirable thermal and mechanical properties as well as their tunable degradability. In this paper, we fabricated micro-fibrous scaffolds from a composite of PGS/PCL using a standard electrospinning method and coated them with silver (Ag). The low temperature coating method prevented substrate melting and the Ag coating decreases the pore size and increases the diameter of fibers which resulted in enhanced thermal and mechanical properties. We further compared the mechanical properties of the composite fibrous scaffolds with different thicknesses of Ag coated scaffolds. The composite fibrous scaffold with a 275 nm Ag coating showed higher tensile modulus (E) and ultimate tensile strength (UTS) without any post-processing treatment. Lastly, potential controlled release of the Ag coating from the composite fibrous scaffolds could present interesting biomedical applications.

  20. Microfibrous silver-coated polymeric scaffolds with tunable mechanical properties

    KAUST Repository

    Kalakonda, Parvathalu.

    2017-07-07

    Electrospun scaffolds of poly(glycerol sebacate)/poly(ε-caprolactone) (PGS/PCL) have been used for engineered tissues due to their desirable thermal and mechanical properties as well as their tunable degradability. In this paper, we fabricated micro-fibrous scaffolds from a composite of PGS/PCL using a standard electrospinning method and coated them with silver (Ag). The low temperature coating method prevented substrate melting and the Ag coating decreases the pore size and increases the diameter of fibers which resulted in enhanced thermal and mechanical properties. We further compared the mechanical properties of the composite fibrous scaffolds with different thicknesses of Ag coated scaffolds. The composite fibrous scaffold with a 275 nm Ag coating showed higher tensile modulus (E) and ultimate tensile strength (UTS) without any post-processing treatment. Lastly, potential controlled release of the Ag coating from the composite fibrous scaffolds could present interesting biomedical applications.

  1. Bioactive Nano-fibrous Scaffold for Vascularized Craniofacial Bone Regeneration

    DEFF Research Database (Denmark)

    Prabha, Rahul Damodaran; Kraft, David Christian Evar; Harkness, Linda

    2018-01-01

    the limitation of cell penetration of electrospun scaffolds and improve on its osteoconductive nature, in this study, we fabricated a novel electrospun composite scaffold of polyvinyl alcohol (PVA) - poly (ε) caprolactone (PCL) - Bioceramic (HAB), namely, PVA-PCL-HAB. The scaffold prepared by dual...... electrospinning of PVA and PCL with HAB overcomes reduced cell attachment associated with hydrophobic poly (ε) caprolactone (PCL) by combination with a hydrophilic polyvinyl alcohol (PVA) and the bioceramic (HAB) can contribute to enhance osteo-conductivity. We characterized the physicochemical...... and biocompatibility properties of the new scaffold material. Our results indicate PVA-PCL-HAB scaffolds support attachment and growth of stromal stem cells; (human bone marrow skeletal (mesenchymal) stem cells (hMSC) and dental pulp stem cells (DPSC)). In addition, the scaffold supported in vitro osteogenic...

  2. Safety and efficacy of transcatheter left atrial appendage closure using the Watchman device in Egyptian patients with nonvalvular atrial fibrillation

    Directory of Open Access Journals (Sweden)

    Hazem Khamis

    2016-03-01

    Conclusion: LAA closure with the Watchman device can be safely performed, and may be a reasonable alternative to consider for patients at high risk for stroke but with contraindications to systemic oral anticoagulation or with high risk of bleeding.

  3. Porous magnesium-based scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Yazdimamaghani, Mostafa; Razavi, Mehdi; Vashaee, Daryoosh; Moharamzadeh, Keyvan; Boccaccini, Aldo R.; Tayebi, Lobat

    2017-01-01

    Significant amount of research efforts have been dedicated to the development of scaffolds for tissue engineering. Although at present most of the studies are focused on non-load bearing scaffolds, many scaffolds have also been investigated for hard tissue repair. In particular, metallic scaffolds are being studied for hard tissue engineering due to their suitable mechanical properties. Several biocompatible metallic materials such as stainless steels, cobalt alloys, titanium alloys, tantalum, nitinol and magnesium alloys have been commonly employed as implants in orthopedic and dental treatments. They are often used to replace and regenerate the damaged bones or to provide structural support for healing bone defects. Among the common metallic biomaterials, magnesium (Mg) and a number of its alloys are effective because of their mechanical properties close to those of human bone, their natural ionic content that may have important functional roles in physiological systems, and their in vivo biodegradation characteristics in body fluids. Due to such collective properties, Mg based alloys can be employed as biocompatible, bioactive, and biodegradable scaffolds for load-bearing applications. Recently, porous Mg and Mg alloys have been specially suggested as metallic scaffolds for bone tissue engineering. With further optimization of the fabrication techniques, porous Mg is expected to make a promising hard substitute scaffold. The present review covers research conducted on the fabrication techniques, surface modifications, properties and biological characteristics of Mg alloys based scaffolds. Furthermore, the potential applications, challenges and future trends of such degradable metallic scaffolds are discussed in detail. - Highlights: • A porous 3D material provides the required pathways for cells to grow, proliferate, and differentiate • Porous magnesium and Mg alloys could be used as load-bearing scaffolds • Porous magnesium and Mg alloys are good

  4. Porous magnesium-based scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Yazdimamaghani, Mostafa [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); Razavi, Mehdi [Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304 (United States); Vashaee, Daryoosh [Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States); Moharamzadeh, Keyvan [School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield (United Kingdom); Marquette University School of Dentistry, Milwaukee, WI 53233 (United States); Boccaccini, Aldo R. [Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen (Germany); Tayebi, Lobat, E-mail: lobat.tayebi@marquette.edu [Marquette University School of Dentistry, Milwaukee, WI 53233 (United States)

    2017-02-01

    Significant amount of research efforts have been dedicated to the development of scaffolds for tissue engineering. Although at present most of the studies are focused on non-load bearing scaffolds, many scaffolds have also been investigated for hard tissue repair. In particular, metallic scaffolds are being studied for hard tissue engineering due to their suitable mechanical properties. Several biocompatible metallic materials such as stainless steels, cobalt alloys, titanium alloys, tantalum, nitinol and magnesium alloys have been commonly employed as implants in orthopedic and dental treatments. They are often used to replace and regenerate the damaged bones or to provide structural support for healing bone defects. Among the common metallic biomaterials, magnesium (Mg) and a number of its alloys are effective because of their mechanical properties close to those of human bone, their natural ionic content that may have important functional roles in physiological systems, and their in vivo biodegradation characteristics in body fluids. Due to such collective properties, Mg based alloys can be employed as biocompatible, bioactive, and biodegradable scaffolds for load-bearing applications. Recently, porous Mg and Mg alloys have been specially suggested as metallic scaffolds for bone tissue engineering. With further optimization of the fabrication techniques, porous Mg is expected to make a promising hard substitute scaffold. The present review covers research conducted on the fabrication techniques, surface modifications, properties and biological characteristics of Mg alloys based scaffolds. Furthermore, the potential applications, challenges and future trends of such degradable metallic scaffolds are discussed in detail. - Highlights: • A porous 3D material provides the required pathways for cells to grow, proliferate, and differentiate • Porous magnesium and Mg alloys could be used as load-bearing scaffolds • Porous magnesium and Mg alloys are good

  5. Intrinsic Osteoinductivity of Porous Titanium Scaffold for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Maryam Tamaddon

    2017-01-01

    Full Text Available Large bone defects and nonunions are serious complications that are caused by extensive trauma or tumour. As traditional therapies fail to repair these critical-sized defects, tissue engineering scaffolds can be used to regenerate the damaged tissue. Highly porous titanium scaffolds, produced by selective laser sintering with mechanical properties in range of trabecular bone (compressive strength 35 MPa and modulus 73 MPa, can be used in these orthopaedic applications, if a stable mechanical fixation is provided. Hydroxyapatite coatings are generally considered essential and/or beneficial for bone formation; however, debonding of the coatings is one of the main concerns. We hypothesised that the titanium scaffolds have an intrinsic potential to induce bone formation without the need for a hydroxyapatite coating. In this paper, titanium scaffolds coated with hydroxyapatite using electrochemical method were fabricated and osteoinductivity of coated and noncoated scaffolds was compared in vitro. Alizarin Red quantification confirmed osteogenesis independent of coating. Bone formation and ingrowth into the titanium scaffolds were evaluated in sheep stifle joints. The examinations after 3 months revealed 70% bone ingrowth into the scaffold confirming its osteoinductive capacity. It is shown that the developed titanium scaffold has an intrinsic capacity for bone formation and is a suitable scaffold for bone tissue engineering.

  6. Multilayer porous UHMWPE scaffolds for bone defects replacement

    Energy Technology Data Exchange (ETDEWEB)

    Maksimkin, A.V. [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Senatov, F.S., E-mail: senatov@misis.ru [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Anisimova, N.Yu.; Kiselevskiy, M.V. [National University of Science and Technology “MISIS”, Moscow (Russian Federation); N.N. Blokhin Russian Cancer Research Center, Moscow (Russian Federation); Zalepugin, D.Yu.; Chernyshova, I.V.; Tilkunova, N.A. [State Plant of Medicinal Drugs, Moscow (Russian Federation); Kaloshkin, S.D. [National University of Science and Technology “MISIS”, Moscow (Russian Federation)

    2017-04-01

    Reconstruction of the structural integrity of the damaged bone tissue is an urgent problem. UHMWPE may be potentially used for the manufacture of porous implants simulating as closely as possible the porous cancellous bone tissue. But the extremely high molecular weight of the polymer does not allow using traditional methods of foaming. Porous and multilayer UHMWPE scaffolds with nonporous bulk layer and porous layer that mimics cancellous bone architecture were obtained by solid-state mixing, thermopressing and washing in subcritical water. Structural and mechanical properties of the samples were studied. Porous UHMWPE samples were also studied in vitro and in vivo. The pores of UHMWPE scaffold are open and interconnected. Volume porosity of the obtained samples was 79 ± 2%; the pore size range was 80–700 μm. Strong connection of the two layers in multilayer UHMWPE scaffolds was observed with decreased number of fusion defects. Functionality of implants based on multilayer UHMWPE scaffolds is provided by the fixation of scaffolds in the bone defect through ingrowths of the connective tissue into the pores, which ensures the maintenance of the animals' mobility - Highlights: • Porous UHMWPE scaffold mimics cancellous bone architecture, maintaining its flexibility. • Multilayer UHMWPE scaffold is able to simulate different types of bone tissue. • Fixation of scaffolds in the bone provides through ingrowths of the connective tissue into pores. • Multilayer UHMWPE scaffolds can be used for the formation of bone implants.

  7. Multilayer porous UHMWPE scaffolds for bone defects replacement

    International Nuclear Information System (INIS)

    Maksimkin, A.V.; Senatov, F.S.; Anisimova, N.Yu.; Kiselevskiy, M.V.; Zalepugin, D.Yu.; Chernyshova, I.V.; Tilkunova, N.A.; Kaloshkin, S.D.

    2017-01-01

    Reconstruction of the structural integrity of the damaged bone tissue is an urgent problem. UHMWPE may be potentially used for the manufacture of porous implants simulating as closely as possible the porous cancellous bone tissue. But the extremely high molecular weight of the polymer does not allow using traditional methods of foaming. Porous and multilayer UHMWPE scaffolds with nonporous bulk layer and porous layer that mimics cancellous bone architecture were obtained by solid-state mixing, thermopressing and washing in subcritical water. Structural and mechanical properties of the samples were studied. Porous UHMWPE samples were also studied in vitro and in vivo. The pores of UHMWPE scaffold are open and interconnected. Volume porosity of the obtained samples was 79 ± 2%; the pore size range was 80–700 μm. Strong connection of the two layers in multilayer UHMWPE scaffolds was observed with decreased number of fusion defects. Functionality of implants based on multilayer UHMWPE scaffolds is provided by the fixation of scaffolds in the bone defect through ingrowths of the connective tissue into the pores, which ensures the maintenance of the animals' mobility - Highlights: • Porous UHMWPE scaffold mimics cancellous bone architecture, maintaining its flexibility. • Multilayer UHMWPE scaffold is able to simulate different types of bone tissue. • Fixation of scaffolds in the bone provides through ingrowths of the connective tissue into pores. • Multilayer UHMWPE scaffolds can be used for the formation of bone implants.

  8. Biochemical properties of Hemigraphis alternata incorporated chitosan hydrogel scaffold.

    Science.gov (United States)

    Annapoorna, M; Sudheesh Kumar, P T; Lakshman, Lakshmi R; Lakshmanan, Vinoth-Kumar; Nair, Shantikumar V; Jayakumar, R

    2013-02-15

    In this work, Hemigraphis alternata extract incorporated chitosan scaffold was synthesized and characterized for wound healing. The antibacterial activity of Hemigraphis incorporated chitosan scaffold (HIC) against Escherichia coli and Staphylococcus aureus was evaluated which showed a reduction in total colony forming units by 45-folds toward E. coli and 25-fold against S. aureus respectively. Cell viability studies using Human Dermal Fibroblast cells (HDF) showed 90% viability even at 48 h when compared to the chitosan control. The herbal scaffold made from chitosan was highly haemostatic and antibacterial. The obtained results were in support that the herbal scaffold can be effectively applied for infectious wounds. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Low elastic modulus titanium–nickel scaffolds for bone implants

    International Nuclear Information System (INIS)

    Li, Jing; Yang, Hailin; Wang, Huifeng; Ruan, Jianming

    2014-01-01

    The superelastic nature of repeating the human bones is crucial to the ideal artificial biomedical implants to ensure smooth load transfer and foster the ingrowth of new bone tissues. Three dimensional interconnected porous TiNi scaffolds, which have the tailorable porous structures with micro-hole, were fabricated by slurry immersing with polymer sponge and sintering method. The crystallinity and phase composition of scaffolds were studied by X-ray diffraction. The pore morphology, size and distribution in the scaffolds were characterized by scanning electron microscopy. The porosity ranged from 65 to 72%, pore size was 250–500 μm. Compressive strength and elastic modulus of the scaffolds were ∼ 73 MPa and ∼ 3GPa respectively. The above pore structural and mechanical properties are similar to those of cancellous bone. In the initial cell culture test, osteoblasts adhered well to the scaffold surface during a short time, and then grew smoothly into the interconnected pore channels. These results indicate that the porous TiNi scaffolds fabricated by this method could be bone substitute materials. - Highlights: • A novel approach for the fabrication of porous TiNi scaffolds • Macroporous structures are replicated from the polymer sponge template. • The pore characteristics and mechanical properties of TiNi scaffolds agree well with the requirement of trabecular bone. • Cytocompatibility of TiNi scaffolds is assessed, and it closely associated with pore property

  10. [Strategies to choose scaffold materials for tissue engineering].

    Science.gov (United States)

    Gao, Qingdong; Zhu, Xulong; Xiang, Junxi; Lü, Yi; Li, Jianhui

    2016-02-01

    Current therapies of organ failure or a wide range of tissue defect are often not ideal. Transplantation is the only effective way for long time survival. But it is hard to meet huge patients demands because of donor shortage, immune rejection and other problems. Tissue engineering could be a potential option. Choosing a suitable scaffold material is an essential part of it. According to different sources, tissue engineering scaffold materials could be divided into three types which are natural and its modified materials, artificial and composite ones. The purpose of tissue engineering scaffold is to repair the tissues or organs damage, so could reach the ideal recovery in its function and structure aspect. Therefore, tissue engineering scaffold should even be as close as much to the original tissue or organs in function and structure. We call it "organic scaffold" and this strategy might be the drastic perfect substitute for the tissues or organs in concern. Optimized organization with each kind scaffold materials could make up for biomimetic structure and function of the tissue or organs. Scaffold material surface modification, optimized preparation procedure and cytosine sustained-release microsphere addition should be considered together. This strategy is expected to open new perspectives for tissue engineering. Multidisciplinary approach including material science, molecular biology, and engineering might find the most ideal tissue engineering scaffold. Using the strategy of drawing on each other strength and optimized organization with each kind scaffold material to prepare a multifunctional biomimetic tissue engineering scaffold might be a good method for choosing tissue engineering scaffold materials. Our research group had differentiated bone marrow mesenchymal stem cells into bile canaliculi like cells. We prepared poly(L-lactic acid)/poly(ε-caprolactone) biliary stent. The scaffold's internal played a part in the long-term release of cytokines which

  11. Novel biodegradable porous scaffold applied to skin regeneration.

    Science.gov (United States)

    Wang, Hui-Min; Chou, Yi-Ting; Wen, Zhi-Hong; Wang, Chau-Zen; Wang, Zhao-Ren; Chen, Chun-Hong; Ho, Mei-Ling

    2013-01-01

    Skin wound healing is an important lifesaving issue for massive lesions. A novel porous scaffold with collagen, hyaluronic acid and gelatin was developed for skin wound repair. The swelling ratio of this developed scaffold was assayed by water absorption capacity and showed a value of over 20 g water/g dried scaffold. The scaffold was then degraded in time- and dose-dependent manners by three enzymes: lysozyme, hyaluronidase and collagenase I. The average pore diameter of the scaffold was 132.5±8.4 µm measured from SEM images. With human skin cells growing for 7 days, the SEM images showed surface fractures on the scaffold due to enzymatic digestion, indicating the biodegradable properties of this scaffold. To simulate skin distribution, the human epidermal keratinocytes, melanocytes and dermal fibroblasts were seeded on the porous scaffold and the cross-section immunofluorescent staining demonstrated normal human skin layer distributions. The collagen amount was also quantified after skin cells seeding and presented an amount 50% higher than those seeded on culture wells. The in vivo histological results showed that the scaffold ameliorated wound healing, including decreasing neutrophil infiltrates and thickening newly generated skin compared to the group without treatments.

  12. Novel biodegradable porous scaffold applied to skin regeneration.

    Directory of Open Access Journals (Sweden)

    Hui-Min Wang

    Full Text Available Skin wound healing is an important lifesaving issue for massive lesions. A novel porous scaffold with collagen, hyaluronic acid and gelatin was developed for skin wound repair. The swelling ratio of this developed scaffold was assayed by water absorption capacity and showed a value of over 20 g water/g dried scaffold. The scaffold was then degraded in time- and dose-dependent manners by three enzymes: lysozyme, hyaluronidase and collagenase I. The average pore diameter of the scaffold was 132.5±8.4 µm measured from SEM images. With human skin cells growing for 7 days, the SEM images showed surface fractures on the scaffold due to enzymatic digestion, indicating the biodegradable properties of this scaffold. To simulate skin distribution, the human epidermal keratinocytes, melanocytes and dermal fibroblasts were seeded on the porous scaffold and the cross-section immunofluorescent staining demonstrated normal human skin layer distributions. The collagen amount was also quantified after skin cells seeding and presented an amount 50% higher than those seeded on culture wells. The in vivo histological results showed that the scaffold ameliorated wound healing, including decreasing neutrophil infiltrates and thickening newly generated skin compared to the group without treatments.

  13. Chitosan composite three dimensional macrospheric scaffolds for bone tissue engineering.

    Science.gov (United States)

    Vyas, Veena; Kaur, Tejinder; Thirugnanam, Arunachalam

    2017-11-01

    The present work deals with the fabrication of chitosan composite scaffolds with controllable and predictable internal architecture for bone tissue engineering. Chitosan (CS) based composites were developed by varying montmorillonite (MMT) and hydroxyapatite (HA) combinations to fabricate macrospheric three dimensional (3D) scaffolds by direct agglomeration of the sintered macrospheres. The fabricated CS, CS/MMT, CS/HA and CS/MMT/HA 3D scaffolds were characterized for their physicochemical, biological and mechanical properties. The XRD and ATR-FTIR studies confirmed the presence of the individual constituents and the molecular interaction between them, respectively. The reinforcement with HA and MMT showed reduced swelling and degradation rate. It was found that in comparison to pure CS, the CS/HA/MMT composites exhibited improved hemocompatibility and protein adsorption. The sintering of the macrospheres controlled the swelling ability of the scaffolds which played an important role in maintaining the mechanical strength of the 3D scaffolds. The CS/HA/MMT composite scaffold showed 14 folds increase in the compressive strength when compared to pure CS scaffolds. The fabricated scaffolds were also found to encourage the MG 63 cell proliferation. Hence, from the above studies it can be concluded that the CS/HA/MMT composite 3D macrospheric scaffolds have wider and more practical application in bone tissue regeneration applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Facile method of building hydroxyapatite 3D scaffolds assembled from porous hollow fibers enabling nutrient delivery

    NARCIS (Netherlands)

    Salamon, David; Da Silva Teixeira, Sandra; Dutczak, S.M.; Stamatialis, Dimitrios

    2014-01-01

    Nowadays, diffusion through scaffold and tissue usually limits transport, and forms potentially hypoxic regions. Several methods are used for preparation of 3D hydroxyapatite scaffolds, however, production of a scaffold including porous hollow fibers for nutrition delivery is difficult and

  15. Higher levels of serum fibrin-monomer reflect hypercoagulable state and thrombus formation in the left atrial appendage in patients with acute ischemic stroke.

    Science.gov (United States)

    Okuyama, Hidenobu; Hirono, Osamu; Liu, Ling; Takeishi, Yasuchika; Kayama, Takamasa; Kubota, Isao

    2006-08-01

    It is sometimes difficult to make a diagnosis of cardioembolic stroke in the stroke care unit, because of the splashing and vanishing of the intracardiac source of the emboli on transesophageal echocardiography. Serum fibrin-monomer (FM) is a new marker for coagulation activity that is useful for identifying older individuals at increased risk of ischemic stroke. Two hundred and four patients with acute ischemic stroke were examined for serum coagulation and fibrinolytic activity on admission, and underwent transesophageal echocardiography within 7 days of onset. Serum levels of FM was significantly higher in patients with left atrial appendage (LAA) thrombus formation (n=24) than in those with no thrombus (88+/-52 vs 14+/-9 microg/ml, pvs 8+/-5 microg/ml, pstroke.

  16. Mechano growth factor (MGF) and transforming growth factor (TGF)-β3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model.

    Science.gov (United States)

    Luo, Ziwei; Jiang, Li; Xu, Yan; Li, Haibin; Xu, Wei; Wu, Shuangchi; Wang, Yuanliang; Tang, Zhenyu; Lv, Yonggang; Yang, Li

    2015-06-01

    Damaged cartilage has poor self-healing ability and usually progresses to scar or fibrocartilaginous tissue, and finally degenerates to osteoarthritis (OA). Here we demonstrated that one of alternative isoforms of IGF-1, mechano growth factor (MGF) acted synergistically with transforming growth factor β3 (TGF-β3) embedded in silk fibroin scaffolds to induce chemotactic homing and chondrogenic differentiation of mesenchymal stem cells (MSCs). Combination of MGF and TGF-β3 significantly increased cell recruitment up to 1.8 times and 2 times higher than TGF-β3 did in vitro and in vivo. Moreover, MGF increased Collagen II and aggrecan secretion of TGF-β3 induced hMSCs chondrogenesis, but decreased Collagen I in vitro. Silk fibroin (SF) scaffolds have been widely used for tissue engineering, and we showed that methanol treated pured SF scaffolds were porous, similar to compressive module of native cartilage, slow degradation rate and excellent drug released curves. At 7 days after subcutaneous implantation, TGF-β3 and MGF functionalized silk fibroin scaffolds (STM) recruited more CD29+/CD44+cells (Pcartilage-like extracellular matrix and less fibrillar collagen were detected in STM scaffolds than that in TGF-β3 modified scaffolds (ST) at 2 months after subcutaneous implantation. When implanted into articular joints in a rabbit osteochondral defect model, STM scaffolds showed the best integration into host tissues, similar architecture and collagen organization to native hyaline cartilage, as evidenced by immunostaining of aggrecan, collagen II and collagen I, as well as Safranin O and Masson's trichrome staining, and histological evalution based on the modified O'Driscoll histological scoring system (Pcartilage regeneration. This study demonstrated that TGF-β3 and MGF functionalized silk fibroin scaffolds enhanced endogenous stem cell recruitment and facilitated in situ articular cartilage regeneration, thus providing a novel strategy for cartilage repair

  17. Ex vivo proof-of-concept of end-to-end scaffold-enhanced laser-assisted vascular anastomosis of porcine arteries

    NARCIS (Netherlands)

    Pabittei, Dara R.; Heger, Michal; van Tuijl, Sjoerd; Simonet, Marc; de Boon, Wadim; van der Wal, Allard C.; Balm, Ron; de Mol, Bas A.

    2015-01-01

    The low welding strength of laser-assisted vascular anastomosis (LAVA) has hampered the clinical application of LAVA as an alternative to suture anastomosis. To improve welding strength, LAVA in combination with solder and polymeric scaffolds (ssLAVA) has been optimized in vitro. Currently, ssLAVA

  18. Synthesis of Conformationally North-Locked Pyrimidine Nucleosides Built on an Oxabicyclo[3.1.0]hexane Scaffold | Center for Cancer Research

    Science.gov (United States)

    Beginning with a known 3-oxabicyclo[3.1.0]-hexane scaffold, the relocation of the fused cyclopropane ring bond and the shifting of the oxygen atom to an alternative location engendered a new 2-oxabicyclo[3.1.0]hexane template that mimics more closely the tetrahydrofuran ring of conventional nucleosides. The synthesis of this new class of locked nucleosides involved a novel

  19. Alternative detente

    International Nuclear Information System (INIS)

    Soper, K.; Ryle, M.

    1988-01-01

    The influence of the Chernobyl accident on the disarmament and anti-nuclear movements is discussed. The accident directed attention towards the areas in common rather than the areas of disagreement. It also demonstrated the environmental impact of radioactivity, strengthening the ecological case of the anti-nuclear movement. The issues are discussed for the Western and Eastern bloc countries and the relationship between the two. Sections focus on the Eco-protest, Green politics and economics and on the politics of minority protest and the Green alternative. (U.K.)

  20. Cost-Effectiveness of Percutaneous Closure of the Left Atrial Appendage in Atrial Fibrillation Based on Results From PROTECT AF Versus PREVAIL.

    Science.gov (United States)

    Freeman, James V; Hutton, David W; Barnes, Geoffrey D; Zhu, Ruo P; Owens, Douglas K; Garber, Alan M; Go, Alan S; Hlatky, Mark A; Heidenreich, Paul A; Wang, Paul J; Al-Ahmad, Amin; Turakhia, Mintu P

    2016-06-01

    Randomized trials of left atrial appendage (LAA) closure with the Watchman device have shown varying results, and its cost effectiveness compared with anticoagulation has not been evaluated using all available contemporary trial data. We used a Markov decision model to estimate lifetime quality-adjusted survival, costs, and cost effectiveness of LAA closure with Watchman, compared directly with warfarin and indirectly with dabigatran, using data from the long-term (mean 3.8 year) follow-up of Percutaneous Closure of the Left Atrial Appendage Versus Warfarin Therapy for Prevention of Stroke in Patients With Atrial Fibrillation (PROTECT AF) and Prospective Randomized Evaluation of the Watchman LAA Closure Device in Patients With Atrial Fibrillation (PREVAIL) randomized trials. Using data from PROTECT AF, the incremental cost-effectiveness ratios compared with warfarin and dabigatran were $20 486 and $23 422 per quality-adjusted life year, respectively. Using data from PREVAIL, LAA closure was dominated by warfarin and dabigatran, meaning that it was less effective (8.44, 8.54, and 8.59 quality-adjusted life years, respectively) and more costly. At a willingness-to-pay threshold of $50 000 per quality-adjusted life year, LAA closure was cost effective 90% and 9% of the time under PROTECT AF and PREVAIL assumptions, respectively. These results were sensitive to the rates of ischemic stroke and intracranial hemorrhage for LAA closure and medical anticoagulation. Using data from the PROTECT AF trial, LAA closure with the Watchman device was cost effective; using PREVAIL trial data, Watchman was more costly and less effective than warfarin and dabigatran. PROTECT AF enrolled more patients and has substantially longer follow-up time, allowing greater statistical certainty with the cost-effectiveness results. However, longer-term trial results and postmarketing surveillance of major adverse events will be vital to determining the value of the Watchman in clinical

  1. Regeneration of musculoskeletal injuries using mesenchymal stem cells loaded scaffolds: review article

    Directory of Open Access Journals (Sweden)

    Maryam Ataie

    2017-07-01

    Full Text Available An increase in the average age of the population and physical activities where the musculoskeletal system is involved as well as large number of people suffering from skeletal injuries which impose high costs on the society. Bone grafting is currently a standard clinical approach to treat or replace lost tissues. Autografts are the most common grafts, but they can lead to complications such as pain, infection, scarring and donor site morbidity. The alternative is allografts, but they also carry the risk of carrying infectious agents or immune rejection. Therefore, surgeons and researchers are looking for new therapeutic methods to improve bone tissue repair. The field of tissue engineering and the use of stem cells as an ideal cell source have emerged as a promising approach in recent years. Three main components in the field of tissue engineering include proper scaffolds, cells and growth factors that their combination leads to formation of tissue-engineered constructs, resulting in tissue repair and regeneration. The use of scaffolds with suitable properties could effectively improve the tissue function or even regenerate the damaged tissue. The main idea of tissue engineering is to design and fabricate an appropriate scaffold which can support cell attachment, proliferation, migration and differentiation to relevant tissue. Scaffold gives the tissue its structural and mechanical properties, for instance flexibility and stiffness that is related with the tissue functions. Biomaterials used to fabricate scaffolds can be categorized into natural or synthetic biodegradable or non-biodegradable materials. Polymers are the most widely used materials in tissue engineering. Growth factors are a group of proteins that cause cell proliferation and differentiation. Two main cell sources are specialized cells of desired tissue and stem cells. However, according to the low proliferation and limited accessibility to the cells of desired tissue, stem cells

  2. Culture of hESC-derived pancreatic progenitors in alginate-based scaffolds.

    Science.gov (United States)

    Formo, Kjetil; Cho, Candy H-H; Vallier, Ludovic; Strand, Berit L

    2015-12-01

    The effect of alginate-based scaffolds with added basement membrane proteins on the in vitro development of hESC-derived pancreatic progenitors was investigated. Cell clusters were encapsulated in scaffolds containing the basement membrane proteins collagen IV, laminin, fibronectin, or extracellular matrix-derived peptides, and maintained in culture for up to 46 days. The cells remained viable throughout the experiment with no signs of central necrosis. Whereas nonencapsulated cells aggregated into larger clusters, some of which showed signs of morphological changes and tissue organization, the alginate matrix stabilized the cluster size and displayed more homogeneous cell morphologies, allowing culture for long periods of time. For all conditions tested, a stable or declining expression of insulin and PDX1 and an increase in glucagon and somatostatin over time indicated a progressive reduction in beta cell-related gene expression. Alginate scaffolds can provide a chemically defined, xeno-free and easily scalable alternative for culture of pancreatic progenitors. Although no increase in insulin and PDX1 gene expression after alginate-immobilized cell culture was seen in this study, further optimization of the matrix physicochemical and biological properties and of the medium composition may still be a relevant strategy to promote the stabilization or maturation of stem cell-derived beta cells. © 2015 Wiley Periodicals, Inc.

  3. Composite porous scaffold of PEG/PLA support improved bone matrix deposition in vitro compared to PLA-only scaffolds.

    Science.gov (United States)

    Bhaskar, Birru; Owen, Robert; Bahmaee, Hossein; Wally, Zena; Sreenivasa Rao, Parcha; Reilly, Gwendolen C

    2018-05-01

    Controllable pore size and architecture are essential properties for tissue-engineering scaffolds to support cell ingrowth colonization. To investigate the effect of polyethylene glycol (PEG) addition on porosity and bone-cell behavior, porous polylactic acid (PLA)-PEG scaffolds were developed with varied weight ratios of PLA-PEG (100/0, 90/10, 75/25) using solvent casting and porogen leaching. Sugar 200-300 µm in size was used as a porogen. To assess scaffold suitability for bone tissue engineering, MLO-A5 murine osteoblast cells were cultured and cell metabolic activity, alkaline phosphatase (ALP) activity and bone-matrix production determined using (alizarin red S staining for calcium and direct red 80 staining for collagen). It was found that metabolic activity was significantly higher over time on scaffolds containing PEG, ALP activity and mineralized matrix production were also significantly higher on scaffolds containing 25% PEG. Porous architecture and cell distribution and penetration into the scaffold were analyzed using SEM and confocal microscopy, revealing that inclusion of PEG increased pore interconnectivity and therefore cell ingrowth in comparison to pure PLA scaffolds. The results of this study confirmed that PLA-PEG porous scaffolds support mineralizing osteoblasts better than pure PLA scaffolds, indicating they have a high potential for use in bone tissue engineering applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1334-1340, 2018. © 2018 Wiley Periodicals, Inc.

  4. Alternative crops

    International Nuclear Information System (INIS)

    Andreasen, L.M.; Boon, A.D.

    1992-01-01

    Surplus cereal production in the EEC and decreasing product prices, mainly for cereals, has prompted considerable interest for new earnings in arable farming. The objective was to examine whether suggested new crops (fibre, oil, medicinal and alternative grains crops) could be considered as real alternatives. Whether a specific crop can compete economically with cereals and whether there is a market demand for the crop is analyzed. The described possibilities will result in ca. 50,000 hectares of new crops. It is expected that they would not immediately provide increased earnings, but in the long run expected price developments are more positive than for cereals. The area for new crops will not solve the current surplus cereal problem as the area used for new crops is only 3% of that used for cereals. Preconditions for many new crops is further research activities and development work as well as the establishment of processing units and organizational initiatives. Presumably, it is stated, there will then be a basis for a profitable production of new crops for some farmers. (AB) (47 refs.)

  5. Optimizing structural and mechanical properties of cryogel scaffolds for use in prostate cancer cell culturing

    International Nuclear Information System (INIS)

    Cecilia, A.; Baecker, A.; Hamann, E.; Rack, A.; Kamp, T. van de; Gruhl, F.J.; Hofmann, R.; Moosmann, J.; Hahn, S.; Kashef, J.; Bauer, S.; Farago, T.; Helfen, L.

    2017-01-01

    Prostate cancer (PCa) currently is the second most diagnosed cancer in men and the second most cause of cancer death after lung cancer in Western societies. This sets the necessity of modelling prostatic disorders to optimize a therapy against them. The conventional approach to investigating prostatic diseases is based on two-dimensional (2D) cell culturing. This method, however, does not provide a three-dimensional (3D) environment, therefore impeding a satisfying simulation of the prostate gland in which the PCa cells proliferate. Cryogel scaffolds represent a valid alternative to 2D culturing systems for studying the normal and pathological behavior of the prostate cells thanks to their 3D pore architecture that reflects more closely the physiological environment in which PCa cells develop. In this work the 3D morphology of three potential scaffolds for PCa cell culturing was investigated by means of synchrotron X-ray computed micro tomography (SXCμT) fitting the according requirements of high spatial resolution, 3D imaging capability and low dose requirements very well. In combination with mechanical tests, the results allowed identifying an optimal cryogel architecture, meeting the needs for a well-suited scaffold to be used for 3D PCa cell culture applications. The selected cryogel was then used for culturing prostatic lymph node metastasis (LNCaP) cells and subsequently, the presence of multi-cellular tumor spheroids inside the matrix was demonstrated again by using SXCμT. - Highlights: • Synthesis of cryogel scaffolds for prostate cancer cell culturing. • Study of cryogel morphology by synchrotron X-ray computed micro tomography. • Analysis of cryogel mechanical properties with laboratory techniques. • Culturing of prostate cancer cell in the optimal cryogel composition for 21 days. • 3D visualization of the cells by synchrotron X-ray computed micro tomography.

  6. In Vivo Bone Formation Within Engineered Hydroxyapatite Scaffolds in a Sheep Model.

    Science.gov (United States)

    Lovati, A B; Lopa, S; Recordati, C; Talò, G; Turrisi, C; Bottagisio, M; Losa, M; Scanziani, E; Moretti, M

    2016-08-01

    Large bone defects still represent a major burden in orthopedics, requiring bone-graft implantation to promote the bone repair. Along with autografts that currently represent the gold standard for complicated fracture repair, the bone tissue engineering offers a promising alternative strategy combining bone-graft substitutes with osteoprogenitor cells able to support the bone tissue ingrowth within the implant. Hence, the optimization of cell loading and distribution within osteoconductive scaffolds is mandatory to support a successful bone formation within the scaffold pores. With this purpose, we engineered constructs by seeding and culturing autologous, osteodifferentiated bone marrow mesenchymal stem cells within hydroxyapatite (HA)-based grafts by means of a perfusion bioreactor to enhance the in vivo implant-bone osseointegration in an ovine model. Specifically, we compared the engineered constructs in two different anatomical bone sites, tibia, and femur, compared with cell-free or static cell-loaded scaffolds. After 2 and 4 months, the bone formation and the scaffold osseointegration were assessed by micro-CT and histological analyses. The results demonstrated the capability of the acellular HA-based grafts to determine an implant-bone osseointegration similar to that of statically or dynamically cultured grafts. Our study demonstrated that the tibia is characterized by a lower bone repair capability compared to femur, in which the contribution of transplanted cells is not crucial to enhance the bone-implant osseointegration. Indeed, only in tibia, the dynamic cell-loaded implants performed slightly better than the cell-free or static cell-loaded grafts, indicating that this is a valid approach to sustain the bone deposition and osseointegration in disadvantaged anatomical sites.

  7. Fabrication of Chitosan Silk-based Tracheal Scaffold Using Freeze-Casting Method

    Science.gov (United States)

    Nematollahi, Zeinab; Tafazzoli-Shadpour, Mohammad; Zamanian, Ali; Seyedsalehi, Amir; Mohammad-Behgam, Shadmehr; Ghorbani, Fariba; Mirahmadi, Fereshte

    2017-01-01

    Background: Since the treatments of long tracheal lesions are associated with some limitations, tissue engineered trachea is considered as an alternative option. This study aimed at preparing a composite scaffold, based on natural and synthetic materials for tracheal tissue engineering. Methods: Nine chitosan silk-based scaffolds were fabricated using three freezing rates (0.5, 1, and 2°C/min) and glutaraldehyde (GA) concentrations (0, 0.4, and 0.8 wt%). Samples were characterized, and scaffolds having mechanical properties compatible with those of human trachea and proper biodegradability were selected for chondrocyte cell seeding and subsequent biological assessments. Results: The pore sizes were highly influenced by the freezing rate and varied from 135.3×372.1 to 37.8×83.4 µm. Swelling and biodegradability behaviors were more affected by GA rather than freezing rate. Tensile strength raised from 120 kPa to 350 kPa by an increment of freezing rate and GA concentration. In addition, marked stiffening was demonstrated by increasing elastic modulus from 1.5 MPa to 12.2 MPa. Samples having 1 and 2°C/min of freezing rate and 0.8 wt% GA concentration made a non-toxic, porous structure with tensile strength and elastic modulus in the range of human trachea, facilitating the chondrocyte proliferation. The results of 21-day cell culture indicated that glycosaminoglycans content was significantly higher for the rate of 2°C/min (12.04 µg/min) rather than the other (9.6 µg/min). Conclusion: A homogenous porous structure was created by freeze drying. This allows the fabrication of a chitosan silk scaffold cross-linked by GA for cartilage tissue regeneration with application in tracheal regeneration. PMID:28131109

  8. In vitro performance investigation of bioresorbable scaffolds – Standard tests for vascular stents and beyond

    International Nuclear Information System (INIS)

    Schmidt, Wolfram; Behrens, Peter; Brandt-Wunderlich, Christoph; Siewert, Stefan; Grabow, Niels; Schmitz, Klaus-Peter

    2016-01-01

    Background/Purpose: Biodegradable polymers are the main materials for coronary scaffolds. Magnesium has been investigated as a potential alternative and was successfully tested in human clinical trials. However, it is still challenging to achieve mechanical parameters comparative to permanent bare metal (BMS) and drug-eluting stents (DES). As such, in vitro tests are required to assess mechanical parameters correlated to the safety and efficacy of the device. Methods/Materials: In vitro bench tests evaluate scaffold profiles, length, deliverability, expansion behavior including acute elastic and time-dependent recoil, bending stiffness and radial strength. The Absorb GT1 (Abbott Vascular, Temecula, CA), DESolve (Elixir Medical Corporation, Sunnyvale, CA) and the Magmaris (BIOTRONIK AG, Bülach, Switzerland) that was previously tested in the BIOSOLVE II study, were tested. Results: Crimped profiles were 1.38 ± 0.01 mm (Absorb GT1), 1.39 ± 0.01 mm (DESolve) and 1.44 ± 0.00 mm (Magmaris) enabling 6F compatibility. Trackability was measured depending on stiffness and force transmission (pushability). Acute elastic recoil was measured at free expansion and within a mock vessel, respectively, yielding results of 5.86 ± 0.76 and 5.22 ± 0.38% (Absorb), 7.85 ± 3.45 and 9.42 ± 0.21% (DESolve) and 5.57 ± 0.72 and 4.94 ± 0.31% (Magmaris). Time-dependent recoil (after 1 h) was observed for the Absorb and DESolve scaffolds but not for the Magmaris. The self-correcting wall apposition behavior of the DESolve did not prevent time-dependent recoil under vessel loading. Conclusions: The results of the suggested test methods allow assessment of technical feasibility based on objective mechanical data and highlight the main differences between polymeric and metallic bioresorbable scaffolds.

  9. In vitro performance investigation of bioresorbable scaffolds - Standard tests for vascular stents and beyond.

    Science.gov (United States)

    Schmidt, Wolfram; Behrens, Peter; Brandt-Wunderlich, Christoph; Siewert, Stefan; Grabow, Niels; Schmitz, Klaus-Peter

    2016-09-01

    Biodegradable polymers are the main materials for coronary scaffolds. Magnesium has been investigated as a potential alternative and was successfully tested in human clinical trials. However, it is still challenging to achieve mechanical parameters comparative to permanent bare metal (BMS) and drug-eluting stents (DES). As such, in vitro tests are required to assess mechanical parameters correlated to the safety and efficacy of the device. In vitro bench tests evaluate scaffold profiles, length, deliverability, expansion behavior including acute elastic and time-dependent recoil, bending stiffness and radial strength. The Absorb GT1 (Abbott Vascular, Temecula, CA), DESolve (Elixir Medical Corporation, Sunnyvale, CA) and the Magmaris (BIOTRONIK AG, Bülach, Switzerland) that was previously tested in the BIOSOLVE II study, were tested. Crimped profiles were 1.38±0.01mm (Absorb GT1), 1.39±0.01mm (DESolve) and 1.44±0.00mm (Magmaris) enabling 6F compatibility. Trackability was measured depending on stiffness and force transmission (pushability). Acute elastic recoil was measured at free expansion and within a mock vessel, respectively, yielding results of 5.86±0.76 and 5.22±0.38% (Absorb), 7.85±3.45 and 9.42±0.21% (DESolve) and 5.57±0.72 and 4.94±0.31% (Magmaris). Time-dependent recoil (after 1h) was observed for the Absorb and DESolve scaffolds but not for the Magmaris. The self-correcting wall apposition behavior of the DESolve did not prevent time-dependent recoil under vessel loading. The results of the suggested test methods allow assessment of technical feasibility based on objective mechanical data and highlight the main differences between polymeric and metallic bioresorbable scaffolds. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Optimizing structural and mechanical properties of cryogel scaffolds for use in prostate cancer cell culturing

    Energy Technology Data Exchange (ETDEWEB)

    Cecilia, A. [Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Baecker, A. [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1 Bldg 329, Eggenstein-Leopoldshafen, Karlsruhe D-76344 (Germany); Hamann, E. [Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Rack, A. [European Synchrotron Radiation Facility (ESRF), 6 rue Jules Horowitz, 38000 Grenoble (France); Kamp, T. van de [Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology, 6980, D-76128 Karlsruhe (Germany); Gruhl, F.J. [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1 Bldg 329, Eggenstein-Leopoldshafen, Karlsruhe D-76344 (Germany); Hofmann, R. [Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Moosmann, J. [Institute of Materials Research, Helmholtz-Zentrum Geesthacht (HZG), Max-Planck-Str. 1, D-21502 Geesthacht (Germany); Hahn, S.; Kashef, J.; Bauer, S.; Farago, T. [Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Helfen, L. [Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); European Synchrotron Radiation Facility (ESRF), 6 rue Jules Horowitz, 38000 Grenoble (France); and others

    2017-02-01

    Prostate cancer (PCa) currently is the second most diagnosed cancer in men and the second most cause of cancer death after lung cancer in Western societies. This sets the necessity of modelling prostatic disorders to optimize a therapy against them. The conventional approach to investigating prostatic diseases is based on two-dimensional (2D) cell culturing. This method, however, does not provide a three-dimensional (3D) environment, therefore impeding a satisfying simulation of the prostate gland in which the PCa cells proliferate. Cryogel scaffolds represent a valid alternative to 2D culturing systems for studying the normal and pathological behavior of the prostate cells thanks to their 3D pore architecture that reflects more closely the physiological environment in which PCa cells develop. In this work the 3D morphology of three potential scaffolds for PCa cell culturing was investigated by means of synchrotron X-ray computed micro tomography (SXCμT) fitting the according requirements of high spatial resolution, 3D imaging capability and low dose requirements very well. In combination with mechanical tests, the results allowed identifying an optimal cryogel architecture, meeting the needs for a well-suited scaffold to be used for 3D PCa cell culture applications. The selected cryogel was then used for culturing prostatic lymph node metastasis (LNCaP) cells and subsequently, the presence of multi-cellular tumor spheroids inside the matrix was demonstrated again by using SXCμT. - Highlights: • Synthesis of cryogel scaffolds for prostate cancer cell culturing. • Study of cryogel morphology by synchrotron X-ray computed micro tomography. • Analysis of cryogel mechanical properties with laboratory techniques. • Culturing of prostate cancer cell in the optimal cryogel composition for 21 days. • 3D visualization of the cells by synchrotron X-ray computed micro tomography.

  11. In vitro performance investigation of bioresorbable scaffolds – Standard tests for vascular stents and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Wolfram, E-mail: wolfram.schmidt@uni-rostock.de [Institute for Biomedical Engineering, University Medicine Rostock, Friedrich-Barnewitz-Strasse 4, D-18119 Rostock-Warnemünde (Germany); Behrens, Peter, E-mail: peter.behrens@uni-rostock.de [Institute for Biomedical Engineering, University Medicine Rostock, Friedrich-Barnewitz-Strasse 4, D-18119 Rostock-Warnemünde (Germany); Brandt-Wunderlich, Christoph, E-mail: christoph.brandt@uni-rostock.de [Institute for ImplantTechnology and Biomaterials – IIB e.V., Associated Institute of the University of Rostock, Friedrich-Barnewitz-Strasse 4, D-18119 Rostock-Warnemünde (Germany); Siewert, Stefan, E-mail: stefan.siewert@uni-rostock.de [Institute for ImplantTechnology and Biomaterials – IIB e.V., Associated Institute of the University of Rostock, Friedrich-Barnewitz-Strasse 4, D-18119 Rostock-Warnemünde (Germany); Grabow, Niels, E-mail: niels.grabow@uni-rostock.de [Institute for Biomedical Engineering, University Medicine Rostock, Friedrich-Barnewitz-Strasse 4, D-18119 Rostock-Warnemünde (Germany); Schmitz, Klaus-Peter, E-mail: klaus-peter.schmitz@uni-rostock.de [Institute for ImplantTechnology and Biomaterials – IIB e.V., Associated Institute of the University of Rostock, Friedrich-Barnewitz-Strasse 4, D-18119 Rostock-Warnemünde (Germany)

    2016-09-15

    Background/Purpose: Biodegradable polymers are the main materials for coronary scaffolds. Magnesium has been investigated as a potential alternative and was successfully tested in human clinical trials. However, it is still challenging to achieve mechanical parameters comparative to permanent bare metal (BMS) and drug-eluting stents (DES). As such, in vitro tests are required to assess mechanical parameters correlated to the safety and efficacy of the device. Methods/Materials: In vitro bench tests evaluate scaffold profiles, length, deliverability, expansion behavior including acute elastic and time-dependent recoil, bending stiffness and radial strength. The Absorb GT1 (Abbott Vascular, Temecula, CA), DESolve (Elixir Medical Corporation, Sunnyvale, CA) and the Magmaris (BIOTRONIK AG, Bülach, Switzerland) that was previously tested in the BIOSOLVE II study, were tested. Results: Crimped profiles were 1.38 ± 0.01 mm (Absorb GT1), 1.39 ± 0.01 mm (DESolve) and 1.44 ± 0.00 mm (Magmaris) enabling 6F compatibility. Trackability was measured depending on stiffness and force transmission (pushability). Acute elastic recoil was measured at free expansion and within a mock vessel, respectively, yielding results of 5.86 ± 0.76 and 5.22 ± 0.38% (Absorb), 7.85 ± 3.45 and 9.42 ± 0.21% (DESolve) and 5.57 ± 0.72 and 4.94 ± 0.31% (Magmaris). Time-dependent recoil (after 1 h) was observed for the Absorb and DESolve scaffolds but not for the Magmaris. The self-correcting wall apposition behavior of the DESolve did not prevent time-dependent recoil under vessel loading. Conclusions: The results of the suggested test methods allow assessment of technical feasibility based on objective mechanical data and highlight the main differences between polymeric and metallic bioresorbable scaffolds.

  12. Porous allograft bone scaffolds: doping with strontium.

    Directory of Open Access Journals (Sweden)

    Yantao Zhao

    Full Text Available Strontium (Sr can promote the process of bone formation. To improve bioactivity, porous allograft bone scaffolds (ABS were doped with Sr and the mechanical strength and bioactivity of the scaffolds were evaluated. Sr-doped ABS were prepared using the ion exchange method. The density and distribution of Sr in bone scaffolds were investigated by inductively coupled plasma optical emission spectrometry (ICP-OES, X-ray photoelectron spectroscopy (XPS, and energy-dispersive X-ray spectroscopy (EDS. Controlled release of strontium ions was measured and mechanical strength was evaluated by a compressive strength test. The bioactivity of Sr-doped ABS was investigated by a simulated body fluid (SBF assay, cytotoxicity testing, and an in vivo implantation experiment. The Sr molar concentration [Sr/(Sr+Ca] in ABS surpassed 5% and Sr was distributed nearly evenly. XPS analyses suggest that Sr combined with oxygen and carbonate radicals. Released Sr ions were detected in the immersion solution at higher concentration than calcium ions until day 30. The compressive strength of the Sr-doped ABS did not change significantly. The bioactivity of Sr-doped material, as measured by the in vitro SBF immersion method, was superior to that of the Sr-free freeze-dried bone and the Sr-doped material did not show cytotoxicity compared with Sr-free culture medium. The rate of bone mineral deposition for Sr-doped ABS was faster than that of the control at 4 weeks (3.28 ± 0.23 µm/day vs. 2.60 ± 0.20 µm/day; p<0.05. Sr can be evenly doped into porous ABS at relevant concentrations to create highly active bone substitutes.

  13. Scaffold engineering: a bridge to where?

    International Nuclear Information System (INIS)

    Hollister, Scott J

    2009-01-01

    A significant amount of federal research funding (over $4 billion) has gone into tissue engineering over the last 20 years. This has led to an exponential increase in research productivity as evidenced by the number of published papers referencing 'tissue engineering' and 'scaffold'. However, the number of tissue engineering products resulting from this research remains a paltry few, of which true tissue engineering products can be counted using the fingers of two hands. The fundamental question remains 'Why does such a gap exist between research and translation?'. This paper argues that such a gap exists in part due to the research paradigms followed in tissue engineering, in which a linear model is followed that assumed individual technical discovery can be bundled into model tissue engineering systems, followed by manufacturing scale up and regulatory approval. As such, most research funding follows this linear model with the vast majority of research spent on the discovery phase. This includes funding on both cell therapy and scaffold materials and engineering. It is assumed that therapy systems can readily be constructed by combining disparate technologies derived in different laboratories and that these therapies can readily achieve regulatory approval. Yet, most tissue engineering technologies fail to make it to clinical application because they simply have not been engineered for these specific applications or cannot be scaled to clinical level production. This paper argues that a different research paradigm is needed, essentially that of Pasteur's Quadrant proposed by Donald Stokes in the book of the same name. In this paradigm, research is pursued from the twin perspective of end use and the need for fundamental understanding. From this perspective, more funding emphasis should be placed on scalable manufacturing of systems that are designed for specific clinical applications that can attain regulatory approval. Funding of such scaffold/cell manufacturing

  14. Scaffolded filmmaking in PlayOFF

    DEFF Research Database (Denmark)

    Philipsen, Heidi

    2012-01-01

    How is it possible to make an entire short film in only 48 hours? This task was carried out in the global online film contest, called PlayOFF, held by Odense International Film Festival (OFF) in August 2010 and -11. Contestants from all over the world - as different countries as Palestine, China...... the productions. This article is based on an empirical study of film processes in PlayOFF 2010 and -11, and I will point out how these findings could be used in developing creativity. Based on my empirical studies I will suggest a learning design for scaffolded filmmaking and propose some ideas of how to transfer...

  15. Printing and Prototyping of Tissues and Scaffolds

    Science.gov (United States)

    Derby, Brian

    2012-11-01

    New manufacturing technologies under the banner of rapid prototyping enable the fabrication of structures close in architecture to biological tissue. In their simplest form, these technologies allow the manufacture of scaffolds upon which cells can grow for later implantation into the body. A more exciting prospect is the printing and patterning in three dimensions of all the components that make up a tissue (cells and matrix materials) to generate structures analogous to tissues; this has been termed bioprinting. Such techniques have opened new areas of research in tissue engineering and regenerative medicine.

  16. Porous ceramic scaffolds with complex architectures

    Science.gov (United States)

    Munch, E.; Franco, J.; Deville, S.; Hunger, P.; Saiz, E.; Tomsia, A. P.

    2008-06-01

    This work compares two novel techniques for the fabrication of ceramic scaffolds for bone tissue engineering with complex porosity: robocasting and freeze casting. Both techniques are based on the preparation of concentrated ceramic suspensions with suitable properties for the process. In robocasting, the computer-guided deposition of the suspensions is used to build porous materials with designed three dimensional geometries and microstructures. Freeze casting uses ice crystals as a template to form porous lamellar ceramic materials. Preliminary results on the compressive strengths of the materials are also reported.

  17. Energy alternatives

    International Nuclear Information System (INIS)

    1981-01-01

    English. A special committe of the Canadian House of Commons was established on 23 May 1980 to investigate the use of alternative energy sources such as 'gasohol', liquified coal, solar energy, methanol, wind and tidal power, biomass, and propane. In its final report, the committee envisions an energy system for Canada based on hydrogen and electricity, using solar and geothermal energy for low-grade heat. The committe was not able to say which method of generating electricty would dominate in the next century, although it recommends that fossil fuels should not be used. The fission process is not specifically discussed, but the outlook for fusion was investigated, and continued governmental support of fusion research is recommended. The report proposes some improvements in governmental energy organizations and programs

  18. Ethnic differences in disability risk between Dutch and Turkish scaffolders

    NARCIS (Netherlands)

    Elders, L.A.M.; Burdorf, A.; Öry, F.G.

    2004-01-01

    The number of native Dutch and Turkish workers receiving a permanent disability pension in the Netherlands is still rising. To assess ethnic differences in disability risk between Dutch and Turkish scaffolders, a retrospective study was conducted within a large scaffolding company. Medical files for

  19. The effect of scaffold pore size in cartilage tissue engineering.

    Science.gov (United States)

    Nava, Michele M; Draghi, Lorenza; Giordano, Carmen; Pietrabissa, Riccardo

    2016-07-26

    The effect of scaffold pore size and interconnectivity is undoubtedly a crucial factor for most tissue engineering applications. The aim of this study was to examine the effect of pore size and porosity on cartilage construct development in different scaffolds seeded with articular chondrocytes. We fabricated poly-L-lactide-co-trimethylene carbonate scaffolds with different pore sizes, using a solvent-casting/particulate-leaching technique. We seeded primary bovine articular chondrocytes on these scaffolds, cultured the constructs for 2 weeks and examined cell proliferation, viability and cell-specific production of cartilaginous extracellular matrix proteins, including GAG and collagen. Cell density significantly increased up to 50% with scaffold pore size and porosity, likely facilitated by cell spreading on the internal surface of bigger pores, and by increased mass transport of gases and nutrients to cells, and catabolite removal from cells, allowed by lower diffusion barriers in scaffolds with a higher porosity. However, both the cell metabolic activity and the synthesis of cartilaginous matrix proteins significantly decreased by up to 40% with pore size. We propose that the association of smaller pore diameters, causing 3-dimensional cell aggregation, to a lower oxygenation caused by a lower porosity, could have been the condition that increased the cell-specific synthesis of cartilaginous matrix proteins in the scaffold with the smallest pores and the lowest porosity among those tested. In the initial steps of in vitro cartilage engineering, the combination of small scaffold pores and low porosity is an effective strategy with regard to the promotion of chondrogenesis.

  20. Using the Community of Inquiry Framework to Scaffold Online Tutoring

    Science.gov (United States)

    Feng, Xiaoying; Xie, Jingjing; Liu, Yue

    2017-01-01

    Tutoring involves providing learners with a suitable level of structure and guidance to support their learning. This study reports on an exploration of how to design such structure and guidance (i.e., learning scaffolds) in the Chinese online educational context, and in so doing, answer the following two questions: (a) What scaffolding strategies…

  1. Enzymatically biomineralized chitosan scaffolds for tissue-engineering applications.

    NARCIS (Netherlands)

    Dash, M.; Samal, S.K.; Douglas, T.E.L.; Schaubroeck, D.; Leeuwenburgh, S.C.G.; Voort, P. van der; Declercq, H.A.; Dubruel, P.

    2017-01-01

    Porous biodegradable scaffolds represent promising candidates for tissue-engineering applications because of their capability to be preseeded with cells. We report an uncrosslinked chitosan scaffold designed with the aim of inducing and supporting enzyme-mediated formation of apatite minerals in the

  2. Scaffolding of Small Groups' Metacognitive Activities with an Avatar

    Science.gov (United States)

    Molenaar, Inge; Chiu, Ming Ming; Sleegers, Peter; van Boxtel, Carla

    2011-01-01

    Metacognitive scaffolding in a computer-supported learning environment can influence students' metacognitive activities, metacognitive knowledge and domain knowledge. In this study we analyze how metacognitive activities mediate the relationships between different avatar scaffolds on students' learning. Multivariate, multilevel analysis of the…

  3. Metacognitive Scaffolding during Collaborative Learning: A Promising Combination

    Science.gov (United States)

    Molenaar, Inge; Sleegers, Peter; van Boxtel, Carla

    2014-01-01

    This article explores the effect of computerized scaffolding with different scaffolds (structuring vs. problematizing) on intra-group metacognitive interaction. In this study, we investigate 4 types of intra-group social metacognitive activities; namely ignored, accepted, shared and co-constructed metacognitive activities in 18 triads (6 control…

  4. Maternal Scaffolding and Attention Regulation in Children Living in Poverty

    Science.gov (United States)

    Robinson, Julia B.; Burns, Barbara M.; Davis, Deborah Winders

    2009-01-01

    This study examines the relation of maternal scaffolding and children's attention regulation abilities in preschool children from low-income families within the context of a parent-child interaction task and in a child-alone task. Maternal scaffolding behaviors differed for mothers of children with different attention regulation skills. Mothers…

  5. Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing

    Energy Technology Data Exchange (ETDEWEB)

    Asuncion, Maria Christine Tankeh, E-mail: christine.asuncion@u.nus.edu [National University of Singapore, Department of Biomedical Engineering (Singapore); Goh, James Cho-Hong [National University of Singapore, Department of Biomedical Engineering (Singapore); National University of Singapore, Department of Orthopedic Surgery (Singapore); Toh, Siew-Lok [National University of Singapore, Department of Biomedical Engineering (Singapore); National University of Singapore, Department of Mechanical Engineering (Singapore)

    2016-10-01

    Recent studies have underlined the importance of matching scaffold properties to the biological milieu. Tissue, and thus scaffold, anisotropy is one such property that is important yet sometimes overlooked. Methods that have been used to achieve anisotropic scaffolds present challenges such as complicated fabrication steps, harsh processing conditions and toxic chemicals involved. In this study, unidirectional freezing was employed to fabricate anisotropic silk fibroin/gelatin scaffolds in a simple and mild manner. Morphological, mechanical, chemical and cellular compatibility properties were investigated, as well as the effect of the addition of gelatin to certain properties of the scaffold. It was shown that scaffold properties were suitable for cell proliferation and that mesenchymal stem cells were able to align themselves along the directed fibers. The fabricated scaffolds present a platform that can be used for anisotropic tissue engineering applications such as cardiac patches. - Highlights: • Silk/gelatin scaffolds with unidirectional alignment were fabricated using a simple and scalable process • Presence of gelatin in silk resulted to lesser shrinkage, better water retention and improved cell proliferation. • Mesenchymal stem cells were shown to align themselves according to the fiber alignment.

  6. Bioactive Scaffolds for Regeneration of Cartilage and Subchondral Bone Interface

    Science.gov (United States)

    Deng, Cuijun; Zhu, Huiying; Li, Jiayi; Feng, Chun; Yao, Qingqiang; Wang, Liming; Chang, Jiang; Wu, Chengtie

    2018-01-01

    The cartilage lesion resulting from osteoarthritis (OA) always extends into subchondral bone. It is of great importance for simultaneous regeneration of two tissues of cartilage and subchondral bone. 3D-printed Sr5(PO4)2SiO4 (SPS) bioactive ceramic scaffolds may achieve the aim of regenerating both of cartilage and subchondral bone. We hypothesized that strontium (Sr) and silicon (Si) ions released from SPS scaffolds play a crucial role in osteochondral defect reconstruction. Methods: SPS bioactive ceramic scaffolds were fabricated by a 3D-printing method. The SEM and ICPAES were used to investigate the physicochemical properties of SPS scaffolds. The proliferation and maturation of rabbit chondrocytes stimulated by SPS bioactive ceramics were measured in vitro. The stimulatory effect of SPS scaffolds for cartilage and subchondral bone regeneration was investigated in vivo. Results: SPS scaffolds significantly stimulated chondrocyte proliferation, and SPS extracts distinctly enhanced the maturation of chondrocytes and preserved chondrocytes from OA. SPS scaffolds markedly promoted the regeneration of osteochondral defects. The complex interface microstructure between cartilage and subchondral bone was obviously reconstructed. The underlying mechanism may be related to Sr and Si ions stimulating cartilage regeneration by activating HIF pathway and promoting subchondral bone reconstruction through activating Wnt pathway, as well as preserving chondrocytes from OA via inducing autophagy and inhibiting hedgehog pathway. Conclusion: Our findings suggest that SPS scaffolds can help osteochondral defect reconstruction and well reconstruct the complex interface between cartilage and subchondral bone, which represents a promising strategy for osteochondral defect regeneration. PMID:29556366

  7. Scaffolding and Dialogic Teaching in Mathematics Education: Introduction and Review

    Science.gov (United States)

    Bakker, Arthur; Smit, Jantien; Wegerif, Rupert

    2015-01-01

    This article has two purposes: firstly to introduce this special issue on scaffolding and dialogic teaching in mathematics education and secondly to review the recent literature on these topics as well as the articles in this special issue. First we define and characterise scaffolding and dialogic teaching and provide a brief historical overview…

  8. Scaffolding Performance in EPSSs: Bridging Theory and Practice.

    Science.gov (United States)

    Hannafin, Michael J; McCarthy, James E.; Hannafin, Kathleen M.; Radtke, Paul

    Electronic performance support systems (EPSS) help users accomplish tasks, using computational technologies. Scaffolding is the process through which efforts are supported while engaging a learning or performance task. A number of different types of scaffolds are possible, including conceptual, metacognitive, procedural, and strategic. Each of…

  9. Biomimetic mineral-organic composite scaffolds with controlled internal architecture.

    Science.gov (United States)

    Manjubala, I; Woesz, Alexander; Pilz, Christine; Rumpler, Monika; Fratzl-Zelman, Nadja; Roschger, Paul; Stampfl, Juergen; Fratzl, Peter

    2005-12-01

    Bone and cartilage generation by three-dimensional scaffolds is one of the promising techniques in tissue engineering. One approach is to generate histologically and functionally normal tissue by delivering healthy cells in biocompatible scaffolds. These scaffolds provide the necessary support for cells to proliferate and maintain their differentiated function, and their architecture defines the ultimate shape. Rapid prototyping (RP) is a technology by which a complex 3-dimensional (3D) structure can be produced indirectly from computer aided design (CAD). The present study aims at developing a 3D organic-inorganic composite scaffold with defined internal architecture by a RP method utilizing a 3D printer to produce wax molds. The composite scaffolds consisting of chitosan and hydroxyapatite were prepared using soluble wax molds. The behaviour and response of MC3T3-E1 pre-osteoblast cells on the scaffolds was studied. During a culture period of two and three weeks, cell proliferation and in-growth were observed by phase contrast light microscopy, histological staining and electron microscopy. The Giemsa and Gömöri staining of the cells cultured on scaffolds showed that the cells proliferated not only on the surface, but also filled the micro pores of the scaffolds and produced extracellular matrix within the pores. The electron micrographs showed that the cells covering the surface of the struts were flattened and grew from the periphery into the middle region of the pores.

  10. Apple derived cellulose scaffolds for 3D mammalian cell culture.

    Directory of Open Access Journals (Sweden)

    Daniel J Modulevsky

    Full Text Available There are numerous approaches for producing natural and synthetic 3D scaffolds that support the proliferation of mammalian cells. 3D scaffolds better represent the natural cellular microenvironment and have many potential applications in vitro and in vivo. Here, we demonstrate that 3D cellulose scaffolds produced by decellularizing apple hypanthium tissue can be employed for in vitro 3D culture of NIH3T3 fibroblasts, mouse C2C12 muscle myoblasts and human HeLa epithelial cells. We show that these cells can adhere, invade and proliferate in the cellulose scaffolds. In addition, biochemical functionalization or chemical cross-linking can be employed to control the surface biochemistry and/or mechanical properties of the scaffold. The cells retain high viability even after 12 continuous weeks of culture and can achieve cell densities comparable with other natural and synthetic scaffold materials. Apple derived cellulose scaffolds are easily produced, inexpensive and originate from a renewable source. Taken together, these results demonstrate that naturally derived cellulose scaffolds offer a complementary approach to existing techniques for the in vitro culture of mammalian cells in a 3D environment.

  11. 29 CFR 1915.71 - Scaffolds or staging.

    Science.gov (United States)

    2010-07-01

    ... construction of scaffolds shall be spruce, fir, long leaf yellow pine, Oregon pine or wood of equal strength... large, loose or dead knots. It shall also be free from dry rot, large checks, worm holes or other... accidentally disengaged from the crane hook. (c) Independent pole wood scaffolds. (1) All pole uprights shall...

  12. Design of a bioresorbable polymeric scaffold for osteoblast culture

    Science.gov (United States)

    Ditaranto, Vincent M., Jr.

    Bioresorbable polymeric scaffolds were designed for the purpose of growing rat osteosarcoma cells (ROS 17/2.8) using the compression molding method. The material used in the construction of the scaffolds was a mixture of polycaprolactone (PCL), Hydroxyapatite (HA), Glycerin (GL) and salt (NaCl) for porosity. The concentration of the several materials utilized, was determined by volume. Past research at the University of Massachusetts Lowell (UML) has successfully utilized the compression molding method for the construction of scaffolds, but was unable to accomplish the goal of long term cell survival and complete cellular proliferation throughout a three dimensional scaffold. This research investigated various concentrations of the materials and molding temperatures used for the manufacture of scaffolds in order to improve the scaffold design and address those issues. The design of the scaffold using the compression molding process is detailed in the Method and Materials section of this thesis. The porogen (salt) used for porosity was suspected as a possible source of contamination causing cell apoptosis in past studies. This research addressed the issues for cell survival and proliferation throughout a three dimensional scaffold. The leaching of the salt was one major design modification. This research successfully used ultrasonic leaching in addition to the passive method. Prior to cell culture, the scaffolds were irradiated to 2.75 Mrad, with cobalt-60 gamma radionuclide. The tissue culture consisted of two trials: (1) cell culture in scaffolds cleaned with passive leaching; (2) cell culture with scaffolds cleaned with ultrasonic leaching. Cell survival and proliferation was accomplished only with the addition of ultrasonic leaching of the scaffolds. Analysis of the scaffolds included Scanning Electron Microscopy (SEM), Nikon light microscopy and x-ray mapping of the calcium, sodium and chloride ion distribution. The cells were analyzed by Environmental Scanning

  13. Chondrogenic potential of bone marrow–derived mesenchymal stem cells on a novel, auricular-shaped, nanocomposite scaffold

    Directory of Open Access Journals (Sweden)

    Kavi H Patel

    2013-12-01

    Full Text Available Reconstruction of the human auricle remains a challenge to plastic surgeons, and current approaches are not ideal. Tissue engineering provides a promising alternative. This study aims to evaluate the chondrogenic potential of bone marrow–derived mesenchymal stem cells on a novel, auricular-shaped polymer. The proposed polyhedral oligomeric silsesquioxane-modified poly(hexanolactone/carbonateurethane/urea nanocomposite polymer has already been transplanted in patients as the world’s first synthetic trachea, tear duct and vascular bypass graft. The nanocomposite scaffold was fabricated via a coagulation/salt-leaching method and shaped into an auricle. Adult bone marrow–derived mesenchymal stem cells were isolated, cultured and seeded onto the scaffold. On day 21, samples were sent for scanning electron microscopy, histology and immunofluorescence to assess for neocartilage formation. Cell viability assay confirmed cytocompatability and normal patterns of cellular growth at 7, 14 and 21 days after culture. This study demonstrates the potential of a novel polyhedral oligomeric silsesquioxane-modified poly(hexanolactone/carbonateurethane/urea scaffold for culturing bone marrow–derived mesenchymal stem cells in chondrogenic medium to produce an auricular-shaped construct. This is supported by scanning electron microscopy, histological and immunofluorescence analysis revealing markers of chondrogenesis including collagen type II, SOX-9, glycosaminoglycan and elastin. To the best of our knowledge, this is the first report of stem cell application on an auricular-shaped scaffold for tissue engineering purposes. Although many obstacles remain in producing a functional auricle, this is a promising step forward.

  14. Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering

    Science.gov (United States)

    Goh, Saik-Kia; Bertera, Suzanne; Olsen, Phillip; Candiello, Joe; Halfter, Willi; Uechi, Guy; Balasubramani, Manimalha; Johnson, Scott; Sicari, Brian; Kollar, Elizabeth; Badylak, Stephen F.; Banerjee, Ipsita

    2013-01-01

    Approximately 285 million people worldwide suffer from diabetes, with insulin supplementation as the most common treatment measure. Regenerative medicine approaches such as a bioengineered pancreas has been proposed as potential therapeutic alternatives. A bioengineered pancreas will benefit from the development of a bioscaffold that supports and enhances cellular function and tissue development. Perfusion-decellularized organs are a likely candidate for use in such scaffolds since they mimic compositional, architectural and biomechanical nature of a native organ. In this study, we investigate perfusion-decellularization of whole pancreas and the feasibility to recellularize the whole pancreas scaffold with pancreatic cell types. Our result demonstrates that perfusion-decellularization of whole pancreas effectively removes cellular and nuclear material while retaining intricate three-dimensional microarchitecture with perfusable vasculature and ductal network and crucial extracellular matrix (ECM) components. To mimic pancreatic cell composition, we recellularized the whole pancreas scaffold with acinar and beta cell lines and cultured up to 5 days. Our result shows successful cellular engraftment within the decellularized pancreas, and the resulting graft gave rise to strong up-regulation of insulin gene expression. These findings support biological utility of whole pancreas ECM as a biomaterials scaffold for supporting and enhancing pancreatic cell functionality and represent a step toward bioengineered pancreas using regenerative medicine approaches. PMID:23787110

  15. Bionic Design, Materials and Performance of Bone Tissue Scaffolds

    Directory of Open Access Journals (Sweden)

    Tong Wu

    2017-10-01

    Full Text Available Design, materials, and performance are important factors in the research of bone tissue scaffolds. This work briefly describes the bone scaffolds and their anatomic structure, as well as their biological and mechanical characteristics. Furthermore, we reviewed the characteristics of metal materials, inorganic materials, organic polymer materials, and composite materials. The importance of the bionic design in preoperative diagnosis models and customized bone scaffolds was also discussed, addressing both the bionic structure design (macro and micro structure and the bionic performance design (mechanical performance and biological performance. Materials and performance are the two main problems in the development of customized bone scaffolds. Bionic design is an effective way to solve these problems, which could improve the clinical application of bone scaffolds, by creating a balance between mechanical performance and biological performance.

  16. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds

    DEFF Research Database (Denmark)

    Mygind, Tina; Stiehler, Maik; Baatrup, Anette

    2007-01-01

    Culture of osteogenic cells on a porous scaffold could offer a new solution to bone grafting using autologous human mesenchymal stem cells (hMSC) from the patient. We compared coralline hydroxyapatite scaffolds with pore sizes of 200 and 500 microm for expansion and differentiation of hMSCs. We...... polymerase chain reaction for 10 osteogenic markers. The 500-microm scaffolds had increased proliferation rates and accommodated a higher number of cells (shown by DNA content, scanning electron microscopy and fluorescence microscopy). Thus the porosity of a 3D microporous biomaterial may be used to steer h......MSC in a particular direction. We found that dynamic spinner flask cultivation of hMSC/scaffold constructs resulted in increased proliferation, differentiation and distribution of cells in scaffolds. Therefore, spinner flask cultivation is an easy-to-use inexpensive system for cultivating hMSCs on small...

  17. Electrospun PVA-PCL-HAB scaffold for craniofacial bone regeneration

    DEFF Research Database (Denmark)

    Prabha, Rahul; Kraft, David Christian Evar; Melsen, Birte

    2015-01-01

    -caprolactone (PCL)- triphasic bioceramic(HAB) scaffold to biomimic native tissue and we tested its ability to support osteogenic differentiation of stromal stem cells ( MSC) and its suitability for regeneration of craniofa- cial defects. Physiochemical characterizations of the scaffold, including con- tact angle...... body fluid immersed scaffold samples. Culturing human adult dental pulp stem cells (DPSC) and human bone marrow derived MSC seeded on PVA-PCL-HAB scaffold showed enhanced cell proliferation and in vitro osteoblastic differentiation. Cell-containing scaffolds were implanted subcutaneously in immune...... deficient mice. Histologic ex- amination of retrieved implant sections stained with H&E, Col- lagenType I and Human Vimentin antibody demonstrated that the cells survived in vivo in the implants for at least 8 weeks with evidence of osteoblastic differentiation and angiogenesis within the implants. Our...

  18. Magnetic responsive hydroxyapatite composite scaffolds construction for bone defect reparation

    Directory of Open Access Journals (Sweden)

    Zeng XB

    2012-07-01

    Full Text Available Xiao Bo Zeng, Hao Hu, Li Qin Xie, Fang Lan, Wen Jiang, Yao Wu, Zhong Wei GuNational Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, People's Republic of ChinaIntroduction: In recent years, interest in magnetic biomimetic scaffolds for tissue engineering has increased considerably. A type of magnetic scaffold composed of magnetic nanoparticles (MNPs and hydroxyapatite (HA for bone repair has been developed by our research group.Aim and methods: In this study, to investigate the influence of the MNP content (in the scaffolds on the cell behaviors and the interactions between the magnetic scaffold and the exterior magnetic field, a series of MNP-HA magnetic scaffolds with different MNP contents (from 0.2% to 2% were fabricated by immersing HA scaffold into MNP colloid. ROS 17/2.8 and MC3T3-E1 cells were cultured on the scaffolds in vitro, with and without an exterior magnetic field, respectively. The cell adhesion, proliferation and differentiation were evaluated via scanning electron microscopy; confocal laser scanning microscopy; and 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT, alkaline phosphatase, and bone gla protein activity tests.Results: The results demonstrated the positive influence of the magnetic scaffolds on cell adhesion, proliferation, and differentiation. Further, a higher amount of MNPs on the magnetic scaffolds led to more significant stimulation.Conclusion: The magnetic scaffold can respond to the exterior magnetic field and engender some synergistic effect to intensify the stimulating effect of a magnetic field to the proliferation and differentiation of cells.Keywords: magnetic therapy, magnetic nanoparticles, bone repair, magnetic responsive

  19. Scaffold library for tissue engineering: a geometric evaluation.

    Science.gov (United States)

    Chantarapanich, Nattapon; Puttawibul, Puttisak; Sucharitpwatskul, Sedthawatt; Jeamwatthanachai, Pongnarin; Inglam, Samroeng; Sitthiseripratip, Kriskrai

    2012-01-01

    Tissue engineering scaffold is a biological substitute that aims to restore, to maintain, or to improve tissue functions. Currently available manufacturing technology, that is, additive manufacturing is essentially applied to fabricate the scaffold according to the predefined computer aided design (CAD) model. To develop scaffold CAD libraries, the polyhedrons could be used in the scaffold libraries development. In this present study, one hundred and nineteen polyhedron models were evaluated according to the established criteria. The proposed criteria included considerations on geometry, manufacturing feasibility, and mechanical strength of these polyhedrons. CAD and finite element (FE) method were employed as tools in evaluation. The result of evaluation revealed that the close-cellular scaffold included truncated octahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron. In addition, the suitable polyhedrons for using as open-cellular scaffold libraries included hexahedron, truncated octahedron, truncated hexahedron, cuboctahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron. However, not all pore size to beam thickness ratios (PO:BT) were good for making the open-cellular scaffold. The PO:BT ratio of each library, generating the enclosed pore inside the scaffold, was excluded to avoid the impossibility of material removal after the fabrication. The close-cellular libraries presented the constant porosity which is irrespective to the different pore sizes. The relationship between PO:BT ratio and porosity of open-cellular scaffold libraries was displayed in the form of Logistic Power function. The possibility of merging two different types of libraries to produce the composite structure was geometrically evaluated in terms of the intersection index and was mechanically evaluated by means of FE analysis to observe the stress level. The couples of polyhedrons presenting low intersection index and high stress level were excluded. Good couples for

  20. Scaffold Library for Tissue Engineering: A Geometric Evaluation

    Directory of Open Access Journals (Sweden)

    Nattapon Chantarapanich

    2012-01-01

    Full Text Available Tissue engineering scaffold is a biological substitute that aims to restore, to maintain, or to improve tissue functions. Currently available manufacturing technology, that is, additive manufacturing is essentially applied to fabricate the scaffold according to the predefined computer aided design (CAD model. To develop scaffold CAD libraries, the polyhedrons could be used in the scaffold libraries development. In this present study, one hundred and nineteen polyhedron models were evaluated according to the established criteria. The proposed criteria included considerations on geometry, manufacturing feasibility, and mechanical strength of these polyhedrons. CAD and finite element (FE method were employed as tools in evaluation. The result of evaluation revealed that the close-cellular scaffold included truncated octahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron. In addition, the suitable polyhedrons for using as open-cellular scaffold libraries included hexahedron, truncated octahedron, truncated hexahedron, cuboctahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron. However, not all pore size to beam thickness ratios (PO : BT were good for making the open-cellular scaffold. The PO : BT ratio of each library, generating the enclosed pore inside the scaffold, was excluded to avoid the impossibility of material removal after the fabrication. The close-cellular libraries presented the constant porosity which is irrespective to the different pore sizes. The relationship between PO : BT ratio and porosity of open-cellular scaffold libraries was displayed in the form of Logistic Power function. The possibility of merging two different types of libraries to produce the composite structure was geometrically evaluated in terms of the intersection index and was mechanically evaluated by means of FE analysis to observe the stress level. The couples of polyhedrons presenting low intersection index and high stress

  1. Electrospun nanofiber scaffolds: engineering soft tissues

    International Nuclear Information System (INIS)

    Kumbar, S G; Nukavarapu, S P; Laurencin, C T; James, R

    2008-01-01

    Electrospinning has emerged to be a simple, elegant and scalable technique to fabricate polymeric nanofibers. Pure polymers as well as blends and composites of both natural and synthetics have been successfully electrospun into nanofiber matrices. Physiochemical properties of nanofiber matrices can be controlled by manipulating electrospinning parameters to meet the requirements of a specific application. Such efforts include the fabrication of fiber matrices containing nanofibers, microfibers, combination of nano-microfibers and also different fiber orientation/alignments. Polymeric nanofiber matrices have been extensively investigated for diversified uses such as filtration, barrier fabrics, wipes, personal care, biomedical and pharmaceutical applications. Recently electrospun nanofiber matrices have gained a lot of attention, and are being explored as scaffolds in tissue engineering due to their properties that can modulate cellular behavior. Electrospun nanofiber matrices show morphological similarities to the natural extra-cellular matrix (ECM), characterized by ultrafine continuous fibers, high surface-to-volume ratio, high porosity and variable pore-size distribution. Efforts have been made to modify nanofiber surfaces with several bioactive molecules to provide cells with the necessary chemical cues and a more in vivo like environment. The current paper provides an overlook on such efforts in designing nanofiber matrices as scaffolds in the regeneration of various soft tissues including skin, blood vessel, tendon/ligament, cardiac patch, nerve and skeletal muscle

  2. Electrospun nanofiber scaffolds: engineering soft tissues

    Energy Technology Data Exchange (ETDEWEB)

    Kumbar, S G; Nukavarapu, S P; Laurencin, C T [Department of Orthopaedic Surgery, University of Virginia, VA 22908 (United States); James, R [Department of Biomedical Engineering, University of Virginia, VA 22908 (United States)], E-mail: laurencin@virginia.edu

    2008-09-01

    Electrospinning has emerged to be a simple, elegant and scalable technique to fabricate polymeric nanofibers. Pure polymers as well as blends and composites of both natural and synthetics have been successfully electrospun into nanofiber matrices. Physiochemical properties of nanofiber matrices can be controlled by manipulating electrospinning parameters to meet the requirements of a specific application. Such efforts include the fabrication of fiber matrices containing nanofibers, microfibers, combination of nano-microfibers and also different fiber orientation/alignments. Polymeric nanofiber matrices have been extensively investigated for diversified uses such as filtration, barrier fabrics, wipes, personal care, biomedical and pharmaceutical applications. Recently electrospun nanofiber matrices have gained a lot of attention, and are being explored as scaffolds in tissue engineering due to their properties that can modulate cellular behavior. Electrospun nanofiber matrices show morphological similarities to the natural extra-cellular matrix (ECM), characterized by ultrafine continuous fibers, high surface-to-volume ratio, high porosity and variable pore-size distribution. Efforts have been made to modify nanofiber surfaces with several bioactive molecules to provide cells with the necessary chemical cues and a more in vivo like environment. The current paper provides an overlook on such efforts in designing nanofiber matrices as scaffolds in the regeneration of various soft tissues including skin, blood vessel, tendon/ligament, cardiac patch, nerve and skeletal muscle.

  3. Engineered porous scaffolds for periprosthetic infection prevention

    Energy Technology Data Exchange (ETDEWEB)

    Iviglia, Giorgio, E-mail: giorgio.iviglia@polito.it [Nobil Bio Ricerche Srl, 14037 Portacomaro (Italy); Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, 10121 Torino (Italy); Cassinelli, Clara; Bollati, Daniele [Nobil Bio Ricerche Srl, 14037 Portacomaro (Italy); Baino, Francesco [Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, 10121 Torino (Italy); Torre, Elisa; Morra, Marco [Nobil Bio Ricerche Srl, 14037 Portacomaro (Italy); Vitale-Brovarone, Chiara [Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, 10121 Torino (Italy)

    2016-11-01

    Periprosthetic infection is a consequence of implant insertion procedures and strategies for its prevention involve either an increase in the rate of new bone formation or the release of antibiotics such as vancomycin. In this work we combined both strategies and developed a novel, multifunctional three-dimensional porous scaffold that was produced using hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP), coupled with a pectin (PEC)-chitosan (CHIT) polyelectrolyte (PEI), and loaded with vancomycin (VCA). By this approach, a controlled vancomycin release was achieved and serial bacterial dilution test demonstrated that, after 1 week, the engineered construct still inhibits the bacterial growth. Degradation tests show an excellent behavior in a physiological and acidic environment (< 10% of mass loss). Furthermore, the PEI coating shows an anti-inflammatory response, and good cell proliferation and migration were demonstrated in vitro using osteoblast SAOS-2 cell line. This new engineered construct exhibits excellent properties both as an antibacterial material and as a stimulator of bone formation, which makes it a good candidate to contrast periprosthetic infection. - Highlights: • A novel three-dimensional ceramic scaffold was developed for infection prevention. • Pectin/chitosan coating stabilizes the degradation behavior in acidic environment. • Polyelectrolyte complex allows sustained release of vancomycin. • Inhibition of bacterial proliferation and biofilm formation was assessed. • PEI coating elicits anti-inflammatory response.

  4. Engineered porous scaffolds for periprosthetic infection prevention

    International Nuclear Information System (INIS)

    Iviglia, Giorgio; Cassinelli, Clara; Bollati, Daniele; Baino, Francesco; Torre, Elisa; Morra, Marco; Vitale-Brovarone, Chiara

    2016-01-01

    Periprosthetic infection is a consequence of implant insertion procedures and strategies for its prevention involve either an increase in the rate of new bone formation or the release of antibiotics such as vancomycin. In this work we combined both strategies and developed a novel, multifunctional three-dimensional porous scaffold that was produced using hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP), coupled with a pectin (PEC)-chitosan (CHIT) polyelectrolyte (PEI), and loaded with vancomycin (VCA). By this approach, a controlled vancomycin release was achieved and serial bacterial dilution test demonstrated that, after 1 week, the engineered construct still inhibits the bacterial growth. Degradation tests show an excellent behavior in a physiological and acidic environment (< 10% of mass loss). Furthermore, the PEI coating shows an anti-inflammatory response, and good cell proliferation and migration were demonstrated in vitro using osteoblast SAOS-2 cell line. This new engineered construct exhibits excellent properties both as an antibacterial material and as a stimulator of bone formation, which makes it a good candidate to contrast periprosthetic infection. - Highlights: • A novel three-dimensional ceramic scaffold was developed for infection prevention. • Pectin/chitosan coating stabilizes the degradation behavior in acidic environment. • Polyelectrolyte complex allows sustained release of vancomycin. • Inhibition of bacterial proliferation and biofilm formation was assessed. • PEI coating elicits anti-inflammatory response.

  5. Serial Multimodality Imaging and 2-Year Clinical Outcomes of the Novel DESolve Novolimus-Eluting Bioresorbable Coronary Scaffold System for the Treatment of Single De Novo Coronary Lesions.

    Science.gov (United States)

    Abizaid, Alexandre; Costa, Ricardo A; Schofer, Joachim; Ormiston, John; Maeng, Michael; Witzenbichler, Bernhard; Botelho, Roberto V; Costa, J Ribamar; Chamié, Daniel; Abizaid, Andrea S; Castro, Juliana P; Morrison, Lynn; Toyloy, Sara; Bhat, Vinayak; Yan, John; Verheye, Stefan

    2016-03-28

    This study sought to report the late multimodality imaging and clinical outcomes of the novel poly-l-lactic-acid-based DESolve novolimus-eluting bioresorbable coronary scaffold for the treatment of de novo coronary lesions. Bioresorbable scaffolds are an alternative to drug-eluting metallic stents and provide temporary vascular scaffolding, which potentially may allow vessel restoration and reduce the risk of future adverse events. Overall, 126 patients were enrolled at 13 international sites between November 2011 and June 2012. The primary endpoint was in-scaffold late lumen loss at 6 months. Major adverse cardiac events, the main safety endpoint, were defined as the composite of cardiac death, target vessel myocardial infarction, or clinically indicated target lesion revascularization. All patients underwent angiography at 6 months. Serial intravascular ultrasound and optical coherence tomography were performed in a subset of patients. The scaffold device success rate was 97% (n = 122 of 126), and procedural success was 100% (n = 122 of 122). The major adverse cardiac event rate was 3.3% (n = 4 of 122) at 6 months and 7.4% (n = 9 of 122) at 24 months, including 1 probable stent thrombosis within the first month. At 6-month angiographic follow-up, in-scaffold late lumen loss was 0.20 ± 0.32 mm. Paired intravascular ultrasound analysis demonstrated a significant increase in vessel, lumen and scaffold dimensions between post-procedure and 6-month follow-up, and strut-level optical coherence tomography analysis showed full strut coverage in 99 ± 1.7%. Our results showed favorable performance of the DESolve scaffold, effective inhibition of neointimal hyperplasia, and for the first time, early luminal and scaffold growth at 6 months with sustained efficacy and safety through 2 years. (Elixir Medical Clinical Evaluation of the DESolve Novolimus Eluting Bioresorbable Coronary Scaffold System-The DESolve Nx Trial; NCT02086045). Copyright © 2016 American College of

  6. Spatial control of bone formation using a porous polymer scaffold co-delivering anabolic rhBMP-2 and anti-resorptive agents

    Directory of Open Access Journals (Sweden)

    NYC Yu

    2014-01-01

    Full Text Available Current clinical delivery of recombinant human bone morphogenetic proteins (rhBMPs utilises freeze-dried collagen. Despite effective new bone generation, rhBMP via collagen can be limited by significant complications due to inflammation and uncontrolled bone formation. This study aimed to produce an alternative rhBMP local delivery system to permit more controllable and superior rhBMP-induced bone formation. Cylindrical porous poly(lactic-co-glycolic acid (PLGA scaffolds were manufactured by thermally-induced phase separation. Scaffolds were encapsulated with anabolic rhBMP-2 (20 µg ± anti-resorptive agents: zoledronic acid (5 µg ZA, ZA pre-adsorbed onto hydroxyapatite microparticles, (5 µg ZA/2 % HA or IkappaB kinase (IKK inhibitor (10 µg PS-1145. Scaffolds were inserted in a 6-mm critical-sized femoral defect in Wistar rats, and compared against rhBMP-2 via collagen. The regenerate region was examined at 6 weeks by 3D microCT and descriptive histology. MicroCT and histology revealed rhBMP-induced bone was more restricted in the PLGA scaffolds than collagen scaffolds (-92.3 % TV, p < 0.01. The regenerate formed by PLGA + rhBMP-2/ZA/HA showed comparable bone volume to rhBMP-2 via collagen, and bone mineral density was +9.1 % higher (p < 0.01. Local adjunct ZA/HA or PS-1145 significantly enhanced PLGA + rhBMP-induced bone formation by +78.2 % and +52.0 %, respectively (p ≤ 0.01. Mechanistically, MG-63 human osteoblast-like cells showed cellular invasion and proliferation within PLGA scaffolds. In conclusion, PLGA scaffolds enabled superior spatial control of rhBMP-induced bone formation over clinically-used collagen. The PLGA scaffold has the potential to avoid uncontrollable bone formation-related safety issues and to customise bone shape by scaffold design. Moreover, local treatment with anti-resorptive agents incorporated within the scaffold further augmented rhBMP-induced bone formation.

  7. Hydrophilic PCU scaffolds prepared by grafting PEGMA and immobilizing gelatin to enhance cell adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Changcan; Yuan, Wenjie; Khan, Musammir; Li, Qian [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Feng, Yakai, E-mail: yakaifeng@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Tianjin 300072 (China); Yao, Fanglian [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072 (China); Zhang, Wencheng, E-mail: wenchengzhang@yahoo.com [Department of Physiology and Pathophysiology, Logistics University of Chinese People' s Armed Police Force, Tianjin 300162 (China)

    2015-05-01

    Gelatin contains many functional motifs which can modulate cell specific adhesion, so we modified polycarbonate urethane (PCU) scaffold surface by immobilization of gelatin. PCU-g-gelatin scaffolds were prepared by direct immobilizing gelatins onto the surface of aminated PCU scaffolds. To increase the immobilization amount of gelatin, poly(ethylene glycol) methacrylate (PEGMA) was grafted onto PCU scaffolds by surface initiated atom transfer radical polymerization. Then, following amination and immobilization, PCU-g-PEGMA-g-gelatin scaffolds were obtained. Both modified scaffolds were characterized by chemical and biological methods. After immobilization of gelatin, the microfiber surface became rough, but the original morphology of scaffolds was maintained successfully. PCU-g-PEGMA-g-gelatin scaffolds were more hydrophilic than PCU-g-gelatin scaffolds. Because hydrophilic PEGMA and gelatin were grafted and immobilized onto the surface, the PCU-g-PEGMA-g-gelatin scaffolds showed low platelet adhesion, perfect anti-hemolytic activity and excellent cell growth and proliferation capacity. It could be envisioned that PCU-g-PEGMA-g-gelatin scaffolds might have potential applications in tissue engineering artificial scaffolds. - Graphical abstract: PCU-g-gelatin scaffolds were prepared by direct immobilizing gelatin onto the surface of aminated PCU scaffolds (method a). To increase the immobilization amount of gelatin, PEGMAs were grafted onto the scaffold surface by SI-ATRP. PCU-g-PEGMA-g-gelatin scaffolds were prepared by method b. The gelatin modified scaffolds exhibited high hydrophilicity, low platelet adhesion, perfect anti-hemolytic activity, and excellent cell adhesion and proliferation capacity. They might have potential applications as tissue engineering scaffolds for artificial blood vessels. - Highlights: • Hydrophilic scaffolds were prepared by grafting PEGMA and immobilization of gelatins. • Grafting PEGMA enhanced the immobilization amount of gelatin

  8. Bioresorbable scaffold -fourth revolution or failed revolution: Is low scaffold strut thickness the wrong target?

    Directory of Open Access Journals (Sweden)

    Sundeep Mishra

    2017-11-01

    Full Text Available Bioresorbable scaffold (BRS technology has currently fallen into disrepute because of inordinately high risk of scaffold thrombosis and post-procedure myocardial infarction. Low tensile and radial strengths of polymeric BRS contributing to improper strut embedment have been identified as major correlates of poor outcomes following BRS implantation. Magnesium has a better tensile/radial strength compared with polymeric BRS but it is still far lower than cobalt-chromium. Newers innovations utilizing alteration in polymer composition and orientation or even newer polymers have focused on attempts to reduce strut thickness but may have little effect on tensile/radial strength of finished product and therefore may not impact the BRS outcome on long run. Currently, newer generation BRS usage may be restricted to suitable low risk younger patients with proper vessel preparation and application of technique.

  9. Bioresorbable scaffold -fourth revolution or failed revolution: Is low scaffold strut thickness the wrong target?

    Science.gov (United States)

    Mishra, Sundeep

    Bioresorbable scaffold (BRS) technology has currently fallen into disrepute because of inordinately high risk of scaffold thrombosis and post-procedure myocardial infarction. Low tensile and radial strengths of polymeric BRS contributing to improper strut embedment have been identified as major correlates of poor outcomes following BRS implantation. Magnesium has a better tensile/radial strength compared with polymeric BRS but it is still far lower than cobalt-chromium. Newers innovations utilizing alteration in polymer composition and orientation or even newer polymers have focused on attempts to reduce strut thickness but may have little effect on tensile/radial strength of finished product and therefore may not impact the BRS outcome on long run. Currently, newer generation BRS usage may be restricted to suitable low risk younger patients with proper vessel preparation and application of technique. Copyright © 2017 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  10. PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration.

    Science.gov (United States)

    Silva, Edmundo; Vasconcellos, Luana Marotta Reis de; Rodrigues, Bruno V M; Dos Santos, Danilo Martins; Campana-Filho, Sergio P; Marciano, Fernanda Roberta; Webster, Thomas J; Lobo, Anderson Oliveira

    2017-04-01

    Herein, we developed honeycomb-like scaffolds by combining poly (d, l-lactic acid) (PDLLA) with a high amount of graphene/multi-walled carbon nanotube oxides (MWCNTO-GO, 50% w/w). From pristine multi-walled carbon nanotubes (MWCNT) powders, we produced MWCNTO-GO via oxygen plasma etching (OPE), which promoted their exfoliation and oxidation. Initially, we evaluated PDLLA and PDLLA/MWCNTO-GO scaffolds for tensile strength tests, cell adhesion and cell viability (with osteoblast-like MG-63 cells), alkaline phosphatase (ALP, a marker of osteoblast differentiation) activity and mineralized nodule formation. In vivo tests were carried out using PDLLA and PDLLA/MWCNTO-GO scaffolds as fillers for critical defects in the tibia of rats. MWCNTO-GO loading was responsible for decreasing the tensile strength and elongation-at-break of PDLLA scaffolds, although the high mechanical performance observed (~600MPa) assures their application in bone tissue regeneration. In vitro results showed that the scaffolds were not cytotoxic and allowed for osteoblast-like cell interactions and the formation of mineralized matrix nodules. Furthermore, MG-63 cells grown on PDLLA/MWCNTO-GO significantly enhanced osteoblast ALP activity compared to controls (cells alone), while the PDLLA group showed similar ALP activity when compared to controls and PDLLA/MWCNTO-GO. Most impressively, in vivo tests suggested that compared to PDLLA scaffolds, PDLLA/MWCNTO-GO had a superior influence on bone cell activity, promoting greater new bone formation. In summary, the results of this study highlighted that this novel scaffold (MWCNTO-GO, 50% w/w) is a promising alternative for bone tissue regeneration and, thus, should be further studied. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Effect of copper-doped silicate 13–93 bioactive glass scaffolds on the response of MC3T3-E1 cells in vitro and on bone regeneration and angiogenesis in rat calvarial defects in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yinan; Xiao, Wei [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Bal, B. Sonny [Department of Orthopaedic Surgery, University of Missouri, Columbia, MO 65212 (United States); Rahaman, Mohamed N., E-mail: rahaman@mst.edu [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2016-10-01

    The release of inorganic ions from biomaterials could provide an alternative approach to the use of growth factors for improving tissue healing. In the present study, the release of copper (Cu) ions from bioactive silicate (13–93) glass scaffolds on the response of cells in vitro and on bone regeneration and angiogenesis in vivo was studied. Scaffolds doped with varying concentrations of Cu (0–2.0 wt.% CuO) were created with a grid-like microstructure by robotic deposition. When immersed in simulated body fluid in vitro, the Cu-doped scaffolds released Cu ions into the medium in a dose-dependent manner and converted partially to hydroxyapatite. The proliferation and alkaline phosphatase activity of pre-osteoblastic MC3T3-E1 cells cultured on the scaffolds were not affected by 0.4 and 0.8 wt.% CuO in the glass but they were significantly reduced by 2.0 wt.% CuO. The percent new bone that infiltrated the scaffolds implanted for 6 weeks in rat calvarial defects (46 ± 8%) was not significantly affected by 0.4 or 0.8 wt.% CuO in the glass whereas it was significantly inhibited (0.8 ± 0.7%) in the scaffolds doped with 2.0 wt.% CuO. The area of new blood vessels in the fibrous tissue that infiltrated the scaffolds increased with CuO content of the glass and was significantly higher for the scaffolds doped with 2.0 wt.% CuO. Loading the scaffolds with bone morphogenetic protein-2 (1 μg/defect) significantly enhanced bone infiltration and reduced fibrous tissue in the scaffolds. These results showed that doping the 13–93 glass scaffolds with up to 0.8 wt.% CuO did not affect their biocompatibility whereas 2.0 wt.% CuO was toxic to cells and detrimental to bone regeneration. - Highlights: • First study to evaluate Cu ion release from silicate (13-93) bioactive glass scaffolds on osteogenesis in vivo • Released Cu ions influenced bone regeneration in a dose dependent manner • Lower concentrations of Cu ions had little effect on bone regeneration • Cu ion

  12. Effect of copper-doped silicate 13–93 bioactive glass scaffolds on the response of MC3T3-E1 cells in vitro and on bone regeneration and angiogenesis in rat calvarial defects in vivo

    International Nuclear Information System (INIS)

    Lin, Yinan; Xiao, Wei; Bal, B. Sonny; Rahaman, Mohamed N.

    2016-01-01

    The release of inorganic ions from biomaterials could provide an alternative approach to the use of growth factors for improving tissue healing. In the present study, the release of copper (Cu) ions from bioactive silicate (13–93) glass scaffolds on the response of cells in vitro and on bone regeneration and angiogenesis in vivo was studied. Scaffolds doped with varying concentrations of Cu (0–2.0 wt.% CuO) were created with a grid-like microstructure by robotic deposition. When immersed in simulated body fluid in vitro, the Cu-doped scaffolds released Cu ions into the medium in a dose-dependent manner and converted partially to hydroxyapatite. The proliferation and alkaline phosphatase activity of pre-osteoblastic MC3T3-E1 cells cultured on the scaffolds were not affected by 0.4 and 0.8 wt.% CuO in the glass but they were significantly reduced by 2.0 wt.% CuO. The percent new bone that infiltrated the scaffolds implanted for 6 weeks in rat calvarial defects (46 ± 8%) was not significantly affected by 0.4 or 0.8 wt.% CuO in the glass whereas it was significantly inhibited (0.8 ± 0.7%) in the scaffolds doped with 2.0 wt.% CuO. The area of new blood vessels in the fibrous tissue that infiltrated the scaffolds increased with CuO content of the glass and was significantly higher for the scaffolds doped with 2.0 wt.% CuO. Loading the scaffolds with bone morphogenetic protein-2 (1 μg/defect) significantly enhanced bone infiltration and reduced fibrous tissue in the scaffolds. These results showed that doping the 13–93 glass scaffolds with up to 0.8 wt.% CuO did not affect their biocompatibility whereas 2.0 wt.% CuO was toxic to cells and detrimental to bone regeneration. - Highlights: • First study to evaluate Cu ion release from silicate (13-93) bioactive glass scaffolds on osteogenesis in vivo • Released Cu ions influenced bone regeneration in a dose dependent manner • Lower concentrations of Cu ions had little effect on bone regeneration • Cu ion

  13. Enhanced bioactive scaffolds for bone tissue regeneration

    Science.gov (United States)

    Karnik, Sonali

    Bone injuries are commonly termed as fractures and they vary in their severity and causes. If the fracture is severe and there is loss of bone, implant surgery is prescribed. The response to the implant depends on the patient's physiology and implant material. Sometimes, the compromised physiology and undesired implant reactions lead to post-surgical complications. [4, 5, 20, 28] Efforts have been directed towards the development of efficient implant materials to tackle the problem of post-surgical implant failure. [ 15, 19, 24, 28, 32]. The field of tissue engineering and regenerative medicine involves the use of cells to form a new tissue on bio-absorbable or inert scaffolds. [2, 32] One of the applications of this field is to regenerate the damaged or lost bone by using stem cells or osteoprogenitor cells on scaffolds that can integrate in the host tissue without causing any harmful side effects. [2, 32] A variety of natural, synthetic materials and their combinations have been used to regenerate the damaged bone tissue. [2, 19, 30, 32, 43]. Growth factors have been supplied to progenitor cells to trigger a sequence of metabolic pathways leading to cellular proliferation, differentiation and to enhance their functionality. [56, 57] The challenge persists to supply these proteins, in the range of nano or even picograms, and in a sustained fashion over a period of time. A delivery system has yet to be developed that would mimic the body's inherent mechanism of delivering the growth factor molecules in the required amount to the target organ or tissue. Titanium is the most preferred metal for orthopedic and orthodontic implants. [28, 46, 48] Even though it has better osteogenic properties as compared to other metals and alloys, it still has drawbacks like poor integration into the surrounding host tissue leading to bone resorption and implant failure. [20, 28, 35] It also faces the problem of postsurgical infections that contributes to the implant failure. [26, 37

  14. Design, Materials, and Mechanobiology of Biodegradable Scaffolds for Bone Tissue Engineering

    Science.gov (United States)

    Velasco, Marco A.; Narváez-Tovar, Carlos A.; Garzón-Alvarado, Diego A.

    2015-01-01

    A review about design, manufacture, and mechanobiology of biodegradable scaffolds for bone tissue engineering is given. First, fundamental aspects about bone tissue engineering and considerations related to scaffold design are established. Second, issues related to scaffold biomaterials and manufacturing processes are discussed. Finally, mechanobiology of bone tissue and computational models developed for simulating how bone healing occurs inside a scaffold are described. PMID:25883972

  15. Accounting for structural compliance in nanoindentation measurements of bioceramic bone scaffolds

    Science.gov (United States)

    Juan Vivanco; Joseph E. Jakes; Josh Slane; Heidi-Lynn Ploeg

    2014-01-01

    Structural properties have been shown to be critical in the osteoconductive capacity and strength of bioactive ceramic bone scaffolds. Given the cellular foam-like structure of bone scaffolds, nanoindentation has been used as a technique to assess the mechanical properties of individual components of the scaffolds. Nevertheless, nanoindents placed on scaffolds may...

  16. Electrospinning versus knitting: two scaffolds for tisssue engineering of the aortic valve

    NARCIS (Netherlands)

    Lieshout, van M.I.; Vaz, C.M.; Rutten, M.C.M.; Peters, G.W.M.; Baaijens, F.P.T.

    2006-01-01

    Two types of scaffolds were developed for tissue engineering of the aortic valve; an electrospun valvular scaffold and a knitted valvular scaffold. These scaffolds were compared in a physiologic flow system and in a tissue-engineering process. In fibrin gel enclosed human myofibroblasts were seeded

  17. Electrospun Nanofiber Scaffolds with Gradations in Fiber Organization

    Science.gov (United States)

    Khandalavala, Karl; Jiang, Jiang; Shuler, Franklin D.; Xie, Jingwei

    2015-01-01

    The goal of this protocol is to report a simple method for generating nanofiber scaffolds with gradations in fiber organization and test their possible applications in controlling cell morphology/orientation. Nanofiber organization is controlled with a new fabrication apparatus that enables the gradual decrease of fiber organization in a scaffold. Changing the alignment of fibers is achieved through decreasing deposition time of random electrospun fibers on a uniaxially aligned fiber mat. By covering the collector with a moving barrier/mask, along the same axis as fiber deposition, the organizational structure is easily controlled. For tissue engineering purposes, adipose-derived stem cells can be seeded to these scaffolds. Stem cells undergo morphological changes as a result of their position on the varied organizational structure, and can potentially differentiate into different cell types depending on their locations. Additionally, the graded organization of fibers enhances the biomimicry of nanofiber scaffolds so they more closely resemble the natural orientations of collagen nanofibers at tendon-to-bone insertion site compared to traditional scaffolds. Through nanoencapsulation, the gradated fibers also afford the possibility to construct chemical gradients in fiber scaffolds, and thereby further strengthen their potential applications in fast screening of cell-materials interaction and interfacial tissue regeneration. This technique enables the production of continuous gradient scaffolds, but it also can potentially produce fibers in discrete steps by controlling the movement of the moving barrier/mask in a discrete fashion. PMID:25938562

  18. Cell-derived matrix coatings for polymeric scaffolds.

    Science.gov (United States)

    Decaris, Martin L; Binder, Bernard Y; Soicher, Matthew A; Bhat, Archana; Leach, J Kent

    2012-10-01

    Cells in culture deposit a complex extracellular matrix that remains intact following decellularization and possesses the capacity to modulate cell phenotype. The direct application of such decellularized matrices (DMs) to 3D substrates is problematic, as transport issues influence the homogeneous deposition, decellularization, and modification of DM surface coatings. In an attempt to address this shortcoming, we hypothesized that DMs deposited by human mesenchymal stem cells (MSCs) could be transferred to the surface of polymeric scaffolds while maintaining their capacity to direct cell fate. The ability of the transferred DM (tDM)-coated scaffolds to enhance the osteogenic differentiation of undifferentiated and osteogenically induced MSCs under osteogenic conditions in vitro was confirmed. tDM-coated scaffolds increased MSC expression of osteogenic marker genes (BGLAP, IBSP) and intracellular alkaline phosphatase production. In addition, undifferentiated MSCs deposited significantly more calcium when seeded onto tDM-coated scaffolds compared with control scaffolds. MSC-seeded tDM-coated scaffolds subcutaneously implanted in nude rats displayed significantly higher blood vessel density after 2 weeks compared with cells on uncoated scaffolds, but we did not observe significant differences in mineral deposition after 8 weeks. These data demonstrate that DM-coatings produced in 2D culture can be successfully transferred to 3D substrates and retain their capacity to modulate cell phenotype.

  19. Highly charged cyanine fluorophores for trafficking scaffold degradation

    International Nuclear Information System (INIS)

    Owens, Eric A; Alyabyev, Sergey; Henary, Maged; Hyun, Hoon; Kim, Soon Hee; Lee, Jeong Heon; Park, GwangLi; Ashitate, Yoshitomo; Choi, Jungmun; Hong, Gloria H; Choi, Hak Soo; Lee, Sang Jin; Khang, Gilson

    2013-01-01

    Biodegradable scaffolds have been extensively used in the field of tissue engineering and regenerative medicine. However, noninvasive monitoring of in vivo scaffold degradation is still lacking. In order to develop a real-time trafficking technique, a series of meso-brominated near-infrared (NIR) fluorophores were synthesized and conjugated to biodegradable gelatin scaffolds. Since the pentamethine cyanine core is highly lipophilic, the side chain of each fluorophore was modified with either quaternary ammonium salts or sulfonate groups. The physicochemical properties such as lipophilicity and net charge of fluorophores played a key role in the fate of NIR-conjugated scaffolds in vivo after biodegradation. The positively charged fluorophore-conjugated scaffold fragments were found in salivary glands, lymph nodes, and most of the hepatobiliary excretion route. However, halogenated fluorophores intensively accumulated into lymph nodes and the liver. Interestingly, balanced-charged gelatin scaffolds were degraded into urine in a short period of time. These results demonstrate that the noninvasive optical imaging using NIR fluorophores can be useful for the translation of biodegradable scaffolds into the clinic. (paper)

  20. Crossing kingdoms: Using decellularized plants as perfusable tissue engineering scaffolds.

    Science.gov (United States)

    Gershlak, Joshua R; Hernandez, Sarah; Fontana, Gianluca; Perreault, Luke R; Hansen, Katrina J; Larson, Sara A; Binder, Bernard Y K; Dolivo, David M; Yang, Tianhong; Dominko, Tanja; Rolle, Marsha W; Weathers, Pamela J; Medina-Bolivar, Fabricio; Cramer, Carole L; Murphy, William L; Gaudette, Glenn R

    2017-05-01

    Despite significant advances in the fabrication of bioengineered scaffolds for tissue engineering, delivery of nutrients in complex engineered human tissues remains a challenge. By taking advantage of the similarities in the vascular structure of plant and animal tissues, we developed decellularized plant tissue as a prevascularized scaffold for tissue engineering applications. Perfusion-based decellularization was modified for different plant species, providing different geometries of scaffolding. After decellularization, plant scaffolds remained patent and able to transport microparticles. Plant scaffolds were recellularized with human endothelial cells that colonized the inner surfaces of plant vasculature. Human mesenchymal stem cells and human pluripotent stem cell derived cardiomyocytes adhered to the outer surfaces of plant scaffolds. Cardiomyocytes demonstrated contractile function and calcium handling capabilities over the course of 21 days. These data demonstrate the potential of decellularized plants as scaffolds for tissue engineering, which could ultimately provide a cost-efficient, "green" technology for regenerating large volume vascularized tissue mass. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Microwell Scaffolds for the Extrahepatic Transplantation of Islets of Langerhans

    Science.gov (United States)

    Buitinga, Mijke; Truckenmüller, Roman; Engelse, Marten A.; Moroni, Lorenzo; Ten Hoopen, Hetty W. M.; van Blitterswijk, Clemens A.; de Koning, Eelco JP.; van Apeldoorn, Aart A.; Karperien, Marcel

    2013-01-01

    Allogeneic islet transplantation into the liver has the potential to restore normoglycemia in patients with type 1 diabetes. However, the suboptimal microenvironment for islets in the liver is likely to be involved in the progressive islet dysfunction that is often observed post-transplantation. This study validates a novel microwell scaffold platform to be used for the extrahepatic transplantation of islet of Langerhans. Scaffolds were fabricated from either a thin polymer film or an electrospun mesh of poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT/PBT) block copolymer (composition: 4000PEOT30PBT70) and were imprinted with microwells, ∼400 µm in diameter and ∼350 µm in depth. The water contact angle and water uptake were 39±2° and 52.1±4.0 wt%, respectively. The glucose flux through electrospun scaffolds was three times higher than for thin film scaffolds, indicating enhanced nutrient diffusion. Human islets cultured in microwell scaffolds for seven days showed insulin release and insulin content comparable to those of free-floating control islets. Islet morphology and insulin and glucagon expression were maintained during culture in the microwell scaffolds. Our results indicate that the microwell scaffold platform prevents islet aggregation by confinement of individual islets in separate microwells, preserves the islet’s native rounded morphology, and provides a protective environment without impairing islet functionality, making it a promising platform for use in extrahepatic islet transplantation. PMID:23737999

  2. Novel mechanically competent polysaccharide scaffolds for bone tissue engineering

    International Nuclear Information System (INIS)

    Kumbar, S G; Toti, U S; Deng, M; James, R; Laurencin, C T; Aravamudhan, A; Harmon, M; Ramos, D M

    2011-01-01

    The success of the scaffold-based bone regeneration approach critically depends on the biomaterial's mechanical and biological properties. Cellulose and its derivatives are inherently associated with exceptional strength and biocompatibility due to their β-glycosidic linkage and extensive hydrogen bonding. This polymer class has a long medical history as a dialysis membrane, wound care system and pharmaceutical excipient. Recently cellulose-based scaffolds have been developed and evaluated for a variety of tissue engineering applications. In general porous polysaccharide scaffolds in spite of many merits lack the necessary mechanical competence needed for load-bearing applications. The present study reports the fabrication and characterization of three-dimensional (3D) porous sintered microsphere scaffolds based on cellulose derivatives using a solvent/non-solvent sintering approach for load-bearing applications. These 3D scaffolds exhibited a compressive modulus and strength in the mid-range of human trabecular bone and underwent degradation resulting in a weight loss of 10–15% after 24 weeks. A typical stress–strain curve for these scaffolds showed an initial elastic region and a less-stiff post-yield region similar to that of native bone. Human osteoblasts cultured on these scaffolds showed progressive growth with time and maintained expression of osteoblast phenotype markers. Further, the elevated expression of alkaline phosphatase and mineralization at early time points as compared to heat-sintered poly(lactic acid–glycolic acid) control scaffolds with identical pore properties affirmed the advantages of polysaccharides and their potential for scaffold-based bone regeneration.

  3. BESST--efficient scaffolding of large fragmented assemblies.

    Science.gov (United States)

    Sahlin, Kristoffer; Vezzi, Francesco; Nystedt, Björn; Lundeberg, Joakim; Arvestad, Lars

    2014-08-15

    The use of short reads from High Throughput Sequencing (HTS) techniques is now commonplace in de novo assembly. Yet, obtaining contiguous assemblies from short reads is challenging, thus making scaffolding an important step in the assembly pipeline. Different algorithms have been proposed but many of them use the number of read pairs supporting a linking of two contigs as an indicator of reliability. This reasoning is intuitive, but fails to account for variation in link count due to contig features.We have also noted that published scaffolders are only evaluated on small datasets using output from only one assembler. Two issues arise from this. Firstly, some of the available tools are not well suited for complex genomes. Secondly, these evaluations provide little support for inferring a software's general performance. We propose a new algorithm, implemented in a tool called BESST, which can scaffold genomes of all sizes and complexities and was used to scaffold the genome of P. abies (20 Gbp). We performed a comprehensive comparison of BESST against the most popular stand-alone scaffolders on a large variety of datasets. Our results confirm that some of the popular scaffolders are not practical to run on complex datasets. Furthermore, no single stand-alone scaffolder outperforms the others on all datasets. However, BESST fares favorably to the other tested scaffolders on GAGE datasets and, moreover, outperforms the other methods when library insert size distribution is wide. We conclude from our results that information sources other than the quantity of links, as is commonly used, can provide useful information about genome structure when scaffolding.

  4. Microporous dermal-like electrospun scaffolds promote accelerated skin regeneration.

    Science.gov (United States)

    Bonvallet, Paul P; Culpepper, Bonnie K; Bain, Jennifer L; Schultz, Matthew J; Thomas, Steven J; Bellis, Susan L

    2014-09-01

    The goal of this study was to synthesize skin substitutes that blend native extracellular matrix (ECM) molecules with synthetic polymers which have favorable mechanical properties. To this end, scaffolds were electrospun from collagen I (col) and poly(ɛ-caprolactone) (PCL), and then pores were introduced mechanically to promote fibroblast infiltration, and subsequent filling of the pores with ECM. A 70:30 col/PCL ratio was determined to provide optimal support for dermal fibroblast growth, and a pore diameter, 160 μm, was identified that enabled fibroblasts to infiltrate and fill pores with native matrix molecules, including fibronectin and collagen I. Mechanical testing of 70:30 col/PCL scaffolds with 160 μm pores revealed a tensile strength of 1.4 MPa, and the scaffolds also exhibited a low rate of contraction (pores. Keratinocytes formed a stratified layer on the surface of fibroblast-remodeled scaffolds, and staining for cytokeratin 10 revealed terminally differentiated keratinocytes at the apical surface. When implanted, 70:30 col/PCL scaffolds degraded within 3-4 weeks, an optimal time frame for degradation in vivo. Finally, 70:30 col/PCL scaffolds with or without 160 μm pores were implanted into full-thickness critical-sized skin defects. Relative to nonporous scaffolds or sham wounds, scaffolds with 160 μm pores induced accelerated wound closure, and stimulated regeneration of healthy dermal tissue, evidenced by a more normal-appearing matrix architecture, blood vessel in-growth, and hair follicle development. Collectively, these results suggest that microporous electrospun scaffolds are effective substrates for skin regeneration.

  5. Use of additives, scaffolds and extracellular matrix components for improvement of human pancreatic islet outcomes in vitro: A systematic review.

    Science.gov (United States)

    Lemos, Natália Emerim; de Almeida Brondani, Letícia; Dieter, Cristine; Rheinheimer, Jakeline; Bouças, Ana Paula; Bauermann Leitão, Cristiane; Crispim, Daisy; Bauer, Andrea Carla

    2017-09-03

    Pancreatic islet transplantation is an established treatment to restore insulin independence in type 1 diabetic patients. Its success rates have increased lately based on improvements in immunosuppressive therapies and on islet isolation and culture. It is known that the quality and quantity of viable transplanted islets are crucial for the achievement of insulin independence and some studies have shown that a significant number of islets are lost during culture time. Thus, in an effort to improve islet yield during culture period, researchers have tested a variety of additives in culture media as well as alternative culture devices, such as scaffolds. However, due to the use of different categories of additives or devices, it is difficult to draw a conclusion on the benefits of these strategies. Therefore, the aim of this systematic review was to summarize the results of studies that described the use of medium additives, scaffolds or extracellular matrix (ECM) components during human pancreatic islets culture. PubMed and Embase repositories were searched. Of 5083 articles retrieved, a total of 37 articles fulfilled the eligibility criteria and were included in the review. After data extraction, articles were grouped as follows: 1) "antiapoptotic/anti-inflammatory/antioxidant," 2) "hormone," 3) "sulphonylureas," 4) "serum supplements," and 5) "scaffolds or ECM components." The effects of the reviewed additives, ECM or scaffolds on islet viability, apoptosis and function (glucose-stimulated insulin secretion - GSIS) were heterogeneous, making any major conclusion hard to sustain. Overall, some "antiapoptotic/anti-inflammatory/antioxidant" additives decreased apoptosis and improved GSIS. Moreover, islet culture with ECM components or scaffolds increased GSIS. More studies are needed to define the real impact of these strategies in improving islet transplantation outcomes.

  6. Fabrication and in vitro evaluation of a sponge-like bioactive-glass/gelatin composite scaffold for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Nadeem, Danish [Biomaterials Engineering Group, School of Oral and Dental Sciences, University of Bristol, BS1 2LY (United Kingdom); Kiamehr, Mostafa [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS2 9LU (United Kingdom); Yang, Xuebin [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS2 9LU (United Kingdom); NIHR Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, Leeds LS7 4SA (United Kingdom); Su, Bo, E-mail: b.su@bristol.ac.uk [Biomaterials Engineering Group, School of Oral and Dental Sciences, University of Bristol, BS1 2LY (United Kingdom)

    2013-07-01

    In this work a bioactive composite scaffold, comprised of bioactive-glass and gelatin, is introduced. Through direct foaming a sponge-like composite of a sol–gel derived bioactive-glass (70S30C; 70% SiO{sub 2}, 30% CaO) and porcine gelatin was developed for use as a biodegradable scaffold for bone tissue engineering. The composite was developed to provide a suitable alternative to synthetic polymer based scaffolds, allowing directed regeneration of bone tissue. The fabricated scaffold was characterised through X-ray microtomography, scanning electron and light microscopy demonstrating a three dimensionally porous and interconnected structure, with an average pore size (170 μm) suitable for successful cell proliferation and tissue ingrowth. Acellular bioactivity was assessed through apatite formation during submersion in simulated body fluid (SBF) whereby the rate and onset of apatite nucleation was found to be comparable to that of bioactive-glass. Modification of dehydrothermal treatment parameters induced varying degrees of crosslinking, allowing the degradation of the composite to be tailored to suit specific applications and establishing its potential for a wide range of applications. Use of genipin to supplement crosslinking by dehydrothermal treatment provided further means of modifying degradability. Biocompatibility of the composite was qualified through successful cultures of human dental pulp stem cells (HDPSCs) on samples of the composite scaffold. Osteogenic differentiation of HDPSCs and extracellular matrix deposition were confirmed through positive alkaline phosphatase staining and immunohistochemistry. - Highlights: ► Optimised composition and fabrication produced sponge-like porosity (pore size ∼ 170 μm). ► Maximum aqueous stability via dehydrothermal treatment at 145 °C, for 48 h ► Biocompatibility and osteogenic potential confirmed via successful HDPSC cultures. ► Minimal toxicity exhibited in optimally crosslinked samples (10 m

  7. Design and characterization of a biodegradable double-layer scaffold aimed at periodontal tissue-engineering applications.

    Science.gov (United States)

    Requicha, João F; Viegas, Carlos A; Hede, Shantesh; Leonor, Isabel B; Reis, Rui L; Gomes, Manuela E

    2016-05-01

    The inefficacy of the currently used therapies in achieving the regeneration ad integrum of the periodontium stimulates the search for alternative approaches, such as tissue-engineering strategies. Therefore, the core objective of this study was to develop a biodegradable double-layer scaffold for periodontal tissue engineering. The design philosophy was based on a double-layered construct obtained from a blend of starch and poly-ε-caprolactone (30:70 wt%; SPCL). A SPCL fibre mesh functionalized with silanol groups to promote osteogenesis was combined with a SPCL solvent casting membrane aiming at acting as a barrier against the migration of gingival epithelium into the periodontal defect. Each layer of the double-layer scaffolds was characterized in terms of morphology, surface chemical composition, degradation behaviour and mechanical properties. Moreover, the behaviour of seeded/cultured canine adipose-derived stem cells (cASCs) was assessed. In general, the developed double-layered scaffolds demonstrated adequate degradation and mechanical behaviour for the target application. Furthermore, the biological assays revealed that both layers of the scaffold allow adhesion and proliferation of the seeded undifferentiated cASCs, and the incorporation of silanol groups into the fibre-mesh layer enhance the expression of a typical osteogenic marker. This study allowed an innovative construct to be developed, combining a three-dimensional (3D) scaffold with osteoconductive properties and with potential to assist periodontal regeneration, carrying new possible solutions to current clinical needs. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Fabrication and in vitro evaluation of a sponge-like bioactive-glass/gelatin composite scaffold for bone tissue engineering

    International Nuclear Information System (INIS)

    Nadeem, Danish; Kiamehr, Mostafa; Yang, Xuebin; Su, Bo

    2013-01-01

    In this work a bioactive composite scaffold, comprised of bioactive-glass and gelatin, is introduced. Through direct foaming a sponge-like composite of a sol–gel derived bioactive-glass (70S30C; 70% SiO 2 , 30% CaO) and porcine gelatin was developed for use as a biodegradable scaffold for bone tissue engineering. The composite was developed to provide a suitable alternative to synthetic polymer based scaffolds, allowing directed regeneration of bone tissue. The fabricated scaffold was characterised through X-ray microtomography, scanning electron and light microscopy demonstrating a three dimensionally porous and interconnected structure, with an average pore size (170 μm) suitable for successful cell proliferation and tissue ingrowth. Acellular bioactivity was assessed through apatite formation during submersion in simulated body fluid (SBF) whereby the rate and onset of apatite nucleation was found to be comparable to that of bioactive-glass. Modification of dehydrothermal treatment parameters induced varying degrees of crosslinking, allowing the degradation of the composite to be tailored to suit specific applications and establishing its potential for a wide range of applications. Use of genipin to supplement crosslinking by dehydrothermal treatment provided further means of modifying degradability. Biocompatibility of the composite was qualified through successful cultures of human dental pulp stem cells (HDPSCs) on samples of the composite scaffold. Osteogenic differentiation of HDPSCs and extracellular matrix deposition were confirmed through positive alkaline phosphatase staining and immunohistochemistry. - Highlights: ► Optimised composition and fabrication produced sponge-like porosity (pore size ∼ 170 μm). ► Maximum aqueous stability via dehydrothermal treatment at 145 °C, for 48 h ► Biocompatibility and osteogenic potential confirmed via successful HDPSC cultures. ► Minimal toxicity exhibited in optimally crosslinked samples (10 m

  9. In vitro analysis of scaffold-free prevascularized microtissue spheroids containing human dental pulp cells and endothelial cells.

    Science.gov (United States)

    Dissanayaka, Waruna Lakmal; Zhu, Lifang; Hargreaves, Kenneth M; Jin, Lijian; Zhang, Chengfei

    2015-05-01

    Scaffolds often fail to mimic essential functions of the physiologic extracellular matrix (ECM) that regulates cell-cell communication in tissue microenvironments. The development of scaffold-free microtissues containing stem cell-derived ECM may serve as a successful alternative to the use of artificial scaffolds. The current study aimed to fabricate 3-dimensional microtissue spheroids of dental pulp cells (DPCs) prevascularized by human umbilical vein endothelial cells (HUVECs) and to characterize these scaffold-free spheroids for the in vitro formation of pulplike tissue constructs. Three-dimensional microtissue spheroids of DPC alone and DPC-HUVEC co-cultures were fabricated using agarose micro-molds. Cellular organization within the spheroids and cell viability (live/dead assay) were assessed at days 1, 7, and 14. Microtissue spheroids were allowed to self-assemble into macrotissues, induced for odontogenic differentiation (21 days), and examined for expression levels of osteo/odontogenic markers: alkaline phosphatase, bone sialoprotein and RUNX2 (Real-time PCR), mineralization (von-Kossa), and prevascularisation (immunohistochemistry for CD31). The DPC microtissue microenvironment supported HUVEC survival and capillary network formation in the absence of a scaffolding material and external angiogenic stimulation. Immunohistochemical staining for CD31 showed the capillary network formed by HUVECs did sustain-for a prolonged period-even after the microtissues transformed into a macrotissue. Induced, prevascularized macrotissues showed enhanced differentiation capacity compared with DPC alone macrotissues, as shown by higher osteo/odontogenic gene expression levels and mineralization. These findings provide insight into the complex intercellular cross talk occurring between DPCs and HUVECs in the context of angiogenesis and pulp regeneration and highlight the significance of developing a favorable 3-dimensional microenvironment that can, in turn, contribute

  10. Left atrial appendage occlusion with Amplatzer Cardio Plug is an acceptable therapeutic option for prevention of stroke recurrence in patients with non-valvular atrial fibrillation and contraindication or failure of oral anticoagulation with acenocumarol

    OpenAIRE

    Hawkes, Maximiliano A.; Pertierra, Lucía; Rodriguez-Lucci, Federico; Pujol-Lereis, Virginia A.; Ameriso, Sebastián F.

    2016-01-01

    ABSTRACT Left atrial appendage occlusion (LAAO) appears as a therapeutic option for some atrial fibrillation patients not suitable for oral anticoagulation because an increased hemorrhagic risk or recurrent ischemic events despite anticoagulant treatment. Methods Report of consecutive atrial fibrillation patients treated with LAAO with Amplatzer Cardio Plug because contraindication or failure of oral anticoagulation with acenocumarol. CHA2DS2VASC, HAS-BLED, NIHSS, mRS, procedural complicati...

  11. Nanoengineered Carbon Scaffolds for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, A. D.; Hudson, J. L.; Fan, H.; Booker, R.; Simpson, L. J.; O' Neill, K. J.; Parilla, P. A.; Heben, M. J.; Pasquali, M.; Kittrell, C.; Tour, J. M.

    2009-01-01

    Single-walled carbon nanotube (SWCNT) fibers were engineered to become a scaffold for the storage of hydrogen. Carbon nanotube fibers were swollen in oleum (fuming sulfuric acid), and organic spacer groups were covalently linked between the nanotubes using diazonium functionalization chemistry to provide 3-dimensional (3-D) frameworks for the adsorption of hydrogen molecules. These 3-D nanoengineered fibers physisorb twice as much hydrogen per unit surface area as do typical macroporous carbon materials. These fiber-based systems can have high density, and combined with the outstanding thermal conductivity of carbon nanotubes, this points a way toward solving the volumetric and heat-transfer constraints that limit some other hydrogen-storage supports.

  12. Polymer scaffold degradation control via chemical control

    Science.gov (United States)

    Hedberg-Dirk, Elizabeth L.; Dirk, Shawn; Cicotte, Kirsten

    2016-01-05

    A variety of polymers and copolymers suitable for use as biologically compatible constructs and, as a non-limiting specific example, in the formation of degradable tissue scaffolds as well methods for synthesizing these polymers and copolymers are described. The polymers and copolymers have degradation rates that are substantially faster than those of previously described polymers suitable for the same uses. Copolymers having a synthesis route which enables one to fine tune the degradation rate by selecting the specific stoichiometry of the monomers in the resulting copolymer are also described. The disclosure also provides a novel synthesis route for maleoyl chloride which yields monomers suitable for use in the copolymer synthesis methods described herein.

  13. Using Polymeric Scaffolds for Vascular Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Alida Abruzzo

    2014-01-01

    Full Text Available With the high occurrence of cardiovascular disease and increasing numbers of patients requiring vascular access, there is a significant need for small-diameter (<6 mm inner diameter vascular graft that can provide long-term patency. Despite the technological improvements, restenosis and graft thrombosis continue to hamper the success of the implants. Vascular tissue engineering is a new field that has undergone enormous growth over the last decade and has proposed valid solutions for blood vessels repair. The goal of vascular tissue engineering is to produce neovessels and neoorgan tissue from autologous cells using a biodegradable polymer as a scaffold. The most important advantage of tissue-engineered implants is that these tissues can grow, remodel, rebuild, and respond to injury. This review describes the development of polymeric materials over the years and current tissue engineering strategies for the improvement of vascular conduits.

  14. A dual-application poly (dl-lactic-co-glycolic) acid (PLGA)-chitosan composite scaffold for potential use in bone tissue engineering.

    Science.gov (United States)

    Boukari, Yamina; Qutachi, Omar; Scurr, David J; Morris, Andrew P; Doughty, Stephen W; Billa, Nashiru

    2017-11-01

    The development of patient-friendly alternatives to bone-graft procedures is the driving force for new frontiers in bone tissue engineering. Poly (dl-lactic-co-glycolic acid) (PLGA) and chitosan are well-studied and easy-to-process polymers from which scaffolds can be fabricated. In this study, a novel dual-application scaffold system was formulated from porous PLGA and protein-loaded PLGA/chitosan microspheres. Physicochemical and in vitro protein release attributes were established. The therapeutic relevance, cytocompatibility with primary human mesenchymal stem cells (hMSCs) and osteogenic properties were tested. There was a significant reduction in burst release from the composite PLGA/chitosan microspheres compared with PLGA alone. Scaffolds sintered from porous microspheres at 37 °C were significantly stronger than the PLGA control, with compressive strengths of 0.846 ± 0.272 MPa and 0.406 ± 0.265 MPa, respectively (p < 0.05). The formulation also sintered at 37 °C following injection through a needle, demonstrating its injectable potential. The scaffolds demonstrated cytocompatibility, with increased cell numbers observed over an 8-day study period. Von Kossa and immunostaining of the hMSC-scaffolds confirmed their osteogenic potential with the ability to sinter at 37 °C in situ.

  15. Proliferation and chondrogenic differentiation of CD105-positive enriched rat synovium-derived mesenchymal stem cells in three-dimensional porous scaffolds

    International Nuclear Information System (INIS)

    Qi Jun; Chen Anmin; You Hongbo; Li Kunpeng; Zhang Di; Guo Fengjing

    2011-01-01

    Stem cell-based tissue engineering has provided an alternative strategy to treat cartilage lesions, and synovium-derived mesenchymal stem cells (SMSCs) are considered as a promising cell source for cartilage repair. In this study, the SMSCs were isolated from rat synovium, and CD105-positive (CD105 + ) cells were enriched using magnetic activated cell sorting. Sorted cells were subsequently seeded onto the chitosan-alginate composite three-dimensional (3D) porous scaffolds and cultured in chondrogenic culture medium in the presence of TGF-β 3 and BMP-2 for 2 weeks in vitro. After 2 weeks in culture, scanning electron microscopy results showed that cells attached and proliferated well on scaffolds, and secreted extracellular matrix were also observed. From day 7 to day 14, the total DNA and glucosaminoglycan content of the cells cultured in scaffolds were found to have increased significantly, and cell cycle analyses revealed that the percentage of cells in the S and G2/M phases increased and the percentage of cells in the G0/G1 phase decreased. Compared with non-sorted cells, the sorted cells cultured in scaffolds underwent more chondrogenic differentiation, as evidenced by higher expression of type II collagen and Sox9 at the protein and mRNA levels. The results suggest that CD105 + enriched SMSCs may be a potential cell source for cartilage tissue engineering, and the chitosan-alginate composite 3D porous scaffold could provide a favorable microenvironment for supporting proliferation and chondrogenic differentiation of cells.

  16. Investigating the Effect of Scaffolding in Modern Game Design

    DEFF Research Database (Denmark)

    Jensen, Kasper Halkjær; Kraus, Martin

    2017-01-01

    of not knowing what to do. This paper investigates the effects that scaffolding in games has on players’ experience of a game. To this end, a custom game was designed and implemented that contained a number of different scenarios with different types of scaffolding. This was used to conduct an experiment on 18......Nowadays, game developers are much more focused on providing players with short-term rewards for overcoming challenges than they have been previously. This has resulted in a lot of games having more scaffolding to teach the players what to do, so they don’t quit the games in frustration...

  17. Nerve regeneration using tubular scaffolds from biodegradable polyurethane.

    Science.gov (United States)

    Hausner, T; Schmidhammer, R; Zandieh, S; Hopf, R; Schultz, A; Gogolewski, S; Hertz, H; Redl, H

    2007-01-01

    In severe nerve lesion, nerve defects and in brachial plexus reconstruction, autologous nerve grafting is the golden standard. Although, nerve grafting technique is the best available approach a major disadvantages exists: there is a limited source of autologous nerve grafts. This study presents data on the use of tubular scaffolds with uniaxial pore orientation from experimental biodegradable polyurethanes coated with fibrin sealant to regenerate a 8 mm resected segment of rat sciatic nerve. Tubular scaffolds: prepared by extrusion of the polymer solution in DMF into water coagulation bath. The polymer used for the preparation of tubular scaffolds was a biodegradable polyurethane based on hexamethylene diisocyanate, poly(epsilon-caprolactone) and dianhydro-D-sorbitol. EXPERIMENTAL MODEL: Eighteen Sprague Dawley rats underwent mid-thigh sciatic nerve transection and were randomly assigned to two experimental groups with immediate repair: (1) tubular scaffold, (2) 180 degrees rotated sciatic nerve segment (control). Serial functional measurements (toe spread test, placing tests) were performed weekly from 3rd to 12th week after nerve repair. On week 12, electrophysiological assessment was performed. Sciatic nerve and scaffold/nerve grafts were harvested for histomorphometric analysis. Collagenic connective tissue, Schwann cells and axons were evaluated in the proximal nerve stump, the scaffold/nerve graft and the distal nerve stump. The implants have uniaxially-oriented pore structure with a pore size in the range of 2 micorm (the pore wall) and 75 x 700 microm (elongated pores in the implant lumen). The skin of the tubular implants was nonporous. Animals which underwent repair with tubular scaffolds of biodegradable polyurethanes coated with diluted fibrin sealant had no significant functional differences compared with the nerve graft group. Control group resulted in a trend-wise better electrophysiological recovery but did not show statistically significant

  18. Functionally graded scaffolds for the engineering of interface tissues using hybrid twin screw extrusion/electrospinning technology

    Science.gov (United States)

    Erisken, Cevat

    Tissue engineering is the application of the principles of engineering and life sciences for the development of biological alternatives for improvement or regeneration of native tissues. Native tissues are complex structures with functions and properties changing spatially and temporally, and engineering of such structures requires functionally graded scaffolds with composition and properties changing systematically along various directions. Utilization of a new hybrid technology integrating the controlled feeding, compounding, dispersion, deaeration, and pressurization capabilities of extrusion process with electrospinning allows incorporation of liquids and solid particles/nanoparticles into polymeric fibers/nanofibers for fabrication of functionally graded non-woven meshes to be used as scaffolds in engineering of tissues. The capabilities of the hybrid technology were demonstrated with a series of scaffold fabrication and cell culturing studies along with characterization of biomechanical properties. In the first study, the hybrid technology was employed to generate concentration gradations of beta-tricalcium phosphate (beta-TCP) nanoparticles in a polycaprolactone (PCL) binder, between two surfaces of nanofibrous scaffolds. These scaffolds were seeded with pre-osteoblastic cell line (MC3T3-E1) to attempt to engineer cartilage-bone interface, and after four weeks, the tissue constructs revealed formation of continuous gradations in extracellular matrix akin to cartilage-bone interface in terms of distributions of mineral concentrations and biomechanical properties. In a second demonstration of the hybrid technology, graded differentiation of stem cells was attempted by using insulin, a known stimulator of chondrogenic differentiation, and beta-glycerol phosphate (beta-GP), for mineralization. Concentrations of insulin and beta-GP in PCL were controlled to monotonically increase and decrease, respectively, along the length of scaffolds, which were then seeded

  19. A nano-sandwich construct built with graphene nanosheets and carbon nanotubes enhances mechanical properties of hydroxyapatite–polyetheretherketone scaffolds

    Directory of Open Access Journals (Sweden)

    Feng P

    2016-07-01

    promising alternative for bone tissue engineering. Keywords: scaffold, mechanical properties, apatite-forming ability, cell culture, tissue engineering 

  20. Formation of Neural Networks in 3D Scaffolds Fabricated by Means of Laser Microstereolithography.

    Science.gov (United States)

    Vedunova, M V; Timashev, P S; Mishchenko, T A; Mitroshina, E V; Koroleva, A V; Chichkov, B N; Panchenko, V Ya; Bagratashvili, V N; Mukhina, I V

    2016-08-01

    We developed and tested new 3D scaffolds for neurotransplantation. Scaffolds of predetermined architectonic were prepared using microstereolithography technique. Scaffolds were highly biocompatible with the nervous tissue cells. In vitro studies showed that the material of fabricated scaffolds is not toxic for dissociated brain cells and promotes the formation of functional neural networks in the matrix. These results demonstrate the possibility of fabrication of tissue-engineering constructs for neurotransplantation based on created scaffolds.

  1. Numerical assessment and comparison of heat transfer characteristics of supercritical water in bare tubes and tubes with heat transfer enhancing appendages

    International Nuclear Information System (INIS)

    Farah, Amjad; Harvel, Glenn; Pioro, Igor

    2015-01-01

    Computational Fluid Dynamics (CFD) is a numerical approach to model fluids in multidimensional space using the Navier-Stokes equations and databases of fluid properties to arrive at a full simulation of a fluid dynamics and heat transfer system. A numerical study on heat transfer to supercritical water (SCW) flowing in a vertical tube is carried out using the ANSYS FLUENT code and employing the SST k-ω turbulence model. The 3D mesh consists of a 1/8 section (45deg radially) of a bare tube. The numerical results on wall temperature distributions under normal and deteriorated heat transfer conditions are compared to experimental results. The same geometry is then simulated with an orifice to study the effect of geometrical perturbation on the flow and heat transfer characteristics of SCW. The orifice is placed areas to test the effect on normal, deteriorated and enhanced heat transfer regimes. The flow effects and heat transfer characteristics will be studied around the appendages to arrive at a fundamental understanding of the phenomena related to supercritical water turbulence. (author)

  2. Limb ischemia, an alarm signal to a thromboembolic cascade - renal infarction and nephrectomy followed by surgical suppression of the left atrial appendage.

    Science.gov (United States)

    Caraşca, Cosmin; Borda, Angela; Incze, Alexandru; Caraşca, Emilian; Frigy, Attila; Suciu, HoraŢiu

    2016-01-01

    We present the case of a 55-year-old male with mild hypertension and brief episodes of paroxysmal self-limiting atrial fibrillation (AF) since 2010. Despite a small cardioembolic risk score, CHA2DS2-Vasc=1 (Congestive heart failure, Hypertension, Age=75, Diabetes melitus, prior Stroke), the patient is effectively anticoagulated using acenocumarol. In December 2014, he showed signs of plantar transitory ischemia, for which he did not address the doctor. In early January 2015, he urgently presented at the hospital with left renal pain, caused by a renal infarction, diagnosed by computed tomography (CT) angiography. Left nephrectomy was performed with pathological confirmation. He was discharged with effective anticoagulation treatment. Within the next two weeks, he suffered a transitory ischemic event and a stroke, associated with right sided hemiparesis. On admission, AF was found and converted to sinus rhythm with effective anticoagulation - international normalized ratio (INR) of 2.12. Transthoracic echocardiography detected no pathological findings. Transesophageal echocardiography showed an expended left atrial appendage (LAA) with a slow blood flow (0.2 m÷s) and spontaneous echocontrast. Considering these clinical circumstances, surgical LAA suppression was decided on as a last therapeutic resort. Postoperative evolution was favorable; the patient is still free of ischemic events, one year post-intervention. Some morphological and hemodynamic characteristics of LAA may add additional thromboembolic risk factors, not included in scores. Removing them by surgical LAA suppression may decrease the risk of cardioembolic events. Intraoperative presence of thrombus makes it an indisputable proof.

  3. ABO blood groups: A risk factor for left atrial and left atrial appendage thrombogenic milieu in patients with non-valvular atrial fibrillation.

    Science.gov (United States)

    Fu, Yuan; Li, Kuibao; Yang, Xinchun

    2017-08-01

    Previous studies have identified ABO blood groups as predictors of thromboembolic diseases. In patients with atrial fibrillation (AF), however, potential association between ABO blood groups and the risk of left atrial (LA) and/or left atrial appendage (LAA) thrombogenic milieu (TM) has not been established. This is a retrospective case-control study that included 125 consecutive patients with non-valvular atrial fibrillation (NVAF) plus TM, as evidenced by transesophageal echocardiography (TEE) during a period from1 January 2010 to 31 December 2016. The controls were selected randomly from 1072 NVAF without TM at a 1:2 ratio. Potential association between ABO blood groups and TM was analyzed using multivariate logistic regression analysis. The risk of TM was higher in patients with blood group A (33.6% vs. 20.2% in non-A blood groups, P=0.005). After adjusting for age, sex, oral anticoagulant use, AF type and duration, and relevant functional measures (e.g., NT-pro BNP level, left atrium diameter, and left ventricular ejection fraction), blood group A remained associated with an increased risk of TM (OR=2.99, 95% CI 1.4-6.388, P=0.005). Blood group A is an independent risk factor for TM in NVAF patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Motion of left atrial appendage as a determinant of thrombus formation in patients with a low CHADS2 score receiving warfarin for persistent nonvalvular atrial fibrillation

    Directory of Open Access Journals (Sweden)

    Ono Koji

    2012-12-01

    Full Text Available Abstract Background The aim of this study was to define the independent determinants of left atrial appendage (LAA thrombus among various echocardiographic parameters measured by Velocity Vector Imaging (VVI in patients with nonvalvular atrial fibrillation (AF receiving warfarin, particularly in patients with a low CHADS2 score. Methods LAA emptying fraction (EF and LAA peak longitudinal strain were measured by VVI using transesophageal echocardiography in 260 consecutive patients with nonvalvular persistent AF receiving warfarin. The patients were divided into two groups according to the presence (n=43 or absence (n=217 of LAA thrombus. Moreover, the patients within each group were further divided into subgroups according to a CHADS2 score ≤1. Results Multivariate logistic regression analysis showed that LAAEF was an independent determinant of LAA thrombus in the subgroup of 140 with a low CHADS2 score. Receiver operating characteristics curve analysis showed that an LAAEF of 21% was the optimal cutoff value for predicting LAA thrombus. Conclusions LAA thrombus formation depended on LAA contractility. AF patients with reduced LAA contractile fraction (LAAEF ≤21% require strong anticoagulant therapy to avoid thromboembolic events regardless of a low CHADS2 score (≤1.

  5. The pattern of a specimen of Pycnogonum litorale (Arthropoda, Pycnogonida) with a supernumerary leg can be explained with the "boundary model" of appendage formation

    Science.gov (United States)

    Scholtz, Gerhard; Brenneis, Georg

    2016-02-01

    A malformed adult female specimen of Pycnogonum litorale (Pycnogonida) with a supernumerary leg in the right body half is described concerning external and internal structures. The specimen was maintained in our laboratory culture after an injury in the right trunk region during a late postembryonic stage. The supernumerary leg is located between the second and third walking legs. The lateral processes connecting to these walking legs are fused to one large structure. Likewise, the coxae 1 of the second and third walking legs and of the supernumerary leg are fused to different degrees. The supernumerary leg is a complete walking leg with mirror image symmetry as evidenced by the position of joints and muscles. It is slightly smaller than the normal legs, but internally, it contains a branch of the ovary and a gut diverticulum as the other legs. The causes for this malformation pattern found in the Pycnogonum individual are reconstructed in the light of extirpation experiments in insects, which led to supernumerary mirror image legs, and the "boundary model" for appendage differentiation.

  6. Characterization of Mechanical Properties of Tissue Scaffolds by Phase Contrast Imaging and Finite Element Modeling.

    Science.gov (United States)

    Bawolin, Nahshon K; Dolovich, Allan T; Chen, Daniel X B; Zhang, Chris W J

    2015-08-01

    In tissue engineering, the cell and scaffold approach has shown promise as a treatment to regenerate diseased and/or damaged tissue. In this treatment, an artificial construct (scaffold) is seeded with cells, which organize and proliferate into new tissue. The scaffold itself biodegrades with time, leaving behind only newly formed tissue. The degradation qualities of the scaffold are critical during the treatment period, since the change in the mechanical properties of the scaffold with time can influence cell behavior. To observe in time the scaffold's mechanical properties, a straightforward method is to deform the scaffold and then characterize scaffold deflection accordingly. However, experimentally observing the scaffold deflection is challenging. This paper presents a novel study on characterization of mechanical properties of scaffolds by phase contrast imaging and finite element modeling, which specifically includes scaffold fabrication, scaffold imaging, image analysis, and finite elements (FEs) modeling of the scaffold mechanical properties. The innovation of the work rests on the use of in-line phase contrast X-ray imaging at 20 KeV to characterize tissue scaffold deformation caused by ultrasound radiation forces and the use of the Fourier transform to identify movement. Once deformation has been determined experimentally, it is then compared with the predictions given by the forward solution of a finite element model. A consideration of the number of separate loading conditions necessary to uniquely identify the material properties of transversely isotropic and fully orthotropic scaffolds is also presented, along with the use of an FE as a form of regularization.

  7. Manufacture of degradable polymeric scaffolds for bone regeneration.

    Science.gov (United States)

    Ge, Zigang; Jin, Zhaoxia; Cao, Tong

    2008-06-01

    Many innovative technology platforms for promoting bone regeneration have been developed. A common theme among these is the use of scaffolds to provide mechanical support and osteoconduction. Scaffolds can be either ceramic or polymer-based, or composites of both classes of material. Both ceramics and polymers have their own merits and drawbacks, and a better solution may be to synergize the advantageous properties of both materials within composite scaffolds. In this current review, after a brief introduction of the anatomy and physiology of bone, different strategies of fabricating polymeric scaffolds for bone regeneration, including traditional and solid free-form fabrication, are critically discussed and compared, while focusing on the advantages and disadvantages of individual techniques.

  8. Put reading first: Positive effects of direct instruction and scaffolding ...

    African Journals Online (AJOL)

    Put reading first: Positive effects of direct instruction and scaffolding for ESL learners struggling with reading. ... are intended to open up for debate a topic of critical importance to the country's education system. ... AJOL African Journals Online.

  9. A Framework for Designing Scaffolds That Improve Motivation and Cognition

    Science.gov (United States)

    Belland, Brian R.; Kim, ChanMin; Hannafin, Michael J.

    2013-01-01

    A problematic, yet common, assumption among educational researchers is that when teachers provide authentic, problem-based experiences, students will automatically be engaged. Evidence indicates that this is often not the case. In this article, we discuss (a) problems with ignoring motivation in the design of learning environments, (b) problem-based learning and scaffolding as one way to help, (c) how scaffolding has strayed from what was originally equal parts motivational and cognitive support, and (d) a conceptual framework for the design of scaffolds that can enhance motivation as well as cognitive outcomes. We propose guidelines for the design of computer-based scaffolds to promote motivation and engagement while students are solving authentic problems. Remaining questions and suggestions for future research are then discussed. PMID:24273351

  10. Protein scaffolds and higher-order complexes in synthetic biology

    NARCIS (Netherlands)

    den Hamer, A.; Rosier, B.J.H.M.; Brunsveld, L.; de Greef, T.F.A.; Ryadnov, M.; Brunsveld, L.; Suga, H.

    2017-01-01

    Interactions between proteins control molecular functions such as signalling or metabolic activity. Assembly of proteins via scaffold proteins or in higher-order complexes is a key regulatory mechanism. Understanding and functionally applying this concept requires the construction, study, and

  11. Extracellular matrix scaffolds for cartilage and bone regeneration

    NARCIS (Netherlands)

    Benders, K.E.M.; van Weeren, P.R.; Badylak, S.F.; Saris, Daniël B.F.; Dhert, W.J.A.; Malda, J.

    2013-01-01

    Regenerative medicine approaches based on decellularized extracellular matrix (ECM) scaffolds and tissues are rapidly expanding. The rationale for using ECM as a natural biomaterial is the presence of bioactive molecules that drive tissue homeostasis and regeneration. Moreover, appropriately

  12. Manufacture of degradable polymeric scaffolds for bone regeneration

    International Nuclear Information System (INIS)

    Ge Zigang; Jin Zhaoxia; Cao Tong

    2008-01-01

    Many innovative technology platforms for promoting bone regeneration have been developed. A common theme among these is the use of scaffolds to provide mechanical support and osteoconduction. Scaffolds can be either ceramic or polymer-based, or composites of both classes of material. Both ceramics and polymers have their own merits and drawbacks, and a better solution may be to synergize the advantageous properties of both materials within composite scaffolds. In this current review, after a brief introduction of the anatomy and physiology of bone, different strategies of fabricating polymeric scaffolds for bone regeneration, including traditional and solid free-form fabrication, are critically discussed and compared, while focusing on the advantages and disadvantages of individual techniques. (topical review)

  13. Novel blood protein based scaffolds for cardiovascular tissue engineering

    Directory of Open Access Journals (Sweden)

    Kuhn Antonia I.

    2016-09-01

    Full Text Available A major challenge in cardiovascular tissue engineering is the fabrication of scaffolds, which provide appropriate morphological and mechanical properties while avoiding undesirable immune reactions. In this study electrospinning was used to fabricate scaffolds out of blood proteins for cardiovascular tissue engineering. Lyophilised porcine plasma was dissolved in deionised water at a final concentration of 7.5% m/v and blended with 3.7% m/v PEO. Electrospinning resulted in homogeneous fibre morphologies with a mean fibre diameter of 151 nm, which could be adapted to create macroscopic shapes (mats, tubes. Cross-linking with glutaraldehyde vapour improved the long-term stability of protein based scaffolds in comparison to untreated scaffolds, resulting in a mass loss of 41% and 96% after 28 days of incubation in aqueous solution, respectively.

  14. Bioactive glass-based scaffolds for bone tissue engineering

    NARCIS (Netherlands)

    Will, J.; Gerhardt, L.C.; Boccaccini, A.R.

    2012-01-01

    Originally developed to fill and restore bone defects, bioactive glasses are currently also being intensively investigated for bone tissue engineering applications. In this chapter, we review and discuss current knowledge on porous bone tissue engineering scaffolds made from bioactive silicate

  15. Influence of preparation method on hydroxyapatite porous scaffolds

    Indian Academy of Sciences (India)

    Administrator

    Hydroxyapatite (HA) is extensively used in medical applications as an artificial bone because of its similarity to ... system, have been applied to fabricate HA porous scaffolds. In this work .... ceramic structured by the colloidal processing was.

  16. Biomimetic Composite Scaffold for Breast Reconstruction Following Tumor Resection

    National Research Council Canada - National Science Library

    Patrick, Jr, Charles W

    2005-01-01

    ... of life and outcomes are markedly improved. We hypothesized that a novel composite material consisting of silk fibroin and chitosan will act as a biomimetic scaffold amenable to in vivo adipogenesis. The specific aims (SAs...

  17. PENGARUH METODE SCAFFOLDING BERBASIS KONSTRUKTIVISME TERHADAP HASIL BELAJAR MATEMATIKA

    Directory of Open Access Journals (Sweden)

    Indrawati Indrawati

    2017-01-01

    ABSTRACT This study is motivated by the fact that many students have difficulties in learning mathematics especially for junior highschool students. This study aims to know the implementation of scaffolding method based on constructivism to students’ mathematics achievement. This is an experimental study with one group pretest and posttest design. The sample were 32 students grade VIII. Data is analyzed by t-test and n-gain test. T-test result shows that sig=0,000<0,05, The average score increases 15,63 and based on N-gain test shows that students competence increases too. It means that scaffolding method based on constructivism influence students’ mathematics achievement significantly. Thus scaffolding method based on constructivism can be implemented in any instruction, because it can increase students’ achievement and students will get learning variation that can reduce boredom and motivate them to learn actively. Keywords: mathematics achievement; constructivism; scaffolding.

  18. Biological effects of functionalizing copolymer scaffolds with nanodiamond particles.

    Science.gov (United States)

    Xing, Zhe; Pedersen, Torbjorn O; Wu, Xujun; Xue, Ying; Sun, Yang; Finne-Wistrand, Anna; Kloss, Frank R; Waag, Thilo; Krueger, Anke; Steinmüller-Nethl, Doris; Mustafa, Kamal

    2013-08-01

    Significant evidence has indicated that poly(L-lactide)-co-(ɛ-caprolactone) [(poly(LLA-co-CL)] scaffolds could be one of the suitable candidates for bone tissue engineering. Oxygen-terminated nanodiamond particles (n-DP) were combined with poly(LLA-co-CL) and revealed to be positive for cell growth. In this study, we evaluated the influence of poly(LLA-co-CL) scaffolds modified by n-DP on attachment, proliferation, differentiation of bone marrow stromal cells (BMSCs) in vitro, and on bone formation using a sheep calvarial defect model. BMSCs were seeded on either poly(LLA-co-CL)- or n-DP-coated scaffolds and incubated for 1 h. Scanning electron microscopy (SEM) and fluorescence microscopy were used in addition to protein and DNA measurements to evaluate cellular attachment on the scaffolds. To determine the effect of n-DP on proliferation of BMSCs, cell/scaffold constructs were harvested after 3 days and evaluated by Bicinchoninic Acid (BCA) protein assay and SEM. In addition, the osteogenic differentiation of cells grown for 2 weeks on the various scaffolds and in a dynamic culture condition was evaluated by real-time RT-PCR. Unmodified and modified scaffolds were implanted into the calvaria of six-year-old sheep. The expression of collagen type I (COL I) and bone morphogenetic protein-2 (BMP-2) after 4 weeks as well as the formation of new bone after 12 and 24 weeks were analyzed by immunohistochemistry and histology. Scaffolds modified with n-DP supported increased cell attachment and the mRNA expression of osteopontin (OPN), bone sialoprotein (BSP), and BMP-2 were significantly increased after 2 weeks of culture. The BMSCs had spread well on the various scaffolds investigated after 3 days in the study with no significant difference in cell proliferation. Furthermore, the in vivo data revealed more positive staining of COL I and BMP-2 in relation to the n-DP-coated scaffolds after 4 weeks and presented more bone formation after 12 and 24 weeks. n

  19. Microscale versus nanoscale scaffold architecture for mesenchymal stem cell chondrogenesis.

    Science.gov (United States)

    Shanmugasundaram, Shobana; Chaudhry, Hans; Arinzeh, Treena Livingston

    2011-03-01

    Nanofiber scaffolds, produced by the electrospinning technique, have gained widespread attention in tissue engineering due to their morphological similarities to the native extracellular matrix. For cartilage repair, studies have examined their feasibility; however these studies have been limited, excluding the influence of other scaffold design features. This study evaluated the effect of scaffold design, specifically examining a range of nano to micron-sized fibers and resulting pore size and mechanical properties, on human mesenchymal stem cells (MSCs) derived from the adult bone marrow during chondrogenesis. MSC differentiation was examined on these scaffolds with an emphasis on temporal gene expression of chondrogenic markers and the pluripotent gene, Sox2, which has yet to be explored for MSCs during chondrogenesis and in combination with tissue engineering scaffolds. Chondrogenic markers of aggrecan, chondroadherin, sox9, and collagen type II were highest for cells on micron-sized fibers (5 and 9 μm) with pore sizes of 27 and 29 μm, respectively, in comparison to cells on nano-sized fibers (300 nm and 600 to 1400 nm) having pore sizes of 2 and 3 μm, respectively. Undifferentiated MSCs expressed high levels of the Sox2 gene but displayed negligible levels on all scaffolds with or without the presence of inductive factors, suggesting that the physical features of the scaffold play an important role in differentiation. Micron-sized fibers with large pore structures and mechanical properties comparable to the cartilage ECM enhanced chondrogenesis, demonstrating architectural features as well as mechanical properties of electrospun fibrous scaffolds enhance differentiation.

  20. Tubular Scaffold with Shape Recovery Effect for Cell Guide Applications

    Directory of Open Access Journals (Sweden)

    Kazi M. Zakir Hossain

    2015-07-01

    Full Text Available Tubular scaffolds with aligned polylactic acid (PLA fibres were fabricated for cell guide applications by immersing rolled PLA fibre mats into a polyvinyl acetate (PVAc solution to bind the mats. The PVAc solution was also mixed with up to 30 wt % β-tricalcium phosphate (β-TCP content. Cross-sectional images of the scaffold materials obtained via scanning electron microscopy (SEM revealed the aligned fibre morphology along with a significant number of voids in between the bundles of fibres. The addition of β-TCP into the scaffolds played an important role in increasing the void content from 17.1% to 25.3% for the 30 wt % β-TCP loading, which was measured via micro-CT (µCT analysis. Furthermore, µCT analyses revealed the distribution of aggregated β-TCP particles in between the various PLA fibre layers of the scaffold. The compressive modulus properties of the scaffolds increased from 66 MPa to 83 MPa and the compressive strength properties decreased from 67 MPa to 41 MPa for the 30 wt % β-TCP content scaffold. The scaffolds produced were observed to change into a soft and flexible form which demonstrated shape recovery properties after immersion in phosphate buffered saline (PBS media at 37 °C for 24 h. The cytocompatibility studies (using MG-63 human osteosarcoma cell line revealed preferential cell proliferation along the longitudinal direction of the fibres as compared to the control tissue culture plastic. The manufacturing process highlighted above reveals a simple process for inducing controlled cell alignment and varying porosity features within tubular scaffolds for potential tissue engineering applications.

  1. Collagen as potential cell scaffolds for tissue engineering.

    Science.gov (United States)

    Annuar, N; Spier, R E

    2004-05-01

    Selections of collagen available commercially were tested for their biocompatibility as scaffold to promote cell growth in vitro via simple collagen fast test and cultivation of mammalian cells on the selected type of collagen. It was found that collagen type C9791 promotes the highest degree of aggregation as well as cells growth. This preliminary study also indicated potential use of collagen as scaffold in engineered tissue.

  2. A Guide to Scaffold Use in the Construction Industry

    Science.gov (United States)

    2001-01-01

    1926.451(e)(5)) and •integral prefabricated frames. (1926.451(e)(6)) What are the access requirements for employees erecting and dismantling supported...guardrails which blo